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Abstract: Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that
participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor
neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex
localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis.
In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonu-
cleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless,
the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo
are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy,
we found that SMN appears in the form of granules distributed along motor axons at nerve terminals.
Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence
of β-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of
the protein synthesis machinery involved in local translation in this compartment. SMN granules
co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that
the cytoskeleton participates in transporting and positioning the granules. We also found that, while
SMN granules are physiologically downregulated at the presynaptic element during the period of
postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament
aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with
the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles
between the axon and the presynaptic terminal.

Keywords: spinal muscular atrophy; motor neuron degeneration; SMN granules; neuromuscular
junction; β-actin mRNA; MAP1B; neurofilaments

1. Introduction

Survival motor neuron (SMN) is a 38-kDa, ubiquitously expressed and multifunctional
protein involved in distinct aspects of RNA homeostasis, ranging from transcription to
translation [1]. SMN is encoded by the SMN1 gene mapped to chromosome 5q13 [2].
In humans, an inverted duplication in the SMN1 region results in a second centromeric
gene called SMN2 [3]. The main difference between these genes is a C-to-T transition
located in exon 7 of SMN2. As a result, most SMN2 transcripts lack exon 7, leading to the
production of low levels (~10%) of full-length (FL) SMN protein and ~90% of a truncated
and unstable SMN∆7 protein isoform [4,5]. The deficiency or loss of function of SMN
resulting from the homozygous mutation of SMN1 causes spinal muscular atrophy (SMA),
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the most common form of motor neuron disease in children, characterized by a severe and
progressive neuromuscular pathology [2].

The best-known cellular function of SMN is to act as part of a complex that facil-
itates the assembly of small U-type ribonucleoproteins (snRNPs) in the cytosol, before
they are imported into the nucleus. SMN and gemins form heteromultimeric complexes
that incorporate the Sm protein ring into the snRNA [6]. snRNPs are critical for mRNA
maturation, by recognizing splicing sites and removing pre-mRNA introns [7]. In addition,
SMN has also been identified in the dendrites, axons, and growth cones of cultured motor
neurons [8]. Axonal SMN complexes essentially lack Sm proteins [9], indicating that SMN
has a different function in the peripheral subcompartments, as supported by the finding
that several mutations in SMN not affecting snRNP assembly failed to rescue motor axon
defects in SMA [10]. Growing evidence indicates that SMN is a housekeeping protein in
mRNA translocation to peripheral subcellular compartments forming part of the macro-
molecular messenger ribonucleoprotein (mRNP) transport granule family. SMN granules
contain several mRNPs, such as hnRNP R, HuD, and IMP1, as well as transcripts, such as
β-actin, cpg15, and GAP43 mRNAs, which are essential for the growth, differentiation, and
maturation of nerve terminals [11–19]. SMN-deficiency alters the axonal localization of
polyadenylated mRNAs and induces a generalized alteration of the axonal transcriptomic
profile in cultured motor neurons [18,20]. Though considerable evidence exists for SMN
participation in local translation in vitro [12,15,17,18,21–26], it is still unknown whether
the essential components of the local translation machinery are present in postnatal motor
nerve terminals in vivo, both in control and SMA mice.

Thus, we studied the spatiotemporal organization of SMN in ex vivo nerve terminals
in wild-type (non-transgenic) mice and two mouse models of SMA. We hypothesized
that peripheral SMN is a key element for the development and maturation of motor
nerve terminals. We show that mouse endogenous (Smn) and human transgenic (SMN)
proteins form granules distributed along motor axons and are arranged orderly within
the presynaptic nerve terminal. In wild-type mice, the density of axonal and preterminal
granules decreases after the first week of life, becoming hard to detect in adulthood. By
contrast, the heterologous expression of SMN at these compartments in transgenic control
and SMA mice remains relatively high after this period. Likewise, our results reveal a
potential physiological association between SMN granules and the cytoskeleton, especially
with neurofilaments (NFs). However, SMN and NFs form aggregates in SMA mice in axons
and nerve terminals, possibly contributing to neuromuscular junction (NMJ) collapse.

2. Materials and Methods
2.1. Mouse Models

Three murine models with FVB/N background were used: wild-type mice and
two mouse models of SMA, the SMN∆7 mouse (FVB.SMN∆7;SMN2;Smn-, Jackson labs
strain no. 005025, [27]), and the so-called Taiwanese mouse (FVB.Cg-Tg(SMN2)2Hung
Smn1tm1Hung/J, strain no. 005058 [28]). For each SMA model, experimental mice were
grouped into either transgenic control or SMA. Control SMN∆7 mice (Smn+/+; SMN2+/+;
SMN∆7+/+) were homozygous for the murine Smn gene, and control Taiwanese mice
(Smn+/−; SMN2+/0) were heterozygous for the murine gene. SMA mice were: Smn−/−;
SMN2+/+; SMN∆7+/+ and Smn−/−; SMN2+/0, for the SMN∆7 and Taiwanese lines, respec-
tively. Mice were kept under standard conditions (12:12 light hours:dark and ad libi-
tum feeding). The mice’s genotype was identified using PCR. All experiments were
carried out following the guidelines of the European Council Directive for the Care
of Laboratory Animals and the animal care and ethics committee of the University of
Seville (10/11/2020/128), the University of Lleida (CEEA 04/02-20), and the University
of Würzburg (mouse procedures were conducted in accordance with the regulations on
animal protection of the German federal law and of the Association for Assessment and
Accreditation of Laboratory Animal care, in agreement with the local authorities).
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2.2. Neuromuscular Preparations

Mice were sacrificed by decapitation and exsanguinated. The transversus abdominis
(TVA) muscle was dissected with its nerve branches intact and pinned to the bottom of
a 2-mL chamber over a bed of cured silicone rubber. Preparations were continuously
perfused with a solution containing (in mM): NaCl 135, KCl 4, CaCl2 2, MgCl2 1, NaHCO3
15, NaH2PO4 0.33, and glucose 10. The solution was continuously gassed with 95% O2 and
5% CO2.

2.3. Neuromuscular in Situ Hybridization

The fluorescent in situ hybridization (FISH) technique used in this work consisted of
the hybridization of the RNA of interest with a specific oligonucleotide probe of the LNA
type (blocked nucleic acid), conjugated with the digoxigenin (DIG) peptide. All steps were
carried out at room temperature, if not mentioned otherwise, and all manipulations of the
reagents and preparations were carried out in an RNase-free environment. Neuromuscular
preparations of the TVA muscle from wild-type mice at P6 were fixed with paraformalde-
hyde lysine phosphate (PLP) buffer, containing 4% paraformaldehyde (PFA), 75 mM lysine,
and 0.01 M sodium meta- periodate, pH 7.4, for 90 min at 4 ◦C, washed three times with
RNase-free PBS, and permeabilized with 1% (v/v) Triton X-100 in PBS. Proteinase K was
added at 2 mg/mL dilution to unmask mRNAs from bound proteins, incubated for 15 min
at 37 ◦C, refixed with PLP for 20 min, and washed with 0.1% (v/v) Triton X-100 in PBS. For
prehybridization, hybridization buffer containing 50% formamide, 0.1% Triton X-100, 9.2
mM citric acid, 50 µg/mL heparin, and 0.5 mg/mL E. coli tRNA in 5× SSC was added to the
preparation and incubated 3 h at 40 ◦C. Forty nM DIG–labeled oligonucleotide probe (LNA
probes/Exiqon: β-actin/5DigN/ACGCGACCATCCTCCTCTTA/3Dig_N/) was diluted
in the hybridization buffer and applied at 40 ◦C overnight. Afterward, preparations were
transferred into 4 sequential incubations with increasing concentration of SSC for 15 min
each to 2× SSC/0.1% Triton X-100, followed by incubation with 0.2× SSC/0.1% Triton
X-100 for 1 h. The same process was followed to transfer preparations to PBS/0.1% Triton
X-100. Finally, for detecting the DIG peptide (mouse monoclonal, Abcam, ab420), Tau
(rabbit polyclonal, Sigma, T6402), NF-H (chicken polyclonal, Millipore, ab5539), or AChR
(BTX-Cy3); the protocol used was as described below. Samples were mounted with Aqua
Poly/Mount mounting medium (Polysciences).

2.4. Electron Microscopy

Electron microscopy (EM) was performed as previously reported [29]. Briefly, the
tibialis anterior (TA) muscle was dissected and fixed for 1 h at 4 ◦C in 1% glutaraldehyde
and 1% PFA in 0.1 M phosphate buffer (pH 7.4). After that, slabs of the muscle were post-
fixed in 1% OsO4, stained in the block with 1% uranyl acetate in 70% ethanol, dehydrated,
and embedded in Epon 812 (Electron Microscopy Sciences, Fort Washington, PA, USA).
Toluidine blue-stained 1-µm semithin sections were cut, till obtaining neuromuscular
junctions; then, 60–70-nm ultrathin sections were cut from these areas, collected on copper
300 mesh grids, and examined in a Zeiss Libra 120 EM microscope (CITIUS). Acetate or
lead citrate counterstaining was not used, to avoid undesirable precipitates.

2.5. Western Blot

Spinal cords and TVA and obliquus abdominis (OA) muscles from wild-type, trans-
genic control (P10 and P35), and SMA SMN∆7 (P10) mice were used for Western blot
analysis. Frozen samples were fragmented and homogenized using an electric homog-
enizer with ice-cold RIPA lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM
EDTA, 1% NP-40, 1% Na-deoxycholate, 0.1% SDS) supplemented with protease inhibitor
(Sigma-Aldrich, Saint Louis, MO, USA) and PhosSTOP (Roche, Laval, QC, Canada). The
homogenized samples were centrifuged at 12,000× g rpm for 20 min at 4 ◦C. The protein
concentrations of supernatants were determined by BIO-RAD Micro DC protein assay (BIO-
RAD, Laboratories Inc., Hercules, CA, USA). Loading buffer 6 × SS (0.35M Tris-HCl, 10.28%
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(w/v) SDS, 36% (v/v) glycerol, 0.012% (w/v) bromophenol blue [pH 6.8]) containing 5%
β-mercaptoethanol (Sigma-Aldrich), and 20 µg of protein were loaded into 12% polyacry-
lamide electrophoresis gel. Proteins were electrotransferred to polyvinyldifluoride (PVDF)
membranes (Immobilon-P, Millipore, Burlington, MA, USA) in Tris-glycine-methanol-
buffered solution. Membranes were blocked with 5% dried skim milk in 0.1% Tween 20
and Tris-buffered saline pH 8 (TBST) for 1 h at RT, and then extensively washed in TBST.
Immunodetection was performed by incubating the membranes overnight at 4 ◦C with the
following antibodies: rabbit polyclonal (pAb) anti-SMN (1:200; Santa Cruz Biotechnology,
Dallas, TX, USA; cat. #sc-15320) and mouse monoclonal (mAb) anti-SMN (1:1000; BD
Transduction LaboratoriesTM, San Jose, CA, USA; cat #610646). Rabbit polyclonal anti-actin
(1:5000; Sigma-Aldrich; cat #A5060), mouse monoclonal anti-glyceraldehyde 3-phosphatase
dehydrogenase (GAPDH; 1:10,000; Abcam, Cambridge, UK; cat. #ab8245), and rabbit
monoclonal anti-GAPDH (1:10,000; Abcam, cat. #ab181602) antibodies were used for
loading controls. The membranes were washed in TBST, incubated with the appropriate
peroxidase-conjugated secondary antibodies (1:20,000; Cell Signaling Technology, Danvers,
MA, USA) for 60 min at RT, washed in TBST, and visualized using the Amersham ECL Se-
lect Western Blotting Detection Reagent (Cytiva, Marlborough, MA, USA), as described by
the manufacturer. The quantification of band densities was performed using a Chemi-Doc
MP Imaging System (BIO-RAD Laboratories Inc.).

2.6. Immunohistochemistry

Muscles were fixed in 4% PFA for 90 min, washed (0.1 M glycine in PBS) for 30 min,
permeabilized (1% [v/v] Triton X-100 in PBS) for 90 min, and incubated in 5% (w/v) bovine
serum albumin with 1% Triton X-100 in PBS for 3 h. Samples were incubated overnight at
4 ◦C, with the following primary antibodies: rabbit polyclonal anti-SMN H195 (sc-15320,
SCBT), mouse monoclonal anti-NF-M (sc-51683, SCBT), and goat polyclonal anti-MAP1B
(sc-8970, SCBT). The next day, muscles were incubated in PBS containing 0.05% Triton
X-100 for 1 h, exposed to the appropriate secondary antibodies for 1 h (Alexa Fluor 647-
conjugated donkey anti-goat or donkey anti-rabbit (Invitrogen, Madrid, Spain), Alexa Fluor
647-conjugated donkey anti-chicken (Jackson 703-605-155), Alexa Fluor 594-conjugated
donkey anti-rabbit (Invitrogen, Madrid, Spain), CF488-conjugated donkey anti-mouse
(Biotium, Madrid, Spain), plus 10 ng/mL bugarotoxin-rhodamine- (BTX-rho), and bathed
again with 0.05% Triton X-100 for 90 min. Finally, muscles were mounted with Slowfade
medium (Invitrogen, Madrid, Spain)).

2.7. Image Acquisition and Analysis

Images were acquired using an upright Olympus FV1000 multispectral confocal mi-
croscope, equipped with three excitation laser lines: (i) multiline argon laser (M-Ar) with
excitation at 458, 488, and 515 nm, (ii) helium-neon green laser (HeNeG) with excitation
at 561 nm, and (iii) helium-neon red (HeNeR) laser excited at 633 nm. As previously
described [30], the excitation was carried out sequentially for the different lasers, to avoid
cross-excitation of the samples labeled with different fluorophores. Images were acquired
as serial optical sections on the Z-axis (Z-stacks) using a PlanApo N-type 60× oil immersion
objective (Olympus) with a numerical aperture (NA) of 1.42. Images from wild-type and
transgenic control and littermate SMA mice were taken with similar conditions (laser inten-
sity and photomultiplier voltage) and, usually, during the same day. Only superficial nerve
terminals were imaged. Fluorescence distribution and area were analyzed using ImageJ
routines. Presynaptic and endplate areas were delineated with outline masks based on
brightness thresholding from maximal projected confocal images. In all immunohistochem-
istry (IHC) experiments, endplate acetylcholine receptors were stained with BTX-rho. The
ratio between the fluorescent presynaptic area of interest and its BTX-rho labeled endplate
area was calculated for each NMJ. The background signal was subtracted using the same
threshold used for the analysis of the presynaptic area.
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2.8. STED Super-Resolution Microscopy

Stimulated emission depletion (STED) super-resolution images were acquired using a
STEDYCON nanoscope system (Abberior Instruments) coupled to a FV1000 microscope. A
775-nm laser was used for depletion. In some cases, the images were deconvoluted with
the Huygens Essenstials® software and processed and analyzed using the ImageJ software
(W. Rasband, NHI, Bethesda, MD, USA; http://rsb.info.nih.gov/ij/, accessed on 20 August
2022). The background signal was subtracted and smoothed before analysis. SMN granules’
size was analyzed by measuring their full-width at half maximum (FWHM) values of
their intensity profiles with ImageJ (complement: Adrian’s FWHM) and estimating the
area, assuming they were perfect circles. For analysis of the SMN signal, mean intensity,
maximum intensity, and integrated density were measured in regions of interest potentially
equivalent to individual granules. The number of SMN granules was estimated using the
routine analysis of particles. The density of the granules was measured in individual planes
that were normalized to the BTX-rho area.

2.9. Statistical Analysis

Statistical analysis of data was performed using GraphPad Prism 5 (GraphPad Soft-
ware). Unless otherwise stated, all values mentioned in the text and represented in graphs
are the mean ± standard errors of the mean (SEM). Parametric statistics were used when-
ever possible. The assumption of homogeneity of variances was assayed with Levene’s
test, using α = 0.05 as a cut-off. When the distribution was normal, statistical comparisons
between experimental conditions were made using Student’s paired two-tailed t-test, or
unpaired t-test, as indicated. When the distribution was not normal, a Mann–Whitney
rank-sum test was used. Given that the number of nerve terminals analyzed per condition
was typically 5 or less in some of the live imaging experiments, every presynaptic terminal
was treated as statistically independent. The results were considered statistically different
when the p-value was ≤ 0.05. Data in parentheses (n, N): n, the number of nerve terminals
per group; N, number of mice per group.

3. Results
3.1. SMN Is Localized as Granules in Axons and Motor Nerve Terminals

Previous studies showed that SMN is present in the axons of cultured motor neu-
rons [8,9,31] and diaphragmatic nerve terminals [32]. Here, to further investigate the
localization and organization of endogenous Smn within axons and nerve terminals, we
performed IHC and quantitative confocal microscopy in neuromuscular preparations of
the TVA muscle from wild-type mice at P3. The specificity of the anti-SMN pAb was
validated by WB (see below) and immunocytochemistry in isolated shSMN motor neurons
(Figure S1A) and spinal cord sections from control and SMA∆7 mice (Figure S1B).

In the neuromuscular preparations, an intense Smn signal distributed in axons and
axon terminals was observed (Figure 1A). Moreover, a weak signal was found outside the
NMJ, in accordance with the presence of the Smn protein in muscle fibers [33,34]. When
images were acquired with a higher magnification, the Smn signal appeared in the form of
granular structures in axons and motor nerve terminals (Figure 1B). In the thinnest axons,
the granules were found arranged in a single row, with a mean distance (center-center)
of 1.95 ± 0.12 µm (n = 114 granules, 9 axons, N = 3 mice) (Figure 1C). The mean Smn
density of granules in the thinnest axons was 0.55 ± 0.03 per µm (n = 123 granules, 9 axons,
N = 3 mice).

http://rsb.info.nih.gov/ij/
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Figure 1. SMN has a granular appearance and progressively decreases during the second week
of life in axons and motor nerve terminals of wild-type mice. (A). Maximum intensity projection
in a representative neuromuscular preparation of the TVA muscle at P3. Immunofluorescence of
endogenous SMN (Smn, white) is detected in motor axons and nerve terminals. Note the apposition
of SMN with the postsynaptic marker BTX-rhodamine (red). Scale bar: 50 µm. (B). SMN (white)
shows a granular pattern at the NMJ (left panels, scale bar: 10 µm), and axons (magenta, right
panels, upper-scale bar: 5 µm, lower-scale bar: 3 µm). Note the single-file arrangement of the SMN
granules in the thinner axons (inset) marked by anti-NF (green). (C). Frequency histogram of the
spacing between axonal granules, as calculated by their intensity profile (inset). (D). The SMN signal
(magenta) is intense at P3 and P6, weak at P8 and P10, and almost null at adulthood (P60) in the TVA
muscle. Scale bars upper panels: 50 µm (P3–P10), 10 µm (P60); lower panels: 10 µm. (E). The graph
displays the percent of the Smn area with respect to the postsynaptic area at different ages.
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3.2. Smn Progressively Decreases during the Early Postnatal Period in the Axon and the
Presynaptic Motor Terminal of Wild-Type Mice

SMN levels physiologically decrease in the cell bodies of motor neurons and in various
tissues during the early postnatal period in mouse models and humans, indicating a
significant role of SMN during development and maturation [35–41]. Since defects in the
NMJ maturation have been reported in SMA mouse models [30,42–44], we investigated
whether the physiological changes in the expression of SMN observed in other tissues also
occur in motor axon and nerve terminals. For this purpose, we quantified the endogenous
Smn signal in the TVA muscle of wild-type mice at different ages.

During the first week of the postnatal period, the Smn signal was intense in the axons
and nerve terminals (Figure 1D). At the presynaptic terminal, it represented 7.37 ± 0.61%
of the postsynaptic area at P3 (38 terminals, 3 mice) and 7.18 ± 3.52% at P6 (28 terminals,
2 mice). However, during the second postnatal week, there was a significant reduction in
the signal, representing a 3.34 ± 0.28 of the postsynaptic area at P8 (24 terminals, 2 mice)
and 1.17 ± 0.1% at P10 (22 terminals, 2 mice) (p < 0.005 and p < 0.0005, respectively,
compared to P3; one-way ANOVA, Bonferroni’s post hoc test). The Smn signal was not
detectable during adulthood (P60) using the same excitation and acquisition parameters as
at postnatal age. However, the signal could be detected when higher laser intensities were
applied. Figure 1E shows the measured time course of Smn reduction at the presynaptic
terminals in wild-type mice.

3.3. β-Actin mRNA Transcripts Localize in the Presynaptic Compartment

The spatiotemporal decrease of endogenous Smn in wild-type mice during the early
postnatal period indicates a role of Smn in the early postnatal maturation of motor nerve
terminals. In accordance with this, it has recently been shown that Smn-specific mRNAs are
associated with neurogenesis and translation [45]. In neuronal cells with distant synaptic
targets, local protein synthesis has been proposed to be important in developing and
mature axons, to regulate the proteome of cellular subcompartments [46–51]. Since SMN
granules in vitro contain mRNAs and RNPs, we postulated that SMN participates in local
protein translation in vivo. To test our hypothesis, we investigated the presence of mRNA
transcripts in axons and nerve terminals in whole-mount TVA muscles from wild-type
(P3–P6) mice by fluorescence in situ hybridization (FISH) [52].

As β-actin mRNA is abundant in neurons [53,54], FISH experiments were carried
out using an mRNA-binding probe for β-actin conjugated to an immunolabeled DIG
polypeptide. In these experiments, protein digestion is needed, to dissociate the RNA–
protein complexes and make the RNA of interest accessible to the probe. However, if
protein digestion is excessive, identifying structures by marker proteins, such as cytoskeletal
proteins or acetylcholine nicotinic receptors, can be compromised. Thus, we initially tested
different experimental conditions, to obtain the optimal enzymatic digestion of the tissue,
without altering the detection of the marker proteins. We tested 10 and 2 mg/mL of
proteinase K with different incubation periods (5–45 min). Although the characteristic
dotted signal of mRNA labeling [18,55] was obtained with 10 mg/mL of proteinase K,
the marker protein (Tau) could not be adequately identified, indicating over-digestion.
With 2 mg/mL of proteinase K, an adequate signal from the RNA probe was obtained at
all times tested (Figure S2A, upper panels), though the marker protein (Tau) signal was
seen only with 5 min of incubation (Figure S2A, lower panels). Thus, we incubated the
muscle preparations with 2 mg/mL proteinase K for 5 min during the rest of the study.
Additionally, we performed two control experiments to check whether there was bleed-
through or crosstalk between the DIG-488 nm and α-bungarotoxin (BTX)-Cy3 channels.
The results showed that the emission of the green channel did not pass through the red
channel (Figure S2B, upper panels), and the signal from Cy3 did not cross to the green
channel despite its high intensity (Figure S2B, lower panels). Finally, we checked the
specificity of the anti-DIG antibody, by performing a negative control experiment in the
absence of the β-actin mRNA binding probe. No specific signal was obtained in those cases
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(Figure S2C, left panel), while the NMJs were identified by the immunostaining of Tau
(Figure S2C, right panel).

Once the enzyme digestion conditions and antibody specificity were established, we
investigated whether the β-actin mRNA localizes at the presynaptic compartment, besides
its presence in axons. Figure 2 shows that the β-actin mRNA signal is located close to
NFs and Tau in axons (panels A and B, respectively). Remarkably, a similar signal for the
transcript was also found in correspondence with the labeling of acetylcholine receptors
and Tau at the NMJs (Figures 2C and 2D, respectively), showing, for the first time, the
presence of β-actin mRNA at the NMJ presynaptic compartment.

Figure 2. β-actin mRNA is present in peripheral axons and NMJs. (A). Example of β-actin mRNA
(green) in a bundle of axons visualized by FISH (left panel). The same axons are marked with an
anti-NF antibody (red, right panel). (B). Detail of the dotted signal of the probe in a band of axons (left
panel), identified by its immunoreactivity to Tau (red, right panel). (C). Images of an NMJ displaying
β-actin mRNA (green, left panel) and BTX (red, middle panel), and a merged image (right panel) (D).
Images of an NMJ displaying β-actin mRNA (green, left panel) and Tau (red, middle panel) signals,
and a merged image (right panel). Calibration bars: (A) 40 µm, (B–D) 10 µm.

3.4. Ribosomes and Polysomes Are Present in Nerve Terminals

Aside from the role of SMN in mRNA translocation to the peripheral subcellular com-
partments, it has recently been shown that SMN associates to polysomes and participates
in translation in cultured motor neurons [21], murine brain, and spinal cord samples [56].
Furthermore, in vivo experiments have shown that SMN directly modulates a specific
subset of ribosomes implicated in the translation of mRNAs related to ribosome biogenesis,
bioenergetics, and neuronal function [45]. Ribosomes have been identified at motor nerve
terminals by immunoelectron and conventional electron microscopy [57,58]. To check for
the presence of ribosomes at the presynaptic motor terminal of control and SMA SMN∆7
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mice, we performed a transmission EM study and investigated the distribution of ribo-
somes and polysomes, according to the criteria of these previous studies. Figure 3 shows
representative examples of NMJs in TA muscles at P14. In both the control (Figure 3A,B)
and SMA mice (Figure 3C,D), abundant dispersed ribosomes, as well as polysomes, were
seen at the presynaptic terminal (arrowheads and boxes). Since we had already found
SMN and mRNA transcripts at the preterminal compartment, the presence of ribosomes
demonstrates that motor nerve terminals in control and SMA mice contain the molecu-
lar machinery necessary for protein synthesis, and this gives additional support to the
occurrence of in vivo local translation in this compartment. Furthermore, the presence of
polysomes strongly suggests that active local translation is taking place during the NMJ
postnatal maturation period in both genotypes. Nevertheless, in SMA mice, some terminals
showed abundant degenerated mitochondria, lysosomes, and autophagosomes (Figure S3),
indicating that the neurodegeneration process was also highly activated.

Figure 3. SMA and control presynaptic motor terminals contain ribosomes and polysomes. Electron
microscopy representative images of NMJs from the TA muscle of control (A,B) and SMA (C,D) mice
from the SMN∆7 line at P14. In the cytoplasm of the presynaptic terminal, synaptic vesicles (sv),
neurofilaments (NFs), mitochondria (mit), and smooth endoplasmic reticulum (ser) are indicated.
Scattered throughout the cytoplasm of the presynaptic terminal are numerous independent ribosomes
(r) (arrows and boxes in B,C) and, less abundantly, polysomes (p) (arrowheads and boxes in A,D).
Other identified elements incude jf: junction folds; ps: postsynaptic element; rer: rough endoplasmic
reticulum; Sc: Schwann cell. Calibration bars: 500 nm (A,C), 200 nm (B,D), and 50 nm (inserts
from A,D).
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3.5. Axonal and Presynaptic SMN Granules Abundancy Remains High in SMA Models

Control and SMA mice of the widely used SMN∆7 line contain two copies of the
human SMN2 and several copies of the SMN∆7 cDNA, with transgenic control mice also
expressing the murine Smn gene [27]. We investigated whether the transgenic SMN protein
exhibited a similar spatial distribution to the endogenous Smn protein. To address this
question, we studied the SMN expression in SMN∆7 mice at P9-10, an age at which the
endogenous Smn signal in wild-type mice had already decreased by 87% (Figure 1E).

Unexpectedly, abundant SMN granules were identified in control and SMA SMN∆7
axons and nerve terminals (Figure 4A). For quantification, the area of the SMN signal
was normalized to the postsynaptic area in both genotypes and compared with that in
wild-type mice (Figure 4B). The SMN signal values were 7.05 ± 0.8% in transgenic control
(n = 38 terminals, 3 mice) and 12.41 ± 1.91% (n = 32 terminals, 3 mice) in SMA mice. These
values were significantly different from those obtained at a similar age (P8-10) in wild-type
mice, representing a 3.1-fold and 5.5-fold increase, respectively (p < 0.0001, Kruskal-Wallis
test; Dunn’s post hoc test versus wild-type, p < 0.0001 in both genotypes).

Axons of control and SMA mice also showed an intense SMN signal and a granular
pattern (Figure S4A, left panels). The SMN content varied, depending on the thickness of
the axon, but was much higher in transgenic mice than in wild-type mice at P8-10 (compare
Figure 1D and Figure S4A, left panels). We also checked for the presence of SMN in the
axons of the levator auris longus (LAL) muscle (Figure S4A, right panels), which is less
morphologically and functionally affected than the TVA in SMA models [59–63], and found
a similar granular content to that in the TVA axons.

Figure 4. Cont.
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Figure 4. SMN signal was high in motor synaptic terminals of control and SMA mice at P9-10. (A).
Maximum intensity projections of TVA muscle motor terminals in both genotypes at P9. The motor
endplates were identified using BTX-rhodamine labeling (red). Scale bars: 10 µm. (B). Comparison of
the SMN area normalized to the postsynaptic area (BTX) in wild-type and SMN∆7 mice (control and
SMA). The analysis was performed at P9-10. ***: p < 0.01; n.s.: not significant; (C,D). Quantification
and representative images of Western blot assays performed on TVA muscle extracts obtained from
P10 wild-type (WT) and transgenic SMN∆7 mice (control (Ctrl) and SMA). Either a mouse monoclonal
antibody (mAb) anti-SMN or a rabbit polyclonal antibody (pAb) anti-SMN was used in the analysis.
Note that with both the anti-SMN mAb (C) and the pAb (D), total-SMN levels were significantly
increased in Ctrl, compared to WT (***: p < 0.001). In contrast, relative expression of total SMN in SMA
mice was dramatically reduced compared with either WT or Ctrl animals (****: p < 0.0001 vs. WT or
Ctrl (with the anti-SMN mAb); **: p < 0.01 vs. WT and ****: p < 0.0001 vs. Ctrl (with the anti-SMN
pAb)). In all the cases, total-SMN levels (FL-SMN and SMN∆7, when present) were quantified in 4
WT and in 8–11 Ctrl and SMA mice and normalized; first, to the loading control (GAPDH), and then,
to the average of the WTs. Data are presented as mean ± SEM and were analyzed by using a one-way
ANOVA (Bonferroni’s post hoc test). (E,F). Quantification and representative images of Western blot
assays performed on TVA muscle extracts obtained from P10 and young adult (P35) WT and Ctrl
transgenic SMN∆7 mice, using either the anti-SMN mAb or pAb. Note that, with both the anti-SMN
mAb (E) and the pAb (F), total-SMN protein levels at P35 were significantly lower than at P10, in WT
and Ctrl mice (****: p < 0.0001 vs. P10 WT or Ctrl (with the anti-SMN mAb); **: p < 0.01 vs. P10 WT
or Ctrl (with the anti-SMN pAb)). Moreover, at P35, SMN protein levels in TVA muscles remained
significantly higher in Ctrl than in WT (*: p < 0.05 vs. WT (with the anti-SMN mAb); ****: p < 0.0001
vs. WT (with the anti-SMN pAb)). In all cases, total-SMN levels (FL-SMN and SMN∆7, when present)
were quantified in 4 mice per experimental condition and normalized; first, to the loading control
(GAPDH), and then, to the average of the P10 WTs. Data are presented as mean ± SEM. Each two
conditions were compared using a two-tailed Student’s t-test.

3.6. SMN Protein Levels Are Elevated in the TVA Muscle of Control Transgenic Mice

After observing that motor nerve terminals of both control and SMA transgenic
SMN∆7 mice displayed a higher abundancy of SMN-containing granules than wild-type
animals, we further investigated the possible differences in SMN expression between
these conditions.

We first examined SMN protein levels in the entire TVA muscle from P10 wild-type and
transgenic SMN∆7 mice using Western blot. To increase the feasibility of detecting the total
SMN protein, we performed, in parallel, independent experiments using two widely used
anti-SMN antibodies: a mouse mAb, and a rabbit pAb. We found that at P10, the relative
levels of total SMN protein in transgenic controls were significantly higher compared with
those in wild-type muscles. This increase was observed regardless of the antibody used for
SMN detection (fold increase: anti-SMN mAb, 1.68 ± 0.09 (p = 0.0003), and anti-SMN pAb,
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1.98 ± 0.2 (p = 0.0006); one-way ANOVA, Bonferroni’s post hoc test) (Figures 4C and 4D,
respectively). These data are in agreement with the increased immunolabeling observed in
motor nerve terminals of transgenic control compared to wild-type mice (see Figure 4B).

In contrast, and as expected, the relative expression of total SMN in SMA mice
was dramatically reduced compared with either wild-type or transgenic control animals
(Figure 4C,D). These results are consistent with previous data reporting a decline in SMN
protein expression in the muscles of SMA mice, but differ from the increased immunolabel-
ing of SMN protein we observed in presynaptic motor terminals of SMA mice compared to
wild-type (see Figure 4B). These divergent results could be ascribed to the scarce represen-
tation of pre-synaptic motor terminals in the total TVA muscle extracts used in our Western
blot analysis. Thus, the increased SMN expression we observed in SMA motor nerve
terminals was probably masked by the reduced SMN levels occurring in SMA muscle cells.

Next, we analyzed whether this differential SMN expression found between transgenic
control and wild-type mice at P10, persisted during young adulthood. To assess this,
we compared SMN levels in control and wild-type mice at P35. To minimize the inter-
experimental variability, new muscle samples at P10 were also included in the study. At
P35, SMN protein levels in the TVA muscle were significantly lower than at P10, in either
wild-type or control mice (Figure 4E,F). This agrees with the previously described reduction
in SMN protein levels after maturation of the neuromuscular system [40,41]. However, even
at this age (P35), TVA muscles from transgenic control mice continued to exhibit higher
levels of total SMN protein than those from wild-type animals (fold increase: anti-SMN
mAb, 2.86 ± 0.69 (p = 0.0484), and anti-SMN pAb, 4.52 ± 0.29 (p < 0.0001); Student’s t-test,
two-tailed) (Figures 4E and 4F, respectively).

Finally, we wanted to examine whether similar differences in SMN expression between
wild-type, control, and SMA transgenic mice also occurred in the OA muscle and in the
spinal cord. Since the anti-SMN mAb and pAb followed a similar pattern of SMN protein
detection in TVA muscle, only the mAb was included in the analysis. As expected, we
found that in both the OA muscle and spinal cord from P10 SMA animals, SMN levels were
significantly reduced compared to the respective wild-type or control samples. However, in
the samples from transgenic control animals, SMN levels were, again, substantially higher
than in those from wild-type mice (fold increase in OA muscle: 1.95 ± 0.15 (p < 0.0001);
fold increase in the spinal cord: 1.75 ± 0.26 (p = 0.0442); one-way ANOVA, Bonferroni’s
post hoc test) (Figure S5A and Figure S5B, respectively). At P35, as expected, the SMN
protein levels in both tissues were significantly lower than at P10, in both wild-type and
control. However, in OA muscles, the SMN levels in control animals remained significantly
higher compared to the wild-type mice (Figure S5C) (fold increase: 2.31 ± 0.22 (p = 0.0034,
Student’s t-test, two-tailed)), as we previously found in the TVA muscle (Figure 4E,F).
Nevertheless, in the spinal cord, the SMN levels were not statistically different between
control and wild-type (fold increase: 1.1 ± 0.15 (p = 0.5425, Student’s t-test, two-tailed))
(Figure S5D).

Overall, these results show that the SMN protein levels were significantly higher in
the transgenic control than in wild-type mice, probably due to the SMN overexpression
resulting from the introduction of two human SMN transgenes.

3.7. SMN Granules Visualized at Super-Resolution

We used super-resolution STED microscopy to increase the size measurement accu-
racy of the granules and their distribution in the presynaptic motor terminal. The system
consisted of a compact STEDYCON unit (Abberior) coupled to our FV1000 confocal mi-
croscope. The analysis of the STED images in the P9 TVA muscle from control and SMA
samples of the SMN∆7 model confirmed the granular pattern of the immunostaining and
allowed a better characterization of the granules. Representative examples are shown in
Figure 5A, where STED and conventional confocal images are compared in both mouse
genotypes. Identifying individual granules was much better with STED, and the images
were further improved when a deconvolution routine (Huygens) was applied. Typically, a
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rosette-like organization of the granules within the final part of the NFs was observed in
control mice. In contrast, plaque-like structures were most frequently observed in SMA
animals (Figure 5A, insets).

Figure 5. SMN granule properties visualized at super-resolution. (A). Comparison of immunofluo-
rescence signals from SMN (white) with super-resolution and confocal microscopy in motor nerve
terminals of the TVA muscle at P9. The super-resolution signals after deconvolution are also shown.
The intraterminal axonal branches were labeled with antibodies against NFs (green). Note the ring-
like (control) and the plaque-like (SMA) structures of the final part of the NFs branches and the
ordered organization of granules in control. Scale bars: 5 µm and 1 µm (insets). (B). The apparent
size distribution of SMA granules is similar in the control and SMA mice (left graph). The density
of granules in the axonal branches is similar in both genotypes (middle graph). The mean granule
intensity is lower in SMA mice (right graph; **: p < 0.005). a.f.u., arbitrary fluorescent units.

The analysis of the diameter of the granules with super-resolution was carried out in
the same way as in conventional confocal microscopy. The average size of the granules
was similar between control and SMA mice (Figure 5B, left graph) (p = 0.3; Student’s t-test,
two-tailed), with a mean value of 103.4 ± 2.32 nm (73 granules) and 100.31 ± 1.93 nm
(77 granules), respectively, coinciding with the optical resolution that we obtained in the
experiments. Likewise, the apparent mean density of granules in regions where they
displayed a rosette- or a plaque-like organization was similar in both genotypes (Figure 5A,
insets), with a mean value of 12 granules/µm2 (Figure 5B, middle graph). We found
significant differences in the mean intensity of granules between genotypes (Figure 5B,
right graph; p = 0.0021, two-tailed Mann-Whitney U test), with mean values of 499.3 ± 32.13
arbitrary fluorescent units (a.f.u.) in control (73 granules) and 418.9 ± 34.41 a.f.u. in the
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SMA (77 granules) mice. Remarkably, the mean intensity of granules did not correlate with
their diameter (Figure S6A; R2 = 0.08 and 0.019 in control and SMA, respectively).

3.8. SMN Is Spatially Associated with MAP1B in SMA and Controls

The integrity and dynamics of the cytoskeleton are essential for the proper function of
axons and synaptic terminals. SMN interacts with the proteins that regulate the cytoskele-
ton dynamics, such as profilin, an actin-binding protein [64–66]. Microtubules, which
participate in the maintenance of the cell structure and transport of organelles, are the
largest and most dynamic filaments of the cytoskeleton and are impaired in SMA [62,67].
MAP1B, a microtubule stabilizer protein that participates in the neuronal development of
axons, growth cones, and presynaptic terminals [68,69], is also altered in SMA models [70]
(https://idus.us.es/handle/11441/40896, accessed on 20 August 2022).

Since axonal SMN associates with the microtubule apparatus, as has been shown by
EM immunolabeling [71], we hypothesized that this relationship should also be found at
the level of the presynaptic terminal. Thus, we explored the spatial correlation between
SMN granules and MAP1B by double immunolabeling in the Taiwanese SMA model,
which displays an intraterminal distribution of SMN granules similar to that found in the
SMN∆7 model (Figure 6).

SMN granules and MAP1B in control mice (Smn+/−; SMN2+/0) displayed almost
overlapping spatial distributions, both in the axons and presynaptic terminals. However, in
the most distal portions of the intraterminal branches, MAP1B formed rounded structures
containing rosette-like assemblies of SMN granules (Figure 6A, inset). In SMA mice
(Smn−/−; SMN2+/0), the MAP1B signal also coincided with the SMN signal, but both
exhibited more diffused distributions than in controls (Figure 6B). These results suggest
that both proteins are in close association, and motor proteins potentially transport SMA
granules. This hypothesis is reinforced by a previous report that found bi-directional active
trafficking of axonal SMN-containing granules in cultured motor neurons [72].

3.9. SMN and NFs Follow the Same Path at Motor Nerve Terminals

In wild-type mice, at early postnatal ages, NF showed a branched arrangement ending
in loop-like structures in motor nerve terminals (Figure 7A, upper panels). The spatial
distribution of the endogenous Smn granules (Figure 7A, middle panels) was consistent
with that of the NFs (Figure 7A, lower panels), indicating that the Smn distribution closely
follows NFs. At SMN∆7 mouse presynaptic terminals, the relationship between NFs
and SMN granules was conserved, as revealed by the concentration of SMN granules at
NFs loops (Figure 7B). These data confirm a previous report which showed that SMN
immunoreactivity is associated with NFs [71].

Thus, given that SMN granules showed an apparent association with NFs and MAP1B,
we next studied the spatial relationship between these three proteins in axons. The triple im-
munolabeling for MAP1B, NF, and SMN revealed that the SMN granule content correlated
well with both cytoskeletal proteins (Figure 7C), except in some cases where MAP1B-
marked axons displayed no NFs or SMN granules (Figure 7C, right graph), suggesting a
closer association of SMN granules with NFs than with MAP1B.

3.10. NFs and SMN Aggregate Together

The pathological abnormality of NFs in SMA has been well documented [43,44,59,61–
63,73]. Hence, to better understand the involvement of NFs in SMA pathophysiology, we
studied the relationship between NFs and SMN granules at the nerve terminals and axons
displaying a certain amount of NFs accumulation.

Typically, SMA SMN∆7 mice displayed thinner motor axons than control animals,
together with significant NFs accumulations along a single intrasynaptic axonal branch
(Figure 8A, left panel). We found that the SMN signal closely followed the NFs trajectory
inside the presynaptic motor terminal (Figure 8A, central and right panels). Moreover,
in approximately 20% of NMJs of SMA mice, a single and massive accumulation of NFs,

https://idus.us.es/handle/11441/40896
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accompanied by a high density of SMN granules, filled most of the presynaptic terminal
(Figure 8B). These compact, large NF-SMN structures found in the SMA model probably
represented one of the final degeneration stages of the preterminals.

Figure 6. SMN granules are spatially associated with MAP1B at presynaptic motor terminals. (A).
SMN granules (magenta) follow the MAP1B trajectory (green) in control mice, both in the axon and
the presynaptic terminal. MAP1B can form rounded structures containing organized SMN granules
(inset) at the most distal portions of the intraterminal branches. The linear intensity profile of MAP1B
(green) and SMN (magenta) in segments 1 and 2 in the images are shown in the lower graphs. (B). In
SMA mice, MAP1B has a diffuse appearance. Linear intensity profile of MAP1B (green) and SMN
(magenta) in segments 1 and 2 indicated in lower graphs. Note that the MAP1B signal encompasses
the SMN signal. Scale bars: 10 µm.
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Figure 7. SMN granules co-localize with NFs in presynaptic motor terminals and axons. (A).
Representative example showing that SMN granules (magenta) follow the NF (green) path, from
the motor nerve to the distal part of the intraterminal branches, in a TVA muscle from a wild-type
mouse. The endplate was labeled with BTX (red). On the right panels, the delimited regions are
shown magnified. Scale bars: 5 µm and 750 nm, respectively. (B). Details of SMN granules (grey),
following NFs intraterminal structures (green) in wild-type and SMN∆7 (control and SMA) mice.
Scale bar: 2 µm. (C). SMN granules show a greater degree of coincidence with the NFs than with
MAP1B. Example of a band of axons from a Taiwanese control mouse labeled for MAP1B (magenta),
NFs (green), and SMN (red). Note the heterogeneity of the axons, in terms of their immunoreactivity
for each of these proteins. Scale bar: 10 µm. The graphs display the intensity profiles through the
lines in the images. Note the better coincidence of SMN (red trace) with axons showing a high NFs
intensity (green traces) than with axons displaying a high MAP1B content (magenta traces). a.f.u.,
arbitrary fluorescent units.
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Figure 8. SMN aggregates in NF accumulations at P9. (A). Representative example of motor synaptic
terminals (red outlines) displaying few NFs branches (green) and aggregates of SMN granules (white)
in an SMA mouse. Scale bar: 10 µm. (B). SMA presynaptic terminal showing a massive accumulation
of NFs (outlined in green), occupying much of the terminal area (red outline) and containing abundant
SMN granules (white). Scale bar: 10 µm. (C). Axonal accumulations of NFs in the SMN∆7 model
coinciding with SMN granule aggregates, both in transgenic control and SMA mice. The insets show
details of the overlap of SMN granules and NFs. Accumulations of SMN granules and NFs were only
occasionally observed in control mice. The scale bars are 40 and 2 µm (left panels) and 15 and 5 µm
(right panels).

As observed in nerve terminals, NFs accumulations were frequently found in axons of
SMA mice, which also contained numerous SMN granules (Figure 8C, right panels). The
NF-SMN aggregates were noticed both far from (Figure 8C), and close to, the presynaptic
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motor terminal (Figure S6B, arrows). In control mice, axonal NFs cumuli were occasionally
found, but, remarkably, they also contained numerous SMN granules (Figure 8C, left
panels). Together, these results indicate that SMN granules follow the NFs distribution in
both physiological and pathological conditions.

4. Discussion

The role of SMN in the assembly of the spliceosome and the biogenesis of ribonucleo-
proteins has been well defined [6]. In addition, SMN is involved in axonal mRNA trafficking
and local translation in cultured neurons [74,75]. However, the physiological function and
pathological role of SMN in motor nerve terminals are still not well understood. Here, we
investigated the expression and distribution pattern of SMN proteins, both endogenous and
transgenic, in axons and presynaptic motor nerve terminals during postnatal maturation in
wild-type mice and SMA mouse models. The most relevant findings in the current study
are as follows: first, SMN protein appears in the form of granules, and the number of axonal
and presynaptic granules decreases progressively during the second postnatal week, until
they become imperceptible in adulthood; second, ribosomes and β-actin mRNA, two key
elements of the protein synthesis machinery, are present at presynaptic terminals during
the postnatal maturation stage; third, the expression of transgenic SMN genes leads to the
persistence of SMN granules in axons and motor nerve terminals in SMA models (SMN∆7
and Taiwanese); and fourth, NFs accumulations contained a large number of SMN granules
in the presynapse and axons of SMA mice, which might contribute to the pathology of the
presynaptic motor terminal.

4.1. Physiological Age-Dependent SMN Expression in Nerve Terminals

SMN protein levels have been documented in different tissues and ages in mouse
models and human samples and found to be developmentally downregulated [35–38,40,76].
However, no data are available regarding the presence of SMN in motor axons and presy-
naptic terminals, except for a report on the mouse diaphragm [32]. Here, by using STED
microscopy, we found that SMN is contained in the granules of 100 nm or less in diam-
eter distributed along the axons and presynaptic terminals of TVA muscles (Figure 5A).
In wild-type mice, SMN granules show a progressive temporal decrease during the sec-
ond postnatal week (Figure 1D), indicating that the potential peripheral function of SMN
decreases/disappears after the maturation of the presynaptic terminal. Strikingly, SMN
granules persist at P9-P10 in transgenic control and SMA mice. Several explanations could
account for this phenomenon. First, since the maturation of the presynaptic motor terminal
is delayed in SMA mice, it could be argued that the SMN retrieval from the presynaptic
motor terminal is retarded; however, in transgenic control mice, NMJs mature normally and
still have a high SMN granule content. Second, in the motor neurons of SMN∆7 mice, SMN
transgenes may be differently than the mouse Smn gene. Third, a single SMN granule may
contain a mix of FL-SMN and SMN∆7 proteins, which alters the granule’s life span. SMN
can form oligomers with itself [76,77], in the same way that SMN∆7 does, although less
efficiently [76]. Additionally, both isoforms can form hetero-oligomers [76,78–80]. Recently,
three residues of the YG box (hsY277/dm208/spA141), present in both forms of the SMN
protein, have been identified as major determinants for higher-order oligomerization [81].
In cultured cells, FL-SMN and SMN∆7 heterotypic complexes increase the stability of the
SMN∆7 protein [27]. Thus, it would be of interest to determine whether the expression of
the truncated protein affects, positively or negatively, the SMN granule cycle and function
at motor nerve terminals.

4.2. The Physiological Role of SMN Granules at Motor Axons and Presynaptic Terminals

SMN-deficient motor neurons in culture exhibit significant growth defects [31], sug-
gesting that SMN regulates axonal elongation. Although the mechanism responsible has
not been well established, axonal SMN granules contain mRNAs and RNPs, which are
implicated in growth, differentiation, and maturation [11–16,18,19]. Besides the possi-
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ble role of SMN in mRNA transport along axons, it has been shown in vitro and in vivo
that SMN interacts with a subset of ribosomes and mRNA in different tissues related to
synaptic protein translation [21,45,56]. We found a progressive reduction of SMN granules
at motor nerve terminals after the first postnatal week and a weak SMN signal in adult
wild-type mice, suggesting a role of SMN in maturation. In addition, our FISH and electron
microscopy studies revealed the presence of β-actin mRNA transcripts, ribosomes, and
polysomes in synaptic terminals, supporting the existence of mRNA translation at the
presynaptic compartment. However, detailed research on SMN-ribosome interaction and
the mRNAs associated with the SMN–ribosome complex needs to be performed, to confirm
the SMN function in the nerve terminals.

4.3. SMN Granules and Cytoskeleton

NFs accumulation in presynaptic motor terminals is a hallmark in SMA pathol-
ogy [44,63,73]. Notably, our study revealed co-localization of SMN with NFs in wild-type,
transgenic control, and SMA mice. We found massive NFs accumulations containing
large amounts of SMN granules at the presynaptic terminals of SMA mice, probably be-
cause the SMN retrograde trafficking and homeostasis of the presynaptic compartment
are compromised; this may also explain the similar amounts of SMN found in the control
and SMA terminals. Further work is needed, to reveal the composition of the SMN com-
plexes in axons and synaptic terminals and their possible role in neuronal development
and maturation.

4.4. SMN Granules Accumulation Can Contribute to SMA Pathology

Growing evidence signals that SMA pathology is related to an SMN-dependent defi-
ciency in forming snRNP and mRNP transport granules [74,82], affecting growth, matu-
ration, and maintenance of different cells, particularly motor neurons. In addition, SMN
deficiency decreases the ability to form stress granules, sensitizing cells to stress and pro-
moting cell death [83]. In agreement with this, methods that successfully restore the ability
of cells to form RNP granules should, in theory, alleviate the disease. In this regard, SMN
gene therapy, and treatments with small molecules directed to increasing the splicing
efficiency of SMN2 exon 7, have been enormously successful [84–87]. However, what are
the consequences of the SMN and SMN∆7 overexpression? It has been reported that the
overexpression of SMN in scAVV9-SMN-treated control mice produces SMN aggregates
in the cytoplasm of spinal motor and sensory neurons, and mice develop a sensorimotor
pathology, including denervation of the NMJ [88]. In contrast to wild-type mice, SMN gran-
ules do not disappear during the second postnatal week in transgenic mice, which could
be considered advantageous. However, what is the impact of increasing SMN granules in a
context where NFs accumulation impairs axonal trafficking? First, if SMN granules serve
to mask mRNAs until they are locally needed, SMN aggregates may prevent transcript
release, contributing to the disease pathogenesis. Second, SMN aggregates may further
impair the bidirectional trafficking of organelles (i.e., synaptic vesicles, mitochondria, etc.)
and proteins (i.e., actin, tubulin, etc.) in nerve terminals. In various neurological disorders,
including fragile X syndrome and amyotrophic lateral sclerosis, deregulated axonal mRNA
trafficking and translation are linked to the disease pathology [89].

5. Conclusions

Our findings shed light on the expression level and distribution of SMN in the axons
and synaptic terminals in physiological and pathological conditions. The present study
demonstrates the existence of elements of the protein synthesis machinery at the presynaptic
terminal, describes the time course of the physiological reduction of SMN granules, and
reveals pathological SMN aggregation in the presynaptic motor terminal of SMA mice.
We suggest that SMN is part of the local translation machinery and participates in the
maturation of motor nerve terminals. In addition, our study underlines the need to consider
the possible toxicity of SMN accumulation when its spatiotemporal expression surpasses the
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physiological levels. Thus, new tools for controlling SMN expression should be considered
relevant in SMA therapy. Overall, our study creates an opportunity for future studies to
better understand the physiopathological function of SMN at the motor nerve terminals.
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