
Citation: Gerner, B.; Aghai-

Trommeschlaeger, F.; Kraus, S.;

Grigoleit, G.U.; Zimmermann, S.;

Kurlbaum, M.; Klinker, H.; Isberner,

N.; Scherf-Clavel, O. A

Physiologically-Based

Pharmacokinetic Model of

Ruxolitinib and Posaconazole to

Predict CYP3A4-Mediated

Drug–Drug Interaction Frequently

Observed in Graft versus Host

Disease Patients. Pharmaceutics 2022,

14, 2556. https://doi.org/10.3390/

pharmaceutics14122556

Academic Editors: Antonello Di

Paolo and Guido Bocci

Received: 24 October 2022

Accepted: 18 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

A Physiologically-Based Pharmacokinetic Model of Ruxolitinib
and Posaconazole to Predict CYP3A4-Mediated Drug–Drug
Interaction Frequently Observed in Graft versus Host
Disease Patients
Bettina Gerner 1, Fatemeh Aghai-Trommeschlaeger 2, Sabrina Kraus 2, Götz Ulrich Grigoleit 2,† ,
Sebastian Zimmermann 1, Max Kurlbaum 3, Hartwig Klinker 2, Nora Isberner 2 and Oliver Scherf-Clavel 1,4,*

1 Institute for Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
2 Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Strasse 6,

97080 Würzburg, Germany
3 Core Unit Clinical Mass Spectrometry, Division of Endocrinology and Diabetology, Department of Internal

Medicine I, University Hospital Würzburg, 97070 Würzburg, Germany
4 Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany
* Correspondence: oliver.scherf-clavel@hs-aalen.de; Tel.: +49-7361-5763552
† Current Address: Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg,

47166 Duisburg, Germany.

Abstract: Ruxolitinib (RUX) is approved for the treatment of steroid-refractory acute and chronic
graft versus host disease (GvHD). It is predominantly metabolized via cytochrome P450 (CYP) 3A4.
As patients with GvHD have an increased risk of invasive fungal infections, RUX is frequently
combined with posaconazole (POS), a strong CYP3A4 inhibitor. Knowledge of RUX exposure under
concomitant POS treatment is scarce and recommendations on dose modifications are inconsistent. A
physiologically based pharmacokinetic (PBPK) model was developed to investigate the drug–drug
interaction (DDI) between POS and RUX. The predicted RUX exposure was compared to observed
concentrations in patients with GvHD in the clinical routine. PBPK models for RUX and POS were
independently set up using PK-Sim® Version 11. Plasma concentration-time profiles were described
successfully and all predicted area under the curve (AUC) values were within 2-fold of the observed
values. The increase in RUX exposure was predicted with a DDI ratio of 1.21 (Cmax) and 1.59 (AUC).
Standard dosing in patients with GvHD led to higher RUX exposure than expected, suggesting
further dose reduction if combined with POS. The developed model can serve as a starting point
for further simulations of the implemented DDI and can be extended to further perpetrators of
CYP-mediated PK-DDIs or disease-specific physiological changes.

Keywords: physiologically based pharmacokinetic (PBPK) modeling; ruxolitinib; posaconazole;
drug–drug interactions (DDIs); graft versus host disease; cytochrome P450 3A4 (CYP3A4);
pharmacokinetics

1. Introduction

Ruxolitinib (RUX) is an orally administered multi-kinase inhibitor with potent and
selective inhibitory activity against Janus-associated kinases (JAK) 1 and 2 and is approved
for the treatment of myelofibrosis and polycythemia vera. In 2019 and 2021, the U.S.
Food and Drug Administration (FDA) extended the indication to the treatment of steroid-
refractory acute and chronic graft versus host disease (GvHD), respectively. The European
Medicines Agency (EMA) approved RUX for the treatment of GvHD in March 2022. GvHD
is the most common life-threatening complication after allogeneic hematopoietic stem cell
transplantation (allo-HSCT) and a challenge to successful transplant outcomes [1,2]. Acute
GvHD mainly affects the skin, liver, and gastrointestinal tract. Despite prophylaxis with
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immunosuppressive agents, about half of the patients undergoing allo-HSCT develop acute
GvHD and 30–70% develop chronic GvHD [1,3–5]. For first-line treatment of moderate
to severe acute and chronic GvHD, systemically high-dosed glucocorticoids are used [6].
However, less than half of the patients treated for acute and only 40–50% of patients treated
for chronic GvHD respond to the treatment, respectively [1].

Invasive fungal infections play a major role regarding mortality and morbidity after
allo-HSCT [7]. Therefore, antifungal primary prophylaxis is crucial to improve outcomes.
Posaconazole (POS) has been shown to be superior to fluconazole for antifungal prophy-
laxis in GvHD patients and is therefore frequently used [8,9]. It is a potent inhibitor of
cytochrome P450 (CYP) 3A4 (IC50 = 1.5 µM) and can lead to a strong increase in the exposure
of CYP3A4 substrates [10–12]. POS is classified a Biopharmaceutical Classification System
(BCS) Class II compound with solubility-limited pharmacokinetics and slow absorption
and distribution. Oral bioavailability of POS is highly dependent on the formulation.

RUX is a BCS Class I compound, characterized by high permeability, high solubility,
and rapid dissolution. RUX is metabolized by CYP3A4 (>50%) and to a lower extent by
CYP2C9. Consequently, RUX elimination is susceptible to drug–drug interactions (DDI) if
co-administered with POS, potentially increasing RUX exposure. Very common adverse
events of RUX are blood- (e.g., anemia, thrombocytopenia, neutropenia) and lymphatic
system disorders. In addition, JAK inhibition increases the probability of invasive fungal
infections by impacting immune cells (e.g., dendritic cells, T cells), thus contributing to
immunosuppression [13,14]. RUX is commonly dosed 10 mg twice daily (BID) in GvHD
patients. Due to the high probability of concomitant administration of strong CY3A4
inhibitors (e.g., calcineurin inhibitors, azoles) a lower RUX dose compared to myelofibrosis
treatment was chosen for the pivotal studies in GvHD patients without a formal dose-
finding study [15]. Dose adjustment is recommended for safety reasons and is based
on platelet count, absolute neutrophil count, and total bilirubin elevation. Increased
RUX plasma levels due to CYP3A4 or dual CYP2C9/3A4-inhibition may lead to a higher
occurrence of adverse events, which is an additional burden in the vulnerable population
of GvHD patients.

However, different recommendations regarding dose adjustments for the combination
of RUX with strong CYP3A4 inhibitors (e.g., ketoconazole, POS) or dual CYP2C9/3A4
inhibitors (fluconazole) are given by the FDA and EMA. Based on studies with the FDA in-
dex inhibitors ketoconazole and fluconazole, the EMA summary of product characteristics
(SmPC) recommends a general dose reduction of the RUX single daily dose by 50% with
concurrent strong CYP3A4 inhibitors or dual CYP2C9/3A4 inhibitors, regardless of the
indication [15–17]. In contrast, the FDA label distinguishes between myelofibrosis, poly-
cythemia vera, and GvHD. For GvHD patients, a reduced RUX starting dose of 5 mg BID is
only recommended if it is co-administered with fluconazole, whereas dose adjustments
when used concomitantly with strong CYP3A4 inhibitors are explicitly excluded. So far, no
investigations have been conducted of the combination of RUX and POS.

According to FDA and EMA, physiologically based modeling (PBPK) is a power-
ful tool to qualitatively and quantitatively analyze the impact of DDI and can be used
in lieu of clinical studies [16,18–21]. In recent years, drug submissions containing PBPK
analyses to investigate DDI have significantly increased (to 60%) [20,22]. In general, FDA
analysis of regulatory submissions shows that the PBPK model approach has good per-
formance in predicting the effect of CYP3A4 inhibition on the pharmacokinetics of drug
substrates [20,21,23]. So far, PBPK modeling is not applied in the clinical routine even
though it can be used to guide dose adjustment by predicting the potential DDI of concur-
rently administered perpetrators and victims. As no investigations have been conducted
of the combination of RUX and POS so far, the aim of this work was to develop a PBPK
model to describe changes in RUX exposure due to CYP3A4-inhibition by POS. The de-
veloped DDI model was used to compare simulated RUX exposure in healthy individ-
uals to observed concentrations in patients treated for aGvHD or cGvHD in the routine
clinical setting.
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2. Materials and Methods
2.1. Software

Version 11 of the freely available software PK-Sim®, which is part of the Open Systems
Pharmacology Suite (Bayer Technology Services, Leverkusen, Germany) [24], was used
for POS and RUX model building. Parameter optimization using the integrated Monte
Carlo algorithm and sensitivity analyses were also performed with PK-Sim®. Extraction of
clinical study data from published literature was conducted with the semi-automated tool
WebPlotDigitizer (Version 4.3, Ankit Rohatgi, Pacifica, CA, USA). For plot generation, R
Studio Version 1.1.383 (RStudio Incorporation, Boston, MA, USA) running R version 3.6.3
(R Foundation for Statistical Computing, Vienna, Austria, 2020) [25] was used. All statistical
calculations and investigation of model performance were carried out with Microsoft Excel
2016 Version 16.0 (Microsoft Corporation, Redmond, WA, USA).

2.2. Posaconazole Model Development

An extensive literature research was conducted to obtain physicochemical proper-
ties (e.g., molecular weight, lipophilicity, pKa, solubility at different pH values) of POS.
Human intravenous (i.v.) data from five clinical studies comprising different dose regi-
mens (50 mg, 100 mg, 200 mg, 250 mg, and 300 mg) were used for the development of
the initial model [26]. Different methods for the calculation of tissue distribution and
cellular permeability were evaluated and values obtained from literature for lipophilicity
(LogP) [27], fraction unbound in plasma(fup) [28], and for the catalytic rate constant (kcat)
for UGT1A4 [29] were integrated and optimized in a stepwise approach, if necessary. In
addition, the influence of glomerular filtration rate (GFR) fraction and biliary clearance
was investigated. The model was tested with human i.v. data from a 300 mg single dose
(SD) clinical study [30]. POS is available as suspension (SUS) (40 mg/mL), delayed-release
SUS (30 mg/mL), delayed release tablet (DR-tablet) (100 mg per tablet) and i.v. formula-
tion (18 mg/mL). The delayed-release SUS was approved only recently (Noxafil® 300 mg
PowderMix, FDA: May 2021 and EMA: January 2022) and was therefore not used for
model building. As the DR-tablet is less susceptible to changes in gastric conditions or
pH-dependent precipitation, two different formulations were modeled for the POS SUS
and DR-tablet [31]. The DR-tablet was modeled using concentration-time data from two
clinical studies [32,33]. Optimized parameters consisted of intestinal solubility, specific
intestinal permeability, and the formulation (time to 50% dissolution, lag time, and dissolu-
tion profile). To account for the higher POS exposure after administration of the DR-tablet,
the intestinal solubility was adapted in all tablet simulations and fitted to the physiological
pH changes along the gastrointestinal tract [34]. POS SUS was modeled using training
datasets from two SD [35,36] clinical studies and one multiple dose (MD) [35] clinical
study. Particle dissolution was used to model POS SUS. Specific intestinal permeability,
solubility at different pH values, and gain per charge were obtained from literature and
optimized accordingly to better fit the data. For POS SUS, supersaturation was enabled to
account for the precipitation behavior of POS upon entering the small intestine [27]. The
precipitated drug was treated as “soluble” so that the precipitated POS amount was added
to the solid drug mass. Thereby, the solid fraction available for dissolution and the particle
size were increased and the poor solubility in the intestines was modeled more accurately.
The thickness of the unstirred water layer and the particle radius were optimized to better
simulate the poor solubility of POS SUS in the intestinal pH environment.

The parameters were tested using SD and MD data from clinical studies [32,35,37], as
shown in Table S1. Virtual mean human individuals were created according to the demo-
graphics of the respective studies and used in the simulations. A summary of each study
regarding the demographics, administration protocols, and their assignment to training or
test datasets is documented in Table S1 of the Electronic Supplementary Materials (ESM). A
schematic workflow of the POS model development and evaluation including optimized
parameters is shown in Figure 1.
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Figure 1. Schematic workflow showing the development and evaluation of the perpetrator (POS) and
victim (RUX) PBPK models, which were developed separately. Initial model development started
with basic input parameters from the literature. Parameters optimized during model building are shown
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in the blue and green rectangles, respectively. The final input parameters are given in Tables S2 and S6.
The entire model building and evaluation process was supported using clinical study data, used
either as training or test dataset (see Tables S1 and S5 for allocation). The final POS and RUX models
were applied to simulate DDI between these substances and simulations with data obtained from
GvHD patients were conducted (see gray rectangle).

2.3. Ruxolitinib Model Development

Physicochemical data of RUX obtained by extensive literature search were used as
initial input parameters. The RUX model was developed based on eleven datasets from
three clinical studies, covering a dose range from 10 to 100 mg. In these studies, RUX was
administered orally in different dose regimens (QD, BID, TID), in single or multiple dose
scenarios. Four SD clinical studies were used as training datasets [38]. Formulation-related
parameters were optimized to model the extended-release tablet (time to 50% dissolution,
lag time, and shape of dissolution profile) (Figure 1). The model was tested using data
from two SD [39] and five MD clinical studies [40]. A summary of each study regarding
the demographics, administration protocols, and the allocation to either the training or the
test dataset is given in Table S5 of the ESM.

2.4. Model Evaluation

RUX and POS PBPK models were evaluated using various methods according to the
guidelines on the reporting of PBPK modeling by the EMA and FDA [19,41]. For a first
visual interpretation of the model performance, the trajectories of the predicted plasma
concentrations were compared to the respective observed profiles. Goodness-of-fit plots
were generated in which the predicted and observed plasma concentrations, predicted
and observed maximum concentrations (Cmax), as well as the predicted areas under the
systemic drug concentration–time curve from time zero to the time of the last concentration
(AUClast) were compared. Prediction error (PE) (Equation (1)), mean prediction error (MPE)
(Equation (2)) and mean absolute prediction error (MAPE) (Equation (3)) were calculated
to evaluate model accuracy and precision.

PE [%] =
Cpredicted, i− Cobserved, i

Cobserved, i
× 100% (1)

MPE [%] =
1
n
×

n

∑
i=1

PEi (2)

MAPE [%] =
1
n
×

n

∑
i=1
|PEi| (3)

Mean relative deviation (MRD, Equation (4)), defined as the average distance of the
observed plasma concentration values from the predicted values on a logarithmic scale [42],
was calculated for a quantitative measure of model performance. MRD values ≤ 2 were
considered acceptable and characterize an adequate model performance in the case that the
average of the predicted values was equal to or less than a factor of 2 of the observed values.

MRD = 10x; x =

√
1
n

n

∑
i=1

(log10cpredicted,i − log10cobserved,i)
2 (4)

Abbreviations in Equations (1)–(4) are as follows: cpredicted,i = predicted plasma con-
centration, cobserved,i = corresponding observed plasma concentration, n = number of
observed values.

Local sensitivity analysis of single parameters of the POS and RUX models was
performed, measured as relative changes of AUClast or Cmax. The sensitivity analysis of
parameters that had been optimized or might have had a strong influence on the models
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due to the calculation methods in PK-Sim® was conducted with a variation range of 10.0
and a maximum number of 9 steps.

2.5. Drug–Drug Interaction between Posaconazole and Midazolam

To evaluate the inhibitory constant (Ki) of POS for the competitive inhibition of
CYP3A4, the developed POS model was combined with a published and evaluated PBPK
model for midazolam (MDZ) [43]. Plasma-concentration time profiles from a phase 1 inter-
action study after i.v. and oral administration of MDZ either given alone or in combination
with 200 mg or 400 mg oral POS were used to investigate the effect of oral POS on MDZ
exposure. The clinical studies used for DDI modeling of POS and MDZ are summarized in
Table S9. The quality of the DDI interaction modeling was evaluated in a stepwise approach.
First, the respective plasma concentration-time profiles were visually compared. For a
quantitative evaluation, the ratios of AUClast and Cmax for the administration of i.v. and
oral MDZ alone or together with its perpetrator, respectively, were calculated according
to Equations (5) and (6). The calculated DDI ratios were compared in each case with the
respective values reported by Krishna et al. [44].

DDI AUClast ratio =
AUClast MDZ in combination with POS

AUClast MDZ alone
(5)

DDI Cmax ratio =
Cmax MDZ in combination with POS

Cmax MDZ alone
(6)

2.6. Simulations in Graft versus Host Disease Patients

We used 278 serum samples from 30 patients with either acute or chronic GvHD
receiving any dose regimen of RUX collected between February 2019 and February 2021 at
the University Hospital of Würzburg as part of a non-interventional prospective clinical
trial. The study was approved by the Ethics Commission of the University of Würzburg (ref
199/18-am). All performed procedures were in accordance with the Declaration of Helsinki.
Written informed consent was obtained from all patients. RUX dosage, time of last intake,
time of sampling, and additional co-medications were recorded during the study. POS
dosage was documented during data collection, yet the time of last intake was missing.
It was assumed that POS was taken at the same time as RUX and that the concentrations
were obtained in a steady state. RUX and POS concentrations were measured in human
serum using previously published liquid chromatography methods [45,46]. As the PBPK
model was developed and evaluated for interaction between POS and RUX, the dataset was
filtered for patients receiving POS as antifungal prophylaxis. Moreover, patients receiving
RUX without any strong or moderate CYP3A4 inhibitor were filtered, and simulations for
patients receiving RUX with and without its perpetrator POS were conducted separately.
One hundred and sixty-three of the RUX concentrations from 19 patients were obtained
under concomitant POS administration; 27 RUX concentrations from 7 patients were
obtained without the co-administration of POS. All simulations were based on the standard
daily RUX dose of 20 mg daily (10 mg BID). For all simulations in GvHD patients, a virtual
population (n = 100) according to the study demographics was built. Information on the
baseline patient demographics can be found in Table S10.

3. Results
3.1. Posaconazole PBPK Model Building and Evaluation

The best results were obtained for a combination of the Poulin and Theil distribu-
tion methods and PK-Sim® standards for distribution method and cellular permeability,
respectively. Based on the i.v. data, values for fup, lipophilicity, the katalytic rate con-
stant for UGT1A4, and the specific biliary clearance were optimized to get a better fit of
predicted versus observed concentrations. The i.v. model was extended to include oral
data after administration of POS suspension (SUS) and delayed release tablet (DR-tablet).
The specific permeability calculated based on molecular weight and lipophilicity of the
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substance within the PK-Sim® software (1.81 × 10−4 cm/min) was further optimized in
fasted and fed state (5.05 × 10−5 cm/min) and used for SUS simulations [47,48]. High-fat
or non-fat meal events were modeled with 841 kilo calories (kcal) or 200 kcal, as reported by
Courtney et al. [37].

For the DR-tablet simulations, the specific permeability was 4.80 × 10−5 cm/s. POS
SUS was modeled using particle dissolution with supersaturation enabled and the DR-
tablet was modeled using the Weibull function. Particle radius (1.9 µm), thickness of
unstirred water (140 µm), dissolution time (145 min), lag time (30 min), dissolution shape
(1.67), and drug density (0.37 g/cm3) were estimated using parameter identification or
improved by manual adjustment. The final parameters used for the POS PBPK model are
shown in Table S2.

The final PBPK model was successfully used to describe the observed POS plasma
concentrations after single and multiple dose administration of i.v. or oral POS. Simu-
lated plasma profile trajectories were in close concordance with observed data in fasted
as well as in fed state. Linear and semilogarithmic plots of predicted versus observed
plasma concentration-time profiles after i.v., DR-tablet, or SUS administration are shown
in Figure S5a–c and Figure S6a–c, respectively. The model slightly overpredicted low POS
plasma concentrations at later times after dosing (see goodness-of-fit plot, Figure S1); 90.44%
of all simulated plasma concentrations fell within 2-fold of the corresponding concentra-
tions observed. Separate goodness-of-fit plots for i.v., DR-tablet, and SUS can be found in
Figure S2a–c. All predicted AUClast and 95% of the predicted Cmax values were within the
2-fold acceptance criterion (Figure S3).

For the i.v. simulation, a MRD of all predicted plasma concentrations ≤2.0 was
achieved in all simulations (MRD range 1.42–1.75) and 87.3% of all simulated plasma
concentrations were within 2-fold of the corresponding concentrations observed. The MPE
range was −29.65% to 39.60% and the MAPE range was 25.01% to 46.50% (Table S4). Oral
simulations of different dosing regimens either in fasted or fed state after DR-tablet or SUS
administration had a MRD of 1.52 (1.19–2.36) with 12/13 simulations ≤ 2.0, while 91.72%
of simulated plasma concentrations after SUS administration and 91.67% after DR-tablet
administration were within 2-fold of the corresponding concentration observed. Ratios
for predicted versus observed values were 0.66 to 1.44 (AUClast) and 0.55 to 2.26 (Cmax)
(Table S3). The local sensitivity analysis revealed that variation in lipophilicity had the
greatest impact on changes in AUClast after a 100 mg POS single tablet administration,
followed by fup (Figure S4).

3.2. Ruxolitinib PBPK Model Building and Evaluation

For the RUX PBPK model, several calculation methods for tissue distribution and
cellular permeabilities were tested during model development. The best results were
obtained for the Rodgers and Rowland tissue distribution [49,50] in combination with the
PK-Sim® standard method for the calculation of cellular permeabilities. Drug-dependent
parameters such as lipophilicity, solubility, and fup found in the literature were appro-
priate and not adapted. According to Umehara et al., biliary and renal excretion are
negligible and were therefore not implemented into our model [51]. CYP2C9 and CYP3A4
metabolizing enzymes were included and a first order process for the metabolic enzyme
activity was chosen, which fully covered RUX elimination. The specific clearance used
in the simulations was 0.65 L/µmol/min for the CYP2C9 process and 0.46 L/µmol/min
for the CYP3A4 process and was calculated based on the in vitro intrinsic clearance by
Umehara et al. [51]. The integrated Weibull function was used to create an extended-release
tablet and parameters for the dissolution time (15.0 min) and the dissolution shape (1.10)
were adapted to fit the observed data. The best results were obtained for a dissolution time
of 15 min and a dissolution shape of 1.10. All input parameters used in the final RUX PBPK
model can be found in Table S6.

The final RUX PBPK model successfully predicted observed RUX plasma concentra-
tions after single as well as multiple dosing in the investigated populations (see Figure 2
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for linear plots and Figure S11 for semilogarithmic plots) and 86.79% of the observed
data fell within 2-fold of the corresponding concentration observed (Figure S8). Ratios
for predicted versus observed values were 0.68 to 1.12 (AUClast) and 0.65 to 1.04 (Cmax)
(Table S7). The model slightly underpredicted RUX exposure, as 9/11 ratios for predicted
versus observed AUClast were <1. This effect was less distinct for Cmax. Except for three
simulations, all predicted Cmax values were within +/−10% compared to the observed
Cmax. However, all predicted AUClast and Cmax values fell within the 2-fold acceptance
criterion (Figure S9). The mean MRD was 1.58 (1.20 to 2.23) and 9/11 simulations fulfilled
the acceptance criterion. All values for MRD, MPE, and MAPE are listed in Table S8. Local
sensitivity analysis showed that the RUX model was most sensitive to fup followed by
lipophilicity (see Figure S10).

Figure 2. Predicted RUX plasma concentration-time curve profiles (solid red lines) and observed RUX
concentrations (red dots), obtained after single (a,b,e,f) and multiple RUX tablet (c,d,g–k) administra-
tion. The red shaded area represents the predicted population geometric standard deviation in each
case. The ESM contains detailed information about the study protocols and RUX model performance
for each simulation. QD: once daily, BID: twice daily. Source: [38–40].
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3.3. Drug–Drug Interaction Modeling
3.3.1. Posaconazole and Midazolam

A competitive inhibition process was assumed for the interaction of POS and MDZ
with CYP3A4. POS reversibly binds to CYP3A4 and competes with MDZ for free binding
sites. All input parameters of the POS and MDZ model were transferred, expect for Ki,
which was estimated. The Ki start value was taken from the literature (0.42 µM) [52].
Based on the 200 mg and 400 mg MDZ i.v. administration, Ki parameter estimation led
to an optimized value of 5.22 × 10−3 µM. Comparison of 200 mg and 400 mg i.v. MDZ
administration with and without concomitant POS administration can be found in Figure 3.
Calculated DDI ratios for Cmax and AUClast were comparable to the ratios calculated from
the respective clinical study by Krishna et al. [44] (Table 1). As Ki was estimated based on
MDZ i.v. administration, as a proof-of-concept, DDI ratios were calculated for data after
oral MDZ administration and were comparable to the reported values (Table 1).

Figure 3. Comparison of simulated MDZ venous blood plasma concentration-time profiles (semilog-
arithmic) following i.v. administration of 0.4 mg MDZ infusion. The blue shaded area represents
the geometric mean SD for population simulations of the resulting MDZ plasma concentrations if
co-administered with either (a) 200 mg oral POS or (b) 400 mg oral POS and an inhibitory constant
Ki = 5.22 nmol/L for the CYP3A4 interaction process. The red shaded area represents the geometric
mean SD for population simulations without concomitant POS administration. Geometric means are
shown as a blue line (with POS administration) or a red line (without POS administration). Observed
data are shown as blue and red dots, respectively.

Table 1. DDI ratio for Cmax and AUClast calculated for the administration of MDZ together with POS.

POS MDZ
0.4 mg i.v. SD

MDZ
2.0 mg Oral SD

DDI Ratio Cmax AUClast Cmax AUClast

200 mg oral SUS 1.42 a

1.30 b
3.38 a

4.42 b
2.74 a

2.20 b
5.54 a

4.99 b

400 mg oral SUS 1.41 a

1.68 b
4.43 a

6.23 b
3.02 a

2.33 b
6.95 a

5.26 b

a DDI ratio for Cmax and AUClast calculated with MDZ and POS model. b Values taken from the literature
(in vivo) [44].



Pharmaceutics 2022, 14, 2556 10 of 19

3.3.2. Posaconazole and Ruxolitinib

The resulting Ki for the inhibition of CYP3A4 was transferred to the POS model and
the model was combined with the developed RUX model for DDI simulations. Simulations
with a virtual population receiving 300 mg oral POS DR-tablet and 10 mg BID RUX were
conducted and simulated Cmax for RUX without POS co-administration was 116.31 ng/mL.
The median Cmax for the simulation of RUX plasma concentration if given together with its
perpetrator was 20.5% higher (Cmax = 140.21 ng/mL). Simulated RUX exposure was about
59% higher if co-administered with POS (AUClast = 382.17 ng·h/mL) compared to RUX
administration alone (AUClast = 239.88 ng·h/mL). The calculated DDI ratio was 1.21 for
Cmax and 1.59 for AUClast, respectively.

3.4. Simulation of Graft versus Host Disease Patients

In the GvHD study population, a high interindividual variability in observed RUX
concentrations was seen, especially shortly after tablet intake (within five hours after RUX
administration). We found 64.42% of the observed serum concentrations after 10 mg BID
RUX administration in combination with POS were within the 5% to 95% prediction inter-
vals of the corresponding simulation (Figure 4a). Even without concomitant administration
of oral POS, model-predicted median RUX serum concentration for the administration
of 10 mg RUX BID was lower than the serum concentrations observed in the GvHD pa-
tients of the clinical study (Figure 4b). The POS model predicted trough concentrations
of 1282.16 ng/mL and maximum plasma concentrations of 2245.70 ng/mL (300 mg QD
POS DR-tablet, simulated for day 10), while measured concentrations revealed a median
concentration of 2392 ng/mL (range: 21–5808 ng/mL, n = 169, 300 mg QD POS DR-tablet)
and 2441 ng/mL (range: 1854–2784 ng/mL, n = 8, 200 mg TID POS SUS) [53]. About half
(51.25%) of the observed POS values fell within the 5% to 95% prediction interval of the
simulation and 43.75% of the observed POS concentrations were above the predicted range.
Simulated and observed POS serum concentrations are displayed in Figure 4c.

Figure 4. Cont.
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Figure 4. Comparison of simulated RUX serum concentration-time profiles following oral adminis-
tration (10 mg BID) if (a) co-administered with 300 mg oral POS and (b) given without its perpetrator.
Observed RUX concentrations are shown as dots with different colors, representing different RUX
daily doses actually taken by the patients. Median RUX concentrations are shown as a black line in
each part. Part (c) represents predicted (black solid line) and observed POS concentrations (black
dots) after administration of 300 mg oral POS tablet once daily. The blue shaded areas represent the
5% to 95% prediction intervals for population simulations (n = 100) of the resulting RUX and POS
plasma concentrations, respectively.

4. Discussion

To the best of our knowledge, this work presents the first PBPK models for POS
and RUX using PK-Sim® developed for application in the clinical routine. Seven PBPK
models using different PBPK software (SimCYP® (Certara Holdings Ltd., Sheffield, UK)
or GastroPlus (SimulationsPlus, Lancaster, CA, USA) have been published for
POS [27,54–59]. Only three were developed to model potential DDI with one being de-
veloped for application to the clinical routine. The remaining models were developed
for the assessment of bioequivalence or to describe POS behavior in the gastrointestinal
(GI) tract. In the literature, feasibility of the PBPK approach has been shown for RUX and
the index inhibitors ketoconazole and fluconazole using SimCYP®, and the findings were
compared to clinically performed DDI studies as a proof-of-concept to support regulatory
submissions [60,61]. However, no investigations on the combination of RUX with POS have
been conducted so far; yet this is of significant clinical interest because POS is frequently
co-administered with RUX in patients with aGvHD and cGvHD [9].

The developed PBPK DDI model predicted an increase in RUX Cmax and AUClast
by 20.5% and 59%, respectively, due to the concomitant POS administration. Using the
web-based DDI predictor (https://www.ddi-predictor.org/, accessed on 9 September 2022)
with RUX as substrate and POS 300 mg daily as interactor, an increase in AUC ratio of 1.35
was estimated (95% prediction interval 0.96–1.89). Our AUClast ratio of 1.59 is within the
proposed prediction interval.

Using measured RUX and POS concentrations in our study population, we were able
to evaluate the predicted concentrations, and 64.42% of the observed RUX concentrations
(Figure 4a) and 51.25% of the observed POS concentrations (Figure 4c) were within the
prediction intervals. Approximately one-third of the observed values lay outside the
prediction intervals for two main reasons. As we used data obtained in daily clinical
routines, it was not 100% certain whether all concentrations were really trough levels or
whether a new dose had already been taken, as is simulated in Figure 4a. This was especially
the case for concentrations observed between 12 and 15 h since the last dose. Secondly, we
would like to mention the following: even though the PBPK model included the potential

https://www.ddi-predictor.org/
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DDI, a greater proportion of the observed RUX concentrations in patients receiving 10 mg
RUX BID concomitantly with POS were above the predicted median RUX concentration.
The observed data are real-life data and were not obtained within a controlled DDI study.
Thus, observed concentrations were not only influenced by the DDI between RUX and
POS but also by the complex disease, comorbidities, and numerous further medications
taken by the patients. Isberner et al. reported a higher RUX exposure in GvHD patients
compared to myelofibrosis patients, which was attributed to a lower clearance, which was
also reported by Chen et al. (50% and 66.7%, respectively) [53,62]. Isberner et al. allocated
the reduced clearance to further DDI caused by a combination of several moderate and
weak CYP3A4 or CYP2C9 inhibitors (e.g., atorvastatin and amiodarone) and changes in
hepatic clearance due to liver dysfunction, which is, however, hypothetical.

They also observed an additional reduction of RUX clearance by 15% due to comedi-
cation with at least one strong CYP3A4 inhibitor, suggesting that in aGvHD and cGvHD
patient dose modification may be necessary [53]. This is in accordance with our findings,
as concentrations obtained from patients receiving a lower RUX dose (5 mg QD, BID and
TID, respectively) were significantly closer to the predicted median RUX concentration
(Figure 4a) and within the 5% to 95% prediction intervals of the model simulation in healthy
individuals (10 mg BID).

Thus, the explicit exclusion of dose reduction in aGvHD and cGvHD patients recom-
mended by the FDA seems to lead to overexposure in a considerable proportion of patients.
It may be for this reason that the EMA advises a general dose reduction by approximately
50% of the unit RUX dose if co-administered with strong CYP3A4 inhibitors such as keto-
conazole and POS or dual CYP2C9/3A4 inhibitors such as fluconazole. In the EMA SmPC,
ketoconazole and POS are both listed as strong CYP3A4 inhibitors without consideration of
their exact inhibitory potency towards CYP3A4. However, our study showed that POS has
a lower impact on RUX exposure compared to ketoconazole (Cmax and AUClast 33% and
91%, respectively) [61] and fluconazole (Cmax and AUClast 47% and 234%) [60], suggesting
that a 50% unit dose adjustment may not be appropriate in general for the azoles mentioned
and dose modifications should also be adapted to the individual patient, according to his
or her further medication and etiopathology.

Taken together, observed concentrations outside the prediction intervals are likely due
to imprecisions in the measured values, due to limitations within the model, and due to the
physiological specifics of GvHD patients. Deviations between predicted and observed RUX
concentrations in the clinical routine may be caused by the study design because time of last
dose intake and time of sampling were reported by the patient and the nurse, respectively,
which is susceptible to bias. In addition, the primarily aim of the conducted study was to
observe RUX concentrations in GvHD patients and measurement of POS concentrations
was added by amendment. Therefore, it is not fully clear when POS was taken with respect
to sampling. The best approximation was the assumption that POS tablet or SUS were
taken at the same time as RUX, which may not be true for all events. In addition, PK
studies used to obtain observed concentrations for POS and RUX model development
did not contain raw data. A digitizing software was used, which is a common procedure,
yet it is a source of potential imprecision. Further, allo-HSCT patients receive extensive
co-medication and often have renal or hepatic impairments resulting from chemotherapy,
radiation, or GvHD. GvHD also affects the GI mucosa, which may affect the absorption
processes, leading to the observed variabilities in the POS and RUX exposure. In addition,
the underlying disease and patients are heterogenous. So far, no quantitative disease model
for GvHD exists, which is why the specific physiological alterations of these patients could
not be quantitatively included in the model. Therefore, a healthy population using the
demographics of the GvHD study population was used for the simulations in PK-Sim®.
However, this population does not represent every individual and the full complexity of
the disease and may explain observed deviations. This approach was nevertheless chosen,
as in vivo DDI studies are usually conducted in healthy individuals and, overall, the model
is appropriate to predict the magnitude of DDI. As soon as more precise and quantitative
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knowledge about the underlying disease-specific physiological alterations is available,
physiological parameters within the PBPK model can be adapted, which is a considerable
benefit of PBPK modeling.

The final RUX PBPK model is characterized by good model performance, as demon-
strated by comparison of predicted to observed plasma concentration-time profiles and
the respective goodness-of-fit plots, the calculation of MRD values, as well as the compari-
son of predicted to observed AUClast and Cmax values (ESM Figures S8, S9 and S11 and
Tables S7 and S8). To simulate DDI between RUX and POS, the Ki value for CYP3A4
inhibition by POS was successfully evaluated using a previously published MDZ model.
The initial Ki value of POS found in literature was too high as it underpredicted the
CYP inhibition process and consequently MDZ plasma concentrations. The optimized
value (5.22 × 10−3 µM) was in accordance with the Ki value optimized by Bhantna-
gar et al. (5.5 × 10−3 µM) and in line with in vivo findings by Clearly and colleagues
(5 × 10−3 µM) [52,54,59].

POS model development was challenging, as in general, in silico prediction of in vivo
release and exposure of BCS class II compounds and weak bases is not trivial because the
in vivo drug dissolution is highly dependent on the GI physiology (e.g., bile component,
amount of fluid, and pH in the GI section), which is dynamic and subject to immense inter-
and intra-individual fluctuations [28,63]. The lack of published in-house data from preclini-
cal drug development, sparse data on formulation-specific properties, missing information
about the patients and the underlying diseases additionally hampered model building [22].
Nonetheless, POS SUS and the commonly used DR-tablet were successfully integrated
in the model, so that the model was appropriate to describe POS exposure. Parameter
identification and manual optimization were helpful to appropriately fit concentration-time
data to formulation-related parameters so that observed concentration-time profiles were
within the prediction intervals. Tissue distribution and cellular permeability logP, fu, kcat
for UGT1A4, GFR fraction, and biliary clearance, which describe the PK after the absorption,
were successfully described based on i.v. data only, so that inaccuracies and bias from drug
absorption processes were mostly eliminated.

A high interindividual variability was observed in the measured POS concentra-
tions but they are in accordance with values found in the literature. Cornely et al. re-
ported a mean average concentration of 2370 ng/mL (range: 680–9520 ng/mL, once daily,
3 × 100 mg, DR-tablet, n = 210), a mean minimum plasma concentration of 2110 ng/mL
(range: 445–9140 ng/mL, once daily, 3 × 100 mg DR-tablet, n = 210), and a mean maxi-
mum plasma concentration of 2390 ng/mL (coefficient of variation (CV) 43%, once daily,
3 × 100 mg, DR-tablet, n = 210) in allo-HSCT recipients [64]. Krishna et al., reported a mean
average plasma concentration of 1310 ng/mL (CV 31%, 200 mg, once daily, n = 8, measured
on day 14) and 2550 ng/mL (CV 38%, 200 mg twice daily, n = 8, measured on day 22), and
2360 ng/mL (CV 54%, 400 mg once daily, n = 8, measured on day 14) taking the POS DR-
tablet. The observed variability in POS PK probably contributes to the observed variability
in RUX PK and depending on the POS concentration, the interaction may be more or less
pronounced. Based on the model, different tested POS dosage (150 mg, 300 mg, 600 mg QD)
resulted in different RUX exposure (337.25, 356.51, 367.70 ng · h/mL, respectively), which
is consistent with the underlying mechanism. According to the saturable mechanism of
CYP inhibition, no linear but rather a saturable increase in RUX exposure can be assumed.

POS free-base has a weak basicity and is well soluble at a low pH and less soluble
at a higher pH (e.g., at fasted state stomach (pH 1) 0.79 mg/mL and 0.001 mg/mL at fed
state (pH 7.0)), and the absorption of POS is rate-limited by dissolution [27,36,65,66]. After
dissolution in the stomach, a substantial amount of dissolved POS precipitates reaching
the intestine and is therefore not available for absorption [27]. The systemic exposure
of the SUS is highly dependent on food and its fat content [65]. Compared to the fasted
state, AUC is four and 2.6 times greater depending on the fat content (50 g and 14 g of
fat, respectively). Considering that time and amount of fat content highly impact POS
exposure, it can be concluded that fat enhances dissolution of POS in the intestine. This
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happens either through emulsion or micelle building or due to the increased release of
bile salts or lecithin. The changes in the absorption kinetics by an enhanced dissolution
through fat could not be fully described by the model, leading to underprediction of the
POS absorption after administration of the SUS with a high-fat or a non-fat meal. This may
be attributable to the fact that PK-Sim® only allows definition of food events based on the
caloric supply and no input of a specific fat content. A high-fat meal can only be added
by assuming that for each g fat, 9 kcal are supplied. This is not a true illustration of the
food composition and leads to imprecision. Changing the solid fraction of the meal did not
improve model fit and was therefore kept at 0.8.

The POS PBPK model showed a steeper absorption phase in fasted state compared
to the observed data for dosing at 800 mg and the initial dose of multiple dosing (see
Supplementary Materials, semilogarithmic plots for simulations for Ezzet et al.). This may
be explained by the fact, that in fasted state, the precipitation kinetics of POS is crucial and
accounts for the high intersubject variability of POS plasma concentrations [35]. This is also
backed up by the respective study, which showed an intersubject coefficient of variation
for the absorption rate constant and bioavailability of 18–70% and 52–73%, respectively.
The PBPK model does not properly capture the precipitation in the intestines, which leads
to the greater absorption. However, the observed deviation is regarded as neglectable for
the intended application of the POS PBPK model because the systemic daily exposure for
200 mg multiple dosing is within the prediction interval and in clinical routine an 800 mg
single dose is not applied.

Using the calculated or optimized specific permeability for the DR-tablet formulation
led both to underprediction in absorption and systemic exposure. Ultimately, the intestinal
permeability was adapted to model the higher bioavailability of the DR-tablet. The used
specific permeability of 4.80 × 10−5 cm/s is the apparent in vitro CaCo2-cell permeability
reported by Hens and colleagues [55]. It is clear that the CaCo-2 cell permeability is not
equal to the effective permeability, yet Walraven and colleagues reported an in-house
effective permeability of 4.02 × 10−5 cm/s, which was also similar to the CaCo2-cell per-
meability [67]. The higher specific intestinal permeability was sufficient to simulate a faster
uptake of POS upon improved intestinal solubility and supersaturation stability when
the DR-tablet was used. Using a lower specific intestinal permeability for POS SUS was
sufficient to account for the fact that the dissolved amount of POS that can diffuse over the
membrane over time is less if POS SUS is used. The lower specific permeability also reflects
that POS is not sufficiently released from the SUS formulation and therefore not highly
available for transcellular permeation. Bhatnagar and colleagues developed a PBPK model
for application in the clinical routine to predict the DDI between Venetoclax and POS using
SimCYP®. They faced the same issue and were able to solve the discrepancy by adjusting
the effective permeability (6.41 × 10−4 cm/s), the bile micelle partitioning coefficient, and
the intrinsic solubility [54]. Cristofoletti and colleagues developed a PBPK model of POS
also using SimCYP® and used 3.7 × 10−4 cm/s as effective permeability [57]. The different
values show that depending on the software and the studies used for parameter identifica-
tion, the intestinal permeability may be different and the calculated value using molecular
weight and lipophilicity may not be sufficient to predict the observed data. The observed
difficulties are in line with the fact that the two formulations are not interchangeable due
to differences in PK resulting from differences in solubility and permeability during GI
tract passage. Sensitivity analysis further backs up these findings, as lipophilicity has an
outstanding impact on AUClast (−6.81).

In summary, prediction of the PK using PK-Sim® for a poor formulation is not straight-
forward if data concerning the solubility of the compound and the dissolution of the
formulation are not available as model input parameters. Even with in vitro dissolution
data, the prediction of in vivo dissolution remains challenging because knowledge about
the impact of the dynamic GI environment on drug and formulation behavior is scarce [68].
Garcia et al., recently compared the two modeling platforms PK-Sim® and SimCYP®, build-
ing comprehensive PBPK models for simvastatin [69]. They found major differences in
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the implementation of absorption models, with lower complexity and flexibility regard-
ing input of formulation and passive permeability in PK-Sim® compared to SimCYP®.
SimCYP®. offers different options for the input of absorption parameters, including built-in
correlation methods to scale in vitro measured values as well as the SimCYP® In Vitro
data Analysis (SIVA) toolkit [70]. In PK-Sim®, on the other hand, Garcia et al. also had to
estimate intestinal passive permeability and formulation dissolution parameters based on
available clinical study data, as there were no other options.

Expect for one patient, the GvHD study population received the POS DR-tablet and
our simulations for that population were done with the DR-tablet accordingly. If POS
SUS is administered instead of the DR-tablet, the expected DDI with RUX should be
evaluated carefully, as we used different intestinal permeabilities to account for the dif-
ferent formulations. For some study populations, sparse information on the baseline
patient demography was available. Only one study reported age, height, weight, and
BMI of the study population [30]. One study reported age, height, and weight [33],
and five studies reported data for age and either weight, height, or BMI of the study
population [26,32,35–37]. To build the virtual populations in PK-Sim®, the missing demo-
graphic data were estimated, which led to imprecisions. In addition, the virtual population
generated via the implemented PK-Sim® algorithm differs in some cases from the mean
individual used for model building, which influences model precision. As an example,
the model was able to precisely predict the plasma concentration-time profile of POS for
the mean individual created according to Vuletic et al. [36] and simulated concentrations
were in close concordance with the observed data (Figure S7). However, a high bias
(MPE = 147.64%), low precision (MAPE = 181.61), and a MRD of 2.36 was obtained in the
population simulation with the virtual population (Figure S7).

Summing up, the combination of RUX with POS is of significant clinical relevance as
an increase of RUX AUX by 60% is associated with higher probability of adverse events
due to RUX overexposure. The other way round, it is also conceivable that too low RUX
exposure is achieved if, for example, POS is discontinued or exchanged for a substance that
is not a CYP3A4 inhibitor (e.g., Amphotericin B). This could result in therapy failure if the
RUX dose is not increased accordingly. Our findings showed that using RUX at a standard
dosage, if co-administered with POS in GvHD patients, led to higher exposure compared to
simulations in a healthy population. Thus, the FDA recommendation should be considered
with caution and patients at risk of RUX overexposure or with a high potential of adverse
events occurring should be identified, which can be supported by the developed model.
The developed POS and RUX PBPK models can be combined with other existing PBPK
models of additional perpetrators or victims in PK-Sim® to describe DDI interaction and
applied for dose adjustment in the clinical routine. Future investigations should include
the investigation of GvHD-specific physiological alterations, which could be integrated
into PBPK models to develop a more accurate GvHD population. In this context, one
could also try to distinguish between aGvHD and cGvHD, as the patient populations
are often clinically very different, also in terms of co-medication. Additionally, the PBPK
models, especially the POS DR-tablet and POS SUS model, should be further validated
with measured concentrations from future observational studies.

5. Conclusions

Depending on the regulatory authority and the time of approval, different dose
recommendations exist for the combination of RUX with strong CYP3A4 inhibitors, which
complicates the application in the clinic. For the application in PK-Sim®, two separate PBPK
models for RUX and POS were successfully set up. The PBPK modeling approach was
used to predict a DDI scenario for POS and RUX. RUX plasma exposure simulated with the
final DDI model was compared to observed concentrations in patients treated for aGvHD
or cGvHD in the routine clinical setting, revealing that standard dosing in these patients
may not be adequate and reduced RUX doses should be administered depending on the
concomitantly administered azoles and their inhibition potency. Due to the complexity
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of the disease and intake of extensive co-medication, RUX plasma concentration can be
higher than expected. It is therefore advisable to monitor plasma levels and adjust RUX
dosing accordingly. The DDI model can be expanded to other perpetrators or victims,
e.g., fluconazole and could be further optimized by the implementation of physiological
changes in GvHD patients, if these are sufficiently investigated. The model can serve as a
starting point to implement PBPK modeling in the clinical routine to predict potential DDI
in vulnerable patients and to guide dose adjustment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics14122556/s1, Electronic Supplementary Materials: Additional information on
model development and evaluation including Figures S1–S11 and Tables S1–S10.

Author Contributions: Conceptualization, B.G., F.A.-T., and O.S.-C.; methodology, B.G., F.A.-T., M.K.,
S.Z.; investigation, B.G., F.A.-T., N.I.; writing—original draft preparation, B.G., F.A.-T.; writing—
review and editing, B.G., F.A.-T., N.I., and O.S.-C.; visualization, B.G.; resources, M.K., S.K., G.U.G.,
and H.K.; funding acquisition: N.I., O.S.-C., H.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Hector Foundation II, Weinheim, Germany, Fond: STIF-99
(“Individualized cancer therapy with kinase inhibitors using drug monitoring—optimization by
minimally invasive at-home sampling”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All modeling files including utilized clinical study data can be found
here: https://github.com/Open-Systems-Pharmacology (accessed on 21 November 2022).

Acknowledgments: The authors kindly acknowledge Lukas Kovar and Christoph Hethey for their
scientific support and valuable suggestions.

Conflicts of Interest: OSC reports endowed professorship grant (Horphag Research Ltd.). The
remaining authors declare no competing financial or non-financial interests.

References
1. Jamil, M.O.; Mineishi, S. State-of-the-art acute and chronic GVHD treatment. Int. J. Hematol. 2015, 101, 452–466. [CrossRef]
2. Jagasia, M.; Perales, M.-A.; Schroeder, M.A.; Ali, H.; Shah, N.N.; Chen, Y.-B.; Fazal, S.; Dawkins, F.W.; Arbushites, M.C.; Tian, C.

Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): A multicenter, open-label phase 2 trial. Blood 2020,
135, 1739–1749. [CrossRef] [PubMed]

3. Zeiser, R.; von Bubnoff, N.; Butler, J.; Mohty, M.; Niederwieser, D.; Or, R.; Szer, J.; Wagner, E.M.; Zuckerman, T.; Mahuzier, B.
Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N. Engl. J. Med. 2020, 382, 1800–1810. [CrossRef]

4. Zeiser, R.; Polverelli, N.; Ram, R.; Hashmi, S.K.; Chakraverty, R.; Middeke, J.M.; Musso, M.; Giebel, S.; Uzay, A.; Langmuir, P.
Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease. N. Engl. J. Med. 2021, 385, 228–238. [CrossRef]

5. Zeiser, R.; Blazar, B.R. Acute graft-versus-host disease—Biologic process, prevention, and therapy. N. Engl. J. Med. 2017, 377,
2167–2179. [CrossRef] [PubMed]

6. Martin, P.J.; Rizzo, J.D.; Wingard, J.R.; Ballen, K.; Curtin, P.T.; Cutler, C.; Litzow, M.R.; Nieto, Y.; Savani, B.N.; Schriber, J.R.
First-and second-line systemic treatment of acute graft-versus-host disease: Recommendations of the American Society of Blood
and Marrow Transplantation. Biol. Blood Marrow Transplant. 2012, 18, 1150–1163. [CrossRef] [PubMed]

7. Bhatti, Z.; Shaukat, A.; Almyroudis, N.G.; Segal, B.H. Review of epidemiology, diagnosis, and treatment of invasive mould
infections in allogeneic hematopoietic stem cell transplant recipients. Mycopathologia 2006, 162, 1–15. [CrossRef]

8. Maertens, J.A.; Girmenia, C.; Brüggemann, R.J.; Duarte, R.F.; Kibbler, C.C.; Ljungman, P.; Racil, Z.; Ribaud, P.; Slavin, M.A.;
Cornely, O.A. European guidelines for primary antifungal prophylaxis in adult haematology patients: Summary of the updated
recommendations from the European Conference on Infections in Leukaemia. J. Antimicrob. Chemother. 2018, 73, 3221–3230.
[CrossRef]

9. Ullmann, A.J.; Lipton, J.H.; Vesole, D.H.; Chandrasekar, P.; Langston, A.; Tarantolo, S.R.; Greinix, H.; Morais de Azevedo, W.;
Reddy, V.; Boparai, N.; et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N. Engl. J. Med.
2007, 356, 335–347. [CrossRef]

10. Chen, L.; Krekels, E.H.; Verweij, P.; Buil, J.B.; Knibbe, C.A.; Brüggemann, R.J. Pharmacokinetics and pharmacodynamics of
posaconazole. Drugs 2020, 80, 671–695. [CrossRef]

https://www.mdpi.com/article/10.3390/pharmaceutics14122556/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14122556/s1
https://github.com/Open-Systems-Pharmacology
http://doi.org/10.1007/s12185-015-1785-1
http://doi.org/10.1182/blood.2020004823
http://www.ncbi.nlm.nih.gov/pubmed/32160294
http://doi.org/10.1056/NEJMoa1917635
http://doi.org/10.1056/NEJMoa2033122
http://doi.org/10.1056/NEJMra1609337
http://www.ncbi.nlm.nih.gov/pubmed/29171820
http://doi.org/10.1016/j.bbmt.2012.04.005
http://www.ncbi.nlm.nih.gov/pubmed/22510384
http://doi.org/10.1007/s11046-006-0025-x
http://doi.org/10.1093/jac/dky286
http://doi.org/10.1056/NEJMoa061098
http://doi.org/10.1007/s40265-020-01306-y


Pharmaceutics 2022, 14, 2556 17 of 19
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Pharmacokinetic Properties and Relative Bioavailability of Different Formulations of Posaconazole Oral Suspension in Healthy
Volunteers. Clin. Pharmacol. Drug Dev. 2019, 8, 827–836. [CrossRef]

37. Courtney, R.; Wexler, D.; Radwanski, E.; Lim, J.; Laughlin, M. Effect of food on the relative bioavailability of two oral formulations
of posaconazole in healthy adults. Br. J. Clin. Pharmacol. 2004, 57, 218–222. [CrossRef]

38. Ogama, Y.; Mineyama, T.; Yamamoto, A.; Woo, M.; Shimada, N.; Amagasaki, T.; Natsume, K. A randomized dose-escalation study
to assess the safety, tolerability, and pharmacokinetics of ruxolitinib (INC424) in healthy Japanese volunteers. Int. J. Hematol. 2013,
97, 351–359. [CrossRef]

39. Chen, X.; Shi, J.G.; Emm, T.; Scherle, P.A.; McGee, R.F.; Lo, Y.; Landman, R.R.; Punwani, N.G.; Williams, W.V.; Yeleswaram, S.
Pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in renal and hepatic
impairment patients. Clin. Pharmacol. Drug Dev. 2014, 3, 34–42. [CrossRef]

40. Shi, J.G.; Chen, X.; McGee, R.F.; Landman, R.R.; Emm, T.; Lo, Y.; Scherle, P.A.; Punwani, N.G.; Williams, W.V.; Yeleswaram, S.
The pharmacokinetics, pharmacodynamics, and safety of orally dosed INCB018424 phosphate in healthy volunteers. J. Clin.
Pharmacol. 2011, 51, 1644–1654. [CrossRef]

41. U.S. Food and Drug Administration. Physiologically Based Pharmacokinetic Analyses—Format and Content—Guidance for In-
dustry. 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-
based-pharmacokinetic-analyses-format-and-content-guidance-industry (accessed on 28 August 2022).

42. Edginton, A.N.; Schmitt, W.; Willmann, S. Development and evaluation of a generic physiologically based pharmacokinetic
model for children. Clin. Pharmacokinet. 2006, 45, 1013–1034. [CrossRef]

43. Frechen, S.; Hanke, N.; Solodenko, J.; Dallmann, A. Midazolam-Model. Available online: https://github.com/Open-Systems-
Pharmacology/Midazolam-Model (accessed on 20 May 2021).

44. Krishna, G.; Moton, A.; Ma, L.; Savant, I.; Martinho, M.; Seiberling, M.; McLeod, J. Effects of oral posaconazole on the
pharmacokinetic properties of oral and intravenous midazolam: A phase I, randomized, open-label, crossover study in healthy
volunteers. Clin. Ther. 2009, 31, 286–298. [CrossRef]

45. Aghai, F.; Zimmermann, S.; Kurlbaum, M.; Jung, P.; Pelzer, T.; Klinker, H.; Isberner, N.; Scherf-Clavel, O. Development and
validation of a sensitive liquid chromatography tandem mass spectrometry assay for the simultaneous determination of ten
kinase inhibitors in human serum and plasma. Anal. Bioanal. Chem. 2021, 413, 599–612. [CrossRef]

46. Kahle, K.; Langmann, P.; Schirmer, D.; Lenker, U.; Keller, D.; Helle, A.; Klinker, H.; Heinz, W.J. Simultaneous determination of
voriconazole and posaconazole concentrations in human plasma by high-performance liquid chromatography. Antimicrob. Agents
Chemother. 2009, 53, 3140–3142. [CrossRef]

47. Thelen, K.; Coboeken, K.; Willmann, S.; Dressman, J.B.; Lippert, J. Evolution of a detailed physiological model to simulate the
gastrointestinal transit and absorption process in humans, part II: Extension to describe performance of solid dosage forms.
J. Pharm. Sci. 2012, 101, 1267–1280. [CrossRef]

48. Thelen, K.; Coboeken, K.; Willmann, S.; Burghaus, R.; Dressman, J.B.; Lippert, J. Evolution of a detailed physiological model to
simulate the gastrointestinal transit and absorption process in humans, part 1: Oral solutions. J. Pharm. Sci. 2011, 100, 5324–5345.
[CrossRef]

49. Rodgers, T.; Leahy, D.; Rowland, M. Physiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of
moderate-to-strong bases. J. Pharm. Sci. 2005, 94, 1259–1276. [CrossRef]

50. Rodgers, T.; Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very
weak bases, neutrals and zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [CrossRef]

51. Umehara, K.; Huth, F.; Jin, Y.; Schiller, H.; Aslanis, V.; Heimbach, T.; He, H. Drug-drug interaction (DDI) assessments of ruxolitinib,
a dual substrate of CYP3A4 and CYP2C9, using a verified physiologically based pharmacokinetic (PBPK) model to support
regulatory submissions. Drug Metab. Pers. Ther. 2019, 34. [CrossRef]

52. Wexler, D.; Courtney, R.; Richards, W.; Banfield, C.; Lim, J.; Laughlin, M. Effect of posaconazole on cytochrome P450 enzymes:
A randomized, open-label, two-way crossover study. Eur. J. Pharm. Sci. 2004, 21, 645–653. [CrossRef]

53. Isberner, N.; Kraus, S.; Grigoleit, G.U.; Aghai, F.; Kurlbaum, M.; Zimmermann, S.; Klinker, H.; Scherf-Clavel, O. Ruxolitinib
exposure in patients with acute and chronic graft versus host disease in routine clinical practice—A prospective single-center
trial. Cancer Chemother. Pharmacol. 2021, 88, 973–983. [CrossRef]

http://doi.org/10.1128/AAC.00222-12
http://www.ncbi.nlm.nih.gov/pubmed/22615291
http://doi.org/10.1093/jac/dks268
http://doi.org/10.2165/00003088-200544020-00006
http://doi.org/10.1002/cpdd.636
http://doi.org/10.1046/j.1365-2125.2003.01977.x
http://doi.org/10.1007/s12185-013-1280-5
http://doi.org/10.1002/cpdd.77
http://doi.org/10.1177/0091270010389469
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry
http://doi.org/10.2165/00003088-200645100-00005
https://github.com/Open-Systems-Pharmacology/Midazolam-Model
https://github.com/Open-Systems-Pharmacology/Midazolam-Model
http://doi.org/10.1016/j.clinthera.2009.02.022
http://doi.org/10.1007/s00216-020-03031-7
http://doi.org/10.1128/AAC.00213-09
http://doi.org/10.1002/jps.22825
http://doi.org/10.1002/jps.22726
http://doi.org/10.1002/jps.20322
http://doi.org/10.1002/jps.20502
http://doi.org/10.1515/dmpt-2018-0042
http://doi.org/10.1016/j.ejps.2004.01.005
http://doi.org/10.1007/s00280-021-04351-w


Pharmaceutics 2022, 14, 2556 19 of 19

54. Bhatnagar, S.; Mukherjee, D.; Salem, A.H.; Miles, D.; Menon, R.M.; Gibbs, J.P. Dose adjustment of venetoclax when co-administered
with posaconazole: Clinical drug-drug interaction predictions using a PBPK approach. Cancer Chemother. Pharmcol. 2021, 87,
465–474. [CrossRef]

55. Hens, B.; Talattof, A.; Paixao, P.; Bermejo, M.; Tsume, Y.; Lobenberg, R.; Amidon, G.L. Measuring the Impact of Gastrointestinal
Variables on the Systemic Outcome of Two Suspensions of Posaconazole by a PBPK Model. AAPS J. 2018, 20, 57. [CrossRef]

56. Cristofoletti, R.; Patel, N.; Dressman, J.B. Assessment of Bioequivalence of Weak Base Formulations Under Various Dosing
Conditions Using Physiologically Based Pharmacokinetic Simulations in Virtual Populations. Case Examples: Ketoconazole and
Posaconazole. J. Pharm. Sci. 2017, 106, 560–569. [CrossRef]

57. Cristofoletti, R.; Patel, N.; Dressman, J.B. Differences in Food Effects for 2 Weak Bases With Similar BCS Drug-Related Properties:
What Is Happening in the Intestinal Lumen? J. Pharm. Sci. 2016, 105, 2712–2722. [CrossRef]

58. Chen, K.F.; Chan, L.N.; Lin, Y.S. PBPK modeling of CYP3A and P-gp substrates to predict drug-drug interactions in patients
undergoing Roux-en-Y gastric bypass surgery. J. Pharm. Pharm. 2020, 47, 493–512. [CrossRef]

59. Cleary, Y.; Gertz, M.; Morcos, P.N.; Yu, L.; Youdim, K.; Phipps, A.; Fowler, S.; Parrott, N. Model-Based Assessments of CYP-
Mediated Drug–Drug Interaction Risk of Alectinib: Physiologically Based Pharmacokinetic Modeling Supported Clinical
Development. Clin. Pharmacol. Ther. 2018, 104, 505–514. [CrossRef]

60. Aslanis, V.; Umehara, K.; Huth, F.; Ouatas, T.; Bharathy, S.; Butler, A.A.; Zhou, W.; Gadbaw, B. Multiple administrations of
fluconazole increase plasma exposure to ruxolitinib in healthy adult subjects. Cancer Chemother. Pharmacol. 2019, 84, 749–757.
[CrossRef] [PubMed]

61. Shi, J.G.; Fraczkiewicz, G.; Williams, W.V.; Yeleswaram, S. Predicting drug-drug interactions involving multiple mechanisms
using physiologically based pharmacokinetic modeling: A case study with ruxolitinib. Clin. Pharmacol. Ther. 2015, 97, 177–185.
[CrossRef] [PubMed]

62. Chen, X.; Liu, X.; Wang, P.; Yeleswaram, S. Population Pharmacokinetics of Ruxolitinib in Patients with aGVHD Who Had an
Inadequate Response to Corticosteroids. Blood 2019, 134, 4534. [CrossRef]

63. Hansmann, S.; Darwich, A.; Margolskee, A.; Aarons, L.; Dressman, J. Forecasting oral absorption across biopharmaceutics
classification system classes with physiologically based pharmacokinetic models. J. Pharm. Pharmacol. 2016, 68, 1501–1515.
[CrossRef] [PubMed]

64. Cornely, O.A.; Duarte, R.F.; Haider, S.; Chandrasekar, P.; Helfgott, D.; Jimenez, J.L.; Candoni, A.; Raad, I.; Laverdiere, M.;
Langston, A.; et al. Phase 3 pharmacokinetics and safety study of a posaconazole tablet formulation in patients at risk for invasive
fungal disease. J. Antimicrob. Chemother. 2016, 71, 1747. [CrossRef]

65. European Medicines Agency. Noxafil Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/
documents/product-information/noxafil-epar-product-information_en.pdf (accessed on 13 September 2022).

66. Gubbins, P.O.; Krishna, G.; Sansone-Parsons, A.; Penzak, S.R.; Dong, L.; Martinho, M.; Anaissie, E.J. Pharmacokinetics and safety
of oral posaconazole in neutropenic stem cell transplant recipients. Antimicrob. Agents Chemother. 2006, 50, 1993–1999. [CrossRef]

67. Walravens, J.; Brouwers, J.; Spriet, I.; Tack, J.; Annaert, P.; Augustijns, P. Effect of pH and comedication on gastrointestinal
absorption of posaconazole: Monitoring of intraluminal and plasma drug concentrations. Clin. Pharmacokinet. 2011, 50, 725–734.
[CrossRef]

68. Bermejo, M.; Hens, B.; Dickens, J.; Mudie, D.; Paixao, P.; Tsume, Y.; Shedden, K.; Amidon, G.L. A Mechanistic Physiologically-
Based Biopharmaceutics Modeling (PBBM) Approach to Assess the In Vivo Performance of an Orally Administered Drug Product:
From IVIVC to IVIVP. Pharmaceutics 2020, 12, 74. [CrossRef]

69. Prieto Garcia, L.; Lundahl, A.; Ahlström, C.; Vildhede, A.; Lennernäs, H.; Sjögren, E. Does the choice of applied physiologically-
based pharmacokinetics platform matter? A case study on simvastatin disposition and drug-drug interaction. CPT Pharmacomet.
Syst. Pharmacol. 2022, 11, 1194–1209. [CrossRef]

70. Jamei, M.; Turner, D.; Yang, J.; Neuhoff, S.; Polak, S.; Rostami-Hodjegan, A.; Tucker, G. Population-based mechanistic prediction
of oral drug absorption. AAPS J. 2009, 11, 225–237. [CrossRef]

http://doi.org/10.1007/s00280-020-04179-w
http://doi.org/10.1208/s12248-018-0217-6
http://doi.org/10.1016/j.xphs.2016.10.008
http://doi.org/10.1016/j.xphs.2015.11.033
http://doi.org/10.1007/s10928-020-09701-4
http://doi.org/10.1002/cpt.956
http://doi.org/10.1007/s00280-019-03907-1
http://www.ncbi.nlm.nih.gov/pubmed/31324935
http://doi.org/10.1002/cpt.30
http://www.ncbi.nlm.nih.gov/pubmed/25670523
http://doi.org/10.1182/blood-2019-124027
http://doi.org/10.1111/jphp.12618
http://www.ncbi.nlm.nih.gov/pubmed/27781273
http://doi.org/10.1093/jac/dkw079
https://www.ema.europa.eu/en/documents/product-information/noxafil-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/noxafil-epar-product-information_en.pdf
http://doi.org/10.1128/AAC.00157-06
http://doi.org/10.2165/11592630-000000000-00000
http://doi.org/10.3390/pharmaceutics12010074
http://doi.org/10.1002/psp4.12837
http://doi.org/10.1208/s12248-009-9099-y

	Introduction 
	Materials and Methods 
	Software 
	Posaconazole Model Development 
	Ruxolitinib Model Development 
	Model Evaluation 
	Drug–Drug Interaction between Posaconazole and Midazolam 
	Simulations in Graft versus Host Disease Patients 

	Results 
	Posaconazole PBPK Model Building and Evaluation 
	Ruxolitinib PBPK Model Building and Evaluation 
	Drug–Drug Interaction Modeling 
	Posaconazole and Midazolam 
	Posaconazole and Ruxolitinib 

	Simulation of Graft versus Host Disease Patients 

	Discussion 
	Conclusions 
	References

