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Titelbild:

Im Hintergrund zeigt ein MODIS Satellitenbild einen Ausschnitt der Indus-Ganges Ebene

in Schwarzweiß-Farben. Die MODIS Szene ist überlagert mit langjährigen Kompositen

des DLR Global SnowPack, DLR Global WaterPack, JRC Global Surface Water Layer und

MODIS NDVI Datensatzes (von links nach rechts).
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“All truths are easy to understand once they are discovered,

the point is to discover them.”

– Galileo Galilei
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English Abstract

The investigation of the Earth system and interplays between its components is of ut-

most importance to enhance the understanding of the impacts of global climate change on

the Earth’s land surface. In this context, Earth observation (EO) provides valuable long-

term records covering an abundance of land surface variables and, thus, allowing for large-

scale analyses to quantify and analyze land surface dynamics across various Earth system

components. In view of this, the geographical entity of river basins was identified as par-

ticularly suitable for multivariate time series analyses of the land surface, as they naturally

cover diverse spheres of the Earth. Many remote sensing missions with different character-

istics are available to monitor and characterize the land surface. Yet, only a few spaceborne

remote sensing missions enable the generation of spatio-temporally consistent time series

with equidistant observations over large areas, such as the Moderate Resolution Imaging

Spectroradiometer (MODIS) instrument.

In order to summarize available remote sensing-based analyses of land surface dynamics

in large river basins, a detailed literature review of 287 studies was performed and several

research gaps were identified. In this regard, it was found that studies rarely analyzed an

entire river basin, but rather focused on study areas at subbasin or regional scale. In addition,

it was found that transboundary river basins remained understudied and that studies largely

focused on selected riparian countries. Moreover, the analysis of environmental change

was generally conducted using a single EO-based land surface variable, whereas a joint

exploration of multivariate land surface variables across spheres was found to be rarely

performed.

To address these research gaps, a methodological framework enabling (1) the prepro-

cessing and harmonization of multi-source time series as well as (2) the statistical analysis

of a multivariate feature space was required. For development and testing of a methodolog-

ical framework that is transferable in space and time, the transboundary river basins Indus,

Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area,

having a size equivalent to around eight times the size of Germany. These basins largely

depend on water resources from monsoon rainfall and High Mountain Asia which holds

the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this

region and in parts largely depend on these water resources which are indispensable for

the world’s largest connected irrigated croplands and further domestic needs as well. With

highly heterogeneous geographical settings, these river basins allow for a detailed anal-

ysis of the interplays between multiple spheres, including the anthroposphere, biosphere,

cryosphere, hydrosphere, lithosphere, and atmosphere.

ix



English Abstract

In this thesis, land surface dynamics over the last two decades (December 2002 –

November 2020) were analyzed using EO time series on vegetation condition, surface wa-

ter area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack

and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively.

These data were evaluated in combination with further climatic, hydrological, and anthro-

pogenic variables to estimate their influence on the three EO land surface variables. The

preprocessing and harmonization of the time series was conducted using the implemented

framework. The resulting harmonized feature space was used to quantify and analyze land

surface dynamics by means of several statistical time series analysis techniques which were

integrated into the framework. In detail, these methods involved (1) the calculation of trends

using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the es-

timation of changes in phenological metrics using the Timesat tool, (3) the evaluation of

driving variables using the causal discovery approach Peter and Clark Momentary Condi-

tional Independence (PCMCI), and (4) additional correlation tests to analyze the human

influence on vegetation condition and surface water area.

These analyses were performed at annual and seasonal temporal scale and for diverse

spatial units, including grids, river basins and subbasins, land cover and land use classes,

as well as elevation-dependent zones. The trend analyses of vegetation condition mostly re-

vealed significant positive trends. Irrigated and rainfed croplands were found to contribute

most to these trends. The trend magnitudes were particularly high in arid and semi-arid

regions. Considering surface water area, significant positive trends were obtained at annual

scale. At grid scale, regional and seasonal clusters with significant negative trends were

found as well. Trends for snow cover area mostly remained stable at annual scale, but sig-

nificant negative trends were observed in parts of the river basins during distinct seasons.

Negative trends were also found for the elevation-dependent zones, particularly at high

altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts

of the river basins. Furthermore, for the first time, the application of the causal discovery

algorithm on a multivariate feature space at seasonal temporal scale revealed direct and

indirect links between EO land surface variables and respective drivers. In general, vege-

tation was constrained by water availability, surface water area was largely influenced by

river discharge and indirectly by precipitation, and snow cover area was largely controlled

by precipitation and temperature with spatial and temporal variations. Additional analyses

pointed towards positive human influences on increasing trends in vegetation greenness.

The investigation of trends and interplays across spheres provided new and valuable in-

sights into the past state and the evolution of the land surface as well as on relevant climatic

and hydrological driving variables. Besides the investigated river basins in South Asia, these

findings are of great value also for other river basins and geographical regions.
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Deutsche Kurzfassung

Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von

großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Kli-

mawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erd-

beobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvari-

ablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind

essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Lan-

doberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene

Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen

zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige

wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsisten-

ten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete,

wie z.B. die MODIS Sensoren.

Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugs-

gebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere

Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugs-

gebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Unter-

suchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend

analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränk-

ten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen

EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von

sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde.

Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der

(1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und

(2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die En-

twicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar

ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna

(IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht,

ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Mon-

sunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Men-

schen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen ab-

hängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt

und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr hetero-

genen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte

sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre,

Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre.
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Deutsche Kurzfassung

In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte

anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur

Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global

WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global Snow-

Pack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen

und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merk-

malsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von

statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mit-

tels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen

Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter

Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des

menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche.

Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene

räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend sig-

nifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche

Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die

Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene sig-

nifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als

auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die

Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen

der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die

negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in ho-

hen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen

Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multi-

variaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Auf-

schluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und

den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die

Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den

Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räum-

lichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen

positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden

Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu

Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen

Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrol-

ogischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese

Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Be-

deutung.
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Chapter 1

Introduction

1.1 Scientific Relevance

In times of amplified global climate change, Earth System Science received an ever-

emerging attention. The Earth system is composed of the biosphere and the geosphere,

whereas the latter includes the hydrosphere, cryosphere, atmosphere, and lithosphere. Ad-

ditionally, as illustrated in Figure 1.1, recent research stresses the importance and challenge

of fully integrating the anthroposphere as a component of the Earth system (Steffen et al.,

2020). The functioning of the entire system can only be understood in consideration of the

forcing and feedback mechanisms among the spheres. In this regard, human influences and

the Earth’s land surface play a pivotal role in the climate system (Arneth et al., 2019).

In general, the Earth’s land surface provides the foundation “for human livelihoods

and well-being through primary productivity, the supply of food, freshwater, and multiple

other ecosystem services” (Shukla et al., 2019). The Intergovernmental Panel on Climate

Change (IPCC) reports that more than 70 % of the global ice-free land surface is directly

influenced by human land use (IPCC, 2019a). Given the global population growth, increas-

ing consumption of resources, and intensification in human land use, e.g. over agricultural

areas, these developments have greatly contributed to increasing greenhouse gas (GHG)

emissions and the loss of natural ecosystems (IPCC, 2019a). In this connection, global

warming is particularly accelerated over land areas compared to the average global tem-

perature over land and ocean during the last decades (Figure 1.2). Moreover, the Climatic

Research Unit temperature version 5 (CRUTEM5) data (Osborn et al., 2021) revealed that

twenty of the warmest observed years occurred between 2000 and 2021. These unprece-

dented increases in surface and ocean temperatures had severe implications on processes

at the land surface and respective spheres (Jia et al., 2019). To start with, warming temper-

atures led to an increase in the frequency, intensity, and duration of heatwaves over most
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Figure 1.1: A conceptual diagram of the Earth System including the main components geosphere
and biosphere together with the anthroposphere as a fully integrated component. This
figure is published by Steffen et al. 2020. Copyright 2022 by Springer Nature. Reprinted
with permission.

land areas. Likewise, the frequency and intensity of droughts amplified (IPCC, 2019a). On

the contrary, long-term observational data indicates changing patterns of precipitation and

a higher frequency and intensity of extreme precipitation events (IPCC, 2021). In general,

changes in the hydrological cycle appear to intensify through an increase in the exchange

of water between the surface and the atmosphere (Chen et al., 2021a). Changes of the

cryosphere are particularly rapid and dramatic (IPCC, 2019b). At lower elevations of high

mountain areas, snow cover duration was found to decrease by 5 days on average (IPCC,

2019c). In addition, glacier mass changed by –490 ±100 kg m−2 yr−1 in all mountain re-

gions between 2006 and 2015 (IPCC, 2019c). Furthermore, dramatic decreases have been

observed for the Arctic sea ice extent being particularly pronounced in September with a

reduction of –12.8 ±2.3 % per decade between 1979–2018 (IPCC, 2019c). Warming of

the land surface is also accompanied by primal changes of the terrestrial biosphere (IPCC,

2021). These include an increase in both the duration of the growing season in large areas

of the Northern Hemisphere extratropics and, since the 1960s, the amplitude of the seasonal

cycle of atmospheric CO2 beyond 45 ◦N (Arias et al., 2021). Additionally, a consistent in-

crease in vegetation greenness was observed at global scale since the 1980s (Arias et al.,

2021; Piao et al., 2020).

In the light of warming temperatures, climate zones are shifting in various regions of

the globe (Chan and Wu, 2015; Chen and Chen, 2013; Spinoni et al., 2015). In future
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Figure 1.2: Changes of the land surface temperature and global mean surface temperature between
1860 and 2020. The turquoise color indicates the annual mean land surface temperature
by means of the CRUTEM5 dataset (Osborn et al., 2021). The annual mean global
surface temperature is illustrated by the blue line and is based on the Met Office Hadley
Centre/Climatic Research Unit global surface temperature version 5 (HadCRUT5) data
(Morice et al., 2021).

projections, climate zones are suggested to further shift poleward, particularly in middle

to high latitudes (IPCC, 2019a). This will be particularly pronounced since an ongoing

increase in global temperatures is expected until at least mid-century, while the threshold

of 1.5 and 2 ◦C will be surpassed within the 21st century if CO2 and other greenhouse

gas (GHG) emissions are not reduced (IPCC, 2021). With every rate of increase in air

temperatures, extreme events, including precipitation (Formayer and Fritz, 2017; Guerreiro

et al., 2018; Zhang et al., 2019) and drought events (Berg and Sheffield, 2018; Cook et al.,

2020; Gu et al., 2020; Vicente-Serrano et al., 2020), will cumulate. Considering changes in

permafrost during the 21st century, it is very likely that thawing will increase significantly

(Hock et al., 2019; Lu et al., 2017; Zhao et al., 2019b). Likewise, with additional warming,

the loss of seasonal snow cover, land ice and Arctic sea ice will intensify (IPCC, 2021;

Mudryk et al., 2020).

1.1.1 Relevance of Geoscientific Time Series

Despite the observed and projected changes, it remains challenging to account for the

complex interactions among the Earth system components (Mahecha et al., 2020; Reich-

stein et al., 2019). In this context, spaceborne remote sensing is a valuable tool for the mon-

itoring of long-term changes at the Earth’s land surface and its interactions across spheres.
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A continuous monitoring of these transformation processes using Earth observation (EO)

is of great importance to quantify and understand their characteristics, drivers, and impacts

(Piao et al., 2020). While EO-based investigations of land surface change by means of a

single land surface variable are commonplace, a joint exploitation of multivariate features

covering several spheres is still rarely performed. In light of this, long-term observations

from various platforms including airborne and spaceborne remote sensing, surface-based

instrumental stations, or in-situ measurements from airplanes and balloons are fundamen-

tal to enable progress in our understanding of global climate and environmental change

(Arias et al., 2021). More specifically, geospatial time series and respective analysis meth-

ods are essential to identify spatio-temporal patterns of Earth system processes and examine

changes over time.

Since decades, EO provides ever-increasing amounts of data streams over the entire

globe (Kuenzer et al., 2015a; Reichstein et al., 2019). The open data policies of the corre-

sponding agencies offer free of charge access to various data archives of multiple satellite

missions, such as the European Copernicus Sentinel, the United States Geological Sur-

vey (USGS) Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS) mis-

sions. These missions include optical, synthetic aperture radar (SAR), or altimetry instru-

ments. In consideration on the investigated research questions and respective requirements,

remote sensing time series allow the analysis of land surface dynamics to be performed

at high to coarse spatial resolution (e.g. 10 to 1000 m) and at local to global scale. Apart

from characteristics with respect to the spatial resolution, the temporal resolution of re-

mote sensing data might limit the desired application, as it defines the intervals within time

series observations. For example, the optical Landsat mission enables long-term analyses

on land surface change since 1972 at a spatial resolution of 30 m. Based on these optical

data, it is possible to derive information on i.e. land cover, vegetation greenness, and water

color at a temporal resolution of 16 days (Nyland et al., 2018; Broich et al., 2018; Lobo

et al., 2015). In regard of time series analysis with high observation frequencies, optical

satellite missions with low revisit times such as the Landsat mission might be hampered by

cloud obscuration and sunlight availability. These factors can drastically reduce the tem-

poral resolution and, thus, the number of available observations over the Earth’s surface.

With the launch of the optical Sentinel-2 mission in 2015, it is possible to increase the

frequency of time series observations using optical imagery through harmonizing Land-

sat and Sentinel-2 imagery. The Sentinel-2 mission acquires imagery at 10 to 20 m spatial

resolution and revisits the Earth’s surface roughly every 5 days. Besides these mission, ad-

ditional optical remote sensing instruments with a high temporal resolution up to twice a

day are available, however, at the cost of the corresponding spatial resolution. In particu-

lar, these include the MODIS (launched in 2000) and National Oceanic and Atmospheric
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Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) (launched

in 1978) missions. Both missions provide multispectral imagery at a comparatively coarse

spatial resolution (250 to 1 km). Yet, these missions paved the way for EO-based time se-

ries analyses at very high temporal resolution over multiple decades. Exemplary large-scale

applications include, e.g. the monitoring of vegetation or inundation dynamics (Chen et al.,

2019; Huang et al., 2014; Sakamoto et al., 2006; Wu et al., 2015). Furthermore, the usage of

spaceborne SAR missions provides the opportunity to monitor the Earth’s surface indepen-

dent of daylight and weather conditions. Nowadays, the Sentinel-1 instrument is a widely

used SAR mission having a spatial resolution of 10 m and, depending on the geographi-

cal location, a temporal resolution up to 3 days (Baumhoer et al., 2019; Cao et al., 2018a;

Dirscherl et al., 2021).

Apart from raw EO data, many subsequently generated analysis ready data (ARD) that

characterize the state of the global land surface exist. These include geophysical variables

such as land surface temperature, net primary productivity, gross primary productivity, and

albedo (e.g. Duan et al. 2019; Zhao et al. 2005; Wang et al. 2015a), index variables such

as the normalized difference vegetation index (NDVI) and the leaf area index (LAI) (e.g.

Didan and Munoz 2019; Claverie et al. 2016), and thematic variables representing, e.g. for-

est cover change, surface water area as well as snow cover area dynamics, and settlement

growth (e.g. Hansen et al. 2013; Pekel et al. 2016; Klein et al. 2017; Dietz et al. 2015;

Naegeli et al. 2021a; Marconcini et al. 2020; Pesaresi et al. 2013). Besides EO time series

characterizing the land surface, further geoscientific time series on the state of the atmo-

sphere and fluxes between the Earth’s surface and the atmosphere are crucial for studying

climate change (IPCC, 2021). In this connection, reanalyses are of particular importance.

These data combine observations and models by means of data assimilation methods to

provide spatial and temporal consistent estimates of various variables describing the cli-

mate system (Arias et al., 2021). A prominent example is generated at the European Centre

for Medium-Range Weather Forecasts (ECMWF) and is named ECMWF Reanalysis 5th

Generation (ERA5) (Hersbach et al., 2020). ERA5 represents atmospheric, ocean-wave,

and land surface variables at hourly temporal resolution and at approximately 31 km spatial

resolution from 1950 to present (Hersbach et al., 2020). Figure 1.3 illustrates exemplary

variables that can be characterized by geoscientific time series.

The large availability of EO and further geoscientific time series enables the joint ex-

ploration of interactions among the spheres of the Earth system at global scale and has the

potential to considerably enhance our understanding of environmental change (Mahecha

et al., 2020; Salcedo-Sanz et al., 2020; Steffen et al., 2020). However, the investigation of

EO-based multivariate time series on land surface characteristics in combination with cli-
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Figure 1.3: Simplified illustration of land surface variables and processes in combination with se-
lected land-atmosphere interactions (several symbols are adopted or modified according
to courtesy of the Integration and Application Network, University of Maryland Center
for the Environmental Science).

matic, hydrological, and anthropogenic variables remains underexploited and is hampered

by varying data characteristics in terms of spatial and temporal resolution standards as well

as processing and storage capacities.

1.1.2 Relevance of River Basins

Rivers have been hotspots for the origin and evolution of human civilization since an-

cient times (Best, 2018; Grill et al., 2019; Macklin and Lewin, 2015). Irrespective of ad-

ministrative boundaries, river basins are a natural functional unit of the Earth’s land surface

and supply an abundance of resources for ecosystems and humans (Abell et al., 2016). Con-

sidering freshwater resources, food production, hydropower generation, and transportation

opportunities, river systems are of great importance to human societies (Best, 2018; Grill

et al., 2019; Viviroli et al., 2020). For example, Mesopotamia is referred to as the cradle of

civilization and is formed by the Tigris and Euphrates river systems. These rivers provided

rich soils and direct access to freshwater for livelihoods and agricultural productivity. How-

ever, in times of climate change, the Tigris-Euphrates river basin faced extreme drought

events over the last decades that greatly contributed to repeated crop failures (Chao et al.,

2018; Rateb et al., 2021). On the other hand, the Mekong river is regarded as the lifeline of

Southeast Asia and has passed through large human-induced changes. Specifically, the nat-

ural river system has been deeply modified by the construction of hydropower dams which
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tremendously influenced the ecosystems and sediment fluxes (Hecht et al., 2019). In this

context, large-area coastal erosion in the Mekong river delta was linked to less sediment

transportation caused by dam constructions (Anthony et al., 2015). Furthermore, the Indus

valley civilization is considered as one of the earliest Bronze Age civilizations and was lo-

cated in the northwest of the Indo-Gangetic Plain (Kathayat et al., 2017). Here, the Indus

and Ganges rivers, originating at Asia’s water towers, have been fundamental elements for

society, culture, and economy since early times (Nie et al., 2021; Pritchard, 2019).

Apart from climate change impacts on river basins and freshwater resources, a growing

human population and land use intensification highly pressure the river systems worldwide

(Grill et al., 2019; Vörösmarty et al., 2010; Haddeland et al., 2014). Since freshwater re-

sources are not equally distributed, many regions on the globe have to handle water scarcity

(Vanham et al., 2018). In this context, Mekonnen and Hoekstra (2016) assessed that 4 bil-

lion people already experience major water stress over a period of at least one month per

year and 1.8 billion people over a period of at least six months per year. With accelerat-

ing climate change, the number of humans facing climatic and hydrological extreme events

might increase rapidly.

With water being one of the most fundamental natural resources, the monitoring of river

systems and their drainage area is of vital importance (Sheffield et al., 2018; Vörösmarty

et al., 2010). For example, human interventions into river systems, such as land use change,

urbanization, and construction of irrigation systems might have irreversible implications for

water resources as well as ecosystems, especially with respect to upstream-downstream pro-

cesses. Additionally, as elaborated in the previous sections, climate change will likely cause

reductions of elements of the cryosphere (glaciers, snow cover) which are a fundamental

component of the upstream regions of many large river basins. In regards of these exam-

ples, changes of upstream river basins might have important implications on downstream

ecosystems. Thus, regarding land and water resources management, the monitoring of river

basins is of highest relevance, specifically for researchers, stake holders and decision mak-

ers. Also, governance of large river basins is an important requirement to prevent political

conflicts and sustain environmental health and economic progress, in particular with respect

to transboundary river basins (de Stefano et al., 2017). Figure 1.4 briefly visualizes features

and processes within the spatial entity of a river basin.

In this connection, various inventories and data portals providing information on large

river basins are available. For example, the hydrological data and maps based on shuttle ele-

vation derivatives at multiple scales (HydroSHEDS) project encompasses a suite of geospa-

tial data with respect to hydrographic information on river basins worldwide (Lehner et al.,

2008; Linke et al., 2019). Further, the Global Runoff Data Centre (GRDC) supplies data on
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hydrographic information as well, including tabular inventories on drainage area and mean

annual discharge. Moreover, the Transboundary Waters Assessment Programme (TWAP)

river basin component is a platform assessing essential information for 286 transbound-

ary river basins worldwide. This service, coordinated by the United Nations Environment

Programme (UNEP), includes a variety of indicators such as water scarcity as well as pollu-

tion, governance aspects, and socio-economic variables. A similar service is accessible on

the Aqueduct platform by the World Resources Institute (WRI). On the other hand, Aqua-

stat, being maintained by the Food and Agriculture Organization (FAO), gathers statistics

on water resources at national scale. Given the availability of large amounts of geoscientific

time series on diverse land surface variables, a consistent monitoring of spatio-temporal

land surface dynamics within large river basins across spheres is required yet lacking (e.g.

Broich et al. 2018; Wohlfart et al. 2016). In order to provide more detailed insights into

land surface dynamics within large river basins as well as to investigate related direct and

Figure 1.4: Schematic overview of a river basin including selected land surface variables and re-
lated processes (several symbols are adopted or modified according to courtesy of the
Integration and Application Network, University of Maryland Center for the Environ-
mental Science).

8



1.2 Research Motivation

indirect drivers, interactions among spheres, and impacts of environmental change, the de-

velopment of methodological strategies using multivariate geoscientific time series is nec-

essary. As stated in the previous section, the analysis of multivariate time series covering

multiple spheres remains underexploited. In this context, the geographical entity of large

river basins enables the quantification and evaluation of environmental change and drivers

within a natural functional unit covering various components of the Earth system.

1.2 Research Motivation

Based on the presented scientific background information in the previous sections, the

main motivation of the present thesis is to exploit the potential of multivariate geoscientific

time series for an improved scientific understanding and knowledge of land surface dynam-

ics in large river basins deducing (1) key characteristics of land surface dynamics and their

temporal and spatial patterns, (2) direct and indirect control mechanisms on environmen-

tal change using a high dimensional feature space, and (3) the vulnerability of the natural

environment under a warming climate.

1.3 Research Objectives

In order to address the lack of multivariate time series analyses for the quantification

and investigation of land surface dynamics across spheres as well as to comply with the

research motivation presented in Section 1.2, the overarching objective of this thesis is to

develop a novel and automated methodological framework enabling the analysis of multi-

source geospatial time series that is transferable in space and time and applicable to any

spatial entity. In this thesis, the analyses are performed for the geographical entities of large

river basins. Accordingly, this thesis investigates multisource EO time series characterizing,

i.e. vegetation condition, surface water area, snow cover area, and settlement area in com-

bination with further geospatial time series on climatic, hydrological, and anthropogenic

variables. With more detail, the specific objectives of this thesis can be formulated as fol-

lows:

• Objective 1: The first research objective includes a comprehensive literature review

on available EO-based analyses with respect to land surface dynamics in large river

basins. Here, the focus lies on the quantitative assessment of investigations focusing

on the 28 largest river basins worldwide, their spatio-temporal coverage, analyzed

land surface variables, and used remote sensing sensor types. Furthermore, available

and relevant EO as well as further geospatial time series with respect to the analysis

of land surface dynamics need to be identified.
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• Objective 2: The second and primary research objective of this thesis covers the de-

velopment and implementation of a novel and automated framework for the (1) pre-

processing of univariate time series data, (2) generation of a harmonized multivariate

feature space, and (3) statistical analysis of the time series to assess and evaluate

land surface dynamics and to investigate corresponding driving variables. The Indus,

Ganges, Brahmaputra, and Meghna river basins in South Asia are used as study area

to develop and test the methodological framework.

• Objective 3: Following the implementation of the methodological framework, the

last research objective is associated with detailed analyses of seasonal trends as well

as controls on land surface variables for the study area. The analysis of control mech-

anisms includes the assessment of direct and indirect drivers on vegetation, surface

water area, and snow cover area dynamics. Also, the interdependencies within the

entire multivariate feature space are analyzed.

In order to meet the defined objectives of this thesis, several research questions have

to be formulated and investigated. In consideration of the objectives, the first group of

research questions address the literature review. In particular, the following questions shall

be answered:

Research Questions 1
• What is the potential of Earth observation time series for the analysis of land

surface dynamics?

• Which Earth observation and further geoscientific time series are available?

• What is the geographical relevance of large river basins for multivariate time
series analyses?

• How many studies investigated large river basins and what was their spatio-
temporal coverage and resolution?

• Which spheres were most frequently analyzed in the context of large river
basins and which spaceborne remote sensing instruments were most fre-
quently utilized?

• Which research gaps exist with respect to remote sensing-based river basin
analyses and how can they be addressed?

Furthermore, the second group of research questions addresses the implementation of

a methodological framework for time series preparation, harmonization, and analysis with

respect to the quantification of land surface dynamics and drivers. In this regard, potentials

and challenges of remote sensing time series and relevant methods for time series prepara-

tion and analysis are evaluated.
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Research Questions 2
• What are the challenges in using multisource time series for joint analyses

to characterize land surface dynamics and how can they be addressed?

• Which novel methods can be integrated in the methodological framework to
analyze land surface dynamics and interdependencies across spheres?

• What needs to be considered to ensure the transferability of the developed
methodological framework to any spatial entity or time series data?

• Are the results of the quantitative analyses of land surface dynamics consis-
tent with existing literature?

Ultimately, the third group of research questions deals with a more detailed application

of the developed framework to derive seasonal characteristics of land surface dynamics and

respective driving variables in the Indus, Ganges, Brahmaputra, and Meghna river basins.

Considering the driving variables, the analysis shall include the assessment of direct and

indirect influences within the high dimensional feature space consisting of EO-based land

surface variables and further climatic, hydrological, and anthropogenic time series.

Research Questions 3
• What are the seasonal patterns of trends with respect to vegetation condi-

tion, surface water area, and snow cover area between December 2002 and
November 2020? Are there any changes in phenological characteristics?

• What are the dominant controls on vegetation condition, surface water area,
and snow cover area dynamics? Are there differences in the prevalent envi-
ronmental controls with respect to the investigated river basins?

• What are the interdependencies among the respective feature spaces?

• What are future implications of climate change for the investigated Indo-
Gangetic river basins in South Asia?

1.4 Thesis Outline

In Chapter 1.1, an introduction into the scientific relevance of land surface change under

a warming climate was given. Exemplary impacts of climate variability on the land sur-

face covering multiple spheres were emphasized. In this context, the relevance and need

for multivariate time series analyses as well as corresponding research gaps were briefly in-

troduced. Next, the relevance as well as importance of large river basins as a geographical

entity were explained and corresponding research gaps were stated. Subsequently, Chap-

ters 1.2 and 1.3 outlined the main research motivation and research objectives of this thesis.

Following this introductory chapter, the next chapters can be summarized as follows:
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Chapter 2 provides fundamental information on time series terminology and respective

analysis methods.

Chapter 3 reviews analyses of land surface dynamics in large river basins based on

the application of spaceborne remote sensing. This literature review summarizes the status

and spatial distribution of EO-based investigations in the 28 largest river basins across the

globe.

Chapter 4 addresses the geographical characteristics of the selected river basins in

South Asia, including the Indus, Ganges, Brahmaputra, and Meghna rivers, with particular

focus on their general properties, physical geography, and socio-economic characteristics.

This study area is used for both the method development and geoscientific analyses.

Chapter 5 introduces the novel methodological framework for the preparation of

geospatial and multisource time series, their harmonization to a common spatio-temporal

coverage and resolution, and the application of statistical time series analysis techniques to

characterize land surface dynamics across spheres. To this end, the utilized time series data

are presented. Here, the focus lies on the EO-based variables vegetation greenness, surface

water area, and snow cover area. Next, relevant statistical analysis methods for quantifica-

tion of trends and changes in seasonality as well as for estimation of controlling variables

through the application of a causal discovery algorithm are introduced. Subsequently, the

results derived for the selected river basins are presented and evaluated with respect to ex-

isting literature.

Chapter 6 investigates seasonal characteristics of land surface dynamics and relevant

driving variables for the Indus, Ganges, Brahmaputra, and Meghna river basins. These anal-

yses are performed at different spatial scales, including grids, river basins, elevation zones,

and land use classes and include detailed analyses on direct and indirect influences on the

land surface variables vegetation greenness, surface water area, and snow cover area.

Chapter 7 summarizes and concludes the entire thesis and investigates the fulfillment

of the defined research questions and objectives (Chapter 1.2 and 1.3). Furthermore, chal-

lenges and opportunities for future developments are briefly discussed.
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Chapter 2

Theoretical Background on Time Series*

This chapter introduces fundamental information on time series terminology (Chapter

2.1), suitable remote sensing as well as further geospatial data for time series analysis

(Chapter 2.2), and methods for time series analysis (Chapter 2.3).

2.1 Time Series Terminology

A time series is a collection of observations recorded sequentially in time. Time se-

ries are frequently used in a variety of disciplines, including economic and financial time

series (e.g. wheat price, company profits), physical time series (e.g. meteorology), and de-

mographic time series (e.g. population counts) (Chatfield and Xing, 2019). Furthermore,

time series observations can be distinguished in continuous or discrete measurements. The

term ’continuous’ is used when measurements are conducted continuously through time. In

comparison, the term ’discrete’ denotes time series with observations recorded only at spe-

cific times, usually equally spaced points in time (Chatfield and Xing, 2019). In this thesis,

discrete time series are utilized. When only using one variable, the time series is consid-

ered to be univariate. On the other hand, time series are categorized as multivariate when

including observations of multiple variables. Moreover, time series usually consist of three

components, including the trend, seasonal, and random or remainder component (Kuenzer

et al., 2015a; Verbesselt et al., 2010). Using a traditional additive decomposition model,

the respective components can be retrieved as demonstrated in Figure 2.1. With more de-

tail, the seasonal component might characterize the impacts of meteorological seasons on

vegetation greenness, whereas the trend component might capture the long-term effect of

increasing agricultural land use intensity (greening) or vegetation degradation (browning).

The remainder component might reflect short term influences of e.g. drought events.

*Parts of this chapter have been published in Uereyen and Kuenzer (2019); Uereyen et al. (2022a)
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Figure 2.1: Exemplary time series of the normalized difference vegetation index (NDVI) decom-
posed into the time series components remainder, seasonal, and trend.

2.2 Geoscientific Time Series Data

In this thesis, the term “geoscientific time series” covers the range of all geospatial time

series data, including remote sensing-based, modeled, and reanalyses data. Some years ago,

mapping land surface change with a few remote sensing images covering a certain time

period, such as a decade, was already considered as a detailed time series analysis (South-

worth and Muir, 2021; Woodcock et al., 2020). Nowadays, spatially and temporally detailed

EO-based time series analyses of the Earth system are enabled in the course of open data

policies and ever-increasing amount of remote sensing imagery at global scale (Sudmanns

et al., 2019; Wulder et al., 2012). Not only the emerging availability of remote sensing time

series, but also the increasing programming skills of researchers and the ever-enhancing

data storage and processing capacities facilitated this progress (Kuenzer et al., 2015a). With
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numerous satellite missions observing the Earth’s surface, only a limited number of EO in-

struments can be utilized for multidecadal time series analysis. Considering optical remote

sensing missions, these include the AVHRR and the Landsat missions. These two missions

allow time series analysis covering several decades. Specifically, the AVHRR and Land-

sat missions were launched in 1978 and 1972, respectively. As previously mentioned, the

AVHRR mission provides images at coarse spatial (1 km) and daily temporal resolution,

whereas the Landsat mission records images at medium spatial resolution (30 m), but has a

minimum revisit time of 16 days. Recently, the archive of the MODIS instrument on board

the Terra platform crossed a period of 20 years. Terra MODIS was launched in 1999 and in

comparison to AVHRR, MODIS provides a spatial resolution of 250 and 500 m and a daily

temporal resolution as well. With an additional MODIS sensor on board the Aqua platform

(launched in 2002), it is possible to generate temporally dense time series for analysis of

land surface dynamics. Furthermore, with the launch of the European Copernicus Sentinel-

2 instrument in 2015, harmonized datasets of optical EO sensors (e.g. Landsat, Sentinel-2)

will provide a long-term archive for analyses at higher spatial resolution than the AVHRR

and MODIS sensors. A joint use of optical Landsat and Sentinel-2 data enables the genera-

tion of time series at higher temporal resolution. Here, it has to be noted that the revisit time

of optical sensors might be considerably reduced due to cloud coverage. In this connection,

SAR missions have the capability to monitor the Earth’s surface independently of daylight

and weather conditions. The European Environmental Satellites (ERS)-1 and ERS-2 mis-

sions with several instruments on board, including SAR were launched in 1991 and 1995.

Together, both SAR missions provide time series over a long period. Today, these mis-

sions are continued by successor missions such as the Sentinel-1 platform being launched

in 2014. In addition, observations from spaceborne SAR missions such as the Shuttle Radar

Topography Mission (SRTM) or the TerraSAR-X mission are used to derive Digital Eleva-

tion Models (DEMs) at global scale. A DEM is fundamental to applications with respect to

the topography.

Moreover, as introduced in Chapter 1.1.1, many subsequently generated products based

on the aforementioned satellite missions exist. As already stressed, studies investigating

land surface dynamics by means of remote sensing data usually focus on single EO-based

land surface variables, whereas a joint analysis of multivariate time series involving sev-

eral spheres is still rarely performed. For example, the Terra and Aqua MODIS instruments

provide a comprehensive product suite encompassing various geophysical and thematic

variables, such as vegetation indices or binary as well as multiclass land cover classifica-

tions. A variety of gridded time series data covering various spheres is listed in Table 2.1.

These gridded geospatial products can be used to generate long-term time series and to

analyze Earth surface dynamics. Additional time series on climatic, hydrological, and an-
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thropogenic variables are available through various sources and foster the generation of a

multivariate feature space. Multivariate time series encompassing divers components of the

Earth system enable the quantification and evaluation of interdependencies across spheres.

Besides gridded time series data, further geospatial data describing i.e. the topography

or climate zones might be integrated into the multivariate analysis of land surface dynamics.

In this regard, the SRTM DEM is widely used to characterize the topography and retrieve

Table 2.1: Summary of selected open gridded geospatial time series characterizing land sur-
face parameters across spheres. The temporal resolution of the time series is de-
noted as yearly (Y), monthly (M), biweekly (B), daily (D), hourly (H), multi-
temporal (MT), and composites (C).

Time Series Spatial Res. [km] Temporal Res. Reference

Biosphere
MODIS Surface Reflectance

1
0.5 2000–pr. (D) Vermote and Wolfe (2015)

MODIS NDVI 0.25, 0.5, 1, 5.6 2000–pr. (C, M) Didan and Munoz (2019)
Global Forest Change 0.03 2000–2020 (Y) Hansen et al. (2013)
AVHRR LAI 5 1981–pr. (D) Claverie et al. (2016)
AVHRR NDVI 8 1981–2015 (B) Pinzon and Tucker (2014)
DLR Bethy NPP/GPP 1 1998–2015 (M) Wißkirchen et al. (2013)
MODIS GPP 1 2000–pr. (C) Running et al. (2015a)
MODIS NPP 1 2000–pr. (Y) Running et al. (2015b)
Copernicus Global Land Service LAI 0.3 2014–pr. (D) Fuster et al. (2020)

Hydrosphere
JRC Global Surface Water Layer 0.03 1984–2019 (M) Pekel et al. (2016)
DLR Global WaterPack 0.25 2003–pr. (D) Klein et al. (2017)
GloFAS-ERA5 River Discharge 10 1979–pr. (D) Harrigan et al. (2020)
ITSG-Grace 100 2003–2016 (D) Kvas et al. (2019)
Copernicus Global Land Service Water
Level

2
virtual stations 2002–pr. (D) Calmant et al. (2013);

Crétaux et al. (2011)

Cryosphere
DLR Global SnowPack 0.5 2000–pr. (D) Dietz et al. (2015)
ESA CCI Snow Cover (MODIS) 1 2000–2019 (D) Nagler et al. (2021)
ESA CCI Snow Cover (AVHRR) 5 1982–2019 (D) Naegeli et al. (2021b)
ESA CCI Snow Water Equivalent 25 1979–2018 (D) Luojus et al. (2020)

Lithosphere
GLEAM Soil Moisture 25 1980–2020 (D) Martens et al. (2017)
ESA CCI Soil Moisture 25 1978–2020 (D) Dorigo et al. (2017)

Anthroposphere
ESA CCI Land Cover 0.3 1992–2019 (Y) European Space Agency

(2017)
MODIS Land Cover 0.5 2001–2019 (Y) Friedl et al. (2002)
HILDA+ Land Cover/Land Use 1 1960–2019 (Y) Winkler et al. (2021)
DLR World Settlement Footprint
Evolution

0.03 1985–2015 (Y) Marconcini et al. (2021)

JRC Global Human Settlement Layer 0.03 1975, 1990, 2000,
2014 (MT)

Pesaresi et al. (2013)

DMSP-OLS/VIIRS Nighttime Lights 1 1992–pr. (Y) Li and Zhou (2017)
Gridded Population Counts 1 2000–2020 (Y) WorldPop and CIESIN

(2018)

Land-Atmosphere Interactions, Meteorological Variables
ERA5/ERA5-Land

3
25/10 1950–pr. (M, H) Hersbach et al. (2020);

Muñoz-Sabater et al. (2021)
TerraClimate

3
4 1958–2020 (M) Abatzoglou et al. (2018)

Climate Research Unit
3

50 1901–2020 (M) Harris et al. (2020)
CHIRPS Precipitation

4
5 1981–pr. (D, M) Funk et al. (2015)

PERSIANN-CDR Precipitation
5

25 1983–pr. (D) Nguyen et al. (2019)
MODIS Land Surface Temperature 1, 5.6 2000–pr. (D, C, M) Wan et al. (2015)
MODIS Fractional Cloud Cover 100 2000-pr. (D, M) Platnick et al. (2017)
1

Surface reflectance might be used to calculate index variables covering any sphere.
2

River water level estimations at intersection of river and satellite ground track.
3

Product suite includes multiple variables.
4

Only covering 50°S–50°N.
5

Only covering 60°S–60°N.
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further topographical features, such as the slope and aspect (Farr et al., 2007). Recently, the

Copernicus DEM was published at a spatial resolution of 30 and 90 m for license free use

(European Space Agency and Sinergise, 2021). The Copernicus DEM is an updated version

of the TerraSAR-X-Add-on for Digital Elevation Measurements (TanDEM-X) DEM (Wes-

sel et al., 2018) and the WorldDEMT M (Collins et al., 2015), with the latter being produced

by Airbus for commercial use. In addition, the HydroSHEDS data provide hydrographic in-

formation for regional to global scale applications, including river systems and river basin

boundaries (Lehner et al., 2008). Furthermore, Beck et al. (2018) published global maps of

Köppen-Geiger climate classification at a spatial resolution of 1 km. This data is useful i.e.

to geographically stratify the land surface into climate zones of interest.

2.3 Time Series Analysis

In general, time series analysis is performed to extract meaningful insights from series

of observations through exploration of the series’ characteristics and identification of pat-

terns in the past (Krispin, 2019; Shumway and Stoffer, 2017). In this context, Figure 2.2

illustrates the overall steps that are conducted during time series analysis. In the following,

Figure 2.2: General steps performed during time series analysis.
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these steps are described with respect to analysis of geoscientific time series. First, openly

available time series data are collocated from various sources, such as data portals of space

agencies or other initiatives. The second step covers data preparation, where the investigated

time series mostly require the application of tailored preprocessing steps. Specifically, the

raw data are usually present in unstructured data format, which is why data cleaning and

gap-filling might be necessary. For example, this includes the exclusion of pixels with cloud

contamination or other artifacts and then the interpolation of respective missing values (e.g.

Eckert et al. 2015; Cao et al. 2018b). Also, an important prerequisite for joint analysis of

multivariate time series is the harmonization of the multisource feature space to common

characteristics with respect to their spatial and temporal features. This step might require

the transformation of spatial characteristics, such spatial resolution and projection as well

as aggregation of temporal intervals, e.g., from daily to weekly or monthly observations.

Afterwards, the prepared feature space can be used to perform descriptive analysis to gain

insights from the time series (Uereyen et al., 2022a). Considering descriptive time series

analysis with remote sensing data, methods include the calculation of summary statistics at

temporal or spatial scales, the extraction of patterns through data visualization or statisti-

cal methods, the calculation of phenological shifts, and the attribution of changes in a time

series through the statistical analysis of relationships between multiple variables (de Beurs

et al., 2015; Kuenzer et al., 2015a; Woodcock et al., 2020).

Over the last decades, numerous studies dealt with time series analyses investigating,

i.e., the change of vegetation condition as well as its relation to driving variables. Respec-

tive time series analysis techniques can be categorized into univariate and multivariate ap-

proaches. The univariate domain measures one variable over time and includes monotonic

trend estimation (e.g. Chen et al. 2019; Fensholt and Proud 2012; Hu et al. 2020; Lamchin

et al. 2018; Xu et al. 2020), changepoint detection (e.g. Detsch et al. 2016a; Forkel et al.

2013; Kennedy et al. 2010; Li et al. 2021; Verbesselt et al. 2010; Zhao et al. 2019a), and

calculation of phenological metrics (e.g. Chen et al. 2015; Jönsson and Eklundh 2004; Park

et al. 2020; Tomaszewska et al. 2020). The existence of a monotonic trend and its magni-

tude can be calculated by means of statistical methods such as the Mann-Kendall test in

association with the Theil-Sen slope estimator or regression coefficient tests (Wang et al.,

2020). Regarding the derivation of changes within time series and breakpoints in the trend

and seasonal component, the methods Breaks for Additive Season and Trend (BFAST)

(Verbesselt et al., 2010) and Landsat-based Detection of Trends in Disturbance and Recov-

ery (LandTrendr) (Kennedy et al., 2010) are widely employed. Recently, a further algo-

rithm called Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST)

to estimate breakpoints was proposed (Zhao et al., 2019a). For calculation of phenological

metrics, several approaches exist. A widely applied tool allowing for analysis of seasonal
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properties of time series is named Timesat (Jönsson and Eklundh, 2002, 2004). A simpler

approach to derive basic phenological metrics such as beginning as well as end of season

and length of season is applied by Chen et al. (2015). Another study investigates changes in

seasonal properties by computing the difference in the amplitude and phase of the seasonal

component of a time series for two periods (Detsch et al., 2016a).

Furthermore, multivariate time series analyses have mostly the objective to assess the

relation between two or even more variables as well as to explore interplays in a high di-

mensional feature space. In this regard, methods include traditional correlative approaches

between two variables (e.g. Gessner et al. 2013; Notarnicola 2020; Sarmah et al. 2018) or

partial correlation using additional controlling variables, including temporal lags (cross-

correlation) (e.g. John et al. 2018; Tan et al. 2015; You et al. 2021; Wang et al. 2018c). For

example, studies evaluate the relation between vegetation condition and climatic variables

within meteorological seasons or perform correlation analysis with temporal lags to identify

effects of past influences on a variable (Gessner et al., 2013; Sarmah et al., 2018). How-

ever, correlation analysis might result in spurious links, which is why interpretations need

to be conducted carefully. To avoid spurious links due to time series variables having a co-

varying trend, studies usually remove the trend component from the time series, also called

detrending, prior to the calculation of the correlation coefficient (e.g. Peng et al. 2013).

Likewise, studies apply methods, which have their origin in econometric literature, such as

the Granger-causality concept (Granger, 1969), to quantify the evidence for a true causal

link between investigated time series variables (IPCC, 2013). Over the last years, further

investigations on causal inference from empirical data provided important insights and di-

rections on the usage of causal discovery algorithms (Krich et al., 2020; Papagiannopoulou

et al., 2017; Reygadas et al., 2020; Runge et al., 2019a,b). In this context, new methods en-

abling the derivation of causal networks became available. A causal network describes and

quantifies the relationship between variables at different time steps in the past. Besides the

Granger-causality concept, which was initially developed for bivariate time series (e.g. Xie

et al. 2019), but was lately also applied to a feature space consisting of multiple time series

variables (Papagiannopoulou et al., 2017), Runge (2018) proposed a new approach called

Peter and Clark Momentary Conditional Independence (PCMCI) to construct time series

graphs and evaluate causal networks. More specifically, PCMCI utilizes causal graphs to

evaluate the relation between multiple variables at past temporal lags while being capable

of handling a high dimensional feature space, highly autocorrelated variables, and direct

and indirect links (Runge, 2018).

Ultimately, as depicted in Figure 2.2, the fourth step of time series analysis might in-

volve the application of statistical methods to forecast future values of a given time series
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(Koehler and Kuenzer, 2020). The general purpose of time series analysis is to understand

the mechanisms that impact the observed series and past patterns and characteristics. Based

on the obtained knowledge through time series analysis, a prediction or forecast of future

values is enabled (Montgomery et al., 2015). Since time series prediction is not within the

scope of this thesis, this topic will not be covered in more depth.

2.4 Summary

First, this chapter provided background information on time series terminology in gen-

eral. Afterwards, remote sensing time series and their spatial and temporal characteristics

were presented. It was noted that remote sensing time series with comparatively high spatial

resolution come at the cost of a reduced temporal resolution and vice versa. In this regard,

it was emphasized that only a reduced number of remote sensing missions enable the gen-

eration of spatially and temporally consistent time series over multiple decades. A detailed

overview of available time series products was provided and the term “geoscientific time

series” including the full range of geospatial time series data was introduced. Apart from re-

mote sensing time series further variables, e.g., based on climate reanalyses, enable not only

the investigation of land surface change, but also the influence of respective drivers. In this

context, time series analysis techniques with respect to remote sensing applications were

presented, including the collection and preprocessing of time series as well as descriptive

analysis methods.
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Chapter 3

A Review on Remote Sensing-Based
Analyses of Large River Basins*

This chapter provides a detailed review on EO-based analyses for large river basins

worldwide. To this aim, a systematic review based on 287 research articles is presented

(Chapter 3.1). The results of the review comprise the spatial and temporal availability of

studies investigating EO-based analyses of the worldwide 28 largest river basins by their

drainage area. Furthermore, potentials and challenges of remote sensing and further geospa-

tial time series with respect to monitoring of large river basins are discussed (Chapter 3.2).

Finally, requirements of EO-based analyses for large river basins is elucidated.

As previously introduced in Chapter 1.1.2, river basins are a functional unit of the Earth’s

surface. In hydrology, a river basin is the most common geographical entity of considera-

tion (Davie and Quinn, 2019). In this context, the terms “catchment”, “watershed”, and

“drainage area” are used synonymously. A river basin can be defined as “the area of land

from which water flows towards a river and then in that river to the sea” (Davie and Quinn,

2019) or outlet unless it is i.e. evaporated or stored in a reservoir. Based on topographical

data and the assumption that all water on the Earth’s surface flows downhill, it is possible to

delineate the boundaries of a river basin. A sketch of a river basin is illustrated in Figure 1.4.

In the headwater or upper river basin, the river streams are generally smaller and steeper.

In comparison, rivers are broader and gently sloping in downstream or lower river basins

close to the mouth of the river (Strahler, 2013). Furthermore, a large river basin, e.g. at con-

tinental scale, can be hierarchically divided into smaller subbasins. Regarding all land area

above the outlet point, environmental change, human-induced or not, might have consider-

able impacts not only on the water budget of a river basin, but also on all sector that depend

on water resources. Since climate and human-induced changes are already widespread on

*Parts of this chapter have been published in Uereyen and Kuenzer (2019)
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the Earth’s surface, monitoring of river basins by means of spaceborne remote sensing en-

ables the assessment and analysis of trends in land surface variables as well as drivers of

land surface dynamics across spheres within a natural system.

3.1 Results of the Literature Review

This review summarizes all existing research articles investigating EO-based character-

ization of large river basins between 2000 and the first quarter of 2019. Where appropriate

recent studies are included in this review as well. In addition, this review quantifies how

EO can contribute to monitoring of land surface and surface water parameters in regards of

large river basins. River basins are usually characterized by their mean annual discharge,

total length of the river, or the total size of the drainage area. Here, the selection of rele-

vant river basins was conducted based on the size of their drainage area. In order to include

at least one large river basin per continent, all river basins having a greater drainage area

than 500,000 km2 were selected. This criterion results in the 28 largest river basins world-

wide being visualized in Figure 3.1 along with selected key characteristics. For a systematic

review of the literature, all existing Science Citation Index (SCI) listed research articles in-

vestigating EO-based analyses on land surface dynamics in large river basins, particularly

focusing on land surface parameters directly measurable at the Earth’s surface by means

of spaceborne remote sensing instruments, were identified. It has to be emphasized, that

this review only considers studies dealing with the spatial entity of river basins. Respec-

tive literature search was performed on the databases of Web of Science as well as Scopus

and resulted in 287 research articles. In order to gather relevant information for this re-

view, the identified literature was evaluated with the aim of extracting details on defined

parameters such as research topic, utilized remote sensing sensor type, spatial scale of the

study area, and temporal resolution of the used remote sensing data. During literature re-

view, the spheres biosphere, hydrosphere, and cryosphere were identified as superordinate

categories. Further subcategories were defined based on the respective study topics of the

reviewed research articles and assigned to one of the spheres. In the following, the study

topic “urban”, as part of the anthroposphere was assigned to the category biosphere. The

categories and corresponding study topics are listed in Table 3.1.

Table 3.1: List of defined categories and identified study topics.

Category Study topic

Biosphere Agriculture, coastline, land cover and land use, urban, vegetation
Hydrosphere River discharge, river water level, surface water, water quality
Cryosphere Permafrost, river and lake ice, snow and ice cover
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Figure 3.1: Features of the worldwide 28 largest river basins. Vector data outlining the river basins
and rivers as well as area and mean annual discharge are obtained from the GRDC
(GRDC, 2020; Lehner et al., 2008). Population counts are extracted from the WorldPop
data (Lloyd et al., 2019). The spatial characteristics on land use classes are calculated
based on HILDA+ (Winkler et al., 2021). Modified after Uereyen and Kuenzer (2019).
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3.1.1 Distribution of Identified Study Topics

As previously stated, all reviewed studies were categorized into one of the research cat-

egory biosphere, hydrosphere, and cryosphere. To perform a further classification, more

detailed study topics were defined (see Table 3.1). As illustrated in Figure 3.2, more than

half of the 287 reviewed research articles were found to belong to the category biosphere

(∼53 %). With more detail, the most investigated study topic dealt with monitoring of

vegetation parameters (∼39 %). Next, ∼32 % of the reviewed research articles performed

multi-class land cover and land use classifications. The identified study topics urban and

agriculture had a percentage of ∼12 %, respectively (see Figure 3.2). Moreover, mapping

of coastlines was conducted in approximately 5 % of all reviewed studies. In comparison,

∼39 % of all reviewed research articles were associated with the research category hy-

drosphere. More specifically, this research category involved study topics focusing on the

monitoring of surface water area and further detailed river properties with spaceborne re-

mote sensing. The study topic surface water area was investigated most with a share of

∼45 %. Furthermore, reviewed studies investigating the river properties water quality, river

water level, and river discharge had a percentage of ∼27 %, ∼16 %, and ∼12 %, respec-

tively. On the other hand, ∼8 % of all reviewed studies were found to belong the research

category cryosphere. The identified study topics snow and ice cover, permafrost, and river

and lake ice had a share of ∼62 %, ∼19 %, and ∼19 %, respectively.

In addition, Figure 3.3 depicts the number of reviewed studies per large river basin in

consideration of the investigated research category. For example, for the Amazon, Congo,

Mekong, Yangtze, and Yellow river basin, the research category biosphere was studied in

more than half of the total number of studies in each of the respective river basin. On the

other hand, in case of the Brahmaputra, Columbia, Orinoco, Sao Francisco, St. Lawrence

and Volga river basin, the study topic of all reviewed research articles was associated with

the research category hydrosphere. Regarding large river basins being located in the Arctic

region or those having their source region in a highly mountainous environment, such as

the Lena, Indus, or Tigris-Euphrates rivers, the research category cryosphere was found to

have a higher share.

3.1.2 Geospatial Distribution of Studies

Considering the geospatial distribution of the reviewed studies, the results of this litera-

ture review are displayed in Figure 3.4. More specifically, this figure differentiates between

investigated river basin (see Figure 3.4a) and country (see Figure 3.4b). In this context, the

Amazon river basin was identified as the most studied large river basin. In particular, ∼21 %
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Figure 3.2: Frequency of identified study topics per research category. Modified after Uereyen and
Kuenzer (2019).

Figure 3.3: Categorization of reviewed studies by investigated river basin and research category.
Modified after Uereyen and Kuenzer (2019).
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Figure 3.4: Maps demonstrating (a) the spatial distribution of the number of reviewed research ar-
ticles per large river basin and (b) the number of reviewed research articles per investi-
gated country. Modified after Uereyen and Kuenzer (2019).

of all reviewed studies dealt with the Amazon (e.g. Hilker et al. 2015; de Moura et al. 2015).

River basins being located in Southeast Asia, particularly the Yangtze, Mekong, and Yel-

low river basin were found to feature a comparatively high number of research articles (e.g.

Leinenkugel et al. 2013; Rao et al. 2018; Wang et al. 2018b). Here, the share of studies

with regards to the total number of reviewed studies amounts to ∼15 %, ∼15 %, and ∼9 %,

respectively. Moreover, the Congo river basin follows the Amazon river basin having the

second largest drainage area. Yet, only ∼6 % of the reviewed research articles investigated

the Congo river basin (e.g. Duveiller et al. 2008; Yan et al. 2017). The Mackenzie and Mis-

sissippi river basins are both located in North America and were each investigated in ∼5 %

of all reviewed studies (e.g. Du et al. 2016; Lam et al. 2018). Additionally, Figure 3.4a re-

veals that river basins being located in the Arctic regions were comparatively studied less.

In particular, two research articles were identified for the Kolyma (Nitze et al., 2017; Griffin

et al., 2018) and Volga river basins (Zhu et al., 2013; Troitskaya et al., 2014), respectively.

The number of reviewed studies with respect to the investigated country is shown in Fig-

ure 3.4b. Besides the quantification of the frequency in studied river basins, a differentiation
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by administrative boundaries enables a further detailed assessment of regions within the

river basins being of particular interest. In this connection, Figure 3.4b unravels countries

of particular interest, despite river basins being a functional unit independent of administra-

tive boundaries. For example, among all studies investigating the Amazon river basin, parts

of this river basin being within the administrative units of Brazil were explored most (e.g.

Arvor et al. 2018; Costa et al. 2002; Pereira et al. 2002; Furtado et al. 2016). Except Brazil

(∼21 %), the countries China, Vietnam, and the United States of America were found to be

of special interest as well. These countries were studied in ∼29 %, ∼11 %, and ∼8 % of all

reviewed articles, respectively. Also, it becomes evident that for a number of transboundary

river basins, such as the Danube, Niger, Nile, and Zambezi some riparian countries were

not included in the investigations.

In regards of the investigated administrative units, Figure 3.5 summarizes the first au-

thor’s institutional affiliations. At this, a coherence between the institutional affiliations and

the number of reviewed research articles per country is discernible (see Figure 3.4b). For

example, research conducted by first authors associated with an institution in China also in-

vestigated a river basin located in China in ∼89 % of the cases. Likewise, considering first

authors with an institutional affiliation in Brazil, the share amounts to ∼75 %. First authors

affiliated with the United States of America investigated river basins located on the entire

American continent in ∼60 % of all respective studies. On the other hand, first authors

Figure 3.5: Counts of identified first author affiliations by nation and continent. The numbers in
brackets denote the sum of the reviewed studies. Modified after Uereyen and Kuenzer
(2019).
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having their institutional affiliation in Germany are studying river basins located in Asia in

∼85 % of the cases. It is also noteworthy, that ∼42 % of all reviewed research articles were

conducted by co-authors with cross-border collaborations.

3.1.3 Spatial Extent of Studies

Furthermore, the reviewed studies were classified in consideration of the spatial extent

of investigated river basin. In detail, the research articles were assigned to one of the cate-

gory “basin”, “subbasin”, and “regional”. In case a study investigated one of the large river

basins at the spatial scale of the entire basin, it was associated with the category basin. In

comparison, the category subbasin was used, if a study dealt with a functional subset of one

of the large river basins, including e.g. the source or delta region. Ultimately, a study was

assigned to the category regional, if it has a research focus in regards of one of the selected

large river basins, but is spatially not related to the functional unit of a river basin.

Accordingly, Figure 3.6 summarizes the spatial extent of the reviewed studies for each

of the large river basin and reveals that the number of studies at the entire spatial scale of

a river basin were found to be comparatively low. Only ∼14 % of all studies conducted

analyses at the scale of an entire basin. On the other hand, ∼37 % of the investigations

were at subbasin and ∼49 % at regional scale. More specifically, basin wide studies were

mostly performed for the Amazon river basin (∼4 %) (e.g. Chapman et al. 2015; Frolking

et al. 2011). Next, as demonstrated in Figure 3.6, the second most basin wide applications

were conducted for the Murray-Darling river basin in Australia (∼2 %) (e.g. Heimhuber

et al. 2017; Tulbure et al. 2016). Considering the category subbasin, most studies were

Figure 3.6: Count of reviewed research articles with respect to the selected large river basins and
the spatial scale of the study area. Modified after Uereyen and Kuenzer (2019).

28



3.1 Results of the Literature Review

conducted for the Mekong, Yangtze, and Yellow river basins. Here, most of these studies

are spatially associated with the delta regions (e.g. Buono et al. 2017; Kontgis et al. 2015).

At regional scale, most studies were performed for the Amazon (∼13 %), Yangtze (∼8 %),

and Mekong (∼6 %) river basins. Moreover, this literature review indicates that ∼94 % of

all studies investigated one river basin (e.g., Wang et al. 2018b; Ge et al. 2018; Broich et al.

2018). Only, the remaining ∼6 % of all studies dealt with more than one river basin at the

same time (e.g., Du et al. 2016; Kuenzer et al. 2015b; Thenkabail et al. 2005). Moreover,

this review revealed that ∼69 % of all research articles investigated a transboundary river

basin. Yet, ∼67 % of these transboundary studies only focused on the river basin area within

one riparian country only.

3.1.4 Applied Remote Sensing Sensor Types

Figure 3.7 visualizes the utilized spaceborne remote sensing sensor types. The review

indicates that optical remote sensing imagery were most frequently applied in the context

of river basin analyses. In particular, ∼61 % of all studies only used optical imagery. SAR

imagery was used in ∼13 % of the reviewed studies. In comparison, ∼6 % solely relied

Figure 3.7: The utilized sensor types and their combinational use in the reviewed research articles.
Modified after Uereyen and Kuenzer (2019).
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on altimetry data. Furthermore, Figure 3.7 provides information on the synergistic use of

remote sensing sensors. In this connection, optical and SAR imagery were most frequently

used together (∼5 %). Optical and passive microwave imagery were utilized in ∼4 % of all

reviewed studies.

Accordingly, a further differentiation of the used sensor types by research category and

study topic in Figure 3.8 shows that optical imagery was also the most used sensor type

across all research categories. Optical imagery was most frequently applied in the context

of the study topics vegetation (∼14 %), land cover and land use (∼13 %), and surface water

area (∼9 %). With respect to the topics vegetation and surface water area, SAR imagery was

also widely used with a share of ∼6 % and ∼5 %, respectively. Furthermore, investigations

estimating water level (∼5 %) and river discharge (∼3 %) commonly used measurements

from altimetry mission.

Figure 3.8: Share of utilized remote sensing sensor types categorized by the research categories
(a) biosphere, (b) hydrosphere, and (c) cryosphere as well as respective study topics.
Modified after Uereyen and Kuenzer (2019).

3.1.5 Temporal Resolution of Studies

In this section, the temporal resolution and the investigated study periods of the re-

viewed research articles are summarized in Figure 3.9 and Figure 3.10. To this end, the

categories single, intra-annual, and inter-annual were defined with respect to the performed

change detection analyses. The category single covers all investigations that did not conduct

any change analysis. In case the remote sensing-based change analysis was performed at

a temporal interval or resolution with less than 12 months the corresponding studies were

associated with the category intra-annual. The category inter-annual includes all studies

investigating observations with a temporal interval greater than a year. The results of this

literature review indicate that ∼12 % of all studies are associated with the category sin-
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Figure 3.9: Count of published research articles per year and the temporal resolution of the used
input data with respect to (a) change detection analyses and (b) employed satellite im-
agery. Modified after Uereyen and Kuenzer (2019).

gle and, hence, performed no change analysis (e.g. de Grandi et al. 2000; Saatchi et al.

2000; Thenkabail et al. 2005). On the other hand, ∼51 % of all reviewed research articles

performed analyses at an intra-annual temporal scale (e.g. Broich et al. 2018; Du et al.

2016; da Silva et al. 2010), while ∼37 % of all studies were found to investigate inter-

annual changes of a respective study topic (e.g. Domeneghetti et al. 2014; Wohlfart et al.

2016; Yan et al. 2017). Moreover, the results suggested that studies performing analyses at

inter-annual temporal scale cover a greater study period than intra-annual studies. In detail,
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Figure 3.10: The length of the investigated temporal periods of all reviewed research articles per
publication year. Modified after Uereyen and Kuenzer (2019).

intra-annual studies have a maximum study period of 29 years, whereas for inter-annual

studies the maximum study period amounts to 56 years. Figure 3.9a also shows that over

the investigated two decades in this review, the number of research articles conducting no

change analysis stayed at a similar level. On the contrary, a considerable increase was found

in the frequency of published research articles performing analyses at intra-annual scale

starting in 2010 (see Figure 3.9a). Likewise, an increase was also determined for studies at

inter-annual scale starting in 2008.

A further categorization of the reviewed studies was carried out to differentiate between

studies utilizing mono-temporal, multi-temporal, and time series remote sensing data. In

this regard, the category mono-temporal involved studies that only used remote sensing

imagery for a single date. On the other hand, the category multi-temporal comprised inves-

tigations using more than one remote sensing image at multiple time steps. Studies using a

series of remote sensing images at a constant temporal interval were assembled in the cate-

gory time series. Figure 3.9b demonstrates the results obtained through the classification of

the studies with respect to their temporal resolution. In summary, only ∼6 % of all studies

used mono-temporal remote sensing imagery as input (e.g. Niculescu et al. 2016; Liu et al.

2016). ∼49 % of the reviewed research articles were found to utilize multi-temporal remote

sensing images (e.g. Huang et al. 2013; Tsarouchi et al. 2014) and in ∼45 % of the investi-

gations remote sensing time series were used (e.g. Pham et al. 2018; Villadsen et al. 2015).

Moreover, an increase in the number of studies using remote sensing time series was notice-

able since 2011 (see Figure 3.9b). This growth in time series applications was in alignment
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with the previously mentioned increase in intra-annual studies (see Figure 3.9a). Accord-

ingly, a slight increase in studies that investigated multi-temporal remote sensing imagery

since 2008 can be reported as well. Studies employing mono-temporal remote sensing data

remained at a low level.

Furthermore, Figure 3.10 visualizes the length of the studied periods of all reviewed

investigations. The results show that ∼54 % of all studies had study periods below or equal

to 10 years, while ∼18 % of the studies had an investigation period longer than 20 years.

Figure 3.10 indicates a general increase in the length of the study periods since 2009.

3.1.6 Studies with River Basin Wide Applications

In this section, studies investigating entire river basins for any of the identified study top-

ics is presented. As introduced in Chapter 1.1 the assessment and monitoring of the state of

the Earth’s surface is crucial to enhance the understanding of global environmental change.

With respect to river basins, e.g., data on land cover and land use properties tailored to re-

gional settings of a river basin represent a fundamental information basis for researchers as

well as decision makers and promote river basin and water management activities. Overall,

∼17 % of all studies investigated multi-class land cover and land use mapping. However,

only ∼10 % of these studies mapped and evaluated land cover and land use for an entire

large river basin (Leinenkugel et al., 2013; Matsuoka et al., 2007; Saatchi et al., 2000; Wang

et al., 2009; Wohlfart et al., 2016). Here, most of the land cover and land use classifications

were performed for the Yellow river basin. Wohlfart et al. (2016) mapped land cover change

between the years 2003 and 2013 using MODIS time series at a spatial resolution of 250 m.

In comparison, Wang et al. (2009) quantified land cover change for the Yellow river basin

using Landsat imagery at a spatial resolution of 30 m including the years 1990, 1995, and

2000. A further study, studied the land cover for East China, covering the Yellow river basin

(Matsuoka et al., 2007). The authors utilized MODIS and nighttime light imagery for the

year 2000 and applied a decision tree classifier to derive land cover classes. In a recent

study, Ji et al. (2021) propose a classification approach to derive land cover maps for the

Yellow river basin based on Landsat imagery. In particular, they used the Google Earth

Engine (GEE) to compute land cover and land use dynamics for the period 1986–2018

at 90 m spatial resolution. Leinenkugel et al. (2013) generated a land cover map for the

Mekong river basin for the year 2010 by means of MODIS-based vegetation index and sur-

face reflectance time series covering 11 years. The authors used phenological metrics and

temporal composites to derive land cover classes. Recently, Tang et al. (2021) presented an

approach to retrieve annual land cover data for the Mekong river basin between 2001–2019

using MODIS time series. The authors used additional MODIS vegetation cover fraction
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products to enhance the accuracy of the land cover maps and performed detailed analyses

on land cover change. A basin wide land cover map was also computed for the Amazon

river basin based on a mosaic of Japanese Earth Resources Satellite 1 (JERS-1) SAR im-

agery of 1995 (Saatchi et al., 2000). This land cover map focused mainly on vegetation

types.

Vegetation modulates water, carbon fluxes, land-atmosphere interactions and supplies

food and further valuable resources and ecosystem services (Piao et al., 2020). Considering

analyses of river basins, ∼21 % of the reviewed studies focused on vegetation parameters.

Among these studies, ∼19 % analyzed vegetation parameters at the spatial scale of an en-

tire large river basin. As previously elaborated in Chapter 3.1.3, the Amazon river basin

was investigated most (e.g. Frolking et al. 2011; Hilker et al. 2015; de Moura et al. 2015).

In this context, de Moura et al. (2015) evaluated vegetation response to drought events

by means of Terra and Aqua MODIS surface reflectance time series in combination with

data on LAI and remote sensing-based precipitation measurements covering the period be-

tween 2000–2012. Furthermore, MODIS vegetation products were analyzed by means of

the Amazon river basin to determine changes in vegetation leaf area between 2000–2012

(Hilker et al., 2015). Additional basin wide applications associated with vegetation char-

acteristics were performed for the Congo river basin (e.g. Duveiller et al. 2008; Yan et al.

2016, 2017). Yan et al. (2016) assessed the quality of several vegetation products including

those based on Spinning Enhanced Visible and Infrared Imager (SEVIRI) and MODIS to

analyze land surface phenology parameters, particularly the canopy greenness cycle. The

authors performed analyses for the period 2006 to 2013 and concluded that the SEVIRI

instrument was more suitable for analyzing land surface phenology parameters in tropical

rainforests due to frequent diurnal observations (Yan et al., 2016). In a following study,

Yan et al. (2017) investigated land surface phenology in the Congo river basin using SE-

VIRI data in combination with remote sensing-based rainfall and land cover data. Based

on the joint analysis, the authors analyzed implications of land cover on the relationship

between the timing of vegetation greenness and timing of the rainy season. Accordingly,

Yan et al. (2017) found that vegetation greenness in regions with low tree cover, including

grasslands and shrublands is particularly impacted by the onset of the rainy season. Further-

more, applications at basin scale were available for the Murray-Darling and Yellow river

basin in Australia and China, respectively (Broich et al., 2018; Wang et al., 2018b). In this

connection, vegetation response to drought and flooding events using Landsat imagery be-

tween 1986–2011 was investigated for the Murray-Darling river basin (Broich et al., 2018).

The authors identified varying vegetation responses with respect to timing, magnitude, and

duration depending on rainfall and flooding events. In comparison, Wang et al. (2018b)

analyzed drought events in the Yellow river basin during 2000–2015 by means of several
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remote sensing-based drought indices. Also, Zhou et al. (2021) analyzed vegetation con-

dition in combination with geospatial data on climatic, hydrological, and anthropogenic

variables for the Amur river basin covering the period 1982–2013. The synergetic analy-

sis indicated that natural and anthropogenic controls jointly impacted vegetation condition

with significant spatial-temporal heterogeneity in the Amur river basin.

Monitoring of surface water is required for quantifying the availability of freshwater

resources being elementary for human and natural ecosystems (Huang et al., 2018a). Sur-

face water area mapping is enabled by means of spaceborne remote sensing e.g. through

optical (e.g. Arvor et al. 2018) or SAR imagery (e.g. Arnesen et al. 2013). The results

of this review indicated that ∼18 % of the studies investigated mapping of surface water

area. Thereof, ∼22 % of the studies were conducted at basin scale, including the Amazon

(Chapman et al., 2015), Congo (Rosenqvist and Birkett, 2002), Indus (Khan et al., 2014;

Kwak et al., 2014), Murray–Darling (Huang et al., 2014; Donchyts et al., 2016; Heimhuber

et al., 2016; Tulbure et al., 2016; Heimhuber et al., 2017), Yangtze (Rao et al., 2018), and

multiple Arctic river basins (Du et al., 2016). With more detail, Advanced Land Observ-

ing Satellite-Phased Array L-Band Synthetic Aperture Radar (ALOS-PALSAR) ScanSAR

data was used to classify surface water and inundated vegetation area for the Amazon river

basin between 2006–2010 (Chapman et al., 2015). However, the authors stated that L-band

imagery was not sensitive enough to map inundated herbaceous vegetation in the Amazon

river basin. Moreover, Khan et al. (2014) classified surface water area for the Indus river

basin using MODIS and Environmental Satellite (Envisat)-Advanced Synthetic Aperture

Radar (ASAR) imagery jointly. The temporal period of this study covered the Indus flood

event in 2010. In addition to the optical and SAR imagery, the authors also quantified spa-

tial and temporal patterns of precipitation and streamflow using Tropical Rainfall Measur-

ing Mission (TRMM) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E)

brightness temperature data (Khan et al., 2014). Likewise, flooded areas during Indus flood

event in 2010 were also mapped by (Kwak et al., 2014). Here, the authors applied a rule-

based classification scheme using a MODIS-based land surface water index together with

SRTM elevation data. Monitoring of fractional surface water was also carried out for Arc-

tic river basins, including the Mackenzie, Yukon, Lena, Yenisei, and Ob river basins by

means of multiple remote sensing data (Du et al., 2016). The data basis comprised AMSR-E

brightness temperature as well as MODIS land cover products in combination with further

auxiliary datasets in order to derive fractional surface water maps at a spatial resolution

of 5 km and a temporal resolution of 10 days. Furthermore, multiple studies investigated

the Murray-Darling river basin in Australia. Huang et al. (2014) used MODIS surface re-

flectance imagery in combination with gauge measurements to characterize flood inunda-

tion dynamics between 2001–2010. More specifically, they assessed river flow peaks using
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the gauge data and then identified and classified corresponding MODIS imagery by means

of the open water likelihood algorithm (Guerschman et al., 2011) to generate maps at a

spatial resolution of 500 m. These were validated using Landsat imagery at higher spatial

resolution and afterwards temporally aggregated to annual composites. Also, inundation

dynamics were analyzed for the Murray-Darling river basin using the Landsat archive at

30 m spatial resolution for a period of 26 years (1986–2011) (Tulbure et al., 2016). In a

subsequent study, a joint analysis of multi-source time series data was conducted to analyze

drivers of inundation dynamics based on precipitation, evapotranspiration, soil moisture,

and gauge measurements (Heimhuber et al., 2017). For example, the authors identified pre-

vailing local climate conditions being of high relevance for spatially heterogeneous inunda-

tion dynamics. Recently, Tulbure and Broich (2019) evaluated surface water area dynamics

for the Murray-Darling river basin as well. In this study, the authors additionally considered

land use data and performed a detailed analysis with respect to further spatial and temporal

units. Considering the Yangtze river basin, a study generated time series of surface water

area maps using MODIS surface reflectance 8-day composites at 250 and 500 m spatial res-

olution (Rao et al., 2018). For this purpose, the authors used the Random Forest classifier.

In a recent study, Deng et al. (2019) derived surface water area maps for the Yangtze river

basin using the Landsat archive between 1984–2018. For classification, the authors used the

GEE platform and they differentiated permanent and seasonal surface water based on ob-

served inundation frequencies. A currently published article investigated surface water area

monitoring in the Congo river basin between 2010–2017 and applied Soil Moisture and

Ocean Salinity (SMOS) data with a dual-polarized passive L-band instrument (Fatras et al.,

2021). Mapping of surface water area in the Congo river basin is particularly challenging

due to cloud coverage and dense vegetation cover (Fatras et al., 2021).

Regarding river water level measurement, the network of gauging stations tends to de-

cline globally and is particularly sparse in developing and emerging economies (Grimaldi

et al., 2016; Schneider et al., 2017). To overcome these issues, there is a great potential

for spaceborne remote sensing-based water level measurements to monitor floods and to

obtain measurements on water level even from data sparse regions (Grimaldi et al., 2016;

Huang et al., 2018a). In this regard, the measurements are usually conducted at so-called

virtual stations denoting the intersection of a remote sensing sensors ground track with a

water body (da Silva et al., 2012). To this end, most of the reviewed studies were avail-

able for the Amazon (e.g. Frappart et al. 2006; da Silva et al. 2010, 2012), Brahmaputra

(e.g. Schneider et al. 2017; Huang et al. 2018b), Congo (e.g. Becker et al. 2014; Kim et al.

2017), Ganges (e.g. Siddique-E-Akbor et al. 2011; Pandey et al. 2014), and Mekong river

basin (e.g. Boergens et al. 2016; Pham et al. 2018). Out of all studies associated with river

water level estimation, ∼33 % retrieved the water level for virtual stations distributed over
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the entire river basin, while the rest of the studies only at regional and subbasin scale. For

example, da Silva et al. (2010) estimated river water level for the Amazon river basin at

45 virtual stations using altimetry measurements from the ERS-Radar Altimeter (RA) and

Envisat-RA2 instrument. These estimations were validated using crossovers of altimetry

tracks and gauge measurements resulting in partially high variations with 12 cm in the best

cases and several meters in the worst cases.

Components of the cryosphere, including snow cover, glaciers, permafrost, and river as

well as lake ice, are fundamental for river basins, as these e.g. modulate the runoff and,

hence, the availability of freshwater resources in lower reaches of river basins (Azam et al.,

2021). Therefore, observing the cryosphere and dynamics of the components is of high

relevance to assess and evaluate potential implications for downstream areas (e.g. Viviroli

et al. 2020). Although studies analyzing the research category of the cryosphere are spa-

tially limited to the upper river basins, a brief overview of these studies is provided as well.

Among all studies associated with the cryosphere, ∼54 % investigated snow and ice cover

(e.g. Akyurek et al. 2011; Chao et al. 2017; Tekeli et al. 2005; Wang et al. 2017a, 2015b).

For example, altimetry data from the Ice, Cloud, and land Elevation Satellite (ICESat)-

Geoscience Laser Altimeter System (GLAS) instrument was utilized to estimate glacier

elevation change in the source region of the Yangtze river basin (Chao et al., 2017). In fact,

the authors identified declining glaciers between the period 2000–2009. A further study,

analyzed glacier change in the Yangtze river basin as well (Wang et al., 2017a). Here, the

authors used two Landsat images from 1992 and 2009 in combination with in-situ mea-

surements of runoff data between 1957–2009. The results of this study indicated an accel-

erated decrease in glacier area amounting to a total of around 45 km2. Next, Wang et al.

(2015b) analyzed snow cover dynamics between 2000–2012 for the upper Yangtze river

basin. Based on this study, snow cover area increased during the investigated period. Re-

cent studies investigating snow cover area are available for the Ganges (Thapa et al., 2021),

Indus (Ali et al., 2020), and Yukon river basin (Pan et al., 2021). For example, Thapa et al.

(2021) applied MODIS snow cover products between 2002–2014 to analyze changes in

snow cover in the upper Ganges river basin. The authors identified slight decreases of snow

cover area for most of the subbasins, but only a few of these indicated significant declines

during winter months. Moreover, Ali et al. (2020) investigated changes in snow cover area

for the period 2008–2018 based on MODIS normalized difference snow index (NDSI) data.

The authors used linear least squares regression analysis for trend analysis and the results

pointed towards declining snow cover area in the upper Indus river basin for the investigated

period. Besides snow and ice, further studies dealing with lake and river ice characteriza-

tion were identified for the Artic region, including the Mackenzie, Lena, Yenisei, and Ob

river basins (Pavelsky and Smith, 2004; Mermoz et al., 2014; Sakai et al., 2015; Antonova
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et al., 2016a; Cooley and Pavelsky, 2016). As an example, the breakup dates for river ice

were determined for the aforementioned Arctic river basins based on NOAA-AVHRR and

MODIS imagery (Pavelsky and Smith, 2004). In a following study, Landsat imagery was

employed for a study area in the Lena river basin to map river ice breakup and subsequently

induced floods (Sakai et al., 2015). Additionally, permafrost was investigated for the Lena,

Yukon, and Kolyma river basins (Antonova et al., 2016b; Nitze et al., 2017; Stettner et al.,

2018; Strozzi et al., 2018; Whitley et al., 2018). For instance, Stettner et al. (2018) analyzed

changes in cliff-top lines in association with soil erosion in permafrost riverbanks during

summer months between 2013–2015 by means of TerraSAR-X time series.

3.2 Discussion of Potentials and Future Requirements

3.2.1 Potentials and Challenges of Remote Sensing for Large River
Basin Monitoring

Spaceborne remote sensing facilitates the mapping of land surface parameters enabling

detailed and continuous monitoring of land surface dynamics in large river basins around

the globe. Particularly, the ever-increasing amount of data streams, open data policies of

the space agencies, and the improving data storage and processing capacities foster remote

sensing applications for large river basins at continental scales. Here, it is noteworthy that

the mapping of land surface parameters using open remote sensing image time series at

medium to high spatial resolution (30 m) is only possible since the opening of the Landsat

archive in 2008. Additional multispectral imagery at 10 m spatial resolution is available

from the European Copernicus Sentinel-2 missions since 2015. In consideration of these

developments, a remarkable increase in intra-annual and inter-annual investigations using

remote sensing time series was detected (see Figure 3.9). Accordingly, an increase in the

length of the investigated study periods was identified as well (see Figure 3.10). Yet, as

already mentioned in Chapter 1.1.1, the Landsat and Sentinel-2 missions are characterized

by comparatively low temporal revisit times. This circumstance makes dense time series

analysis impossible, particularly over cloud prone areas. To overcome low temporal reso-

lution, remote sensing sensors with moderate to coarse spatial resolution such as MODIS,

Sentinel-3, or NOAA-AVHRR can be used. However, this literature review highlighted that

the remote sensing archives and subsequently generated geoscientific products are not used

adequately considering applications at large river basin scale. Indeed, this might be caused

by insufficient data storage and processing capabilities of institutions constituting a chal-

lenge for the handling of large amounts of remote sensing data. Nowadays, this can be

alleviated by using cloud computing services such as the GEE (Gorelick et al., 2017). This
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type of platform is quite beneficial with respect to the availability of geoscientific datasets

and processing capacities. But, depending on the research motivation as well as methods

and algorithms to be used, cloud computing services might not be flexible enough to im-

plement the entire processing chain.

3.2.2 Requirement of a Higher Spatial and Temporal Coverage for
Analyses in Large River Basins

As summarized in Chapter 3.1.3 and 3.1.6, the majority of studies applying spaceborne

remote sensing data for analysis of large river basins were characterized by limited spatial

coverage. In fact, EO-based basin wide analyses are needed over large river basins with e.g.

sparse in-situ measurement networks, shared drainage areas with more than one country to

enable consistent observations, or scarce as well as incomplete inventories on land surface

parameters. However, studies investigating one of the reviewed large river basins usually

focused on study areas at regional or subbasin scale (see Figure 3.6). In this context, this

review revealed that the spatial coverage of the study areas was largely limited by admin-

istrative boundaries and not by the functional boundaries of a river basin (see Figure 3.4).

Even though spaceborne remote sensing enables the monitoring and analysis of large-scale

study areas irrespective of administrative units. This finding is quite important with respect

to the analysis of transboundary river basins, where data exchange and cross border col-

laborations between riparian countries might be problematic (Best, 2018; de Stefano et al.,

2017; Farinosi et al., 2018). In fact, there are more than 260 transboundary river basins at

global scale covering around 45 % of the entire Earth’s land surface (Linke et al., 2019;

Wolf et al., 1999). In total 145 countries have their territory within a transboundary river

basin. Yet, transboundary cooperation agreements are only reported by 24 countries in 2020

(UN-Water, 2021). In this respect, monitoring of transboundary river basins irrespective of

national boundaries is needed. Furthermore, it appears that the limitation in the spatial cov-

erage of an entire large river basin might be favored by aspects such as research funding or

motivation. The summary of the institutional affiliation of the first authors (see Figure 3.5)

and the investigated extent of the river basins (see Figure 3.4b) are supporting this finding.

Additionally, due to the fact that most studies were conducted at regional or subbasin scale,

it remains a challenge to compare findings with respect to land surface changes within or

across large river basins. Figure 3.6 also unravels that studies performed at basin scale were

not available for 12 of the reviewed large river basins and it was identified that basin wide

applications were lacking for some of the identified study topics at all. In this regard, studies

rarely performed EO-based analyses for multiple large river basins at once. In this review,
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just a few studies investigating more than one large river basin were identified (e.g. Du et al.

2016; Kuhn et al. 2019).

Besides basin wide applications, multivariate time series on the evolution of the land

surface at intra-annual and inter-annual temporal resolution are required for an enhanced

analysis and understanding of land surface dynamics across spheres in river basins. As

summarized in Chapter 3.1.5, the number of studies using remote sensing time series data

increased considerably. In general, remote sensing time series applications over large spa-

tial scales are fostered by open data policies of space agencies as well as cloud computing

services with free access to academia such as the GEE or the recently activated Microsoft

Planetary Computer platform (Gorelick et al., 2017; Sudmanns et al., 2019). In this regard, a

few studies also focused on the remote sensing-based application of multivariate time series

to analyze land surface dynamics (e.g. Ouyang et al. 2020; Wang et al. 2018a; Zhou et al.

2021). Notwithstanding, most studies focus on a single EO-based land surface variable such

as vegetation or surface water in consideration of relevant driving variables. Overall, a joint

evaluation of multiple EO-based land surface features in combination with driving variables

covering several spheres is still rarely conducted. This applies to both river basin analyses

as well as multivariate time series analyses in general (Estupinan-Suarez et al., 2021; Ma-

hecha et al., 2020). Also, it has to be noted, that utilizing spaceborne remote sensing data

at a high temporal resolution (e.g. up to twice a day) comes along with a comparatively

lower spatial resolution (e.g. greater than 250 m). Overall, a trade-off between temporal

and spatial resolution needs to be considered when applying spaceborne remote sensing

data (Huang et al., 2018a).

3.2.3 Requirement of Comparability between Large River Basins and
Transferability of Methods

As summarized in Table 2.1, a wealth of geoscientific time series became available dur-

ing the last decades, including land surface variables based on remote sensing and reanaly-

ses. These time series usually cover the entire land surface or depending on the variable the

oceans as well and are crucial for a variety of applications including monitoring and mod-

eling of e.g. the climate system, hydrological cycle, or environmental change. In consider-

ation of river basins, several data portals summarizing and presenting e.g. geospatial data

and indicators associated with environmental vulnerability or water scarcity are available.

An overview of these databases and international initiatives is provided in Chapter 1.1.2.

Even though these databases provide a valuable source for river basins and issues related

to governance and water security (Best, 2018), they are mostly not up to date and focus on

selected indicators at basin scale only. Accordingly, databases that gather geospatial data
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and geoscientific time series on land surface variables for large river basins worldwide are

needed. This would allow for spatially and temporally consistent studies. Additional stan-

dardized definitions on the spatial and temporal resolution of used geoscientific datasets

could be defined to enable consistent analyses on land surface dynamics and comparisons

between large river basins.

Furthermore, Chapter 2.3 provided an overview of time series analysis techniques com-

monly applied to spaceborne remote sensing data. In this regard, the development of a

methodological framework that allows for the exploitation and analysis of multi-source

geoscientific time series supporting the monitoring and quantification of land surface dy-

namics across spheres in large river basins is needed. Through the usage of globally avail-

able datasets on land surface parameters, the development of statistical time series analysis

techniques with a global parameter set, and the implementation of the workflow on a high-

performance computing environment, the transferability of applications to any large river

basin could be ensured. Obtained insights and results on land surface dynamics and the

influence of driving variables in large river basins would greatly support decision makers,

stakeholders, and researchers as well as international or transboundary river basin commis-

sions.

3.3 Summary

This chapter summarized previous studies utilizing spaceborne remote sensing for the

analysis of land surface dynamics in the worldwide 28 largest river basins and discussed

the potentials and challenges of remote sensing, including geoscientific time series as well

as geospatial data for land surface monitoring in large river basins. The key findings of

this review emphasized that only ∼14 % of the reviewed research articles performed basin

wide applications and that transboundary river basins remained understudied. Many studies

analyzing a transboundary river basin, such as the Amazon, Indus, Ganges, or Brahma-

putra river basin, focused on one of the riparian countries and did not consider the nat-

ural boundaries of the respective drainage area. In this respect, a close relation between

the investigated river basin and the institutional affiliation of the first authors was identi-

fied. Also, the number of investigations that studied multiple large river basins at once was

found to be low. Moreover, most of the identified studies explored vegetation parameters,

surface water area and inundation dynamics, as well as land cover and land use. To this

end, optical and SAR imagery were most frequently used. In the advent of open data poli-

cies (NOAA-AVHRR, MODIS, Landsat, European Copernicus Programme) and emerging

cloud computing services, including the Google Earth Engine and the Microsoft Planetary

Computer, studies employing multi-temporal and time series analyses were found to be in-
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creasing. In the context of global climate change, it was stressed that the exploitation of

multi-source geoscientific time series fostering the quantification of land surface dynamics

across spheres in large river basins is of great relevance to promote consistent monitoring of

environmental change and assess the influence of natural and anthropogenic drivers. These

analyses and corresponding findings could greatly support existing databases and initiatives

of international organizations, river basin commissions, governments, and researchers.
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Study Area: Indo-Gangetic River Basins

This chapter presents the characteristics of the study area covering the Indus, Ganges,

Brahmaputra, and Meghna river basins in South Asia. The Indus-Ganges-Brahmaputra-

Meghna (IGBM) rivers have been of significant importance since ancient times. The fertile

Indo-Gangetic Plain, being shaped by these river systems and alluvial deposits from the

Himalaya mountains has been home to some of the world’s oldest civilizations, including

the Indus Valley civilization (Kathayat et al., 2017; MacDonald et al., 2016). Today, these

river basins are among the most densely populated areas and feature the largest connected

irrigated cropland area worldwide (Biemans et al., 2019). The Ganges, Brahmaputra, and

Meghna rivers have their confluence north of the Bay of Bengal and are characterized by the

third largest global riverine discharge to the Earth’s oceans, being surpassed by the Amazon

and Congo rivers only (Chowdhury and Ward, 2004). This delta region also exhibits the

world’s largest mangrove forest ecosystem, the Sundarbans (Iftekhar and Saenger, 2007).

In this regard, the focus of this thesis is on four neighboring and connected transbound-

ary river basins representing environments with heterogeneous climates, topography, and

land cover as well as land use properties. Furthermore, these river basins cover a consider-

able area of approximately 2.8 million km2 (being around 8 times the size of Germany) and

include the countries Afghanistan, Pakistan, India, China, Nepal, Bhutan, and Bangladesh.

Considering the objectives of this thesis, the selected river basins are greatly suitable for

multivariate time series analysis to quantify and evaluate land surface dynamics across

spheres, with e.g. the cryosphere being prevalent in high mountainous areas of the up-

per Indus, Ganges, and Brahmaputra river basins; on the other hand, the downstream areas

covering the Indo-Gangetic Plains are largely influenced by humans and enable a detailed

analysis of the interconnection between multiple spheres, including the anthroposphere,

biosphere, hydrosphere, lithosphere, and atmosphere. Also, in agreement with the results
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of the literature review, this thesis aims to analyze transboundary river basins irrespective

of administrative boundaries, which were found to remain largely understudied.

4.1 Overall River Basin Characteristics

The Indus river (Chinese: Shendu) begins at the confluence of the rivers Sengge and

Gar on the Tibetan Plateau and has a total length of about 3,200 km. The Indus river basin

stretches from the Himalayan-Karakoram mountains in the north to the dry plains in Pak-

istan in the south (see Figure 4.1). Ultimately, the river has its outlet to the Arabian Sea.

The Indus river has a total drainage area of around 1.1 million km2, where Pakistan has the

largest share of the drainage area, followed by India. This river basin inhabits approximately

300 million people (see Table 4.1).

The Ganges river (also known as Ganga in India and as Padma in Bangladesh) is formed

by the two main headwater rivers Bhagirathi and Alaknanda having their origin at the Gan-

gotri glacier and Satopanth as well as Bhagirath Kharak glaciers in the Uttaranchal Hi-

malayas in India. The total length of the river amounts to 2,500 km. First, the Ganges flows

southwest in northern India and then turns southeast as it is joined by many tributaries

(see Figure 4.1). In Bangladesh the Ganges river joins with the Brahmaputra and Meghna

rivers. The river basin has an area of approximately 900,000 km2 and inhabits more than

580 million people (see Table 4.1). Furthermore, the Ganges river is not only an important

freshwater source for many sectors, but it has a great social and religious relevance as well

(Shukla et al., 2018).

The Brahmaputra river (also known as Yarlung Tsangpo in China and as Jamuna in

Bangladesh) originates at the Angsi glacier in the Himalayan Mountains in China at an

elevation of 5,300 meters above sea level (Patel et al., 2020). The river flows east through

southern China, enters India in the northeast and turns southwest, and finally flows into

Bangladesh (see Figure 4.1). In total, the Brahmaputra river has length of around 3,900 km.

Table 4.1: Characteristics of the investigated river basins including the riparian countries, the
drainage area, and the population count extracted from gridded population data for the
year 2020 (WorldPop and CIESIN, 2018). The countries are listed in alphabetical order.

Basin Countries Area [km2] Population count

Indus Afghanistan, China, India, Pakistan 1,131,090 300,364,670
Ganges Bangladesh, China, India, Nepal 954,206 586,119,928
Brahmaputra Bangladesh, Bhutan, China, India 540,783 83,723,373
Meghna Bangladesh, India 95,711 91,212,172
GBM-Delta Bangladesh, India 83,568 94,637,377
All basins - 2,805,358 1,156,057,520
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The river drains a total area of more than 540,000 km2 (see Table 4.1) and is the third

largest sediment-laden river after the Amazon and Yellow river (Rahman et al., 2018; Viers

et al., 2009). Moreover, the Brahmaputra is considered among the largest braided rivers

worldwide being characterized by considerable migration of the river banks (Baki and Gan,

2012).

The Meghna river is formed in Bangladesh through the rivers Surma and Kushiyara,

which have their origin in northeast India. The Meghna river basin has a size of about

95,000 km2 and has a population of 90 million (see Table 4.1). Compared to the other

investigated rivers, the origin of the Meghna river is not in the Himalayan Mountains. To-

Figure 4.1: (a) Overview of countries intersecting with the transboundary river basins, (b) topogra-
phy of the Indus, Ganges, Brahmaputra, and Meghna river basins, (c) location of study
area in South Asia, (d) and differentiation of river basins by 117 subbasins. National
and disputed boundaries are based on NaturalEarth data. Outlines of the river basins are
extracted from HydroSHEDS (Lehner et al., 2008) and the elevation is represented by
the Copernicus DEM (European Space Agency and Sinergise, 2021).
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gether, the Ganges-Brahmaputra-Meghna (GBM) rivers shape the largest delta region in the

world (Becker et al., 2020). After their confluence in the GBM-Delta, these rivers drain into

the Bay of Bengal. As already mentioned before, this river system releases the third largest

amount of discharge volume into the ocean’s (Chowdhury and Ward, 2004). Furthermore,

the population density in the delta region in Bangladesh is among the highest in the world

with more than 1,000 people per square kilometer (Becker et al., 2020). The total popu-

lation of the IGBM river basins amounts to more than 1.1 billion people covering almost

14 % of the global population (see Table 4.1).

4.2 Physical Geography of the Indus, Ganges,

Brahmaputra, and Meghna River Basins

In the following the physical characteristics of the IGBM river basins are explained.

Here, the focus lies on the climate system, the hydrological properties, as well as land

cover and land use characteristics of the respective river basins.

4.2.1 Climatology

The IGBM river basins can be divided into three typical physiographic zones based on

their topographical and climatic characteristics. These physiographic zones include the Ti-

betan Plateau in the north with altitudes more than 4,000 m above sea level, the Himalayan

belt as a transition zone, and the downstream floodplains at low altitudes in the south (see

Figure 4.1 and Figure 4.2). In the following, the climate zones of the investigated trans-

boundary river basins are described by means of the Köppen-Geiger climate classification

system. Accordingly, an overview of the prevalent climate zones is illustrated in Figure 4.2.

Here, the geospatial dataset on the Köppen-Geiger climate classification is available from

Beck et al. (2018) and is representative for the period 1980–2016 at a spatial resolution of

1 km. As visualized, the climate in the Indus river basin is mainly arid in the south and

central plains. Towards the Himalayan mountain range (see Figure 4.1), the climate in the

Indus, Ganges, and Brahmaputra river basins is temperate with mostly dry winters and hot

summers. At high altitudes of the Indus, Ganges, and Brahmaputra cold and polar climate

is dominant with cold steppe and desert climate in the valleys (see Figure 4.2). The climate

in the western Himalayan belt is cold with dry and warm summers and in the eastern belt

cold with dry winters and warm summers. The floodplains of the Ganges river basin are

mostly characterized by temperate and in western areas by semi-arid climate. Likewise, the

downstream areas of the Brahmaputra river basin have temperate climate. In the south, to-
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Figure 4.2: Overview of the Köppen-Geiger climate classes for the study area. Climate zones are
extracted from Beck et al. (2018). The river basin outlines are denoted by the gray
colored line.

wards the confluence with the Ganges river the climate is humid and hot, as in the Meghna

river basin.

Furthermore, the climate system of the study area is mainly dominated by the Asian

monsoon and westerly winds (Bolch et al., 2012). Additionally, the Himalaya mountain

range has a pivotal role in the climate of the study area, as it forms an orographic bar-

rier (Azam et al., 2021). During the months June to September the southwest monsoon

(also known as the Indian Summer Monsoon) prevails and releases around 80 % of the

annual precipitation on the Indian subcontinent (see Figure 4.3) (Jin and Wang, 2017).

In detail, the southwest monsoon originates over the Arabian Sea, Indian Ocean, as well

as the Bay of Bengal and transports moist air to the north. Here, precipitation amounts

are particularly high in southern parts of the Himalaya mountains (see Figure 4.4b). The

precipitation intensity of the southwest monsoon decreases from east to west along the Hi-

malayan belt (Azam et al., 2021). On the contrary, the northeast monsoon (also known as

Indian Winter Monsoon) dominates during the winter months in combination with West-

ern disturbances, which have their origin in the Mediterranean and Black Sea region and

are driven by the westerlies controlling precipitation in the Himalayan mountains (see Fig-
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Figure 4.3: Schematic overview of the main wind systems for the study area (Source of background
terrain image: ESRI, USGS, NOAA).

ure 4.3) (Dimri et al., 2015). During the northeast monsoon the precipitation weakens from

west to east (Azam et al., 2021). In this context, the total amount of received precipitation

in the Karakoram and the Western Himalayas during the winter monsoon, is higher than

that during the southwest monsoon. Moreover, investigations identified a significant weak-

ening of the southwest monsoon over South Asia since 1950 (Mishra et al., 2012; Patel

et al., 2020). This decline in total precipitation is accompanied by higher occurrences of

dry spells (Singh et al., 2014), declines in soil moisture, and occurrences of more intense

drought events over the Indo-Gangetic Plains (Ganeshi et al., 2020; IPCC, 2021; Mujum-

dar et al., 2020; Ramarao et al., 2018). At the same time, the frequency of extreme rainfall

events over shorter timescales in South Asia increased since 1950, leading to severe flood

events over the IGBM river basins (Mujumdar et al., 2020).

Next, the heterogeneity in climate in the IGBM river basins is demonstrated by means

of the climate charts in Figure 4.4e–j and statistics in Table 4.2. The selected locations are

distributed over diverse climate and elevation zones. The climate charts are calculated by

means of WorldClim version 2.1 climate data for the period 1970-2000 (Fick and Hijmans,

Table 4.2: Further information with respect to the selected locations in Figure 4.4. Details on the
abbreviations of the climate classes can be found in Figure 4.2.

Parameter Hyderabad Skardu Gwalior Thimphu Sylhet Lhasa

Coordinates [Lat.; Long.] 68.4; 75.6; 78.2; 89.6; 91.9; 91.1
25.4 35.3 26.2 27.5 24.9 29.7

Climate class BWh BWk Cwa Cwb Am BSk
Height [m] 30 2228 218 2352 22 3654
Annual Precipitation [mm] 159 307 920 1001 3918 418
Annual Mean Temperature [°C] 27.4 11.0 25.8 13.6 24.7 7.4
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Figure 4.4: Maps showing (a) the mean annual temperature, (b) mean accumulated precipitation,
(c) mean accumulated precipitation over the winter season (DJF; December, January,
February), and (d) mean accumulated precipitation over the monsoon season (JJAS;
June, July, August, September) between 1991–2020 based on ERA5-Land reanalysis
(Muñoz-Sabater et al., 2021). (e–j) The climate charts for the selected cities in the
Indus-Ganges-Brahmaputra-Meghna river basins are based on the WorldClim data for
the reference period 1970-2000 (Fick and Hijmans, 2017). The location of the cities in
(e–j) are depicted in subfigure (a).

2017). This dataset has a spatial resolution of 1 km. For example, Figure 4.4e features

the city Hyderabad in the Lower Indus river basin having a hot desert climate (BWh).

According to the WorldClim data, the mean annual precipitation amounts to 159 mm in

Hyderabad. In contrast, the city Sylhet in the Meghna river basin at an elevation of 22 m

above sea level is characterized by tropical monsoon climate (Am) and receives an an-

nual precipitation of 3918 mm. Ultimately, the annual climate of South Asia can be dis-

49



Chapter 4 Study Area: Indo-Gangetic River Basins

tinguished by four seasons: the pre-monsoon (March-April-May (MAM)), monsoon (June-

July-August-September (JJAS)), post-monsoon (October-November (ON)), and winter sea-

son (December-January-February (DJF)) (Islam and Cartwright, 2020; Janes et al., 2019).

4.2.2 Hydrology

The hydrology of the Indo-Gangetic river basins is modulated on the one hand, by the

monsoon precipitation and, on the other hand, by glacial melt and snowmelt. In this con-

text, the Himalaya and Karakoram mountains (see Figure 4.1) extend over 650,000 and

90,000 km2, respectively, and cover almost half of the glacial ice volume in High Moun-

tain Asia (Nie et al., 2021). Also, High Mountain Asia contains the largest ice volume

outside the polar regions (Farinotti et al., 2019) emphasizing its importance with respect

to freshwater availability in downstream areas of the river basins. Considering the annual

river discharge, the inter-annual variability of precipitation and glacial as well as snowmelt

is greatly impacting the discharge volume in the respective seasons. The peaks in river

discharge are reached during the monsoon season, between July and September (see Fig-

ure 4.5). More specifically, river discharge is highest for the Indus river in August, for the

Ganges river in September, and for the Brahmaputra as well as Meghna in July (see Fig-

ure 4.5b–e). These graphs also demonstrate that the difference in river discharge between

the monsoon and dry seasons is very large. Moreover, as shown in the previous chapter,

the southwest monsoon (Indian Summer Monsoon) loses its intensity from east to west.

Accordingly, the contribution of glacial and snowmelt to the river discharge in the Indus

river is larger than those in the Ganges, Brahmaputra, and Meghna rivers (Biemans et al.,

2019). In years with less rainfall during the monsoon season, the river flow is modulated

by groundwater and glacier as well as snowmelt (Azam et al., 2021). Furthermore, among

the IGBM rivers, the annual mean river discharge of the Brahmaputra river is largest and

amounts to 33,600 m3 s−1 being followed by the Ganges river with 15,000 m3 s−1. Regard-

ing river discharge, the Brahmaputra river is only exceeded by the Amazon, Congo, and

Yangtze rivers (Wohl, 2007). For the Indus river the annual mean discharge is 7,500 m3 s−1

(Wohl, 2007) and for the Meghna river 4,600 m3 s−1 (Sarker et al., 2003).

4.2.3 Land Cover

The distribution of land cover classes in the IGBM river basins is represented by the

European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover classification

for the year 2019 in Figure 4.6a (European Space Agency, 2017; Plummer et al., 2017).

The available 37 land cover classes are reclassified into 11 classes in consideration of the

scheme by Mousivand and Arsanjani (2019) and the IPCC land cover categories (Arneth
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Figure 4.5: (a) Annual mean of daily gridded river discharge for the investigated river basins based
on the Global Flood Awareness System (GloFAS)-ERA5 river discharge version 3.1
between 1991–2020 (Harrigan et al., 2020), whereas (b–e) illustrate the river discharge
of the Indus, Ganges, Brahmaputra, and Meghna rivers close to the outlet.

et al., 2019). Regarding the spatial resolution of 300 m, it is important to note that this data

cannot map all land surface features accurately. However, in terms of the annual temporal

and spatial resolution, the ESA CCI land cover data has to be considered as an improvement

with respect to other available land cover classifications at global scale such as the Global

Land Cover 2000 or MODIS products (Bartholomé and Belward, 2005; Friedl et al., 2002).

According to the ESA CCI land cover data, irrigated and rainfed croplands in combi-

nation have the highest share in the Indus, Ganges, Meghna, and GBM-Delta (see Fig-

ure 4.6b–f). On the other hand, the Brahmaputra river basin, particularly in high altitudes,
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Chapter 4 Study Area: Indo-Gangetic River Basins

Figure 4.6: (a) Overview of land cover and land use distributions for the study area by means of the
ESA CCI land cover 2019 dataset (European Space Agency, 2017) and (b–f) illustration
of percentages of the land cover and land use classed per investigated spatial unit. For
visualization purposes, labels of percentages lower than 5 are not shown in (b–f).

is dominated by grasslands. Forests are primarily occurring at the Himalayan belt and north

of the Meghna river basin, at the Shillong plateau (see Figure 4.6a). In downstream areas,

particularly in the Indo-Gangetic Plain, the land surface is largely used for agricultural ac-

tivities. Furthermore, dry regions in the southeast of the Indus river basin are covered by

sparse vegetation or bare area. In the Indus and GBM-Delta, close to the river mouth of

both rivers, the land cover classes wetlands and mangrove forests are dominant.
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To provide further details on the vegetation cover, snow cover area, and surface water

area, Figure 4.7–4.9 visualize the long-term mean of those variables for the period 2003 to

2020 as well as the variables phenology for the respective river basins. According to the

land cover distribution, Figure 4.7a demonstrates that the long-term mean in the NDVI is

particularly high over forested areas in the Himalayan belt and the Shillong plateau and

Figure 4.7: (a) Overview of vegetation greenness by means of a long-term mean of the normalized
difference vegetation index (NDVI) derived from MODIS imagery between 2003 and
2020 (Vermote and Wolfe, 2015), whereas (b–f) illustrate the phenology of vegetation
greenness for the respective river basins based monthly means for the same period. The
NDVI value range is between -1 and 1.
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Figure 4.8: (a) Average of snow cover area for the period 2003–2020 based on the daily DLR Global
SnowPack data (Dietz et al., 2015) and (b–f) visualization of the snow cover phenology
for the respective basins based on monthly means for the same period.

weakens from east to west. In this context, the NDVI is commonly calculated for remote

sensing measurements to characterize the amount of green vegetation cover on the land

surface. Moreover, Figure 4.7b–f outlines the intra-annual course of the NDVI averaged

for the entire river basins, respectively. Here, the NDVI indicates two growing seasons for

vegetation in the Indus and Ganges river basins, with a peak in February and September. On

the contrary, the monthly NDVI values reveal an increase in vegetation greenness between

May and October for the Brahmaputra, Meghna, and GBM-Delta, with a peak in October.

Considering the average snow cover area for the period 2003–2020 in Figure 4.8a, it can

be seen that the occurrence of snow cover area is comparatively higher in the northwest for

the upper Indus river basin than for the Ganges and Brahmaputra. This is also reflected in

Figure 4.8b–d, where the course of snow cover area is displayed by means of the monthly

averages between 2003–2020. In particular, snow cover area in the Indus river basin peaks

in February and covered an area around 250,000 km2 on average for the investigated period.

During the monsoon season, in August, snow cover area reaches the lowest point with a
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coverage less than 30,000 km2. Likewise, in the Ganges river basin the maximum snow

cover extent is reached in February in amounts to approximately 50,000 km2, whereas in

July it reduces to less than 9,000 km2. In the Brahmaputra river basin, the peak in snow

cover area is achieved one month later in March with around 100,000 km2. The ablation

period ends around August with snow cover area being lowest (approximately 17,000 km2).

Afterwards, snow cover area starts to increase again in the Brahmaputra river basin.

Surface water area dynamics are largely related to precipitation as well as glacial and

snowmelt. In this regard, Figure 4.9a displays the occurrence of surface water area in the

IGBM river basins during 2003–2020, where the main river streams in the downstream

areas are particularly striking. In agreement with the previously explained patterns of pre-

cipitation (see Chapter 4.2.1), river discharge (see Chapter 4.2.2), and snow cover area,

surface water area reaches its maximum coverage approximately in September for the In-

dus, Ganges, and Brahmaputra river basins (see Figure 4.9b–f). In the Meghna river basin,

the coverage of surface water area declines down to 1,000 km2 at the end of the dry pe-

riod in March. In comparison, in the monsoon season the surface water area expands up to

approximately 9,000 km2.

4.3 Human Footprint

As introduced in Chapter 1.1, human actions influence the environment in various ways.

Therefore, the quantification as well as the integration of anthropogenic influences into the

analysis of environmental change is of great importance. In this regard, numerous geospatial

data characterizing the human footprint are available (e.g. Table 2.1). Besides the previously

presented percentages of land cover classes, Figure 4.10 presents the evolution of the total

settlement area for the period 1985–2015 within each river basin. Here, the settlement area

is extracted at a spatial resolution of 30 m from the global World Settlement Footprint

(WSF) Evolution data, which is based on the Landsat archive (Marconcini et al., 2020,

2021). Due to the higher spatial resolution compared to the ESA CCI land cover, this dataset

enables a more accurate characterization of settlement area. For example, the settlement

area in the Ganges river basin is largest and increased by around 70 % between 1985–

2015, from approximately 13,600 km2 to 23,200 km2 (see Figure 4.10). Considering the

relative share of settlement area within each river basin, it is highest for the GBM-Delta

with approximately 6.35 % in 2015.

Also, as already pointed out in Table 4.1, the IGBM river basins are home to approxi-

mately 14 % of the world population. In addition to these population numbers, Figure 4.11a

demonstrates the spatial distribution of population counts for the study area using the grid-
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Figure 4.9: (a) Average of surface water area for the period 2003–2020 based on the DLR Global
WaterPack (Klein et al., 2017) and JRC Global Surface Water Layer (Pekel et al., 2016)
data as well as (b–f) visualization of the surface water phenology for the respective
basins based on monthly means for the same period.

ded WorldPop dataset (Lloyd et al., 2019; WorldPop and CIESIN, 2018). Here, it is visible

that the population is concentrated in the low altitude areas of the river basins and to large

urban agglomerations, such as the denoted megacities Lahore (Pakistan), Delhi (India),

Kolkata (India), and Dhaka (Bangladesh). In case of the Lower Indus river basin, it is also

striking that the population is focused in close vicinity to the river streams.
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Figure 4.10: Development of the settlement area in the respective river basins between 1985 and
2015. These statistics are extracted from the DLR World Settlement Footprint (WSF)
Evolution data (Marconcini et al., 2020, 2021).

Furthermore, Figure 4.11b visualizes the total Gross Domestic Production (GDP) based

on purchasing power parity (PPP) for the year 2015. To obtain the total GDP (PPP) per

pixel, Kummu et al. (2018) multiplied sub-national GDP per capita statistics with gridded

population data. Statistics on GDP are usually available at national scale and are consid-

ered as a key indicator among human and economic development measures (Kummu et al.,

2018). According to statistics of the International Monetary Fund (IMF) with respect to

GDP per capita (PPP), India, for example, is ranked 128th among 195 considered countries

(IMF, 2021). However, in the list of total GDP (PPP), India is ranked third behind China

and the United States (IMF, 2021). This is also reflected in Figure 4.11b, where gridded

total GDP (PPP) is comparatively high for the investigated river basins.

Apart from these statistics, human influence in the IGBM river basins, particularly in the

Indo-Gangetic plains, is also expressed by the intensive agricultural land use, boosted by the

green revolution in India (Evenson and Gollin, 2003). The green revolution started around

the 1960s and caused considerable land use conversions to agricultural land use at the cost

of forests and shrublands (Mathur and AchutaRao, 2019). Today, most of the agricultural

areas are equipped with irrigation systems and together with further sectors including the

industry and domestic needs, they greatly depend on the availability of freshwater (Biemans

et al., 2019). Also, considering the river flows, large parts of the river segments of the IGBM

rivers are impacted by human-induced changes, such as dams for hydropower generation

or river water diversion (Grill et al., 2019; Gain and Giupponi, 2014; Grumbine and Pandit,

2013).

57



Chapter 4 Study Area: Indo-Gangetic River Basins

Figure 4.11: (a) Overview of the gridded population counts for the year 2020 (Lloyd et al., 2019;
WorldPop and CIESIN, 2018) and (b) the gridded total Gross Domestic Production
(GDP) (purchasing power parity) in constant 2011 international US dollars for the year
2015 (Kummu et al., 2018). The four labeled cities in the study area are megacities
exceeding a population of 10 million people.
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Chapter 5

A Framework for the Analysis of
Multi-Source Geoscientific Time Series*

This chapter describes the methods and techniques that are applied to prepare a multi-

source feature space consisting of multivariate geoscientific time series. This feature space

is then used to quantify and analyze land surface dynamics in transboundary river basins. As

summarized in Chapter 2 and 3, the investigation of multivariate geoscientific time series

characterizing the land surface across spheres is of great importance to enhance the under-

standing of environmental change and assess the influence of natural and anthropogenic

drivers. Also, the literature review indicated that the analysis of land surface dynamics in

large river basins with spaceborne remote sensing is largely limited to studies at regional

and subbasin scale. In case of transboundary river basins, the study areas were largely re-

stricted by administrative boundaries. In consideration of the ever-increasing amount of re-

mote sensing data streams that cover the entire Earth’s surface for already several decades,

the generation and exploitation of high dimensional feature spaces with respect to the anal-

ysis of land surface dynamics still remains understudied. Factors exacerbating multivariate

time series analysis are often associated with different data properties in terms of data for-

mat, spatial as well as temporal resolution, and data storage and processing capabilities.

To address these issues and be able to make use of the full potential of multivariate

geoscientific time series, frameworks comprising both the preprocessing of multi-source

geospatial time series and the utilization of statistical time series analysis techniques are

needed. In this regard, an overview of available frameworks and online cloud services en-

abling the access to and the evaluation of massive amounts of remote sensing data, specif-

ically ARD, is given by Sudmanns et al. (2019). Considering online cloud services, the

GEE platform is amongst the most widely used utility, encompassing freely available data

*Parts of this chapter have been published in Uereyen et al. (2022a)
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of many remote sensing missions and subsequently generated products (Gorelick et al.,

2017). Besides the various geospatial datasets, the user has access to the web-based GEE

integrated development environment (IDE) and the JavaScript application programming in-

terface (API) including tools e.g. with respect to image processing and analysis without

the requirement of downloading the remote sensing data to the local machine. Although,

depending on the use case and research objectives, the GEE API might be considered as

a restricted programming framework and the free version only comes with processing and

storage limitations. Furthermore, the data cube concept provides a further solution to save,

maintain, and analyze multi-source remote sensing as well as further geospatial data (Sud-

manns et al., 2019; Baumann et al., 2018; Simoes et al., 2021). In this context, various EO

data cubes have been implemented at regional scale using the Open Data Cube framework

and are in operational use (e.g. Asmaryan et al. 2019; Chatenoux et al. 2021; Ferreira et al.

2020; Giuliani et al. 2017; Killough 2019; Lewis et al. 2017). Recent advances in data cubes

with respect to remote sensing applications and methods for the analysis of high dimen-

sional feature spaces emphasize the importance of multivariate time series analyses rather

than considering single variables (Mahecha et al., 2020; Estupinan-Suarez et al., 2021).

In agreement with these developments, a novel framework integrating both, the prepa-

ration and statistical analysis of multi-source geoscientific time series is developed and

implemented as part of this thesis on a high-performance computing (HPC) environment of

the German Remote Sensing Data Center (DFD) at the German Aerospace Center (DLR).

The developed framework should be easy-to-implement, time efficient, and flexible with

respect to the entire processing pipelines, including the harmonization of the multi-source

input data. Also, the framework is developed with the objective of being transferable to

any geographical entity or temporal resolution as well as any geoscientific time series data.

The integrated statistical time series analysis techniques will be used to reveal land surface

dynamics with particular focus on vegetation condition, surface water area, and snow cover

area over last two decades.

The following chapters first introduce the used data basis, including remote sensing-

based land surface parameters as well as climatic and hydrological variables (Chapter 5.1).

Next, the developed and implemented methodological framework for time series prepara-

tion, generation of the harmonized database, and the application of statistical time series

analysis is presented (Chapter 5.2). Here, the time series analysis includes the calculation

of trends, changes in phenological parameters, and computation of driving variables. In

the subsequent chapters, the results of the statistical analyses are illustrated (Chapter 5.3)

and discussed with respect to relevant literature and remaining limitations (Chapter 5.5).

Ultimately, Chapter 5.6 provides a summary of the entire Chapter 5
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5.1 Input Data

The following chapters describe the used input data to characterize land surface dynam-

ics in the IGBM river basins (see Figure 5.1). These include geoscientific time series on

vegetation condition, surface water area, and snow cover area derived from MODIS acquisi-

tions (Chapter 5.1.1). In Chapter 5.1.2, the used climatic and hydrological variables are pre-

sented. These variables are included to estimate their influence on the remote sensing-based

land surface variables. Further employed auxiliary data are introduced in Chapter 5.1.3.

5.1.1 Remote Sensing-Based Land Surface Variables

The collocated remote sensing-based features characterizing the land surface area are

based on optical imagery from the MODIS instruments aboard the Terra and Aqua satel-

lites operated by the National Aeronautics and Space Administration (NASA). The Terra

satellite was launched on 18th December 1999 into a sun-synchronous orbit at an alti-

tude of 705 km. The sister satellite, Aqua, was launched approximately 2 years later on

4th May 2002 (Justice et al., 2002). Besides the MODIS sensor, which is recording mul-

tispectral imagery, both satellites carry further instruments acquiring daily imagery of the

entire Earth’s surface. MODIS imagery from both sensors are consistent and can be used

jointly. This increases the chances of generating cloud-free temporal composites over cloud

prone areas and enables intra-annual as well as inter-annual analyses. The MODIS in-

struments record images covering 36 spectral frequencies of sunlight reflected from the

Earth’s surface in a 2,300 km wide swath mode. In this regard, the relevant spectral bands

of MODIS imagery have a spatial resolution of 250 m for the red and infrared bands as

well as 500 m for 5 further spectral bands (Justice et al., 2002). The MODIS product suite

provides many datasets on land surface properties, including surface reflectance and vege-

tation characteristics. Depending on the product, the temporal resolution might be daily or

composites of images acquired within a 4-day, 8-day, 16-day, monthly, or yearly interval.

Furthermore, MODIS products are supplied in a non-overlapping tile grid and are mapped

in the equal-area sinusoidal grid projection. At this, one MODIS granule covers an area

of 1,200*1,200 km, corresponding to an area of 1,440,000 km2 (Justice et al., 2002). The

IGBM river basins are covered by 8 granules, including h23v05, h23v06, h24v05, h24v06,

h25v05, h25v06, h26v05, and h26v06. All products used in this thesis are based on Collec-

tion 6.
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Figure 5.1: Overview of used geoscientific monthly time series to analyze land surface dynamics,
including (a) MODIS NDVI (Didan and Munoz, 2019), (b) DLR Global WaterPack
(Klein et al., 2017), (c) DLR Global SnowPack (Dietz et al., 2015), (d) CHIRPS to-
tal precipitation (Funk et al., 2015), (e) TerraClimate 2-m mean air temperature, (f)
TerraClimate vapor pressure deficit, (g) TerraClimate downward shortwave radiation
(Abatzoglou et al., 2018), (h) GloFAS-ERA5 river discharge (Harrigan et al., 2020),
and (i) GLEAM surface soil moisture (Martens et al., 2017; Miralles et al., 2011). The
illustrated time series are averages for the entire Ganges river basin.
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5.1.1.1 MODIS Normalized Difference Vegetation Index

MODIS vegetation products provide consistent spatial and temporal time series on veg-

etation condition at global scale and are available at either 16-day or monthly temporal

resolution. The vegetation products are produced at a spatial resolution of 250 m, 500 m,

1 km, or 5.6 km (Didan and Munoz, 2019). Here, the MOD13C2.006 product is employed,

which is available at 5.6 km spatial resolution and monthly temporal resolution. This dataset

consists of 13 bands, including the NDVI, enhanced vegetation index (EVI), spectral bands,

pixel reliability, and quality assurance layers. In this thesis, the NDVI is selected and used

to characterize vegetation condition. The NDVI is widely used and is considered to be

the “continuity index” of the existing AVHRR NDVI time series data (Didan and Munoz,

2019). The NDVI is the normalized ratio of red and near infrared wavelength and is calcu-

lated as follows:

NDV I =
(Near In f rared −Red)
(Near In f rared +Red)

(1)

It has to be noted, that in search of remote sensing sensors suitable for time series anal-

ysis, the Landsat mission at 30 m spatial resolution was considered as well. In this context,

the IGBM river basins are covered by 164 Landsat tiles. A query on available Landsat im-

ages for these tiles between 1985–2020 at a cloud coverage of less than 60 % resulted in

99,420 images in total. A further detailed evaluation indicated that the median of available

images per tile and year amounts to 12 images for most of the tiles. Therefore, it was con-

cluded that the generation of time series with equidistant observations is not possible with

Landsat images for the IGBM river basins.

5.1.1.2 DLR Global WaterPack

The Global WaterPack is processed at the DFD of the DLR and characterizes inland

surface water area using remote sensing imagery from both MODIS sensors aboard Terra

(MOD09GQ.006) and Aqua (MYD09GQ.006) at a spatial resolution of 250 m and a daily

temporal resolution (Klein et al., 2017). The processing of the Global WaterPack requires

images from both sensors, resulting in images up to twice a day. Therefore, the surface wa-

ter area time series are available since 2003, where both MODIS sensors recorded remote

sensing imagery. Surface water area is classified based on dynamic thresholding, which

jointly incorporates the distribution of near infrared values as well as near infrared and red

values. In addition, the processing involves further auxiliary data, including multispectral

imagery, settlement areas, topographical data, and thermal information. Furthermore, the

MOD10A1.006 and MYD10A1.006 are used to mask clouds as well as snow and ice cov-

63



Chapter 5 A Framework for the Analysis of Multi-Source Geoscientific Time Series

ered areas. The classification procedure results in a binary water mask, which is finalized

through a temporal interpolation of gaps. This interpolation results in a consistent and gap-

free time series of surface water area. The reported accuracy measures by Klein et al. (2017)

indicate very high overall accuracies for pixels covered fully with surface water, whereas

the accuracy declines for pixels covered only partially with surface water.

5.1.1.3 DLR Global SnowPack

The Global SnowPack processor (Dietz et al., 2015) at the DFD of the DLR is used

to generate time series on snow cover area by means of products from both MODIS sen-

sors aboard Terra (MOD10A1.006) and Aqua (MYD10A1.006) (Hall et al., 2002). These

MODIS data provide the NDSI, which is used to derive snow cover area and is based on

following formula:

NDSI =
(Green−Shortwave Near In f rared)
(Green+Shortwave Near In f rared)

(2)

Using the NDSI, the Global SnowPack processor generates cloud free binary masks on

snow cover area at a spatial resolution of 500 m and a daily temporal resolution (Dietz

et al., 2015; Rößler et al., 2021). In a first step, an adaptive thresholding is applied to

the NDSI layer to differentiate between “snow” and “non-snow”. Next, images from both

sensors are combined to a daily composite to reduce cloudy pixels. Remaining pixels with

cloud coverage are temporally interpolated considering the snow coverage in the preceding

and following day. Furthermore, a topographical interpolation is carried out, if the degree

of cloud coverage is lower than a defined threshold. Further details on the DLR Global

SnowPack processor are available in Dietz et al. (2015) and Rößler et al. (2021). A detailed

validation of MODIS snow products was conducted by Hall and Riggs (2007). The results

indicated high overall accuracies, but highly depending on land cover classes and snow

condition. Further investigations outline improvements in MODIS Collection 6 products in

comparison to prior versions (Masson et al., 2018; Notarnicola, 2020). Besides providing

a binary product on snow cover area, the Global SnowPack also includes information on

snow cover duration and start as well as end of season.

5.1.2 Climatic and Hydrological Variables

In this chapter, all climatic and hydrological time series employed for the quantification

of environmental controls on the vegetation condition, surface water area, and snow cover

area are introduced. These time series and the datasets in particular, were selected based on

the relevance as a driving variable, the spatial and temporal resolution, and the availability
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over the last two decades. In this regard, gridded time series for the variables precipitation,

soil moisture, river discharge, temperature, downward shortwave radiation, and vapor pres-

sure deficit were assembled. Precipitation was characterized by the Climate Hazards Group

Infrared Precipitation with Station data (CHIRPS) version 2.0, which is a blend of station

measurements, satellite acquisitions, and long-term climatology (Funk et al., 2015). This

product comes at a spatial resolution of 0.05◦ (approx. 5 km) and a monthly temporal res-

olution. It has to be noted, that this data is limited to areas between 50◦N–50◦S. CHIRPS

data is available since 1981 and its suitability in capturing precipitation patterns over India

and South Asia was investigated in many studies showing good performance (e.g. Banerjee

et al. 2020; Gupta et al. 2019; Prakash 2019). To assess the quality of gridded precipitation

data over India, gridded precipitation time series from the Indian Meteorological Depart-

ment (IMD) at a spatial resolution of 0.25◦ (approx. 25 km) are often used as reference. This

data is created by means of gauge measurements of over 6,000 stations (Gupta et al., 2019).

Yet, considering transboundary analyses, the usage of IMD precipitation is not suited for

this thesis, as it is limited by the national boundaries of India. For example, Prakash (2019)

reported a root mean square error of 0.40 mm day−1 for CHIRPS compared to the IMD

precipitation, which was the lowest error considering further datasets.

Furthermore, monthly mean 2-m air temperature was derived using the minimum and

maximum 2-m air temperature from the TerraClimate data (Abatzoglou et al., 2018). This

dataset has a spatial resolution of 1/24◦ (approx. 4 km) and is computed based on climato-

logically aided interpolation. To this end, high spatial resolution monthly climatology from

the WorldClim data was combined with coarse spatial resolution monthly anomalies from

the Climatic Research Unit (CRU) Ts4.0 and the Japanese 55-year Reanalysis data (Abat-

zoglou et al., 2018). In addition to 2-m air temperature, downward shortwave radiation and

vapor pressure deficit was also incorporated from the TerraClimate product suite. Due to its

comparatively high spatial resolution and good validation metrics, climatic variables from

TerraClimate have been widely employed (e.g. Kath et al. 2020; Zhang et al. 2020a). Abat-

zoglou et al. (2018) presented the results of the conducted accuracy assessment, which was

performed using numerous in-situ station measurements of diverse networks, including the

Global Historical Climatology Network and FLUXNET stations. For example, for mean

2-m air temperature, the mean absolute error amounts to 0.32◦C.

Global Flood Awareness System (GloFAS)-ERA5 gridded river discharge version 3.1 is

used to analyze surface water area dynamics (Harrigan et al., 2020). This data is available

at a spatial resolution of 0.1◦ (approx. 10 km). A validation of the estimated river discharge

is undertaken using more than 1,800 station measurements. Harrigan et al. (2020) reported
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a mean absolute error of 0.41 mm day−1 at global scale and amongst others parts of India

and South Asia were highlighted as areas with comparatively low errors.

Next, surface soil moisture based on the Global Land Evaporation Amsterdam Model

(GLEAM) version 3.5a is utilized to evaluate its influence on vegetation condition (Martens

et al., 2017; Miralles et al., 2011). This dataset features a spatial resolution of 0.25◦ (approx.

25 km) and a monthly temporal resolution. The provided accuracy measures of this dataset

in Martens et al. (2017) point towards good correlations with in-situ measurements.

5.1.3 Auxiliary Data

In this chapter, auxiliary data used for preprocessing of the time series variables are pre-

sented. These include the ESA CCI land cover data version 2.0.7 (1992–2015) and 2.1.1

(2016–2019), which was already introduced in Chapter 4.2.3. This land cover data provides

global annual land cover classifications since 1992 at 300 m spatial resolution (European

Space Agency, 2017; Plummer et al., 2017). The classifications starting from 2013 use re-

mote sensing imagery from the Ocean and Land Colour Instrument aboard the Sentinel-3

satellite and the Project for On-Board Autonomy (PROBA)-Vegetation mission. The pre-

vious years were classified based on Envisat Medium Resolution Imaging Spectrometer

(MERIS), NOAA AVHRR, and Satellite Pour l’Observation de la Terre (SPOT)-Vegetation

instruments (European Space Agency, 2017). Compared to other available global land cover

classifications, the ESA CCI land cover is of high relevance, as it is featuring a finer spatial

and temporal resolution (Mousivand and Arsanjani, 2019). Furthermore, topographic data

was utilized during preprocessing and analysis as well. For this purpose, the recently pub-

lished Copernicus DEM at a spatial resolution of 90 m was used (European Space Agency

and Sinergise, 2021). As stated in Chapter 2.2, the Copernicus DEM is an edited version of

the WorldDEMT M (Collins et al., 2015), which is based on the TanDEM-X DEM (Wessel

et al., 2018). Additionally, gridded Köppen-Geiger climate classification was used for the

preprocessing of selected time series variables. This data is available at a spatial resolution

of 1 km and was derived by combining various climatic datasets (Beck et al., 2018). Finally,

the outlines of the river basins were delineated from a vector dataset being available at the

Aquastat platform of the FAO (FAO, 2009) and which is based on the HydroSHEDS dataset

(Lehner et al., 2008).

5.2 Methodological Framework

This chapter presents the entire methodological framework for analysis of land surface

dynamics using multivariate geoscientific time series. Figure 5.2 illustrates briefly the de-
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Figure 5.2: Simplified overview of workflow for the developed and implemented framework includ-
ing data preparation, feature space harmonization, and statistical time series analyses.

veloped and implemented framework. First, the required preprocessing steps of the time

series are described (Chapter 5.2.1). Chapter 5.2.2 outlines the approach to harmonize the

multi-source time series to a common grid space and geographical entity. Afterwards, the

employed statistical time series analysis techniques are explained (Chapter 5.2.3).

5.2.1 Time Series Preparation

This chapter describes the conducted preprocessing steps of all time series variables.

In brevity, each variable requires specific preprocessing tasks as illustrated in Figure 5.2.

Prior to the preprocessing, the geoscientific time series and auxiliary data are gathered
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from various sources, including internal services at DLR such as the Earth Observation

Center (EOC) Geoservice (https://geoservice.dlr.de/; last accessed on: 2021-12-01), NASA

EarthData platform (https://earthdata.nasa.gov/; last accessed on: 2021-12-01), Copernicus

Climate Data Store (CDS) (https://cds.climate.copernicus.eu/; last accessed on: 2021-12-

01), and further sources with respect to other climatic variables. All downloaded time series

variables and auxiliary data were ingested on the internal HPC environment at DLR-DFD.

To begin with, the preprocessing of the global MODIS NDVI (MOD13C2.006) time

series covering the period 2000 to 2019 (Didan and Munoz, 2019), included the exclusion

of low quality pixels and interpolation of resulting gaps. Low quality pixels were deter-

mined through the usage of the supplied reliability and quality assurance layers, which are

included in each Hierarchical Data Format (HDF) file and store the information in 8 and 16-

bits. Several classes in these layers are associated with low quality, such as pixels flagged

as “mixed cloud”, “adjacent cloud”, and “possible shadow”. These pixels were classified

by means of configured scripts to extract the relevant classes from the stored bits. After

excluding these pixels from the NDVI time series, the resulting gaps were filled through

linear interpolation as suggested by Fensholt and Proud (2012). Subsequently to the tempo-

ral interpolation, pixels covered by snow were extracted from the reliability layer for each

time step and excluded from the geospatial time series, since these pixels should not be in-

terpolated. Finally, a long-term mean by means of all images within the investigated period

was calculated. This long-term mean was used to mask pixels with an NDVI value greater

than 0.15, since values above this threshold are considered as pixels covered by vegetation

(Wittich and Hansing, 1995).

Snow cover products being processed by the DLR Global SnowPack processor based

on daily MODIS data (M*D10A1.006) are subject to further preprocessing steps. First, the

daily images covering the MODIS tiles are mosaicked and reprojected from the sinusoidal

projection to the World Geodetic System (WGS84) coordinate system. Next, rulesets were

defined and applied to decrease the amount falsely classified snow pixels and ephemeral

snow. In this regard, ephemeral snow was excluded based on the filtering of patches with

less than 10 pixels as suggested by Notarnicola (2020) and water bodies were excluded

using the ESA CCI land cover product (European Space Agency, 2017). Moreover, the

number of false positives is comparatively high during the monsoon season in low altitudes,

where clouds are partially labeled as snow. To remove these false positives, a long-term

mean was calculated for both the entire period as well as the monsoon (JJAS) and post-

monsoon (ON) season. In a next step, a ruleset incorporating the aforementioned long-term

averages, climate zones (Beck et al., 2018), and elevation data (European Space Agency and

Sinergise, 2021) was defined. More specifically, pixels at an elevation lower than 1500 m,

68

https://geoservice.dlr.de/
https://earthdata.nasa.gov/
https://cds.climate.copernicus.eu/


5.2 Methodological Framework

being located in temperate or tropical climate, and with a long-term mean lower than 0.2

were excluded. In a last step, the preprocessed and reprojected daily binary snow cover

products were aggregated to monthly composites covering the period between 2000–2019.

The monthly composites characterized fractional snow cover area.

On the contrary, the DLR Global WaterPack, which is based on daily MODIS surface re-

flectance imagery (M*DGQ09.006), required only a few preprocessing steps (Klein et al.,

2017, 2021). These include mosaicking, reprojection to WGS84 coordinate system, and

temporal aggregation to monthly composites. The monthly composites represented frac-

tional surface water area. Compared to the NDVI, and Global SnowPack, the Global Wa-

terPack is available for the period 2003–2019, as it relies on the joint usage of both MODIS

sensors aboard Terra and Aqua (see Chapter 5.1.1.2 and Figure 5.1).

The climatic and hydrological variables being listed in Chapter 5.1.2 were ingested on

the HPC environment and preprocessed, to prepare these time series for the feature space

harmonization as well. Most of these variables were available as NetCDF files and, thus,

were converted to single GeoTiff files per time step in accordance to the remote sensing-

based variables. Moreover, time series at daily temporal resolution were temporally aggre-

gated to monthly composites.

5.2.2 Feature Space Harmonization

This chapter introduces the implemented approach to automatically harmonize multi-

source time series that come with different characteristics. In this regard, the preparation of

a harmonized feature space in terms of spatial and temporal resolution of the used geoscien-

tific time series is required, to enable joint analyses with the multivariate feature space. The

corresponding workflow is illustrated in Figure 5.3. In consideration of the spatial resolution

of all input data, a common grid space covering the IGBM river basins at a spatial resolu-

tion of 0.1◦ (approx. 9 km) was defined and generated using the open source Quantum Geo-

graphic Information System (QGIS) version 3.20.3 software (https://www.qgis.org/de/site/;

last accessed on 2021-11-10). This common grid space is then utilized to harmonize the

multivariate feature space in terms of their spatial resolution. The harmonization is per-

formed automatically for all of the time series by means of a spatial aggregation procedure,

which is averaging all pixels that intersect a given grid cell. Here, weighted averaging is ap-

plied, where the weight of a value is determined by the fraction of the pixel that is covered

by a given grid cell. The developed approach and spatial aggregation is applicable to any

other geographical entity and temporal intervals, respectively, e.g. to river basins or biomes

and daily or biweekly time steps. This harmonization procedure was written using the R

and Python programming language and further open source tools, such as the Geospatial
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Figure 5.3: Workflow for the database generation step, where the prepared multi-source time series
are spatially aggregated to a selected uniform grid. This spatial grid might be replaced
by any geographical entity. The abbreviations ID and T denote unique feature identifier
and time step, respectively. Modified after Uereyen et al. (2022a).

Data Abstraction Library (GDAL). In this context, the weighted averaging is conducted

using the exact extract library (https://github.com/isciences/exactextract/; last accessed on

2021-11-10). As stated before, the preprocessing and harmonization of the geoscientific

time series was implemented on an HPC environment using docker containers with mini-

mal user interaction. Furthermore, the harmonized features are stored in data frames, which

include the respective time series variable for each grid cell and time step. As visualized in

Figure 5.3, these data frames are then used as input for the subsequent time series analyses

to analyze land surface dynamics.

5.2.3 Time Series Analysis Techniques

This chapter describes the implemented time series analysis methods and used global

parameter settings to quantify and evaluate land surface dynamics for the transboundary

river basins. These methods include the application of the Mann-Kendall trend test in asso-

ciation with the Theil-Sen slope estimator, the Timesat tool to derive phenological metrics,

as well as the PCMCI approach to compute causal networks and then derive the influence

of the driving variables on vegetation condition, surface water area, and snow cover area.

5.2.3.1 Trend Test

In this thesis, monotonic trends of the land surface variables vegetation condition

(MODIS NDVI), surface water area (DLR Global WaterPack), and snow cover area (DLR

Global SnowPack) were derived to measure change over time in the investigated large

river basins. In this regard, the significance of trends and the magnitude of change per

unit time were computed. As can be seen in Figure 5.1, the investigated land surface vari-
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ables have clear seasonal cycles. Therefore, the seasonal Mann-Kendall (MK) test (Mann,

1945; Kendall, 1975), a rank-based non-parametric approach, in conjunction with the Theil-

Sen (TS) slope estimator (Theil, 1950; Sen, 1968) was employed. Non-parametric tests have

no requirement with respect to the distribution of the data sample and are less sensitive to

extreme values compared to parametric tests such as the linear regression test (Hamed and

Ramachandra Rao, 1998; Onoz and Bayazit, 2003; Wang et al., 2020). For the application

of the seasonal MK test, the time series were split into the meteorological seasons keeping

the monthly resolution. The seasons, which were introduced in Chapter 4.2.1, include the

winter (DJF), pre-monsoon (MAM), monsoon (JJAS), and post-monsoon season (ON).

More specifically, the MK test measures if there is a monotonic increasing or decreasing

trend. To this end, the test determines the frequency of the sign of the difference between all

pair-wise combinations of observations (x j−xi, where j > i). Each observation is compared

to all previous data points leading to n(n−1)/2 pair-wise combinations, where n is the total

number of observations. Accordingly, the test statistic S may result in a large positive or

negative number indicating a positive or negative trend. In case of the seasonal MK test,

the statistics are first calculated for each season separately. Then, to assess the test statistic

for the entire time series at annual scale, the S statistic and its variance from all seasons

are considered to retrieve the global Z statistic (Gocic and Trajkovic, 2013; Wang et al.,

2020). The null hypothesis (H0) of the trend test assumes no monotonic trend, whereas the

alternative hypothesis (Hα ) an increasing or decreasing monotonic trend. Throughout this

thesis, trends were considered statistically significant at a confidence level of 95 % (p–value

< 0.05). Trends with a p–value above this defined threshold were considered as no change.

Next, the TS slope is calculated by means of the slope of each adjacent observation

and denotes the median of all slopes as global slope value. In particular, the TS slope is

calculated as follows:

β =
x j − xi

j− i
,(1 ≤ i < j ≤ n) (3)

where x j and xi are the observations at time i and j for all adjacent data points (n). A

positive or negative slope value indicates the direction and magnitude of the trend (Zhang

et al., 2020b). In accordance to the calculation of the seasonal MK test, the TS slope is

calculated for each season separately. Next, the slope value at annual scale is derived using

the median of all seasonal slope values and is only considered if these are homogenous at

a confidence level of 90 % (Collaud Coen et al., 2020). To retrieve the slope magnitude at

decadal temporal scale, the resulting annual slope value was multiplied with the number of

years per decade.
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Moreover, when using the MK test and the TS slope estimator one has to consider that

the data should be independent, because these tests are not robust against serial correlation

(Wang et al., 2020). Methods to counteract serial correlation include temporal aggregation

of the time series to e.g. annual resolution or the usage of prewhitening algorithms before

the application of the trend test. In this regard, the temporal aggregation of the time series

reduces the available number of data samples and, thus, would most likely result in smaller

statistical significance (Collaud Coen et al., 2020). To this end, to minimize the seasonal

influence and serial correlation, seasonal anomalies were calculated for the time series using

following equation:

xanom = xi − x̄season (4)

where xanom is the departure of the actual monthly observation (xi) from the long-term

mean of the respective season (x̄season) (see Figure 5.4). In the following step, the statistical

significance of the lag–1 autocorrelation (r1) is determined using:

r1 =
∑

N−1
i=1 (xi − x̄)(xi+1 − x̄)

∑
N
i=1(xi − x̄)2

. (5)

The workflow regarding the trend test is visualized in Figure 5.5. In case of a non-

significant lag-1 autocorrelation, the MK test and TS slope estimator were employed on

the anomalized time series (see Figure 5.5). On the contrary, if lag-1 autocorrelation was

statistically significant at the confidence level, the anomalized time series was additionally

prewhitened. The application of prewhitening removes serial correlation from the series. In

this context, the MK test is characterized by two types of errors. The first one being the

Figure 5.4: Exemplary diagram of the MODIS NDVI at monthly scale showing (a) the original and
(b) the seasonally anomalized (blue line) as well as the detrended anomalized (red line)
time series values.
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Figure 5.5: Workflow for the application of the trend test including the Mann-Kendall (MK) test
and the Theil-Sen (TS) slope estimator. The time series are prewhitened (trend-free
prewhitening after Yue et al. (TFPW-Y), trend-free prewhitening after Wang and Swail
(TFPW-WS), variance corrected prewhitening (VCPW)) if the lag-1 autocorrelation is
statistically significant. Modified after Uereyen et al. (2022a).

type I error (false positives) and the second, the type II error (false negatives). Serial corre-

lation usually leads to an inflation of the type I error (Bayazit and Onoz, 2007). Depending

on the used prewhitening method, the results might be affected by high or low type I error

as well as a biased slope estimation. When the type I error is reduced through prewhiten-

ing, the risk of a type II error might increase (Wang et al., 2020). In fact, the magnitude of

serial correlation is affected by the presence of a trend, which is why the test power of the

MK test will worsen after prewhitening (Yue et al., 2002). For this reason, Yue et al. (2002)

proposed an approach called TFPW-Y, where the time series are detrended prior to the

prewhitening. This approach has a high test power and is among the most used prewhiten-

ing methods (Collaud Coen et al., 2020). Yet, past studies demonstrated that the utilization

of TFPW-Y can lead to a high type I error and an inflated slope value (Collaud Coen et al.,

2020; Wang et al., 2015c). Further detailed insights on advantages and disadvantages of

respective prewhitening methods is provided by Collaud Coen et al. (2020). In this context,

the TFPW-WS features a low type I and a high test power as well (Wang and Swail, 2001).

TFPW-WS eliminates lag-1 autocorrelation in an iterative process while retaining the trend.

Moreover, the aforementioned prewhitening algorithms lead to a biased slope estimation,
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which is why Collaud Coen et al. (2020) suggest to use a VCPW procedure proposed by

Wang et al. (2015c). In this connection, studies recommend to use multiple prewhitening

algorithms instead of relying on only one (Collaud Coen et al., 2020; Wang et al., 2015c).

Ultimately, Figure 5.5 demonstrates the design of the implemented trend test. In agree-

ment with suggestions in literature, multiple prewhitening algorithms were used to account

for serial correlation. One setting involves the widely used TFPW-Y approach for the MK

test and TS slope estimation. Next, a further setting applies TFPW-WS and VCPW in com-

bination to quantify the significance of the trend and retrieve an unbiased slope estimate,

respectively. For comparison purposes, the seasonal MK test and TS slope estimator were

also applied without prewhitening.

5.2.3.2 Derivation of Phenological Metrics

Besides monotonic trends, this framework also includes the analysis of changes in sea-

sonal characteristics of the time series. In this context, the open source Timesat tool (version

3.3) (Jönsson and Eklundh, 2002, 2004) was used to retrieve phenological metrics that are

illustrated in Figure 5.6. Specifically, these include the metrics seasonal amplitude, timing

of seasonal peaks, value of seasonal peak, and duration of season. Timesat is widely used

for remote sensing applications, including phenological analysis of vegetation (e.g. Li et al.

2018; Wang et al. 2018c) and surface water area parameters (Klein et al., 2021) or time se-

ries preprocessing (e.g. Fassoni-Andrade and de Paiva 2019; Fensholt and Proud 2012). In

this thesis, Timesat was applied on the land surface variables vegetation condition, surface

water area, and snow cover area. With more detail, the tool calculates phenological metrics

for n−1 center most seasons, with n being the total number of years. Therefore, to incorpo-

rate the full extent of the studied period, the observations of the first year were duplicated

and attached to the beginning of the time series, as suggested by Eklundh and Jönsson

(2017). Moreover, the time series were not smoothed before the calculation of phenological

metrics, as noise in the time series was already reduced through temporal and spatial ag-

gregation. Regarding the seasonal amplitude setting, a 50 % fraction of the amplitude was

defined to retrieve the beginning and ending of the season. Also, one annual season was

assumed for the time series variables, except for NDVI, where two annual growing seasons

were allowed to be detected. In consideration of the phenological analysis of the time series

on surface water area and snow cover area, the hydrological calendar starting in June and

ending in May was used (Mishra, 2020). Finally, the phenological metrics, seasonal ampli-

tude, timing of seasonal peaks, value of seasonal peak, and duration of season were utilized

to compute the difference between the two investigated decades (2000–2009, 2010–2019).

For this purpose, the time series were split into the two decades and, next, the derived phe-
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Figure 5.6: Overview of selected phenological metrics, including (a) start of season, (b) end of
season, (c) duration of season, (d) base value, (e) seasonal amplitude, (g) seasonal peak
value, and (f) timing of seasonal peak. Sketched after Eklundh and Jönsson (2017).

nological metrics were averaged per decade. Finally, the change was calculated by means

of the difference between the two decades.

5.2.3.3 Application of a Causal Discovery Algorithm

As emphasized in Chapter 3.3, the analysis of multivariate time series is important to

reveal land surface dynamics across spheres. To this end, a harmonized feature space based

on multi-source geoscientific time series was generated. The collocated feature space al-

lows for a detailed analysis of drivers for the land surface variables vegetation condition,

surface water area, and snow cover area. These three variables are in the following de-

noted as targets. The used driving variables involve the climatic and hydrological variables

presented in Chapter 5.1.2. As introduced in Chapter 2.3, past studies widely applied tra-

ditional correlative approaches or partial correlation using additional controlling variables.

However, the detected correlation might be spurious and lead to false interpretations, due

to common drivers or indirect paths (see Figure 5.7). In addition, a correlation analysis is

not providing any insights on the direction of the relationship (Kretschmer et al., 2016).

To overcome these issues, the causal discovery algorithm PCMCI was integrated into the

framework (Runge, 2018; Runge et al., 2019b).

Overall, PCMCI is a causal discovery algorithm fostering the analysis of a multivari-

ate feature space and it overcomes issues arising through autocorrelation, indirect paths, or

common drivers (Runge et al., 2019b). To quantify the direction of influence and causal

links, PCMCI incorporates the analysis of relations within a defined number of temporal
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Figure 5.7: Overview of scenarios leading to a spurious correlation without a direct causation be-
tween variable X and Y, due to (a) autocorrelation, (b) an indirect path via variable Z,
and (c) a common driver Z. Sketched after Kretschmer et al. (2016).

lags (τ) (Runge, 2018). In this connection, a number of assumptions have to be considered

when performing causal analysis (Runge, 2018). For example, in this thesis, the captured

causal links are considered to be relative in regards of the used geoscientific time series

variables. This means that the detected causal links could vary, if the used feature space

is modified. In addition, the partial correlation measure was selected as independence test,

which is why stationarity in time series is required (Runge, 2018; Runge et al., 2019b).

Stationarity in time series means that the mean and variance are constant over time and

that the time series is not characterized by seasonality (Montgomery et al., 2015). To meet

this requirement the time series were detrended and the seasonal cycle was removed by

anomaly calculation (see Figure 5.4) as suggested by (Runge et al., 2019b). Subsequently,

PCMCI utilizes all detrended anomaly time series with a two-step procedure, which in-

volves a modified version of the Peter and Clark (PC) and the momentary conditional inde-

pendence (MCI) algorithm (Runge, 2018).

More specifically, the PC step is the condition selection stage. For example, when snow

cover area (SCA) is the target variable X j
t , further variables (X i

t ) are considered as poten-

tial drivers or parents, with i being the variable and t the time index, i.e. i ∈ {T,P,DSR}
and t ∈ {1, ...,τmax}, respectively. In case one of these three drivers is found to be sig-

nificantly influencing the target variable SCA, the driver is included in the set of parents

P̃
(

X j
t

)
. Depending on the significance level αpc, which is determined by the user, a po-

tential driver might be regarded as irrelevant and excluded during the PC step. During the

second part, the MCI algorithm considers all identified lagged drivers in combination with

contemporaneous pairs, those at a temporal lag of 0, accounting for autocorrelation, indi-

rect paths, and common drivers (Runge et al., 2019b). As stated before, partial correlation

is used for the independence test in the MCI step, whereas the statistical significance is

determined by means of two-sided t-test. Further details on the theory behind PCMCI is
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available in Krich et al. (2020), Runge (2018), and Runge et al. (2019b). So far, PCMCI

has been applied in several studies, including the analysis of biosphere-atmosphere inter-

actions (Krich et al., 2020) or in the context of teleconnections (Di Capua et al., 2020a,b;

Kretschmer et al., 2016). PCMCI is provided with the python package tigramite (version

4.2; https://github.com/jakobrunge/tigramite; last accessed on: 2021-11-24).

Table 5.1 provides an overview of the defined parameter settings for PCMCI. With more

detail, a maximum temporal lag of 3 was considered during causal network generation.

In general, vegetation responses to climatic factors are usually expected to be shorter than

three months (Wu et al., 2015). Since the time series have a monthly temporal resolution,

this lag corresponds to three months, being in agreement with other studies considering

temporal lags (e.g. Krich et al. 2020; Papagiannopoulou et al. 2017; Wu et al. 2015). In the-

ory, causal links are identified based on temporally lagged dependencies, because a variable

is influenced by processes lying in the past and the time order provides an orientation of

Table 5.1: Overview of utilized parameter settings for PCMCI. Default values were used for param-
eters not included in table. Further details on PCMCI are available in Runge (2018) and
Runge et al. (2019b). Source: Uereyen et al. (2022a).

Parameter Description Used value

Data frame Includes time series variables and temporal informa-
tion. If data mask is used, it is appended to the data
frame.

Targets and
drivers

Data mask Mask defining time steps to include and exclude (0:
False, 1: True).

Seasons

Mask type Definition of which variables and time steps to
mask. E.g. type “y” masks target variable as defined
in mask, but allows drivers depending on temporal
lags to be outside of mask.

“y”

Lags Temporal lags to test (minimum, maximum). min:0, max:3
Independence
test

Conditional independence test including linear (e.g.
partial correlation) and nonlinear dependencies.

“ParCorr”

αpc Significance threshold in condition selection step
(PC), comparable to hyperparameter optimization in
model selection process. If “None” is used, optimal
value is selected via Akaike information criterion
score.

“None”

α Threshold to extract significant links detected for
each target variable in MCI test.

0.05

Selected links Definition of potential causal links to be tested. A
detailed specification of i.e. a target variable, poten-
tial parents, and maximum lags is possible. We only
consider parents for the three target variables.

X i
t−τ → X j

t

False discovery rate Parameter to account for inflated p–value due to
multiple testing in MCI step.

“fdr_bh”
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the influence (Runge, 2020). Therefore, detected contemporaneous links with PCMCI, usu-

ally cannot be associated with a direction. Here, only drivers for the target variables NDVI,

SCA, and surface water area (SWA) were computed, which is why the direction of influence

could also be assessed for contemporaneous links. Moreover, PCMCI enables the usage of a

temporal mask option, which can be implemented for the target variables to build the causal

networks for a limited temporal scale, i.e. meteorological seasons (see Figure 5.8). In this

context, the target variable NDVI was limited to the growing season by removing all time

steps with both an NDVI value less than 0.2 and temperature less than 0◦C as suggested by

Wu et al. (2015). Likewise, for SCA and SWA, all time steps with a value less than 0.5 %

fractional cover were removed. This mask option only restricts the target variables NDVI,

SCA, and SWA. The potential drivers also include values for the masked time steps in the

past of the targets to account for the temporal lags (see Figure 5.8). Finally, PCMCI incor-

porates the correction of retrieved p–values from the MCI step, to account for false positive

discoveries arising through multiple testing (Runge, 2018).

Figure 5.9 shows correlation as well as causal maps to demonstrate the difference be-

tween a correlation analysis and the PCMCI approach. Also, this figure emphasizes the

influence of the time series preprocessing, specifically the impact of the removal of the lin-

ear trend and seasonal cycle on the correlation coefficient. In regards of the strong seasonal

characteristics of the investigated time series variables (see Figure 5.1), the correlation co-

efficient is inflated when using the original time series, as illustrated in Figure 5.9a,b. The

reduction of the influence of the trend and seasonality weakens the correlation coefficient

values as well as the number of significant correlation coefficients (see Figure 5.9c,d). In

comparison, Figure 5.9e,f shows the results of the causal discovery algorithm PCMCI, ap-

plied with a temporal lag of 1 month for the driving variables (precipitation in Figure 5.9e;

temperature in Figure 5.9f). In addition, temperature and precipitation were used as condi-

tions for the links Pτ=−1 −→NDV Iτ=0 and Tτ=−1 −→NDV Iτ=0, respectively. For example,

for the causal link Pτ=−1 −→ NDV Iτ=0, the detected link strength remains distinct for the

arid and semi-arid zones of the study area. Yet, with the inclusion of temperature as a condi-

tion, many grids with a significant correlation in the Ganges river basin disappear (see Fig-

Figure 5.8: Application of a temporal mask with the setting to limit the target variable (’Y’) to the
monsoon season (JJAS). The driving variable (’X’) and conditions (’Z’) with a temporal
lag of 1 month, are allowed to be outside the temporal mask.
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Figure 5.9: Influence of detrending and anomaly calculation on the correlation coefficient. (a) Cor-
relation between original precipitation (P) and NDVI time series as well as (b) tem-
perature (T) and NDVI. (c, d) Same as (a, b) but detrended anomaly time series were
correlated. (e) Map derived with PCMCI, showing the strength of the MCI value for
the temporally lagged precipitation and NDVI (Pτ=−1 −→ NDV Iτ=0), where ’|’ denotes
the conditioned out variable temperature. (f) MCI value for Tτ=−1 −→ NDV Iτ=0, with
precipitation being conditioned out.

ure 5.9e). Likewise, for the causal link Tτ=−1 −→ NDV Iτ=0, the negative coupling between

temperature and the NDVI remains pronounced in the Ganges river basin, but detected sig-

nificant correlations in the Indus river basin (see Figure 5.9d) were largely mediated through

the consideration of precipitation as condition (see Figure 5.9f).

5.3 Results

The following chapters present the results of the implemented time series analysis tech-

niques of the presented methodological framework. First, the results of the trend analy-

sis for the three land surface variables NDVI, surface water area (SWA), and snow cover

area (SCA) are presented for the Indus-Ganges-Brahmaputra-Meghna (IGBM) river basins.

Subsequently, the seasonal characteristics and changes of phenological metrics at decadal
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scale are shown. Finally, the results obtained with the causal discovery algorithm PCMCI,

outlining the influencing factors on the three land surface variables, are presented.

5.3.1 Trend Analyses

Figure 5.10 shows that the magnitude of statistically significant trends vary depending

on the respective prewhitening algorithm. To reduce the influence of serial correlation, the

time series were prewhitened with the TFPW-Y as well as the TFPW-WS in combination

with the VCPW approach. In fact, the investigation of the lag-1 autocorrelation showed

that 100.0%, 99.8%, and 99.8% of all grids were significantly serially correlated for the

NDVI, surface water area, and snow cover area, respectively. The application of the VCPW

approach resulted in the lowest absolute slope values (see Figure 5.10). More specifically,

the average absolute slope value for the NDVI, surface water area, and snow cover area

amounts to 0.034, 0.034, and 0.014; 1.885, 1.690, and 0.873; as well as 2.815, 2.615, and

1.658 computed using no prewhitening, TFPW-Y, and VCPW, respectively.

Figure 5.11, Figure 5.12, and Figure 5.13 visualize the spatial distribution of the de-

rived significant trends, their direction, and magnitude. It is visible that the design of the

Figure 5.10: Magnitude of significant trends in consideration of the applied prewhitening method
prior to the trend test, specifically no prewhitening (NOPW), trend-free prewhitening
after Yue et al. (TFPW-Y), and variance corrected prewhitening (VCPW). Modified
after Uereyen et al. (2022a).
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Figure 5.11: Magnitude of significant trends (p-value < 0.05) by means of the seasonal Mann-
Kendall test for the normalized difference vegetation index (NDVI) at annual temporal
scale, whereas the magnitude is denoted at decadal scale. (a) Map showing trends
computed with trend-free prewhitening after Wang and Swail (TFPW-WS) in combi-
nation with variance corrected prewhitening (VCPW) for the magnitude and (b) with
trend-free prewhitening after Yue et al. (TFPW-Y). Only trends being significant and
homogeneous over the seasons are colored. Not homogeneous trends at annual scale
are represented by diagonal lines with the same color scale. Modified after Uereyen
et al. (2022a).

trend test’s, in particular the previously applied prewhitening algorithms (see Figure 5.5),

influence the resulting amount of statistically significant trends. In general, statistically sig-

nificant NDVI trends at annual temporal scale are illustrated in Figure 5.11, showing mostly

increasing trends in vegetation greenness for the entire IGBM river basins. The increasing

trends were most distinct in the southwest of the Ganges river basin. In comparison, in high

altitudes and the Himalayan belt in the east, the positive trends found to be comparatively
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Figure 5.12: Magnitude of significant trends (p-value < 0.05) by means of the seasonal Mann-
Kendall test for surface water area (SWA) using DLR Global WaterPack at annual
temporal scale, whereas the magnitude is denoted at decadal scale. (a) Map showing
trends computed with TFPW-WS in combination with VCPW for the magnitude and
(b) with TFPW-Y. Only trends being significant and homogeneous over the seasons
are colored. Not homogeneous trends at annual scale are represented by diagonal lines
with the same color scale. Modified after Uereyen et al. (2022a).

weaker. However, a large percentage of trends derived based on the TFPW-WS approach

were not homogeneous at annual temporal scale (see Figure 5.11a). Considering trends in

surface water area in Figure 5.12b, the results indicated rather heterogeneous spatial pat-

terns of significant increasing and decreasing trends. Here, negative trends were dominant

at the confluences of the Ganges, Brahmaputra, and Meghna north of the Bay of Bengal.

Also, mixed spatial patterns of increasing and decreasing trends were detected along the

Brahmaputra river in the downstream area. In the south of the Ganges river basin and north

of the Sundarbans mangrove forest at the Bay of Bengal, significant positive trends were
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Figure 5.13: Magnitude of significant trends (p-value < 0.05) by means of the seasonal Mann-
Kendall test for snow cover area (SCA) using DLR Global SnowPack at annual tempo-
ral scale, whereas the magnitude is denoted at decadal scale. (a) Map showing trends
computed with TFPW-WS in combination with VCPW for the magnitude and (b) with
TFPW-Y. Only trends being significant and homogeneous over the seasons are col-
ored. Not homogeneous trends at annual scale are represented by diagonal lines with
the same color scale. Modified after Uereyen et al. (2022a).

present (see Figure 5.12b). Furthermore, trends computed for snow cover area based on

DLR Global SnowPack data, revealed a two-fold spatial pattern at annual temporal scale

(see Figure 5.13). While identified significant trends for the upper Indus river basin were

mostly positive, significant trends in the upper Ganges and Brahmaputra river basins were

found to be largely negative.

Table 5.2 summarizes the percentages of significant positive and negative trends at sea-

sonal and aggregated annual scale for the three land surface variables. As can be seen in
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Table 5.2: Comparison of the amount of significant trends and their direction (+, positive; −, neg-
ative) based on the application of different prewhitening algorithms prior to the seasonal
Mann-Kendall test. Results are listed as percentages for the normalized difference veg-
etation index (NDVI), surface water area (SWA), as well as snow cover area (SCA) and
include each season and trends at annual scale (NH: not homogeneous, NS: not signifi-
cant). Modified after Uereyen et al. (2022a).

Variable Setting DJF MAM JJAS ON Annual
(∑ grids) + − + − + − + − + − NH NS

NDVI
(19,333)

NOPW 81.1 1.1 73.5 0.9 79.8 1.4 81.7 0.8 91.0 0.9 1.1 7.0
TFPW-Y 92.2 1.5 86.9 1.4 90.8 1.1 84.7 1.1 94.3 1.5 0.7 3.5
TFPW-WS 52.6 3.9 26.1 23.6 47.3 2.0 20.0 19.5 23.3 0.1 48.8 27.8

SWA
(3,395)

NOPW 28.5 19.4 29.1 15.9 22.0 27.1 26.5 23.3 32.6 27.0 11.2 29.2
TFPW-Y 29.7 21.8 32.7 25.3 28.0 29.0 31.3 22.1 38.6 32.7 9.5 19.2
TFPW-WS 17.1 15.6 17.8 11.5 12.5 21.9 20.9 17.0 12.0 9.6 28.7 49.7

SCA
(6,394)

NOPW 0.6 5.5 14.2 4.5 11.3 6.2 1.5 7.0 15.8 13.1 0.6 70.5
TFPW-Y 0.6 3.0 18.6 4.3 5.6 11.0 3.0 8.8 18.3 16.7 0.7 64.3
TFPW-WS 0.5 4.8 10.6 4.5 3.7 5.9 1.5 6.2 1.9 7.1 7.1 83.9

Figures 5.11–5.13, trends derived from time series prewhitened with the VCPW approach

were found to yield more frequently heterogeneous trends at annual scale. On the other

hand, time series prewhitened with the TFPW-Y method resulted in more significant and

homogeneous trends at annual scale compared to TFPW-WS and VCPW, respectively. In

comparison, time series, where no prewhitening (NOPW) was applied the results showed

similar shares of significant increasing and decreasing trends as TFPW-Y, with TFPW-Y

yielding slightly higher shares.

5.3.2 Change in Phenological Metrics

Considering the quantification of phenological measures in the implemented framework,

a global parameter setting was used for all land surface variables. For NDVI, an additional

setting was included to enable the assessment of two annual growing seasons as well. In

this regard, the analysis showed that 52.3 % and 47.7 % of the vegetation areas in the IGBM

river basins were characterized by one and two annual growing seasons, respectively. Here,

areas having two annual growing seasons largely occurred in the Indo-Gangetic Plains (see

Figure 5.14c). The quantified timing and changes of the seasonal peak values for the NDVI

are visualized in Figure 5.14a–d. During the first decade, between 2000–2009, vegetation

covered areas with one annual growing season had reached their seasonal peak largely be-

tween September and October. On the contrary, for areas with two annual growing seasons,

the first seasonal peak was mostly reached in February and March (see Figure 5.14c) and

the second peak in September and October (see Figure 5.14a). Vegetation in high altitudes

had their seasonal peak mostly in August. Figure 5.14b illustrates the difference for areas

during the first season. Backward shifts in the timing of the seasonal peak are prevalent in

the Lower Indus river basin. In total, 12.0 % and 12.7 % of the grids indicated a forward and
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Figure 5.14: Average timing of the seasonal peak value retrieved with Timesat. (a, c, e, g) Aver-
age seasonal peak value between 2000 (DLR Global WaterPack: 2003) and 2009. (b,
d, f, h) Difference between the average peak value of the first (2000–2009) and sec-
ond (2010–2019) decade. The NDVI is partially characterized by two annual growing
seasons (a, b: values of the first growing season together with areas characterized by
one annual growing season; c, d: values of the second growing season). Considering
the right panel, “no change” indicates a difference in the average seasonal peak values
of the two decades ranging between −0.25 and 0.25. A “positive” change indicates a
forward shift in time of the seasonal peak in the second study period compared to the
first and vice versa. Modified after Uereyen et al. (2022a).

backward shift during the first growing season, respectively. In comparison, Figure 5.14d

shows that a forward and backward shift in the timing of the seasonal peak values during

the second season largely occurred in the southern Ganges river basin and the Lower Indus
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Figure 5.15: Average duration of the season retrieved with Timesat. (a, c, e, g) Average duration
of the season between 2000 (DLR Global WaterPack: 2003) and 2009. (b, d, f, h)
Difference between the average duration of the first (2000–2009) and second (2010–
2019) decade. The NDVI is partially characterized by two annual growing seasons
(Details in caption of Figure 5.14). Considering the right panel, “no change” indicates
a difference in average seasonal duration of the two decades ranging between −0.25
and 0.25. A “positive” difference indicates an increase in the seasonal duration in the
second study period compared to the first and vice versa. Modified after Uereyen et al.
(2022a).

river basin, respectively. In detail, during the second annual growing season, a forward and

backward shift in the timing of the seasonal peak value could be identified for 19.8 % and

7.9 % of the grids, respectively. Considering the seasonal duration during the first decade, it
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Figure 5.16: Difference of average seasonal amplitude (a, c, e, g) and average seasonal peak value
(b, d, f, h) between the first (2000–2009) and second (2010–2019) decade. The NDVI
is partially characterized by two annual growing seasons (Details in caption of Fig-
ure 5.14). A “positive” difference indicates an increase in the phenological metric in
the second study period compared to the first and vice versa. Modified after Uereyen
et al. (2022a).

generally ranges between five to eight months and to four months for areas at high altitudes

and areas having two annual growing seasons, respectively (see Figure 5.15a,c). The ob-

tained results for the first season showed a mixed pattern of positive and negative changes

(see Figure 5.15b). On the other side, the results for the second growing season indicated

a positive change in the seasonal duration for the southwest of the Ganges river basin (see
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Figure 5.15d). Moreover, negative changes in the seasonal amplitude were striking in the

southwest of the Ganges river basin, in the downstream area of the Indus river basin, and

at higher elevation during the first season (see Figure 5.16a,c). Yet, these negative change

were mostly not present in changes of the seasonal peak value (see Figure 5.16b,d).

In regards of surface water area, the results indicated that the timing of the seasonal peak

mostly occurred between February and April in the northern and parts of the Central Indus

river basin (see Figure 5.14e). In comparison, in the Ganges, Brahmaputra, and Meghna

river basins the seasonal peak was largely reached between the months August and October

(see Figure 5.14e). In terms of changes between the two decades, the spatial patterns of

positive and negative changes appeared to be heterogeneous (see Figure 5.14f), with posi-

tive shifts (43.2 %) outweighing the negatives (26.0 %). Furthermore, the seasonal duration

was longest at high elevation areas as well as along the Indus river in downstream areas and

amounts to more than seven months (see Figure 5.15e). However, the seasonal duration was

found to be between three and seven months for most of the grids. The differences in the

seasonal duration between the two investigated decades appeared to be quite heterogeneous

in terms of their spatial distribution. For example, positive changes in the seasonal duration

were found in the wetlands south of the Shillong plateau in the Meghna river basin and neg-

ative changes were striking in proximity of the confluences of the Ganges and Brahmaputra

rivers (see Figure 5.15f). The results for the changes in the phenological metrics amplitude

and seasonal peak value showed consistent spatial patterns (see Figure 5.16e,f). For exam-

ple, at study area scale, the share of grids with positive changes for the parameter amplitude

was 46.9 % and for the seasonal peak value 50.4 %.

Furthermore, the results indicated that 83.3 % of the grids had their maximum snow

cover extent in February and March and 14.5 % in April (see Figure 5.14g). Grids having

their seasonal peak in April were mostly located in the upper Brahmaputra river basin. In

comparison, grids with a maximum snow cover extent in February were mostly located in

the upper Indus river basin. Considering changes in the timing of the seasonal peak, Fig-

ure 5.14h demonstrates that negative changes were dominant in the eastern regions and

positives in the western regions of the upper Indus, Ganges, and Brahmaputra river basins.

Likewise, the results for the changes in the seasonal duration indicated similar spatial pat-

terns. With more detail, negative changes in the seasonal duration were prevalent in the

upper Ganges and Brahmaputra river basins and positive changes in the upper Indus river

basin (see Figure 5.15h). Overall, the negative changes (33 %) in the seasonal duration out-

weighed the positives (29.4 %). Figure 5.16g,h illustrates that differences in the seasonal

amplitude and peak value of snow cover area showed comparable spatial patterns for the

upstream areas of the river basins.
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5.3.3 Relationships between Land Surface Dynamics and
Environmental Controls

Apart from the quantification of trends and changes in seasonal characteristics, the im-

plemented framework involves the estimation of driving variables for the NDVI, surface

water area, and snow cover area using the causal discovery algorithm PCMCI. It has to be

Figure 5.17: (a) The spatial distribution of the dominant driving variables for the normalized differ-
ence vegetation index (NDVI) and (b) their respective temporal lags at monthly scale.
The driving variables include precipitation (P), soil moisture (SM), temperature (T),
downward shortwave radiation (DSR), vapor pressure deficit (VPD), and surface wa-
ter area (SWA). The prefixes ‘+’ and ‘−’ of the driving variables denote a positive
and negative MCI cross-dependence, respectively. In this thesis, the MCI measure is
based on the partial correlation coefficient. Gray colored grids indicate that no causal
link exists between the NDVI and the driving variables. Modified after Uereyen et al.
(2022a).
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Figure 5.18: Influence of respective drivers on normalized difference vegetation index (NDVI) after
conditioning out all other driving variables. The maximum MCI value is extracted
considering all temporal lags, which are visualized on the right panel. Temporal lags
are denoted at monthly scale. Modified after Uereyen et al. (2022a).
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Figure 5.19: (a) The spatial distribution of the dominant driving variables for surface water area
(SWA) and (b) their respective temporal lags at monthly scale. The driving variables
for SWA include precipitation (P), temperature (T), discharge (Q), and snow cover
area (SCA). The prefixes ‘+’ and ‘−’ of the driving variables denote a positive and
negative MCI cross-dependence, respectively. In this thesis, the MCI measure is based
on the partial correlation coefficient. Gray colored grids indicate that no causal link
exists between SWA and the driving variables. Modified after Uereyen et al. (2022a).

noted that the investigated three target variables might be impacted by human influences as

well. However, at this point these were not considered. The following figures visualize the

obtained results by means of the maximum MCI cross-dependence value per grid, which is

reached by one of the respective driving variable at a temporal lag between 0 and 3 months.

Figure 5.17 shows the spatial distribution of the relationships between NDVI and the

respective driving variables. According to the defined feature space and parameter settings,

NDVI was most frequently positively coupled with soil moisture (49.6 %) (Figure 5.17a).
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Figure 5.20: Influence of respective drivers on surface water area (SWA) after conditioning out all
other driving variables. The maximum MCI value is extracted considering all temporal
lags, which are visualized on the right panel. Temporal lags are denoted at monthly
scale. Modified after Uereyen et al. (2022a).

The coupling between NDVI and soil moisture was largely associated with a temporal lag

of 1 month (see Figure 5.17b and 5.18b). Moreover, it is striking that in arid and semi-arid

regions in the west of the IGBM river basins, the NDVI was largely positively coupled with

precipitation at a temporal lag of 0 and 1 month (see Figure 5.17a and 5.18a). In total, pre-

cipitation had the highest effect size on NDVI for 6.0 % of the grids. Downward shortwave

radiation had the highest effect size on NDVI regionally, e.g., mostly in the Ganges river

basin, where the percentage amounts to 10.8 % of the grids and this link was mostly con-

temporaneous (see Figure 5.17a and 5.18e). Moreover, when NDVI was positively coupled

to precipitation, it showed a negative response to radiation (see Figure 5.18a,e). Also, for
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Figure 5.21: (a) The spatial distribution of the dominant driving variables for snow cover area
(SCA) and (b) their respective temporal lags at monthly scale. The driving variables
for SCA include precipitation (P), temperature (T), and downward shortwave radiation
(DSR). The prefixes ‘+’ and ‘−’ of the driving variables denote a positive and nega-
tive MCI cross-dependence, respectively. In this thesis, the MCI measure is based on
the partial correlation coefficient. Gray colored grids indicate that no causal link exists
between SCA and the driving variables. Modified after Uereyen et al. (2022a).

a very small fraction of areas where NDVI is negatively driven by precipitation, a positive

coupling was found with radiation. Vapor pressure deficit appeared to have a small effect on

NDVI and was mostly negatively coupled to it at lag 0 (see Figure 5.18d). In proximity to

the large river streams of the Ganges, Brahmaputra, and Meghna as well as their confluences

north of the Bay of Bengal, PCMCI identified vegetation strongly responding negatively to

surface water area at a temporal lag of 1 month (see Figure 5.17a and 5.18c). Vegetation

cover in the upper Brahmaputra river basin, located on the Tibetan Plateau, showed a pos-

itive response to precipitation as well as soil moisture at lag 0 and 1 (see Figure 5.17a,b).
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Figure 5.22: Influence of respective drivers on snow cover area (SCA) after conditioning out all
other driving variables. The maximum MCI value is extracted considering all temporal
lags, which are visualized on the right panel. Temporal lags are denoted at monthly
scale. Modified after Uereyen et al. (2022a).

In total, the results indicated that 26.0 % of the grids had no significant link between the

NDVI and the respective driving variables.

Considering surface water area, which is based on the DLR Global WaterPack, the eval-

uation of causal links showed that it responds negatively to snow cover area at lag 0 in high

elevation areas (see Figure 5.19 and Figure 5.20d). At the same time, a positive contem-

poraneous coupling with temperature was identified at high altitudes (see Figure 5.19 and

Figure 5.20b). On the other hand, in downstream areas with lower elevation, the coupling

with temperature was negative. Yet, this only accounts for a small number of grids (2.2 %).

Expectedly, surface water area was strongly positively linked with river discharge and pre-

cipitation, where river discharge appeared to have a larger influence (see Figure 5.19 and

Figure 5.20a,c). With more detail, river discharge was found to positively influence sur-

face water area for 20.0 % of the grids, and precipitation for 7.4 % of the grids. However,

for 53.5 % of the total amount of grids no significant link was detected with any of the

investigated driving variable.
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Figure 5.21 visualizes the identified links between snow cover area and the respective

climatic driving variables. A particular strong negative influence of temperature on snow

cover area could be identified for large areas of the upper Indus, Ganges, and Brahmaputra

river basins (see Figure 5.21 and Figure 5.22b). This link was mostly contemporaneous

(46.1 %) and for 5.6 % of the grids at a lag of 1 month. Snow cover area was found to

respond positively to precipitation, particularly in the western areas of the upper Indus river

basin and central regions of the upper Ganges river basin (see Figure 5.21 and Figure 5.22a).

This link was also dominant at lag 0. Likewise, for areas where precipitation had a positive

influence, downward shortwave radiation was found to affect snow cover area negatively at

lag 0 (see Figure 5.21 and Figure 5.22c). In case of snow cover area, significant links were

not available for 27.1 % of the grids.

5.4 Transferability of Implemented Framework in Space

and Time

This chapter briefly presents the automated implementation of the developed method-

ological framework for preparation and analysis of multivariate geoscientific time series on

the high-performance computing (HPC) environment “calvalus” of the DFD at the DLR.

Figure 5.23 provides a simplified overview of the implemented framework. In fact, the fi-

nal version of the implemented framework includes all presented processing and time series

analysis steps. If necessary, further statistical analysis techniques can be easily incorporated

Figure 5.23: Simplified overview of the processing pipeline for multi-source time series prepara-
tion and multivariate analyses on the high-performance computing (HPC) environ-
ment of the German Remote Sensing Data Center (DFD) at the German Aerospace
Center (DLR) with minimal user intervention. The copyright of the logos belongs to
the respective institutions.
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to the processing pipeline. Also, this framework can be easily transferred to any other river

basin, geographical entity, or spatial entity as well as geoscientific time series of any tem-

poral coverage. To this end, the user has to define an area of interest (AOI) and provide the

framework with a respective vector file. After downloading, preprocessing, and ingestion

of the relevant geoscientific time series from various providers via shell and python scripts,

the supplied vector file is used to perform the feature space harmonization. Note that the

geoscientific time series can be ingested at global coverage. During the feature space har-

monization, only the intersection of the vector file and geoscientific time series are consid-

ered. To enable the statistical time series analyses on the HPC infrastructure, docker images

were built. These images include necessary libraries, such as Python and R programming

language and respective libraries for time series analyses and those to handle geospatial

data as well as specific data formats such as Network Common Data Form (NetCDF). The

docker images were deployed on the HPC environment and the corresponding docker con-

tainers are used to perform the processing steps by means of shell wrapper scripts, which

then call a Python or R program to start a respective task. The results from the time series

analysis techniques are stored in tables and joined with vector files for further handling. For

visualization and evaluation purposes the resulting datasets can be downloaded to a local

machine.

5.5 Discussion

This chapter discusses the implemented time series analysis techniques as well as the ob-

tained results in the context of available literature. Also, future requirements are addressed

based on remaining limitations of the framework and used geoscientific time series.

5.5.1 Trends and Seasonality

The previous chapter presented a methodological framework that incorporates both, the

preparation and analysis of multivariate geoscientific time series to quantify and evaluate

land surface dynamics for a study area covering the Indo-Gangetic river basins. Therefore,

monotonic trends and changes in seasonality of vegetation greenness, surface water area,

and snow cover area were first assessed. In this regard, the obtained results indicated that

the design of the MK trend test and the TS slope estimator strongly affect the number

of identified statistically significant trends as well as the magnitude of slope values (see

Chapter 5.3.1). Also, if the investigated time series are characterized by seasonality, se-

rial correlation has to be considered. Accordingly, the seasonal MK test was employed and

if the lag-1 autocorrelation was statistically significant, prewhitening algorithms were ap-

plied on the time series. To account for serial correlation, studies frequently prewhitened
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the time series prior to trend estimation (e.g. Detsch et al. 2016b; Erasmi et al. 2014; Gao

et al. 2012; Praveen et al. 2020; You et al. 2021). Furthermore, one may reduce season-

ality and serial correlation by aggregating monthly time series to a larger temporal scale

such as annual intervals (Chen et al., 2019; Erasmi et al., 2014). However, aggregation to

coarser temporal scale does not ensure the elimination of serial correlation. Additionally,

temporal aggregation reduces the number of available data points, which in turn weakens

the power of the trend test and increases uncertainties in relation to the estimated slope

value (Collaud Coen et al., 2020). Moreover, the choice of a respective prewhitening algo-

rithm may strongly influence the results of the trend test. Thus, it is important to consider

advantages and disadvantages of the respective approaches. A comprehensive overview of

diverse prewhitening methods is provided by Collaud Coen et al. (2020). In this context,

studies quantified the power of the trend tests, frequency of type I errors, and biases in the

magnitude of the slope values in dependence of a respective prewhitening algorithm, sum-

marizing that a single approach is not capable of meeting all mentioned aspects satisfactory

(Collaud Coen et al., 2020; Wang et al., 2015c). For example, using the TFPW-Y results in

much more statistically significant trends than the application of the TFPW-WS (see Fig-

ure 5.11, Figure 5.12, Figure 5.13, and Table 5.2). This also applies to the delineated mean

absolute slope values, which are generally higher for the TFPW-Y than those derived with

the VCPW (see Figure 5.10). As previously outlined in Chapter 5.2.3.1, the magnitude of

the slope can be inflated due to high serial correlation, which is also found to increase the

probability of type I errors (Militino et al., 2020). In order to alleviate disadvantages of the

respective prewhitening algorithms, multiple approaches can be used in combination and

trends should be considered as significant when there is a high agreement between different

methods (Wang et al., 2015c). For example, Patakamuri et al. (2020) applied five prewhiten-

ing algorithms on time series and classified the result as a trend, if at least three approaches

resulted in significant trends.

Compared to available literature, the obtained results with respect to the significance of

trends, their direction, and spatial distribution are found to be consistent. But, it has to be

noted that a comparison of estimated trends between studies is challenging due to several

facts. These include potential variations in the data source, the performed preprocessing

steps, the investigated study period, the design of the trend test, the applied prewhiten-

ing algorithms, and the used confidence level. Accordingly, results should be compared

carefully as the defined confidence level might vary among studies and studies might also

consider non-significant trends, which by definition should not be considered as trends (Col-

laud Coen et al., 2020). For example, vegetation condition was analyzed using the leaf area

index (LAI) and largely greening trends were identified for the period between 1992–2009

for the Indo-Gangetic river basins (Zhu et al., 2016). In detail, the authors used LAI data
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at a spatial resolution of 0.5◦ (approx. 50 km) and they considered the annually aggregated

growing season composites only. LAI was also used by Chen et al. (2019). The authors de-

tected strongly increasing trends between 2000–2017 for the investigated river basins within

this thesis. In the mentioned study, LAI was temporally aggregated to annual composites

and the TFPW-Y was applied prior to the trend test. Trends were considered as significant

at a p-value less than 0.1. On the other hand, Liu et al. (2015) evaluated trends in annual

NDVI composites between 1982–2012 and also found positive trends for the IGBM river

basins. Furthermore, trends in surface water area showed regionally heterogeneous patterns

of increasing and decreasing slope values, particularly along the Brahmaputra river in the

downstream areas (see Figure 5.12). These mixed patterns in the trends are most likely in-

fluenced by the highly braided river system, which was already mentioned in Chapter 4.1.

Striking patches with positive trends in the south of the Ganges river basin are most likely

associated with the construction of dams and respective increases in surface water area (see

Figure 5.12b). Considering snow cover area, investigations generally apply MODIS data

to perform trend analysis (e.g. Ackroyd et al. 2021; Notarnicola 2020; Wang et al. 2017b).

Notarnicola (2020) assessed the significance of trends using the MK test on annual and

seasonal composites of snow cover area data. A comparison of the results shows matching

patterns in the direction of obtained trends in the northwest and northeast of the IGBM river

basins.

The evaluation of the derived phenological metrics for the three land surface variables,

partially and regionally revealed matching patterns of increasing and decreasing trends with

forward and backward shifts of the seasonal characteristics (e.g. see Figure 5.11 and Fig-

ure 5.16b,d). Considering phenological analyses, investigations noted challenges with re-

spect to the assessment of both one and two growing seasons with a globally applicable

approach (de Jong et al., 2011; Klein et al., 2021). In this thesis, this issue was dealt with

by implementing two versions of the phenology model, where one model classifies grids

with one and another with two growing seasons in case of the NDVI. The spatial distri-

bution of the grids with one and two growing seasons in vegetation cover (e.g. see Figure

5.14a,c) showed high agreement with a land use classification including single and dou-

ble cropping systems in the Indo-Gangetic Plain (Gumma et al., 2019). A comparison with

studies performing phenological analyses for the IGBM region showed similar findings. For

example, Cheng et al. (2017) determined the duration of the growing season by means of

the NDVI for the Tibetan Plateau. The findings indicated a length of three to five months for

the upper Brahmaputra river basin being comparable to the seasonal duration derived in this

thesis (see Figure 5.15a). Resulting phenological metrics for surface water area, particularly

with respect to the timing of the maximum extent between July and August were found to

be consistent for the river mouths of the Indus, Ganges, and Brahmaputra rivers (Biemans
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et al., 2019). Disagreement was detected for the central Indus river in the obtained values

for the timing of the seasonal peak. More specifically, the timing of the maximum surface

water area extent was found to be reached around April (Figure 5.14e), which is not consis-

tent with the timing of the maximum in river discharge in literature (Biemans et al., 2019;

Lutz et al., 2014). On the other hand, computed phenological metrics of snow cover area

were congruent with findings in available studies. For example, significant negative trends

were found for snow cover duration between 2000 and 2018 in the east and non-significant

positive values in the west of the upper IGBM river basins (see Figure 5.15h) (Notarnicola,

2020). Comparable trends for snow cover area were also reported by Wang et al. (2017b).

5.5.2 Influence of Drivers on Land Surface Dynamics

Using a multivariate feature space consisting of geoscientific time series provides the

opportunity to improve the credibility of causal interpretation with respect to land surface

dynamics. Including more time series variables could potentially reveal further spurious

links, however, besides increasing the dimensionality, the inclusion of more variables could

also yield a lower power of the tests and could weaken the chances of detecting causal links

(Runge et al., 2019b). The Peter and Clark Momentary Conditional Independence (PCMCI)

approach alleviates this issue by excluding irrelevant variables and through the conditioning

on the few relevant variables only (Runge et al., 2019b). When using PCMCI, the causal

interpretations are resting on several assumptions that need to be considered, such as causal

sufficiency, causal stationarity, and if employing partial correlation as conditional indepen-

dence test also stationarity in time series (Runge, 2018) (stationarity was defined in Chap-

ter 5.2.3.3). In this context, the time series were detrended and anomalized to establish

stationarity in time series. Yet, detrending and the removal of the seasonal cycle is not al-

ways making the time series strictly stationary, which might potentially result in a violation

of this assumption. A further possibility towards the establishment of stationarity in time

series is the consideration of causal stationarity, which is a less strict form of stationarity

(Runge, 2018). This implies the consideration of time steps in the causal analysis, which

belong to a defined set of time steps (Runge, 2018), i.e. a meteorological season. For ex-

ample, the influence of temperature on the snow cover could be neglected during summer,

when snow cover has already melted. Moreover, it is important to include all relevant driv-

ing variables, which is described by the causal sufficiency assumption (Runge et al., 2019b).

In this context, the generation of a multivariate feature space is of great importance for the

quantification and analysis of causal links. As outlined before, the causal analysis is used

to quantify the influences of climatic and hydrological variables on vegetation condition,

surface water area, and snow cover area. Nevertheless, the causal sufficiency assumption

might be violated in most of the applications, since not all drivers can be measured and,
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thus, included. This circumstance also applies to the fact that the time series were tem-

porally aggregated to monthly composites, which might induce disappearing causal links

(Runge, 2018).

The presented results on the causal network analysis demonstrated the driving variables

with the largest MCI effect size per grid (see Figure 5.17, Figure 5.19, and Figure 5.21).

Currently, there is only one more study available using PCMCI to analyze the relationship

between the NDVI and considered the climatic variables precipitation, temperature, and

radiation (Krich et al., 2020). With more detail, the analysis was conducted at a spatial

resolution of 0.5◦ (approx. 50 km) at global scale and three driving variables. Therefore, a

direct comparison is hampered. Yet, the spatial distribution of prevalent driving variables

and the interaction between the target and the drivers appear to be comparable (see Fig-

ure 5.18). As an example, the contrasting behavior of downward shortwave radiation and

precipitation is also reflected in the results of this chapter. In addition, Krich et al. (2020)

also identified water availability as a dominant driver in the upper Brahmaputra river basin

at a temporal lag of 0 and 1 month. Apart from investigations using PCMCI, further studies

used the Granger causality or regression approaches to quantify temporally lagged depen-

dencies of NDVI (e.g. Papagiannopoulou et al. 2017; Wu et al. 2015; Yuan et al. 2019).

Here, Papagiannopoulou et al. (2017) used a feature space composed of radiation, tempera-

ture, and several indicators for water availability, including precipitation, soil moisture, and

snow water equivalent to assess their impact on the NDVI. For the IGBM river basins, the

authors identified water availability as the most important climatic driver and in western re-

gions partially radiation, whereas the temporal lag for water was dominant at 0 and 1 month.

Next, Yuan et al. (2019) analyzed the influence of atmospheric vapor pressure deficit on

vegetation condition, which is impacting plant photosynthesis when increasing. In agree-

ment with this study, the obtained results in this thesis mostly indicated a negative coupling

of NDVI with vapor pressure deficit. However, compared to the other investigated drivers,

vapor pressure deficit showed a weaker influence (see Figure 5.17 and Figure 5.18d). Wu

et al. (2015) applied multiple linear regression between the NDVI and precipitation, tem-

perature, and radiation. A comparison of the obtained results showed that the temporal lags

for each driving variable were higher than those derived with PCMCI. For example, for

precipitation the temporal lag was mostly between 1 and 3 months. In this regard, Krich

et al. (2020) noted that the resulting temporal lags might be lower with PCMCI due to the

reduced serial correlation.

Considering the land surface variable surface water area, river discharge was found to

be the dominant driver (see Figure 5.19). It has to be noted, that this detected linear depen-

dency might not be always valid, since river discharge is potentially also positively coupled
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to precipitation and snow cover area. More specifically, precipitation as well as melting ice

and snow greatly contribute to river discharge in the IGBM river basins (see Chapter 4.2.2),

and, thus, the identified causal link Q +→ SWA could be potentially a result of the indirect

path P +→ Q +→ SWA or SCA +→ Q +→ SWA, where Q stands for river discharge. These links

could not be resolved, as indirect interactions among the investigated time series variables

were not considered in this chapter. Moreover, as the results demonstrated, temperature

was found to be the prevalent driving factor and was negatively influencing snow cover

area in the Himalayan and Karakoram mountains (see Figure 5.21). Likewise, Huang et al.

(2017) identified a negative coupling between temperature and snow cover area for the en-

tire Tibetan Plateau. In addition, Notarnicola (2020) investigated the impact of temperature

and precipitation on snow cover area over meteorological seasons. Due to the temporal

and spatial aggregation of the target and driving variables at large spatial zones as well as

methodological differences, a direct comparison of the spatial distribution of influencing

factors is complicated. However, Notarnicola (2020) identified a significant negative cor-

relation between temperature and snow cover area being prominent during all seasons and

most regions overlapping with the IGBM river basins.

5.5.3 Limitations and Future Requirements

Overall, the implemented and presented methodological framework for time series anal-

ysis shows good functionality for the investigated large river basins in South Asia which

feature heterogeneous characteristics with respect to the climate, elevation, and land cover.

This emphasizes the potential of the framework and the applied methods for transferabil-

ity to any other river basin or geographical entity as well as time series data. The per-

formed analyses on land surface dynamics included time series on NDVI, surface water

area (SWA), and snow cover area (SCA), which were all based on MODIS imagery. Ad-

ditional climatic and hydrological variables were utilized to evaluate their influence on the

remote sensing-based land surface variables. In this regard, the temporal and spatial prop-

erties of the remote sensing-based time series were mainly limited by the characteristics

of the MODIS sensors. Here, it has to be noted that the analysis of surface water area by

means of the DLR Global WaterPack might be complicated due to the spatial resolution of

the data. More specifically, river streams and inland water bodies which are smaller than

the 250 m pixel resolution might not be represented by the DLR Global WaterPack due

to mixed pixel issues. Yet, it is of great importance to note that spatially and temporally

consistent remote sensing-based time series providing data over several decades and high

temporal revisit times are currently only available at the cost of their spatial resolution (see

Chapter 2.2). In this regard, inconsistencies of the DLR Global WaterPack were discussed,

concerning the timing of the maximum surface water area extent of the Indus river basin,
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which is not matching with the timing of the seasonal peak in river discharge. This could

be most likely explained by potential underestimations of the surface water area classifica-

tion during the months July to September, where the water color is changing due to high

sediment load. This might be caused by high contributions of ice and snowmelt in the In-

dus river basin. Despite these underestimations, Huang et al. (2018a) emphasized that the

monitoring of surface water area with multispectral remote sensing imagery at large spatial

scales still remains a challenge. This makes the DLR Global WaterPack an indispensable

time series to perform intra-annual analyses on changes in surface water area. The detected

underestimations might be alleviated by fusing this dataset with time series having higher

spatial, but lower temporal resolution. These findings might apply on the MODIS-based

NDVI and DLR Global SnowPack as well.

Moreover, for testing purposes of the implemented framework and due to the availability

of most climatic data at monthly temporal scale as well as the required data harmonization,

all time series were temporally aggregated to monthly composites. However, MODIS data

would also enable the analysis of land surface dynamics at much higher temporal resolution,

such as weekly or biweekly intervals. The finer temporal granularity of the time series could

improve intra-annual and seasonal analysis as well as potentially the identification of causal

links that might vanish due to the temporal compositing to monthly intervals.

Furthermore, the design of the trend test’s was stressed regarding the generation of reli-

able and comparable trend estimations. However, it has to be noted that for the analysis of

land surface dynamics over multiple decades, the computation of monotonic trends might

not be sufficient, e.g., due to potentially existing changepoints in the time series. In this

regard, the application of further methods such as BFAST (Verbesselt et al., 2010) and

BEAST (Zhao et al., 2019a) could enhance the analysis and provide more insight into the

dynamics. In addition, the impact of anthropogenic forcing has to be considered as well,

when analyzing land surface dynamics. Anthropogenic pressure might be measured through

the integration of time series on settlement areas as well as population data (Lloyd et al.,

2019; Marconcini et al., 2020; Palacios-Lopez et al., 2019), and land use change (Winkler

et al., 2021).

5.6 Summary

This chapter presented a novel approach for the analysis of multivariate Earth observa-

tion time series enabling the quantification and evaluation of land surface dynamics across

spheres (see Chapter 5.2). The used Earth observation time series characterized vegetation

condition, surface water area, and snow cover area, by means of the MODIS Normalized
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Difference Vegetation Index (NVDI), the DLR Global WaterPack, and the DLR Global

SnowPack data. With the implemented methodological framework, Earth observation time

series were jointly analyzed with time series on climatic and hydrological variables to esti-

mate their influence on the used remote sensing-based land surface variables for the period

2000–2019 (see Chapter 5.1). These multivariate time series covering multiple decades

were collocated for a large-scale study area, including the transboundary Indus, Ganges,

Brahmaputra, and Meghna river basins in South Asia. This study area was particularly

suitable for both, the development of a transferable methodological framework and the ex-

ploration of a multivariate feature space with statistical time series analysis techniques due

to their heterogeneous characteristics in terms of climate zones, elevation zones, as well as

land cover and land use classes (see Chapter 4.1).

After harmonizing the multi-source time series to a common grid space (see Chap-

ter 5.2.2), statistical time series analysis techniques were applied at a monthly temporal

resolution. These included the calculation of trends (see Chapter 5.2.3.1) and changes in

phenological metrics (see Chapter 5.2.3.2), as well as the application of the causal discov-

ery algorithm Peter and Clark Momentary Conditional Independence (PCMCI) (see Chap-

ter 5.2.3.3). It was shown that the use of the Mann-Kendall trend test in association with the

Theil-Sen slope estimator requires the consideration of seasonality and serial correlation.

In this regard, the seasonal Mann-Kendall test was applied on the prewhitened monthly

time series, where prewhitening aims to reduce the lag-1 autocorrelation in time series. It

was also stressed that advantages and disadvantages of respective prewhitening methods

have to be taken into account. In order to investigate changes in phenological metrics be-

tween the two investigated decades, the Timesat tool was employed. Besides the global

parameter setting, an additional set was defined for the NDVI to enable the consideration of

areas being characterized by two annual growing seasons. In general, the derived changes

in the phenological metrics were found to be consistent with the delineated statistically

significant positive and negative trends, respectively. Furthermore, for the first time, a high

dimensional feature space involving several spheres was utilized to evaluate the influence

of driving variables on the vegetation condition, surface water area, and snow cover area

using PCMCI. The identified couplings and dependencies between the time series variables

were found to be consistent with reported findings in literature, confirming the functionality

of the implemented approach.

Furthermore, the time series analyses revealed the following land surface dynamics and

influences for the investigated transboundary river basins in South Asia (see Chapter 5.3):

• The MODIS NDVI was used as an indicator for vegetation condition and the trend

analysis indicated mostly significant positive trends at annual scale for the Indo-
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Gangetic river basins. The phenology of the NDVI showed decreases in the seasonal

amplitude, when comparing the decades 2000–2009 and 2010–2019. These decreases

were associated with constant or increasing seasonal peak values. Complementary to

the results of the trend analysis, the changes in the computed phenological metrics

indicated an ongoing increase in vegetation greenness. On the other hand, the anal-

ysis of the driving variables showed that water availability was the dominant factor

influencing the NDVI during the investigated period.

• The DLR Global WaterPack represented surface water area. The trend analysis at

annual temporal scale revealed significant negative trends being prevalent at the con-

fluences of the Ganges and Brahmaputra as well as in the wetlands of the Meghna

river basin. In comparison, striking significant positive trends were identified north of

the Sundarbans mangrove forest and in the south of the Ganges river basin. The quan-

tification of influencing factors on surface water area showed a negative and positive

coupling with snow cover area and temperature in high elevation areas, respectively.

In downstream areas of the Indo-Gangetic river basins, river discharge and precipita-

tion were positively influencing surface water area during the studied period.

• The DLR Global SnowPack was used as indicator for snow cover area. Based on the

trend analysis, weak significant positive trends could be identified for the upper Indus

river basin, whereas significant negative trends were dominant for the upper Ganges

and Brahmaputra river basins at annual scale. In addition, the computed changes in

the phenological metrics revealed matching spatial patterns of forward and backward

shifts with significant positive and negative trends, respectively. For example, com-

plementary to significant negative trends, decreases in the duration of snow cover area

were identified in the upper Ganges and Brahmaputra river basin. It was also found,

that snow cover area was mostly negatively coupled to temperature in the river basins,

whereas a positive coupling could be revealed for the western parts of the upper Indus

river basin.

Moreover, the methodological framework was implemented on a high-performance

computing (HPC) infrastructure at the German Aerospace Center (DLR) and its transfer-

ability in space and time was emphasized (see Chapter 5.4). For example, the framework

can easily be complemented with further geoscientific time series, applied to further river

basins or any other geographical and spatial entity, or easily amended by additional time

series analysis techniques. Considering the discussed potentials and future requirements

in Chapter 3.2, the implemented framework and included time series analyses greatly con-

tribute to their fulfillment. In particular, these include the analysis of large-scale transbound-

ary river basins as well as land surface dynamics across spheres. Additionally, limitations
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and future requirements regarding the developed framework were discussed (see Chap-

ter 5.5.3). In brevity, these included the increase of the temporal resolution of the time

series to enhance intra-annual and seasonal analyses, the fusion of geoscientific time series

(e.g. surface water area), and the inclusion of anthropogenic influences into the analysis of

land surface dynamics. These aspects will be addressed in the following chapter.
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Chapter 6

Evaluation of Seasonal Trends and
Drivers of Land Surface Variables for the

Indo-Gangetic River Basins*

High mountain Asia holds the largest ice mass on Earth apart from the polar regions.

Monsoon rainfall as well as meltwater from ice and snow are providing the Indo-Gangetic

river basins with indispensable freshwater resources (Pritchard, 2019; Viviroli et al., 2020)

(see Chapter 4.2.2). Over 1.1 billion people are living in these river basins and in part

heavily depend on the water resources supplied by these large river systems. In the context

of amplified climate change, the transboundary river basins Indus, Ganges, Brahmaputra,

and Meghna (IGBM) are experiencing increasing environmental and human pressure (Song

et al., 2018; Wijngaard et al., 2018). In this context, investigations pointed towards declin-

ing terrestrial water storage in the Indo-Gangetic Plains which could be associated with

unsustainable water withdrawal (MacDonald et al., 2016). In addition, with increasing sur-

face air temperatures in high elevation areas, seasonal snow cover and glacier mass will

be most likely negatively influenced (Miles et al., 2021; Pepin et al., 2015). Particularly

in years with less rainfall, meltwater from glaciers and snow modulates the seasonal water

availability in the investigated river basins (Biemans et al., 2019). In the long-term, decreas-

ing amounts of meltwater from the mountains could endanger the availability of seasonal

water resources which are fundamental for many sectors, including irrigated agriculture.

Additionally, future climate projections are suggesting an increase in the occurrence of ex-

treme events, including drought, heatwave (Dangar and Mishra, 2021; Mishra et al., 2020),

and flooding (Nie et al., 2021). In this regard, a detailed analysis of land surface dynamics

and respective driving mechanisms at seasonal and annual scales is required to improve the

understanding of interactions between multiple spheres in the Indo-Gangetic river basins.

*Parts of this chapter have been submitted at Uereyen et al. (2022b)
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This chapter aims at enhancing the understanding of seasonal land surface dynamics

and investigating climatic, hydrological, and anthropogenic influences in the Indo-Gangetic

river basins. As outlined in the previous chapter, the time series will be aggregated at a finer

temporal granularity to enhance the intra-annual trend analyses and the detection of causal

links. Specifically, time series with a biweekly temporal resolution will be processed for the

period December 2002 to November 2020. In detail, the specific objectives include (1) the

estimation of seasonal and annual trends at grid and river basin scale, (2) the investigation

of direct and indirect influences on land surface variables at seasonal temporal scale, (3) the

assessment of human influence on the land surface, and (4) the exploration of patterns in

the spatial distribution of seasonal trends and driving variables.

In the following, the used time series (Chapter 6.1) and the applied methods (Chap-

ter 6.2) will be briefly introduced. Next, the results of the seasonal trend analysis at dif-

ferent spatial scales as well as the estimation of drivers at seasonal temporal and various

spatial scales will be presented in detail (Chapter 6.3). Chapter 6.4 provides a comprehen-

sive discussion on the identified trends and environmental as well as anthropogenic drivers.

Ultimately, Chapter 6.5 summarizes the findings and conclusions of this chapter.

6.1 Input Data

This chapter presents the used remote sensing-based datasets to characterize vegetation,

surface water area, and snow cover area. Additionally, environmental and human controls

are evaluated by means of climatic, hydrological, and anthropogenic variables.

6.1.1 Remote Sensing-Based Land Surface Variables

In contrast to the previous chapter, the full archive of daily Terra and Aqua MODIS

(M*D09GA.006) surface reflectance products at 500 m spatial resolution were used (Ver-

mote and Wolfe, 2015) to characterize vegetation areas and enable the processing of NDVI

composites at a finer temporal granularity. These images were acquired for the period be-

tween December 2002 and November 2020. In this regard, more than 100,000 MODIS

images were processed to generate the NDVI composites (approx. 52,000 images for Terra

and Aqua MODIS, respectively).

Moreover, the analysis of surface water area was conducted based on the previously

introduced DLR Global WaterPack. In Chapter 5.5.3, the identified underestimations in

this data set were discussed. To alleviate these shortcomings, particularly in the Indus

river basin, the DLR Global WaterPack was complemented with the Global Surface Wa-

ter Layer (GSWL) version 1.3 (Pekel et al., 2016). The GSWL data is computed on the
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Google Earth Engine (GEE) (Gorelick et al., 2017) by means of the full Landsat archive

and was developed at the Joint Research Center (JRC). Fusing both time series allows for

the exploitation of their respective advantages being on the one hand, the daily temporal

resolution (DLR Global WaterPack) and, on the other hand, the comparatively high spatial

resolution (JRC Global Surface Water Layer). In addition, the DLR Global SnowPack (Di-

etz et al., 2015) was used as indicator for snow cover area. This data was already presented

in Chapter 5.1.1.3.

6.1.2 Climatic and Hydrological Variables

To enable the analysis of climatic and hydrological controls on the land surface at a finer

temporal granularity, the respective variables were extracted from time series based on the

hourly ERA5-Land reanalyses data of the ECMWF (Muñoz-Sabater, 2019). Compared to

the ERA5 reanalysis products (Hersbach et al., 2020), the ERA5-Land reanalysis repre-

sents the land component including hourly atmospheric and land variables at an enhanced

spatial resolution of 0.1◦ (approx. 9 km) since 1950 (Muñoz-Sabater, 2019). In compliance

with the aim to generate time series at biweekly intervals, the ERA5-Land reanalysis is of

particular value due the hourly temporal resolution. Here, the variables total precipitation,

surface solar radiation downwards, 2-m air temperature, soil moisture (7–28 cm), and 2-m

dewpoint temperature were used.

Recently, studies investigating the Indo-Gangetic Plain and the Himalayan-Karakoram

region widely employed the ERA5-Land reanalysis (e.g. Bhattacharya et al. 2021; Kol-

luru et al. 2020; Kraaijenbrink et al. 2021; Mishra et al. 2020; Nepal et al. 2021). In gen-

eral, the trends and anomalies derived from ERA5-Land 2-m air temperature showed good

agreement with in-situ measurements in India (Mishra et al., 2020) and in the Himalaya

(Bhattacharya et al., 2021). For a subbasin in the upper Indus river basin, a comparison

of ERA5-Land temperature and in-situ measurements indicated good agreement as well,

despite a negative bias in the winter season (Nepal et al., 2021). In addition, studies point

towards the improvements in the ERA5 and ERA5-Land reanalysis compared to the super-

seded ERA-Interim (Chen et al., 2021b) and their superiority compared to other reanalyses

over India with respect to temperature and precipitation (Mahto and Mishra, 2019). More-

over, the performance of daily ERA5 precipitation was evaluated for selected river basins

in India and showed better results compared to, e.g. the CHIRPS dataset (Kolluru et al.,

2020). Chen et al. (2021b) particularly emphasized the improvement of the ERA5-Land for

capturing the spatial patterns of precipitation over higher altitudes in the central Himalaya.

Note that the validation of gridded reanalyses remains a difficult task, as in-situ stations

in the Himalaya region are particularly sparse (Bhattacharya et al., 2021). Considering the
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variable solar radiation, Urraca et al. (2018) stressed the improvements in ERA5 compared

to ERA-Interim, in particular the reduction in the positive bias. Yang and Bright (2020)

demonstrated a validation of several radiation products as well, where ERA5 outperformed

the other reanalysis product Modern-Era Retrospective analysis for Research and Applica-

tions, version 2 (MERRA-2). Furthermore, the ERA5 and ERA5-Land soil moisture data

were validated in several studies with in-situ measurements (e.g. Li et al. 2020; Muñoz-

Sabater et al. 2021; Xing et al. 2021; Yang et al. 2020). Results in Muñoz-Sabater et al.

(2021) showed that ERA5-Land soil moisture generally performs better than ERA5 and

ERA5-Interim. Likewise, Li et al. (2020) reported that ERA5 outperforms its predecessor

and four other reanalyses in capturing the temporal variations of soil moisture on the Ti-

betan Plateau. The utilized GloFAS-ERA5 daily river discharge version 3.1 data (Harrigan

et al., 2020) was already introduced in Chapter 5.1.2. In addition, to quantify changes in

terrestrial water storage, a daily time series based on the twin-satellite Gravity Recovery

And Climate Experiment (GRACE) mission that characterizes the terrestrial water storage

anomaly (TWSA) was used. This dataset is processed at the Institute of Geodesy at Graz

University of Technology (ITSG) (Kvas et al., 2019; Mayer-Gürr et al., 2018). Note that

the temporal availability of the TWSA data is limited to 2003–2016.

6.1.3 Anthropogenic Variables

To characterize human influence in the IGBM river basins, several geoscientific datasets

were used as indicator. These data include the already introduced ESA CCI land cover

at an annual temporal resolution covering the years 1992–2019 (European Space Agency,

2017) (see Chapter 4.2.3). Additionally, a globally available gridded population data at an-

nual temporal and 1 km spatial resolution was used (Lloyd et al., 2019; WorldPop and

CIESIN, 2018) (see Chapter 4.3). This dataset provides an estimation of the total popu-

lation count per 1 km pixel. Moreover, a harmonized nighttime lights time series based

on the instruments Defense Meteorological Satellite Program-Operational Linescan Sys-

tem (DMSP-OLS) and Visible Infrared Imaging Radiometer Suite (VIIRS) was utilized.

This annual time series has a spatial resolution of 1 km and provides the intensity of night-

lights as digital numbers. Ultimately, the DLR World Settlement Footprint (WSF) Evolution

which is a binary classification of settlement areas between 1985 and 2015 was used as well

(Marconcini et al., 2020, 2021) (see Chapter 4.3). The WSF Evolution was processed on

the GEE by means of the full Landsat archive at an annual temporal resolution and a spatial

resolution of 30 m. In combination, these datasets allow for the quantification of the spatio-

temporal growth of the population and settlements which can be then used as proxy for the

evaluation of the human influence in the IGBM river basins.
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6.2 Methods

6.2.1 Time Series Preprocessing and Harmonization

All used daily time series were gathered for the period between December 2002 and

November 2020. If available, the annual time series which include the anthropogenic vari-

ables were collocated for the period 2003 to 2020. Due to data gaps and interpolation pur-

poses, the daily time series were temporally aggregated to biweekly composites, which is a

finer temporal granularity than the monthly temporal resolution in the previous chapter.

Prior to the statistical analyses, the time series required further preprocessing. To com-

pute high quality NDVI composites, Terra and Aqua MODIS imagery were first processed

separately in accordance to the presented steps in Chapter 5.2.1. As the quality assurance

layers have a spatial resolution of 1 km, the daily imagery were spatially aggregated from

500 m to 1 km. Next, the temporal aggregation was performed to compute biweekly com-

posites. During the temporal aggregation, the median value of the input images was con-

sidered to minimize the influence of outliers. In a subsequent step, the biweekly NDVI

composites of Terra and Aqua MODIS imagery were merged through the calculation of

the mean value for the respective pixel and biweekly period. Still existing gaps in the time

series were filled using linear interpolation. Ultimately, to mask non-vegetated areas, all

pixels with a long-term NDVI value lower than 0.15 were excluded as suggested by Wittich

and Hansing (1995).

Furthermore, to get a differentiated insight into the vegetation trends, the annual ESA

CCI land cover (European Space Agency, 2017) time series were used to distinguish the

NDVI for the classes forest, grassland, irrigated cropland, and rainfed cropland. For this

purpose, as described in Chapter 4.2.3, the land cover time series were first reclassified and

then stable pixels between 2002 and 2019 were computed for each of the aforementioned

class. Next, the 300 m spatial resolution of the land cover data was aggregated to the spatial

resolution of the NDVI (1 km). During the spatial aggregation, the land cover class occur-

ring most frequently was assigned to the respective pixel. In a final step, the NDVI time

series was intersected with the stable pixels of the respective land cover class. This resulted

in NDVI time series for forest, grassland, irrigated cropland, and rainfed cropland areas.

In order to improve the regionally identified underestimations in the DLR Global Water-

Pack, the GSWL (Pekel et al., 2016) was incorporated into the time series of surface water

area. The GSWL was downloaded from the GEE and aggregated to the spatial resolution

of the Global WaterPack. Next, the daily Global WaterPack was temporally aggregated to

biweekly composites. In a final step, both time series were conditionally merged. Pixels in
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the Global WaterPack time series which were classified as “no-water”, were labeled with

“water” if the GSWL had a valid value for the respective pixel and time step.

The preprocessing of DLR Global SnowPack (Dietz et al., 2015) data includes the same

steps as described in Chapter 5.1.1.3 and Chapter 5.2.1. As stated before, the time series

was used for the period December 2002 to November 2020. After preprocessing, the daily

time series were aggregated to biweekly temporal intervals.

Moreover, the preprocessing of the hourly ERA5-Land time series included following

steps. First, the variables total precipitation and surface solar radiation downwards were

accumulated, whereas 2-m air temperature, soil moisture, and 2-m dewpoint temperature

were averaged at daily temporal scale. Next, vapor pressure deficit was calculated based

on 2-m air temperature and 2-m dewpoint temperature using the formula in Barkhordarian

et al. (2019). Furthermore, during the preprocessing the physical unit of the variables were

converted. Precipitation was converted from m to mm. The reanalysis on solar radiation was

converted to daily energy fluxes in watts per square meter (Wm−2) and the unit of temper-

ature was changed from Kelvin (K) to degrees Celsius (◦C). Finally, all daily time series,

including river discharge and terrestrial water storage anomaly (TWSA), were aggregated

to biweekly temporal composites.

Afterwards, as presented in Chapter 5.2.2, all geoscientific time series were harmonized

to a common spatial grid. In this chapter, a grid at a spatial resolution of 0.1◦ (approx. 9 km)

and the geographical entities including the boundaries of the IGBM river basins and their

respective subbasins, elevation-dependent zones, as well as regions stratified by land cover

and land use classes were used (see Chapter 4.1 and Figure 4.1d).

6.2.2 Application of Statistical Time Series Analysis Techniques

The preparation and analysis of the multivariate time series was performed using the de-

veloped and implemented methodological framework (see Chapter 5.2). Figure 6.1 provides

an overview of the applied workflow. In accordance to the defined objectives in the intro-

duction of this chapter (see Chapter 6), the time series analyses included the computation

of seasonal and annual trends, the estimation of direct and indirect influences on the remote

sensing-based variables at seasonal scale, and the evaluation of anthropogenic influences.

6.2.2.1 Seasonal Trend Estimation

The employed non-parametric Mann-Kendall (MK) test in combination with the Theil-

Sen (TS) slope estimator were introduced in Chapter 5.2.3.1. Here, the statistical signif-

icance of the trend was tested with the trend-free prewhitening after Wang and Swail
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Figure 6.1: Simplified overview of the workflow as part of the developed and implemented frame-
work. Modified after Uereyen et al. (2022b)

(TFPW-WS) approach (Wang and Swail, 2001), and the magnitude and direction based

on the variance corrected prewhitening (VCPW) approach (Wang et al., 2015c). Following

seasons were considered for the time series analyses in this chapter: winter (DJF), pre-

monsoon (MAM), monsoon (JJAS), and post-monsoon (ON). First, the trend tests were

performed at seasonal scale for the period December 2002 to November 2020. Based on

the seasonal metrics, the annual trend was derived. During these calculations the time se-

ries were kept at biweekly temporal resolution, to obtain a larger number of data samples

and, thus, improve the power of the trend test (Collaud Coen et al., 2020). As before, trends

were considered as statistically significant at a confidence level of 95 %. Note that in the

results and discussion section, non-significant trends are presented as tendencies.

6.2.2.2 Causal Networks at Seasonal Scale

Furthermore, a novel version of the PCMCI algorithm, specifically PCMCI+ (Runge

et al., 2019b; Runge, 2020) was employed in this chapter. This version enables the full

exploration of contemporaneous (lag 0) as well as lagged dependencies for a multivariate

feature space. In this chapter, causal graphs were built using the PCMCI+ method. Here,

the causal graphs are made up of nodes which are representing the respective time series

variable and edges depicting the existence and direction of identified causal links within

a feature space. A detailed description of the theory behind PCMCI was already provided

in Chapter 5.2.3.3. As stated before, using the standard PCMCI algorithm, the direction of

identified contemporaneous links is generally left undirected, because a temporal order is
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not available in these cases. The direction of instantaneous links could only be assessed for

a directed assessment, e.g. if investigating the influence of precipitation on NDVI, as was

conducted in Chapter 5.2.3.3. The PCMCI+ version enables the assessment of contempora-

neous links through the adaptation of the two-step procedure in PCMCI. These include the

condition selection step, the skeleton phase, and additional orientation phases to identify

the direction of contemporaneous links and are explained in detail in Runge (2020).

To use the harmonized feature space for PCMCI+, a detrending and computation of sea-

sonal anomalies was performed to achieve stationarity in time series (see Chapter 5.2.3.3).

Next, a maximum temporal lag of six time steps was defined which corresponds to three

months at a biweekly temporal scale. In contrast to the previous chapter, the meteorological

seasons were used as a temporal mask to fulfill the causal stationarity assumption. In addi-

tion, time steps with both NDVI values lower than 0.2 and temperature lower than 0 ◦C were

removed as suggested by Wu et al. (2015). Further details on the used parameter settings

are provided in Table 5.1.

Apart from the causal maps which were already presented in Chapter 5.3.3 and included

the derived direct influences on the target variables (e.g. Figure 5.17), this chapter addition-

ally visualizes causal graphs. These support the analysis of indirect influences on the land

surface variables vegetation condition, surface water area, and snow cover area as well as

the interdependencies among the entire feature space. Since the causal graphs were com-

puted at subbasin and basin scale, only intersecting pixels of the NDVI, surface water area,

and snow cover area with the respective driving variables were considered. The spatial in-

tersection e.g., removes the influence of precipitation for non-vegetated areas.

6.2.2.3 Evaluation of Human Influence

To investigate anthropogenic controls on the land surface variables, the relation between

vegetation condition and surface water area with the gathered anthropogenic variables were

estimated. The anthropogenic variables involve the annual time series on gridded population

counts, nighttime lights, and settlement area (see Chapter 6.1.3). Due to the annual temporal

resolution, it was not possible to include these time series into the causal analysis. Instead,

a Pearson’s correlation analysis was performed to evaluate anthropogenic influences on

vegetation as well as surface water area. The statistical significance of the correlation co-

efficients was evaluated at a confidence level of 95 %. Additionally, the NDVI trends were

computed for multiple vegetation classes, including forest, grassland, irrigated agriculture,

and rainfed agriculture (see Chapter 6.2.1). This provides a more detailed insight into the

vegetation dynamics and supports the analysis of potential human influence on vegetated

areas.
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6.3 Results

In the following, the obtained results of the time series analysis for the Indus, Ganges,

Brahmaputra, and Meghna river basins are presented. First, the trend analyses, which were

performed at seasonal temporal scale and various spatial scales is presented in Chap-

ter 6.3.1. Afterwards, Chapter 6.3.2 demonstrates the calculated results on environmental

drivers on the vegetation condition, surface water area, and snow cover area at seasonal

scale. In addition, the influence of anthropogenic influences is evaluated as well.

6.3.1 Seasonal Trends

Compared to the presented results on the trends at annual temporal scale in Chap-

ter 5.3.1, this chapter focuses on seasonal and annual trends at river basin scale (see Chap-

ter 6.3.1.1), grid scale (see Chapter 6.3.1.2), and for snow cover area additionally for el-

evation zones (see Chapter 6.3.1.3). All presented trends are representative for the period

December 2002 to November 2020.

6.3.1.1 Trends at Basin Scale

Figure 6.2 illustrates all used biweekly time series aggregated at annual scale and dif-

ferentiated by the respective river basin. In case of the NDVI, an increasing tendency in

the respective time series is clearly visible. This increase is particularly pronounced since

the year 2018 for the Indus and Ganges river basin as well as the Ganges-Brahmaputra-

Meghna (GBM)-Delta. Moreover, the surface water area time series shows distinct anoma-

lies and a partially a clear relationship with precipitation for the Meghna river basin and

GBM-Delta (see Figure 6.2b,d). In case of the Indus river basin, several positive anomalies

could be very likely associated with large flood events, e.g. in the year 2010, 2015, and 2020

(see Figure 6.2b). These positive anomalies are also reflected in the river discharge time se-

ries (Fig. 6.2g). This also applies to the Ganges river basin (e.g. 2013), and Brahmaputra as

well as Meghna river basin (e.g. 2007). It is also likely that anomalies in precipitation and

temperature are largely associated with snow cover area. For example, in the Indus river

basin temperature and precipitation have a positive and negative anomaly in 2016, respec-

tively (Fig. 6.2d,e). On the other hand, snow cover area reached the lowest point for the

investigated period in 2016 (Fig. 6.2c). Particularly striking is the constant decline in the

terrestrial water storage anomaly (TWSA) for all of the river basins (Fig. 6.2j). Note that

this time series is only visualized for the period 2003 to 2015.

Considering seasonal and annual trends at river basin scale, Table 6.1 collocates all

calculated trend metrics for the investigated geoscientific time series. For the NDVI, it is
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Figure 6.2: Time series variables for the river basins at annual temporal scale for the years between
2003 and 2020. Note that (j) terrestrial water storage anomaly (TWSA) only covers the
years 2003–2015. The dashed line represents the respective average value of the time
series. Abbreviations: (a) Normalized difference vegetation index (NDVI), (b) surface
water area (SWA), (c) snow cover area (SCA), (d) precipitation (P), (e) temperature
(T), (f) downward shortwave radiation (DSR), (g) river discharge (Q), (h) soil moisture
(SM), (i) vapor pressure deficit (VPD). Modified after Uereyen et al. (2022b)
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Table 6.1: Seasonal and annual trends at river basin scale for the period covering December 2002
and November 2020. Investigated time series include the normalized difference vege-
tation index (NDVI), surface water area (SWA), snow cover area (SCA), precipitation
(P), terrestrial water storage anomaly (TWSA), temperature (T), surface solar radiation
downward (DSR), river discharge (Q), soil moisture (SM), and vapor pressure deficit
(VPD). All trend values are calculated at decadal scale and the trend values of SWA and
SCA were divided by 1,000 km2. Bold values denote statistically significant trends at a
confidence level of 95 %. Source: Uereyen et al. (2022b)

Basin Season NDVI SWA SCA P TWSA T DSR Q SM VPD
[1,000 [1,000 [mm] [cm] [◦C] [W [mm−3 [m3 [kPa]

km2] km2] m−2] s−1] m−3]

Indus DJF 0.048 –0.973 –0.679 –2.321 –4.181 –0.332 2.598 –0.586 –0.001 0.000
MAM 0.040 1.041 0.848 3.934 3.292 –0.425 –7.101 13.909 0.009 –0.152
JJAS 0.041 1.878 –2.997 –0.017 –2.530 0.293 –2.072 6.224 0.000 0.014
ON 0.016 0.633 6.820 1.724 2.233 0.051 –3.914 –0.551 0.005 –0.043
Annual 0.040 0.837 0.079 0.853 –0.149 –0.141 –2.993 2.836 0.002 –0.021

Ganges DJF 0.055 0.324 2.223 2.608 –6.804 –0.333 –3.270 2.439 0.003 –0.058
MAM 0.039 0.906 4.523 3.370 –1.532 –0.469 –5.761 3.009 0.005 –0.143
JJAS 0.028 0.439 –2.080 7.235 –5.903 0.241 –6.524 48.436 0.002 –0.032
ON 0.007 1.002 –3.435 –1.082 –4.684 0.443 –3.113 –0.626 –0.005 –0.006
Annual 0.034 0.677 0.076 2.989 –5.293 –0.046 –4.516 2.724 0.002 -0.045

Brahmaputra DJF 0.015 –0.065 –1.725 0.971 –7.467 0.027 –1.016 0.614 –0.003 –0.002
MAM 0.021 –0.092 5.381 –2.030 –11.501 –0.272 –1.614 –12.928 0.001 –0.013
JJAS 0.008 0.622 –1.633 11.523 –12.173 0.375 –9.165 45.747 0.003 –0.003
ON 0.014 0.270 –7.301 1.009 –11.025 0.748 0.293 11.032 –0.002 0.012
Annual 0.014 0.103 –1.676 0.990 –11.263 –0.046 –1.315 5.823 0.000 –0.003

Meghna DJF 0.025 0.513 - 1.196 –1.115 –0.149 –4.776 1.247 0.003 –0.053
MAM 0.043 0.289 - 4.839 –3.497 –0.231 –3.110 4.918 0.007 –0.024
JJAS 0.027 –0.603 - –6.022 –3.036 0.353 –2.507 0.577 –0.003 0.024
ON 0.015 –0.132 - 1.332 –3.375 0.154 –3.930 2.559 0.006 –0.019
Annual 0.026 0.078 - 1.264 –3.206 0.003 –3.520 1.903 0.005 –0.022

GBM-Delta DJF 0.034 0.389 - 1.110 –4.959 –0.125 –8.465 3.023 0.004 –0.068
MAM 0.050 –0.045 - 8.919 –6.338 –0.529 –7.694 0.720 0.012 –0.096
JJAS 0.035 0.321 - –0.342 –6.692 0.368 5.019 61.325 –0.003 0.031
ON 0.019 0.359 - 1.298 –4.622 0.201 –2.389 14.483 0.004 –0.012
Annual 0.034 0.340 - 1.204 –5.648 0.038 –5.041 8.753 0.004 –0.040

striking that all the reported statistically significant trend values, were positive at seasonal

and annual temporal scale. The obtained magnitude of the significant trends was highest in

the winter season for the Indus and Ganges river basin and in the pre-monsoon season for

the Brahmaputra, Meghna, and GBM-Delta. Non-significant trends were only derived for

the post-monsoon season in the Indus and Ganges river basin as well as for the GBM-Delta.

Surface water area also exhibited positive directions for all statistically significant trends.

Negative tendencies (non-significant trends) can be observed for a number of seasons in the

Brahmaputra, Meghna, and Indus river basin. The highest magnitude for surface water area

was obtained for the Indus river basin with 1,878 km2 decade−1 in the monsoon season.

At annual scale, the magnitude of the significant trend in the Indus river basin amounts

to 837 km2 decade−1. In this regard, Table 6.2 shows the long-term average of surface

water area in the respective river basins. For example, in the Indus river basin the long-term

average in surface water area was 11,707 ±2,436 km2 in the monsoon season and 10,535
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Table 6.2: Long-term average of normalized difference vegetation index (NDVI), surface water
area (SWA), and snow cover area (SCA) for the period between December 2002 and
November 2020 at seasonal and annual temporal scale. SD: Standard deviation. Source:
Uereyen et al. (2022b)

Basin Season NDVI SWA [km2] SCA [km2]
Mean SD Mean SD Mean SD

Indus DJF 0.387 ±0.031 9,054 ±1,230 215,979 ±42,589
MAM 0.331 ±0.031 9,682 ±1,315 184,597 ±26,727
JJAS 0.376 ±0.030 11,707 ±2,436 48,228 ±13,719
ON 0.349 ±0.029 11,692 ±1,891 91,841 ±33,889
Annual 0.363 ±0.030 10,535 ±1,763 131,527 ±27,550

Ganges DJF 0.487 ±0.035 8,576 ±1,058 37,095 ±12,941
MAM 0.347 ±0.036 7,419 ±1,242 37,957 ±10,285
JJAS 0.472 ±0.032 10,000 ±2,195 10,419 ±2,760
ON 0.482 ±0.026 13,732 ±1,884 20,342 ±7,865
Annual 0.446 ±0.033 9,620 ±1,621 25,626 ±8,037

Brahmaputra DJF 0.469 ±0.021 8,450 ±644 69,897 ±23,889
MAM 0.453 ±0.022 8,422 ±479 83,910 ±15,798
JJAS 0.540 ±0.022 11,922 ±1,313 22,620 ±6,212
ON 0.560 ±0.024 11,964 ±1,130 42,398 ±18,407
Annual 0.504 ±0.022 10,186 ±907 53,058 ±15,060

Meghna DJF 0.564 ±0.029 3,958 ±874 – –
MAM 0.587 ±0.033 2,124 ±1,204 – –
JJAS 0.628 ±0.026 8,419 ±1,657 – –
ON 0.701 ±0.030 7,788 ±1,416 – –
Annual 0.614 ±0.029 5,625 ±1,308 – –

GBM-Delta DJF 0.429 ±0.025 7,791 ±623 – –
MAM 0.449 ±0.036 6,950 ±342 – –
JJAS 0.507 ±0.028 7,147 ±670 – –
ON 0.576 ±0.037 8,017 ±744 – –
Annual 0.484 ±0.031 7,404 ±588 – –

±1,763 km2 at annual scale. On the contrary, despite one value, the resulting statistically

significant trends have a negative direction in case of the TWSA. At annual scale, significant

trends of TWSA point towards a declining groundwater level for all of the investigated river

basins (see Table 6.1).

Regarding snow cover area, no statistically significant trend could be derived for any

river basin at annual scale. Only the monsoon and post-monsoon season show a signifi-

cant negative trend for the Ganges (–2,080 km2 decade−1) and Brahmaputra river basin

(–7,301 km2 decade−1), respectively. In this context, Table 6.2 demonstrated that the long-

term average of snow cover area was 10,419 ±2,760 km2 in the monsoon season in the

Ganges river basin and 42,398 ±18,407 km2 in the post-monsoon season in the Brahma-

putra river basin. Largest seasonal snow cover was found for the Indus river basin with

215,979 ±42,589 km2 in the winter season (see Table 6.2). Overall, the climatic variables

barely show any statistically significant trend.

To investigate changes in the direction and magnitude of the trends within the investi-

gated period, additional analyses were conducted for the vegetation condition, surface water

area, and snow cover area for two partially overlapping 11-year sub-periods. The results are
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Table 6.3: Seasonal and annual trends at river basin scale for the period covering December 2002
and November 2020 denoted at decadal scale. The covered period is split into two pe-
riods. Bold values represent significant trends at a confidence level of 95 %. Source:
Uereyen et al. (2022b)

2002–2012 2010–2020
Basin Season NDVI SWA SCA NDVI SWA SCA

[1,000 km2] [1,000 km2] [1,000 km2] [1,000 km2]

Indus DJF 0.018 –0.534 0.505 0.063 –0.057 5.795
MAM 0.020 –1.028 –9.571 0.030 2.099 –0.729
JJAS 0.036 4.042 5.585 0.042 1.837 –6.022
ON 0.038 1.176 –9.478 –0.016 –0.487 19.571
Annual 0.028 0.321 –4.487 0.036 0.890 2.533

Ganges DJF 0.044 0.336 –4.261 0.050 1.196 2.724
MAM 0.010 0.775 –3.762 0.041 0.219 4.877
JJAS 0.027 –0.208 –0.281 0.033 0.540 –3.740
ON 0.007 –0.190 –6.459 0.004 1.217 2.073
Annual 0.019 0.073 –4.011 0.037 0.868 2.398

Brahmaputra DJF –0.022 1.025 –20.472 0.040 –0.166 9.711
MAM –0.016 –0.282 –3.943 0.050 0.081 13.852
JJAS 0.007 –0.452 2.385 –0.002 2.192 –5.192
ON 0.016 –0.805 –11.212 0.003 1.356 –2.409
Annual –0.004 –0.367 –7.578 0.022 0.719 3.651

Meghna DJF –0.019 1.477 – 0.075 –0.295 –
MAM –0.002 –0.122 – 0.082 0.367 –
JJAS 0.037 –0.761 – 0.002 0.640 –
ON 0.021 –0.789 – 0.001 0.893 –
Annual 0.010 –0.442 – 0.038 0.504 –

GBM-Delta DJF 0.009 0.403 – 0.048 0.585 –
MAM 0.001 –0.084 – 0.089 –0.106 –
JJAS 0.027 0.156 – 0.036 0.606 –
ON 0.011 –0.419 – 0.037 0.669 –
Annual 0.010 0.036 – 0.043 0.595 –

listed in Table 6.3. In case of the NDVI, significant trends with a higher magnitude were

obtained for the second sub-period between 2010–2020. In fact, for the winter season in

the Brahmaputra and Meghna river basins, the results indicated even significant negative

trends during the first sub-period. These turned positive during the second sub-period. On

the other hand, surface water area revealed significant negative trends for the Meghna river

basin at several temporal seasons during the first sub-period, whereas during the second

sub-period the direction changed to positive trends. Considering snow cover area, the de-

rived trends and tendencies at annual scale were all negative during the first sub-period.

During the second sub-period they turned into positive tendencies at annual scale.

6.3.1.2 Trends at Grid Scale

Furthermore, Figure 6.3, Figure 6.4, and Figure 6.5 snow the seasonal and annual trends

of the land surface variables NDVI, surface water area, and snow cover area at grid scale,

respectively. Trends obtained for the NDVI were significantly positive in the winter and

pre-monsoon season for 68.4 % and 65.0 % of the grids, respectively (see Figure 6.3a,b).

The magnitude of the significant positive trends was particularly high in the central Indus
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Figure 6.3: Magnitude of the significant trends (at a confidence level of 95 %) derived with the sea-
sonal Mann-Kendall (MK) test in association with the Theil-Sen (TS) slope estimator
for the normalized difference vegetation index (NDVI) at seasonal and annual temporal
scale. The magnitude of the trend values is denoted at decadal scale and is representa-
tive for the period between December 2002 and November 2020. Trends are visualized
for the seasons (a) winter, (b) pre-monsoon, (c) monsoon, and (d) post-monsoon. (e)
Trends at annual scale are only colored if they are significant and homogeneous over
the seasons. Modified after Uereyen et al. (2022b).

and southwest of the Ganges river basin (see Figure 6.3a) as well as in the north of the

Bay of Bengal and east of the Ganges river basin (see Figure 6.3b). In the monsoon season,

the number of non-significant trends was remarkably higher with 50.7 % of the grids, but

highest in the post-monsoon season with 67.5 % of the grids (see Figure 6.3c,d). The post-

monsoon season additionally featured the highest share of significant negative trends for

the NDVI with 2.8 % of the grids.

Next, seasonal trends for surface water area were mostly significantly positive (see Fig-

ure 6.4). For example, 40.5 % of the grids indicated significant positive trends and 7.0 %

negative trends in the pre-monsoons season (see Figure 6.4b). The percentages of signifi-

cant positive trends were also high in the monsoon and post-monsoon season with 43.8 %

and 40.7 %, respectively (see Figure 6.4c,d). Significant negative trends mostly occurred
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Figure 6.4: Same as Figure 6.3, but for surface water area (SWA). Modified after Uereyen et al.
(2022b).

in the winter season with a share of 11.1 % of the grids (see Figure 6.4a). In this regard,

negative trends were prevalent in the downstream area of the Himalaya, particularly along

the Brahmaputra river (see Figure 6.4a,b), in the wetlands south of the Shillong Plateau in

the Meghna river basin (see Figure 6.4c,d), and in the confluence region of the Ganges and

Brahmaputra rivers (see Figure 6.4c,d). In comparison, dominant clusters with significant

positive trends were striking in the GBM-Delta region (see Figure 6.4c,d) and along the In-

dus river in the downstream area (see Figure 6.4b,c,d). The seasonal trend analysis of snow

cover area indicated mostly stable observations in case of the upper Indus river basin (see

Figure 6.5). In the pre-monsoon season, significant positive trends were obtained regionally

for the upper Ganges and Brahmaputra river basin (see Figure 6.5b). On the contrary, in the

winter, monsoon, and post-monsoon season significant negative trends were dominant in

the upper Ganges and Brahmaputra river basin (see Figure 6.5a,c,d).
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Figure 6.5: Same as Figure 6.3, but for snow cover area (SCA). Modified after Uereyen et al.
(2022b).

6.3.1.3 Elevation-Dependent Trends

To analyze patterns in trends in dependence on elevation between December 2002 and

November 2020, the NDVI and snow cover area time series were intersected with elevation

zones and differentiated by the respective river basin (see Figure 6.6). Considering signifi-

cant trends in NDVI, these were mostly positive as already outlined in the previous results.

In addition, Figure 6.6a revealed that significant positive trends were particularly present

at very low altitudes throughout all river basins and temporal scales. It was also striking,

that during the monsoon season a significant negative trend was present in the Ganges river

basins between 3,000 and 3,500 m. Also, the Indus river basin exhibited the highest magni-

tude in significant positive trends during the monsoon season (see Figure 6.6a).

Results for surface water area showed significant positive trends at low altitudes (see Fig-

ure 6.6b). Additional significant positive trends with comparatively low magnitudes were

also present at higher altitudes during the monsoon and post-monsoon season. Regarding

snow cover area, the obtained results were largely non-significant. However, available sig-

nificant trends were mostly present at high altitudes. As already visualized in Figure 6.5,
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Figure 6.6: Seasonal and annual trends of the (a) normalized difference vegetation index (NDVI),
(b) surface water area (SWA), and (c) snow cover area (SCA) in dependence of elevation
zones, which are classified in 500 m intervals and differentiated by the respective river
basin. The first class covers altitudes between 0 and 500 meters. The last class covers
altitudes higher than 6,000 meters and only includes trends for SCA. Note that the NDVI
trend values were multiplied with 100 and in case of SCA and SWA divided by 1,000.
Modified after Uereyen et al. (2022b).

significant negative trends were pronounced during the post-monsoon season. This is also

reflected in Figure 6.6c, where the snow cover area appears to be characterized by signifi-

cant declines at altitudes above 4,500 m. On the other hand, trends during the pre-monsoon
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season in snow cover area, pointed towards significant increases in the Ganges and Brahma-

putra river basin above 5,000 m.

6.3.2 Analysis of Driving Variables

In comparison to the results in Chapter 5.3.3, the analyses of driving variables on NDVI,

surface water area, and snow cover area were conducted at grid and seasonal scale (Chap-

ter 6.3.2.1). Additionally, causal graphs were computed to evaluate indirect influences on

the three land surface variables, but also the interdependencies among all time series vari-

ables (Chapter 6.3.2.2). Finally, human influences on vegetation condition and surface water

area were analyzed (Chapter 6.3.2.3).

Figure 6.7: The spatial distribution of the dominant driving variables for the (a) normalized differ-
ence vegetation index (NDVI), (b) surface water area (SWA), and (c) snow cover area
(SCA) at seasonal scale. The driving variables include precipitation (P), surface solar ra-
diation downward (DSR), temperature (T), vapor pressure deficit (VPD), soil moisture
(SM), river discharge (Q), SWA, and SCA. Gray colored grids have no significant causal
link. The respective feature spaces include (a) NDVI: P, DSR, T, VPD, SM, SWA; (b)
SWA: P, DSR, T, Q, SCA; (c) SCA: P, DSR, T. Modified after Uereyen et al. (2022b).
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6.3.2.1 Direct Controls on Land Surface Variables at Grid Scale

Figure 6.7 illustrates the driving variables having the largest influence on the three land

surface variables NDVI, surface water area, and snow cover area at grid and seasonal scale.

The effect size of the causal links is denoted as the MCI cross-dependence value. As stated

before, the partial correlation coefficient was used during the MCI step of PCMCI (see

Chapter 5.2.3.3). Considering the controls on vegetation condition, soil moisture was found

to have the largest influence throughout all seasons (see Figure 6.7a). This positive coupling

between vegetation condition and soil moisture was most pronounced in the pre-monsoon

season accounting for 34 % of all grids. The identified temporal lag for this coupling oc-

curred largely at lag 1 and 2 (see Figure 6.8a). Over the seasons, the influence of further

driving variables varied regionally. For example, in the winter season, vegetation condi-

tion was found to be positively coupled with temperature in the northern Indus plain (see

Figure 6.7a) at a temporal lag of 1 (see Figure 6.8a). In areas of the Indus river basin,

where grassland and sparse vegetation was the dominant land cover, soil moisture was the

prevalent driver. A negative coupling between the NDVI and surface water area was most

Figure 6.8: The temporal lags of the identified causal links between the target and the respective
dominant driving variable at seasonal scale in Figure 6.7. The considered maximum
temporal lag was 6 time steps, corresponding to 3 months. One lag corresponds to a
biweekly timestep. Modified after Uereyen et al. (2022b).
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notably present during the monsoon and post-monsoon season, particularly in the down-

stream areas close to the outlets as well as the confluences of the Ganges and Brahmaputra

(see Figure 6.7a). This coupling was found to be instantaneous (see Figure 6.8a). Moreover,

vapor pressure deficit appeared to be strongly linked positively with vegetation condition

in the northeast of the Brahmaputra river basin in the pre-monsoon and monsoon season as

well as negatively in parts of the Indo-Gangetic Plain in the winter and monsoon season.

Here, the negative coupling occurred mostly at lags 1 and 2, whereas the positive links were

contemporaneous (see Figure 6.8a). Moreover, vegetation availability is temporally limited

by temperature at high altitudes of the Brahmaputra river basin. In the monsoon season,

vegetation in the upper Brahmaputra river basin was found to be largely influenced by wa-

ter availability through soil moisture at lag 1. Also, it was not possible to identify a causal

link for a part of the grids. These grids were mostly located in the Indo-Gangetic Plain.

Surface water area was found to be largely controlled positively by river discharge

throughout all seasons (see Figure 6.7b). This link mostly occurred at lag 0 and 1, while lag

0 was prevalent. Only in the monsoon season, links occurring at lag 1 were dominant. A

negative coupling was detected between surface water area and snow cover area at high al-

titudes. This link was present during the winter, pre-monsoon, and post-monsoon season at

lag 0. Precipitation only had the highest influence on surface water area for a small fraction

of the grids.

On the other hand, driving variables having the largest influence on snow cover area are

visualized in Figure 6.7c. Temperature was found to be negatively influencing snow cover

area for large parts of the upper river basins. This link was most pronounced during the

monsoon season. It is also noticeable that snow cover area and temperature were mostly

contemporaneously linked. A positive coupling between snow cover area and precipitation

was found to be eminent, particularly during the winter season and regionally in the pre-

monsoon and post-monsoon season as well. During winter, this link was prevailing in the

upper Indus river basin and in part also in the Ganges and Brahmaputra river basin. This

coupling was found to be dominant at a lag of 1 (see Figure 6.8c).

6.3.2.2 Interdependencies Among Time Series Variables at Basin Scale

Apart from the quantification of the driving variable having the largest influence on one

of the target variable NDVI, surface water area, and snow cover area, PCMCI computes

causal graphs enabling the analysis of interdependencies among all included time series

variables. A causal graph is represented by nodes which are describing the respective time

series and its autocorrelation as well as edges demonstrating the presence of causal links,

their direction, and their strength (see Chapter 5.2.3.3 and Chapter 6.2.2.2). In this regard,
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Figure 6.9: Causal graphs visualizing the interactions between the geoscientific time series, in-
cluding the (a) normalized difference vegetation index (NDVI), (b) surface water area
(SWA), and (c) snow cover area (SCA). The graphs are calculated for each subbasin and
then aggregated for the IGBM river basins at seasonal scale. At this, a maximum tempo-
ral lag of 3 time steps was used. Thin edges express low occurrence of the link at basin
scale and vice versa. Straight edges denote contemporaneous and curved edges lagged
links. The temporal lag is indicated by the number on the curved edges. Links where the
direction could not be resolved are indicated by circle ends. Following variables were
considered: precipitation (P), soil moisture (SM), temperature (T), surface solar radia-
tion downward (DSR), vapor pressure deficit (VPD), river discharge (Q), NDVI, SWA,
and SCA. Source: Uereyen et al. (2022b).

Figure 6.9 illustrates the derived causal process graphs for three feature spaces involving

one of the remote sensing-based land surface variable at seasonal temporal scale. These

graphs were processed by means of biweekly time series variables for both, each season

and one of the 117 subbasins separately (see Figure 4.1d). Next, all resulting causal graphs

(up to 117 per season and feature space) were aggregated into one graph per season and

feature space. Considering the causal process graphs in Figure 6.9, the frequency of the

127



Chapter 6 Evaluation of Seasonal Trends and Drivers of Land Surface Variables

occurrence of a causal link between two variables is represented by the width of the edges.

In detail, it can be seen that the identified causal links point towards changing relationships

over the seasons. For example, the causal graphs in Figure 6.9a include the NDVI and it is

noticeable that the positive relation between precipitation and soil moisture prevailed over

all seasons at a lag of 0 and 1. As depicted in the causal maps in Figure 6.7, the positive

coupling between NDVI and soil moisture was prevalent. Using the causal graph, it can

be concluded that the causal link between NDVI and soil moisture in the pre-monsoon

and monsoon season was indirectly controlled by precipitation. But, NDVI was directly

positively influenced by precipitation in almost all seasons with a temporal lag of 1 as

well. Also, it was found that vapor pressure deficit is negatively influencing NDVI directly

and via an indirect path over soil moisture during the pre-monsoon and monsoon season.

Radiation appears to control vegetation condition negatively through a direct and multiple

indirect paths, e.g. via soil moisture in the monsoon season. The adverse coupling between

radiation and precipitation was also dominant in almost all causal graphs. Furthermore,

temperature was directly controlling NDVI positively in the winter season, whereas this

relation was found to turn negative during the other seasons through indirect pathways.

A negative influence of soil moisture on temperature was also identified in the monsoon

season (Figure 6.9a).

Moreover, the causal graph in Figure 6.9b involves surface water area. The causal maps

in Figure 6.7b emphasized the largely existing positive coupling between surface water

area and river discharge. In comparison, the causal graphs at seasonal scale, indicated that

precipitation controls surface water area directly in the pre-monsoon, monsoon, and post-

monsoon season. In the winter season, it was found that precipitation indirectly controls

surface water through river discharge. This indirect path was also found in the monsoon and

post-monsoon seasons at a temporal lag of 0 and 1. A direct negative control of radiation

on surface water area could be detected during the monsoon and post-monsoon season at a

temporal lag of 1 and 2, respectively. This negative coupling was also found via an indirect

path through river discharge with a temporal lag of 1.

Considering the environmental controls on snow cover area in Figure 6.9c, it was found

that many connections appear to be occurring contemporaneously. The previously identi-

fied negative control of temperature on snow cover area was also persistent in the causal

graphs. Here, it has to be noted that during the post-monsoon season, the direction of in-

fluence changed from snow cover area towards temperature. In accordance with the causal

maps in Figure 6.7, a positive coupling between snow cover area and precipitation could be

identified in the causal graphs as well. This positive connection was found in every season.
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Moreover, radiation was negatively coupled to snow cover area in most of the seasons and

in the winter season, precipitation was found to influence temperature negatively.

6.3.2.3 Analysis of Anthropogenic Influences

A further detailed analysis of NDVI trends stratified by land cover and land use data

was conducted and the results are listed in Table 6.4. This table includes seasonal and

annual trends being differentiated by the classes rainfed cropland, irrigated cropland, forest,

and grassland. The left panel covers trend values for the entire study period, whereas the

right panel includes the difference between the trends of the second and first period. The

obtained significant trends covering the entire study period at annual scale indicated that the

magnitude was highest for irrigated croplands. In terms of seasonal trends, the magnitude

of significant trends for irrigated croplands is comparatively high as well. Significant trends

of rainfed croplands also resulted in relatively high magnitudes. At seasonal scale, the trend

values for rainfed and irrigated croplands were particularly pronounced in the winter, pre-

monsoon, and monsoon season. Considering the difference between the two periods on the

Table 6.4: Annual and seasonal trends of normalized difference vegetation index (NDVI) stratified
by vegetation classes for the period between December 2002 and November 2020. The
right panel includes the difference of trend values between the second (2010–2020) and
first (2002–2012) period. All trend values are computed at decadal scale. Bold values
represent statistically significant trends at a confidence level of 95 %. Bold values on
the right panel denote significant trends in both periods. Basins: Indus (I), Ganges (G),
Brahmaputra (B), Meghna (M), GBM-Delta (GBMD). Source: Uereyen et al. (2022b).

Trend 2010–2020 – Trend 2002–2012
Basin Class DJF MAM JJAS ON Annual DJF MAM JJAS ON Annual

I Cropland 0.031 0.029 0.030 0.010 0.029 (2)0.029 (2)0.017 –0.019 –0.017 (2)0.010
Irrigation 0.051 0.038 0.046 0.019 0.042 (2)0.080 –0.002 0.002 –0.055 0.004
Forest 0.025 0.036 0.017 0.013 0.021 (2)0.030 (2)0.035 (2)0.012 –0.038 0.017
Grassland 0.013 0.018 0.011 0.006 0.012 (2)0.008 (2)0.010 –0.010 –0.030 –0.003

G Cropland 0.060 0.033 0.033 0.008 0.033 –0.023 0.015 0.009 0.002 0.012
Irrigation 0.062 0.041 0.036 0.004 0.038 0.011 0.024 0.000 0.000 0.012
Forest 0.022 0.027 0.009 0.013 0.017 0.027 0.061 (2)0.009 0.001 (2)0.018
Grassland 0.027 0.021 0.008 0.019 0.020 0.005 0.018 0.016 0.001 0.009

B Cropland 0.021 0.028 0.021 0.016 0.021 0.099 (2)0.124 (1)–0.055 0.000 (2)0.049
Irrigation 0.043 0.065 0.030 0.035 0.039 (2)0.081 (2)0.094 (1)–0.094 –0.010 0.028
Forest 0.014 0.016 0.002 0.020 0.015 0.067 (2)0.064 (2)0.009 –0.034 (2)0.035
Grassland 0.010 0.005 0.004 0.015 0.008 0.012 (2)0.001 0.011 0.006 0.007

M Cropland 0.025 0.043 0.031 0.009 0.028 (2)0.109 (2)0.106 –0.028 –0.001 (2)0.045
Irrigation 0.038 0.046 0.056 0.028 0.042 (2)0.103 (2)0.046 –0.053 –0.038 0.011
Forest 0.022 0.034 0.004 0.011 0.017 0.096 (2)0.110 –0.016 –0.007 (2)0.040
Grassland 0.017 0.014 0.001 0.019 0.015 0.055 (2)0.072 (2)–0.008 –0.007 (2)0.034

GBMD Cropland 0.019 0.036 0.039 0.011 0.028 (2)0.032 0.144 (2)0.032 0.029 (2)0.043
Irrigation 0.043 0.061 0.037 0.026 0.040 0.028 (2)0.065 –0.003 (2)0.030 0.024
Forest 0.023 0.024 0.006 0.016 0.019 (2)0.092 (2)0.055 (2)0.023 (2)0.025 (2)0.049
Grassland 0.016 0.097 0.045 0.008 0.031 0.123 0.161 (2)0.067 (2)0.022 (2)0.085

(1)
Significant trend during first period.

(2)
Significant trend during second period.
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Figure 6.10: Relation between the trends of the land surface variables (a–c) normalized difference
vegetation index (NDVI) and (d–f) surface water area (SWA) with trends derived from
annual anthropogenic time series. First, the trends were calculated for each subbasin
at annual scale and then correlated with each other. Each dot represents a subbasin.
Modified after Uereyen et al. (2022b).

right panel of Table 6.4, the results indicated increasing magnitudes of the significant trends

for most of the river basins and vegetation classes.

To evaluate the potential influence of anthropogenic factors on vegetation condition as

well as surface water area, the computed annual trends of the respective time series were

correlated at subbasins scale. The subbasins are illustrated in Figure 4.1d. In this regard,

the results of the correlation analysis are illustrated in Figure 6.10. A linear positive rela-

tion could be identified between the NDVI trends and trends of nighttime lights, population

counts, and relative settlement area (see Figure 6.10a,b,c). As an example, Figure 6.10c

indicates that high NDVI trends in subbasins were found to be associated with relative

settlement growth. On the other hand, the obtained correlation coefficients were negative

for the trends in surface water area and anthropogenic variables (see Figure 6.10d,e,f). For

example, the linear relations indicated that surface water area increased in subbasins with

comparatively low trends in population counts and relative settlement growth (see Fig-

ure 6.10e,f).

6.4 Discussion

The presented results on seasonal trends revealed changes in the investigated land sur-

face variables vegetation condition, surface water area, and snow cover area. For the first

time, analyses on direct as well as indirect links within a multivariate feature space, in-
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cluding multiple remote sensing-based land surface variables unveiled interdependencies

in consideration of temporal lags for the transboundary river basins in South Asia using

PCMCI. Additional trend and correlation analyses were performed to investigate anthro-

pogenic influences on the land surface in the highly populated river basins.

6.4.1 Seasonal Trends and Drivers of Land Surface Dynamics

6.4.1.1 Vegetation Condition

The results of the monotonic trend analyses revealed significant positive trends for the

NDVI being largely consistent at seasonal temporal scale and spatially at basin as well as

grid scale. Comparable significant increasing trends in vegetation condition and leaf area

index were reported in previous studies in parts of the investigated IGBM river basins at

annual scale (e.g. Chen et al. 2019; Lamchin et al. 2018; Mishra and Mainali 2017; Sarmah

et al. 2018). Here, the trend analyses provided detailed insights in the spatial distribution of

seasonal trends. Additionally, seasonal trend analyses were performed for spatially stratified

regions by land cover and land use classes as well as elevation zones until the end of 2020.

Based on these detailed assessments, it was possible to demonstrate the significant contri-

bution of irrigated and rainfed croplands to the increasing trends in vegetation condition

(see Figure 6.3 and Table 6.4). Moreover, human influence was evaluated based on the cor-

relation of trends in annual time series of anthropogenic indicators and trends of annually

aggregated NDVI values at subbasin scale. The derived significant positive correlation was

found to support the assumption that greening vegetation might be strongly controlled by

human activities and land use management. Similar findings were also reported by Mishra

and Mainali (2017). Also, the elevation-dependent trend analysis pointed towards increas-

ing vegetation greening at very high altitudes as well (see Figure 6.6a). The expansion of

vegetation cover in the Himalaya region at altitudes up to 6,000 meters was also investi-

gated by Anderson et al. (2020). Likewise, the authors identified significant positive trends

for green vegetation cover at high altitudes. Furthermore, the results of the additional trend

analysis over the two study periods emphasized that the vegetation greening is ongoing and

significantly higher in the last part of the investigated period (2010–2020) compared to the

first (see Table 6.3). These increases could be favored by intensified land use and other hu-

man interventions such as irrigation or fertilization (Mishra and Mainali, 2017). This was

also supported by the findings with respect to the calculated differences in NDVI trends

being stratified by land cover and land use classes (see Table 6.4).

Regarding the evaluation of climatic and hydrological drivers using a causal discovery

algorithm, the delineated causal maps and graphs pointed towards the importance of water
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availability for vegetation condition (see Figure 6.7a and Figure 6.9a). The dominance of

soil moisture and precipitation, which were largely positively coupled with vegetation con-

dition, was particularly pronounced in the arid and semi-arid regions of the lower Indus and

Ganges river basins. Despite this coupling being present throughout all seasons, it appeared

to be most important in the dry pre-monsoon period (see Figure 6.7a and Figure 6.9a). For

example, in the pre-monsoon season soil moisture and NDVI were both decreasing in the

northern Ganges river basin. With the onset of the monsoon in June, both the NDVI and

soil moisture started to increase. These decreases in NDVI at the end of the winter season

or in the pre-monsoon season could be very likely related with the harvest of winter crops

(Bokhari et al., 2017; Nageswararao et al., 2016).

As already noted, warming temperatures appear to favor vegetation expansion at high

altitudes (Anderson et al., 2020; Kumar et al., 2022). However, the most influential envi-

ronmental control at high elevation areas was found to be soil moisture with a temporal

lag of 1 (see Figure 6.7a and Figure 6.8a). Moreover, another important factor influencing

the vegetation condition could be vapor pressure deficit. Vapor pressure deficit is a crucial

variable with respect to the atmospheric water demand for plants. Increases in vapor pres-

sure deficit can limit the photosynthetic activity of vegetation (Konings et al., 2017; Yuan

et al., 2019). Particularly in the dry pre-monsoon season vapor pressure deficit increases

considerably in parts of the Indo-Gangetic Plain, hence, resulting in a negative coupling

with NDVI (see Figure 6.7a). Together with a late onset of monsoon rainfall and reduced

soil moisture, changes in vapor pressure deficit could likely exacerbate plant growth (Yuan

et al., 2019).

Considering missing causal links, it was noticeable that these were mostly prevalent in

the Indo-Gangetic Plain, particularly in the winter and post-monsoon season as well as in

the monsoon season in the central Indus river basin (see Figure 6.7a). Groundwater abstrac-

tion is widespread in this region and is used for irrigation of agricultural areas (Biemans

et al., 2019; MacDonald et al., 2016). Therefore, it could be very likely considered as an

important factor in influencing vegetation greenness. Yet, the time series on terrestrial wa-

ter storage anomaly was not included in the causal analysis, because of the very low spatial

resolution and the limited temporal availability compared to the other time series (see Chap-

ter 6.1). On the other hand, the detected negative coupling of NDVI and surface water area

could be explained by seasonal changes, i.e. increases in surface water area, and accom-

panied decreases in the NDVI. Spatially, this causal link was particularly dominant along

the large river streams of the Ganges and Brahmaputra and their confluence region, in parts

of the southern Indus river, and in the wetlands of the Meghna river basin. Temporally,

this connection was most prevalent during the monsoon and post-monsoon season (see Fig-
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ure 6.7a) and could be annually exacerbated by severe flooding events, e.g. in the Indus

river basin (Atif et al., 2021) or the Brahmaputra and Meghna river basin (Gouweleeuw

et al., 2018).

6.4.1.2 Surface Water Area

Moreover, the seasonal trend analysis of surface water area, which was generated by

merging the DLR Global WaterPack and the JRC Global Surface Water Layer, indicated

mostly significant positive trends at grid (see Figure 6.4) and basin scale (see Table 6.1).

For example, at grid scale, significant positive trends appeared to be dominant along the

lower Indus river, particularly, in the pre-monsoon and monsoon season. These significant

trends were also reflected at basin scale for the pre-monsoon and monsoon season (see

Table 6.1). As already noted in Chapter 4.2.2, the river discharge of the Indus river is pri-

marily depending on meltwater from glaciers and snow. In this context, Lutz et al. (2014)

reported modeling results projecting an increase in river discharge in the Indus river basin

until 2050. Similar findings, were reported by Pritchard (2019) as well. Here, the increasing

trends in the Indus river basin might be also linked to the lately occurring flood events (Atif

et al., 2021), which led to above-average surface water area extent in the last years of the

investigated period (see Figure 6.2).

However, it was also found that terrestrial water storage anomaly reveals significant

negative trends for all of the investigated river basins (see Figure 6.2 and Table 6.1). These

negative trends were significant at seasonal as well as annual scale. Groundwater in the

IGBM river basin appears to be largely withdrawn for crop irrigation in areas with arid and

semi-arid climate (Rodell et al., 2018). In addition, the decline in terrestrial water storage

could worsen in years with precipitation deficits and droughts (Dangar and Mishra, 2021;

Rodell et al., 2018). Likewise, Zhu et al. (2021) reported similar findings on the identified

negative trends in terrestrial water storage in the Indus river basin. Apart from irrigation

purposes, water use and supply is also pressured by growing population, hydropower, and

further domestic needs (Biemans et al., 2019; Viviroli et al., 2020). In this regard, the de-

tected mismatch between the significant trends in surface water area and terrestrial water

storage might be explained by the dependence of surface water area on precipitation as well

as meltwater from glaciers and snow. The contributions of precipitation and meltwater to

the river discharge could have potentially prevented a decline in surface water area in the

studied period. In this context, it was also shown that surface water area was largely driven

by river discharge in the downstream areas of the river basins (see Figure 6.7b). Although, it

was also revealed that the analysis of direct influences on a variable might not be sufficient

using causal maps, since the additional causal graphs highlighted that river discharge was
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largely influenced by precipitation. Thus, precipitation was also important for the variable

surface water area through an indirect path (P +→ Q +→ SWA). Additional correlation anal-

yses were performed to evaluate the human influence on surface water area and showed a

weak negative relation (see Figure 6.10d,e,f). This correlation analysis suggests e.g., that

an increase in surface water area was more likely taking place in areas with a comparatively

low population and settlement growth.

6.4.1.3 Snow Cover Area

As outlined previously, meltwater from glaciers and snow in the Himalaya-Karakoram

region greatly contribute to the freshwater resources in South Asian river basins. Therefore,

the assessment of changes in seasonal snow cover area is of great importance to quantify

the impacts of climate change and to understand potential consequences for freshwater

supply in the future (Kraaijenbrink et al., 2021; Miles et al., 2021). In this regard, seasonal

snow cover in the Himalaya-Karakoram cumulates between the post-monsoon and winter

season (see Figure 4.8). The maximum extent is generally reached in February or March

and ablation starts in the pre-monsoon season.

So far, the detailed analyses of seasonal trends in snow cover area in the Himalaya-

Karakoram remained understudied for the period December 2002 to November 2020. Re-

cent investigations mostly focused on annual trends and a study period until 2017 (Ackroyd

et al., 2021; Desinayak et al., 2022) and 2018 (Notarnicola, 2020). The obtained significant

trends were mostly significantly negative during the winter, monsoon, and post-monsoon

season for the upper Ganges and Brahmaputra river basins. In the pre-monsoon season

significant positive trends were found in parts for the upper Indus, Ganges, and Brahma-

putra river basins (see Figure 6.5). In this context, it has to be noted that most of the grids

resulted in non-significant trend metrics indicating stable snow cover area for the IGBM

river basins. At basin scale, significant negative trends were only obtained for the Ganges

river basin in the monsoon and the Brahmaputra river basin in the post-monsoon season

(see Table 6.1). Likewise, this significant negative trend in the Brahmaputra river basin was

also reflected in the elevation-dependent trend analysis, particularly in the post-monsoon

season and at altitudes higher than 4,500 m (see Figure 6.6). Considering the identified de-

creases in snow cover area, similar findings were reported for the Brahmaputra river basin,

specifically at higher altitudes (Ackroyd et al., 2021). Also, the additional trend analyses

for the two periods resulted in non-significant trends, but generally in negative tendencies

(see Table 6.3). These findings were in agreement with a study investigating snow cover

area between 2003–2012 for subbasins covering in parts the IGBM river basins (Gurung

et al., 2017).
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In regards of the determined direct controls on snow cover area at seasonal and grid

scale, the previously reported negative coupling with temperature (see Chapter 5.3.3) was

also persistent at seasonal scale. Yet, the temporally more detailed analyses at seasonal tem-

poral scale revealed the particular positive coupling with precipitation in the winter and in

parts in the pre-monsoon and post-monsoon season as well. This strong coupling, partic-

ularly in the upper Indus river basin, can be explained by the westerly disturbances (see

Figure 4.3) (Cannon et al., 2015; Das and Meher, 2019; Farinotti et al., 2020). Next, the

identified negative coupling with temperature was mostly instantaneous (see Figure 6.8).

This negative link was also existing in the computed causal graphs (see Figure 6.9). How-

ever, with emerging snowfall in the pre-monsoon season, the direction of the detected neg-

ative coupling turned from snow cover area towards temperature. This finding might be ex-

plained by the snow-albedo feedback, potentially leading to cooler air temperatures through

extended snow cover area. In addition, studies pointed towards elevation-dependent warm-

ing, where snow cover appears to prevent warming at altitudes higher than 5,000 m (Gao

et al., 2018; Zhang et al., 2021).

6.4.2 Potential Future Implications for the Indo-Gangetic River Basins

In times of amplified climate change, warming temperatures will largely control land

surface dynamics in the Indo-Gangetic river basins. Future projections indicated an above-

average increase in temperatures, e.g. a global average increase of 1.5◦C would imply a

mean increase of 2.1◦C in the IGBM river basins, being identified as a climate change

hotspot (Lutz et al., 2018). In the past, particularly regions at high altitudes were affected by

increasing temperatures (Pepin et al., 2015), however, being limited to areas below 5,000 m

(Gao et al., 2018). Future projections pointed towards ongoing temperature increase over

high mountain areas (Mondal et al., 2021; Palazzi et al., 2016). Changes in glacier mass

and seasonal snow cover will be a consequence of ongoing warming temperatures. As pre-

sented before, the trend analyses revealed significant declines in snow cover area seasonally

and regionally, specifically in the upper Ganges and Brahmaputra river basins. On the other

hand, snow cover area in the upper Indus river basin was found to remain stable, which

appears to be linked to the Karakoram anomaly (Dimri, 2021). Over the past two decades,

glacier mass budgets were even found to be positive in the Karakoram, but in view of global

warming it is not likely that the positive glacier mass budgets and the Karakoram anomaly

will continue (Farinotti et al., 2020). In this regard, future projections indicated consider-

able decreases in snow cover area in the Himalaya as well as Karakoram mountains with

decreases in the Himalayas being more pronounced (Provenzale et al., 2014). Additional

future projections showed similar findings with respect to decreasing snow depth (Wei and

Dong, 2015) and shorter snow cover duration (Ji and Kang, 2012).
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Among other sectors, the population and food production in the Indo-Gangetic Plain

was shown to heavily depend on freshwater resources from monsoon rainfall as well as

glaciers and snow. The dependence on water resources from mountains is particularly high

in the arid and semi-arid regions, including the Indus and in parts the Ganges river basin

(Biemans et al., 2019; Pritchard, 2019; Kraaijenbrink et al., 2021; Viviroli et al., 2020). In

this regard, changes in precipitation patterns and seasonal snow cover could threaten the

freshwater supply and agricultural productivity. With warming temperatures, precipitation

over the IGBM river basins will very likely increase (IPCC, 2021; Lutz et al., 2018; Mondal

et al., 2021). For example, the northern parts of the Indus river basin will be wetter, but the

southern parts will be hotter with more intense drought events (Mondal et al., 2021). In

addition, Lutz et al. (2018) reported that the length of dry periods will likely increase in

the Ganges river basin. In this connection, investigations outlined that heat stress in the

Indo-Gangetic Plain appears to be counteracted by agricultural irrigation and increased soil

moisture (Ambika and Mishra, 2021; Mishra et al., 2020). On the contrary, Lutz et al.

(2018) also stated that monsoon precipitation and extreme precipitation events will very

likely increase, particularly in the Ganges river basin. Accordingly, flood risk appears to

enhance considerably in the future (Lutz et al., 2018; Uhe et al., 2019). Flooding events in

these river basins cause high economic damage due to crop and infrastructure loss, but also

high death cases such as in the monsoon flooding in 2017, where over 1,200 people died

(Atif et al., 2021; Uhe et al., 2019). Even though an increase in precipitation might lead to a

potentially higher water availability, it might be of disadvantage considering the previously

mentioned flooding events.

As noted, heat stress and drought events appear to increase in the future. Apart from

negative influences on the human well-being, agricultural production is also vulnerable

to climate variability due to its dependency on weather conditions and water availability

(Birthal et al., 2021; Priyadarshini and Abhilash, 2020). The vulnerability of this sector is

also amplified by the intensification and extensification of agricultural land use in parts of

the IGBM river basins (Song et al., 2018). In this regard, Priyadarshini and Abhilash (2020)

allude on the transition towards sustainable agriculture, which includes efficient resource

management and usage of enhanced seed varieties. Overall, with climate change and human

influences shaping the Earth’s surface, the investigation and quantification of land surface

dynamics remains an important task.

6.5 Summary

In this chapter, new insights were provided with respect to land surface dynamics in the

Indus, Ganges, Brahmaputra, Meghna river basins by means of the multi-faceted seasonal
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trend analyses and the evaluation of direct and indirect interdependencies in a multivariate

feature space. Through the exploitation of the full Terra and Aqua MODIS archives, gap-

free composites were generated for the Normalized Difference Vegetation Index (NDVI)

being an indicator for vegetation condition. In addition, surface water area was charac-

terized by merging both the DLR Global WaterPack at high temporal resolution and the

JRC Global Surface Water Layer at relatively high spatial resolution. Snow cover area was

investigated using the DLR Global SnowPack. In combination with further climatic and

hydrological variables, a harmonized multivariate feature space was generated with all time

series having a biweekly temporal resolution covering the period between December 2002

and November 2020. Additional annual time series on anthropogenic variables were used to

analyze the human influence. Considering the trend analyses, the results can be summarized

as follows:

• Significant trends in vegetation condition were largely positive. At basin scale, the

magnitude of significant trends was highest during the winter (Indus and Ganges river

basin) and in the pre-monsoon season (Brahmaputra and Meghna river basin and the

GBM-Delta). For example, in the Indus river basin, the magnitude of the annual trend

was 0.040 NDVI decade−1. Additional analyses showed that irrigated and rainfed

croplands in the Indus river basin contributed most to the observed trend magnitudes,

with values of 0.042 and 0.029 NDVI decade−1, respectively. In addition, it was

found that the magnitude of trends increased in the second part of the studied period.

The elevation-dependent trends indicated largely significant positive trends as well.

• At annual and basin scale, trends of surface water area were found to be signifi-

cant positive in the Indus (837 km2 decade−1) and Ganges river basins (677 km2

decade−1) as well as in the GBM-Delta (340 km2 decade−1). To provide some con-

text, in the Indus river basin, the long-term average in surface water area was 9,054

±1,230 km2 in the winter and 11,707 ±2,436 km2 in the monsoon season. The largest

variations in surface water area between the seasons were found in the Ganges (pre-

monsoon season: 7,419 ±1,242 km2, post-monsoon season: 13,732 ±1,884 km2) and

Meghna river basin (pre-monsoon season: 2,124 ±1,204 km2, monsoon season: 8,419

±1,657 km2). Furthermore, the annually aggregated time series indicated above-

normal surface water area extent since 2010 in the Indus river basin, which could

potentially be linked to flooding events. At grid and seasonal scale, regions with sig-

nificant negative trends were striking in the Meghna river basin and the GBM-Delta.

A mismatch between trends in terrestrial water storage anomaly and surface water

area was identified as well.
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• Considering snow cover area, the derived trends were non-significant at annual and

basin scale, but significant negative trends resulted for the Ganges river basin in the

monsoon season (–2,080 km2 decade−1) as well as for the Brahmaputra river basin

in the post-monsoon season (–7,301 km2 decade−1). In this context, the long-term

average of snow cover area in the monsoon season was 10,419 ±2,760 km2 in the

Ganges and 42,398 ±18,407 km2 in the Brahmaputra river basin during the post-

monsoon season. The significant negative trends were also reflected in the elevation-

dependent trend analysis. In the Indus river basin, snow cover area was found to

be largest among the investigated river basins and remained stable with a long-term

average of 215,979 ±42,589 km2 in the winter season.

Furthermore, direct and indirect seasonal controls on the land surface variables were

investigated using causal graphs. Water availability through the soil and atmosphere was

found to influence the NDVI at grid scale. Seasonally and regionally, positive and negative

couplings with NDVI were found to be dominant for temperature and surface water area,

respectively. On the other hand, surface water area was largely positively coupled to river

discharge in the lower river basins. In the upper river basins, snow cover area and tempera-

ture were linked negatively and positively with surface water area, respectively. Moreover,

with variations in their spatial distribution over the seasons, temperature and precipitation

were strongly coupled with snow cover area. As expected, the influence of precipitation was

particularly high during the winter. At basin scale, the causal graphs revealed known mecha-

nisms including the snow-albedo feedback or the cooling effect of soil moisture on surface

air temperature. In this regard, the potential of causal graphs in detecting indirect links

was highlighted in comparison to causal maps. Moreover, the analysis of anthropogenic

influences on vegetation greenness resulted in significant positive correlations most likely

suggesting an impact of land use management.

Here, the exploration of the interdependencies across spheres provided new and valuable

insights into the interpretation of land surface dynamics and driving variables. Overall, the

presented findings in this chapter are of great importance for the understanding and interpre-

tation of seasonal trends and drivers of land surface variables for the Indo-Gangetic river

basins and beyond. The Indo-Gangetic river basins are considered as hotspots of climate

change with future projections indicating above-average warming, particularly at higher

elevations. With amplified climate and environmental change, longer Earth observation-

based time series on land surface variables will further enhance our understanding of the

interdependencies with climatic, hydrological, and anthropogenic variables.
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Synthesis and Outlook

This final chapter provides a synthesis of the conclusive findings of this dissertation.

More specifically, Chapter 7.1 summarizes and discusses the results with respect to the

defined research questions in Chapter 1.3. Afterwards, Chapter 7.2 focuses on future chal-

lenges and opportunities of Earth observation-based multivariate time series analyses across

spheres.

7.1 Summary and Conclusive Findings

In the introduction of this dissertation, impacts of climate change on the Earth’s land sur-

face covering diverse spheres of the Earth system were summarized, including anticipated

changes of the cryosphere and biosphere as well as the importance of the anthroposphere.

At the same time, it was emphasized that the quantification and evaluation of interdepen-

dencies within the components of the Earth system remain a challenging task due to its

complexity. Accordingly, the importance and need for multivariate time series analyses as

well as the relevance and suitability of river basins as a geographical entity involving the

major components of the Earth system were stressed. In this regard, Earth observation (EO)

provides long-term measurements encompassing a multitude of variables being represen-

tative for the components of the Earth system and enables large-scale analyses to quantify,

analyze, and attribute land surface dynamics.

This dissertation addressed the exploration of multivariate time series, primarily using

EO time series on land surface variables, with the aim of jointly characterizing land surface

dynamics across spheres over the last two decades. Here, the main focus was on the remote

sensing-based land surface variables vegetation condition, surface water area, and snow

cover area. Additional climatic, hydrological, and anthropogenic time series were used to

generate a multivariate feature space allowing for the assessment of their influence on the

three land surface variables as well as the interdependencies between all investigated time
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series variables. Apart from the influencing factors, detailed analyses on trends and pheno-

logical metrics were conducted to quantify land surface change for the investigated period.

To this aim, the implementation of a methodological framework for both the harmoniza-

tion of the multi-source time series and the application of statistical time series analyses

was required. In this context, several research questions were defined as part of the primary

research objectives in Chapter 1.3. Throughout this thesis, Chapters 2–6 dealt with answer-

ing the defined research questions. In addition, the following paragraphs provide a short

summary thereof.

Research Questions 1
• What is the potential of Earth observation time series for the analysis of

land surface dynamics?

• Which Earth observation and further geoscientific time series are available?

• What is the geographical relevance of large river basins for multivariate
time series analyses?

• How many studies investigated large river basins and what was their spatio-
temporal coverage and resolution?

• Which spheres were most frequently analyzed in the context of large river
basins and which spaceborne remote sensing instruments were most fre-
quently utilized?

• Which research gaps exist with respect to remote sensing-based river basin
analyses and how can they be addressed?

In Chapter 2, general background information on time series was provided. In this con-

text, EO data provide the great potential to quantify and analyze land surface dynamics over

already multiple decades up to a spatial resolution of 30 m. Using EO time series, an abun-

dance of land surface features across spheres can be characterized and analyzed. However,

one has to keep in mind that remote sensing time series with comparatively high spatial

resolution come at the cost of a reduced temporal resolution and vice versa. This needs to

be considered to assess the suitability of EO time series for long-term and large-scale anal-

yses. In this regard, available remote sensing time series as well as subsequently generated

value-added data products were presented in detail, including the Terra and Aqua MODIS

sensors that provide up to daily imagery with global coverage since 2000 and 2002, re-

spectively. MODIS imagery has a spatial resolution of up to 250 m. Additional time series

characterizing, e.g. the state of climatic and hydrological variables were presented and their

importance with regards to performing multivariate time series analyses was highlighted.

Overall, the lack and importance of multivariate time series analyses incorporating the joint

consideration of diverse remote sensing-based land surface features in combination with

further driving variables was outlined.
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Furthermore, the geographical entity of river basins was introduced in Chapter 1.1.2

and Chapter 3. River basins are functional units dividing the Earth’s land surface into dis-

tinct catchments based on their topographical characteristics irrespective of administrative

boundaries. Therefore, as natural parts of the Earth system, river basins are particularly suit-

able for multivariate time series analyses to quantify and evaluate land surface dynamics

including diverse spheres. In this context, a comprehensive literature review was performed

to investigate the availability of EO-based analyses of the worldwide 28 largest river basins.

In this review, studies focusing on the primary application of remote sensing data to ana-

lyze land surface characteristics within the spatial entity of river basins were considered.

In total, 287 relevant research articles were identified. It was found that around 86 % of

the studies were conducted at regional and subbasin scale. At the same time, ∼14 % of

the studies performed investigations including the entire area of a respective river basin.

The most investigated river basins were found to be located in South America, Southeast

Asia, and East Asia. In the advent of open data policies as well as the granted free access

to cloud computing services such as the Google Earth Engine, remote sensing time series

applications were found to be increasing, particularly since 2011. In general, the average

investigation period of all studies was 10 years with an increasing tendency since 2009.

However, only few studies focused on the remote sensing-based application of multivari-

ate time series analyses to characterize land surface features across spheres. Overall, most

studies were found to investigate single EO-based land surface variables such as vegeta-

tion greenness or surface water area in consideration of relevant environmental drivers. In

this context, the most frequently investigated land surface variables included vegetation pa-

rameters, surface water area and inundation dynamics, as well as land cover and land use

classifications. In this connection, optical (i.e. Landsat, MODIS, NOAA-AVHRR) and syn-

thetic aperture radar (i.e. Sentinel-1, ALOS-PALSAR) remote sensing imagery were found

to be mostly used.

In compliance with the findings of the literature review, several research gaps were iden-

tified with respect to EO-based river basin analyses. To start with, applications using remote

sensing data were rarely performed at the entire scale of a respective river basin. In this re-

gard, the investigation of transboundary river basins was found to be particularly limited

due to the insufficient spatial coverage of the investigations with respect to the geograph-

ical entity of the respective river basins. In many cases, studies rather focused on selected

riparian countries only. Furthermore, the joint analysis of remote sensing-based multivari-

ate time series involving multiple land surface features was found to be understudied as

well. Hence, the primal conclusions of the review were that future research should (1) ex-

ploit the potential of spaceborne remote sensing providing a multitude of observations and

data products representative for various components of the Earth system, (2) focus on large
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river basins irrespective of administrative boundaries, and (3) develop a methodological

framework that is transferable in space and time for multivariate time series analyses.

To address these gaps, the transboundary river basins Indus, Ganges, Brahmaputra, and

Meghna (IGBM) were selected as study area to develop and test the methodological frame-

work. The geographical features of these transboundary river basins were described in

Chapter 4. Overall, the selected study area is considered as a climate change hotspot and

has a size of approximately 2.8 million km2, corresponding to an area eight times the size

of Germany. Also, over 1.1 billion people live in these river basins accounting for around

14 % of the world’s population. In accordance with the defined research objectives of this

thesis (see Chapter 1.3), the investigated river basins were particularly suitable for multi-

variate time series analyses and, thus, enabled a multi-faceted investigation of land surface

dynamics. In this regard, the upper Indus, Ganges, and Brahmaputra river basins include

parts of High Mountain Asia, holding the largest ice mass outside of the polar regions, be-

ing representative for the cryosphere. On the other hand, the lower river basins cover the

Indo-Gangetic Plain where human pressure on the environment is high, with urban and in-

tensive agricultural land use being dominant. Altogether, this geographical setting enables

a detailed evaluation of the interplays between multiple spheres, including the anthropo-

sphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere.

Research Questions 2
• What are the challenges in using multi-source time series for joint analyses

to characterize land surface dynamics and how can they be addressed?

• Which novel methods can be integrated in the methodological framework to
analyze land surface dynamics and interdependencies across spheres?

• What needs to be considered to ensure the transferability of the developed
methodological framework to any spatial entity or time series data?

• Are the results of the quantitative analyses of land surface dynamics consis-
tent with existing literature?

Next, as outlined in Chapter 5, a methodological framework was developed and im-

plemented on an internal high-performance computing (HPC) environment at the German

Aerospace Center (DLR). In this regard, a particular challenge was the joint use of multi-

source time series coming with different data properties, e.g., concerning their data format,

data quality, as well as spatial and temporal resolution. To enable a synergistic analysis of

all time series variables, the feature space needs to be harmonized in terms of the spatial

and temporal resolution of the input variables. In order to accomplish these requirements,

a respective methodological framework was required. With more detail, a methodological

framework that is easy-to-implement, time efficient with respect to data processing and sta-
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tistical analyses, and flexible in consideration of the integration of data analyses modules

and the use of respective programming languages was envisioned. The developed frame-

work was implemented by means of the setup of corresponding docker containers, which

were then deployed on the HPC environment. Ultimately, the framework combines (1) the

ingestion of the time series on the HPC infrastructure, (2) the preprocessing of the univariate

time series in consideration of their specific requirements, (3) the preparation of a harmo-

nized feature space, and (4) the application of statistical time series analysis techniques to

characterize land surface dynamics and assess driving variables.

In this thesis, land surface dynamics were characterized using remote sensing-based time

series on vegetation condition, surface water area, and snow cover area over the last two

decades for the transboundary Indus, Ganges, Brahmaputra, and Meghna river basins. The

time series on vegetation condition was based on MODIS normalized difference vegetation

index (NDVI) data. Surface water area was characterized by using the DLR Global Water-

Pack. Likewise, the DLR Global SnowPack was used for representation of snow cover area.

To quantitatively asses land surface dynamics, several statistical analysis methods, which

were integrated as modules into the framework, were utilized. First, the Mann-Kendall trend

test was applied in combination with the Theil-Sen slope estimator to investigate the exis-

tence of significant trends and their magnitude, respectively. In this context, the necessity to

consider autocorrelation and seasonality of the time series was elaborated in detail. To this

end, the application of respective prewhitening algorithms was tested. Second, the Timesat

tool was employed to derive phenological metrics and to assess changes in seasonal charac-

teristics between two investigated decades. Third, the causal discovery algorithm Peter and

Clark Momentary Conditional Independence (PCMCI) was used to analyze the influence of

relevant climatic and hydrological time series on vegetation condition, surface water area,

and snow cover area. An important objective regarding the methodological framework was

its transferability. In fact, due to the implementation of this framework with globally appli-

cable parameter settings, the transferability is ensured in space and time to any other river

basin, geographical, or spatial entity. Depending on the used time series variables, it might

yet be necessary to include adjusted modules on the respective preprocessing steps. The

used statistical time series analysis techniques are working independent of the used time

series variables.

In Chapter 5, the functionality of the framework was tested using monthly time series for

all three remote sensing-based land surface variables in combination with climatic and hy-

drological variables. The resulting significant trends for vegetation condition, surface water

area, and snow cover area were compared with findings in available literature. In this re-

gard, it was noted that a direct comparison of trend test results might be hampered by several
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facts that need to be considered. These include variations in the data source, the conducted

preprocessing steps, the investigated period, the design of the trend test, the application of

prewhitening methods, and the defined confidence level. Nonetheless, comparisons of the

trend tests and the phenological metrics with available reference studies indicated a good

alignment of the general direction of trends and changes as well as directions of the as-

sessed phenological metrics. Likewise, the evaluation of the retrieved couplings between

the three land surface variables and climatic as well as hydrological controls were found to

be congruent with existing literature proving the functionality of the framework and used

causal discovery algorithm. In this regard, limitations and further requirements were dis-

cussed. For example, causal links can disappear at a coarse temporal resolution, due to the

temporal aggregation. Here, a finer temporal granularity could enable the detection of more

significant causal links. Additional constraints and challenges with respect to the used time

series were elaborated as well, including the MODIS data products.

Research Questions 3
• What are the seasonal patterns of trends with respect to vegetation condi-

tion, surface water area, and snow cover area between December 2002 and
November 2020? Are there any changes in phenological characteristics?

• What are the dominant controls on vegetation condition, surface water area,
and snow cover area dynamics? Are there differences in the prevalent envi-
ronmental controls with respect to the investigated river basins?

• What are the interdependencies among the respective feature spaces?

• What are future implications of climate change for the investigated Indo-
Gangetic river basins in South Asia?

In order to obtain a finer temporal granularity and a higher sample size, the temporal res-

olution of the time series was increased. This modification enabled a more detailed analysis

with respect to seasonal patterns of trends and environmental controls. Additional con-

straints with respect to the used time series were alleviated, e.g. through the combination of

two time series on surface water area. For this purpose, the advantages of the DLR Global

WaterPack coming at daily temporal resolution and of the JRC Global Surface Water Layer

coming at comparatively high spatial resolution were exploited. Furthermore, another aim

was to consider anthropogenic influences on the land surface variables in the investigated

Indo-Gangetic river basins.

In this context, the developed framework was utilized to prepare a harmonized multi-

variate feature space involving biweekly time series on vegetation condition, surface water

area, snow cover area, and climatic as well hydrological variables covering the period De-

cember 2002 to November 2020. To generate time series at biweekly temporal scale, daily,
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and in case of the climatic features, hourly data were gathered. For example, the NDVI was

calculated by means of the full archive of daily Terra and Aqua MODIS surface reflectance

imagery to obtain high quality and gap-free time series. Moreover, the anthropogenic time

series, characterizing land cover and land use, settlement area, population count, and night-

time lights were available at an annual resolution and were used to investigate their relation

with NDVI and surface water area. The considered seasons included the winter (DJF), pre-

monsoon (MAM), monsoon (JJAS), and post-monsoon (ON) season.

The multi-faceted seasonal trend analyses uncovered detailed patterns with respect to the

significance, direction, and magnitude of trends at grid scale and for diverse geographically

stratified regions, including river basins, land cover and land use classes, and elevation-

dependent zones. In combination with the analysis of phenological metrics, both results

enabled a comprehensive characterization of land surface dynamics. The primary findings

are summarized in the following:

• The IGBM river basins largely experienced significant positive trends in vegetation

greenness throughout all seasons. At river basin scale, the magnitude of the significant

positive trends was highest during the winter (Indus and Ganges river basin) and

the pre-monsoon season (Brahmaputra and Meghna river basin and the GBM-Delta).

In the winter season, the trends were found to be particularly high in the arid and

semi-arid parts of the river basins. At annual and basin scale, the magnitude of the

trend was at 0.040 and 0.034 NDVI decade−1 for the Indus and Ganges river basin,

respectively. At basin scale, it was also found that the magnitude of trends accelerated

in the second part of the studied period. Irrigated and rainfed agricultural areas in the

Indus river basin were found to contribute most to significant positive trends, e.g. with

values of 0.042 and 0.029 NDVI decade−1, respectively. Elevation-dependent areas

up to 5,500 m above sea level showed largely significant positive trends, with highest

magnitudes at lower altitudes. In alignment with the trend analyses, the amplitude of

the NDVI was mostly decreasing, but the seasonal peak values remained stable or

even increased between the two investigated decades.

• Surface water area in the IGBM river basins showed significant positive trends in the

Indus (837 km2 decade−1) and Ganges river basins (677 km2 decade−1) as well as

in the GBM-Delta (340 km2 decade−1) at annual scale. To provide some context, the

long-term average in surface water area in the Indus river basin amounts to 10,535

±1,763 km2 at annual scale. Large variations between the seasons were found in

the Ganges and Meghna river basin. At annual scale, above-normal surface water

area extent was detected for the Indus river basin in most of the years since 2010,

which were most likely associated with flood events. Furthermore, at grid and sea-
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sonal scale, clusters with significant negative trends were identified in parts of the

Meghna river basin and the GBM-Delta.

• Analyses for snow cover area in the upper Indus, Ganges, and Brahmaputra largely

indicated non-significant trends at annual and basin scale. At basin scale, signifi-

cant negative trends were obtained seasonally for the Ganges river basin in the mon-

soon season (–2,080 km2 decade−1) and for the Brahmaputra river basin in the post-

monsoon season (–7,301 km2 decade−1). To provide some context, snow cover area

had a long-term average of 10,419 ±2,760 km2 in the Ganges river basin during the

monsoon season and of 42,398 ±18,407 km2 in the Brahmaputra river basin during

the post-monsoon season. Significant negative trends were found in the elevation-

dependent analysis as well, being most prominent in the post-monsoon season at

high altitudes. On the other hand, significant positive trends were obtained for the

pre-monsoon season in the Ganges and Brahmaputra river basins at altitudes higher

than 5,000 m. The largest extent of snow cover area was observed in the Indus river

basin with 215,979 ±42,589 km2 during the winter season. Here, the trend analy-

sis suggested that the snow cover area remained stable for the investigated period.

Matching patterns were identified for the resulting changes in the phenological met-

rics, e.g., a decreasing seasonal duration of snow cover area in the upper Ganges and

Brahmaputra river basin.

Moreover, for the first time, the evaluation of direct and indirect links for a multivari-

ate feature space, involving multiple remote sensing-based land surface variables across

spheres was conducted for the transboundary river basins in South Asia using the causal

discovery algorithm PCMCI. In this regard, the findings are briefly summarized as follows:

• In the IGBM river basins, at grid and seasonal scale, NDVI was largely found to be in-

fluenced by water availability through the soil and the atmosphere. During the winter

season, a regional cluster showing a positive coupling between the NDVI and temper-

ature was particularly striking in the lower Indus river basin. Here, the phenology of

the NDVI and temperature were largely aligning, with decreasing NDVI due to crop

harvests towards the end of the post-monsoon season and increases in NDVI during

the winter season after the sowing of winter crops. Moreover, a negative coupling

between NDVI and surface water area was prevalent along the large river streams in

the lower river basins during the monsoon and the post-monsoon season. This cou-

pling can be explained with the advance of surface water area during the monsoon

rainfall. The analysis of interplays between all variables in the feature space at basin

scale expectably uncovered a direct and indirect path of precipitation towards NDVI

via soil moisture.
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• Surface water area was mostly positively influenced by river discharge in the lower

river basins over all seasons at grid scale. In contrast, in the upper river basins, snow

cover area and temperature were found to be coupled negatively and positively to

surface water area, respectively. The analysis of causal graphs at basin scale provided

further insights into the interplays of the investigated time series variables. As ex-

pected, it was found that river discharge was largely coupled to precipitation. Thus,

surface water area was found to be indirectly controlled by precipitation via river

discharge. These links prove the functionality of the causal discovery algorithm.

• In the upper Indus, Ganges, and Brahmaputra river basins, snow cover area was

largely negatively coupled with temperature and positively with precipitation. How-

ever, these influences had variations in their spatial distribution during the respective

seasons. Precipitation was found to control snow cover area mostly during the win-

ter season. This coupling was particularly prominent in the Indus river basin. On

the other hand, influences of temperature were most dominant during the monsoon

season. Besides these couplings, the causal graphs additionally showed seasonal vari-

ations in the interplays between the time series variables at basin scale. For example,

the changing direction of influence between snow cover area and temperature. In par-

ticular, in the post-monsoon season, with advancing snow cover area, the direction of

influence turned from snow cover area towards temperature, which could indicate the

impacts of the snow-albedo feedback.

• Additional analyses were performed to evaluate the influence of human factors. These

revealed that vegetation condition might be positively influenced in areas with a high

human footprint, since large positive trends in NDVI coincided with large positive

trends in relative settlement growth and population counts. On the contrary, the ob-

tained correlation coefficient between surface water area and anthropogenic factors

was weak negative. These relations suggested that surface water area increased in

areas with relatively low trend values in population counts and relative settlement

growth.

Overall, the presented results and findings of the previous chapters greatly contribute

to an improved understanding and interpretation of seasonal trends and drivers of remote

sensing-based land surface dynamics. In addition, the investigation of the interplays across

spheres provided new and valuable insights into interactions between land surface, climatic,

and hydrological variables. Besides the Indo-Gangetic river basins, these findings could be

of great relevance and value also for other geographical regions and river basins. How-

ever, in regards of the river basins originating at the Himalaya-Karakoram, it was stressed
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that these are considered to be hotspots of climate change. In particular, future projections

indicate above-average warming being most pronounced at high altitudes.

7.2 Future Challenges and Opportunities

As a result of amplified climate and environmental change, the source and delta regions

of river basins are particularly vulnerable to changing boundary conditions. In fact, the

cryosphere experiences the most rapid and dramatic changes and the land surface in prox-

imity to the river outlets is threatened by sea level rise and more frequent flood events. In

this context, the monitoring of land surface dynamics using spaceborne remote sensing is

of great importance to quantify and evaluate changes at the Earth’s land surface as well as

their spatio-temporal patterns and the influence of natural and anthropogenic drivers.

However, in consideration of the methodological framework and performed analyses,

several aspects could be further investigated. For example, the abundance of available re-

mote sensing and additional geoscientific time series, including land-atmosphere fluxes,

snow water equivalent, gross primary production, or sea surface temperature could further

enhance the understanding of land surface dynamics and cover further components of the

Earth system. For example, the inclusion of sea surface temperature would enable the anal-

ysis of the influence of teleconnections and large-scale atmospheric modes on land surface

dynamics. Another aspect requiring further improvements is the consideration and integra-

tion of anthropogenic controls on the land surface. This remains a challenging task as geo-

scientific data on anthropogenic features are mostly constrained by their spatial or temporal

characteristics. Considering spatial constraints, time series on agricultural productivity or

fertilization, which could enhance the attribution of vegetation trends, are only available for

national or other administrative units. Additionally, the temporal resolution of such anthro-

pogenic variables is mostly coarse making it difficult to integrate the data properly into the

time series analyses. However, further methods, e.g. from machine learning, could be tested

to improve the attribution and differentiation between natural and anthropogenic influences

on the environment.

Furthermore, the application of causal graphs showed its potential with respect to the

identification of direct and indirect influences in a high dimensional feature space. How-

ever, in this thesis, linear relationships were primarily focused on. As non-linear dependen-

cies cannot be precluded, future research could also investigate the application of non-linear

settings of the PCMCI algorithm. Additionally, the causal graphs could be computed for dis-

tinct river basins or other geographically stratified regions to provide more detailed insight

into the interplays of the used time series variables within a particular system. Regarding the
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performed monotonic trend tests, additional modules could be included to explore break-

points in the time series. This could further improve the analysis of land surface dynamics

and support the assessment of large-scale disturbances.

With increasing records of spaceborne remote sensing measurements over multiple

decades, future results from statistical time series analyses on land surface dynamics will be

even more reliable. This thesis primarily focused on remote sensing data products based on

Terra and Aqua MODIS imagery. MODIS imagery are now available for over two decades

and the continuity of this mission is already ensured by means of the Visible Infrared Imag-

ing Radiometer Suite (VIIRS) and the Sentinel-3 mission of the European Copernicus Pro-

gramme. Apart from these missions, future harmonized products from the Landsat and

Sentinel-2 missions will certainly enhance the generation of dense and equidistant remote

sensing time series at higher spatial resolution over long periods and, thus, enable the rev-

elation of land surface dynamics at unprecedented levels. Overall, these developments will

contribute to an improved understanding of the complex interplays between land surface

variables and climatic, hydrological, and anthropogenic controls.

Altogether, this thesis provided valuable and detailed insights into past land surface

dynamics, including multiple remote sensing-based land surface variables and climatic

drivers. In addition, anthropogenic influences were investigated for consideration of im-

pacts of the human footprint, e.g. on vegetation condition or surface water area. In this

regard, the presented and implemented methodological framework provides useful tools to

prepare, harmonize, and evaluate multi-source time series for the analysis of large-scale

land surface dynamics in river basins and beyond. Data and knowledge about the past state

and evolution of the land surface greatly enhance the understanding of interdependencies

between the components of the Earth system and in particular the response of the inves-

tigated land surface variables to a changing climate. Correspondingly, the insights learned

from multivariate time series analyses are of great importance and form a basis with respect

to regional projections and forecasts of components of the Earth system. In combination

with ever-increasing amounts of geoscientific data and further advances in multivariate data

analysis through artificial intelligence, an enhanced understanding of the past and future

state of the Earth’s land surface will be fostered.
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