Aus der Augenklinik und Poliklinik der Universität Würzburg Direktor: Professor Dr. med. Dr. h.c. F. Grehn

Bestimmung der Netzhautdicke in Abhängigkeit von Alter und Achsenlänge des Auges mit Hilfe der Optischen Kohärenz - Tomographie

Inaugural – Dissertation

zur Erlangung der Doktorwürde der Medizinischen Fakultät der Julius – Maximilians – Universität Würzburg

> vorgelegt von Florian Hartmann aus Lauterbach

Würzburg, Juli 2008

Referent: Priv.-Doz. Dr. med. W. Göbel

Koreferent: Prof. Dr. med. Prof. h.c. F. Grehn

Dekan: Prof. Dr. med. M. Frosch

Tag der mündlichen Prüfung: 23.01.2009

Der Promovend ist Arzt

1	EINI	EINLEITUNG				
	1.1	Frages	stellung	. 1		
	1.2	2 Anatomie des Auges		. 1		
	1.3	Myopi	e / Hypermetropie	4		
	1.4	Netzha	autdicke	. 5		
	1.5	Verfah	nren zur Bestimmung der Netzhautdicke in vivo	. 6		
		1.5.1	Spaltlampe	. 6		
		1.5.2	Ultraschall	7		
		1.5.3	Retinal Thickness Analyzer (RTA)	. 7		
		1.5.4	Optische Kohärenz- Tomographie	. 8		
	1.6	Hypot	hesen und Ziele der Arbeit	10		
2	PRO	BANDE	N UND METHODIK	. 11		
	2.1	Studie	nkollektiv	11		
	2.2	Studie	ndesign	11		
		2.2.1	Einschlußkriterien	. 12		
		2.2.2	Ausschlußkriterien	. 12		
		2.2.3	Auswertung	. 16		
		2.2.4	Statistische Verfahren	. 17		
	2.3	Appar	ative Untersuchungen	. 18		
		2.3.1	Fachärztliche Augenuntersuchung	. 18		
		2.3.2	Bestimmung der objektiven Refraktion des Auges	18		
		2.3.3	Bestimmung der Achsenlänge des Auges mit der			
			Ultraschall-Biometrie (GBS)	. 20		
		2.3.4	Bestimmung der Netzhautdicke des Auges mit dem OCT .	22		
3	ERG	ERGEBNISSE				
	3.1	Probanden		. 27		
	3.2	Demog	graphische Daten	. 27		
	3.3	Objek	tive Refraktion	. 28		
	3.4	Achsei	nlängen	. 29		
	3.5	Netzha	autdicken	. 30		

	3.6	Korrel	lation von Probandenalter zu Netzhautdicke
	3.7	Korre	lation von Achsenlänge zu Netzhautdicke 40
4	DISI	DISKUSSION	
	4.1 Methodische Gesichts		dische Gesichtspunkte 43
	4.2	Ergeb	nisse
		4.2.1	Datenerhebung 44
		4.2.2	Demographische Daten 44
		4.2.3	Achsenlängen der Studienaugen 45
		4.2.4	Netzhautdicken der Studienaugen 46
		4.2.5	Korrelation von Netzhautdicke zum Probandenalter48
		4.2.6	Korrelation von Netzhautdicke zur Achsenlänge des Auges53
5	ZUS	AMMEN	FASSUNG 56
6	LITI	ERATUR	EVERZEICHNIS
7	ANH	IANG	

Abb.	1:	Waagerechter schematischer Schnitt durch den rechten Augapfel
		(rot: Netzhaut und der sich aus den Axonen der Ganglienzellen bildende
		Sehnerv (Nervus opticus)) [20, S. 4, Abb.2.1] 1
Abb.	2:	Schematischer Schnitt durch Netzhaut, Aderhaut und Lederhaut (Sklera)
		[20, S.162 Abb.14.2]
Abb.	3:	Schematischer Schnitt durch die Macula lutea [20, S.162 Abb.14.3] 4
Abb.	4:	Parallel einfallende Strahlen vereinigen sich im emmetropen Auge
		auf der Netzhaut (E), sind bei dem zu kurzen hypermetropen Auge beim
		Auffall auf die Netzhaut noch nicht vereinigt (H) und haben sich bei dem
		zu langen myopen Auge bereits vor der Netzhaut gekreuzt (M)
		[20, S. 296 Abb. 22.1]
Abb.	5:	Ultraschall-Biometrie (GBS): Der Ultraschallkopf schwebt im Wasser
		des Augentrichters. Links das Sonogramm mit vorderer Augenkammer
		(VK) zwischen 1. und 2. Peak, Linse (Li) zwischen 2. und 3. Peak
		und Glaskörper (GK) zwischen 3. und 4. Peak 21
Abb.	6:	Geräteeinheit der Optischen Kohärenztomographie
		[31, Introduction 1-5]
Abb.	7:	Verlaufsschema des Meß- und Referenzstrahlenganges, deren
		reflektierten Strahlengänge wieder übereinandergelagert werden
		und die resultierende Interferenz vom Lichtdetektor gemessen
		werden kann 24
Abb.	8:	OCT-Scan durch die Fovea: weiße Markierungen kennzeichnen
		die Netzhautdicke an neun horizontalen Meßorten in den
		angegebenen Abständen zur Foveola [mm] 25

Abb.	9:	Altersverteilung des Studienkollektivs (n = 159)	27
Abb.	10:	Verteilung der sphärischen Äquivalente der Refraktion [dpt] im Studienkollektiv (n = 159)	28
Abb.	11:	Verteilung der Achsenlängen im Studienkollektiv (n = 159)	29
Abb.	12:	Mittlere Netzhautdicke an neun horizontalen Meßorten (Mittelwert \pm Standardabweichung, n = 159)	30
Abb.	13:	Mittlere Netzhautdicke an neun vertikalen Meßorten (Mittelwert \pm Standardabweichung, n = 159)	31
Abb.	14:	Korrelation zwischen superiorer und inferiorer Netzhautdicke in 1 mm Abstand zur Foveola (n = 159)	32
Abb.	15:	Korrelation zwischen nasaler und temporaler Netzhautdicke im Abstat von 1 mm zur Foveola (r = 0,85, p < 0,0001)	nd 33
Abb.	16:	Korrelation der Netzhautdicke zwischen rechtem und linkem Auge desselben Studienteilnehmers (n = 46) in der Foveola ($r = 0.82$, $p < 0.0001$)	34
Abb.	17:	Korrelation der Netzhautdicke zwischen rechtem und linkem Auge desselben Studienteilnehmers (n = 46) 1mm temporal der Foveola ($r = 0.88$, $p < 0.0001$)	35
Abb.	18:	Korrelation der Netzhautdicke zwischen rechtem und linkem Auge desselben Studienteilnehmers (n = 46) 1mm nasal der Foveola (r = 0,90, p < 0,0001)	36

Abb.	19:	Keine Korrelation zwischen Alter des Studienprobanden und der
		Netzhautdicke der Foveola, Regression nicht signifikant ($r = 0,15$,
		p = 0,064, n = 159) 37
Abb.	20:	Keine Korrelation zwischen Alter des Studienprobanden und der
		Netzhautdicke 1 mm temporal der Foveola, Regression nicht signifikant
		(r = -0,089, p = 0,267, n = 159)
Abb.	21:	Korrelation zwischen Alter des Studienprobanden und der Netzhautdicke
		1 mm nasal der Foveola (r = -0,177, p = 0,025, n = 159) 39
Abb.	22:	Keine Korrelation zwischen der Achsenlänge des Studienauges und der
		Netzhautdicke der Foveola, Regression nicht signifikant ($r = 0,150$,
		p = 0,059, n = 159)
Abb.	23:	Keine Korrelation zwischen der Achsenlänge des Studienauges und der
		Netzhautdicke 1 mm nasal der Foveola, Regression nicht signifikant
		(r = 0,037, p = 0,644, n = 159)
Abb.	24:	Keine Korrelation zwischen der Achsenlänge des Studienauges und der
		Netzhautdicke 1 mm temporal der Foveola, Regression nicht signifikant
		(r = 0,004, p = 0,961, n = 159)
Abb.	25:	Altersverteilung der Probanden bei Alamouti et al. 2003 [1] 50
Abb.	26:	Altersverteilung der Probanden in der vorliegende Studie 50

Tab.	1:	Trend Netzhautdickenzunahme mit zunehmenden Probandenalter [43]49
Tab.	2:	Messergebnisse: Refraktion und Achsenlänge der Probandenaugen 69
Tab.	3:	Messergebnisse: Mittlere Netzhautdicken an 9 horizontalen Meßpunkten (Ref. = Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [μ m] Fovea, n = Netzhautdicke [μ m] nasal [mm] der Fovea, t = Netzhautdicke [μ m] temporal [mm] der Fovea)
Tab.	4:	Messergebnisse: Mittlere Netzhautdicken an 9 vertikalen Meßpunkten (Ref. = Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [µm] Fovea, s = Netzhautdicke [µm] superior [mm] der Fovea, i = Netzhautdicke [µm] inferior [mm] der Fovea)
Tab.	5:	Messergebnisse der 46 Augenpaare (Ref. = Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [μ m] der Fovea, STW F = Standardabweichung Fovea, STW 1 N / T = Standardabweichung 1 mm nasal / temporal der Fovea, n = Netzhautdicke [μ m] 1mm nasal, t = Netzhautdicke [μ m] 1mm temporal der Fovea)

1 Einleitung

1.1 Fragestellung

Mit der vorliegenden Studie sollte die Frage beantwortet werden, ob ein Zusammenhang zwischen der Netzhautdicke und der Achsenlänge des Augapfels einerseits und / oder der Netzhautdicke und dem Alter der entsprechenden Probanden andererseits besteht.

1.2 Anatomie des Auges

Die Netzhaut (Retina) kleidet als innerste der drei Schichten Lederhaut (Sklera), Aderhaut (Chorioidea) und Netzhaut den Augapfel aus:

Abbildung 1: Waagerechter schematischer Schnitt durch den rechten Augapfel (rot: Netzhaut und der sich aus den Axonen der Ganglienzellen bildende Sehnerv (Nervus opticus)) [20, S. 4, Abb.2.1] Während als bildentwerfende Organe die brechenden Medien Hornhaut (Cornea) und Linse (Lens) fungieren, ist die Netzhaut, ein vorgeschobener Hirnteil mit drei hintereinander geschalteten Neuronen, den Rezeptoren (Stäbchen und Zapfen, 1. Neuron), den Bipolarzellen (2. Neuron) und den Ganglienzellen (3. Neuron), das bildaufnehmende Organ. Hier erzeugen elektromagnetische Wellen von 400 – 800 nm Wellenlänge, die durch die Hornhaut, Linse und den Glaskörper (Corpus vitreum) auf die Netzhaut fallen, durch fotochemische Prozesse in etwa 127 Mio. Rezeptoren die Nervenimpulse.

Die etwa 1,1 Mio. Axone der Ganglienzellen vereinigen sich zum Sehnerv (Nervus opticus), der diese Nervenimpulse zum Chiasma opticum und als Tractus opticus über den Thalamus (Corpus geniculatum laterale) und die Radiatio optica (Gratiolet-Sehstrahlung) schlußendlich zur Hinterhauptsrinde im Bereich des Sulcus calcarinus des Lobus occipitalis als primäres Sehzentrum weiterleitet.

Das einfallende Licht durchdringt nach dem Glaskörper (Corpus vitreum) alle Netzhautschichten, bis es die äußerste Schicht, das Sinnesepithel (Rezeptoren, 1. Neuron) erreicht. Das Sinnesepithel besteht in der Netzhautperipherie aus Stäbchen und Zapfen, in der Fovea centralis nur aus Zapfen. Insgesamt hat die Netzhaut ca. 7 Mio. Zapfen und 120 Mio. Stäbchen. Nach außen zur Aderhaut hin liegt das Pigmentepithel, das die abgestoßenen Scheibchen der Rezeptoren verarbeitet und das einfallende Licht nach hinten abschirmt. Die Zellkerne der Rezeptoren bilden die "äußere Körnerschicht", so benannt nach dem Aussehen im histologischen Schnitt bei schwacher Vergrößerung. Das 2. Neuron wird von den bipolaren Zellen gebildet, "innere Körnerschicht", deren Signalweiterleitung durch Interneurone (Horizontalzellen und amakrine Zellen) moduliert wird. Ihre Fortsätze empfangen die Signale von den Rezeptoren und geben sie an die Ganglienzellen (3. Neuron) weiter. Diese begrenzen mit ihren Axonen die Netzhaut zum Glaskörper hin, wobei sich die 1,1 Mio. Axone aller Ganglienzellen an der Papilla nervi optici treffen und von dort ab den Sehnerv (Nervus opticus) bilden.

Glaskörper

Abbildung 2: Schematischer Schnitt durch Netzhaut, Aderhaut und Lederhaut (Sklera) [20, S.162 Abb.14.2]

Der Mensch hat im Gegensatz zu den meisten anderen Säugern eine hochspezialisierte Netzhautmitte und erreicht dadurch eine besonders hohe Sehschärfe. Die Stelle des schärfsten Sehens (Fovea centralis / Macula lutea) weist eine Grube (Foveola) von ca. 0,2 mm Durchmesser auf, die nur dichtgepackte Zapfen enthält, während die nachgeschalteten Neurone zur Seite hin verlagert sind (am Wallreflex der Netzhaut erkennbar), das einfallende Licht somit nicht durch dazwischenliegende Zellen gestreut wird.

Abbildung 3: Schematischer Schnitt durch die Macula lutea [20, S.162 Abb.14.3]

1.3 Myopie / Hypermetropie

Die Refraktion des Auges hängt von dem Verhältnis der Brechkraft der brechenden Medien (Hornhaut und Linse) zu der Achsenlänge des Augapfels ab. Normal ist eine Gesamtbrechkraft von etwa 65 dpt und eine Achsenlänge von ca. 23,6 mm [20, S.296; 23]. Die meisten Abweichungen vom Normalzustand entstehen durch Achsenametropie (Kurzbau oder Langbau des Auges), seltener durch Brechungsametropie (zu schwache oder starke Brechung).

Beim **emmetropen** (normalsichtigen) **Auge** vereinigen sich parallel einfallende Lichtstrahlen auf der Fovea centralis der Netzhaut. Das **myope** (kurzsichtige) **Auge** ist im Verhältnis zur Brechkraft zu lang; 1 mm Augapfelverlängerung entspricht etwa 3 dpt Myopie [20, S.297]. Bei dem relativ zu langen Augapfel vereinigen sich parallel einfallende Strahlen vor der Netzhautebene im Glaskörper. Die danach divergierenden Strahlen ergeben ein unscharfes Bild auf der Netzhaut.

Im Gegensatz hierzu ist das **hypermetrope** (weitsichtige) **Auge** relativ zur Brechkraft zu kurz, so daß sich parallel einfallende Lichtstrahlen erst hinter der Netzhautebene vereinigen, wobei die konvergierenden Strahlen auf der Netzhaut wiederum ein unscharfes Bild ergeben [20, S.3ff, 160ff und 296ff].

Abbildung 4: Parallel einfallende Strahlen vereinigen sich im emmetropen Auge auf der Netzhaut (E), sind bei dem zu kurzen hypermetropen Auge beim Auffall auf die Netzhaut noch nicht vereinigt (H) und haben sich bei dem zu langen myopen Auge bereits vor der Netzhaut gekreuzt (M) [20, S. 296 Abb. 22.1]

1.4 Netzhautdicke

Den intraoperativen Eindruck, daß größere Augen eine dünnere Bulbuswand besitzen, quantifizierten erstmals Guthoff et al. [22], indem sie mit Ultraschallmessungen bei zunehmender Achsenlänge des Auges eine abnehmende Bulbuswanddicke nachwiesen, die zwischen einer hohen Hyperopie (+ 14,0 dpt) und einer hohen Myopie (- 27,0 dpt) um den Faktor drei variierte. Der Ultraschall besitzt jedoch lediglich eine Auflösung von etwa 150 μ m [25], so daß einzelne Schichten der Bulbuswand nicht differenziert werden können, zumal Strukturen wie die Netzhaut mit 100 – 300 μ m bereits an der technischen Auflösungsgrenze liegen. Eine abnehmende Netzhautdicke mit zunehmender Achsenlänge des Bulbus kann mit dieser Untersuchungsmethode nur vermutet werden.

Hinweise auf eine altersbedingte Abnahme der Nervenfaseranzahl des Sehnervs ergaben histologische Untersuchungen von Jonas et al. sowie Mikelberg et al. [34], [35], [47] und [48], wobei diese altersbedingte Abnahme der Nervenfaserzahl nicht in allen Studien tatsächlich statistisch signifikant war. Repka et al. [59] untersuchten den Sehnerv von 19 Personen bzgl. der Nervenfaseranzahl (durchschnittlich 693.316), der Papillengröße (5,17 mm²) und dem Nervenfaserdurchmesser (0,96 µm). Während bei letzterem eine geringe, statistisch signifikante Abnahme mit zunehmendem Alter nachgewiesen wurde, ergab sich keine altersabhängige, statistisch signifikante Abnahme der Nervenfaseranzahl oder des Papillendurchmessers.

1.5 Verfahren zur Bestimmung der Netzhautdicke in vivo

1.5.1 Spaltlampe

Die Spaltlampe als älteste Untersuchungsmethode für die Netzhaut liefert nur subjektive, untersucherabhängige Ergebnisse. Bei der Spaltlampe wird ein schmaler Lichtspalt auf das Auge projiziert, der einen optischen Schnitt durch die transparenten Augengeweben legt, und eine Beurteilung der entsprechenden Stellen des Auges durch ein binokulares Mikroskop ermöglicht. Durch Vorschalten einer starken Sammellinse (+ 90 dpt) oder ein Kontaktglas auf die Hornhaut kann auch die Netzhaut und Papille binokular mikroskopisch beurteilt werden [20, S. 273f].

Obgleich untersucherabhängig, erlaubt die Spaltlampenuntersuchung eine sehr gute zweidimensionale Beurteilung der Netzhaut, aufgrund der geringen Auflösung jedoch keine gute dreidimensionale Beurteilung und schon gar keine quantitative Aussage über die Netzhautdicke.

1.5.2 Ultraschall

Mit Hilfe des Ultraschalles lassen sich am Auge Informationen über die Achsenlänge gewinnen sowie Dickenmessungen der Bulbuswand durchführen [58]. Aufgrund seines Auflösungsvermögens von 150 µm ist die retinale Feindiagnostik jedoch deutlich limitiert, auch wenn Wu et al. [73] bei Verlaufskontrollen eine signifikante Dickenabnahme abgelöster Netzhautabschnitte in Abhängigkeit von der Dauer der entsprechenden Netzhautablösung quantifizieren konnten. Die Ultraschallbiometrie mit Frequenzanalyse wurde Ende der 80er Jahre von Tane et al. als ein Verfahren zur isolierten Netzhautdickenbestimmung eingeführt [67]. Mit der Entwicklung des Hochfrequenz-Ultraschalls konnte zwar das Auflösungsvermögen auf 20 µm gesteigert werden, ein Einsatz im hinteren Augenabschnitt war wegen der hierdurch verringerten Eindringtiefe jedoch nicht möglich [25].

1.5.3 Retinal Thickness Analyzer (RTA)

Eine weitere Untersuchungstechnik zur Bestimmung der Netzhautdicke stellt der Retinal Thickness Analyzer dar [65], [76], [43] und [16]. Ein grüner Helium-Neon-Laser-Strahl (543 nm) wird in schräger Projektion auf die Retina / Netzhaut geworfen, wodurch ein 14 μ m weites und 2 mm langes Laserspaltbild diese durchdringt. Durch entsprechende vorgeschaltete Linsenkombinationen wird dabei ein fixer Winkel zur optischen Augenachse eingestellt. Das von der Netzhaut reflektierte Licht wird bei entsprechend bekanntem Ausfallswinkel von einer Videokamera aufgenommen. Ein einzelner Scan besteht aus einer Sequenz von zehn Spaltbildern, im Abstand von je 200 μ m und wird innerhalb von 0,25 s auf die Netzhaut projiziert. Bei einer Laserspaltbildlänge von 200 μ m wird somit ein Netzhautareal von 2 x 2 mm gemessen und die Netzhautdicke aus den reflektierten Laserspaltbildern berechnet [43]. Die transversale Auflösung beträgt dabei 187 μ m, die axiale bzw. longitudinale Auflösung 50 μ m.

Landau et al. [43] belegten in ihrer Studie die zuverlässige Einsatzmöglichkeit zur Bestimmung der Netzhautdicke, wobei die Reproduzierbarkeit mit 5,9 % angegeben wurde und stärkere Glaskörpertrübungen ein grundsätzliches Messproblem darstellten. Bei einem direkten Vergleich zwischen dem RTA und OCT konnten in einer Studie von Polito et al. [55] 21 von 55 Augen nicht ausgewertet werden. Verantwortlich hierfür waren Trübungen der brechenden Medien, verursacht durch ein mildes Cornea-Ödem, cortikale Linsentrübung, milde bis starke nukleäre oder posterior subcapsuläre Linsentrübung oder Glaskörpertrübung, bei der eine Messung mit dem RTA im Gegensatz zum OCT nicht möglich war.

Weitere Studien etablierten den Einsatz des Retinal Thickness Analyzers in der Netzhaut-Diagnostik zur Quantifizierung der Netzhautdicke und somit auch pathologischer Verdickungen oder Verdünnungen der Netzhaut wie bei dem Makulaödem, Schädigung durch Glaukom und okuläre Hypertension oder der Netzhautatrophie [2], [40] und [14].

1.5.4 Optische Kohärenz- Tomographie (Optical Coherence Tomography)

Das neuste Verfahren zur Bestimmung der Netzhautdicke ist die Optische Kohärenz-Tomographie (<u>Optical Coherence Tomography</u>, OCT) [28], [25] und [4]. Eine genaue Beschreibung des Messprinzips folgt im Kapitel "Probanden und Methodik". Die Optische Kohärenz-Tomographie ist nicht nur aufgrund ihres großen Einsatzgebietes in der klinischen Diagnostik von Netzhauterkrankungen ein etabliertes Verfahren [25], [57], [24], [26], [3], [8], [17], [19], [55] und [18]. Sie besticht vor allem durch die hohe Auflösung der Messungen von 10 μ m, und liefert im Vergleich zu den vorgenannten Methoden damit die exaktesten Schnittbilder der Netzhaut [12], [3] und [40].

Schuman et al. [64] belegten die hohe Reproduzierbarkeit der OCT-Messungen bei Bestimmungen der Netzhautdicke mit einer Standardabweichung von 5 – 9 μ m. Weitere Studien bestätigten dieses Ergebnis [4], [6], [41], [36] und [46]. Die mit Hilfe des OCT in vivo gewonnen Ergebnisse der Netzhautdicke wiesen in den Studien von Chauhan et al. [11] wiederum einen höheren Variationskoeffizienten von 5 % auf. Darüber hinaus konnte in dieser Studie aber auch eine große Übereinstimmung mit den in vitro in der Lichtmikroskopie ermittelten tatsächlichen Werten nachgewiesen werden (Korrelationskoeffizient 98 %). Dieses Ergebnis bestätigte damit Studiendaten von Huang et al. [29] und [30] sowie Toth et al. [68], die eine gute Korrelation der OCT-Messungen mit histologischen Präparaten belegten.

Die Vorteile des RTA im direkten Vergleich zum OCT liegen in der Größe der vermessenen Fläche sowie einer deutlich kürzeren Aufnahmezeit. Die 2 x 2 mm große Fläche erleichtert bei der Langzeitbeobachtung pathologischer Netzhautveränderungen deren erneutes Auffinden bei der Folgeuntersuchung. Die kurze Aufnahmezeit von 0,33 s reduziert Verwacklungsartefakte. Diese Problematik des OCT kann in der vorliegenden Studie mit einer Aufnahmezeit von 1,0 s im Vergleich zu den Untersuchungen von Hee et al. [24] mit einer Aufnahmezeit von 2,0 s deutlich reduziert werden. Hingegen ist die 5- fach höhere axiale bzw. longitudinale Auflösung von 10 µm, die vom neuesten OCT, dem Stratus- OCT (OCT 3), sogar nochmals mit 7 µm unterboten wird [9] und [53], im Vergleich zu 50 µm beim RTA [16] und [55] ein großer Vorteil des OCT. Eine Mydriasis wie sie beim RTA erforderlich ist [76], ist bei dem OCT nicht notwendig. Für die Fragestellung der vorliegenden Studie spielten Bewegungsartefakte bei dem normale Patientengut mit in der Regel guten Fixation eher eine geringe Rolle. In erster Linie kam es auf eine hohe Präzision der Messungen an, wie sie das OCT liefert, um die relativ geringe Dickenvariationen der Netzhaut möglichst exakt zu messen.

1.6 Hypothesen und Ziele der Arbeit

Hypothese I

Mit zunehmenden Probandenalter kommt es zu einer Abnahme der Netzhautdicke.

Hypothese II

Mit zunehmender Achsenlänge des Auges kommt es zu einer Abnahme der Netzhautdicke.

In der vorliegenden, prospektiv durchgeführten Studie sollten diese beiden Hypothesen durch Messungen der Netzhautdicke in der Fovea mit Hilfe der Optischen Kohärenz-Tomographie (OCT) an einem Normalkollektiv verifiziert werden.

2 Probanden und Methodik

2.1 Studienkollektiv

Die Probanden wurden im Zeitraum November 1997 bis April 1998 aus dem Patientengut der Poliklinik und der Stationen der Universitäts-Augenklinik Würzburg rekrutiert.

2.2 Studiendesign

Die Studie wurde prospektiv durchgeführt. Patienten, die bei der fachärztlichen Basisuntersuchung für mindestens ein Auge die Kriterien der Studie erfüllten, wurden über den Zweck, das Ziel und den Ablauf der Studie aufgeklärt und nach Zustimmung den dafür noch ausstehenden Untersuchungen zugeführt. Hieraus ergab sich für jeden Studienteilnehmer einmalig folgender Untersuchungsablauf:

- 1. Fachärztliche Augenuntersuchung
- 2. Bestimmung der objektiven Refraktion
- Sonographische Bestimmung der Achsenlänge des Auges mit Hilfe des <u>Grieshaber Biometric Systems (GBS)</u>
- Bestimmung der Netzhautdicke mit Hilfe der Optischen Kohärenz-Tomographie (<u>Optical Coherence Tomography</u>, OCT)

Die einzelnen Untersuchungsschritte werden im Kapitel 2.3 näher erläutert.

2.2.1 Einschlußkriterien

Potentielle Studienteilnehmer waren Patienten, die bei der biomikroskopischen Untersuchung an mindestens einem Auge eine **normale Netzhautmitte** und einen **normalen Sehnervenbefund** sowie in der Applanationstonometrie einen **normalen Augeninnendruck** aufwiesen.

2.2.2 Ausschlußkriterien

Ausgeschlossen wurden Patienten, die anamnestisch bzw. aktuell eine die Netzhaut beeinflussende Systemerkrankung oder pathologische Veränderungen selbiger aufwiesen. Dies waren insbesondere folgende Erkrankungen, die auch in der Studienanamnese abgefragt wurden:

- Gefäßerkrankungen der Retina: Hier sind vor allem die dekompensierte arterielle Hypertonie [20, S. 179 ff.], der Venenverschluß mit konsekutivem Makulaödem [27] oder hämorrhagischem Infarkt, der Arterienverschluß mit konsekutivem ischämischen Infarkt der betroffenen Netzhautareale sowie seltene Vaskulopathien (z.B. M. Coats und M. Eales) zu nennen. Unabhängig von der Genese kann jede Ischämie zu einem Netzhautödem oder gar zu Exudationen und Blutungen in die Netzhaut und somit zu einer deutlichen Veränderung der Netzhautdicke führen.
- Diabetes mellitus [20, S. 181 ff.]: Die Veränderung der Netzhautdicke durch die diabetischen Makulopathie sind wohl bekannt und in Form des diabetischen Makulaödems eine häufige Komplikation des Diabetes mellitus. Otani et al. [52] wiesen mit dem OCT bereits drei Formen struktureller Veränderungen der Netzhaut bei Patienten mit einem ophthalmoskopisch diagnostizierten diabetischen Makulaödem nach: spangenförmige Netzhautschwellung (88%), zystoides Makulaödem (47%) sowie seröse Netzhautablösung (15%). Bei der proliferativen diabetischen Retinopathie steht die Gefäßneubildung im

Vordergrund, die wiederum eine Folge einer Netzhautischämie darstellt. Traktionen an der Netzhaut bei der konsekutiven Schrumpfung nehmen erheblichen Einfluß auf die Netzhautdicke. Bereits bei der nicht- proliferativen diabetischen Retinopathie sind ophthalmoskopisch Netzhautveränderungen in Form von Mikroaneurysmen und intraretinalen Punkt- und Fleckblutungen erkennbar. Zweifelsfrei verifiziert und quantifiziert wurde die Dickenzunahme der Netzhaut bei der diabetischen Retinopathie durch verschiedene Studien mit dem OCT [19], [46], [74], [18] und [70], dem RTA [18] und sogar Studien mit Ultraschallmessungen [13]. Verschiedene andere Studien wiesen auch bei diabetischen Patienten mit biomikroskopisch unauffälliger Netzhaut Zunahmen der Netzhautdicke nach [26], [60], [74] und [19], weshalb bereits die Anamnese eines Diabetes mellitus zum Studienausschluß führen mußte.

- Primäre oder sekundäre Glaukome: Allen Glaukomformen gemeinsam ist unabhängig von der unterschiedlichen Genese eine Schädigung der Nervenfasern an der Papilla nervi optici [20, S. 243]. Da die Nervenfaserschicht einen Teil der Netzhaut darstellt, ist ein Einfluß auf die Gesamt- Netzhautdicke gegeben und mit verschiedenen Methoden mehrfach dokumentiert worden [63], [32], [75], [49], [38], [7], [8], [50] und [14]. Die retinale Nervenfaserschicht weist bereits bei Augen mit intraokulären Druck > 24 mmHg (mindestens an zwei verschiedenen Zeitpunkten gemessen) eine signifikant geringere Dicke auf als bei Augen mit normalen intraokulären Druck < 22 mmHg [7] und [14]. Aus diesem Grund war nicht nur das Glaukom, sondern bereits die okuläre Hypertension ein Ausschlußkriterium.
- Intraokulare Entzündungen: Bei den verschiedenen Uveitisformen, sei es infektiöser (viraler, parasitärer oder bakterieller) oder immunologischer Genese kann sich ein Makulaödem entwickeln [20, S. 190 ff.] und somit einen deutlichen Einfluß auf die Netzhautdicke nehmen.
- Makula-Degeneration: Während bei der trockenen, altersabhängigen Makuladegeneration die Atrophie des Pigmentepithels und der sensorischen Netzhaut im Vordergrund steht, ist die exudative Form durch eine subretinale Flüssigkeitsansammlung aus der Choriokapillaris und einem Einwachsen chorioidaler Gefäße unter die Netzhaut gekennzeichnet [20, S. 193 ff.]. Somit ist

bei der Makula-Degenerationen sowohl eine Zu- als auch eine Abnahme der Netzhautdicke denkbar.

- Retinopathia centralis serosa: Diese ätiologisch unklare, bevorzugt bei Männern im 3. und 4. Lebensjahrzehnt auftretende Erkrankung führt durch einen Defekt (in der Abdichtung) im Pigmentepithel zwischen Pigmentepithel und Netzhaut zu einer Flüssigkeitsansammlung und damit zu einer pathologischen Veränderung der Netzhautdicke [20, S. 197].
- Myopische Makulaveränderung: Bei hoher Myopie können Einrisse in der Bruch- Membran im Bereich der Makula entstehen, durch die chorioidale Gefäßneubildungen einwachsen, aus denen es zu Flüssigkeitsaustritten und Blutungen kommen kann [20, S.198]. Solche Veränderungen im Makulabereich waren daher ausgeschlossen. Peripapilläre Pigmentepithelveränderungen alleine (Dehnungsherde) waren dagegen kein Ausschlußkriterium, da sie bei einer hochgradigen Myopie regelmäßig vorhanden sind und für sich alleine zu keinen serösen Veränderungen führen.
- Makulaödem: Das Makulaödem jedweder Genese führt stets zu einer Dickenzunahme der Netzhaut, wie dies auch mit Hilfe des OCT in Studien [27] und [56] objektiviert wurde. Beim zystoiden Makulaödem ist die Netzhautdicke durch Flüssigkeitsansammlungen in zystischen Hohlräumen der äußeren plexiformen Schicht und der inneren Körnerschicht der Makula verändert. Das zystoide Makulaödem ist ein Symptom verschiedener Netzhauterkrankungen wie die bereits ausgeführte diabetische Retinopathie, Zentralvenenverschluß, aber auch Uveitis oder Retinopathia pigmentosa [20, S. 198].
- Hereditäre und toxische Makula- / Netzhautund Aderhaut-Degenerationen: Bei den hereditären Netzhauterkrankungen kommt es durch Pigmentverwerfungen, -degeneration und -atrophien (Morbus Stargardt, Fundus flavimaculatus, Retinitis ebenso Veränderungen pigmentosa) zu der Netzhautdicke wie durch Einlagerung durch vermutlich mit Lipofuszin gefüllter Zysten (Best- Makulopathie) [20, S.200]. Jacobson et al. [33] wiesen die Netzhautdickenverminderung bei der kongenitalen Amaurose (Leber) als seit der Geburt bestehenden atypischen Retinitis pigmentosa mit dem OCT nach. Pharmaka wie Chloroquin, einige Psychopharmaka (wie Chlorpromazin oder

Thioridazin) oder Tamoxifen können Pigmentepithelveränderungen verursachen [20, S. 198]. Allen gemeinsam sind Pigmentepithelveränderungen am Interface zum retinalen Pigmentepithel (RPE)/ Aderhautkomplex, die die Messungen der Netzhautdicke deutlich verändern und somit ausgeschlossen werden mussten.

- Speicherkrankheiten: Bei den Sphingolipidosen (Tay- Sachs- Erkrankung und Niemann- Pick- Erkrankung) wird die Netzhautdicke durch die Einlagerung von den Sphingolipiden in die Ganglienzellen verändert [20, S. 200].
- Ablatio retinae und Retinoschisis: Eine Ablatio retinae kann sich zum Einen in die Netzhautmitte ausdehnen, zum Anderen auch bei peripherer Lage durch Proliferative Vitreoretinopathie (PVR) zu einer traktiven Makulaveränderung führen. Hierdurch kann die Messung der Netzhautdicke verfälscht werden [20, S. 165 ff. und 211f.].
- Tumoren des Auges: Eine offensichtliche Veränderung der Netzhautdicke liegt bei den Tumoren der Netzhaut vor: Dazu zählen Hämangiome der Netzhaut (kapilläres (beim Hippel-Lindau-Angiom), razemöses (beim Wyborn-Mason-Syndrom) sowie kavernöses Hämangiom [20, S. 177]), das Retinoblastom [20, S. 173 ff.] und das Astrozytom der Netzhaut (Bourneville-Pringle) [20, S. 176]. Darüber hinaus wurde der häufigste primäre Tumor des Auges, das Aderhautmelanom, ausgeschlossen. Bei diesem intraokularen Tumor sind begleitende seröse Netzhautabhebungen auch fern vom Tumor regelmäßig vorhanden, wie Schaudig et al. [61] in Ihrer Studie belegten.
- Direktes oder indirektes Augentrauma: Bei Contusio bulbi sind häufig Netzhautödem (Berlin-Ödem), Netzhautblutung, Netzhautrisse, Narbe, Makulaschichtloch Penetrierende und Sekundärglaukom finden. zu Augenverletzungen führen häufig zu Glaskörperblutungen, Infektion, Netzhautablösung und PVR-Veränderungen (proliferativen Vitreoretinopathie, s.o.). Veränderungen der Netzhautdicke, z.B. durch Traktionen, Flüssigkeitsansammlungen oder Defekte sind daher möglich und führen in der vorliegenden Studie zum Ausschluß.
- Intraokulare Operationen mit Ausnahme der komplikationslosen Kataraktoperation vor mehr als vier Monaten: Jede Operation im Auge führt zu einem mehr oder minder ausgeprägten Reizzustand, der wiederum Auslöser

sein kann. Besonders Operationen eines Makulaödems des hinteren Augenabschnittes können darüber hinaus Veränderungen im Sinne einer proliferativen Vitreoretinopathie herbeiführen. Netzhautdickenveränderungen aufgrund einer postoperativen okulären Hypotonie nach Trabekulektomie quantifizierten Klink et al. [39]. Eine gravierende Rolle spielt dabei die oben erläuterte PVR (proliferative Vitreoretinopathie). Intraokular operierte Patienten wurden deshalb aus der Studie ausgeschlossen. Einzige Ausnahme bildete die komplikationslose Kataraktoperation. Grewing et al. [21] zeigten in einer Studie, daß bei der Netzhautdickenbestimmung 30 Minuten nach dieser Operation kein Unterschied zum präoperativen Befund festzustellen war. Diese Feststellung musste nach Durchführung weiterer Untersuchungen, die größere Zeiträume nach Kataraktoperationen erfassten zwar relativiert werden. die Dickenzunahmen der Netzhaut zeigten sich jedoch im sechs-Monat-follow-up nahezu vollständig wieder zurückgebildet, jedenfalls nicht mehr statistisch signifikant erhöht - wie Karasheva et al. [37] nachwiesen und Biro et al. [5] nochmalig bestätigten.

2.2.3 Auswertung

Voraussetzung für die Auswertung war die vollständige Durchführung der im Studiendesign festgelegten Untersuchungen. Bei Patienten mit beidseitig normaler Netzhaut wurden beide Augen untersucht, wobei jedoch nur eines der Augen in die endgültige Auswertung einging, um eine unverbundene Stichprobe zu erhalten. Ausgewählt wurde hierbei das Auge, bei dem die OCT- Aufnahmen die beste Reflektivität aufwiesen. Lediglich für den intraindividuellen Vergleich wurden beide Augen herangezogen.

Um eine altersbedingte Abhängigkeit zu untersuchen, wurden die Patienten nach Lebensalter in dekadische Gruppen eingeteilt (< 20 Lebensjahre, 20 bis 29 Lebensjahre, 30 bis 39 Lebensjahre, etc.) und auf eine Korrelation zur Netzhautdicke hin untersucht. Ein weiterer Kernpunkt der Studie war die Untersuchung einer Korrelation der Netzhautdicke zur Achsenlänge des Auges.

2.2.4 Statistische Verfahren

Folgende statistische Testverfahren wurden angewendet:

- t-Test f
 ür unverbundene Stichproben
 Der t-Test wurde angewandt, um Mittelwertunterschiede zwischen einzelnen
 Untersuchungsgruppen zu detektieren, z.B. den Unterschied zwischen nasaler
 und temporaler Netzhautdicke auf seine Signifikanz zu
 überpr
 üfen (vgl. 3.5).
- W-Test nach Shapiro-Wilks
 Mit dem W-Test nach Shapiro-Wilks wurden die ermittelten Mittelwerte der Achsenlängen der Augen auf ihre Normalverteilung überprüft (vgl. 3.4)
- Lineare Regression

Zur Überprüfung einer Korrelation, also inwieweit ein linearer Zusammenhang zweier gleichwertiger Zufallsvariablen besteht, z.B. zwischen nasaler und temporaler Netzhautdicke eines Auges (vgl. 3.5), wurden die Daten bzgl. dem Vorhandensein einer linearen Regression überprüft.

2.3 Apparative Untersuchungen

2.3.1 Fachärztliche Augenuntersuchung

Der eigentlichen Augenuntersuchung ging die Erhebung der allgemeinen und augenärztlichen Anamnese voraus.

Die klinische Untersuchung bestand aus einer Visusprüfung mit bester Korrektur, einer Untersuchung der vorderen Augenabschnitte an der Spaltlampe, einer Augendruckmessung mit dem Applanationstonometer nach Goldmann sowie der Netzhautuntersuchung mit Ophthalmoskopielupe und Spaltlampenbiomikroskopie. Sofern die Einschlußkriterien erfüllt waren, wurde der Proband über eine mögliche Studienteilnahme aufgeklärt. Bei Vorliegen des Einverständnisses wurde die Anamnese nochmals gezielt im Hinblick auf mögliche Ausschlußkriterien ergänzt, um über die endgültige Studienaufnahme zu entscheiden.

2.3.2 Bestimmung der objektiven Refraktion des Auges

Die objektive Refraktion wurde mit dem Autorefraktor der Firma Humphrey Instruments, Model 350, ermittelt.

Zur Messung positioniert der Proband seinen Kopf an der Kinn- und Stirnstütze des Refraktometers. Das Gerät projiziert eine Figur durch die Pupille auf die Netzhaut des zu untersuchenden Auges. Durch automatisches Vorschalten verschiedener Linsenkombinationen wird die Brechkraft bestimmt, bei der sich das Testzeichen scharf auf der Netzhaut abbildet. Hierbei handelt es sich um die objektive Refraktion des zu untersuchenden Auges, da der Wert unabhängig von den Aussagen des Patienten ermittelt wird [20, S. 274 f.].

Die Refraktion gibt die Beziehung des Gesamtbrechungszustandes aller optischen Medien zur Achsenlänge des Auges wieder. Wenn die Hornhaut nicht kugelförmig (sphärisch) gewölbt ist, sondern ein Meridian eine andere Brechkraft als der senkrecht darauf stehende Meridian hat, werden die Lichtstrahlen nicht zu einem Punkt (griechisch: stigma), sondern zu einer Linie vereinigt (Brennpunktlosigkeit, A-stigmatismus). Am häufigsten kommt es vor, daß der vertikale Meridian stärker bricht als der horizontale, was als Astigmatismus nach der Regel genannt wird (Astigmatismus rectus), das umgekehrte Verhalten Astigmatismus gegen die Regel (Astigmatismus inversus). Jeder der beiden Meridiane hat eine andere Brennweite, ein Punkt der Außenwelt wird also nicht als punktförmig, sondern linienförmig oder unscharf abgebildet. Beim einfachen myopen oder hypermetropen Astigmatismus ist die eine Achse emmetrop, die daraufstehende myop oder hypermetrop. Der Ausgleich erfolgt durch ein Zylinderglas, das nur in einer Richtung bricht. Die Zylinderachse bezeichnet die nicht brechende Richtung. Beim zusammengesetzten myopen oder hypermetropen Astigmatismus sind beide Achsen verschieden stark myop oder verschieden stark hypermetrop. Der Ausgleich erfolgt zunächst mit einem sphärischen Glas (Sphärenwert sph. [dpt]), wodurch der horizontale Meridian auf 0 korrigiert wird, der vertikale Meridian aber unbeeinflusst bleibt. Dieser wird durch ein zusätzlich in den Strahlengang eingebrachtes Zylinderglas (Zylinderwert / cyl. [dpt]) mit entsprechender Dioptrienstärke und Achse korrigiert. Beim gemischten Astigmatismus (Astigmatismus mixtus) ist eine Achse myop, die darauf senkrecht stehende Achse hypermetrop, der Ausgleich erfolgt entsprechend [20, S. 302].

Der Autorefraktor gibt dementsprechend sowohl die Refraktion der Sphäre (sph.), als auch des Astigmatismus (cyl.) des gemessenen Auges an. Um die Refraktion des Auges in einem Wert auszudrücken, wird die Korrektur des Astigmatismus und die sphärische Korrektur zusammengerechnet und als sphärisches Äquivalent dargestellt. Das sphärische Äquivalent der Refraktion ergibt sich aus der Summe des Sphärenwertes mit der Hälfte des Zylinderwertes:

Ein Proband weist somit z.B. bei einem Sphärenwert von + 1,5 dpt sowie einem Zylinderwert von -0.5 dpt ein sphärisches Äquivalent von + 1,25 dpt auf.

2.3.3 Bestimmung der Achsenlänge des Auges mit der Ultraschall-Biometrie (GBS)

Die Bestimmung der Achsenlänge der Augen erfolgte sonographisch mit Hilfe eines hochauflösenden Biometriesystems, dem <u>G</u>rieshaber <u>B</u>iometric <u>S</u>ystem (GBS):

Das System basiert auf der Anwendung von Ultraschallwellen. Zur Erzeugung eines Ultraschallbildes wird im Puls- Echo- Verfahren eine kurze Serie von Ultraschallwellen ausgesendet und die Dauer bis zum Eintreffen des von einer Grenzfläche reflektierten Echos gemessen. Über die Schallgeschwindigkeit lässt sich nach dem Zeit- Weg-Prinzip hieraus die Entfernung der Grenzflächen bestimmen. Grenzflächen am Auge stellen z.B. die Vorder- und Rückflächen der Hornhaut und Linse sowie die Grenzfläche vom Glaskörper zur Netzhaut dar. Die von den unterschiedlichen Grenzflächen zurückkehrenden Echos werden entsprechend der Laufzeit in einzeiliger Darstellung als hintereinander geschaltete Amplituden von einer Null- Linie registriert. Dieses Verfahren wird als A- Mode (Amplituden- Mode) bezeichnet [71, S. 12ff.].

Die Untersuchung mit dem Grießhaber Biometric System (GBS) wurde am liegenden Patienten durchgeführt. Um die zu untersuchende Größe der Achsenlänge nicht gleich durch die Meßmethode zu verändern, wurde zur Schallkopfankopplung nicht die direkte Kontaktankopplung, sondern die Immersionstechnik angewendet. Hierfür wurde dem Patienten nach Anwendung von lokalanästhetischen Augentropfen ein Plexiglastrichter unter die Augenlider in den Bindehautsack des zu untersuchenden Auges eingelegt. Dieser wurde anschließend zu 2/3 mit Kochsalzlösung gefüllt, um nach Eintauchen des Ultraschallkopfes eine luftfreie Vorlaufstrecke vor der Hornhaut sicherzustellen. Die Hornhaut wurde jedoch nicht wie bei der direkten Kontaktankopplung eingedrückt, was die Achsenlänge des Auges (Strecke von der Hornhaut bis zur hinteren Bulbuswand) verändert hätte.

Abbildung 5: Ultraschall-Biometrie (GBS): Der Ultraschallkopf schwebt im Wasser des Augentrichters. Links das Sonogramm mit vorderer Augenkammer (VK) zwischen 1. und 2. Peak, Linse (Li) zwischen 2. und 3. Peak und Glaskörper (GK) zwischen 3. und 4. Peak

Der erste Peak zeigt die Grenze Kochsalzlösung zur Hornhaut an, wobei aufgrund der geringen Dicke dieser die Grenze Hornhaut zum Augenkammerwasser im gleichen dadurch verbreiterten Peak verschwindet. Der zweite Peak markiert die Grenze zwischen Augenkammerwasser und Linse, der dritte die Grenze zwischen Linse und Glasköper, der letzte Peak die Grenze zwischen Glasköper und hinteren Bulbuswand. Das GBS gibt somit sowohl die Achsenlänge des Auges als die Strecke vom 1. zum Beginn des 4. Peaks als auch die Teilstrecken der Hornhaut, Augenkammer, Linse und des Glaskörpers wieder. Die Messung erfolgte fünffach an jedem Auge, wovon der Mittelwert in die Auswertung einging.

2.3.4 Bestimmung der Netzhautdicke des Auges mit dem OCT

Die Messung der Netzhautdicke erfolgte mit der optischen Kohärenz- Tomographie (<u>Optical Coherence Tomography</u>, OCT) wie sie von Huang et al. 1991 [28] eingeführt und von ihm und anderen weiterentwickelt wurde [29], [30], [24], [25], [26] [56], [57], etc.. Wir verwendeten hierzu den OCT-Scanner der Firma Humphrey Instruments (OCT Model 2000, Humphrey Instruments, San Leandro, Ca., USA) in der Software-Revision A4. Kernstück des Gerätes ist die Laserscannereinheit mit integrierter Infrarot-Videokamera, vor der die Kinn- und Stirnstütze für den Probanden dessen Kopfposition vorgibt. Die Verbindung zum Bedienerpult, dem Monitor zur Auswertung und dem Videomonitor mit dem real- time- Fundus- Bild koordiniert ein Personalcomputer. Schließlich lassen sich die Untersuchungsergebnisse zum einen elektronisch archivieren, zum anderen über einen Farbdrucker zu Papier bringen.

Abbildung 6: Geräteeinheit der Optischen Kohärenztomographie [31, Introduction 1-5]

Der sitzende Patient positioniert seinen Kopf stabil an der Kinn- und Stirnstütze des Gerätes, wodurch die Bedingungen für eine möglichst bewegungsartefaktfreie Aufnahme optimiert wird. Mit dem zu untersuchenden Auge fixiert der Patient im OCT-Scanner einen vom Untersucher vorgegebenen Punkt, der bei der eigentlichen Messung das Zentrum des linearen Scans bildet. Auf diese Weise kommt die Foveola automatisch in diesem Zentrum der Messung zu liegen und garantiert exaktere Ergebnisse bezüglich der Reproduzierbarkeit als bei einer "externen Fixierhilfe" über das nicht untersuchte Auge [64]. Dabei wird vorausgesetzt, daß das untersuchte Auge eine zentrale Fixation aufweist, was bei guter Sehschärfe als gegeben angenommen werden kann. Dem Untersucher wird zur Augenpositionskontrolle zusätzlich auf dem Videomonitor ein Schwarz- Weiß- Bild des Fundus eingespielt, das mit Hilfe einer Infrarot- Videokamera gewonnen wird.

Bei der eine Sekunde dauernden Messung bleibt der vorgegebene zentrale Punkt quasi als Fixierhilfe stehen, die Scanlinie verwandelt sich jedoch in einen auf dieser Linie wandernden Punkt, der die jeweils aktuelle Position des Lasers an den verschiedenen Meßpunkten anzeigt.

Das Gerät liefert anschließend ein hochauflösendes Schnittbild der Netzhaut ähnlich dem B- Mode des Ultraschalls. Statt eines Ultraschallsignals wird die Reflexion eines infraroten Laserlichtes von 830 nm mit kurzer Kohärenzlänge analysiert (Licht anstatt Schall). Der Laserstrahl wird an einem halbdurchlässigen Spiegel in einen Mess- und einen Referenzstrahlengang aufgeteilt, die zunächst identisch sind. Der Referenzstrahl wird jedoch auf einen Referenzspiegel, dessen exakte Position nicht nur bekannt sondern auch variabel ist, geleitet und von diesem reflektiert. Der Meßstrahlengang trifft dagegen zeitlich nacheinander auf die hintereinanderliegenden unterschiedlichen Strukturen des Auges, die das Laserlicht zudem unterschiedlich stark reflektieren. Dieses vom Auge reflektierte Laserlicht, das folglich aus vielen durch die Struktur des untersuchten Auges definierten Echos unterschiedlicher Zeitverzögerung besteht, und das Laserlicht des Referenzspiegels, das aus einem einzigen Echo bekannter Verzögerung besteht, werden am halbdurchlässigen Spiegel wieder vereinigt und treffen gemeinsam auf einen Lichtdetektor.

Abbildung 7: Verlaufsschema des Meß- und Referenzstrahlenganges, deren reflektierten Strahlengänge wieder übereinandergelagert werden und die resultierende Interferenz vom Lichtdetektor gemessen werden kann

Aufgrund der Überlagerung der beiden Strahlengänge kommt es dabei zu Interferenzen, deren Messung eine Tiefenlokalisation der Reflektionen des Meßstrahlenganges erlauben. Durch Variation der Referenzlänge ist es möglich, die Reflexionskomponenten aus den unterschiedlichen Tiefen der Netzhaut in der z-Achse präzise zuzuordnen und ein axiales Reflexionsprofil an einem Punkt der Netzhaut zu erstellen, vergleichbar dem A- Modus / A- Bild in der Sonographie. Durch Scannen entlang einer Linie entsteht aus 100 dieser A- Bilder ein optischer Schnitt durch die Netzhaut, vergleichbar dem B- Bild in der Sonographie. Dieses Schnittbild durch die Netzhaut wird farblich kodiert, wobei weiß die Grenze einer stark reflektierenden Schicht kennzeichnet, während die weiteren Abstufungen der weniger stark reflektierenden Schichten von rot über gelb zu grün erfolgt. Die gerätetechnische Auflösung des OCT ist mit 10-15 µm um den Faktor 10 besser als bei der Sonographie [28] und [57].

An jedem Studienauge wurde ein linearer horizontaler Scan von 2,8 mm Länge durch die Fovea gelegt, der dreimal wiederholt wurde, um die intraindividuelle Reproduzierbarkeit der Messungen zu ermitteln. Der horizontale Scan wurde durch einen vertikalen ergänzt. Da der Patient wie bereits ausgeführt den zentralen Punkt des Scans fixierte, sind damit die Schnittbilder auf die Foveola zentriert. Die foveolare Depression war auf allen Scans sichtbar, eine exzentrische Fixierung konnte auf diese Weise erkannt und ausgeschlossen werden.

Abbildung 8: OCT-Scan durch die Fovea: weiße Markierungen kennzeichnen die Netzhautdicke an neun horizontalen Meßorten in den angegebenen Abständen zur Foveola [mm]

Die starke Reflexion des Laserlichtes an dem Pigmentepithel bzw. der Choriokapillaris-Schicht der Aderhaut ist vorteilhaft für die Messung der Netzhautdicke. Sie ermöglicht eine scharfe Abgrenzung der Netzhaut zum Pigmentepithel und der Aderhaut. Zur Bestimmung der Netzhautdicke wurde der eine Meßmarker auf die Grenze der Membrana limitans interna zum reflexionsarmen Glaskörper, der andere auf die Grenze zwischen reflexionsarmer Photorezeptorschicht und dem retinalen Pigmentepithel (RPE) gelegt. Die Netzhautdicke wurde insgesamt viermal in der Foveola (durch die drei horizontalen und den einen vertikalen Scan) und jeweils in 0,25 mm, 0,50 mm, 0,75 mm und 1,00 mm Abstand in alle vier Richtungen gemessen. Bei der Lage der Meßpositionen wurde die sich aus der (durch den Autorefraktor ermittelten) Refraktion und der (mit dem GBS bestimmten) Achsenlänge ergebende laterale Vergrößerungsfaktor berücksichtigt (geräteinterne Korrektur). Insgesamt wurden also an jedem Studienauge Netzhautdickenmessungen an 17 verschiedenen, exakt definierten Meßpunkten durchgeführt.

Bei der statistischen Berechnung der mittleren Netzhautdicken wurde - wie bereits unter 2.2.3 dargelegt - nur ein Auge eines Patienten berücksichtigt, um unverbundene Stichproben zu erhalten. Außerdem ging bei den Meßwerten im horizontalen Tomogramm der Mittelwert aus den drei Wiederholungsscans in die weitere Berechnung ein. Der Variationskoeffizient (V_K) wurde getrennt für die einzelnen horizontalen Meßorte als das prozentuale Verhältnis der Standardabweichung (σ) aus den Wiederholungsmessungen zum arithmetischen Mittel (\overline{x}) der Messung berechnet (V_K [%]=100·s/ \overline{x}). Der mittlere Variationskoeffizient ergab sich aus dem arithmetischen Mittel der Einzelkoeffizienten für den jeweiligen horizontale Meßort.

3 Ergebnisse

3.1 Probanden

Die im Studiendesign festgelegten Untersuchungen wurden vollständig an 159 Studienprobanden, rekrutiert aus dem Patientengut der Universitäts- Augenklinik Würzburg, durchgeführt.

3.2 Demographische Daten

Die Altersverteilung des Studienkollektivs hatte eine Spannweite von 13 bis 92 Lebensjahren, wobei das mittlere Alter bei 47 \pm 19 Jahre lag. Die Klassifizierung in Dekaden zeigte zwischen 20 und 79 Lebensjahren eine homogene Verteilung (Ergebnisse vgl. Tab. 2, Anhang).

3.3 Objektive Refraktion

Die Auswertung der objektiven Refraktion der untersuchten Studienaugen ergab einen Mittelwert des sphärischen Äquivalents der Refraktion von $-0,16 \pm 2,23$ dpt mit Extremwerten von +7,25 dpt Hypermetropie und -11,125 dpt Myopie (vgl. Tab. 2, Anhang).

Abbildung 10: Verteilung der sphärischen Äquivalente der Refraktion [dpt] im Studienkollektiv (n = 159)
3.4 Achsenlängen

Die mit dem GBS ermittelten Achsenlängen der Studienaugen wiesen einen Mittelwert von $23,6 \pm 1,1$ mm auf, wobei sich die Extremwerte im Bereich zwischen 20,5 mm und 28,5 mm bewegten. Unterhalb von 27,0 mm folgte die Achsenlänge der Augen einer Normalverteilung (W-Test nach Shapiro-Wilks auf Normalverteilung) (Ergebnisse vgl. Tab. 2, Anhang).

Abbildung 11: Verteilung der Achsenlängen im Studienkollektiv (n = 159)

3.5 Netzhautdicken

Der **mittlere Variationskoeffizient** der Netzhautdicke in der Foveola, dem Zentrum der Fovea, ermittelt aus den entsprechenden Messwerten der drei horizontalen Wiederholungsscans und dem vertikalen Scan, betrug 4,2 % (6 μ m). In der nasalen bzw. temporalen Netzhaut (1 mm Abstand zur Foveola) war der Variationskoeffizient mit 2,0 % (5,5 μ m) bzw. 2,2 % (5,5 μ m) nochmals niedriger.

Die folgende Abbildung zeigt die mittlere Netzhautdicke [µm] der 159 Studienaugen an den neun horizontalen Messorten, in der Foveola und jeweils 0,25 mm, 0,50 mm, 0,75 mm und 1,00 mm nasal wie temporal (Ergebnisse vgl. Tab 3, Anhang).

Abbildung 12: Mittlere Netzhautdicke an neun horizontalen Meßorten (Mittelwert \pm Standardabweichung, n = 159).

In der Mitte der Abbildung kommt die foveolare Depression zur Darstellung, wobei die Netzhautdicke dort 142 \pm 18 µm betrug, in 1 mm Abstand nasal davon 266 \pm 17 µm, temporal der Foveola 249 \pm 18 µm. Der Unterschied der Netzhautdicke von 17 µm gemessen 1 mm nasal der Foveola zur Netzhautdicke 1 mm temporal der Foveola war statistisch hochsignifikant (t-Test, p < 0,0001).

Die folgende Abbildung zeigt die mittleren Netzhautdicken der 159 Studienaugen an den neun vertikalen Messorten (Ergebnisse vgl. Tab. 4, Anhang).

Abbildung 13: Mittlere Netzhautdicke an neun vertikalen Meßorten (Mittelwert \pm Standardabweichung, n = 159).

Im vertikalen Meridian betrug der Unterschied in der mittleren Netzhautdicke zwischen korrespondierenden Stellen je 1 mm superior und inferior der Foveola lediglich 4 μ m. Dieser Unterschied war trotz der geringen Differenz statistisch signifikant (t- Test, p < 0,01). Die Netzhautdicke in der Nähe der Gefäßbögen (auf dem vertikalen Meridian jeweils 1 mm superior und inferior der Foveola) war mit etwa 270 μ m hochsignifikant größer als in der temporalen Netzhaut (t- Test, p < 0,0001).

Die Korrelation korrespondierender Netzhautareale desselben Probanden superior und inferior der Foveola war hoch (Korrelationskoeffizient r = 0.82, p < 0.0001) wie die Darstellung der 1 mm inferior der Foveola gemessenen Netzhautdicke in Abhängigkeit von der 1 mm superior gemessenen zeigt (Ergebnisse vgl. Tab. 4, Anhang).

Abbildung 14:Korrelation zwischen superiorer und inferiorer Netzhautdicke in1 mm Abstand zur Foveola (n = 159)

Auch zwischen nasaler und temporaler Netzhautdicke bestand eine hochsignifikante lineare Beziehung. Dabei fällt auf, daß die lineare Beziehung zwar eng war, jedoch die Messwerte im Scatter- Diagramm systematisch um 17 μ m von der Winkelhalbierenden abwichen, also nasal größer als temporal waren (Korrelationskoeffizient r = 0,85, p < 0,0001) (Ergebnisse vgl. Tab 3, Anhang).

Abbildung 15: Korrelation zwischen nasaler und temporaler Netzhautdicke im Abstand von 1 mm zur Foveola (r = 0.85, p < 0.0001)

Bei 46 Studienteilnehmern konnten beide Augen in die Studie eingeschlossen werden (Ergebnisse vgl. Tab. 5, Anhang). Die Übereinstimmung der Netzhautdicke der Foveola zwischen dem rechten und linken Auge eines Individuums war gut mit einem mittleren Korrelationskoeffizienten von r = 0.82 (p < 0.0001)

Abbildung 16:Korrelation der Netzhautdicke zwischen rechtem und linkemAuge desselben Studienteilnehmers (n = 46) in der Foveola (r = 0.82, p < 0.0001)

Extrafoveolar war die Korrelation der Netzhautdicke zwischen den korrespondierenden Stellen des rechten und linken Auges eines Studienindividuums nochmals enger, was der Vergleich jeweils 1 mm nasal und temporal der Foveola belegte.

Abbildung 17: Korrelation der Netzhautdicke zwischen rechtem und linkem Auge desselben Studienteilnehmers (n = 46) 1 mm temporal der Foveola (r = 0,88, p < 0,0001.)

Abbildung 18: Korrelation der Netzhautdicke zwischen rechtem und linkem Auge desselben Studienteilnehmers (n = 46) 1 mm nasal der Foveola (r = 0,90, p < 0,0001)

3.6 Korrelation von Probandenalter zu Netzhautdicke

Die Darstellung der Netzhautdicke der Foveola, des Zentrums der Fovea, in Abhängigkeit von dem Lebensalter der Patienten zeigte keine Korrelation auf, d.h. die Netzhautdicke jugendlicher unterschied sich in der Foveola nicht von denen älterer Studienteilnehmer (Ergebnisse vgl. Tab. 3, Anhang).

Abbildung 19: Keine Korrelation zwischen Alter des Studienprobanden und der Netzhautdicke der Foveola, Regression nicht signifikant (r = 0,15, p = 0,064, n = 159)

Auch die Darstellungen der Netzhautdicke 1 mm temporal der Foveola in Abhängigkeit von dem Lebensalter der Studienteilnehmer zeigte keine Korrelation auf, d. h. auch die temporale Netzhautdicke jugendlicher unterschied sich nicht von denen älterer Studienteilnehmer (Ergebnisse vgl. Tab. 3, Anhang).

Abbildung 20: Keine Korrelation zwischen Alter des Studienprobanden und der Netzhautdicke 1 mm temporal der Foveola, Regression nicht signifikant (r = -0,089, p = 0,267, n = 159)

Die Darstellungen der Netzhautdicke 1 mm nasal der Foveola in Abhängigkeit von dem Lebensalter der Studienteilnehmer zeigte dagegen eine geringe, jedoch statistisch signifikante Altersabhängigkeit (Korrelationskoeffizient mit r = -0,177, p = 0,025) auf, d. h. die nasale Netzhautdicke wurde mit zunehmenden Alter der Studienteilnehmer dünner (Ergebnisse vgl. Tab. 3, Anhang).

Abbildung 21: Korrelation zwischen Alter des Studienprobanden und der Netzhautdicke 1 mm nasal der Foveola (r = -0,177, p = 0,025, n = 159)

3.7 Korrelation von Achsenlänge zu Netzhautdicke

In der Darstellung der Netzhautdicke der Foveola, des Zentrums der Fovea, in Abhängigkeit von der Achsenlänge des Studienauges zeigte sich keine Korrelation. Es fand sich kein Unterschied zwischen hypermetropen / kurzen (Achsenlänge < 22,5 mm) und myopen / langen Augen (Achsenlänge > 24,5 mm) (Ergebnisse vgl. Tab. 3, Anhang).

Abbildung 22: Keine Korrelation zwischen der Achsenlänge des Studienauges und der Netzhautdicke der Foveola, Regression nicht signifikant (r = 0,150, p = 0,059, n = 159)

Auch in der Darstellung der extrafoveolaren Netzhautdicke (jeweils 1 mm temporal und nasal der Foveola) in Abhängigkeit von der Achsenlänge des Studienauges zeigte sich keine Korrelation, d.h. auch in der extrafoveolaren Netzhautdicke fand sich kein Unterschied zwischen den hypermetropen und myopen Studienaugen.

Abbildung 23: Keine Korrelation zwischen der Achsenlänge des Studienauges und der Netzhautdicke 1mm nasal der Foveola, Regression nicht signifikant (r = 0,037, p = 0,644, n = 159)

Abbildung 24: Keine Korrelation zwischen der Achsenlänge des Studienauges und der Netzhautdicke 1 mm temporal der Foveola, Regression nicht signifikant (r = 0,004, p = 0.961, n = 159)

4 Diskussion

4.1 Methodische Gesichtspunkte

In der vorliegenden Studie wurde mit Hilfe der optischen Kohärenz- Tomographie der Zusammenhang zwischen der makulären Netzhautdicke und dem Alter der entsprechenden Probanden einerseits sowie der Zusammenhang zwischen der makulären Netzhautdicke und der Achsenlänge des Probandenauges andererseits untersucht.

Durch Anwendung der Optischen Kohärenz- Tomographie konnte bei dieser Studie ein mittlerer Variationskoeffizient von 4,2 % für die foveolare Netzhautdicke erreicht werden. Dies verdeutlicht die hohe Reproduzierbarkeit der Methode und bestätigte nicht nur das Ergebnis der Studie von Baumann et al. [4], die einen Variationskoeffizienten von 8,1 % berichtet haben, sondern verbessert dieses sogar leicht. Die Unterschiede in diesen beiden Studien lassen sich insbesondere auf die verwendeten OCT- Geräte zurückführen: Während Baumann et al. [4] ihre Studie mit dem Prototypen des OCT durchführten, der eine Scanzeit der Netzhaut von 2,5 s benötigt, erforderte das bei dieser Studie eingesetzte Gerät eine Scanzeit von lediglich 1,0 s. Durch die verkürzte Untersuchungszeit wirkten sich vor allem Fixationsprobleme und Mikrosakkaden des Probandenauges in deutlich geringerem Maße auf das Meßergebnis aus. Außerhalb der foveolaren Depression gab es nur geringgradige Unterschiede in der Netzhautdicke, so daß selbst während dieser kurzen Scanzeit vorkommende Augenbewegungen und damit geringfügig andere Meßorte kaum das Meßergebnis beeinflußten. Erwartungsgemäß war daher bei dieser Studie der Variationskoeffizient mit 2,2 % temporal und 2,0 % nasal nochmals niedriger als in der Foveola, dem Zentrum der Fovea.

Der Wert des in dieser Studie ermittelten Variationskoeffizienten von 2,0 % bis 4,2 % zeigt sich besonders im Vergleich mit anderen Meßverfahren. Für den RTA (Retinal

Thickness Analyzer) lag der Variationskoeffizient in der Studie von Shahidi et al. [65] zwischen 5 % und 10 %. Zeimer et al. [76] gaben für die Meßergebnisse ihrer Studie einen Variationskoeffizienten von 3,3 % bis 5 % an. Auch in weiteren Studien mit dem RTA konnte dies nicht unterboten werden (Landau et al. [43]: Variationskoeffizient von 5,9 % bis 6,6 %).

4.2 Ergebnisse

4.2.1 Datenerhebung

Die im Studiendesign festgelegten Untersuchungen wurden vollständig an 159 Studienprobanden durchgeführt. Die Rekrutierung erfolgte konsekutiv, d.h. es wurde angestrebt, möglichst jeden Probanden zu rekrutieren, der die Kriterien erfüllte. Die im Verhältnis dazu geringe Untersuchungszahl erklärt sich in erster Linie durch die strengen Ein- und Ausschlußkriterien. Das durchschnittliche Patientengut der Würzburger Universitäts- Augenklinik umfaßt schwerpunktmäßig Glaukompatienten und Patienten mit meist komplexen, häufig beidseitigen Netzhauterkrankungen, z.B. diabetische Retinopathie oder Makuladegeneration, die bei der Studie ausgeschlossen waren. Bei der Auswertung wurde zudem jeweils nur ein Auge pro Proband berücksichtigt, um eine unverbundene Stichprobe zu erhalten.

4.2.2 Demographische Daten

In der vorliegenden Studie wurden Probanden zwischen dem 13. und 92. Lebensjahr in die Auswertung aufgenommen. Eine statistisch auswertbare Gruppengröße von 20 Probanden innerhalb einer Lebensdekade wurde dabei in nahezu allen Altersbereichen zwischen dem 20. und 80. Lebensjahr erreicht (Ausnahme: 18 Probanden in der Gruppe

der 70 - bis 79 - jährigen). Damit war zu erwarten, dass die Untersuchung im Altersbereich von 20 bis 80 Lebensjahren valide Ergebnisse liefern, die nicht durch kleinere Gruppengrößen in den Untergruppen verfälscht werden. Zudem können die Ergebnisse innerhalb der Altersgruppen, eingeteilt in Dekaden, als repräsentativ betrachtet werden.

4.2.3 Achsenlängen der Studienaugen

Wie für ein Normalkollektiv zu erwarten war, fand sich bei dieser Studie eine mittlere Achsenlänge des Augapfels von $23,6 \pm 1$ mm. Dies stimmt sehr gut überein mit den Ergebnissen von Haigis [23], der bei einer Querschnittsuntersuchung eine durchschnittliche Achsenlänge des Augapfels von 23,48 mm nachwies. Im Studienkollektiv befanden sich keine Probandenaugen mit einer extremen Hypermetropie (< 20 mm) oder mit einer extremen Myopie (> 30 mm). Über 98 % der Studienaugen (156 der 159 Augen) wiesen eine Achsenlänge zwischen 21 mm und 27 Myopie mm auf. Eine extreme konnte während des gesamten Untersuchungszeitraumes nur bei einer Probandin beobachtet werden. Deren linkes Auge mit einer Achsenlänge von 30,17 mm mußte jedoch aufgrund eines peripheren Foramens ausgeschlossen werden.

Im Detail lassen sich die Studienergebnisse daher nur auf einen Achsenlängenbereich des Auges zwischen 21 und 27 mm anwenden. Innerhalb dieses Bereiches zeichnet sich jedoch kein Trend in der Korrelation zwischen der Netzhautdicke und der Achsenlänge der Probandenaugen ab, weshalb in Bereichen größerer Hypermetropie (< 20 mm) und Myopie (> 30 mm) signifikante Veränderungen der Studienergebnisse eher nicht zu erwarten sind.

4.2.4 Netzhautdicken der Studienaugen

Die in diesem Studienkollektiv ermittelte mittlere Netzhautdicke von 142 µm im Bereich der Foveola mit einer Standardabweichung von 18 µm stimmt gut mit bereits publizierten Ergebnissen anderer OCT- Messungen überein (Hee et al. [27] (147 \pm 17 µm), Hee et al. [26] (152 \pm 21 µm), Baumann et al. [4] (154 \pm 13 µm) sowie Lim et al. [45] (141 ± 19 µm)). Neuere Studien mit dem nochmals bezüglich der Aufnahmezeit und der axialen Auflösung von $< 10 \,\mu m$ verbesserten Nachfolgegerätes des in dieser Studie verwendeten OCT, dem Stratus- OCT (OCT 3), fand bei 37 untersuchten gesunden Probanden eine foveolare Netzhautdicke von $170 \pm 18 \,\mu\text{m}$. Die mit der entsprechenden automatischen Software ermittelten Werte lagen nochmals um 12 µm darüber. Allerdings wurde bei dieser Studie der Mittelwert aus sechs verschiedenen, auf die Foveola zentrierten Scans ermittelt, wobei die Autoren bereits auf die Schwierigkeit der exakten Positionierung wirklich aller sechs Scans auf die Foveola berichten. Geringste Augenbewegungen führen in der Foveola bereits zu deutlich veränderten Messwerten, weshalb Chan und Mitarbeiter für verlässliche Aussagen über die Netzhautdicke stets die zusätzliche Messung und entsprechende Durchschnittswerte der extrafoveolaren Netzhaut fordern [9].

Die in der vorliegenden Studie ermittelten extrafovealen, jeweils 1 mm von der Foveola entfernten Netzhautdicken (nasal $266 \pm 17 \mu m$, temporal $249 \pm 18 \mu m$, superior $271 \pm 18 \mu m$ und inferior $267 \pm 17 \mu m$) liegen in der Größenordnung bisheriger Publikationen mit geringerer Fallzahl wie bei der Studie von Schaudig et al. [60]. Bei 20 normalen Augen fanden diese Netzhautdicken von nasal $251 \pm 15 \mu m$, temporal 240 ± 17 , superior $257 \pm 17 \mu m$ und inferior $247 \pm 16 \mu m$. Diese durchweg etwas geringeren Netzhautdicken erklären sich durch die von Schaudig und Mitarbeitern durchgeführte Mittelwertbildung verschiedener Messpunkte auf der entsprechenden Achse, die bis zu 25 mm von der Foveola entfernte Punkte mit einbezog.

Die vorliegende Studie belegt die größere Netzhautdicke in Bereichen der nasalen, superioren und inferioren Netzhaut im Vergleich zu korrespondierenden Arealen der temporalen Netzhaut, wie dies bereits seit Beginn des letzten Jahrhunderts von histologischen Untersuchungen durch Dimmer et al. [15] bekannt war und durch aktuelle Studien von Takamoto et al. [66] nochmals bestätigt wurde. So zeigte sich eine hochsignifikante lineare Beziehung der Netzhautdicke 1 mm nasal zur Netzhautdicke 1 mm temporal der Fovea, wobei die Messwerte im Scatterdiagramm systematisch um 17 μ m von der Winkelhalbierenden abwichen. Dies läßt sich durch die größere Anzahl der nach nasal zur Papille verlaufenden Nervenfasern sowie durch den bündelförmigen Verlauf dieser entlang der Gefäßbögen leicht erklären.

Hingegen ist das Studienergebnis der um 4 μ m geringfügig größeren Netzhautdicke 1 mm superior der Foveola im Vergleich zu den korrespondierenden inferioren Netzhautarealen deutlich schwerer zu erklären. Varma et al. [69] beobachteten bei ihren histologischen Studien eher in den inferioren Anteilen eine geringfügig stärkere Netzhautdicke. Allerdings lag dieser Unterschied mit 4 μ m noch unterhalb der in dieser Studie ermittelten Reproduzierbarkeit von 5 – 6 μ m. Lim et al. [45] und Annie Chan et al. [9] bestätigten eine durchschnittlich größere Netzhautdicke im superioren Quadraten bei Messungen selbiger mit dem neuesten OCT, dem Stratus- OCT (OCT 3).

Neben der Optischen Kohärenztomographie gibt es noch weitere Methoden zur Bestimmung der Netzhautdicke: Sämtliche mit dem Retinal Thickness Analyzer durchgeführte Studien ermittelten größere Netzhautdicken in der Foveola: $178 \pm 44 \,\mu m$ (Landau et al. [43]), $185 \pm 46 \,\mu m$ (Shahidi et al. [65]), $167 \pm 23 \,\mu m$ (Asrani et al. [2]), $181 \pm 17 \ \mu m$ (Neubauer et al. [51]) und $158 \pm 24.8 \ \mu m$ (Chan et al. [10]). Auch die Standardabweichung wurde durchgehend größer angegeben. Ursache dafür könnte neben der geringeren technischen Auflösung des Retinal Thickness Analyzers von 50 µm die Abhängigkeit der Dickenmessung von optischen Vergrößerungsfaktoren sein, die selbst durch Kenntnis der Achsenlänge und Refraktion nur näherungsweise korrigiert werden konnten. Die Meßergebnisse der axialen Optischen Kohärenztomographie hängen dagegen lediglich von der optischen Brechkraft der beteiligten Medien ab. Neubauer et al. [51] wiesen auf die durch den Retinal Thickness Analyzer häufig fälschlicherweise zu groß gemessenen Netzhautdicken hin.

Die Ergebnisse der beiderseits untersuchten Augen von 46 Studienteilnehmern zeigten eine gute Übereinstimmung korrespondierender Netzhautareale zwischen den beiden Augen eines Individuums bezüglich der Netzhautdicke. Dieser Zusammenhang wurde auch schon durch Hee et al. [26] beobachtet und in einer neueren Studie bei Messungen der fovealen Netzhautdicke an 331 Augen 178 gesunder Chinesen mit dem Retinal Thickness Analyzer nochmals durch Chan et al. [10] bestätigt. Damit ermöglicht der Vergleich zwischen beiden Augen eines Probanden eine zusätzliche Plausibilitätskontrolle der OCT-Messungen. Wenn keine Pathologien in einem Auge vorliegen, sind große Seitendifferenzen zunächst einmal als Indiz für eine Fehlmessung anzusehen und genauer zu überprüfen, besonders im Bereich der Fovea, die für Fixationsartefakte anfällig ist. Umgekehrt müssen große Seitendifferenzen der Netzhautdicken eines Individuums bei methodischer Fehlerfreiheit als pathologisch beurteilt werden.

Indem die normwertige Netzhautdicke entsprechend den vorliegenden Studienergebnissen in der Foveola bei 142 \pm 18 µm liegt, müssen Netzhautdicken in diesem Bereich unter 110 µm und über 190 µm als pathologisch gewertet werden, wenn man eine Irrtumswahrscheinlichkeit von 5 % zugrunde legt. Perifoveal sind Netzhautdicken unter 200 µm oder über 300 µm als pathologisch zu beurteilen.

4.2.5 Korrelation von Netzhautdicke zum Probandenalter

Die Auswertung der Untersuchungen dieser Studie ergab keine Abhängigkeit der foveolaren und temporalen, dagegen aber der nasalen Netzhautdicke vom Alter des Probandenauges. Somit wurde die Hypothese I für einen weiten Altersbereich von 20 bis 80 Lebensjahren im Bereich der Foveola und temporal wiederlegt, nasal dagegen bestätigt.

Aus der Arbeitsgruppe um Jonas ergaben histomorphometrische Untersuchungen eine signifikante altersbedingte Abnahme der Nervenfaseranzahl des Nervus opticus von ca.

4000 (Jonas et al. 1992 [34]) bis 5400 (Jonas et al. 1990 [35]) pro Lebensjahr, was Mikelberg et al. [47] von der Größenordnung her bestätigten (4909 Nervenfasern Verlust pro Lebensjahr), hierfür jedoch keine Signifikanz nachweisen konnten (p = 0,07). In derselben Studie konnten keine signifikanten Zusammenhänge zwischen dem Axondurchmesser und dem Alter gefunden werden. In der nachfolgenden Studie fanden Mikelberg et al. [48] sogar eine altersbedingte Axondurchmesserzunahme. Repka et al. [59] beobachteten dagegen keine signifikante Abnahme der Nervenfaseranzahl mit zunehmendem Alter.

Einen Hinweis auf mögliche Unterschiede bezüglich der in vivo bestimmten Netzhautdicke junger und alter Patienten gab eine Untersuchung von Tane et al. [67] mit hochauflösendem Ultraschall und Frequenzverarbeitung. Diese Autoren berichteten eine signifikant niedrigere Netzhautdicke bei Probanden unter 31 Jahren im Vergleich zu denen über 50 Jahren. Die Fallzahl war mit 6 Probanden < 31 Jahren jedoch klein, der Meßort nicht im Bereich des hinteren Poles definiert und die Auflösung des Meßverfahrens mit 150 μ m wesentlich geringer als bei der Optischen Kohärenz-Tomographie (Hee et al. [25]).

Landau et al. [43] beschrieben bei Ihrer Analyse der Netzhautdicke von 50 mit dem Retinal Thickness Analyzer gemessenen gesunden Augen eine tendenzielle, jedoch statistisch nicht signifikante Zunahme der Netzhautdicke mit zunehmenden Alter der Probanden:

Probandenalter	mittlere Netzhautdicke
Gruppe der unter 30 jährigen	$166\pm38\mu m$
Gruppe der 30 bis 50 jährigen	$175\pm45~\mu m$
Gruppe der über 50 jährigen	$222\pm52~\mu m$

Dabei fällt jedoch auch die recht hohe Standardabweichung als Hinweis auf methodische Probleme auf.

Asrani et al. [2] fanden dagegen keine Abhängigkeit der Netzhautdicke von Alter, Geschlecht oder Rasse. Die ebenfalls mit dem Retinal Thickness Analyzer durchgeführte Studie wertete die Netzhautdicken 29 gesunder Probandenaugen perifoveal in einem C-förmigen Bogen von der Papilla nervi optici bis oberhalb bzw. unterhalb der Fovea centralis aus. Diese Ergebnisse bestätigten die vorliegenden foveolaren und temporalen Studienergebnisse mit einer anderen Methode in weiteren Netzhautarealen.

Alamouti et al. [1] fanden eine signifikante Verringerung sowohl der Netzhautdicke als auch der Nervenfaserschichtdicke mit zunehmenden Alter der Probanden von $0,53 \ \mu m \ (p = 0,0002)$ bzw. von $0,44 \ \mu m$ pro Lebensjahr (p = 0,0019). Bei der ebenfalls mit Hilfe der OCT durchgeführten Studie wurde der 2,3 mm lange Scan allerdings vertikal am temporalen Rand der Papilla nervi optici positioniert. Die an 100 Probanden erhobenen Ergebnisse zeigten zudem eine recht inhomogene Altersverteilung:

Abbildung 25: Altersverteilung der Probanden bei Alamouti et al. 2003 [1]

Abbildung 26: Altersverteilung der Probanden in der vorliegenden Studie

Aufgrund der differenten Altersverteilung und Patientenzahl waren die Ergebnisse von Alamouti nur im Altersbereich von 20 bis 50 und eingeschränkt auch von 50 bis 60 Lebensjahren valide. Wakitani et al. [71] fanden in ihrer Studie zur Klärung eines Zusammenhanges zwischen der Netzhautdicke und der Achsenlänge des Auges mittels OCT keine Abhängigkeit der Netzhautdicke vom Alter des entsprechenden Probandenauges: In dieser Studie wurden 203 gesunde Probanden zwischen 12 und 74 Lebensjahren (mittleres Alter 46.2 ± 15.9 Lebensjahre) an jeweils einem Auge untersucht. Jedes Auge wurde mit vier linearen 3 mm langen OCT- Scans, zentriert auf die Foveola, jeweils um 45° gegeneinander verdreht untersucht. Zusätzlich zu dem horizontalen (0°) und vertikalen (90°) Scan durch die Foveola in der vorliegenden Studie wurden bei Wakitani et al. [71] somit noch ein 45° und 135° Scan zentriert auf die Foveola durchgeführt. Zur Auswertung wurde die Netzhaut in 3 kreisrunde Areale mit zunehmenden Durchmesser, zentriert auf die Foveola, eingeteilt (Areal A mit einem Durchmesser von 350 µm, Areal B 1850 µm und Areal C 2850 µm). In der Analyse ergab sich keine statistisch signifikante Korrelation zwischen dem Alter der untersuchten Augen und der Netzhautdicke der Areale A, B und C (p = 0.35; p = 0.65und p = 0,30). Dies bestätigt die fehlende Altersabhängigkeit der Netzhautdicke, wie sie in der vorliegenden Studie im Bereich der Foveola und der temporalen Netzhaut nachgewiesen wurde. Zu beachten ist jedoch, dass es sich bei den bei Wakitani et al. [71] benannten Netzhautdickenwerten um Durchschnittswerte aller vier Quadranten handelte. Hier scheint auf Grund der vorliegenden Studienergebnisse jedoch eine Differenzierung notwendig, die evtl. in den verschiedenen Schichten der Netzhaut zu suchen ist.

Wong et al. [72] fanden bei Untersuchungen der Netzhautdicke von 117 gesunden Probanden mittels OCT weder eine signifikante Korrelation zwischen dem Alter der Probanden und der foveolaren Netzhautdicke (p = 0,270), noch der durchschnittlichen Netzhautdicke der zentralen 1 mm der Netzhaut (p = 0,850).

Annie Chan et al [9] fanden bei Untersuchungen der Netzhautdicke mit dem neuesten OCT, dem Stratus- OCT (OCT 3), keine Korrelation zwischen der durchschnittlichen perifovealen Netzhautdicke und dem Probandenalter. Hierfür wurde von den Autoren der Durchschnittswert von sechs linearen, auf die Foveola zentrierten Scans verwendet,

somit auch in dieser Studie keine differenzierte Betrachtung der perifovealen Netzhautdicken vorgenommen.

Chi-Ming Chan et al. [10] konnten bei ihren Untersuchungen an 331 Augen von 178 gesunden Chinesen mittels Retinal Thickness Analyzer ebenfalls keine Korrelation zwischen der Netzhautdicke und dem Alter der Probanden nachweisen. Bei dieser Studie wurde die bekanntermaßen mittels RTA gemessenen Flächen in eine foveolare (mittlere Fläche in einem 600 μ m Radius um die Foveola), perifoveolare (mittlere Fläche 600 – 2500 μ m von der Foveola) und peripapilläre Fläche (mittlere Fläche 600 – 6000 μ m von der Fovea entfernt) zur Berechnung des durchschnittlichen Netzhautdickenwertes differenziert. Folglich handelt es sich auch bei diesen perifoveolaren Ergebnissen um Mittelwerte ohne Differenzierung der temporalen oder nasalen Netzhautanteile.

Bei Messungen der Nervenfaserschichtdicke, die eben nur einen Teil der Netzhautdicke ausmacht, wurden mit unterschiedlichen Untersuchungsmethoden eine altersabhängige Abnahme der Nervenfaserschichtdicke nachgewiesen:

Schuman et al. [63] beschrieben bei den an 59 Augen von 33 Probanden (davon 21 Glaukompatienten) mit Hilfe des OCT gemessenen peripapillären Nervenfaserschichtdicken eine signifikante Abnahme mit zunehmenden Alter (p = 0,03). Lee et al. [44] untersuchten die peripapilläre Nervenfaserschichtdicke bei 131 Hong-Kong-Chinesen mit dem Nerve Fiber Analyzer, der auf dem Prinzip der Scanning Laser Polarimetry basiert. Sie wiesen eine signifikante Abnahme der durchschnittlichen peripapillären Nervenfaserschichtdicke 1.9 um μm pro Lebensdekade nach (r = -0.27, p = 0.001). Dies bestätigte die Studienergebnisse von Poinoosawmy et al. [54], die ebenfalls mit der gleichen Untersuchungsmethode die peripapilläre Nervenfaserschichtdicke von 150 normalen Probanden untersucht und eine signifikante Abnahme mit zunehmenden Probandenalter von 0,38 µm pro Lebensjahr (r = -0.594, p < 0.001) beschrieben hatten.

52

Wie unter 4.2.4 beschrieben, weist die nasale Netzhaut - nicht nur in dieser Studie belegt - eine größere Dicke auf als die temporale. Bedingt ist dies u.a. durch die größere Anzahl der zur Papille ziehenden Nervenfasern in diesem Bereich. In der Foveola wird die Netzhautdicke nur marginal von der Nervenfaserschichtdicke beeinflusst. Die Diskrepanz der Alterabhängigkeit der nasalen Netzhautdicke im Gegensatz zur altersunabhängigen temporalen und foveolaren Netzhautdicke könnte genau darin begründet sein. Offensichtlich wirken sich nasal die alterabhängige Dickenabnahme der Nervenfaserschicht meßbar auf die gesamte Netzhautdicke aus.

4.2.6 Korrelation von Netzhautdicke zur Achsenlänge des Auges

Die Auswertung der Untersuchungen dieser Studie ergab keine Abhängigkeit der Netzhautdicke von der Achsenlänge des Auges. Somit wurde die Hypothese II zumindest für den mit ausreichender Zahl untersuchten Achsenlängenbereich von 21 bis 27 mm widerlegt.

Den intraoperativen Eindruck, daß größere Augen eine dünnere Bulbuswand aufweisen, quantifizierten erstmals Guthoff et al. [22], indem sie mit Ultraschallmessungen an 159 Augen von 95 Patienten bei zunehmender Augapfellänge eine abnehmende Bulbuswanddicke nachweisen konnten. Aufgrund des in Bezug auf die Netzhautdicke zu geringen Auflösungsvermögens des Ultraschalls (150 μ m) gelang mit dieser Untersuchungsmethode die Differenzierung der einzelnen Bulbuswandschichten nicht, so dass eine abnehmende Netzhautdicke mit zunehmender Augapfellänge nur vermutet werden konnte. Damit ergibt sich zunächst kein Widerspruch zur vorliegenden Untersuchung, da die Netzhaut nur 10 - 20 % der Bulbuswand ausmacht.

Kremser et al. [42] kamen zu einem gegensätzlichen Ergebnis: Mit Hilfe des Retinal Thickness Analyzer wurden Aufnahmen der Fovea an 129 Augen von 79 Patienten (vorliegende Studie 159 Augen von 159 Probanden) angefertigt und die Netzhautdicke mit der entsprechenden Augenlänge verglichen. Eine hochsignifikante Verringerung der Netzhautdicke bei zunehmender Myopie / Bulbuslänge fanden sie jedoch nur unter Ausschluß des foveolaren Areals und nach Mittelung der extrafoveolaren Netzhautbereiche. Bei dem Vergleich der Scans korrespondierender Netzhautareale, konnten auch hier keine signifikanten Zusammenhänge gefunden werden. Das untersuchte Netzhautareal ist mit 6 x 6 mm außerdem erheblich größer, so dass Verringerungen der Nervenfaserschicht in Papillennähe und in der Nähe der Gefäßbögen mit dem Alter einen wesentlich größeren Einfluß als bei der vorliegenden Untersuchung haben dürften.

Dagegen beschreiben Wong et al. [72] sogar eine signifikante Zunahme der Netzhautdicke sowohl der Foveola (r = 0,260; p < 0,01) als auch der durchschnittlichen Netzhautdicke der zentralen 1 mm der Netzhaut (r = 0,308; p < 0,01) bei zunehmender Achsenlänge des Auges. Zur Netzhautdickenbestimmung wurden dabei sechs 3 mm lange radiär angeordnete, auf die Foveola zentrierten OCT-Scans bei 117 Probanden mit normaler Netzhaut durchgeführt. Ebenfalls im asiatischen Raum bestätigte sich diese positive Korrelation zwischen der foveolaren Netzhautdicke und der Achsenlänge der entsprechenden Probanden in der Studie von Lim et al. [45]. Ähnlich wie bei der vorliegenden Studie wurden drei horizontale, zusätzlich drei vertikale 6 mm Scans mit dem OCT zentriert auf die Foveola an gesunden Probanden durchgeführt. Insgesamt wurden 130 Probanden zwischen 19 und 23 Jahren untersucht. Die Auswertung der Messergebnisse zeigte eine positive Korrelation von der foveolaren Netzhautdicken zur Achsenlänge (p = 0.015), dagegen parafoveolar, eben beim Vergleich der Netzhautstellen mit der maximalen Netzhautdicke eine negative Korrelation zur Achsenlänge von $-1,77 \,\mu\text{m} / \text{mm} (\text{p} = 0,03)$. Diese Diskrepanz erklären Lim et al. [45] in ihrer Diskussion mit evtl. falsch zu groß gemessenen foveolaren Netzhautdicken, da es insbesondere bei hoher Myopie zu einer messbar höheren Inkonstanz bei der foveolaren Fixierung kam. Die statistische Auswertung der mittleren makulären ergab keinerlei Zusammenhänge mit der Netzhautdicke Achsenlänge der entsprechenden Augen (p = 0,37).

Das Ergebnis der vorliegenden Arbeit wurde dagegen in einer nachfolgenden Studie von Wakitani et al. [71] zur Klärung eines Zusammenhanges zwischen der

54

Netzhautdicke und der Achsenlänge des Auges mittels OCT bestätigt: In dieser Studie wurden 203 gesunde Probanden zwischen 12 und 74 Lebensjahren an jeweils einem Auge untersucht. Zunächst wurde die Achsenlänge der Augen sonographisch bestimmt, wobei diese einen Mittelwert von 25,98 mm \pm 1,53 mm Standardabweichung aufwiesen mit Extremwerten von 22,68 bis 30,22 mm. Jedes Auge wurde mit vier linearen 3 mm langen OCT-Scans, zentriert auf die Foveola, jeweils um 45° gegeneinander verdreht untersucht. Zusätzlich zu dem horizontalen (0°) und vertikalen (90°) Scan durch die Foveola in der vorliegenden Studie wurden bei Wakitani et al. [71] somit noch ein 45° und 135° Scan zentriert auf die Foveola durchgeführt. Zur Auswertung wurde die Netzhaut in 3 kreisrunde Areale mit zunehmenden Durchmesser, zentriert auf die Foveola, eingeteilt (Areal A mit einem Durchmesser von 350 µm, Areal B 1850 µm und Areal C 2850 µm). In der statistischen Auswertung fand sich keine signifikante Veränderung in der Netzhautdicke bei zunehmender Achsenlänge des Auges (p = 0,10 für das Areal A, p = 0,39 für das Areal B und p = 0,12 für das Areal C).

Chan et al. [10] konnten bei ihren Untersuchungen an 331 Augen von 178 gesunden Chinesen mittels Retinal Thickness Analyzer ebenfalls keine Korrelation zwischen der foveolaren und perifoveolaren Netzhautdicke und der Achsenlänge der Probandenaugen nachweisen und bestätigten somit das Ergebnis der vorliegenden Studie.

Die Ergebnisse der vorliegenden Arbeit wurden in mehreren Studien bestätigt. Nur wenige Untersuchungen mit teilweise deutlich anderem methodischen Ansatz, insbesondere mit undifferenzierter Mittelwertbildung der foveolaren mit perifoveolaren Messergebnisse der Netzhaut, kommen zu einem teilweise anderen Schluß. Insgesamt scheint es keine starke und im Rahmen von Normwerten zu berücksichtigende Abhängigkeit zwischen der Netzhautdicke und der Achsenlänge des Augapfels zu geben.

5 Zusammenfassung

Die vorliegende Dissertation geht der Fragestellung nach, inwieweit ein Zusammenhang zwischen der Netzhautdicke und dem Alter des entsprechenden Probanden einerseits sowie der Netzhautdicke und der Achsenlänge des Augapfels andererseits besteht.

Der klinische Eindruck, daß die Bulbuswand myoper / kurzsichtiger Augen, die sich durch eine größere Achsenlänge des Auges auszeichnen, dünner ist, wurde bereits durch sonographische Untersuchungen dokumentiert. Allerdings stößt diese Untersuchungstechnik mit ihrem Auflösungsvermögen von 150 μ m bei der Quantifizierung der Netzhautdicke als innerste der drei Bulbuswandschichten an ihre Grenzen. Mit dem Retinal Thickness Analyzer (RTA) und der Optischen Kohärenz-Tomographie (<u>Optical Coherence Tomography</u>, OCT) stehen mittlerweile sehr viel genauere Meßmethoden zur Verfügung, die Netzhautdicke in vivo zu bestimmen.

In der vorliegenden, prospektiv durchgeführten Studie, wurde die exakteste dieser Untersuchungsverfahren zur Messung der Netzhautdicke, die Optische Kohärenz-Tomographie (Auflösungsvermögen 10 – 15 µm), bei 159 Probanden (Alter 13 bis 92 Jahren mit einer homogenen Verteilung zwischen 20 und 80 Jahren) mit mindestens einer normalen Netzhaut durchgeführt. Die Netzhautdickenmessung erfolgte dabei mit einem 2,8 mm langen linearen horizontalen Scan, zentriert auf die Foveola, der durch einen zusätzlichen gleichartigen, jedoch vertikalen Scan ergänzt wurde. Als Messergebnis lieferte das OCT jeweils ein entsprechendes Schnittbild der Netzhaut von 2,8 mm Länge im Bereich der Makula, das eine exakte Bestimmung der Netzhautdicke erlaubt. Mit dieser wurde anschließend der statistische Zusammenhang mit der sonographisch ermittelten Achsenlänge des Augapfels (Mittelwert: 23,6 ± 1,1 mm, Bereich: 20,5 bis 28,5 mm; Mittelwert des sphärischen Äquivalent der Refraktion: - $0,16 \pm 2,23$ dpt, Bereich: + 7,25 dpt bis - 11,125 dpt) sowie mit dem Lebensalter der Probanden untersucht. In der Foveola beträgt die Netzhautdicke durchschnittlich 142 \pm 18 μ m, in 1 mm Abstand nasal davon 266 \pm 17 μ m, temporal davon 249 \pm 18 μ m. Demzufolge müssen Netzhautdicken im Bereich der Foveola unter 110 µm und über

190 µm, perifoveal unter 200 µm oder über 300 µm als pathologisch gewertet werden, wenn man eine Irrtumswahrscheinlichkeit von 5 % zugrunde legt. Aufgrund der guten Korrelation korrespondierender Netzhautareale der beiden Augen eines Individuums (Messung bei insgesamt 46 Probanden) sollten große Seitenunterschiede auch innerhalb dieses Normbereiches zu einer kritischen Prüfung der Meßwerte führen und bei methodischer Fehlerfreiheit als pathologisch gewertet werden. Der Unterschied von 17 µm zwischen nasaler und temporaler Netzhautdicke ist statistisch hochsignifikant (Korrelationskoeffizient r = 0.82, p < 0.0001) und durch die nach nasal zur Papille zusammenlaufenden Nervenfasern bedingt. Die Netzhautdicke in der Nähe der Gefäßbögen ist mit etwa 270 µm hochsignifikant größer als in der temporalen Netzhaut (p < 0,0001), wodurch der bündelförmige Verlauf der Nervenfasern zur Darstellung kommt. Die Korrelation korrespondierender Netzhautareale desselben Probanden 1 mm superior und inferior der Foveola ist hoch (p < 0,0001). Der mittlere Variationskoeffizient der mit Hilfe der OCT ermittelten Netzhautdicke in der Foveola beträgt 4,2 % (6 µm), ein Beleg für die hohe Reproduzierbarkeit der OCT-Messungen. 1 mm nasal und temporal ist der Variationskoeffizient der Netzhautdicke mit 2 % $(5,5 \ \mu\text{m})$ bzw. 2,2 % $(5,5 \ \mu\text{m})$ nochmals niedriger, bedingt durch die in diesem perifoveolaren Bereich der Netzhaut nur geringgradigen Unterschiede in der Netzhautdicke.

Entgegen der Studienhypothese besteht eine Korrelation nur zwischen der nasalen, nicht jedoch der temporalen oder foveolaren Netzhautdicke und dem Alter des entsprechenden Probanden. Ebenso wenig besteht eine Korrelation zwischen der Netzhautdicke und der Achsenlänge des Auges. Demzufolge muß bei Messungen der foveolaren oder temporalen Netzhautdicke bei pathologisch veränderter Netzhaut, z.B. bei einem Makulaödem, weder ein Korrekturfaktor für das Probandenalter noch für die Achsenlänge des Auges berücksichtigt werden. Die vorliegenden Ergebnissen der Netzhautdicke sind daher als Normwerte für die nicht pathologisch veränderte Netzhaut anzusehen. Bei der nasalen Netzhautdicke ist ggf. aber eine geringfügig dünnere Netzhaut im hohen Alter zu berücksichtigen.

6 Literaturverzeichnis

- Alamouti B, Funk J (2003) Retinal Thickness Decreases with Age: an OCT-Study. British Journal of Ophthalmology 2003;87:899-901
- 2. Asrani S, Zou S, d'Anna S, Vitale S, Zeimer R (1999) Noninvasive Mapping of the Normal Retinal Thickness at the Posterior Pole. Ophthalmology 1999;106:269-273
- **3. Baumal CR (1999)** Clinical Applications of Optical Coherence Tomography. Current Opinion in Ophthalmology 1999;10:182-188
- 4. Baumann M, Gentile RC, Liebmann JM, Ritch R (1998) Reproducibility of Retinal Thickness Measurements in Normal Eyes Using Optical Coherence Tomography. Ophthalmic Surgery and Lasers 1998;29:280-285
- 5. Biro Z, Balla Z, Kovacs B (2008) Change of foveal and perifoveal thickness measured by OCT after phakoemulsification and IOL implantation. Eye 2008 Jan;22(1):8-12
- 6. Blumenthal EZ, Williams JM, Weinreb RN, Girkin CA, Berry CC, Zangwill LM (2000) Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography. Ophthalmology 2000;107:2278-2282
- Bowd C, Weinreb RN, Williams JM, Zangwill MN (2000) The Retinal Nerve Fiber Layer Thickness in Ocular Hypertensive, Normal and Glaucomatous Eyes With Optical Coherence Tomography. Archives of Ophthalmlogy 2000;118:22-26

- 8. Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, Sample PA, Weinreb RN (2001) Detecting early Glaucoma by Assessment of Retinal Nerve Fiber Layer Thickness and Visual Function. Investigative Ophthalmology & Visual Science, August 2001;42(9):1993-2003
- 9. Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS (2006) Normal Makular Thickness Measurements in Healthy Eyes Using Stratus Optical Coherence Tomography. Archives of Ophthalmlogy 2006;124:193-198
- 10. Chan CM, Yu JH, Chen LJ, Huang CH, Lee CT, Lin TC, Liu DZ (2006) Posterior pole retinal thickness measurements by the retinal thickness analyzer in healthy Chinese subjects. Retina 2006 Feb;26(2):176-181
- Chauhan DS, Marshall J (1999) The Interpretation of Optical Coherence Tomography Images of the Retina. Investigative Ophthalmology & Visual Science, September 1999;40(10):2332-2342
- **12.** Coker JG, Duker JS (1996) Macular Disease and Optical Coherence Tomography. Current Opinion in Ophthalmology 1996;7(3):33-38
- Colangelo L, Mancini A, Lobefalo L, Attimonelli P, Zuppardi E, Falco G, Mastropasqua L (1998) Echobiometry of the Ocular Layers at the Posterior Pole. Ophthalmologica 1998;212 Suppl 1:27-29
- Cvenkel B (2004) Retinal thickness at the posterior pole in glaucoma and ocular hypertension. Graefe's Archive for Clinical and Experimental Ophthalmology 2004 Nov; 242(11):920-925
- 15. Dimmer F (1906) Die Makula lutea der menschlichen Netzhaut und die durch sie bedingten enoptischen Erscheinungen. Albrecht v Graefes Archive for Ophthalmology 1906;65: 486-544

- 16. Gieser JP, Rusin MM, Mori M, Blair NP, Shahidi M (1997) Clinical Assessment of the Macula by Retinal Topography and Thickness Mapping. American Journal of Ophthalmology 1997;124:648-660
- Giovannini A, Amato G, Mariotti C, Scassellati-Sforzolini B (2000) Optical Coherence Tomography Findings in Diabetic Macular Edema Before and After Vitrectomy. Ophthalmic Surgery and Lasers 2000;31:187-191
- 18. Göbel W, Franke R (2006) Retinal Thickness in Diabetic Retinopathie: Comparison of Optical Coherence Tomography, the Retinal Thickness Analyzer and Fundus Photography. Retina 2006;26:49-57
- Göbel W, Kretzchmar-Gross T (2002) Retinal Thickness in Diabetic Retinopathy: A Study Using Optical Coherence Tomography (OCT). Retina 2002;22:759-767
- 20. Grehn F, Leydhecker W (1995) Augenheilkunde 26.Auflage Springer-Verlag Berlin Heidelberg New York, ISBN 3-540-59296-2
- 21. Grewing R, Becker H (2000) Retinal Thickness Immediately After Cataract Surgery Measured by Optical Coherence Tomography. Ophthalmic Surgery and Lasers 2000;31:215-217
- 22. Guthoff R, Berger RW, Draeger J (1987) Ultrasonographic Measurement of the Posterior Coats of the Eye and their Relation to Axial Lenght. Graefe's Archive for Clinical and Experimental Ophthalmology 1987;225:374-376
- **23. Haigis W (2001)** Pseudophakic correction factors for optical biometry. Graefe's Archive for Clinical and Experimental Opthalmology 2001;239(8):589-598

- 24. Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, Coker JG, Schuman JS, Swanson EA, Fujimoto JG (1996) Optical Coherence Tomography of Age-related Macular Degeneration and Chorioidal Neovascularisation. Ophthalmology 1996;103:1260-1270
- 25. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical Coherence Tomography of the Human Retina. Archives of Ophthalmology 1995;113:325-332
- 26. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, Fujimoto JG (1998) Topography of Diabetic Macular Edema with Optical Coherence Tomography. Ophthalmology 1998;105:360-370
- 27. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG (1995) Quantitative Assessment of Macular Edema with Optical Coherence Tomography. Archives of Ophthalmology 1995;113:1019-1029
- 28. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical Coherence Tomography. Science 254:1178-1181
- 29. Huang LN, Schuman JS, Pedut-Kloizman T, et al. (1997) The Comparison of Nerve Fiber Layer Thickness in Glaucomatous Monkey Eyes Measured by Optical Coherence Tomography and Histomorphometry. Investigative Ophthalmology & Visual Science 1997; S838
- 30. Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, Milam AH, Jacobson SG (1998) Relation of Optical Coherence Tomography to Microanatomy in Normal and *rd* Chickens. Investigative Ophthalmlogy & Visual Science 1998;39:2405-2416

- Humphrey Instruments. Inc. (1996) Optical Coherence Tomography Scanner: Owner's Manual. Humphrey Instruments. Inc., 2992 Alvarado Street, P.O. Box 5400, San Leandro, California 94577-0700
- **32. Iester M, Courtright P, Mikelberg FS. (1998)** Retinal Nerve Fiber Layer Height in High-tension Glaucoma and Healthy Eyes. Journal of Glaucoma 1998;7(1):1-7. Erratum in: Journal of Glaucoma 1998;7(4):296.
- 33. Jacobson SG, Cideciyan AV, Huang Y, Hanna DB, Freund CL, Affatigato LM, Carr RE, Zack DJ, Stone EM, McInnes RR (1998) Retinal Degenerations with Truncation Mutations in the Cone-Rod Homebox (CRX) Gene. Investgative Ophthalmology & Visual Science 1998;39:2417-2426
- Jonas JB, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO (1990) Histomorphometry of the Human Optic Nerve. Investigative Ophthalmlogy & Visual Science 1990;31(4):736-744
- 35. Jonas JB, Schmidt AM, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO (1992) Human Optic Nerve Fiber Count and Optic Disc Size. Investigative Ophthalmlogy & Visual Science 1992;33(6):2012-2018
- 36. Jones AL, Sheen JNL, North RV, Morgan JE (2001) The Humphrey Optical Coherence Tomography Scanner: Quantitative Analysis and Reproducibility Study of the Normal Human Retinal Nerve Fiber Layer. British Journal of Ophthalmology 2001;85:673-677
- 37. Karasheva G, Goebel W, Klink T, Haigis W, Grehn F (2003) Changes in macular thickness and depth of anterior chamber in patients after filtration surgery. Graefe's Archive for Clinical and Experimental Opthalmology 2003 Mar;241(3):170-5

- 38. Klemm M, Rumberger E, Walter A, Richard G (2001) Quantifizierung der retinalen Nervenfaserschichtdicke: Ein Vergleich von Laser-Scanning-Ophthalmoskopie, Polarimetrie und Optischen Kohärenztomographie bei gesunden und glaukomkranken Augen. Ophthalmologe 2001 Sep;98(9):832-843
- Klink T, Lieb WE, Göbel W (2000) Frühe und späte Befunde der Optischen Kohärenztomographie (OCT) bei Patienten mit postoperativer Hypotonie. Ophthalmologe 2000;97:353-358
- Konno S, Akiba J, Yoshida A (2001) Retinal Thickness Measurements with Optical Coherence Tomography and the Scanning Retinal Thickness Analyzer. Retina 2001;21:57-61
- **41. Koozekanani D, Roberts C, Katz SE, Herderick E (2000)** Intersession Repeatability of Macular Thickness Measurements with the Humphrey 2000 OCT. Investigative Ophthalmology & Visual Science 2000;41:1486-1491
- **42. Kremser B, Troger J, Baltaci M, Kralinger M, Kieselbach GF (1999)** Retinal Thickness Analysis in Subjects with Different Refractive Conditions. Ophthalmologica 1999;213:376-379
- **43.** Landau D, Schneidman EM, Jacobovitz T, Rozenman Y (1997) Quantitative In Vivo Retinal Thickness Measurements in Healthy Subjects. Ophthalmology 1997;104:639-642
- **44.** Lee VW, Mok KH (2000) Nerve Fiber Layer Measurement of Hon Kong Chinese Population by Scanning Laser Polarimetry. Eye 2000;14:371-374
- 45. Lim MCC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SKL, Aung T (2005) Use of Optical Coherence Tomography to Assess Variations in Macular Retinal Thickness in Myopia. Investigative Ophthalmology & Visual Science 2005;46:974-978

- Massin P, Vicaut E, Haouchine B, Erginay A, Paque M, Gaudric A (2001) Reproducibility of Retinal Mapping Using Optical Coherence Tomography. Archive of Ophthalmology 2001;119:1135-1142
- Mikelberg FS, Drance SM, Schulzer M, Yidegiligne HM, Weis MM (1989)
 The Normal Human Optic Nerve. Axon Count and Axon Diameter Distribution.
 Ophthalmology 1989;96(9):1325-1328
- **48. Mikelberg FS, Yidegiligne HM, White VA, Schulzer M (1991)** Relation Between Optic Nerve Axon Number and Axon Diameter in the Scleral Canal Area. Ophthalmology 1991;98(1):60-63
- 49. Mistelberger A, Liebmann JM, Greenfield DS, Pons ME, Hoh ST, Ishikawa H, Ritch R (1999) Heidelberg Retina Tomography and Optical Coherence Tomography in Normal, Ocular-hypertensive and Glaucomatous Eyes. Ophthalmology 1999;106:2027-2032
- 50. Mok KH, Lee VW, So KF. (2003) Retinal Nerve Fiber Loss Pattern in Hightension Glaucoma by Optical Coherence Tomography. Journal of Glaucoma. 2003 Jun;12(3):255-9
- 51. Neubauer AS, Priglinger S, Ullrich S, Bechmann M, Thiel MJ, Ulbig MW, Kampik A (2001) Comparison of Foveal Thickness Measurement with the Retinal Thickness Analyzer and Optical Coherence Tomography. Retina 2001;21:596-601
- **52.** Otani T, Kishi S, Maruyama Y (1999) Patterns of Diabetic Macular Edema with Optical Coherence Tomography. American Journal of Ophthalmology 1999;127:688-693
- 53. Pierre-Kahn V, Tadayoni R, Haouchine B, Massin P, Gaudric A (2005) Comparison of optical coherence tomography models OCT1 and Stratus OCT or macular retinal thickness measurement. British Journal of Ophthalmology 2005;89:1581-1585
- 54. Poinoosawmy D, Fontana L, Wu JX, Fitzke FW, Hitchings RA (1997) Variation of Nerve Fiber Layer Thickness Measurements with Age and Ethnicity by Scanning Laser Polarimetry. British Journal of Ophthalmology 1997;81:350-354
- 55. Polito A, Shah SM, Haller JA, Zimmer-Galler I, Zeimer R, Campochiaro PA, Vitale S (2002) Comparison Between Retinal Thickness Analyzer and Optical Coherence Tomography for Assessment of Foveal Thickness in Eyes With Macular Disease. American Journal of Ophthalmology 2002;134:240-251
- 56. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fijimoto JG (1995) Imaging of Macular Diseases with Optical Coherence Tomography. Ophthalmology 1995;102:217-229
- 57. Puliafito CA, Hee MR, Schumann JS, Fujimoto JG (1996) Optical Coherence Tomography of Ocular Diseases. SLACK Incorporated, Grove Road, Thorofare, NJ 08086-9447, ISBN 1-55642-295-4
- 58. Purnell EW (1980) Ultrasonic Biometry of the Posterior Ocular Coats. Trans American Ophthamology Society 1980;78:1027-1078
- **59. Repka MX, Quigley HA (1989)** The Effect of Age on Normal Human Optic Nerve Fiber Number and Diameter. Ophthalmology 1989;96(1):26-32

- 60. Schaudig UH, Glaefke C, Scholz F, Richard G (2000) Optical Coherence Tomography for Retinal Thickness Measurement in Diabetic Patients Without Clinically Significant Macular Edema. Ophthalmic Surgery and Lasers 2000.31:182-186
- 61. Schaudig U, Hassenstein A, Bernd A, Walter A, Richard G (1998) Limitations of Imaging Chorioidal Tumors In Vivo by Optical Coherence Tomography. Graefe's Archive for Clinical and Experimental Ophthalmology 1998;236:588-592
- **62.** Schmidt G (1999) Ultraschall-Kursbuch. 3. überarbeitete und erweiterte Auflage Georg Thieme Verlag Stuttgart New York, ISBN 3-13-119103-1
- 63. Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG (1995) Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography. Archive of Ophthalmology 1995;113:586-596
- 64. Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA (1996) Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence Tomography. Ophthalmology 1996;103:1889-1898
- **65.** Shahidi M, Zeimer RC, Mori M (1990) Topography of the Retinal Thickness in Normal Subjects. Ophthalmology 1990;97:1120-1124
- **66. Takamoto T, Schwartz B** (2002) Differences by Quadrant of Retinal Nerve Fiber Layer Thickness in Healthy Eyes. Journal of Glaucoma 2002;11:259-364

- 67. Tane S, Kohno J, Ohashi K, Komatsu A, Suzuki J (1987) The Microscopic Biometry of the Thickness of Human Retina, Chorioid and Sclera by Ultrasound. Ossoinig KC (ed) Ophthalmic Echography. Martinus Nijhoff Publishers, Dordrecht
- 68. Toth CA, Narayan DG, Boppart SA, et al. (1997) A Comparison of Retinal Morphology Viewed by Optical Coherence Tomography and by Light Microscopy. Archives of Ophthalmology 1997;116:1425-1428
- **69.** Varma R, Skaf M, Barron E (1996) Retinal Nerve Fiber Layer Thickness in Normal Human Eyes. Ophthalmology 1996;103:2114-2119
- 70. Vujosevic S, Midena E, Pilotto E, Radin PP, Chiesa L, Cavarzeran F (2006) Diabetic Macular Edema: Correlation between Microperimetry and Optical Coherence Tomography Findings. Investigative Ophthalmology & Visual Science, July 2006;47(7):3044-3051
- 71. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular Thickness Measurements in Healthy Subjects with Different Axial Lengths Using Optical Coherence Tomography. Retina 2003 April;23(2):177-82
- 72. Wong ACM, Chan CWN, Hui SP (2005) Relationship of Gender, Body Mass Index and Axial Length with Central Retinal Thickness Using Optical Coherence Tomography. Eye 2005;19:292-297
- 73. Wu G, Silverman RH, Coleman DJ, Lizzi FL (1989) In Vivo Thickness of the Human Detached Retina by Ultrasonic Signal Processing. Graefe's Archive for Clinical and Experimental Ophthalmology 1989;227:21-25

- 74. Yang CS, Cheng CY, Lee FL, Hsu WM, Liu JH. (2001) Quantitative Assessment of Retinal Thickness in Diabetic Patients With and Without Clinically Significant Macular Edema Using Optical Coherence Tomography. Acta Ophthalmologica Scandinavica 2001 Jun;79(3):266-70
- 75. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative Detection of Glaucomatous Damage at the Posterior Pole by Retinal Thickness Mapping. Ophthalmology 1998;105:224-231
- 76. Zeimer R, Shahidi M, Mori M, Zou S, Asrani S (1996) A New Method for Rapid Mapping of the Retinal Thickness at the Posterior Pole. Investigative Ophthalmology & Visual Science 1996;37:1994-2001

ld-Nr.	Geschlecht	Alter [a]	Auge	Refraktion [dpt]	Achsenlänge [mm]
58	w	13	li	-0,5	24,46
96	w	16	re	0,375	21,86
150	m	16	re	2,5	23,2
68	w	17	re	-0,5	23,51
89	m	20	re	0,375	22,47
95	m	21	li	1	23,39
87	W	21	re	-0,625	23,45
133	w	21	re	-0,25	23,51
59	m	21	re	0	24,16
55	W	22	re	-1,375	23,55
110	w	22	re	-2	23,94
127	m	22	re	0,25	23,97
101	m	22	re	-0,375	24,12
57	W	22	re	0	24,3
53	w	22	re	-3	24,38
1	w	22	re	-5,25	25,28
44	m	22	re	-9,125	27,98
15	m	23	re	0,625	22,6
118	m	23	li	-1	23,21
86	w	23	re	0	24,02
31	m	23	re	-1,5	24,35
73	W	23	re	-0,125	24,5
41	m	23	re	-7,5	26,3
54	w	24	re	0,75	23,42
29	m	24	li	-4,25	24,38
77	m	24	re	-1,5	24,47
85	w	24	li	-3,125	24,51
32	w	24	re	-2,5	24,95
14	m	24	re	0	25,08
84	m	25	li	0,375	23,37
130	m	25	re	-0,125	23,62
147	m	26	re	-0,25	23,65
25	w	26	li	-1	24,56
134	w	27	re	0,625	22,42
9	m	27	re	0,625	24,55
135	m	29	re	0,375	24,25
125	w	29	li	-11,125	28,45
93	m	30	li	-0,25	22,88
48	m	30	li	0	23,38
26	W	30	re	-2,875	24,34
149	m	31	li	-0,25	23,81
65	m	31	li	0,125	23,83
4	m	31	li	0,25	23,92
64	m	31	li	-0,875	24,44

Tab. 2: Messergebnisse: Refraktion und Achsenlänge der Probandenaugen

ld-Nr.	Geschlecht	Alter [a]	Auge	Refraktion [dpt]	Achsenlänge [mm]
80	m	31	li	0	24,56
28	m	32	re	0,625	22,99
16	m	33	li	-0,5	23,06
47	m	33	re	0,625	23,32
30	m	33	re	-0,25	23,92
23	m	33	li	-0,125	24,34
42	m	34	li	3,625	21,11
33	m	34	li	0,75	23,03
19	m	35	li	0	22,62
168	m	35	li	-5,25	26,35
66	m	36	re	0,25	23,83
49	w	36	li	-2,75	23,98
119	m	37	li	0	22,62
165	w	37	re	-0,25	23,54
117	w	38	re	0,25	23,05
22	w	38	re	-0,375	23,05
27	m	38	re	0	23,18
126	m	38	re	0,25	23,55
61	w	40	li	-0,675	22,48
102	m	40	re	-0,75	22,92
141	m	40	re	0,875	23,44
69	m	40	re	-1	25,25
6	m	41	li	0,25	22,45
113	w	41	re	0	22,69
99	m	41	li	0,25	23,32
124	m	42	re	-0,125	24,03
60	m	43	li	0	23,2
121	m	43	li	-0,875	23,7
94	w	43	re	-4,25	25,63
24	m	43	re	-2,5	25,74
43	m	44	li	0,25	23,07
91	m	45	re	-0,125	23,49
152	w	45	re	0	24,11
128	m	46	li	0,625	22,58
75	m	46	li	0,625	22,77
136	m	47	re	2,25	21,9
158	w	47	re	-4,25	23,22
138	m	48	li	0,825	23,2
35	m	48	re	0,375	23,64
114	m	48	re	-0,875	24,19
116	W	48	re	-2,75	25,13
81	m	49	re	1,25	22,29
109	m	49	li	1,25	22,47
143	m	49	re	-1,125	24,33

Tab. 2: Messergebnisse: Refraktion und Achsenlänge der Probandenaugen

ld-Nr.	Geschlecht	Alter [a]	Auge	Refraktion [dpt]	Achsenlänge [mm]
167	m	51	re	0,5	23,45
129	w	51	re	-0,25	23,67
17	m	51	re	1,75	24,75
34	m	52	li	1,625	22,17
132	m	53	re	0	23,37
56	m	53	li	0,125	24,86
98	m	54	re	1,25	23,38
137	w	55	re	-1,75	22,42
115	w	55	re	0,375	22,73
74	m	55	re	0,125	22,86
37	w	55	re	0,375	24,18
5	m	55	li	-2,5	25,32
78	m	56	re	0	22,72
76	m	56	li	1,625	23,59
131	m	56	li	0,125	23,98
153	m	56	re	0	24,67
157	w	57	li	-0,425	21,67
52	m	57	re	4,125	21,83
82	m	57	li	0,625	23,36
144	m	58	re	1,625	22,63
100	m	58	li	0	23,37
88	w	58	re	-1	24,86
123	m	58	li	-0,625	25,87
139	w	59	re	1,125	23,03
12	m	60	li	0	23,48
163	m	60	re	-7,75	26,86
51	w	61	re	2,75	22,1
38	w	61	li	1,75	22,39
83	w	61	re	0,5	22,46
112	m	61	li	0,75	23,27
13	m	62	li	1,5	23,04
171	w	63	re	1,75	23,34
18	w	63	re	2,75	23,7
71	m	64	re	2,625	22,56
39	m	64	re	-2	23,9
169	m	64	li	3,5	24,22
162	m	64	li	0,375	24,39
140	W	65	re	5,75	20,8
148	w	65	li	0,125	22,86
63	m	65	li	1,25	23,12
151	W	65	re	3	23,82
50	m	66	re	0,125	22,78
161	W	66	re	-6,25	25,55
40	w	67	li	3	22,32

Tab.	2: Messergebnisse:	Refraktion un	d Achsenlänge o	der Probandenau	gen
					0

ld-Nr.	Geschlecht	Alter [a]	Auge	Refraktion [dpt]	Achsenlänge [mm]
67	w	67	li	0	23,35
159	w	68	re	4,25	21,4
72	w	69	li	3	21,93
21	m	69	li	1,125	22,6
107	w	69	li	0,5	23,62
108	w	70	re	-1,875	23,21
62	w	70	re	0,125	23,22
36	m	70	li	0,25	23,29
70	m	70	re	-0,75	24,28
170	w	71	li	1	22,73
146	m	71	li	-0,125	23,45
105	m	71	re	2,25	24,23
156	m	72	li	0	22,5
111	w	72	re	0	24,25
155	w	73	li	-1	23,51
142	m	75	li	1	23,37
154	w	75	li	0,5	23,55
122	w	77	re	0,5	22,52
104	m	77	re	0	23,81
145	w	78	re	2,375	22,45
46	m	78	li	1,625	23,62
160	w	79	li	-1,75	22,31
103	W	79	li	-0,75	23,1
92	W	82	re	2,375	22,83
166	m	85	re	2	23
120	m	90	li	1	22,54
90	m	92	li	0	23,27

Tab. 2: Messergebnisse: Refraktion und Achsenlänge der Probandenaugen

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	n: 1,0 mm	n: 0,75 mm	n: 0,5 mm	n: 0,25 mm	Fovea	t: 0,25 mm	t: 0,5 mm	t: 0,75 mm	t: 1,0 mm
58	13	li	-0,5	24,46	253	229	192	148	125	164	204	230	247
96	16	re	0,375	21,86	249	241	221	177	133	153	200	221	231
150	16	re	2,5	23,2	260	252	229	180	137	167	221	242	247
68	17	re	-0,5	23,51	264	248	214	162	121	168	219	239	241
89	20	re	0,375	22,47	289	264	219	167	138	164	198	239	267
95	21	li	1	23,39	275	264	237	181	132	169	225	252	262
87	21	re	-0,625	23,45	261	236	199	155	138	157	196	229	246
133	21	re	-0,25	23,51	267	248	213	172	140	145	179	230	252
59	21	re	0	24,16	258	243	217	176	136	153	188	215	228
55	22	re	-1,375	23,55	267	248	225	175	133	157	202	226	224
110	22	re	-2	23,94	255	235	184	153	127	155	197	215	222
127	22	re	0,25	23,97	268	259	227	177	144	175	210	234	247
101	22	re	-0,375	24,12	283	271	226	170	128	161	216	252	266
57	22	re	0	24,3	258	243	206	165	129	155	201	232	243
53	22	re	-3	24,38	261	239	190	138	119	133	175	216	241
1	22	re	-5,25	25,28	274	257	225	180	149	168	206	239	252
44	22	re	-9,125	27,98	280	277	252	190	152	177	234	255	257
15	23	re	0,625	22,6	295	266	214	153	133	149	203	267	283
118	23	li	-1	23,21	257	242	209	164	147	173	208	229	232
86	23	re	0	24,02	232	203	175	142	119	125	164	203	229
31	23	re	-1,5	24,35	270	267	239	190	148	189	230	257	260
73	23	re	-0,125	24,5	292	278	247	198	147	185	229	260	268
41	23	re	-7,5	26,3	258	234	204	157	142	172	200	234	251
54	24	re	0,75	23,42	263	243	197	155	120	130	174	209	239
29	24	li	-4,25	24,38	265	251	226	153	133	163	211	231	243
77	24	re	-1,5	24,47	261	247	221	177	131	165	216	242	254
85	24	li	-3,125	24,51	265	257	229	185	150	183	220	237	241
32	24	re	-2,5	24,95	281	266	227	171	140	162	217	251	263
14	24	re	0	25,08	265	251	215	171	139	160	205	236	249
84	25	li	0,375	23,37	296	280	227	162	139	168	232	270	278
130	25	re	-0,125	23,62	276	259	233	202	171	184	209	239	255
147	26	re	-0,25	23,65	279	249	208	151	133	171	215	251	264
25	26	li	-1	24,56	280	259	233	198	158	199	249	264	266
134	27	re	0,625	22,42	278	259	220	182	156	175	210	233	246
9	27	re	0,625	24,55	277	259	239	203	143	178	238	263	272

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	n: 1,0 mm	n: 0,75 mm	n: 0,5 mm	n: 0,25 mm	Fovea	t: 0,25 mm	t: 0,5 mm	t: 0,75 mm	t: 1,0 mm
135	29	re	0,375	24,25	246	228	198	160	129	154	190	216	221
125	29	li	-11,125	28,45	268	248	218	177	146	174	208	241	261
93	30	li	-0,25	22,88	268	241	210	159	133	163	211	233	239
48	30	li	0	23,38	281	258	216	162	135	164	214	236	252
26	30	re	-2,875	24,34	247	237	206	167	138	164	206	230	241
149	31	li	-0,25	23,81	289	269	227	187	122	134	187	241	259
65	31	li	0,125	23,83	273	248	210	161	139	175	212	245	262
4	31	li	0,25	23,92	264	243	211	160	128	156	209	237	248
64	31	li	-0,875	24,44	274	257	221	168	143	185	227	245	255
80	31	li	0	24,56	271	252	215	158	139	151	196	239	254
28	32	re	0,625	22,99	309	288	260	214	157	200	255	279	289
16	33	li	-0,5	23,06	274	274	272	234	189	233	260	266	267
47	33	re	0,625	23,32	264	251	219	165	123	141	195	230	249
30	33	re	-0,25	23,92	283	267	240	190	134	168	220	255	263
23	33	li	-0,125	24,34	269	249	217	167	138	172	216	236	249
42	34	li	3,625	21,11	276	259	229	189	147	177	224	240	256
33	34	li	0,75	23,03	264	245	214	174	144	170	209	234	240
19	35	li	0	22,62	239	233	203	160	138	158	201	228	241
168	35	li	-5,25	26,35	257	243	235	199	176	200	228	238	243
66	36	re	0,25	23,83	261	239	193	159	142	171	212	231	245
49	36	li	-2,75	23,98	262	249	195	135	115	132	206	237	243
119	37	li	0	22,62	270	243	197	145	132	161	210	241	256
165	37	re	-0,25	23,54	260	234	183	133	90	128	184	228	242
117	38	re	0,25	23,05	268	245	198	152	120	143	205	236	240
22	38	re	-0,375	23,05	250	223	187	165	141	158	195	225	242
27	38	re	0	23,18	222	207	183	146	128	143	172	189	204
126	38	re	0,25	23,55	285	259	223	161	137	186	221	256	272
61	40	li	-0,675	22,48	241	214	168	137	124	144	178	220	229
102	40	re	-0,75	22,92	317	310	277	216	152	184	248	287	290
141	40	re	0,875	23,44	268	246	202	149	131	162	208	234	251
69	40	re	-1	25,25	268	252	218	172	137	180	217	236	245
6	41	li	0,25	22,45	285	265	224	177	139	172	211	245	261
113	41	re	0	22,69	216	180	145	129	117	133	161	207	221
99	41	li	0,25	23,32	294	285	262	213	176	210	240	262	272
124	42	re	-0,125	24,03	271	257	224	192	138	201	217	243	252

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	n: 1,0 mm	n: 0,75 mm	n: 0,5 mm	n: 0,25 mm	Fovea	t: 0,25 mm	t: 0,5 mm	t: 0,75 mm	t: 1,0 mm
60	43	li	0	23,2	265	248	196	146	126	160	210	242	260
121	43	li	-0,875	23,7	280	268	240	180	139	160	186	238	260
94	43	re	-4,25	25,63	271	261	234	209	165	192	223	246	251
24	43	re	-2,5	25,74	267	252	229	176	142	167	210	238	246
43	44	li	0,25	23,07	299	293	265	226	187	226	268	283	281
91	45	re	-0,125	23,49	223	208	187	145	123	147	173	190	203
152	45	re	0	24,11	246	230	199	166	142	155	188	217	234
128	46	li	0,625	22,58	274	262	237	185	147	156	185	214	235
75	46	li	0,625	22,77	267	238	193	155	143	166	210	242	257
136	47	re	2,25	21,9	284	258	213	167	125	143	183	238	268
158	47	re	-4,25	23,22	258	244	218	175	139	165	201	223	236
138	48	li	0,825	23,2	266	257	221	163	137	167	193	221	240
35	48	re	0,375	23,64	273	268	244	175	150	187	237	257	260
114	48	re	-0,875	24,19	290	272	232	181	138	169	218	248	264
116	48	re	-2,75	25,13	263	255	222	180	125	162	199	215	223
81	49	re	1,25	22,29	254	228	207	174	132	172	201	214	226
109	49	li	1,25	22,47	268	255	225	195	166	195	225	234	245
143	49	re	-1,125	24,33	285	273	250	196	143	180	225	258	274
167	51	re	0,5	23,45	273	264	231	203	166	188	217	231	249
129	51	re	-0,25	23,67	251	237	215	179	137	161	199	223	237
17	51	re	1,75	24,75	270	262	230	181	155	188	222	246	253
34	52	li	1,625	22,17	276	256	232	192	153	180	224	259	274
132	53	re	0	23,37	261	244	214	189	138	168	186	215	239
56	53	li	0,125	24,86	286	269	235	178	149	194	242	270	275
98	54	re	1,25	23,38	270	246	208	158	135	188	213	230	251
137	55	re	-1,75	22,42	257	228	193	146	117	134	169	210	231
115	55	re	0,375	22,73	283	267	239	200	151	180	235	269	272
74	55	re	0,125	22,86	270	263	228	192	160	196	244	267	271
37	55	re	0,375	24,18	276	268	234	180	150	180	225	248	259
5	55	li	-2,5	25,32	260	251	237	207	180	206	235	238	249
78	56	re	0	22,72	284	270	245	219	189	223	248	260	258
76	56	li	1,625	23,59	245	233	218	173	144	163	200	218	228
131	56	li	0,125	23,98	294	279	255	234	200	219	247	258	263
153	56	re	0	24,67	276	270	262	234	194	226	250	265	271
157	57	li	-0,425	21,67	264	256	207	149	119	155	222	249	258

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	n: 1,0 mm	n: 0,75 mm	n: 0,5 mm	n: 0,25 mm	Fovea	t: 0,25 mm	t: 0,5 mm	t: 0,75 mm	t: 1,0 mm
52	57	re	4,125	21,83	257	249	230	194	167	189	209	232	238
82	57	li	0,625	23,36	271	242	207	166	129	160	213	258	270
144	58	re	1,625	22,63	267	253	205	147	113	134	213	229	245
100	58	li	0	23,37	267	246	212	182	144	163	189	213	241
88	58	re	-1	24,86	281	269	253	225	199	219	241	258	253
123	58	li	-0,625	25,87	231	209	172	134	113	133	157	191	206
139	59	re	1,125	23,03	261	250	224	177	134	162	207	237	247
12	60	li	0	23,48	283	257	213	173	153	180	208	246	270
163	60	re	-7,75	26,86	232	209	188	165	157	164	183	202	212
51	61	re	2,75	22,1	260	244	219	163	128	144	193	219	238
38	61	li	1,75	22,39	257	222	190	162	150	176	212	229	245
83	61	re	0,5	22,46	229	215	189	149	113	141	180	205	214
112	61	li	0,75	23,27	271	253	221	169	135	160	201	240	251
13	62	li	1,5	23,04	220	199	165	127	115	122	160	188	220
171	63	re	1,75	23,34	269	264	235	179	140	190	223	247	251
18	63	re	2,75	23,7	258	240	200	170	148	174	203	223	236
71	64	re	2,625	22,56	248	240	223	197	165	179	211	228	238
39	64	re	-2	23,9	292	292	272	220	160	213	257	268	268
169	64	li	3,5	24,22	279	270	239	196	139	164	217	246	252
162	64	li	0,375	24,39	255	237	224	185	161	180	190	216	228
140	65	re	5,75	20,8	259	231	192	156	123	148	187	224	244
148	65	li	0,125	22,86	245	227	205	168	144	162	191	213	229
63	65	li	1,25	23,12	273	248	216	185	170	193	235	249	261
151	65	re	3	23,82	250	244	210	172	138	168	193	222	225
50	66	re	0,125	22,78	266	251	219	163	131	164	209	239	250
161	66	re	-6,25	25,55	277	252	211	177	150	172	216	246	269
40	67	li	3	22,32	288	283	247	193	156	199	242	263	279
67	67	li	0	23,35	248	239	207	165	137	165	196	224	237
159	68	re	4,25	21,4	235	231	189	162	137	162	202	229	237
72	69	li	3	21,93	261	249	214	172	149	186	219	236	239
21	69	li	1,125	22,6	271	261	232	190	155	184	213	237	254
107	69	li	0,5	23,62	259	252	196	167	146	152	177	199	207
108	70	re	-1,875	23,21	237	218	192	157	130	149	186	219	236
62	70	re	0,125	23,22	258	240	210	162	127	147	194	237	245
36	70	li	0,25	23,29	283	262	224	178	147	185	240	274	272

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	n: 1,0 mm	n: 0,75 mm	n: 0,5 mm	n: 0,25 mm	Fovea	t: 0,25 mm	t: 0,5 mm	t: 0,75 mm	t: 1,0 mm
70	70	re	-0,75	24,28	293	285	270	224	165	206	251	265	267
170	71	li	1	22,73	245	212	171	129	111	127	187	217	236
146	71	li	-0,125	23,45	276	269	252	202	158	196	244	262	273
105	71	re	2,25	24,23	238	230	208	171	147	182	201	212	219
156	72	li	0	22,5	253	237	210	176	148	192	227	245	253
111	72	re	0	24,25	256	236	204	156	134	158	199	226	243
155	73	li	-1	23,51	227	210	189	157	122	140	163	187	194
142	75	li	1	23,37	288	274	258	216	160	212	249	285	294
154	75	li	0,5	23,55	258	249	203	153	138	155	209	237	244
122	77	re	0,5	22,52	280	267	240	195	155	177	204	237	249
104	77	re	0	23,81	252	236	198	181	143	168	204	220	243
145	78	re	2,375	22,45	292	278	248	180	140	215	254	269	275
46	78	li	1,625	23,62	250	234	203	174	154	181	212	246	259
160	79	li	-1,75	22,31	251	232	208	157	131	162	189	226	233
103	79	li	-0,75	23,1	272	253	229	204	179	204	231	244	256
92	82	re	2,375	22,83	256	215	191	162	147	158	178	202	229
166	85	re	2	23	267	253	227	178	140	198	238	258	251
120	90	li	1	22,54	248	238	204	148	125	170	241	252	260
90	92	li	0	23,27	242	228	197	148	119	158	185	209	226

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	s: 1,00mm	s: 0,75mm	s: 0,50mm	s: 0,25mm	Fovea	i: 0,25mm	i: 0,50mm	i: 0,75mm	i: 1,00mm
58	13	li	-0,5	24,46	279	259	229	163	122	159	202	249	271
96	16	re	0,375	21,86	266	259	230	188	134	158	203	234	250
150	16	re	2,5	23,2	256	262	243	173	137	174	215	247	263
68	17	re	-0,5	23,51	257	254	226	167	126	164	208	241	251
89	20	re	0,375	22,47	295	285	235	184	145	170	217	266	288
95	21	li	1	23,39	284	270	231	173	126	181	250	273	279
87	21	re	-0,625	23,45	272	252	211	162	136	158	220	248	265
133	21	re	-0,25	23,51	282	264	221	194	145	165	193	250	261
59	21	re	0	24,16	257	247	201	151	138	165	224	252	260
55	22	re	-1,375	23,55	252	247	211	163	134	162	208	231	245
110	22	re	-2	23,94	255	244	203	161	126	153	206	235	247
127	22	re	0,25	23,97	272	268	238	173	141	191	235	263	275
101	22	re	-0,375	24,12	287	271	216	139	126	185	243	275	294
57	22	re	0	24,3	271	258	216	165	126	153	210	244	257
53	22	re	-3	24,38	276	250	192	136	114	144	206	261	283
1	22	re	-5,25	25,28	282	272	247	192	149	182	220	255	271
44	22	re	-9,125	27,98	283	267	246	180	149	172	242	280	279
15	23	re	0,625	22,6	308	299	255	176	131	170	254	293	311
118	23	li	-1	23,21	267	249	216	179	153	197	232	263	271
86	23	re	0	24,02	271	231	175	144	122	157	208	244	268
31	23	re	-1,5	24,35	271	271	247	191	145	189	250	280	279
73	23	re	-0,125	24,5	288	296	260	207	149	179	227	277	291
41	23	re	-7,5	26,3	270	257	218	172	145	172	212	248	261
54	24	re	0,75	23,42	269	244	193	140	118	149	208	249	269
29	24	li	-4,25	24,38	256	246	216	162	134	173	215	245	260
77	24	re	-1,5	24,47	268	261	227	167	126	179	233	258	264
85	24	li	-3,125	24,51	268	258	231	181	149	188	246	257	264
32	24	re	-2,5	24,95	287	275	230	172	141	176	248	271	283
14	24	re	0	25,08	271	249	206	167	138	174	230	263	268
84	25	li	0,375	23,37	287	280	243	166	145	183	252	291	287
130	25	re	-0,125	23,62	281	274	246	202	173	198	242	271	272
147	26	re	-0,25	23,65	293	277	234	177	137	187	243	281	292
25	26	li	-1	24,56	284	266	230	200	162	208	248	275	284

Tab. 4: Messergebnisse: Mittlere Netzhautdicken an 9 vertikalen Meßpunkten (Ref.= Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [μ m] Fovea, s = Netzhautdicke [μ m] superior [mm] der Fovea, i = Netzhautdicke [μ m] inferior [mm]der Fovea)

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	s: 1,00mm	s:0,75mm	s:0,50mm	s:0,25mm	Fovea	i:0,25mm	i:0,50mm	i:0,75mm	i:1,00mm
134	27	re	0,625	22,42	272	250	209	166	153	182	238	260	270
9	27	re	0,625	24,55	275	266	234	194	138	187	235	274	276
135	29	re	0,375	24,25	256	233	188	149	126	193	231	247	249
125	29	li	-11,125	28,45	287	258	216	160	149	187	213	255	269
93	30	li	-0,25	22,88	276	264	238	169	138	179	231	260	270
48	30	li	0	23,38	291	271	224	164	137	193	234	274	287
26	30	re	-2,875	24,34	248	241	211	175	134	162	200	241	244
149	31	li	-0,25	23,81	283	262	212	136	122	160	218	271	282
65	31	li	0,125	23,83	276	248	201	155	145	170	222	268	273
4	31	li	0,25	23,92	265	246	212	146	116	158	213	247	257
64	31	li	-0,875	24,44	269	257	235	184	145	175	237	261	271
80	31	li	0	24,56	275	253	202	153	137	174	233	269	271
28	32	re	0,625	22,99	310	313	284	217	160	225	278	305	308
16	33	li	-0,5	23,06	276	279	264	236	192	224	265	275	275
47	33	re	0,625	23,32	270	257	212	162	122	175	224	257	268
30	33	re	-0,25	23,92	284	277	232	159	134	185	237	272	286
23	33	li	-0,125	24,34	287	268	227	163	138	182	239	270	279
42	34	li	3,625	21,11	275	259	239	179	149	218	264	286	291
33	34	li	0,75	23,03	273	247	218	179	137	145	171	195	224
19	35	li	0	22,62	267	258	228	165	146	171	215	247	257
168	35	li	-5,25	26,35	263	249	237		189	217	255	267	254
66	36	re	0,25	23,83	276	271	226	177	145	159	194	250	270
49	36	li	-2,75	23,98	267	265	234	165	122	137	172	235	260
119	37	li	0	22,62	279	271	229	177	145	178	212	256	272
165	37	re	-0,25	23,54	276	245	198	126	102	133	201	265	275
117	38	re	0,25	23,05	281	266	211	141	118	144	160	228	276
22	38	re	-0,375	23,05	269	245	212	165	141	158	209	243	267
27	38	re	0	23,18	227	209	181	144	131	157	187	213	219
126	38	re	0,25	23,55	287	285	254	219	137	179	222	268	289
61	40	li	-0,675	22,48	257	232	194	151	126	146	196	232	253
102	40	re	-0,75	22,92	323	325	293	232	145	188	293	329	329
141	40	re	0,875	23,44	280	260	214	146	126	169	214	261	276
69	40	re	-1	25,25	275	260	223	167	137	186	226	252	260

Tab. 4: Messergebnisse: Mittlere Netzhautdicken an 9 vertikalen Meßpunkten (Ref.= Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [µm] Fovea, s = Netzhautdicke [µm] superior [mm] der Fovea, i = Netzhautdicke [µm] inferior [mm]der Fovea)

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	s: 1,00mm	s:0,75mm	s:0,50mm	s:0,25mm	Fovea	i:0,25mm	i:0,50mm	i:0,75mm	i:1,00mm
6	41	li	0,25	22,45	286		246	180	145	165	218	264	286
113	41	re	0	22,69	266	240	183	132	118	128	165	206	240
99	41	li	0,25	23,32	298	288	273	243	189	199	228	264	282
124	42	re	-0,125	24,03	268	265	235	187	126	151	217	259	268
60	43	li	0	23,2	272	254	199	140	130	168	221	257	275
121	43	li	-0,875	23,7	290	282	252	206	137	157	212	270	292
94	43	re	-4,25	25,63	275	272	245	208	167	215	248	261	260
24	43	re	-2,5	25,74	264	257	241	195	145	178	227	251	264
43	44	li	0,25	23,07	298	279	271	226	196	235	268	289	291
91	45	re	-0,125	23,49	224	220	205	156	122	159	196	209	229
152	45	re	0	24,11	256	250	210	170	149	148	208	240	249
128	46	li	0,625	22,58	283	270	247	205	149	152	189	226	252
75	46	li	0,625	22,77	279	273	233	166	143	156	205	244	269
136	47	re	2,25	21,9	297	249	200	143	123	172	237	274	285
158	47	re	-4,25	23,22	275	249	218	173	141	173	223	247	271
138	48	li	0,825	23,2	264	267	242	190	131	159	198	231	253
35	48	re	0,375	23,64	274	268	250	193	153	199	250	282	269
114	48	re	-0,875	24,19	287	283	226	169	145	165	212	263	276
116	48	re	-2,75	25,13	239	213	203	151	138	205	248	260	254
81	49	re	1,25	22,29	252	236	202	162	138	166	219	241	252
109	49	li	1,25	22,47	271	270	259	198	177	217	245	258	270
143	49	re	-1,125	24,33	299	271	237	195	138	225	274	287	294
167	51	re	0,5	23,45	270	264	231	187		197	239	262	265
129	51	re	-0,25	23,67	263	249	223	163	134	160	210	241	245
17	51	re	1,75	24,75	265	264	228	189	159	203	247	259	260
34	52	li	1,625	22,17	294	276	239	194	153	191	228	264	278
132	53	re	0	23,37	267	246	213	164	146	160	198	243	249
56	53	li	0,125	24,86	295	281	250	198	153	190	226	270	283
98	54	re	1,25	23,38	276	277	255	184	126	164	235	277	280
137	55	re	-1,75	22,42	259	258	218	150	118	135	191	242	261
115	55	re	0,375	22,73	302	279	250	191	157	180	242	275	282
74	55	re	0,125	22,86	293	277	246	193	161	175	212	262	272
37	55	re	0,375	24,18	288	261	238	189	155	185	228	276	280

Tab. 4: Messergebnisse: Mittlere Netzhautdicken an 9 vertikalen Meßpunkten (Ref.= Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [μ m] Fovea, s = Netzhautdicke [μ m] superior [mm] der Fovea, i = Netzhautdicke [μ m] inferior [mm]der Fovea)

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm]	s: 1,00mm	s:0,75mm	s:0,50mm	s:0,25mm	Fovea	i:0,25mm	i:0,50mm	i:0,75mm	i:1,00mm
5	55	li	-2,5	25,32	252		237	206	193		233	252	252
78	56	re	0	22,72	276	281	257	203	189	209	253	270	272
76	56	li	1,625	23,59	256	228	188	164	149	185	217	243	255
131	56	li	0,125	23,98	299	283	265	243	201	227	261	286	278
153	56	re	0	24,67	275	268	260	209	197	221	259	269	268
157	57	li	-0,425	21,67	280	266	226	150	114	138	226	266	275
52	57	re	4,125	21,83	262	246	216	190	161	186	228	247	256
82	57	li	0,625	23,36	274	269	230	167	126	140	188	237	272
144	58	re	1,625	22,63	266	254	212	156	114	155	196	258	274
100	58	li	0	23,37	244	230	210	168	138	180	228	258	260
88	58	re	-1	24,86	268	268	262	236	208	237	255	259	272
123	58	li	-0,625	25,87	236	233	213	156	114	131	154	200	226
139	59	re	1,125	23,03	263	264	244	184	134	151	207	255	269
12	60	li	0	23,48	274	266	225	182	152	182	239	273	291
163	60	re	-7,75	26,86	278	260	229	189	193	231	248	275	272
51	61	re	2,75	22,1	265	247	208	146	126	163	204	268	276
38	61	li	1,75	22,39	281	245	187	160	153	169	205	255	279
83	61	re	0,5	22,46	253	248	235	198	126	159			
112	61	li	0,75	23,27	273	263	234	165	137	179	218	261	274
13	62	li	1,5	23,04	263	231	181	135	116	130	162	216	239
171	63	re	1,75	23,34	269	266	211	160	138	171	232	257	264
18	63	re	2,75	23,7	250	230	192	168	146	174	211	245	260
71	64	re	2,625	22,56	244	230	214	187	167	195	204	232	244
39	64	re	-2	23,9	280	278	256	185	160	210	270	284	282
169	64	li	3,5	24,22	275	272	253	208	134	173	217	255	266
162	64	li	0,375	24,39	264	261	241	213	181	206	220	239	248
140	65	re	5,75	20,8	260	239	187	136	106	152	213	250	260
148	65	li	0,125	22,86	250	238	216	174	145	159	182	213	241
63	65	li	1,25	23,12	275	262	224	188	177	201	236	254	260
151	65	re	3	23,82	256	240	211	171	145	167	213	233	249
50	66	re	0,125	22,78	283	271	248	187	134	177	224	256	271
161	66	re	-6,25	25,55	305	264	227	164	157	182	225	268	285
40	67	li	3	22,32	291	275	240	182	160	209	258	283	281

Tab. 4: Messergebnisse: Mittlere Netzhautdicken an 9 vertikalen Meßpunkten (Ref.= Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [μ m] Fovea, s = Netzhautdicke [μ m] superior [mm] der Fovea, i = Netzhautdicke [μ m] inferior [mm]der Fovea)

ld-Nr.	Alter [a]	Auge	Ref. [dpt]	AL [mm] s:	1,00mm	s:0,75mm	s:0,50mm	s:0,25mm	Fovea	i:0,25mm	i:0,50mm	i:0,75mm	i:1,00mm
67	67	li	0	23,35	261	243	206	153	130	166	213	250	255
159	68	re	4,25	21,4	240	239	197	150	126	139	176	216	234
72	69	li	3	21,93	279	257	232	206	153	206	244	264	276
21	69	li	1,125	22,6	276	269	240	185	156	201	233	262	276
107	69	li	0,5	23,62	226	223	212	171	141	164	196	250	247
108	70	re	-1,875	23,21	260	247	200	155	134	147	178	230	255
62	70	re	0,125	23,22	260	258	210	152	122	152	218	250	260
36	70	li	0,25	23,29	269	255	224	180	145	182	229	257	265
70	70	re	-0,75	24,28	290	291	281	237	162	196	231	268	284
170	71	li	1	22,73	259	238	183	133	113	137	187	234	255
146	71	li	-0,125	23,45	267	266	255	231	169	187	232	256	282
105	71	re	2,25	24,23	244	241	231	201	145	155	197	229	237
156	72	li	0	22,5	225	220	200	188	141	175	227	252	259
111	72	re	0	24,25	271	257	230	167	134	151	196	228	264
155	73	li	-1	23,51	227	210	183	147	130	161	196	223	233
142	75	li	1	23,37	276	267	263	227	165	203	236	260	293
154	75	li	0,5	23,55	258	263	235	165	153	161	201	244	260
122	77	re	0,5	22,52	291	270	235	200	153	209	251	267	278
104	77	re	0	23,81	263	236	206	164	138	163	212	248	252
145	78	re	2,375	22,45	283	274	238	158	141	212	246	278	276
46	78	li	1,625	23,62	244	232	223	181	158	165	214	240	240
160	79	li	-1,75	22,31	240	232	197	149	130	152	195	232	251
103	79	li	-0,75	23,1	282	269	244	214	189	202	226	260	276
92	82	re	2,375	22,83	278	258	235	198	153	177	222	250	270
166	85	re	2	23	245	242	237	212	134	164	197	236	240
120	90	li	1	22,54	308	291	249	179	131	166	217	250	261
90	92	li	0	23,27	237	231	194	134	121	146	186	229	244

Tab. 4: Messergebnisse: Mittlere Netzhautdicken an 9 vertikalen Meßpunkten (Ref.= Refraktion, AL = Achsenlänge, Fovea = Netzhautdicke [µm] Fovea, s = Netzhautdicke [µm] superior [mm] der Fovea, i = Netzhautdicke [µm] inferior [mm]der Fovea)

Tab. 5: Messergebnisse der 46 Augenpaare (Ref. = Refraktion, AL = Achsenlänge des Auges, Fovea = Netzhautdicke [µm] der Fovea, STW F = Standardabweichung Fovea, STW 1 N / T = Standardabweichung 1 mm nasal / temporal der Fovea,

	n = Netzhautdicke [µm] 1	mm nasal, $t = Netzhautdicke$	[µm] 1 mi	m temporal der	Fovea)
--	--------------------------	-------------------------------	-----------	----------------	--------

ld-Nr.	Sex	Alter[a]	Auge	Ref.[dpt]	AL [mm]	Fovea	STW F	n: 1mm	STW1N	t: 1mm	STW1T
1	W	22	li	-3,75	24,89	151	4,2	273	5,7	253	3,1
1	w	22	re	-5,25	25,28	149	5,7	275	4,0	252	0,0
14	m	24	li	0	25,25	136	2,1	257	9,2	247	6,1
14	m	24	re	0	25,08	139	4,7	265	5,6	249	2,3
15	m	23	li	0,625	22,94	134	3,6	292	2,3	273	4,0
15	m	23	re	0,625	22,6	133	1,7	294	6,1	280	2,3
17	m	51	li	1,5	24,68	152	3,4	269	4,0	261	8,7
17	m	51	re	1,75	24,75	155	2,9	270	4,0	253	2,3
18	w	63	li	2,75	23,25	145	0,5	248	4,0	235	12,2
18	w	63	re	2,75	23,7	148	4,3	258	3,5	235	1,7
22	w	38	li	-0,25	23,06	142	1,9	244	0,0	244	6,9
22	w	38	re	-0,375	23,05	141	2,5	248	4,0	241	6,1
26	w	30	li	-2,875	24,32	145	4,3	247	2,3	235	2,3
26	w	30	re	-2,875	24,34	138	9,8	247	4,6	241	6,1
27	m	38	li	-0,25	23,09	140	2,3	224	14,4	210	8,5
27	m	38	re	0	23,18	128	12,1	220	0,0	204	0,6
31	m	23	li	-1,75	24,1	149	4,3	268	0,0	251	6,1
31	m	23	re	-1,5	24,35	148	1,9	270	1,7	260	4,0
37	w	55	li	0,5	24,03	148	3,6	278	4,6	250	2,9
37	w	55	re	0,375	24,18	150	6,1	275	4,0	259	6,1
41	m	23	li	-7,875	26,43	145	0,5	270	1,7	248	4,0
41	m	23	re	-7,5	26,3	142	4,5	261	4,6	252	4,0
44	m	22	li	-9	27,91	147	5,1	280	4,6	253	2,3
44	m	22	re	-9,125	27,98	152	6,8	279	4,0	259	2,3
51	w	61	li	2,75	21,84	137	7,9	246	2,1	232	6,9
51	w	61	re	2,75	22,1	128	8,3	257	2,3	235	6,1
53	w	22	li	-1	23,55	121	4,6	268	0,6	256	0,0
53	w	22	re	-3	24,38	119	3,8	260	8,0	240	4,0
54	w	24	li	-1	23,33	123	2,0	257	6,1	241	2,3
54	w	24	re	0,75	23,42	120	2,3	261	8,3	239	2,3
55	W	22	li	-1,375	23,62	131	3,8	259	4,6	228	4,0
55	W	22	re	-1,375	23,55	133	5,0	266	11,0	224	4,0
57	w	22	li		24,11	135	3,5	260	4,0	247	3,1
57	W	22	re		24,3	129	3,8	257	4,6	243	2,3
62	W	70	li	-0,125	23,17	124	2,3	249	4,6	252	0,0
62	w	70	re	0,125	23,22	127	3,8	257	2,3	244	4,0
69	m	40	li	-0,75	25,57	139	4,2	268	6,9	250	10,4
69	m	40	re	-1	25,25	137	6,0	269	4,0	245	2,3
70	m	70	li	0,25	24,12	158	6,6	282	10,1	261	7,4
70	m	70	re	-0,75	24,28	165	6,2	292	2,3	267	2,3
71	m	64	li	1,625	22,91	176	3,9	260	23,8	240	20,8
71	m	64	re	2,625	22,56	165	6,7	245	4,4	237	2,3
73	w	23	li	0	24,3	153	1,0	283	4,0	274	2,3
73	w	23	re	-0,125	24,5	147	2,1	292	4,6	268	0,0
78	m	56	li		22,75	168	9,7	276	7,0	255	7,0
78	m	56	re		22,72	189	5,7	283	7,5	258	3,5
86	w	23	li	0,25	23,94	126	6,6	241	5,6	217	9,5
86	W	23	re	0	24,02	119	2,0	229	6,1	228	4,0
87	w	21	li	-0,5	23,49	132	6,7	260	14,0	243	2,3
87	w	21	re	-0,625	23,45	138	2,2	259	6,1	245	6,1
91	m	45	li	-0,375	23,23	118	7,9	230	2,0	208	6,1
91	m	45	re	-0,125	23,49	81323	7,0	223	11,1	200	10,0

Tab. 5: Messergebnisse der 46 Augenpaare (Ref. = Refraktion, AL = Achsenlänge des Auges, Fovea = Netzhautdicke [μ m] der Fovea, STW F = Standardabweichung Fovea, STW 1 N / T = Standardabweichung 1 mm nasal / temporal der Fovea,

 $n = Netzhautdicke [\mu m] 1 mm nasal, t = Netzhautdicke [\mu m] 1 mm temporal der Fovea)$

ld-Nr.	Sex	Alter[a]	Auge	Ref.[dpt]	AL[mm]	Fovea	STW F	n: 1mm	STW1N	t: 1mm	STW1T
94	w	43	li	-1,5	23,97	162	9,3	279	4,0	252	7,4
94	w	43	re	-4,25	25,63	165	8,5	271	4,0	251	9,6
96	W	16	li	0,625	21,73	147	7,6	253	10,1	233	0,7
96	W	16	re	0,375	21,86	133	3,4	248	4,0	231	2,3
101	m	22	li	-2,875	25,34	136	7,9	280	2,6	257	6,1
101	m	22	re	-0,375	24,12	128	1,9	283	4,0	265	2,3
102	m	40	li	-0,25	22,93	167	5,7	323	0,0	291	6,9
102	m	40	re	-0,75	22,92	152	4,4	315	8,4	290	4,6
110	w	22	li	-2,5	24,15	137	6,3	239	6,1	217	6,1
110	W	22	re	-2	23,94	127	2,0	255	2,3	221	2,3
113	W	41	li	0,125	22,69	125	9,5	237	6,1	202	4,0
113	w	41	re	0	22,69	117	7,6	211	4,6	219	8,3
114	m	48	li	-0,625	23,93	144	9,1	296	2,3	262	11,8
114	m	48	re	-0,875	24,19	138	5,7	289	2,1	265	7,9
115	W	55	li	-0,5	22,61	147	5,2	287	4,0	273	4,0
115	w	55	re	0,375	22,73	151	5,3	282	4,6	270	9,5
127	m	22	li	0	23,88	142	7,4	267	2,3	243	6,1
127	m	22	re	0,25	23,97	144	6,0	268	3,5	245	4,6
129	w	51	li	-0,875	23,68	161	3,3	244	6,9	240	10,6
129	w	51	re	-0,25	23,67	137	6,4	251	6,1	236	4,0
130	m	25	li	0,125	23,36	139	9,8	270	1,7	251	6,1
130	m	25	re	-0,125	23,62	171	2,3	275	0,0	253	2,3
133	w	21	li	-0,5	23,54	127	4,6	265	4,6	252	6,9
133	w	21	re	-0,25	23,51	140	6,7	266	3,8	252	4,4
134	w	27	li	0,375	22,21	149	10,3	272	10,0	250	10,4
134	w	27	re	0,625	22,42	156	5,4	278	6,6	246	2,1
137	w	55	li	-1,5	22,25	123	4,1	253	2,3	232	0,0
137	w	55	re	-1,75	22,42	117	4,3	255	10,1	231	6,1
140	w	65	li	7,25	20,42	148	12,2	256	13,7	226	22,0
140	w	65	re	5,75	20,8	123	15,4	253	5,2	240	15,5
145	w	78	li	2,75	22,43	134	5,5	270	1,7	255	9,2
145	w	78	re	2,375	22,45	140	3,9	288	6,1	274	10,0
151	w	65	li	2,75	23,7	140	3,8	249	10,1	235	2,3
151	w	65	re	3	23,82	138	5,2	249	8,3	225	8,3
152	W	45	li	-0,25	23,86	148	1,9	255	10,1	239	2,3
152	w	45	re	0	24,11	142	8,7	244	12,0	233	2,3
153	m	56	li	-3,625	24,45	191	7,7	282	4,6	265	4,6
153	m	56	re		24,67	194	8,9	276	6,1	271	3,5
163	m	60	li	-3	27,55	155	35,8	262	18,3	249	32,3
163	m	60	re	-7,75	26,86	157	24,2	239	9,2	212	6,9

Danksagung

Herrn Priv. doz. Dr. Göbel für die Themenstellung, Einarbeitung in diese und die Anwendung der verschiedenen Untersuchungsverfahren, intensive Betreuung der Dissertationsarbeit sowie das Erstellen des Gutachtens.

Herrn Prof. Dr. Dr. Grehn für die zur Verfügungstellung der Räumlichkeiten und Untersuchungsgeräte für die Durchführung der Dissertation in seiner Klinik sowie das Erstellen des Gutachtens.

Den Oberärzten und Assistenzärzten der Augenklinik und Poliklinik für die Unterstützung meinerseits insbesondere bei der Rekrutierung der Probanden, stellvertretend und herausragend Herrn Priv. doz. Dr. Klink.

Frau Hartmann und Frau Stangl für die Einarbeitung und Hilfestellungen bei der Anwendung des GBS und OCT.

Meinen aus der "Lerngruppe" in Studienzeiten erwachsenen Freunden Jens, Monika und Oliver für die herrlichen Diskussionen, Motivationen und Unterstützung auch bei der Erstellung und Vollendung dieser Dissertation.

Silke und Barbara für die computertechnische und freundschaftliche Unterstützung auch bei der Erstellung dieser Dissertation.

Meiner Schwester Susanne für das Korrekturlesen und die wertvollen Ratschläge.

Meinen Eltern für Ihre endlose Sorge, Unterstützung, Ermöglichung der Ausbildung und damit auch dieser Dissertation.

Meiner Frau Sandra für die liebevolle Unterstützung und Motivation während des Studiums sowie Durchführung und Fertigstellung dieser Dissertation.

Florian Hartmann