
Temporal Confounding E�ects in Virtual and
Extended Reality Systems

Dissertation submitted for the degree of
Doctor rerum naturalium (Dr. rer. nat.)

at the University of Würzburg in Germany
Faculty of Mathematics and Computer Science

Submitted by Jan-Philipp Stau�ert
Advised by Marc Erich Latoschik

ABSTRACT

Latency is an inherent problem of computing systems. Each computation takes time
until the result is available. Virtual reality systems use elaborated computer re-

sources to create virtual experiences. The latency of those systems is often ignored or
assumed as small enough to provide a good experience.

This cumulative thesis is comprised of published peer reviewed research papers ex-
ploring the behaviour and e�ects of latency. Contrary to the common description of
time invariant latency, latency is shown to �uctuate. Few other researchers have looked
into this time variant behaviour. This thesis explores time variant latency with a focus
on randomly occurring latency spikes. Latency spikes are observed both for small al-
gorithms and as end to end latency in complete virtual reality systems. Most latency
measurements gather close to the mean latency with potentially multiple smaller clus-
ters of larger latency values and rare extreme outliers. The latency behaviour di�ers
for di�erent implementations of an algorithm. Operating system schedulers and pro-
gramming language environments such as garbage collectors contribute to the overall
latency behaviour. The thesis demonstrates these in�uences on the example of di�erent
implementations of message passing.

The plethora of latency sources result in an unpredictable latency behaviour. Mea-
suring and reporting it in scienti�c experiments is important. This thesis describes es-
tablished approaches to measuring latency and proposes an enhanced setup to gather
detailed information. The thesis proposes to dissect the measured data with a stacked
z-outlier-test to separate the clusters of latency measurements for better reporting.

Latency in virtual reality applications can degrade the experience in multiple ways.
The thesis focuses on cybersickness as a major detrimental e�ect. An approach to sim-
ulate time variant latency is proposed to make latency available as an independent vari-
able in experiments to understand latency’s e�ects. An experiment with modi�ed la-
tency shows that latency spikes can contribute to cybersickness. A review of related
research shows that di�erent time invariant latency behaviour also contributes to cy-
bersickness.

Zusammenfassung

Latenz ist ein inhärentes Problem in Computersystemen. Jede Berechnung benötigt
Zeit bis das Ergebnis verfügbar ist. Virtual Reality Systeme verwenden komplexe

Rechenresourcen um virtuelle Erfahrungen zu erstellen. Die Latenz dieser Systeme
wird oft ignoriert oder als klein genug angesehen um eine gute Erfahrung zu ermöglichen.

Diese kumulative Doktorarbeit ist aus peer reviewten Forschungspublikationen zusam-
mengesetzt, die das Verhalten und E�ekte von Latenz erforschen. Gegensätzlich zu
der landläu�g verwendeten Beschreibung als zeitinvariante Latenz, wird gezeigt, dass
Latenz �uktuiert. Wenige Forscher haben dieses zeitvariable Verhalten genauer unter-
sucht. Diese Arbeit erforscht zeitvariable Latenz mit einem Fokus auf zufällig auftre-
tende Latenzspitzen. Latenzspitzen wurden sowohl für die Ausführung kleiner Algo-
rithmen als auch als End-to-End Latenz in kompletten Virtual Reality Systemen beobachtet.
Die meisten Latenzmessungen sammeln sich nahe eines Durchschnittswertes wobei es
mehrere Ballungen von höheren Latenzwerten gibt und einige seltene extreme Aus-
reißer. Das Latenzverhalten unterscheidet sich bei unterschiedlichen Implementierun-
gen eines Algorithmusses. Betriebssystemsscheduler und Programmiersprachenumge-
bungen wie Garbage Collektoren tragen zu dem Gesamtlatenzverhalten bei. Diese Ar-
beit beschreibt diese Ein�üsse am Beispiel unterschiedlicher Implementierungen von
Nachrichtenaustausch.

Die Vielfalt an Latenzquellen resultiert in einem unvorhersehbaren Latenzverhalten.
Das Messen und Dokumentieren von Latenz ist wichtig in wissenschaftlichen Experi-
menten. Diese Arbeit beschreibt etablierte Ansätze um Latenz zu messen und schlägt
einen verbesserten Ansatz vor um detaillierte Messungen zu sammeln. Diese Arbeit
beschreibt wie gemessene Daten mit Hilfe eines stacked z-Testes in separate Cluster
geteilt werden können um das Verhalten besser beschreiben zu können.

Latenz in Anwendungen der Virtuellen Realität kann die Erfahrung in verschiede-
nen Arten verschlechtern. Diese Arbeit fokusiert sich auf Cybersickness als einen be-
deutenden negativen Ein�uss. Es wird ein Ansatz vorgestellt um Latenz zeit-variant zu
simulieren damit Latenz als unabhängige Variable in Experimenten, die Auswirkungen
von Latenz untersuchen, verwendet werden kann. Ein Experiment mit modi�zierter
Latenz zeigt, dass Latenzspitzen zu Cybersickness beitragen können. Ein Review ver-
wandter Arbeiten zeigt, dass auch andere Latenzverhalten Cybersickness negativ bee-
in�ussen können.

Contents

Abstract i

Contents iii

1 Introduction 1
1.1 My work and their support . 1
1.2 Contribution . 1
1.3 Chapter Overview . 3

2 De�nitions 4
2.1 Latency . 4
2.2 Systems . 8
2.3 Motion To Photon Latency . 9
2.4 Latency Jitter . 11

3 Jitter in Message Passing 14
3.1 Real-Time Systems . 14
3.2 Jitter in Real-Time Systems . 15
3.3 Jitter Results of Scheduler and Garbage Collector Choice 18
3.4 Applications of Message Passing . 26
3.5 Conclusion . 27

4 Measuring 29
4.1 Overview of Measuring Approaches . 29
4.2 Sine Fitting . 39
4.3 Detailed Latency Measurements . 42
4.4 Conclusion . 52

5 Jitter Description 54
5.1 The Stacked-Z Test . 55
5.2 Conclusion . 60

6 Simulation 61
6.1 Simulation of Latency Spikes . 61
6.2 Conclusion . 69

7 E�ects 70

iii

CONTENTS iv

7.1 Latency Jitter provokes Cybersickness . 70
7.2 Latency and Cybersickness . 78
7.3 Multi User Experience . 89
7.4 Conclusion . 101

8 Discussion 103

9 Conclusion 106

Bibliography 107

Chapter 1

INTRODUCTION

Virtual reality promises to deliver new horizons — virtual worlds that immerse the
user in a way not possible before [Sut65] and provide new interaction paradigma

to communicate with the computer [BRC96] and with other humans [Lat+19]. A key
factor in the presentation is how responsive it is, i.e., how fast the system can react to
input. Powerful technical machinery is needed to ful�l the promise. However fast they
are, their processing incurs a latency, a time delay between input and output. The larger
the latency, the more the experience su�ers.

Virtual worlds become ever more convincing as technology advances. Users feel
more present in a virtual world that provides a believable image of the environment
and of the user itself [Wen+20]. The aspiration to create ever more detailled experi-
ences demand more processing power of the computers that supply this experience.
These computers need to get faster and the algorithms running on them more clever to
uphold low latency in spite of increased demands.

The growth of computational power comes at a cost of complexity in both hardware
and software. More complexity makes it hard to determine the runtime of tasks. In-
creased bandwidth is often traded for decreased latency predictability [Pat04]. Research
shows that Virtual Reality applications require low latency systems but often ignores that
modern computer systems may provide a certain average latency but the real latencies
vary considerably around this average [SNL20a].

1.1 My work and their support

Research is a collective e�ort. This thesis will describe achievements in the plural
form as “we” even though the research and writing of the text surrounding the

reprinted papers is done by the author as attested in the Eidesstattliche Erklärung. Re-
search builds upon other people’s research which is cited as necessary. There are other
types of input that are not as obvious like general ideas of which topics to include, what
direction research is headed in, that are the result of discussions among collegues and
especially my supervisors Prof. Dr. Marc Erich Latoschik and Dr. Florian Niebling.
They shaped the research and resulting papers and with it this thesis.

1.2 Contribution

This thesis discusses how latency varies over time, how to measure it, how to de-
scribe it and what consequences arise from latency and latency spikes. Latency is

1

CHAPTER 1. INTRODUCTION 2

an inherent property of computer systems and can cause negative e�ects. It is therefore
important to understand latency and its implications.

This thesis provides proof that the author is able to conduct scienti�c research by
including published, peer reviewed papers investigating the topic. This thesis is a cu-
mulative thesis connecting scienti�c contribution on the �eld of latency in virtual reality
applications to illustrate di�erent aspects of latency.

Some research is only understood by some other researchers deeply involved in the
topic [Lim98]. Latency, in contrast, is an important topic for virtual reality and needs to
be accessible by more than a selected few. It needs to be known how to measure latency
and that high latency needs to be combatted. The reason why there is high latency in
a virtual reality system can be very speci�c to the used system and needs to be tested
and improved on a case by case basis. The negative impact on the user, however, is
always present. No researcher should harm users of their systems because they did not
understand that measuring latency is important or the ignorance of not knowing how
to measure.

This thesis will describe how we came to the conclusion that latency can be harm-
ful and that it is necessary to measure and control latency. To guide this research, we
devised two research questions.

Latency cannot be understood without observing it over time. Many researchers
treat latency as if it is time invariant but in turn miss an important part of the dynamic.
The �rst research question therefore guides the exploration to describe the real latency
dynamics.

R1 How does latency behave in real-time interactive systems?

We approach this question by decomposing it into two smaller research questions.

R1.1 How to measure latency?
R1.2 How to describe latency?

R1.1 describes observing the latency but the measurement data alone is not enough to
describe latency behaviour. There needs to be a way to make the measurement data
understandable by humans, which is inquired in R1.2.

With an idea of latency’s behaviour, we can conduct experiments that research the
e�ect of latency as described in the second research question:

R2 What are the e�ects of latency?

Conducting experiments with latency necessitates the ability to use latency as an in-
dependent variable that can be varied. We therefore devise another research question
necessary for R2:

R2.1 How to simulate latency?

CHAPTER 1. INTRODUCTION 3

Simulation allows the addition of latency on top of the always present latency in order
to provide di�erent latency conditions for experiments.

To summarise, the research questions are:

R1 How does latency behave in real-time interactive systems?
R1.1 How to measure latency?
R1.2 How to describe latency?

R2 What are the e�ects of latency?
R2.1 How to simulate latency?

1.3 Chapter Overview

Tese research questions guide the structure of this thesis. The following chapters
discuss di�erent research questions or di�erent aspects of these questions.

Chapter 2 de�nes the terms “latency” as it emerges from “systems”. It discusses why
latency exists and provides the basis for the other chapters.

Chapter 3 introduces the temporal variability of latency. It discusses di�erent systems
and how latency behaviour di�ers between them. The observed systems are small
and restricted to show how di�erent latency behaves even with small di�erences

Chapter 4 provides approaches to measure latency of whole virtual reality systems. Ap-
proaches di�er in the complexity and amount of information collected.

Chapter 5 o�ers a way to describe the latency’s time variant behaviour.

Chapter 6 creates arti�cial latency jitter to provide a means to test the e�ect of varying
latency in experiments.

Chapter 7 discusses e�ects of latency jitter with an experiment and related work.

Chapter 8 discusses the �ndings of the previous chapters and possible limitations.

Chapter 9 concludes the thesis with a brief summary of the contents.

Some research papers were published as part of this cumulative PhD thesis. Most of
the papers are reprinted as part of this thesis. The author’s contribution is described next
to the reprinted paper and in Appendix A. The nature of a cumulative thesis means that
some information is found in multiple papers such as a description of related work. The
most thorough description is found in the paper “Latency and Cybersickness: Impact,
Causes, and Measures. A Review” [SNL20a] in Chapter 7. This text being an addition to
the papers therefore only tries to connect the papers and provide additional information
where necessary without repeating information that is already present in the papers
themself.

Chapter 2

DEFINITIONS

This thesis describes latency in computer systems with a focus on systems for virtual
reality. Let us understand what latency means, what special latencies we are inter-

ested in and what these systems are that we discuss before diving into the analysis of
latency.

2.1 Latency

Dictionaries know two de�nitions of latency. The �rst de�nition describes hidden or
dormant processes that wait until they are fully developed. This meaning is most

often used with diseases. They incubate und wait until e�ects are evident.
This thesis builds upon the second de�nition of latency, which describes latency as a

delay in computation. The de�nitions are:

“[uncountable, countable](computing) the delay before data begins to move
after is has been sent an instruction to do so”

Oxford Learner’s Dictionary [Oxf]

“COMPUTING a measurement of delay in a system, especially the length
of time it takes computer information to get from one place to another”

MacMillan Dictionary [Mac]

Both de�nitions look at data that is present at one place at a certain point in time. It
is then moved to arrive at a certain other place at a point in time after the initial time.
The di�erence of the times or the measurement thereof is called latency. We will refer
to the time di�erence as latency. The measurement of this time di�erence is described
as a latency measurement.
As an analogy, imagine

a piece of data to be animate.

It looks at its watch ... and enters a vehicle.

4

CHAPTER 2. DEFINITIONS 5

It drives to the beach ... and looks at its watch again.

The time di�erence between the two times looked at the watch is the latency of the
transportation. In other words: the roadtrip to the beach delays the arrival at the beach
in comparison to already being there in the �rst place.

We often do not look at the data but at the processing time. In our example that
would be the roadtrip. It describes an algorithm running that usually transforms and
moves data. In our example, there could be other types of data,
like this piece of data

that drives to a bar

or this piece of data

that drives to a bar

not the kind of bar

I expected

We usually describe a similar set of data that travels to a restricted number of places
with a common way of transportation. The example shows a car. The further described
cases usually revolve around the execution of software in a computer system to act on
data.

With the plethora of potential varying data and destinations, it becomes obvious that
latency varies and it is di�cult or impossible to describe its behaviour.

One day in our example, there may be construction work or a malevolent tra�c light.
The latency increases. The next day, everything is back to normal.

This transportation or processing of data is done with limited resources. Planning the
best usage of these resources is a problem described in mathematics as the minumum
latency problem. Blum et al. [Blu+94] describe it as a problem of a repairman or disk
head scheduling its visits.

“Given a set of n points, a symmetric distance matrix (dij), and a tour which
visits the points in some order, let the latency of a point p be the length of the
tour from the starting point to p. Let the total latency of the tour be the sum
of the latencies of all points.” Blum et al. [Blu+94]

CHAPTER 2. DEFINITIONS 6

This de�nition presents in a more abstract way that one total latency is assembled
from many smaller latencies. Each part contributes its own to the overall latency.

There is a limited resource that can work o� requests
one after the other. Work packets that are not currently
worked on need to wait and therefore have their latency
increased. Assume the data to not own a car each but use
a taxi service that only owns few cars. While one piece of
data rides the car, the others have to wait. Sometimes it
is bene�cial for the entirety of all data to only carry one
piece of data halfways and then continue to transport an-
other piece of data.

Similar, a processor has only a restricted amount of
cores that can process data. The operating system sched-
ules applications, thereby deciding which data gets pro-
cessed �rst. The analysis of this problem �nds it NP hard.
We look further into the e�ects of this di�culty when we look at operating schedulers.
Those schedulers face the same problem of needing to �nd a minumum latency sched-
ule but need to optimize for di�erent needs.

There often is a discrepancy between bandwidth and latency as nicely described in
Patterson [Pat04]. Bandwidth is easier to increase with money and pro�ts from im-
provements on latency while latency is limited by physical constraints and often does
not bene�t from improved bandwidth. Imagine the taxi service to increase its band-
width by ordering more cars. It can now transport more data. Improving the latency
of the transportation itself is more involved as it needs to �nd a way to make the cars
faster. Rumble et al. [Rum+11] chimes in that latency — here in networking — has seen
less improvement than bandwidth or memory size.

When describing latency in computers, the term often pops up to describe network-
ing. For example Cardwell, Savage, and Anderson [CSA00] divides TCP latency into
connection establishment latency and data transfer latency. The connection establish-
ment latency is the time it takes to exchange the initial handshake to establish the con-
nection. The transfer latency is the time from sending the requested data until the data
is acknowledged. In line with the de�nitions above, both descriptions denote a time

CHAPTER 2. DEFINITIONS 7

until some feat is accomplished. Network latency can be very speci�c to certain com-
puters [HVCT10].

The movement of data from one place to another by ways of computing is not re-
stricted to computer systems. The human processes data in the form of information
arriving at the eye as photons or at the hands as tactile stimulation. More data is re-
ceived by means of other senses. This data is shipped to the brain partially preprocessed
where it is combined, connected, transformed to reach its �nal destination triggering a
response. The response may be a movement, an utterance, a thought or a lot of other
things.

The latencies we describe are often composed of many parts. Consider seeing:
Data arrives at the eye in

the form of photons.
The latency from entering the eye

until the arrival at the retina is

proportional to the speed of light

and the size of the eye.

The conversion takes time.

The time may be dependent on the amount

of incoming light and its wavelength.

The light is

converted to

an electrical

stimulus by

a receptor cell.

There is a latency from the creation of the

electric stimulus until it reaches the brain.
The optic nerve forwards the data but needs time to do so. The transmission speed of
nerves is 34m/s [Nic97].

This simplifying example shows how the latency between the data arrival and the eye
until its arrival in the brain is composed of multiple steps each contributing to the over-
all latency. The information is then processed in the brain with a delay but processes
di�erent information with di�erent latencies [WM98]. Compensation of the latency is
added later like in the motor actions triggered as a response [Pur+98]. This plethora of
latencies in smaller parts of a computation to combine to one latency for a bigger part
that may be di�erent depending on what computational path is taken makes it impor-
tant to always state which latency is reported.

Delays in the human processing are not subject of this thesis but only an example of
other appearances of latency. The human has adapted to how own processing latency
but as we will see not necessarily to external processing latency.

CHAPTER 2. DEFINITIONS 8

2.2 Systems

We often use the term “system” in a loose way, describing things that work together
and are perceived as parts of this compound. The necessity of grouping and

abstracting stems from the way humans learn. We are able to create abstractions from
few samples. These abstractions then allow to adapt knowledge gathered from observed
data to new, unobserved phenomena [Ten+11]. A system is the description of such an
abstraction and as such, we give a de�nition below to provide a readymade de�nition
and will then describe examples of the systems relevant to this thesis so the reader can
generalize from there to �nd an own intuitive understanding.

There is the intuitive understanding that a system is a collection of cohesive parts.
Wikipedia [Wik20] de�nes a system with reference to Backlund [Bac00] as

“A system is a group of interacting or interrelated entities that form a uni-
�ed whole” Wikipedia [Wik20]

Backlund’s paper, however, warns that such a de�nition may be not precise enough
and does not exclude everything that is not a system. His de�nitions is both more precise
and harder to understand:

“A system consists of a set, M , and a non-empty set of relations on M , R,
satisfying the following conditions:

1. |M | ≥ 2.

2. From every member of M there is a path to every other member of M .

Let a and b any elements of M :

1. There is a path from a to b, if (a, b) ∈ R1, where R1 ∈ R.

2. Let the relation R2 ∈ R and the degree of R2 be n, where n > 2. Let
a1, a2, . . . , an be members of M . Let ∃x(x ∈ {a1, a2, . . . , an} ∧ x = a) ∧ ∃y(y ∈
{a1, a2, . . . , an} ∧ y = b)”. Let R2(a1, a2, . . . , an). Then there is a path from a to
b, and there is a path from b to a.

3. There is a path from a to b, if there is an element c ∈ M such that there is
a path from a to c and there is a path from c to b.”

Backlund [Bac00]

He goes on to de�ne that parts of a system that satisfy the de�nition are subsystems.
The de�nition states that a system is made from parts that have relations with each

other. The relations need to be in a way to form a cohesive together where each part is
connected to the rest either on a direct route or via relations to intermediate parts. No
part may be isolated. Please refer to the paper for more details and a comprehensive
explanation of how the de�nition can be understood.

CHAPTER 2. DEFINITIONS 9

The understanding of what a system describes becomes easier when talking about
more concrete applications. The de�nition of Englander [Eng09] will be su�cient and
more intuitive for the rest of this text.

“A collection of components linked together and organized in such a way
as to be recognizable as a single unit” Englander [Eng09]

2.3 Motion To Photon Latency

We will try to understand latency behaviour in the following chapters �rst by ob-
serving latencies of small, restricted mechanics. For the most part, however, we

will talk about motion to photon latency. This is the latency that best describes the ex-
pected latency as experienced in virtual reality applications. It tries to span most of the
latencies involved in the simulation of the virtual worlds and their interaction with the
user.

So what is “motion to photon latency”? The name itself indicates a motion and a
photon - here meant as the emission of a photon - as two points in time. The motion
to photon latency is the delay in between. A patent issued to Qualcom de�nes

“M2P latency is the time delay from a user’s movement (e.g., head, eyes,
or other body parts) to the time when a virtual reality scene is updated on a
display” Quach et al. [Qua+18]

The document further stresses the importance of a low motion to photon latency to
reduce unwanted e�ects such as cybersickness. We will discuss e�ects in more detail in
Chapter 7.

The de�nition restricts the source of movement to being created by the user of the
virtual reality system. This is overly restrictive. A real use case will most often see a hu-
man operator that moves tracked objects. The human may be replaced by a synthetic
movement from a pendulum’s swing or a motor when measuring latency. This allows
to de�ne speci�c movement patterns that are replicatable. We will discuss measuring
latency in Chapter 4. The important part of the movement to be usable to determine
a motion to photon latency is its possible transferability to the computer. This is most
often done with tracked objects that either report the movement themself to the com-
puter (inside-out tracking) or are followed by some tracking system like a camera that
then reports the movement to the computer (outside-in tracking) [Pin+02]. The amount
of information transfered can vary from the positions and orientations over time to only
one of position and orientation to binary information that indicates the presence or ab-
sence of movement or the tracked object reaching a certain point in space. Alternatives
to tracked objects as the source of movement in the de�nition are mechanisms that can
pick up a movement such as a light barrier.

CHAPTER 2. DEFINITIONS 10

Displays used for virtual reality applications vary widely. Virtual reality may use big
screens, projections or head-mounted displays [Cze+97]. The motion to photon de�ni-
tion mentions the photon that arises from such a display because a photon is emitted
at a speci�c point in time. The problem that a display updates its regions at di�erent
times is often neglected [PMK11]. The measurement of a motion to photon latency as-
sumes that all parts of the screen are updated at the same time. An assumption that is
justi�ed by the much smaller update time for an entire display than for the total motion
to photon latency. For our considerations, it is good enough to follow this assumption
of instantaneous update of the whole screen but bear in mind that this might in�uence
latency values.

Both the origin of the movement and the photon emitting device is not strictly de-
�ned. Motion to photon latency measurements can therefore measure very di�erent
scenarios. Some tracked objects use algorithms to reduce latency with prediction while
others don’t. An example is asynchronous timewarp [Wav16] which reduces the latency
of the HMD orientation by warping the rendered image according to the most current
tracking information. The shown content still uses older tracking information.

In between the movement and the photon corresponding to this movement, there
are many processing steps. These steps are dependant on the hard and software used.
Some papers that describe measuring motion to photon latency provide a rough expla-
nation what between the motion and the photon emittal happens. We show adaptions
of images in the original papers for illustration.

Choi et al. [Cho+18] describes it as
Motion

Detection

Motion Photon

Visual

Processing

Display

One step to register the motion and one to emit the photon. The description ac-
knowledges that both picing up the movement and displaying it on a screen incurs a
latency. Then there are some computations that convert the movement information
into a pictoral representation.

Mine [Min93] lists four processing steps

CHAPTER 2. DEFINITIONS 11

Head Mounted

Display

Tracking System Host Computer Graphics Engine

Tracking Data Tracking Data Viewing

Parameters

Updated Video

He describes the visual processing step from before with two stages: application host
and image generation. The distinction originates from the usage of separate machines
back when the paper was published that do the general computation and the graphics
procession. Today, these parts are more integrated but still separate in a computer as
the main CPU and the graphics card.

Papadakis, Mania, and Koutroulis [PMK11] describes the pipeline in a similar way
but describes the receival of tracking information with two parts: the tracker that picks
up the motion and sends it to the host computer and a tracker driver that receives the
information and forwards it to the simulation.

Wu, Dong, and Hoover [WDH13] shows an image that introduces bu�ers in between
the stages. These bu�ers are used for message passing and depending on the setup
can be bu�ers in memory for inter and intra process communication on one computer
or bu�ers of network interfaces for communication between computers. This message
passing does not only occur between the stages listed so far but also in the stages themself
to facilitate the complexity that is necessary for virtual reality.

Kämäräinen et al. [Kä+17] shows a glance of how to split up some stages by describing
the start and the end of the pipeline they used in more depth while the main processing
that we usually focus on is sourced out to a server on the internet.

Feldstein and Ellis [FE20], just like Mine [Min93], recognises that the process is a
cycle. The virtual reality as shown on the screen provoke the user to the next motion
and the cycle repeats. Looking at the motion to photon latency is one part of the cycle
of experiencing virtual worlds.

2.4 Latency Jitter

Latency is often described as one value. However, latency varies over time. Micro-
controllers can show a deterministic execution time for applications. They execute

only one application as described in its machine code. Desktop computers such as those
used for virtual reality applications utilise a lot of optimisations to increase the amount
of instructions executed per time. Many of those optimisations lead to a varying la-

CHAPTER 2. DEFINITIONS 12

tency. The complexity of the whole system with many sources of potential varying
latency makes the observed latency unpredictable.

We will see that most of the observed latencies are usually gathered around a mean
but there are outliers as well. We want to describe some of those optimisations to show
how deeply rooted this indeterminism of latency is in todays computers.

Caching in the context of computer hardware usually refers to the usage of multiple
layers of memory. Disks are slow compared to main memory. There is even faster
memory closer to the processor. The faster the memory, the smaller it is, which is a
cost and an implementation problem. The fastest memory are the processor registers
followed by an L1, L2 and possibly L3 cache. The L1, L2, L3 caches load data from
the main memory that is currently needed or may be needed soon after [CS06]. Not
all processors have this elaborate cache hierarchy but many have at least one level of
caches between the main memory and the processor. If the processor needs data that is
not available in its closest cache, it will see to load it from slower memory. This is called
a cache miss. Execution waits until this data is available. Optimisations see to �ll the
cache with data that will be needed [Pat+95]. Latency for an instruction is dependent on
the cache behaviour. If there is a cache miss, the resulting latency will be higher.

Modern computers do not execute only one instruction at a time. They employ a
superpipelined and superscalar processor architecture.

“In a super pipelined machine of degree m, the cycle time is 1/m the cycle
time of the base machine.” Jouppi and Wall [JW89]

A simple instruction processing involves the fetching of the instruction, reading of
the necessary registers, executing the instruction and writing the result back [BLM91].
This would be one cycle of the base machine described above. A super pipelined ma-
chine starts to fetch the next instruction after one was fetched, reads the registers for the
next instruction after the registers for the previous one were read. At each time, there
are as many instructions processed in the pipeline as there are pipeline stages — in the
best case.

“A superscalar machine of degree n can issue n instructions per cycle”
Jouppi and Wall [JW89]

A superscalar pipeline has parts that are replicated to fetch multiple instructions at
once or execute multiple instructions.

Those optimisations can achieve an increase in the throughput but require that in-
structions can be executed one after the other or in parallel. If one instruction relies on
the result of the previous one, it needs to wait until the results are available. This re-
duces the bene�ts of superpipeline and superscalar machines. They will see to reorder
instructions to mitigate this problem if possible. While this ensures a good pipeline util-
isation when successful, it means that the developer can no longer be sure of the order

CHAPTER 2. DEFINITIONS 13

the instructions are processed in and looses the ability to estimate runtimes for a piece
of code.

One kind of instruction that depends on previous results are conditional jumps.
Speculative execution and branch predition lets processors assume the possible out-
come before executing the instruction itself. The assumption of one possible case al-
lows to already start to process instructions of the likely branch. If the assumption turns
out to be false, all the speculative processing is discarded and the pipeline is �lled with
the correct instructions. A correct guess does not incur any additional execution latency
while a wrong one does. This introduces uncertainty of the latency. The predictions
may not be deterministic when other code is executed as well.

Hyperthreading sees to improve the pipeline utilisation by feeding instructions of
two parallel threads into one physical processor. The operating system sees this one
physical processor as two logical processors. If one thread needs to wait, e.g., for data due
to a cache miss, the other one takes this free capacity. While this optimisation improves
throughput even further, latency is not deterministic. An application can take a certain
time to execute or less if the other thread needs to wait.

All of these factors can lead to time variant latency. The �uctuation in latency is
called latency jitter.

Chapter 3

JITTER IN MESSAGE PASSING

This chapter shows the dynamic of one test scenario. It shows how latency di�ers in
small processes. Larger systems will use this kind of processing in multiple places

and accumulate more of the latency variability shown here.
The scenario is a simple message passing as is used in most applications. One ex-

ample is the receival of mouse and keyboard input in the form of messages. Message
passing is also employed to communicate between di�erent applications and between
parts of the same application. It is an essential part of virtual reality systems and com-
puter systems in general. Virtual reality systems make excessive use of message passing
due to their complex setups. The hardware communicates with the computer, involving
drivers on the computer, a virtual reality application for the simulation. The simulation
wants to maximise available performance by using multithreading which necessitates
communication between the parallel executing threads. There is the communication
with the graphics card to generate images which are sent to a screen.

The tests show that the latency behaviour di�ers between the approaches used for
the message passing and the underlying, executing system.

3.1 Real-Time Systems

Real-Time systems require a certain timeliness for their execution. Each process is
assigned a deadline after which it needs to have �nished its computation.

“Real-Time Systems are those in which the temporal aspects of their be-
havior are part of their speci�cation. The correctness of the system depends
not only on the logical results of the computation, but also on the time at
which the results are produced.” Bernat, Burns, and Liamosi [BBL01]

Real-Time systems and associated deadlines are described by Bernat, Burns, and
Liamosi [BBL01] as

Hard where a missed deadline leads to system failure, potential harm or damage.

Firm where some deadlines may be missed but there is no value provided for late re-
sults.

Soft where some deadlines may be missed while still providing value for late results.

Only hard real-time systems can provide guarantees for latency. They provide a way
to schedule each task to guarantee the required processing time before the required

14

CHAPTER 3. JITTER IN MESSAGE PASSING 15

deadline. It is possible to schedule tasks with these requirements if all tasks and their
characteristics are known beforehand running on a single processor. Scheduling in mul-
ti-processor environments with more dynamics are NP-hard or NP-complete [Bur91].
There are heuristics to make multi-processor scheduling feasible in practice. Those
schedulers might only provide a “minimum level of guaranteed performance” [Sta+95].

A real-time system will need to always regard the worst case processing time. Re-
source utilisation may be low if the worst case doesn’t happen. Computer systems build
for multimedia usage are usually optimised for throughput. They will not reserve ca-
pacity for worst case processing times nor care for processing deadlines. They will see
to get as much work done as possible. Throughput comes at the cost of run-time pre-
dictability [McK08]. The systems used for virtual reality are not optimised to guarantee
the necessary processing time to provide updated imaginary for every screen update.

Developers try to squeeze out the last drop of performance of a virtual reality system
to provide better graphics, more e�ects or better simulations but ignore that computa-
tional deadlines may get missed if there are no bu�ers left to cushion longer processing
times. The most obvious deadline is the graphics scanout when data is sent to the screen.
If this deadline is missed, the next scanout will be in many milliseconds to come. La-
tency increases a lot in this case.

3.2 Jitter in Real-Time Systems

We published a poster on the IEEE VR 2016 that shows what kind of latency is to be
expected for simple message passing. We compare di�erent implementations in

di�erent programming languages and see their e�ect on a stock linux system and on a
linux system with the PREEMPT_RT patch installed. The PREEMPT_RT patch tries to
make the linux system real time capable. Following the explanation above, only a real
time operating system can guarantee timeliness. We show that even our inspected real
time system was not able to keep this promise.

The paper was published as Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich
Latoschik. “Reducing application-stage latencies of interprocess communication tech-
niques for real-time interactive systems”. In: 2016 IEEE Virtual Reality (VR). IEEE. 2016,
pages 287–288

Reducing Application-Stage Latencies of Interprocess Communication
Techniques for Real-Time Interactive Systems

Jan-Philipp Stauffert∗

University of Würzburg
Florian Niebling†

University of Würzburg
Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Latency jitter is a pressing problem in Virtual Reality (VR) applica-
tions. This paper analyzes latency jitter caused by typical interpro-
cess communication (IPC) techniques commonly found in today’s
computer systems used for VR. Test programs measure the scal-
ability and latencies for various IPC techniques, where increasing
number of threads are performing the same task concurrently. We
use four different implementations on a vanilla Linux kernel as well
as on a real-time (RT) Linux kernel to further assess if a RT variant
of a multiuser multiprocess operating system can prevent latency
spikes and how this behavior would apply to different programming
languages and IPC techniques. We found that Linux RT can limit
the latency jitter at the cost of throughput for certain implementa-
tions. Further, coarse grained concurrency should be employed to
avoid adding up of scheduler latencies, especially for native system
space IPC, while actor systems are found to support a higher degree
of concurrency granularity and a higher level of abstraction.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Virtual Reality applications often consist of multiple aspects to han-
dle input processing, simulations, artificial intelligence, or render-
ing etc. To fully take advantage of the available processing power
of today’s multicore and/or multi-CPU architectures and to avoid
unnecessary blocking, the underlying software routines often will
utilize concurrency and asynchronous behavior. At a certain point
though, all parts have to cooperate and communicate to generate a
consistent world state which usually uses some form of IPC tech-
nique. But IPC is heavily affected by scheduler latencies. Sched-
uler latency is almost unpredictable and might show spikes at un-
controlled points in time, resulting, e.g., in micro stutters. These
outliers are presumably not perceived well and may cause increased
simulator sickness.

Even without an explicit application concurrency, scheduling
impacts the system as the available resources are shared in mul-
tiuser multitasking operating system (MMOS) commonly used to-
day. Here, real-time operating systems (RTOS) give promises about
an upper bound of scheduler latency. While they are common
in, e.g., the embedded world or cyber-physical systems, today’s
VR applications usually run on an MMOS (e.g., simply, because
there is enhanced graphics acceleration or many existing software
solutions). We investigate how different programming languages
and IPC techniques behave w.r.t latency jitter when applied on an
MMOS compared to an RTOS.

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

Figure 1: Schema illustrating the test programs: Each of the n
senders is instructed at the same time to get the current timestamp,
to send it to a receiver who additionally gets a timestamp and propa-
gates back the elapsed time for logging.

2 PREVIOUS WORK

Frank et al. [3] found visual delay to be a major factor for simulator
sickness. Ivkovic et al. [4] additionally found latency to influence
the performance and experience of test subjects. While they con-
ducted tests with a time invariant latency added, Teather et al. [8]
found a reduced performance due to latency spikes. We assume
therefore that latency spikes have a similar effect on the experience
as degraded latency has. Motion-to-photon latency of VR environ-
ments has been measured using different methods, e.g. sine fit-
ting [7]. Several current approaches optimize the rendering stage,
e.g., using dynamic time warping or frameless rendering. Our re-
search focuses on a different aspect of the latency problem, namely
the latency that occurs prior to rendering, i.e., at the application
stage of a VR system.

RT systems guarantee each process to be invoked within a cer-
tain time, therefore eliminating spikes in latency for IPC when the
receiver has to wait an unbounded timespan until invokation. Most
RTOSs are for embedded systems [6] with applications in robotics
or industrial controllers. The Linux RT patch is a modification of
the Linux Kernel that enables hard realtime capabilities [2]. Im-
provements in latency often inversely affects throughput. Real-time
(getting started as quickly as possible) and real fast (getting done
quickly once started) can be considered a design choice [5].

3 METHOD

We implemented a comparable test routine using two distinct IPC
techniques and two programming languages: A thread based ver-
sion using shared memory and mutex locks in C++ and Java and a
message based communication with actors using Skala with Akka
Actors and the C++ CAF library [1]. The routines start a variable
number of pairs of threads/actors and tell the senders to get the cur-
rent nanosecond time, read an integer from a random location in a
memory block of 256k integers and send it to their peer thread/actor.
The receiver waits for the hand-over, writes the received integer to
another random position back in the memory block, reads the cur-
rent nanosecond time and logs the difference of the two timestamps
(see Figure 1). To ensure that all invoking threads/actors send at the
same time, they are synchronized with a barrier. The pseudo-code
is described in listing 1 and listing 2. The memory read/write is
intended to reliably provoke cache misses for all cases.

The tests were conducted on a system running Ubuntu 14.04
with a Linux Kernel version of 3.14.57 with and without the RT

287

IEEE Virtual Reality Conference 2016
19–23 March, Greenville, SC, USA
978-1-5090-0836-0/16/$31.00 ©2016 IEEE

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 16

patch applied in a dual boot configuration. The CPU was an Intel c©
CoreTM i7-2700K with 4 cores and hyperthreading. The employed
JVM was an OpenJDK 2.5.6 with the Akka 2.3.11 library for Scala
Actors. We increased the number of thread/actor pairs running at
the same time by the power of two from 1 to 16. For each run,
10,000,000 samples were gathered.

barrier();
t = getTime()
x = readMemory(random)
send(t, x)

Listing 1: Sender reads the time
and a random memory location
and sends it to the receiver.

t1, x = receive()
writeMemory(random, x)
t2 = getTime()
log(t2-t1)

Listing 2: Receiver receives the
information, saves the variable
to a random memory location
and calculates how much time
has passed.

4 RESULTS

Figure 2: Plot of the latency distribution with 16 thread/actor pairs for
all 4 test cases running on MMOS (left column) and on RTOS (right
column) kernels. The x-axis shows the number of the result with the
leftmost being the first gathered latencies while the rightmost were
gathered at the end of the test run.

Figure 2 depicts the latency for each sample that took more than
the median+ 2 · standard deviation. The C++ implementations are
heavily affected by scheduler latency on the MMOS Linux and
drastically reduce latency spikes using Linux RT at the cost of some
lower overall performance only for the native threads. Both JVM-
based implementations show repeated spikes, apparently caused by
garbage collection. Here, Akka spikes are worse, as the message
system seems to suffer under the many messages that are sent to
log each result, therefore creating a lot of short-living objects. See
Table 1 for comparison.

The threaded RTOS versions exhibit an increased latency with
increasing number of threads, eventually surpassing the latency of
outliers that happen with the MMOS versions. Therefore, a very
fine-grained concurrency should be limited or an actor-based sys-
tem should be applied, potentially due to the user-space implemen-
tation of these systems. We find the RTOS performing worse in
the mean and median while also scaling worse with more threads.

Table 1: Comparison values for latencies with and without RT patch
with 16 thread/actor pairs

Max Mean Median
RT RT RT

Akka 62.9ms 17.8ms 29μs 4.1μs 6.7μs 2.2μs
Java 970.3μs 719.9μs 16.9μs 20.8μs 7.4μs 13.8μs
C++ 583μs 329.1μs 13.1μs 29.8μs 3.4μs 5μs
C++ Actor 56.9μs 21.4μs 2.2μs 2μs 2.2μs 2μs

The latency, however, is better bound with the RTOS, not only for
the C++ implementations. Without, there are repeatedly outliers
that may deteriorate the user experience and may lead to simulator
sickness.

5 CONCLUSION

Linux RT reduces latency jitter at the cost of some overall perfor-
mance in the C++ case, an acceptable trade-off for VR systems.
Additionally, system space IPC concurrency should be limited to
a certain extent of granularity to reduce the impact of scheduler
latency. Running on an RTOS, the Actor model provides a valu-
able alternative for an increased degree of concurrency granularity,
specifically using the C++ implementation. Still, with our imple-
mentation based on the Java VM, latency spikes could not be low-
ered so far as their cause is not the system scheduler but the garbage
collector (GC). Future work will evaluate if different GC implemen-
tations and parametrization can alleviate this problem.

Overall, while VR applications need concurrency and modular-
ity to handle all required software tasks, communication can induce
problems if proper care is not taken and adequate performance mea-
sures are not performed frequently as a standard procedure. We
have only looked at a basic n× (1 : 1) IPC but see the need to ex-
tend the research to test the impact of different approaches as well
as to extend the technical analysis with user-based perception stud-
ies to relate technical measures to perceived qualities, e.g., to see if
and how it makes sense to trade performance for a bounded latency.

REFERENCES

[1] D. Charousset, R. Hiesgen, and T. C. Schmidt. Caf-the c++ actor frame-
work for scalable and resource-efficient applications. In Proceedings
of the 4th International Workshop on Programming based on Actors
Agents & Decentralized Control, pages 15–28. ACM, 2014.

[2] S.-T. Dietrich and D. Walker. The evolution of real-time linux. In 7th
RTL Workshop, 2005.

[3] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display
and motion system delays on operator performance and uneasiness in a
driving simulator. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 30(2):201–217, 1988.

[4] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and
mitigating the negative effects of local latencies on aiming in 3d shooter
games. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 135–144. ACM, 2015.

[5] P. E. McKenney. “Real Time” vs. “Real Fast”: How to Choose? In
Ottawa Linux Symposium (July 2008), pp. v2, pages 57–65, 2008.

[6] J. A. Stankovic. Real-time and embedded systems. ACM Comput. Surv.,
28(1):205–208, Mar. 1996.

[7] A. Steed. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proceedings of the 2008 ACM Sym-
posium on Virtual Reality Software and Technology, VRST ’08, pages
123–129, New York, NY, USA, 2008. ACM.

[8] R. Teather, A. Pavlovych, W. Stuerzlinger, and I. MacKenzie. Effects
of tracking technology, latency, and spatial jitter on object movement.
In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, pages
43–50, March 2009.

288

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:45:28 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 17

CHAPTER 3. JITTER IN MESSAGE PASSING 18

Copyright

©2016 IEEE. Reprinted, with permission, from Jan-Philipp Stau�ert, Florian Niebling,
Marc Erich Latoschik, “Reducing Application-Stage Latencies of Interprocess Commu-
nication Techniques for Real-Time Inveractive Systems”, 2016 IEEE Virtual Reality (VR),
March 2016

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author programmed the test software, conducted the measurements and took the
lead in writing the manuscript.He provided critical feedback and helped shape the re-
search, the analysis and the manuscript.

3.3 Jitter Results of Scheduler and Garbage Collector Choice

We extended this work on the SEARIS workshop 2016 to include comparisons of
di�erent operating schedulers and di�erent garbage collectors when using the

Java programming language.
Real time depends on the choice of scheduling that grants processes the necessary

computing time to �nish in time. Scheduling happens at operating system level or in
the process itself.

The measurements show applications where scheduling of threads is left to the op-
erating system with di�erent scheduling algorithms. An alternative are actors that are
executed by multiple operating threads but are scheduled on top of these threads by
the application. Other things that are scheduled are parts that belong to the runtime
environment of the application like garbage collectors. There is a plethora of available
algorithms which show di�erent latency behaviour when executing the same applica-
tion. This paper sees to explore e�ects of these di�erent choices.

The paper was published as Jan-Pilipp Stau�ert, Florian Niebling, and Marc Erich
Latoschik. “Reducing application-stage latencies for real-time interactive systems”. In:
2016 IEEE 9th Workshop on Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS). IEEE. 2016, pages 1–7

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Reducing Application-Stage Latencies For Real-Time Interactive Systems
Jan-Philipp Stauffert∗

University of Würzburg
Florian Niebling†

University of Würzburg
Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Latency is a pressing problem in Virtual Reality (VR) applications.
Low latencies are required for VR to reduce perceptual artifacts and
cyber sickness. Additionally, latency jitter denotes the variance in
the pattern of latency changes which additionally may cause un-
wanted effects. This paper analyzes latency jitter caused by typi-
cal inter-thread communication (ITC) techniques commonly used
in todays computer systems employed for VR, the influence of the
operating system scheduler, and the effect of different garbage col-
lection (GC) methods to understand their effect on latency spikes,
here for different Java Virtual Machines (JVM). We measure the
scalability and latencies for various ITC techniques with an increas-
ing number of threads and actors performing prototypical concur-
rent tasks. Four different benchmark implementations on a vanilla
Linux kernel as well as on a real-time (RT) Linux kernel assess if
a RT variant of a multiuser multiprocess operating system can pre-
vent latency spikes and how this behavior would apply to different
programming languages and ITC techniques.

We confirmed that scheduler and prioritization of the VR appli-
cation both play an important role and identified the impact they
have on the implementation strategies. Also, Linux RT can limit
the latency jitter at the cost of throughput for certain implementa-
tions. As expected, the choice of a GC method also is critical and
will change the latency patterns drastically. As a result, we sug-
gest that coarse grained concurrency should be employed to avoid
adding up of scheduler latencies and unwanted latency jitter for the
native ITC case, while actor systems are found to support a higher
degree of concurrency granularity and a higher level of abstraction.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Virtual Reality applications often consist of multiple components
to handle input processing, simulations, artificial intelligence, or
rendering etc. Non-functional software quality requirements like
modularity, maintainability, and reusability can have an unforesee-
able impact on the temporal behavior of software, especially for a
Real-Time Interactive System (RIS), i.e., in Virtual, Augmented,
and Mixed Reality (VR, AR, and MR) and computer games. Due
to the complexity of many RIS applications, they are often split
into different parts to foster cohesion and decoupling. To exploit
todays’ multi-core and multi-CPU architectures and to avoid un-
necessary blocking, these parts often will be executed concurrently
or they will be completely distributed [2, 15].

At a certain point though, all parts have to cooperate and commu-
nicate to generate a consistent world state which implies some sort

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

of inter-process communication (IPC) or inter-thread communica-
tion (ITC). Hence it is critical to understand the impact of IPC/ITC
on the resulting latency patterns. IPC/ITC is heavily affected by
scheduler latencies. Scheduler latency is almost unpredictable and
might show spikes at uncontrolled points in time, resulting, e.g., in
micro stutters. As a result, latency and latency jitter can severely
disturb the performance and experience of users and it can cause
simulator sickness.

Even without an explicit application concurrency, scheduling
impacts the system as the available resources are shared in mul-
tiuser multitasking operating system (MMOS) commonly used to-
day. Here, real-time operating systems (RTOS) give promises about
an upper bound of scheduler latency. While they are common in,
e.g., the embedded world or cyber-physical systems, today’s VR ap-
plications usually run on an MMOS. We investigate how different
programming languages and ITC techniques behave w.r.t latency
and latency jitter when applied to (a) an MMOS compared to (b) an
RTOS. Three languages will be used: (1) C++ to create native bina-
ries and (2) Java and Scala targeting the JVM. We finally compare
threading with mutex locks to an actor model implementation.

2 RELATED WORK

An early discussion of simulator sickness is led by McCauley et
al [17]. Frank et al. [9] found visual delay to be a major factor for
simulator sickness. Ivkovic et al. [12] additionally found latency to
influence the performance and experience of test subjects. While
they conducted tests with a time invariant latency added, Teather
et al. [22] found a reduced performance due to latency spikes. We
assume therefore that latency spikes have a similar effect on the ex-
perience as degraded latency has. Users might be able to compen-
sate for a predictable overall latency when it comes to interaction
tasks (not for the perception though) but they can’t compensate for
unpredictable latency spikes.

Recent work has been done to reduce motion-to-photon latency
of VR environments. Here, the overall goal is to apply the most
current sensor reading as late as possible in the final graphics ren-
dering stage to avoid, e.g., the application of an outdated camera
projection. This latency cause has been measured using different
methods, e.g. sine fitting [21]. Several current approaches optimize
the rendering stage, e.g., using dynamic time warping or frameless
rendering, light sensing [5], and automated frame counting [10].
Our research focuses on a different source for the latency problem,
namely the latency that occurs prior to rendering, i.e., at the appli-
cation stage of a VR system.

RT systems guarantee each process to be invoked within a cer-
tain time, therefore eliminating spikes in latency for ITC when the
receiver has to wait an unbounded timespan until invocation. Most
RTOSs are for embedded systems [20] with applications in robotics
or industrial controllers. The Linux RT-Preempt patch modifies the
Linux kernel to enable hard realtime capabilities [6]. This allows
the comparison of software performance under both operating sys-
tem flavors. Other operating systems exist only in either MMOS
or RTOS variant. Improvements in latency often inversely affects
throughput. Real-time (getting started as quickly as possible) and
real fast (getting done quickly once started) can be considered a
design choice [18].

31

IEEE 9th Workshop on Software Engineering and
Architectures for Realtime Interactive Systems
(SEARIS) 2016
20 March, Greenville, SC, USA
978-1-5090-4275-3/16/$31.00 ©2016 IEEE

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 19

3 METHOD

We will examine differences in ITC latency jitter on a MMOS and
RTOS to evaluate whether an RTOS can prevent critical latency
spikes and how different programming languages and ITC concepts
need to be adapted. We distinguish between two platforms: Native
binaries are compared to bytecode running on the JVM. Addition-
ally, the traditional multithreading approach with threads and mu-
texes is compared to the abstraction of actors.

Threads are used for concurrent flows of execution inside of one
process. Here, mutexes allow threads mutually exclusive access to
a resource with threads waiting for a resource being able to yield
their execution time to another thread or process. Mutexes there-
fore allow for better real-time behavior than spinlocks that poll for
a resource to be available [6]. Actors on the other hand provide
an abstraction to facilitate parallel programming usually based on
threads and lock-free communication as used for VR applications
in [14]. Actors are entities that run in parallel and which solely
communicate by message passing [13].

3.1 Test Routines

We implemented a comparable test routine using two distinct ITC
techniques and two programming languages:

1. thread based using shared memory and mutex locks in C++

2. thread based using shared memory and mutex locks in Java

3. message based with actors using C++ with the CAF library [4]

4. message based with actors using Scala with Akka [16]

The routines start a variable number of pairs of threads/actors and
tell the senders to get the current nanosecond time, read an integer
from a random location in a memory block of 256k integers and
send it to their peer thread/actor. The receiver waits for the hand-
over, writes the received integer to another random position back
in the memory block, reads the current nanosecond time and logs
the difference of the two timestamps (see Figure 1). To ensure that
all invoking threads/actors send at the same time, they are synchro-
nized with a barrier. The pseudo-code is described in listing 1 and
listing 2. The memory read/write is intended to reliably provoke
cache misses for all cases. In larger applications, cache misses will
certainly occur due to the increased code and large assets, there-
fore urging the processor to load data from the slower main mem-
ory instead of the much faster caches. All tests shown here collect
10,000,000 samples. Latency jitter is introduced by, among oth-
ers, the OS scheduler, other processes and hardware interrupts that
delay the communication.

The actor implementations use default settings. Akka uses by
default a fork-join thread pool with work stealing and three times
the amount of threads than processors as target amount. Threads are
created or dismissed according to the work to do. The C++ Actor
Framework uses by default a thread pool with the same amount of
threads than processors with a central coordinating scheduler [4].

barrier();
t = getTime()
x = readMemory(random)
send(t, x)

Listing 1: Sender reads the time
and a random memory location
and sends it to the receiver.

t1, x = receive()
writeMemory(random, x)
t2 = getTime()
log(t2-t1)

Listing 2: Receiver receives the
information, saves the variable
to a random memory location
and calculates how much time
has passed.

t

t

t

n

s1 r1

s2

sn

r2

rn

...

Figure 1: Schema illustrating the test programs: Each of the n
senders is instructed at the same time to get the current timestamp,
to send it to a receiver who additionally gets a timestamp and propa-
gates back the elapsed time for logging.

3.2 Hardware
The tests were conducted on a computer running Ubuntu 14.04.3
with a Linux Kernel version of 3.14.57 with and without the RT-
Preempt patch applied in a dual boot configuration. The CPU was
an Intel c© CoreTM i7-2700K with 4 cores and hyperthreading. The
employed JVMs were an OpenJDK 2.6.3 with the Akka 2.3.11 li-
brary for Scala Actors and for GC comparison additionally the Zing
ZVM version 1.8.0-zing 15.09.0.0-b6.

3.3 Schedulers
Linux supports multiple schedulers with different use cases [3]. If
no special scheduler is requested, Linux defaults to the “other”
scheduler (SCHED OTHER). Real-time scheduling is done with
SCHED FIFO, which implements a FIFO principle, SCHED RR, a
round robin approach, or recently SCHED DEADLINE, which exe-
cutes the thread with the earliest deadline first.

The C++ implementations will use the round-robin scheduler for
it shows the best results in terms of limiting latency jitter for our use
case. The implementations running on the JVM are evaluated both
for the SCHED OTHER and the SCHED RR as they are impacted
differently by the choice of the scheduler. SCHED DEADLINE will
be evaluated in later work.

The test programs are run with the round robin scheduler at pri-
ority 90, which is above most other processes with the exception
of certain kernel processes like “watchdog” and “migration” that
are essential for the proper functioning of the OS. When using the
default scheduler, no further prioritization like nice values are used.

Hardware interrupts will nonetheless be served immediately urg-
ing other processes to wait. With threaded interrupts this time is
held as short as possible with a big part then taken care of in a ker-
nel thread that is subject to the scheduler [7].

The choice for a scheduler is a sensitive one. It should be eval-
uated which one performs best for the software at hand. While our
test implementation with Scala/Akka performs better in terms of
latency jitter with the default scheduler as shown below, it doesn’t
make any promises or efforts for real-time behavior and should not
be favored for RT scenarios.

3.4 Vanilla vs. RT-Preempt
All four implementations were run on Linux with and without the
RT-Preempt patch applied using 16 threads or actor pairs. Fig-
ure 2 depicts the latency for each sample that took more than the
median+2 · standard deviation. Table 1 shows the absolute perfor-
mance values for comparison.

The C++ implementations are heavily affected by scheduler la-
tency on the MMOS Linux and drastically reduce latency spikes
using Linux RT. The native thread implementation sees a decrease

32

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 20

Figure 2: Plot of the latency distribution with 16 thread/actor pairs for all 4 test cases running on MMOS (right column) and on RTOS (left column)
kernels. The x-axis describes the normalized time from start to the end of a test-run while collecting 10,000,000 samples.

Max Mean Median
RT Vanilla RT Vanilla RT Vanilla

Akka 67ms 63.4ms 1.9ms 15.9ms 915.8µs 14.5ms
Java 24.7ms 23.3ms 684.2µs 106.2µs 144.3µs 67.5µs
C++ 380.2µs 577.9µs 48µs 34.8µs 43.1µs 35.3µs
C++Actor 130.8µs 72.5µs 4.1µs 3.7µs 3.5µs 3.2µs

Table 1: Comparison values for latencies with and without RT patch with 16 thread/actor pairs

in average performance with the RT patch but shows fewer outliers
that are bound to a lower maximum latency. The C++ Actor imple-
mentation benefits from the reduced maximum latency while not
suffering the same performance degradation as the native threads.
However, there are spikes in the beginning of the test run on the
RTOS which are not present on the MMOS. This hints to the actor
initialization having more impact there.

3.5 Garbage Collectors

Preliminary studies with a modified version of the here presented
tests showed the GC as a major impacting factor for latency jitter.

The Java Garbage Collection is as beneficial for the language as
it poses problems. It allows for reliable software as a consequence
of the nonexistence of memory corruptions and memory leaks. The
well known problems of the garbage collection are temporary pro-
gram stalls while the GC is conducting its work. Many application

areas don’t mind pauses in execution under 1 second. Due to Java’s
ubiquity especially in the business world, it has advanced to areas
where latency plays a crucial role for the business value like in high
frequency trading [19].

For our tests, we use the four different GCs that are implemented
in the OpenJDK, which are the Serial, Parallel, Concurrent Mark
Sweep (CMS) and G1 GCs. Additionally, the Zing JVM [23], which
promises pause free GC, is examined.

Figure 3 shows the measurements for the Scala/Akka implemen-
tation with Figure 4 showing the respective measurements for the
Java thread implementation. The time was normalized to the range
[0;1] but different settings led to differing run times. With the ex-
ception of the Zing GC, every test has information added where the
garbage collection took place. Java garbage collection is divided
into two different steps, the Young generation (YG) GC and the
Old generation (OG) GC, where short living objects are faster to

33

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 21

Figure 3: Comparison of different GCs for the Scala/Akka implementation using 16 actors with the default Linux scheduler (SCHED OTHER)
and the round robin scheduler (SCHED RR) running on a Linux with and without the RT patch applied. The y-axis is differently scaled for each
test to better convey the individual behaviour that would otherwise get lost due to the big difference in latency behaviour.

Max Mean Median
GC Scheduler RT Vanilla RT Vanilla RT Vanilla

CMS SCHED OTHER 67ms 63.4ms 1.9ms 15.9ms 915.8µs 14.5ms
SCHED RR 191ms 212ms 18.3ms 12ms 14.9ms 9.5ms

G1 SCHED OTHER 241ms 216.8ms 3.4ms 15.3ms 1.1ms 14.1ms
SCHED RR 235.9ms 210.6ms 45.1ms 8.8ms 28.9ms 454.8µs

Parallel SCHED OTHER 911ms 1110.2ms 3.1ms 17.1ms 1.8ms 14.8ms
SCHED RR 3756.6ms 192ms 212.7ms 46.3ms 62.3ms 13.8ms

Serial SCHED OTHER 631.8ms 385.1ms 4.2ms 16.4ms 1.9ms 14.9ms
SCHED RR 1423.5ms 717.4ms 90.8ms 42.6ms 58.6ms 24.4ms

Zing SCHED OTHER 744.3ms 387.5ms 11.2ms 13.7ms 2.7ms 11.4ms
SCHED RR 720.1ms 655.6ms 137.7ms 126.6ms 4.8ms 4ms

Table 2: Comparison values for latencies for the Scala/Akka implementation running with different GCs. The tests were conducted with and
without RT patch with 16 actor pairs

get collected. Longer living objects and those surviving the YG GC
are cleaned up less often but with more impact on the system. As
the test routines are only shortlived and only create objects to pass
the results around, they mostly don’t provoke a Full Garbage Col-
lection that sweeps the OC. Depending on the GC, this can happen
nonetheless as is seen for the Serial and Parallel GC. There, spikes
in latency are the result of the longer running full GC. If full GC is
provoked for the other GCs, the impact is comparable.

The runtime and frequency of the full GC can be adjusted with

the assignment of different ratios of the available memory to the YG
and OG. This can be done to trade less frequent garbage collection
for an increased stall time of the program but doesn’t change the
phenomenon of programm pauses in general. While this makes it
possible to delay garbage collection in our tests until after the test
run, we kept the memory assignment with default values to have
our tests exhibit common behaviour.

Furthermore, the memory usage was not optimized for this case.
It is possible to work around the GC by allocating memory without

34

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 22

Figure 4: Comparison of different GCs for the Java thread implementation using 16 threads with the default Linux scheduler (SCHED OTHER)
and the round robin scheduler (SCHED RR) running on a Linux with and without the RT patch applied. The y-axis is differently scaled for each
test to better convey the individual behaviour that would otherwise get lost due to the big difference in latency behaviour.

its knowledge that has then to be managed manually. Addition-
ally, the GC’s work can be alleviated by reusing objects. Since
these measures are not used in common Java programming, they
are omitted for the comparison here.

The tests were run with both the FIFO and the round robin sched-
uler because the decision for the SCHED RR is not as obvious as
in the C++ tests.

4 RESULTS

Both JVM-based implementations show repeated spikes, appar-
ently caused by garbage collection. Here, Akka spikes are worse,
as the message system seems to suffer under the many messages
that are sent to log each result, therefore creating a lot of short-
living objects. The values in Table 1 and Figure 2 show selected
combinations of GC and scheduler (Scala/Akka: Concurrent Mark
Sweep GC, SCHED OTHER; Java: Concurrent Mark Sweep GC,
SCHED RR). The Akka measurements show far longer mean laten-
cies which is a result of an implementation problem. The increasing
delay occurred when changing the test program to not only send
the measured latency but also the time when it occurred for log-
ging reasons. The reason for this has to be assessed in the future.
This problem makes it not possible to compare the Akka version
to the other implementations but only to itself. Preliminary studies
showed Akka’s performance comparable or better than Java’s but
were not yet replicated with different GCs.

Both actor implementations show a better scaling with more par-
allelism. More threads lead to more mean and maximum latency,
while the actor values are growing at a slower pace.

The Scala/Akka implementation shows more and larger latency
spikes with the SCHED RR which should support RT, but prof-
its from the changes to Linux with the RT-Preempt patch if no RT
scheduler is used. All test runs show outliers, which can be par-
tially explained with full GC for the Serial and Parallel GC. The
Java implementation has similar patterns for the Serial and Parallel
GC, where repeated spikes are provoked by the full GC but besides
this the latencies stay bound. The other GCs show very specific
patterns with the CMS GC exhibiting repeated spikes, the G1 GC
starting with large latencies that go down to then slowly increase
again and the Zing GC that has times with higher latencies around
certain points in time though still very low latencies in comparison
to other GCs.

We tried to introduce pauses of 1ms after each measurement to
see if the OS and GC can make use of this time window of inactiv-
ity. The Scala/Akka implementation reduced its outliers roughly by
a factor of four, which is probably due to skipping certain internal
mechanics that cause latency spikes. It is more a working around
spikes by hoping that certain characteristics fall into the pause than
a real solution. The C++ implementation showed a slight increase
in latency, which is explained by the added overhead of waking up
the main application that then invokes all the threads that have been

35

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 23

Max Mean Median
GC Scheduler RT Vanilla RT Vanilla RT Vanilla

CMS SCHED OTHER 57.1ms 25.9ms 4.7ms 141.6µs 201.8µs 74.2µs
SCHED RR 24.7ms 23.3ms 684.2µs 106.2µs 144.3µs 67.5µs

G1 SCHED OTHER 37.1ms 33.7ms 1.1ms 623.5µs 128µs 109µs
SCHED RR 32.5ms 31ms 734.3µs 572.9µs 125.6µs 87.8µs

Parallel SCHED OTHER 324.4ms 750.8ms 14.8ms 27.7ms 405.3µs 563.4µs
SCHED RR 1447.5ms 761.4ms 299.6ms 172.8ms 58.1ms 49.9ms

Serial SCHED OTHER 304.8ms 32.6ms 38.8ms 70.9µs 21.7ms 66.8µs
SCHED RR 124.3ms 165.8ms 2ms 5.2ms 198.6µs 288.8µs

Zing SCHED OTHER 3.7ms 5.6ms 61µs 72.1µs 58.7µs 65.5µs
SCHED RR 2.9ms 3.3ms 50.8µs 90.9µs 49.3µs 83.9µs

Table 3: Comparison values for latencies for the Java thread implementation running with different GCs. The tests were conducted with and
without RT patch with 16 thread pairs

idle in the mean time.
While we tried CPU pinning for the thread implementations, it

didn’t affect the measurements. CPU pinning describes the process
of assigning a thread to a CPU. If this is not done, the scheduler is
free to schedule a thread each time it is resumed on a different CPU.
If a thread changes the CPU, the cache of the new CPU might not
have pre-loaded the required data and additional time is wasted to
load the program code and data. This is most likely due to our
implementation being too small in terms of executable size to make
a difference. Other use cases e.g. in big data applications found
a significant improvement of throughput by assigning threads to
CPUs [8].

5 DISCUSSION

The threaded RTOS versions exhibit an increased mean and max-
imum latency with increasing number of threads, eventually sur-
passing the latency of outliers that happen with the MMOS ver-
sions. Therefore, a very fine-grained concurrency using many OS
threads should be limited or an actor-based system should be ap-
plied. An actor-system implemented in user-space can make bet-
ter use of the application’s concurrency without burdening the OS
scheduler with huge amounts of threads. We find the RTOS per-
forming worse in the mean and median while also scaling worse
with more threads. The scaling is negatively affected by the ad-
ditional scheduling complexity in Linux RT where mutexes in the
kernel lead to more context switches and therefore more overhead.
The latency, however, is better bound with the RTOS, not only for
the C++ implementations. Without, there are repeatedly outliers
that may deteriorate the user experience and may lead to simulator
sickness.

Applications can change their behaviour in different environ-
ments. Therefore, it is important to test every application in differ-
ent settings to determine the best configuration. Here, the C++ Ac-
tors have an initialization cost under Linux RT and should therefore
be created in program sections where latency outliers have lesser
impact. With the unpatched Linux, this adaptation is not needed.
Even more varying behaviour is shown by our Akka test, which
performs better either on the patched or unpatched Linux depend-
ing on the scheduler and garbage-collector.

Furthermore, the JVM does a lot of optimizations behind the
scenes [11] that we did not fully account for that can lead to dif-
ferent behaviour in other scenarios. The test applications presented
here are small and run fast to allow quick testing of various settings.
Larger applications might be handled differently and get more and
more optimized the longer they are running. In the financial sec-
tor, some JVMs are “warmed up” for hours before they are put in
production [1].

Only 1:1 communication with a certain amount of threads/actors
in parallel at the same time was investigated. In a VR application,

the communication might not be in sync. Input devices will report
their measurements at different times and their messages are prop-
agated through the program components in different paths. The
amount of entities taking part in a communication will vary. This
research is trying to start the evaluation of latency jitter sources for
a restricted communication pattern, which will be present in more
complicated settings as well.

The analysis only sheds light onto a very selected piece of VR
applications. Even in this restricted test setting, there are many
influencing factors that can provoke latency spikes that can only
partially be avoided. Hardware/firmware interrupts can influence
the CPU in a way that is not preventable from an application side.
Bigger applications will suffer from even more sources of latency
due to the underlying hardware and operating system, which makes
controlling latency jitter even more difficult.

6 CONCLUSION

Linux RT reduces latency jitter at the cost of some overall perfor-
mance in the C++ case, an acceptable trade-off for VR systems.
Additionally, system space ITC concurrency should be limited to
a certain extent of granularity to reduce the impact of scheduler
latency. Running on an RTOS, the Actor model provides a valu-
able alternative for an increased degree of concurrency granular-
ity, specifically using the C++ implementation. Still, with our im-
plementation based on the Java VM, latency spikes could not be
lowered so far as their cause is not the system scheduler but the
GC. Different GCs provoke special latency patterns that need to be
found out for every application anew and be considered. As long as
a language running on the JVM is the choice for a VR project, the
GC has to be accounted for.

Overall, while VR applications need concurrency and modular-
ity to handle all required tasks, communication can induce prob-
lems if proper care is not taken and adequate performance measures
are not performed frequently as a standard procedure. We have only
looked at a basic n× (1 : 1) ITC but see the need to extend the re-
search to test the impact of different approaches as well as to extend
the technical analysis with user-based perception studies to relate
technical measures to perceived qualities, e.g., to see if and how it
makes sense to trade performance for lower latency spikes.

There is a need for special hardware and software to avoid la-
tency jitter and provide an immersive experience. The VR commu-
nity has identified the problem of latency and is working on it. We
want to stress that low mean latency is not enough but the jitter has
to be kept low as well.

REFERENCES

[1] Azul Preps Java For Trading – Avoid Practice Trades Leaking
Into Markets - Forbes. http://www.forbes.com/sites/
tomgroenfeldt/2014/03/20/azul-preps-java-for-

36

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 24

trading-avoid-practice-trades-leaking-into-
markets/#33d6bbbe2c78. Accessed: 2016-02-01.

[2] T. Arcila, J. Allard, C. Ménier, E. Boyer, and B. Raffin. Flowvr: A
framework for distributed virtual reality applications. Journees de
lAFRV, 2006.

[3] D. P. Bovet and M. Cesati. Understanding the Linux kernel. ” O’Reilly
Media, Inc.”, 2005.

[4] D. Charousset, R. Hiesgen, and T. C. Schmidt. Caf-the c++ actor
framework for scalable and resource-efficient applications. In Pro-
ceedings of the 4th International Workshop on Programming based
on Actors Agents & Decentralized Control, pages 15–28. ACM, 2014.

[5] M. Di Luca. New method to measure end-to-end delay of virtual real-
ity. Presence: Teleoper. Virtual Environ., 19(6):569–584, Dec. 2010.

[6] S.-T. Dietrich and D. Walker. The evolution of real-time linux. In 7th
RTL Workshop, 2005.

[7] J. Edge. Moving interrupts to threads [LWN.net], Oct. 2008.
[8] A. Foong, J. Fung, and D. Newell. An in-depth analysis of the im-

pact of processor affinity on network performance. In Networks,
2004.(ICON 2004). Proceedings. 12th IEEE International Conference
on, volume 1, pages 244–250. IEEE, 2004.

[9] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual
display and motion system delays on operator performance and un-
easiness in a driving simulator. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 30(2):201–217, 1988.

[10] S. Friston and A. Steed. Measuring latency in virtual environ-
ments. Visualization and Computer Graphics, IEEE Transactions on,
20(4):616–625, April 2014.

[11] V. Hork, P. Libi, A. Steinhauser, and P. Tma. DOs and DON’Ts
of Conducting Performance Measurements in Java. pages 337–340.
ACM Press, 2015.

[12] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying
and mitigating the negative effects of local latencies on aiming in
3d shooter games. In Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems, pages 135–144. ACM,
2015.

[13] R. K. Karmani and G. Agha. Actors. In Encyclopedia of Parallel
Computing, pages 1–11. Springer, 2011.

[14] M. Latoschik and H. Tramberend. A scala-based actor-entity architec-
ture for intelligent interactive simulations. In Software Engineering
and Architectures for Realtime Interactive Systems (SEARIS), 2012
5th Workshop on, pages 9–17, March 2012.

[15] M. E. Latoschik and H. Tramberend. A scala-based actor-entity ar-
chitecture for intelligent interactive simulations. In Software Engi-
neering and Architectures for Realtime Interactive Systems (SEARIS),
2012 5th Workshop on, pages 9–17. IEEE, 2012.

[16] Lightbend. Akka, 2016.
[17] M. McCauley, L. Hettinger, T. Sharkey, and J. Sinacori. The effects

of simulator visual-motion asynchrony on simulator induced sickness.
American Institute of Aeronautics and Astronautics, 2015/11/26 1990.

[18] P. E. McKenney. “Real Time” vs. “Real Fast”: How to Choose? In
Ottawa Linux Symposium (July 2008), pp. v2, pages 57–65, 2008.

[19] L. O. Ramirez. High frequency trading. Technical report, Working
Paper, 2011.

[20] J. A. Stankovic. Real-time and embedded systems. ACM Comput.
Surv., 28(1):205–208, Mar. 1996.

[21] A. Steed. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proceedings of the 2008 ACM Sym-
posium on Virtual Reality Software and Technology, VRST ’08, pages
123–129, New York, NY, USA, 2008. ACM.

[22] R. Teather, A. Pavlovych, W. Stuerzlinger, and I. MacKenzie. Effects
of tracking technology, latency, and spatial jitter on object movement.
In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, pages
43–50, March 2009.

[23] G. Tene, B. Iyengar, and M. Wolf. C4: The continuously concurrent
compacting collector. ACM SIGPLAN Notices, 46(11):79–88, 2011.

37

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 07:08:51 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 3. JITTER IN MESSAGE PASSING 25

CHAPTER 3. JITTER IN MESSAGE PASSING 26

Copyright

©2016 IEEE. Reprinted, with permission, from Jan-Philipp Stau�ert, Florian Niebling,
Marc Erich Latoschik, “Reducing Application-Stage Latencies for Real-Time Interac-
tive Systems”, 2016 IEEE 9th Workshop on Software Engineering and Architectures for
Realtime Interactive Systems (SEARIS), March 2016

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author programmed the test software, conducted the measurements and took the
lead in writing the manuscript.He provided critical feedback and helped shape the re-
search, the analysis and the manuscript.

3.4 Applications of Message Passing

Tracking of user movement is important to present a convincing virtual represen-
tation of the user and react to user interaction. We contributed a chapter to the

VR Developer Gems book describing the importance of avatar embodiment in virtual
reality and how behaviour replication is implemented. The essence of the described
mechanism is that tracking information arrives at its own cadence with the virtual re-
ality simulation running at a di�erent cadence. A part of the application receives the
tracking information and forwards it as described in the above papers [SNL16a; SNL16c]
to the main simulation. The book chapter describes how essential this mechanic is for
embodiment.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

CHAPTER 3. JITTER IN MESSAGE PASSING 27

tracking

data

skeleton

data

update rate 1 update rate 2

message

passing

simulationmotion

update

The book chapter was published as Daniel Roth, Jan-Philipp Stau�ert, and Marc
Erich Latoschik. “Avatar Embodiment, Behavior Replication, and Kinematics in Vir-
tual Reality”. In: VR Developer Gems, 1st Edition. Edited by William R. Sherman. A K
Peters/CRC Press, 2019, pages 321–346. url: https://www.taylorfrancis.com/books/e/

9781315157764/chapters/10.1201/b21598-17

Copyright

This book chapter is part of the book “VR Developer Gems”. The copyright is with the
publisher CRC Press. It is not included in the print version of this thesis.

Author Contributions

The author created the �rst draft explaining the receival and processing of tracking data
as well as the pseudocode listings. He then developed this section in collaboration with
the other authors.

3.5 Conclusion

Latency in even a small application varies. The latency pattern changes with the im-
plementation and underlying systems such as the operating system. Some pro-

gramming languages such as Java use a runtime that introduces additional and irregular
latencies with a garbage collector.

We looked at message passing as one process that is present in many applications
and essential for virtual reality applications that want to use as much computer perfor-
mance as possible. Message passing is in�uenced by scheduling and multi processor
coordination which make it susceptible to many of the described sources of latency and
varying latency. With this essential building brick of larger applications showing such

https://www.taylorfrancis.com/books/e/9781315157764/chapters/10.1201/b21598-17
https://www.taylorfrancis.com/books/e/9781315157764/chapters/10.1201/b21598-17

CHAPTER 3. JITTER IN MESSAGE PASSING 28

varied latency patterns, we expect the e�ects to accumulate in such larger applications.
We also showed an example where such message passing is in the critical path and can
therefore impact the main application performance.

Discussed Research Questions

R1 How does latency behave in real-time interactive systems? We �nd that latency be-
haviour di�ers for the same task if di�erent algorithms are used. Latency spikes
occur with di�erent duration and frequency for di�erent implementations. Op-
erating system schedulers are one source for latency indeterminism. A real-time
operating system reduces variability of latency values but does not eliminate it.
Programming languages use di�erent technologies like garbage collectors that in-
troduce di�erent latency behaviour. The same Java application shows di�erent
latency behaviour when used with di�erent garbage collector implementations.
Sources of latency variability can in�uence each other as shown with a Java ap-
plication running on real-time and non-real-time linux operating systems using
di�erent scheduler implementations and di�erent garbage collectors. As a conse-
quence, we see that latency behaviour is tied to a speci�c implementation running
on a speci�c system. Changes of hardware, operating system or implementation
change latency behaviour for the same implemented concept.

R1.1 How to measure latency? We show how to measure latency for small algorithms to
receive latency measurements. The chosen task to time is message passing. Mes-
sage passing is an important building block for virtual reality applications or in gen-
eral applications that need to utilise multicore processors or distributed processing.
Me We use the most accurate built in timing functionality and seek to reduce the
in�uence of the timing instrumentalisation on the timed task. Nonetheless, tim-
ing on the same system as the application to time can introduce its own latency
contribution.

Chapter 4

MEASURING

Measuring latency is a necessity to understand latency behaviour. Measurements
can uncover problems in the implementation if it is too high [DL10]. Those prob-

lems might have gone unnoticed otherwise and can be �xed. Not all sources of latency
can be �xed and so besides obvious errors in the implementation, it is important to
know what latency to expect.

4.1 Overview of Measuring Approaches

Many researchers have conducted latency measurements with di�erent approaches.
The following paper shows an illustrated overview over those approaches to get

a quick impression on what there is. A more textual description that discusses more
nuances is done in the Frontiers paper on Cybersickness [SNL20a] in Chapter 7.

Here, we provide a quick overview over measuring latency to lower the barrier for
other researchers to the topic. Measurement is always important and not everybody will
be an expert in the topic. This paper facilitates basic knowledge. A visual explanation
makes it more likely that interested readers approach the subject [Far18].

The paper was published as Jan-Philipp Stau�ert, Kristof Korwisi, Florian Niebling,
and Marc Erich Latoschik. “Ka-Boom!!! Visually Exploring Latency Measurements for
XR”. in: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Sys-
tems. CHI EA ’21. Yokohama, Japan: Association for Computing Machinery, 2021. isbn:
97814503809592105. doi: 10.1145/3411763.3450379. url: https://doi.org/10.1145/

3411763.3450379

29

https://doi.org/10.1145/3411763.3450379
https://doi.org/10.1145/3411763.3450379
https://doi.org/10.1145/3411763.3450379

Ka-Boom‼! Visually Exploring Latency Measurements for XR
Jan-Philipp Stauffert
University of Würzburg

Kristof Korwisi
University of Würzburg

Florian Niebling
University of Würzburg

Marc Erich Latoschik
University of Würzburg

ABSTRACT
Latency can be detrimental for the experience of Virtual Reality.
High latency can lead to loss of performance and cybersickness.
There are simple approaches to measure approximate latency and
more elaborated for more insight into latency behavior. Yet there
are still researchers who do not measure the latency of the system
they are using to conduct VR experiments.

This paper provides an illustrated overview of different approaches
to measure latency of VR applications, as well as a small decision-
making guide to assist in the choice of the measurement method.
The visual style offers a more approachable way to understand how
to measure latency.

CCS CONCEPTS
•General and reference→Measurement; •Computingmethod-
ologies → Virtual reality.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Jan-Philipp Stauffert, Kristof Korwisi, Florian Niebling, and Marc Erich
Latoschik. 2021. Ka-Boom!!! Visually Exploring Latency Measurements for
XR. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts (CHI ’21 Extended Abstracts), May 8–13, 2021, Yokohama, Japan.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3411763.3450379

or get sick [17].

If latency is too high, people lose per-
formance [9]

They may hit a wall they thought
was still far away.

Or worse, injure uninvolved third par-
ties [23].

To effectively combat latency, we
must first find it, i.e. measure it.
Only then we can take appropriate
action.

Latency can provoke unpleasant effects and dangerous
situations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8095-9/21/05.
https://doi.org/10.1145/3411763.3450379

or get sick [17].

They may hit a wall
they thought was still
far away.

Or worse, injure unin-
volved third parties [23].

To effectively combat latency,
we must first find it, i.e. mea-
sure it. Only then we can take
appropriate action.

CHAPTER 4. MEASURING 30

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Stauffert, et al.

br
ig
ht
ne
ss

br
ig
ht
ne
ss

a camera

or a photodiode

that measures only one
brightness value but
very often.

that measures many
brightness values but not
that often,

When talking about latency, we usually refer to Motion To Photon Latency or End To End Latency.

Motion To Photon
latency is the time

from starting
a movement

that is
tracked,

and fed into
the simula-
tion

to create the
next image

until the image
corresponding to
the movement

is shown
on screen.

The screen may be

a computer
monitor,

a projection,

an HMD,

or similar.
some other tracked
object, e.g., a Vive
tracker,

a motion
controller,

The tracked
movement can
originate from

a head mounted
display (HMD),

a rigid object,

or be completely
synthetic.

For measurement, both the movement and its effect on screen are captured by either

time

time

CHAPTER 4. MEASURING 31

Ka-Boom‼! Visually Exploring Latency Measurements for XR CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

The most straightforward form of latency measurement is Frame Counting.

He et al. [8] move a
tracked wand in front of
a screen.

wand

The screen shows the
virtual counterpart.

virtual wand

A camera records
the scene.

The video is analysed to find

(a) when the wand overlaps
a line on the screen,

(b) when the virtual wand over-
laps a line on the screen.

The time between the
frames is the Motion To
Photon latency.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Similar, Wu et al. [24]
use a moving bar. The position of the real and virtual

bar can be extracted automatically
via thresholding.

Roberts et
al. [18]
compare the
beginning of a
movement

while Miller et
al. [12] use the
end of a
movement.

They use 1D CCD arrays to
extract the centroid of the
tracked user.Friston et al. [6],

compare the peak of acceleration.

after detecting their
tracked objects via
thresholding the
video,

𝑎𝑐
𝑐𝑒
𝑙𝑒
𝑟𝑎
𝑡𝑖
𝑜𝑛

𝑡𝑖𝑚𝑒

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Method 1

Method 1

Method 2

Method 3

Method 4

CHAPTER 4. MEASURING 32

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Stauffert, et al.

Method 2

Method 1 Steed [21] proposes Sine Fitting:

He attaches a
tracked object to
a pendulum,

and the position
is rendered on a
screen.

A camera records both, the real and the virtual pendulum.

The positions are extracted from the video via thresholding automatically:

He fits a sine curve (e.g. 𝑐𝑜𝑠 (2𝜋 ∗ 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑑𝑒 𝑓 𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑝ℎ𝑎𝑠𝑒)). The fit prevents inaccuracies of the
thresholding, and low sampling frequency in the video.

de
fle
ct
io
n

time

phase difference
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑝ℎ𝑎𝑠𝑒

2𝜋∗𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦∗𝑓 𝑝𝑠

The predictability of a pendulum is used in other approaches
to measure latency. Mine et.al. [13] uses a pendulum and two
photodiodes:

br
ig
ht
ne
ss

latency

de
fle
ct
io
n

time

The motion to photon la-
tency can be derived as

time

Many approaches use a Pendulum

CHAPTER 4. MEASURING 33

Ka-Boom‼! Visually Exploring Latency Measurements for XR CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

switch
open

switch closed

photodiode

Liang et al. [11] record a pendulum and
the timestamp of the last tracking data.

they look howmuch the
tracking data deviated
at the recorded times-
tamp.

Chang et al. [3] rotate an HMD.

Bars drawn on the
HMD make it easier
to recognise motion.

The virtual scene mir-
rored on a monitor fol-
lows with a delay to the
rotation.

Pape et al. [15] use pro-
jection based VR.

The ground truth when
the servo motor starts to
move is provided with a
switch.

The VR system changes
the brightness of a pro-
jected dot once it re-
ceives the motion infor-
mation.

Seo et al. [19] use an elabo-
rated platform to simulate
real head movements.

reference

Once the pendulum
overlaps the reference

Other approaches

Method 1

Method 2

Method 3

Method 4

CHAPTER 4. MEASURING 34

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Stauffert, et al.

the image of the screen

is distorted by lenses which creates a scram-
bled image if the camera
is not right in front of
the lenses.

Feldstein et al. [5]

pop out the lenses

plop

then push the HMD. The scene follows the
HMDmovement with
a delay.

Without lenses, they
can record both the
real HMD motion and
the virtual motion on
screen.Kijima et al. [10] use two

synchronised cameras.

One observes
a real stick

while the
other records
the virtual
counterpart.

Upon rotation,
the real one
moves faster out
of the image

than the vir-
tual counter-
part which is used

to determine
the latency.

Raaen et al. [16]
use two photodi-
odes.

One is lit by
a laser pointer
as long as the
HMD is in rest
position,

the other
monitors
the screen

when the HMD is moved, the
first photodiode is not shown
on anymore.

The screen brightness
changes once the
simulation register the
movement.

push

Measuring latency with
HMDs is difficult because

Method 2

Method 1

Method 3

CHAPTER 4. MEASURING 35

Ka-Boom‼! Visually Exploring Latency Measurements for XR CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

Di Luca et al. [4] move an HMD

in front of a gradient,

the simulation tries to
show the same bright-
ness on screen

but always
lags behind.

One photodiode picks
up the real gradient’s
brightness.

Another photodiode
picks up the screen
brightness.

They calculate the
latency via cross
correlation.

Though, only calculating one
value, this approach allows to
correlate a reading of every
frame on the screen.

Papadakis et al. [14] track the motion of a
servo motor.

The ground truth
orientation is read
with an encoder.

Once the motor reaches a cer-
tain position, the simulation
changes the screeen colour.

The brightness
is read by a
photodiode on
screen.An oscilloscope compares

the screen brightness and
the motor orientation.Becher et al. [1]

encode the HMD rotation
with multiple discrete val-
ues on the screen.

Multiple photodiodes
pick up the values.

They use additional
lenses to correct for
the lens distortion.

They are able to calculate
the latency for every frame
but only report one aver-
age.Stauffert et al. [20] use a

similar approach

but encode the
orientation of a
Vive tracker on
the HMD screen.

They report the latency
difference for every
frame and visualise how
latency varies.

Measuring latency continuously is desirable to
capture the time varying behaviour.

Method 2

Method 1

Method 3

Method 4

CHAPTER 4. MEASURING 36

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Stauffert, et al.

Augmented Reality
measurements work
similarly. Gruen et al. [7] use a video see

through system.

A high reso-
lution timer

is observed by a
camera.

A synchronised
camera observes
the HMD screen

that shows the
timer with a delay.

Billeter et al. [2] uses an op-
tical see through system

where one camera can
record both the real and
the virtual LED timer side
by side.

Swindels et al. [22]
record

a virtual version pro-
jected on a half sil-
vered mirror

of a real rotating
object

to calculate the la-
tency from the an-
gular difference.

Which approach to use?

Frame counting is the
fastest and easiest method:

Record some real object and
its virtual counterpart on
screen. Then analyse the video

to find the time differ-
ence between some de-
tectable event.Sine fitting guards

against imprecisions
due to limited spatial
and temporal resolu-
tion of cameras.

Photodiode-based methods
can offer more precision and
higher temporal resolution to
observe latency’s temporal
behaviour. They, however need more in-

vestment in hardware, a thought
through setup and appropriate soft-
ware for analysis.

The best case would be to measure
during VR exposure to know what
has actually happened instead of
measuring before.

Choose what fits for your experiment
but always measure latency! No exper-
iment should be reported without a la-
tency measurement.

Method 2

Method 1
Method 3

CHAPTER 4. MEASURING 37

Ka-Boom‼! Visually Exploring Latency Measurements for XR CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

REFERENCES
[1] Armin Becher, Jens Angerer, and Thomas Grauschopf. 2018. Novel Approach to

Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual
Reality Systems. arXiv:1809.06320 [cs] (Sept. 2018). http://arxiv.org/abs/1809.
06320 arXiv: 1809.06320.

[2] Markus Billeter, Gerhard Röthlin, Jan Wezel, Daisuke Iwai, and Anselm Grund-
höfer. 2016. A LED-Based IR/RGB End-to-End Latency Measurement Device.
In 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-
Adjunct). IEEE, 184–188. https://doi.org/10.1109/ISMAR-Adjunct.2016.0072

[3] Chun-Ming Chang, Cheng-Hsin Hsu, Chih-Fan Hsu, and Kuan-Ta Chen. 2016.
Performance Measurements of Virtual Reality Systems: Quantifying the Timing
and Positioning Accuracy. In Proceedings of the 24th ACM international conference
on Multimedia. ACM Press, 655–659. https://doi.org/10.1145/2964284.2967303

[4] Massimiliano Di Luca. 2010. New method to measure end-to-end delay of virtual
reality. Presence: Teleoperators and Virtual Environments 19, 6 (2010), 569–584.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6797715

[5] Ilja T. Feldstein and Stephen R. Ellis. 2020. A Simple, Video-Based Technique
for Measuring Latency in Virtual Reality or Teleoperation. IEEE Transactions on
Visualization and Computer Graphics (2020). https://doi.org/10.1109/TVCG.2020.
2980527 Conference Name: IEEE Transactions on Visualization and Computer
Graphics.

[6] Sebastian Friston and Anthony Steed. 2014. Measuring Latency in Virtual Envi-
ronments. IEEE Transactions on Visualization and Computer Graphics 20, 4 (April
2014), 616–625. https://doi.org/10.1109/TVCG.2014.30

[7] Robert Gruen, Eyal Ofek, Anthony Steed, Ran Gal, Mike Sinclair, and Mar
Gonzalez-Franco. 2020. Measuring System Visual Latency through Cognitive
Latency on Video See-Through AR Devices. (2020), 791–799.

[8] Ding He, Fuhu Liu, Dave Pape, Greg Dawe, and Dan Sandin. 2000.
Video-based measurement of system latency. In International Im-
mersive Projection Technology Workshop, Vol. 111. Citeseer. http:
//www.researchgate.net/profile/Dave_Pape/publication/2628137_Video-
Based_Measurement_of_System_Latency/links/542166dc0cf203f155c66ad6.pdf

[9] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe. 2015. Quantifying
and Mitigating the Negative Effects of Local Latencies on Aiming in 3D Shooter
Games. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM Press, 135–144. https://doi.org/10.1145/2702123.
2702432

[10] Ryugo Kijima and Kento Miyajima. 2016. Measurement of Head Mounted Dis-
play’s latency in rotation and side effect caused by lag compensation by simul-
taneous observation — An example result using Oculus Rift DK2. In 2016 IEEE
Virtual Reality (VR). IEEE, 203–204. https://doi.org/10.1109/VR.2016.7504724
ISSN: 2375-5334.

[11] Jiandong Liang, Chris Shaw, andMarkGreen. 1991. On temporal-spatial realism in
the virtual reality environment. In Proceedings of the 4th annual ACM symposium
on User interface software and technology. 19–25.

[12] Dorian Miller and Gary Bishop. 2002. Latency Meter: A device to measure end-
to-end latency of VE systems. In Stereoscopic Displays and Virtual Reality Systems
IX, Vol. 4660. International Society for Optics and Photonics, 7.

[13] Mark Mine. 1993. Characterization of end-to-end delays in head-mounted display
systems. The University of North Carolina at Chapel Hill, TR93-001 (1993). http:
//www0.cs.ucl.ac.uk/teaching/VE/Papers/93-001.pdf

[14] Giorgos Papadakis, Katerina Mania, and Eftichios Koutroulis. 2011. A system to
measure, control and minimize end-to-end head tracking latency in immersive
simulations. In Proceedings of the 10th International Conference on Virtual Reality
Continuum and Its Applications in Industry - VRCAI ’11. ACM Press, Hong Kong,
China, 581–584. https://doi.org/10.1145/2087756.2087869

[15] Sebastian Pape, Marcel Krüger, Jan Müller, and Torsten W. Kuhlen. 2020. Calibra-
tio: A small, low-cost, fully automated Motion-to-Photon Measurement Device.
In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW). IEEE, 234–237. https://doi.org/10.1109/VRW50115.2020.00050

[16] Kjetil Raaen and Ivar Kjellmo. 2015. Measuring Latency in Virtual Reality Systems.
In Entertainment Computing - ICEC 2015, Konstantinos Chorianopoulos, Monica
Divitini, Jannicke Baalsrud Hauge, Letizia Jaccheri, and Rainer Malaka (Eds.).
Vol. 9353. Springer International Publishing, Cham, 457–462. https://doi.org/10.
1007/978-3-319-24589-8_40 Series Title: Lecture Notes in Computer Science.

[17] Lisa Rebenitsch and Charles Owen. 2016. Review on cybersickness in applications
and visual displays. Virtual Reality 20, 2 (June 2016), 101–125. https://doi.org/
10.1007/s10055-016-0285-9

[18] David Roberts, Toby Duckworth, Carl Moore, RobinWolff, and John O’Hare. 2009.
Comparing the End to End Latency of an Immersive Collaborative Environment
and a Video Conference. In 2009 13th IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications. IEEE, IEEE, 89–94. https:
//doi.org/10.1109/DS-RT.2009.43

[19] Min-Woo Seo, Song-Woo Choi, Sang-Lyn Lee, Eui-Yeol Oh, Jong-Sang Baek,
and Suk-Ju Kang. 2017. Photosensor-Based Latency Measurement System for
Head-Mounted Displays. Sensors 17, 5 (May 2017), 1112. https://doi.org/10.3390/
s17051112

[20] Jan-Philipp Stauffert, Florian Niebling, and Marc Erich Latoschik. 2020. Simulta-
neous Run-Time Measurement of Motion-to-Photon Latency and Latency Jitter.
In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, IEEE,
Atlanta, GA, USA, 636–644. https://doi.org/10.1109/VR46266.2020.1581339481249

[21] Anthony Steed. 2008. A Simple Method for Estimating the Latency of Interactive,
Real-time Graphics Simulations. In Proceedings of the 2008 ACM Symposium on
Virtual Reality Software and Technology (VRST ’08). ACM, New York, NY, USA,
123–129. https://doi.org/10.1145/1450579.1450606

[22] Colin Swindells, John C. Dill, and Kellogg S. Booth. 2000. System lag tests for
augmented and virtual environments. In Proceedings of the 13th annual ACM
symposium on User interface software and technology. ACM, 161–170. http:
//dl.acm.org/citation.cfm?id=354444

[23] Matthias Walter, TimWendisch, and Klaus Bengler. 2018. In the Right Place at the
Right Time? A View at Latency and Its Implications for Automotive Augmented
Reality Head-Up Displays. In Congress of the International Ergonomics Association.
Springer, 353–358. https://doi.org/10.1007/978-3-319-96074-6_38

[24] Weixin Wu, Yujie Dong, and Adam Hoover. 2013. Measuring Digital System
Latency from Sensing to Actuation at Continuous 1-ms Resolution. Presence:
Teleoperators and Virtual Environments 22, 1 (Feb. 2013), 20–35. https://doi.org/
10.1162/PRES_a_00131

CHAPTER 4. MEASURING 38

CHAPTER 4. MEASURING 39

Copyright

ACM Publishing Policy Covering Copyright Transfer and Publishing License Agree-
ments, and Permissions Version 10 Revised 11/12/20
2.5 Permanent Rights held by original Owners/Authors
The original Owner/Author permanently holds these rights:

[...] Reuse of any portion of the Work, without fee, in any future works written or
edited by the Author**, including books, lectures and presentations in any and all media.

Author Contributions

The author conducted the literature research, planned the structure, painted the images
and wrote the text.

4.2 Sine Fitting

Sine Fitting as described in the overview paper o�ers a convenient method to measure
motion to photon latency as one average value. It uses the predictable motion of

a pendulum to be able to use a camera of limited resolution to measure latency. The
resolution may be limited both in spatial and in temporal regards. The approach was
described by Steed [Ste08].

The usage may be di�cult as the motion needs to be extracted. We published a poster
and associated software that intends to make this process easier.

The paper was published as Jan-Philipp Stau�ert, Florian Niebling, Jean-Luc Lugrin,
and Marc Erich Latoschik. “Guided Sine Fitting for Latency Estimation in Virtual Real-
ity”. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Work-
shops (VRW). 2020, pages 706–707

Guided Sine Fitting for Latency Estimation in Virtual Reality
Jan-Philipp Stauffert*

University of Würzburg
Florian Niebling†

University of Würzburg
Jean-Luc Lugrin‡

University of Würzburg
Marc Erich Latoschik§

University of Würzburg

ABSTRACT

Latency in Virtual Reality (VR) applications can lead to decreased
performance and cybersickness. Multiple approaches exist to de-
termine an average latency. Yet many scientific publications fail
to report their system’s latency despite the potentially detrimental
impact. This paper extends Steed’s sine fitting approach [13] by
using a KCF tracking algorithm [2] to track the positions of physical
objects in video recordings of VR systems. We provide a software
for convenient usage. Our combination of sine fitting with KCF
tracking allows to measure Motion-To-Photon latency of arbitrary
tracking devices without any additional preparation or markers. The
developed software is open source.

Index Terms: D.4.8 [Operating Systems]: Performance—
Measurements; H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities

1 INTRODUCTION

Each computation causes latency, i.e., a time delay between input
and output. The latency most often described for VR applications
is the Motion-To-Photon (MTP) latency that describes the delay
between a movement and the corresponding effect shown on the
display. Delays during the input-to-output processing not only risk
to annoy users but they potentially might induce more severe conse-
quences of visually-induced motion sickness (VIMS) and cybersick-
ness [9]. Hence, a central requirement of VR systems is to measure
and finally control a VR system’s latency behavior to judge its per-
formance before negative consequences arise. Many researchers fail
to report the MTP latency behavior of their applications despite the
possible negative consequences. This makes it hard to determine if
the findings were due to the experimental setup or a result of poor
application performance. There are multiple approaches to measure
MTP latency with varying degree of effort to put into.

This paper builds upon Steed’s approach to measure MTP latency
with sine fitting [13] to determine an estimation of the VR application
performance. The original paper records a tracked pendulum and
its virtual counterpart to fit their movement with a sine curve. It
calculates the time difference between their movements using the
sines’ phase difference. We propose to use a tracking algorithm -
the KCF tracker - to determine the position of the tracked objects
without the need of additional preparation or markers. This further
simplifies the application of sine fitting. We provide a software
based on Qt, OpenCV and the Ceres Solver to lower the barrier
of use. The original paper provides a Matlab implementation that
requires Matlab knowledge to run.

*e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:jean-luc.lugrin@uni-wuerzburg.de
§e-mail:marc.latoschik@uni-wuerzburg.de

2 RELATED WORK

Visual delay was found as a major contributing factor already in
early simulators [5]. Latency causes cybersickness [3] and decreases
performance [8]. Multiple approaches to measure MTP latency
exist. He et. al. [7] employ manual frame counting. They record a
tracked controller’s movement and its virtual counterpart at the same
time with a high speed camera. They count the time delay between
movement discontinuities to infer the latency. Friston and Steed [6]
propose to use image processing to automatically derive the latency
in place of manual analysis. Steed [13] replaces the determination
of discontinuities in the video with sine fitting. Steed attaches the
tracked controller to a pendulum and fits the movement with a sine
curve. The use of a continuous signal instead of detecting distinct
events reduces the impact of inaccuracies due to limited temporal
video resolution. Fitting a sine to the real controller’s movement
and its virtual image yields the MTP latency in the phase difference.
Sine fitting allows to determine the turning point of a pendulum even
if the geometric and temporal video resolution are insufficient to
determine it directly from the video. The automatic video processing
has in common that the tracked objects need to have distinct features
like a LED attached. In contrast to the non invasive methods that
rely on recording the scene from the outside, Di Luca [4] uses
photodiodes attached to the Head-Mounted Display (HMD) in more
involved hardware setups. Closer inspection of latency behavior
shows that latency changes with time [10] and latency spikes affect
user experience [12]. Description of this behavior requires more
more in depth application analysis [11]. Putting more effort into the
measuring produces better estimates. However, reporting a mean
latency provides at least an estimate of the overall performance.

3 SINE FITTING

Sine fitting assumes a tracked object as part of the simulation to
move in a sinosoidal pattern. Most often the tracked object is the
motion controller the user employs as input modality to the VR ap-
plication. It is attached to a string to hang from a fixed mount. Once
pushed, it performs a sinosoidal movement. There is a display next
to it that shows the virtual counterpart of the motion controller. Many
VR applications have some representation of the motion controller
so only the virtual camera needs to set up to provide a good view
of the motion controller. The virtual motion controller follows the
movement of the real motion controller so it too elicits a sinosoidal
movement pattern. The processing time to do the tracking, simula-
tion and displaying leads to the virtual motion controller having a
temporal delay to the real motion controller. A video camera records
both the real and virtual motion controller and their movements. A
sine curve is fitted to the movements of both objects. The phase
difference between both sine curves describes their temporal offset
and therefore the MTP latency.

4 IMPLEMENTATION

We created a software based on Qt 5.13.2, OpenCV 4.1.1 and the
Ceres solver 1.14 [1] for automatic calculation of MTP latency in
VR systems, by comparing the sinosoidal movements of physical
objects and their virtual counterparts in video recordings of these
systems. Figure 2 shows a screenshot.

The usage is a follows: The video to be analyzed is loaded from
disk. OpenCV tries to detect the video’s frame rate given as frames

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:56:46 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 40

������ ��	�

������ �����

������
�	�
 ����
� �
 �����
�
�������� ��� ����
�����

������ ��	

�
���� ���� ������ ������

�
���� ���� ������ ������
�������

������
�	�
 ����
� �
 �����
�
�������� ���
������
�����

�
���� ���������

Figure 1: The application flow describing the required user interaction.

per second (fps). The user can change the fps used for the calculation
to account for inaccurate detection. The start and end time of the
video is selected. Videos often show the experimenter’s hands in the
beginning and end to operate the setup which needs to get cut away.
The user then selects a rectangular region in the video that shows the
real object. A larger region results in a longer computation time for
the tracking algorithm but provides better results. The user is asked
to change the selection if the tracker looses the tracked object before
all video frames are processed. A principle component analysis
(PCA) converts the resulting 2d points to 1d values. The Ceres
solver in turn fits a sine wave described by e−dt · cos(2π f t +ϕ) to
the data using gradient descend. The decay term e−dt serves as
adjustment if the pendulum slows down over time. The frequency
f is estimated beforehand by taking the largest frequency in the
DFT (discrete fourier transform) transformed data and refined by
Ceres. The fitted curve is overlayed over the tracked positions
for visual inspection. Some times, the fit shows visible artifacts
which necessitate choosing a different region to track and a repeat
of the curve fitting. Once the real object’s movement is processed,
the user selects its virtual counterpart which undergoes the same
procedure. The latency between the real object’s movement and its
virtual counterpart’s movement results from the phase difference ϕ̂
of both fitted sine waves as latency = ϕ̂

2π f ·fps . Figure 1 shows a step
by step overview.

5 VALIDATION

First validations both with synthetic videos where two rectangles
oscillated with a known time difference and two videos of Friston
and Steed’s mechanical latency simulator [6] that are available online
show average estimation errors of 2.5 ms. This is similar to errors
described for other analyses of the online videos.

6 DISCUSSION

Results may vary depending on the video and tracking quality. We
advice to repeat the analysis multiple times to not fall prey to outliers
due to an inopportune choice of the region to track.

Sine fitting necessitates that the movement of a real object and its
virtual counterpart are observable at the same time. Our approach is
directly applicable to screen-based or projection-based VR setups,
where target objects and their graphical counterpart are simultane-
ously visible. However, typical HMDs require an additional step.
First, our approach has to be applied using a proxy display, e.g.,
a standard monitor. Then we have to calculate the latency offset
between the target HMD and the proxy display, e.g., using a high
speed camera that records both the monitor and the HMD screen.
A solid color is displayed on both, then changed to another color.
The camera detects the time difference between the second color
shown on the respective screen. The time difference allows to derive
the MTP latency from the real object to an HMD’s screen. This
approach needs the possession of a high speed camera while the
sine fitting approach itself works with lower frame rates. The reason

Figure 2: Application screenshot showing the selection of the real
object in our synthetic test video.

is a tradeoff in camera abilities between geometric and temporal
resolution. Color changes need only little geometric resolution but
high temporal resolution to determine time differences between two
regions in a video. Capturing movement of a real object requires
high geometric resolution which makes high framerates costly or
impossible.

7 CONCLUSION

We suggest an improvement in usability of the sine fitting latency
estimation for VR applications by using a KCF tracker. We provide
the implementation as a downloadable Windows binary and provide
full source access (https://go.uniwue.de/autosine).

REFERENCES

[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http://

ceres-solver.org.
[2] M. Danelljan, F. S. Khan, M. Felsberg, and J. v. d. Weijer. Adaptive

color attributes for real-time visual tracking. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1090–1097. IEEE.
doi: 10.1109/CVPR.2014.143

[3] S. Davis, K. Nesbitt, and E. Nalivaiko. A systematic review of cyber-
sickness. pp. 1–9. ACM Press. doi: 10.1145/2677758.2677780

[4] M. Di Luca. New method to measure end-to-end delay of virtual
reality. Presence: Teleoperators and Virtual Environments, 19(6):569–
584, 2010. doi: 10.1162/pres a 00023

[5] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display
and motion system delays on operator performance and uneasiness in a
driving simulator. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 30(2):201–217, 1988.

[6] S. Friston and A. Steed. Measuring latency in virtual environments.
20(4):616–625. doi: 10.1109/TVCG.2014.30

[7] D. He, F. Liu, D. Pape, G. Dawe, and D. Sandin. Video-based mea-
surement of system latency. In International Immersive Projection
Technology Workshop, p. 111, 2000.

[8] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and
Mitigating the Negative Effects of Local Latencies on Aiming in 3d
Shooter Games. pp. 135–144. ACM Press, 2015. doi: 10.1145/2702123
.2702432

[9] L. Rebenitsch and C. Owen. Review on cybersickness in applications
and visual displays. Virtual Reality, 20(2):101–125, 2016.

[10] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Reducing application-
stage latencies of interprocess communication techniques for real-time
interactive systems. In Virtual Reality (VR), 2016 IEEE, pp. 287–288.
IEEE, 2016. doi: 10.1109/VR.2016.7504766

[11] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Towards comparable
evaluation methods and measures for timing behaviour of virtual reality
systems. In Proceeding of the 22nd ACM Symposium on Virtual Reality
Software and Technology (VRST), 2016.

[12] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Effects of latency
jitter on simulator sickness in a search task. In Proceedings of the 25th
IEEE Virtual Reality (VR) conference, 2018.

[13] A. Steed. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proceedings of the 2008 ACM
Symposium on Virtual Reality Software and Technology, VRST ’08, pp.
123–129. ACM. doi: 10.1145/1450579.1450606

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:56:46 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 41

CHAPTER 4. MEASURING 42

Copyright

©2020 IEEE. Reprinted, with permission, from Jan-Philipp Stau�ert, Florian Niebling,
Jean-Luc Lugrin, Marc Erich Latoschik, “Guided Sine Fitting for Latency Estimation
in Virtual Reality”, 2020 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW), March 2020

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author wrote the software and poster.

4.3 Detailed Latency Measurements

Most approaches have the problem of only reporting one latency value though we
showed that latency varies over time. There is sine �tting ([Ste08]) and cross cor-

relation ([DL10]) that observe the time di�erence of a real object and its virtual coun-
terpart over many samples and then calculate one value that �ts the observed deviation
the closest. Event based measurement detects an event in the motion of a tracked object
and then relate this to an event in virtual reality ([Min93]). Few approaches can measure
the end to end latency for every frame of the employed screen. The continuous mea-
surement, however, is necessary to get more insight into the time variant behaviour of
latency.

We created a measurement aparatus that measures latency for every frame displayed
on an HMD screen. Our approach can be developed further to allow latency measure-
ments during an experiment. The prototype can not yet ful�l this promise but the paper
describes the next steps.

The paper was published as Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich
Latoschik. “Simultaneous Run-Time Measurement of Motion-to-Photon Latency and
Latency Jitter”. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
2020, pages 636–644

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Simultaneous Run-Time Measurement of Motion-to-Photon Latency and
Latency Jitter

Jan-Philipp Stauffert*
University of Würzburg

Florian Niebling†

University of Würzburg
Marc Erich Latoschik‡

University of Würzburg

Figure 1: Illustration of the apparatus developed to measure the Motion-to-Photon latency. A microcontroller (middle) reads the
difference between the rotation of a tracked controller as moved by a motor (left) and the reported rotation on the Vive display
(right). The illustration shows the experimental prototype which disassembled the Head-Mounted Display for easier access to the
internals, i.e., the lenses and displays.

ABSTRACT

Latency in Virtual Reality (VR) applications can have numerous
detrimental effects, e.g., a hampered user experience, a reduced
user performance, or the occurrence of cybersickness. In VR envi-
ronments, latency usually is measured as Motion-to-Photon (MTP)
latency and reported as a mean value. This mean is taken during
some specific intervals of sample runs with the target system, of-
ten detached in significant aspects from the final target scenario, to
provide the necessary boundary conditions for the measurements.
Additionally, the reported mean value is agnostic to dynamic and
spiking latency behavior. This paper introduces an apparatus that is
capable of determining per-frame MTP latency to capture dynamic
MTP latency and latency jitter in addition to the commonly reported
mean values of latency. The approach is evaluated by measuring
MTP latency of a VR simulation based on the Unreal engine and
the HTC Vive as a typical consumer-grade Head-Mounted Display
(HMD). In contrast to previous approaches, the system does not rely
on the HMD to be fixed to an external apparatus, can be used to
assess any simulation setup, and can be extended to continuously
measure latency during run-time. We evaluate the accuracy of our
apparatus by injecting a controlled artificial latency in a VR simu-
lation. We show that latency jitter artifacts already occur without
system load, potentially caused by the tracking of the specific HMD,
and how mean latency and jitter increase under system load, leading
to dropped frames and an overall degraded system performance. The
presented system can be used to monitor latency and latency jitter
as critical simulation characteristics necessary to report and control
to avoid unwanted effects and detrimental system performance.

Index Terms: D.4.8 [Operating Systems]: Performance—

*e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

Measurements; H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities

1 INTRODUCTION

Each instruction of a computer system has an associated execution
time. As a result, any output that is calculated after changing user
input will always be delayed, introducing latency into the human-
computer interaction loop. The impact this delay causes on the
system qualities of usability and user experience depends on the
interactivity and potential real-time requirements of the human-
computer interface and the employed interaction metaphor [6]. Even
users of a spreadsheet software in a 2D graphical user interface (GUI)
expect a timely response to a mouse click. The response should
feel to be instantaneous. The conditions to experience feedback as
instantaneous depend on several factors of the interaction metaphor.

Direct interaction metaphors are more sensitive to delays than
indirect ones. Here, VR systems are specifically sensitive to delays
between input and output processing since they directly and continu-
ously couple input, including head movements, to the visual output.
The overall latency in VR between an action, e.g, moving an input
controller measuring hand or head movements, and its correspond-
ing effect shown on a screen is denoted as Motion-to-Photon (MTP)
latency. Unwanted delays during the input-to-output processing not
only risk to annoy users but they potentially might induce more
severe consequences of visually-induced motion sickness (VIMS)
and cybersickness [25]. Hence, a central requirement of VR systems
is to measure and finally control a VR system’s latency behavior to
judge its performance before negative consequences arise.

Deducing the latency from code inspection and counting the
execution times of all instructions of a VR application is largely out
of reach today. The interplay of all soft- and hardware sub-systems
of modern general-purpose computer systems introduce a dynamic
complexity that can only be observed as a black box [28]. Low-
level system interrupts of the system’s motherboard, modern CPU
speed-up approaches including parallelization, caching, and branch
prediction, as well as high-level operating system and application-
layer aspects of concurrency, multi-threading and scheduling, and

636

2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)

2642-5254/20/$31.00 ©2020 IEEE
DOI 10.1109/VR46266.2020.00086

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 43

Table 1: Comparison of previous approaches to latency measurement. Camera based approaches are less intrusive but can’t capture an object
and an HMDs screen with the exception of augmented reality headsets [23]. Camera based approaches are not viable if the user wears an HMD
as the view is obstructed. Photodiodes are more intrusive but provide high temporal resolution. Approaches that use photodiodes attached to the
screen can allow to use a majority of the screen to display a VR experience. Only a small screen area needs to be reserved for the information
that gets picked up by the sensor. Other approaches that use photodiodes have either only tested with a monitor screen instead of an HMD or
require the HMD to follow specific movement patterns. Our approach is the only one that uses photodiodes with an HMD without the need of a
predetermined HMD movement pattern. This potentially allows to measure latency while a user consumes a VR application.

Author Method Capture Latency Use
HMD

HMD
wearable

Measurement
frequency

Temporal
Resolution

Becher et al. [2] Continuous Photodiode Mean, SD, Min, Max yes no 11 ms Frame
Di Luca et al. [7] Sine Fitting Photodiode Mean, SD yes no 20 Hz Once
Friston et al. [11] Event Camera Mean, SD, Min, Max yes no Acceleration

peak
Movement
dependent

He et al. [14] Event Camera Mean no no Grid line
crossed

Movement
dependent

Kämäräinen et al. [16] Event Photodiode Mean, SD no possible 16 ms - 100 ms Once
Liang et al. [19] Continuous Camera Mean no no 20 Hz Frame
Mine [22] Event Photodiode Mean no possible Pendulum zero

position
Movement
dependent

Papadakis et al. [23] Continuous Photodiode Mean, SD no possible 0.1 ms 0.1 ms
Sielhorst et al. [26] Continuous Camera Distribution AR no < 1 ms < 1 ms
Steed [32] Sine Fitting Camera Mean no no 25 Hz Once
Wu et al. [35] Continuous Camera Distribution no no 2 ms 2 ms
Zhao et al. [36] Sine Fitting Photodiode Mean, SD yes no 11 ms Once
Our approach Continuous Photodiode Mean, SD, Distribution yes yes 11 ms Frame

I/O communication (including networking) and the interplay of all
these aspects induce a potential fluctuation in execution time. After
all, real-time capabilities currently are not a central requirement for
the typical consumer-grade general purpose computer systems. As
a result, the overall MTP latency of VR systems is often reported
as a mean value – if it is reported at all. However, each of the
multiple hardware and software parts either contribute their own
variable latency during run-time or the interplay of all parts creates
a dynamic pattern of latencies not well represented by a mean value
derived from sample runs.

Ideally, we would either be able to control and assure run-time
behavior as provided by real-time systems, or to continuously moni-
tor latency and latency jitter during execution of a VR system. For
example, spikes in latency may influence and invalidate results dur-
ing VR experiments since they induce a potential confound. The
ability to detect latency spikes during experiments allows to sort out
trials when the experimental condition is overshadowed by technical
inconsistencies. Overall, monitoring latency in VR systems is a crit-
ical quality assurance measurement to optimize run-time behavior
and to assess and guarantee good usability and user experience of
VR systems.

Contribution
This paper introduces an apparatus that is capable of determining
per-frame MTP latency to capture dynamic MTP latency and latency
jitter in addition to the commonly reported mean values of latency.
The approach is evaluated by measuring MTP latency of a VR
simulation based on the Unreal engine and the HTC Vive as a typical
consumer-grade Head-Mounted Display (HMD). We inject artificial
latency in a VR simulation and show that latency jitter artifacts
already occur without system load, potentially caused by the tracking
of the specific HMD, and how mean latency and jitter increase under
system load, leading to an overall degraded system performance.
In contrast to previous approaches, the system does not rely on the
HMD to be fixed to an external apparatus, can be used to assess
any simulation setup, and can be extended to continuously measure

latency during run-time.

2 RELATED WORK

Visual delay was found as a major contributing factor already in early
simulators [10]. Time invariant latency causes cybersickness [5],
decreases performance [15] and reduces presence [21]. Reoccuring
latency spikes also have negative effects on performance [24, 33]
and cybersickness [31]. Interruptions in VR can cause a break in
presence [27].

Users are able to distinguish changes in latency for hand [9] as
well as for head [8] movements that are faster than 33 ms. Building
on this work, Mania et. al. test sensitivity to head tracking latency
in virtual environments [20] where they show that differences of
15 ms are still distinguishable. The currently common VR displays
running on 90 Hz would exceed this detectable threshold if tracking
information is even one frame delayed.

The performance of VR applications is usually assessed by mea-
suring MTP latency which tracks the time between an input on a
certain input channel and the time it takes to show its effect on a dis-
play. He et. al. [14] employ manual frame counting. They record a
tracked controller’s movement and its virtual counterpart at the same
time with a high-speed camera. They count the time delay between
movement discontinuities to infer the latency. Steed [32] replaces the
error prone determination of discontinuities in the video with sine
fitting. Steed attaches the tracked controller to a pendulum and fits
the movement with a sine curve. The use of a continuous signal in-
stead of detecting distinct events reduces the impact of inaccuracies
due to limited temporal video resolution. Fitting a sine to the real
controller’s movement and its virtual image yields the MTP latency
in the phase difference. The still manual video analysis is replaced
by a direct deduction of the sine’s gradient with photodiodes by Di
Luca [7] or image processing in Friston and Steed [11]. Papadakis
et al. [23] correlate a continuous movement of a tracked object with
a photodiode reading which is attached to a monitor screen. An
oscilloscope shows measurements of the system’s latency. Becher
et al. [2] use multiple photodiodes on the HMD screen to pick up

637

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 44

the brightness encoded HMD orientation. A motor rotates the HMD
to provide the base truth. The latency is derived from the difference
of the orientation in reality and the orientation reported on screen.
Kämäräinen et al. [16] use a photodiode and a simulated touch event
to measure latency in a remote rendering application, inducing fur-
ther latency through additional non-local network communication.
All approaches report one mean latency value and if the approach
allows it a standard deviation.

Latency, however, changes with time and shows repeated
spikes [7, 28]. This is a result of the complexity of VR systems
that often consist of multiple software components to handle various
input and output modalities that run in parallel or on distributed
machines [1, 18, 29]. Regarding latency as time invariant allows to
only measure it once and claim that it will be the same at a later time.
Sielhorst et al. [26] describe the latency behavior of an augmented
reality system with the distribution of measured latencies. Their
measurements exhibit infrequent outliers. Wu et al. [35] propose
a camera-based approach to measure latency at a 1 ms resolution
again showing the time variability of latency. If latency is to be
assumed to change during runtime of a system, it is neccessary to
measure latency spikes during user studies that might be influenced
by this jitter.

Latency measurement either focuses on the latency between cer-
tain events, or use sine fitting to correlate a known movement to the
measurement data. If the measurement is precise enough and can
be repeated often, a continuous approach is taken. The capturing of
latency measurements is either done with a camera that records both
the tracked object and the result on a screen, or with photodiodes
attached to a screen that are correlated with a known movement.
Camera based measuring is less invasive but is hard to use with
HMDs, as their screen is difficult to capture. Photodiodes are more
invasive and need additional hardware to support their usage, but can
potentially report measurements during runtime of a system, and not
only in post hoc analysis. A comparison of the reported approaches
is presented in Table 1.

Research shows that latency changes over time and users of VR
applications can detect small changes in latency, but measuring
approaches are restricted to report mean values. We introduce a
setup that allows to measure MTP latency for every frame, that can
be extended to work during VR experiments. We use this to describe
a VR system’s latency under different conditions.

Figure 2: End-to-end latency in the setup: The top part shows MTP
latency from a tracked controller to its representation on the HMD
screen. The bottom shows the microcontroller comparing controller
and display to calculate the MTP latency.

3 SETUP

We measure the time between a known real-world rotation of a
tracked controller, and the effect of said rotation on a HMD screen.
A motor rotates a tracked controller with a known speed. The tracker
sends the position and orientation of the controller to a computer.
The computer then calculates the motor angle from the orientation.
This detected angle is rendered to a VR HMD screen, encoded
into rectangles with certain brightness levels. Each processing and
communication adds to the final latency both by our own software
and by the hard and software we are using. A microcontroller is
employed to drive the motor and to read the HMD screen using
photodiodes. It calculates the difference between the known motor
angle and the angle reported on the screen. Knowing the speed of
the motor, introduced latency between movement of the controller to
display of the correct orientation on the HMD screen can be deduced.
An overview is shown in Figure 2.

We use an HTC Vive tracker, first and second generation, which
is mounted on a NEMA17-01 2 phase hybrid stepper motor. The
tracker orientates itself with an IMU and the Lighthouse tracking
system at 120 Hz [17]. The tracking data is sent to the connected
computer. A VR application based on the Unreal Engine 4.22.3
receives the data through the SteamVR/OpenVR connection. The
microcontroller is a NUCLEO L152RE developer board with ARM
Cortex M3 processor, attached to a motor driver shield X-NUCLEO
IHM01A1. Four OSRAM BPW 21 photodiodes are attached to the
microcontroller and HMD to read back the orientation of the tracked
controller encoded on the HMD screen.

The Unreal Engine collects the most recent tracker orientation
every frame and provides it for the subsequent user logic. We receive
the orientation in euler angle form and convert it to a quaternion to
extract the motor angle. This extraction needs a calibration before the
experiment. The tracker rotates multiple times around its axis. Due
to the intermittent Euler angle representation, the orientations form
a line in quaternion space. The quaternion at the beginning of the
line q0 is used to normalize all other rotations. It is characterized by
having a negative distance to its predecessor, with the distance being
calculated using the dot product between itself and its predecessor.
The calculation is done multiple times to account for sampling errors.
All potential quaternions for q0 are collected in a set S.

S = {qt |〈qt ,qt−1〉< 0}

where qt is the tracker’s orientation at time t. The quaternion q0 is
the element of S with minimal w component.

q0 = argmin
p∈S

p(w)

A multiplication of an orientation qt of the tracked controller with
the inverse of q0 removes the base orientation, i.e. the slope the
tracker stands on. This assumes that the motor and attachement
provide a rotation without nutation. The normalized quaternion is
denoted qn.

qn, t = qt ·q−1
0

The motor/tracker angle at is then computed by taking the inverse
cosine of the w component.

anglet = cos−1(qn,t(w))

The stepper motor moving the tracked controller rotates at 0.9◦
per step. Microstepping increases the motor vibrations that influence
the IMU part of the tracking significantly, and was therefore not
used. The motor is attached to a small slope to prevent gimbal lock.
The calculated controller angle is converted to its stepper motor
step equivalent and encoded on the HMD, by rendering a brightness
pattern to a specific area of the HMD screen. Four photodiodes
attach to the display area to read back the brightness values rendered

638

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 45

Figure 3: The Vive display with a number encoded as a brightness
pattern. The lens is taken out, and the rectangles encoding the
number are enlarged for a better view. The number displayed in the
middle is for debugging only, as the photodiodes are attached at the
border of the screen.

on the screen. The photodiodes are able to distinguish four different
values consistently, leading to a total number of 256 (44) different
values that can be encoded. The 400 possible steps per single rotation
of the motor exceed the 256 distinguishable values and are therefore
encoded modulo 200. Figure 3 shows an example number encoded
on the display.

The Vive display is dark most of the time, with a light wave occur-
ing every frame. The microprocessor reads the attached photodiodes
at a frequency of 4 kHz, delivering approximately 44 brightness
samples per frame for each photodiode, of which 16-17 are in the
bright region of each frame. The bright region consists of a plateau
of 6-7 samples. The remaining 10-11 samples describe the rising
and diminishing brightness. Figure 4 shows an exemplar reading
of the brightness levels of the various photodiodes during several
frames of the HMD. The photodiodes have different dark levels due
to variation in their attachment. The brightness reading rises once
an image is shown. The absolute brightness units carry no meaning
here, as the measurements are used for relative comparison between
the different brightness levels, and are normalized in the figure. The
computer performs a calibration with the microcontroller over its
serial interface prior to the measurements, to ensure accurate and
repeatable detection. The calibration phase starts to display a black
HMD screen for the microcontroller to pick up which sensor values
equal black. To be robust against small variations, the black thresh-
old is set to be at 1.15 times the maximum measured black value.
All readings above this threshold are then counted as belonging to a
brightness level encoding a specific grey level of the display. The
computer then presents each possible brightness combination to the
microcontroller, while communicating which actual grey level is set
over the serial interface. The microcontroller deduces for each sensor
which measured brightness interval represents the respective number.
The figure shows the four different brightness values used in our
system, presented to one of the photodiodes each. Relatively large
gaps between amplitudes of the different curves indicate that more
intensity levels could be distinguished by the photodiodes. This

Figure 4: Brightness readings of the Vive display with four different
brightness values shown as read by four photodiodes. The Vive
display is black most of the time with a short burst of brightness
to show the image. The maximum brightness represents the color
shown on screen.

optimization was not followed up upon, to keep the measurements
as reliable as possible. During measurement, the microcontroller
saves the two highest brightness values for each phase, while the
brightness reading is above the black threshold for each respective
diode. The encoded number is deduced at the fourth reading below
the black threshold by averaging the two highest values and com-
paring the result to the brightness intervals calibrated during system
startup. We discard a frame’s reading if at least one photodiode
doesn’t detect the light flank end within 2 ms of the other diodes to
guard against erroneous readings.

The microcontroller drives the stepper motor with two revolutions
per second. Using a motor with 400 steps per revolution, one step of
the motor is occuring every 1

800 s = 1.25ms. This value that depends
on the employed stepper motor is a limiting factor determining the
maximum possible accuracy of the measurements in the following
experiments.

4 EXPERIMENTAL MEASUREMENTS

We use our setup to observe a computer systems’s baseline MTP
latency behavior and MTP latency behavior under load. We validate
the system setup with an experiment: Known artificial latency jitter
is introduced at the application stage of our VR system, to determine
if the additional latency is visible in the final readings compared to
an established baseline containing no additional latency.

4.1 Experiment 1: Baseline

The baseline measurement describes the MTP latency behavior of
our system. Common VR applications are expected to show a similar
latency behavior.

4.2 Experiment 2: Artificial Latency Jitter

We introduce artificial latency jitter to see if manipulation at the
application stage is visible in the final measurement. The introduced
jitter discards position and orientation updates of the tracker every
16th frame for the duration of two frames. The implementation fol-
lows Stauffert et al. [31] but exchanges the probability distributions
with fixed numbers to achieve the desired effect.

639

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 46

Figure 5: Difference in between the real tracker rotation and the
reported tracker rotation on the HMD screen reported as delay in ms
as deduced by the rotation speed of the tracker. The difference was
measured for every frame of the HMD. Most latencies are close to
the mean value with few latency spikes. There are regular reoccuring
spikes and irregular spikes.

4.3 Experiment 3: Load Analysis

We stress the computer running the application “HeavyLoad” [13]
that creates load on both the main processor and the graphics card.
This leads to a CPU load of 100% on all cores, and a GPU load close
to 100% causing other applications running concurrently to suffer.

We assume to encounter a fixed angular offset between the mo-
tor rotation and the motor rotation reported on screen, as long as
the computer has sufficient free resources. Stressing the computer
here with a background benchmark or in general with a demanding
simulation should evoke similar spikes in angular difference as in
the previous experiment, where latency was introduced in a prede-
termined period. The expected difference is a varying latency spike
duration with varying occurrence.

5 RESULTS

5.1 Baseline Measurements

Figure 5 shows parts of a test run. We discard the first four seconds
of the motor accelerating. Most of the latency measurements gather
around one value differing only by one stepper motor step differ-
ence equaling 1.25 ms. Repeated outliers to both sides represent
disturbances in the tracking or processing resulting in latency jit-
ter. We do not have any insight where the latency jitter originates.
Examples of sources can be the tracking, different components like
scheduling and background tasks, application stage like specifics in
the employed engine, the display, or any stage in our setup.

The mean latency in the baseline test run was 56.14 ms with
a standard deviation of 1.6 ms. There is no difference between
using a Vive tracker of the first generation compared to the second
generation version. The plots here show a test run with a tracker of
the second generation.

We measure repeated latency spikes followed by a period of lower
latency that degrades to the mean after few samples. Figure 6 shows a
segment with two such patterns. These patterns occur approximately
every 61.4 seconds. The measurement in Figure 5 features three
occurrences with in between times of 61.443 ms and 61.432 ms.
There are irregular outliers besides this periodic pattern.

5.2 Artificial Latency Jitter
Introducing artificial latency jitter every 16th frame for two frames
shows the angular difference to increase in the first not updated
frame and to increase further in the second not updated frame as
was expected (cf. Figure 7). The smaller time differences visible
in the graph are quantised to the measurement accuracy of 1.25 ms.
The mean latency in the latency jitter test run was 58.20 ms with
a standard deviation of 6.22 ms. The comparison plot in Figure 9
shows two bands representing the two introduced delays.

5.3 System Load
Measuring latency with the computer brought to its capacity shows
many and irregular latency spikes. Compare Figure 8 for a visualisa-
tion. The load test had a mean of 54.51 ms with a standard deviation
of 8.62 ms. In addition to the many outliers with increased latency,
there are some latencies below the MTP latency mean.

5.4 Comparison
The histogram of latency measurements in Figure 11 shows the
majority of the samples gathering around 55 ms latency as does the
scatterplot of Figure 9. Frequent outliers are delayed only by a small
amount of time, while a decreasing number of outliers exhibit higher
latency. Note that the y scale of the figure is logarithmic to better
show the distribution. The figure shows the result of a stacked-z test
following Stauffert et al. [30]. It assumes that latencies are normally
distributed and applies a z-test to detect outliers. The test is then
recursively applied to the outliers again. A first outlier category to
start at larger latencies indicate a bigger variation of the underlying
distribution.

The baseline measurement describes a narrow normal distribution
with outliers close to the mean. The outliers themselves have a small
variation and therefore create multiple outlier groups that are each
close to a mean. The samples around the mean contribute 88.1% of
all the samples with the first outlier group containing 11.6%. The
remaining 0.3%. The artificial latency condition shows the two
introduced peaks in latency. Its distribution has a larger variation.
The z-test separates the main values (76.1%) from the introduced
latency jitter (23.9%). The load condition has a large variation which
comprises 95.4% of the samples in the main part with 4.5% in the
first outlier category. All conditions show rare extreme outliers.

Figure 6: Detail of Figure 5 to show the repeated occuring pattern
of latency spikes. We observe a regular pattern with a big spike in
latency followed by lower latency that converges back to the mean
latency.

640

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 47

Figure 7: Measurements with artificial latency spikes: A spike,
delaying tracking information for two frames, was introduced every
16th frame. The latency measurement returns the introduced pattern
of one frame with an increased latency by 11 ms and the subsequent
frame with an increased latency by 22 ms. The orange vertical lines
mark the first delayed sample.

The quantile-quantile plot in Figure 10 shows how the distri-
butions compare to one another. If a distribution is the same, its
quantiles lie on a line as seen in the diagonal. All distributions have
one or two big outliers at the 100% quantile. The lower quantiles
are similar. The comparison between the baseline and the artificial
latency jitter condition shows a similar distribution until the latency
timing of the first spike. The second spike shifts the q-q plot further
from the diagonal. The comparison between the artificial latency
spike and the load condition show more percentage of the samples
for the latency spike condition in the latencies of the provoked spikes
and then more samples above those latencies in the load condition.

Figure 8: Measurements with artificial load: The processor and
graphics card were stressed by a background software. Multiple
irregular latency spikes result. The majority of samples still gather
near the mean. Interesting is the increase in samples with latencies
lower than the mean.

Figure 9: Scatterplot comparing the measurement runs with different
conditions. The baseline run samples form a narrow band. The
artificial latency jitter run samples show two additional bands that
equal the two injected delays. The load condition shows multiple
outliers. All conditions show some outliers.

Figure 10: Quantile-quatile plot to compare the distribution of the
different measurement runs. The distributions are similar, i.e., close
to the diagonal, in their lower quantiles. The higher quantiles show
the two introduced latency spikes in the latency jitter condition. The
load condition has more samples in the higher quantiles. The few
extreme outliers are clearly visible and independent of the condition.

641

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 48

Figure 11: Illustration of the stacked z-test of the latency measurements for the three load conditions. Top: the baseline condition without
any additional load. Middle: system behavior with injected latency jitter. Bottom: system behavior under load stress. Without any load, the
majority of the latency measurements gather around a mean as a central tendency. The different latency distribution patterns depending on the
load condition slowly move this mean to the right since the variance and hence the jitter increases. This mean does not accurately reflect the
latency-related system behavior. The stacked-z test shows outliers of the assumed normal distribution and therefore encodes the variance as
well. Notably, our approach detects that the no-load baseline condition is already affected by two groups of outliers which would result in
repeated reoccurring lost frames not well represented by one mean value. Also, the injected latency (middle) is well detected and reported by
our apparatus. The heavy-load condition at the bottom reports a system behavior which can be assumed to generate a severe negative impact on
usability and user experience.

6 DISCUSSION

The evaluation of our approach validates that the injected artificial
but controlled latency is properly reflected in the measured data. We
find that a normal test run carries both distinct patterns as shown in
Figure 6 as well as less regular outliers. The stacked-z test works
well to separate outliers. It separates the regular outlier pattern in the
baseline run, separates the introduced latency spikes in the artificial
latency jitter run and splits the majority of outliers from the rarer
more extreme outliers in the load condition. A q-q plot proves to
be a suitable tool to compare different behaviors. It allows to test
the system with a baseline measurement and then compare what
changes in more taxing situations.

A computation between motion and photon or an interaction of
multiple parts takes longer and therefore misses one screen refresh
to create the distinct pattern in Figure 6. This computation occurs
in regular intervals. As the rotational difference between the real
tracker and the reported rotation is below the mean difference after
such a spike, we assume that the tracker recalculates its rotation
based on the external reference system, and the samples afterwards
that approach the mean value again are the increasing drift of the
sensors. The nature of MTP latency entails that this can only be
speculation. Other parts in the pipeline like drivers receiving the
signal, the VR application, other applications in the background or
the display could be sources of this emerging pattern which can only
be analyzed further by separately analyzing the different subsystems.

Our prototype setup uses photodiodes directly attached to one dis-
play of the Vive HMD. Mounting the photodiodes on the lens would
allow easier baseline measurements of VR hardware. However, tests
revealed that it produced less distinct patterns. It would also have an
impact on the usability and would potentially induce measurement
artifacts since then the photodiodes and cabling would be visible by
the users, hence we did not follow this approach but placed the pho-
todiodes directly on the display. Today’s HMDs usually don’t utilize
all pixels of the displays. The circular lenses only cover parts of the

rectangular displays, leaving unused pixels around the display edges,
prominently in the corners of the rectangular screens as can be seen
in Figure 3. The photo illustrates this partial coverage of the screen
clearly in the bottom left corner. It shows how the circularly shaped
rendered image leaves the corner of the rectangular display dark. A
similar partial coverage is detected for the other three corners not
seen so prominently in Figure 3. However, physical access to these
unused areas of the screens requires a more invasive approach to the
hardware of the HMD. For example, with our currently used HMD
the photodiodes would require to get attached via drilled holes on the
side of the HMD chassis enclosing the view cones. In addition, this
placement requires rendering to the uncovered areas. We currently
refine our prototype and investigate other HMD types to support
these features.

We evaluated the feasability of our approach with the setup shown
in Figure 1. The Vive HMD is disassembled to get access to the
display. Photodiodes are then attached to measure brightness in
distinct regions of the screen. This setup can be extended as shown
in Figure 12 to be used during normal VR usage: The photodiodes
are attached at the corners of the display as described before. Most
of the screen can then be used by the actual VR application, with
only a small area reserved for the brightness readings. The better
the photodiodes are attached, the smaller the reserved region needs
to be, as adjacent brightness values don’t influence the readings as
much. The encoded data can be rendered over the scene in the same
way a user interface is rendered on top of a 3D computer game. The
wires can be led along the cable of the HMD. Some tracked object
needs to be in the tracked space to follow a known rotation. The
tracked object can be placed in a corner to not obstruct the users
pathway.

The tracked movement was chosen to be a rotation, which is not
common for human movement. Input devices, however, include
algorithms to improve tracking for human motion [12]. Start and
stop movements show an initial and settling delay [4], which we

642

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 49

ignore, by disregarding the first measurements when the tracked con-
troller accelerates and stopping the measurement before the tracked
controller is brought to rest again. The rotation has the benefit of
providing a continuous signal that is easy to control with a micro-
controller. Non continuous movement patterns potentially introduce
more tracking artifacts due to inertia influencing the sensors incon-
sistently.

We chose to use a Vive tracker as the tracked device fixed in the
setup. This frees the normal motion controllers and the HMD to get
used in an experiment. The HMD only needs few additional wires
to attach the sensors which can be guided alongside the existing
cables. The measured latency can only be taken as a guideline and
does not need to express the latency between a movement of the
HMD and its respective effect on screen. Some optimizations such
as asynchronous timewarp [34] only apply to the HMD to reduce the
perceived latency. Late-latching [3] renders controllers with updated
positions, which are not reflected in our approach.

The latency mean of the measurements with load is lower than
the one without load. The plot shows many outliers with increased
latencies, but there are more readings below the mean as well. A
possibility is that a system under load might be pressed to sometimes
read the tracker information later, and therefore closer to the next
display scanout. The effect could be similar to an unvoluntary late-
latching.

The described setup measures the total MTP latency but does not
provide insight into where the latency originates. Finer details can be
obtained by feeding the tracker data directly into the microcontroller,
by means of its exposed pins to estimate the tracker influence or cut
out the tracker of the setup by providing the tracking signal directly
from the microcontroller via e.g., the audio input as in the approach
by Di Luca [7].

Our setup assumes the motor to actuate the change in position
perfectly, and without time variant latency. We did not test the
motor and motor circuit latency which needs to get deduced from
the measured end to end latency.

The setup is not restricted to HMDs, but can be used for large
screen systems as well. The aquisition of screen brightness values is
currently fitted to the Vive display and would need to get adapted
for different displays.

7 CONCLUSION

Latency in Virtual Reality (VR) applications can have numerous
detrimental effects, e.g., a hampered user experience, a reduced
user performance, or the occurrence of cybersickness. Today, mea-
suring latency in VR systems usually is restricted to report mean
values sampled over some dedicated and often isolated application
runs which do not accurately reflect overall system behavior un-
der varying load conditions. This paper introduced an apparatus to
continuously measure per-frame latency and that therefor is able to
capture latency spikes and hence latency jitter. A microcontroller
drives a motor with an attached Vive tracker. The tracker’s orienta-
tion is encoded by a VR application onto parts of the HMD screen
as regions of different brightness. The microcontroller reads this
data with photodiodes and calculates the difference between the real
tracker orientation and the reported orientation as MTP latency. The
apparatus can pick up the addition of artificial latency into a VR
application for validation.

We evaluated our approach under three different load conditions.
We inject artificial latency in a VR simulation and showed that la-
tency jitter artifacts already occur without system load, potentially
caused by the tracking of the specific HMD, and how mean latency
and jitter increase under system load, leading to an overall degraded
system performance. In contrast to previous approaches, the sys-
tem does not rely on the HMD to be fixed to an external apparatus,
can be used to assess any simulation setup, and can be extended to
continuously measure latency during run-time. We stress the fact

Figure 12: Proposed extension: The photodiodes are positioned at
the rim of the screen to be minimally disturbing the experience. If
the HMD allows to render outside the visible area, attach them there.
The wires that connect to the photodiodes can be led alongside the
HMD cable.

that continuous measurements of latency behavior of VR application
should be a central means to monitor and control an important charac-
teristic of VR systems to assure a high usability and user experience
and hope we could contribute an adequate approach to implement
such measurements. The source code for the setup is available at
https://github.com/Nighink/latency-rotation.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, and
S. Robert. FlowVR: a middleware for large scale virtual reality appli-
cations. In Euro-par 2004 Parallel Processing, pp. 497–505. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[2] A. Becher, J. Angerer, and T. Grauschopf. Novel Approach to Mea-
sure Motion-To-Photon and Mouth-To-Ear Latency in Distributed
Virtual Reality Systems. arXiv:1809.06320 [cs], Sept. 2018. arXiv:
1809.06320.

[3] A. Binstock. Optimizing vr graphics with late latching.
https://developer.oculus.com/blog/optimizing-vr-

graphics-with-late-latching/, 2015.
[4] C.-M. Chang, C.-H. Hsu, C.-F. Hsu, and K.-T. Chen. Performance

measurements of virtual reality systems: Quantifying the timing and
positioning accuracy. In Proceedings of the 24th ACM international
conference on Multimedia, pp. 655–659. ACM, 2016.

[5] S. Davis, K. Nesbitt, and E. Nalivaiko. A systematic review of cyber-
sickness. pp. 1–9. ACM Press. doi: 10.1145/2677758.2677780

[6] J. Deber, R. Jota, C. Forlines, and D. Wigdor. How much faster is
fast enough?: User perception of latency & latency improvements
in direct and indirect touch. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’15, pp.
1827–1836. ACM, New York, NY, USA, 2015. doi: 10.1145/2702123.
2702300

643

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 50

[7] M. Di Luca. New method to measure end-to-end delay of virtual
reality. Presence: Teleoperators and Virtual Environments, 19(6):569–
584, 2010. doi: 10.1162/pres a 00023

[8] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Discrimi-
nation of changes in latency during head movement. In Proceedings
of the HCI International ’99 (the 8th International Conference
on Human-Computer Interaction) on Human-Computer Interaction:
Communication, Cooperation, and Application Design-Volume 2 -
Volume 2, pp. 1129–1133. L. Erlbaum Associates Inc., Hillsdale, NJ,
USA, 1999.

[9] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-
crimination of changes of latency during voluntary hand movement of
virtual objects. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 43, pp. 1182–1186. SAGE Publications
Sage CA: Los Angeles, CA, 1999. doi: 10.1177/154193129904302203

[10] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display
and motion system delays on operator performance and uneasiness in a
driving simulator. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 30(2):201–217, 1988.

[11] S. Friston and A. Steed. Measuring latency in virtual environ-
ments. Visualization and Computer Graphics, IEEE Transactions on,
20(4):616–625, 2014. doi: 10.1109/TVCG.2014.30

[12] E. Gach. Lighthouse tracking examined. https://kotaku.com/
valve-updates-steam-vr-because-beat-saber-players-

are-t-1832536574, 2019.
[13] J. S. GmbH. Heavyload v3.5. https://www.jam-software.com/

heavyload/index.shtml, 2019.
[14] D. He, F. Liu, D. Pape, G. Dawe, and D. Sandin. Video-based mea-

surement of system latency. In International Immersive Projection
Technology Workshop, p. 111, 2000.

[15] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and
Mitigating the Negative Effects of Local Latencies on Aiming in 3d
Shooter Games. pp. 135–144. ACM Press, 2015. doi: 10.1145/2702123
.2702432

[16] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P. Hui.
Dissecting the end-to-end latency of interactive mobile video applica-
tions. In Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications - HotMobile ’17, pp. 61–66.
ACM Press. doi: 10.1145/3032970.3032985

[17] O. Kreylos. Lighthouse tracking examined. http://doc-ok.org/
?p=1478, May 2016.

[18] M. E. Latoschik and H. Tramberend. A scala-based actor-entity archi-
tecture for intelligent interactive simulations. In Software Engineering
and Architectures for Realtime Interactive Systems (SEARIS), 2012
5th Workshop on, pp. 9–17. IEEE. doi: 10.1109/SEARIS.2012.
6231175

[19] J. Liang, C. Shaw, and M. Green. On temporal-spatial realism in the
virtual reality environment. In Proceedings of the 4th annual ACM
symposium on User interface software and technology, pp. 19–25.

[20] K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill. Perceptual
sensitivity to head tracking latency in virtual environments with varying
degrees of scene complexity. In Proceedings of the 1st Symposium
on Applied Perception in Graphics and Visualization, APGV ’04, pp.
39–47. ACM, New York, NY, USA, 2004. doi: 10.1145/1012551.
1012559

[21] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks. Effect
of latency on presence in stressful virtual environments. In IEEE
Virtual Reality, 2003. Proceedings., pp. 141–148, March 2003. doi: 10
.1109/VR.2003.1191132

[22] M. Mine. Characterization of end-to-end delays in head-mounted
display systems.

[23] G. Papadakis, K. Mania, and E. Koutroulis. A system to measure,
control and minimize end-to-end head tracking latency in immersive
simulations. In Proceedings of the 10th International Conference on
Virtual Reality Continuum and Its Applications in Industry, pp. 581–
584. ACM, 2011.

[24] K. S. Park and R. V. Kenyon. Effects of network characteristics on
human performance in a collaborative virtual environment. In Virtual
Reality, 1999. Proceedings., IEEE, pp. 104–111. IEEE, 1999. doi: 10.
1109/VR.1999.756940

[25] L. Rebenitsch and C. Owen. Review on cybersickness in applications
and visual displays. Virtual Reality, 20(2):101–125, 2016.

[26] T. Sielhorst, W. Sa, A. Khamene, F. Sauer, and N. Navab. Measurement
of absolute latency for video see through augmented reality. In 2007 6th
IEEE and ACM International Symposium on Mixed and Augmented
Reality, pp. 215–220. ISSN: null. doi: 10.1109/ISMAR.2007.4538850

[27] M. Slater and A. Steed. A virtual presence counter. Presence:
Teleoperators & Virtual Environments, 9(5):413–434, 2000.

[28] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Reducing application-
stage latencies for real-time interactive systems. In 9th Workshop
on Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS). IEEE Computer Society. doi: 10.1109/SEARIS.
2016.7551584

[29] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Reducing application-
stage latencies of interprocess communication techniques for real-time
interactive systems. In Virtual Reality (VR), 2016 IEEE, pp. 287–288.
IEEE, 2016. doi: 10.1109/VR.2016.7504766

[30] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Towards comparable
evaluation methods and measures for timing behavior of virtual reality
systems. In Proceedings of the 22nd ACM Conference on Virtual
Reality Software and Technology, pp. 47–50. ACM, 2016.

[31] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Effects of latency
jitter on simulator sickness in a search task. In 2018 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR), pp. 121–127. IEEE,
2018. doi: 10.1109/VR.2018.8446195

[32] A. Steed. A Simple Method for Estimating the Latency of Interactive,
Real-time Graphics Simulations. In Proceedings of the 2008 ACM
Symposium on Virtual Reality Software and Technology, VRST ’08,
pp. 123–129. ACM, New York, NY, USA, 2008. doi: 10.1145/1450579
.1450606

[33] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and S. I. MacKenzie. Ef-
fects of tracking technology, latency, and spatial jitter on object move-
ment. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on,
pp. 43–50. IEEE, 2009. doi: 10.1109/3DUI.2009.4811204

[34] J. Van Waveren. The asynchronous time warp for virtual reality on
consumer hardware. In Proceedings of the 22nd ACM Conference on
Virtual Reality Software and Technology, pp. 37–46. ACM, 2016.

[35] W. Wu, Y. Dong, and A. Hoover. Measuring Digital System Latency
from Sensing to Actuation at Continuous 1-ms Resolution. Presence:
Teleoperators and Virtual Environments, 22(1):20–35, Feb. 2013. doi:
10.1162/PRES a 00131

[36] J. Zhao, R. S. Allison, M. Vinnikov, and S. Jennings. Estimating the
motion-to-photon latency in head mounted displays. In 2017 IEEE
Virtual Reality (VR), pp. 313–314. ISSN: 2375-5334. doi: 10.1109/
VR.2017.7892302

644

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:55:10 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 4. MEASURING 51

CHAPTER 4. MEASURING 52

Copyright

©2020 IEEE. Reprinted, with permission, from Jan-Philipp Stau�ert, Florian Niebling,
Marc Erich Latoschik, “Simultaneous Run-Time Measurement of Motion-to-Photon
Latency and Latency Jitter”, 2020 IEEE Conference on Virtual Reality and 3D User In-
terfaces (VR), March 2020

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author created the �nal experimental setup, programmed the necessary software
and conducted the measurements. He wrote the description of the setup and measure-
ments and took the lead in writing the manuscript. He provided critical feedback and
helped shape the research, the analysis and the manuscript.

4.4 Conclusion

We provided an illustrated overview over di�erent approaches to measure latency,
making the topic more approachable to readers. Latency measurement ap-

proaches may be quick to conduct with frame counting [He+00], require additional
evaluation steps like sine �tting [Ste08] or involved hardware setups [BAG18]. We pro-
vided software to make sine �tting easier to conduct [Sta+20] and provide an approach
to detailed latency measurements [SNL20b]. This way, we make latency measurement
more approachable and easier to conduct. We provide an approach for detailed latency
measurement if this is necessary.

Discussed Research Questions

R1 How does latency behave in real-time interactive systems? We see that latency va-
ries around a mean value with some outliers. The outliers gather in multiple nor-
mally distributed clusters with rare single outliers of even higher latency. Our elab-
orated system allows detailed measurement of motion to photon latencies in vir-
tual reality applications. The described latencies behave similar to the latencies
described in other chapters.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

CHAPTER 4. MEASURING 53

R1.1 How to measure latency? We provide an overview of di�erent latency measure-
ment approaches by other researchers. The paper provides a lightweight overview
of di�erent approaches grouped by similar methods. The reader gets an impres-
sion of the �eld to then dive deeper into the topic.

We identify Steed’s sine �tting [Ste08] as a reliable and easy way to measure latency
for every researcher in the virtual reality domain. We provide a software to easier
conduct the Sine Fitting approach that is quick to conduct and provides one esti-
mate of time invariant latency. We hope to lower the bar for researchers to conduct
and report latency measurements.

On the other side, we provide a more involved latency measuring approach that
requires hardware instrumentalisation. This setup can measure detailed latency
behaviour to drive insight into latency behaviour.

R1.2 How to describe latency? We discuss the measured data of our complex measuring
setup in the way described in the next chapter.

Chapter 5

JITTER DESCRIPTION

Now that we can measure latency, we need to describe what we measure. A good de-
scription captures as much of the latency characteristic as possible while needing

little space. A good description is easy to understand and quick to grasp. Unfortunately,
we have not yet found a description that captures all the di�erent aspects of latency.

Our paper discussing latency and cybersickness in Chapter 7 summarises how latency
is usually reported: Most researchers report one mean value with an optional standard
deviation and occasional minumum and maximum values. Few illustrate the latency
dynamics with additional explanations like histograms or scatter plots. The surveyed
papers are all papers that revolve around measuring latency.

papers surveyed

mean

standard deviation

min / max value

histogram 5

4

11

25

27

Papers that report only latency to show the �delity of their system are less likely to
go to length to report detailed latency behaviour. Most studies don’t report latency at
all. The 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) attracts
researchers that are likely to have heared of negative e�ects of latency. 85 papers con-
ducted a user study out of 104 published papers in total. Only 6 reported the latency of
their employed VR system. Those 6 papers all reported one average latency value with
one also reporting a standard deviation.

The problem with reporting only a mean value and a standard deviation is that it
hides the data’s real shape. Anscombe [Ans73] showed four sets of points that share their
mean and standard deviation of the x and y coordinates but are obviously di�erent. The
image below shows the general point distribution.

Matejka and Fitzmaurice [MF17], following the idea of Anscombe, show how to gen-
erate di�erent shapes that share the same statistical measures. They portrait datasets

54

CHAPTER 5. JITTER DESCRIPTION 55

similar to the sketches below.

5.1 The Stacked-Z Test

The examples show, how frail mean values are when used to describe complex data.
Our own measurements show that latency measurements gather around a mean

which would make the usage of mean values expressive. This, however, depends on
the measured system. We [SNL16b], as well as Pape et al. [Pap+20] and Sielhorst et al.
[Sie+07] measured distributions that resemble a mixture of multiple normal distribu-
tions. Here, one reported mean value could obfuscate the true behaviour.

We proposed a way to visualize latency behaviour that incorporates the spiking na-
ture of latency. The proposed solution assumes that latency is normally distributed
and the outliers of this normal distribution again follow a normal distribution. The ap-
proach allows to group latency measurements into groups of outliers. This way to report
latency conveys more information on the behaviour than the currently most employed
approach of reporting mean and standard deviation values.

The paper was published as Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich
Latoschik. “Towards comparable evaluation methods and measures for timing behavior
of virtual reality systems”. In: Proceedings of the 22nd ACM Conference on Virtual Reality
Software and Technology. 2016, pages 47–50.

Towards Comparable Evaluation Methods and Measures for Timing Behavior of
Virtual Reality Systems

Jan-Philipp Stauffert∗

University of Würzburg

Florian Niebling†

University of Würzburg

Marc Erich Latoschik‡

University of Würzburg

Figure 1: Histogram visualization illustrating the distribution and categorization of latency measures using a logarithmic y-axis. The example
shows the results gained by a modified z-score test.

Abstract

A low latency is a fundamental timeliness requirement to reduce
the potential risks of cyber sickness and to increase effectiveness,
efficiency, and user experience of Virtual Reality Systems. The ef-
fects of uniform latency degradation based on mean or worst-case
values are well researched. In contrast, the effects of latency jit-
ter, the distribution pattern of latency changes over time has largely
been ignored so far although today’s consumer VR systems are ex-
tremely vulnerable in this respect. We investigate the applicability
of the Walsh, generalized ESD, and the modified z-score test for the
detection of outliers as one central latency distribution aspect. The
tests are applied to well defined test cases mimicking typical timing
behavior expected from concurrent architectures of today. We in-
troduce accompanying graphical visualization methods to inspect,
analyze and communicate the latency behavior of VR systems be-
yond simple mean or worst-case values. As a result, we propose a
stacked modified z-score test for more detailed analysis.

Keywords: virtual reality, latency, outlier, cyber sickness

Concepts: •Software and its engineering→Virtual worlds soft-
ware; •General and reference → Metrics; •Computer systems
organization → Reliability; Multicore architectures; Real-time
system architecture;

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
VRST ’16,, November 02-04, 2016, Garching bei München, Germany
ISBN: 978-1-4503-4491-3/16/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2993369.2993402

1 Introduction

Virtual reality applications are complex systems that consist of mul-
tiple interdependent parts to handle input, simulation and output.
Thereby it has to be ensured that the processing is fast enough to
allow for a fluid experience. In computer science in general and
VR in particular timing behaviour is compared in regards to aver-
age case or to the worst case. We argue that this is not enough when
it comes to latency and latency changes in particular. We need addi-
tional and more detailed information to analyse, detect, communi-
cate and compare timing behaviour of systems which require a high
timeliness in VR and related fields.

Latency spikes are not yet understood enough with respect to cyber
sickness. For an in-depth analysis of their effects on VR users,
latency spikes have to be measured as well as separated from the
expected latency distribution inherent in the system.

In this paper, we look into this second step on how to separate out-
liers from other measurements and find descriptive visualisations.

The contributions of the work presented here are as follow:

1. We assess different outlier tests on their suitability to extract
outlier data from latency measurements.

2. We develop, test, and propose recursive application of outlier
tests based on a repeated computation of outliers on outliers
to get multiple levels of severity for outliers.

3. We present visualization examples suitable to inspect and
communicate latency and latency jitter data and patterns not
easily captured in single measurement values currently avail-
able (see Figure 1 as an example).

This paper is structured into first discussing related research, fol-
lowed by the introduction and description of our test data that will
be used to assess the proposed methods that are explained after-
wards. In the end there is a discussion of the findings with a con-
clusion and ideas for future work extending the research presented
here.

47

CHAPTER 5. JITTER DESCRIPTION 56

Figure 2: The measured latencies plotted over time. The point size is chosen small to better show the structure of the data. The orange lines
show the 25%, 50%, 75% and 99% quantiles. The first three quantiles are close enough together to not allow a distinction between their
respective lines. Most of the measurements are below 24µs. Outliers cluster around certain values indicated by the blue lines.

2 Related Work

Simulator sickness is a problem of VR applications where users are
experiencing symptoms such as nausea [Kennedy et al. 1993]. Vi-
sual delay was found as a major contributing factor already in early
simulators [Frank et al. 1988]. Latency also influences the perfor-
mance of test subjects both if time variant latency is added [Ivkovic
et al. 2015] or for latency spikes [Teather et al. 2009]. The assump-
tion is consequently that latency spikes influence simulator sickness
with a similar impact as the better researched time invariant latency.

The performance of VR applications is usually assessed by mea-
suring motion-to-photon latency which tracks the time between an
input on a certain input channel and the time it takes to show its
effect on a display. Approaches to measure this latency are sine
fitting [Steed 2008], light sensing [Di Luca 2010] and automated
frame counting [Friston and Steed 2014]. In this paper, the focus
is on latency that is contributed by the VR application, a subset
of motion-to-photon latency. While there are many optimization
techniques for the rendering stage like frameless rendering [Bishop
et al. 1994], latency at the application stage is yet less researched.

VR systems often consist of multiple software components to han-
dle various input and output modalities that run in parallel or on
distributed machines [Latoschik and Tramberend 2012; Allard et al.
2004]). This facilitates latency jitter, especially in the communica-
tion of the different modules [Stauffert et al. 2016].

Outliers are defined as “observations that deviate so much from
other observations as to arouse suspicion that it was generated by
a different mechanism.” [Hawkins 1980]. In our case, we assume
that outliers are also caused by factors outside of the application
such as interrupts or other software running on the same computer.
They are equally dependent on the application that is examined and
its surroundings which is why it is not possible to find one fixed
threshold that works for all applications.

Here, we examine the results using the Walsh [Walsh and others
1950], the generalized ESD [Rosner 1983] and the modified z-
score [Iglewicz and Hoaglin 1993] outlier test on their suitability
to extract outliers from latency measurement data. See [Hodge and
Austin 2004] for a discussion of different approaches and applica-
tion fields.

3 Method

We adapted the method of [Stauffert et al. 2016] to obtain latency
measurements. The test measures the time of message passing be-
tween two pairs of actors, a common task for VR systems that need
to employ parallelism to maximise performance. While the addi-
tional actor scheduling will produce its very unique latency jitter
and distribution patterns, this would be equally true for any alterna-
tive concurrency scheme.

As a testing platform, we use a Raspberry Pi 2 running Raspbian
on a Linux kernel (version 4.4.9) with the kernel timer resolution
set to 1000Hz for lower response times. The tests are based on the
C++ actor library CAF [Charousset et al. 2014].

Figure 2 shows the measured latencies for each communication
over time. Most measures fall in a small range indicated by the
orange lines for the 25%, 50% and 75% quantiles that are too close
together to be distinguishable on the plot. It is evident, that they are
not sufficient to describe the distribution. Blue lines indicate clus-
ters of outliers as can be found by peaks in the histogram depicted
in Figure 1.

We will analyse the data in non overlapping windows. The time
window size here is chosen arbitrarily as 1s. This was done to al-
low to compare the results of our tests for multiple time frames. The
size of the time window needs to be chosen dependent on the prop-
erty that is measured. It has to be wide enough to contain enough
samples to conduct the tests but needs to be small enough to pre-
serve temporal descriptiveness. Applications will try to keep the
window as small as possible to be able to attribute certain events to
outliers and react timely.

In the following, we are looking for a suitable test to classify out-
liers. We conduct the three examined tests over non overlapping
time windows of one second with the total gathered data spanning
one minute. This is to show the performance over multiple time
slices that follow the same underlying mechanics but can change
due to outside factors.

3.1 Distribution of Measurements

The samples describe the interference patterns of the algorithmic
base that the tests are build upon. We expect the frequencies de-

48

CHAPTER 5. JITTER DESCRIPTION 57

scribing the sending and receiving algorithms to be interfered by
operating system frequencies, other software frequencies as well
as hardware influences. While the interference pattern does not fol-
low a normal distribution, we expect the message passing algorithm
on its own to approach a normal distribution for a sufficiently long
measurement interval. Extraneous influences then lead to a skewing
of the distribution. Consequently, our measures do not follow a nor-
mal distribution as tested with the Anderson Darling test provided
in the R library “nortest” [Gross and Ligges 2015] with a p-value
of < 2.2e− 16.

3.2 Walsh Outlier Test

The Walsh outlier test [Walsh and others 1950] is a nonparametric
test to detect multiple outliers. In contrast to many other statistical
tests that require a normal distribution, this test works on data that
is not normally distributed.

The test shows whether a suspected amount of outliers is present in
the data with a level of significance that is dependent on the sample
size (α = 0.1 if 60 < n ≤ 220 and α = 0.05 if n > 220). The
test is run with an increasing number of suspected outliers where
the highest amount of suspected outliers k that still test positive is
taken.

The k largest latencies are then classified as outliers. The test is
computed by determining the values

c = d
√

(2n)e;r = k + c; b2 =
1

α

a =
1 + b

√
c−b2
c−1

c− b2 − 1

(1)

IfXn+1−k−(1+a)Xn−k+aXn+1−r > 0 then the k largest points
are outliers, whereXi are the sorted values of the time window such
that X1 < X2 < · · · < Xn.

The criteria tests differences of samples therefore being sensitive to
samples that are distant from others. However, if there are more
outliers in close neighborhood these are not detected.

The Walsh test therefore helps to capture the extreme outliers in
time windows. There are some windows where no outlier is found
because they are grouped too densely even though the same latency
was flagged to be an outlier in a different time window.

3.3 Generalized ESD Outlier Test

As described, we expect the observed algorithm to approach a nor-
mal distribution that gets influenced by outside factors. There-
fore, we try a different outlier test that assumes normal distribution,
which promises to separate the samples of the expected normal dis-
tribution from samples that were influenced.

We recursively repeat the generalized ESD test [Rosner 1983] on
the outliers to distinguish between outliers and outliers of outliers.
This leads to a separation of the majority of the measurements from
their outliers but then additionally identifies severe outliers. As-
suming the influencing factors themselves approach a normal dis-
tribution, we separate different influences and their accumulated in-
terference patterns from each other. This coincides with the visual
impression from Figure 2 where most outliers are clustered above
the mean values with few extreme values.

To determine whether a measured latency xi of the observed time

window is an outlier, the values Ri and λi are calculated

Ri =
max|xi − x̄|

σ

λi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1)(n− i+ 1)

p = 1− α

2(n− i+ 1)

(2)

where tp,ν is the 100p quantile of the t distribution with ν degrees
of freedom, x̄ the sample mean, σ the sample standard deviation
and α the significance level here set as 0.05. The largest i that
satisfies Ri > λi is the number of outliers in the sample.

We tried to substitute the mean and standard deviation over the val-
ues of the time window with the respective functions over the com-
plete test run. This would allow to run the application once to gather
a representative mean and standard deviation of the values and then
use those for subsequent test runs. This, however, increases the
lower threshold and therefore performs worse in detecting outliers.

3.4 Modified z-score outlier Test

The last test conducted is a modified z-score outlier test [Iglewicz
and Hoaglin 1993], which assumes normal distribution as well. The
modified z-score Zi is computed for each value xi in the time win-
dow to be

Zi =
0.6745(xi − x̃)

MAD
MAD = median(|xi − x̃|)

(3)

Where x̃ is the median over all samples and MAD the median ab-
solute deviation.

We changed this test to not take the median absolute deviation and
median of the samples in the window to be tested but of all the mea-
sured samples. This allows to run an application using the measure-
ments to determine the absolute median deviation and the median
of this sample and use those values for subsequent application runs
to assess the performance. This changes equation 3 to calculate the
median and MAD for the values of the first run wi with

w̃ = median(wi)

MADw = median(|wi − w̃|)
(4)

and then calculate the z-scores for all subsequent runs with

Zi =
0.6745(xi − w̃)

MADw
(5)

The threshold was chosen to be 3.5 as suggested by the authors.
Recursive use of this test yields more gradations of outliers than the
generalized ESD test. Here, we distinguish between the main part
of the outliers, an area above with only few outliers and the rare
extremes.

4 Discussion

The Walsh outlier test only captures few extreme outliers. These
extremes are supposed to have the most impact and are therefore
the most interesting for further examination.

49

CHAPTER 5. JITTER DESCRIPTION 58

The generalized ESD and modified z-score tests are similar to each
other. Both support the classification of outliers into multiple levels
by stacking them so they can be used to determine how severe an
outlier is. The modified z-score allows for finer separation. Addi-
tionally, it allows to determine base values like the MAD and me-
dian for one test run to establish a base line that can then be used for
subsequent runs. When trying the same with the generalized ESD
test, the lowest threshold to classify outliers moves up to then yield
a value more distant than the threshold we would have chosen by
inspecting the histogram.

5 Conclusion

VR applications get optimised for mean and worst case behaviour,
which we argue is not enough to capture latency behaviour as it
does not account for different patterns of latency outliers.

We have discussed three tests to find outliers in latency measure-
ments. The measurements here were taken as the time needed for
the communication of two actors, a common process in VR sys-
tems that consist of multiple parts. The measurements were then
analyzed in time windows to assess how good they detected out-
liers over time.

The Walsh test allows to catch the extreme outliers. Those are sup-
posed to have the most impact on an application’s performance.
Finer analysis is offered by using a stacked modified z-score test
that groups outliers into categories of different severity.

We propose to first establish a base line by running an application
once to calculate the median and MAD over the latency samples.
Subsequent runs can then be analyzed to determine what category
of outlier a latency sample belongs to.

The proposed recursive application of outlier tests by repeating a
test on the detected outliers multiple times yields several categories
of outliers. These different levels of severity can then be used to
evaluate an application on multiple scales.

6 Future Work

The impact of latency spikes on cyber sickness is not yet tested,
which is necessary to evaluate the impact of the measured latency
spikes on the user. We have laid a base to measure latency spikes
and gather outliers. This data can then be used to correlate it with
symptoms of cyber sickness shown in tests where such spikes are
artificially added, enhanced or altered in their pattern. Real-time
systems where far less latency spikes are observed as discussed in
[Stauffert et al. 2016] can be used to test against.

Using the gathered outlier data, it will be possible to derive an out-
lier fingerprint of an application on a specific hardware. Compar-
ing this to a different application’s outlier fingerprint running on
the same hardware might open up the possibility to compare ap-
plications by their latency behavior, benchmark them and propose
improvements.

We have used different visualisation methods to allow for an in-
tuitive interpretation of outliers. Future research has to use user
studies to show how intuitive these graphs are and how convenient
they are to spot unwanted application behaviour.

References

ALLARD, J., GOURANTON, V., LECOINTRE, L., LIMET, S.,
MELIN, E., RAFFIN, B., AND ROBERT, S. 2004. FlowVR: a
middleware for large scale virtual reality applications. In Euro-
par 2004 Parallel Processing, Springer, 497–505.

BISHOP, G., FUCHS, H., MCMILLAN, L., AND ZAGIER, E. J. S.
1994. Frameless rendering: Double buffering considered harm-
ful. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, ACM, 175–176.

CHAROUSSET, D., HIESGEN, R., AND SCHMIDT, T. C. 2014.
CAF - the C++ Actor Framework for Scalable and Resource-
Efficient Applications. ACM Press, 15–28.

DI LUCA, M. 2010. New method to measure end-to-end delay of
virtual reality. Presence 19, 6, 569–584.

FRANK, L. H., CASALI, J. G., AND WIERWILLE, W. W. 1988.
Effects of visual display and motion system delays on operator
performance and uneasiness in a driving simulator. Human Fac-
tors: The Journal of the Human Factors and Ergonomics Society
30, 2, 201–217.

FRISTON, S., AND STEED, A. 2014. Measuring latency in vir-
tual environments. Visualization and Computer Graphics, IEEE
Transactions on 20, 4, 616–625.

GROSS, J., AND LIGGES, U. 2015. nortest: Tests for Normality.
R package version 1.0-4.

HAWKINS, D. M. 1980. Identification of outliers, vol. 11. Springer.

HODGE, V. J., AND AUSTIN, J. 2004. A survey of outlier detection
methodologies. Artificial Intelligence Review 22, 2, 85–126.

IGLEWICZ, B., AND HOAGLIN, D. 1993. Volume 16: how to
detect and handle outliers, The ASQC basic references in quality
control: statistical techniques, Edward F. Mykytka. PhD thesis,
Ph. D., Editor.

IVKOVIC, Z., STAVNESS, I., GUTWIN, C., AND SUTCLIFFE, S.
2015. Quantifying and Mitigating the Negative Effects of Local
Latencies on Aiming in 3d Shooter Games. ACM Press, 135–
144.

KENNEDY, R. S., LANE, N. E., BERBAUM, K. S., AND LILIEN-
THAL, M. G. 1993. Simulator sickness questionnaire: An en-
hanced method for quantifying simulator sickness. The interna-
tional journal of aviation psychology 3, 3, 203–220.

LATOSCHIK, M. E., AND TRAMBEREND, H. 2012. A scala-based
actor-entity architecture for intelligent interactive simulations. In
Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), 2012 5th Workshop on, IEEE, 9–17.

ROSNER, B. 1983. Percentage Points for a Generalized ESD
Many-Outlier Procedure. Technometrics 25, 2 (May), 165.

STAUFFERT, J.-P., NIEBLING, F., AND LATOSCHIK, M. E. 2016.
Reducing Application-Stage Latencies For Real-Time Interac-
tive Systems. In 9th Workshop on Software Engineering and
Architectures for Realtime Interactive Systems (SEARIS), IEEE
Computer Society.

STEED, A. 2008. A Simple Method for Estimating the Latency
of Interactive, Real-time Graphics Simulations. In Proceedings
of the 2008 ACM Symposium on Virtual Reality Software and
Technology, ACM, New York, NY, USA, VRST ’08, 123–129.

TEATHER, R. J., PAVLOVYCH, A., STUERZLINGER, W., AND
MACKENZIE, S. I. 2009. Effects of tracking technology, la-
tency, and spatial jitter on object movement. In 3D User Inter-
faces, 2009. 3DUI 2009. IEEE Symposium on, IEEE, 43–50.

WALSH, J. E., AND OTHERS. 1950. Some nonparametric tests
of whether the largest observations of a set are too large or too
small. The Annals of Mathematical Statistics 21, 4, 583–592.

50

CHAPTER 5. JITTER DESCRIPTION 59

CHAPTER 5. JITTER DESCRIPTION 60

Copyright

(i) Reuse any portion of the Work, without fee, in any future works written or edited by
the Author, including books, lectures and presentations in any and all media.

Author Contributions

The author conducted the selection and evaluation of suitable statistical tests and took
the lead in writing the manuscript. He provided critical feedback and helped shape the
research, the analysis and the manuscript.

5.2 Conclusion

We propose the stacked-z test to separate measured latency values into a cluster
around the mean value, multiple clusters with larger latency values and few ex-

treme outliers. An accompanying visualisation with a histogram improves the under-
standability. This is a �rst step that identi�es necessary information for a comprehensive
reporting of time-variant latency.

Discussed Research Questions

R1.2 How to describe latency? We propose to describe latency behaviour as showing the
majority of latencies normally distributed around a mean with multiple normally
distributed clusters of longer latencies. There are rare extreme latency outliers.
Chapter 7 shows that other researchers �nd similar patterns but describe them in
di�erent ways. Our description uses repeated use of a z-outlier-test: Each latency
value is tested if it is an outlier with the z-score

zi =
0.6745(xi − x̃)

median(|xi − x̃|)

A z-score above 3.5 indicates an outlier. The test is repeated on the outliers to
determine outliers of outliers and so forth. This separates the normally distributed
clusters. The result is visualised by annotating a histogram of the latency values
with the found cluster separators.

Chapter 6

SIMULATION

Simulation of latency is necessary to be able to run experiments that research e�ects
of increased latency. Adding a �xed amount of latency is done with a ringbu�er

([PMK11]). Waltemate et al. [Wal+16] describe the usage as

“This bu�er was �lled with incoming motion capture frames, and as soon
as one of these frames was older than the desired latency o�set, it was emitted
and used.” Waltemate et al. [Wal+16, p. 3]

This approach, however, only simulates a time invariant latency increase. St. Pierre
et al. [SP+15] describe their implementation that can simulate time-variant latency as

“The program manipulated latency by bu�ering captured images in inte-
gral units of the frame capture rate [...]. A constant bu�er size was used to add
a consistent latency [...]. A varying bu�er size was used to add a varying la-
tency” St. Pierre et al. [SP+15, p. 2]

Their approach allows to simulate time-variant latency but leaves room for interpre-
tation on how the implementation handles this shortening of the bu�er. It also looks to
be dependent on a regular arrival of tracking data. The tracking data, however, is also
in�uenced by varying latency in its processing and sending data. The assumption of a
regular tracking data arrival is optimistic. The implementation based on this assump-
tion may hide latency variation of the incoming tracking data.

6.1 Simulation of Latency Spikes

We proposed a way to simulate latency that models both a time invariant part and
a time-variant part on top of it. The time-variant part is described as consist-

ing of latency spikes. The spike duration and the inter-arrival times are drawn from a
probability density function describing the respective behaviour.

The paper was published as Jan-Philipp Stau�ert, F. Niebling, and M. E. Latoschik.
“A Latency and Latency Jitter Simulation Framework with OSVR”. in: 2017 IEEE 10th
Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS).
2017, pages 1–7

61

A Latency and Latency Jitter Simulation Framework with OSVR
Jan-Philipp Stauffert∗

University of Würzburg
Florian Niebling†

University of Würzburg
Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Latency is a pressing problem in Virtual Reality (VR) applications.
Low latencies are required for VR to reduce perceptual artifacts and
cyber sickness. Latency jitter, i.e. variance in the pattern of latency,
prevent coping mechanisms as users can’t adapt.

Low latency is a fundamental timeliness requirement to reduce
the potential risks of cyber sickness and to increase effectiveness,
efficiency, and user experience of Virtual Reality Systems. The ef-
fects of uniform latency degradation based on mean or worst-case
values are well researched. In contrast, the effects of latency jit-
ter, the distribution pattern of latency changes over time has largely
been ignored so far, although today’s consumer VR systems are ex-
tremely vulnerable in this respect.

In this paper, we propose to create a model of latency and latency
jitter with empirical distributions as well as a method of using those
models to inject latency. The process of creating a latency model is
demonstrated with an example of gathering and converting latency
samples from an example application. We show how to simulate la-
tency and motivate to use it in middleware to allow for less intrusive
latency effect evaluations.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Virtual Reality applications often consist of multiple components
to handle input processing, simulations, artificial intelligence, or
rendering etc. Non-functional software quality requirements like
modularity, maintainability, and reusability can have an unforesee-
able impact on the temporal behavior of software, especially for a
Real-Time Interactive System (RIS), i.e., in Virtual, Augmented,
and Mixed Reality (VR, AR, and MR) and computer games. Due
to the complexity of many RIS applications, they are often split
into different parts to foster cohesion and decoupling. To exploit
today’s multi-core and multi-CPU architectures and to avoid un-
necessary blocking, these parts often will be executed concurrently
or they will be completely distributed [2, 12].

Each computation in each application part takes time with the
orchestration and synchronisation adding additional overhead. The
computations cause a latency between input data entering the sys-
tem and output data based on them exiting the system.

In theory, the created latency can be determined deterministically
by inspecting the system and the control paths taken. In practice,
today’s hard- and software is too complex to determine how its la-
tency behaves. It is agreed upon that more latency, i.e. a bigger
time discrepancy between input and the resulting output, lead to a
decreased performance operating a system and especially in VR to

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

Figure 1: Example scene to create latency measurements. Spheres
are spawned every second and collide with each other as well as with
the environment.

decreased immersion and acceptance due to an increase in cyber
sickness [10, 18].

While time invariant latency is well researched, this paper fo-
cuses to create a model for latency jitter. Latency jitter describes la-
tency that changes over time, here with the focus on latency spikes.
Latency jitter leaves the user unable to adapt as it is constantly
changing.

To provide a tool for further research of latency spikes, this pa-
per proposes to use the here introduced latency models as a basis
to simulate latency. This simulated latency can be inserted into se-
lected parts of an application to enable detailed observations.

The contribution of the work presented here are as follow:

• Description of how to create a model for latencies from mea-
sured data

• Description how to use a latency model to simulate latency

This paper is structured into first discussing related research, fol-
lowed by the description of our method to model and simulate la-
tency and latency jitter. We will then introduce a latency injection
system that allows for the introduction of latency and latency jitter
based upon our model without changes to the VR application. In
the end there is a discussion of the findings with a conclusion and
ideas for future work extending the research presented here.

2 RELATED WORK

Simulator sickness is a problem of VR applications where users are
experiencing symptoms such as nausea [11]. While some users are
more sensible, there are certain factors that make simulator sick-
ness worse for most users. Visual delay was found as a major con-
tributing factor already in early simulators [8]. Latency also influ-
ences the performance of test subjects both if time variant latency
is added [10] or for latency spikes [18]. The assumption is con-
sequently that latency spikes influence simulator sickness with a
similar impact as the better researched time invariant latency.

The performance of VR applications is usually assessed by mea-
suring motion-to-photon latency which tracks the time between an
input on a certain input channel and the time it takes to show its

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 62

Figure 2: Latency measurements of the physics simulation in our test
scene, scaled to show the mean latency with most of the samples
and above a region with sparser sample density.

effect on a display. Approaches to measure this latency are sine fit-
ting [17], light sensing [5] and automated frame counting [9]. In
this paper, the focus is on latency that is contributed by the VR
framework and its internal software processes with their interac-
tions, a subset of motion-to-photon latency. While there are many
optimization techniques for the rendering stage like frameless ren-
dering [3], latency at the application stage is yet less researched.

Latency has been injected into virtual environments to evaluate
its effect on task performance, presence, and other factors. Most of
these experiments delay tracker input data by a controllable amount
of time units — frames or multiples of the tracker sampling rate —
by employing a ring buffer or other FIFO data structures either in-
side the tracker itself, its software driver, or the VR application.
Experiments are then performed with different, yet constant per ex-
periment, amounts of latency artificially injected into the system.

Ellis et. al. tested distinguishability of changes in latency for
hand [7] as well as for head [6] movements. They employ cus-
tom tracker drivers to ensure a low base latency and to provide the
ability to add custom latency to their input devices. Building on this
work, Mania et. al. test sensivity to head tracking latency in virtual
environments [13]. Meehan et. al. studied the effects of latency on
presence in stressful virtual environments [14]. To do user studies
with different latency settings, they adapted their VRPN client im-
plementation to delay tracker input data by a fixed amount of time to
add constant end-to-end latency to their system, enabling controlled
experiments with 50ms and 90ms of latency respectively. Other
studies that control latency, e. g. performed by Allison et. al. [1],
or more recent work on latency control by Papadakis et. al. [15] as
well as by Waltemate et. al. [19], also only allow for the insertion of
constant latency by delaying tracker input data using ring buffers.

Time invariant latency, however, ignores that latency in applica-
tions changes over time. The effects of latency jitter are far less
researched as discussed above. To describe the effects that can be
observed, a model of time variant latency is needed. Additionally,
there needs to be a way to introduce time invariant latency to then
allow more research of the effects on the systems and for the users.

3 METHOD

Distinguishing the work presented here from past research outlined
in the previous section, we are presenting a method to inject latency
jitter (instead of constant latency) into VR applications, based upon
a model created from measurements of existing VR systems, with-
out the need to change the VR application itself.

Our approach is split into two parts:

• Modelling latency by deriving an empirical distribution from
measurements

Figure 3: Latency measurements of the physics simulation in our test
scene, scaled to show all values with bigger point size to make the
outliers visible.

• Using a latency model and a latency injector, based upon es-
tablished VR middleware, to simulate latency

We discuss latency modelling at the example of timing the
physics calculation of a test scene created with the Unreal Engine 4.

Afterwards, latency simulation based on a latency model is dis-
cussed at the example of creating an OSVR plugin to delay tracking
data without needing to alter the affected application.

3.1 Latency Model creation
The latency model described here is based on latency measurements
at the application stage. We explain our approach with example
measurements taken with a test scene made with the Unreal En-
gine 4. This offers measurements relateable to real world VR sce-
narios.

The measurements are divided into outlier groups to separate ex-
pected latencies close to the mean value from the less often oc-
curing latency spikes. Latency spikes are further categorised by
recursively applying the outlier detection algorithm as described by
Stauffert et al. [16]. For each category of detected outliers, two em-
pirical distributions are derived. One describes the duration of the
latency spike. The other describes how much time passes between
latency spikes.

Figure 4 shows the process of deriving a model with graphs
demonstrating how example measurements are transformed at ev-
ery step. The following sections will further explain the steps un-
dertaken.

3.1.1 Measurements
The basis for the latency model are latency measurements. Here,
we demonstrate how to measure them, and what appearance latency
measurements have.

We created a scene with the Unreal Engine 4, where a physics
enabled sphere is spawned every frame. The balls collide with the
sparse environment and with themself, and get despawned once
they fall through holes in the environment. An overview of the
scene is given in figure 1.

The engine allows to create objects that are updated at different
times during the game loop. Utilising this, we register two func-
tions of an object. One gets invoked before the physics calculation,
the other after the physics system has updated. With the two invo-
cations, the elapsed time in between is measured which is taken to
create a latency profile for the engine execution.

With this setting, a big part of the computational time of the ap-
plication to survey is measured. Measurement, however, can be
conducted for far smaller parts such as the duration of AI computa-
tion for only one object in a scene or one small algorithm.

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 63

Figure 4: Steps to create a latency model: Latency samples are gathered in the application. Outliers are extracted and sorted into different
categories. The distributions for the duration and interarrival times or latencies are expressed by their inverted cdf.

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 64

Figure 2 shows a scatter plot of the latencies measured for each
frame. Note that most samples gather around a mean with less sam-
ples above the mean latency. Figure 3 shows all samples including
the extreme outliers. The mean is 2.93ms, variance 0.2ms2, min
1.6ms, max 60.6ms.

3.1.2 Outlier detection

The measurements are separated into outlier categories. For this,
we recursively use the modified z score test to determine outliers
as proposed for latency data by Stauffert et al. [16]. They calculate
the z-score for each sample to determine if it is an outlier. Once,
all outliers are found in the dataset, the algorithm is applied to sep-
arate the outliers from the outliers of the outliers. This is repeated
recursively until no outliers can be found anymore.

The z-score over all samples xi is calculated with

Zi =
0.6745(xi− x̃)

MAD
MAD = median(|xi− x̃|)

(1)

Samples with a Z-score larger than 3.5 are detected as outliers.
For the example data, after the fourth application of the algorithm,
no more outliers can be found.

3.1.3 Distribution derivation

An empirical distribution is derived for each outlier category and
the samples around the mean. The distributions are described by
their cumulative density function (cdf). For convenient genera-
tion of samples from the distribution, the cdf needs to get inverted.
The quantile function represents the inverse cumulative distribution
function and is faster to compute than first generating the cdf and
then inverting it. The quantile function is sampled to avoid the need
to save all latency samples but be able to represent the distribution
with a small amount of values. Using more samples when sampling
the quantile function leads to a more precice representation of the
observed distribution.

The result from sampling the quantile function is an array of
latency values. To draw a random value that is distributed by the
empirical distribution, a random uniformly distributed number is
drawn. The random number needs to be between 0 and the number
of samples used for sampling the quantile function. This random
number is used to index into the array.

The latency model proposed here consists of empirical distribu-
tions for each outlier category for both the latency duration and the
time in between the observed latency spikes.

3.2 Latency Injection

This section describes how to use a latency model as described
above to simulate latency. The discussion is lead with an exam-
ple of an OSVR plugin where additional latency is simulated for
processing tracking data. While the example helps to describe the
process, the approach isn’t limited to an implementation in a mid-
dleware, but can be used to simulate latency in parts of the appli-
cation itself. We will describe the benefits there are in simulating
latency in a middleware like OSVR, before presenting our latency
simulation approach.

3.2.1 Placement in middleware

OSVR provides a middleware supporting many devices, presenting
a uniform API to applications abstracting away differences. Intro-
ducing latency simulation in this layer allows for little intrusion
of the application code. This enables the evaluation of different
amounts of latency jitter in existing VR systems. The existing soft-
ware does not need to get modified in the process.

Many VR applications couple physics, logic and the renderer
very tightly to guarantee that for each frame, all systems have up-
dated their state. Introducing latency there is more prone to influ-
ence the whole application performance. Middleware like OSVR
runs parallel to and decoupled from the application. This allows to
introduce latency into selected tracking devices without affecting
others. Having only one device input modified promises to analyse
effects of latency in different modalities with more detail.

Compare figure 5 for an overview where a latency simulating
plugin is located within OSVR. OSVR contains plugins that han-
dle the connection to various tracking devices. The data is either
directly forwarded to an application or modified by another plugin,
called analysis plugin. Introducing latency in an analysis plugin
allows for targeted modification of tracking data by only delaying
data of one selected device. OSVR works like a dataflow environ-
ment, where data is gathered at the input devices, then processed
by plugins in a configurable order until it eventually gets delivered
to an application. The application doesn’t need to be changed as it
can’t distinguish whether its data stems directly from the hardware
plugin or was tampered with on the way.

3.2.2 Algorithm

We implemented a configured device plugin. This is a plugin that
can be used multiple times with different configurations to allow
binding to different other devices with individual latency behaviour.

The latency plugin simulates a component in the system that re-
ceives data, works with it and then forwards it. The delay between
receiving and forwarding a dataset dl consists of the expected delay
d̄l and a time ds indicating a spike in latency. If the simulator shall
only simulate latency spikes, the expected mean latency to simulate
d̄l is set to zero.

The simulator itself introduces latency by simply executing code.
Care has to be taken that the simulated latencies are significantly
larger than the values that are introduced by the execution of the
simulator. We will discuss this and similar problems at the end.

A sample code describing the execution is shown in listing 1:
Initially, a time for the first latency spike is determined. The simu-
lator then receives a dataset and decides dl .

First, it is initialised with d̄l . If the current time is larger than
the time, a latency spike was scheduled, a sample for the latency
spike length is drawn from the respective distribution. This length
is added to the delay time. Afterwards, the time of the next latency
spike is computed by adding a randomly drawn sample of the spike
interarrival distribution to the current time.

The simulator then delays further processing of the data by other
components by sleeping for the calculated time. Note that a sleep
only guarantees that the execution is not resumed before the given
amount of time has passed. It might take longer than requested until
execution is continued.

This method assumes that there is a buffer in place that stores
incoming tracking data until they get processed. This buffer might
hold only the most recent data and discard older data elements if
new ones arrive, or be implemented with a queue. If the simulated
working time exceeds the arrival time, the queue might fill up and
overflow.

3.3 Evaluation
For first evaluations, we created an OSVR hardware plugin that
continuously sends timestamps. These timestamps are received
in an OSVR client application and the difference of the received
timestamp to the time it is received is saved.

We gather the latency samples collected with the described
method with and without an additional latency injector plugin in
the pipeline. In total, we compare three different scenarios:

• Without latency injector

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 65

Figure 5: Latency can be injected in the middleware, that administrates the hardware, without needing to change the application.

n e x t s p i k e = now () + i n t e r a r r i v a l d i s t r i b u t i o n . d r a w v a l u e () ;
w h i l e d a t a = r e c e i v e d a t a () {

workt ime = mean work t ime ;
i f now () + workt ime > n e x t s p i k e {

workt ime += s p i k e d i s t r i b u t i o n . d r a w v a l u e () ;
n e x t s p i k e = now () + i n t e r a r r i v a l d i s t r i b u t i o n . d r a w v a l u e () ;

}
s l e e p (workt ime) ;
f o r w a r d d a t a (d a t a) ;

}
Listing 1: Simple latency simulator

• With latency injector based on a latency distribution that never
causes spikes, i.e. reducing the latency injector to be a pass
through stage

• With latency injector based on a latency distribution simulat-
ing only spikes

We expect to find higher latency outliers with the latency injector in
place with more latency outliers when using a latency distribution.

For comparing the two measurements, we use QQ-plots. QQ-
plots are used to compare two distributions with each other. Usu-
ally, this is done to see how well one distribution fits another. As
we already use the quantile function to model latency jitter, the plot
shows the quantiles of the measurements without latency on one
axis against the quantiles of the measurements with latency on the
other axis. A line above the bisector signals more latency spikes
with latency injected. See figure 6 for an example of one of these
plots.

We find that the mean latency is the same for all cases.
With the latency injector only working as a pass through for mes-

sages, there are more extreme spikes with the lower outlier cate-
gories exhibiting similar distributions to the run without the added
plugin.

Having the latency injector simulating only spikes, there are
more spikes visible in the QQ-plots for the outlier categories than
without the plugin. The means match and the first outlier category
distribution is similar.

This means, our latency simulator is able to simulate latency
spikes with little overhead, leaving the latencies around the mean
mostly unchanged.

4 DISCUSSION

We proposed a method to model latency and latency jitter with an
empirical distribution.

In the introduction, we stated that systems elicit non determin-
istic latency behaviour due to the complexity of today’s computers
and applications. Likewise, introducing additional latency into a

system can lead to different behaviour. For this discussion, we as-
sume that VR systems consist of different parts that run partly in
parallel and exchange state at synchronisation points. The timing
of these synchonisation points plays a crucial role of how latency
injection into an application is visible to the user.

Latency injected into an application could not change the appli-
cation at all. If it affects a part of an application that has suffi-
cient buffer time between the time its own execution has finished
and the time point it needs to synchronise, this free buffer time can
swallow the latency. Similarly, if a part with additional latency in-
jected urges another part to wait but this dependent part has suffi-
cient buffer time, the effect might vanish.

If the effect of added latency does not vanish in the interplay
of parts of the application, the effects can be visible in different
ways. They can be restricted to simple aspects of the application.
An example would be that only the controller inputs lag behind the
rest of the application. There could also be a ripple effect where
delay in one part of the application causes other parts to miss their
assigned time window leading the whole application performance
to suffer.

With time invariant latency, the effects are better observable as
there will be one pattern emerging as a result. The time variant la-
tency, as observed e.g. in the described example application and
modelled here, will exhibit complex effects and will create interfer-
ence patterns when interacting in a sophisticated system.

This means that after introducing latency, especially time invari-
ant latency, it is mandatory to measure again how the actual effects
are.

Using the proposed tools to research latency jitter will allow to
better understand the relationship of latency jitter to constant la-
tency. A dejitter buffer [4] as used for packet-switched networks
can reduce the jitter at the cost of added constant latency. If latency
jitter proves to be worse, this is a tool to alleviate it.

In the future, it will be desirable to measure application stage la-
tency without needing to alter the application but placing the com-
plete benchmarking code into a middleware. For this, it is neces-
sary to receive information from the application. Upon writing this

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 66

paper, OSVR doesn’t support plugins that take input from the ap-
plication. There are only plugins that sit between tracking devices
and the application. There are no plugins for messages from the ap-
plication to a device like a force feedback device or an audio device
yet.

Once this is implemented, it will be possible to create plugins
that detect which message sent by the application belongs to which
tracking value. Then, the simulation latency can get determined by
the middleware, allowing application stage latency measurements
without the need to influence an application at all.

We proposed to use the quantile function for the inverse cumula-
tive density function, which can be directly derived from the sam-
ples. This, however, limits the simulation to only produce random
numbers that were observed before. Using a kernel density function
over the data provides a smoothed probability density function that
can be integrated to yield the cumulative density function, which in
turn can be inverted. This way around leads to a smoothing of the
observed distribution and can also generate values that are close to
the observed.

The example data used for the model creation was collected
from a specially designed application. As all other applications,
it exhibits its own latency pattern. With repeated spawning and
despawning of balls, the number of balls in the scene is constantly
changing. The available room is restricted to provoke many colli-
sions. This leads to the physics simulation working with a variable
number of entities that have different amounts of collisions each
frame. The measurements show a latency behaviour with repeated
spikes. We did, however, not analyse if the spikes are results of the
changing conditions like ball count and collision count from frame
to frame or if they have another source. The many objects in our
scene could also have lead to lead to the changing numbers being
too small in comparison to the overall number of collisions to not
be responsible for the variations.

While we proposed a latency injector that adds latency accord-
ing to a distribution, its own execution adds additional latency. The
described sleep to simulate a time of working yields the processor
to let other processes work in the mean time, which might or might
not be desirable for the application to test. Waking from sleep in-
volves a second context switch which is costly timewise and adds to
the latency. A busy loop can be used as an alternative. OSVR needs
to gather the measurement from another plugin to pipe it to the la-
tency inducing plugin to afterwards pipe it to either the application
or other plugins. This causes additional overhead and therefore la-
tency as described in the evaluation section.

The discussions so far demonstrate that it is possible to measure
and induce latency into a system. It is, however, difficult to argue
what the source of latency jitter in a measured dataset is as there are
too many influences. On the other side, it is difficult to forsee what
effects introducing latency has on the affected system and in turn
on the user.

5 CONCLUSION

VR applications get optimised for mean and worst case behaviour,
which we argue is not enough to capture latency behaviour as it
does not account for different patterns of latency outliers.

This paper proposes to create latency models using empirical dis-
tributions based on measured latencies. Such latency models can
then in turn be used to simulate latency behaviour at the application
stage, either in the application itself or in a middleware. Usage of
a latency simulator will allow to better study effects of latency and
latency jitter on the user.

6 FURTHER WORK

The example measurements illustrate the process of generating a
latency model. The measurements shown describe the time, the
physics engine runs for a test scene. The measurements seem to be

Figure 6: QQ-Plot of the spike duration of the fourth outlier category
of the test setting without and with latency simulated. With latency
simulated, there are more spikes visible.

similar to the measurements taken in Stauffert et al. [16], who only
measured the time for single message passing. It is yet to be shown
how similar latency patterns of a small algorithm are compared to a
more complex system.

Using the shown test scene, a variation of the scene in terms of
available space and amount of objects will create different load on
the physics system and a changed latency behaviour. Comparing
applications or application parts under different load in respect to
latency will uncover new insights for the system performance and
how latency changes under different conditions.

The artificially injected latency has to get further researched to
see if it elicits the desired effects. In any case, the evoked effects
need more research.

Every machine will elicit different latency behaviour especially,
different spike behaviour. It is up to future work to analyse how
comparable latency models based on latency measurements of dif-
ferent machines are.

With a latency inducing plugin in place, effects of latency for
different devices can be measured. Next steps include researching
of simulator sickness when latency is injected into a head mounted
display. Another is to measure performance and task load with mo-
tion controller drag and drop tasks.

REFERENCES

[1] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and J. E.
Zacher. Tolerance of temporal delay in virtual environments. In
Proceedings of the Virtual Reality 2001 Conference (VR’01), VR ’01,
pages 247–, Washington, DC, USA, 2001. IEEE Computer Society.

[2] T. Arcila, J. Allard, C. Ménier, E. Boyer, and B. Raffin. FlowVR:
A framework for distributed virtual reality applications. Journees de
lAFRV, 2006.

[3] G. Bishop, H. Fuchs, L. McMillan, and E. J. S. Zagier. Frameless ren-
dering: Double buffering considered harmful. In Proceedings of the
21st annual conference on Computer graphics and interactive tech-
niques, pages 175–176. ACM, 1994.

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 67

[4] R. G. Cole and J. H. Rosenbluth. Voice over IP performance monitor-
ing. ACM SIGCOMM Computer Communication Review, 31(2):9–24,
2001.

[5] M. Di Luca. New method to measure end-to-end delay of virtual real-
ity. Presence, 19(6):569–584, 2010.

[6] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-
crimination of changes in latency during head movement. In Pro-
ceedings of the HCI International ’99 (the 8th International Confer-
ence on Human-Computer Interaction) on Human-Computer Interac-
tion: Communication, Cooperation, and Application Design-Volume
2 - Volume 2, pages 1129–1133, Hillsdale, NJ, USA, 1999. L. Erlbaum
Associates Inc.

[7] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-
crimination of changes of latency during voluntary hand movement of
virtual objects. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, volume 43, pages 1182–1186. SAGE Publi-
cations Sage CA: Los Angeles, CA, 1999.

[8] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual
display and motion system delays on operator performance and un-
easiness in a driving simulator. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 30(2):201–217, 1988.

[9] S. Friston and A. Steed. Measuring latency in virtual environ-
ments. Visualization and Computer Graphics, IEEE Transactions on,
20(4):616–625, 2014.

[10] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and
Mitigating the Negative Effects of Local Latencies on Aiming in 3d
Shooter Games. pages 135–144. ACM Press, 2015.

[11] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Sim-
ulator sickness questionnaire: An enhanced method for quantifying
simulator sickness. The international journal of aviation psychology,
3(3):203–220, 1993.

[12] M. E. Latoschik and H. Tramberend. A scala-based actor-entity ar-
chitecture for intelligent interactive simulations. In Software Engi-
neering and Architectures for Realtime Interactive Systems (SEARIS),
2012 5th Workshop on, pages 9–17. IEEE, 2012.

[13] K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill. Perceptual sen-
sitivity to head tracking latency in virtual environments with varying
degrees of scene complexity. In Proceedings of the 1st Symposium on
Applied Perception in Graphics and Visualization, APGV ’04, pages
39–47, New York, NY, USA, 2004. ACM.

[14] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks. Effect of
latency on presence in stressful virtual environments. In IEEE Virtual
Reality, 2003. Proceedings., pages 141–148, March 2003.

[15] G. Papadakis, K. Mania, and E. Koutroulis. A system to measure, con-
trol and minimize end-to-end head tracking latency in immersive sim-
ulations. In Proceedings of the 10th International Conference on Vir-
tual Reality Continuum and Its Applications in Industry, pages 581–
584. ACM, 2011.

[16] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Towards comparable
evaluation methods and measures for timing behavior of virtual real-
ity systems. In Proceedings of the 22nd ACM Conference on Virtual
Reality Software and Technology, pages 47–50. ACM, 2016.

[17] A. Steed. A Simple Method for Estimating the Latency of Interactive,
Real-time Graphics Simulations. In Proceedings of the 2008 ACM
Symposium on Virtual Reality Software and Technology, VRST ’08,
pages 123–129, New York, NY, USA, 2008. ACM.

[18] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and S. I. MacKenzie. Ef-
fects of tracking technology, latency, and spatial jitter on object move-
ment. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on,
pages 43–50. IEEE, 2009.

[19] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde, S. Kopp, M. Ernst,
and M. Botsch. The impact of latency on perceptual judgments and
motor performance in closed-loop interaction in virtual reality. In Pro-
ceedings of the 22nd ACM Conference on Virtual Reality Software and
Technology, pages 27–35. ACM, 2016.

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on September 17,2020 at 13:50:49 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 6. SIMULATION 68

CHAPTER 6. SIMULATION 69

Copyright

©2017 IEEE. Reprinted, with permission, from Jan-Philipp Stau�ert, Florian Niebling,
Marc Erich Latoschik, “A Latency and Latency Jitter Simulation Framework with OSVR”,
2017 IEEE 10th Workshop on Software Engineering and Architectures for Realtime In-
teractive Systems (SEARIS), March 2017

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author wrote the software, conducted the measurements and analysis and took the
lead in writing the manuscript. He provided critical feedback and helped shape the
research, the analysis and the manuscript.

6.2 Conclusion

A method to simulate latency is necessary to be able to provide di�erent latency
conditions in experiments. We described an approach how to simulate not only

time-invariant latency but also latency jitter, which opens up the possibility for more
insight of the e�ects of latency on users of VR applications.

Discussed Research Questions

R2.1 How to simulate latency? We show an approach how to simulate time variant la-
tency. Latency behaviour is split into multiple intervals depending on their dura-
tion. Each part is modeled with a probability distribution describing the distribu-
tion of observed duration and another probability distribution describing the in-
terarrival times between latencies of this duration. Latency simulation for tracking
data is conducted by queuing tracking data with a delay depending on the proba-
bility distributions. Taking from the queue when the associated delay is over yields
the tracking data with the simulated latency added. A schematic image is shown in
the next chapter when simulated latency is used to study latency’s e�ects.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Chapter 7

EFFECTS

We already mentioned negative e�ects of latency and latency jitter on users of VR
applications without a detailed look at it. Cybersickness is one of the big prob-

lems that prevent virtual reality adaption. People getting sick as a result of consuming
virtual reality applications will be reluctant to expose themselves again. We focused
on latency e�ects on cybersickness because cybersickness can prevent usage of virtual
reality applications. There are other metrics that are important for virtual reality appli-
cations such as, among others, performance or body ownership which are also impacted
by increased latency [CMG19].

7.1 Latency Jitter provokes Cybersickness

We conducted a study to explore the connection between latency jitter and cyber-
sickness. The study was designed to compare a condition with and without added

simulated latency jitter. The latency jitter was detectable but was less disturing as sim-
ilar e�ects of positional tracking jitter found in some other experiments conducted at
the chair. Participants needed to move and look around because added latency in the
tracking data is not experienced if the tracking data doesn’t change. We found latency
jitter to contribute to cybersickness.

The paper was published as Jan-Philipp Stau�ert, F. Niebling, and M. E. Latoschik.
“E�ects of Latency Jitter on Simulator Sickness in a Search Task”. In: 2018 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces (VR). 2018, pages 121–127

70

Effects of Latency Jitter on Simulator Sickness in a Search Task
Jan-Philipp Stauffert*

University of Würzburg
Florian Niebling†

University of Würzburg
Marc Erich Latoschik‡

University of Würzburg

Figure 1: The employed search task. A sphere has to be found that acquires one of two colors if it is in the middle of the field of
view, here magenta. Once the sphere acquired a color, the trigger button of the controller with the same color has to be pressed.
Afterwards a new sphere has to be found. The task was conducted with and without latency jitter added to the HMD tracking. We
found significant differences of the cybersickness with latency jitter present.

ABSTRACT

Low latency is a fundamental requirement for Virtual Reality (VR)
systems to reduce the potential risks of cybersickness and to increase
effectiveness, efficiency and user experience. In contrast to the
effects of uniform latency degradation, the influence of latency jitter
on user experience in VR is not well researched, although today’s
consumer VR systems are vulnerable in this respect. In this work
we report on the impact of latency jitter on cybersickness in HMD-
based VR environments. Test subjects are given a search task in
Virtual Reality, provoking both head rotation and translation. One
group experienced artificially added latency jitter in the tracking
data of their head-mounted display. The introduced jitter pattern was
a replication of a real-world latency behavior extracted and analyzed
from an existing example VR-system. The effects of the introduced
latency jitter were measured based on self-reports simulator sickness
questionnaire (SSQ) and by taking physiological measurements. We
found a significant increase in self-reported simulator sickness. We
therefore argue that measure and control of latency based on average
values taken at a few time intervals is not enough to assure a required
timeliness behavior but that latency jitter needs to be considered
when designing experiences for Virtual Reality.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Today’s computer systems come with inherent fluctuations of per-
formance. In many applications, especially graphical applications,

*e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

programmers try to use every bit of performance the computer offers
while still expecting that changed data is displayed as fast as possi-
ble. Failure to meet these demands results in delayed information
which in turn affects user performance and experience. The main
measurement to describe the responsitivity of an application is by
measuring the end-to-end latency, the time from the user performing
an action until this action’s results are shown on the display. Be-
tween an action and the perception of its effects lie multiple soft-
and hardware systems each running at their own pace. Delays intro-
duced anywhere in the system might lead to inconsistencies between
action and stimulus presented by the head-mounted display, leading
to unpleasant jitter in the VR experience.

There are many factors that influence execution time that are
not deterministic or too manifold so they appear non-deterministic.
Examples for influencing factors are hardware-based aspects such
as interrupts, as well as software-based aspects such as preemption
by the operating system or interfering processes or threads. Com-
munication with other devices such as external trackers or other
computers in distributed systems is even more prone to fluctuations
in execution time.The employment of multi- and manycore sys-
tems sacrifices determinism in the order of operations at runtime for
increased performance. Collaborating threads and processes con-
stantly compete for resources. While the overall usage of processors
may be maximized, in non-hard realtime systems each thread or pro-
cess is allotted time on a best effort basis. There are no guarantees
that a process gets execution time at the time it needs to perform
calculations, ultimately leading to missed updates in rendering, or to
renderings based on obsolete inputs. Runtime behavior, especially
in interactive applications, is therefore difficult to estimate. As well
as these influences are included in the mean latency calculation to
achieve a preferably stable frame rate, they can still accumulate to
create non-deterministic latency spikes.

Most related research describes the effect on task performance
and cybersickness of a constant decrease in latency [10]. There are
experiments that show decreased task performance in the presence
of spatial jitter [23], but few reports on the effects of temporal jitter.
While it is shown that periodic jitter patterns provoke sickness [25],
the quasi-random behavior of current real-time systems is yet to be

121

2018 IEEE Conference on Virtual Reality and 3D User Interfaces
18-22 March, Reutlingen, Germany
978-1-5386-3365-6/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 71

Figure 2: Latency Injection for the experiment. Tracking data is re-
ceived (1) and annotated with the time of arrival (2). If a latency
spike is scheduled, the timestamp is increased (3) by a delay taken
from a probability distribution (4). If a spike occurred, a new spike is
scheduled whose time is taken from another probability distribution
(5). The tracking data is enqueued (6) and immediately dequeued
until a timestamp in the future is encountered (7). The tracking data is
then forwarded to the application (8).

surveyed. We assume latency jitter to cause similar issues regarding
cybersickness.

Our main contributions in this paper are:

• A modification of the Unreal Engine 4 plugin for the HTC
Vive to allow the introduction of latency jitter

• A user study evaluating the effect of latency jitter on cyber-
sickness in tasks requiring both continued head movement as
well as rotation, finding a significant influence of latency jitter
on cybersickness

2 RELATED WORK

Cybersickness is a problem of VR applications where users are
experiencing symptoms such as nausea [11]. While some users
are more sensitive, there are certain factors that make cybersickness
worse for most users. Visual delay was found as a major contributing
factor already in early simulators [6]. Latency also influences the
performance of test subjects both if time variant latency is added [10]
and if latency spikes occur [17, 23]. The assumption is consequently
that latency spikes influence cybersickness with a similar impact as
the better researched time invariant latency.

Latency has been injected into virtual environments to be able to
repeatedly evaluate effects on task performance, presence, and other
factors, in controlled experiments. Typically, latency studies delay
tracker input data by a controllable amount of time units — frames
or multiples of the tracker sampling rate — by employing a ring
buffer or other FIFO data structures either inside the tracker itself,
its software driver, or the VR application. Experiments are then
performed with different, yet most often constant per experiment,
amounts of latency artificially injected into the system.

Ellis et. al. tested distinguishability of changes in latency for
hand [5] as well as for head [4] movements. They employ custom
tracker drivers to ensure a low base latency and to provide the
ability to add custom latency to their input devices. Building on
this work, Mania et. al. test sensitivity to head tracking latency
in virtual environments [14]. Meehan et. al. studied the effects
of latency on presence in stressful virtual environments [15]. To
enable user studies with different latency settings, they adapted their
VRPN client implementation to delay tracker input data by a fixed
amount of time to add constant end-to-end latency to their system,
enabling controlled experiments with 50ms and 90ms of latency
respectively. Other studies that control latency, e. g. performed
by Allison et. al. [1], or more recent work on latency control by
Papadakis et. al. [16] as well as by Waltemate et. al. [24], also only
allow for the insertion of constant latency by delaying tracker input
data using ring buffers.

Time invariant latency, however, ignores that latency in applica-
tions typically is not constant, but changing over time. This typically
happens due to inhomogeneous scene complexity as well as due to
different computational complexity of the simulated world in VR
given different viewpoints or points in time. Previous work on time
varying latency jitter focuses mostly on periodic changes [19, 26].
Periodic patterns are the result of different work cycles in cooper-
ating systems. Here, pattern frequency is shown to play a more
important part than amplitude regarding subjective sickness [13].
While periodic latency changes results in time invariant latency, we
focus on non-periodic, quasi-random latency behavior. Stauffert
et. al. introduced a model for non-periodic latency jitter that allows
for injection of latency and latency spikes into VR applications to
replicate different latency scenarios [21].

The performance of VR applications is usually assessed by mea-
suring motion-to-photon latency which tracks the time between an
input on a certain input channel and the time it takes to show its
effect on a display. As with injecting latency, the measurements are
used to measure a time-invariant latency. Approaches to measure

122

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 72

this latency are sine fitting [22], light sensing [3], and automated
frame counting [7].

3 LATENCY JITTER INJECTION

We are conducting an experiment to assess the impact of latency jitter
on cybersickness. To provide a controlled environment for latency
studies, we first describe our method to inject latency jitter into a
VR system. Subsequently, we present the user study evaluating task
performance under latency scenarios, and discuss our results.

To inject latency jitter, we modify the HTC Vive plugin of the
Unreal Engine 4. The built-in plugin is called every frame to update
position and orientation of controllers and HMD from tracking data.
The plugin queries the OpenVR interface to the device for the current
values, making them accessible to the VR application. Instead
of directly propagating the received values, we delay these data
according to a probability distribution to inject latency jitter. See
Figure 2 for a diagram describing the procedure .

After receiving the current tracking data from OpenVR (1), we
annotate this acquired sample with the current time (2) . The current
time is then compared to the time at which the next latency spike is
scheduled to occur (3). If this time is exceeded, a spike duration is
drawn from a probability distribution and added to the timestamp (4).
The next time a latency spike is to occur is scheduled by drawing
a value from the inter-arrival probability distribution and adding it
to the current time (5). Independent whether a latency spike has
occurred or not, the sample is enqueued into a buffer (6). After
the last received value is added to its respective buffer, the buffer
is drained until there are no more values in the buffer or a value is
encountered whose availability-timestamp is in the future (7). The
value taken last gets propagated to the application.

With this mechanism, one value that was received with a sched-
uled latency spike can block the buffer for the duration of the spike
even though there would be samples from the tracker arriving after-
wards that are not directly delayed by a scheduled spike.

Latency jitter can have many sources. Among them are unreliable
execution times of code due to optimizations such as caching, hyper-
threading and multithreading. Additionally there is other software
running concurrently, needing CPU time. The plethora of influ-
encing factors makes code execution time unpredictable. While it
doesn’t exhibit recurring patterns, a model representing jitter distri-
bution and duration is needed for the simulation of latency jitter [21].

To obtain a realistic jitter profile, we base the injected latency on
measurements with the VR middleware OSVR which are then scaled
to resemble a more pathogenic system. The resulting latency jitter
was tested by three experts who found it to realistically resemble
under-performing VR systems. The assessment was a subjective
feedback based on multiple years of experience with VR systems.

For the base latency distribution, we measured the time that track-
ing data needs to propagate through the VR middleware OSVR.
With a custom device sending and a custom client receiving data,
we measure the time in between the sending and receiving.

The result is a characteristic pattern where most values gather
around a mean value with only a minuscule population deviating
from this mean [20]. Since we only want to observe the effect of
latency jitter, we use the outliers for the simulation. There, we
restrict the injection to outliers of order two and above, as can be
seen in Figure 3, as they represent the 0.1% of measurements that
are often ignored in time-invariant latency experiments.

The chosen latency jitter pattern is noticeable for a user who
has used the employed VR setup before. The system repeatedly
exhibits multiple frame drops in short succession combined with
times of lesser impact of latency spikes. The effect is comparable
to a computer operating at the edge of its capacity or a VR system
whose tracking experiences interference.

Since the scene used in the experiment has no moving parts other
than user interaction, it is not discernible whether only the HMD

tracking sometimes lags or if the whole VR simulation is halted.

4 EXPERIMENTAL DESIGN

We conduct an experiment to survey the relation of latency jitter to
cybersickness using the introduced latency jitter injection method.

The task between groups only varies in the condition if latency
jitter is present or not. The elimination of other factors allows us to
focus on the connection between latency jitter and cybersickness.

4.1 Hypotheses
As discussed before, latency jitter was regarded in respect to perfor-
mance in virtual environments but not yet in respect to cybersickness.
Cybersickness is a major factor that reduces virtual reality accep-
tance. Hence, we employ different indicators of cybersickness for
our experiment to get a more holistic picture.

For our experiment we pose our hypotheses as follows:

H1: Latency jitter evokes cybersickness

H2: Latency jitter influences physiological measures

The evaluation of H1 is based on the established simulator sick-
ness questionnaire [11]. On a smaller note, we ask participants
during the experiment about their well-being. Since the simulator
sickness questionnaire is the often employed way to measure cyber-
sickness, it is the major tool to be able to detect if latency jitter can
cause cybersickness. The mid experiment questions are less specific
but may help to find further evidence of cybersickness.

H2 asks if effects can be measured from body responses. This
question is based on research of Kim et. al. [12] and Meehan et.
al. [15] who found a significant connection between, among others,
heart rate and cybersickness. The experiment in Kim et. al. involved
a driving task which is more prone to cybersickness than our method
of movement which allows the user to walk freely in the tracked
space. Meehan et. al. use the fear of height as a stress inducing
factor. While our physiological responses are expected to be smaller,
a significant find would justify to establish physiological measures
as a further means to determine cybersickness along the simulator
sickness questionnaire for latency experiments.

5 METHOD

5.1 Participants
46 participants were recruited for this study. One had to be excluded
due to technical difficulties during the experiment. The final sample
consisted of 45 subjects, 36 female, 9 male. The ages ranged from
18 to 31 with a mean of 21.18 and a standard deviation of 2.58.
22 had usable heart-rate data and 28 had usable skin-conductance
data. The low yields were a consequence of the constant movement
during the experiment impacting the measuring device. All partici-
pants gave written informed consent and got course credits for their
participation.

5.1.1 Procedure
Participants first filled out a questionnaire containing demographic
questions, the motion sickness susceptibility questionnaire [8], the
games motivation questionnaire [18] and the simulator sickness
questionnaire [11]. They then were equipped with an Empatica E4
wristwatch measuring physiological data (galvanic skin response,
heart rate) and the HTC Vive HMD with controllers to proceed with
the experiment. The experiment started with five minutes of standing
in the virtual scene without movement to get a baseline for the
physiological measurements.After the five minute acclimatization
phase, the subjects continued with a search task for 9.5 minutes.
After three, six and nine minutes of the search task phase, they were
asked how much fun they had on a scale from 1 to 5, how immersed
they felt on a scale from 1 to 5 based on [2], and how sick they felt on

123

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 73

0ms 8ms 16ms 24ms 32ms 40ms 48ms 56ms
Latency

101

103

105

107

S
am

pl
es

1. outliers
2. outliers
3. outliers

4. outliers

Figure 3: Histogram of the latency durations used to inject latency jitter with outlier orders adapted from [21]. Most latency values(92.72%) gather
around a mean with another 7.2695% just above. The remaining 0.0105% contain the outliers that are often ignored.

Table 1: Tabular overview of the jitter data used for the jitter simulation. For the latency injection, we use the data for the outlier orders of two and
above which represent less than 0.1% of the measurements.

Outlier Order Percentage of Samples >= Min Max Mean Standard deviation
100.0000% 1.76ms 3.61ms 2.82 ms 0.21ms

1 7.2800% 3.61ms 5.70ms 4.46ms 0.35ms
2 0.0105% 5.70ms 6.22ms 5.84ms 0.14ms
3 0.0020% 6.33ms 7.71ms 6.79ms 0.40ms
4 0.0004% 12.04ms 60.65ms 28.02ms 17.85ms

a scale from 0 to 4. The experiment ended with a one minute phase
without movement to again measure physiological data. Afterwards,
the simulator sickness questionnaire was filled out a second time.

The five minutes before the search task and the one minute after
was chosen to be able to gather physiological data. The data during
the search task is unreliable as movement may disturb the measuring
process. The exposure time was chosen to resemble Kim et. al.’s
procedure [12] for comparability.

5.1.2 Task

The search task was designed as to find spheres appearing in a virtual
scene. The users were instructed to focus their viewing direction
on the position of a sphere and press a button for the next sphere
to appear. The spheres appear at random in one of four corridors
which cannot be surveyed completely from a static position. Hence,
movement is required to find the next sphere. The movement method
was walking in the physical environment as tracked by the HMD
position. This is the most natural way to express movement.

The scene was a room with an open ceiling. In front of the user
were three walls, forming four corridors - two between the walls and
one on each side. Confer Figure 5 for an overview of the setting.
Spheres could spawn between the walls, as well as on either side.
Only one sphere was present in the scene at the same time. The
position was chosen at random for each sphere. The walls obstructed
the view provoking a left and right movement to find a sphere.

Once a sphere was found, it had to be in the middle of the user’s
field of view to acquire one of two possible highlighting colors,
magenta or blue. The test if the sphere was looked at was performed
by an intersection test with a cone originating in the users HMD,
forcing the users to focus on the sphere.

If the looked-at sphere was highlighted in either magenta or blue
by user focus, the user needed to press the trigger button on the
respective controller. For this, the left and right controllers were
colored in blue and magenta, respectively. The controller’s colors
stayed the same for the whole experiment duration.

If the user pressed the trigger button of the controller with the

same color as the sphere, a success message was presented. If they
used the other controller’s trigger button, a failure message was
presented. Either way, a new sphere appeared somewhere else in the
scene. The amount of right and wrong detections as well as a timer
was shown above the walls.

The task as well as the feedback was chosen to suggest a competi-
tive environment and to distract from the real intention of provoking
head rotation and translation. The random position of each sphere
forced a constant movement from left to right and back, spanning
the whole three meters of tracked area. Users were instructed to
not move forward or backward, to keep their overview of the scene
comparable to that of the other participants.

Users were divided into two groups of participants. One group
experienced added latency jitter on the HMD tracking, while the
other did not. The latency jitter was only added in the 9.5 minutes of
the search task. Both the acclimatization phase as well as the minute
afterwards was free from intervention. Due to the test subjects not
moving with a reduced amount of head movement in the absence
of the search task, they were supposed to not detect the different
conditions between the phases.

5.2 Apparatus

The experiment was conducted on a computer with an Intel i7-6700K
processor and a NVidia GTX 1080.

The physiological measurements were done with an Empatica
E4 wristwatch. The watch communicated with the computer via
Bluetooth. The data was provided to the VR application by the
Empatica Bluetooth server.

Using frame counting, we determine our system’s base motion
to photon latency to be 35.67ms. For this the controller and the
monitor were filmed with a high speed camera at 240Hz. In the
resulting video, the frame difference between the movement of the
real controller and the virtual controller was counted to receive a
motion to photon latency between the controller and the monitor.
Multiple measurements were taken with the mean of 46.67ms. This
number was adjusted by the difference in reactivity of the HMD

124

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 74

Figure 4: Illustration of the experiment procedure. Participants filled
out the simulator sickness questionnaire before and after the exper-
iment. Before and after the experiment, there is a time of standing
in VR without performing any tasks, to gather physiological measure-
ments.

Figure 5: Illustration of the virtual scene. One sphere appears at a
time in between the walls. The walls block the sight to force the user
to move left and right to spot the spheres. A counter with time and
successful trials distracts from the purpose of the study by suggesting
a competitive environment. The walkable area is smaller than the
virtual room to avoid walking through walls. The colors are adjusted
for better visibility.

screen to the monitor screen again gathered with frame counting.
There, colors were shown on both the monitor and the HMD and
recorded with a high speed camera at 1000Hz. The frame difference
between the monitor and the HMD resulted in 11.0ms, resulting in
the aforementioned 35.67ms delay from motion to HMD photon
latency. The detour via the monitor was necessary as it is hard
and error prone to track the movement of the virtual controller
on the HMD screen with a camera. The difference in frames per
second of the camera video between the two measurements was
chosen because for the first take, the video needed spatial resolution
to determine the movement. The second video needed only to
compare the time between colors shown on the displays, requiring
less spatial resolution and allowing the camera to switch to a mode
with increased temporal resolution.

6 LIMITATIONS

Even though we base our jitter profile on actual measurements, it
is yet unclear if the scaling of values creates realistic conditions.
Consulted experts report the experience concerning responsiveness
to being close to experiences with unmodified, uncontrolled VR
systems under heavy load.

Using the Empatica E4 wristwatch allows to gather physiological
measurements. However, it can’t be as accurate as arrays of elec-
trodes used in other experiments. The gathering of measurements is
influenced by movement. We tried to limit movement in the phases
before and after the experiment but were not able to eliminate them.

7 RESULTS

Close to half of the test subjects (n = 10) in the latency jitter condi-
tion didn’t notice the repeated lag in tracking of the HMD. Those
who noticed reported it to be very obvious and annoying.

Each scale was analyzed by separately applying a mixed-design
analysis of variance (split-plot ANOVA) with the between factor
latency jitter condition. Generalized η2(η2

g) is reported as a measure
of effect size.

Four subjects were taken out of the analysis for their high up
front sickness score. The simulator sickness questionnaire total
score shows significant results for the comparison of both groups
(F1,39 = 4.44, p< 0.041, η2

g = 0.102). The symptom clusters nausea
(F1,39 = 0.79, p < 0.38, η2

g = 0.020) and oculomotor (F1,39 = 1.02,

125

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 75

Table 2: Values for the SSQ and subscales before and after the
experiment. NL and L are for the condition without latency added and
with latency jitter added.

Pre Post Delta
Mean SD Mean SD Mean SD

SSQ NL 9.69 6.68 7.30 6.95 -2.38 6.10
L 7.17 4.56 9.33 7.68 2.16 7.59

SSQ O NL 25.01 15.18 17.43 14.15 -7.58 13.24
L 19.49 10.33 16.96 16.93 -2.53 18.31

SSQ D NL 16.70 16.03 13.22 15.95 -3.48 16.82
L 11.27 12.15 20.55 17.94 9.28 18.33

SSQ N NL 18.13 18.55 13.83 17.91 -4.29 12.94
L 14.99 13.35 14.99 15.84 0.00 17.59

p < 0.32, η2
g = 0.025) did not test significant while the disorienta-

tion cluster (F1,39 = 5.38, p < 0.026, η2
g = 0.121) did.

Mid experiment questions didn’t test significant for fun (F1,39 =

0.21, p < 0.21, η2
g = 0.001), immersion (F1,39 = 0.90, p < 0.39,

η2
g = 0.005) and sickness (F1,39 = 0.00, p < 0.99, η2

g < 0.0001).
We analyzed the physiological data analogous to Meehan et.

al. [15]. They take the delta between the mean value of the baseline
and the mean value of the stressful environment. For our analysis,
we discard the first minute of the acclimatization phase and the first
minute of the experiment. The omission of the two minutes is to
reduce the effect of the transition from the real world to the virtual
world and from the relaxed phase to the active search task phase in
the measurement data. The mean values are compared with a t-test
between the groups with Cohen’s d as an indicator of effect size.
The skin-conductance values are drift corrected with a regression
line derived from the base line in the first five minutes.

With the four subjects taken out due to high sickness scores in the
beginning, there are 22 usable measures for heart rate (11 without
latency added, 11 with latency jitter) and 28 usable measures for skin
conductance (11 without latency added, 17 with latency jitter). Heart-
rate did test significant (p < .037, d = 0.95) while skin-conductance
(p < 0.39, d = 0.34) did not.

8 DISCUSSION

With the significant result of the simulator sickness questionnaire
comparing pre- and post-conditions between the groups with and
without latency jitter, we accept hypothesis H1. Looking at the
sub-scales, we find latency jitter affecting disorientation, while there
is no significant result on the nausea and oculomotor sub-scales.
The mid-experiment questions how sick the participants feel did
not find a difference between conditions. As this question points in
nausea direction, it affirms the not found significance of the simulator
sickness questionnaire nausea sub-scale.

The significant finding in the simulator sickness total score forms
the basis to show that latency jitter is a problem that cannot be
overlooked. In addition to the base latency that is known to have
implications, repeated spikes in system latency causes uneasiness
even though they are only of short duration.

We tried to avoid techniques known to provoke more cybersick-
ness such as certain travel techniques (driving, joystick movement)
or other-directed camera movement. Other than the base cybersick-
ness that VR is known to produce, we tried to have latency jitter as
the only source of cybersickness. We assume that latency jitter can
interact with other cybersickness inducing causes, though we leave
this as future research.

We did find a significant correlation between heart rate and cy-
bersickness. This is in line with the research of Kim et. al. [12]
and Meehan et. al. [15]. Skin conductance, however wasn’t con-
clusive. The result has to be evaluated under the small sample size.
The constant movement during the experiment rendered a lot of

measurement unusable. A lot of subjects didn’t have any usable
physiological data. The usable heart rate measurements for subjects
included in the analysis were few (mean = 97.05, σ = 57.51 during
the search-task).

It is notable how many test subjects didn’t notice the repeated
delays in head tracking. Pre-studies with colleagues showed that the
introduced latency jitter was obvious. We assume that experience
with virtual reality applications plays an important role. Although
most test subjects already experienced VR before, many did so only
once or twice with an exposure time of roughly an hour. Among
those, some experienced systems that had a worse performance than
our experiment in the latency jitter condition. They presumably see
HMD-based VR systems as inherently affected by latency jitter. It is
unclear if an adaptation to jitter happened, even though the random
nature of the latency jitter is expected to prevent adaption. The
simplicity of the task may have helped to adapt better.

Our sample contains more women than men. Graeber et. al. [9]
finds that there is no gender difference with respect to cybersickness
as other research has assumed. The susceptibility of cybersickness
differs between individuals. Therefore, we cannot argue how much
the employed latency jitter affects a person but only that there is an
effect.

Qualitative discussions with test subjects after the experiment
as well as the discussion above suggests that latency jitter is expe-
rienced in different ways depending on prior VR experience. De-
pending on the success of virtual reality as a technology to reach
a wider user base, latency jitter needs to be reevaluated with users
more accustomed to VR.

The task between groups only varied in the condition if latency
jitter is present or not. The observation of this is that there is a
connection between cybersickness and latency jitter. It will be
interesting to see how latency jitter compares and interacts with other
cybersickness inducing factors especially time invariant latency in
future work.

9 CONCLUSION

This paper investigated the effect of latency jitter on cybersickness.
We developed a latency extraction and injection system which allows
to measure time-variant latency patterns in existing VR applications
and to later inject these patterns in arbitrary target applications.
This system was used to develop and execute a novel experiment to
evaluate the effect of latency jitter on cybersickness in HMD-based
VR. To our best knowledge, this is the first approach to assess the
effect of latency jitter in VR-systems.

The implementation of the latency jitter injector for the Unreal
Engine 4 allows to perform further experiments with different pat-
terns of latency jitter and to also modulate overall latency values.
The described method is easy to adapt for alternative implementa-
tions and target systems and provides a general method for further
research on latency jitter and its effects.

Conducting a user study with a search task, we found a signif-
icant difference between the group with and without latency jitter
added. The task was designed to provoke constant head rotations
and translations. We conclude that not only time invariant latency,
but also latency spikes cause unwanted implications, provoking
cybersickness.

With the experimental results documenting a significant impact
of latency jitter on cybersickness, we argue that more research needs
to be done to understand the implications of latency jitter. Better
ways to measure latency jitter need to be found, which can be used
to inject latency jitter in more controlled environments to understand
the effects and to possibly develop countermeasures. This research
is a first step demonstrating the applicability of the developed tools
to enable further research on the effects of latency jitter in VR.

126

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 76

REFERENCES

[1] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and J. E. Zacher.
Tolerance of temporal delay in virtual environments. In Proceedings of
the Virtual Reality 2001 Conference (VR’01), VR ’01, pp. 247–. IEEE
Computer Society, Washington, DC, USA, 2001.

[2] S. Bouchard, J. St-Jacques, G. Robillard, and P. Renaud. Anxiety
increases the feeling of presence in virtual reality. Presence: Teleoper-
ators and Virtual Environments, 17(4):376–391, 2008.

[3] M. Di Luca. New method to measure end-to-end delay of virtual reality.
Presence, 19(6):569–584, 2010.

[4] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Discrimi-
nation of changes in latency during head movement. In Proceedings
of the HCI International ’99 (the 8th International Conference on
Human-Computer Interaction) on Human-Computer Interaction: Com-
munication, Cooperation, and Application Design-Volume 2 - Volume
2, pp. 1129–1133. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
1999.

[5] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-
crimination of changes of latency during voluntary hand movement of
virtual objects. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 43, pp. 1182–1186. SAGE Publications
Sage CA: Los Angeles, CA, 1999.

[6] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display
and motion system delays on operator performance and uneasiness in a
driving simulator. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 30(2):201–217, 1988.

[7] S. Friston and A. Steed. Measuring latency in virtual environments. Vi-
sualization and Computer Graphics, IEEE Transactions on, 20(4):616–
625, 2014.

[8] J. F. Golding. Motion sickness susceptibility questionnaire revised
and its relationship to other forms of sickness. Brain research bulletin,
47(5):507–516, 1998.

[9] D. A. Graeber and K. M. Stanney. Gender differences in visually
induced motion sickness. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 46, pp. 2109–2113. SAGE
Publications Sage CA: Los Angeles, CA, 2002.

[10] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and
Mitigating the Negative Effects of Local Latencies on Aiming in 3d
Shooter Games. pp. 135–144. ACM Press, 2015. doi: 10.1145/2702123
.2702432

[11] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal.
Simulator sickness questionnaire: An enhanced method for quantifying
simulator sickness. The international journal of aviation psychology,
3(3):203–220, 1993.

[12] Y. Y. Kim, H. J. Kim, E. N. Kim, H. D. Ko, and H. T. Kim. Char-
acteristic changes in the physiological components of cybersickness.
Psychophysiology, 0(0):050826083901001–???, Aug. 2005. doi: 10.
1111/j.1469-8986.2005.00349.x

[13] A. Kinsella, R. Mattfeld, E. Muth, and A. Hoover. Frequency, not
amplitude, of latency affects subjective sickness in a head-mounted
display. Aerospace medicine and human performance, 87(7):604–609,
2016.

[14] K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill. Perceptual
sensitivity to head tracking latency in virtual environments with varying
degrees of scene complexity. In Proceedings of the 1st Symposium
on Applied Perception in Graphics and Visualization, APGV ’04, pp.
39–47. ACM, New York, NY, USA, 2004. doi: 10.1145/1012551.
1012559

[15] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks. Effect
of latency on presence in stressful virtual environments. In IEEE
Virtual Reality, 2003. Proceedings., pp. 141–148, March 2003. doi: 10.
1109/VR.2003.1191132

[16] G. Papadakis, K. Mania, and E. Koutroulis. A system to measure,
control and minimize end-to-end head tracking latency in immersive
simulations. In Proceedings of the 10th International Conference on
Virtual Reality Continuum and Its Applications in Industry, pp. 581–
584. ACM, 2011.

[17] K. S. Park and R. V. Kenyon. Effects of network characteristics on
human performance in a collaborative virtual environment. In Virtual

Reality, 1999. Proceedings., IEEE, pp. 104–111. IEEE, 1999.
[18] J. L. Sherry, K. Lucas, B. S. Greenberg, and K. Lachlan. Video game

uses and gratifications as predictors of use and game preference. Play-
ing video games: Motives, responses, and consequences, 24(1):213–
224, 2006.

[19] M. E. St. Pierre, S. Banerjee, A. W. Hoover, and E. R. Muth. The
effects of 0.2hz varying latency with 20100ms varying amplitude on
simulator sickness in a helmet mounted display. Displays, 36:1–8, Jan.
2015. doi: 10.1016/j.displa.2014.10.005

[20] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Reducing application-
stage latencies of interprocess communication techniques for real-time
interactive systems. In Virtual Reality (VR), 2016 IEEE, pp. 287–288.
IEEE, 2016.

[21] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Towards comparable
evaluation methods and measures for timing behavior of virtual reality
systems. In Proceedings of the 22Nd ACM Conference on Virtual
Reality Software and Technology, VRST ’16, pp. 47–50. ACM, New
York, NY, USA, 2016. doi: 10.1145/2993369.2993402

[22] A. Steed. A Simple Method for Estimating the Latency of Interactive,
Real-time Graphics Simulations. In Proceedings of the 2008 ACM
Symposium on Virtual Reality Software and Technology, VRST ’08, pp.
123–129. ACM, New York, NY, USA, 2008. doi: 10.1145/1450579.
1450606

[23] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and S. I. MacKenzie.
Effects of tracking technology, latency, and spatial jitter on object
movement. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium
on, pp. 43–50. IEEE, 2009.

[24] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde, S. Kopp, M. Ernst,
and M. Botsch. The impact of latency on perceptual judgments and
motor performance in closed-loop interaction in virtual reality. In
Proceedings of the 22nd ACM Conference on Virtual Reality Software
and Technology, pp. 27–35. ACM, 2016.

[25] M. L. Wilson. The effect of varying latency in a Head-Mounted Dis-
play on task performance and motion sickness. PhD thesis, Clemson
University, 2016.

[26] W. Wu, Y. Dong, and A. Hoover. Measuring Digital System Latency
from Sensing to Actuation at Continuous 1-ms Resolution. Presence:
Teleoperators and Virtual Environments, 22(1):20–35, Feb. 2013. doi:
10.1162/PRES a 00131

127

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 14,2020 at 09:47:56 UTC from IEEE Xplore. Restrictions apply.

CHAPTER 7. EFFECTS 77

CHAPTER 7. EFFECTS 78

Copyright

©2018 IEEE. Reprinted, with permission, from Jan-Philipp Stau�ert, Florian Niebling,
Marc Erich Latoschik, “E�ects of Latency Jitter on Simulator Sickness in a Search Task”,
2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), March 2018

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author wrote the software, conducted the experiment and analysis and took the lead
in writing the manuscript. He provided critical feedback and helped shape the research,
the analysis and the manuscript.

7.2 Latency and Cybersickness

Other researchers have looked at the connection between latency and cybersickness
even though, they did not take latency jitter into consideration. We submitted

a literature review to the Frontiers special issue on “Cybersickness in Virtual Reality
Versus Augmented Reality” that looks at the connection of latency and cybersickness.
There is a good part describing di�erent approaches to measure latency and to under-
stand latency in this paper, which was partly already discussed in previous chapters of
this thesis.

The article was published as Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich
Latoschik. “Latency and Cybersickness: Impact, Causes, and Measures. A Review”. In:
Frontiers in Virtual Reality 1 (2020), page 31. issn: 2673-4192. doi: 10.3389/frvir.2020.

582204. url: https://www.frontiersin.org/article/10.3389/frvir.2020.582204

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://doi.org/10.3389/frvir.2020.582204
https://doi.org/10.3389/frvir.2020.582204
https://www.frontiersin.org/article/10.3389/frvir.2020.582204

REVIEW
published: 26 November 2020
doi: 10.3389/frvir.2020.582204

Frontiers in Virtual Reality | www.frontiersin.org 1 November 2020 | Volume 1 | Article 582204

Edited by:

Kay Marie Stanney,

Design Interactive, United States

Reviewed by:

Pierre Bourdin,

Open University of Catalonia, Spain

Wolfgang Stuerzlinger,

Simon Fraser University, Canada

Juno Kim,

University of New South Wales,

Australia

*Correspondence:

Jan-Philipp Stauffert

jan-philipp.stauffert@uni-wuerzburg.de

Specialty section:

This article was submitted to

Virtual Reality and Human Behaviour,

a section of the journal

Frontiers in Virtual Reality

Received: 10 July 2020

Accepted: 30 October 2020

Published: 26 November 2020

Citation:

Stauffert J-P, Niebling F and

Latoschik ME (2020) Latency and

Cybersickness: Impact, Causes, and

Measures. A Review.

Front. Virtual Real. 1:582204.

doi: 10.3389/frvir.2020.582204

Latency and Cybersickness: Impact,
Causes, and Measures. A Review
Jan-Philipp Stauffert*, Florian Niebling and Marc Erich Latoschik

Human-Computer Interaction (HCI) Group, Informatik, University of Würzburg, Würzburg, Germany

Latency is a key characteristic inherent to any computer system. Motion-to-Photon

(MTP) latency describes the time between the movement of a tracked object and

its corresponding movement rendered and depicted by computer-generated images

on a graphical output screen. High MTP latency can cause a loss of performance in

interactive graphics applications and, even worse, can provoke cybersickness in Virtual

Reality (VR) applications. Here, cybersickness can degrade VR experiences or may

render the experiences completely unusable. It can confound research findings of an

otherwise sound experiment. Latency as a contributing factor to cybersickness needs to

be properly understood. Its effects need to be analyzed, its sources need to be identified,

good measurement methods need to be developed, and proper counter measures

need to be developed in order to reduce potentially harmful impacts of latency on the

usability and safety of VR systems. Research shows that latency can exhibit intricate

timing patterns with various spiking and periodic behavior. These timing behaviors may

vary, yet most are found to provoke cybersickness. Overall, latency can differ drastically

between different systems interfering with generalization of measurement results. This

review article describes the causes and effects of latency with regard to cybersickness.

We report on different existing approaches to measure and report latency. Hence, the

article provides readers with the knowledge to understand and report latency for their

own applications, evaluations, and experiments. It should also help to measure, identify,

and finally control and counteract latency and hence gain confidence into the soundness

of empirical data collected by VR exposures. Low latency increases the usability and

safety of VR systems.

Keywords: virtual reality, latency, cybersickness, jitter, simulator sickness

1. INTRODUCTION

Cybersickness is a severe problem for the usage and safety of VR technology. It hinders both
the broader adoption of VR technology and its overall usability. Cybersickness is closely related
to simulator sickness and motion sickness. Early research describes cybersickness as a motion
sickness in virtual environments (McCauley and Sharkey, 1992). Cybersickness is usually defined
by a set of specific adverse symptoms in combination with the use of certain technologies, such
as disorientation, apathy, fatigue, dizziness, headache, increased salivation, dry mouth, difficulty
focusing, eye strain, vomiting, stomach awareness, pallor, sweating, and postural instability
(LaViola, 2000; Stone Ill, 2017; McHugh, 2019). These symptoms are shared with related definitions
of sickness, even though their severity might vary. Stanney et al. (1997) argues that cybersickness is
connected to more symptoms in the disorientation cluster of the Simulator Sickness Questionnaire

CHAPTER 7. EFFECTS 79

Stauffert et al. Latency and Cybersickness. A Review

(SSQ) (Kennedy et al., 1993) than simulator sickness. The
disorientation cluster contains several symptoms which do
not all carry the explicit meaning of disorientation. Gavgani
et al. (2018) show that motion sickness and cybersickness
show the same severity of symptoms in extreme cases.
Bockelman and Lingum (2017) distinguish cybersickness from
other definitions of sickness by its “cyber” source. We use the
term cybersickness to describe sickness with the aforementioned
symptoms induced by Virtual Reality or Augmented Reality
applications that do not apply external forces on the user.
External forces are motion platforms or other motor actuated
methods that move a user without the user’s own effort.
These VR or AR applications provide stimuli predominately by
visual perception.

Chang et al. (2020) review experiments that measure
cybersickness. They describe the frequency of use for different
subjective measurements. Out of 76 experiments, 58 (≈ 76%) use
the SSQ (Kennedy et al., 1993). Less often used questionnaires
are the Fast Motion Sickness scale (FMS, 6 experiments ≈

8%, Keshavarz and Hecht, 2011), a forced-choice question (5
experiments ≈ 6.5%, Chen et al., 2011), the Misery Scale
(MISC, 4 experiments ≈ 5%, Bos et al., 2010), the Motion
Sickness Assessment Questionnaire (MSAQ, 3 experiments ≈

4%, Gianaros and Stern, 2010) and the Virtual Environment
Performance Assessment Battery (VEPAB, 3 experiments ≈ 4%,
Lampton et al., 1994). In contrast, Davis et al. (2014) state that the
Pensacola Diagnostic Index (Graybiel et al., 1968) is the “most
widely used measure in motion sickness studies”(Davis et al.,
2014, p. 6). They state that another widely used questionnaire
besides the SSQ is the Nausea Profile (Muth et al., 1996)
and further list the Virtual Reality Symptom Questionnaire
(Ames et al., 2005). Another questionnaire in use is the Motion
Sickness Susceptibility Questionnaire (MSSQ) (Golding, 1998).
Here again, it becomes apparent how close cybersickness is to
simulator sickness and motion sickness, since questionnaires
are often used for multiple sickness definitions. The listed
questionnaires are in use for research on cybersickness, but care
has to be taken to understand their different usage and purpose.
Many, like the SSQ, report on the sickness experienced at the time
of answering the questionnaire while others like theMSSQ ask for
past experiences to gauge sickness susceptibility that can play into
the experience. TheNausea Profile is a scale formeasuring nausea
due to any cause, not a motion sickness-specific scale, while the
MSAQ of the same group targets motion sickness and describes
subscales for further differentiating motion sickness aspects.

There are different explanations how cybersickness comes
into being and there are multiple factors that influence
cybersickness. Explanations for cybersickness often preceed the
term cybersickness itself. They were created for motion sickness
or simulator sickness and then adopted for cybersickness.
Rebenitsch and Owen (2016) and LaViola (2000) list and discuss
the following theories for cybersickness: the sensory mismatch
theory (Reason and Brand, 1975; Oman, 1990), the poison
theory (Treisman, 1977), the postural instability theory (Riccio
and Stoffregen, 1991) and the rest frame theory (Virre, 1996).
Oman (1990) describe their sensory mismatch theory as possibly
underlying multiple different sickness definitions such as motion

sickness and simulator sickness. Bles et al. (1998) adapt this
statement to describe postural stability as underlying multiple
different sickness definitions.

Factors that evoke cybersickness are “rendering modes, visual
display systems and application design” (Rebenitsch and Owen,
2016, p. 102) as well as hardware-specific factors. Rebenitsch and
Owen (2016) describe the former factors but leave hardware-
specific factors such as latency open to be discussed in other
publications. This review focuses on latency contributions to
cybersickness. There are other hardware-specific factors such as
tracking accuracy (Chang et al., 2016) that are not covered in
this review. Latency describes the processing time incurred by the
computer system used for the VR application. VR needs complex
hard- and software to deliver the desired experience. Each part in
the system contributes to the overall latency by itself and by the
effects of its interaction with other parts.

Latency as an inherent property of computer system
processing is easily introduced into complex architectures,
and as such is subject to many evaluations. There are different
angles toward research on latency in virtual environments
that mutually influence each other. Effects of latency on
cybersickness are found, which necessitate research into
measurements and control of latency. Experiments that
simulate latency are performed that gather more insight
into its effects on cybersickness and user performance. And
not least of all, latency in experiments performed in virtual
environments needs to be reported in research articles.
This review is thus organized as follows: First, we discuss
experiments that show that latency contributes to cybersickness.
Then, we describe ways to measure latency, which is
essential for development of applications with consistent
latency behavior. We then show how measured latency is
reported in research articles to illustrate latency patterns
in experiments.

2. EFFECTS

Table 1 shows an overview of different studies that show that
latency contributes to cybersickness. The researchers conducted
experiments with latency as the independent variable and
cybersickness as the dependent variable. Latency is manipulated
to create conditions of different motion to photon latency in the
employed systems. For each condition, cybersickness is measured
to compare sickness values between the conditions. Researchers
measure cybersickness with subjective questionnaires or
objective physiological measurements. The most often used
questionnaire for the listed papers is the SSQ with six out of
11 papers (Meehan et al., 2003; Moss et al., 2011; St. Pierre
et al., 2015; Kinsella et al., 2016; Stauffert et al., 2018; Caserman
et al., 2019). Physiological measurements are postural stability
or postural sway, heart rate, sweating and galvanic skin
response. We list postural stability separate from the other
physiological measurements to distinguish the different cases
of usage. Frank et al. (1988) list postural stability separate
from other physiological measurements. Kawamura and Kijima
(2016) only observe postural stability. Postural instability

Frontiers in Virtual Reality | www.frontiersin.org 2 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 80

Stauffert et al. Latency and Cybersickness. A Review

often correlates with visually-induced motion sickness (Riccio
and Stoffregen, 1991) and some studies have found it to be
predictive of visually-induced motion sickness (Arcioni et al.,
2019). Meehan et al. (2003) and Stauffert et al. (2018) only
use heart rate and galvanic skin response. Their physiological
measurements showed an effect of increased latency on heart
rate. Gavgani et al. (2018) argue that forehead sweating is the
best physiological indicator for motion sickness which shows
the same symptoms as cybersickness in extreme cases. Their
rollercoaster experiment only finds minor or moderate effects
for heart rate and galvanic skin response. While heart rate
may not be the best indicator of latency induced cybersickness,
it supports the research that evaluates cybersickness with
the SSQ.

Most research for latency and cybersickness tests only
the effect of static latency added (Frank et al., 1988; DiZio
and Lackner, 2000; Meehan et al., 2003; Moss et al., 2011;
Kawamura and Kijima, 2016; Caserman et al., 2019; Palmisano
et al., 2019; Kim et al., 2020). They introduce a fixed delay
into the system and test different such latencies against each
other. This is based on the assumption that most observed
latencies are close to one mean latency, for which one fixed
added latency per condition is an approximation. This simple
latency model consistently shows an increase of latency in the
VR simulation, leading to increased cybersickness or a more
disturbed stand equilibrium.

Movement itself is important to experience latency induced
cybersickness (DiZio and Lackner, 2000). Although, Moss
et al. (2011) found no influence of latency in an experiment
with a lot of head movement. They report that the head
movement itself evoked sickness. It may be that sickness
from other sources was stronger than the latency induced
sickness thereby masking it. Without movement, the user
might not feel the discrepancy between real world and virtual
world widened by latency. An increase of head movement
can increase cybersickness (Palmisano et al., 2019; Kim et al.,
2020). Studies often involve a search task that requires
head movement.

Taking into account that latency in measurements often
shows irregular spikes, Stauffert et al. (2018) showed that
not only uniform but occasional latency spikes provoke
cybersickness. St. Pierre et al. (2015) and Kinsella et al.
(2016) show that periodic latency like measured by Wu
et al. (2013) contributes to cybersickness. They describe
latency as consisting of a time-invariant and a periodic part.
Periodic latency is described to follow a sine wave. St. Pierre
et al. (2015) argues that the sine’s amplitude has more
influence than its frequency. Kinsella et al. (2016) observes
the opposite.

3. MEASURING LATENCY

The contribution of latency to cybersickness necessitates
controlling latency in every VR or AR application. High latency
and especially latency spikes can often only be detected by
measurements, which in turn provide researchers and other

developers with indications if and where interventions are
needed during the development process. Approaches to measure
latency are numerous and distinguish themselves in the amount
of instrumentation they need, and which kind of latency they
measure. Most approaches measure motion to photon latency,
which is the time between a movement of some tracked
object, and the effect corresponding to this movement shown
on a screen, conveyed by photons emitted from the screen.
Different tracked objects can be used to signify movement in
the measurement of motion to photon latency, such as Motion
Controllers or Head-Mounted Displays (HMD). The employed
screens may be computer monitors, mobile phone screens or
AR/VRHMD screens. Themotion to photon latency is also called
end-to-end latency. Table 2 shows an overview of approaches.

Measurements need to compare the time difference between
the motion of a tracked object and a resulting response on
a screen. The observed motion can be the onset of a motion
(Feldstein and Ellis, 2020), special characteristics during amotion
such as the peak of acceleration (Friston and Steed, 2014),
the end of a motion (Chang et al., 2016) or arrival at a
predetermined position (He et al., 2000) or a predetermined
motion (Di Luca, 2010). A predetermined motion is usually
a sinusoidal movement of a pendulum (Steed, 2008) or the
circular movement of a turntable (Swindells et al., 2000).
A motion can also be the passing of time in the form of
timestamps (Sielhorst et al., 2007; Billeter et al., 2016; Gruen et al.,
2020).

The screen shows either a copy of the motion (Roberts et al.,
2009) or an encoded version of it (Becher et al., 2018). The system
needs to track the tracked object, integrate it into its simulation
and show a generated image on the screen (Mine, 1993; Feldstein
and Ellis, 2020). The necessary processing time leads to the image
on the screen always being delayed in contrast to the original, real
motion. Additional steps such as Remote Graphics Rendering
(Kämäräinen et al., 2017), or using additional computers to
process tracking information, leads to increased latency (Roberts
et al., 2009).

A straight forward approach uses a camera to observe both the
real and the virtual motion and compare the delay between their
chosen motion aspect. The analysis can be done by hand (Liang
et al., 1991) or automated (Friston and Steed, 2014). Tracking
cameras trade spatial resolution for temporal resolution. High
spatial resolution is needed to better capture the real motion,
but high temporal resolution is needed to determine a high
precision latency value. A way around the dilemma is to fit
the mathematical function of the known movement to the
tracking data (Steed, 2008). This reduces uncertainty due to
restricted resolution.

Camera based measurements do not work well with HMDs,
because the lenses distort the image in a way that necessitates
them to be very close to the lens. This way, they cannot record
the real tracked object any longer. These approaches usually use
a computer monitor as the observed screen. Some researchers
remove the HMD lenses (Feldstein and Ellis, 2020) or use
additional lenses that reverse the distortion (Becher et al., 2018).

An alternative is to observe the real motion separately
from its virtual counterpart. The obvious extension is to

Frontiers in Virtual Reality | www.frontiersin.org 3 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 81

Stauffert et al. Latency and Cybersickness. A Review

TABLE 1 | Research simulating latency that tested for a connection to cybersickness.

System Task Measure Latency

shape

Conditions Result n

Frank et al., 1988 Driving simulator Driving Rod and frame,

physio, postural

stability

Uniform Added 0, 170, 340 ms

transport delay

Evokes sickness visual

delay more important

than motion delay

54 (27f 27m)

Stauffert et al.,

2018

HMD Vive Search SSQ, physio Jitter Added no latency,

Added latency jitter

Jitter provokes

sickness

45

(36f 9m)

Kawamura and

Kijima, 2016

HMD DK2 Keep balance Pressure plate Uniform Absolute 1, 26, 39, 53,

66 ms

Latency disturbs

human stand

equilibrium

17

Caserman et al.,

2019

HMD Vive Pro full

bodytracking

Search SSQ Uniform Absolute 0, 50, 54, 58,

63, 69, 75, 83, 92, 104,

121, 150 ms

More latency More

cybersickness

21

(6f 15m)

Moss et al., 2011 HMD No HMD Search SSQ Uniform Added 0, 200 ms

Added 0, 145, 300 ms

Latency unclear

connection to Simulator

sickness; exposure

time and active head

movements Evoke

simulator sickness

22

(11f 11m)

29

(12f 17m)

Kinsella et al.,

2016

HMD Search SSQ Periodic 2 × 2 design: Added

frequency 0.2/1 Hz

Amplitude 100/20–100

ms

Latency frequency with

Periodic latency

scenario Increases

sickness 0.2 Hz

sickens more

120

St. Pierre et al.,

2015

HMD search SSQ Periodic 0, 100 ms, 100 ms 0.2

Hz added 20–100 ms

0.2 Hz

Amplitude increases

sickness frequency

potentially too Periodic

worse than uniform

120

(64f 56m)

DiZio and Lackner,

2000

HMD Search Criteria of Graybiel

et al., 1968

Uniform Absolute 67, 159, 254,

355 ms 21, 39, 80, 163

ms

Lag leads to sickness,

no sickness without

head movement

21

8

Meehan et al.,

2003

HMD Explore Move SSQ, Physio Uniform Absolute 50, 90 ms More latency, Increased

heart rate

164

(32f 132m)

Palmisano et al.,

2019

HMD Rotate head FMS Uniform Absolute 5, 46, 87, 128,

169, 212 ms

More latency, Increased

cybersickness

14

Kim et al., 2020 HMD Rotate Head FMS Uniform Absolute 5, 46, 87, 128,

169, 212 ms

More latency, Increased

cybersickness

30

use two synchronized cameras (Kijima and Miyajima, 2016b).
More often, the real motion is observed by a photodiode
that gets covered (Mine, 1993) or a rotary encoder (Seo
et al., 2017) that reports the orientation of the platform that
the tracked object is placed on. The screen is monitored
by one (Pape et al., 2020) or more photodiodes (Becher
et al., 2018; Stauffert et al., 2020a). A photodiode has a
high temporal resolution but can only measure one brightness
value per measurement. The application to measure needs
to display its tracking information in brightness levels to
use photodiodes.

The chosen method determines how many latency values are
measured. Sine fitting (Steed, 2008; Teather et al., 2009; Zhao
et al., 2017) and cross correlation (Di Luca, 2010; Kijima and
Miyajima, 2016b; Feng et al., 2019) only report one latency
for one measurement run. If the latency between an event and
its reaction on the screen is measured, the number of latency
measurements that can be reported depends on the approach.
Some methods need to provoke an event and then wait for the

result, before it is possible to measure again (Liang et al., 1991;
He et al., 2000; Swindells et al., 2000; Miller and Bishop, 2002;
Roberts et al., 2009; Friston and Steed, 2014; Raaen and Kjellmo,
2015; Kämäräinen et al., 2017; Seo et al., 2017; Feldstein and Ellis,
2020; Pape et al., 2020). Some approaches allow to measure the
latency for every frame shown on the screen (Sielhorst et al.,
2007; Papadakis et al., 2011; Wu et al., 2013; Billeter et al., 2016;
Kijima and Miyajima, 2016b; Becher et al., 2018; Gruen et al.,
2020; Stauffert et al., 2020a). Some approaches that only measure
the latency of an event are usable to measure continuously, while
others are not. We distinguish methods in Table 2 depending on
the reported usage.

4. DESCRIPTION

Looking at the approaches to measure latency, we see that
latency is reported in different ways. The reported values are
often not comparable, as different papers use different systems

Frontiers in Virtual Reality | www.frontiersin.org 4 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 82

Stauffert et al. Latency and Cybersickness. A Review

TABLE 2 | Comparison of latency measurement approaches.

Motion Photon

Paper Device Capture Device Capture Method

Becher et al., 2018 HMD Rotary encoder HMD Photodiode Continuous

Di Luca, 2010 Tracked object Photodiode Screen Photodiode Cross correlation

Billeter et al., 2016 LED timestamp Camera AR HMD Same camera Continuous

Feldstein and Ellis,

2020

HMD Camera HMD Same camera Event

Feng et al., 2019 HMD Camera HMD Same camera Cross correlation

Friston and Steed,

2014

Mouse Camera Monitor Same camera Event

Gruen et al., 2020 Sub millisecond clock Camera HMD Synced camera Continuous

He et al., 2000 Wand Camera Monitor Same camera Event

Kämäräinen et al.,

2017

Touch Switch Mobile phone Photodiode Event

Kijima and

Miyajima, 2016a

HMD Camera HMD Synced camera Cross correlation

Kijima and

Miyajima, 2016b

HMD Camera HMD Synced camera Continuous

Liang et al., 1991 Pendulum Camera LED display Same camera Event

Miller and Bishop,

2002

HMD CCD array Monitor CCD array Event

Mine, 1993 Pendulum Photodiode Monitor Photodiode Event

Papadakis et al.,

2011

Tracked object Rotary encoder Monitor Photodiode Continuous

Pape et al., 2020 Rigid body Switch Projection Photodiode Event

Raaen and

Kjellmo, 2015

HMD Photodiode HMD Photodiode Event

Roberts et al.,

2009

Hand Camera Monitor Synced camera Event

Seo et al., 2017 HMD Rotary encoder HMD Photodiode Event

Sielhorst et al.,

2007

Timestamps Camera AR HMD Same camera Continuous

Stauffert et al.,

2020a

Tracked object Motor driver HMD Photodiode Continuous

Steed, 2008 Pendulum Camera Monitor Same camera Sine fitting

Swindells et al.,

2000

Turntable Camera Half silvered mirror Same camera Event

Teather et al.,

2009

Tracked object Camera Monitor Same camera Sine Fitting

Wu et al., 2013 Manually Moved Bar Camera Monitor Same camera Continuous

Zhao et al., 2017 HMD Potentiometer HMD Photodiode Sine fitting

Camera based measurement has a camera that observes both the real tracked object and its virtual counterpart. Photodiode based measurements read the encoded information off a

screen with a photodiode. The observation of the real object is done with a different sensor. Motion to Photon latency measurements use different devices where the motion originates

from and which kind of screen emits the photon. The methods column describe how often it is possible to measure latency.

with varying complexity. A less complex system is expected
to show lower and more deterministic latency than a more
complex system. Newer hardware often has lower latency with
reduced determinism (McKenney, 2008). Some papers report
multiple measurements of different systems. Table 3 lists only a
subset of the numbers reported in the respective research papers.
Interested readers are referred to the original publications.

An observation is that latency is not a constant value. Latency
is different with different devices (Mine, 1993), different software
configurations (Friston and Steed, 2014) or different input

methods (Kämäräinen et al., 2017). Different usage patterns such
as a change of the movement direction can influence latency (He
et al., 2000). Even small changes in the measurement setup can
make a difference. Latency measured in the upper part of a screen
can be lower than latency measured in the lower part, due to
the scan out sequence (Papadakis et al., 2011). The problem with
latency measurements is that they are often performed “under
optimized and artificial conditions that may not represent latency
conditions in realistic application-oriented scenarios” (Feldstein
and Ellis, 2020).

Frontiers in Virtual Reality | www.frontiersin.org 5 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 83

Stauffert et al. Latency and Cybersickness. A Review

The variability is usually reported by a mean value at least.
Standard deviation and minimum/maximum values provide
more insight. Histograms can be used to show even more
information about what latencies are to be expected. We want to
focus on these visualizationmethods here as a basis to understand
the connection between latency and cybersickness. The different
ways to describe cybersickness are used in the different simulated
latencies of the cybersickness experiments of Table 1.

The sparklines in Table 3 give an impression of the shape of
latency. The data is stretched to take the maximum amount in x
and y direction and only shows the x axis segment that contains
data. Sparklines are supposed to only give a general idea of the
shape (Tufte, 2001). Stauffert et al. (2016) and Stauffert et al.
(2020a) use a logarithmic y axis. The other papers use a linear y
axis. Every sparkline has the measured latency in x direction and
its probability in y direction. We exclude Stauffert et al. (2020a)
systems where there is artificial latency introduced, but include
systems that have artificially high system load but mimic real
world scenarios.

A key difference between representations given in publications
is if they include rare outliers. Some researchers show no outliers
(Wu et al., 2013; Pape et al., 2020) while others do (Sielhorst
et al., 2007; Stauffert et al., 2016, 2020a). Latencies usually
cluster around one or multiple values. Wu et al. (2013) system
2 and Stauffert et al. (2020a) system 1 show one cluster. Pape
et al. (2020) and Sielhorst et al. (2007) system 1 and 3, Wu
et al. (2013) system 1 and Stauffert et al. (2016) show two
clusters. Sielhorst et al. (2007) system 2 shows 3 clusters and
Stauffert et al. (2020a) system 2 shows 9 clusters, each indicated
by higher probabilities surrounded by lower probabilities in
the histogram.

Each cluster’s distribution appears to follow a normal
distribution though Sielhorst et al. (2007) system 1, Stauffert et al.
(2016) and Stauffert et al. (2020a) system 2 show a more skewed
distribution with a longer tail toward larger latencies, resembling
more a gamma distribution. Pape et al. (2020) proposes to
describe the distribution with a gaussian mixture model, i.e.,
an imposition of multiple normal distributions. Stauffert et al.
(2018) argue to use an empirical distribution derived from the
measurements. Multiple clusters presumably originate from the
interplay of two or more parts running in decoupled loops in
the observed system. Feldstein and Ellis (2020) list processing
stages such as simulation or rendering that contribute to the final
latency pattern with their runtime and communication behavior.
Antoine et al. (2020) show how latency jitter emerges when input
device and display sampling frequency differ.

Besides the general distribution, there may be temporal
patterns. Stauffert et al. (2020a) found reoccurring latency spikes
with a uniform interarrival time. Wu et al. (2013) found a
sinusoidal latency pattern.

5. DISCUSSION

We have shown how latency is measured. The necessary
instrumentation varies from simple observations of the VR
equipment (Steed, 2008), to the need of specific software to

TABLE 3 | Table summarizing how latency is reported in papers that propose

latency measurement approaches.

Mean SD Min/Max Histogram

Becher et al., 2018 5.1 2.7 1/10

Billeter et al., 2016 9.8 2.1

Di Luca, 2010 43.5 5.1

Feldstein and Ellis, 2020 84 6.3 72/94

Feng et al., 2019 2.3

Friston and Steed, 2014 24 18/32

Gruen et al., 2020 54 1.9

He et al., 2000 58.5

Kämäräinen et al., 2017 74.3 14.7

Kijima and Miyajima,

2016b

16.86

Kijima and Miyajima,

2016a

19.64

Liang et al., 1991 85

Miller and Bishop, 2002 100

Mine, 1993 80.95

Papadakis et al., 2011 50 5

Pape et al., 2020 124.62

Raaen and Kjellmo, 2015 4 2/5

Roberts et al., 2009 414

Seo et al., 2017 46.48 1.09

Sielhorst et al., 2007

Stauffert et al., 2020a 64.14 1.6

Stauffert et al., 2016

Steed, 2008 64

Swindells et al., 2000 49

Teather et al., 2009 73 4

Wu et al., 2013 27.2

Zhao et al., 2017 7.2 0.5

All values are in milliseconds. The values are not comparable and are only for illustration

because different systems or parts of systems are measured. Histograms are described

with sparklines. The sparklines show only the general shape of the distribution. They are

scaled to show the data range of reported values and their frequency. Some papers

measure for up to three systems.

run (Friston and Steed, 2014), to required modifications of the
hardware (Stauffert et al., 2020a). The motion may be evoked
manually (Wu et al., 2013) or with a pendulum (Mine, 1993)
or a turntable (Chang et al., 2016). Latency is observed from
one distant observer with one camera (He et al., 2000), multiple
distant observers with synchronized cameras (Gruen et al., 2020)

Frontiers in Virtual Reality | www.frontiersin.org 6 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 84

Stauffert et al. Latency and Cybersickness. A Review

or close observers that are attached to the moved device and the
screen (Di Luca, 2010).

Most researchers that measure latency report a mean latency
value with an optional standard deviation. Some report a
minimum and maximum value in addition. More insight is
provided by histograms and plots showing the temporal behavior
(Wu et al., 2013). There is research into whether latency
influences cybersickness. Most compare the effect of one latency
condition with another condition that has a time invariant
increased latency (Frank et al., 1988; DiZio and Lackner,
2000; Meehan et al., 2003; Moss et al., 2011; Kawamura and
Kijima, 2016; Caserman et al., 2019; Palmisano et al., 2019;
Kim et al., 2020). This is based on the most often reported
mean latency. Latency jitter as described in latency histograms
and periodic latency patterns are shown to also contribute to
cybersickness (Stauffert et al., 2018). All approaches to report
latency find a counterpart where latency is simulated and shown
to influence cybersickness.

There is more research into latency for VR systems than for
AR systems, mainly because the technology is often times easier
to handle. Many AR systems are simulated with VR systems until
AR technology makes the simulated features possible. While less
researched, AR systems show similar problems (Sielhorst et al.,
2007).

5.1. Limitations on Latency Comparability
There are many factors that can influence latency and the
predictability. Kijima and Miyajima (2016a) show that HMD
prediction and timewarp (vanWaveren, 2016) make a difference.
Asynchronous timewarp uses a shortcut to update the displayed
image after it was rendered, which yields different values when
measured to a system that looks at motion controller movement
that is only updated in the simulation of the virtual world.
A sequential scan-out process leads to the eyes getting the
information at different points in time so it can make a
difference which screen is taken for measurement (Papadakis
et al., 2011). He et al. (2000) found different latency depending
on the movement direction of the tracked object. Manufacturers
optimize latency with prediction that may fail (Gach, 2019).

Latency reporting depends on the observed system. The values
in Table 3 are not comparable to one another because some
do not measure certain stages of computation or use other
hardware. Even though the values are not comparable, they are
often reported in a similar fashion with one mean value and a
standard deviation.

Spatial jitter can be similar to latency jitter by offsetting
tracking positions in an unexpected way. Some measurement
methods can not distinguish between latency jitter and spatial
jitter by their design. 2D pointing performance suffers with
spatial jitter (Teather et al., 2009). Spatial jitter is likely to evoke
cybersickness as well andmay partially be described in the latency
jitter studies already. Some measurement methods measuring
related phenomena further complicates the comparison.

5.2. Latency Variability
VR andAR applications require substantial computational power
to create virtual environments. Computer systems to provide

the experience are optimized for performance rather than real-
time, i.e., guaranteed response times (McKenney, 2008). Some
applications such as robotics and space exploration require such
deterministic runtime behavior of software. Modern operating
systems do not provide real-time capabilities and even the
Linux PREEMPT_RT patches cannot provide reliable real-time
runtimes (Mayer, 2020). Without a real-time operating system,
there may be unforseeable latency spikes that can harm VR
experiences, even if latency was previously acceptable.

Researchers agree that “the delays vary substantially”
(Kämäräinen et al., 2017) and often try to “illustrate the
variations in latency of real systems” (Friston and Steed, 2014)
by reporting more than one mean latency value. As a caveat,
the “latency testing on isolated virtual reality systems under
optimized and artificial conditions may not represent latency
conditions in realistic application-oriented scenarios” (Feldstein
and Ellis, 2020). Care must be taken to measure as close to the
use case as possible to best represent the expected latencies. The
best case would be to measure during exposure.

Rare latency outliers show latencies much larger than the
average (Stauffert et al., 2020a). Networked applications often
only look at the 95th, 99th, and 99.9th percentile (Vulimiri
et al., 2013) to estimate response times. Teather et al. (2009) use
the 95th percentile to describe their motion-to-photon latency
measurements. Stauffert et al. (2018) provide a first study with
latency spiking behavior including the top one percent but more
research is needed to understand if regarding only the 95th or
99th percentile is sufficient. Some web applications found the
need to include the remaining one percent of latencies in their
analyses (Hsu, 2015).

Latency jitter can be reduced with prediction (Jung et al.,
2000). Incorporating latency jitter in the prediction model
increases the prediction performance (Tumanov et al., 2007).
Prediction, however, introduces its own side effects such as over
anticipation (Nancel et al., 2016).

5.3. Desirable Latency Values
How much latency is tolerable for a good VR experience?
Carmack (2013) says that it should be below 50 ms to feel
responsive and recommends less than 20 ms. Attig et al. (2017)
look at HCI experiments without VR that report no impact on
usability when latency is below 100 ms. Humans can detect visual
variations at 500 Hz (Davis et al., 2015) and latency below 17
ms (Ellis et al., 1999, 2004; Adelstein et al., 2003). Although,
Feldstein and Ellis (2020) indicate that perceivable latency does
not necessarily cause cybersickness. Jerald (2010) measures a
minimum latency threshold of 3.2 ms in one of the participants,
but adds that the exact perceivable latency may depend on the
virtual environment.

5.4. Need to Measure Latency
Measuring latency helps to become aware of bottlenecks in
employed hard- and software (Swindells et al., 2000; Di Luca,
2010).Withoutmeasuring, those problemsmay never be detected
and may influence an otherwise sound experiment. Many
researchers, however, do not report latency. The 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR)

Frontiers in Virtual Reality | www.frontiersin.org 7 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 85

Stauffert et al. Latency and Cybersickness. A Review

saw 104 published papers. 85 papers conducted a user study
in virtual reality. Only 6 reported the latency of the employed
VR system. Although a reported mean latency strengthens trust
that the systems performed as expected, latency jitter may
still have occurred during experiments and may have impaired
individual measurements.

Which approach to use depends on the application and
possibilities of the researchers. A detailed analysis helps to
judge the application’s performance but everything is better
than not measuring at all. Every researcher should be able
to do manual frame counting (He et al., 2000) as shown in
Feldstein and Ellis (2020) that compare the results of different
evaluators. Sine fitting (Steed, 2008) reduces imprecisions in the
video analysis. Even though it is more involved than manual
frame counting, software can help with the analysis (Stauffert
et al., 2020b). Beyond these basic approaches, the choice of
how to measure latency depends on the specific hard- and
software used. Design your measurement system to fit your VR
system guided by the approaches in Table 2. Research should
strive toward measuring latency for every frame shown on
the employed screen to assure validity of observations and
to maximize insight. Measuring latency can hint at problems,
latency values then have to be interpreted to find an intervention
if need be.

6. CONCLUSION

Latency is one of the characteristics of a computer system
that is often discussed to have a major impact on the system’s

usability. Research shows that larger latencies and latency jitter
can influence well-being in a negative way in the form of
cybersickness. Yet little research of VR experiences check and
report the latency behavior of their employed computer system.

Only 7% of the papers published at the 2020 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR) conducting
user studies in virtual reality reported their motion to photon
latency. Latency may introduce unwanted effects that are not
obvious to the researchers and reviewers if a latency value is
not reported.

Latency is not restricted to one value but changes over
time and with the VR system usage pattern. More elaborated
test setups are required to capture these dynamics. Research is
only beginning to understand the implications of time-invariant
latency. Even the occasional latency spike will contribute to
cybersickness. Measuring latency is of importance to understand
better the influence on cybersickness and to understand where
latency might not be the main cause for cybersickness.

AUTHOR CONTRIBUTIONS

J-PS conducted the literature review and took the lead in writing
themanuscript, he collectively discussed, and developed concepts
to measure and report latency. FN worked on the manuscript
and supervised the project. ML conceived the original idea,
collectively discussed and developed concepts of own research
on latency, and supervised the project. All authors provided
critical feedback and helped shape the research, analysis,
and manuscript.

REFERENCES

Adelstein, B. D., Lee, T. G., and Ellis, S. R. (2003). “Head tracking latency

in virtual environments: psychophysics and a model,” in Proceedings of

the Human Factors and Ergonomics Society Annual Meeting, Vol. 47 (Los

Angeles, CA: SAGE Publications), 2083–2087. doi: 10.1177/15419312030

4702001

Ames, S. L., Wolffsohn, J. S., and McBrien, N. A. (2005). The development

of a symptom questionnaire for assessing virtual reality viewing

using a head-mounted display. Optometry Vis. Sci. 82, 168–176.

doi: 10.1097/01.OPX.0000156307.95086.6

Antoine, A., Nancel, M., Ge, E., Zheng, J., Zolghadr, N., and Casiez, G. (2020).

“Modeling and reducing spatial jitter caused by asynchronous input and

output rates,” in UIST 2020-ACM Symposium on User Interface Software and

Technology (New York, NY). doi: 10.1145/3379337.3415833

Arcioni, B., Palmisano, S., Apthorp, D., and Kim, J. (2019). Postural stability

predicts the likelihood of cybersickness in active HMD-based virtual reality.

Displays 58, 3–11. doi: 10.1016/j.displa.2018.07.001

Attig, C., Rauh, N., Franke, T., and Krems, J. F. (2017). “System latency

guidelines then and now–is zero latency really considered necessary?” in

Engineering Psychology and Cognitive Ergonomics: Cognition and Design,

ed D. Harris, Vol. 10276 (Cham: Springer International Publishing), 3–14.

doi: 10.1007/978-3-319-58475-1_1

Becher, A., Angerer, J., and Grauschopf, T. (2018). Novel approach to measure

motion-to-photon and mouth-to-ear latency in distributed virtual reality

systems. arXiv preprint arXiv:1809.06320.

Billeter, M., Rothlin, G., Wezel, J., Iwai, D., and Grundhofer, A. (2016).

“A LED-based IR/RGB end-to-end latency measurement device,” in

2016 IEEE International Symposium on Mixed and Augmented Reality

(ISMAR-Adjunct) (Merida), 184–188. doi: 10.1109/ISMAR-Adjunct.20

16.0072

Bles, W., Bos, J. E., De Graaf, B., Groen, E., and Wertheim, A. H. (1998).

Motion sickness: only one provocative conflict? Brain Res. Bull. 47, 481–487.

doi: 10.1016/S0361-9230(98)00115-4

Bockelman, P., and Lingum, D. (2017). “Factors of cybersickness,”

in HCI International 2017-Posters’ Extended Abstracts, ed C.

Stephanidis, Vol. 714 (Cham: Springer International Publishing), 3–8.

doi: 10.1007/978-3-319-58753-0_1

Bos, J. E., de Vries, S. C., van Emmerik, M. L., and Groen, E. L. (2010). The effect of

internal and external fields of view on visually induced motion sickness. Appl.

Ergon. 41, 516–521. doi: 10.1016/j.apergo.2009.11.007

Carmack, J. (2013). Latency mitigation strategies. Available online at: https://

danluu.com/latency-mitigation/

Caserman, P., Martinussen,M., andGobel, S. (2019). “Effects of end-to-end latency

on user experience and performance in immersive virtual reality applications,”

in Entertainment Computing and Serious Games, eds E. van der Spek, E., S.

Gobel, E. Y.-L. Do, E. Clua, and J. Baalsrud Hauge, Vol. 11863 (Cham: Springer

International Publishing), 57–69. doi: 10.1007/978-3-030-34644-7_5

Chang, C.-M., Hsu, C.-H., Hsu, C.-F., and Chen, K.-T. (2016).

Performance Measurements of Virtual Reality Systems: Quantifying

the Timing and Positioning Accuracy. New York, NY: ACM Press.

doi: 10.1145/2964284.2967303

Chang, E., Kim, H. T., and Yoo, B. (2020). Virtual reality sickness: a review

of causes and measurements. Int. J. Hum. Comput. Interact. 36, 1658–1682.

doi: 10.1080/10447318.2020.1778351

Chen, Y.-C., Dong, X., Hagstrom, J., and Stoffregen, T. A. (2011). Control of a

virtual ambulation influences body movement and motion sickness. BIO Web

Conf. 1:00016. doi: 10.1051/bioconf/20110100016

Davis, J., Hsieh, Y.-H., and Lee, H.-C. (2015). Humans perceive flicker artifacts at

500 Hz. Sci. Rep. (London) 5:7861. doi: 10.1038/srep07861

Davis, S., Nesbitt, K., and Nalivaiko, E. (2014). A Systematic Review of

Cybersickness. ACM Press. doi: 10.1145/2677758.2677780

Frontiers in Virtual Reality | www.frontiersin.org 8 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 86

Stauffert et al. Latency and Cybersickness. A Review

Di Luca, M. (2010). New method to measure end-to-end delay of virtual reality.

Presence 19, 569–584. doi: 10.1162/pres_a_00023

DiZio, P., and Lackner, J. R. (2000). Motion sickness side effects and aftereffects of

immersive virtual environments created with helmet-mounted visual displays.

Brandeis Univ Waltham ma ashton Graybiel Spatial Orientation Lab, 5.

Ellis, S. R., Mania, K., Adelstein, B. D., and Hill, M. I. (2004). “Generalizeability

of latency detection in a variety of virtual environments,” in Proceedings of the

Human Factors and Ergonomics Society Annual Meeting, Vol. 48 (Los Angeles,

CA: SAGE Publications), 2632–2636. doi: 10.1177/154193120404802306

Ellis, S. R., Young, M. J., Adelstein, B. D., and Ehrlich, S. M. (1999).

“Discrimination of changes of latency during voluntary hand movement of

virtual objects,” in Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, Vol. 43 (Los Angeles, CA: SAGE Publications), 1182–1186.

doi: 10.1177/154193129904302203

Feldstein, I. T., and Ellis, S. R. (2020). “A simple, video-

based technique for measuring latency in virtual reality or

teleoperation,” in IEEE Transactions on Visualization and

Computer Graphics (New York, NY). doi: 10.1109/TVCG.2020.

2980527

Feng, J., Kim, J., Luu,W., and Palmisano, S. (2019). “Method for estimating display

lag in the Oculus Rift S and CV1,” in SIGGRAPH Asia 2019 Posters (Brisbane,

QLD: ACM), 1–2. doi: 10.1145/3355056.3364590

Frank, L. H., Casali, J. G., and Wierwille, W. W. (1988). Effects of visual display

and motion system delays on operator performance and uneasiness in a driving

simulator. Hum. Fact. 30, 201–217. doi: 10.1177/001872088803000207

Friston, S., and Steed, A. (2014). Measuring latency in virtual environments. IEEE

Trans. Visual. Comput. Graph. 20, 616–625. doi: 10.1109/TVCG.2014.30

Gach, E. (2019). Valve Updates Steam VR Because Beat Saber Players Are Too Fast.

Library Catalog: kotaku.com

Gavgani, M. A., Walker, F. R., Hodgson, D. M., and Nalivaiko, E. (2018). A

comparative study of cybersickness during exposure to virtual reality and

“classic” motion sickness: are they different? J. Appl. Physiol. 125, 1670–1680.

doi: 10.1152/japplphysiol.00338.2018

Gianaros, P. J., and Stern, R. M. (2010). A questionnaire for the assessment of the

multiple dimensions of motion sickness. Aviation, Space, and Environmental

Medicine, 72:115.

Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and

its relationship to other forms of sickness. Brain Res. Bull. 47, 507–516.

doi: 10.1016/S0361-9230(98)00091-4

Graybiel, A.,Wood, C. D., and Cramer, D. B. (1968). Diagnostic criteria for grading

the severity of acute motion sickness. Aerosp. Med. 39, 453–5.

Gruen, R., Ofek, E., Steed, A., Gal, R., Sinclair, M., andGonzalez-Franco,M. (2020).

“Measuring System Visual Latency through Cognitive Latency on Video See-

Through AR devices,” in 2020 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR) (Atlanta, GA: IEEE), 791–799.

He, D., Liu, F., Pape, D., Dawe, G., and Sandin, D. (2000). “Video-based

measurement of system latency,” in International Immersive Projection

Technology Workshop (Ames, IA).

Hsu, R. (2015). Who Moved my 99th Percentile Latency? Available online

at: https://engineering.linkedin.com/performance/who-moved-my-99th-

percentile-latency

Jerald, J. J. (2010). “Relating scene-motion thresholds to latency thresholds for

head-mounted displays,” in 2009 IEEE Virtual Reality Conference (Lafayette,

LA), 211–218. doi: 10.1109/VR.2009.4811025

Jung, J. Y., Adelstein, B. D., and Ellis, S. R. (2000). “Discriminability of prediction

artifacts in a time-delayed virtual environment,” in Proceedings of the Human

Factors and Ergonomics Society Annual Meeting, Vol. 44 (Los Angeles, CA:

SAGE Publications), 499–502. doi: 10.1177/154193120004400504

Kämäräinen, T., Siekkinen, M., Ylä-Jääski, A., Zhang, W., and Hui, P. (2017).

“Dissecting the end-to-end latency of interactive mobile video applications,”

in Proceedings of the 18th International Workshop on Mobile Computing

Systems and Applications - HotMobile ’17 (Sonoma, CA: ACM Press), 61–66.

doi: 10.1145/3032970.3032985

Kawamura, S., and Kijima, R. (2016). “Effect of head mounted display latency on

human stability during quiescent standing on one foot,” in 2016 IEEE Virtual

Reality (VR) (Greenville, SC) 199–200. doi: 10.1109/VR.2016.7504722

Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. (1993).

Simulator sickness questionnaire: an enhanced method for quantifying

simulator sickness. Int. J. Aviat. Psychol. 3, 203–220. doi: 10.1207/s15327108ijap

0303_3

Keshavarz, B., and Hecht, H. (2011). Validating an efficient method to

quantify motion sickness. Hum. Fact. 53, 415–426. doi: 10.1177/00187208114

03736

Kijima, R., and Miyajima, K. (2016a). “Looking into HMD: a method of latency

measurement for head mounted display,” in 2016 IEEE Symposium on 3D

User Interfaces (3DUI) (Greenville, SC), 249–250. doi: 10.1109/3DUI.2016.74

60064

Kijima, R., and Miyajima, K. (2016b). “Measurement of Head Mounted Display’s

latency in rotation and side effect caused by lag compensation by simultaneous

observation–an example result using Oculus Rift DK2,” in 2016 IEEE Virtual

Reality (VR) (Greenville, SC), 203–204. doi: 10.1109/VR.2016.7504724

Kim, J., Luu, W., and Palmisano, S. (2020). Multisensory integration

and the experience of scene instability, presence and cybersickness

in virtual environments. Comput. Hum. Behav. 113:106484.

doi: 10.1016/j.chb.2020.106484

Kinsella, A., Mattfeld, R., Muth, E., and Hoover, A. (2016). Frequency, not

amplitude, of latency affects subjective sickness in a head-mounted display.

Aerosp. Med. Hum. Perform. 87, 604–609. doi: 10.3357/AMHP.4351.2016

Lampton, D. R., Knerr, B.W., Goldberg, S. L., Bliss, J. P., Moshell, J. M., and Blau, B.

S. (1994). The virtual environment performance assessment battery (VEPAB):

development and evaluation. Presence Teleoperat. Virt. Environ. 3, 145–157.

doi: 10.1162/pres.1994.3.2.145

LaViola, J. J. Jr. (2000). A discussion of cybersickness in virtual environments.ACM

SIGCHI Bull. 32, 47–56. doi: 10.1145/333329.333344

Liang, J., Shaw, C., and Green, M. (1991). “On temporal-spatial realism in

the virtual reality environment,” in Proceedings of the 4th Annual ACM

Symposium on User Interface Software and Technology (Hilton Head, SC),

19–25. doi: 10.1145/120782.120784

Mayer, B. (2020). SpaceX: Linux in den Rechnern, Javascript in den Touchscreens.

Library Catalog: www.golem.de

McCauley, M. E., and Sharkey, T. J. (1992). Cybersickness: perception of self-

motion in virtual environments. Presence Teleoperat. Virt. Environ. 1, 311–318.

doi: 10.1162/pres.1992.1.3.311

McHugh, N. (2019). Measuring and minimizing cybersickness in virtual reality.

Dissertation, University of Canterbury. doi: 10.26021/1316

McKenney, P. E. (2008). ““Real time” vs. “real fast”: how to choose?” in Ottawa

Linux Symposium (Ottawa), 57–65.

Meehan,M., Razzaque, S.,Whitton, M., and Brooks, F. (2003). “Effect of latency on

presence in stressful virtual environments,” in IEEE Virtual Reality, 2003 (Los

Angeles, CA), 141–148.

Miller, D., and Bishop, G. (2002). “Latency meter: a device end-to-end latency of

VE systems,” in Stereoscopic Displays and Virtual Reality Systems IX (San Jose,

CA), Vol. 4660, 458–464. doi: 10.1117/12.468062

Mine, M. (1993). Characterization of End-to-End Delays in Head-Mounted Display

Systems. The University of North Carolina at Chapel Hill.

Moss, J. D., Austin, J., Salley, J., Coats, J., Williams, K., and Muth, E. R. (2011).

The effects of display delay on simulator sickness. Displays 32, 159–168.

doi: 10.1016/j.displa.2011.05.010

Muth, E. R., Stern, R. M., Thayer, J. F., and Koch, K. L. (1996). Assessment of the

multiple dimensions of nausea: the Nausea Profile (NP). J. Psychosom. Res. 40,

511–520. doi: 10.1016/0022-3999(95)00638-9

Nancel, M., Vogel, D., De Araujo, B., Jota, R., and Casiez, G. (2016). “Next-

point prediction metrics for perceived spatial errors,” in Proceedings of the

29th Annual Symposium on User Interface Software and Technology (Tokyo),

271–285. doi: 10.1145/2984511.2984590

Oman, C. M. (1990). Motion sickness: a synthesis and evaluation of the sensory

conflict theory. Can. J. Physiol. Pharmacol. 68, 294–303. doi: 10.1139/y90-044

Palmisano, S., Szalla, L., and Kim, J. (2019). “Monocular viewing protects against

cybersickness produced by head movements in the Oculus Rift,” in 25th ACM

Symposium on Virtual Reality Software and Technology (Parramatta, NSW:

ACM), 1–2. doi: 10.1145/3359996.3364699

Papadakis, G., Mania, K., and Koutroulis, E. (2011). “A system to measure, control

and minimize end-to-end head tracking latency in immersive simulations,” in

Proceedings of the 10th International Conference on Virtual Reality Continuum

and Its Applications in Industry - VRCAI ’11, (Hong Kong: ACM Press) 581.

doi: 10.1145/2087756.2087869

Frontiers in Virtual Reality | www.frontiersin.org 9 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 87

Stauffert et al. Latency and Cybersickness. A Review

Pape, S., Kruger, M., Muller, J., and Kuhlen, T. W. (2020). “Calibratio: a small, low-

cost, fully automated motion-to-photon measurement device,” in 2020 IEEE

Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops

(VRW) (Atlanta, GA), 234–237. doi: 10.1109/VRW50115.2020.00050

Raaen, K., and Kjellmo, I. (2015). “Measuring latency in virtual reality systems,” in

Entertainment Computing - ICEC 2015, eds K. Chorianopoulos, M. Divitini,

J. Baalsrud Hauge, L. Jaccheri, and R. Malaka, Vol. 9353 (Cham: Springer

International Publishing), 457–462.

Reason, J. T., and Brand, J. J. (1975). Motion Sickness. Cambridge, MA: Academic

Press.

Rebenitsch, L., and Owen, C. (2016). Review on cybersickness in applications and

visual displays. Virt. Real. 20, 101–125. doi: 10.1007/s10055-016-0285-9

Riccio, G. E., and Stoffregen, T. A. (1991). An ecological theory of

motion sickness and postural instability. Ecol. Psychol. 3, 195–240.

doi: 10.1207/s15326969eco0303_2

Roberts, D., Duckworth, T., Moore, C., Wolff, R., and O’Hare, J. (2009).

“Comparing the end to end latency of an immersive collaborative environment

and a video conference,” in 2009 13th IEEE/ACM International Symposium on

Distributed Simulation and Real Time Applications (Singapore: IEEE), 89–94.

doi: 10.1109/DS-RT.2009.43

Seo, M.-W., Choi, S.-W., Lee, S.-L., Oh, E.-Y., Baek, J.-S., and Kang, S.-J. (2017).

Photosensor-based latency measurement system for head-mounted displays.

Sensors 17:1112. doi: 10.3390/s17051112

Sielhorst, T., Sa, W., Khamene, A., Sauer, F., and Navab, N. (2007). “Measurement

of absolute latency for video see through augmented reality,” in 2007 6th IEEE

and ACM International Symposium on Mixed and Augmented Reality (Nara),

215–220. doi: 10.1109/ISMAR.2007.4538850

Stanney, K. M., Kennedy, R. S., and Drexler, J. M. (1997). Cybersickness is not

simulator sickness. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 41, 1138–1142.

doi: 10.1177/107118139704100292

Stauffert, J.-P., Niebling, F., and Latoschik, M. E. (2016). Towards Comparable

Evaluation Methods and Measures for Timing Behavior of Virtual Reality

Systems. Munich: ACM Press. doi: 10.1145/2993369.2993402

Stauffert, J.-P., Niebling, F., and Latoschik, M. E. (2018). “Effects of latency

jitter on simulator sickness in a search task,” in 2018 IEEE Conference on

Virtual Reality and 3D User Interfaces (VR) (Reutlingen: IEEE), 121–127.

doi: 10.1109/VR.2018.8446195

Stauffert, J.-P., Niebling, F., and Latoschik, M. E. (2020a). “Simultaneous run-time

measurement of motion-to-photon latency and latency jitter,” in 2020 IEEE

Conference on Virtual Reality and 3D User Interfaces (VR) (Atlanta, GA: IEEE),

636–644. doi: 10.1109/VR46266.2020.1581339481249

Stauffert, J.-P., Niebling, F., Lugrin, J.-L., and Latoschik, M. E. (2020b). “Guided

sine fitting for latency estimation in virtual reality,” in 2020 IEEE Conference

on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW),

707–708. doi: 10.1109/VRW50115.2020.00204

Steed, A. (2008). “A simple method for estimating the latency of interactive, real-

time graphics simulations,” in Proceedings of the 2008 ACM Symposium on

Virtual Reality Software and Technology, VRST ’08 (New York, NY: ACM),

123–129. doi: 10.1145/1450579.1450606

Stone Ill, W. B. (2017). Psychometric evaluation of the Simulator Sickness

Questionnaire as a measure of cybersickness (Doctor of Philosophy). Iowa State

University, Digital Repository, Ames, IA.

St. Pierre, M. E., Banerjee, S., Hoover, A. W., and Muth, E. R. (2015). The effects of

0.2Hz varying latency with 20–100ms varying amplitude on simulator sickness

in a helmet mounted display.Displays 36, 1–8. doi: 10.1016/j.displa.2014.10.005

Swindells, C., Dill, J. C., and Booth, K. S. (2000). “System lag tests for augmented

and virtual environments,” in Proceedings of the 13th Annual ACM Symposium

on User Interface Software and Technology (San Diego, CA: ACM), 161–170.

doi: 10.1145/354401.354444

Teather, R. J., Pavlovych, A., Stuerzlinger, W., and MacKenzie, I. S. (2009).

“Effects of tracking technology, latency, and spatial jitter on object movement,”

in 2009 IEEE Symposium on 3D User Interfaces (Lafayette, LA), 43–50.

doi: 10.1109/3DUI.2009.4811204

Treisman, M. (1977). Motion sickness: an evolutionary hypothesis. Science 197,

493–495. doi: 10.1126/science.301659

Tufte, E. R. (2001). The Visual Display of Quantitative Information, Vol. 2.

Cheshire, CT: Graphics Press.

Tumanov, A., Allison, R., and Stuerzlinger, W. (2007). “Variability-aware latency

amelioration in distributed environments,” in 2007 IEEE Virtual Reality

Conference (Charlotte, NC), 123–130. doi: 10.1109/VR.2007.352472

van Waveren, J. M. P. (2016). “The asynchronous time warp for virtual reality on

consumer hardware,” in Proceedings of the 22nd ACM Conference on Virtual

Reality Software and Technology - VRST ’16 (Munich: ACM Press), 37–46.

doi: 10.1145/2993369.2993375

Virre, E. (1996). Virtual reality and the vestibular apparatus. IEEE Eng. Med. Biol.

Mag. 15, 41–43. doi: 10.1109/51.486717

Vulimiri, A., Godfrey, P. B., Mittal, R., Sherry, J., Ratnasamy, S., and Shenker,

S. (2013). Low latency via redundancy. arXiv preprint arXiv:1306.3707.

doi: 10.1145/2535372.2535392

Wu, W., Dong, Y., and Hoover, A. (2013). Measuring digital system latency from

sensing to actuation at continuous 1-ms resolution. Presence Teleoperat. Virt.

Environ. 22, 20–35. doi: 10.1162/PRES_a_00131

Zhao, J., Allison, R. S., Vinnikov, M., and Jennings, S. (2017). “Estimating

the motion-to-photon latency in head mounted displays,” in 2017 IEEE

Virtual Reality (VR) (Los Angeles, CA), 313–314. doi: 10.1109/VR.2017.

7892302

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Stauffert, Niebling and Latoschik. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Virtual Reality | www.frontiersin.org 10 November 2020 | Volume 1 | Article 582204

CHAPTER 7. EFFECTS 88

CHAPTER 7. EFFECTS 89

Copyright

©2020 Stau�ert, Niebling and Latoschik. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in the journal is
cited, in accordance with accepted academic practice. No use, distribution or reproduc-
tion is permitted which does not comply with these terms.

Author Contributions

The author conducted the literature review and took the lead in writing the manuscript,
he collectively discussed and developed concepts to measure and report latency. He
provided critical feedback and helped shape the research, the analysis and the manuscript.

7.3 Multi User Experience

Virtual reality is not only restricted to single user applications but will be able to play
its strength in multi user experiences. We published a journal article that explains

the technical challenges when implementing multi user experiences. Performance de-
grades the more users are in a virtual space. The experience su�ers both from the la-
tency introduced in the network exchange and from latency due to increased simulation
and rendering demand with many avatars.

The article was published as Marc Erich Latoschik, Florian Kern, Jan-Philipp Stauf-
fert, Andrea Bartl, Mario Botsch, and Jean-Luc Lugrin. “Not Alone Here?! Scalability
and User Experience of Embodied Ambient Crowds in Distributed Social Virtual Real-
ity”. In: IEEE Transactions on Visualization and Computer Graphics 25.5 (2019), pages 2134–
2144

2134  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Manuscript received 10 Sept. 2018; accepted 7 Feb. 2019.
Date of publication 17 Feb. 2019; date of current version 27 Mar. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2019.2899250

Not Alone Here?! Scalability and User Experience of Embodied
Ambient Crowds in Distributed Social Virtual Reality

Marc Erich Latoschik, Florian Kern, Jan-Philipp Stauffert, Andrea Bartl, Mario Botsch, and Jean-Luc Lugrin

Fig. 1. An immersive Social Virtual Reality (SVR) with multiple avatars and agents co-located in the same virtual space as seen from
an immersed participant’s point of view. Our SVR system supports large crowds of distributed avatar/agent participants of variable
appearances (see an abstract virtual body in the front left, and a photorealistic virtual body from photogrammetry scans on the right).

Abstract—This article investigates performance and user experience in Social Virtual Reality (SVR) targeting distributed, embodied,
and immersive, face-to-face encounters. We demonstrate the close relationship between scalability, reproduction accuracy, and
the resulting performance characteristics, as well as the impact of these characteristics on users co-located with larger groups of
embodied virtual others. System scalability provides a variable number of co-located avatars and AI-controlled agents with a variety
of different appearances, including realistic-looking virtual humans generated from photogrammetry scans. The article reports on
how to meet the requirements of embodied SVR with today’s technical off-the-shelf solutions and what to expect regarding features,
performance, and potential limitations. Special care has been taken to achieve low latencies and sufficient frame rates necessary for
reliable communication of embodied social signals. We propose a hybrid evaluation approach which coherently relates results from
technical benchmarks to subjective ratings and which confirms required performance characteristics for the target scenario of larger
distributed groups. A user-study reveals positive effects of an increasing number of co-located social companions on the quality of
experience of virtual worlds, i.e., on presence, possibility of interaction, and co-presence. It also shows that variety in avatar/agent
appearance might increase eeriness but might also stimulate an increased interest of participants about the environment.

Index Terms—Social Virtual Reality, quality of experience, performance characteristics, co-location, co-presence, possibility of
interaction, ambient crowds, avatars and agents, computer-mediated communication, multi-user virtual environment

1 INTRODUCTION

Embodied Social Virtual Reality (SVR) exploits the rich social signals
and behavior patterns humans use in the physical world [44]. These sig-
nals significantly originate from our paraverbal and non-verbal expres-
sions in face-to-face encounters. Body movements, gestures, mimics,
and eye movements play crucial roles in social behavioral phenomena
like joint attention, grouping, eye contact, or mutual synchronization
and coordination [38]. Embodiment technologies provide the necessary
means to realize virtual face-to-face encounters enabling social signals
via so-called avatars, our digital alter egos in the virtual realm.

• Marc Erich Latoschik, Florian Kern, Jan-Philipp Stauffert, Andrea Bartl,
and Jean-Luc Lugrin are with the HCI group of the University of Würzburg.
E-mail: marc.latoschik@uni-wuerzburg.de.

• Mario Botsch is with Bielefeld University. E-mail:
botsch@techfak.uni-bielefeld.de.

SVRs have gained much interest in both, academia and industry.
Companies like Second Life1, AltspaceVR2, Pixo VR3, or NVIDIA
with its Holodeck4 project already developed real-world applications
or impressive demonstrations. Although, to some extent, these devel-
opments suggest a solid maturation of the overall field, in fact, the
existing approaches differ in significant aspects. Schroeder [40] sepa-
rates such Multi-User Virtual Environments (MUVEs) into immersive
environments, e.g., NVIDIA’s Holodeck project, and online worlds,
e.g., Second Life or typical networked multi-user computer games. We
argue that this distinction is drawn from the availability or absence of
embodiment features and its qualities in terms of (1) completeness of
represented and controllable body parts, (2) the avatars’ appearances
or looks, and (3) direct control of the avatars’ bodies with a sufficient
sensory coverage of the controlling users’ movements in real-time.

Overall, embodied SVR promises novel forms of computer-mediated
communication but it is particularly challenging regarding sensory

1https://secondlife.com
2https://altvr.com
3https://pixogroup.com
4https://www.nvidia.com/en-us/design-visualization/technologies/holodeck/

coverage and temporal and precision requirements, which is considered
one of the grand challenges for VR [41], specifically if it has to be
realized with distributed systems. Table 1 derives hypothetical data
rates while scaling up sensory coverage and the number of co-located
avatars for a selection of fidelities. Typically, setups with just two
embodied avatars in 1:1 dyadic social avatar-avatar encounters [4, 5, 25,
39, 44] do not need to utilize distribution. Similarly, work on the effect
of larger crowds of virtual humans also either use computer-controlled
agents [33] or utilize pre-recorded material presented as videos [2, 9].
Hence, little is known about the experience of users fully immersed
and embodied in a simulated Virtual Environment (VE) with larger
groups of co-located avatars with variable appearance, and potential
performance characteristics as given by a real-world distribution of
these companions.

Contribution
This article investigates the current state-of-the-art of distributed So-
cial Virtual Realities with consumer VR technology, and the effects of
larger embodied ambient crowds on participating users. The approach
deliberately utilizes today’s consumer VR technology, i.e., the Unreal
Engine 4 (UE4), for two reasons: (1) It targets out-of-lab real-world
applications. (2) To show potential benefits and limitations of today’s
consumer technology when realizing distributed SVRs. A scalable
system architecture supports various types and fidelities of control
schemes and avatar appearances, up to high-quality, realistic looking
individualized avatars captured by photogrammetry. We propose a
hybrid evaluation combining technical benchmarks with user-centered
tests. We demonstrate the hybrid evaluation for up to 125 participants
and show the close relation between objective measures and subjec-
tive ratings. The evaluation confirms sufficient performance for 25
participants in a typical real-world distribution scenario. This upper
bound is applied to and verified by a user study on the experience of
users immersed in an SVR with co-located ambient crowds. To the
best of our knowledge, this evaluation reveals two novel effects: (1)
An increasing number of co-located social companions has a positive
effect on the quality of experience of virtual worlds, i.e., on presence,
possibility of interaction, and co-presence. (2) It also shows that vari-
ety in avatar/agent appearance might increase eeriness but might also
stimulate an increased interest of participants about the environment.

2 RELATED WORK

Schroeder gives a comprehensive overview of the fundamental aspects
of social interaction in virtual worlds [40]. Steed and Schroeder also
highlight some fundamental concepts as well as technical aspects and
requirements for SVRs [47]. They classify current embodiment ap-
proaches along a scale representing the degree of user modeling and

identify three main types of current approaches: (1) puppeteered, (2) re-
constructed, and (3) tracked. Typical online games, as well as multi-user
worlds similar to Second Life, are basically puppeteered. Avatars here
are controlled by some non-direct animation scheme, e.g., by pressing a
button to trigger an animation. With an immersive first-person perspec-
tive from inside one’s avatar, this control scheme seems detrimental.
Still, even puppeteered systems motivate research in SVR [20, 32],
specifically about alternative social mechanics.

Real-time reconstruction of dynamic scenes and users promises a
faithful dynamic replication of real physical appearances and environ-
ments [3, 13, 35]. It certainly is appropriate for many use-cases, e.g.,
teleconferencing. However, it does not allow to easily modify avatar
appearance, as, e.g., is required by work on the illusion of virtual body
ownership (IVBO) [18, 30, 42] or the Proteus effect [51], specifically in
avatar-avatar encounters [25] or dyadic social avatar-avatar interactions
[4, 5, 37, 39]. A deliberate change of the appearance of avatars could
also be desirable to avoid stigmatizing in SVR. Additionally, concern-
ing scalability, dynamic 3D reconstruction is characterized by high
bandwidth requirements. These exceed typical requirements of tracked
approaches (see Table 1) by orders of magnitudes even with appropriate
compression [26], which often will also increase the latency.

Tracked avatar embodiment for SVRs requires direct control
schemes of as many degrees of freedom as the human body has, and
hence, a) elaborated sensor technology like full-body motion track-
ing [21, 45] and/or face tracking [24], and b) an appropriate model of a
virtual human body matching the sensory input. Such models typically
consist of a properly rigged body mesh for skeletal animations together
with blend shapes for facial animations where applicable. They are
either generated manually via 3D-modeling, or via off-line reconstruc-
tion from real humans [1, 10] (or a combination of both), effectively
combining dynamic tracking with static reconstruction.

The extent of sensory coverage depends on the reproduction accu-
racy between the controlling user and the controlled avatar and its body
and animation model. A full embodiment of self-avatars increases pres-
ence but full as well as partial embodiment increases co-presence [15],
although recent work could not substantiate these findings [28], which
might be caused by strong contextual distractors. Recently, initially
single-user embodiment studies also started to explore the effect of
the appearance and the behavior of an other’s avatar co-located in
SVR [25, 39]. All agree on the necessity of low latencies for con-
tingencies [49], e.g., convincing visuomotor synchrony. Additional
requirements are a first-person perspective, a sufficiently realistic avatar
appearance [2, 31, 48], and a high degree of immersion [48]. Work
which includes larger groups of others so far either used non-distributed
settings of up to eight virtual agents with comparable looks [6, 43], or
even non-immersive and non-interactive pre-recorded videos [9].

Table 1. Estimations of net data transfer rates required to communicate tracked non-verbal behavior of avatars of different fidelities. Accurate
numbers are subject to a variety of design choices and optimizations: (1) applied body model, (2) sensory coverage, (3) model-based optimizations,
(4) resolution, i.e., number of bits per value, and (5) compression. Model-based optimizations refer to potential uses of forward kinematics (FK), or
inverse kinematics (IK), for shared models. IK is potentially applicable, i.e., for linked models (supporting a proper skeleton with chained joints and
links) based on B1-B3, but could also be applied to partial models. FK is necessary for linked models based on B4-B6. Results reflect a coarse
upper bound estimation: no potential overhead, no compression applied, single precision float values yielding 4 bytes, representation of p(osition)
and r(otation) each by 3 floats, f(lexion) and a(bduction) each by one float. For the face we include the seven basic emotions of Ekman and Friesen
in F1 and a selection of 44 Action Units of the Facial Action Coding System [11] encoded with either 3 bit (F2) or 1 float (F3).

Bytes / Data rate in KB/s per number of clients (1 avatar/client) at 90 Hz
avatar 2 5 10 25 50 75 100 125

Fidelity of body model
B1 head 1×pr 24.0 4.3 10.8 21.6 54.0 108.0 162.0 216.0 270.0
B2 + 2 hands 3×pr 72.0 13.0 32.4 64.8 162.0 324.0 486.0 648.0 810.0
B3 + 2 feet and spine 6×pr 144.0 25.9 64.8 129.6 324.0 648.0 972.0 1296.0 1620.0
B4 skeleton medium 1×p+17× r 216.0 38.9 97.2 194.4 486.0 972.0 1458.0 1944.0 2430.0
B5 hand low 5× f+5×a+ r 52.0 9.4 23.4 46.8 117.0 234.0 351.0 468.0 585.0
B6 hand high 15× f+5×a+ r 92.0 16.6 41.4 82.8 207.0 414.0 621.0 828.0 1035.0
Fidelity of face model
F1 2 eyes + 7 emotions 2× r + 7 float 52.0 9.4 23.4 46.8 117.0 234.0 351.0 468.0 585.0
F2 2 eyes + 44 FACS bit 2× r + 44×3 bit 40.5 7.3 18.2 36.5 91.1 182.3 273.4 364.5 455.6
F3 2 eyes + 44 FACS float 2× r + 44 float 200.0 36.0 90.0 180.0 450.0 900.0 1350.0 1800.0 2250.0

1077-2626 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHAPTER 7. EFFECTS 90

LATOSCHIK ET AL.: NOT ALONE HERE?! SCALABILITY AND USER EXPERIENCE OF EMBODIED AMBIENT CROWDS...� 2135

Not Alone Here?! Scalability and User Experience of Embodied
Ambient Crowds in Distributed Social Virtual Reality

Marc Erich Latoschik, Florian Kern, Jan-Philipp Stauffert, Andrea Bartl, Mario Botsch, and Jean-Luc Lugrin

Fig. 1. An immersive Social Virtual Reality (SVR) with multiple avatars and agents co-located in the same virtual space as seen from
an immersed participant’s point of view. Our SVR system supports large crowds of distributed avatar/agent participants of variable
appearances (see an abstract virtual body in the front left, and a photorealistic virtual body from photogrammetry scans on the right).

Abstract—This article investigates performance and user experience in Social Virtual Reality (SVR) targeting distributed, embodied,
and immersive, face-to-face encounters. We demonstrate the close relationship between scalability, reproduction accuracy, and
the resulting performance characteristics, as well as the impact of these characteristics on users co-located with larger groups of
embodied virtual others. System scalability provides a variable number of co-located avatars and AI-controlled agents with a variety
of different appearances, including realistic-looking virtual humans generated from photogrammetry scans. The article reports on
how to meet the requirements of embodied SVR with today’s technical off-the-shelf solutions and what to expect regarding features,
performance, and potential limitations. Special care has been taken to achieve low latencies and sufficient frame rates necessary for
reliable communication of embodied social signals. We propose a hybrid evaluation approach which coherently relates results from
technical benchmarks to subjective ratings and which confirms required performance characteristics for the target scenario of larger
distributed groups. A user-study reveals positive effects of an increasing number of co-located social companions on the quality of
experience of virtual worlds, i.e., on presence, possibility of interaction, and co-presence. It also shows that variety in avatar/agent
appearance might increase eeriness but might also stimulate an increased interest of participants about the environment.

Index Terms—Social Virtual Reality, quality of experience, performance characteristics, co-location, co-presence, possibility of
interaction, ambient crowds, avatars and agents, computer-mediated communication, multi-user virtual environment

1 INTRODUCTION

Embodied Social Virtual Reality (SVR) exploits the rich social signals
and behavior patterns humans use in the physical world [44]. These sig-
nals significantly originate from our paraverbal and non-verbal expres-
sions in face-to-face encounters. Body movements, gestures, mimics,
and eye movements play crucial roles in social behavioral phenomena
like joint attention, grouping, eye contact, or mutual synchronization
and coordination [38]. Embodiment technologies provide the necessary
means to realize virtual face-to-face encounters enabling social signals
via so-called avatars, our digital alter egos in the virtual realm.

• Marc Erich Latoschik, Florian Kern, Jan-Philipp Stauffert, Andrea Bartl,
and Jean-Luc Lugrin are with the HCI group of the University of Würzburg.
E-mail: marc.latoschik@uni-wuerzburg.de.

• Mario Botsch is with Bielefeld University. E-mail:
botsch@techfak.uni-bielefeld.de.

SVRs have gained much interest in both, academia and industry.
Companies like Second Life1, AltspaceVR2, Pixo VR3, or NVIDIA
with its Holodeck4 project already developed real-world applications
or impressive demonstrations. Although, to some extent, these devel-
opments suggest a solid maturation of the overall field, in fact, the
existing approaches differ in significant aspects. Schroeder [40] sepa-
rates such Multi-User Virtual Environments (MUVEs) into immersive
environments, e.g., NVIDIA’s Holodeck project, and online worlds,
e.g., Second Life or typical networked multi-user computer games. We
argue that this distinction is drawn from the availability or absence of
embodiment features and its qualities in terms of (1) completeness of
represented and controllable body parts, (2) the avatars’ appearances
or looks, and (3) direct control of the avatars’ bodies with a sufficient
sensory coverage of the controlling users’ movements in real-time.

Overall, embodied SVR promises novel forms of computer-mediated
communication but it is particularly challenging regarding sensory

1https://secondlife.com
2https://altvr.com
3https://pixogroup.com
4https://www.nvidia.com/en-us/design-visualization/technologies/holodeck/

coverage and temporal and precision requirements, which is considered
one of the grand challenges for VR [41], specifically if it has to be
realized with distributed systems. Table 1 derives hypothetical data
rates while scaling up sensory coverage and the number of co-located
avatars for a selection of fidelities. Typically, setups with just two
embodied avatars in 1:1 dyadic social avatar-avatar encounters [4, 5, 25,
39, 44] do not need to utilize distribution. Similarly, work on the effect
of larger crowds of virtual humans also either use computer-controlled
agents [33] or utilize pre-recorded material presented as videos [2, 9].
Hence, little is known about the experience of users fully immersed
and embodied in a simulated Virtual Environment (VE) with larger
groups of co-located avatars with variable appearance, and potential
performance characteristics as given by a real-world distribution of
these companions.

Contribution
This article investigates the current state-of-the-art of distributed So-
cial Virtual Realities with consumer VR technology, and the effects of
larger embodied ambient crowds on participating users. The approach
deliberately utilizes today’s consumer VR technology, i.e., the Unreal
Engine 4 (UE4), for two reasons: (1) It targets out-of-lab real-world
applications. (2) To show potential benefits and limitations of today’s
consumer technology when realizing distributed SVRs. A scalable
system architecture supports various types and fidelities of control
schemes and avatar appearances, up to high-quality, realistic looking
individualized avatars captured by photogrammetry. We propose a
hybrid evaluation combining technical benchmarks with user-centered
tests. We demonstrate the hybrid evaluation for up to 125 participants
and show the close relation between objective measures and subjec-
tive ratings. The evaluation confirms sufficient performance for 25
participants in a typical real-world distribution scenario. This upper
bound is applied to and verified by a user study on the experience of
users immersed in an SVR with co-located ambient crowds. To the
best of our knowledge, this evaluation reveals two novel effects: (1)
An increasing number of co-located social companions has a positive
effect on the quality of experience of virtual worlds, i.e., on presence,
possibility of interaction, and co-presence. (2) It also shows that vari-
ety in avatar/agent appearance might increase eeriness but might also
stimulate an increased interest of participants about the environment.

2 RELATED WORK

Schroeder gives a comprehensive overview of the fundamental aspects
of social interaction in virtual worlds [40]. Steed and Schroeder also
highlight some fundamental concepts as well as technical aspects and
requirements for SVRs [47]. They classify current embodiment ap-
proaches along a scale representing the degree of user modeling and

identify three main types of current approaches: (1) puppeteered, (2) re-
constructed, and (3) tracked. Typical online games, as well as multi-user
worlds similar to Second Life, are basically puppeteered. Avatars here
are controlled by some non-direct animation scheme, e.g., by pressing a
button to trigger an animation. With an immersive first-person perspec-
tive from inside one’s avatar, this control scheme seems detrimental.
Still, even puppeteered systems motivate research in SVR [20, 32],
specifically about alternative social mechanics.

Real-time reconstruction of dynamic scenes and users promises a
faithful dynamic replication of real physical appearances and environ-
ments [3, 13, 35]. It certainly is appropriate for many use-cases, e.g.,
teleconferencing. However, it does not allow to easily modify avatar
appearance, as, e.g., is required by work on the illusion of virtual body
ownership (IVBO) [18, 30, 42] or the Proteus effect [51], specifically in
avatar-avatar encounters [25] or dyadic social avatar-avatar interactions
[4, 5, 37, 39]. A deliberate change of the appearance of avatars could
also be desirable to avoid stigmatizing in SVR. Additionally, concern-
ing scalability, dynamic 3D reconstruction is characterized by high
bandwidth requirements. These exceed typical requirements of tracked
approaches (see Table 1) by orders of magnitudes even with appropriate
compression [26], which often will also increase the latency.

Tracked avatar embodiment for SVRs requires direct control
schemes of as many degrees of freedom as the human body has, and
hence, a) elaborated sensor technology like full-body motion track-
ing [21, 45] and/or face tracking [24], and b) an appropriate model of a
virtual human body matching the sensory input. Such models typically
consist of a properly rigged body mesh for skeletal animations together
with blend shapes for facial animations where applicable. They are
either generated manually via 3D-modeling, or via off-line reconstruc-
tion from real humans [1, 10] (or a combination of both), effectively
combining dynamic tracking with static reconstruction.

The extent of sensory coverage depends on the reproduction accu-
racy between the controlling user and the controlled avatar and its body
and animation model. A full embodiment of self-avatars increases pres-
ence but full as well as partial embodiment increases co-presence [15],
although recent work could not substantiate these findings [28], which
might be caused by strong contextual distractors. Recently, initially
single-user embodiment studies also started to explore the effect of
the appearance and the behavior of an other’s avatar co-located in
SVR [25, 39]. All agree on the necessity of low latencies for con-
tingencies [49], e.g., convincing visuomotor synchrony. Additional
requirements are a first-person perspective, a sufficiently realistic avatar
appearance [2, 31, 48], and a high degree of immersion [48]. Work
which includes larger groups of others so far either used non-distributed
settings of up to eight virtual agents with comparable looks [6, 43], or
even non-immersive and non-interactive pre-recorded videos [9].

Table 1. Estimations of net data transfer rates required to communicate tracked non-verbal behavior of avatars of different fidelities. Accurate
numbers are subject to a variety of design choices and optimizations: (1) applied body model, (2) sensory coverage, (3) model-based optimizations,
(4) resolution, i.e., number of bits per value, and (5) compression. Model-based optimizations refer to potential uses of forward kinematics (FK), or
inverse kinematics (IK), for shared models. IK is potentially applicable, i.e., for linked models (supporting a proper skeleton with chained joints and
links) based on B1-B3, but could also be applied to partial models. FK is necessary for linked models based on B4-B6. Results reflect a coarse
upper bound estimation: no potential overhead, no compression applied, single precision float values yielding 4 bytes, representation of p(osition)
and r(otation) each by 3 floats, f(lexion) and a(bduction) each by one float. For the face we include the seven basic emotions of Ekman and Friesen
in F1 and a selection of 44 Action Units of the Facial Action Coding System [11] encoded with either 3 bit (F2) or 1 float (F3).

Bytes / Data rate in KB/s per number of clients (1 avatar/client) at 90 Hz
avatar 2 5 10 25 50 75 100 125

Fidelity of body model
B1 head 1×pr 24.0 4.3 10.8 21.6 54.0 108.0 162.0 216.0 270.0
B2 + 2 hands 3×pr 72.0 13.0 32.4 64.8 162.0 324.0 486.0 648.0 810.0
B3 + 2 feet and spine 6×pr 144.0 25.9 64.8 129.6 324.0 648.0 972.0 1296.0 1620.0
B4 skeleton medium 1×p+17× r 216.0 38.9 97.2 194.4 486.0 972.0 1458.0 1944.0 2430.0
B5 hand low 5× f+5×a+ r 52.0 9.4 23.4 46.8 117.0 234.0 351.0 468.0 585.0
B6 hand high 15× f+5×a+ r 92.0 16.6 41.4 82.8 207.0 414.0 621.0 828.0 1035.0
Fidelity of face model
F1 2 eyes + 7 emotions 2× r + 7 float 52.0 9.4 23.4 46.8 117.0 234.0 351.0 468.0 585.0
F2 2 eyes + 44 FACS bit 2× r + 44×3 bit 40.5 7.3 18.2 36.5 91.1 182.3 273.4 364.5 455.6
F3 2 eyes + 44 FACS float 2× r + 44 float 200.0 36.0 90.0 180.0 450.0 900.0 1350.0 1800.0 2250.0

CHAPTER 7. EFFECTS 91

2136  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

2.1 Discussion and Requirements

We currently have little knowledge about the experience of users co-
located with larger groups of avatars realized with distributed immersive
and embodied SVR. How does it feel to be surrounded by virtual oth-
ers? Current game technology provides sophisticated rendering and
networking features. SVRs are sensitive to performance characteristics
due to the close temporal patterns of non-verbal social signals. How
does current technology cope with the extensive embodiment require-
ments and how do the specific performance characteristics impact user
experience regarding scalability? To answer these questions, we chose
a hybrid approach combining tracked user motions and avatar models
(up to avatars reconstructed by photogrammetry) for three reasons: (1)
To support applications requiring scalability in terms of modified avatar
appearances, (2) to scale up the number of distributed avatars and/or
sensory coverage, and (3) to be compatible with animation principles
of current game engines.

Following the theoretical estimates in Table 1, we chose a medium
fidelity B3 (324.0 KB/s) for the current evaluation. Note that B3 po-
tentially either requires IK to be in effect at the distributed clients, or it
has to do without any linked models at all. However, its resulting band-
width is roughly comparable to B4, which transmits all data necessary
to replicate complete linked models. Hence, B3 is a suitable candidate
for our upcoming performance evaluation, which are mainly targeting
impacts from potential bandwidth and latency bottlenecks caused by a
real-world distribution.

UE4 promotes a multi-user client-server distribution architecture.
We assume a standard 1 Gbit network link from the server to the internet
backbone, and clients connected with potentially much less bandwidth,
e.g., from private homes. A proper multicast infrastructure can in
general not be expected for the given distribution scenario. Hence, an
increasing number of clients would certainly increase the load on the
server, specifically for outgoing replication. For example, given 25
clients and fidelity B3, we require a total bandwidth of 324 KB/s to
the server, and 8100 KB/s from the server (who has to replicate all
data back to all clients) at 90 Hz. The resulting client bandwidth here
is much lower (ca. 13 KB/s up; 324 KB/s down). Overall, the final
requirements for the developed system are as follows:

R1 SVR supporting a scalable number of physically distributed users.
R2 Real-world application with potentially novice end-users.
R3 High immersion with first-person perspective.
R4 Full embodiment with sufficient sensory coverage.
R5 Variable, realistic avatar appearance.
R6 High visuomotor synchrony and responsiveness.

(a) Sufficient data throughput.
(b) Low latencies and low latency jitter.
(c) High data fidelity (accuracy and precision).

Similarly to work in [23, 29], our system supports mixed virtual
crowds of user-controlled avatars with AI-controlled virtual agents for
various application-specific tasks (e.g., as role-models or troublemak-
ers). However, this article does not focus on any agent-specific research
questions which are the topic of an alternative publication [27].

Benchmarking the non-functional requirements R6 for VR systems
often uses two general approaches in combination. Intrusive bench-
marking like for real-time systems, in general, requires instrumentation
of the code itself. Elaborate VR frameworks and game engines usu-
ally support intrusive benchmarking and provide additional tools for
profiling. The intrusive approach also allows pinpointing sources of
problems inside the code. On the downside, it requires full-blown code
access, measurements potentially interfere with the results, and the
outcomes do not necessarily correlate to end-user experiences. Hence,
VR-benchmarking often applies non-intrusive black-box benchmark-
ing and end-to-end measurements. Non-intrusive benchmarks include
camera-based latency measures by phase shift analysis of sine curve
movements [46] or body movements [49], automated frame count-
ing [12], or formal simulation of systems [36]. Chang et al. found
interesting system behaviors with a non-intrusive high-speed camera-
based approach [8]. They identified sensitivity-precision tradeoffs of

the underlying engines, which are of high relevance for our approach.
Such tradeoffs often result from internal optimizations of the underlying
engine potentially out-of-reach for application developers.

Overall, we will use a combination of intrusive and non-intrusive
benchmarks to evaluate the specified non-functional performance re-
quirements concerning the scalability features of the system. We will
complement the technical benchmarks with subjective ratings of the
user experience concerning the performance characteristics (fluidity,
synchrony, annoyment, and simulator sickness) to identify potential
correlations between both evaluation methods. Finally, we shed some
light onto the subjective effects of being inside an SVR populated by
a variable number of co-located avatars with different appearances.
Here, we use the system to investigate the resulting user experience
based on a selection of adequate factors for evaluating an SVR with co-
located avatars, e.g., attractiveness, humanness and eerieness, presence,
co-presence, and the possibility of interaction.

3 SYSTEM DESCRIPTION

Virtual
Agents

Solar System
Learning

Environment

Avatar Types
(VR, Desktop,

Spectator)

Interactive
Learning

Task

Classroom
System

Control GUI

SVR Application: A Virtual Classroom

SVR Framework
Virtual Room Framework

Administration
and

Customization

Activation
System
(Lobby)

Avatar Individualization Framework

Avatar
Customization

System

Avatar Scan
Importation

System

Virtual Human Framework

Navigation &
Interaction

System

Interactions
Replication

System

Agent
Replication

System

Avatar
Replication

System

SVR Engine
Unreal Game Engine

Version 4.20

Software
Commercial VR Systems
(Oculus Rift, HTC VIVE)

Hardware

Fig. 2. Overview of the three main layers of the software architecture,
which separates specific system functions according to their specificity
with respect to the required application domain.

Fig. 2 illustrates the overall software parts of the system organized
into three main abstraction layers:

1. SVR Application Layer: Specific functions for customized SVR
content, e.g., for distributed embodied learning or training.

2. SVR Framework Layer: Generic functions for distributed embod-
ied SVR that provide the basic avatar and agent representation
and animation capabilities and the environment specification.

3. SVR Engine Layer: Underlying hardware and software functions
supporting device Input/Output (I/O), basic interaction schemes,
core visualization and simulation capabilities, network communi-
cation facilities, and software component integration schemes.

The following sections describe the SVR Engine and Framework
layers in detail and encompass the relevant functionality for general
SVR support. We take a closer look at the distribution and networking
architecture which follows common practices proposed by the Unreal
Engine development community and builds upon the provided UE4
network replication methods.

3.1 SVR Engine Layer: Hard- and Software
Requirements R2 and R3 are the determining factors for the use of
consumer VR hard- and software. End-users have to operate the system
from their homes without the help of a technician or trained person-
nel. To also support R3, the system uses Oculus Rift as well as HTC
VIVE and HTC VIVE pro head-mounted displays. UE4 provides ap-
plication packaging and distribution necessary to support R2. The

engine has proven to be beneficial in related work [23, 29]. It has a
well-known reputation for rendering high-quality virtual humans. It is
used in combination with the photogrammetry-based method to capture
high-quality avatars following [1, 48] to fulfill R5. Elaborated software
tools like the UE4 usually already support several essential features,
which are necessary to implement the functional requirements. No-
tably, they often also predefine how to satisfy a specific functionality,
and they enforce a particular development model. This guidance is
helpful for novices but also restrictive for experienced programmers.
Additionally, such tools often incorporate idiosyncratic terminology for
their programming primitives, which complicates comprehension of
existing correlations to important software engineering concepts. In
the following section, we try to pinpoint differences where appropriate,
but most often adhere to the provided programming model and the
resulting terminology and naming. We deliberately made this choice
since one goal of this work is to identify where we stand concerning
the realization of SVR with the given technology. It should also foster
replicability since this specific terminology is used throughout the UE4
documentation.

3.2 SVR Framework Layer
3.2.1 Virtual Human Framework

Human Avatar
Controller

Simulated Human
Avatar Controller

Virtual Human
Controller

Human Agent
Controller

Simulated Human
Agent Controller

 Avatar
Controller

 Agent
Controller

Virtual Human
Pawn

VR Avatar
Abstract

 VR Avatar
Photorealistic

Avatar
Pawn

Agent
Pawn

Student
Agent

Teacher
Agent

Motion Controlled
Body Parts

…Torso

Left
Elbow

Right
Elbow

Right
Knee

Left
Knee

Right
Hand

Right
Foot

Left
FootAbstract Generic

 Body Parts Mesh

Scanned Invisible

1

Male Female

Desktop
Avatar Abstract

Head Left
Hand Hips

0..n1..n

Fig. 3. Class diagram of the Virtual Human Framework (bottom). It
supports variable body models (top) in accordance with the Pawn and
Controller abstractions proposed by UE4.

Fig. 3 illustrates the architecture of the Virtual Human Framework,
which collectively supports virtual humans controlled by a user (i.e.,
avatar) as well as controlled by the system (i.e., agent). The framework
models each virtual human as Virtual Human Pawn, which is composed
of a Virtual Human Controller and a combination of Body Part Mesh
and Motion Controlled Body Part. A flexible combination of different
body models and motion-controlled body parts provides various special-
izations of Virtual Human Pawn, such as our VR Abstract Avatar, VR
Photorealistic Avatar, or the Desktop Avatar. The Controller classes
contain the logic responsible for driving the animations of the pawn.
Any pawn can be controlled in real-time either (1) puppeteered using
users’ keyboard, mouse, or controller inputs, (2) tracked using sensory

input of users’ movements and expressions, or (3) algorithmically an-
imated based on artificial intelligence techniques (e.g., behavior tree
or scripted scenario). The classes Simulated Human Avatar Controller
and Simulated Human Agent Controller provide valuable features for
testing and benchmarking. They provide pre-recorded tracking data
or random movement sequences for any pawn type. They also permit
to control the input frequency and amplitudes in order to create more
controllable and realistic variations during benchmarking.

3.2.2 Virtual Room Framework
A lobby menu provides an application’s starting point. The lobby sup-
ports the selection and administration of the target virtual environment
and the user’s configuration. The menu allows customizing the avatar
of the user: name, image, color, and types (e.g., VR Abstract, Pho-
torealistic, or Desktop). By default, the user who creates the server
instance is the administrator. She/He can ban other users and select
different types of virtual rooms. Shortcut buttons provide a faster setup
of multiple parameters like in the benchmark scenario and allow the
administrator to set the user’s configuration to default values.

3.2.3 Avatar Individualization Framework
Fig. 4 shows the photogrammetry rig we use to generate photorealis-
tic and individualized avatars. It includes 106 Canon DSLR cameras,
model EOS1300D. 96 cameras focus the body, 10 cameras focus the
face. The 3D model is generated with the photogrammetry software
CapturingReality, and post-processed and cleaned with Autodesk Mud-
box. Retopology and polycount reduction, as well as UV mapping, is
achieved with R3dS Wrap. The resulting avatars have a polycount of
around 40k triangles. For comparison, the standard UE4 mannequin
has a polycount of 41k triangles. The UV-mapped textures exported
from R3dS Wrap have a resolution of 4096× 4096. We use Maya
to rig our avatars and to export the results as an FBX file into UE4.
Current work integrates pre-processing speed-ups for the avatar models
as motivated by [1].

3.3 Distribution Architecture
The distribution architecture and multi-user support follow a client-
server model as promoted by UE4. Clients can control avatars as well
as agents. The Virtual Human Pawn class (see Fig. 3) centralizes the
replication semantics per virtual human (avatar or agent) as illustrated
in Fig. 5 for two clients. The client packs the updated state of all body
parts (e.g., head, hands, and feet) into an array for efficiency, and sends
it in bulk to the server via remote procedure calls (RPCs). The server
locally stores and replicates this data to all clients. Receiving clients
apply the replicated data to the corresponding body parts.

:Server:Client #1 :Client #2

replicate
transforms
to server

(server-RPC)
replicate
variable

to remote
 clients

store
transforms
in variable

apply
transforms
to client #1

Fig. 5. A client replicates the movements of body parts by executing an
RPC on the server. The server replicates this data to the remote client.
The remote client applies the replicated movement data to body parts.

UE4 provides several options to realize and parameterize network-
ing. Our current system uses unreliable client-server communication
and server-client replication without notification, both to reduce po-
tential latencies. A pre-study did not reveal any significant drop-outs
in a comparison of unreliable to reliable client-server communication.
We set the replication rate for client-server communication to 60 Hz
(desktop clients) and 90 Hz (VR clients) to limit the maximum data

CHAPTER 7. EFFECTS 92

LATOSCHIK ET AL.: NOT ALONE HERE?! SCALABILITY AND USER EXPERIENCE OF EMBODIED AMBIENT CROWDS...� 2137

2.1 Discussion and Requirements

We currently have little knowledge about the experience of users co-
located with larger groups of avatars realized with distributed immersive
and embodied SVR. How does it feel to be surrounded by virtual oth-
ers? Current game technology provides sophisticated rendering and
networking features. SVRs are sensitive to performance characteristics
due to the close temporal patterns of non-verbal social signals. How
does current technology cope with the extensive embodiment require-
ments and how do the specific performance characteristics impact user
experience regarding scalability? To answer these questions, we chose
a hybrid approach combining tracked user motions and avatar models
(up to avatars reconstructed by photogrammetry) for three reasons: (1)
To support applications requiring scalability in terms of modified avatar
appearances, (2) to scale up the number of distributed avatars and/or
sensory coverage, and (3) to be compatible with animation principles
of current game engines.

Following the theoretical estimates in Table 1, we chose a medium
fidelity B3 (324.0 KB/s) for the current evaluation. Note that B3 po-
tentially either requires IK to be in effect at the distributed clients, or it
has to do without any linked models at all. However, its resulting band-
width is roughly comparable to B4, which transmits all data necessary
to replicate complete linked models. Hence, B3 is a suitable candidate
for our upcoming performance evaluation, which are mainly targeting
impacts from potential bandwidth and latency bottlenecks caused by a
real-world distribution.

UE4 promotes a multi-user client-server distribution architecture.
We assume a standard 1 Gbit network link from the server to the internet
backbone, and clients connected with potentially much less bandwidth,
e.g., from private homes. A proper multicast infrastructure can in
general not be expected for the given distribution scenario. Hence, an
increasing number of clients would certainly increase the load on the
server, specifically for outgoing replication. For example, given 25
clients and fidelity B3, we require a total bandwidth of 324 KB/s to
the server, and 8100 KB/s from the server (who has to replicate all
data back to all clients) at 90 Hz. The resulting client bandwidth here
is much lower (ca. 13 KB/s up; 324 KB/s down). Overall, the final
requirements for the developed system are as follows:

R1 SVR supporting a scalable number of physically distributed users.
R2 Real-world application with potentially novice end-users.
R3 High immersion with first-person perspective.
R4 Full embodiment with sufficient sensory coverage.
R5 Variable, realistic avatar appearance.
R6 High visuomotor synchrony and responsiveness.

(a) Sufficient data throughput.
(b) Low latencies and low latency jitter.
(c) High data fidelity (accuracy and precision).

Similarly to work in [23, 29], our system supports mixed virtual
crowds of user-controlled avatars with AI-controlled virtual agents for
various application-specific tasks (e.g., as role-models or troublemak-
ers). However, this article does not focus on any agent-specific research
questions which are the topic of an alternative publication [27].

Benchmarking the non-functional requirements R6 for VR systems
often uses two general approaches in combination. Intrusive bench-
marking like for real-time systems, in general, requires instrumentation
of the code itself. Elaborate VR frameworks and game engines usu-
ally support intrusive benchmarking and provide additional tools for
profiling. The intrusive approach also allows pinpointing sources of
problems inside the code. On the downside, it requires full-blown code
access, measurements potentially interfere with the results, and the
outcomes do not necessarily correlate to end-user experiences. Hence,
VR-benchmarking often applies non-intrusive black-box benchmark-
ing and end-to-end measurements. Non-intrusive benchmarks include
camera-based latency measures by phase shift analysis of sine curve
movements [46] or body movements [49], automated frame count-
ing [12], or formal simulation of systems [36]. Chang et al. found
interesting system behaviors with a non-intrusive high-speed camera-
based approach [8]. They identified sensitivity-precision tradeoffs of

the underlying engines, which are of high relevance for our approach.
Such tradeoffs often result from internal optimizations of the underlying
engine potentially out-of-reach for application developers.

Overall, we will use a combination of intrusive and non-intrusive
benchmarks to evaluate the specified non-functional performance re-
quirements concerning the scalability features of the system. We will
complement the technical benchmarks with subjective ratings of the
user experience concerning the performance characteristics (fluidity,
synchrony, annoyment, and simulator sickness) to identify potential
correlations between both evaluation methods. Finally, we shed some
light onto the subjective effects of being inside an SVR populated by
a variable number of co-located avatars with different appearances.
Here, we use the system to investigate the resulting user experience
based on a selection of adequate factors for evaluating an SVR with co-
located avatars, e.g., attractiveness, humanness and eerieness, presence,
co-presence, and the possibility of interaction.

3 SYSTEM DESCRIPTION

Virtual
Agents

Solar System
Learning

Environment

Avatar Types
(VR, Desktop,

Spectator)

Interactive
Learning

Task

Classroom
System

Control GUI

SVR Application: A Virtual Classroom

SVR Framework
Virtual Room Framework

Administration
and

Customization

Activation
System
(Lobby)

Avatar Individualization Framework

Avatar
Customization

System

Avatar Scan
Importation

System

Virtual Human Framework

Navigation &
Interaction

System

Interactions
Replication

System

Agent
Replication

System

Avatar
Replication

System

SVR Engine
Unreal Game Engine

Version 4.20

Software
Commercial VR Systems
(Oculus Rift, HTC VIVE)

Hardware

Fig. 2. Overview of the three main layers of the software architecture,
which separates specific system functions according to their specificity
with respect to the required application domain.

Fig. 2 illustrates the overall software parts of the system organized
into three main abstraction layers:

1. SVR Application Layer: Specific functions for customized SVR
content, e.g., for distributed embodied learning or training.

2. SVR Framework Layer: Generic functions for distributed embod-
ied SVR that provide the basic avatar and agent representation
and animation capabilities and the environment specification.

3. SVR Engine Layer: Underlying hardware and software functions
supporting device Input/Output (I/O), basic interaction schemes,
core visualization and simulation capabilities, network communi-
cation facilities, and software component integration schemes.

The following sections describe the SVR Engine and Framework
layers in detail and encompass the relevant functionality for general
SVR support. We take a closer look at the distribution and networking
architecture which follows common practices proposed by the Unreal
Engine development community and builds upon the provided UE4
network replication methods.

3.1 SVR Engine Layer: Hard- and Software
Requirements R2 and R3 are the determining factors for the use of
consumer VR hard- and software. End-users have to operate the system
from their homes without the help of a technician or trained person-
nel. To also support R3, the system uses Oculus Rift as well as HTC
VIVE and HTC VIVE pro head-mounted displays. UE4 provides ap-
plication packaging and distribution necessary to support R2. The

engine has proven to be beneficial in related work [23, 29]. It has a
well-known reputation for rendering high-quality virtual humans. It is
used in combination with the photogrammetry-based method to capture
high-quality avatars following [1, 48] to fulfill R5. Elaborated software
tools like the UE4 usually already support several essential features,
which are necessary to implement the functional requirements. No-
tably, they often also predefine how to satisfy a specific functionality,
and they enforce a particular development model. This guidance is
helpful for novices but also restrictive for experienced programmers.
Additionally, such tools often incorporate idiosyncratic terminology for
their programming primitives, which complicates comprehension of
existing correlations to important software engineering concepts. In
the following section, we try to pinpoint differences where appropriate,
but most often adhere to the provided programming model and the
resulting terminology and naming. We deliberately made this choice
since one goal of this work is to identify where we stand concerning
the realization of SVR with the given technology. It should also foster
replicability since this specific terminology is used throughout the UE4
documentation.

3.2 SVR Framework Layer
3.2.1 Virtual Human Framework

Human Avatar
Controller

Simulated Human
Avatar Controller

Virtual Human
Controller

Human Agent
Controller

Simulated Human
Agent Controller

 Avatar
Controller

 Agent
Controller

Virtual Human
Pawn

VR Avatar
Abstract

 VR Avatar
Photorealistic

Avatar
Pawn

Agent
Pawn

Student
Agent

Teacher
Agent

Motion Controlled
Body Parts

…Torso

Left
Elbow

Right
Elbow

Right
Knee

Left
Knee

Right
Hand

Right
Foot

Left
FootAbstract Generic

 Body Parts Mesh

Scanned Invisible

1

Male Female

Desktop
Avatar Abstract

Head Left
Hand Hips

0..n1..n

Fig. 3. Class diagram of the Virtual Human Framework (bottom). It
supports variable body models (top) in accordance with the Pawn and
Controller abstractions proposed by UE4.

Fig. 3 illustrates the architecture of the Virtual Human Framework,
which collectively supports virtual humans controlled by a user (i.e.,
avatar) as well as controlled by the system (i.e., agent). The framework
models each virtual human as Virtual Human Pawn, which is composed
of a Virtual Human Controller and a combination of Body Part Mesh
and Motion Controlled Body Part. A flexible combination of different
body models and motion-controlled body parts provides various special-
izations of Virtual Human Pawn, such as our VR Abstract Avatar, VR
Photorealistic Avatar, or the Desktop Avatar. The Controller classes
contain the logic responsible for driving the animations of the pawn.
Any pawn can be controlled in real-time either (1) puppeteered using
users’ keyboard, mouse, or controller inputs, (2) tracked using sensory

input of users’ movements and expressions, or (3) algorithmically an-
imated based on artificial intelligence techniques (e.g., behavior tree
or scripted scenario). The classes Simulated Human Avatar Controller
and Simulated Human Agent Controller provide valuable features for
testing and benchmarking. They provide pre-recorded tracking data
or random movement sequences for any pawn type. They also permit
to control the input frequency and amplitudes in order to create more
controllable and realistic variations during benchmarking.

3.2.2 Virtual Room Framework
A lobby menu provides an application’s starting point. The lobby sup-
ports the selection and administration of the target virtual environment
and the user’s configuration. The menu allows customizing the avatar
of the user: name, image, color, and types (e.g., VR Abstract, Pho-
torealistic, or Desktop). By default, the user who creates the server
instance is the administrator. She/He can ban other users and select
different types of virtual rooms. Shortcut buttons provide a faster setup
of multiple parameters like in the benchmark scenario and allow the
administrator to set the user’s configuration to default values.

3.2.3 Avatar Individualization Framework
Fig. 4 shows the photogrammetry rig we use to generate photorealis-
tic and individualized avatars. It includes 106 Canon DSLR cameras,
model EOS1300D. 96 cameras focus the body, 10 cameras focus the
face. The 3D model is generated with the photogrammetry software
CapturingReality, and post-processed and cleaned with Autodesk Mud-
box. Retopology and polycount reduction, as well as UV mapping, is
achieved with R3dS Wrap. The resulting avatars have a polycount of
around 40k triangles. For comparison, the standard UE4 mannequin
has a polycount of 41k triangles. The UV-mapped textures exported
from R3dS Wrap have a resolution of 4096× 4096. We use Maya
to rig our avatars and to export the results as an FBX file into UE4.
Current work integrates pre-processing speed-ups for the avatar models
as motivated by [1].

3.3 Distribution Architecture
The distribution architecture and multi-user support follow a client-
server model as promoted by UE4. Clients can control avatars as well
as agents. The Virtual Human Pawn class (see Fig. 3) centralizes the
replication semantics per virtual human (avatar or agent) as illustrated
in Fig. 5 for two clients. The client packs the updated state of all body
parts (e.g., head, hands, and feet) into an array for efficiency, and sends
it in bulk to the server via remote procedure calls (RPCs). The server
locally stores and replicates this data to all clients. Receiving clients
apply the replicated data to the corresponding body parts.

:Server:Client #1 :Client #2

replicate
transforms
to server

(server-RPC)
replicate
variable

to remote
 clients

store
transforms
in variable

apply
transforms
to client #1

Fig. 5. A client replicates the movements of body parts by executing an
RPC on the server. The server replicates this data to the remote client.
The remote client applies the replicated movement data to body parts.

UE4 provides several options to realize and parameterize network-
ing. Our current system uses unreliable client-server communication
and server-client replication without notification, both to reduce po-
tential latencies. A pre-study did not reveal any significant drop-outs
in a comparison of unreliable to reliable client-server communication.
We set the replication rate for client-server communication to 60 Hz
(desktop clients) and 90 Hz (VR clients) to limit the maximum data

CHAPTER 7. EFFECTS 93

2138  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

1 2 3

Fig. 4. The photogrammetry rig used to scan individuals (1), a person during the scan (2), and the resulting high quality avatar (3).

rate while still providing smooth animations. Such technical replica-
tion parameters will certainly affect the overall characteristics of the
system performance and potentially will, in consequence, also affect
user-perception in some unpredicted way [8]. Hence, we test the system
concerning objective and subjective measures in combination.

4 EVALUATION DESIGN, SCENARIO, AND SYSTEM

The evaluation consisted of three consecutive evaluation phases (EPs):

EP1 Performance Benchmarking tested the scalability concerning
objective performance characteristics of latency, frame rate, and
data rate with an increasing number of clients (2, 5, 10, 25, 50,
75, 100, 125), i.e., avatars participating in the SVR. EP1 recorded
the stimulus material for the upcoming evaluation phases: video
recordings of the two screens (see Fig. 6) for EP2 and move-
ment recordings, i.e., position and rotation for chosen fidelity, of
the collaborating partner and the three planets with an extended
movement sequence for EP3. EP1 finally identified 25 as a first
potential upper bound for the number of avatars for EP2 and EP3.

EP2 Performance Perception tested the scalability concerning the
subjective impact of the technical performance characteristics
measured in EP1 on perceived fluidity, synchrony, and annoyment
on a non-immersed user. EP2 used the video recordings from
EP1 with the same scaling conditions. This phase validated and
confirmed the upper bound for the number of avatars for EP3.

EP3 Subjective Experience of Co-Location and Scalability tested
the subjective user experience inside a distributed ambient crowd
and the impact of the technical performance characteristics
of the recorded movements of the interactions from EP1 with
an increasing number of simulated avatars of different avatar
appearances (uniformly human-like as in Fig. 3, upper right,
and mixed human-like and abstract as in Fig. 3, upper right
and left) on an immersed user. EP3 used a reduced number
of avatars (2, 10, 25, 100), with the condition 100 explicitly
exceeding 25 as the target maximum number of avatars, and con-
firmed this maximum. These numbers are reported here already
as a lookahead to some of the results from EP1 and EP2 for clarity.

The consecutive phases EP2 and EP3 deliberately used prerecorded
animations to not induce any confounds by changed stimuli throughout
the experiments and to ensure comparability. However, these recordings
retained all visibly perceivable performance characteristics resulting
from an increased number of clients and avatars, i.e., latencies and
stuttering of the interactive animations. The virtual environment for
all evaluation phases resembled a classroom with a teamwork-oriented
layout, with the participating avatars seemingly collaborating in dis-
tributed groups around tables (see Fig. 1). The user and one participant

who apparently was directly interacting with her/him are seated vis-a-
vis at one table. A virtual solar system is visualized floating in the air
in-between them. All executables for the three phases were initially
developed using the blueprint visual scripting system of UE4. Phases
EP1 and EP2 were nativized, i.e., automatically translated to C++ and
compiled as stand-alone executables. This approach is in line with our
initial assumption to show what we can expect from today’s consumer
systems without any further close-to-metal optimizations. Only the
recording and playback functions were natively implemented in C++
to reduce any performance overhead from these intrusive functions.
The server application in EP3 was not nativized due to an incompati-
bility with a required plugin but did not require any of the potentially
performance-critical networking capabilities.

Table 2. Specifications of the hardware used during the study.

Computers CPU RAM GPU
1× Server i7-8700K 16GB NVIDIA GTX 1080 Ti
2× VR Clients i7-8700K 16GB NVIDIA GTX 1080 Ti
Load Test Clients
5× Computers i7-8700k 16GB NVIDIA GTX 1080 Ti
9× Computers i7-7700k 16GB NVIDIA GTX 1080
18× Computers i5-6600 16GB NVIDIA GTX 1080

All phases were implemented using the hardware specified in Ta-
ble 2. Hosts used 1 Gbit ethernet connected via a switch infrastructure.
The VR clients used Oculus Rift HMDs with Oculus Touch controllers.
The system was implemented using the Unreal Engine 4.20 and
Microsoft Windows 10. Up to 4 instances of the client systems had to
share one of the load test hosts for scaling conditions beyond 25 live
clients. We took care to distribute client systems to the load test hosts
uniformly and to reduce performance impact by the graphics stages as
much as possible. Still, multiple clients per host potentially result in
additional bottlenecks. However, all results identified to satisfy R1 are
not affected by this. The distribution of client and server systems on the
available hosts and the control of the avatars and agents were as follows:

EP1: 1 server per server host; 2 VR clients, each with dedicated VR
host; uniform distribution of load test clients to the load test hosts
following the required scalability conditions. The non-interacting
clients simulate simple avatar movements which do not stress the
clients but which produce the appropriate data rates.

EP2: No live systems needed. Initially, the setup is the same as for
EP1 since it is a recorded video of all animations for the given
scalability conditions from EP1.

EP3: One server per server host to play back the recordings of the
interaction, and to integrate the participant’s avatar inspecting

UE4 state
replication
to each client

send avatar
movements
via RPC per client

send simulated
avatar movements
via RPC per client

Desktop clients with (0…123) sim. VR avatars

Server
2-layered
switched

1 GBit
network

Two (immmersive) VR clients

(server-based
multicast)

VR Avatar #1 view mirrored to screen #1
VR Avatar #2 view mirrored to screen #2

high speed
camera

HMDs

Fig. 6. Physical layout, interconnect scheme (mid left), and logical
distribution architecture (mid right) of the benchmarking scenario. On 32
computers, up to four application instances are running for load tests.

the scene. Notably, the play-back did not cause any significant
additional load, and the recordings of the movement data of the
interactions retained all visually perceivable performance charac-
teristics generated by EP1.

5 EP1 – PERFORMANCE BENCHMARKING

Fig. 6 illustrates the physical setup for the performance benchmarking.
The displayed scene of the two VR clients is mirrored to the two
monitors with a refresh rate of 60 Hz. A high-speed camera is placed in
front of the two VR clients to record both screens at 240 Hz. One user
continuously performs a smooth drag-and-drop operation of a planet
from left to right and back.

5.1 Measuring Latency by Frame Counting
We conducted manual frame counting on the high-speed video follow-
ing [14] for all scaling conditions (2, 5, 10, 25, 50, 75, 100, 125). We
counted how many frames passed between observing updates of the
object’s location between the two VR clients. Movement smoothing
techniques were disabled to see the raw updates. Additionally, we
measured the time elapsed between an initiated grab of an object and
the reception of this event by the other VR client.

Execution of the triggered event of grabbing a planet completed
within a mean of at most 12 ms between the two clients for all test
conditions. This delay is equal or below the screen refresh rate of the
benchmark monitors (60 Hz ≈ 16.6 ms), hence clients receive updates
with a delay that is less than the smallest measurable unit. The delay
between position updates of an initially smooth movement determines
how choppy the movement looks to users. This value increases with an
increasing number of connected clients. Fig. 7 visualizes the results of
this measurement. Table 3 shows the averaged numbers for all frame

Table 3. Latency as determined by counting how much time passes
between initiating a movement on one computer and seeing the move-
ment on a network-connected computer’s screen (left) and between two
updates of a moving object (right). Higher latency means bigger and
more discernable jumps in the movement.

Number Latency in ms as means (SD) for
of Clients Movement Begin Update Rate

2 8(3.65) 18(06.26)
5 7(2.81) 21(08.94)

10 8(2.64) 19(06.99)
25 8(2.64) 30(06.67)
50 12(7.3) 40(16.60)
75 8(1.96) 57(13.22)

100 8(0) 95(14.82)
125 10(1.3) 158(10.65)

●

●

●

●
●

●

●●

50

100

150

2 5 10 25 50 75 100 125
VR Avatars in Scene

La
te

nc
y

in
 m

s

Fig. 7. Average latency and standard deviation between two updates of
a movement for a varying number of clients/avatars connected.

counting measurements. As can be seen, there is a notable latency
increase detectable beyond 25 clients.

5.2 Measuring Performance by Network Statistics

We measured network performance on the server using the Stat Net
command and the Network Profiler of UE4 for the scaling conditions (2,
5, 10, 25, 50, 75, 100, 125) to find out, whether and how an increasing
number of clients and avatars increases the latency and impacts the
frame rate. Table 4 reports the results for the benchmarking scenario,
i.e., the FPS for server and VR client, the VR client ping for the latency,
the network I/O rates on the server and on average per client, the latter
four ordered in the sequence of the replication.

The FPS on server and clients decrease with more than 25 connected
clients. Also, the clients’ latencies increase with an increasing number
of connected clients. First, this confirms our results from the frame
counting in Sect. 5.1. Second, the results for the data rate from the
clients to the server (before the performance drop) are in general esti-
mated by Table 1 when scaled to a 60 Hz replication rate. Observable
differences are caused by an enabled compression and a detected basic
load of UE4’s network layer, which is in effect even without additional
payload. Third, the measurements for conditions with 50+ clients
illustrate typical challenges in the context of black-box testing, i.e.,
to precisely pinpoint the source of the bottleneck. With 50+ clients
most data rates decrease, or slow-down their increase as for the server
out-rate. This certainly is due to the decreased FPS at the server and
the clients, since replication between the hosts is bound to the sim-
ulation rates. Still, measured data rates are well inside the available
bandwidth, rendering a network bottleneck unlikely. Inspecting CPU
system performance revealed a high load on one core of the server for
the critical conditions. Since the simulation loop is responsible for all
replication I/O, our current analysis strongly suggests the performance
bottleneck likely to be located somewhere within the server’s network
I/O capabilities.

CHAPTER 7. EFFECTS 94

LATOSCHIK ET AL.: NOT ALONE HERE?! SCALABILITY AND USER EXPERIENCE OF EMBODIED AMBIENT CROWDS...� 2139

1 2 3

Fig. 4. The photogrammetry rig used to scan individuals (1), a person during the scan (2), and the resulting high quality avatar (3).

rate while still providing smooth animations. Such technical replica-
tion parameters will certainly affect the overall characteristics of the
system performance and potentially will, in consequence, also affect
user-perception in some unpredicted way [8]. Hence, we test the system
concerning objective and subjective measures in combination.

4 EVALUATION DESIGN, SCENARIO, AND SYSTEM

The evaluation consisted of three consecutive evaluation phases (EPs):

EP1 Performance Benchmarking tested the scalability concerning
objective performance characteristics of latency, frame rate, and
data rate with an increasing number of clients (2, 5, 10, 25, 50,
75, 100, 125), i.e., avatars participating in the SVR. EP1 recorded
the stimulus material for the upcoming evaluation phases: video
recordings of the two screens (see Fig. 6) for EP2 and move-
ment recordings, i.e., position and rotation for chosen fidelity, of
the collaborating partner and the three planets with an extended
movement sequence for EP3. EP1 finally identified 25 as a first
potential upper bound for the number of avatars for EP2 and EP3.

EP2 Performance Perception tested the scalability concerning the
subjective impact of the technical performance characteristics
measured in EP1 on perceived fluidity, synchrony, and annoyment
on a non-immersed user. EP2 used the video recordings from
EP1 with the same scaling conditions. This phase validated and
confirmed the upper bound for the number of avatars for EP3.

EP3 Subjective Experience of Co-Location and Scalability tested
the subjective user experience inside a distributed ambient crowd
and the impact of the technical performance characteristics
of the recorded movements of the interactions from EP1 with
an increasing number of simulated avatars of different avatar
appearances (uniformly human-like as in Fig. 3, upper right,
and mixed human-like and abstract as in Fig. 3, upper right
and left) on an immersed user. EP3 used a reduced number
of avatars (2, 10, 25, 100), with the condition 100 explicitly
exceeding 25 as the target maximum number of avatars, and con-
firmed this maximum. These numbers are reported here already
as a lookahead to some of the results from EP1 and EP2 for clarity.

The consecutive phases EP2 and EP3 deliberately used prerecorded
animations to not induce any confounds by changed stimuli throughout
the experiments and to ensure comparability. However, these recordings
retained all visibly perceivable performance characteristics resulting
from an increased number of clients and avatars, i.e., latencies and
stuttering of the interactive animations. The virtual environment for
all evaluation phases resembled a classroom with a teamwork-oriented
layout, with the participating avatars seemingly collaborating in dis-
tributed groups around tables (see Fig. 1). The user and one participant

who apparently was directly interacting with her/him are seated vis-a-
vis at one table. A virtual solar system is visualized floating in the air
in-between them. All executables for the three phases were initially
developed using the blueprint visual scripting system of UE4. Phases
EP1 and EP2 were nativized, i.e., automatically translated to C++ and
compiled as stand-alone executables. This approach is in line with our
initial assumption to show what we can expect from today’s consumer
systems without any further close-to-metal optimizations. Only the
recording and playback functions were natively implemented in C++
to reduce any performance overhead from these intrusive functions.
The server application in EP3 was not nativized due to an incompati-
bility with a required plugin but did not require any of the potentially
performance-critical networking capabilities.

Table 2. Specifications of the hardware used during the study.

Computers CPU RAM GPU
1× Server i7-8700K 16GB NVIDIA GTX 1080 Ti
2× VR Clients i7-8700K 16GB NVIDIA GTX 1080 Ti
Load Test Clients
5× Computers i7-8700k 16GB NVIDIA GTX 1080 Ti
9× Computers i7-7700k 16GB NVIDIA GTX 1080
18× Computers i5-6600 16GB NVIDIA GTX 1080

All phases were implemented using the hardware specified in Ta-
ble 2. Hosts used 1 Gbit ethernet connected via a switch infrastructure.
The VR clients used Oculus Rift HMDs with Oculus Touch controllers.
The system was implemented using the Unreal Engine 4.20 and
Microsoft Windows 10. Up to 4 instances of the client systems had to
share one of the load test hosts for scaling conditions beyond 25 live
clients. We took care to distribute client systems to the load test hosts
uniformly and to reduce performance impact by the graphics stages as
much as possible. Still, multiple clients per host potentially result in
additional bottlenecks. However, all results identified to satisfy R1 are
not affected by this. The distribution of client and server systems on the
available hosts and the control of the avatars and agents were as follows:

EP1: 1 server per server host; 2 VR clients, each with dedicated VR
host; uniform distribution of load test clients to the load test hosts
following the required scalability conditions. The non-interacting
clients simulate simple avatar movements which do not stress the
clients but which produce the appropriate data rates.

EP2: No live systems needed. Initially, the setup is the same as for
EP1 since it is a recorded video of all animations for the given
scalability conditions from EP1.

EP3: One server per server host to play back the recordings of the
interaction, and to integrate the participant’s avatar inspecting

UE4 state
replication
to each client

send avatar
movements
via RPC per client

send simulated
avatar movements
via RPC per client

Desktop clients with (0…123) sim. VR avatars

Server
2-layered
switched

1 GBit
network

Two (immmersive) VR clients

(server-based
multicast)

VR Avatar #1 view mirrored to screen #1
VR Avatar #2 view mirrored to screen #2

high speed
camera

HMDs

Fig. 6. Physical layout, interconnect scheme (mid left), and logical
distribution architecture (mid right) of the benchmarking scenario. On 32
computers, up to four application instances are running for load tests.

the scene. Notably, the play-back did not cause any significant
additional load, and the recordings of the movement data of the
interactions retained all visually perceivable performance charac-
teristics generated by EP1.

5 EP1 – PERFORMANCE BENCHMARKING

Fig. 6 illustrates the physical setup for the performance benchmarking.
The displayed scene of the two VR clients is mirrored to the two
monitors with a refresh rate of 60 Hz. A high-speed camera is placed in
front of the two VR clients to record both screens at 240 Hz. One user
continuously performs a smooth drag-and-drop operation of a planet
from left to right and back.

5.1 Measuring Latency by Frame Counting
We conducted manual frame counting on the high-speed video follow-
ing [14] for all scaling conditions (2, 5, 10, 25, 50, 75, 100, 125). We
counted how many frames passed between observing updates of the
object’s location between the two VR clients. Movement smoothing
techniques were disabled to see the raw updates. Additionally, we
measured the time elapsed between an initiated grab of an object and
the reception of this event by the other VR client.

Execution of the triggered event of grabbing a planet completed
within a mean of at most 12 ms between the two clients for all test
conditions. This delay is equal or below the screen refresh rate of the
benchmark monitors (60 Hz ≈ 16.6 ms), hence clients receive updates
with a delay that is less than the smallest measurable unit. The delay
between position updates of an initially smooth movement determines
how choppy the movement looks to users. This value increases with an
increasing number of connected clients. Fig. 7 visualizes the results of
this measurement. Table 3 shows the averaged numbers for all frame

Table 3. Latency as determined by counting how much time passes
between initiating a movement on one computer and seeing the move-
ment on a network-connected computer’s screen (left) and between two
updates of a moving object (right). Higher latency means bigger and
more discernable jumps in the movement.

Number Latency in ms as means (SD) for
of Clients Movement Begin Update Rate

2 8(3.65) 18(06.26)
5 7(2.81) 21(08.94)

10 8(2.64) 19(06.99)
25 8(2.64) 30(06.67)
50 12(7.3) 40(16.60)
75 8(1.96) 57(13.22)

100 8(0) 95(14.82)
125 10(1.3) 158(10.65)

●

●

●

●
●

●

●●

50

100

150

2 5 10 25 50 75 100 125
VR Avatars in Scene

La
te

nc
y

in
 m

s

Fig. 7. Average latency and standard deviation between two updates of
a movement for a varying number of clients/avatars connected.

counting measurements. As can be seen, there is a notable latency
increase detectable beyond 25 clients.

5.2 Measuring Performance by Network Statistics

We measured network performance on the server using the Stat Net
command and the Network Profiler of UE4 for the scaling conditions (2,
5, 10, 25, 50, 75, 100, 125) to find out, whether and how an increasing
number of clients and avatars increases the latency and impacts the
frame rate. Table 4 reports the results for the benchmarking scenario,
i.e., the FPS for server and VR client, the VR client ping for the latency,
the network I/O rates on the server and on average per client, the latter
four ordered in the sequence of the replication.

The FPS on server and clients decrease with more than 25 connected
clients. Also, the clients’ latencies increase with an increasing number
of connected clients. First, this confirms our results from the frame
counting in Sect. 5.1. Second, the results for the data rate from the
clients to the server (before the performance drop) are in general esti-
mated by Table 1 when scaled to a 60 Hz replication rate. Observable
differences are caused by an enabled compression and a detected basic
load of UE4’s network layer, which is in effect even without additional
payload. Third, the measurements for conditions with 50+ clients
illustrate typical challenges in the context of black-box testing, i.e.,
to precisely pinpoint the source of the bottleneck. With 50+ clients
most data rates decrease, or slow-down their increase as for the server
out-rate. This certainly is due to the decreased FPS at the server and
the clients, since replication between the hosts is bound to the sim-
ulation rates. Still, measured data rates are well inside the available
bandwidth, rendering a network bottleneck unlikely. Inspecting CPU
system performance revealed a high load on one core of the server for
the critical conditions. Since the simulation loop is responsible for all
replication I/O, our current analysis strongly suggests the performance
bottleneck likely to be located somewhere within the server’s network
I/O capabilities.

CHAPTER 7. EFFECTS 95

2140  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Table 4. The server and client performance and network statistics during the benchmarking scenario. The results visualize a decreasing number of
frames per second (FPS) at the server and an increasing latency of the clients (Client Ping) with an increasing number of connected clients for
measurements beyond 25 clients. Client FPS and data rates decrease slightly time-delayed. See text for further discussions.

Number of
Clients

Server
FPS

VR Client
FPS

Client Ping
(ms)

Out Rate Client
Avg. (KB/s)

−→ In Rate Server
(KB/s)

−→ Out Rate Server
(KB/s)

−→ In Rate Client
Avg. (KB/s)

2 120 90 9 11.5 23.0 21.5 10.8
5 120 90 9 11.0 54.5 146.9 29.4

10 120 90 11 10.8 107.5 571.8 57.3
25 120 90 13 11.6 288.7 3653.7 143.1
50 40 90 35 10.5 534.7 7081.1 136.4
75 17 60 65 6.4 474.8 9377.3 124.4

100 11 60 117 4.2 1038.8 10163.3 98.7
125 6 35 182 2.8 342.7 11386.2 80.9

Table 5. Descriptive statistics for the three items. For fluidity and syn-
chrony, high values mean high approval. For annoyment low values
mean low annoyment. Scales range from 1 to 5.

Number of
Clients

Fluidity
M(SD)

Synchrony
M(SD)

Annoyment
M(SD)

2 3.88(1.21) 4.48(.67) 1.67(.82)
5 3.95(1.23) 4.40(.83) 1.57(.97)

10 3.90(1.08) 4.52(.67) 1.57(.86)
25 3.88(1.02) 4.19(.97) 1.93(.92)
50 2.90(1.28) 3.88(.89) 2.48(1.27)
75 2.88(1.11) 3.12(1.13) 2.76(.91)

100 1.81(.97) 2.12(.94) 3.88(.94)
125 1.33(.72) 1.48(.74) 4.64(.58)

6 EP2 – PERFORMANCE PERCEPTION

We recorded eight short video clips of 30 seconds of the interaction
described in Sect. 5 for each scaling condition from 2 to 125 clients as
before. These videos were provided via an online survey to collect the
user feedback about the perceived latency. Each participant watched all
eight videos. The order of the videos was randomized. We included
three items for each video. Participants rated their approval to the
statements “The movement of the ball on the right screen is fluid.”
and “The movement of the two balls is synchronous.” on a 5-point
Likert scale. Additionally, we included an adapted version of the
ITU-R impairment scale [19]: Participants stated if they perceived a
difference between both movements. The 5-point Likert scale ranged
from “Imperceptible” to “Perceptible, but not annoying”, “Slightly
annoying”, “Annoying” up to “Very annoying”.

N = 42 people (19 female, 23 male) with a mean age of M(SD) =
28.86(9.55) participated in the subjective evaluation. On average they
reported playing video games M(SD) = 6.7(10.24) hours a week with
values ranging between 0 hours and 40 hours. 40 participants answered
the employment question. 15 participants were students, 24 participants
were employees, 1 participant was self-employed.

To analyze the data, we calculated a repeated-measures ANOVA
for each item. For all three items, Mauchly’s test indicated a violation
of the assumption of sphericity (all ps < .01). Therefore, we report
Greenhouse-Geisser-corrected tests for Fluidity (ε = .74), Synchrony
(ε = .66), and Annoyment (ε = .76). All post-hoc tests were pair-
wise comparisons with Bonferroni adjustments. We used IBM SPSS
Statistics 25 for the analysis of the quantitative data.

6.1 Results
Table 5 displays the descriptive statistics for the three items. Fig. 8
shows the means, standard errors, and significant differences. The
ratings regarding the fluidity of the movement of the right ball dif-
fered significantly, F(5.20,213.05)= 43.74, p< .001, partial η2 = .52.
Post-hoc tests showed that 2, 5, 10 and 25 avatars differed significantly
from all higher numbers. 50 and 75 avatars differed from 100 avatars
and higher (p ≤ .01). No significant differences occurred between 2,
5, 10 and 25 avatars, between 50 and 75 avatars, and between 100
and 125 avatars. Participants’ approval to the synchrony statement

also differed significantly, F(4.61,188.89) = 101.15, p < .001, partial
η2 = .71. Post-hoc tests revealed that 2, 5 and 10 avatars differed
significantly from 50 and more avatars, 25 differed significantly from
75 and more, 50 and 75 avatars differed significantly from 100 and
more, and 100 differed significantly from 125 (all ps < .05). Finally,
the ratings on the ITU-R impairment scale (annoyment of the perceived
difference) differed significantly, F(5.31,217.82) = 79.51, p < .001,
partial η2 = .66. Post-hoc tests showed that the ratings differed sig-
nificantly between the same numbers of avatars as for the synchrony
ratings (p ≤ .01). Overall, the subjective ratings were very much in
line with the objective measures and did confirm the still acceptable
limit of 25 avatars.

7 EP3 – SUBJECTIVE EXPERIENCE OF CO-LOCATION AND
SCALABILITY

The aim of the final phase of the evaluation was three-fold: to get
insights into (1) the subjective experiences of users immersed inside of
an SVR with an increasing number of co-located embodied others, (2)
the potential effects of different avatar appearances of the co-located
others in such an environment, and (3) the impact of potential technical
characteristics hampering the overall experience.

The user study followed a mixed-methods design. As the within-
subjects factor, each participant experienced four conditions with a
varying number of co-located avatars (2, 10, 25, 100) in randomized
order. These numbers resulted from the first phases choosing 100 as a
value certainly impacting the experience. As the between-groups factor,
we manipulated the appearance of the other avatars. In the Human
condition, all other avatars looked human (Fig. 3, right). In the Mixed
condition, half of the avatars looked human, and the other half had an
artificial appearance (Fig. 3, left). We assessed quantitative as well as
qualitative data.

7.1 Procedure

Fig. 9 illustrates the experimental procedure. The first step introduced
the participants to the procedure and the HMD and controller. Then
they gave their informed consent to take part in the study and answered
the pre-questionnaire. They put on the HMD and adjusted the head
straps and lens distance according to their personal preferences.

Now participants experienced the first SVR scene consisting of 24
other avatars sitting around tables. Participants could inspect the sur-
rounding for 20 seconds and then gave oral qualitative feedback on
their impression of the scene without leaving the VR. Next, the experi-
menter showed an example question floating in front of the participant
to explain how to interact with such in-vitro text questions in VR and to
assure readability. The following experimental phase iterated through
the four within-subject conditions, randomly varying the numbers of
avatars. One abstract VR avatar sat at the same table as the partici-
pant throughout this phase. He moved the planets according to the
recordings taken under the respective load condition. The participant
answered questions in VR after each exposure. Fig. 10 shows screen-
shots of the scene (1) and a VR question afterward (2). In the end,
participants removed the HMD and answered the post-questionnaire.

1

2

3

4

5

2 5 10 25 50 75 100 125
Number of clients

Fluidity

1

2

3

4

5

2 5 10 25 50 75 100 125
Number of clients

Synchrony

1

2

3

4

5

2 5 10 25 50 75 100 125
Number of clients

Annoyment

**

*** ** **

Fig. 8. Means and according standard errors for the items regarding the fluidity and synchrony of the movements and the annoyment. Low values
mean low fluidity, synchrony, and annoyment. Significances are marked as follows: ∗ < .05, ∗∗ < .01, ∗∗∗ < .001.

The experiment simultaneously took place in three rooms with iden-
tical setups but different experimenters (2 male, 1 female). All experi-
menters followed a strict study protocol to ensure comparable results.

7.2 Measures

Participants filled in a pre- and post-questionnaire on a dedicated
computer using the online questionnaire tool LimeSurvey and answered
in-vitro questionnaires while immersed in the virtual environment.

1. Pre-Questionnaire: Participants answered the Immersive Tendency
Questionnaire (ITQ) [50]. The ITQ consists of 18 items with 7-point
Likert scales and values ranging from 1 to 7. The second part of
the pre-questionnaire was the Simulator Sickness Questionnaire
(SSQ) [22]. The questionnaire consists of 16 4-point scales ranging
from 0 to 3.

2. Qualitative Feedback: To assess qualitative feedback, we asked
the following questions:

• “How does it feel to be in this virtual environment?”
• “How do you feel about the presence of the others?”
• “Do you think you would interact with the others in the same

way as you would in the real world?”

3. In-Vitro Questions: Presentation and answering of the in-vitro
questions directly took place in the virtual environment after each
condition. We measured the subjective presence of the participants
with a single item as proposed in [7]. Participants answered the question
“How present do you feel in the virtual environment right now?” on a
rating scale ranging from 0 to 10. After that, participants stated their
agreement on 7-point Likert scales ranging from 1 to 7 for the following
five items:

• “The movement of the {ball / person at my table / other people in
the room} was fluid.”

• “The movement of the {person at my table / other people in the
room} was natural.”

Introduction

VR-Exposure
X avatars

Questionnaire

Pre-Questionnaire

Post-Questionnaire

Repeated for
X = 2, 10, 25, 100

End of Study

Questionnaire
Tutorial

VR-Exposure
25 avatars

Qualitative
Feedback

Fig. 9. General procedure of the experiment. Stages performed within
VR are colored in orange.

The movement of the person at my table was fluid.

Not at all

Next

1 2

Absolutely

Fig. 10. The participants observed the movements of the planets for
30 seconds (1). They were asked to answer the questions directly in VR
using a ray-cast pointing method (2). The participant selected an answer
by pointing at a circular option field and pressing the forefinger button.

For the condition with only one additional avatar in the room, we
excluded the items asking about the other people in the room. To
obtain quantitative information about the experience of being in the
virtual environment co-located with other avatars, we included the
two subscales co-presence and impression of interaction possibilities
of [34]. The co-presence subscale consists of three items, and the
possible interactions subscale consists of four items. All scales are
7-point Likert scales ranging from 1 to 7.

4. Post-Questionnaire: To gather information about possible uncanny
valley effects we included the four subscales Attractiveness, Human-
ness, and Eeriness [16, 17]. We divided Eeriness into the subscales
eerie and spine-tingling [16]. The last stimulus-related question was
another open question: “How did you feel about the different numbers
of avatars in the room?”

Participants answered the SSQ [22] a second time to assure that our
application did not induce any unwanted effects regarding simulator
sickness. Each participant answered the following demographic items:
age, gender, occupation, highest educational achievement, debility of
sight, years of experience with the location’s language, and experience
in playing video games and with VR environments.

7.3 Participants

N = 47 people participated in the study. We excluded two data sets
from the analysis due to technical problems (1 disconnected controller,
1 false position calibration) during the experiment. The remaining
sample consisted of N = 45 people (71.7 % female) with a mean age of
M(SD) = 20.96(1.75). All participants gave written informed consent
and got course credits for their participation. Assignment of partici-
pants to one of the two conditions Human (n = 23, 56.5% female) or
Mixed (n = 22, 86.4% female) was randomized. In both groups, most
people reported playing video games less than 1 hour a day (Human:
14, Mixed: 18 people). In the Mixed condition, four people stated
that they had never experienced Virtual Reality with a head-mounted

CHAPTER 7. EFFECTS 96

LATOSCHIK ET AL.: NOT ALONE HERE?! SCALABILITY AND USER EXPERIENCE OF EMBODIED AMBIENT CROWDS...� 2141

Table 4. The server and client performance and network statistics during the benchmarking scenario. The results visualize a decreasing number of
frames per second (FPS) at the server and an increasing latency of the clients (Client Ping) with an increasing number of connected clients for
measurements beyond 25 clients. Client FPS and data rates decrease slightly time-delayed. See text for further discussions.

Number of
Clients

Server
FPS

VR Client
FPS

Client Ping
(ms)

Out Rate Client
Avg. (KB/s)

−→ In Rate Server
(KB/s)

−→ Out Rate Server
(KB/s)

−→ In Rate Client
Avg. (KB/s)

2 120 90 9 11.5 23.0 21.5 10.8
5 120 90 9 11.0 54.5 146.9 29.4

10 120 90 11 10.8 107.5 571.8 57.3
25 120 90 13 11.6 288.7 3653.7 143.1
50 40 90 35 10.5 534.7 7081.1 136.4
75 17 60 65 6.4 474.8 9377.3 124.4

100 11 60 117 4.2 1038.8 10163.3 98.7
125 6 35 182 2.8 342.7 11386.2 80.9

Table 5. Descriptive statistics for the three items. For fluidity and syn-
chrony, high values mean high approval. For annoyment low values
mean low annoyment. Scales range from 1 to 5.

Number of
Clients

Fluidity
M(SD)

Synchrony
M(SD)

Annoyment
M(SD)

2 3.88(1.21) 4.48(.67) 1.67(.82)
5 3.95(1.23) 4.40(.83) 1.57(.97)

10 3.90(1.08) 4.52(.67) 1.57(.86)
25 3.88(1.02) 4.19(.97) 1.93(.92)
50 2.90(1.28) 3.88(.89) 2.48(1.27)
75 2.88(1.11) 3.12(1.13) 2.76(.91)

100 1.81(.97) 2.12(.94) 3.88(.94)
125 1.33(.72) 1.48(.74) 4.64(.58)

6 EP2 – PERFORMANCE PERCEPTION

We recorded eight short video clips of 30 seconds of the interaction
described in Sect. 5 for each scaling condition from 2 to 125 clients as
before. These videos were provided via an online survey to collect the
user feedback about the perceived latency. Each participant watched all
eight videos. The order of the videos was randomized. We included
three items for each video. Participants rated their approval to the
statements “The movement of the ball on the right screen is fluid.”
and “The movement of the two balls is synchronous.” on a 5-point
Likert scale. Additionally, we included an adapted version of the
ITU-R impairment scale [19]: Participants stated if they perceived a
difference between both movements. The 5-point Likert scale ranged
from “Imperceptible” to “Perceptible, but not annoying”, “Slightly
annoying”, “Annoying” up to “Very annoying”.

N = 42 people (19 female, 23 male) with a mean age of M(SD) =
28.86(9.55) participated in the subjective evaluation. On average they
reported playing video games M(SD) = 6.7(10.24) hours a week with
values ranging between 0 hours and 40 hours. 40 participants answered
the employment question. 15 participants were students, 24 participants
were employees, 1 participant was self-employed.

To analyze the data, we calculated a repeated-measures ANOVA
for each item. For all three items, Mauchly’s test indicated a violation
of the assumption of sphericity (all ps < .01). Therefore, we report
Greenhouse-Geisser-corrected tests for Fluidity (ε = .74), Synchrony
(ε = .66), and Annoyment (ε = .76). All post-hoc tests were pair-
wise comparisons with Bonferroni adjustments. We used IBM SPSS
Statistics 25 for the analysis of the quantitative data.

6.1 Results
Table 5 displays the descriptive statistics for the three items. Fig. 8
shows the means, standard errors, and significant differences. The
ratings regarding the fluidity of the movement of the right ball dif-
fered significantly, F(5.20,213.05)= 43.74, p< .001, partial η2 = .52.
Post-hoc tests showed that 2, 5, 10 and 25 avatars differed significantly
from all higher numbers. 50 and 75 avatars differed from 100 avatars
and higher (p ≤ .01). No significant differences occurred between 2,
5, 10 and 25 avatars, between 50 and 75 avatars, and between 100
and 125 avatars. Participants’ approval to the synchrony statement

also differed significantly, F(4.61,188.89) = 101.15, p < .001, partial
η2 = .71. Post-hoc tests revealed that 2, 5 and 10 avatars differed
significantly from 50 and more avatars, 25 differed significantly from
75 and more, 50 and 75 avatars differed significantly from 100 and
more, and 100 differed significantly from 125 (all ps < .05). Finally,
the ratings on the ITU-R impairment scale (annoyment of the perceived
difference) differed significantly, F(5.31,217.82) = 79.51, p < .001,
partial η2 = .66. Post-hoc tests showed that the ratings differed sig-
nificantly between the same numbers of avatars as for the synchrony
ratings (p ≤ .01). Overall, the subjective ratings were very much in
line with the objective measures and did confirm the still acceptable
limit of 25 avatars.

7 EP3 – SUBJECTIVE EXPERIENCE OF CO-LOCATION AND
SCALABILITY

The aim of the final phase of the evaluation was three-fold: to get
insights into (1) the subjective experiences of users immersed inside of
an SVR with an increasing number of co-located embodied others, (2)
the potential effects of different avatar appearances of the co-located
others in such an environment, and (3) the impact of potential technical
characteristics hampering the overall experience.

The user study followed a mixed-methods design. As the within-
subjects factor, each participant experienced four conditions with a
varying number of co-located avatars (2, 10, 25, 100) in randomized
order. These numbers resulted from the first phases choosing 100 as a
value certainly impacting the experience. As the between-groups factor,
we manipulated the appearance of the other avatars. In the Human
condition, all other avatars looked human (Fig. 3, right). In the Mixed
condition, half of the avatars looked human, and the other half had an
artificial appearance (Fig. 3, left). We assessed quantitative as well as
qualitative data.

7.1 Procedure

Fig. 9 illustrates the experimental procedure. The first step introduced
the participants to the procedure and the HMD and controller. Then
they gave their informed consent to take part in the study and answered
the pre-questionnaire. They put on the HMD and adjusted the head
straps and lens distance according to their personal preferences.

Now participants experienced the first SVR scene consisting of 24
other avatars sitting around tables. Participants could inspect the sur-
rounding for 20 seconds and then gave oral qualitative feedback on
their impression of the scene without leaving the VR. Next, the experi-
menter showed an example question floating in front of the participant
to explain how to interact with such in-vitro text questions in VR and to
assure readability. The following experimental phase iterated through
the four within-subject conditions, randomly varying the numbers of
avatars. One abstract VR avatar sat at the same table as the partici-
pant throughout this phase. He moved the planets according to the
recordings taken under the respective load condition. The participant
answered questions in VR after each exposure. Fig. 10 shows screen-
shots of the scene (1) and a VR question afterward (2). In the end,
participants removed the HMD and answered the post-questionnaire.

1

2

3

4

5

2 5 10 25 50 75 100 125
Number of clients

Fluidity

1

2

3

4

5

2 5 10 25 50 75 100 125
Number of clients

Synchrony

1

2

3

4

5

2 5 10 25 50 75 100 125
Number of clients

Annoyment

**

*** ** **

Fig. 8. Means and according standard errors for the items regarding the fluidity and synchrony of the movements and the annoyment. Low values
mean low fluidity, synchrony, and annoyment. Significances are marked as follows: ∗ < .05, ∗∗ < .01, ∗∗∗ < .001.

The experiment simultaneously took place in three rooms with iden-
tical setups but different experimenters (2 male, 1 female). All experi-
menters followed a strict study protocol to ensure comparable results.

7.2 Measures

Participants filled in a pre- and post-questionnaire on a dedicated
computer using the online questionnaire tool LimeSurvey and answered
in-vitro questionnaires while immersed in the virtual environment.

1. Pre-Questionnaire: Participants answered the Immersive Tendency
Questionnaire (ITQ) [50]. The ITQ consists of 18 items with 7-point
Likert scales and values ranging from 1 to 7. The second part of
the pre-questionnaire was the Simulator Sickness Questionnaire
(SSQ) [22]. The questionnaire consists of 16 4-point scales ranging
from 0 to 3.

2. Qualitative Feedback: To assess qualitative feedback, we asked
the following questions:

• “How does it feel to be in this virtual environment?”
• “How do you feel about the presence of the others?”
• “Do you think you would interact with the others in the same

way as you would in the real world?”

3. In-Vitro Questions: Presentation and answering of the in-vitro
questions directly took place in the virtual environment after each
condition. We measured the subjective presence of the participants
with a single item as proposed in [7]. Participants answered the question
“How present do you feel in the virtual environment right now?” on a
rating scale ranging from 0 to 10. After that, participants stated their
agreement on 7-point Likert scales ranging from 1 to 7 for the following
five items:

• “The movement of the {ball / person at my table / other people in
the room} was fluid.”

• “The movement of the {person at my table / other people in the
room} was natural.”

Introduction

VR-Exposure
X avatars

Questionnaire

Pre-Questionnaire

Post-Questionnaire

Repeated for
X = 2, 10, 25, 100

End of Study

Questionnaire
Tutorial

VR-Exposure
25 avatars

Qualitative
Feedback

Fig. 9. General procedure of the experiment. Stages performed within
VR are colored in orange.

The movement of the person at my table was fluid.

Not at all

Next

1 2

Absolutely

Fig. 10. The participants observed the movements of the planets for
30 seconds (1). They were asked to answer the questions directly in VR
using a ray-cast pointing method (2). The participant selected an answer
by pointing at a circular option field and pressing the forefinger button.

For the condition with only one additional avatar in the room, we
excluded the items asking about the other people in the room. To
obtain quantitative information about the experience of being in the
virtual environment co-located with other avatars, we included the
two subscales co-presence and impression of interaction possibilities
of [34]. The co-presence subscale consists of three items, and the
possible interactions subscale consists of four items. All scales are
7-point Likert scales ranging from 1 to 7.

4. Post-Questionnaire: To gather information about possible uncanny
valley effects we included the four subscales Attractiveness, Human-
ness, and Eeriness [16, 17]. We divided Eeriness into the subscales
eerie and spine-tingling [16]. The last stimulus-related question was
another open question: “How did you feel about the different numbers
of avatars in the room?”

Participants answered the SSQ [22] a second time to assure that our
application did not induce any unwanted effects regarding simulator
sickness. Each participant answered the following demographic items:
age, gender, occupation, highest educational achievement, debility of
sight, years of experience with the location’s language, and experience
in playing video games and with VR environments.

7.3 Participants

N = 47 people participated in the study. We excluded two data sets
from the analysis due to technical problems (1 disconnected controller,
1 false position calibration) during the experiment. The remaining
sample consisted of N = 45 people (71.7 % female) with a mean age of
M(SD) = 20.96(1.75). All participants gave written informed consent
and got course credits for their participation. Assignment of partici-
pants to one of the two conditions Human (n = 23, 56.5% female) or
Mixed (n = 22, 86.4% female) was randomized. In both groups, most
people reported playing video games less than 1 hour a day (Human:
14, Mixed: 18 people). In the Mixed condition, four people stated
that they had never experienced Virtual Reality with a head-mounted

CHAPTER 7. EFFECTS 97

2142  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

Table 6. Descriptive statistics for the Pre- and Post-Questionnaire Scales.
ITQ-scales range from 1 to 7. SSQ scores are total scores calculated
according to [22]. For the uncanny valley subscales (value range -3 to +3)
low scores mean low humanness, low eeriness, and low attractiveness.

Human Mixed
Questionnaire M(SD) M(SD)

ITQ 4.35(.67) 4.66(.49)
SSQ Pre 12.68(14.56) 14.96(15.31)

SSQ Post 12.52(14.82) 13.60(15.68)
Uncanny Valley Human Mixed

Attractiveness .52(.91) 1.07(.71)
Humanness -.39(1.37) .30(.98)

Overall Eeriness -1.07(.65) -.58(.68)
Eerie -.88(.94) -.44(.65)

Spine-Tingling -1.22(.60) -.69(.89)

display before. In both groups, about 50 % stated that they have 1
to 5 hours of VR experience. In the Human condition, more people
(7) stated to have more than 10 hours of VR experience than in the
Mixed Condition (3 people). The two groups did not differ signifi-
cantly regarding their Immersive Tendency (t(43) = −1.75, p = .09)
or their Simulator Sickness Ratings before (t(43) = −.51, p = .61)
or after (t(43) = −.24, p = .81) the experiment. Overall, simula-
tor sickness did not change significantly throughout the experiment,
t(44) = .53, p = .60. Table 6 displays the descriptive statistics for the
ITQ and SSQ.

7.4 Results
We used IBM SPSS Statistics 25 for the analysis of the quantitative
data. Table 7 reports descriptive statistics for all dependent variables
assessed inside of the virtual environment.

7.4.1 In-Vitro Measurements
We calculated mixed design ANOVAs for all measurements assessed
inside of the virtual environment. Mauchly’s test indicated a violation
of the assumption of sphericity for the fluidity of the ball (ε = .61),
the fluidity (ε = .53) and naturalness (ε = .64) of the person at the
participant’s table, as well as for the perceived possibility of interaction
(ε = .71), with all ps< .001. Therefore, we report Greenhouse-Geisser-
corrected tests for these variables. For the fluidity and naturalness of the
crowd as well as for presence and co-presence Mauchly’s test indicated
that sphericity could be assumed.

The analysis reveals a significant main effect of the number of clients
on the perceived fluidity of the ball (F(1.82,78.23) = 33.30, partial
η2 = .44) and the perceived fluidity (F(1.60,68.94) = 42.61, partial
η2 = .50) and naturalness (F(1.92,82.48) = 27.83, partial η2 = .39)
of the person at the participant’s table, all ps < .001. Post-hoc tests
for these main effects show that the condition with 100 clients differs
significantly from all other conditions (all ps< .001). Participants rated
this condition the least fluid (ball and person at the table) and natural.
We found no significant main effects of the number of avatars on the
perceived fluidity or naturalness of the crowd. In all tests regarding
the fluidity and naturalness, we found no significant main effect of the
avatar appearance (Human vs. Mixed).

The main effect of the number of avatars on the presence rating
was not significant, F(3,129)< 1, p > .05, partial η2 = .02. Presence
ratings were similar across conditions with means ranging between
M = 6.22 and M = 7.09. Presence was rated highest in the condition
with 25 avatars. There was a significant main effect of the number
of avatars on the perceived co-presence, F(3,129) = 22.84, p < .001,
partial η2 = .35. In the condition with only two avatars (the participant
plus the person at the table) co-presence was rated lowest, differing
significantly (all ps < .001) from all other conditions. The co-presence
ratings for 10, 25, and 100 avatars do not differ significantly and are
similarly high. We found a significant interaction between the number
and the appearance of the clients regarding co-presence, F(3,129) =
2.85, p < .05, partial η2 = .06. The difference between the condition

with two avatars and the other three conditions was smaller in the
group that saw the human avatar crowd. Compared to this group, the
group with the mixed avatar crowd gave a lower co-presence rating
for the condition with only one additional avatar and higher ratings
for the other three numbers of avatars. We also found a significant
main effect of the numbers of clients on the perceived possibility of
interactions, F(2.13,91.57) = 6.19, p = .002, partial η2 = .13. Post-
hoc tests show that the condition with 25 clients differs significantly
from the condition with two clients (p = .002) and the conditions with
100 clients (p = .046). The 25 clients condition shows the highest
rating regarding the perceived possibility of interaction. For presence,
co-presence, and the perceived possibility of interactions nearly all
ratings were higher in the group that saw the mixed avatar appearances.
However, we found no significant main effect of the avatar appearance
(Human vs. Mixed).

7.4.2 Uncanny Valley

We compared the ratings for attractiveness, humanness, and eerieness
between both groups calculating independent t-tests. Levene-tests
for all subscales were non-significant. The groups did not differ sig-
nificantly regarding the perceived humanness of the avatars, t(43) =
−1.95, p = .06, r = .29. Nevertheless, it is noteworthy that the percep-
tion of the humanness of the human-looking avatar crowd was lower
than of the mixed avatar crowd.

The avatar crowd with mixed appearances appeared as significantly
more attractive than the human avatar crowd t(43) =−2.23, p < .05,
r = .32. The two groups differed significantly regarding the perceived
eeriness. The human looking avatar crowd appeared to be less eerie
than the mixed avatar crowd, t(43) = −2.47, p < .05, r = .35. As
proposed in [16], we split eeriness into its two subscales eerie and
spine-tingling. As a result, we found no significant difference regarding
the eerie subscale, t(43) = −1.81, p > .05, r = .27, but the human
looking avatar-crowd was significantly less spine-tingling than the
mixed avatar crowd, t(43) =−2.34, p < .05, r = .34.

7.4.3 Qualitative Feedback

Qualitative feedback was mixed. Some users were surprised by how
real the whole scenario felt and how real the avatars appeared to be.
Other users made exactly opposite remarks. Comments about the re-
alness of the avatars were usually restricted to the humanlike avatars.
The abstract avatars were described as “things” or robots. Participants
almost consistently denied them human status. Many participants com-
mented on the movements of the avatars. Some noticed the repetition
of movements. Many stated that the movements seem unnatural.

Some participants reported to feel alone or as being excluded: The
avatars shared their tables with others while the participant was the
silent observer in the middle. Some said the other avatars ignored
them while others interpreted the avatars as staring at them. When
getting accustomed to the situations, they reported that more avatars
decreased the feeling of loneliness. The situation was reported to be
overwhelming when too many avatars were present. Some participants
would have liked to interact with the avatars if it were possible because
they looked real. Others rejected a potential interaction because they
did not experience the avatars as real enough. In both cases, the stated
decision factor was how humanlike the avatar is perceived.

8 DISCUSSION AND CONCLUSION

We defined specific requirements for SVRs to evaluate how scalability
would affect overall subjective and objective system performance. We
developed a software system with consumer soft- and hardware to
identify the current state-of-the-art with such an approach. The system
design includes all the functional requirements initially defined by R1
to R6. The system supports scalability in the number of distributed co-
located avatars, the sensory coverage, as well as in the variable avatar
appearance up to photorealistic avatars created by photogrammetry.

Benchmarking confirmed the non-functional performance require-
ments using objective performance characteristics. We demonstrated
how the latter coherently matches the user experience measured by

Table 7. Descriptive statistics for all dependent variables assessed inside the virtual environment (in-vitro). Item scales for fluidity, naturalness,
co-presence and interaction range from 1 to 7. The mid-immersion presence item ranges from 0 to 10.

2 clients 10 clients 25 clients 100 clients
In-Vitro Questions Condition M(SD) M(SD) M(SD) M(SD)
Fluid Ball Human 5.48(1.34) 5.87(1.06) 5.57(1.34) 3.30(1.82)

Mixed 5.36(1.29) 5.18(1.33) 5.45(1.34) 3.68(2.10)
Fluid Person Table Human 5.48(1.34) 5.74(.96) 5.61(1.23) 3.22(1.54)

Mixed 5.82(1.05) 5.59(.85) 5.59(1.01) 4.00(2.00)
Fluid Others Human - 4.04(1.55) 4.13(1.58) 4.43(1.44)

Mixed - 4.77(1.15) 4.64(1.29) 4.82(1.18)
Natural Person Table Human 5.13(1.29) 5.48(.90) 5.26(1.21) 3.96(1.55)

Mixed 5.14(1.25) 5.27 (1.03) 5.18(1.47) 3.68(1.46)
Natural Others Human - 3.52(1.56) 3.70(1.58) 3.35(1.61)

Mixed - 4.73(1.03) 4.36(1.36) 4.55(1.22)
Presence Human 6.39(2.13) 6.39(2.23) 6.57(2.79) 6.22(2.73)

Mixed 6.73(1.32) 6.82(1.30) 7.09(1.77) 6.64(1.99)
Co-Presence Human 3.81(1.87) 4.90(1.52) 4.87(1.66) 4.88(1.61)

Mixed 3.26(1.63) 5.46(.71) 5.46(.99) 5.58(1.09)
Interaction Human 2.52(1.38) 2.74(1.18) 2.99(1.31) 2.58(1.20)

Mixed 2.55(1.40) 3.32(1.26) 3.52(1.29) 3.16(1.19)

subjective user reports on perceived system characteristics in the non-
immersive as well as in the immersive setup. Here, it only affected
the perception of the modified movements of the ball and the interac-
tion partner as assumed. Our evaluations also confirm the theoretical
estimates of the bandwidth requirements for the client-server system,
and the chosen interconnect and fidelity B3 (324.0 KB/s) with a maxi-
mum of 25 concurrently co-located distributed avatars, leaving enough
bandwidth to distribute whole bodies as specified by B4 and to avoid
client-side IK, if required.

We investigated the experience of users immersed inside an embod-
ied SVR with a variable number of participants and appearances of
avatars. The condition with 25 avatars significantly resulted in the
highest perceived possibility of interaction and had the highest pres-
ence ratings. Co-presence was significantly lower for the two avatar
condition, and there was a significant interaction between number and
appearance of the crowds. Here, potential inconsistencies and incoher-
ences with participants’ expectations may cause them to more intensely
focus on the surrounding avatars, which would be in line with the
significantly higher attractiveness of the mixed avatar crowd.

In general, the vivid surrounding with active companions not ham-
pered by any technical limitation (as emerging here for 25+ avatars)
seems to imply a dynamic and stimulating environment despite the
used canned animations. Also in line with the reported significant
results, presence, the possibility of interaction, and co-presence were
consistently higher for the mixed crowd.

All results confirm the positive effects of co-located social compan-
ions as well as detrimental effects of suboptimal system performance
(here illustrated for 25+ avatars) on the quality of experience of virtual
worlds. Finally and notably, the human avatars were rated less human
but also significantly less eerie than the mixed crowd. We explain this
discrepancy by the incoherence between static appearance and behavior
appearance. Overall, these results also inspire an interesting design
finding: If we want to manipulate users’ interest into a given SVR
we can do so by providing mixed avatar appearances, but we have to
consider that we are also increasing an inherent eeriness, which might
or might not be advisable for a given application context.

8.1 Future Work
Future work will test performance and user experience for extended
avatar fidelities and appearances including speech interaction and will
experiment with various optimization schemes. These evaluations will
be followed by studying application-specific effectiveness for training
and learning inside an SVR.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the German Federal
Ministry of Education and Research (BMBF project ViLeArn).

REFERENCES

[1] J. Achenbach, T. Waltemate, M. E. Latoschik, and M. Botsch. Fast
generation of realistic virtual humans. In 23rd ACM Symposium on Virtual
Reality Software and Technology (VRST), pages 12:1–12:10, 2017.

[2] J. N. Bailenson, N. Yee, D. Merget, and R. Schroeder. The effect of
behavioral realism and form realism of real-time avatar faces on verbal
disclosure, nonverbal disclosure, emotion recognition, and copresence in
dyadic interaction. Presence: Teleoperators and Virtual Environments,
15(4):359–372, 2006.

[3] S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive group-to-group
telepresence. IEEE Transactions on Visualization and Computer Graphics,
19(4):616–625, 2013.

[4] G. Bente, S. Rüggenberg, N. C. Krämer, and F. Eschenburg. Avatar-
mediated networking: Increasing social presence and interpersonal trust in
net-based collaborations. Human communication research, 34(2):287–318,
2008.

[5] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, and
M. Teitel. Reality built for two: a virtual reality tool. In ACM SIGGRAPH
Computer Graphics, volume 24, pages 35–36. ACM, 1990.

[6] A. Bönsch, S. Radke, H. Overath, L. M. Asché, J. Wendt, T. Vierjahn,
U. Habel, and T. W. Kuhlen. Social VR: How personal space is affected
by virtual agents’ emotions. In IEEE Conference on Virtual Reality and
3D User Interfaces, pages 199–206, 2018.

[7] S. Bouchard, J. St-Jacques, G. Robillard, and P. Renaud. Anxiety increases
the feeling of presence in virtual reality. Presence: Teleoperators and
Virtual Environments, 17(4):376–391, 2008.

[8] C.-M. Chang, C.-H. Hsu, C.-F. Hsu, and K.-T. Chen. Performance measure-
ments of virtual reality systems: Quantifying the timing and positioning
accuracy. In Proceedings of the 24th ACM international conference on
Multimedia, MM ’16, pages 655–659, New York, NY, USA, 2016. ACM.

[9] M. Chollet and S. Scherer. Perception of virtual audiences. IEEE Computer
Graphics and Applications, 37(4):50–59, 2017.

[10] M. Dou, H. Fuchs, and J.-M. Frahm. Scanning and tracking dynamic
objects with commodity depth cameras. In IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pages 99–106. IEEE, 2013.

[11] P. Ekman and W. V. Friesen. Manual for the facial action coding system,
1978.

[12] S. Friston and A. Steed. Measuring latency in virtual environments. IEEE
Transactions on Visualization and Computer Graphics, 20(4):616–625,
2014.

[13] M. Gross, M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno,
A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke,
A. V. Moere, and O. Staadt. Blue-c: A spatially immersive display and
3d video portal for telepresence. ACM Transactions on Graphics (TOG),
22(3):819–827, 2003.

[14] D. He, F. Liu, D. Pape, G. Dawe, and D. Sandin. Video-based measurement
of system latency. In International Immersive Projection Technology
Workshop, 2000.

[15] P. Heidicker, E. Langbehn, and F. Steinicke. Influence of avatar appearance

CHAPTER 7. EFFECTS 98

LATOSCHIK ET AL.: NOT ALONE HERE?! SCALABILITY AND USER EXPERIENCE OF EMBODIED AMBIENT CROWDS...� 2143

Table 6. Descriptive statistics for the Pre- and Post-Questionnaire Scales.
ITQ-scales range from 1 to 7. SSQ scores are total scores calculated
according to [22]. For the uncanny valley subscales (value range -3 to +3)
low scores mean low humanness, low eeriness, and low attractiveness.

Human Mixed
Questionnaire M(SD) M(SD)

ITQ 4.35(.67) 4.66(.49)
SSQ Pre 12.68(14.56) 14.96(15.31)

SSQ Post 12.52(14.82) 13.60(15.68)
Uncanny Valley Human Mixed

Attractiveness .52(.91) 1.07(.71)
Humanness -.39(1.37) .30(.98)

Overall Eeriness -1.07(.65) -.58(.68)
Eerie -.88(.94) -.44(.65)

Spine-Tingling -1.22(.60) -.69(.89)

display before. In both groups, about 50 % stated that they have 1
to 5 hours of VR experience. In the Human condition, more people
(7) stated to have more than 10 hours of VR experience than in the
Mixed Condition (3 people). The two groups did not differ signifi-
cantly regarding their Immersive Tendency (t(43) = −1.75, p = .09)
or their Simulator Sickness Ratings before (t(43) = −.51, p = .61)
or after (t(43) = −.24, p = .81) the experiment. Overall, simula-
tor sickness did not change significantly throughout the experiment,
t(44) = .53, p = .60. Table 6 displays the descriptive statistics for the
ITQ and SSQ.

7.4 Results
We used IBM SPSS Statistics 25 for the analysis of the quantitative
data. Table 7 reports descriptive statistics for all dependent variables
assessed inside of the virtual environment.

7.4.1 In-Vitro Measurements
We calculated mixed design ANOVAs for all measurements assessed
inside of the virtual environment. Mauchly’s test indicated a violation
of the assumption of sphericity for the fluidity of the ball (ε = .61),
the fluidity (ε = .53) and naturalness (ε = .64) of the person at the
participant’s table, as well as for the perceived possibility of interaction
(ε = .71), with all ps< .001. Therefore, we report Greenhouse-Geisser-
corrected tests for these variables. For the fluidity and naturalness of the
crowd as well as for presence and co-presence Mauchly’s test indicated
that sphericity could be assumed.

The analysis reveals a significant main effect of the number of clients
on the perceived fluidity of the ball (F(1.82,78.23) = 33.30, partial
η2 = .44) and the perceived fluidity (F(1.60,68.94) = 42.61, partial
η2 = .50) and naturalness (F(1.92,82.48) = 27.83, partial η2 = .39)
of the person at the participant’s table, all ps < .001. Post-hoc tests
for these main effects show that the condition with 100 clients differs
significantly from all other conditions (all ps< .001). Participants rated
this condition the least fluid (ball and person at the table) and natural.
We found no significant main effects of the number of avatars on the
perceived fluidity or naturalness of the crowd. In all tests regarding
the fluidity and naturalness, we found no significant main effect of the
avatar appearance (Human vs. Mixed).

The main effect of the number of avatars on the presence rating
was not significant, F(3,129)< 1, p > .05, partial η2 = .02. Presence
ratings were similar across conditions with means ranging between
M = 6.22 and M = 7.09. Presence was rated highest in the condition
with 25 avatars. There was a significant main effect of the number
of avatars on the perceived co-presence, F(3,129) = 22.84, p < .001,
partial η2 = .35. In the condition with only two avatars (the participant
plus the person at the table) co-presence was rated lowest, differing
significantly (all ps < .001) from all other conditions. The co-presence
ratings for 10, 25, and 100 avatars do not differ significantly and are
similarly high. We found a significant interaction between the number
and the appearance of the clients regarding co-presence, F(3,129) =
2.85, p < .05, partial η2 = .06. The difference between the condition

with two avatars and the other three conditions was smaller in the
group that saw the human avatar crowd. Compared to this group, the
group with the mixed avatar crowd gave a lower co-presence rating
for the condition with only one additional avatar and higher ratings
for the other three numbers of avatars. We also found a significant
main effect of the numbers of clients on the perceived possibility of
interactions, F(2.13,91.57) = 6.19, p = .002, partial η2 = .13. Post-
hoc tests show that the condition with 25 clients differs significantly
from the condition with two clients (p = .002) and the conditions with
100 clients (p = .046). The 25 clients condition shows the highest
rating regarding the perceived possibility of interaction. For presence,
co-presence, and the perceived possibility of interactions nearly all
ratings were higher in the group that saw the mixed avatar appearances.
However, we found no significant main effect of the avatar appearance
(Human vs. Mixed).

7.4.2 Uncanny Valley

We compared the ratings for attractiveness, humanness, and eerieness
between both groups calculating independent t-tests. Levene-tests
for all subscales were non-significant. The groups did not differ sig-
nificantly regarding the perceived humanness of the avatars, t(43) =
−1.95, p = .06, r = .29. Nevertheless, it is noteworthy that the percep-
tion of the humanness of the human-looking avatar crowd was lower
than of the mixed avatar crowd.

The avatar crowd with mixed appearances appeared as significantly
more attractive than the human avatar crowd t(43) =−2.23, p < .05,
r = .32. The two groups differed significantly regarding the perceived
eeriness. The human looking avatar crowd appeared to be less eerie
than the mixed avatar crowd, t(43) = −2.47, p < .05, r = .35. As
proposed in [16], we split eeriness into its two subscales eerie and
spine-tingling. As a result, we found no significant difference regarding
the eerie subscale, t(43) = −1.81, p > .05, r = .27, but the human
looking avatar-crowd was significantly less spine-tingling than the
mixed avatar crowd, t(43) =−2.34, p < .05, r = .34.

7.4.3 Qualitative Feedback

Qualitative feedback was mixed. Some users were surprised by how
real the whole scenario felt and how real the avatars appeared to be.
Other users made exactly opposite remarks. Comments about the re-
alness of the avatars were usually restricted to the humanlike avatars.
The abstract avatars were described as “things” or robots. Participants
almost consistently denied them human status. Many participants com-
mented on the movements of the avatars. Some noticed the repetition
of movements. Many stated that the movements seem unnatural.

Some participants reported to feel alone or as being excluded: The
avatars shared their tables with others while the participant was the
silent observer in the middle. Some said the other avatars ignored
them while others interpreted the avatars as staring at them. When
getting accustomed to the situations, they reported that more avatars
decreased the feeling of loneliness. The situation was reported to be
overwhelming when too many avatars were present. Some participants
would have liked to interact with the avatars if it were possible because
they looked real. Others rejected a potential interaction because they
did not experience the avatars as real enough. In both cases, the stated
decision factor was how humanlike the avatar is perceived.

8 DISCUSSION AND CONCLUSION

We defined specific requirements for SVRs to evaluate how scalability
would affect overall subjective and objective system performance. We
developed a software system with consumer soft- and hardware to
identify the current state-of-the-art with such an approach. The system
design includes all the functional requirements initially defined by R1
to R6. The system supports scalability in the number of distributed co-
located avatars, the sensory coverage, as well as in the variable avatar
appearance up to photorealistic avatars created by photogrammetry.

Benchmarking confirmed the non-functional performance require-
ments using objective performance characteristics. We demonstrated
how the latter coherently matches the user experience measured by

Table 7. Descriptive statistics for all dependent variables assessed inside the virtual environment (in-vitro). Item scales for fluidity, naturalness,
co-presence and interaction range from 1 to 7. The mid-immersion presence item ranges from 0 to 10.

2 clients 10 clients 25 clients 100 clients
In-Vitro Questions Condition M(SD) M(SD) M(SD) M(SD)
Fluid Ball Human 5.48(1.34) 5.87(1.06) 5.57(1.34) 3.30(1.82)

Mixed 5.36(1.29) 5.18(1.33) 5.45(1.34) 3.68(2.10)
Fluid Person Table Human 5.48(1.34) 5.74(.96) 5.61(1.23) 3.22(1.54)

Mixed 5.82(1.05) 5.59(.85) 5.59(1.01) 4.00(2.00)
Fluid Others Human - 4.04(1.55) 4.13(1.58) 4.43(1.44)

Mixed - 4.77(1.15) 4.64(1.29) 4.82(1.18)
Natural Person Table Human 5.13(1.29) 5.48(.90) 5.26(1.21) 3.96(1.55)

Mixed 5.14(1.25) 5.27 (1.03) 5.18(1.47) 3.68(1.46)
Natural Others Human - 3.52(1.56) 3.70(1.58) 3.35(1.61)

Mixed - 4.73(1.03) 4.36(1.36) 4.55(1.22)
Presence Human 6.39(2.13) 6.39(2.23) 6.57(2.79) 6.22(2.73)

Mixed 6.73(1.32) 6.82(1.30) 7.09(1.77) 6.64(1.99)
Co-Presence Human 3.81(1.87) 4.90(1.52) 4.87(1.66) 4.88(1.61)

Mixed 3.26(1.63) 5.46(.71) 5.46(.99) 5.58(1.09)
Interaction Human 2.52(1.38) 2.74(1.18) 2.99(1.31) 2.58(1.20)

Mixed 2.55(1.40) 3.32(1.26) 3.52(1.29) 3.16(1.19)

subjective user reports on perceived system characteristics in the non-
immersive as well as in the immersive setup. Here, it only affected
the perception of the modified movements of the ball and the interac-
tion partner as assumed. Our evaluations also confirm the theoretical
estimates of the bandwidth requirements for the client-server system,
and the chosen interconnect and fidelity B3 (324.0 KB/s) with a maxi-
mum of 25 concurrently co-located distributed avatars, leaving enough
bandwidth to distribute whole bodies as specified by B4 and to avoid
client-side IK, if required.

We investigated the experience of users immersed inside an embod-
ied SVR with a variable number of participants and appearances of
avatars. The condition with 25 avatars significantly resulted in the
highest perceived possibility of interaction and had the highest pres-
ence ratings. Co-presence was significantly lower for the two avatar
condition, and there was a significant interaction between number and
appearance of the crowds. Here, potential inconsistencies and incoher-
ences with participants’ expectations may cause them to more intensely
focus on the surrounding avatars, which would be in line with the
significantly higher attractiveness of the mixed avatar crowd.

In general, the vivid surrounding with active companions not ham-
pered by any technical limitation (as emerging here for 25+ avatars)
seems to imply a dynamic and stimulating environment despite the
used canned animations. Also in line with the reported significant
results, presence, the possibility of interaction, and co-presence were
consistently higher for the mixed crowd.

All results confirm the positive effects of co-located social compan-
ions as well as detrimental effects of suboptimal system performance
(here illustrated for 25+ avatars) on the quality of experience of virtual
worlds. Finally and notably, the human avatars were rated less human
but also significantly less eerie than the mixed crowd. We explain this
discrepancy by the incoherence between static appearance and behavior
appearance. Overall, these results also inspire an interesting design
finding: If we want to manipulate users’ interest into a given SVR
we can do so by providing mixed avatar appearances, but we have to
consider that we are also increasing an inherent eeriness, which might
or might not be advisable for a given application context.

8.1 Future Work
Future work will test performance and user experience for extended
avatar fidelities and appearances including speech interaction and will
experiment with various optimization schemes. These evaluations will
be followed by studying application-specific effectiveness for training
and learning inside an SVR.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the German Federal
Ministry of Education and Research (BMBF project ViLeArn).

REFERENCES

[1] J. Achenbach, T. Waltemate, M. E. Latoschik, and M. Botsch. Fast
generation of realistic virtual humans. In 23rd ACM Symposium on Virtual
Reality Software and Technology (VRST), pages 12:1–12:10, 2017.

[2] J. N. Bailenson, N. Yee, D. Merget, and R. Schroeder. The effect of
behavioral realism and form realism of real-time avatar faces on verbal
disclosure, nonverbal disclosure, emotion recognition, and copresence in
dyadic interaction. Presence: Teleoperators and Virtual Environments,
15(4):359–372, 2006.

[3] S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive group-to-group
telepresence. IEEE Transactions on Visualization and Computer Graphics,
19(4):616–625, 2013.

[4] G. Bente, S. Rüggenberg, N. C. Krämer, and F. Eschenburg. Avatar-
mediated networking: Increasing social presence and interpersonal trust in
net-based collaborations. Human communication research, 34(2):287–318,
2008.

[5] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, and
M. Teitel. Reality built for two: a virtual reality tool. In ACM SIGGRAPH
Computer Graphics, volume 24, pages 35–36. ACM, 1990.

[6] A. Bönsch, S. Radke, H. Overath, L. M. Asché, J. Wendt, T. Vierjahn,
U. Habel, and T. W. Kuhlen. Social VR: How personal space is affected
by virtual agents’ emotions. In IEEE Conference on Virtual Reality and
3D User Interfaces, pages 199–206, 2018.

[7] S. Bouchard, J. St-Jacques, G. Robillard, and P. Renaud. Anxiety increases
the feeling of presence in virtual reality. Presence: Teleoperators and
Virtual Environments, 17(4):376–391, 2008.

[8] C.-M. Chang, C.-H. Hsu, C.-F. Hsu, and K.-T. Chen. Performance measure-
ments of virtual reality systems: Quantifying the timing and positioning
accuracy. In Proceedings of the 24th ACM international conference on
Multimedia, MM ’16, pages 655–659, New York, NY, USA, 2016. ACM.

[9] M. Chollet and S. Scherer. Perception of virtual audiences. IEEE Computer
Graphics and Applications, 37(4):50–59, 2017.

[10] M. Dou, H. Fuchs, and J.-M. Frahm. Scanning and tracking dynamic
objects with commodity depth cameras. In IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pages 99–106. IEEE, 2013.

[11] P. Ekman and W. V. Friesen. Manual for the facial action coding system,
1978.

[12] S. Friston and A. Steed. Measuring latency in virtual environments. IEEE
Transactions on Visualization and Computer Graphics, 20(4):616–625,
2014.

[13] M. Gross, M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno,
A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke,
A. V. Moere, and O. Staadt. Blue-c: A spatially immersive display and
3d video portal for telepresence. ACM Transactions on Graphics (TOG),
22(3):819–827, 2003.

[14] D. He, F. Liu, D. Pape, G. Dawe, and D. Sandin. Video-based measurement
of system latency. In International Immersive Projection Technology
Workshop, 2000.

[15] P. Heidicker, E. Langbehn, and F. Steinicke. Influence of avatar appearance

CHAPTER 7. EFFECTS 99

2144  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 5, MAY 2019

on presence in social VR. In 2017 IEEE Symposium on 3D User Interfaces
(3DUI), pages 233–234, 2017.

[16] C.-C. Ho and K. F. MacDorman. Measuring the uncanny valley effect.
International Journal of Social Robotics, 9(1):129–139, 2017.

[17] C.-C. Ho, K. F. MacDorman, and Z. A. D. Pramono. Human emotion and
the uncanny valley: a GLM, MDS, and Isomap analysis of robot video
ratings. In 3rd ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 169–176. IEEE, 2008.

[18] W. A. IJsselsteijn, Y. A. W. de Kort, and A. Haans. Is this my hand I see
before me? The rubber hand illusion in reality, virtual reality, and mixed
reality. Presence: Teleoperators and Virtual Environments, 15(4):455–464,
2006.

[19] ITU. Methodology for the subjective assessment of the quality of television
pictures, recommendation ITU-R BT. 500-11. Technical report, ITU
Telecom. Standardization Sector of ITU, 2002.

[20] D. Jeffers. Is there a second life in your future? In Proceedings of the 36th
Annual ACM SIGUCCS Fall Conference: Moving Mountains, Blazing
Trails, pages 187–190, New York, NY, USA, 2008. ACM.

[21] V. Kasapakis, E. Dzardanova, and C. Paschalidis. Conceptual and technical
aspects of full-body motion support in virtual and mixed reality. In L. T.
De Paolis and P. Bourdot, editors, International Conference on Augmented
Reality, Virtual Reality, and Computer Graphics, pages 668–682. Springer
International Publishing, 2018.

[22] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Simulator
sickness questionnaire: An enhanced method for quantifying simulator
sickness. The International Journal of Aviation Psychology, 3(3):203–220,
1993.

[23] M. E. Latoschik, J.-L. Lugrin, M. Habel, D. Roth, C. Seufert, and S. Grafe.
Breaking bad behavior: Immersive training of class room management. In
Proceedings of the 22nd ACM Conference on Virtual Reality Software and
Technology (VRST), pages 317–318, New York, NY, USA, 2016. ACM.

[24] M. E. Latoschik, J.-L. Lugrin, and D. Roth. FakeMi: A Fake Mirror
System for Avatar Embodiment Studies. In Proceeding of the 22nd ACM
Symposium on Virtual Reality Software and Technology (VRST), pages
73–76, 2016.

[25] M. E. Latoschik, D. Roth, D. Gall, J. Achenbach, T. Waltemate, and
M. Botsch. The effect of avatar realism in immersive social virtual realities.
In 23rd ACM Symposium on Virtual Reality Software and Technology
(VRST), pages 39:1–39:10, 2017.

[26] Y. Liu, S. Beck, R. Wang, J. Li, H. Xu, S. Yao, X. Tong, and B. Froehlich.
Hybrid lossless-lossy compression for real-time depth-sensor streams in
3D telepresence applications. In Y.-S. Ho, J. Sang, Y. M. Ro, J. Kim, and
F. Wu, editors, Advances in Multimedia Information Processing – PCM
2015, pages 442–452, Cham, 2015. Springer International Publishing.

[27] J.-L. Lugrin, F. Charles, M. Habel, H. Dudaczy, S. Oberdörfer, J. Matthews,
J. Porteous, A. Wittmann, C. Seufert, S. Grafe, and M. E. Latoschik.
Benchmark framework for virtual students’ behaviours. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent
Systems, pages 2236–2238, 2018.

[28] J.-L. Lugrin, M. Ertl, P. Krop, R. Klüpfel, S. Stierstorfer, B. Weisz,
M. Rück, J. Schmitt, N. Schmidt, and M. E. Latoschik. Any “body”
there? Avatar visibility effects in a virtual reality game. In IEEE Confer-
ence on Virtual Reality and 3D User Interfaces (VR), pages 17–24. IEEE,
2018.

[29] J.-L. Lugrin, M. E. Latoschik, M. Habel, D. Roth, C. Seufert, and S. Grafe.
Breaking bad behaviours: A new tool for learning classroom management
using virtual reality. Frontiers in ICT, 3:26, 2016.

[30] J.-L. Lugrin, J. Latt, and M. E. Latoschik. Anthropomorphism and illusion
of virtual body ownership. In Proceedings of the 25th International
Conference on Artificial Reality and Telexistence and 20th Eurographics
Symposium on Virtual Environments, pages 1–8. Eurographics Association,
2015.

[31] A. Maselli and M. Slater. The building blocks of the full body ownership
illusion. Frontiers in human neuroscience, 7:83, 2013.

[32] J. McVeigh-Schultz, E. Márquez Segura, N. Merrill, and K. Isbister.
What’s it mean to “Be Social” in VR?: Mapping the social VR design
ecology. In Proceedings of the 2018 ACM Conference Companion Pub-
lication on Designing Interactive Systems (DIS), pages 289–294. ACM,
2018.

[33] D.-P. Pertaub, M. Slater, and C. Barker. An experiment on public speaking
anxiety in response to three different types of virtual audience. Presence:
Teleoperators & Virtual Environments, 11(1):68–78, 2002.

[34] S. Poeschl and N. Doering. Measuring co-presence and social presence

in virtual environments–psychometric construction of a German scale for
a fear of public speaking scenario. Annual Review of Cybertherapy and
Telemedicine, pages 58–63, 2015.

[35] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office
of the future: A unified approach to image-based modeling and spatially
immersive displays. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 179–188. ACM,
1998.

[36] S. Rehfeld, M. E. Latoschik, and H. Tramberend. Estimating latency and
concurrency of asynchronous real-time interactive systems using model
checking. In IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pages 57–66. IEEE, 2016.

[37] D. Roberts, R. Wolff, J. Rae, A. Steed, R. Aspin, M. McIntyre, A. Pena,
O. Oyekoya, and W. Steptoe. Communicating eye-gaze across a distance:
Comparing an eye-gaze enabled immersive collaborative virtual environ-
ment, aligned video conferencing, and being together. In IEEE Virtual
Reality Conference, pages 135–142, 2009.

[38] D. Roth, C. Kleinbeck, T. Feigl, C. Mutschler, and M. E. Latoschik.
Beyond Replication: Augmenting Social Behaviors in Multi-User Social
Virtual Realities. In IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 215–222, 2018.

[39] D. Roth, K. Waldow, F. Stetter, G. Bente, M. E. Latoschik, and
A. Fuhrmann. SIAMC – A socially immersive avatar mediated com-
munication platform. In Proceedings of the 22nd ACM Conference on
Virtual Reality Software and Technology (VRST), pages 357–358. ACM,
2016.

[40] R. Schroeder. Being There Together: Social interaction in shared virtual
environments. Oxford University Press, 2010.

[41] M. Slater. Grand challenges in virtual environments. Frontiers in Robotics
and AI, 1:3, 2014.

[42] M. Slater, D. Perez-Marcos, H. Ehrsson, and M. V. Sánchez-Vives. To-
wards a digital body: the virtual arm illusion. Frontiers in Human Neuro-
science, 2(6), 2008.

[43] M. Slater, D.-P. Pertaub, and A. Steed. Public speaking in virtual reality:
Facing an audience of avatars. IEEE Computer Graphics and Applications,
19(2):6–9, 1999.

[44] H. J. Smith and M. Neff. Communication behavior in embodied virtual
reality. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, pages 289:1–289:12. ACM, 2018.

[45] B. Spanlang, J.-M. Normand, D. Borland, K. Kilteni, E. Giannopoulos,
A. Pomés, M. González-Franco, D. Perez-Marcos, J. Arroyo-Palacios,
X. N. Muncunill, and M. Slater. How to build an embodiment lab: Achiev-
ing body representation illusions in virtual reality. Frontiers in Robotics
and AI, 1:9, 2014.

[46] A. Steed. A simple method for estimating the latency of interactive, real-
time graphics simulations. In Proceedings of the 2008 ACM Symposium
on Virtual Reality Software and Technology (VRST), pages 123–129, New
York, NY, USA, 2008. ACM.

[47] A. Steed and R. Schroeder. Collaboration in Immersive and Non-
immersive Virtual Environments. In Immersed in Media, pages 263–282.
Springer, 2015.

[48] T. Waltemate, D. Gall, D. Roth, M. Botsch, and M. E. Latoschik. The
impact of avatar personalization and immersion on virtual body ownership,
presence, and emotional response. IEEE Transactions on Visualization
and Computer Graphics, 24(4):1643–1652, 2018.

[49] T. Waltemate, F. Hülsmann, T. Pfeiffer, S. Kopp, and M. Botsch. Re-
alizing a low-latency virtual reality environment for motor learning. In
Proceedings of the 21st ACM Symposium on Virtual Reality Software and
Technology (VRST), pages 139–147. ACM, 2015.

[50] B. G. Witmer and M. J. Singer. Measuring presence in virtual environ-
ments: A presence questionnaire. Presence: Teleoperators and virtual
environments, 7(3):225–240, 1998.

[51] N. Yee and J. Bailenson. The Proteus effect: The effect of transformed self-
representation on behavior. Human communication research, 33(3):271–
290, 2007.

CHAPTER 7. EFFECTS 100

CHAPTER 7. EFFECTS 101

Copyright

©2019 IEEE. Reprinted, with permission, from M. E. Latoschik, F. Kern, J.P. Stau�ert,
A. Bartl, M. Botsch, J. Lugrin, “Not Alone Here?! Scalability and User Experience of Em-
bodied Ambient Crowds in Distributed Social Virtual Reality”, 2019 IEEE Transactions
on Visualization and Computer Graphics, 2019

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Würzburg’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink.

Author Contributions

The author provided a recording functionality to the system, conducted the latency
measurements and helped conducting the study. He provided critical feedback and
helped shape the research, the analysis and the manuscript.

7.4 Conclusion

We have shown that latency jitter provokes cybersickness and reviewed literature
that �nds e�ects of di�erent latency patterns on cybersickness. An application

providing a networked multi-user experience was found to su�er from latency with in-
creased numbers of users. Test subjects were negatively impacted by increased latency.
All papers in this chapter show that latency can be a problem when experiencing virtual
reality applications.

Discussed Research Questions

R2 What are the e�ects of latency? We focus on cybersickness as the e�ect observed in
virtual reality systems that is most destructive to the experience. Latency and la-
tency jitter can cause other e�ects on the experience that were not further investi-
gated.

We show that occasional latency spikes evoke cybersickness. The experiment uses
a scaled latency distribution gathered in experiments described in Chapter 3 and
Chapter 4. The experience was designed to provoke head movement to make the
latency noticeable. The simulated latency spikes were large and results may vary
for di�erent severities of spike durations. The experiment, however, is the �rst to
show that random latency spikes can contribute to cybersickness.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

CHAPTER 7. EFFECTS 102

A literature review shows that other forms of time invariant latency also contribute
to cybersickness. The paper summarises the contents of this thesis and shows how
the described research �ts into other research in this �eld: Most research is on
time invariant latency with little research on time variant latency. Most research
on time variant latency discusses periodic latency behaviour where we describe
irregular latency jitter.

Multi user virtual reality applications are prone to impacts of latency. Latency can
reduce the enjoyment of these applications.

R2.1 How to simulate latency? We take up the latency simulation description of the pre-
vious chapter and provide a detailled description how to implement it in a game
engine instead of in virtual reality middleware.

Chapter 8

DISCUSSION

Latency is an inherent property of processing systems. We showed how to measure
it and found that latency behaviour can di�er between computer systems. Latency

behaviour shows outliers of varying duration. We proposed a way to describe such la-
tency behaviour with a stacked z test. Simulation of latency provides the opportunity
to conduct experiments that research e�ects of latency. We tested the e�ect of latency
spikes on cybersickness and found it to increase sickness symptoms.

We have described our approach to answer the research questions in the last chapters.
Most of the discussion has already happened in the reprinted papers. The discussion
here is to be seen as an extension to the papers’ discussions. The discussion is structured
to address the research questions.

R1.1 How to measure latency?

In addition to latency jitter, there is also tracking jitter [Tea+09]. Our latency measure-
ment [SNL20b] only interpreted the observed angular di�erence in terms of motion
to photon latency. The angular di�erence between the Vive tracker and the reported
angle on screen may as well be a result of tracking jitter. While the origin is di�erent,
we expect this tracking jitter to have a similar e�ect on users as it leads to a comparable
deviation between the expected transform of a controller or HMD to the real transform.

It makes a di�erence which input and output hardware is chosen to measure motion
to photon latency. Input devices use models of their assumed usage to optimise track-
ing information. Motion controllers expect human hand movements to be bound in
acceleration, speed and orientation [Gac19]. They are optimised for this usage. Latency
values may not be transferable to other input devices even with the rest of the computer
system staying the same.

Warping of the image post rendering allows to adjust the image orientation accord-
ing to the most recent HMD tracking information [MMB97]. Users react very sensitive
to a mismatch between real and virtual head orientation. This approach can reduce the
disparity. The shown simulation will still use older tracking information as only the
�nal image is warped. There are multiple latencies in play: the latency from tracking
information until it is shown in the image orientation and until it is shown in the sim-
ulation. Latency can be di�erent depending not only on in- and output modality but
also between di�erent parts in the output image.

103

CHAPTER 8. DISCUSSION 104

R1.2 How to describe latency?

Reporting latency needs to happen in a concise and understandable way. We showed
that most researchers report only a mean and an optional standard deviation [SNL20a].
This is a big improvement over not reporting latency at all but fails to describe the la-
tency dynamism. We provide a way to describe this behaviour better [SNL16b] and
show how other researchers approach this problem [SNL20a]. Neither our, nor any
other solution is able to convey latency behaviour in a concise way that can be quickly
understood by fellow researchers. Our proposed measuring system [SNL20b] may un-
cover common latency patterns in the future or determine that the measured systems
are too di�erent in their latency behaviour to show common patterns. If it is possible
to �nd common patterns, there may be a latency representation that is both more con-
cise and more expressive than our suggestion. This representation will likely include
parts of our description such as the mean latency value, some descriptions of latency
value clusters that are larger than the mean and a description of rare, extreme outliers.
Our measurements, however, already indicate that there may be no shared patterns.
This would necessitate our stacked-z-test visualisation [SNL16b] or a similar approach
to properly describe latency behaviour. This is presumably too complex to be used by
many other researchers. An alternative could be to turn towards e�ects. A latency de-
scription might not describe the complex latency behaviour anymore but express the
amount of cybersickness or the loss in performance it provokes.

R1 How does latency behave in real-time interactive systems?

We described our measurement data and found di�erent latency behaviour in di�erent
systems. Latency reported by other researchers as described in Chapter 7 shares char-
acteristics such as normally distributed outlier clusters and rare extreme outliers. These
experiments also show behaviour we did not observe in this way like periodic processes.
There needs to be more detailed measurements of varying virtual reality applications
to get even more insight. If measuring can get easier and is done more often in a com-
parable way, it will be possible to determine which of our �ndings are always present
and which are speci�c to certain systems.

R2.1 How to simulate latency?

We described how to simulate latency and applied this simulated latency to conduct
an experiment researching latency e�ects. The problem of the simulation is that it is
conducted on top of a system that already shows time variant latencies with spikes. Our
experiment used simulated latencies that were much larger than the already existing
processing latencies. This justi�ed ignoring the base spiking latency behaviour. If la-
tency is to be simulated in a similar magnitude than the base latency, careful measure-

CHAPTER 8. DISCUSSION 105

ment of the system with and without the simulated latency is necessary make sure there
are no unexpected e�ects when a latency spike in the base system ampli�es a simulated
latency spike.

R2 What are the e�ects of latency?

We focused on the e�ect of latency on cybersickness. There is an e�ect but it is question-
able how problematic it is. Our experiment evoked only minor cybersickness judging
from the oral feedback of the test subjects. The e�ects of latency are most likely to cause
concern for long term use or use cases that are sensible to any unforseen interrutions
such as psychological therapy. Long term use of virtual reality can allow the e�ect to
increase but this is not yet a common use case in virtual reality. Scienti�c experiments
may get impacted by latency problems but applications for the general commoner may
care less. A short exposition to virtual reality in the context of a house demonstration by
an architect or the demonstration of a car by a car salesman may not su�er much from
increased latency as long as the application is still usable. Many of today’s virtual reality
applications may ignore the e�ect of latency by instructing the participants to rest after
the short exposure to virtual reality. Playing a game in virtual reality is often done in the
free time before going to bed therefore having a natural rest time afterwards. A small
uneasiness due to increased latency may be tolerable by many users. If virtual reality
devices and applications �nd their way out of today’s niche, the problem may become
more pressing again.

A di�erent view is described by [Adh+20] who argue that “due to recent advances,
tracking inaccuracy and rendering latency are no longer signi�cant causes of visually
induced VR sickness on consumer VR platforms”[Adh+20, p. 2]. Advances in hard and
software indeed reduce the possible minimum latency. The increased performance,
however, is often used to present more elaborated experiences whose computational
demand drive up the systems’ latencies. Generous bu�ers alleviate the impact of latency
spikes but those bu�ers are often sacri�ced to increase the impressivity of virtual scenes
or drive the simulation power of the engine up. Our research describes that counting
on modern hard- and software alone doesn’t need to solve the latency problem by itself.
The educated researcher needs to still make sure that latency stays small.

How small is a question we only have touched brie�y. Caserman, Martinussen, and
Göbel [CMG19] recommend an end-to-end latency below 58 ms to keep sickness symp-
toms low but a latency below 101 ms to not reduce the sense of body ownership. The
question for a recommended latency threshold therefore depends on the chosen met-
ric. The thresholds reported in research papers are time invariant latency values. We
have shown that latency jitter can have an impact as well but do not yet know how this
impacts the recommended latency thresholds.

Chapter 9

CONCLUSION

This thesis showed that latency in virtual reality systems can have negative e�ects on
the users’ experience. We have shown that latency can be one factor contributing

to cybersickness, a sickness caused by exposition to virtual reality applications. Most
research describes only the e�ect of a time invariant latency but latency behaves with
outliers of varying size. We showed how to measure latency and how the measure-
ments look like: the majority of latency measurements gather close to the mean value
with multiple clusters of larger latencies and occasional outliers. Latency is an inher-
ent problem as a result of evermore complexity in our computing machines. The only
solution is to be careful in designing systems and applications and making them fast
enough so the occasional latency spike doesn’t impact the system as much. Measuring
latency can make the developer aware that there are problems in the application that
need to be �xed.

The thesis consists of multiple peer reviewed and published papers that demonstrate
how latency can behave, how to measure it, how to simulate it and what e�ects can be.
The latency problem of virtual reality systems is not solved yet and probably never will.
It is a problem that is inherent to the used systems and always needs consideration. The
thesis furthers the scienti�c understanding and provides a base on which to build upon.
The proposed approaches need to get developed further to derive more insight which
then will result in more re�nement.

The new surge in popularity of virtual reality systems �res interest in latency re-
search. Our review of latency measurement approaches saw the majority of research
papers appear in the recent past [SNL20a]. Future work will build upon our work to
further the insight into latency and its e�ects. The most obvious further work is to pro-
vide easier access to detailed measurement systems as described in Stau�ert, Niebling,
and Latoschik [SNL20b]. New developments and use cases of virtual reality will open
new possibilities but also new ways that latency can interfere with the new experiences.
The most obvious upcoming use case is prolonged use of virtual reality that will see
issues not yet observed in the current day short exposures.

106

Bibliography

[Adh+20] Isayas Berhe Adhanom, Nathan Navarro Gri�n, Paul MacNeilage, and Eelke
Folmer. “The E�ect of a Foveated Field-of-view Restrictor on VR Sickness”.
In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE.
2020, pages 645–652.

[Ans73] Francis J Anscombe. “Graphs in statistical analysis”. In: The american statis-
tician 27.1 (1973), pages 17–21.

[Bac00] Alexander Backlund. “The de�nition of system”. en. In: Kybernetes 29.4 (June
2000), pages 444–451. issn: 0368-492X. doi: 10.1108/03684920010322055. url:
https://www.emerald.com/insight/content/doi/10.1108/03684920010322055/

full/html (visited on 08/11/2020).

[BAG18] Armin Becher, Jens Angerer, and Thomas Grauschopf. “Novel Approach
to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed
Virtual Reality Systems”. en. In: arXiv:1809.06320 [cs] (Sept. 2018). arXiv:
1809.06320. url: http://arxiv.org/abs/1809.06320 (visited on 10/07/2019).

[BBL01] Guillem Bernat, Alan Burns, and Albert Liamosi. “Weakly hard real-time
systems”. In: IEEE transactions on Computers 50.4 (2001), pages 308–321.

[BLM91] Asghar Bashteen, Ivy Lui, and Jill Mullan. “A superpipeline approach to the
MIPS architecture”. In: COMPCON Spring’91. IEEE Computer Society. 1991,
pages 8–9.

[Blu+94] Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prab-
hakar Raghavan, and Madhu Sudan. “The minimum latency problem”. en.
In: Proceedings of the twenty-sixth annual ACM symposium on Theory of comput-
ing - STOC ’94. Montreal, Quebec, Canada: ACM Press, 1994, pages 163–171.
isbn: 978-0-89791-663-9. doi: 10.1145/195058.195125. url: http://portal.
acm.org/citation.cfm?doid=195058.195125 (visited on 01/07/2020).

[BRC96] Grigore Burdea, Paul Richard, and Philippe Coi�et. “Multimodal virtual re-
ality: Input-output devices, system integration, and human factors”. In: In-
ternational Journal of Human-Computer Interaction 8.1 (1996), pages 5–24.

[Bur91] Alan Burns. “Scheduling hard real-time systems: a review”. In: Software En-
gineering Journal 6.3 (1991), pages 116–128.

107

https://doi.org/10.1108/03684920010322055
https://www.emerald.com/insight/content/doi/10.1108/03684920010322055/full/html
https://www.emerald.com/insight/content/doi/10.1108/03684920010322055/full/html
http://arxiv.org/abs/1809.06320
https://doi.org/10.1145/195058.195125
http://portal.acm.org/citation.cfm?doid=195058.195125
http://portal.acm.org/citation.cfm?doid=195058.195125

BIBLIOGRAPHY 108

[Cho+18] Song-Woo Choi, Siyeong Lee, Min-Woo Seo, and Suk-Ju Kang. “Time Se-
quential Motion-to-Photon Latency Measurement System for Virtual Real-
ity Head-Mounted Displays”. en. In: Electronics 7.9 (Sept. 2018), page 171. issn:
2079-9292. doi: 10.3390/electronics7090171. url: http://www.mdpi.com/2079-
9292/7/9/171 (visited on 08/19/2020).

[CMG19] Polona Caserman, Michelle Martinussen, and Stefan Göbel. “E�ects of End--
to-end Latency on User Experience and Performance in Immersive Virtual
Reality Applications”. In: Joint International Conference on Entertainment Com-
puting and Serious Games. Springer. 2019, pages 57–69.

[CS06] Jichuan Chang and Gurindar S Sohi. “Cooperative caching for chip multi-
processors”. In: ACM SIGARCH Computer Architecture News 34.2 (2006), pages 264–
276.

[CSA00] Neal Cardwell, Stefan Savage, and Thomas Anderson. “Modeling TCP la-
tency”. en. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Com-
munications. Nineteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies (Cat. No.00CH37064). Volume 3. Tel Aviv, Israel: IEEE,
2000, pages 1742–1751. isbn: 978-0-7803-5880-5. doi: 10.1109/INFCOM.2000.
832574. url: http://ieeexplore.ieee.org/document/832574/ (visited on 08/06/2020).

[Cze+97] Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom DeFanti, Gregory L
Dawe, and Maxine D Brown. “The ImmersaDesk and In�nity Wall projec-
tion-based virtual reality displays”. In: ACM SIGGRAPH Computer Graphics
31.2 (1997). Publisher: ACM New York, NY, USA, pages 46–49.

[DL10] Massimiliano Di Luca. “New method to measure end-to-end delay of virtual
reality”. In: Presence 19.6 (2010), pages 569–584. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=6797715 (visited on 02/04/2016).

[Eng09] Irv Englander. “The Architecture of Computer Hardware, System Software,
and Networking”. In: An Information Technology Approach 11 (2009).

[Far18] Matteo Farinella. “The potential of comics in science communication”. en.
In: Journal of Science Communication 17.01 (Jan. 2018). issn: 1824-2049. doi:
10.22323/2.17010401. url: https://jcom.sissa.it/archive/17/01/JCOM_1701_
2018_Y01 (visited on 08/25/2020).

[FE20] Ilja T. Feldstein and Stephen R. Ellis. “A Simple, Video-Based Technique for
Measuring Latency in Virtual Reality or Teleoperation”. In: IEEE Transac-
tions on Visualization and Computer Graphics (2020). Conference Name: IEEE
Transactions on Visualization and Computer Graphics, pages 1–1. issn: 1941-0506.
doi: 10.1109/TVCG.2020.2980527.

https://doi.org/10.3390/electronics7090171
http://www.mdpi.com/2079-9292/7/9/171
http://www.mdpi.com/2079-9292/7/9/171
https://doi.org/10.1109/INFCOM.2000.832574
https://doi.org/10.1109/INFCOM.2000.832574
http://ieeexplore.ieee.org/document/832574/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6797715
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6797715
https://doi.org/10.22323/2.17010401
https://jcom.sissa.it/archive/17/01/JCOM_1701_2018_Y01
https://jcom.sissa.it/archive/17/01/JCOM_1701_2018_Y01
https://doi.org/10.1109/TVCG.2020.2980527

BIBLIOGRAPHY 109

[Gac19] Ethan Gach. Valve Updates Steam VR Because Beat Saber Players Are Too Fast.
en-us. Library Catalog: kotaku.com. Nov. 2019. url: https://kotaku.com/
valve- updates- steam- vr- because- beat- saber- players- are- t- 1832536574

(visited on 06/09/2020).

[He+00] Ding He, Fuhu Liu, Dave Pape, Greg Dawe, and Dan Sandin. “Video-based
measurement of system latency”. In: International Immersive Projection Tech-
nology Workshop. 2000. url: http://www.researchgate.net/profile/Dave_Pape/
publication/2628137_Video- Based_Measurement_of_System_Latency/links/

542166dc0cf203f155c66ad6.pdf (visited on 12/11/2015).

[HVCT10] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-TIN. “How much
anonymity does network latency leak?” en. In: ACM Transactions on Informa-
tion and System Security 13.2 (Feb. 2010), pages 1–28. issn: 1094-9224, 1557-7406.
doi: 10.1145/1698750.1698753. url: https://dl.acm.org/doi/10.1145/1698750.
1698753 (visited on 08/06/2020).

[JW89] Norman P Jouppi and David W Wall. “Available instruction-level parallelism
for superscalar and superpipelined machines”. In: ACM SIGARCH Computer
Architecture News 17.2 (1989), pages 272–282.

[Kä+17] Teemu Kämäräinen, Matti Siekkinen, Antti Ylä-Jääski, Wenxiao Zhang, and
Pan Hui. “Dissecting the End-to-end Latency of Interactive Mobile Video
Applications”. en. In: Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications - HotMobile ’17. Sonoma, CA, USA: ACM
Press, 2017, pages 61–66. isbn: 978-1-4503-4907-9. doi: 10.1145/3032970.
3032985. url: http://dl.acm.org/citation.cfm?doid=3032970.3032985 (visited
on 01/30/2020).

[Lat+19] Marc Erich Latoschik, Florian Kern, Jan-Philipp Stau�ert, Andrea Bartl, Mario
Botsch, and Jean-Luc Lugrin. “Not Alone Here?! Scalability and User Expe-
rience of Embodied Ambient Crowds in Distributed Social Virtual Real-
ity”. In: IEEE Transactions on Visualization and Computer Graphics 25.5 (2019),
pages 2134–2144.

[Lim98] Patricia Nelson Limerick. “Dancing With Professors: The Trouble With Aca-
demic Prose”. In: Negotiating academic literacies: Teaching and learning across
languages and cultures (1998), page 199.

[Mac] LATENCY (noun) de�nition and synonyms | Macmillan Dictionary. en. url: https:
//www.macmillandictionary.com/dictionary/british/latency (visited on 08/06/2020).

[McK08] Paul E McKenney. “‘Real Time’vs.‘Real Fast’: How to Choose?” In: Ottawa
Linux Symposium (July 2008), pp. v2. 2008, pages 57–65.

https://kotaku.com/valve-updates-steam-vr-because-beat-saber-players-are-t-1832536574
https://kotaku.com/valve-updates-steam-vr-because-beat-saber-players-are-t-1832536574
http://www.researchgate.net/profile/Dave_Pape/publication/2628137_Video-Based_Measurement_of_System_Latency/links/542166dc0cf203f155c66ad6.pdf
http://www.researchgate.net/profile/Dave_Pape/publication/2628137_Video-Based_Measurement_of_System_Latency/links/542166dc0cf203f155c66ad6.pdf
http://www.researchgate.net/profile/Dave_Pape/publication/2628137_Video-Based_Measurement_of_System_Latency/links/542166dc0cf203f155c66ad6.pdf
https://doi.org/10.1145/1698750.1698753
https://dl.acm.org/doi/10.1145/1698750.1698753
https://dl.acm.org/doi/10.1145/1698750.1698753
https://doi.org/10.1145/3032970.3032985
https://doi.org/10.1145/3032970.3032985
http://dl.acm.org/citation.cfm?doid=3032970.3032985
https://www.macmillandictionary.com/dictionary/british/latency
https://www.macmillandictionary.com/dictionary/british/latency

BIBLIOGRAPHY 110

[MF17] Justin Matejka and George Fitzmaurice. “Same stats, di�erent graphs: gen-
erating datasets with varied appearance and identical statistics through sim-
ulated annealing”. In: Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems. 2017, pages 1290–1294.

[Min93] Mark Mine. “Characterization of end-to-end delays in head-mounted dis-
play systems”. In: The University of North Carolina at Chapel Hill, TR93-001
(1993). url: http://www0.cs.ucl.ac.uk/teaching/VE/Papers/93-001.pdf (visited
on 12/11/2015).

[MMB97] William R. Mark, Leonard McMillan, and Gary Bishop. “Post-rendering 3D
warping”. In: Proceedings of the 1997 symposium on Interactive 3D graphics. ACM,
1997, 7–�. url: http : / / dl . acm . org / citation . cfm ? id = 253292 (visited on
02/04/2016).

[Nic97] Serge Nicolas. “On the speed of di�erent senses and nerve transmission by
Hirsch (1862)”. In: Psychological Research 59.4 (1997), pages 261–268.

[Oxf] latency noun - De�nition, pictures, pronunciation and usage notes | Oxford Ad-
vanced Learner’s Dictionary at OxfordLearnersDictionaries.com. url: https : / /
www.oxfordlearnersdictionaries.com/definition/english/latency?q=latency

(visited on 08/06/2020).

[Pap+20] Sebastian Pape, Marcel Krüger, Jan Müller, and Torsten W. Kuhlen. “Cali-
bratio: A small, low-cost, fully automated Motion-to-Photon Measurement
Device”. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Ab-
stracts and Workshops (VRW). Mar. 2020, pages 234–237. doi: 10.1109/VRW50115.
2020.00050.

[Pat04] David A. Patterson. “Latency lags bandwith”. en. In: Communications of the
ACM 47.10 (Oct. 2004), pages 71–75. issn: 0001-0782, 1557-7317. doi: 10.1145/
1022594.1022596. url: https://dl.acm.org/doi/10.1145/1022594.1022596
(visited on 08/06/2020).

[Pat+95] R Hugo Patterson, Garth A Gibson, Eka Ginting, Daniel Stodolsky, and Jim
Zelenka. “Informed prefetching and caching”. In: Proceedings of the �fteenth
ACM symposium on Operating systems principles. 1995, pages 79–95.

[Pin+02] Axel Pinz, Markus Brandner, Harald Ganster, Albert Kusej, Peter Lang, and
Miguel Ribo. “Hybrid tracking for augmented reality”. In: Ögai Journal 21.1
(2002), pages 17–24.

[PMK11] Giorgos Papadakis, Katerina Mania, and Eftichios Koutroulis. “A system to
measure, control and minimize end-to-end head tracking latency in im-
mersive simulations”. en. In: Proceedings of the 10th International Conference
on Virtual Reality Continuum and Its Applications in Industry - VRCAI ’11. Hong
Kong, China: ACM Press, 2011, page 581. isbn: 978-1-4503-1060-4. doi: 10.

http://www0.cs.ucl.ac.uk/teaching/VE/Papers/93-001.pdf
http://dl.acm.org/citation.cfm?id=253292
https://www.oxfordlearnersdictionaries.com/definition/english/latency?q=latency
https://www.oxfordlearnersdictionaries.com/definition/english/latency?q=latency
https://doi.org/10.1109/VRW50115.2020.00050
https://doi.org/10.1109/VRW50115.2020.00050
https://doi.org/10.1145/1022594.1022596
https://doi.org/10.1145/1022594.1022596
https://dl.acm.org/doi/10.1145/1022594.1022596
https://doi.org/10.1145/2087756.2087869
https://doi.org/10.1145/2087756.2087869
https://doi.org/10.1145/2087756.2087869

BIBLIOGRAPHY 111

1145/2087756.2087869. url: http://dl.acm.org/citation.cfm?doid=2087756.
2087869 (visited on 01/23/2020).

[Pur+98] Gopathy Purushothaman, Saumil S. Patel, Harold E. Bedell, and Haluk Og-
men. “Moving ahead through di�erential visual latency”. en. In: Nature 396.6710
(Dec. 1998), pages 424–424. issn: 0028-0836, 1476-4687. doi: 10.1038/24766.
url: http://www.nature.com/articles/24766 (visited on 08/06/2020).

[Qua+18] Nhon Quach, Moinul Khan, Maurice Ribble, Martin Renschler, Mehrad Tavakoli,
Rashmi Kulkarni, Ricky Wai Kit Yuen, and Todd Lemoine. Systems and meth-
ods for reducing motion-to-photon latency and memory bandwidth in a virtual re-
ality system. US Patent 9,858,637. 2018.

[RSL19] Daniel Roth, Jan-Philipp Stau�ert, and Marc Erich Latoschik. “Avatar Em-
bodiment, Behavior Replication, and Kinematics in Virtual Reality”. In: VR
Developer Gems, 1st Edition. Edited by William R. Sherman. A K Peters/CRC
Press, 2019, pages 321–346. url: https://www.taylorfrancis.com/books/e/
9781315157764/chapters/10.1201/b21598-17.

[Rum+11] Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum,
and John K Ousterhout. “It’s Time for Low Latency”. en. In: (2011), page 5.

[Sie+07] Tobias Sielhorst, Wu Sa, Ali Khamene, Frank Sauer, and Nassir Navab. “Mea-
surement of absolute latency for video see through augmented reality”. In:
2007 6th IEEE and ACM International Symposium on Mixed and Augmented Re-
ality. ISSN: null. Nov. 2007, pages 215–220. doi: 10.1109/ISMAR.2007.4538850.

[SNL16a] Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich Latoschik. “Reduc-
ing application-stage latencies of interprocess communication techniques
for real-time interactive systems”. In: 2016 IEEE Virtual Reality (VR). IEEE.
2016, pages 287–288.

[SNL16b] Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich Latoschik. “Towards
comparable evaluation methods and measures for timing behavior of vir-
tual reality systems”. In: Proceedings of the 22nd ACM Conference on Virtual
Reality Software and Technology. 2016, pages 47–50.

[SNL16c] Jan-Pilipp Stau�ert, Florian Niebling, and Marc Erich Latoschik. “Reducing
application-stage latencies for real-time interactive systems”. In: 2016 IEEE
9th Workshop on Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS). IEEE. 2016, pages 1–7.

[SNL17] Jan-Philipp Stau�ert, F. Niebling, and M. E. Latoschik. “A Latency and La-
tency Jitter Simulation Framework with OSVR”. In: 2017 IEEE 10th Work-
shop on Software Engineering and Architectures for Realtime Interactive Systems
(SEARIS). 2017, pages 1–7.

https://doi.org/10.1145/2087756.2087869
https://doi.org/10.1145/2087756.2087869
https://doi.org/10.1145/2087756.2087869
https://doi.org/10.1145/2087756.2087869
http://dl.acm.org/citation.cfm?doid=2087756.2087869
http://dl.acm.org/citation.cfm?doid=2087756.2087869
https://doi.org/10.1038/24766
http://www.nature.com/articles/24766
https://www.taylorfrancis.com/books/e/9781315157764/chapters/10.1201/b21598-17
https://www.taylorfrancis.com/books/e/9781315157764/chapters/10.1201/b21598-17
https://doi.org/10.1109/ISMAR.2007.4538850

BIBLIOGRAPHY 112

[SNL18] Jan-Philipp Stau�ert, F. Niebling, and M. E. Latoschik. “E�ects of Latency
Jitter on Simulator Sickness in a Search Task”. In: 2018 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). 2018, pages 121–127.

[SNL20a] Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich Latoschik. “Latency
and Cybersickness: Impact, Causes, and Measures. A Review”. In: Frontiers
in Virtual Reality 1 (2020), page 31. issn: 2673-4192. doi: 10.3389/frvir.2020.
582204. url: https://www.frontiersin.org/article/10.3389/frvir.2020.582204.

[SNL20b] Jan-Philipp Stau�ert, Florian Niebling, and Marc Erich Latoschik. “Simulta-
neous Run-Time Measurement of Motion-to-Photon Latency and Latency
Jitter”. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
2020, pages 636–644.

[SP+15] Matthew E. St. Pierre, Salil Banerjee, Adam W. Hoover, and Eric R. Muth.
“The e�ects of 0.2Hz varying latency with 20–100ms varying amplitude
on simulator sickness in a helmet mounted display”. en. In: Displays 36 (Jan.
2015), pages 1–8. issn: 01419382. doi: 10.1016/j.displa.2014.10.005. url:
http://linkinghub.elsevier.com/retrieve/pii/S0141938214000791 (visited on
01/15/2018).

[Sta+20] Jan-Philipp Stau�ert, Florian Niebling, Jean-Luc Lugrin, and Marc Erich
Latoschik. “Guided Sine Fitting for Latency Estimation in Virtual Reality”.
In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW). 2020, pages 706–707.

[Sta+21] Jan-Philipp Stau�ert, Kristof Korwisi, Florian Niebling, and Marc Erich Latoschik.
“Ka-Boom!!! Visually Exploring Latency Measurements for XR”. In: Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems.
CHI EA ’21. Yokohama, Japan: Association for Computing Machinery, 2021.
isbn: 97814503809592105. doi: 10.1145/3411763.3450379. url: https://doi.
org/10.1145/3411763.3450379.

[Sta+95] John A Stankovic, Marco Spuri, Marco Di Natale, and Giorgio C Buttazzo.
“Implications of classical scheduling results for real-time systems”. In: Com-
puter 28.6 (1995), pages 16–25.

[Ste08] Anthony Steed. “A Simple Method for Estimating the Latency of Interactive,
Real-time Graphics Simulations”. In: Proceedings of the 2008 ACM Symposium
on Virtual Reality Software and Technology. VRST ’08. New York, NY, USA:
ACM, 2008, pages 123–129. isbn: 978-1-59593-951-7. doi: 10.1145/1450579.
1450606. url: http://doi.acm.org/10.1145/1450579.1450606.

[Sut65] Ivan E Sutherland. “The ultimate display”. In: Multimedia: From Wagner to
virtual reality 1 (1965).

https://doi.org/10.3389/frvir.2020.582204
https://doi.org/10.3389/frvir.2020.582204
https://www.frontiersin.org/article/10.3389/frvir.2020.582204
https://doi.org/10.1016/j.displa.2014.10.005
http://linkinghub.elsevier.com/retrieve/pii/S0141938214000791
https://doi.org/10.1145/3411763.3450379
https://doi.org/10.1145/3411763.3450379
https://doi.org/10.1145/3411763.3450379
https://doi.org/10.1145/1450579.1450606
https://doi.org/10.1145/1450579.1450606
http://doi.acm.org/10.1145/1450579.1450606

BIBLIOGRAPHY 113

[Tea+09] Robert J Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I Scott MacKen-
zie. “E�ects of tracking technology, latency, and spatial jitter on object move-
ment”. In: 2009 IEEE Symposium on 3D User Interfaces. 2009, pages 43–50.

[Ten+11] Joshua B Tenenbaum, Charles Kemp, Thomas L Gri�ths, and Noah D Good-
man. “How to Grow a Mind: Statistics, Structure, and Abstraction”. en. In:
Science 331.6022 (Mar. 2011), pages 1279–1285. issn: 0036-8075, 1095-9203.
doi: 10.1126/science.1192788. url: https://www.sciencemag.org/lookup/doi/
10.1126/science.1192788 (visited on 08/14/2020).

[Wal+16] Thomas Waltemate, Irene Senna, Felix Hülsmann, Marieke Rohde, Stefan
Kopp, Marc Ernst, and Mario Botsch. “The impact of latency on perceptual
judgments and motor performance in closed-loop interaction in virtual re-
ality”. en. In: ACM Press, 2016, pages 27–35. isbn: 978-1-4503-4491-3. doi:
10.1145/2993369.2993381. url: http://dl.acm.org/citation.cfm?doid=2993369.
2993381 (visited on 03/17/2018).

[Wav16] J. M. P. van Waveren. “The asynchronous time warp for virtual reality on
consumer hardware”. en. In: Proceedings of the 22nd ACM Conference on Virtual
Reality Software and Technology - VRST ’16. Munich, Germany: ACM Press,
2016, pages 37–46. isbn: 978-1-4503-4491-3. doi: 10.1145/2993369.2993375.
url: http : / / dl . acm . org / citation . cfm ? doid = 2993369 . 2993375 (visited on
06/09/2020).

[WDH13] Weixin Wu, Yujie Dong, and Adam Hoover. “Measuring Digital System La-
tency from Sensing to Actuation at Continuous 1-ms Resolution”. en. In:
Presence: Teleoperators and Virtual Environments 22.1 (Feb. 2013), pages 20–
35. issn: 1054-7460, 1531-3263. doi: 10.1162/PRES_a_00131. url: http://www.
mitpressjournals.org/doi/10.1162/PRES_a_00131 (visited on 03/10/2018).

[Wen+20] Stephan Wenninger, Jascha Achenbach, Andrea Bartl, Marc Erich Latoschik,
and Mario Botsch. “Realistic Virtual Humans from Smartphone Videos.”
In: VRST. Edited by Robert J. Teather, Chris Joslin, Wolfgang Stuerzlinger,
Pablo Figueroa, Yaoping Hu, Anil Ufuk Batmaz, Wonsook Lee, and Fran-
cisco Ortega. ACM, 2020, 29:1–29:11. url: http://dblp.uni- trier.de/db/
conf/vrst/vrst2020.html#WenningerABLB20.

[Wik20] Wikipedia. System. en. Page Version ID: 971111227. Aug. 2020. url: https://
en.wikipedia.org/w/index.php?title=System&oldid=971111227 (visited on
08/14/2020).

[WM98] David Whitney and Ikuya Murakami. “Latency di�erence, not spatial ex-
trapolation”. en. In: Nature Neuroscience 1.8 (Dec. 1998), pages 656–657. issn:
1097-6256, 1546-1726. doi: 10.1038/3659. url: http://www.nature.com/articles/
nn1298_656 (visited on 08/06/2020).

https://doi.org/10.1126/science.1192788
https://www.sciencemag.org/lookup/doi/10.1126/science.1192788
https://www.sciencemag.org/lookup/doi/10.1126/science.1192788
https://doi.org/10.1145/2993369.2993381
http://dl.acm.org/citation.cfm?doid=2993369.2993381
http://dl.acm.org/citation.cfm?doid=2993369.2993381
https://doi.org/10.1145/2993369.2993375
http://dl.acm.org/citation.cfm?doid=2993369.2993375
https://doi.org/10.1162/PRES_a_00131
http://www.mitpressjournals.org/doi/10.1162/PRES_a_00131
http://www.mitpressjournals.org/doi/10.1162/PRES_a_00131
http://dblp.uni-trier.de/db/conf/vrst/vrst2020.html#WenningerABLB20
http://dblp.uni-trier.de/db/conf/vrst/vrst2020.html#WenningerABLB20
https://en.wikipedia.org/w/index.php?title=System&oldid=971111227
https://en.wikipedia.org/w/index.php?title=System&oldid=971111227
https://doi.org/10.1038/3659
http://www.nature.com/articles/nn1298_656
http://www.nature.com/articles/nn1298_656

	Abstract
	Contents
	Introduction
	My work and their support
	Contribution
	Chapter Overview

	Definitions
	Latency
	Systems
	Motion To Photon Latency
	Latency Jitter

	Jitter in Message Passing
	Real-Time Systems
	Jitter in Real-Time Systems
	Jitter Results of Scheduler and Garbage Collector Choice
	Applications of Message Passing
	Conclusion

	Measuring
	Overview of Measuring Approaches
	Sine Fitting
	Detailed Latency Measurements
	Conclusion

	Jitter Description
	The Stacked-Z Test
	Conclusion

	Simulation
	Simulation of Latency Spikes
	Conclusion

	Effects
	Latency Jitter provokes Cybersickness
	Latency and Cybersickness
	Multi User Experience
	Conclusion

	Discussion
	Conclusion
	Bibliography

