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Cover picture:

The upper and lower images are median composites of all ground range detected, VH po-

larised Sentinel-1 scenes acquired in the second quarter of 2021. The images show auto-

matically detected offshore wind farms in the North Sea Basin and the German Bight. Fur-

thermore, the magnification of the lower image shows detected offshore wind turbines and

a single substation of the offshore wind farm Borkum Riffgrund 1. In the centre is a con-

ceptual drawing of the Sentinel-1 sensor’s acquisition geometry of an offshore wind turbine

and how this geometry and the resulting radar signal can be used to calculate the turbine’s

hub height.
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With enough computation and enough data, learning beats programming for complicated

tasks that require the integration of many different, noisy cues.

Krizhevsky, Sutskever and Hinton (2017)
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English Summary

The expansion of renewable energies is being driven by the gradual phaseout of fossil

fuels in order to reduce greenhouse gas emissions, the steadily increasing demand for en-

ergy and, more recently, by geopolitical events. The offshore wind energy sector is on the

verge of a massive expansion in Europe, the United Kingdom, China, but also in the USA,

South Korea and Vietnam. Accordingly, the largest marine infrastructure projects to date

will be carried out in the upcoming decades, with thousands of offshore wind turbines be-

ing installed. In order to accompany this process globally and to provide a database for

research, development and monitoring, this dissertation presents a deep learning-based ap-

proach for object detection that enables the derivation of spatiotemporal developments of

offshore wind energy infrastructures from satellite-based radar data of the Sentinel-1 mis-

sion.

For training the deep learning models for offshore wind energy infrastructure detection,

an approach is presented that makes it possible to synthetically generate remote sensing

data and the necessary annotation for the supervised deep learning process. In this synthetic

data generation process, expert knowledge about image content and sensor acquisition tech-

niques is made machine-readable. Finally, extensive and highly variable training data sets

are generated from this knowledge representation, with which deep learning models can

learn to detect objects in real-world satellite data.

The method for the synthetic generation of training data based on expert knowledge

offers great potential for deep learning in Earth observation. Applications of deep learning

based methods can be developed and tested faster with this procedure. Furthermore, the

synthetically generated and thus controllable training data offer the possibility to interpret

the learning process of the optimised deep learning models.

The method developed in this dissertation to create synthetic remote sensing training

data was finally used to optimise deep learning models for the global detection of offshore

wind energy infrastructure. For this purpose, images of the entire global coastline from

ESA’s Sentinel-1 radar mission were evaluated. The derived data set includes over 9,941

objects, which distinguish offshore wind turbines, transformer stations and offshore wind
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energy infrastructures under construction from each other. In addition to this spatial de-

tection, a quarterly time series from July 2016 to June 2021 was derived for all objects.

This time series reveals the start of construction, the construction phase and the time of

completion with subsequent operation for each object.

The derived offshore wind energy infrastructure data set provides the basis for an ana-

lysis of the development of the offshore wind energy sector from July 2016 to June 2021.

For this analysis, further attributes of the detected offshore wind turbines were derived.

The most important of these are the height and installed capacity of a turbine. The turbine

height was calculated by a radargrammetric analysis of the previously detected Sentinel-1

signal and then used to statistically model the installed capacity. The results show that in

June 2021, 8,885 offshore wind turbines with a total capacity of 40.6 GW were installed

worldwide. The largest installed capacities are in the EU (15.2 GW), China (14.1 GW) and

the United Kingdom (10.7 GW). From July 2016 to June 2021, China has expanded 13 GW

of offshore wind energy infrastructure. The EU has installed 8 GW and the UK 5.8 GW of

offshore wind energy infrastructure in the same period. This temporal analysis shows that

China was the main driver of the expansion of the offshore wind energy sector in the period

under investigation.

The derived data set for the description of the offshore wind energy sector was made

publicly available. It is thus freely accessible to all decision-makers and stakeholders in-

volved in the development of offshore wind energy projects. Especially in the scientific

context, it serves as a database that enables a wide range of investigations. Research ques-

tions regarding offshore wind turbines themselves as well as the influence of the expansion

in the coming decades can be investigated. This supports the imminent and urgently needed

expansion of offshore wind energy in order to promote sustainable expansion in addition to

the expansion targets that have been set.
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Deutsche Zusammenfassung

Der Ausbau erneuerbarer Energien wird durch den sukzessiven Verzicht auf fossile Ener-

gieträger zur Reduktion der Treibhausgasemissionen, dem stetig steigenden Energiebedarf

sowie, in jüngster Zeit, von geopolitischen Ereignissen stark vorangetrieben. Der offshore

Windenergiesektor steht in Europa, dem Vereinigten Königreich, China, aber auch den

USA, Süd-Korea und Vietnam vor einer massiven Expansion. In den nächsten Dekaden

werden die bislang größten marinen Infrastrukturprojekte mit tausenden neu installierten

offshore Windturbinen realisiert. Um diesen Prozess global zu begleiten und eine Daten-

grundlage für die Forschung, für Entscheidungsträger und für ein kontinuierliches Moni-

toring bereit zu stellen, präsentiert diese Dissertation einen Deep Learning basierten An-

satz zur Detektion von offshore Windkraftanalagen aus satellitengestützten Radardaten der

Sentinel-1 Mission.

Für das überwachte Training der verwendeten Deep Learning Modelle zur Objektdetek-

tion wird ein Ansatz vorgestellt, der es ermöglicht, Fernerkundungsdaten und die notwendi-

gen Label synthetisch zu generieren. Hierbei wird Expertenwissen über die Bildinhalte, wie

offshore Windkraftanlagen aber auch ihre natürliche Umgebung, wie Küsten oder andere

Infrastruktur, gemeinsam mit Informationen über den Sensor strukturiert und maschinen-

lesbar gemacht. Aus dieser Wissensrepräsentation werden schließlich umfangreiche und

höchst variable Trainingsdaten erzeugt, womit Deep Learning Modelle die Detektion von

Objekten in Satellitendaten erlernen können.

Das Verfahren zur synthetischen Erzeugung von Trainingsdaten basierend auf Experten-

wissen bietet großes Potential für Deep Learning in der Erdbeobachtung. Deep Learning

Ansätze können hierdurch schneller entwickelt und getestet werden. Darüber hinaus bieten

die synthetisch generierten und somit kontrollierbaren Trainingsdaten die Möglichkeit, den

Lernprozess der optimierten Deep Learning Modelle zu interpretieren.

Das in dieser Dissertation für Fernerkundungsdaten entwickelte Verfahren zur Erstel-

lung synthetischer Trainingsdaten wurde schließlich zur Optimierung von Deep Learning

Modellen für die globale Detektion von offshore Windenergieanlagen eingesetzt. Hierfür

wurden Aufnahmen der gesamten globalen Küstenlinie der Sentinel-1 Mission der ESA
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ausgewertet. Der abgeleitete Datensatz, welcher 9.941 Objekte umfasst, unterscheidet off-

shore Windturbinen, Trafostationen und im Bau befindliche offshore Windenergieinfra-

strukturen voneinander. Zusätzlich zu dieser räumlichen Detektion wurde eine vierteljähr-

liche Zeitreihe von Juli 2016 bis Juni 2021 für alle Objekte generiert. Diese Zeitreihe zeigt

den Start des Baubeginns, die Bauphase und den Zeitpunkt der Fertigstellung mit anschlie-

ßendem Betrieb für jedes Objekt.

Der gewonnene Datensatz dient weiterhin als Grundlage für eine Analyse der Entwick-

lung des offshore Windenergiesektors von Juli 2016 bis Juni 2021. Für diese Analyse wur-

den weitere Attribute der Turbinen abgeleitet. In einem radargrammetrischen Verfahren

wurde die Turbinenhöhe berechnet und anschließend verwendet, um die installierte Leis-

tung statistisch zu modellieren. Die Ergebnisse hierzu zeigen, dass im Juni 2021 weltweit

8.885 offshore Windturbinen mit insgesamt 40,6 GW Leistung installiert waren. Die größ-

ten installierten Leistungen stellen dabei die EU (15,2 GW), China (14,1 GW) und das

Vereinigte Königreich (10,7 GW). Von Juli 2016 bis Juni 2021 hat China 13 GW installier-

te Leistung ausgebaut. Die EU hat im selben Zeitraum 8 GW und das Vereinigte Königreich

5,8 GW offshore Windenergieinfrastruktur installiert. Diese zeitliche Analyse verdeutlicht,

dass China der maßgebliche Treiber in der Expansion des offshore Windenergiesektors im

untersuchten Zeitraum war.

Der abgeleitete Datensatz zur Beschreibung des offshore Windenergiesektors wurde öf-

fentlich zugänglich gemacht. Somit steht er allen Entscheidungsträgern und Stakeholdern,

die am Ausbau von offshore Windenergieanlagen beteiligt sind, frei zur Verfügung. Vor al-

lem im wissenschaftlichen Kontext dient er als Datenbasis, welche unterschiedlichste Un-

tersuchungen ermöglicht. Hierbei können sowohl Forschungsfragen bezüglich der offshore

Windenergieanlagen selbst, als auch der Einfluss des Ausbaus der kommenden Dekaden

untersucht werden. Somit wird der bevorstehende und dringend notwendige Ausbau der

offshore Windenergie unterstützt, um neben den gesteckten Zielen auch einen nachhaltigen

Ausbau zu fördern.
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Chapter 1

Introduction

1.1 Scientific and Social Relevance

The growing global population and the associated growth in resource consumption, es-

pecially in fossil fuels, are the main drivers of steadily increasing green house gas emissions

over the last decades (Steffen et al., 2020). With increasing green house gas concentration

in the atmosphere, global warming is getting amplified, which widely affects the Earth sys-

tem. Rising sea levels (Oppenheimer et al., 2019), more frequent extreme weather events

like heavy rainfalls (Guerreiro et al., 2018; Chen et al., 2021) or droughts (Gu et al., 2020;

Arneth et al., 2019), and the loss in biodiversity (Arneth et al., 2019; Chen et al., 2021) are

examples how the livelihoods of humans are impacted negatively in a feedback mechanism

from changes in the Earth system which are strongly related to the emissions of green house

gases by humans (Steffen et al., 2020).

In response to the impacts of climate change, in 2021, at the 26th United Nations Cli-

mate Change Conference of the Parties (COP26), 65 nations agreed to a coal phaseout until

2040 to effectively reduce green house gas emissions (United Nations, 2021a). The urgency

of this agreement becomes clear when looking at the green house gas emissions from fossil

fuels in figure 1.1. It shows the development of CO2 emissions from fossil fuel combustion

since 1970 until 2020. In 2018, the CO2 emissions of the three largest fossil energy sources

amounted to around 34 Gt, with coal contributing 14.7 Gt (IEA, 2021b; Ritchie and Roser,

2020a). Apart from crises such as the global economic crisis in 2008/2009 or the effects of

the pandemic in 2020, fossil fuel consumption and, with it, the CO2 related emissions have

been rising over the last decades. First statistics for 2021 report a rebound of CO2 emis-

sions by fossil fuels to pre-pandemic levels, or even higher, due to an increase in electricity

generation based on coal (IEA, 2021a). Without a reduction in green house gas emissions,

an increase of 2 °C of the mean average global temperature compared to pre-industrial
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Figure 1.1: Global CO2 emission by fossil fuels (coal, oil and gas) between 1970 and 2020 and
the corresponding changes of CO2 emissions from fossil fuel combustion relative to the
previous year. Data source: Ritchie and Roser (2020a).

levels will take place within this century (Chen et al., 2021). The objectives of the Paris

Agreement (United Nations, 2015) from 2015 would thus be missed. Decarbonisation of

the energy sector as one of the largest green house gas emitters is hence a major concern in

order to take action against climate change with more than just rhetoric (IEA, 2021b).

In 2020, over 60% of electrical energy was produced by burning fossil fuels, with coal at

33% is the most widely used primary energy source globally, see figure 1.2a). For the entire

decarbonisation of the energy sector, large parts of existing power generating infrastructure

have to be replaced. As stated earlier, coal-based electricity generation experienced a great

increase after the pandemic plunge in 2020. This trend came from emerging economies

with a rapidly growing demand for electrical energy. Here, new coal-based power plants

are getting connected to the electrical grid, causing an increase in CO2 emissions (IEA,

2021a). For decarbonisation of the energy sector in the medium term, however, it is neces-

sary to expand carbon-neutral instead of coal-based energy production to cover the steadily

increasing demand for electrical energy. Finally, about half of the CO2 emissions by fossil

fuels are not related to the generation of electricity or heat. One major green house gas emit-

ter is the transportation sector (Climate Watch, 2021). Here, oil combustion is the primary
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Figure 1.2: a) Global and b) German development of generated electricity from 1985 until 2020 for
the three major primary energy sources, fossil fuels, renewables, and nuclear and the
share of primary energy sources used for generating electricity in 2020. Data source:
Ritchie and Roser (2020b).

energy source that directly produces CO2 emissions. To further decrease CO2 emissions

from fossil fuels, another COP26 agreement calls for zero-emission vehicles (United Na-

tions, 2021b). Such engines like electric motors or hydrogen fuel cells directly or indirectly

need electricity, which offers the chance to use renewable energy in the transportation sec-

tor by storing electricity in batteries or producing green hydrogen. Nevertheless, as with

the substitution of fossil fuel-based electricity generation, this additional electrical energy

demand requires new infrastructure for generating electrical power.
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Recent geopolitical events further amplify the need for alternative energy production.

The Ukraine conflict is pushing nations to rapidly develop an energy economy which is

independent of fossil fuel imports in order to guarantee geopolitical sovereignty, supply

security, and economically viable as well as socially acceptable energy prices. From a Ger-

man perspective, these geopolitical events and the accelerated coal phase-out coincide with

the decision to phase out nuclear power at the end of 2022. Figure 1.2b) makes clear that

despite a progressive expansion of electrical energy from renewable resources, coal and

nuclear phaseout together would reduce the electrical energy production by over a third in

Germany. The expected increase in electricity demand that will become necessary due to

the progressive substitution of e.g. internal combustion engines has not yet been considered.

Overall, future electrical energy generation is thus confronted to substantially grow its ca-

pacity in carbon-neutral energy production to cover the historical fossil fuel-based energy

supply as well as to cover the steadily increasing demand for energy worldwide. The need

for the development of alternative energy production to substitute existing fossil fuel-based

power plants and production cycles as well as to meet increasing future energy demands is

increasingly reinforced by the various environmental and geopolitical driving forces.

In order to achieve the transformation of the energy sector, an essential building block

is the massive expansion of electricity generation from renewable energy sources. In 1991,

Denmark installed the first offshore wind farm (OWF) Vindeby. Since then, the offshore

wind energy sector has matured and, thirty years later, is in the early stage of a major

growth phase. The recent expansion is driven above all by the urgent decarbonisation of the

energy sector (Rodrigues et al., 2015). Offshore wind energy is an important cornerstone

in a carbon-neutral energy mix due to its relatively constant availability, large untapped

potential and cost-efficient energy production (Esteban et al., 2011). The Net Zero Strategy:

Build Back Greener announced by the government of the United Kingdom (UK) in 2021

plans to increase the installed capacity of offshore wind energy infrastructure from 10.5 GW

in 2020 to 40 GW by 2030 (UK Gov., 2021). Similarly, the European Union (EU) targets

to increase its installed offshore wind energy capacity from 12 GW in 2020 to 60 GW by

2030 and further to 300 GW by 2050 with a total investment of EUR 800 billion, declared

in An EU Strategy to harness the potential of offshore renewable energy for a climate-

neutral future (EC, 2020). The Federal Ministry for Economic Affairs and Climate Action

also announces that it will raise the offshore wind energy expansion targets for Germany to

30 GW in 2030 (BMWK, 2022).

These two strategies are exemplary for a global trend of increasing offshore wind en-

ergy capacities (Rodrigues et al., 2015). The realisation of such large scale infrastructure

projects with thousands of offshore wind turbines (OWTs) and additional platforms to be in-
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stalled within two to three decades represents a major technical, administrative, economic,

but also ecological and social challenge. The planned offshore wind energy projects have

to be realised in marine areas which are potentially used by other industries like fishery or

shipping routes, are declared military exclusion zones or nature reserves or, in the case of

near coast areas, raise additional conflicts with residents and the tourism industry due to

a potential disruption of recreational space. Thus, the realisation of urgent carbon-neutral

energy production by OWFs demands integrated spatial planning and monitoring of spati-

otemporal developments to include all stakeholders and foster the exchange of information

and knowledge between them (Gus, atu et al., 2020, 2021). In order to support these marine

infrastructure projects, which are globally widespread and unprecedented in scale, a freely

accessible, global monitoring of the expansion of the offshore wind energy infrastructure is

necessary. Open access to spatiotemporal data that describes the status and progression of

the offshore wind energy sector allows all involved stakeholders to participate in the devel-

opment of solutions to overcome the challenges related to the task of deploying thousands

of offshore wind turbines in the upcoming decades.

In order to automatically derive a global data set of offshore wind energy infrastructure

over a multi-year period that is independent of the accessibility of information like planning

documents or operator specifications on offshore wind energy projects, spaceborne remote

sensing imagery is used as a basis. With the increasing availability of spaceborne satellite

images combined with modern methods of image analysis coming from the deep learning

domain (LeCun et al., 2015) it is possible to derive small scale human-made object entit-

ies from Earth observation data. This makes spaceborne remote sensing imagery a strong,

independent source to inform about the global developments of the offshore wind energy

sector and provide freely accessible data to support integrated spatial planning. However,

deep learning techniques applied to Earth observation data are in an ongoing adaption phase

with open questions to be answered and domain-specific solutions to be investigated (Zhu

et al., 2017; Reichstein et al., 2019; Ma et al., 2019b; Zhang et al., 2016b; Ball et al., 2017;

Hoeser and Kuenzer, 2020; Hoeser et al., 2020).

Deep learning, especially convolutional neural networks (CNNs) for image analysis, re-

ceived a lot of attention in 2012 when the CNN called AlexNet (Krizhevsky et al., 2012)

won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky

et al., 2015), an important challenge in the computer vision domain for image recognition.

Figure 1.3 shows the impact of this specific CNN AlexNet after it has won the the ILSVRC

in 2012. The paper of Krizhevsky et al. (2012) was cited widely in and outside the com-

puter vision domain, which indicates that the approach presented was quickly taken up by

other domains and also in practical applications (Goodfellow et al., 2016). The proportion
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Figure 1.3: Development of deep learning (DL) related publications between 2012 and 2020 shown
for the number of citations of Krizhevsky et al. (2012) and publications on arXiv and
their share on all publications on this platform, and 16 leading Earth observation journ-
als listed in figure 2.9. Changed after Hoeser and Kuenzer (2020, p. 2).

of publications on deep learning increased massively in the years following the publication

of AlexNet, see figure 1.3. However, the onset of deep learning methods in the Earth ob-

servation domain started with a slight delay indicating domain-specific obstacles (Hoeser

and Kuenzer, 2020). Over the years, deep learning became an important tool in analysing

Earth observation data, and deep learning models such as the CNNs were further developed

in the computer vision domain. A still ongoing challenge is to combine Earth observa-

tion data and deep learning to answer large scale research questions and implement robust

workflows which are transferable in space and time (Ball et al., 2017; Hoeser and Kuen-

zer, 2020; Hoeser et al., 2020). Since the development of the offshore wind energy sector

is happening on a global scale and already covers a period of multiple years, a workflow

for the automatic extraction of its infrastructure from satellite imagery with deep learning

methods faces these current challenges of deep learning applications in Earth observation.

1.2 Research Motivation

This work is motivated by two main issues. The first is the necessity of global and

independent monitoring of the development of offshore wind farm infrastructure, which

provides open access to the derived data to support the global challenge of expanding re-
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newable energy production. The second issue is the application of deep learning on Earth

observation data and thus a methodological focus. More specifically, deep supervised learn-

ing needs thousands of annotated training examples, no matter which topic or research do-

main. This prerequisite, the training data set, and its quality are of major concern regarding

how well a deep learning model performs. At the same time, sufficient training data sets

are very costly to compile. Therefore, the methodological emphasis of this dissertation is

the development of an approach that allows for synthetically generating training data suit-

able for optimising deep learning models to investigate research questions and real-world

problems in the Earth observation domain.

1.3 Research Objectives and Questions

Five research objectives were defined. The first three cover the methodological back-

ground from a deep learning perspective and the development of the synthetic data gener-

ation framework with a stronger focus on its application in the Earth observation domain.

During their investigation, the methodological foundations are prepared on the basis of

which the following two objectives regarding the global detection and analysis of offshore

wind energy infrastructure are worked out. For each research objective, research questions

were formulated in order to address specific issues and structure the research objectives

into single milestones. A summary of the research objectives and how the research ques-

tions were addressed can be found in chapter 7.

Research objective 1 Provide an introduction to the fundamentals of supervised deep

learning and convolutional neural networks, and conduct a literature review of how

convolutional neural networks are applied in the Earth observation domain, in order

to identify common practices and recent challenges specific for the Earth observation

domain.

1. What are the key properties of the convolutional neural network that make it

particularly suitable for analysing image data?

2. What is the value of training data for optimising a convolutional neural network?

3. How has the convolutional neural network been applied to Earth observation

and what is a current obstacle in transferring this methodology from the field of

computer vision?

Research objective 2 Provide an overview of how offshore wind energy infrastructure has

been detected in Earth observation so far and give detailed insight into how offshore

7
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wind energy infrastructure and its common environment appear in Sentinel-1 radar

data at different spatial scales.

1. How has the detection of offshore wind energy infrastructure been researched

in Earth observation so far?

2. What spatial features exist in radar images to detect and distinguish offshore

wind energy infrastructure from other marine infrastructure and natural envi-

ronments?

Research objective 3 Develop a conceptual framework to automatically generate large

amounts of synthetic and task specific labelled Earth observation data by taking ex-

pert knowledge into account.

1. What structure can be used to uniformly represent expert knowledge in order to

describe nested systems such as a remote sensing scene?

2. What properties must a synthetic training data set have in order to optimise a

CNN so that it can reliably detect a target and at the same time distinguish it

from its natural environment?

Research objective 4 Derive a global, multi-temporal data set of offshore wind energy

infrastructure from Earth observation data by combining the previously developed

framework for synthetic data generation and deep learning based object detection.

1. How can CNNs, optimised by synthetic training data, be used for object detec-

tion to globally identify individual types of offshore wind energy infrastructure

in radar data?

2. How can quarterly changes in the deployment process of the offshore wind en-

ergy infrastructure be determined?

3. How many offshore wind turbines and substations had been deployed around

the world by mid-2021 and how many were under construction?

Research objective 5 Expand the spatiotemporal information of the derived offshore wind

energy infrastructure data set with important technical attributes such as the installed

capacity of an offshore wind turbine as well as further spatial information about its

location and conduct a global analysis about the dynamics of the offshore wind en-

ergy sector over the last five years between July 2016 and June 2021.

1. How can the installed capacity of an offshore wind turbine be determined using

spaceborne radar data?

8
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2. How far has the global expansion of offshore wind energy progressed by June

2021 measured in installed capacity and which regional differences can be iden-

tified?

3. What trends in the expansion of offshore wind energy have developed globally

and regionally over the last five years?

1.4 Thesis Outline

Chapter 1 provides an overview of the scientific relevance and motivation of this disserta-

tion. Furthermore, five research objectives along with their associated research ques-

tions are presented to determine the research focus of this dissertation.

Chapter 2 introduces the fundamentals of machine and deep learning with a special focus

on the convolutional neural network. After this theoretical introduction, an Earth ob-

servation perspective is adopted to review the developments and applications of the

convolutional neural network within the Earth observation domain.

Chapter 3 provides an overview of how marine and offshore wind energy infrastructure has

been detected using remote sensing data to date. Furthermore, it provides an impres-

sion of how offshore wind energy infrastructure and its common natural environment

appear in Sentinel-1 radar remote sensing data. Thereby a special focus is put on

spatial features since they will be of importance for the later employed convolutional

neural network object detector.

Chapter 4 focuses on the methodological development of the synthetic data generation

approach. The general motivation for synthetic data is outlined, and the developed

framework for generating synthetic data for Earth observation (SyntEO), is explained

in depth. Theoretical explanations are underpinned with examples of the generation

of synthetic images of offshore wind farms. The developed SyntEO approach is used

to detect offshore wind farms on four test sites in a proof of concept study. Thereby

an in-depth discussion of a sufficient data set compilation and how the convolutional

neural network learns representations of the synthetic training data is carried out.

Chapter 5 applies the developed methods to detect offshore wind energy infrastructure

globally. For this purpose, a deep learning-based workflow is implemented using the

SyntEO framework. This deep learning-based workflow detects offshore wind energy

infrastructure in Sentinel-1 data on a global scale automatically. Furthermore, the

temporal dynamics of the detected objects are investigated and finally compiled into

an offshore wind energy infrastructure data set, that is called the DeepOWT data set.

9
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Chapter 6 deepens the focus on the offshore wind energy sector. The DeepOWT data set is

enriched with additional attributes through spatial analysis and further examination

of the radar signal, statistical modelling, and geographic information system (GIS)

analysis. Finally, the spatiotemporal dynamics of the global offshore wind energy

sector are derived from the data set. In the following discussion, global and regional

trends are analysed, and regional differences are highlighted.

Chapter 7 summarises and concludes the developments and results of this work by re-

flecting on the research objectives and questions outlined in section 1.3. Finally,

open questions and potential opportunities that have arisen during this dissertation

are provided as an outlook for future research and applications.

10



Chapter 2

Convolutional Neural Networks and their

Application in Earth Observation*

2.1 Artificial Intelligence

Figure 2.1 shows a Venn diagram that relates the term convolutional neural network

(CNN) to its superordinate categories. To introduce the motivation and fundamental con-

cepts of CNNs, these categories are going to be introduced consecutively. The main fea-

tures of these categories will be identified and finally brought together in the introduction

to CNNs and their application in Earth observation.

Artificial intelligence (AI) is among the most influential fields of research in the early

21st century (Zhang et al., 2021a; Liu et al., 2018). One reason for this is the vastness of the

field of artificial intelligence, reaching from philosophical aspects to mathematical details

and theoretical frameworks in computer science to practical implementations in software

engineering. A definition of artificial intelligence is proposed by Rich and Knight (1991),

which should give an idea of what is meant without being too explicit: “Artificial intelli-

gence is the study of how to make computers do things which, at the moment, people do

better” (Rich and Knight, 1991, p. 3). In order to take a closer look at artificial intelligence,

two different variants can be distinguished. On the highest level, artificial intelligence can

be understood as a non-natural mechanism, a so-called artificial intelligent agent that makes

decisions or takes action based on inputs. Depending on the complexity of inputs and the

degree of the flexibility of decisions the intelligent agent can process, the type of artificial

intelligence is described as general or narrow. Thereby, artificial general intelligence has to

be fully generalisable. That means it is task agnostic and able to generalise from past expe-

riences to optimise actions in the future or even be somehow successful in an entirely new

*Parts of this chapter have been published in Hoeser and Kuenzer (2020) and Hoeser et al. (2020).
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Figure 2.1: Relation between the terms artificial intelligence (AI), machine learning (ML), deep
learning (DL), and convolutional neural network (CNN).

task. In short, to behave and learn like a self-conscious, self-adapting human being. This

type of artificial intelligence is not part of this work, but the more commonly used narrow

artificial intelligence. Here, a task of an intelligent agent is clearly outlined and the context

in which the task has to be solved to some extent predefined. Rich and Knight (1991) refer

to them as “expert systems” (p. 6). For example, such tasks can be recognising handwritten

digits, text from spoken language or extracting offshore wind energy infrastructure from

Earth observation data.

2.2 Machine Learning

This section focuses on the introduction to machine learning (ML). The primary sources

used in this introduction are Part I: Applied Math and Machine Learning Basics in Deep

Learning by Goodfellow et al. (2016), and Part III: Advanced Topics, Chapter 18: Connec-

tionist Models in Artificial Intelligence by Rich and Knight (1991).

The publication of the CNN AlexNet and its outstanding performance during the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 had a far-reaching

influence on the deep learning domain, see figure 1.3. During the ILSVRC, AlexNet per-

formed best in an image recognition task of natural red-green-blue (RGB) images, which
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Figure 2.2: Schematic overview of parameter adjustment of a linear model by applying machine
learning with gradient descent. The process starts with defining conditions, such as the
selection of the model and cost function. The parameters are then optimised in a re-
petitive process in which the difference between model predictions and training data is
subsequently minimised by reducing a cost function.

show 1,000 common objects. One key ability of AlexNet is that it uses self-learned fea-

tures to classify a given image instead of relying on features that were programmed by

a human being (Krizhevsky et al., 2012). This aspect led to the comment of Krizhevsky

et al. (2017) “learning beats programming” (p. 84), a quote which will be revisited and ex-

tended multiple times during this introduction to discuss different aspects of machine and
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deep learning. The example of AlexNet emphasises that a machine can learn by itself and

that the learning process sufficiently adjusts a model to fulfil the rather complex task of

recognising 1,000 different classes in images.

In the upcoming introduction to machine learning, the focus is put on so-called super-

vised learning, where training data is used to optimise a model’s parameters. To provide an

intuitive example of this mechanism, the complexity is reduced, and the learning process

is explained on a linear regression problem. Figure 2.2 depicts this learning process as a

cycle, which has an initial entry point from which the representation of the training data

is learned in an iterative process by optimising the adjustable parameters of the model. To

enter this machine learning cycle, first, a hypothetical model Hθq
has to be defined which

has the ability to solve a given task when all of its parameters θq, with q = 1,2,3, . . . ,Q,

are adjusted properly. The given task is to predict the output variable of Y for all possible

inputs of variable X . The observed real-world data xi and yi with i = 1,2,3, . . . ,d depic-

ted in figure 2.2 describes the relation between X and Y and will be used as training data

in the upcoming example. They hint at the necessary complexity of a potential model and

help decide on a suitable hypothetical model to initialise the machine learning cycle. In this

example, the hypothetical model Hθq
(x) is chosen to be a linear regression model:

Hθq
(x) = θ1x+0 , (1)

where θ1 is the slope of the linear model, and the intersection with the y-axis is set

to 0 due to the observations of the real-world data and to simplify the problem in this

explanation. In order to evaluate how well the model performs the residue δi is calculated.

It is the difference between the predicted values Hθq
(xi) = ŷi and the expected results yi,

provided by the training data

δi = Hθq
(xi)− yi . (2)

The residues are plugged into a cost function J, which expresses in a single value how

well the model performs for its current parameter setting θq. Thus, the following require-

ment is to find a suitable cost function J(θq). In this example, it is the sum of the square

residues of the estimated values Hθq
(xi) and the corresponding training examples yi

J(θq) =
1
d

d

∑
i=1

(δi)
2 =

1
d

d

∑
i=1

(

Hθq
(xi)− yi

)2
. (3)
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Finally, all parameters of Hθq
have to be initialised. In this example, the initialisation of

θ1 is 2, which was randomly selected. With that done, the machine learning cycle can start

to learn which parameter θ1 is the optimal choice to result in the best fit of the hypothetical

model Hθq
and the given training data. In a first iteration of the cycle, the initialised model

is used to predict for all given xi values of the training data, ŷi = Hθq
(xi). The predicted val-

ues are then compared to the expected values of the training data by using the cost function

J(θq). The higher the cost function value, the worse the model fits the training data. This

clearly shows that minimising the cost function is associated with better model perform-

ance. Due to the chained dependencies of cost function and parameters, it is possible to

consider changes of the cost function J(θ1) relative to changes of θ1 by applying the chain

rule

∂J(θq)

∂θq
=

∂J(θq)

∂δ

∂δ

∂θq
. (4)

To get an intuition how the dependencies influence each other, figure 2.2 shows the cost

function Jθ1 relative to θ1. If θ1 is further increased relative to its initialised state, this will

increase J(θ1). However, if θ1 is decreased, first J(θ1) will decrease too, but after passing

the global minimum, J(θ1) will increase again if θ1 is decreased further. Thus, to find the

global minimum, it is necessary to derive in which direction and how far to move θ1. The

information in which direction to move can be obtained by partially deriving the local gradi-

ent of the cost function relative to the currently used parameter setting ∂J(θ1)
∂θ1

. By following

the inverse of this gradient, θ1 always strives for the next minima. This mechanism, already

described in the 19th century by Cauchy (1847), is a key feature of machine learning and

is called gradient descent ∇J(θq) (Lecun et al., 1998; Robbins and Monro, 1951; Bottou

et al., 2018)

∇J(θq) =
∂J(θq)

∂θq
. (5)

Now that the direction in which the parameter must move is known, the question remains

open as to how far the parameter must move. The amplitude itself is to some extent regu-

larised by the gradient since when a local minimum of the cost function is approached, the

amplitude of the gradient gets smaller. However, it is common practice to use an additional

factor called the learning rate η . The problem is, if η is too large, the global minimum will

be missed, and θ1 ends up in another, but also not an optimal situation. However, if η is

too small, the learning process would take exceptionally long till it converges to a global or

local minimum. There are many solutions how to adjust η (Smith, 2017; Loshchilov and
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Hutter, 2017), for example, by stepwise decreasing η during the learning process. How-

ever, in this example, we consider η to be fixed at 0.01 for simplicity. The last step in the

machine learning cycle is to update the parameters according to their descending gradients

and the learning rate

θq := θq −η∇J(θq) . (6)

With the updated parameters, a new prediction on the training data can be made, new

residues calculated, and following new gradients derived to further decrease the cost func-

tion. This cycle is repeated until the cost function converges to the global or a local min-

imum or a predefined maximum number of iterations is reached. The optimisation of the

parameter θ1 will finally end up with θ1 to be one or close to one for this example.

The key points of how a machine learns by using gradient descent are that the local

gradients can be derived when comparing outputs predicted by a randomly initialised model

with expected values of the training data. With the gradients, the model’s parameters can

be adjusted, and thus, the model subsequently learns the underlying representation of the

training data. The hypothetical model in this demonstration only had one parameter, which

was chosen to provide an intuitive explanation. However, the introduced mechanism allows

using models with more parameters, even millions of parameters, which moves to the next

section about deep learning models.

2.3 Deep Learning

This section focuses on the introduction to fundamental concepts in deep learning (DL).

The primary sources for the following section are Part II: Modern Practical Deep Networks

in Deep Learning by Goodfellow et al. (2016), Part III: Advanced Topics, Chapter 18: Con-

nectionist Models in Artificial Intelligence by Rich and Knight (1991), and Chapter 2: How

the backpropagation algorithm works in Neural Networks and Deep Learning by Nielsen

(2015).

The term deep learning is closely related to a specific deep learning model type, the

artificial neural network (ANN), also known as multi layer perceptron (MLP). Before the

CNN is put into focus, principle ideas of deep learning are explained on the ANN. The

building blocks of a deep learning model are often referred to as layers, where each layer

holds adjustable parameters. The motivation of this structure is that with each additional

layer, the model is able to learn more complex features. Thereby, deep learning models are

exceptionally capable of learning to perform a task from data that describes highly complex
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representations (LeCun et al., 2015; Goodfellow et al., 2016). The earlier cited quote of

Krizhevsky et al. (2017) was only a fragment of a sentence that, when extended, becomes

even more descriptive for deep learning: “learning beats programming for complicated

tasks” (p. 84). By adding layers to a deep learning model, the model becomes deeper, hence

the name deep learning, and with increasing depth, its ability to learn more representational

features grows and thus its ability to solve complicated tasks. In the following, the structure

and fundamental concepts of the ANN architecture are used to explain how a deep learning

model is trained to solve a specific task with regard to the earlier introduced concepts of

machine learning.

Before this introduction, a short comment to the upcoming notation to support a better

understanding. At some points during the upcoming explanation it is more intuitive to refer

to a single specific component within the ANN, therefore a component orientated notation

is used. Thereby, the superscript (l) denotes the lth layer in an ANN with L adjustable

layers, where l = 0,1,2, . . . ,L. The subscript j describes the jth element of m elements

in the current layer (l) where j = 1,2,3 . . . ,m, and the subscript k the kth element of n

elements in the previous layer (l−1) where k = 1,2,3, . . . ,n. At other occasions it is helpful

to refer to entire building blocks of the architecture to provide a better overview. In that case,

matrix and vector notation is used. For example, a m× 1 column vector with an index of

j = 1,2,3, . . . ,m that describes all elements of a
(l)
j in the lth layer is denoted as a(l). Likewise

a m× n sized matrix of elements w jk indexed by j = 1,2,3, . . . ,m and k = 1,2,3, . . . ,n in

the lth layer is denoted as W(l), see figure 2.3 for a graphical description of an example

model architecture using this notation.

Figure 2.3 shows an example of an ANN architecture and a closeup view of an artificial

neuron. A single artificial neuron in an ANN combines two functionalities: It sums up all

incoming values and adds a bias to generate an internal sum z
(l)
j . This sum is passed through

an activation function σ to produce a single output value a
(l)
j , the so-called activation of the

neuron. In this introduction the sigmoid function with the limits 0 and 1 is used as activation

function σ . Thus, the output of each neuron is a real number between 0 and 1

σ
(

z
(l)
j

)

=
1

1+ e
−z

(l)
j

. (7)

The functionality of an artificial neuron allows building complex networks of many ar-

tificial neurons by connecting their out- and inputs, see figure 2.3, hence the name of this

model, artificial neural network. The example ANN architecture in figure 2.3 has four layers

of artificial neurons, of which three hold adjustable parameters l = 0,1, . . . ,L with L = 3.

The layers are an input layer a(0) with three input neurons, two hidden layers a(1) and a(2)
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Figure 2.3: a) Structure of an artificial neural network (ANN) with three input neurons, two hidden
layers with ten neurons each, and an output layer with a single output neuron. The lines
connecting the neurons are the weights, the adjustable parameters, which multiply the
output of each neuron and send it to the input of the next neuron. b) Functionality of a
single neuron, all incoming values and a bias are summed up and used as input in the
following activation function.

with ten neurons each, and one output layer a(3) with a single neuron. For a better intuition,

an example task is to be assumed. The example task of the ANN is to tell if the given input

values represent a cat. Thereby the inputs are numerical information about the length of the

tail a
(0)
1 , the length of the whiskers a

(0)
2 and the bodyweight a

(0)
3 . These numbers are the

values of the three neurons of the input layer a(0). The single neuron of the output layer

a
(3)
1 represents the predicted probability that the input values belong to a cat. Due to the

sigmoid function, the output neuron provides a number between 0 and 1 which can directly

be interpreted as this probability. In order to map the input values to the output value, two

so-called hidden layers with ten neurons each are used. Each neuron of a layer in an ANN

a
(l)
j is connected to each neuron of the previous layer a

(l−1)
k , see figure 2.3. Mathematically,

these connections multiply the output of the neurons in the previous layer. The resulting

product is used as input for the connected neuron of the current layer. That way, values

can propagate from the input to the output layer. Most of the adjustable parameters of an

ANN are the factors of these connections between the layers, the so-called weights w
(l)
jk . In

addition, each neuron is assigned with a bias b
(l)
j , which is also added by the summation
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function in each neuron to the incoming values. For example, the activation of the output

neuron a
(3)
1 , can be expressed as the summation of the incoming values from the previous

layer and the assigned bias together with the subsequent activation function

a
(3)
1 = σ

(

a
(3−1)
1 w

(3)
11 +a

(3−1)
2 w

(3)
12 . . .+a

(3−1)
n w

(3)
1n +b

(3)
1

)

. (8)

Considering the mechanics of a single neuron, depicted in figure 2.3 and the activation

function σ in equation (7), equation (8) can be simplified to

a
(3)
1 = σ

(

z
(3)
1

)

. (9)

These expressions can be generalised for every activation of each neuron in each layer

to represent the forward propagation of the input values through the entire ANN
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To further simplify these equations and to easier express upcoming matrix operations,

equations (10) and (11) can be rewritten by using matrix and vector notation

a(l) = σ
(

a(l−1)W(l)+b(l)
)

, (12)

a(l) = σ
(

z(l)
)

. (13)

With this mechanic, it is possible to propagate input values forwards through the network

to the final output layer. This process is also known as feed forward and uses all weights and

biases of the network. The ANN depicted in figure 2.3 has 3×10+10×10+10×1 = 140

weights and 10+10+1 = 21 biases which are used during a forward pass. That means that

the described model hypothesis in figure 2.3 has 161 parameters which have to be adjusted.
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The earlier mentioned example task is used for a more intuitive explanation of the learn-

ing process. The three input values of a first training example, which describes a real cat,

are passed through the network. These input values propagate through the randomly ini-

tialised ANN which produces an exemplary output of 0.3 at the output neuron a
(3)
1 . The

interpretation is that the untrained ANN is 30% confident that this training example is a cat.

Compared to the true label, which is a 100% certainty that this example describes a cat, the

predicted output value indicates changing all 161 parameters in a way that the final result

of 0.3 goes up to get closer to the expected value of 1. However, the combination of the

161 gradients of each parameter to change the final output to become 1 is far less intuitive

than the earlier discussed linear regression problem with only one adjustable parameter.

Nevertheless, the fundamentals of the machine learning cycle to receive the 161 desired

gradients eventually remain the same. To follow the introduced machine learning cycle, a

cost function J, has to be decided:

J =
1
2

(

a(L)−y
)2

, (14)

where 1
2 is used to make it easier to calculate the derivative later.

As discussed earlier during the machine learning introduction, equation (5) shows that

a change of the cost function ∂J is relative to the change of the parameter ∂θq. The same

concept also applies to the parameters in the ANN. In the example network, a change of the

residue provided by the cost function J, is relative to a change of the activation of the output

neuron a
(L)
j , which is relative to the change of the sum z

(L)
j which combines the bias b

(L)
j and

the activations of the previous layer a
(L−1)
k multiplied by the weights w

(L)
jk . Following that,

with the initial residue provided by the cost function, we can partially derive the gradients

of the weights (15) and biases (16) in the last layer

∂J

∂w
(L)
jk

=
∂J

∂a
(L)
j

∂a
(L)
j

∂ z
(L)
j

∂ z
(L)
j

∂w
(L)
jk

, (15)

∂J

∂b
(L)
j

=
∂J

∂a
(L)
j

∂a
(L)
j

∂ z
(L)
j

∂ z
(L)
j

∂b
(L)
j

. (16)

To derive these gradients, the chained dependencies move backwards through the net-

work and with it are able to indirectly link the error at the output neuron with the previous

parameters of the same layer, see figure 2.3 to follow the described path back through the

network. This mechanic can be used recursively, but only if the quantity of the error for
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each neuron is known. In order to obtain these intermediate errors at each layer δδδ (l), the

errors at the output neurons δδδ (L) have to be propagated backwards through the entire ANN,

similar to the input values during the forward pass. This method, called backpropagation,

was introduced in the context of ANNs by Rumelhart et al. in 1986 and is the fundamental

tool for optimising the parameters of a deep learning model.

As already mentioned, to start the backpropagation process, δδδ (L) has to be derived.

Therefore, the derivative of the cost function has to be applied element-wise to the de-

rivative of the activation function to propagate the overall error of the network back to the

input gate of the artificial neurons of the output layer:

δδδ (L) =
(

a(L)−y
)

◦σ ′
(

z(L)
)

, (17)

where ◦ is the element-wise multiplication, or Habermard product, of the two 1×m

column vectors resulting from the residues a(L) − y and the derivative of the activation

function σ ′
(

z(L)
)

. To further derive the error for each layer δδδ (l), the initial error δδδ (L) can

now be propagated back to the previous layer by using the weights of the network. Due to

the backwards movement from (l+1) to (l) the transposed version of the weight matrix from

equation (10)
(

W(l+1)
)T

can be used, to describe the connection of the weights efficiently

δδδ (l) =

(

(

W(l+1)
)T

δδδ (l+1)
)

◦σ ′
(

z(l)
)

. (18)

With the intermediate error at each layer obtained, it is now possible to derive the partial

derivatives of all weights and biases in each layer. Thereby, the gradient of each bias can

directly be described by the intermediate error at the corresponding neuron of the current

layer δ l
j

∂J

∂b
(l)
j

= δ l
j . (19)

Furthermore, the gradient of each weight can be described by the activation of a neuron

in the previous layer a
(l−1)
j and the intermediate error at the connected neuron of the current

layer δ l
j

∂J

∂w
(l)
jk

= a
(l−1)
k δ l

j . (20)
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With this mechanism, the gradients can be derived for each parameter of the model and

thus, the introduced machine learning cycle from section 2.2 can be repeated until the 161-

dimensional cost function converges to a minimum. Thereby, the ANN is trained on the

underlying training data set.

Especially the last expression (20) allows an intuitive discussion of what can happen

during the training process. The following example is to be assumed to get a better under-

standing. If an activation of a neuron a
(l−1)
k is high and the connected intermediate error at

the target layer δ l
j is high and negative, the corresponding gradient ∂J

∂w
(l)
jk

would have a high

negative value for that specific weight. When the opposite of this gradient is used to adjust

the associated weight, due to the gradient descent method, the value of the weight would be

increased. This increase would eventually reduce the intermediate error and contribute to

minimising the entire cost function. On the other hand, if the activation of a neuron a
(l−1)
k

is small, the training effect of the associated training example would be small too.

This observation leads to the following conclusions. First, if the same example is used

repeatedly in the training process, a specific path of activations and weights through the

network would be used, and only the associated weights adjusted. However, other weights

connected to neurons with smaller activations would be partly excluded from the training

process. Thus, when using only the same training example over and over again, a certain

path is burnt into the neural network. Or to put it another way, it would overfit strongly. One

possibility to avoid this is a technique called dropout. Thereby, at each training step, neurons

are randomly excluded from the network (Srivastava et al., 2014). Thus, even the same

training example in another training step has to choose a different path through the network,

resulting in different activations and gradients on different weights. This way the training

effect is better distributed over all parameters in the network. Also, slightly changing the

training examples by adding some kind of noise, so-called data augmentation, is helpful

to change a limited number of training examples in order to use them repeatedly (Shorten

and Khoshgoftaar, 2019). However, the best way to avoid only a very specifically trained

or overfitted network would be to maximise the size and variance of the training data set by

adding more completely new examples.

In conclusion, a deep learning model has great potential to solve complicated tasks.

With many adjustable parameters, the deep learning model can learn complex representa-

tions (LeCun et al., 2015). In a supervised learning approach, training examples produce

a model output that can be compared to their expected values, and the model parameters

are adjusted by applying the gradient descent method to eventually minimise the difference

between those two values (Goodfellow et al., 2016). In order to avoid overfitting of the

network and to support a high generalisation of the model simultaneously, the employed

22



2.4 Convolutional Neural Networks

training data set must be large, as comprehensive as possible and composed with great care

(Krizhevsky et al., 2017). Even when this last conclusion is also true for other machine

learning approaches, in deep learning, due to the potentially high number of adjustable pa-

rameters, the risk of the model overfitting on an insufficient training data set is high (LeCun

et al., 2015). Hence, the generation of the training data set is critical, which leads back to

the next extension of the quote of Krizhevsky et al. (2017) that points out the importance

of training data in deep learning: “With [...] enough data, learning beats programming for

complicated tasks” (p. 84).

2.4 Convolutional Neural Networks

Finally, this last introductory section focuses on the convolutional neural network

(CNN). The primary source for this introduction is Part II: Modern Practical Deep Net-

works, Chapter 9: Convolutional Networks in Deep Learning by Goodfellow et al. (2016).

In the introduction to deep learning, the example task was to detect if three input values

belong to a cat or not. To increase the complexity, the example task is now to recognize if a

RGB image shows a cat or not. This means that instead of passing three values through the

network, all pixel values of an RGB image are used as input.

The CNN AlexNet, which was built for a similar image recognition task, was introduced

with eight layers of adjustable weights (Krizhevsky et al., 2012). Given the assumption

that the input image is an RGB image with the dimensions 256× 256× 3, let us see what

happens if an ANN with eight layers of adjustable parameters is used to perform this task.

Figure 2.4 shows the structure of the ANN with the input layer a(0) and eight layers with

adjustable parameters, including the output layer. To feed images into the network, the

images with a dimension of 256× 256× 3 are flattened to an input layer with 196,608

neurons. The number of neurons of the subsequent layers starts at 1,024 and is stepwise

reduced by the factor of 0.5 until 16 neurons in the 7th layer and a single output neuron

in the output layer. The resulting ANN would have 202,024,521 parameters, see figure 2.4,

which, considering the task of only classifying one class, is very high. For comparison, the

CNN AlexNet has about 61 million parameters for classifying 1,000 classes (Krizhevsky

et al., 2012). Since in a fully connected ANN each neuron has to be connected with each

neuron of the next layer, 201,327,616 or 99.65% of all adjustable parameters are within the

first layer of the example ANN, see figure 2.4. Considering the initial motivation of deep

learning models to extract more complex features at increasing depth, a concentration of

nearly all parameters in the first layer of the network is a first hint that the fully connected

ANN model structure is not appropriate for image recognition.
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Figure 2.4: Structure and parameter distribution of an 8 layer fully connected artificial neural net-
work which uses a 256×256×3 input image to predict an output.

This example makes it clear that the multidimensional array structure of the input data,

the image, leads to the mentioned problems. Instead of 3 rather meaningful values which

describe characteristic features of a cat, like the length of the tail and whiskers and the body

weight, the 196,608 pixel values are not very descriptive. Only in a specific structure, the

pixel values show something that a human recognises as a cat. By flattening the pixel values

in order to use them as inputs for the ANN, this fundamental structure is getting lost even

before underlying features can be extracted from them.

A single channel of an image is a 2D discrete function of pixel values. The internal grid-

ded structure is an inherent characteristic of this function (Goodfellow et al., 2016). Due to

the spatial proximity of pixels and their gradients, shapes like edges become visible, which

together form high-level features like ears, eyes and whiskers, which eventually represent

a cat. Recognising simple features and combining them into more semantically meaningful

features was found to be typical for the visual cortex of mammals (Hubel and Wiesel, 1962;

Felleman and Van Essen, 1991). However, if the characteristic 2D structure is lost because

the image was flattened to ingest it into the input layer of an ANN, most of the information,

especially the spatial features an image can represent, is lost. Thus an image stores not only

pixel values but also their local connectivity by preserving a specific structure. It follows

that a model which has the task of analysing images should be able to ingest images in their

original structure and investigate the spatial arrangement of their values in order to mimic

the behaviour of the visual cortex (Cadieu et al., 2014; Fukushima and Miyake, 1982).

Edge filters are good examples of focal operations that can extract strong features from

images by exploring pixel values and their spatial context. In order to detect vertical or

horizontal edges in a single band greyscale image I a filter W (the kernel), has to be applied
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pixel-wise on the image. By moving the kernel over the entire input image, pixels in regions

with a strong vertical or horizontal difference return higher values in the output image A.

The described process is called a two-dimensional discrete convolution (Goodfellow et al.,

2016). The convolution, denoted with ∗, of a s× t sized padded input image I, indexed

with u = 1, . . . ,s and v = 1, . . . , t, and a m× n sized kernel W, with a centred index j =

−⌊m
2 ⌋, . . . ,⌊m

2 ⌋ and k =−⌊n
2⌋, . . . ,⌊n

2⌋, can be expressed as

A(u,v) = (I∗W)(u,v) = ∑
j
∑
k

I(u− j,v− k)W( j,k) . (21)

In the case of CNNs, the convolution in most deep learning frameworks is usually im-

plemented as cross-correlation, and the kernel function is not flipped (Goodfellow et al.,

2016)

A(u,v) = (I∗W)(u,v) = ∑
j
∑
k

I(u+ j,v+ k)W( j,k) . (22)

In the following, the cross-correlation variant as introduced in equation (22) is used and

simplified as follows

A = W∗ I . (23)

Figure 2.5 demonstrates the convolution of a vertical and horizontal filter. Where the

vertical filter is able to extract the eyes and ears of the cat, the horizontal filter is able

to extract the whiskers. Even when these filtered images are the first promising results to

extract meaningful features from the input image, it would be necessary to further increase

the semantic meaning of those extracted edges by combining these features in subsequent

steps. That would mean recursively applying additional filters that operate on intermediate

results to find even stronger features until a set of features is programmed to recognise a cat

securely. The stack of kernel functions required for this is far less intuitive compared to the

kernel function in figure 2.5 to extract horizontal or vertical features. Adding another layer

of functions to intermediate results is probably beyond the capabilities of most humans, let

alone several successive combinations of filters. This is where the core idea of machine and

deep learning comes into action, and the next extension to the quote of Krizhevsky et al.

(2017) applies to this problem: “learning beats programming for complicated tasks that

require the integration of many different, noisy cues” (p. 84).
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Figure 2.5: Convolution of a vertical and horizontal 3× 3 kernel on an input image. The resulting
activation map highlights vertical and horizontal features in the input image of the cat.

From a deep learning perspective, the kernel function W can be interpreted as weights or

the adjustable parameters, and the resulting output image A is something related to the acti-

vation of a neuron. Since the output is not a single neuron but an entire matrix of activations,

it can be understood as an activation map or feature map (Goodfellow et al., 2016). With

that idea in mind, it makes sense to think about the kernel function, not as something pre-

defined like an edge filter, but something that can be learned in the same way as the weights

in an ANN. And this is the core principle of a convolutional neural network. Instead of

using predefined kernel functions to extract specific features from input data, self-learned

kernel functions are used in a CNN to subsequently extract highly complex features which

build on each other (LeCun et al., 2015).

The forward propagation of an input image or activation map of the previous layer A(l−1)

to the current layer A(l) in a CNN is descirbed by equation (24) which follows the overall

idea of the earlier introduced forward propagation within an ANN, see equation (13)

A(l) = σ
(

W(l) ∗A(l−1)+b(l)
)

. (24)

This expression shows that likewise to an ANN, in a CNN a bias b(l) is added to the

results of the convolution operation, and an activation function σ is applied to each feature

map.
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Figure 2.6 shows a typical CNN structure for image recognition. An input image is fed

into the so-called convolutional backbone, in which features are getting extracted. While go-

ing deeper into the network, the extracted features become more representative (Krizhevsky

et al., 2012). For a better intuition, one can imagine that features in the early convolutional

layers represent high-level information like edges. In contrast, features in the last layer are

much more semantically meaningful. Here an activation in a feature map can represent

an entire ear of the cat. This is possible due to the feature maps’ increasing depth and the

decreasing size. The increasing depth allows for storing subsequently more features. Never-

theless, only increasing the depth would lead to extremely large feature map tensors, which

might be too large to fit in the processing hardware. Thus, max-pooling layers are connected

after convolutional layers. Max pooling layers are kernels with a dimension of 2×2, which

reduce the corresponding values to their maximum value (Ranzato et al., 2007). They com-

monly move with a stride of 2 over the image, thus reducing the width and height dimension

by the factor of 0.5, which has two effects, see figure 2.6a).

The first advantage of the dimension reduction by max-pooling is that the processed

activation maps are half the size in dimension and thus only occupy a quarter of memory

compared to their original size. This reduction in width and height allows increasing the

number of feature maps in depth without exceeding the memory of the underlying hardware.

Due to max pooling, less important activations are dropped to add more layers with different

but more important and representational information. The second advantage is that due to

the subsequent reduction of width and height of the feature maps, the spatial location of

activations becomes less important. In the early layers, activations correspond directly with

the original structure of the input image, whereas in the last feature maps, the spatial context

of activations is less important. Instead, a specific activation in the last layers can indicate

that somewhere in the image are whiskers. This location invariance allows highly complex

features to appear in the last feature map without the necessity that they are at the same

location in the image (Scherer et al., 2010; LeCun et al., 2015; Goodfellow et al., 2016).

After the convolutional layers have extracted meaningful features which describe impor-

tant characteristics of the input image, such features are fed into an ANN to perform the

final classification. This fully connected ANN building block, after the CNN backbone, is

the so-called classifier head, see figure 2.6c). In other words, the convolutional backbone

has the task to extract features from the raw input data in order to present those meaning-

ful but selected features to an ANN. Thus the ANN is able to predict more meaningful

input values instead of many less meaningful raw pixel values (Krizhevsky et al., 2012).

The translation invariance (LeCun et al., 2015) in the last layers of the convolutional back-

bone also contributes to the fact that when those features are passed to the ANN, the loss
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Figure 2.6: Schematic overview of a convolutional neural network (CNN) for image recognition. a)
Convolution with 3×3 sized kernels, a rectified linear unit (ReLU) activation function,
and subsequent max pooling with a 2× 2 sized kernel. b) Main building blocks of a
CNN, the input, the convolutional backbone, which extracts meaningful features from
the input, and the classifier head, here an artificial neural network (ANN) which uses
the extracted features for prediction. c) Transition from the convolutional backbone to
the classifier head. Changed after Hoeser and Kuenzer (2020, p. 6).
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of the internal structure by flattening the feature tensors is not that relevant any more. In

section 2.3 three predefined characteristic input values were used in an ANN, the length

of the tail, whiskers and bodyweight of a cat. Now, in a CNN, self-learned, characteristic

features extracted from an image of a cat are passed to a connected ANN to perform the

classification.

The importance of the convolutional backbone becomes even clearer when looking at

the number and distribution of parameters, which was found to be a problem when ingest-

ing a raw image directly into an ANN at the beginning of this section. A CNN, depicted

in figure 2.7 with eight trainable layers, five convolutional layers with max-pooling in the

convolutional backbone and three fully connected layers in the ANN classifier head is to

be considered. Each kernel of each convolutional layer has the dimension 3× 3, and the

input image has the dimension of 256× 256× 3. The first convolutional layer, including

max-pooling, results in a tensor of feature maps with the dimension 128× 128× 16. The

corresponding number of parameters in this layer would be kernelheight× kernelwidth×
inputdepth×outputdepth+bias which is 3×3×3×16+16 = 448. This number of param-

eters is much lower compared to the ANN example with over 200 million parameters in the

first layer. It becomes clear that the width and height dimensions of the input image do not

influence the parameter count in a CNN. Instead, the number of parameters is dependent on

the kernel dimension and depth of the input and output feature maps. The latter is promising

since, with increasing depth of the feature maps, the majority of parameters are located in

the last layers of the convolutional backbone, where the most representational features are

extracted, see figure 2.7.

By doubling the depth of each subsequent feature map, the last convolutional layer

would have 3× 3× 128× 256+ 256 = 295,168 adjustable parameters. This tensor with

a dimension of 8×8×256 has to be flattened in order to feed it into the subsequent ANN.

Assuming a first trainable layer with 1,024 neurons in the ANN, the first layer in the clas-

sifier head would have 8× 8× 256× 1,024+ 1,024 = 16,778,240 which corresponds to

94.81% of all parameters of the network. Even when there is a similar accumulation of

parameters in the first layer of the ANN-classifier head as in the earlier discussed ANN

example, an important difference between the two models exists. The difference is that in

the CNN, the majority of parameters process highly representational features instead of

raw pixel values since they are located deep in the network architecture, see the compar-

ison made in figure 2.7. Overall the CNN has about 17.7 million parameters compared to

202 million parameters of the ANN example. This means that using a CNN for image ana-

lysis is beneficial in two major ways. First, the underlying grid-like structure of the input

data is preserved and taken into account by the model architecture in order to extract more
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Figure 2.7: Comparison of the structure and parameter distribution of an eight layer depth fully con-
nected artificial neural network (ANN) and a convolutional neural network (CNN). Both
use a 256×256×3 input image to predict an output, the CNN has far fewer parameters,
and most of the parameters are in the deep layers of the convolutional backbone.

meaningful features. Second, the amount of parameters is reduced dramatically compared

to a standard fully connected ANN. Following that, a CNN is computationally the much

more efficient deep learning model type for the given example of image recognition.

The insights into CNNs demonstrate that for solving more complex tasks, like image

recognition, the number of adjustable parameters in deep learning models can go up to mil-

lions or even hundreds of millions. This increases the importance of comprehensive training

sets to avoid overfitting and to ensure successful training of the models, as already stated

earlier. It also highlights another aspect. In order to optimise such models, extensive compu-

tational capacities are necessary (Krizhevsky et al., 2017). With the increasing capabilities
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of graphics processing units (GPUs) in the early 21st century, a hardware component be-

came popular, which significantly accelerated the training of neural networks due to its

specialisation in the calculation of matrix operations (Voulodimos et al., 2018; Shrestha

and Mahmood, 2019). As described in the previous introduction to deep learning, most of

the expressions of deep learning models and their optimisation use matrix operations. Since

the theory of backpropagation for optimising ANNs was already introduced in 1986, one

crucial factor that deep learning has not become that popular then was that there was not

enough processing power to handle deep architectures with many parameters technically,

and with it the large matrices which express the model. Krizhevsky et al. (2017) describe

this very clearly in their publication of AlexNet: “Twenty years later [respective to 1980s],

we know what went wrong: for deep neural networks to shine, they needed far more labelled

data and hugely more computation” (p. 84). With the recent advances in GPU processing

capabilities and the availability of data in the era of big data, today, the theory behind deep

learning is technically feasible. Finally, the complete quote of Krizhevsky et al. (2017),

which has been extended multiple times during this introduction, summarises the funda-

mental ideas of deep learning and CNNs: “With enough computation and enough data,

learning beats programming for complicated tasks that require the integration of many dif-

ferent, noisy cues” (p. 84).

To conclude the introduction to CNNs, it is important to emphasise that CNNs are mod-

ular architectures consisting of building blocks as shown in figure 2.6. The most important

and characteristic building block is the convolutional backbone or feature extractor. How-

ever, the so-called head of the architecture can be replaced entirely, depending on the task

to be fulfilled. Figure, 2.8 shows different examples of tasks that are commonly performed

by using a CNN. Besides image recognition, in image segmentation, a CNN would clas-

sify every single pixel of the input image, which in Earth observation is commonly known

as a classification map. In object detection, single entities of objects are detected and de-

scribed by a bounding box. Whereas in instance segmentation, object detection is applied

first with subsequent image segmentation to provide a mask for the detected instance of an

object. The capability of CNNs to perform different tasks is important to mention since it

makes clear that CNNs are highly adaptable models, and they can be applied to problems

that commonly occur in the Earth observation domain. This adaptability of deep learning

models explains why they became so popular across many research domains and in practice

(Bengio, 2013).
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Figure 2.8: Examples of four typical tasks performed by convolutional neural networks (CNNs),
image recognition, image segmentation, object detection and instance segmentation.
Changed after Hoeser and Kuenzer (2020, p. 8).

2.5 CNNs in Earth Observation

The previously introduced concepts were mainly developed in machine learning, com-

puter science, and computer vision, which are the main drivers of the latest artificial intelli-

gence and deep learning revival. In this section, the focus is put on how the Earth observa-

tion domain adapted to the methodological developments of these domains and how deep

learning subsequently became a vital tool for remote sensing image analysis (Zhang et al.,

2016b; Zhu et al., 2017; Hoeser and Kuenzer, 2020). As deep learning started to emerge

for image analysis and open questions about how deep learning can be used in Earth obser-

vation were identified and discussed, the number of use cases within the Earth observation

community grew (Ball et al., 2017; Hoeser and Kuenzer, 2020; Hoeser et al., 2020). Even-

tually, the potential of deep learning was strongly promoted to help understand recent trends

in data-driven Earth system science (Reichstein et al., 2019). Due to the earlier discussed

characteristics, the CNN became the most widely used deep learning model type in remote

sensing image analysis (Ma et al., 2019b). In order to get an overview of what happened

since the introduction of AlexNet in 2012 in the Earth observation domain regarding deep
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Figure 2.9: a) Selection process of the 429 out of 3,526 conducted publications from 16 Earth obser-
vation journals. b) Overview of the 16 Journals and numbers of publications. c) Num-
ber of publications per year and grouped by object detection and image segmentation.
Changed after Hoeser et al. (2020, p. 4).

learning with CNNs, in the first year of this dissertation project, a review that includes pub-

lications until the end of 2019 was carried out, see Hoeser and Kuenzer (2020) and Hoeser

et al. (2020) for the entire survey.

Figure 2.9 describes the review process. A total of 429 publications from 16

journals were reviewed. Potential publications were selected with an initial query of

the publishers’ databases. The following query pattern was used: deep learning

OR convolutional neural network OR fully convolutional OR

convolutional network. The final selection of publications to review was made

under the condition that the investigated data is remote sensing data collected by sensors

attached to drones, aircraft or satellites. Furthermore, the application domain is related to

observations of the land surface, and a CNN is used as a methodological approach, either

for object detection or image segmentation.
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2.5.1 Application Domains

Figure 2.10: Grouped application categories of the 429 reviewed publications. Especially the sub-
categories of transportation and settlement as well as the entire multi-class object de-
tection category, point to the extraction of small scale features which demand high-
resolution imagery. Changed after Hoeser et al. (2020, p. 11).

The application domains of all 429 publications were grouped into eight categories with

an additional category for miscellaneous applications as depicted in figure 2.10. Typical ap-

plications in the Earth observation domain were identified, like land cover land use (LCLU)

classification (Henry et al., 2019; Ma et al., 2019a; Zhang et al., 2019a; Hu et al., 2018;

Yang et al., 2019; Stoian et al., 2019), studies with a focus on agriculture like classifying

crop types (Zhong et al., 2019; Ji et al., 2018; Ienco et al., 2019; Rußwurm and Körner,

2018; Teimouri et al., 2019; Li et al., 2019), investigations of large ecosystems like forests
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(Sylvain et al., 2019; Hamdi et al., 2019; Safonova et al., 2019), and such focussing on gla-

cier margins and ice shelf (Mohajerani et al., 2019; Baumhoer et al., 2019). However, when

looking more closely into the categories, for example, into the investigations of urban areas,

the focus is often put on extracting small scale information like single building footprints

(Yang et al., 2018; Wen et al., 2019; Bittner et al., 2018; Liu et al., 2019a; Ye et al., 2019;

Shrestha and Vanneschi, 2018; Ji et al., 2019) or specific classes of buildings like industrial

complexes or power plants (Zhang et al., 2018; Zhang and Deng, 2019). Other examples

of studies that investigate single entities on a spatially small scale are such that study nu-

merous trees instead of large scale forest cover (Fromm et al., 2019; Weinstein et al., 2019;

Dong et al., 2019; Santos et al., 2019). The focus on small scale entities becomes even

more evident in the largest application domain, transportation. Here, the detection of single

vehicles, like cars (Tang et al., 2017; Li et al., 2019; Deng et al., 2017; Koga et al., 2018),

ships (You et al., 2019; You et al., 2019; Zhang et al., 2019c; Fan et al., 2019; He et al.,

2018; Gao et al., 2019; Li et al., 2018b; Zhang et al., 2019; Voinov et al., 2019) and air-

craft (Chen et al., 2018b; Wang et al., 2019c; Zhao et al., 2019) is the major focus in the

transportation category. The category of multi-class object detection further increases the

number of studies focusing on extracting small scale information from Earth observation

data. The target classes in this domain are also vehicles and buildings but also more specific

classes, like harbours, airports, roundabouts, industrial facilities like gas storages, or sports

facilities like swimming pools, baseball diamonds, tennis courts or soccer pitches (Cheng

et al., 2014; Xia et al., 2018; Cheng et al., 2016; Wu et al., 2018; Li et al., 2018a; Wang

et al., 2019a; Su et al., 2019). This summary of the application domains shows that in Earth

observation CNNs are used for established tasks like LCLU classifications but more im-

portantly, CNNs seem to enable a sophisticated yet flexible object detection and image or

instance segmentation, especially on high-resolution remote sensing data.

2.5.2 Remote Sensing Data and Training Data Sets

The detection of single cars, ships, specific industrial or sporting facilities, as well as

the accurate segmentation of building footprints, need image data that supplies rich spatial

features of the targets (Wang et al., 2019a; Xia et al., 2018). Figure 2.11 clearly shows that

very high spatial resolution RGB imagery is the most commonly investigated under the

429 reviewed publications. Even among spaceborne missions, such which provide a spatial

resolution of ≤ 1 m are used more often than the established products of the Sentinel-

2 or Landsat missions. In addition, RGB imagery acquired from Google Earth is often

investigated since it provides high-resolution images from various spaceborne sensors. The

strong focus on high-resolution RGB images in Earth observation during this early phase

of implementing deep learning techniques is inherited by the computer vision domain. In
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Figure 2.11: a) Number of studies grouped by sensor type, b) and platforms. c) Number of studies
grouped by spaceborne missions, differentiated in optical and radar sensors. Google
Earth, even when not a single specific mission, was also added since it is widely
used among the reviewed publications as a source for high-resolution RGB images.
Changed after Hoeser et al. (2020, pp. 7-8).

computer vision and the development of CNNs, influential competitions and related data

sets have a focus on RGB images with a rich representation of spatial features. For example,

the earlier cited ILSVRC challenge is based on the RGB ImageNet data set with more

than 14 million images, which is the primary driver in the development of convolutional

backbones and image recognition (Russakovsky et al., 2015). Other important data sets

which are used for development in the computer vision domain are the Cityscape (Cordts
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et al., 2015, 2016) and Pattern Analysis, Statistical modelling and ComputAtional Learning-

Visual Object Classes (PASCAL-VOC) data set (Everingham et al., 2010, 2015) for image

segmentation, and the Microsoft-common objects in context (MS-COCO) data set (Lin

et al., 2014) for object detection. All of them are based on RGB data with a rich spatial

feature representation. Thus, the methodological transition from the computer vision to the

Earth observation domain started with the investigation of high-resolution RGB images

which also provide spatial features for clearly outlined objects and surfaces since CNNs

coming from the computer vision domain could directly be employed in this early stage of

implementing CNNs in Earth observation.

The observations above partly explain why in Earth observation, high-resolution RGB

imagery is widely used. However, it does not explain why certain application categories,

such as transportation or settlement, are more represented than others. Therefore, another

aspect is important to understand: Data alone is only half the job in deep learning. In order

to train a neural network, it needs training examples, which means accurately labelled data

sets. The necessity of training data has already been stressed during the introduction to basic

concepts of deep learning and CNNs. Large annotated data sets are the fuel that drives

the deep learning engine. Without them, supervised deep learning can not be applied or

even investigated (Krizhevsky et al., 2017; Long et al., 2021; Xia et al., 2018). However,

the annotation of such large data sets is a labour expensive task (Long et al., 2021). In

Earth observation, even in times of big data, the data availability, especially of very high-

resolution data can also become a major problem. The established open access archives do

not supply an extensive coverage of this kind of imagery. Thus, studies of deep learning

with CNNs have to rely on existing data sets, or they need to build their own data sets by

spending many resources. Table 2.1 summarises data sets that have been used more than

once in the reviewed articles. Within the 429 reviewed publications, these 25 data sets were

used 233 times. When looking at the application domains of these data sets, it becomes

clear why settlement, transportation and multi-class object detection are among the most

investigated application domains: For these application domains, the most training data

sets are available, see table 2.1. From this, it can be deduced that in the first years in which

CNNs were used in Earth observation, the focus was primarily on a methodological transfer,

and therefore, existing training data sets were reused. Only gradually did studies focus on

non-technical research questions with a stronger geoscientific focus which demanded their

own training data sets (Hoeser et al., 2020).
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Table 2.1: Overview of training data sets used two times or more in the 429 reviewed publications.
Most data sets are from the settlement, transportation and multi-class object detection
categories. The column Task describes if the data set can be employed for image segmen-
tation (IS) or object detection (OD). Data sets marked with a † are from radar sensors,
all other data sets contain images which are captured by optical sensors. Changed after
Hoeser et al. (2020, p. 10).

Data set Year Task Application Times used

ISPRS Vaihingen (ISPRS, 2016) 2016 IS settlement 47
ISPRS Potsdam (ISPRS, 2016) 2016 IS settlement 35
NWPU VHR 10 (Cheng et al., 2014) 2014 OD multi-class OD 33
DOTA (Data set for OD in Aerial Images)
(Xia et al., 2018)

2018 OD multi-class OD 17

Massachusetts Building (Mnih, 2013) 2013 IS settlement 11
Munich 3K (Liu and Mattyus, 2015) 2016 OD transportation 9
Massachusetts Roads (Mnih, 2013) 2013 IS transportation 9
†SSDD (SAR Ship Detection Dataset) (Li
et al., 2017b)

2017 OD transportation 9

VEDAI (Vehicle Detection in Aerial Im-
agery) (Razakarivony and Jurie, 2016)

2016 OD transportation 7

†AIRSAR UAVSAR (NASA/JPL, 2020) 2016 IS agriculture/ trans-
portation

7

WHU Building Aerial (Ji et al., 2019) 2018 IS settlement 6
Cheng roads (Cheng et al., 2017b) 2017 IS transportation 5
RSOD (Remote Sensing OD) (Long et al.,
2017)

2017 OD multi-class OD 5

IEEE Zeebruges (IEEE GRSS, 2015) 2015 IS settlement 4
HRSC2016 (High Resolution Ship Collec-
tions) (Liu et al., 2017)

2016 OD transportation 4

GID (Gaofen Image Dataset) (Tong et al.,
2018)

2018 IS general LCLU 4

Zhang Aircrafts (Zhang et al., 2016a) 2016 OD transportation 3
SpaceNet Building (SpaceNet, 2017) 2017 IS settlement 3
UCAS-AOD (Zhu et al., 2015) 2015 OD transportation 3
LCZ42 (Local Climate Zone 42) (Zhu
et al., 2020)

2020 IS settlement 2

Busy parking lot (Mou and Zhu, 2018) 2018 OD transportation 2
DeepGlobe Roads (Demir et al., 2018) 2018 IS transportation 2
NWPU RESICS 45 (Remote Sensing Im-
age Scene Classification) (Cheng et al.,
2017a)

2017 OD multi-class OD/set-
tlement

2

INRIA (Institut national de recherche en
informatique et en automatique) (Mag-
giori et al., 2017)

2017 IS settlement 2

†Open SAR Ship Dataset (Huang et al.,
2018; Li et al., 2017a)

2017 OD transportation 2
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2.5.3 CNN Architectures

The development of CNNs since the introduction of AlexNet in 2012 (Krizhevsky et al.,

2012) has been diverse and fast-paced. In order to get an overview of the methodological

developments and implementations, the evolution of CNNs in computer vision is high-

lighted, and the most prominent adaptations of the Earth observation domain are pointed

out. Furthermore, for the most frequently used model types in Earth observation, insights

are provided that explain which characteristics of CNNs are important for processing re-

mote sensing data.

2.5.3.1 CNNs for Image Recognition and Convolutional Backbones

The developments of CNNs, especially from the computer vision domain, are described

by many abbreviations and acronyms to communicate the models and approaches. These

abbreviations can help navigate the ramified developments when their names, chronolo-

gical order, and relations are understood. To introduce the most important terminology, the

tables 2.2, 2.3, and 2.4 shortly comment on frequently used abbreviations and provide the

primary sources for a better understanding of the upcoming overview about the evolution

of CNN architectures and their adaptation in Earth observation.

The ILSVRC challenge (Russakovsky et al., 2015) on the ImageNet data set (Deng

et al., 2009) has driven the development of more sophisticated convolutional backbones

for feature extraction (Hoeser and Kuenzer, 2020). Table 2.2 provides an overview of the

milestone architectures and their typical abbreviations developed for this task. Figure 2.12

Figure 2.12: Evolution of convolutional neural network (CNN) architectures for image recognition
with their size in parameters and performance on the ImageNet data set measured
with its specific acc@5 metric (accuracy for the top 5 predicted classes of an image)
(Russakovsky et al., 2015). Changed after Hoeser and Kuenzer (2020, p. 10).

39



Chapter 2 Convolutional Neural Networks and their Application in Earth Observation

shows the performance of milestone architectures on the ImageNet data set. It becomes

clear that about three years after the introduction of AlexNet, an accuracy level of over 95%

on the ImageNet data set was reached by evolving CNN architectures. The developments of

the Inception (Szegedy et al., 2015; Ioffe and Szegedy, 2015; Szegedy et al., 2016; Chollet,

2017) and ResNet (He et al., 2016; Xie et al., 2017) architectures were particularly respons-

ible for the initial increase. Further developments concentrated on minimising the model’s

parameters by keeping up the performance or even increasing it. The MobileNet models

successfully proposed lightweight architectures (Howard et al., 2017). In combination with

neural architecture search (NAS) (Zoph and Le, 2016; Tan et al., 2018), an approach to

Table 2.2: Overview of the terminology related to the developments in image recognition and con-
volutional backbones. The table is sorted to describe the developments of convolutional
neural network (CNN) architectures with increasing complexity with proximity to con-
tent in order to group closely related CNN architectures. Changed after Hoeser and Kuen-
zer (2020, p. 4).

Abbreviation Reference Short Comment

ImageNet Deng et al. (2009) Data set for image recognition
AlexNet Krizhevsky et al. (2012) CNN by Alex Krizhevsky et al. (2012)
ZFNet Zeiler and Fergus (2014) CNN by Zeiler and Fergus (2014)
VGG-16/19 Simonyan and Zisserman

(2014)
CNN by members of the Visual Geometry
Group

Inception V1-3 Szegedy et al. (2015);
Ioffe and Szegedy (2015);
Szegedy et al. (2016)

CNN architectures with Inception modules
(build for extracting more complex features
and intermediate reduction of feature-map
depth by the so called bottle-neck design)

ResNet He et al. (2016) CNN architecture with residual connections
(enabling very deep architectures which are
still trainable)

ResNeXt Xie et al. (2017) Advanced CNN architecture, based on Res-
Net

Xception Chollet (2017) CNN architecture which combines ResNet
and Inception modules

DenseNet Huang et al. (2017) Very deep CNN based on ResNet
NAS Zoph and Le (2016) Neural Architecture Search (the specific CNN

architecture is searched by another neural net-
work and no longer hand crafted by a human
programmer)

NASNet Zoph et al. (2018) CNN architecture drafted with NAS
MobileNet Howard et al. (2017) Efficient CNN architecture with a focus on

prameter reduction designed applications run-
ning on mobile platforms

MnasNet Tan et al. (2018) MobileNASNet, a parameter efficient CNN
architecture drafted with NAS

EfficientNet Tan and Le (2019) A parameter efficient CNN architecture draf-
ted with NAS and specific scaling approach to
match the needed complexity
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Figure 2.13: Number of adapted convolutional backbone architectures in the Earth observation do-
main. ResNet architectures are the most widely used due to their good performance and
less complex structure compared to Inception architectures. They are closely followed
by early architectures grouped in the Vintage category. Recent developments like the
MobileNet are at the beginning of their adaptation phase. Changed after Hoeser et al.
(2020, p. 17).

use another neural network to design the CNN architecture, they eventually became the

EfficientNet models (Tan and Le, 2019). The EfficientNet architectures inherited the most

important modules of their milestone-predecessors (Tan and Le, 2019; Hoeser and Kuenzer,

2020) which are still widely used in and outside the computer vision domain.

After an initial period where the early architectures like AlexNet (Krizhevsky et al.,

2012), ZFNet (Zeiler and Fergus, 2014), and VGG (Simonyan and Zisserman, 2014),

grouped as vintage architectures, were used, the Earth observation domain mainly focused

on the adaptation of the ResNet (He et al., 2016) convolutional backbones, as depicted

in figure 2.13. A lower complexity characterises the ResNet architecture compared to In-

ception and EfficientNet models, as well as a good performance with moderate use of pa-

rameters (Hoeser and Kuenzer, 2020). A crucial factor for its widespread application is

that ResNet is commonly implemented in popular deep learning frameworks (Abadi et al.,

2015; Chollet et al., 2015; Paszke et al., 2019) or that it can be quickly rebuilt with the func-

tionalities of the frameworks due to its relatively low complexity. This combination makes
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Figure 2.14: Schematic overview of the ResNet-152 (152 layers deep) architecture, proposed by
(He et al., 2016) and the ResNet specific building block with the so-called residual
connection. Changed after Hoeser and Kuenzer (2020, p. 13).

the ResNet architecture particularly interesting for researchers from the Earth observation

domain. Looking closer at the figures 2.12 and 2.13 makes clear that in Earth observation,

less deep variants like the 101 or 50 layers deep ResNet architectures are preferred over

the 152-layer deep architecture, which shows the best performance in the computer vision

domain. The reason is that the deep variants in computer vision were used for the 1,000

class problem of the ImageNet data set. Whereas in Earth observation, fewer classes are

investigated in a single remote sensing scene. Thus fewer parameters and with it, shallower

models are better suited (Hoeser and Kuenzer, 2020; Hoeser et al., 2020).

The core idea of the ResNet architecture is the so-called residual connection, see He

et al. (2016). Figure 2.14 gives an impression of this feature. It can be understood as a

bypass for feature maps around the next stack of convolutional layers. At first glance, this

seems counterintuitive since less representational information is transported in deeper lay-

ers of the network. Nevertheless, this intuition changes when seen from a backpropagation

perspective. When only considering a small stack of convolutional layers as the model H(x),

without the bypass connection, the function of the convolutional layers to learn would be

F(x), thus H(x) = F(x). With the residual connection, the input x additionally bypasses the

model and is added to the model’s output. This changes the function to H(x) = F(x)+ x

which can be expressed as H(x)− x = F(x). Following that, the function F(x) to learn is

no longer the direct mapping of H(x) but the residual H(x)− x. Rethinking that in a neural

network context means that when additionally adding the input layers to the results of the

next convolutional layer, the model has to perform at least as good as in the layer before.

It is impossible for it to perform worse since the layers are now nested functions, where

the model’s knowledge until the current layer is available through the bypass connection.

That way, the current layers have only to learn the additional complexity they add to the

entire model instead of learning an entirely new function. Another important effect is, that
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due to the residual connection, continuously decreasing gradients during backpropagation

are prevented. That way, early layers receive an optimisation signal which otherwise would

vanish in deep networks without residual connections (He et al., 2016).

He et al. (2016) demonstrated that with residual connections, very deep networks with

hundreds and even thousands of layers could be built and continuously become better in

solving the given task. Due to the good performance of ResNet on the ImageNet and other

leading data sets in the computer vision domain, and its straightforward technical imple-

mentation, the ResNet building blocks are widely accepted and used in CNN model archi-

tectures in the computer vision as well as the Earth observation domain.

2.5.3.2 CNNs for Image Segmentation

Image segmentation, or pixel-wise classification from an Earth observation perspective,

is driven by the PASCAL-VOC (Everingham et al., 2010, 2015) and the Cityscape data sets

(Cordts et al., 2015, 2016) in the computer vision domain. Table 2.3 provides an overview of

important abbreviations used during this introduction. Furthermore, the temporal evolution

of milestone models and how they perform on the PASCAL-VOC benchmark data set is

depicted in figure 2.15. Two major model types have been proposed, the encoder-decoder

networks and the naïve-decoder networks. Both start with a convolutional backbone, which

extracts the representational features. In a naïve-decoder model, relatively simple bilinear

Figure 2.15: Evolution of convolutional neural network (CNN) architectures for image seg-
mentation grouped by the two major architecture concepts encoder-decoder and
naïve-decoder models. They are compared by their performance on the Pattern
Analysis, Statistical modelling and ComputAtional Learning-Visual Object Classes
(PASCAL-VOC) data set measured by the mean intersection over union (mIoU) (Ever-
ingham et al., 2010, 2015). Changed after Hoeser and Kuenzer (2020, p. 17).
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Table 2.3: Overview of the terminology related to the developments in image segmentation with
convolutional neural network (CNN). The table is sorted to describe the developments of
CNN architectures with increasing complexity and proximity to content in order to group
closely related CNN architectures. Changed after Hoeser and Kuenzer (2020, p. 4).

Abbreviation Reference Short Comment

PASCAL-VOC Everingham et al. (2010,
2015)

Pattern Analysis, Statistical modelling and
Computational Learning - Visual Object
Classes (data set for image segmentation and
object detection)

FCN Shelhamer et al. (2014) Fully Convolutional Network
DeepLabV1-V3+ Chen et al. (2014);

Papandreou et al. (2015);
Chen et al. (2016, 2017,
2018a)

CNN architectures developed for image seg-
mentation with a specific focus on investigat-
ing multi-scale spatial features by introducing
the ASPP module

ASPP Chen et al. (2016, 2017) Atrous Spatial Pyramid Pooling, a module
which applies convolutions with different
spatial scales

DeconvNet Noh et al. (2015) Deconvolutional Network CNN which inverts
convolutional operations to restore input im-
age size for refined segmentation masks)

U-Net Ronneberger et al. (2015) U-shaped encoder-decoder architecture, to
combine deep features with a low spatial in-
formation and earlier extracted features with
a higher spatial information depth during de-
convolution

ParseNet Liu et al. (2015) Parsing global image context to pixel wise
classification to include large scale image
context

PSPNet Zhao et al. (2016) Pyramid Scene Parsing Network for extract-
ing features on multiple scales

AutoDeepLab Liu et al. (2019) DeepLab related architecture drafted with
NAS for image segmentation

interpolation is used to restore the input image dimension from the deepest feature maps

of the convolutional backbone and finally predict the pixel-wise segmentation masks for

each class. Especially CNNs from the DeepLab family use this technique (Chen et al.,

2014; Papandreou et al., 2015; Chen et al., 2016, 2017). One exception of this group is the

DeepLab-V3+ variant (Chen et al., 2018a), which is an encoder-decoder model.

The general idea of encoder-decoder models, as depicted in figure 2.16, is to use de-

convolutional layers in the decoder path, which can be imagined as an upside-down con-

volutional backbone. Due to this mirrored appearance of the model architecture, the most

widely used U-Net model (Ronneberger et al., 2015) has gotten its name, where the left

side of the U is the encoder, the right side the decoder and the bottom of the U can be

understood as the connection between them. In addition to the encoder-decoder structure,
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Figure 2.16: Schematic overview of the U-Net encoder-decoder architecture (Ronneberger et al.,
2015). A convolutional backbone is the encoder, where the decoder restores the image
resolution to input dimensions by using deconvolution operations. During deconvolu-
tion in the decoder, skip connections enrich the spatial accuracy of the feature maps
with accurate location information from the decoder. Changed after Hoeser and Kuen-
zer (2020, p. 17).

U-Net and other encoder-decoder models are characterised by skip connections. They con-

nect layers with the same dimension from the encoder with the decoder directly, which

enables feature sharing between the encoder and decoder, see figure 2.16. That way, in-

formation with an accurate spatial localisation but less representational features from the

encoder are combined with highly representational feature maps but a relatively low spatial

accuracy in the decoder. That way, the extracted representational features are subsequently

refined with accurate spatial information during the deconvolution process. Since in Earth

observation, targets are often relatively small clusters of pixels within a larger scene, and

small scale spatial details are of importance, encoder-decoder models, which support these

details to appear correctly in the segmentation masks, are the models of choice and the

reason why naïve-decoder architectures are not that widely used due to their bilinear up-

sampling approach, as reported in figure 2.17. Furthermore, in Earth observation, features

can appear on multiple spatial scales. For instance, a lake has a homogeneous appearance

at a small scale in its centre but a highly heterogeneous appearance at a large scale when its

shoreline is taken into account. Thus different features on different scales can contribute to

a better classification of all pixels which belong to a multi-scale object (Miao et al., 2018).

A module that is capable of this is the atrous spatial pyramid pooling (ASPP) module, ori-

ginating from the DeepLab family (Chen et al., 2016, 2017). It consists of multiple parallel
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Figure 2.17: Number of adaptations of image segmentation architectures in the Earth observation
domain. Encoder-decoder architectures are the most widely used due to their spatial
refinement of features during the deconvolution process, which was found to be highly
beneficial for image segmentation of detailed Earth observation data. Changed after
Hoeser et al. (2020, p. 19).

convolutional layers, where each kernel has a different spatial distance between the pixels

used during the convolution. These kernels can be imagined as kernels with holes, hence

the name à trous from French for including holes. In the Earth observation domain, it was

found that plugging in the ASPP module at the bottom of the U-Net model can enrich the

model’s capability of extracting multi-scale spatial features (Dirscherl et al., 2021; Miao

et al., 2018; Fu et al., 2019; Li, 2019; He et al., 2019; Hoeser et al., 2020).

2.5.3.3 CNNs for Object Detection

Finally, in object detection, the Microsoft-common objects in context (MS-COCO) data

set (Lin et al., 2014) is commonly used as a benchmark in the computer vision domain.

Microsoft compiled RGB images with bounding boxes which annotate 80 classes of com-

mon objects in context, hence the name MS-COCO. See table 2.4 for further explanation

of the most important abbreviations used in this section. Two major model types can be dif-

ferentiated in object detection: one-stage and two-stage detectors. The one-stage detector
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Table 2.4: Overview of the terminology related to the developments in object detection with con-
volutional neural network (CNN). The table is sorted to describe the developments of
CNN architectures with increasing complexity and proximity to content in order to group
closely related CNN architectures. Changed after Hoeser and Kuenzer (2020, p. 4).

Abbreviation Reference Short Comment

MS-COCO Lin et al. (2014) Microsoft-Common Object in Context (data set for
object detection and instance segmentation)

R-CNN Girshick et al.
(2013)

Region based CNN, potential regions are derived
in an image segmentation based preprocessing step,
each derived region is then passed through multiple
CNNs where each CNN detects a specific class

Fast R-CNN Girshick (2015) R-CNN+RoI pooling based CNN, region proposals
are derived similar to R-CNN, but the classification
process is performed by a single CNN

RPN Ren et al. (2015) Region Proposal Network, CNN based submodule
which proposes regions for class agnostic objects

Faster R-CNN Ren et al. (2015) R-CNN+RPN+RoI pooling based CNN, the end-to-
end trainable variant of R-CNN which can detect re-
gions of interest and classify them in an end-to-end
trainable CNN model.

FPN Lin et al. (2016) Feature Pyramid Network, multicale feature refine-
ment of the convolutional backbone

Cascade R-CNN Cai and Vascon-
celos (2018)

Faster R-CNN based cascading detector for less
noisy detections

Mask R-CNN He et al. (2017) Combination of Faster R-CNN and FCN (image
segmentation) for instance segmentation

CBNet Liu et al. (2019b) Composite Backbone Network, Faster R-CNN
based object detection with multiple backbones
which subsequently share feature maps for
multiscale-multidepth feature refinement

YOLO-V1-3 Redmon et al.
(2015); Redmon
and Farhadi (2016,
2018)

You Only Look Once, fast and parameter efficient
object detectors, developed for mobile platforms

DarkNet Redmon and Far-
hadi (2016, 2018)

CNN backbone for YOLO-V2+3

EfficientDet Tan et al. (2020) Parameter efficient CNN for object detection based
on the EfficientNet convolutional backbone

models combine object detection and classification in a single unified process. Thereby, the

model variants by Redmon et al. (2015) named You Only Look Once (YOLO) (Redmon

et al., 2015; Redmon and Farhadi, 2016, 2018) are together with the single shot multibox

detector (SSD) (Liu et al., 2016a) the most widely used one-stage detectors. The advant-

age of these models is their small number of parameters, which makes them particularly

interesting for applications on smartphones and other mobile platforms like unmanned aer-

ial vehicles (UAVs). However, what can be seen in figure 2.18, one-stage detectors until

late 2019 are lagging behind in performance compared to two-stage detectors. Typically,
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Figure 2.18: Evolution of convolutional neural network (CNN) architectures for object detection
grouped by the two major architecture concepts one stage detector and two-stage de-
tector. They are compared by their performance on the Microsoft-common objects
in context (MS-COCO) data set measured by the average precision (AP) (Lin et al.,
2014). Changed after Hoeser and Kuenzer (2020, p. 22).

two-stage detectors are heavier in parameters and need more powerful hardware and time

to process an image, but generally perform better than one-stage detectors. Since both con-

ditions, hardware capabilities and processing time, are normally not that crucial in analys-

ing Earth observation imagery compared to mobile applications, two-stage detectors are

by far the most widely used object detector CNNs in Earth observation, see figure 2.19.

The region based-convolutional neural network (R-CNN) (Girshick et al., 2013) and Fast

R-CNN (Girshick, 2015) models are the origins of two-stage detectors. Their successors,

the Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al., 2017) are among the most

widely used in Earth observation, see figure 2.19. The overall idea of the Faster R-CNN ar-

chitecture (Ren et al., 2015) is depicted in figure 2.20. An object detection head uses shared

features from the convolutional backbone to perform bounding box regression and object

classification. In order to do so, first, the so-called region proposal network (RPN), a sub-

module of the Faster R-CNN, looks for class agnostic object proposals by using predefined

anchor boxes with width, heights, and scale factors that are equally distributed over the last

feature map of the convolutional backbone. The bounding box regression then uses these

relatively rough region proposals to refine the object location. In a parallel task, the fea-

tures cropped by the region proposals are used in a classification process similar to image

recognition to predict the class of the object (Ren et al., 2015).

Due to feature extraction and region proposals in the first step and subsequent loca-

tion refinement and classification in the second step, they are called two-stage detectors.

It is important to understand that the Faster R-CNN model uses shared features from the
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Figure 2.19: Number of adaptations of object detection architectures in the Earth observation do-
main. Two-stage detector architectures are the most widely used due to their better
performance yet higher amount of parameters compared to one-stage detectors. With
their modular design, two-stage detectors allow for plug in modifications which were
found to be beneficial in Earth observation by adding multi-scale feature extraction
(Lin et al., 2016). Changed after Hoeser et al. (2020, p. 21).

convolutional backbone to perform the location regression and the classification task. The

optimisation of the convolutional backbone in order to provide features that can be used in

two different tasks is possible due to the multi-task loss, see figure 2.20. The entire cost

function Jmulti to optimise the network is a sum of the cost function of the bounding box

regression Jreg and the object classification Jcls. By reducing Jmulti, the parameters of the

network are optimised to extract features that can be used by both tasks simultaneously

(Ren et al., 2015).

Further developments of the Faster R-CNN architecture are manifold (Lin et al., 2016;

Cai and Vasconcelos, 2018; Liu et al., 2019b; Ghiasi et al., 2019). One important variant

is the feature pyramid network (FPN) (Lin et al., 2016) which was proposed in late 2017,

about one and a half years after the Faster R-CNN was introduced, see figure 2.18. Instead

of using a pyramid of anchor boxes with different scales in the RPN, it combines the last

layers of the convolutional backbone similar to the U-Net, with a stepwise increasing di-

mension of the feature maps and skip-connections between those of the origin backbone.
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Figure 2.20: Schematic overview of the Faster region based-convolutional neural network
(Faster R-CNN) two-stage detector architecture (Ren et al., 2015). A convolutional
backbone is connected to the region proposal network (RPN) which looks for class
agnostic object proposals. Their spatial location is then refined by bounding box re-
gression, and their class is predicted by a classifier. The cost functions of both tasks
are combined in a joint cost function Jmulti. That way, the entire convolutional neural
network can be optimised to share features for both tasks. Changed after Hoeser and
Kuenzer (2020, p. 24).

That way, representational features of the last layers can appear in earlier layers with a

higher spatial resolution and larger scale. The result is a feature pyramid that can be passed

as inputs with multiple scales to the RPN (Lin et al., 2016). This is important from an Earth

observation perspective since targets of interest are often very small compared to the input

image dimension and might vanish in the last layers of a deep convolutional backbone. Due

to the feature pyramid, this can be prevented, and they appear in recovered earlier layers

but in combination with highly representational features from deeper layers (Hoeser and

Kuenzer, 2020; Hoeser et al., 2020).
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Regardless of the task, image recognition, image segmentation or object detection, one

important property of the presented architectures is their ability to recognise spatial features

on multiple scales. The most common approaches combine semantically deep features but

with a spatially lower resolution with semantically less deep features but spatially higher

resolution. With the developments in CNN architectures since 2012, these models are capa-

ble of extracting information from imagery data which are highly relevant for applications

in the Earth observation domain.

2.6 Discussion

In this introduction, details from the fields of machine and deep learning were discussed

with particular reference to CNNs and their application in Earth observation. In addition to

the details discussed, it is important to consider the basic motivation of the individual areas

in order to derive potential challenges from them. Therefore, three major aspects can be

summarised from the previous sections:

• With machine learning methods, it is possible to automatically optimise the param-

eters of deep learning models and learn representations of complex relationships in

order to obtain algorithms that fulfil predefined tasks.

• With state of the art developments of CNN architectures and modules coming from

the computer vision domain, it is possible to investigate remote sensing data with

a special focus on spatial features and context in which targets appear on the land

surface.

• In supervised deep learning, a large size and comprehensive variability of the training

data sets are crucial to enable the full potential of deep learning models, consisting

of millions of trainable parameters. Without such training data sets, these models are

exceptionally prone to overfitting.

The first aspect indicates that complex models can be optimised in an automated way,

provided that technical implementations exist. With modern deep learning frameworks ac-

cessible, the focus can be shifted to the aspect of defining the task. This is crucial since,

from an artificial intelligence perspective, the goal is to obtain a narrow artificial intelli-

gence which implies that a task is well defined. The definition of the task can start with a

simple semantic description, like, the extraction of offshore wind energy infrastructure from

Earth observation data. However, providing more details narrows the task and supports a

more specialised artificial agent, which finally will increase its performance or decreases

the amount of complexity the model has to learn.
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From an Earth observation perspective, this is important to be considered carefully since

the data from this domain often is a highly complex representation of Earth systems which

are often not fully understood. Thus, a definition of what is a target and what is a non-target

is important. In the next step, additional information related to both classes helps refine the

task description further. Do specific spatiotemporal characteristics of the target exist? Are

there non-targets that have a stronger relation to the target than others? The final task is

narrowed down by answering such questions, and finally, more technical decisions can be

made. For instance, which Earth observation data type is suitable, which deep learning

model can handle the data structure, and in the case of CNNs, which task is to perform:

image recognition, object detection or image segmentation. Here we come full circle to

the technical implementations. Now the building blocks contained in the machine learning

frameworks can be configured in such a way that a technically explicit description of the

previously made definition of the task and thus of the artificial agent can be modelled. In

this way, knowledge about the conditions of the system to be investigated flows into the

conception of artificial intelligence through a definition of the task to be fulfilled.

The second aspect emphasises the capability of specific CNN architectures to investigate

spatial features. The strength of remote sensing data lies in the depiction of spatial relation-

ships. Thus, a targeted analysis of these relationships in order to be able to make statements

about individual components in a remote sensing scene meets the core of basic geograph-

ical principles. Tobler’s first law of geography states that “everything is related to everything

else, but near things are more related than distant things” (Tobler, 1970, p. 236). With that

in mind, spatially aware CNNs seem to be a good choice for a hypothetical model when

learning representations from Earth observation data. As discussed in detail in the intro-

duction, there are certain architectures of CNNs that strongly enable taking spatial features

into account. Of particular interest are those that can depict spatial context. With detailed

knowledge about such architectures, it is possible to create an intelligent agent, which is

not only an expert due to a well-defined task but also a professional in analysing spatial

data by learning its underlying representations. This is also crucial from a methodological

point of view. Instead of building an extremely complex model with theoretically infinite

numbers of parameters, a less complex model with narrower expertise can be designed by

taking specific characteristics of the input data and the task definition into account. Thus,

even when using heavy parameter approaches like deep learning, it is necessary to keep in

mind that fewer parameters are beneficial (Tobler, 1970) from a computational perspective

but also an perspective about how well the model can be explained. A CNN which consists

of specific building blocks that are designed to fulfil specific tasks, is much more approach-

able than a fully connected ANN with far more parameters and a less intuitive structure.

Overall, from an Earth observation and spatial analysis perspective CNNs, when designed
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carefully, are self-learned approximations of abstract spatial functions which contribute to

the scope of established, hand-crafted spatial analysis procedures like Kriging (Krige and

Magri, 1982), Morran’s I (Moran, 1950; Anselin, 1995) or Wavelet analysis (Kumar and

Foufoula-Georgiou, 1997).

In supervised deep learning, a well-designed CNN architecture is nevertheless only a

model hypothesis with great but as yet unexploited potential. In order to unfold this poten-

tial, large, variable training data sets are required from which the model can learn a gener-

alised representation of features to solve a given task. This point was stressed on multiple

occasions during the introduction and shall be taken into account during the conceptualisa-

tion of each deep learning-based investigation. Two major questions have to be answered

in supervised deep learning at an early stage: Do I have access to enough potential training

data? Do I have access to enough resources to annotate the data in order to generate an

extensive and precise training data set? In any case, the generation of such large and pre-

cise data sets with a wide variety of training examples by hand is a labour-intensive task.

In Earth observation, the problem is even more prominent since the data can be very spe-

cific, and a high level of experience is necessary to annotate the data correctly. Thus the

data set generation process can not be outsourced. The review of 429 publications in Earth

observation clearly shows that, likewise to the computer vision domain, available training

data sets have a massive impact on the application domains of deep learning. This indicates

that at the reviewed stage, in Earth observation, the focus was mainly on transferring the

methods from the computer vision to the Earth observation domain by using existing train-

ing data sets. Only recently, studies that use own data sets generated for a specific problem

are becoming more frequent. The availability and variation of training data sets is thus an

essential driver for the Earth observation domain to expand the fields of applications. By

increasing the availability of training data sets and methods to generate them efficiently, the

focus of studies can be increased from investigations of technical research questions about

deep learning in Earth observation towards studies that investigate geoscientific research

questions with deep learning.
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Chapter 3

Offshore Wind Energy Infrastructure in

Earth Observation*

3.1 Related Research

The detection of persistent marine infrastructure from Earth observation data is of mul-

tiple interests. From an engineering perspective, automated detection supports getting an

overview of technical infrastructure’s spatial distribution. Precise location information sup-

ports the planning of supply routes, safety and security measures for the infrastructure itself

and people working on it, and appropriate decommissioning at the end-of-life of a facility

and searching for new sites by taking already occupied areas into account. From an eco-

logical perspective, it is important to track both negative and positive impacts during the

entire life cycle of marine infrastructure on marine ecosystems. Its spatial distribution and

temporal development are crucial and an essential link between engineering and an eco-

logical perspective. With spaceborne remote sensing, it is possible to map marine space

frequently, which is otherwise hard to oversee. If no further differentiation is made, per-

sistent infrastructure in marine space is referred to as rigs, platforms, maritime or marine

infrastructure in the remote sensing literature.

From an Earth observation perspective, the detection of marine infrastructure above the

water surface relies on the distinct contrast of objects in an otherwise homogeneous area.

This property has been investigated for marine infrastructure in general and, in some cases,

to extract offshore wind turbines using handcrafted approaches. Liu et al. (2016b) extracted

persistent marine infrastructure from the optical sensor system of the Landsat-8 mission

by weeding object candidates by their temporal and positional invariance and due to mor-

phological characteristics. By combining images from the Landsat and Sentinel-2 sensors,

*Parts of this chapter have been published in Hoeser et al. (2022)
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Xu et al. (2020) used a combination of order statistic filtering (Bovik et al., 1983) and

thresholding to propose marine infrastructure object candidates. In a second step, existing

geometries which describe the boundaries of OWFs in the North Sea Basin were used to

extract those object candidates which are within OWF areas in order to classify them as

OWTs. For areas outside the North Sea Basin, where no OWF boundaries were available

in the study of Xu et al. (2020), the extracted marine infrastructure objects were visually

examined to identify gridded clusters. All previously extracted object candidates within

these clusters were then grouped as OWTs, without any further differentiation between

other platform types which occur in OWFs. Both studies by Liu et al. (2016b) and Xu et al.

(2020) demonstrate that the general detection of persistent marine infrastructure is possible

by investigating multispectral radar imagery. Moreover, the study of Xu et al. (2020) shows

that OWFs have specific large scale spatial features, the grid-like patterns, that can be re-

cognized by humans. However, automatic internal differentiation of marine infrastructure,

especially between different offshore wind energy infrastructure types, is more challenging

and needs additional data or a human interpreter who is looking for a larger spatial context

or small scale details.

In radar remote sensing, Zhang et al. (2019b) and Wang et al. (2019b) used the constant

false alarm rate (CFAR) approach which earlier has been applied successfully for vessel

detection in SAR imagery (Wackerman et al., 2001) to derive persistent marine infrastruc-

ture. the CFAR approach has the advantage that no static threshold needs to be set in order

to identify a target object. Instead, a 2D kernel defines target and background areas that

are sensitive to contrast instead of absolute values. Wong et al. (2019) further developed

this method. To increase the signal to noise ratio of median composites of multiple radar

images, they used the difference of gaussians (DoG) method before applying a CFAR based

thresholding by taking the mean or median background values of a 250 m radius around ob-

ject candidates into account. With further postprocessing of the morphology of the object

candidates and complex thresholding, they were able to derive marine infrastructure from

radar images. Besides detecting oil rigs in the Gulf of Mexico, their algorithm has also been

applied in the exclusive economic zones (EEZ) of the UK and the East China Sea, where

they were able to detect offshore wind energy infrastructure in predefined OWF test sites.

In 2021, Zhang et al. (2021b) proposed a global OWT data set derived from Sentinel-

1 data by applying multiple thresholds over predefined morphological parameters. This

data set demonstrates that it is possible to investigate morphological features present in

radar images to detect offshore wind turbines specifically. However, the approach tends to

wrongly classify offshore platforms within wind farms as turbines, although they are trans-

former stations, meteorological masts or foundations of unfinished OWTs. Furthermore, in
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their proposed data set global offshore wind turbine (GOWT) v1.3, large accumulations of

OWTs, like the largest UK offshore wind farm project named Horn Sea with hundreds of

platforms, are missing. In addition to the location of an OWT, Zhang et al. (2021b) and

Xu et al. (2020) both derived the first appearance of an OWT. In both approaches, the con-

struction phase, which can last from days to months and even a year, is not considered.

What is recognised by both approaches is the first appearance of a platform at a wind tur-

bine location, but no differentiation is made between a platform under construction and a

platform with a readily deployed wind turbine. This emphasises the difficulty but necessity

of differentiating marine infrastructure, especially when investigating offshore wind energy

infrastructure.

The following insights about remote sensing data and the task to be defined can be

derived from these studies. In the context of marine infrastructure, radar data have the ad-

vantage of being independent of weather conditions, which were found to be problematic

when detecting OWTs in optical remote sensing data (Xu et al., 2020; Zhang et al., 2021b).

Furthermore, median composites of multi-temporal acquisitions make it possible to remove

moving or only briefly lingering objects from the data (Wong et al., 2019). This crucial

reduction of potential false positives before applying the detection algorithm is a strong

argument for using radar imagery for detecting OWTs. A precise differentiation between

other persistent marine infrastructure types is crucial to explicitly extract offshore wind

energy infrastructure. Where the superordinate category marine infrastructure has a very

distinct spatiotemporal signal in remote sensing images, its subcategories appear to be very

close and challenging to separate. Hand-designed thresholds and morphological parameters

seem to have reached their limits in the process.

A definition of the task to perform for the later designed intelligent agent can be for-

mulated. The task is to automatically detect offshore wind energy infrastructure in non-pre-

sorted radar imagery of marine areas worldwide. It has to differentiate offshore wind energy

infrastructure from other marine infrastructures. Furthermore, an internal differentiation is

necessary to separate OWTs from other offshore platforms, commonly situated in offshore

wind farms like transformer stations, meteorological masts, or foundations of offshore wind

turbines under construction. Besides the location information, the temporal deployment

stages of offshore wind energy infrastructure have to be differentiated by closely invest-

igating changes in the derived object type to avoid an overestimation of readily deployed

OWTs.
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3.2 Offshore Wind Energy Infrastructure in Sentinel-1

Radar Imagery

In the previous section, it was discussed that specific grid-like, regular patterns were

used by humans to visually examine derived marine infrastructure objects to classify them

as OWFs (Xu et al., 2020). Furthermore, in the study of Zhang et al. (2021b) morpholo-

gical parameters were investigated to determine OWTs in radar imagery specifically. From

a CNN perspective, these are promising insights since they demonstrate that multi-scale

spatial features can be exploited to extract the target of interest, a typical use case for a

CNN as discussed in chapter 2.5.1. However, it is important to fully understand the sig-

nal and its spatial features, which will be investigated in order to define a suitable CNN

architecture and methodological study design. The following section provides an in-depth

discussion of the investigated Sentinel-1 data to provide information on how offshore wind

energy infrastructure and their typical environment appear in radar imagery.

The Sentinel-1 mission belongs to the Copernicus Earth observation programme of the

EU (Aschbacher, 2017), operated by the European Space Agency (ESA). ESA launched

the two satellites Sentinel-1A and Sentinel-1B in April 2014 and 2016, respectively. Both

satellites share the same orbit path at a flight height of about 700 km. Each platform has a

revisit rate of 12 days. Thus together, the Sentinel-1 mission maps the same spot every six

days. Mounted on the spaceborne platforms are active, dual-polarisation C-band synthetic

aperture radar (SAR) instruments that map the Earth continuously. With a wavelength of

5.6 cm, the radar signal is independent of cloud cover and, since actively emitted, the instru-

ment is able to acquire data day and night. The sensor geometry is a right looking geometry.

This means that when acquiring data in both orbit directions, the sensor looks East in as-

cending orbit direction and West in descending orbit direction, see figure 3.1 (Torres et al.,

2012).

Besides the raw data, ESA provides two level 1 data products, the Single Look Com-

plex (SLC) product, which combines amplitude and phase information, and the Ground

Range Detected (GRD) product. For the GRD product, the SAR signal is multi-looked,

an averaging process of neighbouring pixels, which results in square pixels with reduced

speckle. The pixel values describe the backscatter magnitude in decibel and, compared to

the SLC product, the phase value is lost during the multi-look process. The pixel spacing

of the GRD product depends on the acquisition mode of the sensor. In this work, the GRD

product with the acquisition mode Interferometric Wide swath (IW) with a swath width of

250 km and incident angles between 31◦ and 46◦ is used. The final pixel spacing for this

sensor specification is 10 m ×10 m (Torres et al., 2012).
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Figure 3.1: Conceptual overview of the right looking sensor geometry of the Sentinel-1 mission,
its two possible orbit directions, and an example of the layover effect caused by the
interaction of a vertical structure with the radar signal.

The selected polarisation of the radar signal is vertical transmit horizontal receive (VH).

It was chosen over the vertical transmit vertical receive (VV) polarisation since only a small

part of the signal returns with a changed polarisation from open water. The VH signal is less

sensitive to waves, which stronger interact with the VV signal, resulting in higher backscat-

ter amplitudes in VV bands for open water (Meyer, 2019; Tsyganskaya et al., 2018). Since

the targets are offshore wind energy infrastructures within open water in windy places, the

selection of VH polarisation is a first measure to increasing the contrast between the tar-

get and its natural environment. A median filter of multiple acquisitions is used to further

filter and accentuate the offshore wind energy infrastructure signal. Therefore, all acquis-

itions within three months of both orbit directions are stacked and reduced to a median

composite. Figure 3.2 provides an intuition of the acquisitions within three months and the

59



Chapter 3 Offshore Wind Energy Infrastructure in Earth Observation

corresponding global median composite. Figure 3.2a) depicts the number of all acquisitions

made in this period. It becomes clear that Europe has the best coverage, with both platforms

acquiring data in all orbit directions, whereas other parts of the world are less frequently

covered. However, due to the reduction to a median composite, all acquisitions at each pixel

location are reduced to a single value, see figure 3.2b). From this, it becomes clear that the

represented information in the median composite differs depending on the location and its

corresponding acquisition frequency. For example, outside Europe, the occurrence of non-

permanent objects due to fewer acquisitions is more probable, which has to be taken into

account when processing the data later on.

Figure 3.2: a) overview of the number of acquisitions of the Sentinel-1 mission for all acquisitions
of both satellites and all orbit directions of the second quarter of 2021. b) the correspond-
ing median composite for the vertical transmit horizontal receive (VH) band. Changed
after Hoeser et al. (2022, p. 4255).
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Figure 3.3: Examples for the large scale spatial features of offshore wind farms (OWFs) at a far off
coast site. The grid-like structure of readily deployed OWF is clearly visible. a) shows
an OWF site in the German Bight in the north of the island Borkum. b) shows an OWF
cluster in the Moray Firth at the north-east coast of the Scottish Highlands.
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Figure 3.4: Examples for the large scale spatial features of offshore wind farms (OWFs) at near
coast sites. The grid-like structure of OWF is still an important feature. Unstructured
spatial features of natural environments and structured spatial features of human-made
marine infrastructure appear at a close distance to the target OWF. a) and b) show
Chinese OWF sites in the Taiwan Strait, a northern part of the South China Sea.

62



3.2 Offshore Wind Energy Infrastructure in Sentinel-1 Radar Imagery

Figure 3.5: Non-target examples of marine infrastructure which on a small spatial scale have a
similar appearance to offshore wind turbine but on a large spatial scale are unstructured
and thus different compared to the typically grid-like structured offshore wind farms. a)
shows oil rigs and industrial facilities in the Persian Gulf, b) shows oil rigs in the Gulf
of Mexico, close to the Mississippi River delta which.
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To get a first impression of how OWFs look like in an Sentinel-1 median composite,

figure 3.3 shows two large OWF clusters in the North Sea Basin. Figure 3.3a), an OWF

site in the German Bight in the north of the island Borkum, shows readily deployed OWTs

as a well structured, grid-like pattern. Larger internal gaps distinguish different sections in

this cluster, and some substations can be seen due to their more distinct backscatter signa-

ture and slightly off-grid position. Figure 3.3b) shows an OWF cluster in the Moray Firth

at the north-east coast of the Scottish Highlands. Here the northern cluster is readily de-

ployed, whereas the southern cluster has both OWTs under construction and such readily

deployed. These two examples give the impression that detecting marine infrastructure is

a rather straightforward task that only needs the detection of bright clusters in front of a

darker background. However, the internal differentiation of different offshore wind energy

infrastructure elements seems to be problematic. Furthermore, both examples show far off-

shore conditions with simple detection conditions, whereas near-shore conditions have a

much more complex and challenging environment.

Coastal areas are compared to far offshore areas, highly complex, natural environments

with river deltas, archipelagos and rugged coastlines. In addition, the natural morphology

in these areas is heavily influenced by humans. Harbour infrastructure, industrial facilities,

fishing and aquaculture facilities, bridges, buoys and lighthouses are only some of many

features which can be found next to offshore wind energy infrastructure, which is also

situated here. Figure 3.4 shows two examples of highly heterogeneous Chinese coastal areas

with OWFs in the Taiwan Strait, a northern part of the South China Sea. It becomes clear

that the task of detecting a single OWT under these conditions is much more complicated

than at far offshore OWF sites due to the vast amount of potential false positive detections.

Still, from a visual examination, the OWF components are distinguishable due to their

structured patterns on a larger scale.

Finally, figure 3.5 provides further impressions of potential false positive detections.

Figure 3.5a) shows oil rigs and refineries in the Persian Gulf and figure 3.5b) oil rigs in the

Gulf of Mexico close to the Mississippi River delta. The small scale resemblance to off-

shore wind energy infrastructure is clearly visible, however on a larger scale, oil rigs appear

less structured. This concludes the first impression of offshore wind energy infrastructure

in Sentinel-1 radar imagery. A closer look will further provide insights into small-scale

features specifically characteristic of offshore wind energy infrastructure.

Figure 3.6 provides an impression of different types of OWTs differentiated by com-

mon types of foundation construction. In general, gravity and monopile foundations are

more often used in shallow water depths, whereas jacket and tripod foundations are used

in deeper water depths (Wu et al., 2019). However, since most of the foundation is below
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the water surface, their differences above the water surface are only slightly visible in radar

imagery. More important is the size of the installed OWT. In figure 3.6 it can be seen that

with increasing MW capacity, the turbine signature becomes larger, due to larger founda-

tion constructions and transition platforms between foundation and wind turbine, but also

the turbine itself. Additionally, the last example of the Alpha Ventus OWF in figure 3.6

provides a closer look at other platform types like transformer stations or meteorological

masts. For them, it can be seen that their spatial signature differs slightly. These are prom-

ising observations since this difference in spatial features can later be utilised to internally

differentiate these offshore wind energy infrastructure types.

Figure 3.6: Different types of offshore wind turbine foundations which are directly built on the
sea bed and their appearance on radar median composites. The Alpha Ventus example
provides the signatures of a substation, and a meteorological mast.
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Most OWTs by 2021 are built directly on the seabed. However, recent developments of

platform types propose floating platforms that are only connected to the seabed by caissons,

see figure 3.7. Two major advantages come from floating OWTs. First, the construction

interferes less with the seabed and thus the marine ecosystem. Second, this installation type

can be used in much deeper water depths, as the common foundation types discussed before

(Stewart and Muskulus, 2016; Henderson and Witcher, 2010). Figure 3.7 clearly shows, that

the radar signature of the floating spar variant is very similar to OWTs with conventional

foundations. This is different from the semisubmersible type, which is less surprising since

much of its platform is, as the name suggests, above the water surface. The metal floating

body strongly interacts with the radar signal. This makes the radar signature appear wider

than with other platform types.

Figure 3.7: Different types of floating offshore wind turbine (OWT) and their appearance on radar
median composites. Due to a larger floating body of the semisubmersible type, these
OWTs appear broader on the radar median composites compared to the floating spar
type.
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Figure 3.8: Examples of small scale spatial patterns of offshore wind turbine in radar imagery. b-d)
show single acquisitions in ascending and descending orbit direction with the corres-
ponding radar effects. f+g) is a three-month median composite (April to June 2021)
of all orbit directions where the radar effects overlap. b) and f) also demonstrate how
temporal objects like a vessel are filtered out in a median composite.
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To understand the smallest spatial details of the radar signature of the object to be in-

vestigated, figure 3.8 provides an in-depth description for a single OWT and how it appears

in radar imagery with different specifications. In figure 3.8, water surfaces have low backs-

catter values since the radar signal is specular reflected off the smooth water surface with

an exit angle equal to the incident angle. Thus most of the signal is reflected away from the

right looking sensor (Meyer, 2019; Ulaby and Long, 1991). In contrast to the water surface,

offshore wind energy infrastructures appear as distinct backscatter clusters with high amp-

litudes. Here the radar signal hits the angular constructions of the different platform types

and is directly reflected back to the sensor. Over open water, these strong scatterers have

a distinct spatial pattern due to the imaging properties of the SAR instrument. In single

acquisitions like in figure 3.8b-e), it looks as if the objects are rotated and stretched out in

azimuth direction, due to the satellite’s inclined orbit. In the median composites, depicted in

figure 3.8f-g), this effect becomes visible on a larger scale, looking similar to the wakes of

a moving ship. The fact that it is visible on median images proves that this effect is related

to the sensor mechanics and a result of the interaction with this specific target, persistent

offshore wind energy infrastructure, and its natural environment, the open sea.

One specific characteristic of the OWT’s radar signature may already have been noticed

when looking at the provided illustrations in figure 3.8. Two smaller clusters appear in the

radar signature to the left and right of the bright cluster of a wind turbine. In the single

acquisitions, shown in figure 3.8b-e), a bright cluster is visible, which lies in front of the

turbine location, relative to the sensor view direction. This distinct cluster is the layover

effect from the radar signal reflected at the turbine nacelle. Hereby the radar signal hits a

steeply inclined object before its theoretical target at a smooth Earth ellipsoid is reached.

When the radar signal is directly reflected from such an object, the signal’s travel time

is reduced. With it, the slant range is shorter than expected for the theoretical location

on a smooth Earth’s surface. When the signal is projected onto the ground range, a high

backscatter amplitude appears in front of the real target position. In other words, it leans

towards the sensor, see figure 3.1 for a theoretical ray path that explains the layover effect

visually (Meric et al., 2009). The second less distinct cluster lies behind the turbine location

relative to the sensor view direction. The double bounce effect causes this cluster. Here, the

radar signal hits the water surface in front of the turbine and is reflected away as described

above for a specular reflection. However, for a certain location, the signal hits the turbine as

it goes on. The signal bounces off a second time, hence the term double bounce, reflecting

towards the sensor. As the ray path is now longer, the resulting backscatter signal projected

onto ground range appears behind the turbine. The same effect is also possible by a ray path

where the signal first bounces off the turbine towards the water surface, where it bounces

off a second time towards the sensor.
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In the median image, both effects are visible but less distinct. When both orbit directions

are used to generate the median composite, the stronger layover and weaker double bounce

cluster are at both sides, cancelling some of the information of the opposing orbit direction.

However, with a symmetrical appearance of the effects combined, a highly characteristic

spatial pattern is available that describes a single OWT, see figure 3.8f-g).

3.3 Discussion

This in-depth investigation of the appearance of offshore wind energy infrastructure in

radar remote sensing imagery provides the necessary information to set up the methodolo-

gical study design and to decide on a specific CNN architecture. Furthermore, it supports

compiling a precise training data set that includes the possible variability of different situ-

ations in which offshore wind energy infrastructure appears. That said, one crucial point

has not been discussed yet: The availability of enough raw data to start the compilation of

such a training data set. At this point, one encounters a massive problem when examin-

ing OWFs in remote sensing data. The number of OWF clusters in 2021 is about several

hundred, depending on the way they are spatially differentiated. Even when each OWFs is

used for training, the number of training examples would be too small to adjust the param-

eters of a CNN for object detection. Not even the repeated use of temporally staggered data

solves this problem, as OWFs are persistent structures, so the variability in the training data

would be small and overfitting very likely. Also, a training data set that already contains all

the OWFs would make any further detection unnecessary. Overall, this seems like an un-

solvable problem because the potential ability of a CNN optimised by supervised machine

learning can not be unfolded for detecting offshore wind energy infrastructure.

In this section, characteristics of the target, offshore wind energy infrastructure, have

been described on multiple spatial scales. In addition, the characteristics of non-targets,

like oil rigs or heterogeneous coastal areas, have been discussed, too. Altogether, these

entities express a specific spatial environment where offshore wind energy infrastructure

appears. With expert knowledge about coastal environments, offshore wind energy infra-

structure, and the radar signal of spaceborne sensors, the semantic description of such an

environment is possible. Thus instead of a real image of an OWF this knowledge should be

used to generate a virtual image. If this is possible, an infinite number of images becomes

available. However, such a semantic description only exists in the expert’s mind. Hence,

it is necessary to bring it to a format a machine can understand. That way, features used

in a human mind can be transferred into training data from which a machine can learn the

underlying representation. If this knowledge transfer is possible, a machine should be able

to detect offshore wind energy infrastructure within real remote sensing images.
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Chapter 4

SyntEO Framework - Synthetic Data

Generation for Earth Observation*

Synthetic data describes things that have not been recorded in the real world. They can

either be entirely artificial generated information or data altered to a significant degree to

have a new meaning. Synthetic training data sets are sets of synthetic data which have been

automatically labelled during the generation process. Synthetic training data is strongly

promoted by research coming from the computer vision and artificial intelligence domain

and fields of engineering like robotics or autonomous driving (Nikolenko, 2021). Brodeur

et al. (2017) and Martinez-Gonzalez et al. (2020) generated synthetic in-door settings with

realistic physics from which an intelligent agent can learn how to interact with objects.

Tremblay et al. (2018a,b); Hinterstoisser et al. (2019); Georgakis et al. (2017); Rajpura et al.

(2017); Josifovski et al. (2018) and Nowruzi et al. (2019) generated realistic scenes with

different objects and their specific context environment to train object detection algorithms

in order to detect the same targets in real-world imagery. The studies of Ros et al. (2016);

Richter et al. (2016, 2017) and Khan et al. (2019) used 3D engines to generate traffic scenes

in urban environments, partly with changing weather conditions, to automatically generate

large pixel-wise annotated data sets for image segmentation for training autonomous driving

assistants. Shah et al. (2018) proposed AirSim, another 3D engine based virtual environ-

ment generator, which can be used to produce synthetic training data sets for autonomous

driving but also for the navigation of UAVs with different sensor modalities. Further stud-

ies proposed how virtual environments can be used to train UAVs to navigate in different

scenarios (Bonatti et al., 2020, 2019). These examples demonstrate a wide variety of pos-

sible applications and technical feasibility of the generation process itself and that a deep

learning model can learn from synthetic data to perform a task in real-world settings.

*Parts of this chapter have been published in Hoeser and Kuenzer (2022b)
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Despite an increasing interest in the Earth observation domain in deep learning and es-

pecially the CNN model for image analysis, a combination of synthetic training data and

deep learning is rare. Studies from the Earth observation domain, which employ synthetic

training data, are investigating very high-resolution RGB data and applications in the trans-

portation and settlement categories of Earth observation. Similar to the earlier mentioned

studies for generating data to train autonomous driving, Kong et al. (2020) generated 3D

urban scenes to generate training data sets of overhead images for extracting building foot-

prints. He et al. (2021) modelled scenes of ships in natural environments using the Unity

game engine for the task of ship detection in very high-resolution RGB images. Further-

more, Han et al. (2017); Berkson et al. (2019); Shermeyer et al. (2021); Weber et al. (2021)

proposed image generation processes to synthesize scenes that contain vehicles like cars or

aircraft. All of these studies focus on very high-resolution RGB images and human-made

object classes, which are rich in spatial features at the investigated spatial resolution. In

contrast to these studies, Isikdogan et al. (2018) employed a synthetic approach to gener-

ate single band greyscale images of river networks in order to train an image segmentation

encoder-decoder CNN to extract real river networks from Landsat 8 modified normalized

difference water index (MNDWI) rasters.

All of these studies have in common that the synthetic training data is eventually used to

optimise a CNN deep learning model to process real-world imagery. Thus, spatial features

and context are essential to appear in the training data in order to optimise the CNN model

type, which is able to learn such representations. Before synthesising remote sensing data,

it is important to understand the basic properties of remote sensing imagery that allow

spatial features to be represented. In order for spatial features to be recognised in image

data, the spatial resolution of the capturing sensor must be higher than the size of the

spatial feature itself. Without this capability, a single pixel value would mix the spatial

expression of information at a low spatial resolution, and the spatial feature would not

be available for image analysis. These properties are discussed by Strahler et al. (1986)

as the H-resolution and L-resolution remote sensing scene model. In the following, the

focus is put on the H-resolution remote sensing scene model, where targets of interest are

described by multiple pixels to describe their internal spatial characteristics. Furthermore,

in their fundamental work, Strahler et al. (1986) gave an important definition for a remote

sensing scene: A remote sensing scene is “the spatial and temporal distribution of matter

and energy fluxes [...]” (p. 122) which is “[...] not chaotic or random, but manifest spatial

and temporal order” (p. 123). This is a crucial statement since it describes spatial context

as a fundamental characteristic of a remote sensing scene. In the following, entities of a

remote sensing scene are not divided into targets and background but into targets and non-

targets. This subdivision is intended to express more strongly that non-targets in a remote
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sensing scene are not arbitrary backgrounds but in a specific spatial context with the target

and each other. Only with this in mind can synthetic remote sensing scenes be created that

virtualise a realistic complexity of the spatial characteristics of a real remote sensing scene.

This premise ultimately leads back to Tobler’s first law of geography, that “everything is

related to everything else, but near things are more related than distant things” (Tobler,

1970, p. 236). This rule has been discussed earlier from a CNN perspective, which are

models that, when appropriately trained, are able to take the spatial context and with it this

important condition into account. To train a CNN in such a way, these properties must be

represented in the training data. Hence they must be considered when generating synthetic

training data.

4.1 Theoretical Background of the SyntEO Framework

In section 3.2 the appearances of offshore wind energy infrastructure, other marine in-

frastructure and coastal environments in Sentinel-1 median composites have been discussed

with a particular focus on their spatial features. Expert knowledge about the sensor, coastal

systems, and infrastructure was combined to describe their properties semantically. The

core idea of the SyntEO framework is to represent this knowledge in a structured way in or-

der to make it accessible for an artificial data generator that produces synthetic remote sens-

ing scenes along with task-specific annotation. In this section, the theoretical background

of the framework is outlined. In order to make this explanation more intuitive, the offshore

wind energy infrastructure example is used for clarification. Nevertheless, the framework

is designed to be a general approach to generating synthetic remote sensing scenes upon

structured expert knowledge.

Figure 4.1 compares a typical workflow of generating a training data set with the here

proposed SyntEO workflow. For the typical training data set generation, depicted on the

left side of figure 4.1, a limited set of remote sensing scenes is manually annotated by a

domain expert. In case the complexity of the data allows it, this task can also be done by a

group of domain amateurs who follow an annotation guideline formulated by the domain

expert. However, both parties label the image data with task-specific labels as a bound-

ing box around the target for object detection, resulting in a limited training data set with

fixed variability. The annotation accuracy can thereby be assumed to be higher with a smal-

ler variability if the annotation task is performed by a single domain expert and relatively

lower with a higher variability when a group of domain amateurs does the annotation. In

contrast to the typical training data set generation process, the SyntEO approach is depicted

on the right side of figure 4.1. The SyntEO framework is based on a knowledge repre-

sentation, the ontology, formulated by the domain expert. It is based on expert knowledge
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Figure 4.1: Comparison of a typical deep learning training data set generation process, and a train-
ing data set generation process with the SyntEO framework. Where in the typical pro-
cess, one or multiple human annotators build a limited training data set, in the SyntEO
process, an unlimited training data set is automatically generated by a machine upon
expert knowledge made accessible by a human expert via an ontology. Changed after
Hoeser and Kuenzer (2022b, p. 164).

and perceptual knowledge, coming from the observation of real-world imagery. Further on,

an artificial data generator uses this structured knowledge representation to generate a re-

mote sensing image synthetically. In a first step, this generator composes a discrete two or

three-dimensional synthetic scene composition of target and non-target scene elements. The
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sensor-specific texture is added to the scene composition to generate the synthetic image in

a second step. The corresponding annotation for this synthetic image is derived from the

scene elements of the discrete scene composition. Thereby the annotation type depends on

the given task. By repeating the synthetic data generation process, a synthetic training data

set with theoretically infinite size and variability is generated. Once the domain expert has

formulated the ontology, the generation process of fully annotated training examples is fast,

and label accuracy is stable and of maximal accuracy.

The main pillars of the SyntEO framework are ontology formulation and the synthetic

data generator. Additionally, two technical building blocks are part of the entire workflow

of the SyntEO framework, as pictured in figure 4.2. After the ontology formulation, tech-

nical preconditions for the synthetic data set have to be defined. These preconditions are the

spatial resolution of the sensor to be simulated, and by taking the available GPU hardware

and later trained CNN model specifications into account, the extents of the synthetic scene

and the synthetic image. The dependencies of these parameters will be explained in detail in

the upcoming introduction to the SyntEO framework. With this information provided, the

synthetic data generator, which is a processing backend to produce images, starts synthesis-

ing training examples upon the knowledge represented in the ontology. In order to use the

Figure 4.2: Overview of the SyntEO workflow with its two main components, the ontology for-
mulation and image processing backend implementation and two subordinate steps that
determine the technical conditions of the synthetic data and the composition of the train-
ing data set. Source: Hoeser and Kuenzer (2022b, p. 167).
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generated images in a deep learning framework as training data, the last additional step is

the generation of a deep learning ready data set. In this step, the generated image-annotation

pairs are compiled to a balanced training data set by taking the metadata of each generated

image into account. That way, the specific representation of the final training data set can be

adjusted more precisely. Optionally, the image and annotation data files can be converted to

deep learning framework-specific formats like the .TFrecord format optimised for the

TensorFlow framework. The final result is a deep learning ready synthetic training data set

for Earth observation.

4.1.1 The SyntEO Ontology

In artificial intelligence, knowledge engineering is to formally represent knowledge that

enables an intelligent agent to make decisions or perform a task (Rich and Knight, 1991).

The term ontology can be used to refer to such a formalised knowledge representation. Rich

and Knight (1991) define the term ontology in two ways: “Ontology is the philosophical

study of what exists. In the AI context, ontology is concerned with which categories we can

usefully quantify over and how those categories relate to each other” (p. 292). Thus, in con-

trast to the global, philosophical perspective, the term ontology is used more narrowly to

structure and formalise specific knowledge in knowledge engineering. With this, it becomes

possible to design a narrow artificial intelligence using a formal ontology. More specific-

ally, in SyntEO the term ontology is used as defined by Gruber (1995) who states that “an

ontology is an explicit specification of [...] an abstract, simplified view of the world that

we wish to represent for some purpose” (p. 908). The purpose of SyntEO is to generate a

synthetic remote sensing scene. Thus the structure of the SyntEO ontology has to represent

the necessary knowledge for image generation for specific remote sensing scenes.

By adapting the earlier cited definition by Strahler et al. (1986) of a real remote sensing

scene, in SyntEO a synthetic remote sensing scene is “the spatial and temporal non-chaotic

composition of scene elements which are an abstract representation of matter and energy

fluxes. Hereby, scene elements can be two or three-dimensional targets and non-targets that

describe the spatial location, size, distribution and shape of, e.g. land cover, land use classes,

atmospheric conditions, natural or artificial landscape and objects” (Hoeser and Kuenzer,

2022b, p. 167). In order to guarantee a non-chaotic scene composition, the representation

of knowledge about scene elements has to consider the spatial relationships among them.

Furthermore, to support an information structure with increasing depth in details of complex

elements to foster the appearance of multi-scale spatial features, the ontology should be

organised as a nested, hierarchical representation of single entities which are related due to

their common context (Wu, 1999).

76



4.1 Theoretical Background of the SyntEO Framework

Figure 4.3: Conceptual overview of the SyntEO ontology building block. The red part has to be
set up by a human expert, the green part is used by a machine to extract parameters
to generate a synthetic scene composition and the corresponding synthetic image and
annotation. The building block can be used to build interrelated nested knowledge rep-
resentations about complex systems or short an ontology. Source: Hoeser and Kuenzer
(2022b, p. 168).

In ecology, comparable challenges exist to capture ecosystems built of nested entities

and shared context. Therefore, to scientifically capture an ecosystem, an ontology has

been developed that provides such a description of nested entities as a basic structure.

The Extensible Observation Ontology (OBOE) for representing scientific observations by

Madin et al. (2007) is used as starting point in SyntEO and further developed for the task of

representing knowledge to eventually synthesise Earth observation data. Figure 4.3 shows

the building block of the adapted SyntEO ontology. The SyntEO ontology can be accessed

from the perspective of a domain expert and of the artificial data generator. Hereby, it is a

knowledge transfer platform between humans and machines. Observations by humans, the

perceptual knowledge, combined with expert knowledge, becomes explicit by formalising

semantic descriptions to explicit numeric knowledge represented in the ontology structure.

A machine can interpret this structured knowledge in order to generate a synthetic scene.

77



Chapter 4 SyntEO Framework - Synthetic Data Generation for Earth Observation

To describe a scene element like an OWF, the domain expert makes an Observation of

an Entity. This Observation has a Measurement of a specific Characteristic. This Charac-

teristic can be the size of an OWF which is measured as the largest horizontal or vertical

extent in kilometres. Since the final task is to generate a large data set with high variance, a

single observation value is not sufficient. Instead, a Measurement has a Dimension of Val-

ues. This Dimension can be a range between two values, a statistical distribution, a list of

values, a formula that describes a physical process under certain conditions, or a database

of template data to provide some examples for a better intuition. For example, the Dimen-

sion of the Characteristic size of an OWF is a list of scaling factors where the list has three

entries, small:5 km, medium:10 km and large:17 km. In order to describe other Character-

istics, Observations can be connected with the Context attribution. For example, in addition

to the size, an OWF is defined by its turbine density. By connecting both Observations with

the Context attribution, the size can influence the Dimension of the turbine density values

to express, that a large OWF has a low turbine density and a small-sized OWF has a high

turbine density. Hereby, multi-scale spatial features are represented in a meaningful con-

text. Finally, to guarantee a non-chaotic scene with spatial order, Entities can be connected

via the Relationship attribution. For example, the Entity OWF has a Relationship of type

topology with the Entity open sea. The associated topological rule states, that an OWF must

be inside open sea. To further extent this example, the Entity open sea in turn has a Re-

lationship of type topology with the Entity land. This topological rule states that the open

sea must not overlap with the mainland. This nested structure allows relating OWF with

land, even when there is no direct Relation attribution. The transitive relation between both

entities states that an OWF must not overlap with the mainland.

This example gives an impression of the ontology from the perspective of the domain

expert, who is embedding the knowledge. The opposing perspective of the data generator is

similar, see figure 4.3. It starts with the DataGeneration of an Entity, like an OWF. There-

fore it has to define a single Value for a SceneElement Specification of the Characteristic

size. To obtain this Value it is randomly selected from the Dimension under consideration of

any limitations coming from the Context attribution. That way, the declarative data gener-

ator randomly selects from the Dimension to define a single Value. Whereas the descriptive

domain expert defines a variety of Values in this Dimension. By doing this, for each data

generation step, the expressed characteristics have a very high variance in the final data set

since many random processes are necessary to describe all scene elements in the synthetic

scene composition.
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4.1.2 Technical Configurations for Spatial Feature Representation

The ontology enables a formal representation of knowledge about multi-scale spatial

features. In order to support their appearance in the final synthetic image to foster their

influence on the training process of the CNN, some technical configurations have to be

set. Figure 4.4 provides an impression of the configuration parameters and their potential

conflicts that need to be balanced. Ideally, the generated multi-scale spatial features would

appear in the final synthetic image as undistorted as possible and only influenced by the

chosen sensor resolution. This condition, represented in the first row of figure 4.4, is given if

there is no conflict about the chosen scene extent in metric units, the resulting image extent

in pixel when sensor resolution is applied to the scene, and the available GPU memory in

combination with the decided CNN architecture is large enough to train on the generated

image. To make this more clear, the following example is to be assumed. The largest spatial

feature of an OWF is the outer boundary which at maximal vertical and horizontal extent is

roughly 20 km. At a pixel resolution of 10 m, this would lead to a synthetic image with the

dimension of 2,000×2,000 pixels. Since 2n is a typical value for input matrices in CNNs

the image dimension is adjusted to 2,048×2,048 pixels. Following that, the synthetic scene

has an extent of 20,480 m×20,480 m. The CNN, which will be trained with the synthetic

images, has an architecture design that ingests images with a dimension of 2,048× 2,048

pixels. This architecture has a specific number of parameters and feature maps that together

demand a sufficiently sized GPU memory during training. Suppose the CNN architecture

becomes too large in the number of parameters and intermediate feature maps to store.

In that case, there is the possibility that a small-sized GPU can not technically solve the

optimisation process without running out of memory. However, if the GPU is large enough

to ingest the synthetic images as derived from the synthetic scenes at full sensor resolution,

there is no conflict, and no trade-off has to be balanced.

In a situation where the technical parameters change, like the GPU memory, limiting

conditions are reached in which trade-offs have to be made. Thereby, the goal to keep in

mind is to maximise spatial feature representation in the synthetic images in order to enable

the CNN to learn the most important representation. To reach this goal, two options can

be differentiated. One option is that the large scale features are the most important of the

target to be visible in the final training example. However, due to the smaller GPU memory,

now, the image can not be ingested in its full size of 2,048× 2,048 pixels but have to be

scaled down. In the example depicted in the second row of figure 4.4, a CNN architecture

with an input size of 1,024× 1,024 is chosen, which leads to smaller feature maps and

with it, a GPU with a smaller amount of memory can be used. Since large scale spatial

features are the most important in this example, the entire synthetic scene with an extent of
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Figure 4.4: Three examples of how trade-offs between feature representation, sensor resolution,
graphics processing unit (GPU) memory, and deep learning model architecture can be
balanced. The first example has no trade-offs, and all features appear to their full extent
in the synthetic image. The second example has to scale the synthetic image, to preserve
large scale features at the cost of small scale features. The third example has to tile the
synthetic image to show small scale features with all of their details at the cost of large
scale features. Source: Hoeser and Kuenzer (2022b, p. 170).

20,480 m×20,480 m is used, and an image of size 2,048×2,048 pixels is generated. This

image has to be scaled down before training to the CNN ingestion size of 1,024× 1,024

pixels. This leads to a virtual decrease of the spatial resolution to 20 m× 20 m. That way,

large scale spatial features are preserved in the final training example. However, small-scale

features, whose representation is more affected by downscaling, lose information content.

This is the trade-off that has to be decided for.
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Another option is to focus on small scale features in case they are the most important for

the given task, as depicted in the third row in figure 4.4. Instead of downscaling the image,

which leads to decreasing representation of small scale details, four images of size 1,024×
1,024 are derived from the entire synthetic scene. That way, the virtual sensor resolution

of 10 m× 10 m is preserved in the final image. However, large-scale features no longer

appear to their full extent in the training examples. Nevertheless, the spatial context between

small and large scale features is still meaningful since the synthetic scene was designed to

represent both at full scale, and the images were taken from this composition. This means

the ontology does not have to change since nothing changes in the spatial and contextual

relationships among the scene elements. Only the technical configurations for the image

generator change. This allows using the same ontology to generate suitable training data

sets under changing determining technical conditions.

4.1.3 Artificial Data Generator

The artificial data generator is the processing backend, which generates the synthetic

scene composition and image. Therefore, it ingests the ontology to build scene elements

and compose them into a meaningful synthetic scene and, finally synthetic image. The ac-

tual implementation of this processing backend depends on what the domain expert decides

to use or develops to generate the necessary shapes and textures technically. In the upcom-

ing sections, some examples of image processing backends are proposed. They can be as

simple as binary arrays or as complex as a three-dimensional virtual environment. Inde-

pendent of the processing backend, the machine perspective of the ontology has to provide

combinations of values so that the processing backend can use them. Thus, the machine-

readable translation of the ontology can be seen as a large parameter file. A suitable data

format for this parameter file is the .xml or .json format since both can represent the

hierarchic and nested structure of the ontology and are still readable by a human interpreter.

Two main types of synthetic data can be differentiated in the SyntEO framework for the

data generation process. Procedural data are entirely artificially generated, whereas tem-

plate data are data that already exist but are remixed so that they appear in a new context. For

procedural data, practical implementations and engines from the computer generated im-

agery (CGI), gaming industry, and virtual reality domains can be adapted (He et al., 2021).

Especially for representing ecosystems with less structured patterns, fundamental works

on generating gradient noise of Perlin (1985) and Perlin (2001) are excellent examples of

how to technically implement representations of organic or natural patterns described in the

ontology. Opposing this artistic approach for a processing backend is the direct use of the

laws of physics, statistical distributions or libraries of scientific observations to generate
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data. One example of how radar signatures with a very high resolution can be generated is

the RaySAR tool (Auer et al., 2016). Another example of a database of scientific observa-

tions to generate multispectral texture is the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) spectral library by Baldridge et al. (2009).

In contrast to procedural data, template data is already existing information that can be

used as scene element geometries or textures. For example, the Open Street Map (OSM)

project contains many already structured geometries which can be remixed to generate an

entirely new remote sensing scene composition. By adding remote sensing data to these

shapes, the sensor-specific texture of radar or multispectral instruments can be extracted

from freely accessible Earth observation archives in order to synthesise natural or human-

made environments.

An example processing backend should bring some light to this rather abstract descrip-

tion of what such a backend could look like. For the most illustrative example possible, the

example of offshore wind energy infrastructure in radar data will be briefly put on hold, and

the generation of high-resolution RGB data for the detection of individual trees will be con-

sidered. As stated earlier, modern 3D engines provide very complex processing backends

to generate synthetic images. An open-source 3D engine is Blender (Blender Online Com-

munity, 2018), which comes along with a python application programming interface (API)

that allows passing parameter information in order to generate complex scenes automat-

ically. Figure 4.5 shows an example of a scene and the derived synthetic image produced

with Blender. In a first step, Perlin noise (Perlin, 1985) was used to generate a 3D terrain

model to initialise the synthetic scene. The generated noise values are interpreted as height

information to build the terrain. From this synthetic terrain, properties like the slope, aspect,

or terrain pointiness can be derived, which are used as control parameters for further scene

and texture generation. To add a basic texture to the terrain, the high-resolution optical

IKONOS archive was searched for homogeneous areas from which subsets of unvegetated

and vegetated areas are extracted. Together with the terrain pointiness, the two IKONOS

images are passed into a shader, producing an entirely new texture. Since tree detection is

the task, trees have to be placed onto the generated terrain. Therefore 3D tree models from

open and proprietary libraries can be acquired or modelled by hand within Blender. With at

least a single tree model, a particle system can be used for its placement. The particle system

allows placing objects across a given scene randomly. It also controls randomisations like

the type, rotation, scale or inclination of the objects to be placed. Furthermore, the particle

system can be combined with the terrain properties via a weight map. By thresholding the

terrain properties like the height and slope, a weight map can be generated, which controls

the density of objects to occur at a specific location. Altogether, the 3D tree models are then
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Figure 4.5: Generation of a synthetic RGB image with the 3D engine Blender. a) shows how non-
target texture is generated by fusing IKONOS template data by taking synthetic terrain
properties into account. b) shows how tree targets are getting distributed over the syn-
thetic terrain and the final synthetic image from an overhead sensor perspective and less
specular lightning. c) shows the generated synthetic environment from an oblique view
for a better impression of the 3D model space. Source: Hoeser and Kuenzer (2022b,
p. 171).
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randomly placed over the scene. Since everything happens in a 3D model space, the loca-

tion of each tree is known, and labels can be derived for each object placed by the particle

system. Further on, the 3D model space allows changing the viewing angle, the camera po-

sition, and lighting conditions. By selecting an overhead camera position and less specular

light as for the oblique views in the 3D model space, a synthetic remote sensing image can

be taken from the modelled scene.

Since all employed modules of the Blender software can be controlled by the python

API, an automated generation of these images is possible. A processing backend can be

implemented with a suitable parameter file coming from an ontology that describes these

environments, which supports highly complex scene generation in a modular way.

4.1.4 Training Data Set Compilation

One major motivation of SyntEO is to generate large training data sets, fast and with a

high variance of training examples. With the previously described knowledge representation

and a flexible data generation backend, a large amount of training data can be produced.

However, in the end, only a large amount of data, even if annotated, is a start but not optimal

for deep learning. An optimal deep learning data set must be balanced and ready to use in

modern deep learning frameworks.

A proper data set balancing allows the underlying machine learning mechanism to learn

representations equally. For example, if the data generator produced ten thousand images

of small wind farms close to the coast but only one hundred images of large wind farms far

off the coast, an unbalanced data set has been generated. Due to the unbalanced represen-

tation of examples, a trained object detector CNN on this data set would learn that OWFs

usually appear near coasts and are relatively small. In a worst-case scenario, the amount

of large off coast OWFs would be so small that the optimisation signal from this group of

training examples vanishes during the machine learning process and large off coast OWFs

are getting wrongly rejected by the object detector. Thus representation in the ontology is

not enough. The final balancing of different training examples in the training data set has to

be representative, too.

The introduced components of the SyntEO framework already offer everything neces-

sary to balance the data set. In each image processing step, the data generator approaches

the ontology and defines specific values in order to produce a synthetic remote sensing

scene. Each entity in the ontology provides metadata that can be exported along with each

image-annotation pair. That way, the large amount of data can be structured by using this

metadata to set up a data database from which a balanced data set can be built. Due to this
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approach, each data set gets a metadata structure, which helps build stable and fully control-

lable experiment environments. With stable experiment environments, it becomes possible

to observe how different types of data sets affect the CNN performance. For instance, to

investigate what happens when the same CNN is trained with a data set containing only

small OWFs instead of all sizes of OWFs.

Finally, a last optional step can be made when the data set is balanced. Especially in

deep learning, specific data formats became popular since they allow very sophisticated

handling of modern deep learning frameworks and their sub APIs. One good example is the

.TFrecord format of the TensorFlow deep learning framework for its data API. Some

benefits of this API are that it supports sophisticated data augmentation on the fly during

training and cares about an optimised data pipeline from storage to GPU to avoid idling

hardware and thus speed up training. The .TFrecord format is also commonly used

in other APIs, like the TensorFlow object detection API. Thus, converting image and an-

notation files to this specific format enables higher usability for a specific deep learning

framework.

4.2 Proof of Concept - SyntEO for Offshore Wind Farm

Detection

After a theoretical introduction with brief examples to clarify the otherwise only tech-

nical terms, a first end-to-end application of the SyntEO framework for OWF detection is

performed. This detection is still part of the development process of the SyntEO framework

and not the final global offshore wind energy infrastructure detection, which will be presen-

ted in the next chapter 5. The upcoming investigation is a proof of concept study which tests

the practicability of the proposed SyntEO framework and looks more deeply into the single

steps of the introduced workflow. Therefore, four synthetic data sets for the task of OWF

detection will be produced. With each of the four data sets, a CNN object detector is trained

and tested on four test sites.

4.2.1 Test Sites and Data

The four test sites in this proof of concept study are two hot spots of offshore wind en-

ergy production and two areas without any OWFs but that show potential false positives,

see figure 4.6a). The two wind energy production hotspots are the North Sea Basin and

the East China Sea. Figures 4.6b) and c) show readily deployed OWFs at far off coast lo-

cations in the North Sea Basin and a near-shore OWF cluster in the East China Sea with

wind turbines under construction. Unlike the North Sea Basin, in the East China Sea, OWFs
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Figure 4.6: a) Locations of four test sites and the 1.8◦ data grid of the global coastline for which
Sentinel-1 median composites are generated. b) example of the North Sea Basin test site
in the German Bight. c) near coast offshore wind farm in the East China Sea, Jiangsu,
China. d) oil rigs in the Persian Gulf near Khaji, Saudi Arabia, and c) agriculture land-
scape and road network at a coastal site of the Sea of Azov, near Yeysk, Russia. Source:
Hoeser and Kuenzer (2022b, p. 174).
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are built more closely to the shoreline and in areas with a strong tidal influence. The near

coast locations of OWFs in the East China Sea are the more challenging environments for

offshore wind energy infrastructure detection since OWFs are built closely to other infra-

structures like harbours, buoys and aquaculture, and other natural non-targets with similar

spatial signatures like small islands. Furthermore, due to OWFs on tidal flats, the typical

radar signature in median images is less pronounced due to acquisitions in periods of low

tides with no or less water. Due to the acquisition schedule of the Sentinel-1 mission, the

North Sea Basin has more acquisitions of both orbit directions, whereas the East China Sea

has fewer acquisitions in the same period with mostly one orbit direction, see figure 3.2.

Thus in the East China Sea, the typical spatial features of the radar signature are further

dampened by a lower signal to noise ratio due to the smaller number of acquisitions used

in the stack to produce the median composite. Also, the offshore infrastructure itself differs

since in the test period, the third quarter in 2020, the East China Sea has much more OWFs

under construction compared to the North Sea Basin. For these turbines, only the found-

ations return a backscatter signal. The typical clusters to the left and right of the turbine,

originating from the layover and the double bounce effect of the turbine’s nacelle, are miss-

ing. The two magnifications in figures 4.6b) and c) demonstrate the differences between

the signatures in the North Sea Basin and the East China Sea. Overall, these make the East

China Sea a more difficult test site than the North Sea Basin.

The other two test sites are the Persian Gulf and the Sea of Azov, see figures 4.6d) and

e) respectively. They only show non-targets that are potential false positive detections due

to their spatial characteristics. The Persian Gulf is characterised by oil rigs and offshore

refineries, which present potential false positives due to their similar backscatter signature

on a small spatial scale. The onshore coastal environment in the Sea of Azov is characterised

by large rectangular agricultural fields which are separated by a grid-like road network. This

grid-like pattern on a larger spatial scale is this test site’s potential false positive feature. Due

to their characteristics, both sites are used as real-world examples to test the abstraction

ability of differently trained CNNs to investigate not only the accuracy of the models but

also their precision.

The ground truth data set of real-world OWFs were generated by visually examining

Sentinel-1 median composites of the third quarter in 2020 (2020Q3). In addition to the

Sentinel-1 median composites, high-resolution RGB imagery in Google Earth and Sentinel-

2, as well as public planning documents and reports about OWF projects, were used to val-

idate OWT locations. All readily deployed OWTs within the four test sites were annotated

and aggregated to OWF clusters by their spatial proximity. The bounding boxes of each

OWF cluster are the ground truth geometries for the North Sea Basin and the East China
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Figure 4.7: Overview of the entire global coastal 1.8◦ data grid for a 200 km are from the coastline
towards the sea. The background layer is a three month Sentinel-1 median composite,
which is processed and downloaded for the data grid boundary. Changed after Hoeser
et al. (2022, p. 4255).

Sea. Since the two other sites, the Persian Gulf and the Sea of Azov, contain no OWFs, their

ground truth information is specifically empty to assess false positive detections. That way,

four real-world test sites with different characteristics are defined to assess the performance

of an object detector that is optimised by synthetic training data.

Sentinel-1 median composites were acquired not only for the four test sites but also

for the entire global coastline. Data that did not belong to the four test sites were used as

template texture during the image generation process of the synthetic training data. For

efficient data acquisition and processing, a processing grid with a cell width of 1.8◦ was

set up, which is also the technical boundary of the four test sites, see figure 4.6a). The

processing grid is initialised to cover the entire globe. Since only such grid cells are of

interest which intersect an area reaching 200 km from the shoreline into the open sea, a

polygon covering this area was generated to make a spatial selection of the grid cells. The

selected global processing grid by this polygon is depicted in figure 4.7.

The acquired Sentinel-1 median composites contain all VH-polarised Sentinel-1 IW

GRD acquisitions of the third quarter of 2020. The GRD products of the Sentinel-1 archive

are freely accessible via the Google Earth Engine (GEE) (Gorelick et al., 2017). GEE

has the major advantage that it provides the GRD products with necessary preprocessing

already completed. The GRD products on the GEE were adjusted to their precise orbit in-

formation, border noise and thermal noise have been removed, and radiometric and terrain

correction have been applied. Furthermore, the GEE allows sophisticated spatiotemporal
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querying of the data archive and provides an option to build custom processing graphs,

which can all be run on the GEE processing environment. That way, the quarterly median

composites can be generated directly on the GEE in a highly efficient way. However, the

median composite generation and the export of the results is still a processing heavy task

for larger regions, and GEE limitations prevent a direct download of a single raster which

would be necessary to describe the global coastline at a spatial resolution of 10 m×10 m.

To solve this problem, the previously generated processing grid is used to enable parallel

data acquisition of adequately sized image tiles, as depicted in figure 4.8.

To further organise the processing grid, each grid cell is initialised with an identifier (ID),

in the following referred to as grid ID. Based on this grid ID, a folder structure is set up

which will hold all files which are associated with the corresponding grid ID. To start the

acqusition process, a python script uses an automatic authentication to get access to the

used external services, the GEE and also the later used Google Cloud Platform. By using

the GEE-python API, a single grid ID geometry, the start and end date of the period of

interest, the Sentinel-1 data product specification and the processing graph for the median

composites are passed to the GEE, to generate a single median composite tile for the cor-

responding grid cell. This median composite is further reduced from 16 bit floating-point,

which provides the backscatter amplitude in dB, to 8 bit integers. Thereby, the range of -40

to 0 dB is rescaled to 0 to 255. The loss of decimal places during this rescaling is accept-

able since the CNN, which is used later on for object detection, is more sensitive for spatial

features than for small changes of single pixel values. The resulting image is then exported

to a storage bucket on the Google Cloud Platform. This is necessary, due to the design and

quotas of the GEE. While the task is executed by the GEE, the python script, which star-

ted the process, continuously queries the processing stages and checks if the exported data

from the GEE is available on the Google Cloud Platform storage. That way, exported data

is downloaded from the Google Cloud Platform storage to a local processing machine im-

mediately after the export from the GEE was successful, and non of the processed median

composites remains on Google services.

In order to download the data for the entire globe, this process has to be repeated thou-

sands of times, where one process can take up to 20 minutes, depending on the GEE per-

formance. To reduce the data acquisition time, the python script to process a single grid

ID is called ten times in parallel. Thus, the acquisition of a single band median composite

with a pixel size of 10 m× 10 m for the entire global coastline is possible within three to

five days. To organise the parallel download process for all grid cells, a SQLite database is

set up with the grid IDs that manages the feedback information from both Google services,

which is queried along the workflow. That way, the database distributes open grid cells to
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Figure 4.8: Conceptual depiction of the data acquisition pipeline of the global Sentinel-1 median
composites. A user triggers a global download process of the data to a local processing
machine. The process uses the Google Earth Engine (GEE) and Google Cloud Platform
to query, process and download the median composites for each grid cell in parallel.
By tracking feedback information of the Google services, monitoring of the download
process is visualised to provide user feedback without interfering with the running pro-
cesses.

the python scripts until all grid IDs have been processed. In addition, the feedback informa-

tion stored in that database is used by another python script which outputs a summary of the

entire data acquisition pipeline to allow the user quick monitoring of the process without

interfering with the running tasks, see figure 4.8. In the following, whenever Sentinel-1 im-

agery is acquired in this dissertation, this data acquisition pipeline has been used. With the

Sentinel-1 data acquisition pipeline set up, the proof of concept study and further global

investigations can start to efficiently work on a large amount of data.
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4.2.2 Ontology Example to Represent Offshore Wind Farms

In order to formalise perceptual and expert knowledge to machine-readable knowledge

in an ontology, it helps to start with a semantic description of the details which have to occur

in the representation. For OWFs, such a description is given by the following sentences:

“Offshore wind farms are located in the sea but can appear in coastal areas on tidal flats.

Smaller wind farms are closer to the coast than larger wind farms. The wind turbine density

decreases by increasing OWF size. Wind turbines are organised in a regular grid-like pattern

with individual but consistent, systematic changes to the grid structure for each wind farm.

The typical outer shape of the entire wind farm is a polygon with four to five sides” (Hoeser

and Kuenzer, 2022b, p. 173).

Figure 4.9 provides a visual impression of how the SyntEO ontology represents the

two-dimensional spatial characteristics of an OWF and how this single scene element is

embedded in a meaningful synthetic scene composition with other scene elements. The

given semantic description is hereby incorporated into this graphical representation in order

to clarify the knowledge transfer process.

To generate a single OWF, first the characteristic size is defined. Therefore, the data

generator randomly selects from a list of values that describe scaling factors as numerical

information and keys as semantic descriptions. For example, by selecting the value small:5,

see figure 4.9a), other OWF characteristics are scaled by the factor 5 later on to translate

them into a metric system based on kilometres. With the semantic key small further con-

textual characteristics can be selected, for instance, the wind turbine density within the

small-sized wind farm. In figure 4.9b) the key small predefines two discrete uniform distri-

butions with ranges. From these distributions, two values are selected, which describe the

dimensions of a regular turbine grid. Thus together, they express the turbine density. When

the context attribution changes to another wind farm size, like medium or large, the ranges

of the discrete uniform distribution also change to adjust the turbine density according to

the OWF size.

Since not all OWFs have a perfectly rectangular grid layout, a deformation function to

the x- and y-axis of the regular grid is applied, see figure 4.9c). This deformation function is

randomly selected from a list of functions. Similar to the size characteristic, the deformation

functions are mathematical expressions paired with semantics. The semantic notation is not

necessary for the data generator but highly supports the readability of the ontology for a

human interpreter. Size, turbine density and grid deformation are connected via context

attributions to finally generate the internal gridded wind farm layout of the OWF scene

element.
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Figure 4.9: Excerpt of the SyntEO ontology for generating a synthetic remote sensing scene for offshore wind farms. a-d) describes the nested representation of
an offshore wind farm. e) brings the wind farm entity into a spatial context with other entities. f) shows the resulting scene composition and how the
synthetic remote sensing image is created by adding texture. Source: Hoeser and Kuenzer (2022b, p. 175).
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Besides this internal structure of an OWF, the outer boundary has to be defined addi-

tionally. Therefore, a polygon is generated with a randomly selected number of vertices and

a minimum distance between the vertices, see figure 4.9d). This wind farm boundary has to

be combined with the internal gridded wind farm layout. In the ontology, this combination

of the two loosely generated information is represented by a Relationship attribution of type

Topology between the gridded wind farm layout and the wind farm boundary. The topolo-

gical rule states that the gridded wind farm layout must be inside the wind farm boundary.

The resulting subset can now be scaled with the initial size value to transform them into a

spatially meaningful coordinate system in kilometres.

The described OWF is only one scene element of many others. The other scene elements

describe non-targets, and most of their shapes are taken from template data. Therefore ran-

dom crops of the OSM coastline are extracted and optionally transformed like flipped over

the vertical or horizontal axis or rotated. With a coastline provided, coastal area, land, and

open sea can be derived as two-dimensional geometries. Hereby, the spatial context of non-

target scene elements in the scene composition is initialized. To embed the fully procedural

generated OWF geometry, the topological relationships to the non-target scene elements

are defined in the ontology, see figure 4.9e). By following these topological rules, a posi-

tion of the generated OWF geometry is selected, and the final synthetic scene is composed.

In figure 4.9f) texture is added to the scene composition. For the non-target scene elements,

this texture comes from the downloaded Sentinel-1 median composites corresponding to

the OSM coastline geometry. Thus, like the geometries for the non-target objects, the tex-

ture also comes from template data. However, the texture which describes the OWTs within

the OWF is generated in a procedural manner, which will be discussed in detail in the next

section as an example for the data generator processing backend.

With the presented excerpt of the ontology for the practical example of the representation

of the geometry of an OWF, the structure of an OWF and its spatial relationships to other

scene elements are clarified. The theoretical foundations from the previous section were

herewith transferred into a practical example by repeatedly applying the building block of

the SyntEO ontology.

4.2.3 Artificial Image Generator Backend

Figure 4.9 gives a visual impression of how the SyntEO ontology is structured. At the

same time, it already provides hints about the processing backend, which uses the descrip-

tion in the ontology as input to generate the synthetic image. The transition from ontology

to processing backend is, by design, smooth since the task of the ontology is to represent

human knowledge in a way a machine can read and use it to generate a synthetic remote
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sensing scene. Thus, some of the information within the ontology has to be close to the

technical processing backend. For the OWF example, the processing back end is based on

representing all information as NumPy arrays (Harris et al., 2020). Thus each distribution,

geometry or pixel value is represented as a one- or multidimensional array. The processing

backend for the generation of a synthetic training data set that describes offshore wind

energy infrastructure was developed for this specific task and is based on the structures

provided by the NumPy library. To get an impression of how this can look like, the genera-

tion of OWT texture and an entire oil rig non-target scene with texture are discussed in this

section.

In figure 4.9f), texture is added to the scene composition. Thereby, the non-target texture

comes from the Sentinel-1 template data. Technically, the processing backend uses the geo-

metrical description of a coastline segment, defines areas of land, coast and open sea from

it and uses these areas to clip the corresponding Sentinel-1 image to obtain texture for these

areas. However, the generate OWT locations also need the texture to appear in the synthetic

image. This texture does not come from template data. Instead, the texture for an OWT is

generated procedurally. The technical implementation of generating pixel values that visu-

ally represent an OWT is mainly based on two-dimensional kernels. Figure 4.10 gives an

overview of how the processing backend stepwise produces and merges these kernels to

finally generate a texture array for an OWT location. In figure 4.10a-g), the backscatter

clusters of the turbine centre and the layover and double bounce effects are generated. For

the turbine centre, depicted in figure 4.10a-d), two Laplacian kernels L, see equation (25),

are generated. Each kernel is described by i = 1,2, . . . ,40 values, equally distributed in an

interval from -1 to 1, x = [−1,1]. Both Laplacian kernel functions have a location parameter

µL of 0, and a scale parameter σL of which the kernel assigned to the horizontal axes has

a smaller scale parameter σLh ∈Q : 0.25 ≤ σLh ≤ 0.5 as the kernel assigned to the vertical

axis σLv ∈Q : 0.75 ≤ σLv ≤ 1

L(xi) =
1

2σL
e
− |xi−µL |

σL . (25)

By taking the outer product of the two arrays with a dimension of 1 × 40, a two-

dimensional kernel with a width and height of 40× 40 depicted in figure 4.10a) is gen-

erated. To make the smooth texture more realistic, an array of the same dimension with ran-

dom noise is added to the two dimensional Laplacian kernel. After that, the resulting raster

values are stretched to typical backscatter values of OWT centres, characterised in the onto-

logy. To manipulate the shape of the texture, a binary mask is generated, see figure 4.10c).

The mask is initialised in the centre of the 40× 40 shaped array and grows vertically and
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Figure 4.10: Example of a stepwise construction of an offshore wind turbine (OWT) texture from
two-dimensional kernel functions, morphological operations and noise. Each indi-
vidual turbine texture created in this way has a unique signature due to the random
selection of parameters of each step.
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horizontally, where the maximum horizontal extent decreases by increasing vertical dis-

tance to the centre. The ontology provides both values, which define the maximum extent.

A subsequent erosion operation randomises the shape of the otherwise symmetrical mask.

By applying this result to the two dimensional Laplacian kernel, the texture of the centre of

an OWT is provided, see figure 4.10d).

Similar to this, the two smaller clusters to the left and right of the OWT location are gen-

erated. Therefore two point clouds are generated in a unit square with location parameters

described by two normal distributions. The location parameter of these normal distributions

defines the centres’ vertical and horizontal locations. A two-dimensional Gaussian kernel

density estimation is applied to them, and the resulting two-dimensional empirical kernels

are transformed into an array with the dimension 40×40, see figure 4.10f). The approach of

a kernel density estimation in a 2D plane of points which have coordinates from a Gaussian

normal distribution was chosen to achieve a greater heterogeneity of the texture instead of

directly using a two-dimensional Gaussian kernel which would be symmetric. Similar to

the turbine centre, a linear stretch is applied to adjust the pixel values to typical backscat-

ter amplitudes. By adding the array of the centre texture and the array of the layover and

backscatter signatures, the main part of the turbine texture is finished, see figure 4.10e-g).

The next feature describes the radar signature coming from the backscatter effect of

strong scatterers over open water. For simplicity, only a single orbit direction is considered

in this example. As a starting point, two kernels of the power-law function P are generated,

see equation (26), where σP ∈Q : 0.8 ≤ σP ≤ 0.88 is the shape parameter

P(xi) = σPx
σP−1
i . (26)

Similar to the two dimensional Laplacian kernel, two one dimensional kernels with dif-

ferent parametrisation for the horizontal and the vertical axis are generated and combined by

calculating their outer product to a two-dimensional kernel. This time the shape of the array

is larger, 100×100, due to the larger spatial extent of the feature to generate. In addition, the

array is rotated, to simulate the orbit flight path inclination, and random noise is added to it,

as depicted in figure 4.10h). The earlier generated centre mask, see figure 4.10c), is used to

generate a border with decreasing intensity around the mask to simulate a smooth transition

between the generated turbine centre and the backscatter over open water effect texture,

see figure 4.10i). Both the power-law kernel and centre border are stretched to represent

weights in a range between 1 and 1.4. Both arrays are then combined by stacking them ver-

tically and reducing the stack by selecting the maximum values, see figure 4.10h-j). Since

the effect in real radar images is a result of the interaction between a strong scatterer and
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open water, water has to be taken into account when producing this texture. Therefore, the

water pixels which are at the location of the OWT in the scene compositions are extracted

from the raster, provided by the template Sentinel-1 data. The resulting array is then mul-

tiplied by the weight array produced before. Thus the spatial pattern of the strong scatterer

over open water is combined with real backscatter values that are coming from the water

surface itself. By using the produced kernels as weights instead of direct backscatter values,

much higher randomisation is realised in the texture, see figure 4.10k-m).

Finally, the generated arrays of the radar signatures can be combined. Therefore, the

first result of the turbine centre and the two layover and double bounce clusters are padded

with zero values to reach the same dimension as the second array with a larger spatial

extent, compare figure 4.10g+m). Then, both arrays are vertically stacked and reduced by

selecting the maximum values. This generates the texture for a single OWT location, see

figure 4.10n-p). The entire procedure of procedural texture generation is repeated for each

OWT location in the scene composition. To maximise variability, the parameters of the

kernel functions, ranges of backscatter values to be simulated, and the overall structure

of the OWT texture design are randomised. For example, an OWT which was acquired at

both orbit directions would have an additional power-law kernel. Larger OWTs would have

larger centre clusters and spacing between the layover and double bounce clusters. This

parameter selection is described in the ontology and controlled via context attributions, e.g.

an OWF of size large triggers larger OWT textures. Due to the randomisation of the texture

generation, each OWT texture can be assumed to be unique.

Figure 4.11: Visual comparison of a synthetically generated texture and two real-world textures of
offshore wind turbines (OWTs) in the East China Sea. Distinct spatial features of the
radar signature are approximated by the synthetic texture to communicate them during
the training process of a convolutional neural network.
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Figure 4.11 compares the generated example to two real-world OWF signatures which

were acquired at a single orbit direction in the East China Sea. It becomes clear that when

learning a generalized version of the spatial characteristics of the synthetic texture, the

spatial features of a real-world radar signature of an OWT can be approximated.

In combination with the procedural shape and texture generation of OWFs and OWTs

and the template data based non-target scene element generation, it is possible to synthesise

thousands of individual remote sensing scenes. However, a CNN will not necessarily learn

all of the features embedded in these images, but those which are the strongest and clearest,

or loosely speaking, the easiest to learn. At this stage, natural environments with small is-

lands are provided along with the OWFs since the scene elements coastline and land appear

in the scene compositions. However, human-made offshore infrastructure is underrepresen-

ted in the data set. Thus, most probably, a CNN will learn to look for strong backscatter

clusters within the open sea. It does not need to look for specific structures of these clusters

since, in the training data set, nothing else exists which looks similar to an OWF. A brief

discussion of a more intuitive problem explains this issue. If a CNN is trained to recognise

dogs and the training data set does only contain images of dogs, it will not learn that there

are other animals, and thus it is prone to false positives when applied in the real world. For

example, if the trained CNN has to predict an image of a giraffe, it would be certain that

this is a dog. Since it is a narrow artificial intelligence, it would not even think that this dog

has a strangely long neck, but it would just predict that this image looks doggish, hence it

has to be a dog in it. Thus, showing the artificial agent more of the world about which it

makes decisions during training allows it to learn a more realistic complexity.

This example demonstrates the importance to consider potential false positives. A proper

training data set has to contain training examples that show closely related classes in order

to teach the CNN the detailed differences it has to look for. In the OWF study, a false

positive training example would be an image of other marine infrastructure without these

objects being labelled. Thus when the CNN predicts a bounding box for such an object

during training, this detection would result in a very high error. The associated gradients

derived from it would force the parameters of the CNN to finally find the difference between

the actual targets and such non-targets, which look very similar. It can be imagined as a sort

of fine-tuning of a more sophisticated combination of kernel functions within the CNN. In

this way, the CNN has to find other more detailed features to learn differences, and at this

moment, the CNN starts to learn the very characteristics of the gridded OWF structure, or

the small scale spatial features of a single OWT. However, these images that show false

positives have to be generated additionally to provide them in sufficient quantity.
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The processing backend to generate these images is based on a methodology that has its

origins in the production of visual effects with CGI, a very important field for developing

a capable image processing backend. The large scale difference between OWF and sites

with other marine infrastructure like oil rigs is that an OWF appears as a structured grid-

like pattern, whereas oil rigs are accumulated in random clusters which look more organic,

as discussed in section 3.2. To simulate these large scale patterns, gradient noise in its

variant of OpenSimplex noise was used, see figure 4.12. OpenSimplex noise is a descendant

of Perlin noise, which was originally developed by Perlin (1985) for the movie Tron in

1982. It allows generating noise that is not entirely random but follows a local gradient.

Perlin noise and its variants are still commonly used, especially in video game design and

computer graphics, to efficiently generate animations or surface geometries (Perlin, 2001).

For the SyntEO framework and its processing backends, they are especially important since

they allow for the synthesis of natural environments which are otherwise complicated to

describe. Thus these techniques are promising tools for a processing backend to generate

Earth observation data.

Figure 4.12: The generation of organic shapes by using OpenSimplex noise to finally generate a
synthetic radar image showing oil rig clusters. Source: Hoeser and Kuenzer (2022b,
p. 176).
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In this specific example for oil rig generation, OpenSimplex noise is generated and a

threshold applied to the values to design large scale spatial patterns which look unstruc-

tured with an organic shape, see figure 4.12. The next step generates platform locations

by randomly drawing coordinates from a uniform distribution. By applying the topological

rule must be inside, only such platform locations are kept which are within the generated

OpenSimplex noise geometries. After this step, the final scene composition is set up. For

the open sea area in this scene composition, the texture is added by selecting Sentinel-1

template data from gird cells which only show the open sea. The earlier described method

of generating empirical two-dimensional kernels by applying a Gaussian kernel density es-

timation over point clouds is reused to generate the texture of platform locations. This time

the spatial scaling factor of the point cloud coordinates and kernel width is larger to rep-

resent an entire oil rig instead of only the small clusters belonging to layover and double

bounce effects of the turbine’s nacelle. Finally, the image is generated with a correspond-

ing annotation file without any entries of a target object, which makes it clear that each

detection made on this image is a false positive.

The described technical insights in the implementation of the processing backend

provide a better intuition about this important but task-specific component of the SyntEO

framework. What applies to the ontology also applies to the processing backend: The more

frequently the SyntEO framework is used to describe and generate data, the greater the

volume of already prepared building blocks that can be reused. Thus, implementing a pro-

cessing backend will become easier over time. The more shapes and textures have been built

in the past, the more processing backend modules exist and can be reused and rearranged

to implement a new processing backend.

4.2.4 Data Set Variants and Composition

Section 4.2.3 already emphasised the importance of large and balanced training data sets.

This example demonstrated that the balancing is not only about target-feature representation

but also non-target examples. Only providing randomly generated images-annotation pairs

will not be sufficient to exploit the potential of a CNN. Four consecutive data sets that step-

wise expand in complexity, variability, and represented targets and non-targets have been

generated to prove this statement. Figure 4.13 shows the main components and changes of

the four data sets.

The first data set only contains OWFs with a small size and no coastline but only land

and open sea as non-target scene elements. Furthermore, the open sea is not Sentinel-1

template data but a constant value drawn from a uniform distribution, see figure 4.13ae).

Data set-1 also does not include any non-target training examples like oil rigs. Overall,
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Figure 4.13: The evolution of synthetic training data sets for offshore wind farm detection with
increasing complexity. Data set-1 shows only small scale offshore wind farms (OWFs)
and mainland. Data set-2 adds two more OWF scales, medium and large. Data set-
3 adds the coastline to the mainland and two non-target classes of pure land and oil
rigs. Data set-3+ finally adds an additional offshore wind turbine (OWT) texture type,
which can be found on tidal flats. Source: Hoeser and Kuenzer (2022b, p. 177).
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data set-1 contains 45,000 images that show small OWFs, a simplified open sea, and land

without a coastline. For the second data set, all OWF sizes and all associated contextual

properties have been enabled in the ontology. Thus OWFs do appear at the three sizes small,

medium and large in data set-2, see figure 4.13b). However, the setting for the non-target

classes was kept as for data set-1. The data set-2 has 90,000 images, 1/4 of each small and

large-sized OWFs, and 2/4 of medium-sized OWFs. The third data set additionally contains

non-target examples, see figure 4.13c+d). The coastline area was embedded in images with

a transition between land and open sea, and the open sea areas are no longer constant values

but Sentinel-1 template data. More importantly, non-target examples that show unstructured

marine infrastructure clusters and a second type that shows only land are added to the data

set composition. The overall size of data set-3 is 90,000 training examples with small and

large OWFs and non-target oil rigs and land, each contributing 1/6 of the 90,000 images.

The remaining 2/6 are provided by training examples containing medium-sized OWFs.

Finally, data set-3+ was composed. As the name suggests, it has the same size and com-

position as data set-3, but it has an additional OWT type, see figure 4.13dg). In all other

data sets, the two major variants in figure 4.13ae+ag) have been used. Thereby, ae) is a

OWT signature of a turbine acquired at an ascending orbit direction and figure 4.13ag) is

a signature of an OWT acquired at both orbit directions. Furthermore, both variants show

turbines surrounded by the open sea. The new OWT type figure 4.13dg) shows a signature

that can typically be found on tidal flats. Due to the lack of water in some images of the

median composite, the typical radar signature of an OWT is less pronounced.

The data set generation and final composition process of each of the four data sets have

the same workflow. The necessary parts of the ontology were enabled, corresponding to

each data set variant. Thus the image generator produced data sets with increasing com-

plexity by reusing the same ontology with additional features enabled for each more com-

plex data set variant. Since some parts of the data generator are random processes, the total

number of generated examples was chosen to be higher than the number of examples in the

finally composed training data sets. This way, an unstructured pile of image and annota-

tion files along with the corresponding metadata was generated. The images are stored as

.png fiels, the annotations and metadata information as .xml files of which the annotation

.xmls are following the PASCAL-VOC annotation convention (Everingham et al., 2010).

The metadata files were combined into a database, and by choosing a balanced number for

each group of image types, the corresponding image-annotations pairs were selected from

the unsorted pile of data. The training data set compiled in this way was then converted

to .TFrecord binary files, ready for deep learning with the TensorFlow object detection

API.
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4.2.5 CNN Model and Training

The chosen CNN model for object detection is the Faster R-CNN two-stage detector

(Ren et al., 2015). The ResNet-50 convolutional backbone (He et al., 2016) was chosen

as preceding feature extractor. It ingests the input image and extracts the necessary fea-

tures before the Faster R-CNN uses them for object localisation, bounding box regression

and class prediction. The ResNet-50 Faster R-CNN model structure was technically imple-

mented by employing the TensorFlow deep learning framework (Abadi et al., 2015). The

input size of an image to the CNN is 1,024× 1,024 pixels. Thus on the fly, downscaling

of the 2,048×2,048 pixel-sized synthetic training examples is performed. Since the target

objects are entire OWFs, large scale features have to be preserved. Thus the downscaling

before training approach of the entire synthetic image was chosen, following the concept

presented in section 4.1.2. As introduced in section 2.5.3.3, the Faster R-CNN contains

the region proposal network (RPN) submodule. This submodule is needed to find region

proposals of potential objects. It relies on so-called anchor boxes, which can be imagined

as boxes equally distributed over the last feature map of the convolutional backbone. The

initial scale and aspect ratios of these boxes have to be defined manually. Aspect ratios

of the anchors Aaspect were set to [0.5, 1, 2] to obtain one squared and two rectangular

shapes, whereas the scale ratios Ascale where set to [0.25, 0.5, 1, 2, 3.5]. The scale ratios

were calculated by taking typical OWF sizes and their size downscaled by the convolu-

tional feature extractor in the last feature map into account. A scale one anchor box of the

RPN would have the pixel dimensions Ah = 16,Aw = 16, with width w and height h, in

the last feature map. Typical target sizes T are [128, 256, 512, 1024, 1792] times 10 m in

the input image. The downscaling factor of the convolutional backbone, coming from the

max pooling operations, is called the stride S of the network. For the employed ResNet-50

architecture, the stride is 16. Hereby an anchor scale Ascale can be calculated by taking an

additional downscaling of the input image I due to the model’s input size M of the CNN

into account

Ascale =

√

ThTw
MhMw

IhIw
× 1

S
√AhAw

. (27)

In the case of the same width w and height h for each variable, this can be simplified to

Ascale =
T ×M
I×S×A . (28)
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This calculation of the anchor box scale factors is possible due to the available informa-

tion on the size parameters of the target entities in the ontology. Normally, the proper anchor

scale definition needs an in-depth investigation of the bounding boxes of the training data

set (Redmon and Farhadi, 2016).

The four synthetic data sets were split into a 95% training and 5% validation set in order

to use a fraction of the synthetic images to track the training process. The test set, which

will later be used for evaluation, is entirely independent of the synthetic data set and only

contains real-world images. The synthetic data sets-2 until 3+ with each holding 90,000 ex-

amples are split into 85,500 examples for the train set and 4,500 examples for the validation

set. For the smaller data set-1 with 45,000 examples, the split is 42,750 for the train set and

2,250 for the validation set. The training set sizes can be considered as large enough for

the training of the object detector CNN with a single target class OWF. In fact, the sizes

are so large that no further data augmentation or iterations, so-called epochs, of the data

set is necessary during training. This demonstrates the advantages of the SyntEO approach.

Instead of reusing a relatively small training data set in multiple epochs to decrease the

cost function to a minimum, the scaleable size of the synthetic data set allows to only use

each training example once in the entire training process. That way, overfitting to specific

training examples is impossible.

The optimisation approach is stochastic gradient descent (Robbins and Monro, 1951;

Bottou et al., 2018), similar to the machine learning cycle introduced in section 2.2. With a

batch size of 4, 21,375 training steps for the larger data sets and 10,687 training steps for the

smaller data set are possible without repeating a training example to optimise the CNN. The

learning rate was scheduled with the cosine decay approach (Loshchilov and Hutter, 2017).

After a warm-up phase of 1,000 training steps, the base learning rate of 0.01 is reached and

decreased to 0 by following the cosine function for all remaining training steps. In addition,

a momentum of 0.9 was chosen. Simply speaking, the momentum describes the share of

the last gradient update, which is added to the gradients of the current training step. This

way, the learning process is less prone to stuck in local minima of the cost function and

enables the learning process to find a better local minimum or even the global minimum

faster (Polyak, 1964; Sutskever et al., 2013). The hardware used for training the models

were four parallel Nvidia RTX 2080-Ti GPUs with 11 GB memory each. Finally, all four

models, which are named model-1 until model-3+ corresponding to the employed training

data sets, were exported and ready for predicting OWFs on real-world data.
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4.2.6 Offshore Wind Farm Detection and Accuracy Assessment

By using the four trained CNN object detectors, OWFs were detected in the Sentinel-

1 median composites of the third quarter of 2020 within the four test sites. Therefore, all

Sentinel-1 median composite tiles of the test sites were sliced into image chips with a di-

mension of 2,048×2,048 pixels and overlap of 50%. These images chips were downscaled

to 1,024× 1,024 before entering the trained CNNs. All detected bounding boxes with a

detection score higher than 0.8 were considered valid detections. The provided pixel coor-

dinates of the detected bounding boxes of each OWF were transformed to geographic coor-

dinates of the coordinate reference system (CRS) World Geodetic System 1984 (WGS84)

and merged into a single file. Multiple detections of the same OWF caused by the 50%

overlap or the unification of large OWF clusters which are within multiple image chips,

were dissolved by a cascading procedure. Therefore, each bounding box B, starting with

the highest score, selects all intersecting bounding boxes. This way, a list of bounding boxes

with i= 1,2,3, . . . ,B is created. The detection score sorts this list in descending order, where

the box with the highest score is called the leading box, and all other boxes in the list are

member boxes.

IoU =
Bi ∩Bi+1

Bi ∪Bi+1
(29)

Now each member box in this list is compared with the leading box. If the member box

is entirely within the leading box or their intersection over union (IoU), see equation (29),

is higher than 0.33 the geometries of both boxes are unified, and the resulting geometry

updates the geometry of the leading box. If no condition of the above is valid, the member

box geometry is put aside to enter another box list or is an OWF on its own. Equation (30)

provides a summary of this process

B1 :=

B−1














i=1

B1 ∪Bi+1, if Bi+1 ⊆ B1

B1 ∪Bi+1, if B1∩Bi+1
B1∪Bi+1

> 0.33

B1, otherwise

. (30)

This procedure results in a very close boundary around a detected wind farm since it

can consist of several bounding boxes which are optimised to describe the outer boundary

of the detected target. Especially for large OWF clusters these boundaries are closer to the

ground truth bounding boxes of an OWF, see figure 4.16 for some examples.
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To assess the performance of the models, the predicted OWF locations are compared to

the hand labelled ground truth bounding boxes. Thereby a true positive prediction is defined

by an IoU of 0.33 or higher of a predicted OWF boundary with a ground truth bounding

box. With this definition of a true positive, the precision Pr and recall Rc were calculated

Pr =
TP

TP+FP
, (31)

Rc =
TP

TP+FN
. (32)

Precision and recall were combined by calculating their harmonic mean, the F1 score

F1 = 2× Pr×Rc
Pr+Rc

. (33)

Furthermore, the commonly used average precision AP for object detection and its cor-

responding precision-recall curve were calculated to better visualise the differences in the

model performances. Therefore, all detections were sorted in descending order by their

prediction score. From this sorted list with i = 1,2,3, . . . ,D, where D is the number of de-

tections, the all point interpolated precision-recall curve Printerp is derived, see Padilla et al.

(2021)

Printerp = max
R̃c : R̃c≥Rc

Printerp(R̃c) . (34)

The average precision AP describes the all point interpolated precision-recall curve in a

single value by calculating its area under the curve (Padilla et al., 2021):

AP =
D

∑
i=1

(Rc(i)−Rc(i−1))×Printerp(Rc(i)) , (35)

where Rc(0) = 0.

4.2.7 Detection Results

Figure 4.14 shows the detection performance of all four models. As expected, the

model’s performance increases with increasing training data set complexity. The highest

difference can be seen between model-1 and model-2. For data set-2, the different size

parameters for an OWF have been enabled in the ontology, which seems to be a highly
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Figure 4.14: The four interpolated precision-recall curves for each of the trained models and the
associated synthetic training data sets. The average precision scores for each curve
are as follows Model-1 (0.21), Model-2 (0.842), Model-3 (0.901), Model-3+ (0.904).
Source: Hoeser and Kuenzer (2022b, p. 179).

important feature. The embedding of non-target information has exactly the effect as in-

tended. The precision values increase clearly, and even recall is slightly higher for models

3 and 3+ compared to model-2. Overall, model-3 and model-3+ are the best performing

models. Table 4.1 confirms this interpretation. The recall values increase drastically from

model-1 to model-2 and only slightly from thereon. For data set-3 and 3+ the precision val-

ues have their strongest increase indicating a better differentiation between true positives

and false positives. The influence of data set-3 and 3+ on a better representation of false

positive FP examples becomes especially clear when looking at the non-OWF test sites.

Here, the performance increase for model-3 and 3+ is obvious.

These results show that by including different sizes of OWFs in the training data, this

important feature is learned by the CNN and the detection of OWFs increases drastically.

Furthermore, by adding non-target information in the data sets 3 and 3+, the corresponding

CNN models 3 and 3+ are forced to further differentiate between coastal environments,

other marine infrastructure and the real OWF targets, and with it the false detection rate

decreases.
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Table 4.1: All calculated metrics (true ppositive (TP), false ppositive (FP), false negative (FN),
recall (Rc), precision (Pr), average precision (AP)) for the four models performed on the
ground truth (GT) data. The metrics are presented for each site separately and combined

by micro averaging. For the combined metrics, the best scores are underlined. Changed
after Hoeser and Kuenzer (2022b, p. 179).

Studysite GT TP FP FN Rc Pr F1 AP

Model - 1

Combined 67 31 252 36 0.463 0.11 0.177 0.21

North Sea Basin 42 19 85 23 0.452 0.183 0.260 0.217
East China Sea 25 12 67 13 0.48 0.152 0.231 0.282
Persian Gulf 0 100
Sea of Azov 0 0

Model - 2

Combined 67 59 80 8 0.881 0.424 0.573 0.842

North Sea Basin 42 40 3 2 0.952 0.93 0.941 0.952
East China Sea 25 19 22 6 0.76 0.46 0.576 0.712
Persian Gulf 0 31
Sea of Azov 0 24

Model - 3

Combined 67 61 11 6 0.91 0.847 0.878 0.901

North Sea Basin 42 40 1 2 0.952 0.976 0.964 0.952
East China Sea 25 21 5 4 0.84 0.808 0.824 0.817
Persian Gulf 0 5
Sea of Azov 0 0

Model - 3+

Combined 67 61 14 6 0.91 0.813 0.86 0.904

North Sea Basin 42 40 0 2 0.952 1 0.976 0.952
East China Sea 25 21 4 4 0.84 0.84 0.84 0.831
Persian Gulf 0 10
Sea of Azov 0 0

A closer observation of the results of the four study sites provides even deeper insights

and better intuition about the effects of the different synthetic training data sets. Figure 4.15

shows two subsets of the North Sea Basin test site and the different model performances.

The increase in accuracy from model-1 to model-2 is striking. Where model-1 only re-

cognises small scale OWFs and fails to capture larger OWFs as one coherent unit, model-2

learned to detect OWFs with multiple sizes. The false positive detection until model-3 is the

Triton Knoll OWF which in 2020 was under construction. Magnification of figure 4.15b)

shows the regular grid-like pattern, which is already a strong large scale spatial feature that

leads to the detection of this OWF site, which due to its deployment stage, is not part of the

ground truth data set.

Figure 4.16 shows two subsets of the East China Sea test site. Similar to the North Sea

Basin, the increasing ability of multi-scale OWF detection is clearly visible by comparing

model-1 and model-2. Typically for the East China Sea test site are the near cost locations of

OWF which bring them close to harbour infrastructure. This infrastructure is still included
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Figure 4.15: Progressive detection results of the four trained models for two examples from the
North Sea Basin. Magnification a) shows readily deployed offshore wind farm (OWF),
and b) OWF under construction. Changed after Hoeser and Kuenzer (2022b, p. 180).

as false positive detections in model-2, see the example of the Hangzhou Bay area in fig-

ure 4.16. This behaviour of model-2 is relatable since the non-target scene element coast is

made available in data set-3. In model-3 and 3+ the harbour structures which were falsely

detected in the Hangzhou Bay area are no longer detected. This example demonstrates the

earlier discussed decrease of false positive detections and the corresponding increase in pre-

cision by including non-target information in the synthetic training data set. Furthermore,

the Jiangsu example in figure 4.16 shows the impact of the additional OWT model type for

locations on tidal flats. The OWF cluster built at the shoreline is situated on tidal flats. Mag-

nification 4.16b) and b4) show the typical less distinct radar signature of an OWT in such

an environment. Model-3, which is not aware of this type of OWT signature but is trained to

reject other marine platforms like oil rigs, decides to reject these parts of the OWF cluster.

In model-2, these OWTs were included since the non-target type oil rigs were not part of
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Figure 4.16: Progressive detection results of the four trained models for two examples from the
East China Sea. Magnification a) shows an offshore wind farm (OWF) partly readily
deployed and under construction, as well as a transformer substation; b) shows an
OWF on a tidal flat. Changed after Hoeser and Kuenzer (2022b, p. 181).

the data set-2. However, in model-3+ after introducing the new OWT type in data set-3+,

the CNN is forced to learn the detailed differences between oil rigs and this special type of

OWT radar signature. Only with this addition of the new OWT type, model-3+ is able to

enclose these turbines again fully.

In figure 4.17 the effects of non-target training examples become even more evident. Un-

til model-2, accumulations of oil rigs in the Persian Gulf are getting detected. As soon as

they are introduced as non-target training examples in data set-3, model-3 no longer detects

them. However, in model-3+ some seem to appear again. This is due to the new OWT type,

which on a smaller spatial scale looks less different compared with an oil rig than the other

more distinct OWT types. Nevertheless, the effect of changing the synthetic training data

is clearly visible in the model performance. Since the Sentinel-1 data is ingested unfiltered
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Figure 4.17: Progressive detection results of the four trained models for two examples from the
Persian Gulf and the Sea of Azov. Magnification a) shows rectangular fields and a
grid-like road network, which is a potential false positive feature; b) shows oil rigs
and industrial facilities as potential false positive examples. Changed after Hoeser and
Kuenzer (2022b, p. 182).

into the CNN models, not only offshore areas but also parts of onshore coastal areas are

getting processed. In onshore environments, specific patterns can occur, which can be mis-

leading for a CNN model. To understand what happens in this less intuitive example, the

stepwise changing representations in the data sets help to understand which features each

model has learned and is looking for in the data. Model-2 has learned to not only look for

grid-like spatial patterns on a small scale but also on a large scale since large sized OWF

types are included in data set-2. The spatial patterns of large gridded structures, which are

typical for the turbine distribution of an OWF do also occur in the road network. Something

that seems like an easily avoidable mistake is a very promising insight. It proves that the in-

tentionally embedded grid-like pattern is an important feature for the model to detect OWF.

Otherwise, the CNN would not have learned it. However, this information is misleading

when the trained model is deployed for a real-world application. Only by adding land as
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a non-target example in the data sets 3 and 3+, the model becomes aware of the fact that

it has to look for grid-like structures only in a marine environment. This last example is

very important to demonstrate that the intended knowledge transfer from a human being to

a machine was successful since similar patterns that a human would use are important for

the machine to fulfil its task.

4.3 Discussion

The two main objectives of the SyntEO framework are to enable researchers to generate

large annotated remote sensing data sets and to transfer knowledge from a human Earth

observation expert to a machine in order to build a narrow artificial intelligence to solve a

specific task.

The introduced theory of the SyntEO framework and the proof of concept study demon-

strated that by using SyntEO it is possible to start a knowledge transfer from a human

domain expert to a machine. Once an ontology is set up and a processing backend connec-

ted, a data set can be produced on demand. Four consecutive data sets were generated in the

proof of concept study, the largest consisting of 90,000 image-annotation pairs. After the

ontology is formulated and the processing backend implemented, the technical generation

of such a data set lasted 2.6 hours on a machine with 4 Intel Xeon Platinum 8260 CPUs and

2.40GHz running 190 parallel threads. This nearly instantaneous generation of training data

allows for complex investigations of the target object. Furthermore, it enables a researcher

to allocate more resources to answering geoscientific research questions instead of labelling

ten thousand images with millions of target objects.

An argument against the SyntEO approach can be that instead of a rather complex work-

flow of generating synthetic images and training a deep learning model, the embedded

knowledge in the ontology can directly be used as a rule-based model to fulfil the task at

hand. A deep learning model would therefore be an unnecessary layer of complexity that

can be avoided. The counterargument is that the ontology holds much information about

individual features, but the highest density of information is only achieved through the

composition of these features into a synthetic scene and image. Following that, most of

the spatial information is still implicitly embedded in the ontology. However, by generat-

ing synthetic images upon the ontology, a model that uses these images indirectly learns

the implicit knowledge of the ontology that otherwise would not be accessible. This be-

comes particularly clear with non-target scene objects. The provided examples and proof of

concept study clearly demonstrate that a well-described target alone is not enough to train

a generalised model. A definition of what not to detect is also necessary to minimise false
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detections. In the proof of concept study, some non-targets were only loosely described,

and much of their representation was taken from template data. This template data is ex-

tremely important and just as much a part of a synthetic scene as procedural information.

However, the inherent characteristics of the template data are not explicitly described in

the ontology and thus only accessible for a model which learns from the ontology but not

for a model which is the ontology. The challenge is to express knowledge as explicitly as

necessary to provide information to a machine capable of extracting implicit information

from the knowledge representation. This knowledge transfer was proven to be possible for

the OWF example with the proposed SyntEO framework.

Nevertheless, the question remains open as to how far SyntEO is transferable for other

tasks besides the investigated OWF detection. The demonstrated examples show that parts

of the ontology and the processing backend can be reused. The more the framework is

used to generate synthetic remote sensing data, the more entities have been described or

generated, which means that transferability can enter a self-reinforcing cycle. An advantage

of the SyntEO ontology is that the same building block is reused over and over again to

formalise the expert knowledge. Thus exchanging descriptions is supported by design since

the same base structure is used. The more critical part is the processing backend. Here

it is up to the developers of the respective processing backend to design it in a modular

way that individual components function independently and prepare interfaces for adding

new components. The stepwise changed data sets generated in the proof of concept study

demonstrate that such a modular design and development is technically feasible. Be that

as it may, only the further use and development of the framework can finally answer the

question of how transferable the framework is.

What is important to mention as a potential downside of the framework is that the

SyntEO ontology itself is not self-regulating. Rich and Knight (1991) describe the fol-

lowing dilemma:

1. “An AI system must contain a lot of knowledge if it is to handle anything but trivial

toy problems.

2. But as the amount of knowledge grows, it becomes harder to access the appropriate

things when needed, so more knowledge must be added to help. But now there is even

more knowledge to manage, so more must be added, and so forth” (p. 27).

From the perspective of the SyntEO framework, this means that a domain expert runs the

risk of getting lost in the formulation of the ontology. This has to be prevented at an early

stage. Parts of this problem can be mitigated by the development of a comprehensive pro-

cessing backend. This allows knowledge to be expressed more compactly in the ontology,
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and the technical implementation is outsourced entirely to the processing backend. For ex-

ample, instead of describing single components of how a polygon has to be generated in the

ontology, the ontology can express that a polygon with four to six sides is necessary, and

the processing backend takes over the rest. This supports the domain expert in not losing

sight of the actual goal, the representation of crucial knowledge.

Furthermore, before starting to formulate the ontology, the task of the narrow intelli-

gence should be defined, and the associated input data which is used to solve this task has

to be well understood. After that, semantic descriptions of what should be in the ontology

were found to be very helpful to set up a running thread while diving into the ontology for-

mulation. Finally, continuously revising the ontology while drafting it is necessary to check

if the currently formulated entity really adds value to the ontology, which the model can

later learn. Thus, the knowledge representation process already starts before the ontology

is formulated, with the description of the problem which the intelligent agent has to solve.

Everything that is included in the ontology has the task to contribute to the overarching goal

of finally building a narrow artificial intelligence, and as the name suggests, this goal can

not be reached by a global but also a narrow ontology.
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Chapter 5

DeepOWT - A global Offshore Wind

Turbine Data Set*

The theoretical background and methodological development presented in the previous

chapters are now brought together to solve the original problem: Deriving offshore wind

energy infrastructure from remote sensing data. The final product will be a data set of

single locations of offshore wind energy infrastructure, primarily offshore wind turbines.

In addition to the spatial information, temporal information is provided for each object’s

location. It describes the temporal development of the deployment stages in three stages.

These stages describe the first appearance of an object at a site, whether that object is

under construction or whether it has been completed. Besides these model predictions, two

comprehensive spatial and temporal ground truth data sets are used to evaluate the spatial

and temporal information of the data set.

Figure 5.1 describes the entire workflow. By using the data acquisition pipeline intro-

duced in section 4.2.1 Sentinel-1 median composites are acquired. Upon this data and other

optical remote sensing data and publicly available information, the ground truth data sets

of single offshore wind energy infrastructure objects and their temporal development are

mapped by visual examination. Two synthetic training data sets are generated using the

developed SyntEO framework. One synthetic training data set is used to optimise a CNN,

which detects potential OWF areas globally. The other synthetic training data set optimises

a second CNN, which searches for individual offshore wind energy infrastructure objects

within the potential OWF areas detected before. After single object locations have been

detected, their temporal development of the radar signal’s spatial pattern is investigated to

classify the five-year deployment stages from July 2016 until June 2021. In the last step,

a sophisticated location refinement is performed to refine the bounding box detections to

*Parts of this chapter have been published in Hoeser et al. (2022)

115



Chapter 5 DeepOWT - A global Offshore Wind Turbine Data Set

Figure 5.1: Overview of the workflow to derive the global multi-temporal DeepOWT data set of
offshore wind energy infrastructure. A global stack of Sentinel-1, three month median
composites are used as input for a cascade of two convolutional neural networks (CNNs)
which are optimised with synthetic training data generated with the SyntEO framework.
The first CNN detects entire offshore wind farm areas, the second single offshore wind
energy infrastructure objects. A subsequent time series analysis derives the quarterly
deployment stages for each detected object and combines spatiotemporal information
to the final DeepOWT data set. Changed after Hoeser et al. (2022, p. 4256).
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point locations. The temporal deployment stage information is added to these point loca-

tions to constitute the DeepOWT data set. Finally, the DeepOWT data set is evaluated and

compared to two other sources which provide similar information about offshore wind en-

ergy infrastructure.

5.1 Data

The data to be investigated has a global spatial extent and a five-year temporal period.

The precise spatial extent is the global coastline with a 200 km buffer towards the sea from

the shoreline. The corresponding geometry of this area has already been prepared and op-

timised for processing by creating the processing grid in section 4.2.1. This processing grid

and its associated data acquisition pipeline are reused for the global detection of OWFs.

Similar to the proof of concept study, a three-month median composite of Sentinel-1 IW

GRD products with a VH polarisation, both orbit directions and a pixel spacing of 10 m is

generated. Before downloading the median composite of the global coastline, the pixel val-

ues were downscaled to 8-bit integers and subsequently downloaded as described earlier in

section 4.2.1. For offshore wind energy infrastructure detection, a single global input data

set of a median composite combining images from 01.04.2021 until 30.06.2021 (2021Q2) is

acquired. For the temporal analysis of the deployment dynamics, quarterly median compos-

ites beginning in July 2016 are necessary to cover the five-year temporal period. To avoid

downloading the median composites for the entire global coastline for all of these earlier

periods, the median composites are only generated and downloaded in areas of OWFs which

were detected in 2021Q2. For these areas, nineteen three-month interval median composites

were generated and downloaded, which cover the period from 01.07.2016 until 31.03.2021.

The same acquisition pipeline is used for these areas as for the global acquisition. Thus,

twenty input data sets are generated. One data set from 2021Q2 with median composites

that together cover the entire global coastline, and nineteen data sets of each quarter be-

ginning with 2016Q3 with median composites of each OWF area, detected in the 2021Q2

imagery.

Besides the input data, ground truth data is necessary for the data set evaluation and

as a benchmark for comparison of the DeepOWT data set with other data sources which

provide offshore wind turbine information. Therefore extensive ground truth data sets were

generated manually. For all ground truth data sets, the earlier introduced two test sites, the

North Sea Basin and the East China Sea, are examined, see figure 5.2. As discussed in

section 3.2, the East China Sea test site is the more challenging, with many OWFs under

construction and more frequent near coast locations which bring them close to other marine

infrastructures and small islands. Additionally, the acquisition modalities of the Sentinel-1
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Figure 5.2: Overview of the two ground truth test sites (North Sea Basin and East China Sea) and the
single ground truth labels for each offshore wind energy infrastructure object (offshore
wind turbine (OWT), offshore wind farm (OWF)). Source: Hoeser et al. (2022, p. 4262).
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mission are different for both sites. At the North Sea Basin, data is acquired for both orbit

directions, ascending and descending. For the East China Sea, mostly only the ascending

orbit is used, resulting in fewer acquisitions in a three-month interval which can cause less

clear median composites. These differences make them suitable test sites for checking the

detection and classification performance at different levels of complexity.

The Sentinel-1 median composites were used as a primary source to map ground truth

offshore wind energy infrastructure locations manually. The annotation task was supported

by investigating additional RGB imagery coming from the Sentinel-2 mission and Google

Earth. Differences in the platform, whether the OWF is under construction or readily de-

ployed, or it is an OWF substation, were also examined. For complicated cases, the precise

classification of the platform type was derived from official planning documents or inform-

ation extracted from news portals or descriptions of the OWF project by the operator.

The first two ground truth data sets were mapped for 2021Q2 to assess the object detec-

tion performance of offshore wind energy infrastructure, see figure 5.2. All offshore wind

energy infrastructure locations in the North Sea Basin and the East China Sea are described

in a separate ground truth data set with one of the three classes: OWT, platform under con-

struction, and OWF substation. Thereby, the location of an object’s centre is mapped with

a point coordinate. These ground truth data sets contain 7,198 hand-annotated object lo-

cations. Similar ground truth data sets were mapped for the fourth quarter of 2019. They

contain 5,290 hand-annotated object locations and will later be used to compare the per-

formance of the data set derived in this work and other sources of global information about

offshore wind energy infrastructure. These additional ground truth data sets were gener-

ated since all data sets that were compared with each other share the period 2019Q4. As

before, for these ground truth data sets, all offshore wind energy infrastructure locations in

the North Sea Basin and the East China Sea were annotated.

To assess the classification of the platform type over time, about 15% of the locations of

the 2021Q2 ground truth data sets were randomly selected. All nineteen quarterly periods

between July 2016 and March 2021 were investigated for these locations, and the corres-

ponding deployment stage was labelled. The four possible labels are: OWT, platform under

construction, OWF substation, and open sea. This ground truth data set contains 20,520

hand-annotated labels for the North Sea Basin and East China Sea test sites. Table 5.1

provides a detailed overview of all ground truth data sets and their characteristics as de-

scribed in this section.
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Table 5.1: Summary of the content of all ground truth data sets, the periods they cover and the
number of objects for each class (offshore wind turbine (OWT)). The abbreviation of
the Site column are North Sea Basin (NSB), and East China Sea (ECS)). * denotes the
numbers for the start period 2016Q3 and the final period in 20201Q1 of the ground truth
time series. † is the overall number of hand labelled temporal objects of all 19 periods in
the ground truth time series. Source: Hoeser et al. (2022, p. 4259).

Site Time stamp OWT Construction Substation Open sea ∑ label

NSB 2021Q2 4,016 253 85 - 4,354
ECS 2021Q2 2,208 574 62 - 2,844
NSB 2019Q4 3,571 172 78 - 3,821
ECS 2019Q4 1,208 214 47 - 1,469
NSB 2016Q3-2021Q1 352-583* 59-47* 12-19* 227-1* 12,350†

ECS 2016Q3-2021Q1 40-311* 12-87* 3-11* 375-21* 8,170†

5.2 Global Offshore Wind Energy Infrastructure

Detection with Deep Learning

5.2.1 Generation of Synthetic Training Data Sets

The overall design to detect offshore wind energy infrastructure on a global scale is a

cascading approach of two subsequent CNN object detectors. The first stage of the cascade

detects larger areas that potentially contain OWFs. The second stage closely investigates

these areas in order to extract single offshore wind energy platforms. The idea is familiar

with how the visual cortex of mammals recognises objects (Hubel and Wiesel, 1962; Felle-

man and Van Essen, 1991). First large scale features are recognised, like the agglomeration

of grid-like patterns in the open sea. Then, at a closer look by a second CNN, single objects

or small scale features are getting identified. In this case, the different types of offshore wind

energy platforms. Two training data sets are necessary to optimise this CNN cascade. The

first data set has a focus on large scale features of OWFs. The second data set has to repres-

ent small scale features of single platform types. Also, their annotation is different. Where

the first data set describes the outer boundary of an entire OWF with a single bounding box,

the second data set describes each location of each platform with an individual bounding

box and additionally with a corresponding class label for different platform types.

The introduced SyntEO framework was used to generate these two data sets. Figure 5.3

shows synthetic training examples of the first data set. The generation of this data set is

based on the developments presented in the proof of concept study in the previous chapter

4. However, in addition to OWFs with an outer boundary described by a polygon, linear

OWFs were generated, see figure 5.3a+b) for some examples. Besides that, the target and

non-target types and balancing of the data set-3+ as introduced in section 4.2.4 have been
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reused. The data set for optimising the stage-1 CNN, for potential OWF area detection,

contains 90,000 image-annotation pairs. Also, the handling of the image size during training

is the same as in the proof of concept data set-3+. The images of size 2,048×2,048 pixels

are downscaled before training to the input size of the stage-1 CNN, 1,024×1,024 pixels.

Figure 5.3: Examples of synthetically generated imagery for offshore wind farm (OWF) detection
with their corresponding annotation. a-c) show OWF of scales small, medium and large,
respectively. d) shows non-target training examples of oil rigs. e) shows non-target train-
ing examples of the mainland.
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Figure 5.4: Examples of synthetically generated imagery for offshore wind energy infrastructure de-
tection with their corresponding annotation. a+b) show readily deployed offshore wind
turbine. c) shows offshore wind energy infrastructure under construction. d) shows rigs
such as transformer platforms. e) shows non-target examples with mainland and coastal
areas.

The most important change in the second data set for optimising the stage-2 CNN is the

annotation of the target objects. Figure 5.4 shows, that instead of entire OWF areas, each

single OWTs is annotated. Furthermore, single OWF substations and platforms that are not

readily installed are two new additional classes besides the readily deployed OWT class, see
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figure 5.4. Thus, a specific class label is provided for each object class in the second data set,

along with the coordinates of the bounding box annotation. The second data set describes

three classes, OWT, OWF substations, and platforms under construction. Furthermore, it

contains a specific non-target image type that shows coastal areas for introducing potential

false positives to the model during training. Thus, there are four image types in the training

data set, each represented by equal shares. For this more comprehensible data set compared

to the first one, a larger size has been chosen. Overall, the second data set contains 275,000

image-annotation pairs. Since the spatial features of single offshore infrastructure platforms

appear on a small scale, the image size is 512× 512 pixels. The stage-2 CNN for single

platform detection has an input size of 512×512 pixels. That way, no downscaling before

training is necessary, and the full spatial resolution of 10 m× 10 m can be used to detect

the small scale objects, following the approach introduced in section 4.1.2.

The entire training of the two cascading CNNs relies on these two synthetic data sets.

The training data sets were generated by employing the developed SyntEO framework. No

auxiliary training data is used to optimise the two cascading CNNs to detect offshore wind

energy infrastructure on a global scale.

5.2.2 CNN Architectures and Training

The ResNet-50 (He et al., 2016) convolutional backbone with a subsequent

Faster R-CNN (Ren et al., 2015) is used as deep learning model architecture for object

detection. For the first stage CNN, which is looking for potential OWF areas, the anchor

ratio and scale factors of the RPN are the same as in the proof of concept study [0.5, 1,

1.5] and [0.25, 0.5, 1, 2, 3.5] respectively. The second stage CNN however, has to look for

much smaller objects. Furthermore, the synthetic image and CNN input size changed both

to 512×512 pixels to focus on small scale spatial features. The earlier introduced equation

(27) was used to adjust the anchor scale factors of the second stage RPN to be [0.25, 0.5]

with an anchor aspect ratio of [1]. The scale ratios relate to search areas with a real-world

dimension of 640 m×640 m to 1,280 m×1,280 m.

The CNN architectures of stage-1 and -2 were built and optimised by using the Tensor-

Flow deep learning framework (Abadi et al., 2015). The training scheme which was used in

the proof of concept study in section 4.2.5 was found to be sufficient to optimise a similar

model with similar training data. Hence the scheme was reused in both model trainings.

The general set-up is a 95% train and 5% validation split of the synthetic training data sets.

Both synthetic data set sizes are chosen to be large enough that each training example is

only used once during the entire training. Thus only a single but long-lasting epoch is used

and no data augmentation is applied to the training examples before entering the network.
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The stochastic gradient descent method (Robbins and Monro, 1951; Bottou et al., 2018)

with a momentum of 0.9 and a batch size of 4 is used for optimising both models. The

learning rate is scheduled by using the cosine decay learning rate approach with a base

learning rate of 0.01 after a warm-up phase of 1,000 steps (Loshchilov and Hutter, 2017).

The training process on four parallel Nvidia RTX 2080Ti GPUs took 6.6 hours for the

stage-1 CNN and 4.8 hours for the stage-2 CNN. The finally optimised models were expor-

ted to make them available for building the upcoming object detection pipeline of offshore

wind energy infrastructure for the entire Earth.

5.2.3 Object Detection and Postprocessing

As stated earlier, the object detection process is split into two stages. In the first stage, all

Sentinel-1 median composites of the entire global coastline are used as input to the stage-1

object detector CNN. In this first stage, potential OWF areas are getting extracted. Therefore

a relatively small detection score of 0.5 was chosen. Thus many potential OWF regions

are getting detected by the first stage. The second stage looks closer into these potential

OWF areas. The stage-2 object detector CNN detects three kinds of objects: OWT readily

deployed, offshore wind energy platforms under construction and larger offshore platforms

like OWF substations but also oil rigs or other kinds of persistent marine infrastructure. For

these object classes to be recognised as valid detections in the second stage, a detection

score of 0.75 or higher was chosen.

The core motivation of this cascade is that the designed artificial intelligence should ap-

proach the detection problem similar to a human remote sensing expert. To find offshore

wind energy infrastructure, such an expert would search for obvious clusters of scatterers

in spaceborne SAR median composites. If the cluster is obviously unstructured, the expert

would drop it due to the knowledge that some kind of structured pattern is distinct for off-

shore wind energy infrastructure. However, some less clear cases need a closer look not to

miss any clusters. This first decision is represented by the low detection score of the first

stage. This means that more detections are made than necessary in this first stage, but it in-

creases the certainty that no OWFs are overlooked. The human expert would then look into

each preselected site more closely. If there are only non-offshore wind energy infrastruc-

ture platforms, the entire clusters can be dropped. In case most of the objects are OWTs,

this cluster is truly an OWF. The technical implementation of this interpretation uses the

detection results of the second stage to revise the first stage. In case that 90% or more of

all platforms in a potential OWF area are non-OWT platforms, this potential OWF area is

belatedly dropped. In case the site contains 15% or more OWTs, the entire OWF is con-

sidered a real OWF. By using this cascade of detection modules, a self-checking property
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was implemented into the model cascade. This self-checking property maximises the num-

ber of true positive detections since many potential OWF areas are getting recognised. At

the same time, it minimises the number of false positives since the second stage revises

wrongly included areas due to small scale observations.

Furthermore, this approach supports a straightforward contextual decision for the object

type OWF substations. Whenever a rig-like platform is detected in a group of OWT, it is

classified as a OWF substation. This classification would not be that clear when otherwise,

only the single rig object is detected, which can have the same radar signature as an oil rig

in Sentinel-1 median composites. Only with the contextual consideration, OWF substations

can be differentiated from other rig-like platforms. Overall, the cascading design of two in-

teracting CNN object detectors was found to be highly effective in detecting small objects

in large Earth observation archives. Basic concepts like Tobler’s first law of geography re-

appear during the implementation. They demonstrate the consideration of geographic prin-

ciples that have been taken into account during the design of artificial intelligence.

For the object detection of stage-2, the Sentinel-1 median composite tiles were tiled into

images chips with a dimension of 512× 512 pixels and an overlap of 50%. This results

in multiple detections since the same object can appear in multiple images. To aggregate

the detections, the cascading unification of bounding boxes as introduced in section 4.2.6

Figure 5.5: Unification of raw detection results in single bounding boxes for each object. a) raw,
overlapping bounding box detection results of the second stage convolutional neural
network. b) unified bounding boxes by taking their intersection over union (IoU) into
account to preserve the detected classes and to keep individual objects separate from
each other.
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and equation (30) was applied to unify multiple bounding boxes of the same object to a

single geometry with coordinates in the CRS WGS84. To further simplify the shape of the

unified geometry, instead of the exact outer boundary of all detected boxes of one object,

the bounding box of the unified geometry is the final location description. This forces all

summarised shapes of a single object detection to be a rectangular box around offshore

wind energy infrastructure location, see figure 5.5b). For further processing and data man-

agement, each bounding box derived that way is assigned an ID, in the following referred

to as location ID.

To further increase the object localisation, the bounding boxes were refined to point lo-

cations, see figure 5.6a+b). Since not all bounding boxes are exactly centred around the

object, the centroid of a bounding box would be too inaccurate. Furthermore, in some very

dense OWT situations, a bounding box centred around the target OWT can also include a

neighbouring OWT, island, or other marine infrastructure. Thus simply searching for the

maximum backscatter amplitude in the entire bounding box can also lead to a wrong lo-

calisation. To find the precise centre of an offshore infrastructure object, the bounding box

is used to crop the pixel values from the Sentinel-1 composite tile. Each column of such

Figure 5.6: Location refinement from bounding boxes a) to a single point location b) by searching
for a centred maximum amplitude in the radar signature of each detected object c).
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an image crop is reduced to its maximum value. That way, a swath profile along the hori-

zontal axis is generated, see figure 5.6c). A peak finder algorithm with a high prominence

(Virtanen et al., 2020) is applied to this swath profile to find the longitude coordinate for

the maximum value of this swath profile. In case multiple peaks are detected this way, the

peak which is closest to the centre of the swath profile is chosen. The latitude coordinate

is finally derived by searching for the peak value in the corresponding column of the im-

age crop. Again, if several values in the column corresponding to this maximum value, the

one that is closer to the centre of the image is selected. Thus, the refined point location of

each offshore wind turbine corresponds to the pixel location with the maximum backscatter

value closest to the image centre, see figure 5.6.

5.3 Deriving Temporal Deployment Dynamics

Besides detecting offshore wind energy infrastructure, their temporal deployment stages

are of interest. This additional information provides the opportunity to analyse the temporal

development of the offshore wind energy sector. In other studies, the first date when an ob-

ject at an offshore wind energy infrastructure site was detected is chosen to be the date

this object is considered as an OWT (Xu et al., 2020; Zhang et al., 2021b). This approach

can lead to temporal overestimating of readily deployed infrastructures since construction

periods, which can take up to one year, are not considered. Therefore it is necessary to

differentiate if an object is under construction or readily deployed. The stage-2 CNN can

already differentiate between these stages during object detection. However, it is only ap-

plied to the last investigated period 2021Q2. All other nineteen quarterly periods beginning

with 2016Q3 are not investigated yet. Since the bounding boxes provided by the CNN cas-

cade reduce the information content to a very distinct, small scale backscatter signal, it is

possible to investigate the changes of this local signal to precisely derive the deployment

stage.

The process relies on the previously introduced maximum swath profiles along the lon-

gitude axis for each object location, see figure 5.6c). These profiles were generated for all

derived bounding boxes over all twenty quarterly periods. Figure 5.7 gives an impression of

such a time series for an OWT. Visually, it can be seen that construction started in 2017Q3

and lasted until 2018Q2. Since 2018Q3 the OWT has been readily deployed and is oper-

ational. The changes in the backscatter cluster come from the initial construction of the

foundation. Then in 2018Q3 pole, nacelle and blades are getting installed to complete the

OWT. When the nacelle is installed, the two characteristic clusters from the layover and

double bounce effect appear next to the main cluster of the OWT foundation in the radar

signature. In the swath profile, the corresponding two peaks are clearly visible. To extract
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Figure 5.7: Time series of the radar signature for a deployment process of an offshore wind turbine (OWT) from June 2016 until July 2021 with a quarterly
period. The deployment stages are classified by tracking changes in the peaks of the maximum swath profile of the location described by the bounding
box coming from the convolutional neural network. The two lower peaks next to the main centre peak describe an OWT as readily deployed since
they are coming from the layover and double bounce effect, which only appears when the pole and nacelle of a turbine are installed. Source: Hoeser
et al. (2022, p. 4261). 12
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5.4 DeepOWT Data Set Summary

all peaks automatically, the same peak finder algorithm as used before in section 5.2.3 for

location refinement is applied twice. The first run has a higher prominence only to find the

centre peak, and the second run has a lower prominence to find the neighbouring peaks. Of

all peaks found by the second run, only the first peak to the left and the right of the centre

peak are kept. All other peaks are dropped. With this procedure, peaks coming from closely

built OWTs do not interfere with the target signature.

With this approach, the number of peaks, the peak amplitude, and also the peak width can

be derived. Since the class of the last period, 2021Q2, is already provided by the CNN, the

resulting temporal signal of the attributes can be investigated with prior knowledge. Thus

the time series are analysed in a backwards-looking direction. For an OWT time series, if

the number of peaks is reduced along with a decrease in centre peak amplitude, the earlier

periods have to be under construction. If the main centre peak is entirely lost, all earlier

periods only show the open sea. For an OWF substation, if both amplitude and width of the

centre peak drop, the earlier periods are under construction. Similar to an OWT, if the centre

peak disappears, the earlier periods have to be open sea. Thus, for a time series where the

final class is under construction, if the centre peak disappears, construction has not started,

and all of the previous periods have to be open sea. This straightforward classification of

the time series is only possible due to the precise extraction and classification of object

locations for the 2021Q2 period with the proposed deep learning approach.

The temporal classification process was applied to all object locations resulting in 19

additional classes besides the latest prediction of 2021Q2 made by the CNN. The total

period of the data set is five years or twenty quarters, from July 2016 to June 2021. This

time series information is connected via the location ID with the previously derived location

information.

5.4 DeepOWT Data Set Summary

The combined spatiotemporal information about offshore wind energy infrastructure de-

rived from the Sentinel-1 archive with deep learning constitutes the DeepOWT data set. It

describes 9,941 globally distributed offshore wind farm infrastructure locations, most of

them offshore wind turbines. In June 2021 the data set contains 8,885 OWTs, 204 OWF

substations, and 852 offshore wind energy infrastructures under construction. Figure 5.8

gives a first impression of the spatial extent of the data set. It shows the outer boundaries of

OWFs derived by the first stages of the cascading object detection pipeline and the refined

point locations of single OWTs and OWF substations of two OWF clusters.

129



C
h
ap

te
r

5
D

ee
p
O

W
T

-
A

g
lo

b
al

O
ff

sh
o
re

W
in

d
T

u
rb

in
e

D
at

a
S

et

Figure 5.8: Global distribution of detected offshore wind farm clusters and two hot spot regions, the North Sea Basin and the East China Sea. The two offshore
wind farm examples show an EU site, which is readily deployed, and a Chinese site, which in June 2021, is partly readily deployed and under
construction. Changed after: Hoeser and Kuenzer (2022a, p. 5).
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5.5 Data Set Evaluation and Comparison

Figure 5.9: Temporal development of the 9,941 globally detected offshore wind energy infrastruc-
ture locations (offshore wind farm (OWF), offshore wind turbine (OWT)) from July
2016 until June 2021. Source: Hoeser et al. (2022, p. 4263).

Figure 5.9 gives a first impression of the temporal development of the number of differ-

ent offshore wind energy infrastructure object types. The data set’s temporal frequency is

three months for each quarter of a year. The overall time span of the data set is five years,

with twenty quarterly periods from July 2016 until June 2021. An in-depth spatiotemporal

analysis of the DeepOWT data set is provided in the next chapter 6.

The data set is available as a single .geojson file with a small size of 4.1 MB, which

allows flexible handling in GIS environments, even on mobile platforms and web appli-

cations. An impression of the entire data set is provided by the Coastal Explorer, a web

mapping service of the German Aerospace Center (DLR)1. The data set file, along with all

ground truth data sets, is publicly available on Zenodo2.

5.5 Data Set Evaluation and Comparison

An evaluation was carried out to assess the performance of the methods used to derive

the DeepOWT data set. During the assessment, a detection is considered a true positive TP

if its location is within a 100 m radius of a ground truth object and the predicted class is the

same as the class of this ground truth location. If a detection is made outside a ground truth

area or the predicted class is wrong, this detection is a false positive FP. A ground truth

location that is entirely undetected is considered a false negative FN. With this definition,

the evaluation metrics can be calculated. As in section 4.2.6, precision Pr (31) and recall Rc

(32) were used to calculate the F1 score (33). Furthermore, the average precision AP (35)

was derived from the all point interpolated precision-recall curve Printerp (34) (Padilla et al.,

1https://coastalx.eoc.dlr.de
2https://zenodo.org/record/5933967
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2021) for the two test sites, the North Sea Basin and the East China Sea. In this assessment,

the number of ground truth locations in the North Sea Basin is much higher than for the East

China Sea, see table 5.2. In order not to distort a combined metric for both test sites by the

over-represented data of the North Sea Basin, which is considered easier for offshore wind

energy infrastructure detection, combined metrics are calculated using the macro averaging

method after the scores have been calculated separately for each test site (Opitz and Burst,

2021)

Pravg =
1
n

n

∑
i=1

Pri , (36)

Rcavg =
1
n

n

∑
i=1

Rci , (37)

F1avg =
1
n

n

∑
i=1

F1i , (38)

where n is the number of test sites.

The first evaluation was carried out to assess the object detection performance with the

CNN cascade on the 2021Q2 Sentinel-1 median composites. The corresponding ground

truth data sets are of the North Sea Basin and the East China Sea for the period 2021Q2,

see table 5.1. Table 5.2 and figure 5.10 provide the results of the assessment. The combined

performance on OWT detection is an F1avg of 0.992, which expresses nearly perfect detec-

tion of offshore wind turbines. The precision-recall curves in figure 5.10 and corresponding

Figure 5.10: Precision-recall curves for the classes offshore wind turbine (OWT), offshore wind
farm (OWF) substations, and offshore wind energy infrastructure under construction
of the DeepOWT data set for the two ground truth sites the North Sea Basin and the
East China Sea. See table 5.2 for the corresponding AP values. Source: Hoeser et al.
(2022, p. 4264).
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Table 5.2: Overview of all calculated metrics (ground truth (GT), true ppositive (TP), false ppositive
(FP), false negative (FN), recall (Rc), precision (Pr), average precision (AP)) for the
convolutional neural network cascade detections on the 2021Q2 global Sentinel-1 median
image for each class separately. The detections were evaluated with the 2021Q2_nsb
(North Sea Basin), and 2021Q2_ecs (East China Sea) ground truth data sets. Source:
Hoeser et al. (2022, p. 4263).

Site Class GT TP FP FN Pr Rc F1 AP

North Sea Basin OWT 4,016 3,996 1 20 1.0 0.995 0.997 0.995
North Sea Basin under construction 253 186 7 67 0.964 0.735 0.834 0.72
North Sea Basin OWF substation 85 74 2 11 0.974 0.871 0.919 0.859
East China Sea OWT 2,208 2,168 16 40 0.993 0.982 0.987 0.981
East China Sea under construction 574 393 7 181 0.982 0.685 0.807 0.678
East China Sea OWF substation 62 56 6 6 0.903 0.903 0.903 0.853

Pravg Rcavg F1avg

Combined OWT 6,224 6,164 17 60 0.996 0.988 0.992
Combined under construction 827 579 14 248 0.973 0.71 0.821
Combined OWF substation 147 130 8 17 0.938 0.887 0.911

AP values suggest a slightly better performance for the North Sea Basin (AP = 0.995, F1 =

0.997), confirming the impression that the East China Sea (AP = 0.981, F1 = 0.987) is the

more complicated environment. However, the differences in the scores are minimal, which

demonstrates that object detection works equally well on both test sites.

The detection of OWF substations reaches the second highest F1avg score of 0.911. From

table 5.2 it becomes clear that for this class, false negatives FN are the weak spot, even

though the performance is still very high. Compared to OWTs, the FN-rate is higher and,

with it, recall Rc is lower. One explanation for this is that in the East China Sea test site,

many OWFs are under construction, and often the substations are the first which are getting

constructed. At an early stage of an OWF project, they can thus be spatially separated

from the grid-like turbine foundations, which do not yet cover the entire area of the OWF.

Thus the estimated OWF boundary of the stage-1 object detector does not include them.

Following that, they are not detected by the stage-2 object detector. However, they will be

included when the OWF reaches a more mature construction stage.

The most challenging object type is the platform under construction class. Here the ob-

ject detection reaches an F1avg score of 0.821. Table 5.2 and figure 5.10 clearly show, that

if a detection of a platform under construction is made by the cascading CNN detector,

this detection is mostly correct, resulting in high precision Pr scores. However, not all plat-

forms which are under construction are getting detected, hence recall Rc is comparatively

low for this class. The higher FN-rate of the under construction class can be explained by

the less distinct radar signature of a new build platform foundation which can easily be
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confused with other marine infrastructure since it lacks most of its typical construction ele-

ments. Another reason is the chosen quarterly interval of the median composites. Suppose

a foundation was built at the end of a quarter. In that case, its signature is only visible in a

few images of a quarterly stack and thus not included in the generated median composite.

Instead this median composite will show open sea for that period even when a foundation

is already installed for a couple of days or weeks. This effect is only for a short time, and

the right prediction is made for the next quarter. This makes this class more challenging to

detect and easy to miss. These are important insights into the behaviour of the cascading

CNN detector and essential for further developments and for the interpretation of the de-

rived data set. Nevertheless, even for the least well performing class, the overall F1avg score

is above 0.8.

Figure 5.11: Evaluation of the classification of the deployment time series. For each period and
class, the F1 score has been calculated separately. The point size represents the number
of samples for each class and period. In addition, the F1 scores are macro averaged
for each class over the entire time series, and their distributions are presented to give
a more condensed overview of the classification performance. See the boxplot and
average values to the right. Source: Hoeser et al. (2022, p. 4264).
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What is highly important is the similar detection performances of the proposed approach

on both test sites despite their different complexity. This demonstrates that the CNN object

detection pipeline is able to learn a highly generalised version of the synthetic training

data, which allows it to perform with top metrics in different environments. This proves the

transferability of the detection approach from entirely synthetic environments to real-world

settings and the sophisticated variability of the SyntEO training data set.

To evaluate the class predictions of the nineteen quarterly periods, the temporal ground

truth data sets of the North Sea Basin and the East China Sea were used as the baseline,

see table 5.1. Figure 5.11 provides an overview of single F1 scores for each quarter and

class. In order to describe the performance for all nineteen periods, the scores were aggreg-

ated for each class by using the earlier mentioned macro averaging approach, see equation

(38). OWTs have the highest F1avg value of 0.981, closely followed by the OWF substa-

tion class with 0.976. Again, platforms under construction is the most challenging class,

which reaches an F1avg score of 0.81. Also, the periodical scores for this class have the

largest variance. Since the most important factor for this specific class to be problematic,

the quarterly median images, has not changed, the same problems as discussed earlier also

apply to this classification approach. However, the general performance of the time series

classification reaches top scores and is in line with the CNN classification scores. Also

similar to the CNN classification is the separate performance on each test site. The predic-

tions in the North Sea Basin are slightly higher than for the East China Sea. However, the

differences are negligible, see figure 5.11.

Besides the DeepOWT data set, two openly accessible sources provide OWT locations

on a global scale. They are the Open Street Map (OSM) project and the earlier discussed

global offshore wind turbine (GOWT) data set v1.3 by Zhang et al. (2021b), see section 3.1.

Since the GOWT v1.3 data set describes OWT locations until 2019Q4, the ground truth data

set variant with all offshore wind energy infrastructure in the North Sea Basin and the East

China Sea for 2019Q4 is used as baseline in this comparison, see table 5.2.

In the first comparison, all readily deployed OWT locations until 2019Q4 of the de-

rived DeepOWT data set are compared to OWT locations in the OSM database. Figure 5.12

clearly shows the better performance of the proposed DeepOWT data set. The OSM inform-

ation is based on entries coming from an open-for-all mapping community. For regions with

a more active community or accessible data, the OSM coverage is better than for regions

that have less active users or public data. Thus the data availability is not homogeneous but

changes from region to region. This aspect becomes visible in this comparison. It clearly

shows the advantages of using remote sensing data, which in the case of the Sentinel-1

mission, is a globally homogeneous and entirely independent source.
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Figure 5.12: Comparison of the detection performance for readily deployed offshore wind turbines
(OWTs) of the DeepOWT data set and entries in the Open Street Map (OSM) database
on the test sites North Sea Basin (NSB) and East China Sea (ECS). Source: Hoeser
et al. (2022, p. 4265).

Like the DeepOWT data set, the GOWT v1.3 data set is based on Sentinel-1 data. How-

ever, GOWT v1.3 does not differentiate between OWT under construction or OWT, which

are readily deployed. It maps a OWT location as soon as it appears in the Sentinel-1 time

series as readily deployed (Zhang et al., 2021b). Thus, OWT and OWT under construction

from the DeepOWT data set are grouped in one class and compared to the detections of the

GOWT v1.3 data set see figure 5.13. The proposed deep learning-based object detection for

deriving the DeepOWT data set performs better at both test sites. The GOWT v1.3 data set

is based on the investigation of handcrafted morphological features and heavy threshold-

ing. Thus the earlier cited quote of Krizhevsky et al. (2017) also applies in the case of

Figure 5.13: Comparison of the detection performance for readily deployed offshore wind tur-
bines (OWTs) and OWTs under construction of the DeepOWT data set and the global
offshore wind turbine (GOWT) data set by Zhang et al. (2021b) on the test sites North
Sea Basin (NSB) and East China Sea (ECS). Source: Hoeser et al. (2022, p. 4265).
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offshore wind energy infrastructure detection from Earth observation imagery: “learning

beats programming” (p. 84). It is even more true if considered that the DeepOWT data set

also differentiates between the different construction phases and additionally includes OWF

substations as a third class, which are both not represented in GOWT v1.3.

The data set evaluation and final comparison to other data sets show that the derived

information of the DeepOWT data set is of the highest quality. It makes global information

on offshore wind energy infrastructure freely available on a global scale, with a unique

depth of information with high accuracy and precision of the information provided.

5.6 Discussion

In this chapter, the previously developed deep learning-based object detection optim-

ised with synthetic training data was used to develop an automated processing chain. This

process detects all offshore wind energy infrastructures on a global scale and derives a five-

year time series on their deployment status. this process can be broken down into several

narrow artificial intelligences: The synthetic data generation process based on knowledge

engineering, the two stage, deep learning-based object detection, and the time series ana-

lysis for the detected objects. Each component has a rather narrow task. However, as soon

as these individual intelligent agents enter into an exchange with each other, the solution

to a complex task, such as the global spatiotemporal mapping of the offshore wind energy

infrastructure, becomes possible. Thereby a closer look at each individual component offers

to disentangle the otherwise complex process and discuss individual characteristics.

The results of the CNN cascade for global offshore wind energy infrastructure detection

confirm the hypothesis that CNNs are potentially able to detect the desired targets in spa-

tially complex environments if sufficient training data is available. The SyntEO framework

made it possible to generate such large, highly variable, and task-specific training data sets.

It is crucial to emphasise that the CNNs were trained solely with this synthetic data. No

further auxiliary data were used during the model optimisation or detection process. Never-

theless, the CNNs are able to extract the desired objects from real data. What is particularly

important here is that they do this almost equally well in two environments with differ-

ent complexity. This proves that the SyntEO approach in combination with an appropriate

deep learning model can be used to develop a precise yet abstract model that outperforms

detection methods designed by humans.

The breakdown of the entire processing chain into individual modules allows the entire

workflow to be designed in a comprehensible but still understandable way. This is par-

ticularly helpful in problem analysis and allows the processing chain to be optimised for
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future developments. Besides the CNN cascade for object detection, the other component

of the entire detection and classification pipeline is the time series classification to derive

the deployment dynamics for each quarter. By describing the object location precisely with

the derived bounding box of the stage-2 CNN, the complexity of the data and, with it,

the problem to solve was highly reduced. Due to this substantial reduction of complexity

of the input data, a deep learning model is no longer necessary to perform the classifica-

tion. However, without the preceding classification and precise location regression of the

CNN the time series classification would not receive the suitable input data. This demon-

strates the narrowness of the single modules, especially of the time series classification.

However, when all narrow modules are combined, from synthetic data set generation and

model optimisation, over CNN based global offshore wind energy infrastructure detection,

to multi-temporal deployment stage classification, a complex task can be solved efficiently.

As has been shown during the performance evaluation, room for improvement is possible

by investigating a higher temporal resolution than the three-month intervals. Especially the

class under construction suffers from false negatives due to the quarterly median compos-

ites. On the other hand, the quarterly median composites are necessary to create the target

objects’ specific spatial patterns and filter temporal objects that otherwise would cause a

high number of false positives. A potential solution for future applications could be to use

rolling quarterly median composites every two weeks and refine the results on a temporal

scale to receive even more accurate predictions when a class change happens.

The last point to discuss is the potential of the DeepOWT data set. The proposed Deep-

OWT data set builds a starting point for many applications in research and practice. In

practice, such a global data set is a vital information source for decision-makers to flex-

ible aggregate spatiotemporal developments in order to communicate potentials, results

and challenges related to the upcoming decades of offshore wind energy expansions. Open

access to the data set helps to foster the exchange of knowledge and interests between

stakeholders, which was found to be beneficial for integrated spatial planning (Wever et al.,

2015; Fox et al., 2006; Henderson et al., 2003). Moreover, the open accessibility of the data

offers the chance to raise public awareness of the urgent need to expand renewable energy

production. Early participation during the planning process of all stakeholders is closely

related to integrated spatial planning of marine space, which is in the interface of practical

application and research (Gus, atu et al., 2020, 2021). In the DeepOWT data set, instead of

complex remote sensing imagery, the information is condensed to a handy data set that can

be used in GIS environments to inform stakeholders via web applications or to set up soph-

isticated geo processes in order to analyse competing claims for the use of marine space

(Gus, atu et al., 2020; Virtanen et al., 2022).
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5.6 Discussion

The data set is an essential layer for research to combine environmental data like sea

surface conditions (Christiansen et al., 2022), underwater noise (Tougaard et al., 2008;

Madsen et al., 2006; Wahlberg and Westerberg, 2005), wind resources (Frandsen et al.,

2006; Cavazzi and Dutton, 2016; Badger et al., 2015), migration routes and habitats of

birds, fish and mammals (Lloret et al., 2022; Drewitt and Langston, 2006; Wilson and Elli-

ott, 2009; Bailey et al., 2014; Bergström et al., 2014; Slavik et al., 2019), shipping routes,

and marine traffic (Yu et al., 2020; Ladan and Hänninen, 2012). Especially the focus on

the differentiation of the deployment stages under construction and readily deployed adds

important information since different impacts of noise and vessel traffic are expected in the

two states. Expanding renewable energy is urgent to reduce greenhouse gas emissions and

support independent energy production. However, to make this expansion also sustainable,

small and large scale effects have to be investigated as early as possible. The DeepOWT

data set supports these studies on a global scale.

139





Chapter 6

Global Dynamics of the Offshore Wind

Energy Sector 2016-2021*

The proposed DeepOWT data set, as introduced in the last chapter, provides object lo-

cations and temporal deployment dynamics. However, when speaking about the expansion

of the offshore wind energy sector, one central metric is of major interest, the installed ca-

pacity. The two offshore wind energy strategies of the UK and EU use this number to set

their goals. Hence, only the number of single OWTs does not sufficiently communicate the

dynamics of the offshore wind energy sector. In this chapter, the DeepOWT data set is used

as a comprehensive starting point to further derive commonly reported attributes of OWT

and to analyse their spatiotemporal dynamics with particular focus on the installed capacity.

6.1 Estimation of Installed Capacity Based on Sentinel-1

Data

The attribute installed capacity can not be derived directly from Earth observation data.

However, a proxy for the capacity of an OWT is the rotor diameter which again is related

to the turbine height. Thus for estimating the installed capacity, first, the height of an OWT

is calculated and used as an input variable in a statistical model to predict the installed

capacity.

6.1.1 Data

The data used for height calculation comes from the Sentinel-1 mission. This is a major

advantage since OWT detection, deployment stage classification, height calculation, and

with it, the capacity estimation can all be derived from a single data source. Similar to the

*Parts of this chapter have been published in Hoeser and Kuenzer (2022a).
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object detection input data, a median composite for the second quarter in 2021 of all avail-

able IW GRD VH polarised images is generated. As specified later in more detail, this time,

only a single orbit direction is used to generate this median composite. For median compos-

ite data generation and download, the data acquisition pipeline introduced in section 4.2.1

was used. To validate the height calculation, turbine hub heights of 50 OWT clusters were

collected from publicly accessible sources like regulatory planning documents or OWF op-

erator descriptions. For the same OWT clusters, the information about installed capacity

was gathered, which will later be split into a train and test set in order to model and validate

the relation between hub height and installed capacity.

6.1.2 Radargrammetric OWT Hub Height Calculation

As already discussed in section 3.2, due to the sensor properties of the Sentinel-1 mis-

sion, the spatial signature of the radar signal produced by an OWT shows specific charac-

teristics. These characteristics provide the necessary information to calculate the hub height

of an OWT. Figure 6.1 provides a conceptual overview of the height calculation approach.

Figure 6.1a) shows the ray path and resulting median composite of a single OWT. The most

significant part of the radar signal is related to the centre location of the turbine. However, a

smaller cluster to the left of the centre is also clearly visible and caused by the layover effect

as depicted in figure 6.1b). Due to the right looking sensor geometry, this layover cluster

is always to the left of the centre for images taken in ascending orbit direction and to the

right for images in descending orbit direction. To simplify the following explanation, only

the ascending orbit, as shown in figure 6.1, is considered. However, for height calculation,

both orbits have been used, primary the ascending orbit, and in case no acquisitions were

available, images from a descending orbit were processed.

The layover effect is caused by the nacelle of the turbine. The radar signal hits the el-

evated nacelle in the open sea in an otherwise nearly perfectly smooth and non elevated

environment and is reflected directly to the radar antenna. This specific part of the signal

would normally hit a point behind the turbine in range direction. Due to the now shortened

ray path, the signal, when projected onto the ground range, appears closer to the sensor as

the foundation at sea surface level, which is exactly at the same location only with a vertical

offset , see figure 6.1b). This vertical offset is the hub height, see figure 6.1a). The centre co-

ordinate of the foundation is already given by the DeepOWT data set, where it was precisely

refined to describe the exact centre of the backscatter cluster which the turbine foundation

and platform produce, see figure 5.6. The coordinate of the layover cluster is unknown. To

find this coordinate, first, a 400 m×400 m box is generated for each OWT location in the

DeepOWT data set. Following that, the peak detection approach of the horizontal maximum
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Figure 6.1: Conceptual overview of the radargrammetric hub height calculation from Sentinel-1 im-
ages. a) shows the investigated radar image and its typical backscatter signature of an
offshore wind turbine (OWT). b-d) describe how the layover (LO) effect and imaging
geometry can be used for hub height above mean sea level (MSL) calculation in both
near and far range conditions. e) shows how the 2D radar image is reduced to a max-
imum swath profile to derive the exact location of the layover cluster to use its distance
to the turbine centre for height calculation. Source: Hoeser and Kuenzer (2022a, p. 7).

swath profile of the local radar signature introduced for location refinement in section 5.2.3

is reused. This time, instead of detecting the centre peak of the turbine foundation, the smal-

ler peak of the layover effect, left to the centre peak, was detected, see figure 6.1e). Thus,

the exact coordinate of the cluster of the layover effect is available. By transforming both
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coordinates to the corresponding Universal Transverse Mercator (UTM) zone, their abso-

lute horizontal difference can be calculated in metres. With this distance and the hub height,

a right-angled triangle becomes obvious, where the calculated distance is the side adjacent

and the hub height the side opposite, see figure 6.1a). To derive α the local incident angle

of the centre location is used, see figure 6.1c+d). The approximate hypotenuse between tur-

bine house and layover coordinate is orthogonal to the incident ray path of the radar signal

hitting the turbine platform and fundament at the sea surface. The resulting triangles de-

scribe the angle α as being equal to the local incident angle θOWT at the coordinate of the

turbine centre, see figure 6.1d). This property is maintained by increasing incident angle

from far to near range since a turbine with the same height has a larger angle α in a far

range situation as in a near range situation, see figure 6.1c). Since the local incident angle

is provided along with the backscatter information for a Sentinel-1 acquisition, α can be

queried for each OWT coordinate. Due to the possibility that images from neighbouring

orbits can contribute to the median composite, the local incident angle at the OWT location

is not derived once from a random image of the median composite stack but for each con-

tributing image in the median composite stack. The most frequent value within this list of

local incident angles is defined as α for the height calculation of a turbine. With α and the

side adjacent obtained, the hub height or side opposite can be calculated, see figure 6.1a).

To reduce outliers of OWT heights within an OWT cluster, the height calculation is per-

formed cluster wise. Therefore, in a preceding step, clusters of OWTs are defined due to the

spatial proximity and deployment date of single OWTs, provided by the DeepOWT data set.

Then, for each OWT, the height is calculated separately as proposed above. The resulting

list of height values in one OWT cluster is subsequently reduced by selecting the median.

The final hub height for an OWT is the median value of its corresponding OWT cluster.

This procedure was applied to the entire DeepOWT data set. Figure 6.2 provides the results

for the 50 ground truth OWT clusters along with an in-depth error discussion. A Levene test

(Brown and Forsythe, 1974) whose result confirms equal variance across the ground truth

height and the calculated height αcrit = 0.05 < p = 0.272, a Pearson’s correlation coeffi-

cient of ρ = 0.877 (p ≪ 0.001), and the corresponding R2 of 0.77 were calculated. Thus,

77% of the variance of the calculated height can explain 77% of the ground truth height.

Together with a slope of a linear regression of 1.06, the calculated results show sufficient

statistical robustness to be accepted as a good approximation of the ground truth data. Fur-

thermore, the error distributions in figure 6.2b+c) indicate that there is no systematic error,

leading to errors only occurring in one direction. Rather, the error distribution follows a

normal distribution with a mean of 1.03 m and a standard deviation of 8.25 m, tested after

D’Agostino and Pearson (1973) αcrit = 0.05 < p = 0.274. The absolute error distribution

in figure 6.2d) shows a right-skewed distribution with a mean absolute error of 6.45 m.
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Figure 6.2: Graphical error discussion of the hub height calculation. a) Correlation between calcu-
lated and ground truth hub height. b) Residues of the calculated hub heights, which are
sorted ascending by the ground truth hub height. c) Error distribution, which follows a
normal distribution with µ = 1.03 m. d) Distribution of the absolute error with a mean
of 6.45 m. Source: Hoeser and Kuenzer (2022a, p. 6).

By taking potential error sources during the height calculation into account, the mean

absolute error is within the technical feasibility of the Sentinel-1 mission. Figure 6.3 shows

the error contribution, which is related to the 10 m pixel spacing of the investigated IW

GRD product and the associated lack of precision in object localisation within the result-

ing pixels. One part of the overall height error εh is related to the precision of the two

coordinates, which are used to calculate the side adjacent. With a pixel spacing of 10 m,

the distance between the two coordinates of OWT cluster and layover cluster is imprecise

within the bounds of ±10 m. This is the theoretical error of the side adjacent εadj given by

the Sentinel-1 product specification. Depending on a near range (31◦) or far range (46◦)

incident angle, the maximum of the related height error contribution ε
h

εadj ranges between

±6 m and ±10.36 m respectively, see figure 6.3. Compared to the mean absolute error of

6.45 m, the general applicability of the proposed hub height calculation is pointed out. The

calculated hub height values are sufficiently accurate to be used as an input in the upcoming

installed capacity estimation without risking systematic or excessive error propagation.
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Figure 6.3: Theoretical bounds of the height error contribution εh
εadj coming from the 10 m pixel

spacing of the Sentinel-1 Interferometric Wide swath (IW) Ground Range Detected
(GRD) products which contributes to the adjacent side error εadj. The three incident
angles θinc describe a near (31◦) to far (46◦) range situation, thus the corresponding
maximum error is ±6 m and ±10.36 m. Source: Hoeser and Kuenzer (2022a, p. 7).

6.1.3 Regression Model for Capacity Estimation

With the calculated hub height for each OWT available, the last step is to describe the

relationship between hub height and installed capacity to finally estimate the installed capa-

city. The empirical correlation is obtained by observing the manually collected hub height-

installed capacity pairs from publicly available sources. The 50 data samples are split ran-

domly into a train set with 36 samples and a test set with 14 samples which will not be

considered further until the evaluation. Figure 6.4 shows the train data as scatter plot. The

point cloud suggests an exponential correlation for lower parts of the hub height between

60 m and around 95 m. However, the exponential trend for hub heights above 95 m is

less distinct, with increasing variance and a tendency to level off. The uncertainty about a

proper model fit caused by a lower point density and higher variance for higher hub heights

means that there is a risk of reacting more sensitively to small changes in hub height if

a purely exponential curve is assumed, which leads to greater fluctuations in the installed

capacity. Instead, a suitable model hypothesis should be able to represent the clearly expo-

nential part at the beginning without overestimating the second part of the point cloud in a
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Figure 6.4: Relation between the turbine’s hub height and installed capacity of 36 training samples
and the corresponding fitted sigmoid model with its 95% confidence interval (CI).
Source: Hoeser and Kuenzer (2022a, p. 8).

further exponential progression. Therefore, a model hypothesis was chosen that conservat-

ively describes the relationship in the second part of the point cloud but can communicate

the recognisable exponential progression for the first part. This decision also contributes to

a smaller impact of the earlier discussed height error contribution caused by the 10 m pixel

spacing of the underlying data for height calculation. In a purely exponential model, the

height error contributions would also impact the estimated capacity exponentially.

C(hOWT) =
Λ

1+ e−ω(hOWT−h0)
+ξ (39)

By taking all these considerations into account, the hypothetical model was chosen to

be a sigmoid regression as shown in figure 6.4 and equation (39). The installed capacity C

is estimated by the OWT height hOWT. Λ is the sigmoid function’s maximum parameter,

and ω denotes the logistic growth rate. h0 and ξ are offset parameters of the infliction

point of the function. h0 controls the position along the axis of the OWT hub height, and

ξ controls the position along the axis of the installed capacity. These adjustable parameters

of the sigmoid function were optimised according to the machine learning cycle introduced

in section 2.2. The least-squares cost function was minimised to fit the sigmoid function’s

parameters. Figure 6.4 shows the fitted model along with its 95% confidence interval (CI).
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Figure 6.5: Graphical error discussion of the estimated installed capacity. a) shows the correlation
between estimated and ground truth installed capacity. b) shows the residues of the
installed capacity of the ground truth offshore wind turbine clusters, which are sorted
ascending by their installed capacity. Furthermore, the absolute height error is provided
to relate both residues. c) shows the error distribution of the estimated installed capacity,
which follows a normal distribution with µ = 4.76 MW. Furthermore, the Kolmogorov-
Smirnov test in c) shows that the distributions of the errors predicted on the train and test
split are indifferent and thus discussed together in c) and d). d) shows the distribution of
the absolute error of the installed capacity with a mean of 36.16 MW. Source: Hoeser
and Kuenzer (2022a, p. 8).

For an error discussion, the installed capacity was predicted for all 14 OWT clusters of

the test but also for the 36 of the train set, separately. Therefore, the model was applied

to each calculated hub height of an OWT coming from the DeepOWT data set, which lies

within the boundaries of one of the 50 ground truth OWT clusters. The predicted installed

capacities for each OWT in a cluster were then summed up and compared to the correspond-

ing installed capacity of the OWT cluster of the ground truth data. That way, it is possible

to investigate not only the model performance on a single OWT but also the combination of

the fitted model and the underlying DeepOWT data set. Thus the upcoming error discussion

is representative of estimating installed capacity with the OWT locations and hub heights

coming from the DeepOWT data set.
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As stated above, predictions were made for OWTs which are within the clusters de-

scribed by the test and train sets. The resulting error distributions for both sets were com-

pared by a Kolmogorov-Smirnov test (Massey, 1951). The test result αcrit = 0.05 < p =

0.09 confirms the null hypothesis that both distributions are identical, see figure 6.5c).

Due to this result, the upcoming error discussion combines the error values of the test

and train sets. The error discussion follows the same pattern as for the height calculation.

Figures 6.5a+b) provide insights into the distribution of the residues. The Levene test con-

firms equal variance for predicted capacity and ground truth capacity with αcrit = 0.05 <

p = 0.977. The correlation between predicted and ground truth installed capacity is high

with a slope of 0.96 of a linear regression, a Pearson coefficient of ρ = 0.949 (p < 0.01),

and an R2 = 0.9. Thus, 90% of the variance of the predicted installed capacity can explain

90% of the variance of the ground truth installed capacity, see figure 6.5a). Likewise to the

calculated height error values, the estimated installed capacity error values were tested for

normality. With the test result αcrit0.05 < p = 0.067 the error values follow a normal dis-

tribution with a mean of 4.76 MW and a standard deviation of 51.15 MW for entire OWT

clusters, indicating that no tendency of the model for systematic over- or underestimation

occurs. Furthermore, the mean absolute error is 36.16 MW, which is less than 15% of the

mean installed capacity of 244.98 MW of the 50 ground truth OWT clusters.

Overall, the results show a sufficient performance to estimate the installed capacity with

the introduced approach of calculating hub height and using the sigmoid regression to link

this variable with the installed capacity. Finally, the fitted sigmoid regression model was

applied on a global scale to all calculated hub heights to estimate the installed capacity

of each offshore wind turbine in the DeepOWT data set. For a further comparison of the

estimated installed capacity with regional reports of the installed capacity of the offshore

wind energy sector, see figure 6.13 and the associated discussion in section 6.3.

6.2 Deriving Offshore Wind Turbine Site Specifications

6.2.1 National Affiliation and Water Depth

Having derived the installed capacity as a key characteristic of OWTs, other characteris-

tics describing the location of an OWT will now be compiled. For this purpose, the spatial

information of the DeepOWT data set was processed in GIS analysis. To derive the national

affiliation of each OWT, the point locations in the DeepOWT data set were spatially quer-

ied by polygons of exclusive economic zoness (EEZs) globally. EEZs are areas on the use

of marine resources set by the United Nations (UN). The data used is provided by Flanders

Marine Institute (2020).

149



Chapter 6 Global Dynamics of the Offshore Wind Energy Sector 2016-2021

Figure 6.6: The derived offshore wind farm (OWF) areas of the DeepOWT data set in context with
bathymetry data coming from NOOA’s ETOPO1 data set. a) shows the situation of large
shallow areas in the North Sea Basin. b) shows shallow water depths for coastal sites in
the northern East China Sea and the Yellow Sea. Source: Hoeser and Kuenzer (2022a,
p. 10).
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In another overlay operation, the water depth for each OWT was queried from the

ETOPO1 data set. ETOPO1 is a 1 arc-minute global raster of topography and bathymetry

data provided by Amante and Eakins (2009). The ETOPO1 data set is included in the data

archive of the GEE. To derive the OWT water depth, the bathymetry data was queried for

the locations provided in the DeepOWT data set. Figure 6.6 provides an impression of the

water depth and the derived locations of OWFs in North Europe, North East China and the

West Coast of North and South Korea. The national affiliation and water depth information

was appended to the DeepOWT data set attribute table for later analysis.

6.2.2 Distance to Coast and Neighbouring Platforms

Figure 6.7 shows OWFs in the North Sea Basin at the eastern coast of England with iso-

pleths showing the distance to the shoreline. To derive the exact minimum distance between

each OWT and the shoreline, a search radius of 200 km was defined for each OWT in

the DeepOWT data set. These search areas were used to clip a global mainland polygon

Figure 6.7: offshore wind turbine (OWT) locations from the DeepOWT data set grouped by their
deployment date in context with their distance to the shoreline indicated by 25 km dis-
tance isopleths for the eastern coast of England. It becomes obvious that over time, the
distance to the coastline increases. Source: Hoeser and Kuenzer (2022a, p. 9).
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Figure 6.8: offshore wind turbine (OWT) locations from the DeepOWT data set grouped by their
deployment date in context with their distance to the closest neighbour in an offshore
wind farm cluster of the Netherlands and Belgium. It becomes obvious that over time,
the distance to the closest OWT increases, which is related to larger rotor diameters of
modern OWTs. Changed after Hoeser and Kuenzer (2022a, p. 9).

provided by Natural Earth (2022). The clipped areas are reprojected to the corresponding

UTM zone of the OWT under investigation. With that done, the minimum distance to all

polygons in the 200 km large search radius can be derived for all OWT locations.

With the same search radius of 200 km for each OWT location, all other OWT locations

of the DeepOWT data set were selected. All distances between these selected OWTs and

the OWT under investigation were calculated. The minimum of all of these distances was

selected along with the corresponding location ID of the OWT. Figure 6.8 gives an impres-

sion of the resulting information for an OWF in the North Sea Basin in the EEZs of the

Netherlands and Belgium.

6.3 Global Analysis of Spatiotemporal Offshore Wind

Turbine Dynamics

This section brings together the methods developed and results obtained in this work.

It provides a comprehensive presentation of the derived spatiotemporal dynamics of the

offshore wind energy sector from Earth observation data. The most significant features

were extracted from a single Earth observation archive containing data of the Sentinel-1
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Figure 6.9: Global overview of the derived number of offshore wind turbines readily deployed and under construction as of June 2021. The information is solely
based on Earth observation data coming from the Sentinel-1 mission. The three major offshore wind energy producers are The EU, China and the
UK, with China having the most projects under construction. The points along the coastline indicate major offshore wind farm clusters. Source:
Hoeser and Kuenzer (2022a, p. 11).
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Figure 6.10: Global overview of the derived installed capacity for offshore wind energy production as of June 2021. The information is solely based on Earth
observation data coming from the Sentinel-1 mission. The three major offshore wind energy producers are The EU, China and the UK. The points
along the coastline indicate major offshore wind farm clusters. Source: Hoeser and Kuenzer (2022a, p. 11).
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6.3 Global Analysis of Spatiotemporal Offshore Wind Turbine Dynamics

mission, which demonstrates the versatility of the information captured by the Sentinel-1

satellites. At the same time, it also demonstrates the versatility of the proposed methods

and implemented procedures used to extract the spatiotemporal information of the offshore

wind energy sector from this data source. The extracted and analysed information about the

global dynamics of the offshore wind energy sector, hidden in spaceborne radar images, is

hereby made accessible to a large audience.

Figure 6.9 shows the deployment situation of OWT, and figure 6.10 the installed capa-

city in June 2021 on a global scale as derived by applying the methodology introduced in

this dissertation. Globally, 40.6 GW of installed offshore wind energy capacity was real-

ised in June 2021 by 8,885 readily deployed OWTs. The current massive expansion of the

offshore wind energy sector can be seen in the fact that 852 more OWTs are under construc-

tion in June 2021, which corresponds to about 10% of all turbines installed by then. The

three major wind energy production contributors are clearly discernable in figure 6.10. With

15.2 GW the EU has the most installed offshore wind energy capacity worldwide, closely

followed by China with 14.1 GW, and the UK with 10.7 GW. Despite being among the

world’s largest onshore wind energy producers, the United States (US) has only 40 MW of

installed capacity, which relates to 7 OWT in 2 pilot projects on the Atlantic coast. However,

the currently developed Vineyard Wind project will be the first commercial-scale offshore

wind farm with 62 OWTs and an overall installed capacity of about 800 MW (Vineyard

Wind, 2022). It is planned to be readily deployed in 2023 and hereby the starting point for

the US to enter the offshore wind energy sector besides other regions which have already

deployed first OWFs.

More insights into the temporal developments of the offshore wind energy sector are

provided by figure 6.11. This overview broadens the perspective on the state of the global

offshore wind energy sector, especially with regard to the three largest participants. It

clearly shows that the most significant expansion of offshore wind energy infrastructure

within the last five years took place in China. From July 2016 to June 2021, 5,268 OWTs

with a combined installed capacity of 27.2 GW were deployed worldwide. Of these, 2,960

OWTs with a combined capacity of about 13 GW were deployed in China. Considering

that China in July 2016 only had about 1.1 GW installed capacity, this is an increase of

1,182% of China’s installed capacity, and a contribution of 48% to the global increase in

installed capacity. China is thus the most important driver behind the expanding trend in

offshore wind energy over the last five years. Figure 6.12 summarises the quarterly changes

in a comparison of overall growth rates for a better overview. In contrast to the Chinese

growth rates, the EU deployed 1,313 OWTs with 8 GW, which is a contribution of 29% to

the global expansion. The UK deployed 916 OWTs with 5.8 GW, which is a contribution of
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Figure 6.11: Derived global and regional temporal dynamics of the installed capacity for offshore
wind energy generation and the number of readily deployed offshore wind turbine
(OWT). Cumulative values and growth rates are represented separately. From this
overview, it becomes clear that in the investigated five years, from July 2016 until
June 2021, China is the most important driver of the expansion of the offshore wind
energy sector. Source: Hoeser and Kuenzer (2022a, p. 12).

21% to the global offshore wind energy capacity growth between July 2016 and June 2021.

Interestingly, China took over EU in the number of installed OWT in June 2021. However,

the EU still has a larger amount of installed capacity, see figure 6.11, which indicates the

installation of more powerful OWTs in the EU compared to China. Another detail is a very

large increase in installed capacity and number of OWTs for China in the last period of the

second quarter of 2021. This large increase is strongly related to the final deployment of
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Figure 6.12: Derived five-year absolute growth rates of the installed capacity for wind energy gen-
eration and readily deployed offshore wind turbine (OWT) of the three major wind
energy producers European Union (EU), China and United Kingdom (UK), and other
participants in the wind energy sector. Source: Hoeser and Kuenzer (2022a, p. 11).

the 1.1 GW Rudong OWF cluster in the East China Sea (Xing, 2021). The offshore wind

energy sector’s early history and new developments can be deducted from this observation.

With the Danish pilot project, Vindeby in 1991, the first OWF was developed and installed

in Europe. Since then, the offshore wind energy market has matured over decades, driven

mainly by developments in the EU and the UK, which found direct access to good con-

ditions due to the shallow water depths and high and stable wind speeds in the North Sea

Basin. These are the reasons why the EU and the UK have a head start in the development

of wind energy in 2016 compared to other regions in the world and have partly maintained

it until today. China entered the wind energy sector at a time when technology and de-

ployment processes were at a mature stage of development. This factor, in combination

with OWF sites relatively close to the shoreline, is contributing to the rapid growth in the

Chinese EEZ over the last five years.

The provided spatial and temporal overview of where and when OWTs are deployed on

a global scale demonstrates the flexibility of the compiled DeepOWT data set to aggreg-

ate information in time and space. Throughout the compilation of the information for the

DeepOWT data set, great attention was paid to the accuracy of the methods used in or-

der to minimise deviations in the number of completed OWTs and their installed capacity.

The provided data set evaluation in section 5.5 and error discussions in section 6.1 already

provided evidence for high precision and accurate performance. Figure 6.13 further under-

mines the flexible spatiotemporal information aggregation and consistent temporal continu-

ity. Furthermore, it compares the calculated installed capacities with official reports of the

157



Chapter 6 Global Dynamics of the Offshore Wind Energy Sector 2016-2021

Figure 6.13: Comparison of data on global and regional installed capacity of offshore wind energy
between the data of this work (DeepOWT) and public reports on this subject. The
institutions used for comparison and their reports are Statista (Statista, 2021b,a), the
Global Wind Energy Council (GWEC) (Lee and Zhao, 2021, 2020), Wind Europe
(Ramírez et al., 2021), and Joint Research Center (JRC) (European Commission et al.,
2019). Changed after Hoeser and Kuenzer (2022a, p. 13).
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wind energy sector. These comparisons show that the temporary developments of installed

capacities based on the DeepOWT data set are in line with the results of official reports by

Statista (Statista, 2021b,a), the Global Wind Energy Council (GWEC) (Lee and Zhao, 2021,

2020), Wind Europe (Ramírez et al., 2021), and the Joint Research Center (JRC) (European

Commission et al., 2019). It is to emphasise that the proposed methodology to derive the

DeepOWT data set allows producing this information continuously. This enables the gen-

eration of seamless time series at all scale levels, which is not possible by consulting the

aggregated reports used for comparison. Figure 6.13 makes clear that these continuous time

series are important when comparing regional trends. Only in the five-year time series of

the DeepOWT data set is the trend of strong expansion in China and stagnating construction

in the EU and the UK discernible.

Besides global and regional trends of the combined installed capacity, the derived in-

formation also provides insights into trends and distributions describing OWT character-

istics and their site specifications. Figure 6.14 summarises these trends on a global scale

by showing distributions of the site specifications of all OWTs which have been deployed

in the corresponding quarter. To better describe major trends but also new developments,

quantile regressions of 50% percentile and the upper and lower 5% were performed. The

regression takes all quarterly periods into account, besides the first period in 2016Q3, since

it includes all OWT ever build until then. For another aggregated overview, the distribution

of each site specification is also shown for different regional scales, see figure 6.14.

Figure 6.14a+b) show that on a global scale, the hub height and installed capacity have

been increasing since 2016. In particular, smaller turbines with an installed capacity of

4 MW or less were no longer installed. Instead, larger variants with capacities of more

than 4 MW were deployed. The technical progress of offshore wind turbine technology

is also reflected in regional differences. The EU and UK, which have participated in the

market since the beginning of offshore wind energy development, still have a large share

of turbines with lower nominal capacity from this period. At the same time, the further

development of the technology for the high wind speeds of the North Sea Basin is also

taking place here, which means that very large turbines with high output can also be found

in the EU and UK. In comparison, China, in particular, and other regions that entered the

offshore wind energy market later have benefited from the already researched technology

and immediately deployed larger turbines. Especially in China, no turbines of the smallest

scale, which can be found in the EU and UK were installed, see figure 6.14a+b). Chinese

offshore wind turbine development has been comparatively more focused on similar turbine

types with a nominal capacity between 4 and 5 MW in the last five years, which is also the

reason for the global trend focussing on this size.
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Figure 6.14: Temporal dynamics of multiple offshore wind turbine (OWT) characteristics on a
global scale between July 2016 and June 2021 and aggregated distributions on re-
gional scales for the European Union (EU), China, the United Kingdom (UK), and
other participants of the offshore wind energy sector. The dashed red lines represent
5%, 50% and 95% quantile regressions of global trends, the solid lines in d) are the
95% quantile regressions of the EU, China, and the UK. Changed after Hoeser and
Kuenzer (2022a, p. 14).
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Related to the trends of hub height and installed capacity, wind turbine density, or the

minimum distance between OWTs, shows an increasing trend for the upper 5% percentile,

see figure 6.14c). However, the primary trend of minimum distances between OWTs in

the last five years is slightly decreasing. This is due to the larger amount of medium-sized

OWTs with a medium rotor size and thus a reduced need for widely spaced installations,

mainly deployed by China but also other nations which joined the offshore wind energy

sector lately. Since more medium spaced OWT with a smaller minimum OWT distance are

necessary to realise the same installed capacity, they dominate the 50% percentile trend of

decreasing minimum distance, even when new developments start in an opposite direction

as indicated by the upper 5% percentile. Following that, the trend will most probably turn

in the upcoming years due to developments of considerably larger OWT models, which

demand a larger minimum distance to the neighbouring OWT. It may be of interest to follow

this development closely since it affects the installed capacity per area ratio of OWF and

thus has a direct influence on the sometimes competing demands of different stakeholders

for utilisation in already heavily exploited marine areas.

Figure 6.14d) shows the development of the OWT distances to the coast. The global

trend is less pronounced, which is not surprising since this specific measure depends par-

ticularly on the respective natural conditions but also on the stages of development of the

regional offshore wind market and is therefore not as significant in a large-scale aggregated

view. Therefore three regional trends of the upper 5% percentile are provided. For the UK

the trend of the distance to the coast is strongly increasing, and when looking at the regional

distribution to the right of the temporal trend in figure 6.14d) it becomes clear that after a

period of nearshore sites, far offshore sites are getting developed. This indicates an ad-

vanced stage of the regional offshore wind energy sector in the UK, as for cost reasons, the

coastal areas are exhausted first before more distant areas have to be developed for offshore

wind energy production. The main driver for this trend to appear for the UK market, is the

Hornsea project, which in June 2021 has a maximum distance to the coast of over 120 km.

This trend will also continue in the future, as the UK’s ambitious expansion targets require

large areas that can no longer be developed close to shore (Higgins and Foley, 2014). An

example of this are the planned OWF projects on the Dogger Bank with distances of over

200 km from the coast. However, at the Dogger Bank are favourable conditions, such as

shallow water depths and consistently high wind speeds (Cotterill et al., 2012).

The selection of site locations of offshore wind energy projects in the Chinese EEZ are

different from what can be seen recently in the UK. Most of the deployed OWTs of the last

five years were constructed close to the shoreline to utilise these still untapped and easier

to develop areas first. In fact, one of the largest Chinese OWF projects, the Jiangsu Rudong
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Offshore Intertidal Demonstration Wind Farm, has been constructed, as the name suggests,

directly on tidal flats, which are natural transition zones between the open sea and main-

land. China developed most of its offshore wind energy projects close to the shoreline and

only slowly moved away from the coast. This strategy allowed China to deploy their OWT

fast and efficiently, which is one explanation for the massive Chinese expansion in the last

five years. However, when looking at the water depth at the Chinese coast in figure 6.6 it

becomes clear that China cannot easily build conventional offshore wind farms with found-

ations directly connected to the seabed hundreds of kilometres from the coast because the

water depths here are too deep and the conditions are therefore different from those in the

North Sea Basin. From a perspective of maximising installed offshore wind energy capacity,

China needs to make greater use of coastal areas, as confirmed by the expansion activities

of the last five years.

Similar to the global trend of distances to the coast, the trend of the EU is mixed and with

it ambiguous. Too many separate national offshore wind strategies with different stages and

EEZ areas in which the OWTs are getting constructed, mix different distances to the coast

and obscure a trend on an EU scale. However, the overall distribution of distances to the

coast for the entire EU highlights some other aspects which go along with observations of

the water depth in figure 6.14e). Similar to China in the East China Sea, the EU has large

areas in the North Sea Basin with tidal flats, which in China are partly used for large scale

OWF projects. However, the distribution of distances to the coast shows that in the EU

coastal areas are mostly kept free of offshore wind farms and constructions starting further

offshore. The difference between the usage of coastal areas and shallow waters becomes

even more evident when comparing the water depth of OWTs in context with the distance

to the coast, see figure 6.14d-e). Despite shallow water depths in the North Sea Basin, near

the coast and on tidal flats, OWT mostly appear in deeper water depth. Which is another

indicator that in the EU, coastal areas and tidal flats are intentionally kept free of OWF.

An important reason for this are exclusion zones, especially natural conservation areas for

coastal ecosystems and tidal flats, which balance area requirements of the offshore wind

energy industry and concerns for the preservation of ecological diversity and recreational

space. In contrast, in China, nearly all OWTs within the last five years are set up in shallow

waters, see figure 6.14e) and closer to the coast, which eases the deployment process and is

more efficient from an offshore wind energy infrastructure deployment perspective.

Despite the rather constant trends, the water depth characteristics in figure 6.14e) reveal

one of the most recent and highly important developments in the offshore wind energy

sector. The global temporal trend and the corresponding regional summaries of the EU

and UK show two groups of outliers. They belong to two pilot projects of floating OWFs,
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Figure 6.15: Two European Union (EU) and United Kingdom (UK) floating offshore wind farm
projects with different platform types and their location in context with water depths
for the EU and UK. The two water depths of the floating offshore wind turbine demon-
strate which possibilities this technology offers when their water depths are compared
to the median installation water depth of offshore wind farms in the EU so far. Source:
Hoeser and Kuenzer (2022a, p. 15).

the WindFloat project in the Atlantic at the coast of Portugal with a water depth of about

95 m (Energias de Portugal, 2022), and the Hywind project in the North Sea Basin at the

Scottish coast with a maximum water depth of 120 m (Equinor, 2022), see figure 6.15. For

comparison, the median water depth of OWT sites in the EU is 22 m for common OWT

foundation types based on the seabed. With the technology of floating OWTs, offshore wind

energy production at water depths considerably deeper than 50 m is possible, and with it,

the potential area in which offshore wind energy can be generated becomes significantly

larger (Henderson and Witcher, 2010). This is particularly true for the EU’s riparian states

on the Atlantic coast and in the Mediterranean region, see figure 6.15. The 300 GW target

for the EU by 2050 requires densification and further expansion in the North Sea Basin

and Baltic Sea, but with new technologies that are about to be deployed in deeper water

depths, such as floating wind turbines, it is also possible to integrate areas that have not yet

participated in the European offshore wind energy market. This means that the realisation

of the expansion targets is spread over a larger area and includes more EU members. With

the open DeepOWT data set, there is a basis to spatially locate knowledge and experience

from already implemented wind energy projects at an early stage and exchange it more

easily, especially with regions new to the offshore wind market.
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6.4 Discussion

The radargrammetric interpretation of the typical radar signature of an offshore wind

turbine is the starting point for the calculation of the installed capacity. Any improvement

in the height calculation leads to a direct improvement in the estimate of the installed capa-

city. The method presented here combines information from individual images and median

composites of a single orbit direction. Future refinement of this method should investig-

ate the calculation of hub heights based solely on the evaluation of individual images and

from both orbit directions, hence it could further increase the accuracy of the hub heights

information. However, this requires a much greater effort in the preprocessing of individual

acquisitions. In order to advance this method for an even more precise calculation of the

height information, additional ground truth data, in particular from OWT currently under

construction, are also necessary.

More data about turbines which are currently under construction, is also essential for

future modelling of the installed capacity. The proposed model for mapping hub height

to installed capacity only considers OWTs with a maximum installed capacity of about

9 MW. However, recent advances in turbine technology have led to the deployment of

OWTs with an installed capacity up to 14 MW. A number that will continue to rise in the

future. Due to the shape of the sigmoid regression model, an update of hub heights and

installed capacity values is necessary to keep track of recent developments. Furthermore,

it should be checked to what extent the other derived parameters, in particular the time of

installation of the turbine, can be included in the model. Together with an even more precise

hub height calculation, the model’s confidence interval can be kept narrow, and the model

continues to provide an accurate estimate for the installed capacity as it did for the period

investigated in this work.

The attributes derived for each turbine location are an important addition to the spa-

tiotemporal information of the DeepOWT data set. Their integration into the data set in-

creases the application potential of the data significantly. In addition to the locations, spe-

cific turbine heights and capacities can now be taken into account. They can directly be

employed to model energy generation with meteorological data or to investigate the large

and small-scale effects of wind turbines on wind speeds and surface water. In order for this

data set to reach its audience, it is important that the data is regularly updated. For this

purpose, the methods and technical processes in this chapter have to be consolidated. In

view of the sensor failure of the Sentinel-1B instrument in December 2021 (ESA, 2022),

the introduced methodologies should be reviewed and, if necessary, adapted to make them

robust against such events.
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6.4 Discussion

The analysis in this chapter shows how the most important developments of the entire

global wind energy sector can be observed with the help of remote sensing data. The presen-

ted analysis of the five-year period between July 2016 and June 2021 shows the flexibility

with which the derived information can be evaluated in space and time with a high degree

of accuracy. Global trends could be analysed as well as regional differences and specific

developments in individual regions.
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Chapter 7

Synthesis and Outlook

In order to review the methods developed and results obtained in this dissertation, they

are brought together in this concluding chapter. By working on the five research objectives,

three major deliverables have been produced in this dissertation: The development of the

SyntEO framework for the generation of synthetic remote sensing data ready for deep learn-

ing applications, the deep learning derived global offshore wind energy infrastructure data

set DeepOWT, and finally its progressive analysis and description of recent developments

in the global offshore wind energy sector.

7.1 Summary and Conclusive Findings

Driven by an alternative to coal-fired power and other fossil fuels with the aim of re-

ducing greenhouse gases, or to achieve greater energy autonomy for states, the expansion

of wind energy will increase strongly in the upcoming decades and offshore wind energy

is at the beginning of a massive expansion worldwide. On a global level, this is one of the

largest marine infrastructure projects of all time. In addition to the challenge of implement-

ing this expansion technically, it is also important to design it sustainably at an early stage.

Therefore, integrated spatial planning that takes into account the concerns of all stakehold-

ers involved is of great importance. The deployment of infrastructure to this extent also

requires multidisciplinary scientific research and continuous monitoring, of the expansion

itself but also of its ecological, economic and social impacts. A freely available, precise,

spatially and temporally homogeneous and nevertheless global database of offshore wind

energy infrastrucutre that can be continued in the decades to come is a fundamental and

particularly important element in this context.

With satellite-based Earth observation data, especially from ESA’s Sentinel-1 mission,

a data basis is available that provides both the spatial and temporal requirements for such a

database. Modern image analysis procedures, such as deep learning-based object detection,
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have proven their potential especially in the computer vision domains over the last decade.

Their use to derive the desired database from satellite imagery requires the development of

specific methods adapted for Earth observation.

Given the challenges of the global offshore wind energy expansion and possibilities to

monitor this expansion by combining Earth observation data with deep learning methods,

the goal of this dissertation is as follows: Create and provide a scientifically and socially

necessary, freely accessible database, which globally maps the progressive expansion of

offshore wind energy infrastructures. Derive this database by investigating novel methodo-

logical developments to successfully apply modern deep learning based image processing

in the Earth observation domain. To achieve this goal, the following research objectives are

addressed in this dissertation.

Research objective 1 Provide an introduction to the fundamentals of supervised deep

learning and convolutional neural networks, and conduct a literature review of how

convolutional neural networks are applied in the Earth observation domain, in order

to identify common practices and recent challenges specific for the Earth observation

domain.

1. What are the key properties of the convolutional neural network that make it

particularly suitable for analysing image data?

2. What is the value of training data for optimising a convolutional neural network?

3. How has the convolutional neural network been applied to Earth observation

and what is a current obstacle in transferring this methodology from the field of

computer vision?

The introduction to convolutional neural networks (CNNs) presented in chapter 2 em-

beds this model type in its superordinate categories of deep learning, machine learning

and, starting at the highest level, artificial intelligence. During a detailed introduction to the

fields of machine and deep learning, the characteristics of CNNs that make them particu-

larly suitable for analysing image data were highlighted. This includes, above all, learning

2D kernel functions that build on each other and enable complex spatial features to be cap-

tured in images. In addition to the detailed discussion of individual aspects of the models

and procedures from the fields of machine learning, it was worked out that the extent and

variability of training data sets are of particular importance for supervised deep learning

with CNNs. Without sufficient data, these complex models cannot be adequately optimised

or are overfitted to the training data so that no generalisation of the model can be achieved.

Following this general introduction to CNNs, a comprehensive review of 429 articles on
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the use of CNNs in Earth observation was conducted. Overall, the analysis of these articles

describes the application of CNNs in an advanced phase of the transfer of the methodology

from the field of computer vision to Earth observation. This can be seen in the model and

data types used in Earth observation, which are largely similar to those from the computer

vision domain and are only just beginning to be developed specifically for Earth observa-

tion. At the time of the review, training data sets were being reused to investigate certain

model optimisation approaches or make methodological progress. However, the number of

studies that are creating their own training data sets to answer new geoscientific questions

has only recently started to increase. As a result, CNNs have often been used in Earth ob-

servation for those applications for which there are existing training data. From this, the

need for research can be derived to develop methods that allow researchers from the Earth

observation domain to have resource efficient, large, variable training data sets created to

further expand the range of applications for CNNs in Earth observation.

Research objective 2 Provide an overview of how offshore wind energy infrastructure has

been detected in Earth observation so far and give detailed insight into how offshore

wind energy infrastructure and its common environment appear in Sentinel-1 radar

data at different spatial scales.

1. How has the detection of offshore wind energy infrastructure been researched

in Earth observation so far?

2. What spatial features exist in radar images to detect and distinguish offshore

wind energy infrastructure from other marine infrastructure and natural envi-

ronments?

Chapter 3 starts with a review of methods to detect marine infrastructure in Earth ob-

servation data. Persistent marine infrastructure, and offshore wind energy infrastructure

in particular, has been detected primarily using the established constant false alarm rate

method. Other morphological examinations of the objects, coupled with manually deter-

mined thresholds, also make use of the high contrasts that arise between marine infrastruc-

tures and the surrounding water. These contrasts are clearly represented in both optical

and radar remote sensing data. However, radar data is particularly useful as it is weather-

independent and thus provides a higher temporal coverage in coastal and offshore areas. The

so far published procedures indicate that offshore wind energy infrastructure is detectable,

but its internal distinction cannot be performed automatically by the hand-programmed

features. Thus, for example, transformer stations or platforms under construction are mis-

classified as wind turbines on a small spatial scale. Moreover, on a larger spatial scale, the

detection of entire offshore wind farms in heterogeneous environments has to be supported
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by human interpretation in order to distinguish them from other marine infrastructures and

marine environments. However, a close look at the radar signal provided by the Sentinel-1

mission globally shows spatial patterns that provide an opportunity to exploit these features

with complex analysis in order to not only detect offshore wind energy infrastructures, but

also to distinguish them from each other. These spatial patterns can be explained by the

imaging geometry and typical effects of radar instruments. In addition to these small-scale

spatial features, a detailed discussion of large-scale patterns of offshore wind energy infra-

structures was also pointed out. Their typical geometric arrangement of individual objects

clearly stands out from other marine infrastructures and natural environments. This has

highlighted unique features of the targets to be detected at different scales, which will form

the basis for training CNNs to incorporate these features into their decisions. However, to

teach these features to a CNN, large variable training data sets are needed, as highlighted

in research objective 1 and chapter 2. In addition to the resource expensive effort of creat-

ing large training data sets by hand, the use case of offshore wind energy infrastructure is

complicated by the fact that there are too few real-world examples of offshore wind farms

worldwide to compile such a data set. This requires the development of a different approach

to build such a training data set.

Research objective 3 Develop a conceptual framework to automatically generate large

amounts of synthetic and task specific labelled Earth observation data by taking ex-

pert knowledge into account.

1. What structure can be used to uniformly represent expert knowledge in order to

describe nested systems such as a remote sensing scene?

2. What properties must a synthetic training data set have in order to optimise a

CNN so that it can reliably detect a target and at the same time distinguish it

from its natural environment?

Based on the successive findings and need for research from research objective 1 and

2, in chapter 4, the SyntEO framework was developed for the creation of synthetic training

data in Earth observation. In order to be able to map expert knowledge about remote sensing

sensors, natural spaces and human influences as well as the nested multi-scale structure of

spatial data, a special ontology was developed in the SyntEO framework. By formulating

this ontology human expert knowledge becomes machine readable and can be used by

an image processing backend to automatically generate complex synthetic remote sensing

scenes, from which a synthetic remote sensing image is taken along with its task specific

annotation. During the development of the SyntEO framework, a proof of concept study

for the detection of entire offshore wind farms was carried out. It became clear that, in
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addition to the object to be detected, potential false positives must also be contained in

a synthetic training data set in order to ensure sufficient generalisation of the features to

be learned. Finally, SyntEO is a flexible framework that enables the embedding of expert

knowledge in the training data and can thus generate very large and highly variable data

sets. Furthermore, SyntEO enables the structured creation of balanced training data sets,

as metadata is available for each synthetically generated image, which can be taken into

account when compiling the final training examples. In this way, it was possible to create

precisely controllable training environments in the proof of concept study, which also made

it possible to draw conclusions about the learning process of the deep learning model and

thus brought human and machine closer together throughout the entire training process.

Research objective 4 Derive a global, multi-temporal data set of offshore wind energy

infrastructure from Earth observation data by combining the previously developed

framework for synthetic data generation and deep learning based object detection.

1. How can CNNs, optimised by synthetic training data, be used for object detec-

tion to globally identify individual types of offshore wind energy infrastructure

in radar data?

2. How can quarterly changes in the deployment process of the offshore wind en-

ergy infrastructure be determined?

3. How many offshore wind turbines and substations had been deployed around

the world by mid-2021 and how many were under construction?

In chapter 5, the methods developed in the previous research objective 3 were eventually

employed for an automatic detection of individual objects such as offshore wind turbines,

platforms under construction and offshore wind farm substations on the entire global coast-

line. Therefore, a cascade of two object detector CNNs was used, where the first stage de-

tects large scale offshore wind farms, and the second stage detects and distinguishes single

offshore wind infrastructure platform types. Based on the spatially precise localisation by

the cascading CNN object detectors, the temporal signal for each object was investigated

in a further step. Here, changes in the small scale spatial radar signature of a single object

where tracked in a temporal stack over five years to derive the deployment stages of each

infrastructure object. The combination of the spatial detection and temporal interpretation

of the radar signal resulted in the DeepOWT data set. The data set covers the entire world

for a five-year period divided into three-month intervals from July 2016 to June 2021. For

the latest entry in the data set in June 2021, 8,885 offshore wind turbines (OWTs), 852

offshore wind energy infrastructure objects under construction, and 204 offshore wind farm

substations were detected. The evaluation of the data set demonstrates the accuracy of the
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applied methods, especially in the detection of offshore wind turbines, where an F1 scores

of over 98% were achieved. Furthermore, the approaches used to create the data set are ro-

bust to different conditions, as shown by the detailed evaluation and comparison of results

in two differing test sites, the North Sea Basin and East China Sea. Since the approach used

to generate the DeepOWT data set is based exclusively on synthetic training data generated

with the SyntEO framework, the data set clearly demonstrates the applicability of the de-

veloped framework. In order to promote the widest possible use of the DeepOWT data set,

the entire data set was converted into a lightweight data format that can be read directly into

GIS software and made freely accessible1. Furthermore, the data set was integrated into the

Coastal Explorer2, a openly accessible online mapping service of the German Aerospace

Center, in order to provide a direct overview of the derived information.

Research objective 5 Expand the spatiotemporal information of the derived offshore wind

energy infrastructure data set with important technical attributes such as the installed

capacity of an offshore wind turbine as well as further spatial information about its

location and conduct a global analysis about the dynamics of the offshore wind en-

ergy sector over the last five years between July 2016 and June 2021.

1. How can the installed capacity of an offshore wind turbine be determined using

spaceborne radar data?

2. How far has the global expansion of offshore wind energy progressed by June

2021 measured in installed capacity and which regional differences can be iden-

tified?

3. What trends in the expansion of offshore wind energy have developed globally

and regionally over the last five years?

A key parameter for describing offshore wind energy projects and strategies is the in-

stalled capacity. With the DeepOWT data set so far, the number and spatial distribution of

offshore wind turbines can be described, but not the corresponding installed capacity. In

order to determine this information for each turbine in the DeepOWT data set, chapter 6

presents a radargrammetric calculation of the hub height for each of the detected offshore

wind turbines. In a subsequent step, the installed capacity was estimated by a statistical

model that links the calculated hub height and the installed capacity. With the addition

of further site parameters, such as nationality, water depth, and distances to the coast and

nearest turbine, together with the five-year deployment time series of the DeepOWT data

set, a global analysis of the development of the offshore wind energy sector was carried out.

1https://zenodo.org/record/5933967
2https://coastalx.eoc.dlr.de
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7.2 Future Challenges and Opportunities

In the second quarter of 2021, 40.6 GW of offshore wind energy installed capacity was

available worldwide coming from 8,885 offshore wind turbines. Of this, 15.2 GW was in

the EU, 14.1 GW in China, and 10.7 GW in the UK. In the last five years, a total of 5,268

offshore wind turbines with a combined capacity of 27.2 GW have been deployed glob-

ally. The most important driver of this growth is China with 13 GW. Europe has deployed

8 GW installed capacity in the same time, the UK 5.8 GW. That makes clear, that China

has deployed almost its entire offshore wind energy infrastructure in the last five years. The

EU and UK have approximately doubled their capacity in the same period. Their particip-

ation in the offshore wind energy sector reaches back until 1991. The massive expansion

activities of the last five years in China have mainly taken place near the coast and in shal-

low waters by exploiting the untapped areas in the young Chinese offshore wind energy

sector. This contrasts with the offshore wind energy sector in the UK, which has had to

develop increasingly offshore areas over the last five years to accommodate the needs of

very large offshore wind energy projects, partly because nearshore areas are being utilised

by already established offshore wind farms. An evaluation of the spatial distribution of the

derived turbine locations and the time of their construction has made this analysis possible.

Furthermore by taking the water the depths of the derived turbine locations into account, a

newly emerging trend can be seen. In the EU and the UK, pilot projects of floating offshore

wind turbines are being tested in significantly deeper water depths. In future, they will com-

plement the established foundation types, which are built directly on the seabed. This will

allow future planning to take locations into account where no offshore wind energy has been

developed so far. In the EU this is mainly the Mediterranean and the Atlantic coast, which

offers more EU members to contribute to the necessary energy production transformation

with the development of offshore wind energy projects.

7.2 Future Challenges and Opportunities

The summarised research objectives and their corresponding results demonstrate the

potential of Earth observation data to gather detailed insights on a global scale by applying

the methods developed in this dissertation. Both the developed methodological approaches

and the derived database on the global development of the offshore wind energy sector offer

great potential for future use and development.

Figure 7.1 revisits the EU, UK and German offshore wind energy strategies mentioned

in the introduction, see chapter 1, and presents their goals in relation to the already real-

ised installed capacity of offshore wind energy infrastructure as identified in this work.

The gap to be closed in this illustration does not only exist in the expansion of offshore

wind energy infrastructure but also in a continuous report of the corresponding data. The
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Figure 7.1: Development of the offshore wind energy installed capacity for the European Union
(EU), United Kingdom (UK) and Germany (GER) reported by the DeepOWT data set
and the expansion goals set by the offshore wind energy strategies for these regions.

global detection of offshore wind energy infrastructure must now be consolidated with the

developed procedures in order to accompany the massive expansion in a timely manner

and to guarantee the necessary data basis for associated research and decision-makers. An

urgent expansion of offshore wind energy requires a freely accessible database of the spati-

otemporal dynamics of the offshore wind energy sector to foster a timely reporting and the

timely involvement of all stakeholders in order to achieve the ambitious targets of recent

offshore wind energy strategies. Remote sensing data can, as this work has shown, contrib-

ute to such a database efficiently for the entire world if its analysis continues in the future. In

addition to a further continuation of the DeepOWT data set, the introduced methods should

be refined in the future in order to be able to describe, for example, an even higher temporal

resolution of the changes in the deployment process of the wind turbines, or to be able to

infer the installed capacity for new turbine types as well as is currently possible.

The SyntEO framework developed to generate synthetic training examples provides a

basis for a variety of future scientific investigations and similar remote sensing products

such as the DeepOWT data set. The use of modern processing backends such as 3D en-

gines for the generation of synthetic high-resolution RGB images will open up new pos-

sibilities to make the expert knowledge that is represented in a SyntEO ontology available

for deep learning analysis. As the number of environments, described by the SyntEO on-

tology increases, a library of representations grows that will collectively make it easier to

generate complex remote sensing scenes synthetically. This will make it possible to map

increasingly complex descriptions of expert knowledge and use them as a direct training

signal in the optimisation of artificial intelligences. This will not only enable a wide range

of potential applications but also increasingly close the gap between human knowledge and

artificial intelligence. With the rapid generation of large and variable training data sets,

SyntEO strengthens the use of modern deep learning methods in Earth observation.
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