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Simple Summary: Research into pancreatic cancer has identified frequent changes in BRCA genes,
especially in BRCA2, occurring in about 5% of patients. BRCA proteins help repair damaged DNA.
Pancreatic cancers with alterations in BRCA genes are sensitive to treatment with PARP inhibitors.
The PARP inhibitor olaparib can be used to treat pancreatic cancer with mutations in BRCA genes
after response to standard platinum-based chemotherapy. Unfortunately, only a few patients with
pancreatic cancer have mutations in BRCA genes. In this study, we show that the combination
of olaparib and TRAIL can be more effective than olaparib alone in killing pancreatic cancer cells.
Furthermore, we demonstrate that the combination of olaparib and TRAIL also kills cancer cells
without BRCA2 mutations. Our results suggest a potential new combination therapy of olaparib
and TRAIL for pancreatic cancer independent of BRCA2 mutations and may extend the limited
applicability of PARP inhibitors in this disease.

Abstract: Chemotherapy, the standard treatment for pancreatic ductal adenocarcinoma (PDAC),
has only a modest effect on the outcome of patients with late-stage disease. Investigations of
the genetic features of PDAC have demonstrated a frequent occurrence of mutations in genes
involved in homologous recombination (HR), especially in the breast cancer susceptibility gene 2
(BRCA2). Olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, is approved as a maintenance
treatment for patients with advanced PDAC with germline BRCA1/2 mutations following a platinum-
containing first-line regimen. Limitations to the use of PARP inhibitors are represented by the
relatively small proportion of patients with mutations in BRCA1/2 genes and the modest capability
of these substances of inducing objective response. We have previously shown that pancreatic
cancer with BRCA2 mutations exhibits a remarkably enhanced sensitivity towards tumor-necrosis-
factor-related apoptosis-inducing ligand (TRAIL) receptor-stimulating agents. We thus aimed to
investigate the effect of combined treatment with PARP inhibitors and TRAIL receptor-stimulating
agents in pancreatic cancer and its dependency on the BRCA2 gene status. The respective effects
of TRAIL-targeting agents and the PARP inhibitor olaparib or of their combination were assessed
in pancreatic cancer cell lines and patient-derived organoids. In addition, BRCA2-knockout and
-complementation models were investigated. The effects of these agents on apoptosis, DNA damage,
cell cycle, and receptor surface expression were assessed by immunofluorescence, Western blot, and
flow cytometry. PARP inhibition and TRAIL synergized to cause cell death in pancreatic cancer
cell lines and PDAC organoids. This effect proved independent of BRCA2 gene status in three
independent models. Olaparib and TRAIL in combination caused a detectable increase in DNA
damage and a concentration-dependent cell cycle arrest in the G2/M and S cell cycle phases. Olaparib
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also significantly increased the proportion of membrane-bound death receptor 5. Our results provide
a preclinical rationale for the combination of PARP inhibitors and TRAIL receptor agonists for the
treatment of pancreatic cancer and suggest that the use of PARP inhibitors could be extended to
patients without BRCA2 mutations if used in combination with TRAIL agonists.

Keywords: apoptosis; BRCA2; DNA damage; pancreatic neoplasms; poly(ADP-ribose) polymerase
inhibitors; TNF-related apoptosis-inducing ligand

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the world’s leading causes of
cancer-related death [1,2]. Eighty-five percnt of patients with PDAC are diagnosed with can-
cer at an advanced stage and do not qualify for curative surgery [3]. Cytotoxic chemother-
apy is the mainstay of treatment in patients with advanced PDAC [4]. Unfortunately, both
the efficacy and the tolerability of conventional chemotherapy-based treatment regimens
are modest, and the prognosis of patients with advanced disease is very poor, with a 5-year
survival of <5% [5].

Global efforts to understand the biology of pancreatic cancer have highlighted the
role of mutations in genes involved in homologous recombination (HR) DNA repair [6,7].
Among these mutations, alterations in the breast cancer susceptibility gene 2 (BRCA2) are
among the most frequent and can be identified in approximately 5% of patients [8], although
the prevalence can be higher in certain ethnic groups [9–11]. HR-deficient (HRD) cancers
display an increased sensitivity towards treatment with poly(adenosine diphosphate [ADP]-
ribose) polymerase (PARP) inhibitors [12]. PARP inhibitors prevent DNA damage response
through blockage of single-strand DNA repair and trapping of the PARP enzymes at sites of
DNA lesions. This leads to the replication fork collapse and cell death [12–14]. The inability
to compensate the PARP inhibitor-induced DNA damage in HRD tumors is responsible for
the peculiar sensitivity of this subset of cancers to the action of PARP inhibitors [12].

Olaparib, the first-in-class PARP inhibitor, was investigated as maintenance therapy
in patients with advanced PDAC harboring germline BRCA1 or BRCA2 alterations, who
did not progress after first-line platinum-based chemotherapy [15]. Olaparib improved
the primary endpoint of progression-free survival (PFS) as compared to placebo (whose
respective median PFSs were 7.4 months and 3.8 months (HR 0.53) [15]) and received
regulatory approval [16,17]. However, a survival advantage could not be demonstrated
in the setting of this trial [18] and objective responses were modest (overall response rate
23% vs. 12%). Despite its clinical benefit, olaparib is thus regarded as a maintenance therapy
able to stabilize the course of pancreatic cancer, rather than active cytotoxic treatment. This,
and the relatively small proportion of patients benefitting from its action are limitations to
its use in the treatment of pancreatic cancer.

However, there are several preclinical studies indicating that the anticancer potential
of PAPRi might be fully exploited as a combination treatment and that their use could be
extended to patients not harboring BRCA2 mutations, thus broadening both their target
population and their effectiveness [19]. I this regard, a recent large combinatorial drug
screening study in pancreatic, colon, and breast cancer indicates that the anticancer potential
of PARP inhibitors could be enhanced by the combination with drugs capable of impinging
on cell death mechanisms [20]. Furthermore, PARP1 was shown to reduce the transcription
of propoptotic genes to counteract programmed cell death [21]. As a potent inhibitor of
PARP1 [22], olaparib and its combination with agents targeting apoptosis signaling could
represent an effective therapeutic option in pancreatic cancer.

We have previously shown that pancreatic and colon cancer harboring BRCA2 alter-
ations exhibit an extremely high sensitivity towards TNF-related apoptosis-inducing ligand
(TRAIL)-targeting agents, thereby defining a previously unknown property of BRCA2 as a
regulator of the sensitivity towards cell-death receptor-mediated apotosis [11]. Due to the



Cancers 2022, 14, 5240 3 of 18

particular sensitivity of BRCA2-deficient cells to both olaparib and TRAIL, and the recent
evidence on the influence of PARP-inhibition on apoptosis, we aimed at assessing the effect
of combined treatment with olaparib and TRAIL in pancreatic cancer.

2. Materials and Methods
2.1. Cell Lines and Reagents

Soluble recombinant human TRAIL/TNFS10 was purchased from R&D Systems (Min-
neapolis, MN, USA). Olaparib and Mitomycin C were obtained from Selleckchem (Houston,
TX, USA). Dulanermin was kindly provided by Genentech (San Francisco, CA, USA).

Human pancreatic adenocarcinoma cell lines CAPAN1, CAPAN2, and PATU-S and
colorectal carcinoma cell lines DLD1, HCT116, and SW620 were obtained from the Leibniz
Institute DSMZ-German Collection of Microorganisms and Cell Cultures (Braunschweig,
Germany) and the ATCC (Manassas, VA, USA). The BRCA2 complemented CAPAN1
clone BRCA2/CIN was kindly provided by Mien-Chie Hung (M.D. Anderson Cancer
Center, Houston, TX, USA) [23]. DLD1 BRCA2KO cells were generated by Thomas Hucl
and Eike Gallmeier in the laboratory of Scott Kern (Johns Hopkins University, Baltimore,
MD, USA) [24]. BRCA2 gene knockout and complementation were tested upon arrival
of cells on the genetic level via sequencing, on the protein level using Western blot and
on the functional level by RAD51 focus formation, as described before [25]. All cell lines
were tested for mycoplasma and authenticated by the Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures (Braunschweig, Germany) using DNA
fingerprinting. PATU-S, DLD1, DLD1 BRCA2KO, HCT116 and SW620 cell lines were grown
in Dulbecco’s modified Eagle’s medium (DMEM); CAPAN1, CAPAN1 BRCA2/CIN and
CAPAN2 in Roswell Park Memorial Institute 1640 medium (RPMI) supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin according to supplier’s conditions
at 37 ◦C with 5% CO2. Cells were passaged at a confluency of 80–90% with 0.05% trypsin
(v/v) in Dulbecco’s Phosphate- Buffered Saline (PBS).

2.2. Patient-Derived Organoid Lines

Patient-derived organoids of pancreatic ductal adenocarcinoma (PDAC) were ob-
tained from endoscopic biopsies [26]. Patients had confirmed PDAC diagnosis based on
histopathological findings. All patients had to provide written informed consent before
inclusion. The local ethics review board approved the study protocol (DRKS00021088).
Tumor biopsies were cut into 1–4 mm3 pieces and digested with 2 mg/mL collagenase IV,
10 µg/mL DNase I, and 10 µM Rho kinase inhibitor in a medium containing advanced
DMEM/F-12 supplemented with 1% HEPES, 1% glutamax, and 0.2% primocin at 37 ◦C
for a maximum of 1 h at constant shaking. The digested tissue was strained over a 100 µm
filter. After centrifugation and washing with PBS, the remaining pellet was embedded
in Matrigel. Organoids were cultured in medium containing the following factors: B27,
1.25 mM N-acetyl-L-cysteine, 50% (v/v) Wnt3a-conditioned medium, 10% (v/v) RSPO1-
conditioned medium, 0.1 µg/mL recombinant Noggin protein (Peprotech, Hamburg, Ger-
many), 50 ng/mL epidermal growth factor (Peprotech), 10 nM gastrin (Sigma-Aldrich, St.
Louis, MO, USA), 100 ng/mL fibroblast growth factor 10 (Peprotech), 10 mM nicotinamide
(Sigma-Aldrich), 1 µM prostaglandin E2 (Tocris BioTechne GmbH, Wiesbaden-Nordenstadt,
Germany) and 0.5 µM A83-01 (Tocris BioTechne GmbH) based on advanced DMEM/F-12
supplemented with 1% HEPES, 1% glutamax and 0.2% primocin. For passaging, Ma-
trigel domes were dissolved using Cell Recovery Solution (BD Biosciences, Heidelberg,
Germany).

2.3. Cell Proliferation Assay

A total of 1500 to 2000 cells per well were seeded in 96 multi-well plates and allowed to
settle for 24 h. Subsequently, cells were incubated in the presence of various concentrations
of the indicated drugs diluted in DMSO. DMSO served as a normalization control. To
allow for combination analysis using the Chou–Talalay method [6], cell lines were treated
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either with (1) control, (2) olaparib, (3) TRAIL or dulanermin, (4) a combination of olaparib
and TRAIL or dulanermin. The drug concentrations were determined based on previous
experiments or publicly available data from GDSC atlas (https://www.cancerrxgene.org
(last accessed on 2 August 2022)) to determine the respective IC50 of each drug alone [27].
Cells were then treated with increasing concentrations reflecting multiples of the IC50
(e.g., 1/2 × IC50, 1 × IC50, 2 × IC50, etc.). A constant ratio of the combination partners
was maintained (e.g., 1/2 × IC50 of olaparib with 1/2 × IC50 of TRAIL/dulanermin). After
6 days, cells were washed with PBS and subjected to osmotic lysis in 100 µL of ddH2O
for 45 min at 37 ◦C. Subsequently, 0.2% of SYBR green was added to each well, and the
optical density was detected on a plate reader (Cytofluor Series 4000, Applied Biosystems,
Darmstadt, Germany). Cell proliferation index was calculated as the relative percent change
as compared to untreated wells. Data are shown as mean ± standard deviation of three
independent experiments. The isobologram and the Chou–Talalay combination index (CI),
an established index reflecting the interaction between two drugs, were computed for
varying levels of growth inhibition using the CompuSyn software (CompuSyn software,
Biosoft) [28]. The CI value determines the lever of drug interaction with a CI < 1 being
synergistic, CI = 1 additive and CI > 1 antagonistic, respectively.

2.4. Clonogenic Assay

Colonogenic assay was performed as described before [29]. Briefly, 1000 cells were
seeded in each well of a 24-well plate. After overnight incubation, cells were exposed to
control (DMSO), TRAIL, Olaparib, or their combination in the indicated concentrations.
Plates were maintained at 37 ◦C for 14 days, followed by fixation and staining with 0.2%
crystal violet for 30 min (Sigma, St. Louis, MO, USA).

2.5. Organoid CellTiter-Glo 3D Viability Assay

To assess organoid viability, Matrigel was dissolved using Cell Recovery Solution and
the organoids were dissociated into single cells in TrypLE (Gibco, Thermo Fisher Scientific,
Life Technologies Corporation, New York, NY, USA) at 37 ◦C for 7 min. Subsequently,
2000 cells were plated in 20 µL Matrigel and 80 µL of culture medium and allowed to settle
for 24 h. Subsequently, 100 µL culture medium supplemented with 2× concentration of the
indicated drugs was added. Six days after treatment, 100 µL CellTiter-Glo® 3D Cell Viability
Assay reagent (Promega GmbH, Walldorf, Germany) was added to 100 µL medium in
each well and mixed by vigorous pipetting. Plates were incubated at room temperature for
30 min under light protected conditions at constant shaking. Absorbance was measured
with a plate reader (BMG Labtech, Ortenberg, Germany). Organoid viability was calculated
as the relative percent change as compared to untreated wells. All samples were measured
in triplicates and represented as mean ± standard deviation.

2.6. Western Blot

Cancer cells were seeded on culture plates and treated as indicated in each experiment.
Cells were harvested and lysed on ice using RIPA lysis buffer (Thermo Fisher Scientific)
with Pierce Protease Inhibitor Mix (Thermo Fisher Scientific). After centrifugation protein
content was determined using Bradford assay. Equal amounts of protein lysate were
loaded on 10% SDS-PAGE gels, separated for 15 min at 80 V and for 60 min at 140 V.
After gel electrophoresis, proteins were transferred onto PVDF membranes and blocked
with Tris-buffered saline with Tween-20 (TBST) containing 5% skim milk (w/v) or 5%
bovine serum albumin (BSA). Overnight incubation was performed at 4 ◦C with the
following primary antibodies diluted in blocking buffer: CHK1 (#2360), CHK2 (#2662),
pCHK1 (#2348), pCHK2 (#2661), Caspase-3 (#9662), Caspase-8 (#9508), Bcl-xL (#2764) from
Cell Signaling (Frankfurt am Main, Germany); β-Actin (#A5441) from Sigma Aldrich
(Munich, Germany); Bcl-2 (#610539) and Bim (#559685) from BD Biosciences (Heidelberg,
Germany); Mcl-1 (#sc-12756), Bad (#sc-8044), Bak (#sc-7873) from Santa Cruz Biotechnology
(Heidelberg, Germany) and Bax (#ab7977) from Abcam (Cambridge, UK). The next day,
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the membrane was probed with HRP-conjugated anti-rabbit or -mouse immunoglobulin
G secondary antibodies (GE Healthcare UK Limited) at concentrations of 1:10,000 and
incubated for 60 min at room temperature. The band were developed by SuperSignal West
Pico Chemiluminescent Substrate (Thermo Scientific, Schwerte, Germany) and imaged with
an image acquisition system (ECL ChemoCam Imager, Intas GmbH, Göttingen, Germany).

2.7. Flow Cytometry of Surface Receptors

To analyze the TRAIL cell surface receptor expression, cells were cultured on cell
culture plates in the presence or absence of olaparib in the indicated concentration. Af-
ter treatment, cells were washed, detached using trypsin and incubated with or with-
out the respective monoclonal FITC-coupled antibodies: DR4/TRAIL-R1 (ALX-804-297F-
T100), DR5/TRAIL-R2 (ALX-804-298F-T100), DcR1/TRAIL-R3 (MAB630), DcR2/TRAIL-R4
(MAB633) from R&D Systems (Minneapolis, MN, USA) and control IgG1 (BD Bioscience,
Heidelberg, Germany). Cells immunolabeled with the antibodies were processed using the
BD Accuri C6 system (Becton Dickinson, San Jose, CA, USA). The results were analyzed by
FlowJo software.

2.8. Cell Cycle and Apoptosis Assays

For apoptosis and cell cycle analyses, cells were seeded and allowed to settle overnight,
followed by treatment with the indicated substances. After incubation, cells were trypsinized,
washed with PBS and stained with propidium iodide. Fluorescence-activated cell sorting
was performed using BD Accuri C6 system. The percentage of cells in sub-G1, G0/G1, S or
G2/M phase were assessed by FCS Express 6 plus software (De novo software, Pasadena,
CA, USA).

2.9. Immunofluorescence Microscopy

Cells were seeded and allowed to settle for 24 h, followed by treatment with the
indicated substances for 48 h. After incubation, cells were fixed in 4% paraformaldehyde
for 10 min, treated with 0.1% Triton X-100 (Invitrogen, Karlsruhe, Germany) for 15 min,
wash twice, and then incubated for 30 min with a blocking solution containing 5% BSA
in PBS. Samples were then incubated with monoclonal antibodies against γ-H2AX or
53BP1 diluted in blocking solution at 1:200 at 4 ◦C overnight. Samples were washed twice
with PBS containing 0.2% Tween-20 (PBST) and then incubated for 1 h with a secondary
goat anti-rabbit antibody conjugated with Alexa Fluor 488 (Invitrogen) at 1:200 dilution.
After three washing steps with PBST, samples were mounted with Vectashield (Vector
Laboratories, Burlingame, CA, USA) plus Hoechst 33342 (Sigma-Aldrich). Pictures were
taken on a Leica fluorescence microscope (Leica Microsystems, Wetzlar, Germany).

2.10. Statistics

All analyses were performed using GraphPad Prism 8 Software (GraphPad Software,
San Diego, CA, USA). Data are expressed as mean ± standard deviation of at least three
independent experiments unless otherwise stated. p < 0.05 was considered statistically
significant. CI was analyzed as described above [28].

3. Results
3.1. PARP Inhibition and TRAIL Synergize to Cause Loss of Cell Viability in Pancreatic Cancer
Cell Lines

To assess the hypothesis that the PARP inhibitor olaparib and TRAIL might exert a
synergistic anticancer effect in pancreatic cancer cells, we selected three well-characterized
PDAC cell lines with different driver mutation patterns: CAPAN1 (KRAS, CDKN2A,
SMAD4, TP53), CAPAN2 (KRAS) [30] and PATU-S (KRAS, TP53, SMAD4) [31]. Cancer
cell lines were treated with control, olaparib, TRAIL, and olaparib plus TRAIL in increas-
ing concentrations, representing multiples of the IC50 of each drug at a constant ratio
(e.g., 1/2 × IC50 olaparib: 1/2 × IC50 TRAIL, 1 × IC50 olaparib: 1 × IC50 TRAIL, etc.)
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to determine the cell proliferation index. Combination index (CI) blots were generated
using the Chou-Talay model [28]. Drug interactions with a CI < 1, 1, and > 1 indicated
synergistic, additive, and antagonistic drug effects, respectively. Olaparib and TRAIL
exhibited a potent synergistic antineoplastic activity with CI values below 0.7 (Figure 1)
in CAPAN1, CAPAN2, and PaTu-S pancreatic cancer lines. This synergism was observed
at clinically viable plasma concentrations and was maintained at a high fraction of cells
affected, which is crucial for oncological pharmacotherapy [28]. To confirm these findings,
we performed clonogenic assays in the cell line CAPAN1. The results from the viability
assay were confirmed by a dose-dependent reduction in the number and size of colonies in
CAPAN1 upon incubation with olaparib and TRAIL when compared to olaparib or TRAIL
alone (Supplementary Figure S1).
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Figure 1. Olaparib and TRAIL synergize in killing pancreatic cancer cell lines. A-C proliferation
assays of the effects of olaparib, TRAIL, or their combination on CAPAN1 (A), CAPAN2 (B), and
PaTu-S (C). Cells were treated for 6 days with the indicated agents and subsequently analyzed
via SYBR green proliferation assay. All experiments were performed in triplicate with error bars
representing SEM from three independent experiments. Drug interactions were analyzed using the
Chou–Talalay method with a combination index (CI) of <1, 1, and >1 indicating synergistic, additive,
and antagonistic drug effects, respectively. In the combination index graphs, dots depict the CI at the
respective fraction of cancer cells affected (x-axis, 0.0 = no cells dead, 1.0 = all cells dead).

3.2. The Synergistic Interaction between Olaparib and TRAIL Is Independent of BRCA2
Mutational Status

Since BRCA2 mutations are well known to increase the sensitivity toward PARP in-
hibition and, as we previously showed, to TRAIL-receptor-targeting agents [12,13,25],
we next aimed at assessing the effect of BRCA2 gene status on the interaction of these
agents and whether this synergy is specific to pancreatic cancer. To this end, we used three
different models, consisting of pairs of BRCA2-deficient or proficient cells:
(1) CAPAN1, which lacks a functional BRCA2 allele [32,33], and the respective syngenic
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BRCA2/CIN cell line complemented to express wild-type BRCA2 [23]; (2) the homozygous
BRCA2 knockout colorectal cancer cell line DLD1 termed DLD1 BRCA2KO vs. wild-type
DLD1 cells [24] and (3) BRCA2 deficient HCT116 vs. BRCA2-proficient SW620 [30]. First,
we examined the antineoplastic activity of olaparib, TRAIL, and the DNA cross-linking
agent mitomycin C, which was used as a control [34–36]. As expected, and in line with
previous studies [12,25,34], cells with BRCA2 deficiency showed a higher sensitivity to-
wards olaparib, TRAIL (Supplementary Figure S2A), and mitomycin C used individually
(Supplementary Figure S3A) as compared to the BRCA2 proficient cells with IC50 ratios
ranging from 0.07–0.68 for olaparib and TRAIL (Supplementary Figure S2B) and 0.06 to
0.55 for mitomycin C (Supplementary Figure S3B). Unexpectedly, however, when used in
combination, olaparib and TRAIL showed considerable synergistic activity in all the cell
lines tested independently of the BRCA2 gene status in cell lines from both tumor entities
(Figure 2). The strongest synergistic effect could be seen in the BRCA2 proficient pancreatic
cancer cell line CAPAN1 BRCA2/CIN with CI values of 0.1 at a high fraction of cells af-
fected (Figure 2B). These results were validated by colony formation assay (Supplementary
Figure S1). Dulanermin is another soluble recombinant human TRAIL ligand binding
to death receptor (DR) 4 and DR5 [37]. Dulanermin has been studied in many clinical
trials as monotherapy or in combination with chemotherapy and has proven to be safe in
humans [38–46]. To investigate whether the observed synergism also occurs with olaparib
and dulanermin, two agents that have been extensively tested in clinical trials, CAPAN1
and BRCA2/CIN cells, were incubated with olaparib, dulanermin, or their combination.
Notably, the use of dulanermin as a combination partner to olaparib also showed potent
synergism in the cells tested, with CI values ranging from 0.1 to 0.7 (Figure 3). Due to the
specific potential clinical relevance of the use of olaparib-based combinations in pancreatic
cancer and the fact that olaparib and TRAIL demonstrated the strongest synergistic effect
in CAPAN1 and BRCA2/CIN, these cells were used for further mechanistic studies.
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Figure 2. Olaparib and TRAIL synergize in cancer cells independently of BRCA2 status. A-B
Proliferation assays of the effects of olaparib, TRAIL, or their combination on BRCA2 deficient
CAPAN1 (A), and the respective syngenic BRCA2/CIN cell line (B) complemented to express wild-
type BRCA2. C-D Proliferation assays of the effects of olaparib, TRAIL or their combination on
BRCA2 deficient HCT116 (C), and BRCA2 proficient SW620 (D). E-F Proliferation assays of the effects
of olaparib, TRAIL or their combination on wild-type DLD1 cells (E) vs. the homozygous BRCA2
knockout colorectal cancer cell line DLD1 termed DLD1 BRCA2KO (F). Cells were treated for 6
days with the indicated agents and subsequently analyzed via SYBR green proliferation assay. All
experiments were performed in triplicate with error bars representing SEM from three independent
experiments. Drug interactions were analyzed using the Chou–Talalay method with a combination
index (CI) of <1, 1, and >1 indicating synergistic, additive, and antagonistic drug effects, respectively.
In the combination index graphs, dots depict the CI at the respective fraction of cancer cells affected
(x-axis, 0.0 = no cells dead, 1.0 = all cells dead).

3.3. Combined Olaparib and TRAIL Enhance S/G2 Phase Cell Cycle Arrest and Apoptosis

To elucidate the mechanisms underlying the synergistic interaction to kill cancer cells,
we separately assessed the effect of combined substances on the cell cycle and cell death.
CAPAN1 and CAPAN1 BRCA2/CIN were incubated for 48 h with olaparib or TRAIL and
subjected to PI staining and flow cytometry. Gates were set to calculate cells in cell cycle
phases sub-G1, G1, S, and G2/M. As expected, increasing concentrations of olaparib caused
a corresponding increase in the proportion of cells in the G2/M-cell cycle phase (Figure 4A),
whereas TRAIL did not affect cell cycle (Supplementary Figure S4). Interestingly, however,
when combined, olaparib and TRAIL caused a profound and concentration-dependent
increase in the cell population in both the G2/M- and S phases of the cell cycle, indicating
an interaction leading to cell cycle arrest (Figure 4B). In addition, when combined, olaparib
and TRAIL led to a strong and dose-dependent increase in apoptosis, as shown by the
assessment of the fraction of sub-G1 events (Figure 4C). The effect was more pronounced
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in CAPAN1 (Figure 4A–C), probably reflecting the genomic vulnerability of this BRCA2-
deficient cell line.
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fraction of cancer cells affected (x-axis, 0.0 = no cells dead, 1.0 = all cells dead).

Assessment of the surface expression of TRAIL receptors showed that olaparib in-
creased the staining intensity of membrane-bound death receptor (DR) 5 in the context
of BRCA2 proficiency (Figure 5D) but did not affect membrane staining of DR4 and the
two known membrane-bound decoy receptors for TRAIL (DcR1 and DcR2–Supplementary
Figure S5) [37,47,48]. This is in line with previous findings showing that PARP inhibition
causes the upregulation of DR5 in leukemia and ovarian and lung cancer [47]. Consis-
tently, olaparib caused a concentration-dependent cleavage of caspase-8 (which is activated
upon stimulation of receptor-mediated apoptosis) and of caspase-3 in BRCA2-deficient
CAPAN1 cells (Figure 5A), an effect that was further increased by adding TRAIL to ola-
parib (Figure 5B). However, since the highest apoptotic fraction could be observed in the
context of BRCA2 deficiency (Figure 4C), this increased activation of caspase-8 could also
be mediated through already ongoing apoptosis due to DNA damage accumulating upon
treatment with olaparib. Olaparib did not increase the baseline expression of procaspase-8
or procaspase -3 (Figure 5A), nor did it affect the expression or phosphorylation of key
proteins of the mitochondrial pathway, such as the proapoptotic regulators Bad, Bid, and
Bim or the antiapoptotic Bcl-2, Bcl-xL and Mcl-1 (Figure 5C).

Taken together, these data indicate that stimulation of the death receptor, considered
to exert a purely pro-apoptotic function, may cause cell cycle changes if combined with
olaparib. In addition, although olaparib did not affect apoptosis alone, it increased TRAIL-
mediated recruitment of caspase 8 without affecting the intrinsic apoptotic pathway, an
effect that could be attributable to the upregulation of DR5.
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Figure 4. Combined olaparib and TRAIL enhance S/G2 phase cell cycle arrest and apoptosis.
CAPAN1 (A–C), and the wild-type BRCA2 expressing BRCA2/CIN treated with various doses of
olaparib alone (A,D) or in combination with TRAIL (10 ng/mL) (B,C,E,F) for 48 h. Figure 4A,B,D,E
depict the percentage of cells in the respective cell cycle phase from all viable cells, i.e., non-sub-G1
cells. Figure 4C,F depict the percentage of cells in sub-G1 from all cells. Figure (G): Representative
flow cytometry histograms of CAPAN1 and BRCA2/CIN cells after incubation with control, olaparib
(10 µM), TRAIL (10 mg/mL), or its combination. Error bars represent mean ± SEM from at least
three experiments. * = statistical significance, p < 0.05.
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Figure 5. Olaparib influences death receptor expression and caspase activation. (A–C): Western blot
analysis to assess the expression levels of the indicated regulators of apoptosis in BRCA2 deficient
CAPAN1 vs. wild-type BRCA2 expressing BRCA2/CIN treated with various doses of olaparib
alone or in combination with TRAIL (10 ng/mL) for 48 h. Data show representative results from
three experiments. GAPDH served as a loading control. (D): Flow cytometry of TRAIL surface
receptor 2 (death receptor 5, DR5) in BRCA2 deficient CAPAN1 vs. wild-type BRCA2 expressing
BRCA2/CIN treated with 1 µM olaparib for 6 days. Error bars represent mean ± SEM from at
least three experiments. * = statistical significance, p < 0.05, NS = non-significant, MFI = median
fluorescence intensity.

3.4. Influence of Olaparib and TRAIL on DNA Damage Repair

Olaparib blocks PARP-dependent DNA single-strand break repair, causing replication-
induced DNA damage followed by replication fork collapse [12–14]. Furthermore, olaparib
inhibits the PARylation of multiple substrates of the PARP enzymes, which is a crucial
step in the regulation of DNA repair [12–14,48]. To assess whether the synergism between
olaparib and TRAIL arises from increased DNA damage, we first examined the levels of
phosphorylated H2AX (γH2AX), a sensible marker of DNA double-strand breaks. PARP
inhibition with olaparib induced DNA damage with subsequent activation of the DNA
damage response, as evidenced by an increase in γH2AX (Figure 6A,B; left panel). As
expected, this effect was more pronounced in the BRCA2-deficient CAPAN1 (Figure 6A; left
panel) as compared to the BRCA2 proficient BRCA2/CIN cell (Figure 6B; left panel). Inter-
estingly, the combination of olaparib and TRAIL led to a strong increase in DNA damage,
which was seen independent lyof the BRCA2 gene status (Figure 6A,B; right panels). These
results could be validated by γH2AX immunostaining, where an increased formation of
γH2AX foci upon combined olaparib and TRAIL was evident (Supplementary Figure S6)
independent of BRCA2 status.

To elucidate the molecular mechanisms behind the activated DNA damage response,
we aimed to assess the activation and expression of key regulators of the DDR pathway.
RAD51 is a key protein orchestrating homologous recombination, whereas 53BP1 has an
essential role in the error-prone non-homologous end-joining (NHEJ) repair machinery.
Interestingly, olaparib alone or in combination with TRAIL strongly upregulated 53BP1
focus formation (Figure 6C,D), indicating an increase in NHEJ DNA repair. Olaparib
alone or combined with TRAIL did not influence the expression of RAD51 (Figure 6A,B).
Olaparib alone led to an increased formation of RAD51 foci (Supplementary Figure S7).
However, the addition of TRAIL to olaparib did not further increase RAD51 focus formation.
In addition to the immunofluorescence experiments, we also performed Western blot
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analysis of replication protein A (RPA), which is critical in the regulation of homologous
recombination [49,50]. We could not detect hyperphosphorylation of RPA upon combined
olaparib and TRAIL (Supplementary Figure S8). In the next step, we examined the effect of
olaparib alone or combined with TRAIL on replication checkpoint responses. We could
observe an increase in DNA damage-induced phosphorylation of CHK1-Ser345 indicating
activation of CHK1 in both cell lines (Figure 6A,B). This is in accordance with our previous
results since pCHK1 is an important regulator of the cell cycle and mediates the G2/M
transition [51].
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Figure 6. Influence of Olaparib and TRAIL on DNA damage repair. (A,B): Western blot anal-
ysis to assess the expression levels of the indicated DNA damage proteins in BRCA2-deficient
CAPAN1 vs. wild-type BRCA2 expressing BRCA2/CIN treated with various doses of olaparib
alone or in combination with TRAIL for 48 h. Data show representative results from three ex-
periments. GAPDH served as a loading control. (C,D): 53BP1 immunostaining of BRCA2 deficient
CAPAN1 vs. wild-type BRCA2 expressing BRCA2/CIN treated with 10 µM olaparib +/− 10 ng/mL
TRAIL or dimethyl sulfoxide (DMSO) control for 48 h. Quantification of 53BP1 foci per nucleus was
based on at least 10 nuclei per sample. Error bars represent mean ± SD. * = statistical significance,
p < 0.05.

In summary, olaparib combined with TRAIL leads to an accumulation of DNA damage
resulting in activation of the NHEJ repair and phosphorylation of CHK1 with subsequent
cell cycle arrest and apoptosis.

3.5. Combination of Olaparib and TRAIL Enhances Antitumor Activity in Patient-Derived
Pancreatic Cancer Organoids

Pancreatic cancer organoids maintain genomic and morphologic characteristics of
the tumor of origin and can predict therapeutic responses to drugs [52]. We, therefore,
assessed whether the enhanced antitumoral activity of olaparib and TRAIL observed in
established cell lines could be validated in patient-derived organoids (PDOs). To this aim,
we established three PDOs from endoscopic ultrasound-guided biopsies. The PDOs were
exposed to either TRAIL or olaparib or their combination at a low (Olaparib 10 µM, TRAIL
10 ng/mL) and high dose (Olaparib 100 µM, TRAIL 100 ng/mL). Olaparib and TRAIL
significantly inhibited the proliferation of two organoids derived from pancreatic cancer
patients compared with olaparib alone, (Figure 7, PDO-1 and PDO-2), while in a third
organoid (PDO-3) the addition of TRAIL did not improve the efficacy of olaparib (Figure 7,
PDO-3).
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Figure 7. The combination of olaparib and TRAIL enhances antitumor activity in patient-derived
pancreatic cancer organoids. CellTiter-Glo assay of organoids derived from three patients with
pancreatic cancer (PDO1, PDO2, PDO3) treated with the indicated substances or dimethyl sulfoxide
(DMSO) control for 6 days. Error bars represent mean ± SEM from three experiments. * = statistical
significance, p < 0.05, ns = non-significant.

4. Discussion

In the last decade, PARP inhibitors have paved their way into clinical practice with
varying degrees of efficacy across different tumor types. In ovarian cancer, PARP inhibitors
have revolutionized the treatment of patients with HR-deficient tumors. Even in patients
with advanced disease, exceptionally long and durable responses and prolonged survival
have been reported along with modest treatment-related toxicity [53,54]. However, PARP
inhibitors are not as effective in pancreatic cancer, where they are used as maintenance
treatment in patients with germline BRCA1/2 mutations after first-line platinum-based
chemotherapy. Furthermore, their utility is limited by the small proportion of patients
harboring mutations in HRD, with BRCA2 being the most frequently observed mutation
in around 5% of patients. We have previously shown that pancreatic cancers with BRCA2
mutations display notably increased susceptibility towards TRAIL receptor-stimulating
agents [25]. This led us to ask whether a combination of PARP inhibitors and TRAIL could
be a feasible therapeutic strategy in pancreatic cancer. In our study, the combination of
olaparib and TRAIL resulted in potent synergistic antitumor activity in pancreatic cancer
cell lines and patient-derived organoids. Notably, the synergism could be observed not
only in BRCA2-deficient cancer cells but also in their BRCA2 proficient counterparts in
three independent models.

TRAIL agonists initiate the apoptosis cascade through binding to the death receptors
DR4 and DR5 [55,56]. The rationale for using TRAIL targeting agents in cancer treatment
was the peculiar ability of these compounds to kill tumor cells while leaving healthy tissue
unharmed in preclinical models [37,55–57]. Early phase clinical trials with TRAIL receptor
agonists confirmed the good safety profile of these agents showing signs of efficacy [38–40].
However, with one notable exception [46], these agents failed to prove a clinical benefit
in large randomized clinical trials in unselected patient cohorts [41–45]. Several factors
contributed to the failure of TRAIL therapies in the past. First, one suggested reason for
the lack of efficacy of TRAIL agonists is their low-affinity [58,59] as well as suboptimal
activation of TRAIL death receptor signaling and apoptosis in vivo [60,61]. Development
of more potent drugs is on the way but increasing potency might also increase toxicity.
The more potent TRAIL targeting compound TAS266, for example, showed unexpected,
severe hepatotoxicity in a phase I clinical trial [62]. Combining low potency, low toxicity
TRAIL agonists such as dulanermin with olaparib might represent a way of increasing
their respective efficacy without compromising tolerability. Second, there is a lack of
effective biomarkers that can predict response to TRAIL agonists. Our discovery that
BRCA2 mutations identify patients susceptible to the action of TRAIL agonists suggests
that TRAIL could be used in these patients in analogy to the way the recognition of the
relevance of microsatellite instability (MSI) preceded the success of checkpoint inhibitors
(CPI) in treating MSI-high colorectal cancer patients after the failure of CPI in unselected
cohorts [25,63–65]. Third, low cell surface expression of death receptors may also contribute
to reduced activity of TRAIL agonists [66]. In previous work, we showed that loss of TRAIL
receptors is a common feature in pancreatic cancer [67]. The PARP inhibitor olaparib
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contributed to enhanced TRAIL-mediated apoptosis by increasing cell surface expression
of DR5 and downstream activation of caspases. We therefore confirm the notion that
PARP inhibitors prime apoptosis [47]. Besides representing a rationale for combining
PARP inhibitors and TRAIL-targeting agents, our findings are relevant to the possibility of
combining Olaparib to other novel clinically viable apoptosis-modulating drugs, including
Bcl2 inhibitors or nuclear factor erythroid 2-related factor 2 (NRF2) inhibitors, for treatment
of PDAC. NRF2 is highly expressed in PDAC [68]; its inhibition was shown to sensitize
PDAC cells to apoptosis [69] and synergized with cytotoxic therapy to cause cell death in
cancer cells across various entities [70–73]. A combination of PARP inhibitors and apoptosis-
inducing agents such as NRF2 inhibitors could thus represent a feasible strategy in cancer
treatment. In this context, mechanistic evaluations of the effect of apoptosis-inducing
agents on DNA damage and repair mechanisms, such as reporter-based quantification of
NHEJ and HR pathways [74–77], may help identify the ideal combination partner for PARP
inhibitors in tissue-specific contexts.

The present findings on the synergistic interaction between olaparib and TRAIL have,
however, additional relevance. Although the use of PARP inhibitors represents the first
instance to exploit synthetic lethality in pancreatic cancer, their use is by nature limited by (1)
the relatively low occurrence of mutations in BRCA genes [8] and (2) inevitable and frequent
drug resistance [78]. Our results suggest that the synergy between olaparib and TRAIL is
independent of the BRCA2 mutational status. Therefore, not only could the combination of
these agents greatly improve their individual effects, while possibly leaving the toxicity
profile unchanged, but the combination of olaparib and TRAIL could also greatly extend
the number of patients who could potentially benefit from this treatment, switching a
PARP-inhibitor from a resistant to sensitive phenotype by the addition of TRAIL. A PARP
inhibitor-TRAIL combination treatment could therefore represent a feasible strategy to
broaden the clinical use of this drug class and counteract inherent or acquired resistance.

5. Conclusions

Our results provide a preclinical rationale for the combination of PARP inhibitors and
TRAIL receptor agonists independent of BRCA2 mutation status in pancreatic cancer and
may extend the limited applicability of PARP inhibitors in this disease.
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