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Abstract: Clostridioides bacteria are responsible for life threatening infections. Here, we show that
in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and
perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its
additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven
subunits and stimulates the formation of branched actin filament networks. This activity is inhibited
after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin
into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed
by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon
pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of
cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex
as hitherto unknown target of clostridial ADP-ribosyltransferases.

Keywords: actin; ADP-ribosyltransferases; Arp2/3 complex; Clostridioides binary toxins

1. Introduction

Anaerobic clostridial bacteria are causative for a number of severe human infectious
diseases. A number of their proteinaceous toxins are crucial virulence factors of these
pathogens. In many cases the cytoskeleton of host cells is the preferred target of these
virulence factors. An important group are the toxins CDT from Clostridioides difficile, C2I
from Clostridioides botulinum and Iota from Clostridioides perfringens [1–3]. These toxins
are binary in structure and consist of an enzyme component with ADP-ribosyltransferase
(ART) activity and a separate membrane binding component, which is responsible for
cellular toxin binding and uptake [4]. The membrane binding component attaches to a
specific receptor, oligomerizes, and binds the ART containing component. Subsequently,
this complex containing both toxin components is endocytosed. After acidification of
the endosome the membrane binding component forms a pore allowing release of the
ART containing component through the endosomal membrane into the cytosol (for a
review see [5]). There the ART containing toxins ADP-ribosylate actin at Arg177 lead-
ing to inhibition of its polymerizability and the partial disassembly of intracellular actin
filaments ([3]; reviewed in [1,2]).

Recently, hypervirulent and multidrug resistant strains of C. difficile were recognized,
which during antibiotic treatment can multiply and colonize the colon causing severe diarrhea
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and pseudomembranous colitis accompanied by high morbidity and mortality [5–7]. These
C. difficile strains are a main cause of hospitalization associated infections [7,8]. In addition
to the prototypical Rho/Ras-glycosylating toxins TcdA and TcdB they produce the binary
C. difficile toxin CDT composed of the ART containing CDTa and membrane binding compo-
nent CDTb [6,8–11].

However, the precise pathogenic mechanisms of clostridial ADP-ribosylating tox-
ins are still not completely understood. Therefore, we searched for additional substrate
proteins of the bacterial ADP-ribosyltransferases. To this aim we analyzed ART-activity
containing toxins including the C. difficile toxin CDT, C2I toxin from C. botulinum, and Iota
toxin from C. perfringens for their ability to ADP-ribosylate the actin-related proteins of
the Arp2/3 complex. The ubiquitous Arp2/3 complex consists of seven subunits, resides
underneath the plasma membrane and is responsible for the stabilization of the cortical
F-actin beneath the plasma membrane and its attachment to cell junctions. Furthermore,
a number of stimulating signaling pathways converge on Arp2/3 complex, which subse-
quently regulates the formation of branched actin-filament networks within lamellipodia
of migratory eukaryotic cells [12,13].

Our biochemical data showed that the actin-related protein 2 (Arp2) of the Arp2/3
complex is ADP-ribosylated by bacterial ADP-ribosyltransferases, in particular by the
binary ART-activity containing CDT toxin of C. difficile toxin. In order to bridge the
gap between protein modification by pathogens and possible clinical consequences, we
subsequently infected human colon derived Caco2 cells and excised mouse colon pieces
with this toxin to analyze its effects under conditions more closely resembling an in vivo
situation. The results obtained from these experiments confirmed the ADP-ribosylation of
Arp2 and at the same time that of actin at an apparently equal amount. Obviously, their
modifications resulted in dramatic alterations in cell and tissue morphology suggesting
that the ART-activity containing CDT toxin of C. difficile might suffice to provoke the
pathological changes leading to the typical severe colitis.

2. Materials and Methods
2.1. Materials

Fetal calf serum (FCS) and media were obtained from Gibco (Deisenhofen/Germany).
The monoclonal anti-actin antibody (clone AC74) was purchased from Sigma-Aldrich
(Poole, Dorset, UK) and FITC-labelled anti-rabbit IgG from Amersham (Amersham Life
Science/UK). TRITC-phalloidin was obtained from Molecular Probes (Eugene, OR, USA).
The fluorescent etheno-NAD was obtained from Sigma-Aldrich (Munich, Germany)

2.2. Protein Expression and Analysis

Rabbit skeletal muscle actin was prepared from dried acetone powder obtained
from fresh rabbit psoas muscle as described [14]. G-actin was stored in G-buffer (5 mM
HEPES-OH, pH 7.4, 0.1 mM CaCl2, 0.5 mM NaN3, and 0.2 mM ATP, pH 7.4). The
Arp2/3 complex was purified from Acanthamoeba castellani and its mammalian variant
from pig brain as described [15,16]. The activating C-terminal VCA domain of WASp
(containing Verprolin-like, Central and Acidic regions) from N-WASP (comprising residues
392 to 501) was expressed in Escherichia coli and purified according to [15]; both were
kindly supplied by Prof. D.L. Barber and Dr. A. Schoenichen (University of California,
San Francisco, CA, USA). The clostridial toxins (CDT, C2I and Iota-a toxin from
Clostridioides difficile, botulinum and perfrigens, respectively) with ADP-ribosyl-transferase
(ART) activities were prepared recombinantly as described previously [17,18]. The compo-
nents a and b of the CDT toxin from Clostridioides difficile (CDTa containing the ART and
CDTb the membrane translocator activity) were expressed recombinantly in E. coli and
due to their N-terminal His-tag purified by Ni-NTA affinity binding [17]. The TccC3 toxin
from Photorhabdus luminescense was prepared as detailed [19] and the FH2 segments of the
formins mDia1 (comprising residues 826–1163) and mDia3 (comprising residues 701–1061)
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were expressed in E. coli and purified as described [20] and kindly supplied by Prof. A.
Wittinghofer (Max-Planck-Institute of Molecular Physiology, Dortmund, Germany).

2.3. Cell Culture and Intoxication and Immunostaining

The human colon carcinoma cell line Caco2 was obtained from CLS (Cell Lines Service,
Germany, independent cell repository). The cells are available from ATCC (ATCC number:
HTB-37; human origin with ethnicity Caucasian. Donor age 72 years; male and from colon).
These epithelial-like cells were grown and maintained at 37 ◦C and 5% CO2 in plastic flasks
in DMEM (Dulbecco modified Eagle medium) supplemented with 10% FCS. Since Caco2
cells express the CDTb receptor lipolysis-stimulated lipoprotein receptor (LSR) intoxication
of the CDTa ART was achieved by simultaneous exposure of Caco2 cells grown on sterile
glass coverslips to 500 ng/mL CDTb and 200 ng/mL CDTa under cell culture conditions
as detailed previously [18]. After increasing incubation periods, the cells were fixed by
addition of 4% paraformaldehyde for 20 min.

Colon pieces were taken from male wild type mice of the C57BL/6 genetic back-
ground. The mice were maintained in the local animal house of the Ruhr-University
observing the regulations of the German Animal Protection Law and sacrificed by cervi-
cal dislocation following the recommendations of the Animal Care and Use Committee
of the Ruhr-University, Bochum, in compliance with the German guidelines for animal
care and procedures. The colon pieces were exposed to CDTa and CDTb, fixed by 4%
paraformaldehyde and immunostained as further detailed below.

For immunostaining the cells and the colon pieces were permeabilized with 0.2% Triton
X-100 in PBS for 5–10 min, washed three times in PBS, incubated with primary antibod-
ies: mouse monoclonal anti-Arp2 (FMS96; Abcam, Cambridge, UK; kindly provided by
Prof. S. Linder, Hamburg, Germany) or affinity-purified rabbit anti-ArpC1 (40 kDa subunit;
Abcam) at dilutions of 1:50 or 1:100, respectively, at 4 ◦C overnight. Subsequently the slides
were incubated with Alexa Fluor®-568-labelled phalloidin and FITC-labelled secondary an-
tibodies (Sigma-Aldrich, Munich, Germany) for 1h at RT as detailed [6,9]. The nuclei were
visualized with Hoechst 33342 (Riedel-de-Haen; Schwerte, Germany). Finally, the coverslips
were mounted with Dako Cytomatic fluorescent mounting medium. Immunocytochemical
stainings were analyzed using a Zeiss LSM 800 confocal laser scanning microscope.

2.4. Analytical Procedures

Protein concentrations were determined by the colorimetric assay [21]. SDS-PAGE
was performed using 7.5% or 10% (w/v) polyacrylamide gels unless stated otherwise.
Trichloroethanol at 0.5% was included in the separation gel to fluorescently visualize the
separated protein bands before Western blotting.

For immune-precipitation of Arp2/3 complex, cell or tissue homogenates were pre-
pared in RIPA-buffer (250 mM NaCl, 5 mM EDTA, 50 mM NaF, 1% NP-40, 0.1% NaN3, and
50 mM Tris-HCl, pH 7.4) and frozen at −20 ◦C until use. After two cycles of freezing and
thawing, the samples were centrifuged at 14,000 rpm for 30 min. by an Eppendorf bench
centrifuge and the supernatants were collected. Then, about 50 µg (in about 100 µL) of the
respective supernatant was supplemented with 2 µL of the monoclonal anti-Arp2 antibody
(FMS96; Abcam, Cambridge, UK) and incubated for 1 h at 25 ◦C. Subsequently, 20 µL of
Protein A insolubilized to Sepharose 4B (Sigma, Munich, Germany) was added and after
an incubation for 1 h at 25 ◦C centrifuged for 10 min at 14,000 rpm. The pellet was washed
5 times with 0.5 mL HEPES-buffer. The supernatants of each washing step were carefully
removed and either discharged or stored for SDS-PAGE.

Western blots were performed as detailed previously [22]. Autoradiography was used
to identify ADP-ribosylated components of the Arp2/3 complex by supplementing NAD
with 32P-labelled NAD (obtained from Perkin Elmer, Rodgau, Germany) following the
procedure described in [19,23].
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For measuring the polymerization kinetics by the pyrene-assay, G-actin was modified
at Cys374 by pyrenyl-iodoacetamide (pyrene-actin) as described [24]. Pyrene-labelled
actin was added to 5% of the total actin concentration. Polymerization was initiated by
addition of 2 mM MgCl2 and 50 mM KCL and the increase of pyrene-actin fluorescence
was determined using a Shimadzu RF-5001-PC spectrofluorometer at wavelength settings
for excitation and emission of 365 nm and 385 nm, respectively.

2.5. Electron Microscopy

Protein samples were diluted to 0.1 mg/mL in HEPES-buffer, pH 7.4, with 2 mM
MgCl2 to trigger polymerization. For negative staining, 4 µL of each sample were adsorbed
to freshly glow-discharged carbon-coated copper grids (200 mesh) for 45 sec. After washing
with buffer, the grids were incubated for 45 s on a drop of 1% uranylacetate [24]. Excess
staining solution was removed with filter paper and then the grids were air-dried. Three
different grids were prepared for each sample. Digital micrographs were then recorded with
a Zeiss transmission electron microscope EM923 run at 120 kV fitted with a TemCamF416
camera (Tietz Video and Image Processing Systems, Gauting, Germany). The number of
filaments longer than 0.1 micrometer and the number of branches were counted manually
on the EM micrographs.

2.6. Determination of Filament Branching by Fluorescence Microscopy

Freshly purified skeletal muscle actin at 4.8 µM (0.2 mg/mL) was mixed with 50 nM
native or ADP-ribosylated Arp2/3 complex from Acanthaemoeba castellani or pig brain.
After addition of 0.1 mg/mL VCA peptide it was polymerized by 10 mM HEPES-HCl
buffer, pH 7.4 (containing 50 mM KCl, 2 mM MgCl2, 0.1 mM CaCl2, and 0.2 mM ATP;
buffer A). After dilution to 1 µM and the F-actin samples were stained with 2 µM TRITC-
phalloidin (SIGMA, Munich, Germany) and further incubated for 60 min. Then, the
TRITC-phalloidin stained actins were diluted to 10 nM in buffer A and 3 µL were placed on
a glass-slide, mixed with 3 µL of DAKO fluorescence mounting medium (Agilent DAKO,
Santa Clara, CA, USA/Glostrup, Denmark) and covered with a coverslip.

Subsequent fluorescence microscopy was performed using Zeiss AxioImager Z2m
microscope equipped with a Zeiss LD LCI Plan-Apochromat 63 ×/1.2 multi-immersion
objective and Zeiss Axiocam 503 color camera. Glycerol was used as immersion medium.
Rhodamine fluorescence was excited using the LED 555 of the solid-state light source
Colibri 7 and the quadruple bandpass filter set 90 HE, both from Zeiss. Images were
recorded as gray-scale pictures with the microscope-associated ZEN software. The image
size was 1936 × 1460 pixels, and the pixel size was 0.116 µm/pixel. Due to prolonged snap
time and slight drift of the sample double images were collected which became visible
only at higher magnifications but allowed to unequivocally differentiate between filament
branching or crossing.

2.7. Analytical Tools

Recorded images from fluorescence microscopy were analyzed to obtain the number
of the filaments and junction points, using ImageJ and the available plugin Ridge Detection
(URL: https://imageJ.net/plugins/ridge-detection, accessed on 5 August 2022). This
plugin is based on the detection algorithm described by Steger [25] for detecting ridges and
lines. The parameter was selected to indicate all visible filaments above 1 micrometer and
their junction points. The final setting was line width: 4.0, sigma: 1.65, lower threshold:
2.72, upper threshold: 7.31, minimum line length: 8.60 (=1µm), and maximum line length
was not defined. For some images with weak signal the upper threshold was reduced to
4.5. The locations of the indicated junction points were checked manually by zooming in
on each one on the original image to determine whether they were branches, crossings
or simply two filaments approaching each other, and only branches were counted. The
number of identified branches and the number of filaments obtained by Ridge Detection
were transcribed to Microsoft Excel [26], and we determined for each image the frequency

https://imageJ.net/plugins/ridge-detection


Cells 2022, 11, 3661 5 of 21

of branching relative to the total number of filaments. Only the results of the analysis of
images with maximally 300 filaments per image were used, as higher filament density
increased the frequency of filament overlap rendering it difficult to distinguish between
crossing and branching.

2.8. Mass-Spectrometric (MS) Analysis

For in-gel digestion the excised gel bands were destained with 30% acetonitrile, shrunk
with 100% acetonitrile, and dried in a Vacuum Concentrator (Concentrator 5301, Eppendorf,
Hamburg, Germany). Digestions with trypsin (trypsin gold, mass spectrometry grade;
Promega, Walldorf, Germany) were performed overnight at 37 ◦C in 0.05 M NH4HCO3
(pH 8). About 0.1 µg of protease was used for one gel band. Peptides were extracted
from the gel slices with 5% formic acid. All LC-MS/MS analyses were performed with the
1200 Agilent Chip-HPLC system, either coupled to a Q-TOF (Agilent 6520) or an ion trap
(Agilent 6340) mass spectrometer. Peptides were separated on an HPLC-Chip with an
analytical column of 75-µm i.d. and 150 mm length and a 40-nL trap column, both packed
with Zorbax 300SB C-18 (5 µm particle size). Peptides were eluted with a linear acetonitrile
gradient with 1%/min at a flow rate of 300 nL/min (starting with 3% acetonitrile). The
Q-TOF was operated in the 2 Ghz extended dynamic range mode. MS/MS analyses
were performed using data-dependent acquisition mode. After a MS scan (2 spectra/s),
a maximum of three peptides were selected for MS/MS (2 spectra/s). Singly charged
precursor ions were excluded from selection. Internal calibration was applied using one
reference mass.

ETD analyses on the ion trap were performed using data-dependent acquisition mode.
After a MS scan (standard enhanced mode), a maximum of three peptides were selected for
ETD-MS/MS (standard enhanced mode). The automated gain control (ICC) for MS scans
was set to 350,000. The maximum accumulation time was set to 300 ms. The following ETD
parameters were used. ICC target: 400,000, reaction time: 100 ms, cut-off: 140, resonance
excitation (Smart Decomp) was used for doubly charged peptides.

Mascot Distiller 2.3 was used for raw data processing and for generating peak lists,
essentially with standard settings for the Agilent Q-Tof and ion trap. Mascot Server
2.3 was used for database searching with the following parameters: peptide mass toler-
ance: 20 ppm (Q-Tof) 1.1 Da (ion trap), MS/MS mass tolerance: 0.05 Da (Q-Tof), 0.3 Da
(ion trap), enzyme: “trypsin” with 2 uncleaved sites allowed for trypsin, variable modifi-
cations: Carbamidomethyl), Gln-pyroGlu (N-term. Q), and oxidation (M), ADP-ribosylat
(R). For protein and peptide identification a small custom database containing the pro-
tein sequence of Arp2 was used. All MS/MS spectra identified as ADP-ribosylated were
validated by manual spectra interpretation. Three peptides were identified containing ADP-
ribosylated arginine residues of which Arg179 was most prominently modified (Figure 1;
for details see also Figure 3).

2.9. Mass spectrometric Identification of Peptides Unique for Human Arp2

Fluorescent gel band was excised, destained with 30% acetonitrile in 0.1 M NH4HCO3
(pH 8), shrunk with 100% acetonitrile, and dried in a vacuum concentrator
(Concentrator 5301, Eppendorf, Germany). Digest was performed with 0.1 µg trypsin
overnight at 37 ◦C in 0.1 M NH4HCO3 (pH 8). After removing the supernatant, peptides
were extracted from the gel slice with 5% formic acid, and extracted peptides were pooled
with the supernatant.

NanoLC-MS/MS analysis was performed on an Orbitrap Fusion (Thermo Scientific,
Waltham, MA, USA) equipped with a PicoView Ion Source (New Objective,
Frederik, MD, USA) and coupled to an EASY-nLC 1000 (Thermo Scientific). Peptides were
loaded on capillary columns (PicoFrit, 30 cm× 150 µm ID, New Objective) self-packed with
ReproSil-Pur 120 C18-AQ, 1.9 µm (Dr. Maisch) and separated with a
30 min linear gradient from 3% to 30% acetonitrile and 0.1% formic acid and a flow rate of
500 nL/min.
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Figure 1. Autoradiographs using 32P-NAD to show ADP-ribosylation of Arp/3 complex compo-
nents. by (A) CD1 (C. botulinum), (B) CDTa component (C. difficile), and (C) Iota-a toxin (C. 
perfringens). (D) Corresponding Coomassie blue stained gel (12.5% polyacrylamide) showing the 
components and their molecular mass of Arp2/3 complex purified from A. castellani. Note that Arp2 
is most selectively ADP-ribosylated by CDTa and Iota-a toxin. Only the effect of Iota-a toxin is 
slightly inhibited by ADP-ribose. Only CDTa is auto-ADP-ribosylated (4th lane in B). None of the 
toxins appears to ADP-ribosylate F-©in. (E) TccC3 (Photorhabdus luminescence) shows no ADP-ribo-
sylation of any Arp2/3 complex component. (F,G) ADP-ribosylation by CDTa and Iota-a toxin is not 
modified by the presence of the VCA peptide but inhibited by F-actin. Incubation time in (A–G) was 
90 min at 25 °C. (H) Time dependence of ADP-ribosylation of Arp2 of Arp2/3 complex and mono-
meric skeletal muscle G-actin by the CDTa component. (I) Gives the aligned sequences of Acan-
thamoeba and mammalian Arp2/3 complex around the sites of ADP-ribosylation (for details see text). 
(*) Identical residues and green highlighted are the ADP-ribosylated arginines. 

Figure 1. Autoradiographs using 32P-NAD to show ADP-ribosylation of Arp/3 complex components.
by (A) CD1 (C. botulinum), (B) CDTa component (C. difficile), and (C) Iota-a toxin (C. perfringens).
(D) Corresponding Coomassie blue stained gel (12.5% polyacrylamide) showing the components
and their molecular mass of Arp2/3 complex purified from A. castellani. Note that Arp2 is most
selectively ADP-ribosylated by CDTa and Iota-a toxin. Only the effect of Iota-a toxin is slightly
inhibited by ADP-ribose. Only CDTa is auto-ADP-ribosylated (4th lane in B). None of the toxins
appears to ADP-ribosylate F-©in. (E) TccC3 (Photorhabdus luminescence) shows no ADP-ribosylation
of any Arp2/3 complex component. (F,G) ADP-ribosylation by CDTa and Iota-a toxin is not modified
by the presence of the VCA peptide but inhibited by F-actin. Incubation time in (A–G) was 90 min
at 25 ◦C. (H) Time dependence of ADP-ribosylation of Arp2 of Arp2/3 complex and monomeric
skeletal muscle G-actin by the CDTa component. (I) Gives the aligned sequences of Acanthamoeba and
mammalian Arp2/3 complex around the sites of ADP-ribosylation (for details see text). (*) Identical
residues and green highlighted are the ADP-ribosylated arginines.
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Both MS and MS/MS scans were acquired in the Orbitrap analyzer with a resolution of
60,000 for MS scans and 7500 for MS/MS scans. HCD fragmentation with 35% normalized
collision energy was applied. A Top Speed data-dependent MS/MS method with a fixed
cycle time of 3 s was used. Dynamic exclusion was applied with a repeat count of 1 and
an exclusion duration of 30 s; singly charged precursors were excluded from selection.
Minimum signal threshold for precursor selection was set to 50,000. Predictive AGC was
used with AGC a target value of 2 × 105 or MS scans and 5 × 104 for MS/MS scans.
EASY-IC was used for internal calibration.

MS data was analyzed with PEAKS Studio X+ (Bioinformatics Solutions Inc.,
Waterloo, ON, Canada). Raw data refinement was performed with the following set-
tings: Merge Options: no merge, Precursor Options: corrected, Charge Options: 1–6, Filter
Options: no filter, Process: true, Default: true, Associate Chimera: yes. De novo sequencing
and database searching were performed with a Parent Mass Error Tolerance of 10 ppm.
Fragment Mass Error Tolerance was set to 0.02 Da, and Enzyme was set to trypsin with a
maximum of 3 missed cleavages allowed. The following variable modifications have been
used: Oxidation (M), pyro-Glu from Q (N-term Q), acetylation (protein N-terminal). A max-
imum of 6 variable PTMs were allowed per peptide. Database searching was performed
against the human reference proteome (proteome ID UP000005640). Database search result
was filtered to 1% PSM-FDR and protein –10lgP > 20.

3. Results
3.1. ADP-Ribosylation of Components of Isolated Arp2/3 Complex

The Arp2/3 complex is composed of the actin-related proteins Arp2 and Arp3 and
five additional subunits named ArpC1 to ArpC5 with decreasing molecular mass (see
SDS-PAGE of Arp2/3 complex purified from Acanthamoeba castellani, Figure 1D). Figure 1
shows that the toxins’ enzyme components C2I, CDTa, and Iota-a catalyzed the incorpo-
ration of 32P-ADP-ribose from 32P-labeled NAD+ in a number of components of Arp2/3
complex purified from Acanthamoeba castellani in vitro (Figure 1A–C). The actin-related
protein 2 (Arp2) was most strongly labelled by all clostridial ARTs (Figure 1A–C). In addi-
tion, the additional components ArpC1 (40 kDa), ArpC2 (34 kDa), and ArpC3/or C4 (about
20 kDa) appeared to be also modified. These components were strongly modified by
C2I (Figure 1A), whereas CDTa and Iota-a toxin most prominently ADP-ribosylated Arp2
(Figure 1B,C). The band higher than Arp3 in Figure 1B represents the auto-ADP-ribosylated
CDTa component, since it occurs also in the absence of Arp2/3 complex (Figure 1B). We
tested also the possibility whether the bacterial ARTs modify other actin nucleators like
formins, though of different molecular architecture. No 32P-ADP-ribose incorporation
was detected for the FH2-domains of mDia1 and mDia3 (not shown). Conversely, the
TccC3 toxin, an ART from Photorhabdus luminescense [19], did not significantly lead to
32P-ADP-ribose incorporation into any of the Arp2/3 complex components (Figure 1E).

To further test the specificity of the ADP-ribosylation, we investigated the effect of
ADP-ribose, the Arp2/3-activating WASP-VCA peptide (Wiskott-Aldrich syndrome Ver-
prolin C-terminal acidic peptide), and of F-actin on this reaction. ADP-ribose led to only
a slight reduction of 32P-ADP-ribose incorporation excluding the possibility of an unspe-
cific transfer of ADP-ribose to for instance a nucleotide-binding site by the ART activity
(Figure 1A–C). Similarly, the VCA peptide inhibited only slightly the Arp2/3 modification
(Figure 1F). In contrast, addition of F-actin significantly reduced the modification by CDTa
and led to an almost complete inhibition of the ADP-ribosylation by Iota-a toxin (Figure 1F).
Of note, the added F-actin itself was not ADP-ribosylated in agreement with previous
reports ([1,4] see also Figure 1A,C).

Finally, we compared the rates of ADP-ribosylation of G-actin and Arp2 of the
Arp2/3 complex. Surprisingly, G-actin was ADP-ribosylated by CDTa much faster than
Arp2 (Figure 1H). These data suggest that Arp2 was less accessible within the intact
Arp2/3 complex probably due to a close contact with Arp3 and/or other subunits of the
Arp2/3 complex. Indeed, it has been reported that Arp2 and Arp3 form an F-actin-like
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contact [27,28], which will allow ADP-ribosylation of Arp2 though at much lower rate than
G-actin. Thus, our data indicate that the ARTs of clostridial toxins target specifically the
Arp2 isoform of actin-related proteins and in addition some of the actin-unrelated addi-
tional subunits of the Acanthamoeba Arp2/3 complex. In contrast, Arp3 does not possess an
arginine at the corresponding position [29] and therefore was not ADP-ribosylated. Since
the CDTa toxin catalyzed most prominently 32P-ADP-ribosylation of Arp2, we concen-
trated in further analyses on the functional consequences of modifying reaction of Arp2/3
complex by this toxin assuming that alterations of its function were primarily due to Arp2
ADP-ribosylation.

In addition, we employed Arp2/3 complex isolated from pig brain to verify the
ADP-ribosylation of Arp2 of mammalian Arp2/3 complex using fluorescently labelled
NAD (etheno-NAD) under identical conditions (due to the disassembly of the radioactive
laboratory, a fluorescence technique had to be employed). The data shown in Figure 2 gives
the ADP-ribosylation of the components of mammalian Arp2/3 complex under different
conditions. Incubation of the mammalian Arp2/3 complex (shown in Figure 2A) with
the toxins CDTa, C2I, and Iota-a and 0.4 mM etheno-NAD for two hours led to ADP-
ribosylation Arp2 as indicated by the fluorescent bands (Figure 2B; lanes 2′to 4’). After
extension of the incubation time to 4 h additional labelling of bands at the height of ArpC1
and ArpC2 by CDTa was observed (Figure 2C; lanes 5 and 6) that was not influenced by the
presence of the VCA-peptide (Figure 2C; lane 6). Unfortunately, free etheno-NAD migrated
slower than the Coomassie blue stain close to the positions of the ArpC3–5 subunits.
Reducing the etheno-NAD to 0.1 mM made it possible to resolve the migration of the
presumed ArpC3,4 subunits from free etheno-NAD and to demonstrate weak labelling of
supposedly ArpC3,4 by CDTa, C2I, and Iota-a (arrow in Figure 2D; lanes 7–9). Furthermore,
pig brain Arp2/3 complex ADP-ribosylated with 0.8 µM etheno-NAD for 5 h by CDTa was
gel-filtrated over a column (1.0 cm× 5 cm) collecting first a 500 µL and subsequently 200 µL
fractions, which were analyzed by SDS-PAGE (15% acrylamide). The data obtained clearly
demonstrated strong fluorescent labelling of 44 and 40 bands presumably corresponding to
Arp2 and ArpC2 (Figure 2E,F). Only weak labeling was observed for ArpC4,5 (as indicated
by an arrow in Figure 2F, whereas free etheno-NAD started to appear in tube 8). Generally,
the fluorescence signals of labelled Arp2/3 complex subunits appeared rather weak. It is
possible that the modification of the adenine moiety of etheno-NAD led to a reduction of
its affinity to these ARTs as previously observed for etheno-ATP binding to G-actin [30].

3.2. Mass Spectrometry Identifies Arg179 of Acanthamoeba Arp2 as Main Residue Modified

Employing mass spectrometry, the arginines 41, 179 and 382 of Acanthamoeba Arp2 [28]
were identified to be ADP-ribosylated by CDTa (Figure 3A–C). Notably, the most promi-
nently modified residue of Arp2 was Arg179 (Figure 3B), which in sequence alignments
corresponds to Arg177 of classical actins (Figure 1I). Due to the high sequence identity
between Acanthamoeba and mammalian Arp2 [29,31], we expect that also arginine179 of
mammalian Arp2 will have been modified by the ARTs employed (identical sequence of
residues 174–179 of mammalian and Acanthamoeba Arp2: LPHLTR. The ADP-ribosylated
arginine is in bold).
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Figure 2. ADP-ribosylation of pig brain Arp2/3 complex by Clostridial toxins using etheno-NAD.
Pig brain Arp2/3 complex (20 µL of 10 µM) was incubated without lane 1 or with 0.5 µg of CDTa, C2I,
and Iota-a toxin (lane 2 to 4) in the presence of 0.4 mM etheno-NAD. After 2 h at room temperature
the reactions were stopped with hot sample buffer and applied to a 15% polyacrylamide gel. The
gel was analyzed for fluorescent bands by using a BioRad XR+ system using the “oriole” setting
(B). Subsequently the gel was stained with Coomassie blue (A). The Arp2/3 complex subunits are
indicated. Lanes 2´,3´, and 4´ give the fluorescently stained bands corresponding to mammalian
Arp2. (C) Labelling of pig Arp2/3 by CDTa for 4 h under identical conditions: lane 5 without and
lane 6 with 20 µM VCA-peptide. (D) Incubation of pig Arp2/3 with CDTa, C2I, and Iota-a toxin
(lane 7 to 9) and 0.1 mM etheno-NAD for 2 h. (E,F) Separation of free etheno-NAD from pig Arp2/3
complex (50 µL of 10 µM) treated with CDTa for 5 h at 25 ◦C was subsequently separated from
etheno-NAD by gel filtration using a Sephadex G75 column (1.0 × 5 cm). After applying 50 µL the
treated Arp2/3 complex, the column was washed with HEPES-buffer and the following fractions
were collected: 0.5 mL in the 1st fraction and thereafter 0.2 mL for fractions 2 to 8. The collected
fractions were analyzed by 15% SDS-PAGE with a protein concentration of 2 µM for the fraction 2 to 4.
(E) Gives the Coomassie-blue stained gel and (F) the corresponding fluorescent image obtained before
staining. Lane 1 gives a small amount (about 10 µL) of labelled Arp2/3 complex before loading to the
column and lanes 2–8 the fractions collected; Lane 1 corresponds to first fraction (0.5 mL), thereafter
the 0.2 mL fractions. Black arrows in (C,D) and also white arrow in (F) point to weak labeling of
ArpC4,5. Black arrow in (E) points to molecular mass marker of 70 kDa.



Cells 2022, 11, 3661 10 of 21

Cells 2022, 11, x FOR PEER REVIEW 10 of 23 
 

 

of residues 174–179 of mammalian and Acanthamoeba Arp2: LPHLTR. The ADP-ribosyl-
ated arginine is in bold). 

 
Figure 3. Mass spectrometric identification of ADP-ribosylation sites of Arp2. ADP-ribosylation 
sites were pinpointed from ETD spectra at positions R41, R179, and R382. Three peptides were iden-
tified: (A) ETD fragment ion mass spectrum of the peptide PILRSEEK (residues 179–185) with the 
ADP-ribosylated arginine at position 41; corresponding calculated fragment ion masses (c and z 
ions); values marked in red have been detected in the ETD spectrum. (B) ETD fragment ion mass 
spectrum RLNVAGR (residues 179–185) with the ADP-ribosylated arginine at position 179 and cor-
responding calculated fragment ion masses (c and z ions); values marked in red have been detected 
in the ETD spectrum. (C) ETD fragment ion mass spectrum of the peptide SEYEEQGPRVLR (resi-
dues 374–185) with the ADP-ribosylated arginine at position 382 and corresponding calculated frag-
ment ion masses (c and z ions); values marked in red have been detected in the ETD spectrum. 
Peptide (B) containing arginine 179 was most prominently ADP-ribosylated. 

3.3. Inhibition of the Nucleating Activity of ADP-Ribosylated Arp2/3 Complex 
Polymerization assays using pyrene-labeled skeletal muscle actin showed that after 

ADP-ribosylation the Arp2/3 complex was unable to stimulate actin polymerization when 
determined in the absence or presence of the stimulating VCA-peptide (Figure 4A). Simi-
larly, electron microscopy after negative staining demonstrated that modified Arp2/3 
complex generated less actin filaments (Figure 4D,E) than control actin alone (Figure 4B) 

Figure 3. Mass spectrometric identification of ADP-ribosylation sites of Arp2. ADP-ribosylation
sites were pinpointed from ETD spectra at positions R41, R179, and R382. Three peptides were
identified: (A) ETD fragment ion mass spectrum of the peptide PILRSEEK (residues 179–185) with the
ADP-ribosylated arginine at position 41; corresponding calculated fragment ion masses (c and z ions);
values marked in red have been detected in the ETD spectrum. (B) ETD fragment ion mass spectrum
RLNVAGR (residues 179–185) with the ADP-ribosylated arginine at position 179 and corresponding
calculated fragment ion masses (c and z ions); values marked in red have been detected in the ETD
spectrum. (C) ETD fragment ion mass spectrum of the peptide SEYEEQGPRVLR (residues 374–185)
with the ADP-ribosylated arginine at position 382 and corresponding calculated fragment ion masses
(c and z ions); values marked in red have been detected in the ETD spectrum. Peptide (B) containing
arginine 179 was most prominently ADP-ribosylated.

3.3. Inhibition of the Nucleating Activity of ADP-Ribosylated Arp2/3 Complex

Polymerization assays using pyrene-labeled skeletal muscle actin showed that after
ADP-ribosylation the Arp2/3 complex was unable to stimulate actin polymerization when
determined in the absence or presence of the stimulating VCA-peptide (Figure 4A). Sim-
ilarly, electron microscopy after negative staining demonstrated that modified Arp2/3
complex generated less actin filaments (Figure 4D,E) than control actin alone (Figure 4B)
and branches (white arrows in Figure 4B–E; red arrows indicate filament crossings) than
in the presence of native Arp2/3 complex (Figure 4C). Counting the number of filaments
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and branches of 27 arbitrarily selected, non-overlapping EM-micrographs of identical
size and magnification resulted in 35 and 67 branches within 475 and 524 filaments for
F-actin alone and plus native Acanthamoeba Ap2/3 complex, respectively. In the presence
of ADP-ribosylated Arp2/3 we counted 30 branches within 304 filaments. Thus, in the
presence of ADP-ribosylated Arp2/3, the number of branches counted was almost equal to
F-actin alone (Table 1). We also tested the effect of native Ap2/3 on ADP-ribosylated and
therefore polymerization inhibited actin and accordingly found only very few filaments
but considerable amounts of non-polymerized, aggregated actin (Figure 4F) supporting
the notion that our preparation of ADP-ribosylated Arp2/3 was free of ART activity and
no ADP-ribosylation of actin had occurred during the incubation of native actin with
ADP-ribosylated Arp2/3 (Figure 4A,D,E).

Table 1. Statistical evaluation of F-actin branching events visualized by EM or after TRITC-phalloidin
by fluorescence microscopy (LM). (A) Non-overlapping electron microscopical images of skeletal
muscle F-actin alone or after incubation with Acamthamoeba Arp2/3 complex before or after ADP-
ribosylation (27 images of each condition) were visually evaluated for branching events. The number
of filaments and branching events were manually counted for all images (see also Figure 4B–E).
(B) Determination of branching events after staining with TRITC-phalloidin of F-actin alone or plus
Acanthamoeba or porcine brain Arp2/3 complex before and after ADP-ribosylation. The number of
total filaments and the branching events in each selected image were determined by ImageJ ridge
detection (Figure 4G–K). Details of the procedure of filament counting and their statistical evaluation
by ImageJ are given in the Material and Methods. The branching events are given as percentages of
the total filaments or as events occurring for each single filament (giving also the standard error of
the mean; SEM). Note the reduction of branching events in the presence of ADP-ribosylated Arp2/3
complex to the value of F-actin alone. The percental difference in branching events observed between
EM and FM are probably due to the difference in the concentrations of the F-actins: For EM the
F-actin subunit concentration was 2.35 µM and for fluorescence microscopy (FM) it was reduced to
10 nM, because at higher concentrations the filaments were too numerous and crowded to distinguish
between crossing and branching.

Sample Images Total
Filaments

Branching
Events

Branching/Total
Filaments *

Av.Branching/Filaments **
±SEM

A—Electron microscopy.

F-actin 27 475 35 7.37% 7.34 ± 1.23%

+Acant Arp2/3 27 524 67 12.79% 13.49 ± 1.78%

+Acant Arp2/3 ADPrib 27 304 30 9.87% 10.50 ± 1.28%

B—Fluorescence microscopy.

F-actin 46 6374 28 0.44% 0.39 ± 0.08%

+Acant. Arp2/3 30 6672 76 1.14% 1.13 ± 0.12%

+Acant. Arp2/3 ADPrib 20 4198 21 0.50% 0.47 ± 0.08%

+pig brain Arp2/3 85 11857 90 0.76% 0.77 ± 0.09%

+pig brain Arp2/3
ADPrib 70 7348 24 0.33% 0.30 ± 0.06%

* Total branching events/total filaments. ** Average value of branching/filaments in each image.

We also performed a similar quantitative analysis after staining the F-actin-Arp2/3
complex mixtures with TRITC-phalloidin. F-actin alone at 1 µM or incubated with native or
ADP-ribosylated Acanthamoeba castellani or pig brain Arp2/3 complex (at 100:1 ratio) was
stained with 2 µM TRITC-phalloidin and after a further incubation period of 60 min diluted
to 10 nM F-actin and subsequently examined by fluorescence microscopy (see Material and
Methods) assuming that phalloidin will prevent its depolymerization [32]. Representative
images of all incubations are given in Figure 3G–K (white arrows indicate branching events;
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red arrows filament crossings). The quantitative evaluation was performed by using ImageJ
Ridge Detection analysis [25] and demonstrated that under the conditions used Arp2/3
complex from both sources led to a doubling of the branching events, whereas their ADP-
ribosylation led to a reduction of branching events to a value almost identical to F-actin
alone (see also Table 1). Branching in the presence of F-actin alone was possibly due the
formation of the anti-parallel (lower) dimer during the initial phase of polymerization [33].
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Figure 4. Properties of Arp2/3 complex after ADP-ribosylation of Arp2. (A) Pyrene-labelled actin
(10%) was used to test the nucleating activity of native Arp2/3 before and after Arp2 ADP-ribosylation.
Polymerization of 5 µM skeletal actin was initiated by addition of 2 mM MgCl2 in the absence or
presence of 50 nM Arp2/3 complex. Note the absence of nucleating activity of Arp2/3 treated with
His-tagged CDTa component for 4 h. The CDTa was removed by Ni-NTA-beads and further gel
filtered to additionally remove its substrate NAD. Ordinate gives fluorescence intensity in arbitrary
units (AU) ranging from 0 to 0.006; Abscissa gives time in min. (B–F) EM after negative staining
of skeletal actin polymerized by 2 mM MgCl2 in the absence and presence of native and modified
Arp2/3. (B) F-actin alone; (C) in the presence of native and (D,E) of CDTa treated Arp2/3 complex,
and (F) ADP-ribosylated actin in the presence of native Arp2/3 complex. Branches are marked by
black and crossings by red arrows (B-E). Magnification: 20.000 fold; bars correspond to 100 nm.
(G–K) Fluorescent images of TRITC-phalloidin stained 10 nM actin samples: (G) F-actin control,
(H) plus Acant. castellani native Arp2/3 complex, (I) plus Acant. castellani Arp2/3 complex after
ADP-ribosylation; (J) plus pig brain native Arp2/3 complex, and (K) plus pig brain Arp2/3 complex
after ADP-ribosylation (for details see text). Bars correspond to 20 µm; branches are marked by white
and crossings by red arrows.
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3.4. Effect of Arp2 ADP-Ribosylation on the Actin Cytoskeleton of Human Caco2 Cells

In order to test the effect of CDT intoxication under more in vivo conditions, we first
analyzed the alterations of Arp2 distribution (by using a monoclonal anti-Arp2 antibody)
and the actin and tubulin cytoskeleton of human colon carcinoma Caco2 cells after intracel-
lular translocation of recombinant CDTa by CDTb (Figure 5A–C). Under control conditions,
the Arp2 immunoreactivity co-localized with cortical F-actin concentrating at cell–cell
contacts and in regions of lamellipodial extensions (Figure 5A). In addition, the perinuclear
region showed a punctate and circular anti-Arp2 staining probably attached to vesicular
structures (Figure 5A). After intoxication for 45 min, most of the lamellipodial extensions
had disappeared and Arp2 appeared to form aggregates or clusters along the cell periphery
and within the cytoplasm (Figure 5B). After 90 min, Arp2 was almost evenly distributed
within the cytoplasm occasionally forming small aggregates (Figure 5C). Z-stacks were
used to count the clusters detected by Arp2 immunofluorescence. Their number (median
value: 33/control cell) increased about threefold after 45 min but decreased threefold below
control level after 90 min of toxin exposure (Figure 5H). These changes were observed
in about 70% of the exposed Caco2 cells. In addition, the actin cytoskeleton appeared
almost completely disassembled, most probably depolymerized, and therefore not stained
by TRITC-phalloidin. In contrast, the tubulin network maintained its basic organization
though single microtubules had a wavy appearance. In addition, the tubulin network
formed long cytoplasmic filipodia-like extensions as reported previously [18] (Figure 5C).
Thus, these data showed that the CDT-toxin led to complete disassembly of the actin
cytoskeleton of the Caco2 cells.

3.5. Evidence for Arp2 ADP-Ribosylation in CTDa Toxin Exposed Human Caco2 Cells

In order to verify Arp2 ADP-ribosylation in Caco2 cells under these conditions, we
exposed Caco2 cells after CDTa translocation by CDTb for 2 to 3 h to 0.15 mM Triton X-100
to allow etheno-NAD diffusion into these cells. Phase contrast images of control Caco2 cells
demonstrated that addition of 0.15 mM Triton X-100 had no effect on their morphology and
actin cytoskeleton (not shown), whereas in the presence of CDTa and CDTb the peripheral
cells of the Caco2 cell clusters clearly showed the alterations as shown in Figure 5A–C.
The cells were harvested, washed three times with PBS, and finally taken up in RIPA
buffer and frozen at −20 ◦C. After thawing, immune-precipitation (IP) was performed
using a monoclonal anti-Arp2 antibody (see Material and Methods). Homogenates of
control (absence of toxin) and CDTa-treated cells and material obtained by the IP and of
preceding washing steps was analyzed by SDS-PAGE (Figure 5D and E showing fluorescent
bands as visualized under UV-light). The CDTa-treated Caco2 cell homogenate (Figure 5E,
lane 2) contained two main fluorescent bands, which appeared to migrate at the position
of mammalian Arp2 (about 48 kDa) and of actin (42 kDa). Surprisingly, the homogenate
of the control cells showed also a very feeble staining of these two bands (Figure 5E,
lane 1) possibly due to the presence of endogenous ADP-ribosyltransferase activity in
these cells. The final IP sample of CDT-exposed cells contained only one main band of
about 48 kDa (Figure 5E, lane 5) that migrated slightly slower than etheno-ADP labelled
Arp2 control Acanthamoeba Arp2/3 complex (MW = 44 kDa; Figure 5E, lane 6) and labelled
control actin (Figure 5E, lane 7). After immunoblotting of the IP gel (shown in Figure 5E)
with anti-Arp2 mAb only the 48 kDa band was stained (Figure 5F, lane 5) suggesting that
the immune-precipitated fluorescent 48 kDa band was indeed Arp2, but also indicating
that the anti-Arp2 mAb used does not recognize Acanthamoeba Arp2. The homogenate of
the etheno-NAD exposed cells revealed an almost equally strong fluorescent 42 kDa band
(Figure 5E, lane 2), which migrated at the same molecular mass as labelled control actin
(Figure 5E, lane 7). Its identity with actin was verified after stripping the blot shown in
Figure 4F and subsequent immunoblotting with ant-actin (Figure 5G. lanes 1, 2, and 7).
Apparently, actin was co-immune-precipitated with Arp2, since the anti-actin immunoblot
indicated its presence also in lane 5 of Figure 5F.
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Figure 5. Effect of CDTa on Caco2 cells. (A–C) Caco2 cells seeded n coverslips were exposed to the
CTDa and CDTb components to allow intracellular transport of CDTa by the membrane insertion
CDTb component. (A) Control before intoxication, (B) 45 min and (C) 90 min after intoxication. After
the indicated incubation periods, the cells were fixed and stained with TRITC-phalloidin (top rows).
Anti-Arp2 mAb (middle rows); and anti-tubulin (lower rows) (for details see text). Bars correspond
10 µm. (D–G) Caco2 cells were incubated with CDTa and CDTb components, 0.1 mM etheno-NAD
and 0.15 mM TritonX-100 to allow etheno-NAD diffusion into the cells. After 2 h or 3 h the cells were
collected, washed 5 times in PBS and finally taken up in RIPA buffer to solubilize the cell content.
After centrifugation the supernatants of the cell homogenates were analyzed by SDS-PAGE (12.5%
polyacrylamide): (D) Coomassie blue staining of the control (C) and treated (T) cells. (E) Gives
SDS-PAGE of cell homogenates and of the anti-Arp2 immune-precipitation (IP); the protein bands
were fluorescently stained by inclusion of 0.5% trichloroethanol into the gel and visualized by the
“oriol” setting of the BioRad transilluminator. (F) Gives the immunoblot of gel shown in (E) with
anti-Arp2 mAB; and (G) with anti actin. Lanes in (E–G): Lane 1: homogenates of control and lane 2
of CDTa treated cells. Lanes 3 and 4: washing steps before final IP; lane 5: final anti-Arp2 IP showing
Protein-A beads bound fluorescent material; lane 6: etheno-NAD labelled Acanthamoeba Arp2/3
complex; and lane 7: etheno-NAD labeled actin. Note lower molecular mass of Arp2 of Acanthamoeba
Arp2/3 complex (upper band of lane 6). (H) Statistical evaluation of Z-stacks of cells treated and
stained as in (A–C) were 3D-reconstructed (z-Step: 0.4 µm) with Metamorph and the number of
Arp2 accumulations with 0.07 to 1.7 µm3 was quantified per cell (ordinate) for the control and the
cells treated with the CDTa and CDTb toxins (CDT) for 45 and 90 min. Differences were statistically
analyzed by 1-way ANOVA with Tukey post-test. 10 fields of view were analyzed for each condition
with ≥34 cells in total, from 2 independent experiments. The data are represented both in the “violin”
mode and as columns. Asterisks indicate significant differences (p ≤ 0.001:***; p ≤ 0.0001: ****).
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Because the same anti-Arp2 antibody was used for IP and the subsequent immunoblot-
ting, we additionally verified the identity of the IP precipitated fluorescent band obtained
with human Arp2 by mass spectrometry. Therefore, in a separate experiment the fluorescent
band obtained by IP (as shown in Figure 5E, lane 5) from treated Caco2 cell homogenates
was carefully excised, digested with trypsin and analyzed by nanoLC-MS/MS. The data
obtained clearly indicated the presence or two peptides (residues 52 to 63 and 274 to 281)
unique for human Arp2 (Figure 6) supporting the notion that the fluorescent band obtained
by IP was indeed human Arp2.
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Tunica muscularis (Figure 7B). After 3 h incubation we did not observe gross morpholog-
ical alterations between colon pieces filled with only PBS (Figure 7A) and with PBS plus 
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ure 7B´). Immunostaining consecutive sections of colon pieces incubated with PBS plus 
1.5 mM Triton X-100 with anti-Arp2, TRITC-phalloidin plus Hoechst 33342 demonstrated 
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Figure 6. Mass spectrometric identification of human Arp2 unique peptides. Fluorescently labelled
band after IP as shown in lane 5 of Figure 5G was excised from a similar SDS-PAGE gel and digested
with trypsin as detailed in Materials and Methods. Two tryptic peptides (residues 52 till 63 and
274 till 281) unique to human Arp2 (gene: ACTR2) were identified by nanoLC-MS/MS (highlighted in
the protein sequence). The lower part shows the fragment ion spectrum (HCD) of one of the identified
tryptic peptides demonstrating high peptide sequence coverage and thus reliable identification of Arp2.

3.6. Evidence for Arp2 ADP-Ribosylation in CTDa Toxin Exposed Mouse Colon Epithelium

Similar to the toxin exposure of Caco2 cells, we treated isolated mouse colon pieces
with the binary CDT toxin of C. difficile. After thoroughly washing 1 to 1.5 cm long
pieces of mouse colon with PBS, they were filled with about 1 mL PBS containing CDTa
and CDTb, 0.4 mM etheno-NAD, and 0.15 mM Triton X-100 to allow diffusion of the
fluorescent NAD into the enterocytes. The filled colon pieces were tightly ligated at both
ends and incubated for 3 h at 37 ◦C and 5% CO2 in cell culture medium. Thereafter,
the ligations were removed and without further rinsing small slices were embedded in
TissueTek and quickly frozen in liquid nitrogen for cryo-sectioning. Alternatively, small
colon pieces were frozen directly in liquid nitrogen and stored at −20 ◦C for homogenate
preparation. Cryo-sections (about 8 µm thick) were stained with haematoxylin-eosin (H.E.)
or TRITC-phalloidin and Hoechst 33342 or immunostained with anti-Arp2. Though the
colon pieces were maintained under artificial, cell culture conditions, the H.E. staining
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of control colon pieces after 3 h indicated a relatively well-preserved morphology with
clearly distinct layers comprising the mucosa, Lamina muscularis mucosae, a narrow Tela
submucosa, and Tunica muscularis (Figure 7B). After 3 h incubation we did not observe
gross morphological alterations between colon pieces filled with only PBS (Figure 7A) and
with PBS plus 1.5 mM Triton X-100 (Figure 7A´) when examining the H.E stained sections
(see also Figure 7B´). Immunostaining consecutive sections of colon pieces incubated
with PBS plus 1.5 mM Triton X-100 with anti-Arp2, TRITC-phalloidin plus Hoechst 33342
demonstrated also the preservation of the typical intestinal layering, i.e., the organization
of the mucosal layer (M) into crypts lined by enterocytes sitting on the Lamina propria
(lp) and muscularis mucosae (mm) and a narrow Tela submucosa (ts) followed by the
outer Tunica muscularis (tm), as indicated in Figure 5B´. As expected TRITC-phalloidin
strongly stained the smooth muscle cells of the Lamina muscularis mucosae and the Tunica
muscularis (Figure 7A´´,B´), whereas anti-Arp2 strongly stained the Lamina propria
(probably fibroblastic cells) and weakly the luminal (apical) face of the enterocytes lining
the crypts (arrowheads in Figure 7B,B´).
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Figure 7. Effect of C. difficile CDTa and CDTb toxins on the mucosa of mouse colon. Mouse colon
pieces filled with PBS alone (A) or plus 0.15 mM Triton X-100 (control) (A´) were ligated at both
ends and incubated for 3 h at 37 ◦C. (A,A´) Hematoxylin stained; note no gross alterations in
the organization of the mucosa. (A´´,B) Consecutive sections stained with anti-Arp2 monoclonal
antibody and (A´´´,B´) merged images with TRITC-phalloidin staining. Arrowheads point to weak
anti-Arp2 staining of the enterocytes, in (B´) the intestinal layers are marked as detailed in text. (C,D).
Sections of colon pieces were incubated for 3 h with PBS, 0.15 mM Triton X-100, the CDTa and CDTb
toxin components both at 0.1 mg/mL, and 0.1 mM etheno-NAD. Triton X-100 was included to secure
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diffusion of etheno-NAD into the mucosal enterocytes. (C,D) Cryo-sections after 3 h incubation: (C,D)
H.E. stained; (C´,D´) immunostained with anti-Arp2; (C´´,D´´) Hoechst 33342, and (C´´´,D´´´)
merged images together with TRITC-phalloidin stain. Arrows point to anti-Arp2 positive remnants
of the Lamina propria within of the crypts, whereas the enterocytes appear completely dissolved.
For details see text. Bars in (A´´´,B´) represent 100 µm and in (C,D) 200 µm. (E) SDS-PAGE
(12.5% polyacrylamide) of IP fractions of colon homogenates after exposure for 3 h to the CDTa and
CDTb (C. difficile) components and 0.1 mM etheno-NAD analyzed for fluorescence, and Western
blots immunostained with anti-Arp2 (E´), and anti-actin (E´´). Lane 1: final IP fraction of colon
segments treated for 2 h, lane 2 and 3: purified Acanthamoeba Arp2/3 complex and actin, both
fluorescently labeled covalently with etheno-ADP. Lane 4: Colon homogenate after 3 h treatment,
lane 5: supernatant of final IP washing and lane 6: precipitate of final IP washing containing the
protein A beads.

After exposure of the colon pieces for 3 h to CDTa,b toxin and etheno-NAD, the
basic colon morphology was preserved (Figure 7C,D). Since it was not possible to detect
etheno-NAD fluorescence on colon sections, we again performed immunostaining with
anti-Arp2 and TRITC-phalloidin. After 3 h CDTa,b treatment the enterocytes appeared
completely dissolved, only short anti-Arp-2 positive rudiments of the supporting Lamina
propria were detectable (arrows in Figure 7C,D). The Lamina muscularis mucosae was not
clearly discernable, whereas the Tunica muscularis appeared intact (Figure 7C´´´,D´´´).
The lumen was filled with cell debris presumably originating from necrotic enterocytes that
was weakly stained by anti-Arp2 and TRITC-phalloidin, but strongly by Hoechst 33342
(Figure 7C´´,D´´). The data obviously indicated selective degradation of the enterocytes,
whereas the Arp2 positive fibroblastic cells of the supporting Lamina propria appeared less
affected. This difference might be due to the presence of the lipolysis-stimulated lipoprotein
receptor only on the colon enterocytes, which has been identified as receptor for the pore
forming clostridial CDTb toxin [10].

Colon homogenates were analyzed after IP with anti-Arp2 mAb and SDS-PAGE by
fluorescence for etheno-ADP-ribosylated Arp2 and by immunoblotting with anti-Arp2
and -actin mAb. The data showed in the IP fractions fluorescent bands, in particular a band
migrating at 48 kDa (Figure 7D; the height of mammalian Arp2). Its identity with Arp2
was again verified by immunoblotting with anti-Arp2 (Figure 7E). After blot stripping,
immunostaining with anti-actin revealed for the lower fluorescent band (about 42 kDa) a
positive reactivity (Figure 7F) indicating co-precipitation of actin with Arp2. Again, Arp2
and the endogenous actin appeared to be of almost equal fluorescence and immunostaining
intensity (Figure 7D–F, for details see figure legend).

4. Discussion

Previously it has been shown that the Arp2/3 complex is targeted by a number of
bacterial pathogens. For instance, Listeria monocytogenes bacteria express ActA—a bacterial
surface protein that activates Arp2/3 complex and uses it for comet tail formation and
their intra- and intercellular transport [34]. Our data show for the first time that clostridial
toxins with ART-activity also target the Arp2/3 complex by ADP-ribosylating the Arp2
subunit and some accessory proteins of the Arp2/3 complex. Indeed, Arp2 possesses about
50% sequence identity and high structural homology to actin [28,31]. Therefore, Arp2 is a
well-suited second substrate for bacterial ARTs, since it also possesses an arginine at their
target site (Arg179), whereas this residue is a histidine in Arp3 [29].

This Arp2 modification affects the whole Arp2/3 complex and leads to inhibition
of its stimulatory activity on actin polymerization and filament branching. Since it has
been shown that during branch formation the first actin molecule of the growing daughter
filament attaches to the barbed end area of Arp2, the ADP-ribosylation of Arp2 at Arg179
could block the attachment of this first actin subunit similar to the inhibition of actin subunit
addition to the plus end of F-actin by the capping activity of ADP-ribosylated actin [35].
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When comparing the time dependence of ADP-ribosylation of Arp2 of the Arp2/3
complex with that of G-actin, it was obvious that G-actin is much faster modified that Arp2
(Figure 1H). Within F-actin the Arg177 residue is located at the interstrand interface [36,37]
and therefore is not accessible for the ARTs although they may bind to F-actin. Structural
studies have shown that C. perfrigens Iota-a toxin binds to a large target area of monomeric
(G-) actin covering subdomains 1,3, and 4 [38], of which subdomains 3 and 4 are not fully
exposed in F-actin [38]. Therefore, the ARTs will bind to F-actin with reduced affinity, but
be unable to ADP-ribosylate Arg177 of actin, thus explaining the inhibitory effect of F-actin
on ART´s ADP-ribosylation activity.

Though CDTa, C2I and Iota-a toxin modify only monomeric but not filamentous actin
(see also Figure 1A–C), this result does not necessarily indicate a negligible in vivo effect
of Arp2 ADP-ribosylation. Only a small fraction of the total actin is in monomeric state
in established cell lines, tissue epithelial or migrating white blood cells. Instead, most of
the intracellular actin is polymerized to filamentous structures forming static or dynamic
supramolecular organizations by interacting with other actin binding proteins, which may
further inhibit ADP-ribosylation of actin as shown also for the TccC3 toxin [23]. It has been
estimated that the intracellular concentration of actin is about 40- to 100-fold higher than
that of Arp2/3 complex [28]. Our data suggest that actin and Arp2 were almost equally
strongly modified in treated Caco2 cells and mouse colon. This observation will most
probably be due to the fact that intracellularly only a small amount of the total actin is
in monomeric state (5 to 10%), of which only a smaller fraction will not be complexed
to G-actin binding proteins like thymosin ß4 or profilin, which might further reduce the
accessibility of bacterial ARTs [23]. Additionally, capping of the plus-ends of F-actin by
ADP-ribosylated actin [36] will reduce the rate of depolymerization of intracellular actin
filaments, since then actin subunit dissociation occurs only slower from their minus ends.

In epithelial cells the F-actin is additionally stabilized by interactions with a large
number of actin binding proteins. The Arp2/3 complex is of paramount importance for the
connection of F-actin to for instance to adherence or tight junctions, which firmly attach
neighboring cells to each other, or the stabilization of the cortical F-actin beneath the plasma
membrane. Both structures appear to be affected by clostridial toxins possessing ART
activity as shown by the effects of CDTa on the contacts of Caco2 cells and the dissolution
of the epithelial layer of the mouse colon mucosa. The disruption of the cortical F-actin
will reduce the resistance of the plasma membrane and lead to the observed outgrowth of
microtubule bundles, a process that further increases pathogen attachment [18]. Infection
of Caco2 cells by CDTa showed a translocation of Arp2 immunofluorescence away from
the plasma membrane into the cell interior and the formation of large aggregates leading to
disruption of the cell–cell and possibly also of cell-substratum contacts. This process will be
aggravated by the simultaneous ADP-ribosylation of actin leading to the disassembly of the
actin cytoskeleton [1–4]. The immunofluorescence data indicated 45 min after intoxication
a partial colocalisation of Arp2 and actin in these aggregates. The preferential staining of F-
actin by TRITC-phalloidin might, however, miss the presence of G-actin in these aggregates.
Nevertheless, the intracellular formation of Arp2 and presumably also of Arp2/3 complex
aggregations and the disassembly of the actin cytoskeleton will have arrested lamellipodial
activity and intracellular vesicle transport terminating in cell death [4]. Our data suggest
that an similar process occurs within the colon enterocytes after exposure to CDTa,b finally
resulting in their detachment from the basal lamina.

Furthermore, the CDTa component might perform a dual toxic effect when inhibiting
the function of Arp2/3 complex as it will also lead to an interruption of essential signal-
ing pathways to the actin cytoskeleton affecting also processes like morphogenesis, cell
motility, intracellular vesicle transport, and phagocytosis. In this respect, the action of
toxins like CDT appears to have similar consequences as the lack of the Arp2/3 complex
activating factor WASP in patients with Wiskott-Aldrich syndrome, which suffer from
thrombocytopenia, an insufficiency of the immune cells to migrate and form contacts (as
seen in CDTa-treated Caco2 cells), and gastrointestinal hemorrhage [6–8].
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Finally, it has been shown that the Arp2/3 complex attaches via its additional subunits
ArpC2, ArpC3 and ArpC4/or5 to the mother filament [27]. A recent cryo-electron study has
shown that the main contacts of the Arp2/3 complex with the growing daughter filament
are established by both Arp2 and Arp3 [39,40]. Therefore, it appears plausible that ADP-
ribosylation of Arp2 will inhibit the addition of actin subunits and thereby the growth of a
daughter filament. Furthermore, a recent study also showed that the additional ArpC2 and
ArpC4 subunits form an extensive contact area with the mother filament [40]. Our data show
that exactly these subunits were also ADP-ribosylated by particularly the C2I and Iota-a toxins
(Figure 1). It is tempting to assume that their ADP-ribosylation (of ArpC2 and ArpC4) might
inhibit the attachment of Arp2/3 complex to a mother filament [40] and thereby additionally
contribute to the failure of the modified Arp2/3 complex to nucleate actin polymerization
and branch formation. This aspect will, however, necessitate future investigations.

In summary, our findings show that the Arp2/3 complex is an additional target
of toxins with ART-activity like CDT, C2I and Iota-a. ADP-ribosylation of Arp2 of the
Arp2/3 complex inhibits its stimulatory activity on actin polymerization. Moreover, our
studies employing culture cells and an intestinal tissue model suggest that the modification
of the Arp2/3 complex together with that of actin induce complete disassembly of the
actin cytoskeleton in Caco2 cells and most likely lead to the morphological alterations
of colon tissue organization, especially of its epithelial layer that appear reminiscent of
pseudomembranous colitis. These results may open new approaches and targets for the
treatment for the severe diarrhea and pseudomembranous colitis caused by C. difficile and
diseases induced by other clostridial bacteria.
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