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Abstract: Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized
at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required
for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal
polypeptide (res. 323–785) with confirmed nucleotide hydrolase and DNA-binding activity but an
elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy.
It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was
greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 Å structure of the
N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-
terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present
in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase
domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain
database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the
cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same
domain organization has been identified in a family of putative helicases from large DNA viruses,
bacteriophages, and selfish DNA elements.

Keywords: DNA replication; helicase; Pfam domain; poxvirus; cryo-electron microscopy; structure
prediction; SF3 helicase; orthopoxvirus; DNA helicase

1. Introduction

Orthopoxviruses very recently regained attention with the 2022 outbreak of monkey-
pox virus (MPXV) infections all over the world with a new mode of human to human
transmission [1]. This outbreak was preceded by an increasing occurrence of cases, princi-
pally in West Africa and in the Peoples Republic of Congo and occasional exported cases [2].
In the past, monkeypox was a zoonotic disease introduced mainly from rodent reservoirs.
The recent expansion is likely to be favored by the waning protection from vaccinia virus
vaccination after the end of vaccination campaigns against the now eradicated smallpox
virus. So far, there have been little casualties outside Africa, whereas within Africa, the
West African and the Congo strains have difficult to estimate mortality rates in the range of
2–7% and 8–13%, respectively [2].

The size of the orthopoxvirus genome varies from 220 kb coding for 223 proteins
in cowpox virus to 186 kb for variola virus with 180 open reading frames [3] with a
197 kb genome and about 182 open reading frames in the case of MPXV. There are about
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100 shared proteins within the chordopoxvirinae, including the proteins of the DNA repli-
cation machinery. As the primase-helicase D5 from vaccinia strain Copenhagen is 99%
identical to D5 from monkeypox virus and 98.3% identical to the one from variola virus,
this allows the use of the vaccinia virus as safe model system for the study of the shared
functions of poxviruses such as DNA replication. At the same time, the development of
compounds directed against these proteins should be able to target all orthopoxviruses.
Currently, there are two available antiviral compounds against poxviruses, which could
not be fully validated in clinical trials: brincidofovir, a chain terminator interfering with
viral DNA replication, [4] and tecovirimat [5], targeting the production of extracellular viral
particles [6].

The DNA replication machinery consists of five similarly conserved essential pro-
teins: the three proteins that form the DNA polymerase holoenzyme, E9, A20, and D4;
the single-stranded DNA-binding protein I3; and the helicase-primase D5. The domain
organization of the 95 kDa D5 protein has been analyzed by Hutin and co-workers [7].
We attributed an N-terminal primase domain including also a Cys-cluster domain (res.
1–335), an oligomerization domain requiring residues 323–381, and a helicase domain
at the C-terminus (res. 323–785). Oligomerization was required for ATP hydrolysis [8],
although D5 lacked a preference for the base of ribonucleotides [9], findings that could
also be confirmed for the hexameric C-terminal D5323–785 construct [7]. A tight binding of
dsDNA and ssDNA could be shown, but helicase activity had remained elusive [7,9].

The C-terminal part of D5 is characterized by the presence of a D5_N motif described
in the Pfam database of protein folds [10] (res. 329–470) and a Pox_D5 motif at the C-
terminus starting at residue 688, an organization which is widespread for primase-helicases
of several representatives of the nucleo-cytoplasmic large DNA viruses (NCLDV), bacterio-
phages, and helicases from replicating archaeal plasmids. In this family, based on sequence
alignments, the presence of D5_N domains (res. 320–464) followed by SF3 helicase domains
similar to D5 helicase has been proposed first by Iyer and coworkers [11], who assigned
the helicase domain to the AAA+ helicase family characterized by a number of motifs: the
Walker A motif comprising the P-loop, the Walker B motif, and Motif C [12].

Based on the presence of a D5_N domain preceding the D5 helicase domain [11],
D5 bears some resemblance with the well-characterized helicases from the E. coli satellite
phage P4 alpha protein [13] and the archaeal plasmid pRN1 [14], all three belonging to
helicase superfamily 3 (SF3) from which a helicase activity with a 3′ to 5′ translocation on a
single DNA strand had been inferred [13]. Different models for DNA translocation have
been proposed [15]. The model systems of SF3 helicases with known X-ray structures are
bovine papillomavirus (BPV) E1 [16] and similar adeno-associated virus (AAV) Rep68 [17],
polyomavirus large tumor antigen (LTA) helicase [18], and the more distant member porcine
circovirus 2 (PCV2) Rep [19]. A structure of the complex of E1 with ssDNA allowed putting
forward a model for helicase action where a single strand is translocated through the
central pore of a flat helicase hexamer by a “spiral staircase” mechanism [16] involving
the cyclic movement of the central β-hairpin loops from an upper ATP-bound state to a
lower nucleotide-free state and structure. A “hand over hand“ movement of the subunits
along the DNA strand accompanying the cyclic change of the nucleotide-bound state is
another variation on this principle [15] and has been proposed for Rep helicase. It involves
a staircase-like arrangement of the helicase subunits.

A role of D5 in genome uncoating, a process that liberates the genome after entry
into a new host, has been shown where D5 localizes to incoming cores as well as to virus
factories and I3-positive pre-replication sites [20]. Additionally, D5 possibly interacts with
A20, a part of the DNA polymerase processivity factor, but this interaction is supposed
to be rather transient [21]. Given D5’s strict conservation and involvement in genome
uncoating and replication, it might be a good antiviral target.

As the hexameric construct of D5 (D5323–785) comprising the D5_N domain and the
AAA+ helicase domain has already been characterized extensively by small-angle scattering
(SAXS) and negative stain electron microscopy [7] but did not yield crystals diffracting to
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an exploitable resolution, we took advantage of the recent development of cryo-electron
microscopy (cryo-EM) in order to determine its high-resolution structure.

2. Materials and Methods
2.1. Protein Expression and Purification

Full-length D5 (D5fl) has been expressed and purified as described in [7]. Two pu-
rification steps have been added: a glycerol gradient purification and an ion exchange
purification on an UNO Q column (Bio-Rad, Marnes-La-Coquette, France). The glycerol
gradient used 10–30% glycerol in 10 mM Tris-HCl pH 7.0, 150 mM NaCl, 1 mM DTT
centrifuged for 25 h at 30,000 rpm in a SW32 Rotor at 4 ◦C. The fractions containing D5
hexamer were pooled, diluted to a concentration of 25 mM NaCl in buffer without salt and
glycerol, and loaded on the UNO Q column (Bio-Rad). The protein was eluted with a NaCl
gradient up to 500 mM NaCl in the same buffer, and peak fractions were pooled and used
directly for negative stain EM.

The 53.4 kDa D5323–785 fragment was cloned as a His-tagged tobacco etch virus (TEV)
protease-cleavable construct using the pProEx HTb vector with the primers 5′-gcgccatggg
taataaactg tttaatattg cac-3′ and 5′-atgcaagctt ttacggagat gaaatatcct ctatga-3′, resulting in
two additional N-terminal residues Ala-Met from the TEV cleavage site. It was produced
and expressed as described in [7], but the last purification step was replaced by an ion
exchange chromatography step using an Enrich Q 5 × 50 column (Biorad). The protein
was loaded in 20 mM Tris-HCl pH 7.0, 6.67 mM NaCl, 13.32 mM KCl, 2 mM MgCl2, and
1 mM DTT, and the protein was eluted with a gradient ending in 20 mM Tris-HCl pH 7.0,
166 mM NaCl, 334 mM KCl, 2 mM MgCl2, and 1 mM DTT. Fractions of the second peak
were pooled, and the buffer was exchanged to buffer K containing 5% glycerol, 50 mM
Tris-HCl pH 7.0, 50 mM NaCl, 100 mM KCl, 2 mM MgCl2, and 10 mM β-mercaptoethanol
by 2 concentrations to 100 µL in a 2 mL centrifugal concentrator (30 kDa cut-off, Millipore,
Burlington, MA, USA).

2.2. Negative Stain EM

To the sample (0.08 mg·mL−1 D5fl) were added an additional 10 mM MgCl2, 1 mM
ADP, and 2 mM BeF3. About 4 µL of a D5fl sample were applied to a mica sheet covered
with a film of evaporated carbon. The carbon film was floated off the mica in glycerol-free
buffer, retrieved, and placed onto a 400-mesh copper electron microscopy grid. The sample
was subsequently stained with 4 µL of 2% sodium silicotungstate (SST), blotted, and dried.
Imaging was performed on an FEI F20 transmission electron microscope operating at
200 kV. Images were recorded on a 4k × 4k Eagle digital camera with a pixel size of 2.17 Å.

2.3. Cryo-EM Sample Preparation

A complex with an end-labelled dsDNA 30mer was used. An oligonucleotide with the
sequence biotin-5′-ccgaatcaggaagataacagcggtttagcc-3′-digoxigenin (DIG) was annealed to
an unlabeled oligomer 5′-ggctaaaccg ctgttatctt cctgattcgg-3′ (Eurofins, Ebersberg, Germany)
after heating the mix to 95 ◦C for 5 min and overnight slow cooling to room temperature
in a beaker. Then, 7.5 µM D5323–785 hexamer was mixed with 9.2 µM of dsDNA oligomer
in a volume of 6.5 µL. After 10 min incubation, samples were diluted 10 times in buffer K
without glycerol. Next, 4 µL samples were deposited on glow discharged R1.2/1.3 holey
carbon grids (Quantifoil Micro Tools GmbH, Großlöbichau, Germany) and blotted for 2.5 s
at blot force 1 with 0.5 s drain time using a Vitrobot Mark 4 (Thermo Fisher Scientific,
Illkirch-Graffenstaden, France) prior to flash-freezing in liquid ethane.

2.4. Cryo-EM Data Acquisition Parameters

The parameters are described in Table 1.
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Table 1. Cryo-EM data collection statistics.

Parameter Cryo-EM Data Collection on D5323–785

Microscope Technai F30 Polara
High tension (kV) 300

Cs (mm) 2
Detector Gatan K2 Summit (4k × 4k)

Mode Counting
Energy filter No

Magnification 42,000×
Calibrated pixel size 1.21 Å

No. of frames per micrograph 40
Nominal defocus range (µm) −1.5–3.0

Dose par frame (e·Å−2) 1
No. of micrographs 830

2.5. Three-Dimensional Reconstruction

Cryo-EM Data treatment used Relion 3.1 [22,23] in a standard way, as described
in the manual [24], running on a PC with 2 Intel Xeon processors with 80 threads and
4 Nvidia GeForce GPUs under Linux Ubuntu 20. Movies were aligned with MotionCorr,
and contrast transfer functions were calculated with CtfFind4 [25]. Initially, particles were
picked with the model-free “Laplacian of Gaussian” algorithm on micrographs with a
resolution better than 3.6 Å. Figure S1a shows the pipeline for particle reconstruction. After
first 2D classifications, good classes were used for particle picking with 2D templates.
Unsupervised 3D reconstruction in C1 gave a first model, which was symmetrized in
C6 and used for 3D classifications. The best class yielded a 4.1 Å resolution structure
after refinement, polishing and post-processing steps. The structure was used in a new
round of particle picking with 3D templates using all micrographs in order to maximize
the number of available particles for reconstruction in C1. After several rounds of 2D
classifications, unsupervised reconstruction, 3D classification, and refinement (Figure S1a),
a 6.6 Å structure was obtained. Low-resolution reconstructions of D5fl in negative stain
used Relion 3.1 and a similar protocol. Classifications did not use CTF-correction up to the
first peak.

2.6. AlphaFold2 Prediction

The amino acid sequence of vaccinia virus (Copenhagen strain) D5 was submitted to a
Colab notebook running a simplified version of Alphafold v2.1.0 (https://colab.research.
google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb ac-
cessed on 27 July 2022).

2.7. Model Building and Refinement

The Alphafold2 model of D5 corresponding to the D5323–785 construct was split into
three domains according to the observed domain boundaries: collar domain (res. 323–403),
AAA+ helicase domain (res. 404–705), and C-terminal domain (res. 706–785). The domains
were fitted as rigid bodies into the cryo-EM electron density using Chimera [26]. Manual
rebuilding used Coot [27]. Real-space refinement and structure validation [28] were carried
out using Phenix [29]. The Phenix real-space refinement using global minimization and
B-factor refinement (adp) is able to handle resolutions up to 6 Å [30]. We opted for
a conservative refinement protocol using Ramachandran, secondary structure, and ncs
constraints for both structures. The software installation at IBS used SBGrid [31].

3. Results
3.1. Domain Structure of D5

Exploratory EM imaging of full-length D5 (D5fl) in negative stain under different
conditions regarding the presence of Mg2+, ATP, ADP, or ADP, and BeF3 showed the flexible

https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
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attachment (Figure S2) of the N-terminal oligopeptide to the hexameric D5323–785 [7]. As the
ribonucleotide hydrolase activity of D5323–785 had also been indistinguishable from D5fl [7],
we used the D5323–785 construct for high-resolution work, assisted by an Alphafold2 predic-
tion, which yielded a structure of D5 (Figure 1a) with a high reliability index (Figure 1b) and
allowed us to assign five domains: the primase domain and a distinct Zn-binding (or Cys-
cluster) domain in the N-terminal polypeptide not present in D5323–785 used for cryo-EM
reconstruction, a collar domain, an AAA+ helicase domain, and a C-terminal domain.
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Figure 1. Alphafold2 model of the helicase primase D5. (a) Domain organization: Primase, blue;
Zn-domain, green; collar domain, yellow; AAA+ helicase domain, red; C-terminal domain: purple.
(b) Local-distance difference test (LDDT) reliability index from Alphafold2 [32] ranging from 70%
(red) to 100% (blue). (c) Superposition of the Alphafold2 structure colored as in panel (a) onto the
refined D5323–785 structure colored in gray. An arrow marks the predicted helix missing in the density.
Figure prepared with with PyMol [33].

Cryo-EM of D5323–785 yielded a variety of projections (Figure S1a) that generated an
electron density map with a nominal resolution of 4.1 Å based on the half-set Fourier shell
correlation (Figure S1c) when six-fold symmetry was inferred. Data processing in lower
symmetry point groups (C3 or C1) led to significantly lower resolutions between 6 and 7 Å.
Reconstructions appeared to be isotropic when analyzed by 3DFSC [34] and showed the
expected behavior in a ResLog plot [35] (Figure S3). The electron density showed an
organization in three domains, which could be fitted with the Alphafold2 models of the
corresponding domains (Figure 2a,b). The density corresponding to the collar domain
is defined best with estimated local resolutions (Figure 3a) of 3.9 to 4.5 Å (a sample of
the density is shown in Figure 3b). The one with the AAA+ helicase domain has a lower
resolution (4–6 Å, example density in Figure 3c), and the resolution of the C-terminal
domain is in the 6 Å range. The electron density of the C-terminal domain was also weaker,
requiring a lower contour level (Figure 2b). A few residues were manually rebuilt in
order to fit the experimental electron density before the model was submitted to real space
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refinement (Table 2). Only a little helix of the AAA+ domain from the Alphafold2 model
(res. 632–644, Figure 1c, arrow) could not be located and has been omitted from the final
model together with the last three residues of the C-terminal domain. Adjustments in the
collar domain were minimal and remained very limited in the AAA+ helicase domain. Due
to the low resolution of the C-terminal domain, the final model stayed as close as possible to
the Alphafold2 model. The refined structure of D5323–785 conserves largely the geometrical
quality of the initial Alphafold2 model (Table 2, third column), which it matches very well
(Figure 1c) with an rms deviation of 1.3 Å for all atoms. Individual domains superpose with
1.3 Å rms for the best-defined collar domain and 1.0 Å rms for the other domains, values
which are certainly influenced by a strong bias towards the Alphafold2 model in the less
well-defined parts of the structure. The hexamer has a large central channel, which could
be large enough to accommodate dsDNA, of which the diameter is indicated (Figure 3d,
green circle).
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Figure 2. Electron density of D5323–785 reconstructed using strict C6 symmetry and its interpretation.
(a) Electron density contoured at high contour level with a docked collar domain (yellow), a docked
AAA+ helicase domain (red), and the C-terminal domain (purple) of the Alphafold2 model. Docking
of the C-terminal domain required a lower contour level as shown in panel (c). The electron density
is colored according to the domains. (b) At lower contour level, electron density for the C-terminal
domain appears and allows the rigid body fit of the Alphafold2 model. (c) The assembly of the
6 subunits in the electron density contoured at low level as in panel (b) and colored by subunit.
Rotationally averaged DNA density at the entrance of the collar domain is shown in grey. Illustration
made with Chimera.

Table 2. Statistics of the refined D5323–785 structures and the underlying Alphafold2 model.

C6 C1 Alphafold2 1

EMDB accession codes EMD-15574 EMD-15575
Number of particles used 28425 26710

Map resolution from Phenix (Å) 3.7 4.6
FSC resolution 2 (Å) 4.1 6.6

Model composition
PDB entry 8APL 8APM

Prot. Res/ Nucleotides 2694/0 2514/16
Non-hydrogen atoms 21888 20723

Map correlation within mask 0.73 0.69
Temperature factor (Å2) 207 309

R.m.s.
Bond length deviations (Å) 0.002 0.002 0.012

Bond angles (◦) 0.476 0.414 1.669
Validation

Molprobity score 1.94 1.96 0.86
All-atom Clashscore 10.3 13.2 1.33
Rotamer outliers (%) 1.9 2.4 0.24

Ramachandran plot
Outliers 0.0 0.0 0.0

Favored (%) 96.8 97.8 98.5
Allowed (%) 3.2 2.2 1.5

1 Alphafold2 model of residues 323–785. 2 Based on a Fourier shell correlation of 0.143.
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Comparing the position of the three domains of D5323–785 with the Pfam [10] analysis
of D5 (Figure 4a), it became clear that the collar domain is part of the Pfam D5_N domain,
which extends further into the AAA+ helicase domain (Figure 4b,c). The D5_N domain
is composed of an N-terminal α-helix, followed by a three-stranded β-sheet, a bundle of
three more helices, another three-stranded β-sheet, and an alternation of two short helices
with extended backbone conformations ending with an α-helix, which marks the transition
into the helicase domain (Figure 4a). The C-terminal domain corresponds to a Pox_D5
domain. It was tempting to assign the remaining part of the AAA+ helicase domain to the
Domain of Unknown Function 5906 (DUF5906) in Pfam, present very often between D5_N
and Pox_D5 domains, although it had not been assigned for poxvirus. A Dali search [36]
with the AAA+ helicase domain for proteins with similar folds (Table 3) confirmed the
assignment of the AAA+ helicase domain, as it is very similar to the one of deep-sea vent
phage NrS-1 polymerase [37] containing a DUF5906 domain.
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Figure 3. Electron density and resolution of the C6 reconstruction. (a) Local resolution of the final
map calculated in Relion. (b) Sample electron density for the small β-sheet of the collar domain
characteristic of D5 (res. 339–357, green carbon atoms in the main chain). Loops are colored with
yellow carbon atoms. Side chains are shown with brown carbon atoms. Panel prepared with PyMol.
(c) Side view of the hexamer with electron density colored at high contour level showing the fit of the
AAA+ helicase domain. Colors as in Figure 2. (d) Top view showing the central channel. The circle
indicates the diameter of dsDNA.
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Figure 4. Domain structure of D5. (a) Domain structure of D5 based on the cryo-EM structure and
Alphafold2 prediction for the N-terminal part compared to the domain structure of D5323–785 using
sequence-based Pfam domain definitions and finally the attribution of the D5_N domain by Iyer
and coworkers [11]. The topology of the D5_N domain is symbolized by triangles for β-strands
and rectangles for α-helices. (b) Domain structure of D5323–785 based on the cryo-EM structure
determined in C6. Colors as in panel (a). (c) The sequence-based Pfam domain structure mapped
onto the cryo-EM structure. Colors as in panel (a). Illustration made with PyMol and Inkscape
(https://inkscape.org/ accessed on 6 October 2022).

The NrS-1 polymerase-helicase is composed of an N-terminal Primpol domain acting
as the DNA primase and polymerase [38] and a hexameric C-terminal domain with a
likely, but unproven, helicase activity. The similarity of the C-terminal domain of NrS-1
polymerase-helicase with D5323–785 extends beyond the DUF5906 domain and covers the
entire D5323–785 fragment (Figure 5a). For example, the little β-sheet (res. 339-357, Figure 3b)
of the D5_N domain is also present with the same orientation relative to the helicase domain
(Figure 5b). Since in addition to the three β-strands only the helix at the N-terminus of the
domain is conserved, the similarity has not been detected by the Dali search against the
PDB database. The structural similarity also concerns the Pox_D5 domain, where some

https://inkscape.org/
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secondary structure elements can be matched in space, and furthermore, their topology is
conserved (Figure 5a).

Table 3. Selected similarities of the structural domains of D5 with known structures.

PDB Entry Dali Score rms (Å)
Aligned
Residues

out of N
Residues

% Sequence
Identity

Collar domain
S17 ribosomal protein 6zxh 6.0 2.7 55 132 7

Papillomavirus E1 2v9p 4.0 3.7 56 269 11
MCM2 (before others) 5v8f 3.9 3.1 64 603 6
Polyomavirus S40 LTA 1svl 3.1 3.4 58 362 7
AAA+ helicase domain
Primpol-helicase NrS-1 6k9c 16.2 3.2 214 416 17

Papillomavirus E1 5a9k 11.2 3.5 183 269 13
Polyomavirus LTA 4e2i 10.0 4.1 197 362 16

AAV Rep68 7jsi 9.9 4.4 187 276 11
PCV2 Rep 7las 6.3 4.3 130 183 15

C-terminal domain
Human RFX-DBD 1dp7 4.4 3.1 60 76 10

D5323–785 is the first structural representative of the Pfam domains D5_N and Pox_D5,
while the DUF5906 domain has already been described for the NrS-1 helicase. Moreover, at
the level of the structure, the NrS-1 helicase is the most similar protein of known structure
compared to D5323–785.

3.2. DNA Binding of D5323–785

The hexamer shows a central channel with a minimal diameter of about 16 Å at three
points of constriction: the level of the basic cluster in the collar domain (21 Å), the β-hairpin
loop (16 Å), and the DNA binding loop in the AAA+ helicase domain (18 Å). The channel
would just be sufficiently wide for the passage of dsDNA. The lysine residues of the basic
cluster and the loops inside the AAA+ helicase domain are flexible and correspond to the
least well described parts of the structure, so that the passage of dsDNA cannot be excluded.
The sample used for the cryo-EM data collection contained a roughly equimolar complex
of D5323–785 hexamer with a dsDNA 30-mer obtained by mixing. The dsDNA oligomer had
been used previously for the characterization of DNA-binding by D5323–785, where a 1:1
complex had been observed [7]. A blunt-end dsDNA construct had been chosen due to
the proposed presence of dsDNA inside a polyoma virus LTA helicase hexamer structure
retracted since then [39].

In 2D classifications, additional electron density was visible above the collar domain
in the center of the hexamer (Figure 6a, green arrow). Furthermore, electron density for the
C-terminal domains on the bottom of the hexamer appeared to be asymmetric (Figure 6a,
pink arrow). At the N-terminal side, a symmetry mismatch must occur between the dsDNA
and the six-fold symmetric collar domain. These features indicate a breakdown of the
six-fold symmetry used so far. In consequence, a reconstruction without imposed symmetry
has been calculated, leading to a resolution of 6.6 Å (Figure S1f), significantly lower than the
reconstruction in C6 as expected from the reduced data redundancy. The electron density
of D5323–785 reconstructed without symmetry (Figure 6b,c) showed disorder at the level
of the C-terminal domains, with two domains being well defined, two domains showing
weak electron density, and two domains being invisible (Figure 6d,e) in agreement with
the results of negative stain EM on D5fl, which showed also the disorder of the C-terminal
domain (Figure 6g), whereas collar and AAA+ domain matched the density very well.
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Figure 5. Structures related to D5323–785. N and C-terminal extremities of the fragments are labeled.
(a) Flexible structural alignment using the FATCAT server of the NrS-1 helicase domain (pdb entry
6k9c) with D5323–785 (domains colored as in Figure 1, the 3 β-strands in the collar domain are colored
in red). Cyan, green, and blue are used respectively to color the NrS-1 helicase with the 3 β-strands
shown in blue. The FATCAT alignment creates chain breaks for the molecule submitted to the
alignment. (b) Zoom on the superposition of the collar domains of panel (a). (c) Similarity between
the collar domain of D5 (yellow) and a part of the ribosomal protein S17 (pdb entry 6zxh, blue).
(d) Similarity between the collar domains of D5 (yellow) and papillomavirus E1 helicase (pdb entry
2gxa, turquoise). Illustration made with PyMol.

Above the entrance to the central channel of the collar domain, additional electron
density is visible (Figure 6b), which ends in the central channel at the level of the basic
cluster. Additional density starting at the level of the β-hairpin loops (dotted line, Figure 6e)
is present in the middle of the central channel of the DUF5906 helicase domain (Figure 6c).
It is not defined well enough to assign single-stranded or double-stranded DNA strands.
The additional electron density on top of the collar domain has been tentatively interpreted
as six base pairs of dsDNA with two additional bases extending into the central channel
and two bases running on the top surface of the hexamer (Figure 6d–f), even though the
electron density is not well ordered. The electron density of the protein was interpreted
starting from the model refined in C6, where two of the C-terminal domains have been
omitted. The model could be refined in real space using Phenix (Table 2). The disorder
of the DNA is not surprising, as the classification of the particles will be dominated by
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the differences in the C-terminal domains unless there is some cross-talk between their
conformation and the orientation of the bound DNA.
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Figure 6. Structure calculation without imposed symmetry. The corresponding flowchart is given
in Figure S1a. (a) Two-dimensional classes used for reconstruction and their numbers of particles.
Density corresponding to DNA is indicated by green arrows and the heterogeneity at the level of
the C-terminal domains is highlighted by pink arrows. (b) Electron density of the 3D reconstruction
obtained after further rounds of classifications and 3D refinement using 26710 particles. Additional
density shown in green is visible at the entrance of the collar domain that is not explained by a fitted
model of the D5323–785 hexamer. (c) Slice of the hexamer with additional density close to the 6-fold
axis shown in green, which is not explained by a fitted model of D5323–785. Other unmodeled density
(in blue) corresponds to disordered C-terminal domains. (d) Model and density of the hexamer
colored by domains with modelled dsDNA at the entrance of the collar. (e) Slice through the electron
density colored according to the domains of the refined D5323–785 hexamer including dsDNA showing
the additional electron density along the central channel (colored in green). The residues of the basic
cluster of res. 387–390 are shown in stick representation (blue carbon atoms). The electron density
attributed to dsDNA ends at the level of the basic cluster. The level of the β-hairpin loops is indicated
by a dotted line. (f) Zoom on the electron density for the DNA at the entrance of the channel together
with the model of dsDNA. The residues of the basic cluster are shown and labeled for 2 of the
subunits. (g) Reconstruction of D5fl at 17 Å resolution without imposed symmetry (Figure S2b)
with the fitted high-resolution D5323–785 structure showing the absence of density for the C-terminal
domains. Figure made with Chimera.
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4. Discussion
4.1. Domain Structure of D5

The structure shows the power of structure calculation by Alphafold2, furthermore,
unexpectedly, Alphafold2 predicted the relative orientation of the three domains in absence
of any information about the hexameric organization of D5323–785 (Figure 1c). This suggests
that the interface contacts between the domains are sufficient in order to define their relative
orientations.

The structure of D5323–785 containing a D5_N domain followed by DUF5906 and
Pox_D5 is widespread in viral helicases, but so far, experimental structural information
was missing. Our structure gives the first view on the high-resolution structure of these
domains and their arrangement. The limits of the sequence-based domain assignment used
for the definition of the D5_N domain become obvious. Only the part corresponding to
the collar domain is an independent structural domain, whereas the other part forms one
unit with the helicase domain so that D5_N domains probably do not exist in absence of a
following DUF5906 domain (Figure 4c).

A Dali search with the collar domain surprisingly yielded the ribosomal protein
S17 [40] as a best hit, even before the one for papillomavirus E1 protein (Table 3). A
closer inspection of the structural alignment with S17 (Figure 4c) and the E1 collar domain
(Figure 4d) showed that despite the exact superposition of the helical structures, the
two proteins do not share the three-stranded β-sheet present in D5, indicating an early
divergence in evolution between the family of D5-related helicases and E1-related helicases.
Surprisingly, the D5_N domain of NrS-1 helicase and Rep68 have not been detected by Dali,
although they share one helix and the three-stranded β-sheet with D5 (Figure 5b). Lower
Dali scores were obtained with polyoma virus LTA and several subunits of MCM helicases
(Table 3). LTA acquired an additional Zn-binding module (not shown) in its collar domain.
On MCM helicase subunits, the domain corresponding to the collar domain is located
further away from the central channel of the helicase hexamer than for E1 and LTA (not
shown). The absence of the three-stranded β-sheet being part of the D5_N domain explains
the low Dali scores. The surprising similarity with the ribosomal protein S17 (Figure 5c)
suggests that a helicase similar to E1, LTA, or MCM might have gone moonlighting as an
additional subunit of the ribosome followed by a potential degeneration of its C-terminal
part to a largely unstructured extension running along the ribosomal surface.

Dali homologies with the C-terminal domain appear weak with a best, but not nec-
essarily significant, hit with the DNA-binding domain of the human RFX1 winged-helix
transcription factor ([41], pdb entry 1dp7). In particular, the orientation of the helix inserting
into the major groove of the cognate DNA is not conserved (not shown).

4.2. The AAA+ Helicase Domain

The best hit of the Dali search with the AAA+ helicase domain was the helicase
domain of bacteriophage NrS-1. This similarity extends over all its structure, which
could be matched with D5323–785 in a structural alignment with FATCAT ([42], Figure 5a)
confirming the similar domain organization as suggested by Pfam. This positions D5323–785
within a clade together with helicases of giant DNA viruses, of P4-related bacteriophages
comprising NrS-1, and of replicating plasmids. These helicases diverged early from other
SF3 helicases such as E1, Rep68, and LTA. To date, the systematic prediction of protein
structures of bacterial genomes by Alphafold2 and accessed on 17 June 2022 through
https://pfam.xfam.org yielded three structures containing D5_N domains, which could
also be aligned structurally with D5 and thus belong to the same clade: the structures of a
probable phage protein from M. tuberculosis (O06608) and two phage-related proteins from
K. pneumoniae (A0A0H3GIU0 and A0A0H3GLV7).

The different sequence motifs of AAA+ helicases, namely, Walker A, Walker B, Motif
C, and the arginine finger, could be assigned for D5 [12] (Figure 7a). The role of the key
residues of the motifs had been confirmed previously by site directed mutagenesis [8], and a
temperature-sensitive mutant Pro682Ser inside D5323–785 had been described. The observed

https://pfam.xfam.org
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position of the proline residue capping an α-helix upstream of a stretch of residues running
on the surface of the hexamer (Figure 7a) would explain the observed lower expression of
the temperature-sensitive mutant due to inefficient folding, even at permissive temperature.
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Figure 7. Analysis of the AAA+ helicase and collar domains. (a) Two opposite subunits of the refined
structure are shown with the AAA+ helicase motifs in color: Walker A, dark green; Walker B, light
green; Motif C, light blue; Arg-finger, blue. The residue Pro682 leading to a temperature-sensitive
mutant is shown with cyan spheres. The loops corresponding to interactions with DNA in the
translocation mechanism are colored in magenta (β-hairpin loop) and bright red (DNA-binding
loop). Right subunit: structure from the Alphafold2 prediction (gray) compared to the refined C6
structure. (b) Superposition of the NrS-1 AAA+ helicase domain (bright yellow) on the corresponding
domain of D5 colored as in panel (a). A black star indicates the much shorter DNA-binding loop in
NrS-1 helicase. (c) View of the cartoon structure around the nucleotide binding site at the subunit
interface of D5323–785 with the ADP and Mg2+ ion positions inferred from papillomavirus E1 (pdb
entry 2gxa, chain A). The superposition of the two structures used the AAA+ helicase motif from Iyer
and coworkers [12] colored as in panel (a). The neighboring chain contributing the arginine finger
(blue sticks) is colored in cyan. The predicted clash of the base with the helicase structure is indicated
by a green star. (d) Same view of D5323–785 with ADP and Mg2+ ion positions inferred from polyoma
virus LTA (pdb entry 1svl, chain A). (e) Sequence alignment of the residues forming the β-hairpin
and DNA-binding loops of SF3 helicases mentioned in the text where experimental or predicted
structural information is available.
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In our structure, any additional electron density, which could be interpreted as nu-
cleotide, was missing so that no information about the nucleotide-binding site could be
obtained. This is not surprising, as the sample contained D5323–785 with a 30mer dsDNA in
absence of additional nucleotide. No information from a closely related protein could be
inferred, as the structure of NrS-1 helicase has also been determined in a nucleotide-free
state. A structural alignment of the Walker A motifs comprising the P-loop, Walker B motif,
and Motif C allows the superposition of NrS-1 helicase, E1, and LTA nucleotide binding
sites and the ADP molecules bound to E1 and LTA (pdb entries 2gxa and 1svl, [16,18]).
However, serious clashes (marked with green stars in Figure 7c,d) would occur when the
radically different positions of the base of the ADP molecules in E1 and LTA structures are
used. This suggests that in D5 the recognition of the base probably differs from the modes
observed for E1 and LTA or that the structural elements involved in base recognition are
flexible and the binding site is only structured in presence of a nucleotide. A difference in
the binding mode would not be surprising, as D5 appears to be promiscuous regarding the
base at the level of the basal nucleotide hydrolase activity [7]. Interestingly, the positions of
the nucleotide base of E1 and LTA would also clash with the structure of NrS-1 (not shown)
speaking in favor of a possible common nucleotide binding mode, but as at the same time,
the mobile and functionally important part of the structure between the β-hairpin loop,
the DNA-binding loop, and the Walker B motif diverges between D5 and NrS-1 helicase
(Figure 7b), so extreme precaution is required in attempts to infer functional similarities.

D5 shares with Nrs-1 helicase, E1, the hexameric structure of Rep68, and LTA a planar
arrangement of the collar and AAA+ domain subunits, which are in turn in close contact
in contrast to the more remote PCV2 Rep protein, where the subunits show a staircase
arrangement and the collar and AAA+ domain are connected by a loose linker. For E1
helicase, a helical staircase mechanism of DNA translocation has been proposed, where
the β-hairpin loops play a central role as they descend (if the collar domain is placed at
the top) progressively from the initial ATP-bound state over an ADP-bound state to a final
nucleotide-free state. When the β-hairpin has reached its bottom position, it disengages
from the DNA. Conformational changes induced by the bound nucleotide are transmitted
to the β-hairpin and the DNA binding loops, whereas positional changes of the arginine
finger trigger nucleotide binding and ATP hydrolysis of the neighboring subunit. So far,
it is assumed, but not proven, that D5 uses a similar mechanism shared within the above
mentioned SF3 helicases but different from the one of PCV2 Rep [19]. Regarding the
structure of the β-hairpin loops, D5 is similar to E1 and LTA (not shown), in contrast, the
DNA-binding loops of E1 are much shorter. Residue conservation of these loops with
central role for function [43] is very low when experimental or predicted structures of
several related helicases are aligned (Figure 7e).

Whereas, globally, the model from Alphafold2 agreed very well with the experimental
electron density, the refined model only deviates for the more flexible parts of the helicase
domain (Figure 6a) from the Alphafold2 prediction. The corresponding structural elements
are located on one side of the central β-sheet and form a metastable structure with important
conformational changes during the different states of DNA translocation, as described for
E1 helicase [16,44], easily explaining the difficulty of a reliable structure prediction adding
to a less reliable experimental structure because of the limited resolution.

4.3. DNA Binding of D5323–785

The central channel of D5323–785 would be just wide enough to accommodate dsDNA
(Figure 3d) as the residues constricting the channel are flexible or situated in the flexible
DNA-binding and β-hairpin loops. Moreover, the cryo-EM structure shows that D5323–785
is able to bind dsDNA oligomers at the entrance to the central channel, even though it has
not been possible to demonstrate an helicase activity using different forked substrates ([8]
and unpublished results). The observed positioning of the DNA would be compatible
with a strand separation occurring at the entrance of the D5323–785 hexamer with one
strand running on the top surface of the collar domain and one strand running inside the
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central channel, as described recently for E1 [45] (Figure 6d–f). It is likely that the DNA
backbone interacts with a cluster of basic residues at position 387–390, which is conserved
throughout the orthopoxviruses. The dsDNA could interact with the Arg387 residues
of several subunits, whereas Lys388 would rather interact with the excluded strand and
Lys390 with the translocated strand (Figure 6f) but a continuation of the electron density
inside the collar domain is clearly not seen. The two residues resulting from the cloning,
Ala321 and Met322, are located next to the density of the DNA and may also interact
with it so that it cannot be excluded that the N-terminal truncation of D5323–785 affects the
interaction with DNA.

With the limited quality of the electron density, we prefer not to hypothesize about the
presence of ssDNA or dsDNA in the central channel of D5323–785 explaining the observed
electron density. The flexibility of the C-terminal domains already suggested from negative
stain EM (Figure 6g) may reflect a role in the interaction with a DNA strand exiting from
the central channel, but the different degrees of order of the domains could also be an
artifact resulting from an asymmetric adsorption of the particles on the air–liquid interface
during cryo-EM sample preparation as one projection with a slightly offset six-fold axis is
dominant (Figure S1e). The high particle density observed in the micrographs (Figure S1a,
detail of a micrograph) despite the low sample concentration also speaks in favor of such
an adsorption.

5. Conclusions

Most aspects of the helicase action of D5 still remain enigmatic but the available struc-
ture will help greatly to orient future experiments required to establish the mechanisms of
helicase loading and translocation. The combination of cryo-EM and Alphafold2 structural
calculations has been proven to be very powerful for structure determination even in
the context of oligomeric proteins, which are not fully implemented into the Alphafold2
algorithm yet. Our structure indirectly validates Alphafold2 calculations of thousands of
viral helicase structures related to D5, which are waiting to be released.
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Author Contributions: Conceptualization, S.H. and W.P.B.; methodology, C.G. and W.P.B.; validation,
G.S. and C.G.; formal analysis, W.P.B.; investigation, S.H., W.L.L., G.S. and N.T.; resources, N.T., G.S.
and U.F.; data curation, W.P.B.; writing—original draft preparation, W.P.B.; writing—review and edit-
ing, S.H., N.T. and W.L.L.; visualization, W.P.B.; project administration, W.P.B.; funding acquisition,
W.P.B., G.S. and U.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Agence Nationale de la Recherche (Agence Nationale de la
Recherche: ANR-22-CE11-0007-01) and the University Grenoble Alpes (G7H-IRS20A71). This work
is supported by the French National Research Agency in the framework of the “Investissements
d’avenir” program (ANR-15-IDEX-0002) and used the platforms of the Grenoble Instruct-ERIC center
(ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology
(PSB), supported by French Infrastructure for Integrated Structural Biology (FRISBI, ANR-10-INBS-
0005-02) and GRAL, a project of the University Grenoble Alpes graduate school (Ecoles Universitaires
de Recherche) CBH-EUR-GS (ANR-17-EURE-0003) within the Grenoble Partnership for Structural
Biology. The IBS Electron Microscope facility is supported by the Au-vergne Rhône-Alpes Region,
the “Fonds Feder”, the “Fondation pour la Recherche Médicale” and GIS-IBiSA. U.F. was supported
by a grant (Fi573/22-1) of the German research foundation (Deutsche Forschungsgemeinschaft-DFG).
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for
Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with
support from NIH P41-GM103311.

Data Availability Statement: The authors declare that the data supporting the findings are available
from the corresponding authors upon reasonable request. Coordinates for the two structures have
been deposited in the PDB and cryo-EM maps in the EMDB (Table 2).

https://www.mdpi.com/article/10.3390/v14102206/s1
https://www.mdpi.com/article/10.3390/v14102206/s1


Viruses 2022, 14, 2206 17 of 18

Acknowledgments: We thank A. Ballandras-Colas for the critical reading of the manuscript. IBS
acknowledges integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El Eid, R.; Allaw, F.; Haddad, S.F.; Kanj, S.S. Human Monkeypox: A Review of the Literature. PLoS Pathog. 2022, 18, e1010768.

[CrossRef] [PubMed]
2. Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human

Monkeypox-A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [CrossRef] [PubMed]
3. Hendrickson, R.C.; Wang, C.; Hatcher, E.L.; Lefkowitz, E.J. Orthopoxvirus Genome Evolution: The Role of Gene Loss. Viruses

2010, 2, 1933–1967. [CrossRef] [PubMed]
4. Hutson, C.L.; Kondas, A.V.; Mauldin, M.R.; Doty, J.B.; Grossi, I.M.; Morgan, C.N.; Ostergaard, S.D.; Hughes, C.M.; Nakazawa, Y.;

Kling, C.; et al. Pharmacokinetics and Efficacy of a Potential Smallpox Therapeutic, Brincidofovir, in a Lethal Monkeypox Virus
Animal Model. mSphere 2021, 6, e00927-20. [CrossRef] [PubMed]

5. Russo, A.T.; Grosenbach, D.W.; Chinsangaram, J.; Honeychurch, K.M.; Long, P.G.; Lovejoy, C.; Maiti, B.; Meara, I.; Hruby, D.E. An
Overview of Tecovirimat for Smallpox Treatment and Expanded Anti-Orthopoxvirus Applications. Expert Rev. Anti Infect. Ther.
2021, 19, 331–344. [CrossRef]

6. Delaune, D.; Iseni, F. Drug Development against Smallpox: Present and Future. Antimicrob. Agents Chemother. 2020, 64, e01683-19.
[CrossRef]

7. Hutin, S.; Ling, W.L.; Round, A.; Effantin, G.; Reich, S.; Iseni, F.; Tarbouriech, N.; Schoehn, G.; Burmeister, W.P. Domain
Organization of Vaccinia Virus Helicase-Primase D5. J. Virol. 2016, 90, 4604–4613. [CrossRef]

8. Boyle, K.A.; Arps, L.; Traktman, P. Biochemical and Genetic Analysis of the Vaccinia Virus D5 Protein: Multimerization-Dependent
ATPase Activity Is Required to Support Viral DNA Replication. J. Virol. 2007, 81, 844–859. [CrossRef]

9. Evans, E.; Klemperer, N.; Ghosh, R.; Traktman, P. The Vaccinia Virus D5 Protein, Which Is Required for DNA Replication, Is a
Nucleic Acid-Independent Nucleoside Triphosphatase. J. Virol. 1995, 69, 5353–5361. [CrossRef]

10. Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.;
Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [CrossRef]

11. Iyer, L.M.; Koonin, E.V.; Leipe, D.D.; Aravind, L. Origin and Evolution of the Archaeo-Eukaryotic Primase Superfamily and
Related Palm-Domain Proteins: Structural Insights and New Members. Nucleic Acids Res. 2005, 33, 3875–3896. [CrossRef]
[PubMed]

12. Iyer, L.M.; Aravind, L.; Koonin, E.V. Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses. J. Virol. 2001,
75, 11720–11734. [CrossRef] [PubMed]

13. Ziegelin, G.; Scherzinger, E.; Lurz, R.; Lanka, E. Phage P4 Alpha Protein Is Multifunctional with Origin Recognition, Helicase and
Primase Activities. EMBO J. 1993, 12, 3703–3708. [CrossRef] [PubMed]

14. Sanchez, M.; Drechsler, M.; Stark, H.; Lipps, G. DNA Translocation Activity of the Multifunctional Replication Protein ORF904
from the Archaeal Plasmid PRN1. Nucleic Acids Res. 2009, 37, 6831–6848. [CrossRef] [PubMed]

15. Fernandez, A.J.; Berger, J.M. Mechanisms of Hexameric Helicases. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 621–639. [CrossRef]
[PubMed]

16. Enemark, E.J.; Joshua-Tor, L. Mechanism of DNA Translocation in a Replicative Hexameric Helicase. Nature 2006, 442, 270–275.
[CrossRef] [PubMed]

17. Santosh, V.; Musayev, F.N.; Jaiswal, R.; Zárate-Pérez, F.; Vandewinkel, B.; Dierckx, C.; Endicott, M.; Sharifi, K.; Dryden, K.;
Henckaerts, E.; et al. The Cryo-EM Structure of AAV2 Rep68 in Complex with SsDNA Reveals a Malleable AAA+ Machine That
Can Switch between Oligomeric States. Nucleic Acids Res. 2020, 48, 12983–12999. [CrossRef] [PubMed]

18. Gai, D.; Zhao, R.; Li, D.; Finkielstein, C.V.; Chen, X.S. Mechanisms of Conformational Change for a Replicative Hexameric
Helicase of SV40 Large Tumor Antigen. Cell 2004, 119, 47–60. [CrossRef]

19. Tarasova, E.; Dhindwal, S.; Popp, M.; Hussain, S.; Khayat, R. Mechanism of DNA Interaction and Translocation by the Replicase
of a Circular Rep-Encoding Single-Stranded DNA Virus. mBio 2021, 12, e0076321. [CrossRef]

20. Kilcher, S.; Schmidt, F.I.; Schneider, C.; Kopf, M.; Helenius, A.; Mercer, J. SiRNA Screen of Early Poxvirus Genes Identifies the
AAA+ ATPase D5 as the Virus Genome-Uncoating Factor. Cell Host Microbe 2014, 15, 103–112. [CrossRef]

21. McCraith, S.; Holtzman, T.; Moss, B.; Fields, S. Genome-Wide Analysis of Vaccinia Virus Protein-Protein Interactions. Proc. Natl.
Acad. Sci. USA 2000, 97, 4879–4884. [CrossRef] [PubMed]

22. Zivanov, J.; Nakane, T.; Forsberg, B.O.; Kimanius, D.; Hagen, W.J.; Lindahl, E.; Scheres, S.H. New Tools for Automated High-
Resolution Cryo-EM Structure Determination in RELION-3. Elife 2018, 7, e42166. [CrossRef] [PubMed]

23. Scheres, S.H.W. RELION: Implementation of a Bayesian Approach to Cryo-EM Structure Determination. J. Struct. Biol. 2012, 180,
519–530. [CrossRef] [PubMed]

24. Scheres, S.H.W. Single-Particle Processing in Relion-3.1 2019. Available online: https://hpc.nih.gov/apps/RELION/relion31_
tutorial.pdf (accessed on 10 August 2022).

http://doi.org/10.1371/journal.ppat.1010768
http://www.ncbi.nlm.nih.gov/pubmed/36136979
http://doi.org/10.1371/journal.pntd.0010141
http://www.ncbi.nlm.nih.gov/pubmed/35148313
http://doi.org/10.3390/v2091933
http://www.ncbi.nlm.nih.gov/pubmed/21994715
http://doi.org/10.1128/mSphere.00927-20
http://www.ncbi.nlm.nih.gov/pubmed/33536322
http://doi.org/10.1080/14787210.2020.1819791
http://doi.org/10.1128/AAC.01683-19
http://doi.org/10.1128/JVI.00044-16
http://doi.org/10.1128/JVI.02217-06
http://doi.org/10.1128/jvi.69.9.5353-5361.1995
http://doi.org/10.1093/nar/gkaa913
http://doi.org/10.1093/nar/gki702
http://www.ncbi.nlm.nih.gov/pubmed/16027112
http://doi.org/10.1128/JVI.75.23.11720-11734.2001
http://www.ncbi.nlm.nih.gov/pubmed/11689653
http://doi.org/10.1002/j.1460-2075.1993.tb06045.x
http://www.ncbi.nlm.nih.gov/pubmed/8253092
http://doi.org/10.1093/nar/gkp742
http://www.ncbi.nlm.nih.gov/pubmed/19762479
http://doi.org/10.1080/10409238.2021.1954597
http://www.ncbi.nlm.nih.gov/pubmed/34404299
http://doi.org/10.1038/nature04943
http://www.ncbi.nlm.nih.gov/pubmed/16855583
http://doi.org/10.1093/nar/gkaa1133
http://www.ncbi.nlm.nih.gov/pubmed/33270897
http://doi.org/10.1016/j.cell.2004.09.017
http://doi.org/10.1128/mBio.00763-21
http://doi.org/10.1016/j.chom.2013.12.008
http://doi.org/10.1073/pnas.080078197
http://www.ncbi.nlm.nih.gov/pubmed/10781095
http://doi.org/10.7554/eLife.42166
http://www.ncbi.nlm.nih.gov/pubmed/30412051
http://doi.org/10.1016/j.jsb.2012.09.006
http://www.ncbi.nlm.nih.gov/pubmed/23000701
https://hpc.nih.gov/apps/RELION/relion31_tutorial.pdf
https://hpc.nih.gov/apps/RELION/relion31_tutorial.pdf


Viruses 2022, 14, 2206 18 of 18

25. Rohou, A.; Grigorieff, N. CTFFIND4: Fast and Accurate Defocus Estimation from Electron Micrographs. J. Struct. Biol. 2015, 192,
216–221. [CrossRef]

26. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera–a Visualization
System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]

27. Casañal, A.; Lohkamp, B.; Emsley, P. Current Developments in Coot for Macromolecular Model Building of Electron Cryo-
Microscopy and Crystallographic Data. Protein Sci. 2020, 29, 1069–1078. [CrossRef]

28. Afonine, P.V.; Klaholz, B.P.; Moriarty, N.W.; Poon, B.K.; Sobolev, O.V.; Terwilliger, T.C.; Adams, P.D.; Urzhumtsev, A. New
Tools for the Analysis and Validation of Cryo-EM Maps and Atomic Models. Acta Crystallogr. D Struct. Biol. 2018, 74, 814–840.
[CrossRef]

29. Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-
Kunstleve, R.W.; et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr.
D Biol. Crystallogr. 2010, 66, 213–221. [CrossRef]

30. Afonine, P.V.; Poon, B.K.; Read, R.J.; Sobolev, O.V.; Terwilliger, T.C.; Urzhumtsev, A.; Adams, P.D. Real-Space Refinement in
PHENIX for Cryo-EM and Crystallography. Acta Crystallogr. D Struct. Biol. 2018, 74, 531–544. [CrossRef]

31. Morin, A.; Eisenbraun, B.; Key, J.; Sanschagrin, P.C.; Timony, M.A.; Ottaviano, M.; Sliz, P. Collaboration Gets the Most out of
Software. Elife 2013, 2, e01456. [CrossRef]

32. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef] [PubMed]

33. Schrödinger, L.L.C. The PyMOL Molecular Graphics System; Version 1.8 2015; Schrödinger LLC: Somerdale, NJ, USA, 2015.
34. Tan, Y.Z.; Baldwin, P.R.; Davis, J.H.; Williamson, J.R.; Potter, C.S.; Carragher, B.; Lyumkis, D. Addressing Preferred Specimen

Orientation in Single-Particle Cryo-EM through Tilting. Nat. Methods 2017, 14, 793–796. [CrossRef]
35. Stagg, S.M.; Noble, A.J.; Spilman, M.; Chapman, M.S. ResLog Plots as an Empirical Metric of the Quality of Cryo-EM Reconstruc-

tions. J. Struct. Biol. 2014, 185, 418–426. [CrossRef] [PubMed]
36. Holm, L.; Sander, C. Protein Folds and Families: Sequence and Structure Alignments. Nucleic Acids Res. 1999, 27, 244–247.

[CrossRef] [PubMed]
37. Chen, X.; Su, S.; Chen, Y.; Gao, Y.; Li, Y.; Shao, Z.; Zhang, Y.; Shao, Q.; Liu, H.; Li, J.; et al. Structural Studies Reveal a Ring-Shaped

Architecture of Deep-Sea Vent Phage NrS-1 Polymerase. Nucleic Acids Res. 2020, 48, 3343–3355. [CrossRef] [PubMed]
38. Guo, H.; Li, M.; Wu, H.; Wang, W.; Yu, F.; He, J. Crystal Structures of Phage NrS-1 N300-DNTPs-Mg2+ Complex Provide Molecular

Mechanisms for Substrate Specificity. Biochem. Biophys. Res. Commun. 2019, 515, 551–557. [CrossRef]
39. Gai, D.; Wang, D.; Li, S.-X.; Chen, X.S. Retraction: The Structure of SV40 Large T Hexameric Helicase in Complex with AT-Rich

Origin DNA. Elife 2019, 8, 910. [CrossRef]
40. Ameismeier, M.; Zemp, I.; van den Heuvel, J.; Thoms, M.; Berninghausen, O.; Kutay, U.; Beckmann, R. Structural Basis for the

Final Steps of Human 40S Ribosome Maturation. Nature 2020, 587, 683–687. [CrossRef]
41. Gajiwala, K.S.; Chen, H.; Cornille, F.; Roques, B.P.; Reith, W.; Mach, B.; Burley, S.K. Structure of the Winged-Helix Protein HRFX1

Reveals a New Mode of DNA Binding. Nature 2000, 403, 916–921. [CrossRef]
42. Ye, Y.; Godzik, A. FATCAT: A Web Server for Flexible Structure Comparison and Structure Similarity Searching. Nucleic Acids Res.

2004, 32, W582–W585. [CrossRef]
43. Shen, J.; Gai, D.; Patrick, A.; Greenleaf, W.B.; Chen, X.S. The Roles of the Residues on the Channel Beta-Hairpin and Loop

Structures of Simian Virus 40 Hexameric Helicase. Proc. Natl. Acad. Sci. USA 2005, 102, 11248–11253. [CrossRef] [PubMed]
44. Enemark, E.J.; Joshua-Tor, L. On Helicases and Other Motor Proteins. Curr. Opin. Struct. Biol. 2008, 18, 243–257. [CrossRef]

[PubMed]
45. Javed, A.; Major, B.; Stead, J.A.; Sanders, C.M.; Orlova, E.V. Unwinding of a DNA Replication Fork by a Hexameric Viral Helicase.

Nat. Commun. 2021, 12, 5535. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jsb.2015.08.008
http://doi.org/10.1002/jcc.20084
http://doi.org/10.1002/pro.3791
http://doi.org/10.1107/S2059798318009324
http://doi.org/10.1107/S0907444909052925
http://doi.org/10.1107/S2059798318006551
http://doi.org/10.7554/eLife.01456
http://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
http://doi.org/10.1038/nmeth.4347
http://doi.org/10.1016/j.jsb.2013.12.010
http://www.ncbi.nlm.nih.gov/pubmed/24384117
http://doi.org/10.1093/nar/27.1.244
http://www.ncbi.nlm.nih.gov/pubmed/9847191
http://doi.org/10.1093/nar/gkaa071
http://www.ncbi.nlm.nih.gov/pubmed/32016421
http://doi.org/10.1016/j.bbrc.2019.05.162
http://doi.org/10.7554/eLife.46910
http://doi.org/10.1038/s41586-020-2929-x
http://doi.org/10.1038/35002634
http://doi.org/10.1093/nar/gkh430
http://doi.org/10.1073/pnas.0409646102
http://www.ncbi.nlm.nih.gov/pubmed/16061814
http://doi.org/10.1016/j.sbi.2008.01.007
http://www.ncbi.nlm.nih.gov/pubmed/18329872
http://doi.org/10.1038/s41467-021-25843-6
http://www.ncbi.nlm.nih.gov/pubmed/34545080

	Introduction 
	Materials and Methods 
	Protein Expression and Purification 
	Negative Stain EM 
	Cryo-EM Sample Preparation 
	Cryo-EM Data Acquisition Parameters 
	Three-Dimensional Reconstruction 
	AlphaFold2 Prediction 
	Model Building and Refinement 

	Results 
	Domain Structure of D5 
	DNA Binding of D5323–785 

	Discussion 
	Domain Structure of D5 
	The AAA+ Helicase Domain 
	DNA Binding of D5323–785 

	Conclusions 
	References

