
Detecting Anomalies in
Transaction Data

vorgelegt von

Daniel Schlör

Dissertation zur Erlangung des naturwissenschaftlichen

Doktorgrades der Julius-Maximilians-Universität Würzburg

Würzburg, 2022

This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0):
http://creativecommons.org/licenses/by-nc-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

Abstract

Detecting anomalies in transaction data is an important task with a high poten-
tial to avoid financial loss due to irregularities deliberately or inadvertently carried
out, such as credit card fraud, occupational fraud in companies or ordering and ac-
counting errors. With ongoing digitization of our world, data-driven approaches,
including machine learning, can draw benefit from data with less manual effort
and feature engineering. A large variety of machine learning-based anomaly detec-
tion methods approach this by learning a precise model of normality from which
anomalies can be distinguished. Modeling normality in transactional data, however,
requires to capture distributions and dependencies within the data precisely with
special attention to numerical dependencies such as quantities, prices or amounts.

To implicitly model numerical dependencies, Neural Arithmetic Logic Units have
been proposed as neural architecture. In practice, however, these have stability and
precision issues. Therefore, we first develop an improved neural network architec-
ture, iNALU, which is designed to better model numerical dependencies as found in
transaction data. We compare this architecture to the previous approach and show in
several experiments of varying complexity that our novel architecture provides bet-
ter precision and stability. We integrate this architecture into two generative neural
network models adapted for transaction data and investigate how well normal be-
havior is modeled. We show that both architectures can successfully model normal
transaction data, with our neural architecture improving generative performance for
one model.

Since categorical and numerical variables are common in transaction data, but
many machine learning methods only process numerical representations, we ex-
plore different representation learning techniques to transform categorical transac-
tion data into dense numerical vectors. We extend this approach by proposing an
outlier-aware discretization, thus incorporating numerical attributes into the com-
putation of categorical embeddings, and investigate latent spaces, as well as quanti-
tative performance for anomaly detection.

Next, we evaluate different scenarios for anomaly detection on transaction data.
We extend our iNALU architecture to a neural layer that can model both numerical
and non-numerical dependencies and evaluate it in a supervised and one-class set-
ting. We investigate the stability and generalizability of our approach and show that
it outperforms a variety of models in the balanced supervised setting and performs
comparably in the one-class setting. Finally, we evaluate three approaches to us-
ing a generative model as an anomaly detector and compare the anomaly detection
performance.

Zusammenfassung

Die Erkennung von Anomalien in Transaktionsdaten ist eine wichtige Zielsetzung
mit hohem Potenzial, finanzielle Verluste zu vermeiden, die auf absichtlich oder ver-
sehentlich begangenen Unregelmäßigkeiten wie beispielsweise Kreditkartenbetrug
oder Bestell- und Abrechnungsfehlern gründen. Mit der fortschreitenden Digitali-
sierung können datengetriebene Ansätze einschließlich maschinellen Lernens mit
immer weniger manuellem Aufwand Nutzen aus den Daten ziehen. Viele Methoden
zur Erkennung von Anomalien, die auf maschinellem Lernen basieren, verfolgen
diesen Ansatz, indem sie ein präzises Modell der normalen Daten erlernen, mit dem
sich dann Anomalien davon unterscheiden lassen. Die Modellierung von norma-
len Transaktionsdaten erfordert jedoch eine genaue Erfassung von Verteilungen und
Abhängigkeiten innerhalb der Daten mit besonderem Augenmerk auf numerischen
Abhängigkeiten von beispielsweise Mengen oder Geldbeträgen.

Zur impliziten Modellierung numerischer Abhängigkeiten wurden Neural Arith-
metic Logic Units als neuronale Architektur vorgeschlagen. In der Praxis haben die-
se jedoch Stabilitäts- und Präzisionsprobleme. Daher entwickeln wir zunächst eine
verbesserte neuronale Netzwerkarchitektur, iNALU, die darauf ausgelegt ist, nume-
rische Abhängigkeiten, wie sie in Transaktionsdaten vorkommen, besser zu model-
lieren. Wir vergleichen diese Architektur mit ihrer Vorläuferarchitektur und zeigen
in mehreren Experimenten, dass unsere Architektur höhere Präzision und Stabilität
bietet. Wir integrieren unsere Architektur in zwei generative neuronale Netzmo-
delle, die für Transaktionsdaten angepasst wurden, und untersuchen, wie gut Nor-
malverhalten modelliert wird. Wir zeigen, dass beide Architekturen normale Daten
erfolgreich modellieren können, wobei die in dieser Arbeit vorgestellte neuronale
Architektur die generativen Ergebnisse für ein Modell verbessert.

Da kategorische und numerische Variablen in Transaktionsdaten häufig zusam-
men vorkommen, viele Methoden des maschinellen Lernens jedoch nur numerische
Repräsentationen verarbeiten, untersuchen wir verschiedene Techniken des Reprä-
sentationslernens, um kategorische Transaktionsdaten in dichte numerische Vekto-
ren zu transformieren. Wir erweitern diese, indem wir einen Diskretisierungsansatz
vorschlagen, der Ausreißer berücksichtigt. Damit werden Zusammenhänge nume-
rischer Datentypen in die Berechnung kategorischer Einbettungen einbezogen, um
die Anomalieerkennung insgesamt zu verbessern.

Schließlich evaluieren wir verschiedene Szenarien für die Erkennung von Anoma-
lien in Transaktionsdaten. Wir erweitern unsere iNALU-Architektur zu einer neu-
ronalen Schicht, die sowohl numerische als auch nicht-numerische Abhängigkeiten
modellieren kann. Wir untersuchen die Stabilität und Verallgemeinerbarkeit unseres
Ansatzes und zeigen, dass er mehrere Modelle im überwachten Szenario übertrifft
und im Ein-Klassen-Szenario vergleichbare Ergebnisse liefert. Mit drei Ansätzen, ge-
nerative Modelle als Anomalie-Detektor zu nutzen, schließen wir schließlich unsere
Untersuchung ab und liefern damit einen Beitrag, zukünftig Anomalien in Transak-
tionsdaten besser aufzufinden.

i

Contents

List of Figures v

List of Tables ix

1 Introduction 1

2 Research Questions 5

3 Related Work 13

3.1 Modeling Data and Distributions . 13

3.1.1 Modeling Numerical Dependencies 14

3.1.2 Generative Models and Data Synthesis 16

3.2 Representation Learning . 18

3.3 Anomaly and Fraud Detection . 19

4 Foundations 21

4.1 Machine Learning . 21

4.2 Neural Networks . 22

4.3 Baseline Approaches . 26

4.3.1 Naïve Bayes . 26

4.3.2 Logistic Regression . 26

4.3.3 k-Nearest Neighbors . 27

4.3.4 Support Vector Machine . 28

4.3.5 One-Class Support Vector Machine 29

4.3.6 Tree-based Approaches . 30

4.4 Anomaly Detection . 33

4.5 Evaluation Metrics . 36

4.5.1 Basic Metrics . 36

4.5.2 Evaluation Metrics and Skewed Class Distributions 38

4.6 Knowledge Discovery in Databases and Data Mining 41

5 Datasets 45

5.1 Financial Fraud Datasets . 45

5.1.1 PaySim . 46

5.1.2 CCFraud . 47

5.1.3 IEEE-CIS . 48

5.1.4 SAP . 48

5.2 Benchmark Datasets . 50

5.2.1 Census Dataset . 50

5.2.2 Synthetic Function Learning Datasets 50

5.2.3 Windows Audit Log Dataset . 51

5.2.4 Credit Payment . 51

6 Modeling of Distributions and Dependencies for Transaction Data 53

6.1 iNALU: Modeling and Learning Numeric Dependencies 53

6.1.1 Improved Neural Arithmetic Logic Unit 55

6.1.2 Limitations . 56

6.1.3 Technical Adaptations . 58

6.1.4 Design of Experiments . 63

6.1.5 Experiment 1 - Minimal Arithmetic Task 65

6.1.6 Experiment 2 - Input Magnitude 66

6.1.7 Experiment 3 - Simple Arithmetic Task 68

6.1.8 Experiment 4 - Influence of Initialization 68

6.1.9 Experiment 5 - Simple Function Learning Task 70

6.1.10 Discussion . 72

6.1.11 Conclusion . 73

6.2 Modeling Distributions with GANs and VAEs 74

6.2.1 Model Architectures . 74

6.2.2 Evaluation . 81

6.2.3 Experiments . 92

6.2.4 Conclusion . 106

6.3 Summary . 107

7 Representation Learning for Transaction Data 109

7.1 Representation Learning for Windows Audit Logs 111

7.2 Representation Learning for SAP Transactions 121

7.2.1 Outlier Aware Discretization . 121

7.2.2 Representations for SAP Transactions 124

7.2.3 Discussion . 131

7.2.4 Conclusion . 133

8 Anomaly Detection and Applications in Transaction Fraud Detection 135

8.1 iNALU Driven Mixed Layer Architecture for Fraud Detection 136

8.1.1 Mixed Layer model . 137

8.1.2 Experimental setup . 138

8.1.3 Experiment 1 . 139

8.1.4 Experiment 2 . 141

8.1.5 Discussion . 143

8.1.6 Conclusion . 144

8.2 Anomaly Detection with Mixed Layers on SAP Data 144

8.2.1 Supervised Anomaly Detection with Mixed Layers 145

8.2.2 Autoencoding Mixed Layers . 149

8.3 Modeling Distributions and Dependencies for Fraud Detection 153

8.3.1 Anomaly Detection Methods . 154

8.3.2 Experiment 1: Preprocessing . 157

8.3.3 Experiment 2: GAN Anomaly Detection Methods 159

8.3.4 Experiment 3: Fraud Detection 160

8.3.5 Conclusion . 162

9 Conclusion and Outlook 165

Bibliography 169

v

List of Figures

2.1 Visual outline of the thesis. 11

4.1 Impact of class imbalance and false positives on (binary) F1 score. For
a very imbalanced dataset with 1 fraud sample and 10 000 normal
samples, the F1 score quickly deteriorates for few false positives (blue
curve). 39

4.2 Impact of class imbalance (10 000 benign samples fixed, varying num-
ber of fraud samples) and number of false positives on precision (prec.)
and FPR. The FPR curves are independent of the number of fraud
samples and thus are identical, while the PR curves depend on the
number of fraud samples in the dataset. 41

4.3 Overview over the KDD Process . 42

6.1 Standard mathematical tasks. 54

6.2 Architecture of the improved Neural Arithmetic Logic Unit (iNALU). 58

6.3 Regularization approach: Weights 0 < ŵ, m̂ < 20 are pushed towards
t = 20 by Lreg, while weights −20 < ŵ, m̂ < 0 are pushed towards
−20 causing discrete values {−1, 0, 1} for w = tanh(ŵ) · σ(m̂). 61

6.4 MSE for various input distributions per operation over the extrapola-
tion test dataset of experiment 1 (minimal arithmetic task). 66

6.5 MSE for various magnitudes per operation over the extrapolation test
dataset of experiment 2 (input magnitude). For a detailed description
see Fig. 6.4. 67

6.6 MSE for various input distributions per operation over the extrap-
olation test dataset of experiment 3 (simple arithmetic task). For a
detailed description see Fig. 6.4. 69

6.7 Extrapolation MSE for Experiment 5 (Simple Function Learning Task).
Original NALU with gating matrix (m) and gating vector (v) are col-
ored orange and green, our iNALU model with shared weights (sw)
is colored red and with independent weights (iw) in blue. 70

6.8 General GAN architecture: From a noise vector z, the generator con-
structs fake samples xg. Alternately, the discriminator D has real sam-
ples xdata or fake samples xg as input and is trained to distinguish
real from fake data. Iteratively, the generator learns to produce more
realistic samples while the discriminator improves distinguishing fake
from real samples. 75

6.9 WGAN architecture with two cross- and iNALU layers and a specific
generation of categorical and numeric features. The input vector z is
sampled from noise followed by two deep cross-layers. Layers cn rep-
resent the one-hot representation of the n-th categorical feature with
kcn unique values. To allow numeric features depending on categor-
ical features, embedding layers en are trained from one-hot represen-
tations and reduced to a single vector eg concatenated with the last
deep cross iNALU layer and used as input for the hidden layer hnum
to generate the kn numeric values. The categorical output values are
directly mapped to the categorical layer prior embeddings denoted
by the dashed line, arrows denote connections between all neurons
within layer-boxes, i.e. fully connected layers. As the activation func-
tion, deep, eg, and hnum layers use LeakyReLU. The critic and en layers
have linear activations with (critic) and without (en) bias. 78

6.10 VAE for one-hot encoded categorical input for features c1, c2 and nu-
merical feature values n1, with embedding layers ae, ad per categorical
value and s9 denoting the softmax activation function for categorical
variables, hidden layers h1, h2 and variational parameterization layers
µ and σ. Dotted arrows correspond to sampling and reparametriza-
tion for training. 81

6.11 VAE with iNALU for one-hot encoded categorical input for features
c1, c2 and numerical feature values n1, with embedding layers ae, ad

per categorical value and s9 denoting the softmax activation function
for categorical variables, hidden layers h1, h2 and variational parame-
terization layers µ and σ. Dotted arrows correspond to sampling and
reparametrization for training. 82

6.12 Numeric features of the Census dataset (blue) in comparison to gen-
erated synthetic data from WGAN (a), (c) and VAE (b), (d) by kernel
density estimation (a), (b) and CDF (c), (d). 100

6.13 Categorical features of Census dataset (blue) in comparison to gener-
ated synthetic data from WGAN (a) and VAE (b) in logarithmic scale. 101

6.14 Feature correlations for WGAN (a) and VAE (c) generated and real (b)
Census data in comparison. Absolute differences corr between data
correlations and WGAN (d) and VAE (e) generated correlations. . . . 102

6.15 Features of PaySim dataset (blue) in comparison to generated syn-
thetic data from WGAN (a,c) and VAE (b,d) by CDF (a), (b), log-counts
(c), (d) and abs. correlation error corr (e), (g). 103

6.16 Selected features of SAP dataset (blue) in comparison to generated
synthetic data from WGAN and VAE by CDF. 104

6.17 Selected features of SAP dataset (blue) in comparison to generated
synthetic data from WGAN and VAE by log-counts (a, b) and abs.
correlation error corr (c, e). 105

7.1 LSTM model for extrinsic evaluation. 116

7.2 t-SNE visualization of the latent space for target 120

7.3 Synthetic standard normal data with 0.02% outliers with 10 bins and
different discretization strategies. The outlier aware discretization
strategies (Quantile Outlier Uniform Discretization (QOUD), Quantile
Outlier Quantile Discretization (QOQD)) reflect outliers in specific dis-
cretization bins, while learning meaningful bins for the majority of
data-points contrarily to uniform discretization with several empty
bins and a coarse resolution for the actual distribution or skewed
margin-bins obfuscating the outlier characteristics. 123

7.4 t-SNE visualization of 8-dimensional GloVe representations, trained
with 5 bucket QOQD discretization and transaction context on the
complete dataset (best model regarding F1). The benign transactions
from train (cyan) and test (blue) splits form mostly homogeneous clus-
ters. However, the anomalous fraud samples map well between train
and test splits. 129

7.5 Visualization of two-dimensional (a) FastText representations with 10

bucket-QOQD, (b) Paragraph2Vec with 5-bucket-quantile, (c) W2V
(CBOW) with 5-bucket-quantile, (d) W2V (skipgram) with 5-bucket-
uniform (best models regarding ROC-AUC for each representation
learning approach), for benign and fraud samples on both data splits. 130

7.6 Visualization of (a) FastText representations with 10 bucket-QOQD,
(b) Paragraph2Vec with 5-bucket-quantile, (c) W2V (CBOW) with 5-
bucket-quantile, (d) W2V (skipgram) with 5-bucket-uniform, (e) GloVe
with 10-bucket-QOUD (best ROC-AUC), (f) GloVe with 5-bucket-QOQD
(best F1) colored according to transaction type on both data splits. . . 132

8.1 Our proposed mixed layer consisting of ReLU and iNALU neurons . 136

8.2 Mixed Layer network model with fully connected linear input and
output layers and 1 to k Mixed Layers as used in our experiments . . 137

8.3 F1 scores of experiment 1 on the synthetic Credit Payment and PaySim
datasets. Mixed Layers describes the neural network structure as
described in Section 8.1.1 and ReLU shows the results for the same
model architecture with respect to number of layers and hidden neu-
rons having Mixed Layers replaced by layers with ReLU activations.
The heatmaps show the absolute improvement of Mixed Layers com-
pared to the respective ReLU architecture for each parameter config-
uration averaged over all random seeds and their standard deviations. 139

8.4 F1 scores of experiment 1 on the real CCFraud and IEEE-CIS datasets.
Mixed Layers describes the neural network structure as described in
Section 8.1.1 and ReLU shows the results for the same model archi-
tecture having Mixed Layers replaced by dense layers with ReLU ac-
tivations. The heatmaps show the absolute improvement of our archi-
tecture in comparison to the respective ReLU architecture for each pa-
rameter configuration averaged over all random seeds and their stan-
dard deviations. 140

8.5 AP results for the hyperparameter study for eval and test. The results
of the models selected according to best eval results are marked with ×.152

8.6 AE with Mixed Layer of dimensionality m and linear hidden layers
h1, hj of dimensionality n. Arrows are drawn between fully connected
layers. AE without Mixed Layer is structured accordingly with ReLU
activations. 154

ix

List of Tables

5.1 Main characteristics of the datasets. 45

6.1 Maximum MSE over all models in Experiment 4 for the Simple Func-
tion Learning Task (extrapolation) for weight initialization means of
−1, 0, 1. Successful configurations (maximum loss < 0.001) in bold,
percentage of successful repetitions in brackets. 71

6.2 JSD (see Eq. 6.30) between generated and real data with VGM and
GMM preprocessing and a varying number of modes averaged over 5

runs± standard deviation for the VAE. Smaller JSD values correspond
to better models. Highlighted entries denote the most suitable number
of modes for each dataset, which we select for further experiments.
For equal averaged results, we select the best individual model. . . . 93

6.3 JSD between generated and real data with VGM and GMM prepro-
cessing and a varying number of modes averaged over 5 runs ± stan-
dard deviation for the WGAN model. Highlighted entries denote the
most suitable number of modes for each dataset. 94

6.4 Overview of the number of input dimensions after preprocessing for
each dataset. Num. denotes the numerical preprocessor with the num-
ber of modes listed for VGM/GMM according to the best mode choice
per model (cf. Tables 6.2 and 6.3). 95

6.5 Comparison between generated and real data with all preprocessing
combinations and a varying embedding size demb averaged over 5

runs ± standard deviation for the VAE. Highlighted entries denote
the most suitable number of modes for each dataset.. 96

6.6 Comparison between generated and real data with all preprocessing
combinations and a varying embedding size demb averaged over 5

runs ± standard deviation for the Wasserstein GAN (WGAN) model.
Highlighted entries denote the most suitable number of modes for
each dataset. 98

6.7 Comparison between generated and real data for both models (best
configuration from Experiment 1 per dataset) with iNALU and Cross
layers. 99

7.1 Sample generation for the parameter action for word2vec. 115

7.2 Extrinsic evaluation results of representation learning approaches and
filtering for malicious event detection in Windows Audit Logs. The
best results for each encoding are shown in italics, the overall best
results in bold. 118

7.3 Best models regarding F1 and ROC-AUC. 128

8.1 Main characteristics of the datasets . 137

8.2 Average and standard deviation F1 score and ROC-AUC for several
supervised classifiers compared to our model, aggregated over differ-
ent random seeds. 142

8.3 Models with min-max and z-score normalization with and without
PCA evaluated with different metrics on the anomaly detection task
of the SAP fraud dataset. Best results per metric are written in bold.
The highlighted rows denote well-performing models over all metrics
which are discussed in detail. Mixed Layers perform among the best
models and notably better than the ReLU model. 146

8.4 Models with discretization and without scaling with and without PCA
evaluated with different metrics on the anomaly detection task of
the SAP fraud dataset. Best results per metric are written in bold.
The highlighted rows denote well-performing models over all metrics
which are discussed in detail. 147

8.5 Comparison of discretization strategies with and without PCA for
5 and 10 buckets for the kNN model. The quantile-outlier-quantile
discretization (QOQD) strategy outperforms quantile and uniform by
large margin. Quantile-outlier-uniform discretization (QOUD) per-
forms slightly better than quantile and uniform discretization. PCA
transformation has no notable influence. 149

8.6 Best performing hyperparameter configurations of each approach.
† Non-deterministic algorithm: Results averaged over 5 random seeds. 153

8.7 Discriminative preprocessing results for Variational Auto-Encoder (VAE)
and WGAN on PaySim, SAP, and CCFraud eval datasets averaged
over 5 iterations. The best results are written in bold. 158

8.8 AD methods for WGAN averaged over 5 random seeds and their stan-
dard deviation with the best results written in bold. 160

8.9 Comparison AD threshold selection strategies for PaySim, SAP and
CCFraud eval datasets. 160

8.10 Final anomaly detection results for the Paysim, SAP and CCFraud test
datasets. Best model per metric in bold, significantly∗ different pairs
are underlined. 163

List of Abbreviations

ACC Accuracy . 117

ACE Arithmetic Expression Calculation . 14

AD Anomaly Detection . 19

AE Auto-Encoder . 35

AI Artificial Intelligence . 18

AP Average Precision . 38

AUC Area Under the Curve . 37

CBOW Continuous Bag of Words . 113

CDF Cumulative Distribution Function . 99

DT Decision Tree . 30

EBM Energy Based Models .16

ELBO Evidence Lower Bound . 79

EM Earth-Mover . 76

ERP Enterprise Resource Planning. .17

FID Fréchet Inception Distance .86

FN False Negatives . 36

FP False Positives . 36

FPR False Positive Rate . 36

GAN Generative Adversarial Network . 6

GMM Gaussian Mixture Model . 92

GP Gradient Penalty . 76

IF Isolation Forest . 32

iNALU improved Neural Arithmetic Logic Unit . 6

ItG Inverting the Generator. .156

JSD Jensen-Shannon Distance

JSON JavaScript Object Notation . 51

KDD Knowledge Discovery in Databases . 21

KDE Kernel Density Estimation . 82

KL Kullback–Leibler . 79

kNN k-Nearest Neighbors . 27

LR Logistic Regression . 26

LSTM Long Short-Term Memory . 117

MCMC Markov Chain Monte Carlo . 17

ML-AE Mixed Layer AE . 151

MLE Maximum Likelihood Estimation . 79

ML Machine Learning . 4

MLP Multi-Layer Perceptron . 22

MSE Mean Squared Error . 6

NALU Neural Arithmetic Logic Unit .15

NB Naïve Bayes . 26

NLP Natural Language Processing . 7

NN Neural Network . 13

OCC One-Class Classification . 35

OCL One-Class Learning . 22

OC-SVM One-Class SVM . 29

OLTP Online Transaction Processing . 1

OOV Out-of-vocabulary . 126

PCA Principal Component Analysis .5

PDF Probability Density Function . 83

PR Precision-Recall . 37

PU Positive Unlabeled Learning . 35

QOQD Quantile Outlier Quantile Discretization . vii

QOUD Quantile Outlier Uniform Discretization. .vii

RBF Radial-Basis-Function . 29

ReLU Rectified Linear Unit . 23

RF Random Forest . 31

RL Representation Learning . 7

ROC Receiver Operating Characteristic .37

RQ Research Question . 5

SGD Stochastic Gradient Decent . 25

SMOTE Synthetic Minority Oversampling TEchnique . 34

SVM Support Vector Machine . 28

TN True Negatives . 36

TPR True Positive Rate . 36

TP True Positives . 36

VAE Variational Auto-Encoder . x

VGM Variational Gaussian Mixture Model .92

WGAN Wasserstein GAN . ix

1

Chapter 1

Introduction

With advancing digitalization of our lives, data is generated everywhere. In addition
to data, that is constantly and visibly being generated in computer systems as they
are used, this also more and more affects traditional areas that are being digitized,
such as the financial world. With credit cards being established in the 1950s, this
subarea was already digitized at a very early stage [334]. However, with the con-
venient digital execution of payment transactions all over the world in almost real
time, this area in particular has become a profitable target for criminals who abuse
the system at the expense of credit institutions and customers, for example, by steal-
ing or copying credit cards or credit card data [109, 73]. With the digital availability
of credit card transaction data and the need to protect their business interests and
those of their customers, a fraud detection application scenario was established as a
research topic early on [109, 300, 92], which can be assigned to the topic of anomaly
detection in transaction data. The application area most frequently associated with
transactions is financial transactions, in which a transaction describes the exchange
of financial assets or, more generally, the mutual change in the financial status of at
least two parties. Transaction data hereby describes the data that is generated when
a transaction is recorded.

More generally, however, a transaction can also be understood as an (atomic) ac-
tion that changes data within a database and thus encompasses a number of other
domains as well. Due to the requirements of parallel access, data consistency, re-
sponse time and data throughput raised with the earliest systems for digitizing
business processes, the term transaction with relation to data was coined in the 1970s
by IBM’s Transaction Processing Facility, a mainframe computer system used by
airlines and credit card institutions [299], and later by Online Transaction Process-
ing (OLTP) systems, which were often used in the day-to-day business of companies
[100]. Therefore, the term transaction data is also used broadly in research, from fi-
nancial transactions in the original sense, for example credit card transactions [261],
to systems or datasets that digitize business processes, e.g. SAP S/3 [226], for “mar-
ket basket data and web usage data” [348] or even “gene expression properties” [30].

2 CHAPTER 1. INTRODUCTION

In the context of this work, we consider transaction data mainly as logs of busi-
ness processes, which includes credit card transactions, mobile payment logs, and
SAP data, although the methods can also be applied to a broader understanding
of transactions, which we investigate for example for transaction representations in
Microsoft Windows audit logs.

The detection of anomalies is a topic that plays a major role with transaction
data and can be understood in the following sense: Commonly one understands an
anomaly1 as something that deviates from the rule, is abnormal or in another way
does not fit.

Anomaly detection is described in scientific literature as:

Anomalies are patterns in data that do not conform to a well defined no-
tion of normal behavior. [...] Anomalies might be induced in the data for
a variety of reasons, such as malicious activity, for example, credit card
fraud, cyber-intrusion, terrorist activity or break-down of a system, but
all of the reasons have the common characteristic that they are interesting
to the analyst.

Chandola et al., Anomaly detection: A survey [50]

The focus is thereby on the deviation from something normal, which the anomaly
is considered in relation to and antonymously characterized by. This view has a great
influence on the specific identification of anomalies, as illustrated in the following
examples: A person regularly traveling through the world for business will most
likely require a different perspective of normal credit card transactions than a person
who does not travel in addition to vacations. Two different products might have
very different material costs and thus different definitions of anomalies for the raw
material or retail price. A large number of sales before Christmas, a purposeful price
drop for Black Friday or for seasonal products after the season might be considered
normal from a business view while appearing anomalous from a purely data-driven
perspective. When the costs to prosecute a specific potentially fraudulent anomaly
is generally higher than tolerating the expected loss, from a business perspective the
transaction should not be reported and blocked as potential anomaly, although from
a data-driven perspective the transaction might by considered anomalous [73]. On
the other hand, for a medical anomaly detection task, such a consideration is highly
impractical and, in fact, unethical. These examples suggest that the definition of
anomalies is domain-dependent, subjective and task-dependent.

Additionally, these examples emphasize the important aspect that such data gen-
erally contains dependencies which have to be addressed to precisely model data
characteristics, which are often relatable to numerical or arithmetical relations, or
dependencies of features. Neural networks have been shown to be universal ap-
proximators [99], in practice, however, they lack generalization and extrapolation

1Oxford Dictionaries: “a thing, situation, etc. that is different from what is normal or expected”

3

of even the most simple arithmetic relations [168, 317]. Modeling such dependen-
cies including extrapolation beyond the training data is therefore an important and
challenging aspect, which we will focus on in this thesis.

From an economic point of view, detecting anomalous transactions of various
types is a highly rewarding endeavor. The definition by Chandola et al. already con-
tains several examples for which anomaly detection is applied. The associated prob-
lems are highly relevant for the respective sectors: According to the Nilson report,
card fraud globally accumulated losses of $28.58 billion in 2020, effectively ranging
at 6.78 cents per $100 total volume [220]. In 2020, the Association of Certified Fraud
Examiners [3] estimated the average financial loss due to fraud on companies at 5%
of revenue each year, while the global cost of cyber crime in general, which in ad-
dition to online fraud also includes hacking, ransomware, and other ‘cyber’ related
issues was estimated up to $600 billion in the cybercrime report by McAfee [204].
Besides being interesting from a definitional or academic point of view, anomalies
and their detection are highly relevant from an economic perspective, as associated
problems have a high economic impact on companies and individuals.

With anomaly detection and its application, several challenges arise that intro-
duce complexity and need to be addressed. The most obvious challenge is rarity
of anomalies in practice. While not explicitly demanded per definition, anomalies
are in general implicitly required to be less frequent than non-anomalies as it oth-
erwise didn’t comply with the definition of normality or normal behavior besides a
normative point of view. In practice, this class imbalance is often given for anomaly
detection in general and for anomaly detection for transaction data in particular:
The European Central Bank estimated that from 100.75 billion card transactions in
2019, 24.16 million were fraudulent, which approximately corresponds to rare 0.024
percent of transactions [22]. This rarity emphasizes the fact that for many applica-
tions anomalies cannot be defined precisely, especially with increasing complexity
of the systems, as the number of aspects that can contribute to non-normality grows
with the number of dimensions (related to the “curse of dimensionality”) [50] and
anomalies in case of criminal intent such as fraudulent activities are often intention-
ally obfuscated or covered [3].

However, the greatest challenge for academic research in this area is the availabil-
ity of data. The lack of labeled data can be addressed partially with unsupervised
or one-class approaches mostly by characterizing normal data or unknown data with
an acceptable low contamination rate. This approach can be summarized under the
term modeling normality or modeling distributions and dependencies, where a
model is trained to learn these characteristics from a large set of normal, poten-
tially unlabeled data, implicitly circumventing the two previously noted challenges
of rarity and the lack of universal definitions of anomalies. Such models can be ap-
proached from a generative or discriminative perspective. Generative models have
the advantage that data are modeled explicitly in a way that new samples can be
generated by such a model. Discriminative models have the advantage that they are

4 CHAPTER 1. INTRODUCTION

directly trained to distinguish anomalies from normal data and therefore can focus
on the important aspects for the downstream task. Therefore, they can be directly
incorporated as a methodology for anomaly detection. Both generative and dis-
criminative models are promising approaches for the transaction data domain for
which they are studied throughout this thesis.

In contrast to the lack of labels, the lack of large real-world datasets cannot be
met by technological means without compromises, such as working with synthetic
data or simulations [349, 147, 190, 19]. Real-world datasets cannot be made pub-
licly available due to their relevance as business secrets, as for example SAP data
includes sensitive information about prices, suppliers, customers, and business or
privacy related data in general. Especially data for which fraud is not only to be
expected from unauthorized third parties, but where the analysis could also suspect
employees, allow systematic conclusions to be drawn about their working quality.
This setting, where discriminatory characteristics can be learned, is particularly crit-
ical from a data protection point of view. Machine Learning (ML) and automated
decision making on sensitive data, for example, is under European law required to
have a “human in the loop” for privacy and ethical concerns [88], such that, for ex-
ample, automated decisions are being reviewed before any consequences are drawn.
Therefore, the assessability by auditors has to be considered for balancing evalua-
tion metrics with the expected workload. The synthetic generation and modeling
of specifically normal data, for example by generative models, represents a promis-
ing connection between the lack of publishable data due to privacy concerns and a
perspective on anomaly detection by modeling normality.

A challenge from a technical point of view is the appropriate representation of
unique dataset characteristics present in transaction data. Besides numerical de-
pendencies between features and samples, for example, with features of quantities,
price, invoice totals, or amounts to be transferred, the large number of columns, and
datasets consisting of mixed binary, categorical, and numerical features play a major
role for the modeling of transaction data as they are inherently present and relevant
for anomalies. To address these challenges, the field of representation learning of-
fers solutions to represent categorical features similar to numerical features in dense
vector representations, which are suitable for neural network models and have been
successfully applied for natural language processing [207] and in the cybersecurity
domain [251]. However, the choice and adaptation of an appropriate representation
learning approach for transaction data remains an interesting question to success-
fully apply anomaly detection in this domain.

Thus, we identified three main aspects of anomaly detection for transaction data,
which will be focused on in this thesis: (1) The ability to learn numerical dependen-
cies along with the modeling of normality, (2) learning meaningful representations
for transaction data, and (3) the methodology to detect anomalies in transaction
data. In the next chapter, the research questions which motivate our work and fol-
low through this thesis will be introduced in detail based on these three aspects.

5

Chapter 2

Research Questions

Companies that have been subject to fraud or security incidents embrace the idea
of detecting new attacks using data mining more and more, as digitization and
associated data is prevalent in all business areas today.

Since many countries have strict regulations with regard to data protection and
companies want to protect their business secrets, datasets for the detection of trans-
action anomalies are barely available and cannot be shared with the public. One
solution is the obfuscation of real data such that the interests of customers, employ-
ees, and the company itself are preserved. For example, for the credit-card fraud
dataset all but two features have been transformed with Principal Component Anal-
ysis (PCA). For the IEEE-CIS dataset, customer profiles have been decoupled from
transactions and several features are only included in an aggregated form. Although
these anonymization and obfuscation steps allowed the publication and use of these
specific datasets, they have severe drawbacks, as the meaning of features and deci-
sions regarding preprocessing can no longer be reconstructed or revised.

Modeling Normality A different idea addressing both privacy and the lack of data
is the use of neural generative machine learning models [184]. Synthesized artificial
data which mimics important characteristics of real data can then be used to aug-
ment a small dataset to improve the performance of data-intensive machine-learning
approaches [85]. The generated artificial data or models can be shared even if tight
privacy guarantees are required if a privacy-preserving framework such as Differen-
tial Privacy [80] and appropriate training procedures [1] and models [339, 158] are
employed [9]. The first Research Question (RQ) therefore focuses on neural models
and their ability to precisely model real data.

RQ 1: How well do neural network models capture the characteristics of
transaction data?

For this RQ, we distinguish between the ability of neural networks to model nu-
merical dependencies, referred to as Modeling Numeric Dependencies (Section 6.1)

6 CHAPTER 2. RESEARCH QUESTIONS

and motivating RQ 1.1, and the capability of generative models to synthesize data-
distributions and correlations, which we refer to as Modeling Distributions (Section 6.2)
and which motivates RQs 1.2 and 1.3.

Modeling Numeric Dependencies Financial data in general and transaction data
in particular often contain mathematical and numerical dependencies and constraints
between features, which must be taken into account by a model for precise adap-
tation or replication of real data. However, modeling numerical dependencies in
a way that a model extrapolates and generalizes outside the training data range
is considered a difficult task for feed forward neural networks [23, 181, 341]. To
overcome the shortcomings of networks when it comes to modeling numerical rela-
tions and extrapolation, a neural architecture, the improved Neural Arithmetic Logic
Unit (iNALU), is proposed and systematically evaluated in several experiments in
this thesis to answer RQ 1.1.

RQ 1.1: To what extent can the extrapolation of numerical dependencies be
improved by our neural architecture?

RQ 1.2: How well do generative neural networks model feature distribu-
tions?

RQ 1.3: How well do generative neural networks model feature correlations?

Modeling Distributions To answer RQ 1.2 and 1.3, two of the most relevant gen-
erative neural model architectures, Variational Auto-Encoder (VAE) and Generative
Adversarial Networks (GANs) are adapted to synthesize transaction data. The gen-
erated samples of both models are then compared with real data on feature distri-
butions and feature correlations.

Besides (generative) modeling of data characteristics on the feature level, meaning-
ful representations of transactions and their similarity is an important aspect for sev-
eral machine learning models from different perspectives. For example, k-Nearest
Neighbors as a classifier builds on the assumption that similar samples with respect
to the task to be solved are also considered to be near each other, often measured by
a similarity metric. Another example is the similarity of feature-values, which from
a domain perspective resemble each other to varying degrees, e.g. goods within the
same category versus other categories or price range in an e-commerce setting. Sim-
ilarity for numeric attributes in general is well defined and can be operationalized in
several ways, mostly relying on the numerical difference, e.g. absolute error or Mean
Squared Error (MSE), or more generally on metric spaces and norms. The differen-
tiation for categorical features, however, is non-trivial, since categorical attributes
have no inherent order. Often the similarity of categorical features is reduced to
a match (e.g. Matching Coefficient or Overlap, Hamming-Distance) or is weighted

7

differently according to the application (e.g. Inverse Occurrence Frequency, ConDist
or Eskin) [33, 252, 87, 157].

Representation Learning Depending on the method, similarity in terms of match
or non-match may vary for each use case. In practice, however, it is not clear which
metric is the most appropriate for the data or task and a deeper understanding of
which metric deals with particular dataset charactersitics in which way is necessary
[33], introducing cumbersome manual labor for feature-rich datasets. In the field
of Natural Language Processing (NLP), where data is almost exclusively categori-
cal with many possible values when it comes to words, sentences, and documents,
Representation Learning (RL) approaches have proven to be useful, which generate
a dense data representation instead of categorical values or the associated sparse
one-hot vectors. RL approaches generate a structured latent space, which implicitly
represents relations and similarities in the data. These dense representations allow
similarity computation with numerical distance metrics such as cosine similarity
or direct processing with neural networks, which motivates our use case of RL on
transaction data.

The following RQ is defined to evaluate the benefit of RL in the context of trans-
action logs and anomaly detection.

RQ 2: How are transactions best represented to emphasize structural simi-
larity?

To answer this RQ, we adopt several RL approaches such as Word2Vec or GloVe
on transaction logs and evaluate their benefit on two different datasets, Windows
Audit logs, which shares more structural properties with classical text-based appli-
cations, as well as an SAP transaction dataset, which resembles a tabular structure
with categorical values mainly consisting of single words or even single characters.
These differences motivate RQ 2.1 and 2.2, which address two main aspects of RL:
Meaningful structure for human evaluation and from a machine learning perspec-
tive.

RQ 2.1: Which representation learning approach yields the most promising
structure in latent space?

RQ 2.2: Which representation learning approach yields the best performance
in extrinsic evaluation?

For these RQs, we evaluate ability of the models to learn meaningful representa-
tions regarding fraud and attack detection as extrinsic evaluation on the one hand,
and the structure of their latent space by explorative evaluation on the other.

8 CHAPTER 2. RESEARCH QUESTIONS

Representation Learning and Numerical Features In general, transaction datasets
in contrast to natural language texts consist of categorical and numerical features.
As RL approaches are originally proposed for categorical features only, adapting RL
methodology to transaction data including numerical features is a relevant research
direction with the opportunity to find more meaningful representations in this do-
main. As the SAP transaction dataset consists of several relevant numeric features
that could enhance the representations, we propose two discretization approaches,
QOQD and QOUD, specifically designed to emphasize numerical outliers to answer
RQ 2.3.

RQ 2.3: To what extent does the introduction of numerical features improve
representation learning in extrinsic evaluation?

Anomaly Detection in Transaction Data The third research question finally fo-
cuses on anomaly detection and its methodology for transaction data. We therefore
combine the previous contributions for the use case of anomaly detection on trans-
action data and investigate the benefit of each method.

RQ 3: To what extent do the proposed methods improve anomaly detection
for transaction data?

To approach the question, we first propose a neural architecture called Mixed
Layers and evaluate our model on financial transaction datasets for fraud detection,
as well as for detecting anomalies in an SAP dataset in comparison to several baseline
methods to answer RQ 3.1. Secondly, we incorporate the generative models VAE
and GAN for anomaly detection. We evaluate three approaches to adapt our GAN
model as an anomaly detector and evaluate their performance on several financial
transaction datasets to answer RQ 3.2.

RQ 3.1: Can fraud detection performance on transaction data be improved
by our Mixed Layer model?

RQ 3.2: Do our generative VAE and GAN models yield competitive anomaly
detection performances, and do optimal preprocessing and parame-
ter choice differ from their generative setting?

9

Contributions

The contributions of this thesis can be summarized as follows: In the context of
RQ 1.1 we first propose the improved Neural Arithmetic Logic Unit, a novel ar-
chitecture to model and extrapolate numeric dependencies. Therefore, we discuss
the shortcomings of previous models and suggest several enhancements and archi-
tectural changes to improve extrapolation stability and precision. We evaluate our
model in five experiments of increasing complexity on synthetic datasets and show
that our model outperforms reference models in terms of precision and stability.

Parts of these experiments have been published in
Schlör, D., Ring, M., and Hotho, A. (2020a). iNALU: Improved neural arithmetic
logic unit. Frontiers in Artificial Intelligence, 3:71.

To answer RQ 1.2 and 3.2, we adapt two VAE and GAN-based models to synthe-
size transaction data. We therefore introduce architectural improvements for both
models and experimentally evaluate preprocessing decisions and model parameters
for their ability to generate synthetic transaction data on three datasets.

Parts of these experiments are based on our work
Ring, M., Schlör, D., Landes, D., and Hotho, A. (2019a). Flow-based network
traffic generation using Generative Adversarial Networks. Comput. Secur., 82:156.

Our contributions for RQ 2.1 and RQ 2.2 include a systematic evaluation of multi-
ple representation learning techniques for two datasets of varying degree of structur-
ing in the transaction data domain. For RQ 2.3, we introduce two novel discretization
approaches to emphasize outliers in discretization. We evaluate both methods in a
large-scale experiment in conjunction with dataset preparation and representation
learning choices for the task of financial fraud detection.

Parts of these experiments have been published in
Ring, M., Schlör, D., Wunderlich, S., Landes, D., and Hotho, A. (2021). Mal-
ware Detection on Windows Audit Logs using LSTMs. Computers & Security,
109:102389.

For RQ 3.1, we propose a novel neural architecture to address numerical as well
as non-numerical dependencies in fraud detection for transaction data. We show
that our model outperforms neural as well as non-neural baselines and evaluate its
benefit for anomaly detection in transaction data. To answer RQ 3.2, we evaluate
three methods for GAN-based models in anomaly detection and discuss parameter
choices and preprocessing decisions in comparison to generative applications.

Parts of these experiments have been published in
Schlör, D., Ring, M., Krause, A., and Hotho, A. (2020b). Financial Fraud Detec-
tion with Improved Neural Arithmetic Logic Units. Fifth Workshop on MIning
DAta for financial applicationS, (honored with the best paper award).

10 CHAPTER 2. RESEARCH QUESTIONS

Outline

The outline of this thesis can be summarized as follows. After stating the Research
Questions and Contributions, we will discuss Related Work in the general field of
detection anomalies in transaction data. This section will be structured along the
main aspects of this thesis, numeric dependencies and generative models, repre-
sentation learning as well as anomaly and fraud detection. Then the Foundations
chapter focuses on the methodological background of this thesis, introducing basic
background for machine learning models including the baseline models and evalu-
ation methodology. In the Datasets chapter we will introduce the datasets used for
our experiments, followed by the three chapters to answer three research questions
raised in this thesis as depicted in Fig. 2.1.

In Modeling of Distributions and Dependencies we propose a neural architec-
ture to model numerical dependencies and evaluate generative neural networks for
their ability to learn data distributions and feature dependencies. In the Represen-
tation Learning chapter, we focus on two transaction-data-specific tasks of malware
and fraud detection and adapt several representation learning approaches for their
ability to construct meaningful representations from an explorative, visual perspec-
tive, as well as for their benefit for machine learning models to solve the respective
downstream task. Then both perspectives for modeling numeric dependencies and
distributions are transferred to the tasks of Anomaly and Fraud Detection, where
we evaluate our models along with several baseline approaches in a supervised and
semi-supervised setting.

We then summarize our findings to answer our research questions and finally
conclude this thesis with an outlook.

11

Audit Logs
{ : ,
 : ,
 : [{
 : ,
 : ,
 }, {
 : ,
 : ,
},

Section 8.1 Section 8.2 Section 8.3

Section 8.2.2

Chapter 7

Section 7.1 Section 7.2

Section 6.1 Section 6.2

Figure 2.1: Visual outline of the thesis. This thesis is comprised of three main top-
ics: Modeling of Distributions and Dependencies (Chapter 6), Anomaly
Detection (Chapter 8) and Representation Learning (Chapter 7). We con-
tribute by analyzing and improving a neural architecture to model nu-
meric dependencies and adopt generative neural models for transaction
data, including quantitative and qualitative analysis. We then evaluate
our contributions in several anomaly detection settings. Furthermore, we
study the influence of representation learning approaches for anomaly
detection in transaction data exploratively as well as in extrinsic eval-
uation. Models which incorporate our iNALU architecture are marked
with .

12 CHAPTER 2. RESEARCH QUESTIONS

13

Chapter 3

Related Work

In this section, related works from literature associated with the core topics of this
thesis are introduced.

Section 3.1 outlines different approaches to model data characteristics and syn-
thetically generate data following the characteristics of real data. We focus on two
different aspects, neural modeling of dependencies within data with a focus on nu-
merical dependencies and generative modeling of data and models synthesizing
data in general.

Section 3.2 then presents other works that incorporate representation learning
approaches in anomaly detection, transaction data, or related domains. Besides
a short overview, we refrain from discussing representation learning in the Natu-
ral Language Processing (NLP) domain in depth, as, although some datasets have
commonalities with natural language data, transaction data generally follow other
characteristics, as discussed in Chapter 7.

In Section 3.3 we finally outline work related to our main aspects, anomaly and
fraud detection in transaction data, with a broad outlook into similar application
domains.

3.1 Modeling Data and Distributions

For machine learning in general and anomaly detection in particular, models are
trained on data to yield useful information as discussed in more detail in Sec-
tion 4.1, often with the intention of applying these models to previously unseen
data. To generalize and provide useful information, models must focus on specific
data characteristics that are helpful in terms of the respective task. In traditional ML
the approach often consists of specific feature engineering steps, explicitly modeling
and representing data, features, and feature combinations meaningfully to empha-
size the focus on these aspects. This is often driven by expert and domain knowl-
edge. With the raise of Neural Networks (NNs), explicit feature engineering is less
common and often limited to representing, selecting, and rescaling data to fit the

14 CHAPTER 3. RELATED WORK

computational and practical requirements to be processed by the NN effectively,
while the feature extraction and combination are part of the model. For example,
different layers of a convolutional neural network focus on (visual) manifestations
of characteristic features and combinations of increasing semantic complexity up to
solving the actual task [223, 307]. Thus, the manifestation of relevant data char-
acteristics such as features, feature distributions or relations, and combinations of
features must be constructed implicitly within the model by the training objective.
When it comes to financial datasets, such feature relations are often numerical de-
pendencies that are inherently characterized by arithmetic relations. In a simple
example, anomalies in a credit payment log example (cf. Section 5.2.4) could be
characterized by a closed formula, which can be explicitly modeled as a feature with
traditional feature engineering. For a neural and data driven approach, however, the
model itself is expected to learn this relationship from data, which makes such ap-
proaches applicable for more complex scenarios, i.e. when such an explicit formula
is not available or the relationship is incomprehensible. NN have been shown to be
universal approximators [99, 141, 140, 238], i.e. theoretically they can approximate
arbitrary mathematical functions of varying complexity given a sufficient network
size [116] implying the suitability to model such numerical dependencies and arith-
metic relations. In practice, however, they lack generalization and extrapolation of
even the most simple arithmetic operations such as identity [168] or basic operations
[317] such as multiplying or subtracting. For challenges arising with neural learning
of arithmetical relations implicitly and explicitly, we will review relevant research in
the following section.

3.1.1 Modeling Numerical Dependencies

While even today, “we are still lacking a comprehensive theory that could explain
how numerical concepts are learned by the human brain”, as Testolin stated in 2020

[310], studies by Anderson et al. [14], worked as early as 1994 on teaching arith-
metic to artificial neural networks. Anderson et al. conclude that “such a system
is genuinely creative and flexible, though only in a limited domain”. Anderson et
al. studied the learning of simple multiplication tables and “greater than” relations,
which can be associated with other tasks that explicitly model arithmetic, such as
Arithmetic Expression Calculation (ACE). These tasks include discrete single op-
eration expressions, such as binary multiplication or binary addition [370], 15-digit
decimal multiplication [160], or symbolic, algorithmic and arithmetic expression cal-
culation [355, 159, 53, 172] up to Turing Machine inspired approaches [356] with the
ability to solve more general problems [120] further related to research on neural
execution of algorithmic code snippets or subroutines [347, 356, 248].

Besides explicit arithmetic tasks, other approaches aim at determining governing
equations or equation parameters with NNs from data. In this category, approaches
focus on predicting the dependencies or making them explicit, and thereby yield

3.1. Modeling Data and Distributions 15

a generalizable mathematical model describing data characteristics. Examples in-
clude recovering undetermined coefficients from partial differential equations [246],
using ResNets as a numerical integrator [242] or Recursive Deep NNs [364] to ap-
proximate dynamic systems. This research branch has a strong focus on dynamic
systems and is driven by applications in neuroscience, biology, and climate science
[49]. In contrast, from a data science perspective, the precise formulation of govern-
ing equations from data is generally neither the objective nor feasible, as the data
might not be sufficient to approximate any underlying dynamical system if given
at all. Instead, modeling numeric dependencies and arithmetic relations implicitly
within the model is a more targeted goal to solve a downstream task which is not
necessarily directly related to the numeric dependencies.

One example of such indirectly related arithmetic dependencies is the task of
counting objects in pictures, where counting, and thus arithmetic dependencies, are
not directly related to features but instead to abstract semantic manifestations within
the feature space of pixels, e.g., counting numbers [286], people [188, 361], animals
[221], or vehicles [225]. Approaches to solving counting tasks can be categorized
into two groups: multistage approaches and end-to-end models. While multistage
approaches generally use an auxiliary task in the first stage, which is for image-
based counting mainly object density estimation [102], object recognition [103] or
object tracking [61], and evaluate counts in the second step from objects, end-to-end
approaches directly model the counting (regression) task on input images [286, 201].

End-to-end models are more related to general machine learning tasks that involve
explicit and implicit arithmetic relations. Evaluating an MNIST image counting task,
Trask et al. [317] proposed a specific neural architecture, the Neural Arithmetic
Logic Unit (NALU), implicitly modeling numerical dependencies and simple arith-
metic operations. NALUs are constructed task-agnostically and without the input
of an explicit arithmetic relation as in contrast to Arithmetic Logic Units in proces-
sors, where an op-code specifies the operation to be executed. Instead, the NALU
learns to select the operation to execute per unit directly from data with regard
to the task to be executed. This task can be an explicit arithmetic operation or an
arbitrary downstream task, such as anomaly detection, while for the latter, NALU
can be viewed as a special-purpose neural cell targeting numerical dependencies.
Several empirical [153] and theoretical [197] analyses of the NALU have been car-
ried out mainly evaluating the stability and explicit arithmetic performance, which
are extended by our findings in Section 6.1.2 and motivated architectural improve-
ments (cf. Section 6.1.3) leading to models such as our improved Neural Arithmetic
Logic Units [276], Neural Arithmetic Units [197], Neural Power Units [130], non-
linear Arithmetic Units [21], and Neural Reciprocal Units [211]. These subsequent
architectures mostly focus on improving explicit arithmetic precision for the multi-
plication or division operation and stability by reformulating the cell architecture.
In contrast, our approach preserves the original structure of the NALU and allows
improvements only beneficial for explicit arithmetic calculation to be excluded for

16 CHAPTER 3. RELATED WORK

modeling implicit numerical dependencies on a non-arithmetic downstream task as
given in our anomaly detection scenario.

Besides being specialized neural cells, the NALU can also be seen in the scope
of complex activation functions with linearities (summation and subtraction) and
non-linearities (multiplication and division) being parametrized internally. In this
vein, other works on specific parametric activation functions allow to learn numeric
dependencies of various function classes, e.g. from linear to exponential [113, 318],
or parametric bounded activation functions [366, 78]. More distantly related is the
field of mathematical reasoning and modeling of mathematical concepts and nu-
meric relations in natural language [311]. In this area, studies, for example, evaluate
the numeracy in word-embeddings [325, 303, 249] and language models [151, 101]
or question answering with mathematical reasoning [94, 210, 185, 273].

3.1.2 Generative Models and Data Synthesis

In contrast to discriminative models, which typically learn to establish a decision
boundary between the classes to be distinguished, generative models estimate the
(generally unobservable) distribution from which the dataset instances are drawn
from. In general, this approach is not limited to labeled data, which makes it par-
ticularly suitable for unsupervised and semi-supervised tasks [115, 227] as which
anomaly detection can be modeled (cf. Section 4.4). In this context, the model is
learned from normal data and must capture the characteristics of these instances
such as feature distributions and correlations (hence modeling distributions and de-
pendencies). This model can then be considered a precise estimate of the underlying
unobservable distribution, as which the data generation process can be understood
[4, 193], making them, as Ruff et al. stated, “a clear candidate for the task of anomaly
detection” [263].

Generative models can be further categorized into neural network-based and tra-
ditional approaches. Under the term traditional, we subsume approaches which em-
ploy generative models without a neural network formulation. This corresponds
to parametric density estimation such as fitting a normal distribution, or Gaussian
Mixture Models which have been described as “popular generative techniques” pro-
viding good results if the underlying assumptions of Gaussian mixtures are met
[289]. Density estimation-based generative models have also been used for anomaly
detection in direct comparison to neural networks very early [258]. Although these
approaches yield good results on low-dimensional datasets, they suffer from the
curse of dimensionality that motivates the use of deep statistical models for complex
or high-dimensional datasets [263].

With Bolzmann Machines [90], Energy Based Models (EBM) can be considered
the earliest generative models, and Restricted Bolzmann Machines [293] and related
architectures such as Deep Belief Networks [137] or Fully Visible Belief Networks
[97] have received attention in modern architectures [321] and for anomaly detec-

3.1. Modeling Data and Distributions 17

tion [359]. EBMs involve an energy function depending on the model parameters,
which rates the parameter configuration by an energy scalar. Training corresponds
to finding a specific energy function such that suitable parameter configurations cor-
respond to smaller energy values. However, EBMs often require dedicated training
schemes [227], and sampling from the model is computationally expensive [115]
and typically involves Markov Chain Monte Carlo (MCMC) methods [227]. EBMs
such as fully visible belief networks are described as tractable explicit models, i.e.,
tractable models defining an explicit probability density function in contrast to ex-
plicit models with intractable density that require approximation such as Variational
Auto-Encoder (VAE) or implicit density models such as Generative Adversarial Net-
work (GAN) [115]. Although some EBMs can also be understood as neural ar-
chitectures or involve cost function-based training objectives [178], the term neural
generative model [264] or cost function based model [227] is commonly used for VAE
and GAN architectures, which are considered the “most established neural genera-
tive models” [264] and are the basic architectures on which we build our Modeling
Distributions experiments (cf. Section 6.2). For a detailed description of VAE and
GAN, see Section 6.2.1.

VAEs and variants have been widely studied as generative models to synthesize
data, both, for representation learning and as an anomaly detection approach. Some
models explicitly aim to synthesize images [346, 106, 142, 36, 143, 297, 287], mu-
sic [257, 256, 131, 314, 121], or data in the biomedical domain [331]. Aside from
synthetic toy datasets to evaluate architectural changes [166, 195], only few studies
applied VAEs to tabular data, for example, to evaluate privacy [184], data imputa-
tion [215], for the detection of anomalies or cybersecurity threats [340, 350, 229, 328].
In contrast, in Section 6.2, we explicitly evaluate the generative performance of a
VAE-based model for transaction data in comparison to a GAN-based model.

The idea of GANs was introduced by Goodfellow et al. [117] in 2014 as a novel im-
plicit density generative neural network architecture which is trained in a min-max
game theory based strategy (see Section 6.2.1 for a detailed explanation). GANs
have been used successfully on various image generation tasks [367, 45, 222, 145, 15,
148, 44, 162, 163] yielding realistic high quality images [179]. Despite training diffi-
culties [115] and issues such as mode collapse and the open question of evaluation
[313, 344] (see, e.g., [272, 68] for a broader overview), GAN-based approaches have
been more widely applied for the synthesization of tabular and transaction data, e.g.,
for tabular data [230, 343], financial time-series generation [308, 354] or financial and
transaction datasets in general [253, 83, 202, 81].

With a focus on the outcome of generative models, specifically the data synthe-
sized by a model, another branch of research can be considered distantly related.
These works are more aimed at solving the aforementioned challenge of lack of (la-
beled) data. While some works still incorporate machine learning models such as
Markov Chains to generate Enterprise Resource Planning (ERP) data [349], other
works do not have a focus on machine learning models, e.g., generating synthetic

18 CHAPTER 3. RELATED WORK

ERP data by randomly making changes to a provided database [147] or data gen-
eration by serious games [274], which put less emphasis on data quality and more
on the educational objective teaching players how to use and misuse an ERP system
and how to detect it.

3.2 Representation Learning

The importance of Representation Learning (RL) for Artificial Intelligence (AI) was
recognized very early as Anderson et al. [14] humorously stated in 1994:

There is a folk saying in AI that there are three important aspects to any
AI system: representation, representation and representation.

Anderson et al., A study in numerical perversity [14]

Although the frontiers of AI research have changed considerably since then, the
importance of properly representing data for AI still remains and has become a re-
search discipline on its own [27]. RL can have different views depending on the
application domain and the task in a broader view, and generative models and neu-
ral models capable of capturing data characteristics as described in Section 3.1.1 can
also be considered as RL [27]. However, in the context of this thesis, we will use the
term Representation Learning specifically referring to the subarea of embedding tech-
niques. Hereby an instance (or a feature) is to be represented as a dense vector in the
d dimensional vector space Rd which is then, for example, used in downstream ML
tasks such as anomaly detection. Incorporating RL typically aims to find a suitable
representation to solve a machine learning task, for example, by reducing the dimen-
sionality of the input space or to disentangle the properties and similarities between
instances or features [174] with the general objective of facilitating subsequent tasks
[116]. The field of RL was notably driven by the research discipline of Natural Lan-
guage Processing (NLP). When working with natural language, from a data-driven
perspective, types and tokens formed in sequences of tokens to meaningful text
denote the data foundation to work with. This implies an exorbitantly large num-
ber of possible types when working with unconstrained vocabulary, which can be
interpreted as categorical features, although novel architectures use other concepts
such as byte pair encoding [46]. When interpreting tokens as atomic features, Dis-
tributed Representations [136] are constructed to generalize over semantic attributes
between tokens (or more generally concepts) [116]. Mikolov et al. [207] introduced
efficient neural formulations to apply the concept of distributed representations to
large-scale corpora and thus prepared the ground for neural representation learning
methods and their application to various fields beyond NLP, including cybersecu-
rity [251, 239, 18, 327, 336, 189, 309, 56, 183, 337, 326, 304, 152], the financial domain
[352, 345], and fraud detection [265, 155, 132, 360, 156, 332, 363, 25, 118]. While a
large number of works only apply word2vec [207], we adapt the methodology of

3.3. Anomaly and Fraud Detection 19

extracting negative and positive samples to the row and column specific structure
of features and samples, incorporate numerical attributes, and apply it to other es-
tablished RL approaches as detailed in Sections 7.1 and 7.2.2. Mostly related to our
adaptions is the table2vec [362] approach. In contrast to their approach, however,
we include numeric features and infer per-sample representations instead of using
table-cell embeddings for table-specific tasks such as row or column population.

3.3 Anomaly and Fraud Detection

The topic of Anomaly Detection (AD) in transaction data subsumes several appli-
cation domains, task formulations, and related research topics. In this section, the
various perspectives and related works will be discussed. When talking about AD,
anomalies typically refer to rare events or outlier data points, which should be dis-
tinguished from normal behavior or associated data. Detecting anomalies is impor-
tant because they indicate rare events with major consequences. For example, an
anomaly in a credit card transaction may indicate fraudulent activity that could re-
sult in large losses for the affected person or institute. When referring to transaction
data, rare and anomalous events often correspond to unexpected behavior by users
or customers involved in the corresponding (business) processes. After a broader
view, we therefore focus on related work on AD in the financial domain in general
and fraud detection in particular.

A comprehensive review of anomaly detection methods in general is provided
by Candola et al. [50]. They categorize existing approaches for anomaly detection
based on their techniques and applications including fraud detection and cyber-
security. Chalapathy and Chawla [48] provide a more recent survey of deep learn-
ing for anomaly detection that, among other things, addresses the topics of fraud,
cyber security intrusion, and malware detection. The authors describe existing ap-
proaches for the detection of credit card fraud, fraud in mobile cellular networks,
insurance fraud, and healthcare fraud, and categorize host- and network-based in-
trusion detection approaches. This survey shows that various network architectures
such as Auto-Encoders, Generative Adversarial Networks, Convolutional NNs, Re-
stricted Boltzmann Machines, or Recurrent NNs are used for anomaly detection in
both domains.

Financial fraud detection is very diverse and may appear in different areas such as
mobile payments, credit card misuse, or ERP systems. Often, fraud represents only
a very small proportion of transactions in these areas. Consequently, many financial
fraud detection methods are based on anomaly detection. While Sabau [266] and
Phua et al. [236] provide an overview of traditional approaches to detect fraud,
Singla et al. [161] give a specific overview on fraud detection with a dedicated focus
on fraud detection based on deep learning on online transactions. An overview of
fraud detection with a dedicated evaluation of applications and techniques between

20 CHAPTER 3. RELATED WORK

2004 and 2015 is provided by Albashrawi [10], while simulation-based works are
summarized by Lopez-Rojas [191]. Hilal et al. [135] investigate popular and effective
semi-supervised and unsupervised learning anomaly detection techniques applied
to detect financial fraud. While these works provide a broad overview over fraud
detection in general, two specific applications are related more closely to AD in
transaction data, namely AD in credit card transactions and in transactions recorded
within ERP systems.

Many works investigate the suitability of machine learning methods for credit
card misuse. Wang et al. [330] evaluate Random Forest, Support Vector Machines,
and Capsule Networks for the detection of credit card fraud. They evaluate these
appraoches on a private credit card transactions dataset and extract and aggregate
features for each transaction. Similarly, Maes et al. [199], Shen et al. [288], and Sun
and Vasarhelyi [302] evaluate different neural network architectures for credit card
fraud detection.

Baader and Krcmar [20] present an approach to detect fraud on purchase-to-pay
processes in ERP systems, combining red flag analysis and process mining tech-
niques. Schreyer et al. [280] use deep Auto-Encoder to detect anomalies in journal
entries of an ERP system and Schultz and Tropmann-Frick [281] also apply Auto-
Encoder to detect unusual journal entries within individual financial accounts on a
real-world ERP dataset.

Although incorporating neural models, these approaches in several ways follow
traditional approaches using expert knowledge for feature engineering or feature
selection. In contrast, our experiments avoid relying on domain experts to model the
data foundation or features, as in practice adaptations to other datasets require the
repetition of this costly and time-consuming step. Instead, our approach, building
NNs on raw data, allows one to easily transfer approaches to other datasets and
domains, as the models learn to focus on relevant features implicitly by design.

21

Chapter 4

Foundations

In this chapter, we will introduce the basic concepts and methodological foundations
used in the different sections and experiments throughout this thesis. In Section 4.1,
the methodological foundations for the Machine Learning approaches that this the-
sis builds on are presented. We will explain the basic concepts for neural networks
in detail, which are the basis for several models developed for this thesis. Further,
we will briefly introduce the baseline approaches used in our experiments. In the
Anomaly Detection Section 4.4, we will discuss the relationship to the previously
introduced Machine Learning approaches and the challenges that arise with AD.
Then, in Section 4.5.1, the evaluation metrics used to evaluate our results are intro-
duced, and we discuss the influence of extreme data imbalance on different metrics.
Finally, in Section 4.6, we will briefly frame the setting of this thesis in the context of
the Knowledge Discovery in Databases (KDD) process and discuss Data Mining as a
component of the KDD process with its relation to Machine Learning and Anomaly
Detection.

4.1 Machine Learning

The term Machine Learning (ML) is most generally described as modeling learning
processes with computers and denotes one of the “most challenging and fascinat-
ing long-range goal” in Artificial Intelligence [206]. Alpaydin [12] describes ML as
optimizing “a performance criterion using example data or past experience” for a
ML model to make predictions or describe data and gain knowledge, i.e., a com-
puter program that improves in solving a task with respect to a performance metric
by processing data to learn from. Data are typically structured as samples, the in-
dividual examples to consider during learning, which themselves are composed of
features, i.e., the aspects characterizing each sample. For this thesis, we denote the
data of a dataset by D with samples x ∈ D. The dataset has a fixed number f
of feature categories Xi, i ∈ {1, . . . , f } with feature values xj ∈ Xi of which each
sample x = (x1, . . . , x f) is composed. ML algorithms are considered supervised, if a

22 CHAPTER 4. FOUNDATIONS

target feature, also called label and typically noted as y ∈ Y, is present for each sam-
ple to be trained on, whereas algorithms learning features without direct feedback
from a label are called unsupervised. In general, supervised algorithms are trained to
predict the label from data as learned during training, whereas unsupervised algo-
rithms learn structural properties of the dataset. For supervised training, the dataset
D is often split into disjoint parts for training and testing, for example Dtrain,Deval

and Dtest for a fair evaluation on Dtest, having Dtrain for training and Deval for hy-
perparameter tuning.

In practice, however, the distinction between supervised and unsupervised is often
blurred [116] with several settings such as semi-supervised learning [368] or One-
Class Learning (OCL) [24] in between. Especially, OCL is highly relevant for our
setting of anomaly detection: For OCL, only one class is well defined and well rep-
resented in the training data. However, the task is to find instances deviating from
the known class without explicitly knowing how these samples can be described.

In general, typical ML tasks can be categorized into predictive categories such as
classification, where y belongs to one of the k categories to be predicted for a given
sample and regression, where y is a numerical variable to be predicted, but also
into non-predictive categories such as clustering or generative tasks. For clustering,
the cluster assignment y is not given in the training data, but must be assigned by
structuring the feature space. Examples of generative tasks are sampling or data
synthesis. The task of anomaly detection can be seen in between this field. It can be
modeled as a classification task as applied in Section 8.1, as an OCL task with prop-
erties from regression, and clustering as applied in Section 8.2.2, as the numerical
label, which describes how anomalous a sample is, is not present during training.
It can also be modeled as generative task as given in Section 8.3, which can also be
used to synthesize data as in Section 6.2. In this section, we will focus on specific
ML-models and ML-optimization algorithms and introduce them formally.

4.2 Neural Networks

NNs have been inspired by the internal structure of the (human) brain with neu-
rons connected to each other and the decision to activate based on the activation
of connected input neurons. This concept dates back to the introduction of a basic
calculus model for nerve activity by McCulloch and Pitts [205]. The Perceptron as in-
troduced by Rosenblatt [260] can be understood as the basic structure for neurons in
NNs, which has been extended to multiple layers as Multi-Layer Perceptron (MLP),
different activation functions, and network architectures, eventually outperforming
other ‘traditional’ ML-approaches in several domains, powered by larger and larger
datasets and increasingly powerful CPUs and general-purpose GPUs [116].

In general, NNs approximate a function f that is applied to data samples, for ex-
ample to predict a target label y such that f (x) = y. This approximation is achieved

4.2. Neural Networks 23

by parameterizing f by variables subsumed in θ, representing weights to be learned
during training such that f (x; θ) = y. The most simple manifestation of a class of
functions to approximate is the linear neuron, as shown in Eq. 4.1.

f (x; W, b︸︷︷︸
θ

) = x>W + b (4.1)

As Eq. 4.1 maps an input vector x to an output vector of arbitrary size defined by
the shape of W, several functions can be chained or layered. Accordingly, Eq. 4.1 is
also called a linear layer of a neural network that may consist of multiple layers. If
a layer is not directly associated with an output variable but succeeded by another
layer, it is called hidden layer. A neural network with several layers is commonly
termed a deep neural network [116]. To harness the depth of multi-layer NNs, linear
layers alone are not suitable, as the linear transformations over multiple layers can
be simplified to a single affine transformation and non-linear dependencies can not
be modeled. Therefore, a non-linear activation function a is introduced (see Eq. 4.2)
to leverage the full capabilities of NNs as universal approximators [141].

f (x; W, b︸︷︷︸
θ

) = a(x>W + b) (4.2)

For the perceptron, a is typically the threshold function t (Eq. 4.3), other com-
mon non-linearities are the sigmoid function σ (Eq. 4.4) or the hyperbolic tangent
tanh (Eq. 4.5). The Rectified Linear Unit (ReLU) [212] (Eq. 4.6) has developed to
the default activation function, allowing fast computation and good performance
[112, 338, 116]. Other variants such as leaky ReLU [196] (Eq. 4.7) have been pro-
posed addressing practical issues of ReLUs such as “dying neurons”, which refers
to the observation that a ReLU neuron which has reached values x < 0 is unlikely to
recover to another state, since the gradient signal is zero. The SoftMax (Eq. 4.8) acti-
vation function is typically applied in the output layer of a NN to produce an output
that can be interpreted as a multinomial probability distribution for K categories.

t(x) =

{
1 if x ≥ 0
0 otherwise

(4.3)

σ(x) =
1

1 + e−x (4.4)

tanh(x) =
e2x − 1
e2x + 1

(4.5)

24 CHAPTER 4. FOUNDATIONS

ReLU(x) = max{0, x} (4.6)

LeakyReLU(x) =

{
0.01x if x < 0
x otherwise

(4.7)

SoftMax(x)i =
exi

∑K
j=1 exj

for i = 1, . . . , K and x = (x1, . . . , xK) ∈ RK (4.8)

To approximate the target function, the parameters (weights) of the NN have to be
learned. This is achieved by optimizing the parameters with respect to a cost func-
tion, typically called loss: An NN with randomly initialized parameters is trained to
minimize the loss. The training (i.e. the educated change of the parameters) is typ-
ically approached with gradient decent-based optimization, iteratively minimizing
the loss up to a local optimum, as the cost surface of non-linear NNs is in gen-
eral non-convex and there is no analytical solution to find a global optimum (which
is also not desirable as it often leads to overfitting [59]). Several loss functions have
been proven to be suitable for NN training, depending on the data and the task, with
cross-entropy being the most common loss for classification. Cross-Entropy (Eq. 4.9
and 4.10) is based on the maximum likelihood principle minimizing the difference
between the training probabilities and the probability distribution predicted by the
NN. In this notation, x and y denote output and target and with w a weighting
factor can be defined. For regression tasks, the Mean Squared Error (MSE) (Eq. 4.11)
is often used, minimizing the squared differences between predicted and expected
values. Other loss functions such as the Jensen-Shannon divergence or the Wasser-
stein distance are explained in Section 6.2 in detail, which are used in Generative
Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) to compare
predicted probability distributions and distributions derived from data.

CCE(x, y; w) = −
C

∑
c=1

wc log
exp(xc)

exp(∑C
i=1 xi)

yc (4.9)

BCE(x, y; w) = −w (y log x + (1− y) log(1− x)) (4.10)

MSE(x, y) = (x− y)2 (4.11)

Besides optimization according to the label, a regularization term is also often
included as part of the loss, for example, to constrain a layer’s output to standard
normal distribution for VAE (see Section 6.2.1), or to decrease weights with weight
decay or `2 regularization [192], or as task-specific regularization (see Section 6.1.3).
In particular, the loss does not necessarily reflect the true evaluation criterion, but
instead reflects a surrogate loss function, which can be optimized (more) efficiently.
As the surrogate loss might yield slightly different local optima (e.g. due to regu-
larization terms) and training is generally not stopped at an optimum automatically,
early stopping [240] is often applied for which training is stopped when a stopping
criterion based on the true loss or performance metric is reached on a validation

4.2. Neural Networks 25

split unseen during training to avoid overfitting. Overfitting can occur, since with
ML, optimization is performed on a training dataset, not on the underlying true
data distribution, which is unknown. This can lead to overly adaption to the train-
ing samples up to memorization and does not generalize to other dataset splits
generally assumed to be drawn from the true data distribution. Besides traditional
ML approaches, especially NNs are prone to overfitting due to their large number
of trainable parameters [175] motivating methods such as early stopping or dropout
[298] to address this issue.

In general, for the training of NNs, a cost function J is optimized by minimizing
the loss L on the training data with respect to the parameters of the neural network
θ and the output of the network ŷ = f (x; θ).

J(θ) = E
(x,y)∼Dtrain

L(f (x; θ), y) (4.12)

If the expected value is realized as a sum of all samples of Dtrain, each optimization
step requires processing of the entire dataset which is computationally expensive.
Instead, NN training is typically performed in minibatch training, where the empirical
cost and the resulting training step are calculated on a small subset of m training
samples randomly drawn from the training dataset.

J(θ) =
m

∑
(x,y)∼Dtrain

L(f (x; θ), y) (4.13)

As optimization algorithm, Stochastic Gradient Decent (SGD) is one of the most
common algorithms used for NN training. The idea is that by following the gradient
iteratively, a downward movement on the loss surface will lead to an optimum. With
SGD, the gradient is estimated as average over a minibatch (X, Y) ∼ Dtrain and the
‘movement’ is scaled by a parameter γ, the learning rate.

Algorithm 1: Stochastic Gradient Decent (SGD) algorithm
input : dataset D, initial weights θ, number of iterations T, learning rate γ

output: updated parameters θ

for t = 1 to T do
(X, Y) ∼ D with |(X, Y)| = m; // sample minibatch of size m

g← 1
m∇θ ∑(x,y)∈(X,Y) L(f (x; θ), y); // compute gradient estimate

θ ← θ − γg; // update parameters

return θ

The SGD algorithm [262, 116] as shown in Alg. 1 can be varied by several means,
for example by varying the learning rate, incorporating early stopping instead of

26 CHAPTER 4. FOUNDATIONS

fixed iterations of T or introducing momentum [305]. Another popular optimizer
that combines several improvements is ADAM [165] which will be used in this the-
sis. While these foundations lay the common ground as NN basics, several specific
foundations and models are introduced in Chapter 6, such as the VAE model, GANs,
or the NALU along with our adaptations and improvements developed in this thesis.

4.3 Baseline Approaches

Besides NN models, we use several classic ML-approaches as a baseline in our ex-
periment, which will be introduced briefly in this section.

4.3.1 Naïve Bayes

One of the most basic ML models for classification is the Naïve Bayes (NB) classifier.
NB directly builds on Bayes’ theorem (Eq. 4.14) which allows to calculate the poste-
rior probability p(y | x) based on the prior class distribution p(y), the likelihood of
the observation under the classes p(x | y) and the observations p(x):

p(y | x) =
p(y) p(x | y)

p(x)
(4.14)

NB postulates conditional independence, that is, all characteristics xi ∈ x are inde-
pendent of each other with respect to y, such that p

(
xi |

{
xj
}

j 6=i , y
)
= p(xi | y). For

K classes y is generalized to K probabilities yk with 1 ≤ k ≤ K and the posterior
and class estimate is given by Eq. 4.15. In practice p(x) can be omitted as a constant
factor independent of y for determining the most probable class.

p(yk | x1, . . . , xn) =
p(yk)∏n

i=1 p(xi | yk)

p(x)
, ypred = argmax

k
p(yk | x) (4.15)

For implementation, p(xi | y) and p(y) have to be estimated from data. While p(y)
can be estimated as relative class frequency from the training set, the conditional
probability model is typically estimated parametrically, for example by assuming
a normal distribution for Gaussian Naïve Bayes, but non-parametric approaches to
density estimation have also been proposed [154].

4.3.2 Logistic Regression

Logistic Regression (LR) is a linear classification model related to NB [217], which
compares the odds of possible outcomes for individual classes. These outcomes can

4.3. Baseline Approaches 27

be described as p(y0 | x) and p(y1 | x) = 1− p(y0 | x), which are estimated as linear
parameters applied to the sigmoid function for LR:

ŷ(x; θ) = p(y0 | x; θ) = σ(x>W + b︸ ︷︷ ︸
θ

) =
1

1 + exp
(
−(x>W + b)

) (4.16)

LR is then trained using the maximum likelihood principle, that is, the likelihood L
of the model parameters θ with respect to the data (xi, yi) ∼ D is maximized, which
is typically approached by gradient descent [12]. Parameters can also be optimized
by minimizing the log-likelihood J, which is equivalent to the Cross Entropy loss
(Eq. 4.9) resulting in the following optimization problems:

max
θ

L(θ | D), L(θ | D) =
N

∏
i

ŷ(x; θ)yi(1− ŷ(x; θ))1−yi (4.17)

min
θ

J(θ | D), J(θ | D) = −
N

∑
i=1

yi log ŷ(x; θ) + (1− yi) log(1− ŷ(x; θ)) (4.18)

In practice, `1 or `2 regularization is often added to the objective, which improves
the generalization performance for high-dimensional features [218, 180]. Multiple
classes can be modeled using the one-versus-all scheme [12]. Note that in contrast
to generative methods, such as NB, which model p(x | y) or p(x, y), LR is a discrim-
inative model directly modeling p(y | x) [12, 217]. It is also worth noting that, as
Eq. 4.16 shows, LR can be understood as NN with one layer and sigmoid activation
optimized through Cross-Entropy.

4.3.3 k-Nearest Neighbors

The k-Nearest Neighbors (kNN) approach is a distance-based classification algo-
rithm, which decides on the class based on the majority class of the k nearest neigh-
bors with respect to the distance metric. The model is therefore instance-based, i.e.
the training instances are directly “memorized” and compared with the samples
to be predicted instead of generalizing an abstract decision function. To efficiently
search the space of neighbors, several data structures such as Ball Trees [224] have
been adopted in practical implementations [232] and approximations have been pro-
posed to handle large datasets [52]. As distance measure any metric can be used,
which fulfills the three metric axioms identity of indiscernibles, symmetry, and the
triangle inequality. While in practice, distances based on the `p norm such as the
Euclidean distance are often used, the most suitable metric choice is dependent on
the dataset [2]. Besides the metric, feature transformations such as min-max scal-
ing or standardization can have a strong influence on the performance of a kNN
model [315]. Formally, let (Xtrain, Ytrain) = Dtrain be the set of training samples

28 CHAPTER 4. FOUNDATIONS

with features Xtrain and labels Ytrain. Given a sample x̂ to classify, let the relevant
neighborhood N , i.e., the subset of k nearest neighbors with respect to a distance d, be

Nk(x̂;Dtrain) = (XN , YN) ⊂ Dtrain (4.19)

with |XN | = k

satisfying ∀x ∈ XN , ∀x̄ ∈ Xtrain \ XN : d(x, x̂) ≤ d(x̄, x̂).

The predicted class for x̂ is then given by

ŷ = argmax
y
|{i : yi ∈ YN | yi = y}| (4.20)

4.3.4 Support Vector Machine

Support Vector Machine (SVM) is a discriminative classification approach based on
the idea of finding the class boundary, also called the hyperplane, between two
classes y ∈ {1,−1}, where P(y = −1 | x) = P(y = 1 | x). This hyperplane for a
linear SVM is defined as linear equation

W>x + b = 0 (4.21)

with learnable parameters W, b. For linearly separable instances, two parallel support
hyperplanes can be constructed such that for all (x, y)

W>x + b ≥ 1 for y = 1 (4.22)

W>x + b ≤ −1 for y = −1 (4.23)

which geometrically have a distance m = 2
‖W‖ , typically called margin. Therefore,

the objective of the SVM is to maximize the margin, i.e. minimizing W with respect
to Eq. 4.22, and 4.23 which can be summarized as

minimize
1
2
‖W‖2 subject to yi(W>xi + b) ≥ 1 (4.24)

for each data point (xi, yi) ∈ Dtrain [64], which can be solved as a standard quadratic
optimization problem [12], such that there are instances on both sides of the hyper-
plane, which have a distance of 1

‖W‖ . As the support hyperplanes are defined to
maximize the margin between instances of different classes, some instances, called
support vectors, are located directly on the support hyperplane, and thus W can be
written as a linear combination of those instances with coefficients αi 6= 0 for support
vectors xi [278]:

W = ∑
i

αixi (4.25)

As data is generally not perfectly separable, Eq. 4.24 is typically relaxed to allow
deviation from the margin by introducing slack variables ξi by yi(W>xi + b) ≥ 1− ξi.

4.3. Baseline Approaches 29

As deviation from the margin by slack variables ξi > 0 must be avoided as far as
possible for better generalization, the slack variables are regularized by introducing
a penalty ∑i ξi to the objective scaled by a hyperparameter C.

minimize
1
2
‖W‖2 + C ∑

i
ξi subject to yi(W>xi + b) ≥ 1− ξi (4.26)

To solve non-linear problems, a non-linear transformation of the feature space X to
a potentially higher-dimensional vector space X with a mapping function φ : X → X
can be applied, in which the problem is linearly separable and thus solvable by the
SVM. The kernel trick [35] avoids this explicit mapping by defining a kernel function
K : X× X → R, which satisfies K(x, x̂) = φ(x)>φ(x̂).

minimize
1
2
‖W‖2 + C ∑

i
ξi s.t. yiW>φ(xi) + b ≥ 1− ξi (4.27)

(4.25)⇔ minimize
1
2
‖W‖2 + C ∑

i
ξi s.t. yi ∑

j
αjK(xi, xj) + b ≥ 1− ξi (4.28)

A kernel often applied with SVMs is the Radial-Basis-Function (RBF) or Gaussian
kernel, which is also used for Gaussian kernel density estimation having γ = 1

2σ2 , as
detailed in Section 6.2.2.

KRBF(x, x̂; γ) = exp
(
−γ‖x− x̂‖2

)
(4.29)

4.3.5 One-Class Support Vector Machine

The One-Class SVM (OC-SVM) as proposed by Schölkopf et al. [279] varies the idea
of a separating hyperplane such that the distance from the origin in feature space is
maximized for given samples of the known class. The precise formulation is given
as follows:

minimize
1
2
‖W‖2 +

1
νn ∑

i
ξi − ρ s.t.

W>φ(xi) ≥ ρ− ξi
⇔ ∑j αjK(xi, xj) ≥ ρ− ξi

(4.30)

The smoothness hyperparameter C from Eq. 4.26 is hereby replaced by 1
νn , with

ν ∈ (0, 1) setting an upper bound on the fraction of training outliers and a lower
bound on the number of training examples used as Support Vector [279]. The hy-
perplane defined by W and ρ is thereby constructed to have a maximum distance
from the origin and to separate the samples of known class from the origin. The
kernel trick can be applied analogously to Eq. 4.28 as given in Eq. 4.30 for the dual
formulation.

30 CHAPTER 4. FOUNDATIONS

4.3.6 Tree-based Approaches

Another class of non-parametric ML algorithms is building on tree data structures
and divide the input space into local regions hierarchically.

Decision Trees

The Decision Tree (DT) is the most basic tree-based ML approach and is composed
of decision nodes and leaves. At every decision node, the input space is divided by
a split criterion recursively until a leaf node is reached. Leaves therefore correspond
to a local region which has a class label assigned for classification DTs. The decision
boundary is finally defined by the split criteria traversed from the root node to the
leaf. More formally, a split criterion for node n is given by a function fn(x) : Rd →
Y defined as threshold function f u

n for the univariate or f m
n for the multivariate

decision tree, which takes into account one input dimension (univariate) or all input
dimensions (multivariate).

f u
n (x) =

{
f u
nL
(x) if xi + wn > 0

f u
nR
(x) otherwise

(4.31)

f m
n (x) =

{
f m
nL
(x) if w>n x + wn > 0

f m
nR
(x) otherwise

(4.32)

D|nL
= {(x, y) ∈ D|n | xi + wn > 0} (4.33)

D|nR
= {(x, y) ∈ D|n | xi + wn ≤ 0} (4.34)

Here, fnL and fnR denote the subsequent decision functions for the left or right child
node of fn with the local region covering the data subset D|n, which splits into
child regions and associated subsets D|nL

, D|nR
. As the predicted class label is only

determined by leaf nodes fli : x 7→ ŷ, li ∈ L, the tree is recursively composed of
decision functions along the path from the root node to the leaves:

froot(x) = f∗(f∗(f∗(· · · fli(x) · · ·)))

For a regression task, the decision function of the leaves maps ŷ to a numeric given by
the mean of y of the training data in the leaf li, ŷ = E[y : (x, y) ∈ D|li]. Accordingly,
a label for a sample x can be indexed as ŷq(x) with respect to a given tree structure
q : Rd → {1, . . . , |L|} defining the leaf index i : li associated with x of the expectation
leaf vector ŷ = (ŷli)li∈L.

Many different trees can be constructed, which fit training data without any error.
In particular the most (unnecessarily) complex tree could fit a local subspace around
each training sample as leaf. However, this would result in a highly overfitted model
that probably does not generalize well to the test data [39]. The problem of finding
the smallest tree, however, is NP-complete [173]. To learn a decision tree in practice,

4.3. Baseline Approaches 31

several algorithms have been proposed, which mostly greedily split according to a
heuristic H, e.g. ID3 [243] by choosing the attribute which minimizes the entropy
regarding the training data with improvements, such as C4.5 [244], or CART [42]
which uses the Gini impurity as split criterion and prunes the tree after creation by
removing unhelpful branches. Theoretical analyses suggest that the difference be-
tween both criteria is negligible [245]. For our experiments, we use the Gini criterion.
For a class k in node n, pnk denotes the proportion of observations. Gini impurity
and entropy are given by:

pnk =
|{(x, y) ∈ D|n | y = k}|

|D|n|
(4.35)

HGini(D|n) = ∑
k

pnk(1− pnk) (4.36)

HEntropy(D|n) = −∑
k

pnk log(pnk) (4.37)

The set of classification and regression decision trees is given by

CART = { f : x 7→ ŷq(x)} with q : Rd → {1, . . . , |L|} and ŷ ∈ R|L| (4.38)

having the set of leaves noted as L and the tree structure determined by q for each
tree.

Random Forests

Random Forest (RF) is a bootstrap aggregating (bagging) ensemble approach that is
built on DTs. While the first publication building ensembles of DTs suggested sam-
pling on feature level by randomly constructing several feature subsets and using
the complete dataset to train a model each [138], Breiman [41] coined the term ran-
dom forest and made the bagging approach for DT ensembles popular. By randomly
sampling with replacement from the training dataset D, m sub-datasets Di are cre-
ated and individually used to train a DT model each. Since each DT is constructed
on a different dataset, each DT selects other split criteria, helping to avoid overfit-
ting [41]. The decisions of the individual trees are combined by voting, i.e. assigning
the class label predicted most often by the individual classifiers or by averaging the
prediction probabilities (Eq. 4.35) of the individual trees. For our experiments we
use the scikit-learn implementation [232], which combines sample-based bagging
and feature-subspace sampling by restricting the subset of features to be considered
by the splitting criterion.

XG-Boost

XG-Boost (named after eXtreme Gradient Boosting) is a popular gradient boosted
tree algorithm, often chosen for its “superior performance over deep learning” [290]

32 CHAPTER 4. FOUNDATIONS

on tabular data. Similar to RF, XG-Boost uses ensembles of decision trees combined
to an additive model (Eq. 4.39) iteratively, i.e. the model includes more and more
trees, which in sum improve the objective most. The selection of a tree added to
the model is decided by optimizing a training objective L (Eq. 4.40) including a loss
l (such as MSE) and a regularization term Ω. Here, ŷ(t)i denotes the prediction of
the i-th sample in the t-th iteration and a specific ft is added, which improves the
model the most. The regularization term Ω(f) = γ|L| + 0.5λ‖w‖2 penalizes the
complexity of the tree ft to be added by the number of leaf nodes |L| and the leaf
weights w ∈ R|L|.

In practice this optimization objective is implemented by its second-order Taylor
approximation L̃(t) (Eq. 4.41). For a more detailed derivation of this approximation,
see [55].

ŷ(t)i = φ(t)(xi) =
t

∑
e=1

fe, fe ∈ CART (4.39)

L(t) =
N

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω(ft) (4.40)

L̃(t) =
N

∑
i=1

[
l(yi, ŷ(t−1)

i + gi ft(xi) +
1
2

hi ft(xi)
2
]
+ Ω(ft) ' L(t) (4.41)

with gi =
∂l(yi, ŷ(t−1))

∂ŷ(t−1)
, hi =

∂2l(yi, ŷ(t−1))

∂(ŷ(t−1))2
, Ω(ft) = γ|L|+ 1

2
λ
|L|

∑
j=1

ŷ2
j

Lsplit =
1
2

(

∑i∈D|nL
gi

)2

∑i∈D|nL
hi + λ

+

(
∑i∈D|nR

gi

)2

∑i∈D|nR
hi + λ

−

(
∑i∈D|n gi

)2

∑i∈D|n hi + λ

− γ (4.42)

In Eq. 4.41 and Eq. 4.42 the terms gi and hi denote the first- and second-order gra-
dient statistics for l and Ω regularizes the number of leaves |L| and their scores
ŷj.

The final model after E iterations is given by ŷi = ŷ(E)
i . In practice, L̂ is often

rearranged to the splitting criterion Lsplit [55] as given in Eq. 4.42. XG-Boost ad-
ditionally incorporates shrinkage [98], i.e. rescaling weights by a given factor after
each iteration and feature-subspace sampling as introduced with RF.

Isolation Forest

Isolation Forest (IF) [186] is a Random Forest-based anomaly detection approach.
The key observation motivating this approach is that anomalies are infrequent and
differ from normal data, making them more susceptible to isolation than normal
samples [186]. When constructing decision trees with random partitioning criteria

4.4. Anomaly Detection 33

(isolation trees) by randomly selecting a feature and split value within the value
range of the selected feature, the dataset is partitioned and data instances are isolated
in leafs until either the height limit is reached, each leaf contains a single instance or
all remaining data points have the same value. It can be observed that the paths from
the root to an anomalous sample are notably shorter than paths for normal instances
[186]. For IF, t isolation trees are combined similarly to RF while the length of the
path h(x) defined by the nodes between the root and the leaf is averaged over the
trees E[h(x)] as a normality score. To obtain an anomaly score s(x; n) for a sample
x and n = |D|, this average path length is normalized by c(n), the path length of a
unsuccessful search in Binary Search Trees [186].

c(n) = 2H(n− 1)− (2(n− 1)/n) (4.43)

s(x; n) = 2−(E[h(x])/c(n)) (4.44)

Hereby H(i) denotes the harmonic number estimated by H(i) = ln(i) + γ with Eu-
ler’s constant γ ≈ 0.5772. IF has two hyperparameters, the number of trees t and the
size of subsampling bagging ψ defining the size of each subset sample X′ ⊂ D used
to create the respective tree. The height limit l of the trees is defined in relation to
ψ by l = dlog2 ψe. Similarly to RF, IF is in addition to subsampling in sample space
(bagging), in practice often implemented with feature space subsampling, introduc-
ing an additional hyperparameter ϕ defining the proportion of sampled features per
tree [232].

4.4 Anomaly Detection

Anomaly Detection (AD) refers to finding data points “different from the remaining
data” [5]. Hawkins [127] discusses two origins of such outliers: Either, data are
drawn from an “outlier-prone” distribution, heavy-tailed distributions “which go to
zero slowly”, or data arise from two different distributions, a “basic distribution”
generating normal data and a “contaminating distribution”, which is outlier-prone.
While the second mechanism can be understood as a special case of the first, it better
reflects the definition of Chandola et al. [50] understanding anomalies as data, that
does not conform to expected behavior:

Anomalies are patterns in data that do not conform to a well defined no-
tion of normal behavior. [...] Anomalies might be induced in the data for
a variety of reasons, such as malicious activity, for example, credit card
fraud, cyber-intrusion, terrorist activity or break-down of a system, but
all of the reasons have the common characteristic that they are interesting
to the analyst.

Chandola et al., Anomaly detection: A survey [50]

34 CHAPTER 4. FOUNDATIONS

From a data point of view, this can be operationalized in several ways: While re-
construction error-based models such as Auto-Encoder try to capture a compressed
representation of normal data and measure abnormality by the difficulties repro-
ducing such samples (cf. Eq. 4.45), other approaches such as Isolation Forest (cf.
Section 4.3.6) are based on frequent feature combinations or try to learn a decision
boundary regarding the normal class as (One-Class) Support Vector Machine (cf.
Section 4.3.5) for example.

Expanding this data-driven perspective, anomalies can not only be understood
as improbable outcomes of probability distributions, but the process or origin from
which they came from can be considered as well to define the requirements for
detecting anomalies:

Although point anomalies can be considered from either point of view, since the
anomaly is present or absent in each data point with respect to all other data points,
the broader, process or behavioral definition allows one to consider contextual anoma-
lies. For these, an outcome is not conspicuous when considered in isolation, while
consideration of contextual properties allows a clear distinction as anomalous with
respect to that context. This context can be temporal, for example, a large num-
ber of transactions occurring outside typical working hours, spatial, for example,
credit card transactions issued in another country, or contextual with regard to other
attributes, for example, the price with regard to the product group. Collective anoma-
lies denote anomalous behavior that manifests itself in a group or sequence of data
points, for example slowly draining an account with a number of transactions, all
inconspicuous for themselves.

For the majority of our experiments, we only consider point and contextual anoma-
lies and shift sequential aspects to dataset preparation. For example, for the IEEE-
CIS fraud dataset, counting features aggregate sequences, while for the SAP dataset,
related transactions for purchase and sales or accounting have been aggregated by
foreign key constraints. For the extrinsic evaluation for Windows Audit Logs (Sec-
tion 7.1), however, a sequential model is used, as a sample of malicious behavior
in this application is characterized by a sequence of audit log events as collective
anomalies.

Several challenges arise with AD, namely imprecise boundaries of normal and
abnormal data, which is strongly related to the difficulties encountered in precisely
defining or operationalizing non-normal behavior for a given task, possible drifts in
the characteristics of normal behavior, the incentive to obfuscate anomalies when
malicious intent is involved, and the availability of data, particularly labeled train-
ing data [50]. Training data with labels for normal instances and anomalies al-
low the application of supervised ML approaches as for our experiments in Sec-
tion 8.1. Whereas the consequent problem of class-imbalance between normal data
and anomalies can be addressed in several ways, e.g. by introducing class weights
or by sampling including techniques such as the Synthetic Minority Oversampling
TEchnique (SMOTE) [51], the availability of labeled datasets of appropriate size to

4.4. Anomaly Detection 35

apply deep learning based methods is usually not given [50]. Consequently, AD
approaches beyond supervised ML are developed, which are trained in an unsu-
pervised or semi-supervised setting and do not rely on labeled anomalies. Semi-
supervised approaches typically incorporate few labeled and a large number of un-
labeled data points to yield a better performance in comparison to training only on
the labeled data with a supervised approach or discarding the labels to train with
unsupervised algorithms.

Whereas for AD the term semi-supervised is also used when only one type of
data (typically normal data) is available, resulting in a labeled dataset containing
only one class [50, 5], for ML this scenario is generally referred to as One-Class
Classification (OCC) or Positive Unlabeled Learning (PU). In practical terms, with
OCC the unlabeled data is not necessarily used for training or improving the model,
and especially in the AD setting, the normal class is by definition more frequent.
Therefore, from two perspectives, it is not given that learning is done on few labeled
and many unlabeled data as for semi-supervised learning. In the literature, there
are also approaches that combine OCC and semi-supervised learning by allowing a
few positive labels to be considered alongside a lot of unlabeled normal data [264]
and related approaches, e.g. in online novelty detection, where new classes can be
added and hence treated differently from previously unseen classes [203] or transfer
learning, using labeled data from an unrelated task to learn feature representations
[235]. Moreover, Aggarwal [5] argues that OCC trained on normal data is just a
more precise application of unsupervised methods and coincides with OCC from a
methodological perspective, as both in general aim to model normal behavior. This
applies, for instance, for reconstruction-based models such as Auto-Encoder (AE),
which can be trained on and applied to unlabeled and potentially contaminated
data as well as benign data reflecting normal behavior. For reconstruction-based
models the `2 norm is commonly used as anomaly score as [50]:

as(x, x̂) = ‖x− x̂‖2 (4.45)

Both settings are identical up to the situation, when for a sample the precise class
has to be decided based on the anomaly score given by the AE: Often threshold
values are chosen to mark the border between normal data and anomalies (cf. the
challenges above), which in the case of uncontaminated normal training data can be
selected, for example, according to the “most abnormal” normal sample present in
the held out training data, while for potentially contaminated training data, other
approaches must be pursued [26, 11, 216]. However, from a non-methodological
point of view, the interpretation of OCC as an unsupervised method is arguable,
as Perera et al. [234] conclude that OCC should be considered “to be a supervised
learning problem”.

The output of an AD approach is typically either an anomaly score as illustrated
with the AE example above, which corresponds to the degree to which an instance
is to be considered anomalous, or an anomaly label as given for ML classification

36 CHAPTER 4. FOUNDATIONS

tasks, indicating whether a sample is detected as anomaly or not. A scoring based
approach allows to focus on the n most anomalous samples ordered by rank and
by this to choose n appropriately for the task and application, which for example is
useful for evaluation of fraudulent transactions by controlling or auditors. On the
other hand, abnormal scores raise the problem of choosing n or a score threshold
appropriately, as the AD system is to be deployed in practice. For anomaly labels,
the number of positives including true and false positives (which corresponds to the
n most anomalous samples in a scoring setting) has to be calibrated during training,
e.g. by hyper-parameter choices of the model. In between are models which are
classifiers but allow the evaluation of per-class scores, for example, by the decision
function of an SVM. With different output formulations, different evaluation metrics
are applicable.

4.5 Evaluation Metrics

In this section, first, the basic metrics for evaluating ML models quantitatively are in-
troduced. We then discuss the impact of skewed class label distributions on different
metrics, as they are commonly given for AD applications.

4.5.1 Basic Metrics

Models with an anomaly label as output, i.e. classification-based models, decide for
each instance on the predicted class. Therefore, all evaluation metrics1 commonly
used in supervised classification can be applied. The most basic differentiation that
is combined in most other metrics is the notion of positives (P) and negatives (N)
corresponding to both classes in a binary classification setting such as anomalies
and normal instances. For a predicted label, this notion expands to both aspects, the
annotated label and the predicted label, introducing True Positives (TP) for samples,
which are positive by both annotation and prediction, the False Positives (FP), which
are predicted positively but actually labeled negatively, True Negatives (TN) which
are predicted and labeled negatively, and False Negatives (FN) which are predicted
negatively but actually labeled positively. Thus, a perfect model has no FN and FP
samples. These terms are often summarized in a confusion matrix, a tabular view of
the counts for the four categories, marginalized by the predicted and actual class
distribution. From these counts, several other metrics can be derived.

Precision (Eq. 4.46) is given as how many of the positively predicted (TP + FP) in-
stances are correct. In case all samples are classified as negative, we set the precision
to 0. The recall (Eq. 4.47), also called True Positive Rate (TPR) or sensitivity, is defined
as the number of positives found in relation to all positives in the dataset. The False

1We use the term metric in this case not in the mathematical meaning of distance metric for a metric
space but in terms of a measure to compare two models quantitatively.

4.5. Evaluation Metrics 37

Positive Rate (FPR), given in Eq. 4.48, can be described as how many “false alarms”
are indicated by the model. TPR and FPR are commonly used evaluation metrics
for intrusion detection [86] as they indicate the two most important aspects: How
many true anomalies are found and need to be examined and how many incidents
raise an alarm. The F1 measure denotes the harmonic mean of precision and recall
by combining both aspects in one metric. In case of a recall and precision of 0, we
set F1 to 0. When anomaly score-based methods are used, the TP, FP, etc. statistics
are always given with respect to a threshold t such that for a model f (x) = ŷscore,
the set of instances predicted as an anomaly is given as S(t) := {(x, y) : f (x) ≥ t}.
Therefore, we denote, for example, TP with respect to t as TPt.

precision(t) =
|TPt|

|TPt|+ |FPt|
=
|S(t) ∩ P|
|S(t)| (4.46)

recall(t) = TPR(t) =
|TPt|
|P| =

|S(t) ∩ P|
|P| (4.47)

FPR(t) =
|FPt|

|FPt|+ |TNt|
=
|S(t) \ P|
|D \ P| (4.48)

F1(t) = 2 · precision(t) · recall(t)
precision(t) + recall(t)

=
|TPt|

|TPt|+ 1
2(|FPt|+ |FNt|)

(4.49)

From precision, recall and FPR, two evaluation metrics can be derived, which are
very common in anomaly detection and indicate the trade-off between false alarms
and missed anomalies. The Receiver Operating Characteristic (ROC) curve, given in
Eq. 4.50, opposes FPR on the x axis and TPR on the y axis in a curve ROC : (0, 1)→
(0, 1), while Precision-Recall (PR) curve, given in Eq. 4.51, opposes the recall TPR on
the x axis and precision on the y axis, which is typically implemented by increasing t
so that S(t) grows each time by one instance and calculating the respective statistics
each.

ROC(·) = {(FPR(t), TPR(t)) : t ∈ (−∞, ∞)} (4.50)
PR(·) = {(recall(t), precision(t)) : t ∈ (−∞, ∞)} (4.51)

ROC-AUC =
∫ 1

0
ROC(t)dt (4.52)

AP = ∑
t
(recall(t)− recall(t− 1)) precision(t) (4.53)

rmin = |{x ∈ D : score(x) ≥ min
f∈D|F

score(f)}| (4.54)

As PR and ROC are not metrics that result in a single score, for quantitative evalua-
tion, the Area Under the Curve (AUC) is reported. As for practical implementations
ROC and PR are only given at the threshold points of each sample, an interpolation
is required to draw a connected curve and to integrate over this curve to determine
the AUC. While for ROC this interpolation and therefore ROC-AUC (Eq. 4.52) is

38 CHAPTER 4. FOUNDATIONS

straightforward as the curve is increasing monotonically stepwise, the interpolation
for PR is more complicated as the precision does not necessarily change linearly
with the recall [282]. Linear approximation in this case gives overly optimistic per-
formance estimates [71]. As a single-value quantitative proxy, we use Average Pre-
cision (AP), given in Eq. 4.53, which is calculated by averaging the precision with
respect to the change in recall for each anomaly score t as a threshold. Finally, rmin
describes the number of samples included within the score of the least anomalous
sample of the anomaly class according to the anomaly-score (cf. Eq. 4.45) with D
being the complete dataset and D|F the subset of anomalous samples in the dataset.

4.5.2 Evaluation Metrics and Skewed Class Distributions

As discussed in Chapter 1, AD in the domain of transaction data typically deals
with very rare anomalous events, e.g., a ratio of 0.0003 between normal samples and
anomalies for SAP (see Table 5.1 for an overview). This property translates to highly
skewed class distributions when considering normal and non-normal as class labels,
which influence the focus and expressiveness of the evaluation metrics by different
means. In this section, we will discuss the consequences of this class imbalance on
the evaluation metrics and show their different focus for practical applications in
such an AD setting.

The F1 score calculation has the drawback that for a highly imbalanced class dis-
tribution very few instances with wrong class assignments have a high impact on the
score. Consider for example datasets with 1, 10, 100 and 1000 fraud cases and 10000

non-fraud each. In Fig. 4.1, the impact of 0 to 100 false positives is depicted for a
classifier judging all instances labeled fraud correctly with an increasing number of
false positives. The different curves correspond to the F1 score calculated for the dif-
ferent example datasets with a varying number of fraud samples: While for a larger
number of fraud cases (e.g., 1000) the influence of 100 false positives with regard to
the F1 score is negligible, for fewer fraud cases the score quickly deteriorates. In a
real-world application considering, for example, an auditor manually inspecting the
predicted fraud cases, however, a list of 110 transactions containing 10 actual fraud
cases is economically feasible, which is not reflected by the differences in score well.
The issues regarding the practicability of the scores become even more distinct if
one compares two classifiers: Classifier A correctly classifies all fraud cases, but has
100 false positive results and classifier B only predicts 2 of 10 fraud cases correctly
and has 10 false positives. Classifier A will yield an F1 score of 0.166, although cor-
rectly predicting all fraud cases. Classifier B surpasses the performance of classifier
A with an F1-score of 0.188 although most fraud cases are overlooked. These exam-
ples suggest that binary F1-score is not a perfect metric on its own when it comes to
an imbalanced fraud detection scenario, which is also supported by the findings of
Fourure et al., showing how biased evaluation protocols and the contamination rate,
i.e. the rate of anomalies in the test set, can artificially increase the F1-score [96].

4.5. Evaluation Metrics 39

0 20 40 60 80 100
#False positives

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e #Fraud: 1

#Fraud: 10
#Fraud: 100
#Fraud: 1000

Figure 4.1: Impact of class imbalance and false positives on (binary) F1 score. For a
very imbalanced dataset with 1 fraud sample and 10 000 normal samples,
the F1 score quickly deteriorates for few false positives (blue curve).

40 CHAPTER 4. FOUNDATIONS

As ROC judges a model’s output regarding the true positive rate and false posi-
tive rate for a variable threshold, it can be used to analyze the performance under
a variable number of instances to be considered, e.g. for an auditor: The user-
determined threshold decides how many instances are considered positive regard-
ing the model’s output. A perfect classifier will, by increasing the positive rate, only
introduce (more) true positives. However, an imperfect classifier will introduce more
false positives. Therefore, it can be considered as a trade-off between acquiring all
fraudulent instances and revising too many false alarms in the fraud detection appli-
cation scenario. Although ROC fits our evaluation setting well, for very imbalanced
class distributions as given in our SAP dataset, it is considered as “optimistic” [71],
especially when it comes to a very low number of instances in the minority class [40].

The PR curve is considered to be more suitable for highly imbalanced data [295,
228, 269]. In contrast to the ROC, the PR curve can be understood as a trade-off
between precision and recall. Since recall and true positive rate denote the same
aspect, the difference between both evaluation metrics is between the false positive
rate for ROC and the precision for PR.

precision =
|TP|

|TP|+ |FP| = 1− |FP|
|FP|+ |TP| (4.46)

FPR =
|FP|

|FP|+ |TN| (4.48)

Recalling and rearranging Eqs. (4.46) and (4.48), it becomes visible that both met-
rics are related and differ (for their application in ROC respectively PR) primarily
regarding the normalization by true negatives or true positives. This can explain the
“optimistic” behavior for ROC, since the number of true negatives in an imbalanced
fraud setting is by magnitudes larger than the number of true positives. In Fig. 4.2
a comparison between precision and false positive rate for a varying number of de-
tected fraud cases (TP) can be interpreted in two ways: On the one hand, FPR and
therefore ROC is invariant with respect to the class distribution [91]. This means
that ROC scores are comparable on different datasets (splits) with a varying propor-
tion of fraud, but have the drawback that false positives have little impact on the
score [291]. On the other hand, the observation from Fig. 4.1 also applies for the PR
curve, arguably overemphasizing the influence of the true positives and introducing
a dependency on the class label distribution. This makes reported PR performances
difficult to compare between different datasets or splits of the dataset with a varying
proportion of fraud.

As discussed in this section, all metrics have individual advantages and draw-
backs, and especially regarding class imbalance the question of which metric is most
suitable depends on the valuation of false positives versus false negatives, which
has to be rated individually according to the application: In an automated online
credit card fraud detection setting, the cost of unblocking small-scale transactions

4.6. Knowledge Discovery in Databases and Data Mining 41

0 20 40 60 80 100
#False positives

10 4

10 3

10 2

10 1

100

M
et

ric prec. (#Fraud: 1)
FPR (#Fraud: 1)
prec. (#Fraud: 10)
FPR (#Fraud: 10)
prec. (#Fraud: 100)
FPR (#Fraud: 100)
prec. (#Fraud: 1000)
FPR (#Fraud: 1000)

Figure 4.2: Impact of class imbalance (10 000 benign samples fixed, varying number
of fraud samples) and number of false positives on precision (prec.) and
FPR. The FPR curves are independent of the number of fraud samples
and thus are identical, while the PR curves depend on the number of
fraud samples in the dataset.

for falsely accused benign transactions will probably exceed the financial benefit of
detecting all fraud. For few high-value transactions or an offline audit of, e.g. ERP
transactions, the auditor will possibly prefer to inspect a feasible number of false
alarms in favor of detecting large-scale fraud with large financial impact.

4.6 Knowledge Discovery in Databases and Data Mining

KDD is a standardized multistep process that systematizes the discovery of knowl-
edge from data as characterized by Piatetsky-Shapiro [237]. This process defines
methodological steps as illustrated in Fig. 4.3, reaching from data to the distilled
knowledge, and can, in general, involve loop backs and several iterations [93].

In the following we will shortly introduce the different process steps of the KDD
process and bring the contributions of this thesis in line with the process steps overall
suggesting a practical implementation of AD for transaction data in the framework
of the standardized KDD process. Mapping our task to the overall process, data

42 CHAPTER 4. FOUNDATIONS

SelectionData
Knowledge

Preprocessing Data Mining Evaluation /
InterpretationTransformation

Figure 4.3: Overview over the KDD Process

refers to the transaction datasets from which useful knowledge in terms of previ-
ously unknown anomalies, such as fraudulent transactions, should be discovered.

After obtaining an understanding of the domain and data, the first step of the
KDD process, Selection, refers to the selection of the dataset or subset from which
knowledge should be discovered. For this thesis, we use several datasets that include
labels to evaluate our methodological contributions. In terms of the KDD process,
the knowledge which transactions are anomalous cannot be regarded as useful in
terms of novelty with regard to the application of, e.g. fraud detection, however,
allows the precise evaluation of the other KDD steps. Thus, to be precise, the poten-
tial application of our approaches to similar, unlabeled datasets has to be defined as
Selection step, which is not part of this thesis. However, the datasets used in this
thesis can be considered proxy datasets that precisely define the features and tables
to be considered in the application for the selection process.

The second step, Preprocessing, can also involve data cleaning and handling of
missing data. In this thesis, preprocessing decisions, for example, numerical scal-
ing, are evaluated in several experiments in Chapter 6. Other data imputation and
cleaning steps are dataset dependent and were not necessary for the datasets used
in our experiments. Transformation in the KDD process denotes feature selection and
projection for a task-dependent data view. While feature engineering in classical
terms is generally not applied for neural networks, Chapter 7 evaluates with repre-
sentation learning feature transformations. Hereby, data dimensionality reduction,
emphasis of structural similarity, feature discretization (Section 7.2.1), and feature
projections with PCA (Chapter 8) are evaluated.

Data Mining refers to specific methods for extracting knowledge from the data.
This is the process step that this thesis primarily focuses on with our methodolog-
ical contributions. Specifically, our research questions focus on the selection and
improvement of the most beneficial models and approaches for anomaly detection
in transaction data, which essentially outlines the choices to be made for the Data
Mining process step. The execution of this step typically results in extracted pat-
terns, predictions, or descriptions. The data, models, and results considered in the
explorative evaluation in Chapter 6 and Chapter 7 can be considered as the output
of the Data Mining step, as well as the prediction which transactions can be consid-
ered anomalous. Thus, the evaluation itself qualitatively and quantitatively can be
subsumed in the last process step, Evaluation / Interpretation which generally involves

4.6. Knowledge Discovery in Databases and Data Mining 43

visualization of the patterns and models or data with respect to the models and their
output. While the KDD process in practice finally makes use of the extracted knowl-
edge in application, e.g. by using the knowledge directly or reporting findings, our
evaluation primarily aims at answering our research questions. Thus, for a practical
implementation of the KDD process, the focus has to be shifted from the selection,
comparison, and improvement of approaches we focused on to a view on data and
sample level, i.e. reporting fraudulent transactions in contrast to comparing models
by their performance metric aggregated over dataset splits.

All in all, several results of this thesis can be mapped to respective steps in the
KDD process model and thus simplify the choices that must be made in each process
step for practical applications. To be precise, our evaluation regarding preprocessing
and data transformation reveal promising parameters and choices for the respective
KDD process steps and the ML methods and approaches we propose can be directly
applied in the Data Mining step as data mining algorithms as referred to by Fayyad
et al. [93].

44 CHAPTER 4. FOUNDATIONS

45

Chapter 5

Datasets

In this chapter, the datasets used for our experiments are described. We first fo-
cus on our main datasets, studied in several experiments, and then introduce the
benchmark datasets incorporated in individual experiments throughout this thesis.

5.1 Financial Fraud Datasets

One major domain where anomaly detection can be applied to transaction data is
the field of financial fraud detection. In this setting, transactions logs can often be
directly associated with financial transactions, i.e. the documentation of transfer
of money directly or indirectly, e.g. in form of goods. Although such transaction
logs are often mandatory by legal requirements and thus generated on a large scale,
only few datasets are publicly available. This can be explained by several aspects:
First, privacy issues might appear, since transaction data might contain sensitive
information that can be used to reconstruct personal information. Second, such
transaction logs can be related to business decisions and well-kept trade secrets for
which the associated entities have no interest in making publicly available. Third,
fraud cases are often not investigated on a per-data basis, thereby no labels are

Table 5.1: Main characteristics of the datasets.

Dataset Features Samples Benign Fraud Fraud-ratio Origin

PaySim 11 6 362 620 6 354 407 8 213 0.001 synth.
CCFraud 30 284 807 284 315 492 0.002 real (PCA)
IEEE-CIS 431 590 540 569 877 20 663 0.035 real
SAP train 52 54 677 54 677 0 0 synth.
SAP eval 52 19 714 19 696 18 0.0005 synth.
SAP test 52 19 716 19 710 6 0.0003 synth.

46 CHAPTER 5. DATASETS

obtained as a byproduct of auditing and controlling tasks, and companies in general
have no financial incentive to collect such fine-grained data in a targeted manner.
Nevertheless, some datasets have been collected and made publicly available.

The financial fraud datasets used in several experiments are summarized in Ta-
ble 5.1. The four datasets vary in size, from the smallest dataset, SAP, with 94 107
transactions in all three splits, to PaySim with 6 362 620 samples. Although the fraud
ratio of PaySim and CCFraud is of the same order of magnitude with 0.001 and
0.002, respectively, SAP contains a relatively smaller number of fraud cases with a
ratio of 0.0005 for the eval and 0.0003 for the test split. IEEE-CIS contains an order of
magnitude more fraud with a ratio of 0.035. The number of features varies between
11 (PaySim) and 431 (IEEE-CIS) features.

While the size and kind of features are different over the datasets, the anomalies
of all datasets can be considered as point or context anomalies, i.e. the detection
can be approached on per-transaction basis. Although PaySim and SAP are both
synthetic datasets, their characteristics are very different: While PaySim is a simple
dataset constructed by multi-agent simulation, the SAP dataset is constructed from
data exported and aggregated from a genuine SAP system, which was used by real
users participating in a business simulation game. Thereby the complexity of normal
and non-normal behavior varies highly as detailed in the following sections.

Both real datasets have been anonymized to varying degrees: While CCFraud is
obfuscated by PCA feature transformations, IEEE-CIS has been modified by disen-
tangling user information and aggregating and obfuscating several features, con-
sequently impeding the appropriate treatment of transaction context and features.
Therefore, we focus on PaySim and SAP for our generative experiments and other
experiments, where appropriate modeling of features and their dependencies is sub-
ject to research, as CCFraud and IEEE-CIS cannot be qualitatively evaluated in this
context.

In the following sections, the datasets are explained in more detail.

5.1.1 PaySim

The PaySim dataset is a synthetic dataset, which was created by Lopez-Rojas et al.
as part of their mobile money payment simulator, PaySim [190]. PaySim mimics
real mobile money transactions as they are frequently used in African countries by
applying a multi-agent based simulation. By the implementation of merchant, cus-
tomer, and bank logic within this simulation, the resulting dataset can approximate
a particular real dataset with regard to its statistical properties without introducing
any privacy issues evolving from real data.

In this simulation, agents are associated with different roles implementing their
respective behavior and they interact in this mobile money transaction simulation
logic, ultimately composing the transaction dataset. The following roles are involved
in this procedure:

5.1. Financial Fraud Datasets 47

Client is the main agent that initializes the transactions within the simulation. A
client can deposit, withdraw, and transfer money and has different parameters asso-
ciated with their specific customer profile. The behavior of each client is randomly
assigned following statistical distributions of the real dataset, e.g., regarding their
transaction type for a specific time, the transfer limits, and number of transactions
per day. Clients can send money to other clients, resulting in a transaction of type
TRANSFER.

Merchant are agents that the client can approach to buy something or request
any other service from, which is then paid within the simulation. This payment is
associated with the PAYMENT transaction type. In addition to payments, merchants
offer the transaction types CASH-IN / CASH-OUT that deposit or withdraw physical
money into or from the mobile money account of a client.

Bank is a specific role as a target for the DEBIT transaction. By this, money from
the mobile money service is sent to an actual bank account.

Fraudster is associated with a malicious client that tries to withdraw money from
accounts illicitly.

The PaySim dataset consists of 11 columns, specifying the hour the transaction is
performed (step), the type of transaction recorded (action), the amount of money in-
volved in the transaction (amount) and the origin (nameOrig) and destination (nameDest)
of the transaction with their associated balances before (oldBalanceOrig / oldBalanceDest)
and after (newBalanceOrig / newBalanceDest) the transaction. The dataset further in-
cludes a flag for unauthorized overdrafts (isUnauthorizedOverdraft) for which the
transaction is stopped and a rule-based flag for transactions involving more than
200 000 of the local currency, mostly hinting at fraudulent behavior (isFlaggedFraud).
In the PaySim dataset 6 362 620 transactions were recorded of which 6 354 407 (99.871%)
are benign and 8 213 (0.129%) are labeled as fraud.

5.1.2 CCFraud

The credit card fraud (CCFraud) dataset [70] is a real-world dataset consisting of
credit card transactions which were recorded in two days in September 2013. The
dataset has been anonymized by applying Principal Component Analysis (PCA) to
28 of the 30 features. Two features, time and amount, have not been preprocessed
through PCA and contain the number of seconds relatively to the start of the record-
ing and the amount of money involved in the credit card transaction. For the other
features which have been transformed by PCA, their original meaning remains un-
known. The distribution of the label, denoting whether a transaction is considered
fraudulent, is highly imbalanced: Next to 284 315 benign transactions, 492 are la-
beled as fraud, which means that 0.173% of the transactions are fraudulent.

48 CHAPTER 5. DATASETS

5.1.3 IEEE-CIS

The IEEE-CIS dataset contains real-world e-commerce payment transactions which
were provided by Vesta Corporation together with the IEEE Computational Intel-
ligence Society as part of a challenge. The dataset is composed of two parts, one
for training including labels and one unlabeled subset meant as a test dataset to be
predicted as part of the competition. The features are spread over two tables, iden-
tity, consisting of features regarding the identity of the account holder, and transac-
tion, consisting of features regarding the transaction. The meaning of most features
remains undisclosed for privacy and contract reasons. The identity table contains
information about the user’s device (e.g. browser and operating system version)
and network connection (e.g. IP address and Internet service provider). The trans-
action table contains relative time information from a given reference, the amount
of money issued for payment, information about the product and payment method,
address, as well as email domains, and several counting, matching, and timedelta
features including manually engineered features which are not explained in detail.
Both tables can be joint according to the transaction key and, thereby, considered as
one flat dataset. The dataset consists of 432 features for 590 540 labeled samples, of
which 569 877 are benign and 20 663 are labeled as fraud, leading to a fraud ratio of
3.5%.

5.1.4 SAP

The SAP dataset originates from an SAP R/3 ERP system and was extracted per
table with the SAP SE16 transaction, allowing to reconstruct transactions of various
levels of detail. Data within the SAP system were created by playing the business
(informatics) training game ERPSim. In this game participants adopt the different
roles within a manufacturing company including the purchasing of raw material,
production planning, production, sales, and logistics to virtually run a production
business. From simulated markets, customers and raw-material-vendors buy and
sell goods depending on the prices and supply and demand, whereas the partic-
ipants make business decisions on product variations, quantities, and prices. Ex-
amples are to decide which ingredients a product is composed of, which product is
produced in which quantity, how much the product costs for different sales markets,
and to which warehouse the stock products are transported.

The dataset focuses on the purchase-to-pay process (P2P) of this make-to-stock
business process and is composed of two separate game runs, each representing
one fiscal year. The first one consists of 54 677 benign transactions without explicit
modeling of fraudulent behavior. The second run consists of 39 430 transactions
with 19 696 benign and 18 fraud transactions for training and 19 710 benign 6 fraud
transactions in the test set.

5.1. Financial Fraud Datasets 49

The fraud cases can be assigned to three different fraud schemes according to
the Association of Certified Fraud Examiners’ report to the nations (ACFE, 2020):
Larceny, corporate injury, and invoice kickback. Larceny fraud can also be dis-
tinguished between legit manipulated orders (Larceny 1) and fraudulent purchase
orders created manually (Larceny 2).

Larceny 1 is built on a legitimate purchase request, which is turned into a fraud by
creating a purchase order with a manually increased quantity of the item. For receipt
of receiving goods, the number is changed to the initial legitimate value to avoid a
recording of the suspicious quantity. The physical leftovers could then be secretly
taken away. The Larceny 1 fraud cases have to be considered partially unsuccessful,
since a rule-based check in the ERP system stopped this suspicious process at invoice
recording, the associated transactions however remain in the dataset and can be
considered anomalous.

Larceny 2 on the other hand, involves a manual purchase order, which was reg-
ularly recorded and booked and fraudulently taken away. The larceny could be
recognized during stocktaking at the end of the fiscal year and might be mapped to
this irregular purchase order, possibly revealing the fraud scheme, however, since the
process itself has no obvious flaws, the transactions and payment was not stopped
by the ERP system and can thus be considered successful.

Corporate injury is a destructive fraud case possibly caused by a leaving employee
who ordered such a large quantity of goods that the business would suffer significant
financial damage. This was achieved by changing the quantity in several purchase
orders.

Invoice kickback is a cooperative fraud scheme between a raw material supplier
and a purchasing agent. For the purchase, the employee involved in the fraud buys
goods such as raw materials for a deliberately increased price or increases the an-
nounced prices while creating a purchase order. The benefiting supplier then re-
wards the employee with a kickback.

The different fraud scenarios are divided between evaluation and test splits: Larceny
2 (4 cases) and corporate injury (14 cases) can be found in the evaluation set, while
larceny 1 (2 cases) and invoice kickback fraud (4 cases) are only present in the test
set. Thus, a fraud detection approach must be generalized to find previously unseen
fraud cases.

50 CHAPTER 5. DATASETS

5.2 Benchmark Datasets

In this section, we will shortly introduce the additional benchmark datasets we used
in selected sections (see below) of this thesis.

5.2.1 Census Dataset

The Census dataset is a benchmark dataset from the UCI Machine Learning Repos-
itory [77] used in our generative modeling experiments in Section 6.2. It is a multi-
variate dataset containing 48 842 instances that were extracted from the 1994 Census
database. The task typically associated with this dataset is to predict whether a
person earns more than $50 000 per year.

The dataset contains six numerical features including, for example, age, capital-
gain and loss or work hours per week, as well as 8 categorical features including
workclass, education or native country.

5.2.2 Synthetic Function Learning Datasets

For our iNALU experiments in Section 6.1, we created three synthetic datasets with
varying complexity to evaluate the ability to learn arithmetic tasks and thus numeric
dependencies.

The minimal arithmetic dataset consists of two input features a, b, and one out-
put feature y for which an operation y = a ◦ b with ◦ ∈ {+,−×,÷} is performed.
Therefore, a and b are drawn from a distribution P with P ∈ {U ,N , E} referring to
uniform (U), truncated-normal (N), and exponential (E) families. As the synthetic
function learning datasets are designed to evaluate extrapolation performance, the
training and test splits for each dataset are drawn from two different parametriza-
tions of each probability distribution P indicated as P int and Pext for interpolation
and extrapolation. Subdatasets with 64 000 samples per operation and parametriza-
tions were created for the following parameters:

• E int(0.2), Eext(0.5)

• E int(0.8), Eext(0.5)

• N int(−2, 4), N ext(8, 10)

• N int(−3, 3), N ext(8, 10)

• N int(−4, 2), N ext(8, 10)

• U int(−1, 1), U ext(−10,−5)

• U int(−5, 5), U ext(−10,−5)

For the input magnitude dataset, a and b were drawn from a uniform random
variable symmetrically around 0 from U (min, max) = U (−10−2, 10−2) to U (−104, 104).
For each configuration, the extrapolation test set is drawn from U (max, 2 ·max).

5.2. Benchmark Datasets 51

The simple arithmetic dataset is constructed similarly to the minimal arithmetic
dataset with the difference that in addition to a and b each sample consists of 8

additional variables sampled from the same distribution that do not contribute to y
i.e., which have to be ignored by the model.

Finally, for the simple function learning dataset, a and b are not explicit features
of each sample. Instead, each sample consists of 100 features, which are mutually
exclusively summed to a, b or ignored for the calculation of y in a random but fixed
mapping ma, mb ∈ {0, 1}100. The output y is then again calculated as

y = a ◦ b = max ◦mbx, ◦ ∈ {+,−×,÷}.

5.2.3 Windows Audit Log Dataset

In addition to the application domain of financial fraud detection, computer secu-
rity is another domain where data considered as transaction logs occur frequently.
Broadening the term transactions, other log data in computer systems can also be
collected for anomaly detection. A typical source where various log data are ac-
cumulated is the operating system log, on UNIX based systems typically a hetero-
geneous collection of log files in /var/log for different purposes, originating from
different services and applications. Logs generally contain data in various degrees
of structuring and characteristics, from plain text only structured by newlines over
deeply nested and linked entries to standardized key sets or headers in tabular struc-
ture. For Microsoft Windows operating systems, a large proportion of logs is unified
in Windows Audit Logs. Berlin et al. [29] make a dataset available for detecting
malware on Windows systems, which in this thesis is used for experiments on rep-
resentation learning in Section 7.1 and unifies audit log events in nested JavaScript
Object Notation (JSON) files. The dataset consists of 14 679 4-minute recordings of
a system during the execution of malware in CuckooBox and 11 123 recordings dur-
ing normal system execution. The JSON files contain primarily categorical features
such as process ID and name, and the associated audit log events (e.g. execution)
with respective features such as filename, timestamp, event ID, action or target. The
Windows Audit Log dataset is used in our representation learning experiments in
Section 7.1.

5.2.4 Credit Payment

As a credit fraud benchmark dataset with a dedicated focus on numerical depen-
dencies, for our experiments in Section 8.1 we created the synthetic credit payment
dataset referred to as Credit, which reflects Peer-to-Peer credit fraud by incorrect in-
terest calculation.

52 CHAPTER 5. DATASETS

Each data point contains the following attributes: credit sum in month x (CSx), in-
terest rate (IR), payment rate (PR), credit sum in month x + 1 (CSx+1), label. The
mathematical relationship between the attributes is defined as follows:

CSx+1 = CSx +
CSx · IR

12
− λ · PR (5.1)

With a probability of 99% the credit sum is correctly calculated (λ = 1) according
to Eq. 5.1, but with a probability of 1% we simulate a fraudulent calculation of
the remaining credit only by reducing the new credit sum by 95% of the paid rate
(λ = 0.95). Each instance contains the columns CSx+1, CSx, IR, PR and the label
isFraud. The features are drawn randomly from a uniform probability distribution
(CSx ∼ U (0, 10 000), IRx ∼ U (0, 0.5), PRx ∼ U (0, 5 000)) with the constraint that
the credit is not overpaid, i.e. CSx+1 ≥ 0. In contrast to PaySim, fraudulent and
benign transactions are modeled after the same probability distributions (or user
profiles), which means, the machine learning model has to capture the mathematical
relationship to predict correctly if a transaction is fraudulent. The dataset consists
of 100 000 instances having 1033 fraudulent and 98 967 benign transactions.

53

Chapter 6

Modeling of Distributions and
Dependencies for Transaction Data

Neural networks have achieved great success in various areas of machine learning
applications. Different network structures have proven to be suitable for different
tasks. For example, convolutional neural networks are well suited for image pro-
cessing [176, 292, 169], while recurrent neural networks are well suited for handling
sequential data [139, 119, 60]. For transaction data, neural networks face challenges
such as processing categorical and numerical values, modeling distributions of var-
ious kinds, and recognizing specific mathematical relations.

In this section, we will therefore evaluate neural approaches to model distribu-
tions and dependencies present in various datasets to learn the characteristics of
transaction data. This, on the one hand, allows the generation of realistic synthetic
data. On the other hand, the precise model of normal transactions can be leveraged
for anomaly detection, as evaluated in Chapter 8.

In the following sections, we first focus on numerical dependencies and propose
an improved neural architecture to model arithmetic and numeric dependencies;
second we adapt two generative models, propose an evaluation protocol, and eval-
uate the ability of both approaches to model distributions and dependencies from a
quantitative and qualitative perspective.

6.1 iNALU: Modeling and Learning Numeric Dependen-
cies

The presence of mathematical relationships between features is a well-known fact in
many financial tasks [32, 190]. Other examples can be found in the intrusion detec-
tion domain. For example, some intrusion detection methods count the number of
certain events [104] or consider some restrictions, such as network packets having a
minimum and maximum number of transmitted bytes [254]. A model which is able

54 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

to capture these relationships explicitly in an automated way is therefore very desir-
able and can be incorporated in various machine learning tasks including anomaly
detection in transaction data.

Problem Although neural networks are successfully applied in complex machine
learning tasks, single neurons often face difficulties in calculating basic mathematical
operations [317]. This fact can be explained by inspecting the structure of neurons
in detail. Simplifying Eq. 4.2 of a neural network layer introduced in Section 4.2,
the equation for a single neuron is given in Eq. 6.1: The output of a neuron i is the
weighted sum of all input signals, an optional bias b, and an activation function

outputi = act

((n

∑
j=1

xj · wj
)
+ bi

)
. (6.1)

The neuron i in Equation 6.1 receives n input signals xj which are multiplied by
the weights wj. The parameter bi represents an optional bias and act(·) is an ar-
bitrary activation function like the identity for a linear or sigmoid for a non-linear
neuron. This allows neurons to assign different weights to different input features.
Furthermore, linear neurons are able to add (or subtract) different inputs by setting
their corresponding weights to 1 (or −1), see tasks a) and b) in Figure 6.1. How-
ever, activation functions, weights, and bias allow neurons only to approximate the
result of multiplications and divisions in their training range, since the output is
the weighted sum of all inputs. Consequently, they cannot solve multiplication and
division tasks for values outside the training range (see tasks c) and d) in Figure 6.1).

Figure 6.1: Standard mathematical tasks.

Trask et al. [317] show empirically that artificial neurons especially have difficul-
ties with extrapolation of mathematical operations and present the Neural Arithmetic
Logic Unit (NALU) to address this problem. However, the NALU is only able to cal-
culate non-negative results for multiplication and division by design. Madsen and
Johansen [198] further show that the NALU is unable to learn division reliably and
often fails to converge to the desired weights.

Objective Inspired by the NALU, we want to improve the architecture to address
the limitations mentioned above. Our focus lies on processing negative values and
improving extrapolation by forcing the internal weights to discrete values.

6.1. iNALU: Modeling and Learning Numeric Dependencies 55

Contribution In this section, we propose iNALU as an improvement to the NALU
architecture [317]. Our proposed architecture improves stability, enables the net-
work to calculate with negative and positive inputs, and improves the precision of
arithmetic tasks in general. Therefore, we change several technical aspects of the
original NALU. To be precise, we add another path to allow multiplication and di-
vision with mixed-signed inputs. Furthermore, we propose an input-independent
implementation of the gate, switching between the summative and multiplicative
paths. Based on empirical observations, we add regularization to the training pro-
cedure to prevent approximation of the results due to unwanted combinations of
mathematical operations. Additionally, a maximum function for the multiplicative
path is introduced to avoid too large values (infinity) for deep networks of larger
scale. We experimentally evaluate the improved architecture in various settings:
Minimal arithmetic tasks, one-layer calculations, where among others the relevant
inputs have to be recognized, and simple function learning where a combination
between operations has to be learned in two layers.

Parts of this section have been published as Schlör, D., Ring, M., and Hotho, A.
(2020a). iNALU: Improved neural arithmetic logic unit. Frontiers in Artificial Intelli-
gence, 3:71 [276]. The iNALU code is available on github1.

6.1.1 Improved Neural Arithmetic Logic Unit

In this section, we first describe the Neural Arithmetic Logic Unit and discuss prop-
erties and challenges. We then introduce iNALU, a new model variant, to address
these limitations.

Neural Arithmetic Logic Unit

The NALU as proposed by Trask et al. [317] consists of a multiplicative and a sum-
mative path, which can be seen as a linear layer with a weight matrix constrained
to [−1, 1]. Weights W are constructed as point-wise product between a matrix Ŵ
with activations tanh and a matrix M̂ with sigmoid (σ) activations.

W = tanh(Ŵ)� σ(M̂) (6.2)

By matrix multiplication of inputs x and weights W, the output values stay within
the magnitude of the input values (since −1 ≤ Wi,j ≤ 1) and result in the summa-
tion for values of Wi,j = 1 and subtraction for values of Wi,j = −1. By balancing
the weights between {−1, 0, 1} any function composed of adding, subtracting, and
ignoring inputs can be learned. This summative path a is defined in Equation 6.3.

a = xW (6.3)

1https://github.com/daschloer/inalu

https://github.com/daschloer/inalu

56 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

To multiply or divide, this calculation is performed in log-space (see Equation 6.4).
The NALU encounters the problem of calculating log(x) for x ≤ 0 by restricting the
calculation to absolute input values and adding a small constant value ε.

m = exp (log(|x|+ ε)W) (6.4)

A gate is used to decide between the summative and the multiplicative path de-
pending on the input vector.

g = σ(xG) (6.5)

Since the gate weights G are multiplied by the inputs x, each gate dimension
maps to an input dimension and contains the corresponding weight to which the
input should contribute to the decision between both arithmetic paths.

The output is obtained by adding the gated summative (see Equation 6.3) and
multiplicative (see Equation 6.4) paths.

NALUo: ynalu = g · a + (1− g) ·m (6.6)

The NALU model can be finally implemented in two ways. One can use either
a weight vector G and a scalar gate g, or a weight matrix G and a gate vector g.
Tasks for which the selection of the operation is different for each output or for
which it depends on input values might benefit from the gate matrix. However,
this introduces additional parameters that, for many tasks, are unnecessary. In our
experiments, we used both vector-based NALU and a NALU with matrix-based
gating for comparison, which we refer to as NALU (v) and NALU (m).

6.1.2 Limitations

Some of the design decisions for the NALU, however, result in limitations that we
want to address in the following section.

Exploding Intermediate Results

In our experiments, we observe that training often fails due to exploding intermedi-
ate results, especially when stacking NALUs to deeper networks and having many
input and output variables. For example, consider a model consisting of four NALU
layers with four input and output neurons each and a simple summation task. As-
suming the same magnitude for all input dimensions, the first layer could (depend-
ing on initialization) calculate x4 for each output dimension, while the subsequent
layer could calculate (x4)4, eventually leading to x4l

for layer l. Therefore, the cal-
culation can exceed the valid numeric range already in the forward pass, which
ultimately causes the training to fail. As another example, in a network with three
NALU layers in an MNIST classification downstream task, the NALU models failed
after the first training steps (resulting in NaNs).

6.1. iNALU: Modeling and Learning Numeric Dependencies 57

Multiplication / Division with Negative Result

The NALU by design is not capable of multiplying or dividing values with a neg-
ative result. In the multiplicative path, the input values are represented by their
absolute value to guarantee a real-valued calculation in log space. Therefore, learn-
ing multiplication for mixed signed data with a result y < 0 fails. Since the NALU is
expected to learn either multiplication / division or summation / subtraction in each
layer, sign(y) is clearly determined in the multiplicative case by the number of neg-
ative multiplicands being even or odd. Since input dimensions can be deactivated
for Wi,j = 0, the sign cannot be inferred counting negative input variables.

Mixed Sign Gating

Despite the fact that the summative path is capable of dealing with mixed input
signs, the construction of the gating mechanism leads to problems. If the input val-
ues are constantly positive or constantly negative, Equation 6.5 leads to the desired
gating behavior. However, if the input values mix negative and positive values, σ

and thus the gate is dependent of the sign since G cannot fit the designated gate
state systematically correctly.

Initialization Sensitivity

We observed that the NALU architecture is very prone to non-optimal initializations,
which can lead to vanishing gradients or optimization into undesired local optima.
In general, finding the optimal initialization is difficult, since it depends on the
operation and the input distribution, but in a real-world scenario, both are unknown.

Leaky Gates

Another challenge we observe are variables not tied near their boundaries. Gener-
ally, in the NALU design, the variables W and g are intended to reach their bound-
aries of [−1, 1] and [0, 1] for maximum precision. However, during training and
for interpolation, an approximation of the intended calculation, for example having
gates trained to g = 0.5 with a specific configuration of W, might represent a lo-
cal optimum. For extrapolation, such a model fails by large margin. We suggest
regularizing the trained variables to avoid this behavior.

58 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

matmul

log matmul min expmax

+

1-x

tanh

tanh

sig

sig

tanh

tanh

sig

sig

abs

1-x

+sign ∏

sig

Figure 6.2: Architecture of the improved Neural Arithmetic Logic Unit (iNALU).

6.1.3 Technical Adaptations

This section describes the improvements we incorporate into our iNALU model to
address the aforementioned challenges. Figure 6.2 summarizes the complete model
architecture. In the following, we discuss each improvement and extension in detail.

Independent Weights

The summative and multiplicative paths share their weights Ŵ and M̂ in the origi-
nal NALU model. We propose using separate weights for each path for two reasons:
First, the model can optimize W for the multiplicative and summative path without
interfering with the other path. For example, given a setting with inputs a, b < −1
and the operation a× b, the result would be a positive number greater than 1 and
the optimal parameter setting would be Wa = Wb = 1 and g = 0. However, the only
way for the summative path (see Equation 6.3) to generate positive results is to force
the weights Wa and Wb towards −1. In this case, the summative and multiplicative
paths force the weights into opposite directions. Using separate weights, the model
can learn optimal weights for both paths and select the correct path using the gate.
Second, consider that the multiplicative path yields large results, whereas the sum-
mative path represents the correct solution but yields relatively small results. In that
case, the multiplicative path influences the results even if the sigmoid gate is almost
closed. For example, in a setting with inputs a, b, c > 0 with the desired result a + b,
the summative path yields the correct solution, and the optimal weight setting is
Wa = Wb = 1, Wc = 0, and g = 1. In that case, W may contain very small weights
to omit the input c. However, small negative weights for Wc (e.g. −1e− 5) lead to
the situation that the multiplicative path divides the inputs a and b by values close

6.1. iNALU: Modeling and Learning Numeric Dependencies 59

to 0, which results in large numbers. Consequently, the multiplicative path influ-
ences the results even if the gate (see Equation 6.5) is almost closed. In this case, the
model with independent weights can optimize Wm to smaller values to mitigate the
influence caused by the leaky gate. Our modifications are depicted in Fig. 6.2 and
summarized in the following equations.

Wa = tanh(Ŵa)� σ(M̂a) (6.7)

Wm = tanh(Ŵm)� σ(M̂m) (6.8)
a = xWa (6.9)

m = exp (log(|x|+ ε)Wm) (6.10)

Weight and Gradient Clipping

To address the challenge of exploding intermediate results in a multilayer setting,
we improve the model by clipping the exploding weights in the back-transformation
from log-space (see Equation 6.11). Further, we avoid imprecise calculations by in-
corporating ε and ω only if x values caused exploding intermediate results.

m = exp
(

min
(

log (max(|x|, ε))Wm, ω
))

(6.11)

This kind of weight clipping is a simple practical solution to improve the stability
of deep iNALU networks, which has, for example, been successfully applied in
Wasserstein Generative Adversarial Networks [17]. The original NALU architecture
did not address this problem causing practical stability issues. To validate this, we
incorporated three NALU layers in a MNIST classification downstream task. Our
proposed clipping mechanism resulted in a successful training that solved the task
very well with an accuracy of 0.94 after 64000 steps, whereas the original NALU fails
producing NaNs.

This shows the effectiveness of our proposed improvement, albeit more sophis-
ticated solutions might be an interesting topic of future work to avoid vanishing
gradients for clipped neurons. Further, we apply gradient clipping to avoid stability
problems due to large gradients, which can occur when input values are close to
zero. We set ε to 10−7 and ω to 20.

Sign Correction

The NALU cell by design is not capable of multiplying or dividing values with a
negative result. Therefore, NALU fails in calculating the multiplication of mixed
signed data. Considering the sign within the log space transformation is not triv-
ial since log(x) is not defined for x < 0 in R. Instead, inferring the correct sign

60 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

post-hoc is a more feasible solution, which follows the human intuition of multiply-
ing or dividing numbers with mixed signs. However, multiplying over the sign (x)
vector does not provide a universal solution, since some input dimensions may be
deactivated (Wi,j = 0).

We propose a solution by taking into account the sign of only the relevant input
values (that is, all Wi,j 6= 0).

msm1 = sign(x)� |Wm| (6.12)
msm2 = 1− |Wm| (6.13)
msm = msm1 + msm2 (6.14)
msv = ∏

i
msmij (6.15)

iNALUs: ynalu = g · a + (1− g) ·m�msv (6.16)

The sign correction is independent of the operation in the multiplicative path
and has to be applied for multiplication and division. Therefore, we use the abso-
lute value of the weight matrix Wm to identify relevant and irrelevant input values.
First, the sign function is applied to the input vector x, which is then multiplied
element-wise with the absolute value of the weight matrix Wm, leading to +1 for
positive relevant inputs, -1 for negative relevant inputs and 0 for irrelevant inputs
(see Equation 6.12). The multiplication of all row elements (input dimensions) per
column of msm1 leads to 0, if any input dimension is irrelevant (Wi,j = 0). To
avoid this, we represent all irrelevant inputs as +1, since +1 does not influence the
result of a multiplication. We achieve this by introducing a second matrix msm2 (see
Equation 6.13) which is +1 for irrelevant inputs and 0 for relevant inputs and add
msm1 and msm2. Finally, we infer the sign vector containing the sign of the mul-
tiplicative path for each output dimension (see Equation 6.15) by multiplying over
each column of msm. This sign represents the correct solution if W is discrete, i.e.
Wi,j ∈ {−1, 0, 1}. Discrete weights are a desired property [317] to achieve generaliza-
tion and interpretability and ensure that msm is also discrete, i.e. msmi,j ∈ {−1, 1}.
By introducing regularization (see Section 6.1.3), we force the model to find dis-
crete weights W. Implementing both improvements enables the model to correctly
calculate inputs with mixed signs for the multiplicative path.

Regularization

In general, having discrete values for W and g is often crucial for a model to gener-
alize and learn a calculation correctly rather than approximating the solution. This
becomes even more important for the sign-corrected multiplication. We therefore
propose regularizing the weights such that Ŵ, M̂, and G do not contain values near
zero by introducing a piecewise linear regularization term (see Equation 6.17) which
adds to the loss until the weight has reached a discretization threshold t. We found
t = 20 suitable since σ(−20) < 10−9 and 1− tanh(20) < 10−17.

6.1. iNALU: Modeling and Learning Numeric Dependencies 61

30 20 10 0 10 20 30
w

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
g(

w
)

 w, m = 0.3
 w 0.167

 w, m = 10.0
 w 1.000

Figure 6.3: Regularization approach: Weights 0 < ŵ, m̂ < 20 are pushed towards
t = 20 by Lreg, while weights −20 < ŵ, m̂ < 0 are pushed towards −20
causing discrete values {−1, 0, 1} for w = tanh(ŵ) · σ(m̂).

Lreg(w) =
1
t

max(min(−w, w) + t, 0) (6.17)

For example, for weights −t < ŵ, m̂ < t, e.g. ŵ = m̂ = 0.3, applying Equation 6.2
results in w = tanh(ŵ) · σ(m̂) ≈ 0.167. This means that the corresponding input
x is scaled down for the calculation of the additive or multiplicative path as, for
example, a = x · w = 0.167x < x in this one-dimensional example. For a higher
dimensional case, matrix multiplication (e.g. a = xWa for the additive path) sums
over scaled inputs instead of a summation (w = 1) or subtraction (w = −1) of
the relevant inputs (σ(m̂) = 1) with discrete weights w. Although calculating with
scaled inputs might result in suitable approximations of the underlying training
data, these solutions usually fail to generalize the function, and thus to extrapolate.
By incorporating regularization loss, the model has a small gradient forcing the
weights ŵ and m̂ towards −t and t, respectively. Therefore, the model is penalized
for (local) approximations with values −t < ŵ, m̂ < t pushing tanh(ŵ) towards 1 or
−1 and σ(m̂) towards 0 or 1 as illustrated in Fig. 6.3.

Note that regularization can cause gradient directions contradicting the gradient
direction of the loss without regularization depending on the initialization. We try

62 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

to mitigate this problem by incorporating regularization only after several training
steps, when the loss is below a threshold (see Section 6.1.4 for more details).

In addition, regularization is especially useful to improve extrapolation perfor-
mance. For example, we evaluate regularization in the Simple Function Learning
Task (see Section 6.1.9) setup for a summation task (i.e., an overdetermined task
where an optimal and generalizing solution can be found even for −1 < Wi,j <
1). After 10 epochs without regularization, we observed an interpolation loss of
5.95 · 10−4 and an extrapolation loss of 4.46 · 1011. The model has found a suitable
approximation for the training range but failed to generalize. Introducing regular-
ization after the 10th epoch and evaluating after 15 epochs we reach an interpolation
loss of 2.2 · 10−13 and an extrapolation loss of 2.2 · 10−11, whereas without regular-
ization we just improve the interpolation loss (8.30 · 10−5) and the extrapolation loss
even impairs (8.76 · 1014).

Reinitialization

Since NALU does not recover well from local optima on its own [198], we suggest
a reinitialization strategy. This strategy evaluates the loss for each m-th epoch and
randomly reinitializes all weights if the loss did not improve for the last n steps and
if the loss is greater than a predefined threshold (see Section 6.1.4).

Independent Gating

In the original NALU model the gate that decides between the multiplicative and the
summative path is calculated by multiplying the input vector and the gate weight
matrix G (see Equation 6.5). While this can be beneficial if the decision between
operations is encoded in an op-code-like fashion, in many tasks, the decision which
operation path to choose is not depending on the input values but instead fixed
for the task, e.g. typical spreadsheet tasks like calculating the sum or product of
different columns.

For this case, we propose a model, where the scalar gate is replaced by a vector
that is, in contrast to the original NALU model, independent from the input (see
Equation 6.18). Thereby, the gate weights are indirectly optimized through back-
propagation during training of the network to represent the best-fitting operation,
reminiscent of training bias in a linear layer.

g = σ(G) (6.18)

For example, consider a NALU network with one layer, the operation + and the
inputs x1 = (2, 2) and x2 = −x1 = (−2,−2) resulting in the calculations 2 + 2 = 4
and −2 + (−2) = −4. For the original NALU the function y = σ(xG) · a + (1−
σ(xG)) ·m has to be optimized, i.e. a G has to be found which holds σ(xG)→ 1 for
all x to choose the correct operation. Both inputs x1 and x2 must be calculated with

6.1. iNALU: Modeling and Learning Numeric Dependencies 63

the same operation +, therefore, for a suitable G, σ(x1G) = σ(x2G) ⇔ σ(x1G) =
σ(−x1G) must hold. Since G = 0 is the only solution leading to σ(xG) = σ(0) = 0.5,
there is no valid solution satisfying both constraints. With independent gating, the
iNALU can optimize σ(G) → 1 up to arbitrary precision and, therefore, learn the
function correctly.

Furthermore, choosing a vector over a scalar enables our model to select the opera-
tion for each output independently, introducing the ability to calculate, for example,
y1 = x1 + x2, y2 = x1 · x2 for an input x = (x1, x2) simultaneously.

6.1.4 Design of Experiments

In this section, we perform an experimental evaluation of the proposed iNALU
model to analyze its basic abilities to solve mathematical tasks compared to the
original NALU. To be precise, we compare two NALU models, NALU (v) with a
gate vector G, NALU (m) with gate matrix G with two iNALU models, iNALU
(sw) with shared weights between the additive and multiplicative path, and iNALU
(iw) with independent weights for each path as proposed in our Independent Weights
adaptation (cf. Section 6.1.3). Some technical adaptations such as the sign correc-
tion or independent gating explicitly remedy deficient design choices of the original
NALU preventing correct calculation. Therefore, we refrain from reporting their in-
dividual contribution as their expectable outcomes are confirmed such as erroneous
calculation of mixed signed multiplications, incoherent calculations for input de-
pendent gating, or increased imprecision without regularization enforcing discrete,
non-leaking weights. In contrast, the benefit of independent weights between mul-
tiplicative and additive paths (experiments 1-3 and 5) as well as (re)initialization
(experiment 4) are evaluated, as the outcome of these experiments offers interesting
insights into constructing and applying our architecture in different tasks of varying
complexity examining the following research questions:

Experiment 1 examines the research question, how well each model performs in
its minimal setup for different input distributions, i.e. one layer with two input and
one output neurons. We show that the iNALU outperforms the NALU and reaches
very low error rates for almost all distributions.

In experiment 2 we evaluate how well the models perform on different magnitudes
of input data. The results show that the iNALU models can reach high precision for
data of different magnitude, although the precision for multiplication impairs with
increasing magnitude of input data.

Experiment 3 examines the ability of each model to ignore input dimensions. We
show that the iNALU is capable of learning to ignore input dimensions well, whereas
the original NALU fails for most operations and distributions.

With experiment 4 we compare different initialization strategies. The parameter
study shows that initialization has a large impact on the stability of the network. We
finally identify the most suitable parameter configuration for more complex tasks.

64 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

Finally, experiment 5 examines the performance of NALU and iNALU models
for a function learning task involving two arithmetic operations per function using
architectures with two layers and 100 input dimensions. We show that the iNALU
models outperform both NALU models by a large margin and yield a very high
precision for all operations except division.

Prerequisites

This section first describes the general commonalities of all experiments.

Datasets For all experiments, we evaluate on an interpolation task as well as an
extrapolation task. For the interpolation task, the training and evaluation datasets
are drawn from the same distribution. For the extrapolation task, the evaluation
dataset is drawn from a distribution with a different value range to evaluate the
ability to generalize. Each dataset contains N = 64 000 samples.

Tasks For our experiments, we focus on mathematical operations since these are
the building blocks of more complex tasks. All tasks involve calculating an arith-
metic operation � ∈ {+,−,×,÷} on input and/or hidden variables a and b by
y = a � b. Note that Trask et al. introduce additional operations such as iden-
tity, square, and the square-root but since these operation are special cases of the
basic operations, their learning performance is closely correlated with the perfor-
mance on the basic operations and therefore omitted for the sake of clarity. The
input variables for all experiments are sampled randomly from a distribution P
with a parameterization λ, which are defined in the following sections in more de-
tail. Note that for P = N the normal distribution for our experiments is truncated
to λ = [a, b] = [µ− 3σ, µ + 3σ] (containing ≈ 99, 7% probability mass) to ensure that
the extrapolation task is performed outside of the test distribution range. For the
exponential distribution (P = E) the extrapolation task involves no extrapolation in
a literal sense but examines if generalization can be achieved for different values of
λ.

Evaluation In contrast to the experiments by Trask et al., we choose a different
evaluation strategy: They reported the error for each operation relatively in compar-
ison to a randomly initialized network prior to training. Since the performance of
the untrained network is constantly bad, the relative performance reported can be
used to decide how well each architecture performs rank-wise, but it cannot be used
to infer, to which extent the calculated result differs from the expected result. In-
stead, we use a more intuitive approach for evaluation and report the mean squared
error (MSE) between the calculated and expected results on the complete evaluation

6.1. iNALU: Modeling and Learning Numeric Dependencies 65

datasets. For all experiments, we report results for extrapolation, since this is the
more difficult task.

MSE(ypred, yreal) :=
1
N

N

∑
i
(ypred

i − yreal
i)2 (6.19)

The MSE comes with another advantage. Combined with a predefined threshold,
the MSE can be used to assess if the model reaches the necessary precision [198].
If not stated otherwise, we understand an MSE ≤ 10−4 as successful training. We
repeat each experiment ten times with different random seeds. This procedure ex-
amines whether the performance is stable or how much it scatters.

Training We use the Adam optimizer [165] in mini-batch training with a learning
rate of 0.001 and a batch size of 64. Training is carried out for 100 epochs using
the MSE as loss. Clipping, regularization, and random reinitialization as described
in Section 6.1.3 are implemented. Regularization is activated after 10 epochs if the
training loss L < 1. Reinitialization is applied each 10th epoch if the loss has not im-
proved over m = 10 000 steps. This means that during training, reinitialization can
occur up to nine times. Note that this method could lead to incompletely trained
models if a reinitialization occurs late during training in favor of a fair model com-
parison.

6.1.5 Experiment 1 - Minimal Arithmetic Task

Experiment 1 constructs the most minimalistic task where the model has two in-
puts and one output and analyzes the influence of the input value distribution by
sampling a and b from uniform, truncated normal, and exponentially distributed
random variables in various ranges.

Results The extrapolation results of this experiment are presented in Figure 6.4.
In general, our iNALU models perform substantially better in all operations. With

the exception of exponentially distributed data for λ = 0.2, for summation all and
for subtraction almost all models learned the task successfully. For multiplication,
iNALU with independent weights performs best with very good precision, with
the exception of E(0.2) and N (−4, 2). All models yield worse results for division.
In fact, for the original NALU, no tested input parameter configuration leads to
acceptable MSEs (the average MSE is 4.36 · 104). Our models also yield mixed results,
some solving the task nearly perfect after one to six reinitializations, but others
failing after nine reinitializations as well.

66 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

10 16

10 12

10 8

10 4

1

104

108

m
ea

n
sq

ua
re

d
er

ro
r

add sub

NA
LU

 (m
) E

0.
2,

 0
.5

NA
LU

 (m
) E

0.
8,

 0
.5

NA
LU

 (m
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (m
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (m
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (m
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (m

) U
(-5

, 5
),

(-1
0,

 -5
)

NA
LU

 (v
) E

0.
2,

 0
.5

NA
LU

 (v
) E

0.
8,

 0
.5

NA
LU

 (v
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (v
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (v
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (v
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (v

) U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(s

w)
 E

0.
2,

 0
.5

iN
AL

U
(s

w)
 E

0.
8,

 0
.5

iN
AL

U
(s

w)
 N

(-2
, 4

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-4
, 2

),
(8

, 1
0)

iN
AL

U
(s

w)
 U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(s
w)

 U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(iw

) E
0.

2,
 0

.5
iN

AL
U

(iw
) E

0.
8,

 0
.5

iN
AL

U
(iw

) N
(-2

, 4
),

(8
, 1

0)
iN

AL
U

(iw
) N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(iw

) N
(-4

, 2
),

(8
, 1

0)
iN

AL
U

(iw
) U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(iw
) U

(-5
, 5

),
(-1

0,
 -5

)10 16

10 12

10 8

10 4

1

104

108

m
ea

n
sq

ua
re

d
er

ro
r

mul

NA
LU

 (m
) E

0.
2,

 0
.5

NA
LU

 (m
) E

0.
8,

 0
.5

NA
LU

 (m
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (m
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (m
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (m
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (m

) U
(-5

, 5
),

(-1
0,

 -5
)

NA
LU

 (v
) E

0.
2,

 0
.5

NA
LU

 (v
) E

0.
8,

 0
.5

NA
LU

 (v
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (v
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (v
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (v
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (v

) U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(s

w)
 E

0.
2,

 0
.5

iN
AL

U
(s

w)
 E

0.
8,

 0
.5

iN
AL

U
(s

w)
 N

(-2
, 4

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-4
, 2

),
(8

, 1
0)

iN
AL

U
(s

w)
 U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(s
w)

 U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(iw

) E
0.

2,
 0

.5
iN

AL
U

(iw
) E

0.
8,

 0
.5

iN
AL

U
(iw

) N
(-2

, 4
),

(8
, 1

0)
iN

AL
U

(iw
) N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(iw

) N
(-4

, 2
),

(8
, 1

0)
iN

AL
U

(iw
) U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(iw
) U

(-5
, 5

),
(-1

0,
 -5

)

div

NALU (matrix gates) NALU (vector gates) iNALU (shared weights) iNALU (independent weights)

Figure 6.4: MSE for various input distributions per operation over the extrapola-
tion test dataset of experiment 1 (minimal arithmetic task). The original
NALU is colored orange and green, (m) stands for the matrix gating, and
(v) for the vector gating version. Our iNALU models are depicted in red
for the shared weights variant and blue for the version with independent
weight matrices for the summative and multiplicative path. For trun-
cated normal (N) as for uniform distributed data (U), the first parameter
tuple represents the training data range, the second tuple represents the
extrapolation range. For exponentially distributed data (E) the parameter
λ is reported.

6.1.6 Experiment 2 - Input Magnitude

In this experiment, we generate data of different magnitude for the minimal arith-
metic task of experiment 1 to examine the influence of the data magnitude on the
model precision. We sample a and b from a uniform random variable symmetrically
around 0 from (min, max) = (−10−2, 10−2) to (−104, 104). For each configuration,
we extrapolate to (max, 2 ·max).

6.1. iNALU: Modeling and Learning Numeric Dependencies 67

Results The results of this experiment are shown in Figure 6.5. For input data of a
magnitude larger than 1, the NALU models fail to capture the underlying function
precisely for all operations. In contrast, the iNALU models calculate precisely for
all magnitudes for summation and subtraction. For multiplication, the influence of
the input data magnitude is larger, which was to be expected since the magnitude
of the results for a = 10x, b = 10y, a× b is 10x+y and so is the magnitude of the error,
which is squared in addition, as we report the mean square error. For division,
independently of the data magnitude, some iNALU models capture the underlying
operation very precisely, others fail. All NALU models fail to calculate division
precisely.

10 18
10 14
10 10
10 6
10 2
102
106

1010
1014> 1014

m
ea

n
sq

ua
re

d
er

ro
r add sub

NA
LU

 (m
) U

(-0
.0

1,
 0

.0
1)

, (
0.

01
, 0

.0
2)

NA
LU

 (m
) U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

NA
LU

 (m
) U

(-1
, 1

),
(1

, 2
)

NA
LU

 (m
) U

(-1
0,

 1
0)

, (
10

, 2
0)

NA
LU

 (m
) U

(-1
00

, 1
00

),
(1

00
, 2

00
)

NA
LU

 (m
) U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

NA
LU

 (m
) U

(-1
00

00
, 1

00
00

),
(1

00
00

, 2
00

00
)

NA
LU

 (v
) U

(-0
.0

1,
 0

.0
1)

, (
0.

01
, 0

.0
2)

NA
LU

 (v
) U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

NA
LU

 (v
) U

(-1
, 1

),
(1

, 2
)

NA
LU

 (v
) U

(-1
0,

 1
0)

, (
10

, 2
0)

NA
LU

 (v
) U

(-1
00

, 1
00

),
(1

00
, 2

00
)

NA
LU

 (v
) U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

NA
LU

 (v
) U

(-1
00

00
, 1

00
00

),
(1

00
00

, 2
00

00
)

iN
AL

U
(s

w)
 U

(-0
.0

1,
 0

.0
1)

, (
0.

01
, 0

.0
2)

iN
AL

U
(s

w)
 U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

iN
AL

U
(s

w)
 U

(-1
, 1

),
(1

, 2
)

iN
AL

U
(s

w)
 U

(-1
0,

 1
0)

, (
10

, 2
0)

iN
AL

U
(s

w)
 U

(-1
00

, 1
00

),
(1

00
, 2

00
)

iN
AL

U
(s

w)
 U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

iN
AL

U
(s

w)
 U

(-1
00

00
, 1

00
00

),
(1

00
00

, 2
00

00
)

iN
AL

U
(iw

) U
(-0

.0
1,

 0
.0

1)
, (

0.
01

, 0
.0

2)
iN

AL
U

(iw
) U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

iN
AL

U
(iw

) U
(-1

, 1
),

(1
, 2

)
iN

AL
U

(iw
) U

(-1
0,

 1
0)

, (
10

, 2
0)

iN
AL

U
(iw

) U
(-1

00
, 1

00
),

(1
00

, 2
00

)
iN

AL
U

(iw
) U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

iN
AL

U
(iw

) U
(-1

00
00

, 1
00

00
),

(1
00

00
, 2

00
00

)10 18
10 14
10 10
10 6
10 2
102
106

1010
1014> 1014

m
ea

n
sq

ua
re

d
er

ro
r mul

NA
LU

 (m
) U

(-0
.0

1,
 0

.0
1)

, (
0.

01
, 0

.0
2)

NA
LU

 (m
) U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

NA
LU

 (m
) U

(-1
, 1

),
(1

, 2
)

NA
LU

 (m
) U

(-1
0,

 1
0)

, (
10

, 2
0)

NA
LU

 (m
) U

(-1
00

, 1
00

),
(1

00
, 2

00
)

NA
LU

 (m
) U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

NA
LU

 (m
) U

(-1
00

00
, 1

00
00

),
(1

00
00

, 2
00

00
)

NA
LU

 (v
) U

(-0
.0

1,
 0

.0
1)

, (
0.

01
, 0

.0
2)

NA
LU

 (v
) U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

NA
LU

 (v
) U

(-1
, 1

),
(1

, 2
)

NA
LU

 (v
) U

(-1
0,

 1
0)

, (
10

, 2
0)

NA
LU

 (v
) U

(-1
00

, 1
00

),
(1

00
, 2

00
)

NA
LU

 (v
) U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

NA
LU

 (v
) U

(-1
00

00
, 1

00
00

),
(1

00
00

, 2
00

00
)

iN
AL

U
(s

w)
 U

(-0
.0

1,
 0

.0
1)

, (
0.

01
, 0

.0
2)

iN
AL

U
(s

w)
 U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

iN
AL

U
(s

w)
 U

(-1
, 1

),
(1

, 2
)

iN
AL

U
(s

w)
 U

(-1
0,

 1
0)

, (
10

, 2
0)

iN
AL

U
(s

w)
 U

(-1
00

, 1
00

),
(1

00
, 2

00
)

iN
AL

U
(s

w)
 U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

iN
AL

U
(s

w)
 U

(-1
00

00
, 1

00
00

),
(1

00
00

, 2
00

00
)

iN
AL

U
(iw

) U
(-0

.0
1,

 0
.0

1)
, (

0.
01

, 0
.0

2)
iN

AL
U

(iw
) U

(-0
.1

, 0
.1

),
(0

.1
, 0

.2
)

iN
AL

U
(iw

) U
(-1

, 1
),

(1
, 2

)
iN

AL
U

(iw
) U

(-1
0,

 1
0)

, (
10

, 2
0)

iN
AL

U
(iw

) U
(-1

00
, 1

00
),

(1
00

, 2
00

)
iN

AL
U

(iw
) U

(-1
00

0,
 1

00
0)

, (
10

00
, 2

00
0)

iN
AL

U
(iw

) U
(-1

00
00

, 1
00

00
),

(1
00

00
, 2

00
00

)

div

NALU (matrix gates) NALU (vector gates) iNALU (shared weights) iNALU (independent weights)

Figure 6.5: MSE for various magnitudes per operation over the extrapolation test
dataset of experiment 2 (input magnitude). For a detailed description see
Fig. 6.4.

68 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

6.1.7 Experiment 3 - Simple Arithmetic Task

Experiment 3 is a generalization of the minimal arithmetic task where the model has
to learn to ignore irrelevant input dimensions to calculate the correct solution.

This setting is motivated by real-world tasks like spreadsheet calculations where
one column is calculated by applying a simple operation to two specific columns
while other columns are present but must not influence the result.

The model consists of one NALU layer with ten inputs and one output. We test
the same input distributions as in the minimal arithmetic task (see 6.1.5).

Results Figure 6.6 shows the results of this experiment. Although the setting of
experiment 3 is slightly more complex than experiment 1, most performance patterns
repeat. In the following, we want to highlight some interesting exceptions.

For input data sampled from an exponential distribution, the results improve for
the original NALU models, especially for summation and multiplication. For sum-
mation, training is unstable since some models succeed, but others fail to learn the
task. In contrast to the minimal arithmetic task, iNALUs are successful for sum-
mation of exponentially distributed data with λ = 0.2 and show better results for
multiplication. For division, the stability decreases as discussed before, so that only
very few of our iNALU models succeed (≈ 6.4% of all experiments reach an MSE
< 10−5). The original NALU constantly failed for division. For subtraction, our
model with shared weights is slightly more unstable, but our model with indepen-
dent weights still yields stable results and calculates precisely.

6.1.8 Experiment 4 - Influence of Initialization

Experiment 1 suggests that training is unstable for some operations (subtraction
and division). Whereas some of our improved models happen to solve the minimal
task flawlessly, others fail to converge. As a consequence, a suitable initialization
seems to be crucial for the successful training of more complex architectures. This
observation is also confirmed by Madsen and Johansen [198].

In this experiment, we analyze the effect of different parameters for random
weight initialization of the neurons. In contrast to the Minimal Arithmetic Task,
the variables a and b are constructed by summing up 100 input vector entries as-
signed to a and b. Since Trask et al. does not specify the assignment in detail, we
construct it by randomly assigning entries mutually exclusive to a and b and de-
mand some inputs to be ignored by the model (since they neither contribute to a nor
to b). We decide on the assignment once per task randomly so that the assignment
is constant for all samples. Note that the assignment is not an additional input to
the neural network, but instead it has to learn this assignment.

For this study, we examine the performance of our iNALU model with shared
weights for standard normal distributed input values drawn from N (0, 1). We

6.1. iNALU: Modeling and Learning Numeric Dependencies 69

10 16

10 12

10 8
10 4

1
104

108

1012

m
ea

n
sq

ua
re

d
er

ro
r

add sub

NA
LU

 (m
) E

0.
2,

 0
.5

NA
LU

 (m
) E

0.
8,

 0
.5

NA
LU

 (m
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (m
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (m
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (m
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (m

) U
(-5

, 5
),

(-1
0,

 -5
)

NA
LU

 (v
) E

0.
2,

 0
.5

NA
LU

 (v
) E

0.
8,

 0
.5

NA
LU

 (v
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (v
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (v
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (v
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (v

) U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(s

w)
 E

0.
2,

 0
.5

iN
AL

U
(s

w)
 E

0.
8,

 0
.5

iN
AL

U
(s

w)
 N

(-2
, 4

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-4
, 2

),
(8

, 1
0)

iN
AL

U
(s

w)
 U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(s
w)

 U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(iw

) E
0.

2,
 0

.5
iN

AL
U

(iw
) E

0.
8,

 0
.5

iN
AL

U
(iw

) N
(-2

, 4
),

(8
, 1

0)
iN

AL
U

(iw
) N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(iw

) N
(-4

, 2
),

(8
, 1

0)
iN

AL
U

(iw
) U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(iw
) U

(-5
, 5

),
(-1

0,
 -5

)10 16

10 12

10 8
10 4

1
104

108

1012

m
ea

n
sq

ua
re

d
er

ro
r

mul

NA
LU

 (m
) E

0.
2,

 0
.5

NA
LU

 (m
) E

0.
8,

 0
.5

NA
LU

 (m
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (m
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (m
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (m
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (m

) U
(-5

, 5
),

(-1
0,

 -5
)

NA
LU

 (v
) E

0.
2,

 0
.5

NA
LU

 (v
) E

0.
8,

 0
.5

NA
LU

 (v
) N

(-2
, 4

),
(8

, 1
0)

NA
LU

 (v
) N

(-3
, 3

),
(8

, 1
0)

NA
LU

 (v
) N

(-4
, 2

),
(8

, 1
0)

NA
LU

 (v
) U

(-1
, 1

),
(-1

0,
 -5

)
NA

LU
 (v

) U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(s

w)
 E

0.
2,

 0
.5

iN
AL

U
(s

w)
 E

0.
8,

 0
.5

iN
AL

U
(s

w)
 N

(-2
, 4

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(s

w)
 N

(-4
, 2

),
(8

, 1
0)

iN
AL

U
(s

w)
 U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(s
w)

 U
(-5

, 5
),

(-1
0,

 -5
)

iN
AL

U
(iw

) E
0.

2,
 0

.5
iN

AL
U

(iw
) E

0.
8,

 0
.5

iN
AL

U
(iw

) N
(-2

, 4
),

(8
, 1

0)
iN

AL
U

(iw
) N

(-3
, 3

),
(8

, 1
0)

iN
AL

U
(iw

) N
(-4

, 2
),

(8
, 1

0)
iN

AL
U

(iw
) U

(-1
, 1

),
(-1

0,
 -5

)
iN

AL
U

(iw
) U

(-5
, 5

),
(-1

0,
 -5

)

div

NALU (matrix gates) NALU (vector gates) iNALU (shared weights) iNALU (independent weights)

Figure 6.6: MSE for various input distributions per operation over the extrapolation
test dataset of experiment 3 (simple arithmetic task). For a detailed de-
scription see Fig. 6.4.

choose to initialize the model weights following a normal distribution as well. To
find suitable initialization parameters, we performed an exhaustive search for the
parameters µg, µM̂, µŴ ∈ {−1, 0, 1} and σg, σM̂, σŴ ∈ {0.1, 0.5}. We repeat each pa-
rameter setting 20 times with different seeds to be able to assess the model stability.
Note that large initializations (µ 6= 0) bias the model towards specific operations, but
especially sigmoid activations suffer from small random initializations (µ = 0) [111]
introducing conflicting requirements, which make this experiment highly relevant
to find the best compromise for stability.

Results Table 6.1 shows the results of our parameter search. We consolidated the
results for σ = 0.1 and σ = 0.5, since both parameters yielded similar results, and
report the maximum MSE of all runs for each parameter setting. This is a very strict
evaluation metric since only 1 of 20 models failing could obfuscate 19 successful
runs. However, we are particularly interested in parameters that lead to stable mod-
els. The results support our finding from the arithmetic experiments that division
is very unstable to learn as no model solved the problem reliably. Stable parameter
configurations could be found for the remaining operations. Overall, the configura-
tion (µg, µM̂, µŴ) = (0,−1, 1) is clearly most stable among all parameters tested for
this task and architecture.

70 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

10 12

10 8

10 4

1

104

108

1012
> 1014

m
ea

n
sq

ua
re

d
er

ro
r

add sub

NA
LU

 (m
) N

(3
, 4

)

NA
LU

 (m
) U

(-5
, -

3)

NA
LU

 (v
) N

(3
, 4

)

NA
LU

 (v
) U

(-5
, -

3)

iN
AL

U
(s

w)
 N

(3
, 4

)

iN
AL

U
(s

w)
 U

(-5
, -

3)

iN
AL

U
(iw

) N
(3

, 4
)

iN
AL

U
(iw

) U
(-5

, -
3)

10 12

10 8

10 4

1

104

108

1012
> 1014

m
ea

n
sq

ua
re

d
er

ro
r

mul

NA
LU

 (m
) N

(3
, 4

)

NA
LU

 (m
) U

(-5
, -

3)

NA
LU

 (v
) N

(3
, 4

)

NA
LU

 (v
) U

(-5
, -

3)

iN
AL

U
(s

w)
 N

(3
, 4

)

iN
AL

U
(s

w)
 U

(-5
, -

3)

iN
AL

U
(iw

) N
(3

, 4
)

iN
AL

U
(iw

) U
(-5

, -
3)

div

NALU (matrix gates) NALU (vector gates) iNALU (shared weights) iNALU (independent weights)

Figure 6.7: Extrapolation MSE for Experiment 5 (Simple Function Learning Task).
Original NALU with gating matrix (m) and gating vector (v) are colored
orange and green, our iNALU model with shared weights (sw) is colored
red and with independent weights (iw) in blue.

6.1.9 Experiment 5 - Simple Function Learning Task

For the Simple Function Learning Task, we keep the setting of the previous exper-
iment but focus on the comparison of our model using both, shared path-weights
and independent path-weights, to the originally proposed NALU in both variants
(see Section 6.1.1).

Since we found suitable initializations, we sample from uniform and truncated
normal distributions and interpolate within the interval [a, b] = [−3, 3] for both.
This translates to a standard normal distribution (µ = 0, σ = 1) for the truncated
normal distribution. For the extrapolation interval, we choose [3, 4] and [−5,−3]
to test positive as well as negative values outside the training range with different
standard deviations.

Results Figure 6.7 shows that our iNALU models outperform the original NALU
for summation, subtraction, and multiplication on almost all runs. Our model with
independent weights is the most promising, since almost all runs succeed. However,
few outliers indicate that the stability problem is not completely solved yet. This
especially holds for division where all models fail to learn the operation correctly.

6.1. iNALU: Modeling and Learning Numeric Dependencies 71

Table 6.1: Maximum MSE over all models in Experiment 4 for the Simple Function
Learning Task (extrapolation) for weight initialization means of −1, 0, 1.
Successful configurations (maximum loss < 0.001) in bold, percentage of
successful repetitions in brackets.

E[G] E[M̂] E[Ŵ] ADD DIV MUL SUB

-1 1E−01 (93) 7E+09 (0) 1E+07 (81) 1E−02 (95)
0 1E−02 (95) 7E+09 (0) 1E+07 (95) 1E−03 (98)-1
1 3E+00 (98) 7E+09 (0) 1E−04 (100) 2E−08 (100)

-1 3E+07 (13) 2E+14 (0) 1E+07 (25) 1E+04 (16)
0 1E−01 (78) 7E+09 (0) 1E+07 (95) 1E−01 (68)0

1 5E+03 (73) 1E+05 (0) 1E−04 (100) 3E−02 (89)

-1 6E+07 (0) 5E+14 (0) 1E+07 (50) 8E+03 (0)
0 9E+14 (30) 3E+06 (0) 1E+07 (87) 9E+14 (21)

-1

1

1 1E+17 (13) 7E+09 (0) 6E+00 (94) 1E+15 (14)

-1 2E−01 (91) 7E+09 (0) 1E+07 (53) 1E−02 (95)
0 1E−01 (88) 1E+05 (0) 1E+07 (64) 1E−02 (94)-1
1 1E−04 (100) 4E+05 (0) 1E−04 (100) 1E−04 (100)

-1 8E+03 (6) 3E+14 (0) 1E+07 (29) 8E+03 (7)
0 3E−01 (68) 1E+14 (0) 1E+07 (65) 2E−01 (65)0

1 2E−01 (71) 7E+09 (0) 2E−04 (100) 3E+00 (70)

-1 8E+03 (6) 7E+14 (0) 1E+07 (27) 7E+03 (0)
0 3E+16 (23) 2E+14 (0) 1E+07 (60) 1E+15 (10)

0

1

1 2E+17 (21) 7E+09 (0) 1E+01 (94) 4E+15 (18)

-1 1E−02 (92) 4E+05 (0) 1E+07 (40) 1E−02 (98)
0 9E−03 (93) 7E+09 (0) 1E+07 (50) 5E−03 (87)-1
1 2E−04 (100) 7E+09 (0) 1E−04 (100) 6E−03 (97)

-1 8E+03 (21) 2E+14 (0) 1E+07 (29) 8E+03 (34)
0 3E−01 (36) 7E+09 (0) 1E+07 (36) 5E−01 (26)0

1 3E+00 (80) 7E+09 (0) 2E−04 (100) 1E−01 (72)

-1 4E+05 (11) 4E+14 (0) 1E+07 (61) 8E+03 (10)
0 7E+16 (17) 7E+09 (0) 1E+07 (28) 1E+13 (0)

1

1

1 2E+17 (21) 2E+14 (0) 1E+01 (93) 7E+15 (21)

72 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

6.1.10 Discussion

The experiments in Section 6.1.4 analyzed the ability of the original NALU and our
iNALU to solve various mathematical tasks and show that the performance of the
NALU greatly depends on the distribution of the input data. The quality of the
iNALU also depends on the input distribution, but is generally more stable and
achieves better results. However, for larger magnitudes of input data, multiplica-
tion becomes challenging for the iNALU, compared to the NALU the input range
for which the model can learn to multiply precisely is several magnitudes larger.
Experiment 3 extends the arithmetic task by switching off several inputs. The re-
sults reinforce the findings of the first experiment that iNALU achieves better and
more stable results than NALU. The differences between both iNALU models can be
explained by the separate weighting matrix for summation/subtraction and multi-
plication/division. In experiment 5, which examined the performance of NALU and
iNALU models for a complex function learning task, the iNALU achieves acceptable
results for three of the four operations, whereas the original NALU fails for all four
operations.

In general, the MSE calculated on the extrapolation datasets provides a good in-
tuition if the NALU has learned the correct logical structure which is resilient to
other value ranges. The interpolation results are very similar regarding the rela-
tive performance of all models but in general achieve a higher precision and thus a
lower MSE (e.g. for summation in experiment 1 our iNALU model with indepen-
dent weights yields 6.14 · 10−15 for interpolation and 5.45 · 10−13 for extrapolation on
average MSE).

Furthermore, all experiments show that the operation division is the most chal-
lenging task for NALU and iNALU. The instabilities for division could be explained
by the special case of dividing by near zero and the sampling strategy for a and b:
For sampling inputs in an interval including zero, division might cause huge or very
small results depending on the assignments of dividend or divisor which are rep-
resented by completely different weights. Possibly irrelevant input variables might
therefore influence the result by such magnitude that there is no clear gradient signal
for the assignment.

Another observation is that the optimal initialization is dependent on many fac-
tors such as task, model size, and value range. We want to emphasize that our
parameter study is not intended to raise a claim for generally finding the opti-
mal parameters, but rather to find initialization parameters for this specific task
to allow for a model comparison. Our study suggests the parameter configuration
(µg, µM̂, µŴ) = (0,−1, 1) which seems to be reasonable, since it treats the summa-
tive/subtraction path and multiplicative/division path equally at the beginning and
assigns small activation weights to all inputs. We believe that the problem of gener-
ally finding optimal or near-optimal initializations is an interesting and theoretically
challenging task for future work.

6.1. iNALU: Modeling and Learning Numeric Dependencies 73

6.1.11 Conclusion

Recently, the NALU architecture was proposed to learn mathematical relationships,
which are necessary to solve various machine learning tasks. In this work, we pro-
posed an improved version of this architecture, called iNALU. The original NALU is
only able to calculate non-negative results for multiplication and division by design
and often fails to converge to the desired weights. We solved the issues of multi-
plying and dividing with mixed-signed results and proposed architectural variants
for shared and independent weights with input independent gating. Further, we
introduced a regularization term and a new reinitialization strategy which help to
overcome the problem of unstable training.

We evaluated the improvements in five large-scale experiments which examine
the influence of different input distributions and task-unrelated inputs. The first
two experiments analyze the basic capabilities of NALU and iNALU. Furthermore,
the parameter study for the Simple Function Learning Task shows that the choice
of weight initializations has a huge impact on model stability. The parameter study
revealed suitable initialization parameters. We showed that our proposed architec-
tures can learn simple mathematical functions and outperform the reference models
in terms of precision and stability.

Consequently, we will evaluate our iNALU architecture as an additional compo-
nent in various architectures and downstream tasks such as data synthesis (Sec-
tion 6.2.3) and anomaly detection (Sections 8.1 to 8.3) in the course of this thesis.

74 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

6.2 Modeling Distributions with GANs and VAEs

An important question for modeling anomalies with statistical approaches as well
as neural networks is how well the model is able to capture non-anomalous (in
the following regular) data. Several parametric [351, 125] and non-parametric [353]
approaches find anomalies by the unlikeliness of data points regarding a ground-
truth probability distribution [50], which is implicitly or explicitly learned from data.

Consider, for example, an anomaly detection task where for a given sample x ∈ D
the label y ∈ {anomalous, regular} = Y has to be predicted. In this setting, a
generative approach will model the joint distribution P(D, Y) as sample distribu-
tion together with the label distribution. In contrast to a discriminative model, a
generative model will approach the question whether a given sample is anomalous
by deciding from which underlying (learned) distribution the sample under obser-
vation is more likely to be chosen. Besides the obvious advantage of generating
new samples from a trained model by sampling from the joint probability, and thus
being able to create synthetic data following the learned distributions of the under-
lying model, a one-class learning setup can be constructed by forcing a model to
learn an implicitly compressed representation. This compressed representation will
use the dependencies and redundancy within the data, to model the data distribu-
tion by approximation. The model most likely fails to approximate samples which
do not follow these dependencies seen during training, and which can thereby be
considered anomalous. A typical parametric generative model that explicitly mod-
els these distributions is the Variational Auto-Encoder (VAE). An example for a
non-parametric model which implicitly models the distributions is the Generative
Adversarial Network (GAN).

This section elaborates the research question, how well both neural architectures
are able to follow data characteristics regarding probability distributions and feature
correlations of transaction data typically used in an anomaly detection setting with a
focus on the generative performance. In Section 8.3, we will then evaluate the most
promising models in an anomaly detection scenario.

6.2.1 Model Architectures

In this section, we will first introduce Generative Adversarial Networks, followed
by the Variational Auto-Encoder including their specific architectures and adaptions
for our experiments in detail.

Generative Adversarial Networks

GANs have been proposed by Goodfellow et al. [117] as a generative neural model
that implicitly models a probability density function to generate new samples based
on the learned characteristics of the real underlying data. This is achieved by a

6.2. Modeling Distributions with GANs and VAEs 75

xdata

xg

G(z)z
noise

D(x?) real?

Figure 6.8: General GAN architecture: From a noise vector z, the generator con-
structs fake samples xg. Alternately, the discriminator D has real sam-
ples xdata or fake samples xg as input and is trained to distinguish real
from fake data. Iteratively, the generator learns to produce more realistic
samples while the discriminator improves distinguishing fake from real
samples.

game-theory-inspired setup having two networks competing against each other: A
generator, which takes noise as input and shapes this noise to mimic realistic sam-
ples, and a discriminator, which takes generated samples or real samples as input
and tries to differentiate real from fake data. The discriminator is trained in a super-
vised manner, whereas the generator is trained to deceive the discriminator as the
only training objective. Thereby the quality of the network depends on learning both
models in balance, i.e. the discriminator not outstripping the generator but provid-
ing enough information to let the generator improve. More formally, the interplay
between discriminator and generator can be understood as a min-max game, where
the discriminator D maximizes the probability of recognizing fake samples correctly,
whereas the generator G minimizes inverse probability:

J = min
G

max
D

E
x∼Pdata

[log(D(x))] + E
xg∼PG

[
log(1− D(xg))

]
The probability PG is implicitly given by the generator model G such that xg = G(z)

having z ∼ P(z), i.e. the noise sample z drawn from a noise distribution P(z) which
the generator transforms to mimic a data sample. Pdata denotes the real data dis-
tribution, that is, x ∼ Pdata are samples of the data. Practically, the generator is
often trained to maximize D(xg) instead, which provides better gradients in early
training [117].

As Goodfellow [115] discusses, this approach has several advantages in compar-
ison to other generative models, such as parallel data sampling, no restrictions re-
garding the generator model choice, and better generated samples, i.e. when it
comes to sharpness of images or distributions in general. However, the learning

76 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

procedure, which can be formalized as Nash Equilibrium, makes training challeng-
ing due to training instabilities such as failing convergence, vanishing gradients,
the discriminator overpowering the generator, and the lack of diversity for gener-
ated samples, referred to as mode collapse [16, 187, 272]. Another drawback of the
GAN, as proposed by Goodfellow et al., is the inability to generate discrete variables
[115]. The Wasserstein GAN (WGAN) [17] and the advances built on WGAN, such
as the gradient penalty instead of the gradient clipping [123] or the two time-scaled
update rule [133], address these stability issues [17] and allow the modeling of dis-
crete distributions over a continuous latent space [123] and faster convergence [124].
As these advancements promise better stability, we build the model for our experi-
ments based on the WGAN architecture. Changes from the basic GAN architecture
to WGAN will be detailed in the following.

WGAN is built on the Earth-Mover (EM) or Wasserstein distance as the objective,
given as

W(Pdata, PG) = inf
γ∈Π(Pdata,PG)

E
(x,y)∼γ

[‖x− y‖] (6.20)

with Π(Pdata, PG) denoting the set of joint distributions γ(x, y) with marginals Pdata
and PG, respectively. Here, γ(x, y) can be interpreted as “how much mass must be
transported from x to y” [17] to transform Pdata into PG. With the Infimum the EM
distance is defined by the best way to transform the distribution, i.e., the one with
the least transported mass.

For the WGAN, the dual form of EM is used having

W(Pdata, PG) = sup
‖ f ‖L≤1

E
x∼Pdata

[f (x)]− E
xg∼PG

[
f (xg)

]
with the Supremum of 1-Lipschitz functions representing the best score function
[324, 17]. For the WGAN, this function f is learned by a neural network D that
replaces the discriminator from the original GAN. D is called critic in this setting,
since it is not trained to classify between real and fake [123], but instead the score
which indicates how real the data are considered regarding the EM distance.

By this, the GAN objective changes to

JWGAN = min
G

max
D

E
x∼Pdata

[D(x)]− E
xg∼PG

[
D(xg)

]
with the assumption that D is 1-Lipschitz. Arjovsky proposed to enforce 1-Lipschitz
by clamping the gradients to a compact space [−c, c], however, they commented
themselves that “weight clipping is a clearly terrible way to enforce a Lipschitz con-
straint” [17]. A more theoretical analysis is given by Gulrajani et al. [123], who
proposed ensuring 1-Lipschitz by introducing a Gradient Penalty (GP) in the loss.

JWGAN-GP = min
G

max
D

E
x∼Pdata

[D(x)]− E
xg∼PG

[
D(xg)

]
+ λ E

x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(6.21)

6.2. Modeling Distributions with GANs and VAEs 77

Here, Px̂ is defined by uniform sampling of the linear space between pairs of
real and generated points, sampled from Pdata and PG, for which the gradient norm
(given as ‖∇x̂D(x̂)‖2 in Eq. 6.21) is thereby constrained and λ is a weighting co-
efficient. Gulrajani et al. found λ = 10 to work well for several experiments and
architectures that outperformed weight clipping by a large margin. Consequently,
we follow Gulrajani et al. and build our models based on the WGAN-GP architec-
ture.

For categorical features, GANs have inherent difficulties in modeling discrete dis-
tributions [115]. If categorical features are modeled as one-hot vectors, the min-max
game becomes heavily biased in favor of the discriminator: The generator has to
precisely generate discrete values of 0 and 1, whereas the task of the discrimina-
tor simplifies to detecting discrete values versus continuous values near the desired
discrete values at best.

This issue can be addressed by different means, where two approaches are pre-
dominantly used in literature, using embeddings [241, 58, 253] and approximating
discrete distributions with gumbel-softmax [171, 47, 85]. In [253] we evaluated three
approaches to represent categorical features with a large number of possible val-
ues and found that learned dense representations, i.e., embeddings of categorical
attributes, perform well.

The use of embeddings however has the disadvantage that a mapping from em-
bedding space back to the data space is necessary when it comes to synthesizing
data or inspecting generated samples on a feature-level view (i.e., for the genera-
tor), which is not straightforward when the latent embedding space representation
is generated synthetically. Using gumbel-softmax allows to omit this transformation
into a latent space and reverse staying within the feature space.

The gumbel distribution can be used to sample from a categorical distribution
with class probabilities πi [149] and samples gi ∼ Gumbel(0, 1) by

s = 1-hot
(

arg max
i

[gi + log πi]

)
.

Combining gumble and softmax, a differential approximation for arg max, gumble-
softmax, is proposed by [149] as

yi =
exp ((log(πi) + gi)/τ)

k
∑

j=1
exp

(
(log(πj) + gj/τ)

)
for i ∈ {1, . . . , k} and a temperature coefficient τ generating a k-dimensional sample
vector. For τ → 0 gumble-softmax becomes identical to the respective categorical
distribution P(z) and samples yi resemble one-hot vectors. For an increasing tem-
perature τ � 0, the samples resemble a uniform distribution over the categories.
Hereby, the imprecision with regard to perfect one-hot vectors from data versus

78 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

1

...

30

z

1

...

30

128

...

1

30

...

1

iNALU

cross

deep

1

...

30

64

...

1

30

...

1

iNALU

cross

deep

1

...

kc1

...

1

...

kcn

c1

cn

1

...

20

...

1

...

20

e1

en

1

...

16

eg

1

...

32

hnum

1

...

kn

1

...

kc1

...

1

...

kcn

output

Generator

1

...

kn

1

...

kc1

...

1

...

kcn

input

1

...

20

...

1

...

20

e1

en

128

...

1

1

...

30

30

...

1

iNALU

cross

deep

64

...

1

deep

32

...

1

1

...

30

30

...

1

iNALU

cross

deep

critic

Discriminator

Figure 6.9: WGAN architecture with two cross- and iNALU layers and a specific
generation of categorical and numeric features. The input vector z is
sampled from noise followed by two deep cross-layers. Layers cn rep-
resent the one-hot representation of the n-th categorical feature with kcn

unique values. To allow numeric features depending on categorical fea-
tures, embedding layers en are trained from one-hot representations and
reduced to a single vector eg concatenated with the last deep cross iNALU
layer and used as input for the hidden layer hnum to generate the kn nu-
meric values. The categorical output values are directly mapped to the
categorical layer prior embeddings denoted by the dashed line, arrows
denote connections between all neurons within layer-boxes, i.e. fully con-
nected layers. As the activation function, deep, eg, and hnum layers use
LeakyReLU. The critic and en layers have linear activations with (critic)
and without (en) bias.

imperfect generated vectors can be balanced by replacing categorical values with
gumbel-softmax approximations.

The approach proposed by Engelmann et al. [85] combines both a gumbel-softmax-
based generator and an embedding layer for the discriminator input, which we
adopt for our experiments. As shown in Fig. 6.9, the categorical layers ci use the
gumbel-softmax activation function, whereas the embedding layers ei learn a latent
representation of the categories to condition the numeric variables in the generator
or a representation for the categorical features in the discriminator.

We also evaluate the benefit of feature crossings [329], which is a neural archi-
tecture similar to our Mixed Layers (proposed in Section 8.1.1). Both architectures
rely on unspecific feed forward layers such as ReLUs and task-specific layers which
are combined to a larger network: As task-specific layers, iNALU layers for Mixed

6.2. Modeling Distributions with GANs and VAEs 79

Layers support precise numeric calculation, cross layers for feature crossings em-
phasize feature combinations of varying degrees. This is achieved by re-introducing
the input feature vector of the network x0 and the output of the previous layer xl to
deeper layers as

xl+1 = x0x>l wl + bl + xl,

similar to residual connections in ResNet [128] with wl, bl denoting the weights and
biases of the feature crossing layer l. We introduce iNALU layers as third component
in addition to deep and cross layers to emphasize the ability to represent numeric
dependencies.

The complete WGAN architecture used in our experiments is shown in Fig. 6.9.
To evaluate the benefit of iNALU layers, we conduct our first experiment to find the
optimal parameters without iNALU layers (i.e., having the concatenation layer only
consisting of deep and cross layers) and include the iNALU layers in our second
experiment measuring the improvement over the best model without iNALU.

Variational Auto-Encoder

Creating a (generative) model according to data-driven observations can also be un-
derstood from a statistical point of view in the framework of Maximum Likelihood
Estimation (MLE). In this setting, the parameters of a model represented, for exam-
ple, by a probability distribution, are learned by maximizing the likelihood of the
data with respect to the parameter choice. For a generative task with N variables or
features Xi ∈ X, this is typically done by maximizing the marginal log-likelihood

max
θ

log pθ(X) = max
θ

N

∑
i=1

log pθ(Xi),

which is in general computationally intractable, e.g., for a non-linear neural net-
work [167]. To overcome this problem Kingma and Welling [167] proposed the
Variational Auto-Encoder introducing a parametric inference model qθe(z | x) to
approximate the true posterior p(z | x) and optimizing the variational lower bound

log pθ(x) ≥ E
qθe (z|x)

[log pθd(x, z)− log qθe(z | x)]

such that the inference model q approximates p best, i.e.,

q̂θe = arg min
θe

KL (qθe(z | x) ‖ p(z | x)) .

Here, KL(P ‖ Q) = ∑x∈X P(x) log P(x)
Q(x) denotes the Kullback–Leibler (KL) diver-

gence between two probability distributions. The reconstruction of x, Lrec, as well as
the regularization regarding the variational latent variable z, Lreg, are summarized
in the Evidence Lower Bound (ELBO),

80 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

ELBO(θ) =

Lrec︷ ︸︸ ︷
E

qθe (z|x)
[log pθd(x | z)]−

Lreg︷ ︸︸ ︷
KL (qθe(z | x) ‖ p(z)),

which is used to optimize the parameters θ of the encoder (q) and decoder (p) neu-
ral network [167]. The idea of this regularization of the encoder regarding a desired
probability distribution is to encourage the model to form the latent space, i.e., the
posterior qθe(z | x), similar to p(z) according to KL, while on the other hand optimiz-
ing the precise reconstruction. This enables the model to learn a smooth meaningful
latent space, suitable for interpolation [333] and as a generative model [114, 38],
contrary to classical Auto-Encoder solely based on reconstruction error, which is
“well known [to be] [...] not sufficient for learning useful representations” [164].
VAE allows, in addition to the reconstruction error, to consider the reconstruction
probability when it comes to applications such as outlier or anomaly detection [13].
As practical estimator for ELBO, Kingma and Welling introduce the reparametriza-
tion trick, for which z ∼ qθe(z | x) can be reparameterized with a differentiable
transformation gθe(ε, x) and independent marginal p(ε). Typically the VAE is repa-
rameterized using Gaussian distributions z ∼ N (µ, σ2) as z = µ + σε with noise
ε ∼ N (0, 1). The encoder thereby encodes data samples from input space into the
parameter space of the variational (Gaussian) distribution. The decoder decodes
samples drawn from this latent variational distribution back to the input-space re-
constructing the original data. With Gaussian reparametrization, the KL divergence
between the (multivariant) normal distribution with mean(s) µµµ and covariance ma-
trix ΣΣΣ derived from the encoder and the standard-normal Gauss distribution N (0, I)
can be explicitly notated in closed form, which is often used as a practical imple-
mentation:

Lreg︷ ︸︸ ︷
KL (qθe(z | x) ‖ p(z)) = KL (N (µµµ, ΣΣΣ) ‖ N (0, I))

=
1
2

(
µµµTµµµ + tr(ΣΣΣ)− k− log(det ΣΣΣ)

)
(∗)
=

1
2

k

∑
i=1

(
µ2

i + σ2
i − 1− log

(
σ2

i

))
,

while (∗) holds for independent X ∼ Nk (µµµ, ΣΣΣ) with σσσ = diag ΣΣΣ.
When it comes to practically applying VAE to transaction data, heterogeneous

feature types have to be taken into account. To represent categorical and other
non-continuous attributes properly, different approaches have been suggested, e.g.,
choosing different likelihood models and priors [215] or approximating categorical
variables by continuous variables introducing noise [89, 301]. For our experiments,
we follow [82] and model categorical attributes by parametrizing each categorical

6.2. Modeling Distributions with GANs and VAEs 81

feature i as pθd(xi | z) = softmax(ad
i (z)). Therefore, ad

i (z) is an unnormalized vec-
tor of probabilities for all values, learned as feed-forward neural network. The in-
put encoding from one-hot representations to a dense representation is given as
qθe(z | ae(x)) with ae being composed of embedding layers for each categorical fea-
ture and direct input mappings for numerical features as depicted in Fig. 6.10. Ad-
ditionally, for our later experiments, we adapt the model by including iNALU layers
to evaluate the influence on model performance regarding numeric dependencies.
As depicted in Fig. 6.11, we specifically add iNALU layers for numeric attributes in
parallel to embedding layers for categorical attributes.

xc1
1

xc1
2

xc1
3

xc2
5

xc2
6

xn1
6

ae
1

ae
1

ae
2

µ1

µ2

σ1

σ2

z1

z2

ad
1

ad
1

ad
2

x̂c1
1

x̂c1
2

x̂c1
3

x̂c2
5

x̂c2
6

x̂n1
6

mean

std.dev

ae ad

h1 h2
s

s

input output

Encoder Decoder

Figure 6.10: VAE for one-hot encoded categorical input for features c1, c2 and nu-
merical feature values n1, with embedding layers ae, ad per categorical
value and s9 denoting the softmax activation function for categorical
variables, hidden layers h1, h2 and variational parameterization layers µ

and σ. Dotted arrows correspond to sampling and reparametrization
for training.

6.2.2 Evaluation

The evaluation of generative models is generally not straightforward as there is no
specific sample-based ground truth regarding the generated data compared to a
classification setting, where the predicted class and the actual class can be compared
per sample [335]. Besides this, the desired application of the generative model is im-
portant, when it comes to defining criteria to evaluate generated samples and thus
generative models: For example, generative models for image creation may be used
to create visually appealing images from a human perception or may be used to
improve the robustness of classifiers, e.g., against adversarial attacks. These appli-

82 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

xc1
1

xc1
2

xc1
3

xc2
4

xc2
5

xn1
6

xn2
7

ae
1

ae
1

ae
2

ne
1

ne
2

µ1

µ2

σ1

σ2

z1

z2

ad
1

ad
1

ad
2

nd
1

nd
2

x̂c1
1

x̂c1
2

x̂c1
3

x̂c2
4

x̂c2
5

x̂n1
6

x̂n2
7iNALU iNALU

mean

std.dev

ae ad

h1 h2
s

s

input output

Encoder Decoder

Figure 6.11: VAE with iNALU for one-hot encoded categorical input for features
c1, c2 and numerical feature values n1, with embedding layers ae, ad

per categorical value and s9 denoting the softmax activation function
for categorical variables, hidden layers h1, h2 and variational parame-
terization layers µ and σ. Dotted arrows correspond to sampling and
reparametrization for training.

cations can require completely different samples and therefore need their generative
models to be evaluated regarding different objectives [313].

Although logarithmic likelihood is considered the standard approach to evalu-
ate generative models, its applicability in high-dimensional settings and regarding
the computational intractability for implicit models, such as GANs, as well as its
expressiveness regarding sample quality are questioned [313, 335]. If likelihood cal-
culation is intractable, approaches to estimate density from samples such as Parzen
window-based log-likelihood estimates [231], often referred to as Kernel Density
Estimation (KDE), have been used [43, 117] and refined as a metric [335, 316, 365]
despite questions of validity as a generalizable evaluation function to quantitatively
compare generative models [313].

Some evaluation approaches are domain-specific, such as Domain Knowledge
Checks [253] for network traffic generation, Inception Score [271] or the Fréchet In-
ception Distance [134] for image data, while other metrics are built upon test statis-
tics [122, 250]. For an overview of several evaluation measures, see [34]. To summa-
rize, a vast amount of evaluation measures have been proposed with differing focus
on key aspects of the generated samples, yet “there is no one-fits-all [metric] [...] but
a proper assessment of model performance is only possible in the the context of an
application” [313]. For our experiments we therefore consolidate different empirical
metrics applicable to transaction data and discuss their implications side by side.

6.2. Modeling Distributions with GANs and VAEs 83

Expanding simple feature statistics such as mean and variance of the real and
generated data, we compare the likelihood of generated data on per-feature basis
with real data using kernel density estimates giving an in-depth view on feature
modes. This can, for example, reveal whether properties such as work days or
working hours for time-related features are correctly learned (as in [253]), as well as
numerical modes, e.g., for prices or quantities over different products.

To compare generated and real data quantitatively, approaches to compare proba-
bility distributions can be adopted: For our experiments, a quantitative evaluation is
used based on Kullback-Leibler divergence by its symmetric variant, Jensen-Shannon
divergence (detailed in Eq. 6.30). Although the Earth-Mover distance could also be
incorporated as an evaluation metric, we refrain from explicitly evaluating with EM
distance for a fair comparison, since it is explicitly used as training objective in the
WGAN model (see Eq. 6.20). The Fréchet Inception Distance adaption we evaluate
implicitly uses the Wasserstein-2 distance, however, as a relaxed parametric measure
which therefore does not hinder a fair comparison.

While the aforementioned views are limited to inter-feature dependencies between
real and generated data, intra-feature dependencies are considered by a feature cor-
relation analysis. In the following, we will summarize the evaluation approaches
and discuss the implications of each choice.

Kernel Density Estimation

Technically a density estimator aims to estimate the Probability Density Function
(PDF) on which the data is based on. The most basic density estimator, the his-
togram, consolidates data points within equidistant ranges to the respective bin and
can be formulated as follows:

For equidistant bin edges {bk} that span the entire value space with a bandwidth
h = bk+1 − bk, the histogram density can be defined as

KDE(x) =
vk
nh

for bk < x < bk+1 , (6.22)

with vk = |{x ∈ X : bk < x < bk+1}|, i.e. the number of data points that fall into
the k-th bin. Intuitively, this can be seen as stacked boxes with a width of h around
the center of each bin. Per observation, the height of 1/nh adds to the height of the
bin, ultimately giving the height of the bin vk/nh for the respective stack of boxes.
This intuition can be generalized from boxes to any Kernel function K that satisfies
the property ∫ ∞

−∞
K(x)dx = 1 . (6.23)

Instead of boxes, for each observation the associated kernel can be stacked or,
in this case, summed to form the probability mass by its kernel according to the

84 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

contributing observations. The density estimate for x with samples {x1, ..., xn} is
then given by

KDE(x; K, h) =
1

nh

n

∑
i=0

K
(

x− xi

h
; h
)

(6.24)

KGauss(x; h) ∝ exp
(
− x2

2h2

)
(6.25)

The most frequently used kernel is the Gaussian kernel KGauss, which is also ap-
plied in this thesis. Bandwidth h is a parameter that can be chosen to adjust smooth-
ness of the resulting density function and results in a smooth distribution for a large
bandwidth. As a basic rule of thumb to choose h, Scott suggested for a Gaussian
kernel [285]

h = 1.06σn−1/5 ,

with n samples and their standard deviation σ. For a thorough review of density
estimation and a mathematical introduction of Scott’s rule of thumb, see [284].

Evaluation Metrics for Generative Models

While KDE allows an explorative evaluation, for a quantitative view, additional met-
rics have to be defined, several of which have also been introduced as training ob-
jectives for generative models. The Kullback-Leibler divergence [170] allows the
comparison of two probability distributions P and Q and is also incorporated as
part of the training objective in the VAE. A KL divergence of zero denotes identical
distributions.

KL
X
(P ‖ Q) =

∑

x∈X
P(x) log P(x)

Q(x) for discrete P, Q

∞∫
−∞

p(x) log p(x)
q(x) dx for continuous P, Q with PDFs p, q

(6.26)

KL has the disadvantage of being unsymmetrical and having an undefined max-
imum bound. Jensen–Shannon divergence (JSDiv) is a symmetrical variant derived
from KL divergence with bounds in [0, 1], which can be used as metric (in a math-
ematical sense). The Jensen-Shannon distance (JSD) is defined as square root over
JSDiv. With probability distributions P, Q and M = 1

2(P + Q), it is defined by:

6.2. Modeling Distributions with GANs and VAEs 85

JSDiv
X

(P ‖ Q) =
1
2

(
KL

X
(P ‖ M) + KL

X
(Q ‖ M)

)
(6.27)

JSD
X

(P ‖ Q) =
√

JSDiv
X

(P ‖ Q) (6.28)

In general, for KL and JSD, X is implicitly defined as the common probability space
of P and Q and therefore is omitted in notation. We introduce X in notation where
we explicitly want to emphasize the probability space considered.

To evaluate a learned model by its generated data in comparison to real data, P and
Q are distributions that correspond to the same feature of both datasets. Therefore,
a model that learned the feature distribution P similar to the real feature distribution
Q will yield a JSD limP→Q = 0, while a model that failed to learn the correct feature
distribution will yield a JSD limP 6→Q = 1. However, the probability distributions are
modeled implicitly by the model, and in general, the real probability distribution
from which the data are ‘drawn’ is unknown as well. To compare real and generated
samples by JSD, first numeric features are pairwise min-max normalized over their
joint feature-value space to ensure a common probability space for both real and
generated data. Then we estimate their PDF using KDE for numeric features and
the Empirical Distribution PE(X = i) = ci/ ∑i ci for counts ci of feature-value i as
estimate for categorical features. The JSD per feature is calculated over their joint
probability space as given in Eq. 6.29. From all estimators, we then predict the joint
probability space of P and Q and evaluate pairwise with JSD per feature Xsyn

i , Xreal
i .

We then report the JSD averaged over all features, as defined in Eq. 6.30.

X̂syn =
x−min(Xg+r)

max(Xg+r)−min(Xg+r)
∀x ∈ Xsyn

X̂real =
x−min(Xg+r)

max(Xg+r)−min(Xg+r)
∀x ∈ Xreal

X̂g+r = X̂syn ∪ X̂real

P̂X =

{
KDE(X; K, h) for a numeric feature X
PE(X) for a categorical feature X

JSD(Xsyn, Xreal) = JSD
X̂g+r

(P̂X̂syn ‖ P̂X̂real) (6.29)

JSD(Dreal,Dsyn) =
1
n

n

∑
i

JSD(Xsyn
i , Xreal

i) (6.30)

For KDE we use a bandwidth of h = 0.01 and a linear kernel K(x; h) ∝ 1− x/h.
Bandwidth and kernel can be tuned for various applications and dataset conditions
(see, for example, [129] for a detailed discussion). For our application, however, a

86 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

precise estimate over the whole numeric scale is not important as long as the estimate
does not oversmooth the differences between both distributions.

Besides JSD the Earth-Mover (EM) or Wasserstein distance is another metric to
compare distributions. Intuitively, it can be understood as the best way to transform
one distribution into the other, i.e., the ‘plan’ with the least transported mass. For
two discrete variables, this can be visualized as the most effective way to jointly
increase and decrease (normalized) histogram bins to transform one distribution
into the other. More formally, the n-th Wasserstein distance is defined as

Wn(P, Q) =

(
inf

γ∈Π(P,Q)
E

(x,y)∼γ
[‖x− y‖n]

) 1
n

, (6.31)

with Π(P, Q) denoting the set of all possible joint distributions γ(x, y) with marginals
P and Q. Here, γ(x, y) can be interpreted as “how much mass must be transported
from x to y” [17] to transform P into Q, and the infimum corresponds to the least
costly way γ over all possible instances (x, y) ∼ γ having x ∈ P and y ∈ Q.

The 2-Wasserstein distance is used in Fréchet Inception Distance (FID) [134], for
which P and Q are assumed to be Gaussian with P = N (µP, ΣP) and Q = N (µQ, ΣQ).
This simplifies W2(P, Q) to

W2(P, Q)2 = ‖µP − µQ‖2
2 + tr

(
ΣP + ΣQ − 2

(
ΣPΣQ

) 1
2
)
.

For typical FID evaluations in the image domain, P and Q are the activations
of a pretrained Inception v3 ImageNet model [306] fed with real and generated
samples. The idea of FID as evaluation measurement is to compare generated and
real data not at the feature distribution level, since feature distributions (i.e., pixel
distributions) are not expressive for image quality assessment. Instead, meaningful
image representations, extracted by pretrained ‘image-feature-extraction’ layers of
an Inception v3 model are compared.

For our application domain of transaction data, the choice of an auxiliary model
to use as a feature extractor is not straightforward. As the most general model,
a pretrained Auto-Encoder could be used, mapped to learn low-dimensional rep-
resentations which reproduce the original sample best. However, such an evalua-
tion, similar to modeling features of visually appealing images, is not guaranteed
to emphasize the appropriate aspects of transaction data as well: In general, recon-
struction from a lower-dimensional space itself is prone to inaccuracies in feature
space and might obfuscate problems within the generated data. On the other hand,
an auxiliary classification task is task- and dataset-dependent and might emphasize
representations which are beneficial to solve the given task. However, surface-level
features that are relevant for the auxiliary task might be overestimated and other
characteristics of the real data, which are important to generate realistic data, might
be overlooked. For our evaluation, we therefore evaluate FID directly on feature

6.2. Modeling Distributions with GANs and VAEs 87

level, which corresponds to comparing Gaussian distributions regarding their mean
and standard deviation, which were fitted to the generated and real data. This might
obscure different modes of normal distributions or other non-normal distributions
in general, but ensures that the mean and standard deviation of generated data gen-
erally fits real data.

Correlation Analysis

Inter-feature relations are another important aspect a generative model has to cap-
ture in order to model and synthesize data in a realistic manner: If two features
within the real data are highly correlated, this correlation also has to be considered
by a generative model and can be examined in the generated data. For the evaluation
of correlations between numeric features, two correlation coefficients are typically
used: Pearson’s and Spearman’s correlation coefficient. Both are applied pairwise
between features and range from -1 for an inversely proportional correlation to 1 for
a perfect correlation. A value of 0 expresses no correlation with respect to the coef-
ficient. Pearson’s correlation coefficient is directly motivated by covariance, which
models a monotonic relationship between two random variables.

cov(X, Y) = E [(X−E(X))(Y−E(Y))] (6.32)

The covariance is defined as the product of the differences between each random
variable and its mean, i.e., is positive if both random variables differ from their
expected value in the same direction or negative for opposite directions.

Pearson’s correlation coefficient is calculated by standardizing both random vari-
ables

ρp(X, Y) =
cov(X, Y)

σXσY
(6.33)

with σX denoting the standard-deviation of the random variable X and can be
used to find linear relationships.

Spearman’s correlation coefficient can be considered a special case of Pearson’s
correlation coefficient for which the rank of two random variables is compared in-
stead of their values.

ρs(X, Y) =
cov(rgX, rgY)

σrgX
σrgY

(6.34)

Here, rgX denotes the ranking of a list of feature values X, i.e., the smallest value
in the list is replaced by 0, the second smallest value by 1 and so on.

For the cost of losing the scaling of differences between values, Spearman’s cor-
relation coefficient is more robust against outliers and captures non-linear relation-
ships better in comparison to Pearson’s [247].

88 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

Since both coefficients are pairwise, the correlation of all feature combinations
is calculated and a correlation matrix typically depicted as heat map is composed.
Such heat maps can be easily compared to evaluate if a synthetic dataset resembles
the inter-feature relationships as they are present in real data.

When it comes to categorical features, the question of feature correlation becomes
more complex: While for ordinal features the values can be ordered and thus a
ranking-based correlation can be calculated, categorical features do not have an in-
herent order and Pearson’s and Spearman’s correlation coefficient cannot be directly
applied. For example, the categorical attribute transaction type may consist of cat-
egories such as CASH-IN or CASH-OUT. However, there is no relation defining if
CASH-IN < CASH-OUT or CASH-IN > CASH-OUT. When represented in an ordi-
nal way, one could define any arbitrary order for the features, which implies that
there is no inverse correlation. Assume a numerical feature, the amount of money
added to the balance, is positive for the transaction type CASH-IN but negative for
CASH-OUT. If we represent CASH-IN by 0 and CASH-OUT by 1, we can calcu-
late the correlation coefficient and will find a strong positive correlation between
the amount and transaction type. Since the encoding has an arbitrary order, we
could also encode CASH-IN by 1 and CASH-OUT by 0, leading to a strong negative
correlation in numbers. This is typically addressed by calculating the correlation
ratio [95], which measures the dispersion for different categorical values. For a nu-
merical feature Y and a categorical feature X let SX

x := {i
∣∣ DXi = x} be the set

of indices for all samples with a particular value x ∈ X. With the mean per cate-
gory ȳx = |SX

x |−1 ∑i∈SX
x

yi and the mean over all Y ȳ = E[Y] the correlation ratio is
calculated by

η2(X, Y) = ∑x |SX
x |(ȳx − ȳ)2

∑y(y− ȳ)2 . (6.35)

In the case of a dichotomous categorical variable X, i.e., a variable with only two
possible values, the correlation analysis can be simplified further by using the point-
biserial correlation coefficient ρpb as follows [110]:

ρpb(X, Y) =
ȳ1 − ȳ0

σY

√
|SX

1 ||SX
0 |

|D|2 (6.36)

Here, the differences of the means ȳi for all samples that are associated with the
respective category i are normalized by Y’s standard deviation σY and scaled with
|Si| as the number of samples that belong to the respective category and |D|, the
total number of samples. For typical one-hot encoded categorical variables, we use
this simplified calculation. Note that for this case, it is ρp(X, Y)2 = η2 = ρ2

pb.
For two categorical variables, the correlation (or in this case often association)

can be calculated by Cramér’s V [65, 28]. It is based on χ2 statistics and can be
used with variables with more than two categories. For two discrete random vari-
ables X, Y with k and l possible values x ∈ {CX1 , · · · , CXk}, y ∈ {CY1 , · · · , CYl}, let

6.2. Modeling Distributions with GANs and VAEs 89

SX
x , SY

y be sets of indices for all samples with a particular value x ∈ X, y ∈ Y, and
SX,Y

x,y := {i
∣∣ DXi,Yi = (x, y)} be the set of indices for all samples that have both spe-

cific values x ∈ X and y ∈ Y. Then the χ2 statistics can be determined by

χ2(X, Y) =
k

∑
i=1

l

∑
j=1

(|SX,Y
i,j | −E[i, j])2

E[i, j]

with E[i, j] =
|SX

i ||S
Y
j |

|D| assuming statistical independence. Cramer’s V is then calcu-

lated by normalizing χ2 by the number of samples in the dataset and the number of
categories:

V(X, Y) =

√
χ2(X, Y)/|D|

min(k− 1, l − 1)

Cramer’s V ranges from 0 (no association between two features) to 1 (both features
are completely dependent on each other).

If bot variables are dichotomous, Cramér’s V simplifies to Pearson’s phi coefficient
since min(k − 1, l − 1) = 1, which can also be formulated as Pearson’s correlation
coefficient between two binary variables [63]

φ(X, Y) =

√
χ2(X, Y)
|D| =

|SX,Y
0,0 ||S

X,Y
1,1 | − |S

X,Y
0,1 ||S

X,Y
1,0 |√

|SX
0 ||SX

1 ||SY
0 ||SY

1 |
,

since χ2 simplifies for two dichotomous variables to

χ2(X, Y) =
|D|

(
|SX,Y

0,0 ||S
X,Y
1,1 | − |S

X,Y
0,1 ||S

X,Y
1,0 |

)2

|SX
0 ||SX

1 ||SY
0 ||SY

1 |
.

Besides the advantage of integrating well within Peason’s correlation framework,
it has the disadvantage of judging two categorical variables symmetrically. In prac-
tice, the association between two variables, however, can be asymmetric, e.g., when
observing that one variable completely determines the value of variable but not vice
versa. To consider this asymmetry in evaluation, the Uncertainty Coefficient U(X, Y)
(often attributed as Theil’s U [312]) can be used, which builds upon entropy H(X)
and conditional entropy H(X | Y):

90 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

H(X) = − ∑
x∈X

P(x) log P(x)

H(X | Y) = − ∑
x∈X,y∈Y

P(x, y) log
P(x, y)
P(x)

U(X, Y) = 1− H(X | Y)
H(X)

for outcomes x, y of categorical random variables X and Y. As the conditional en-
tropy is not symmetric, U is neither and allows a more precise evaluation of asym-
metric associations. U(X, Y) ranges from 0 (no association) to 1 (feature Y fully
determines feature X).

Consider, for example, the case for the columns tax code and payment block from
the SAP dataset:

payment block

counts empty XI

ta
x

co
de empty 52 883 1 650

R 0 144

Whereas the tax code value R (144 observations) is always associated with the value
XI for payment block, XI is associated with 1 650 observation of empty values for tax
code. This results in a Cramer’s V of

V(payment block, tax code) = V(tax code, payment block) = 0.278

and the Uncertainty Coefficient yields

U(tax code, payment block) = 0.063

but on the other hand

U(payment block, tax code) = 0.498 ,

which means tax code provides way more information about payment block than vice
versa. A model not considering this asymmetric relationship in data would not be
penalized with Cramer’s V as evaluation metric, which rationalizes the choice of the
Uncertainty Coefficient over Cramer’s V.

In summary, we calculate the correlation between two numerical variables us-
ing Pearson’s correlation coefficient ρp, between categorical and numerical variables
using the Correlation Ratio η2 and the association between categorical variables us-
ing the Uncertainty Coefficient U, as formalized in Eq. 6.37. With this theoretical

6.2. Modeling Distributions with GANs and VAEs 91

framework, we can compare the correlation of categorical and numerical features
in various combinations between the real dataset and the synthesized samples and
evaluate if the relations and dependencies within the features are correctly modeled
by the generative process.

corr(X, Y) =

ρp(X, Y) if X and Y numerical
η2(X, Y) if X categorical and Y numerical
U(X, Y) if X and Y categorical

(6.37)

Explorative Evaluation To exploratively evaluate the correlation, we calculate the
pairwise correlation between all features Xi of a dataset D and analyze the resulting
correlation matrix as heat map, color-coding the strength of feature correlation of
real and synthetic data.

corr(D) =

corr(X1, X1) corr(X1, X2) · · · corr(X1, Xi)
corr(X2, X1) corr(X2, X2) · · · corr(X2, Xi)

...
...

corr(Xi, X1) corr(Xi, X2) · · · corr(Xi, Xi)

 (6.38)

Quantitative Evaluation A quantitative evaluation is approached by calculating
the mean absolute error between the correlation matrix of two datasets, Dsyn and
Dreal, with an identical number of features n.

corr(Dsyn,Dreal) =
1
n2

n

∑
i

n

∑
j

∣∣∣corr(Dsyn
Xi

,Dsyn
Xj

)− corr(Dreal
Xi

,Dreal
Xj

)
∣∣∣ (6.39)

In our experiments, Dsyn corresponds to the dataset synthesized by a NN which is
expected to mimic the real dataset Dreal. Therefore, the NN is expected to generate
data with pairwise feature correlations corr(Dsyn

Xi
,Dsyn

Xj
) similar to the correlations

corr(Dreal
Xi

,Dreal
Xj

) present in the real dataset.

92 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

6.2.3 Experiments

The experiments in this section are constructed to answer RQ 1.2 and RQ 1.3 by
specifically evaluating both generative neural network models, VAE and GAN, in-
cluding the adaptations we proposed to model transaction data at best. For our
experiments in this section, we focus on two transaction datasets, PaySim and SAP,
as well as a benchmark dataset from the UCI-Machine Learning Repository, the
“Census Income” dataset, which have been introduced in Chapter 5 in more detail.
While SAP offers a clean train split (i.e., without fraud) and defined validation and
test splits, PaySim and Census are split randomly in 80% train, 10% validation, and
10% test subsets. We repeat each experiment 5 times for different random splits and
report the mean and standard deviation of all results.

Experiment 1: Preprocessing

Both models have a number of parameters, which are depending on dataset, task,
and preprocessing. While the task in this section is to generate realistic synthetic
data (the AD task is evaluated in Section 8.3), our first experiment focuses on pre-
processing for each dataset.

For numerical features, literature relies on different preprocessing choices. While
[82] uses z-score normalization for numeric attributes, [85, 230, 57] use min-max
normalization and [342] learns a Variational Gaussian Mixture Model to represent
each value by a one-hot vector for the mode and a scalar for the value within each
mode. As a first part of this experiment, we evaluate the number of modes for
Variational Gaussian Mixture Model (VGM) and Gaussian Mixture Model (GMM)
models, as a second part of this experiment, we compare the best Mixture Model
to min-max and z-score normalization. We conduct each experiment for the VAE as
well as the WGAN model.

For our experiments, we use a learning rate of 10−4 and train for up to 300 epochs.
We use early stopping by comparing our model with JSD to a validation split to
select the best model.

VGM/GMM Modes Our first experiment evaluates the number of mixtures con-
sidered for the (Variational) Gaussian Mixture Model (VGM / GMM) for each dataset
and generative NN model. In this experiment, all categorical variables are en-
coded with one hot encoding, and the number of m GMM modes is varied by
m ∈ {2, 3, 4, 5, 10, 15, 20}. We compare the distribution of the generated data to the
three real-data splits, train, eval, and test, by JSD. Note that reducing the number of
modes to one essentially results in fitting a single Gaussian distribution to the data
and evaluating the difference to its mean, scaled by its standard-deviation, which is
closely related to z-standardization and will be evaluated alongside the best VGM
and GMM models and min-max scaling in the next experiment. Models with a larger
number of modes generally yielded inferior results and were therefore omitted.

6.2. Modeling Distributions with GANs and VAEs 93

Table 6.2: JSD (see Eq. 6.30) between generated and real data with VGM and GMM
preprocessing and a varying number of modes averaged over 5 runs ±
standard deviation for the VAE. Smaller JSD values correspond to better
models. Highlighted entries denote the most suitable number of modes for
each dataset, which we select for further experiments. For equal averaged
results, we select the best individual model.

VGM GMM

Dataset Modes � JSDtrain � JSDeval � JSDtest � JSDtrain � JSDeval � JSDtest

Census

2 0.18 ± 0.02 0.19 ± 0.02 0.20 ± 0.01 0.22 ± 0.02 0.22 ± 0.02 0.23 ± 0.02

3 0.19 ± 0.01 0.19 ± 0.00 0.19 ± 0.01 0.23 ± 0.02 0.23 ± 0.01 0.24 ± 0.00

4 0.17 ± 0.01 0.19 ± 0.00 0.19 ± 0.00 0.24 ± 0.01 0.24 ± 0.01 0.25 ± 0.01

5 0.19 ± 0.02 0.19 ± 0.02 0.20 ± 0.01 0.25 ± 0.01 0.26 ± 0.00 0.27 ± 0.01

10 0.20 ± 0.02 0.22 ± 0.02 0.21 ± 0.01 0.28 ± 0.01 0.28 ± 0.02 0.29 ± 0.02

15 0.22 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.29 ± 0.01 0.29 ± 0.02 0.29 ± 0.01

20 0.23 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.30 ± 0.01 0.30 ± 0.02 0.30 ± 0.02

PaySim

2 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

3 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

4 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

5 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

10 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

15 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

20 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

SAP

2 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.09 ± 0.01 0.01 ± 0.00 0.06 ± 0.00

3 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.01 ± 0.00 0.02 ± 0.00

4 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

5 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

10 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

15 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

20 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00

�: lower value is better

Results for the VAE Table 6.2 shows the results of this parameter study for the
VAE and reports the mean and standard deviation over 5 runs per parameter con-
figuration. For all three datasets, the train, eval, and test splits yield very similar
results, indicating that the models did not overfit to the training data but capture
the behavior present in all three splits equally well. To decide on the best model,
we average on all splits. For the Census dataset, a VGM model with 4 modes shows
the best results over all three splits, while a GMM model with only 2 modes out-
performs all other configurations. For PaySim, 3 modes for VGM and 10 modes for
GMM yielded the best results. While models with two modes performed slightly
worse, all larger models yielded very similar results for VGM. For GMM, all mod-
els performed comparably. The SAP dataset also shows comparable performances
for all VGM models. For GMM, the results indicate a preference for larger models,
as 2- and 3-mode models yield notably worse results in comparison. However, the
differences between larger models are negligible. Overall, the VGM models perform
comparably or better for all datasets compared to the best GMM models. The dif-

94 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

ferences in the preferred number of modes is a result of the different procedures
to fit each mixture, i.e., depending on the positioning and scaling of each mode,
the generative model can utilize a different number of modes best. Nevertheless, as
discussed, the tendency for more or fewer modes can be considered consistent.

Results for the WGAN Table 6.3 shows the results of this parameter study for the
WGAN model. All in all, the observations from the VAE models repeat for our
WGAN experiments, as a small number of modes for Census, a small to medium
number of modes for PaySim and a larger number of modes for GMM yield the best
results and VGM generally outperforms GMM. In detail, for the Census dataset,
again 2 modes yield the best results for GMM preprocessing, while for VGM the
preprocessing with 3 modes performs best. For PaySim, there is a more notable
tendency towards a smaller number of modes from 2 to 5 modes for VGM and GMM
all within the same performance range, with 3 modes for VGM and 4 modes for
GMM performing best. The SAP dataset confirms the findings for the VAE model,
showing a preference for 3 or more modes for GMM, while for VGM all models

Table 6.3: JSD between generated and real data with VGM and GMM preprocessing
and a varying number of modes averaged over 5 runs ± standard devia-
tion for the WGAN model. Highlighted entries denote the most suitable
number of modes for each dataset.

VGM GMM

Dataset Modes � JSDtrain � JSDeval � JSDtest � JSDtrain � JSDeval � JSDtest

Census

2 0.15 ± 0.02 0.17 ± 0.03 0.16 ± 0.03 0.17 ± 0.02 0.18 ± 0.02 0.18 ± 0.03

3 0.15 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.17 ± 0.01 0.19 ± 0.03 0.18 ± 0.03

4 0.15 ± 0.02 0.17 ± 0.01 0.16 ± 0.03 0.19 ± 0.02 0.20 ± 0.04 0.21 ± 0.03

5 0.18 ± 0.02 0.18 ± 0.02 0.20 ± 0.04 0.18 ± 0.01 0.20 ± 0.02 0.20 ± 0.01

10 0.15 ± 0.03 0.16 ± 0.02 0.17 ± 0.02 0.21 ± 0.02 0.21 ± 0.02 0.22 ± 0.02

15 0.22 ± 0.04 0.23 ± 0.03 0.23 ± 0.04 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.02

20 0.25 ± 0.02 0.26 ± 0.04 0.26 ± 0.03 0.30 ± 0.01 0.30 ± 0.02 0.30 ± 0.02

PaySim

2 0.03 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

3 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

4 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

5 0.03 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

10 0.15 ± 0.06 0.15 ± 0.06 0.15 ± 0.06 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.01

15 0.11 ± 0.06 0.11 ± 0.07 0.11 ± 0.07 0.11 ± 0.04 0.11 ± 0.04 0.11 ± 0.04

20 0.13 ± 0.03 0.13 ± 0.03 0.13 ± 0.04 0.10 ± 0.02 0.10 ± 0.02 0.10 ± 0.03

SAP

2 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.04 ± 0.02 0.01 ± 0.00 0.03 ± 0.01

3 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.02 ± 0.01

4 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.02 ± 0.01

5 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 0.03 ± 0.01

10 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.02 ± 0.01

15 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.02 ± 0.01

20 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

�: lower value is better

6.2. Modeling Distributions with GANs and VAEs 95

Table 6.4: Overview of the number of input dimensions after preprocessing for each
dataset. Num. denotes the numerical preprocessor with the number of
modes listed for VGM/GMM according to the best mode choice per model
(cf. Tables 6.2 and 6.3).

Dataset Num. Modes (Model) Input Dim.

Census

VGM 4 (VAE) 132

GMM 2 (VAE) 120

VGM 3 (WGAN) 126

GMM 2 (WGAN) 120

minmax - 108

z-score - 108

PaySim

VGM 3 (VAE) 37

GMM 10 (VAE) 93

VGM 3 (WGAN) 37

GMM 4 (WGAN) 45

minmax - 13

z-score - 13

SAP

VGM 10 (VAE) 296

GMM 20 (VAE) 396

VGM 15 (WGAN) 346

GMM 20 (WGAN) 396

minmax - 196

z-score - 196

perform comparable. In general, the WGAN model yields better results than the
VAE models, while the largest improvement is shown for the Census dataset.

Embeddings and scaling Besides numerical scaling, other preprocessing decisions
in literature differ in several aspects and often lack evaluation: While in general,
GANs and VAEs on tabular data both have the use of embedding layers in common,
their approach of deciding on embedding layer size varies and needs further justi-
fication and evaluation for our datasets. For example, [85] incorporates embedding
layers of size d = min(d k

3e, 20) for each categorical attribute with k unique feature
values in their GAN model, while [82] assigns a fixed embedding dimensionality
of 50 for each categorical attribute in their VAE experiments. Note that for several
features in our datasets, an embedding size of 50 per feature effectively means an
increase in dimensionality, since the number of unique values for some categorical
features is very low, which might contradict the purpose of embedding as dense
dimension reductions. For datasets with a reasonable number of categorical fea-
ture values per feature, directly representing each feature by its one-hot encoding
becomes feasible. Therefore, we include the use of one-hot encoding without any
embedding as an additional preprocessing variant.

96 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

Table 6.5: Comparison between generated and real data with all preprocessing com-
binations and a varying embedding size demb averaged over 5 runs ± stan-
dard deviation for the VAE. Highlighted entries denote the most suitable
number of modes for each dataset..

Census PaySim SAP

Num demb � JSD � FID � corr � JSD � FID � corr � JSD � FID � corr

GMM

10 0.22 ± 0.02 0.49 ± 0.05 0.03 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.06 ± 0.01 0.01 ± 0.00 1.28 ± 0.05 0.10 ± 0.00

20 0.23 ± 0.01 0.42 ± 0.02 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.01 0.06 ± 0.00 0.01 ± 0.00 1.23 ± 0.10 0.10 ± 0.01

50 0.22 ± 0.02 0.42 ± 0.04 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.01 0.06 ± 0.00 0.01 ± 0.00 1.28 ± 0.12 0.11 ± 0.00

None 0.22 ± 0.02 0.43 ± 0.02 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.01 0.06 ± 0.00 0.01 ± 0.00 1.24 ± 0.09 0.11 ± 0.00

auto 0.23 ± 0.02 0.54 ± 0.02 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.01 0.06 ± 0.01 0.01 ± 0.00 1.25 ± 0.09 0.10 ± 0.00

minmax

10 0.33 ± 0.03 0.56 ± 0.06 0.10 ± 0.01 0.17 ± 0.01 0.03 ± 0.00 0.12 ± 0.01 0.21 ± 0.04 1.03 ± 0.15 0.09 ± 0.01

20 0.33 ± 0.02 0.54 ± 0.02 0.10 ± 0.00 0.17 ± 0.01 0.04 ± 0.01 0.12 ± 0.01 0.25 ± 0.03 1.05 ± 0.08 0.09 ± 0.01

50 0.33 ± 0.02 0.50 ± 0.02 0.10 ± 0.00 0.17 ± 0.00 0.04 ± 0.01 0.13 ± 0.00 0.25 ± 0.03 1.02 ± 0.10 0.09 ± 0.01

None 0.33 ± 0.02 0.53 ± 0.03 0.10 ± 0.01 0.18 ± 0.01 0.04 ± 0.00 0.12 ± 0.00 0.22 ± 0.02 0.82 ± 0.07 0.08 ± 0.01

auto 0.33 ± 0.02 0.69 ± 0.03 0.11 ± 0.01 0.17 ± 0.01 0.04 ± 0.00 0.12 ± 0.01 0.22 ± 0.02 1.04 ± 0.10 0.09 ± 0.01

z-score

10 0.21 ± 0.01 0.45 ± 0.03 0.04 ± 0.00 0.05 ± 0.01 0.01 ± 0.00 0.05 ± 0.00 0.10 ± 0.00 1.08 ± 0.09 0.08 ± 0.00

20 0.20 ± 0.01 0.40 ± 0.04 0.04 ± 0.00 0.05 ± 0.01 0.02 ± 0.01 0.05 ± 0.00 0.10 ± 0.01 1.19 ± 0.13 0.08 ± 0.00

50 0.21 ± 0.01 0.38 ± 0.04 0.04 ± 0.00 0.05 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.10 ± 0.00 1.04 ± 0.08 0.08 ± 0.00

None 0.20 ± 0.02 0.41 ± 0.01 0.04 ± 0.00 0.05 ± 0.01 0.01 ± 0.00 0.05 ± 0.00 0.10 ± 0.00 0.96 ± 0.07 0.08 ± 0.00

auto 0.21 ± 0.01 0.57 ± 0.07 0.04 ± 0.00 0.05 ± 0.01 0.02 ± 0.00 0.05 ± 0.01 0.10 ± 0.01 1.11 ± 0.09 0.08 ± 0.00

VGM

10 0.19 ± 0.01 0.50 ± 0.05 0.04 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.05 ± 0.01 0.00 ± 0.00 1.32 ± 0.08 0.10 ± 0.00

20 0.19 ± 0.01 0.48 ± 0.03 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 1.26 ± 0.11 0.10 ± 0.00

50 0.20 ± 0.01 0.44 ± 0.04 0.03 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 1.21 ± 0.07 0.10 ± 0.00

None 0.19 ± 0.01 0.46 ± 0.04 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 1.20 ± 0.05 0.10 ± 0.00

auto 0.19 ± 0.01 0.63 ± 0.05 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.01 0.05 ± 0.00 0.00 ± 0.00 1.35 ± 0.18 0.10 ± 0.01

� / �: higher / lower value is better

In the following experiment, we evaluate all preprocessing choices in combination
with both models on all three datasets for categorical and numeric features, i.e., one-
hot encoded embeddings with a fixed dimensionality d ∈ {10, 20, 50} and a variable
dimensionality per feature by d = min(d k

3e, 20) for k unique feature values referred
to as auto and min-max normalization, z-score scaling, and VGM/GMM as evaluated
in Table 6.2 for numerical features. The input size after each preprocessing step is
shown in Table 6.4.

Results for the VAE Table 6.5 shows the results of this experiment for the VAE.
Again, each result reported is the mean and standard deviation over 5 repetitions.
When comparing different numeric preprocessing approaches, for all datasets, VGM
yields the most promising results with varying performance gap across the datasets:
For Census, min-max is the worst performing approach with a JSD of 0.33 com-
pared to the best (VGM) of 0.19, while for PaySim, GMM and VGM yield the best
performance with a JSD of 0.03 compared to the worst (min-max) of 0.17. For SAP,
the results are similar to Census, VGM performs best with a JSD of 0.0, however,
the second-best model, GMM performs only slightly worse (0.01). The standard de-
viation in general is low, which means that the models perform consistently over
several iterations with the largest scattering for min-max (0.04 at maximum). Over-

6.2. Modeling Distributions with GANs and VAEs 97

all, the performance differences between all numeric preprocessing approaches are
statistically significant2.

When it comes to embedding dimensionality demb, the results differ only slightly,
and the one-hot encoding (i.e., demb = None) performs comparably. The difference
between the different fixed dimensionalities is neglectable and does not show a clear
pattern significantly favoring one size over the others. For Census and PaySim, VGM
without embedding and for SAP, VGM with an embedding size of 50 yield the best
results, which we select for our next experiment respectively.

Note that the minimal difference between one-hot encoding and all embedding
variants suggests that learning per-feature independent embeddings from scratch
alongside the task is not beneficial for VAE. In Chapter 7, we therefore focus on
approaches to learn meaningful representations for categorical features from a dif-
ferent perspective by formulating a context-based prediction task known from the
NLP domain as word embeddings, such as Word2Vec [208] and GloVe [233].

In Table 6.5, besides JSD, FID and corr evaluation measurements are also included.
For Census and PaySim, the results for JSD, FID, and corr correspond quite well with
z-score, GMM and VGM yielding good results and min-max scaling performing
worst. For SAP, however, the results are mixed when looking at the influence of
different embedding sizes: For VGM the best FID is achieved without embeddings
while for z-score normalization an embedding size of 10 performs comparable. The
correlation does not show a clear pattern over different peprocessing and embedding
parameters with several configurations that achieve equally good correlation errors
of ≈ 0.09.

Results for the WGAN The results for the WGAN model regarding the scaling of
numerical features confirm the findings from the VAE model, as min-max scaling
yields the worst results for all datasets. GMM and VGM perform comparable while
the best results for PaySim and SAP are achieved with VGM and a dimensionality
of d = min(d k

3e, 20) referred to as auto. For Census, z-score normalization with
an embedding size of 10 performs best. However, with respect to the benefit and
optimal size of the embeddings, the results for WGAN differ from the VAE results,
as using embeddings in contrast to one-hot encoding categorical attributes yield
slightly better results with a tendency of smaller embedding sizes over all models
and datasets.

While the correlation evaluation suggests only minor differences for Census over
the scaling and embedding choices, for PaySim min-max yields notably worse results
for the precise modeling of feature correlations. For SAP VGM, GMM and z-score
normalization capture correlations comparably well.

For our next experiments, we select the best parameter configuration of this ex-
periment, i.e, with the GAN model z-score normalization and embeddings with

2Mann-Whitney U Test, p ≤ 0.01

98 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

Table 6.6: Comparison between generated and real data with all preprocessing com-
binations and a varying embedding size demb averaged over 5 runs ± stan-
dard deviation for the WGAN model. Highlighted entries denote the most
suitable number of modes for each dataset.

Census PaySim SAP

Num demb � JSD � FID � corr � JSD � FID � corr � JSD � FID � corr

GMM

10 0.17 ± 0.02 0.17 ± 0.01 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.02 ± 0.01 1.19 ± 0.23 0.10 ± 0.01

20 0.17 ± 0.02 0.21 ± 0.05 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 1.14 ± 0.14 0.09 ± 0.01

50 0.18 ± 0.02 0.17 ± 0.02 0.02 ± 0.00 0.04 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.01 1.14 ± 0.08 0.10 ± 0.01

None 0.18 ± 0.02 0.22 ± 0.02 0.03 ± 0.01 0.03 ± 0.00 0.01 ± 0.00 0.04 ± 0.01 0.01 ± 0.01 1.13 ± 0.18 0.10 ± 0.01

auto 0.18 ± 0.03 0.33 ± 0.03 0.03 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.01 ± 0.00 1.18 ± 0.18 0.10 ± 0.01

minmax

10 0.21 ± 0.08 0.17 ± 0.04 0.05 ± 0.02 0.20 ± 0.20 0.21 ± 0.59 0.17 ± 0.10 0.14 ± 0.17 1.25 ± 0.17 0.13 ± 0.02

20 0.32 ± 0.05 0.24 ± 0.05 0.03 ± 0.00 0.22 ± 0.04 0.07 ± 0.05 0.16 ± 0.05 0.40 ± 0.04 1.26 ± 0.17 0.11 ± 0.01

50 0.32 ± 0.05 0.26 ± 0.03 0.03 ± 0.00 0.33 ± 0.14 0.30 ± 0.53 0.19 ± 0.06 0.42 ± 0.06 1.26 ± 0.22 0.12 ± 0.00

None 0.31 ± 0.05 0.20 ± 0.02 0.03 ± 0.00 0.30 ± 0.12 0.23 ± 0.46 0.17 ± 0.06 0.40 ± 0.04 1.45 ± 0.27 0.12 ± 0.01

auto 0.30 ± 0.04 0.33 ± 0.04 0.03 ± 0.01 0.34 ± 0.21 0.53 ± 0.69 0.27 ± 0.10 0.31 ± 0.03 1.61 ± 0.66 0.12 ± 0.02

z-score

10 0.14 ± 0.02 0.18 ± 0.02 0.02 ± 0.00 0.04 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.06 ± 0.01 1.06 ± 0.24 0.09 ± 0.02

20 0.17 ± 0.01 0.24 ± 0.04 0.02 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.08 ± 0.01 1.12 ± 0.17 0.09 ± 0.01

50 0.16 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.04 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.09 ± 0.03 1.23 ± 0.10 0.09 ± 0.01

None 0.19 ± 0.04 0.20 ± 0.02 0.02 ± 0.00 0.04 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.09 ± 0.02 1.28 ± 0.15 0.10 ± 0.02

auto 0.17 ± 0.03 0.33 ± 0.07 0.03 ± 0.00 0.04 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.05 ± 0.01 1.31 ± 0.12 0.11 ± 0.01

VGM

10 0.15 ± 0.03 0.19 ± 0.03 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 1.10 ± 0.14 0.10 ± 0.01

20 0.16 ± 0.02 0.18 ± 0.01 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 1.10 ± 0.14 0.10 ± 0.02

50 0.17 ± 0.00 0.20 ± 0.02 0.03 ± 0.01 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 1.16 ± 0.21 0.10 ± 0.02

None 0.15 ± 0.02 0.17 ± 0.02 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 1.04 ± 0.13 0.11 ± 0.01

auto 0.16 ± 0.01 0.31 ± 0.03 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 1.22 ± 0.26 0.09 ± 0.01

� / �: higher / lower value is better

demb = 10 for the Census dataset and VGM with demb = auto for PaySim and SAP.
The best VAE and WGAN models are compared in the following experiment (cf.
Table 6.7) along with the evaluation of additional iNALU and Cross Layers.

Experiment 2: Evaluation of iNALU and Cross Layers

In this experiment, we additionally introduce Cross layers and iNALU layers and
vary the respective number of layers to examine whether a specific representation
of dependencies has a beneficial influence on generative modeling quality in gen-
eral, including our contributions from RQ 1.1. We therefore select the best models
for VAE and WGAN respectively based on the results of the previous experiments
and introduce our architectural changes regarding iNALU and Cross layers to each
model.

Results for the VAE In Table 6.7 the results for including an iNALU, a Cross layer,
or both are depicted. For all datasets, the result does not benefit from introducing
additional layers. While the influence of Cross layer alone is not significant3, incor-
porating an iNALU layer impairs the results significantly4. For further iNALU layers
or Cross layers, the model has stability issues and does not converge consistently.

3Mann-Whitney U Test, p = 0.425
4Mann-Whitney U Test, p ≤ 0.01

6.2. Modeling Distributions with GANs and VAEs 99

Table 6.7: Comparison between generated and real data for both models (best con-
figuration from Experiment 1 per dataset) with iNALU and Cross layers.

Census PaySim SAP

Model Cross iNALU � JSD � FID � corr � JSD � FID � corr � JSD � FID � corr

VAE

0 0 0.19 ± 0.01 0.45 ± 0.06 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.01 0.05 ± 0.00 0.01 ± 0.00 1.19 ± 0.09 0.09 ± 0.00

0 1 0.34 ± 0.01 0.66 ± 0.08 0.06 ± 0.01 0.10 ± 0.02 0.11 ± 0.05 0.08 ± 0.02 0.01 ± 0.00 1.70 ± 0.12 0.11 ± 0.00

1 0 0.19 ± 0.03 0.46 ± 0.12 0.04 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.04 ± 0.00 0.01 ± 0.00 1.14 ± 0.12 0.09 ± 0.00

1 1 0.34 ± 0.01 1.72 ± 2.05 0.10 ± 0.08 0.10 ± 0.03 0.08 ± 0.03 0.10 ± 0.05 0.01 ± 0.00 1.50 ± 0.13 0.11 ± 0.01

WGAN

0 0 0.14 ± 0.02 0.18 ± 0.02 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 1.22 ± 0.26 0.09 ± 0.01

0 1 0.07 ± 0.01 0.18 ± 0.02 0.05 ± 0.03 0.02 ± 0.00 0.01 ± 0.01 0.04 ± 0.02 0.01 ± 0.01 1.40 ± 0.38 0.14 ± 0.02

0 2 0.08 ± 0.03 0.18 ± 0.01 0.04 ± 0.01 0.12 ± 0.14 0.60 ± 0.82 0.30 ± 0.39 0.04 ± 0.06 10.44 ± 20.38 0.15 ± 0.08

1 0 0.12 ± 0.01 0.19 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.17 ± 0.03 1.91 ± 0.38 0.12 ± 0.03

1 1 0.10 ± 0.03 0.26 ± 0.04 0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 1.49 ± 0.20 0.15 ± 0.01

1 2 0.09 ± 0.01 0.38 ± 0.21 0.06 ± 0.03 0.08 ± 0.08 0.78 ± 0.93 0.38 ± 0.41 0.07 ± 0.13 10.92 ± 21.35 0.16 ± 0.08

2 0 0.12 ± 0.01 0.19 ± 0.02 0.02 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.12 ± 0.02 1.47 ± 0.28 0.12 ± 0.03

2 1 0.10 ± 0.02 0.26 ± 0.05 0.05 ± 0.02 0.02 ± 0.01 0.00 ± 0.00 0.12 ± 0.17 0.02 ± 0.04 1.41 ± 0.23 0.14 ± 0.01

2 2 0.07 ± 0.05 0.27 ± 0.17 0.07 ± 0.06 0.03 ± 0.03 0.29 ± 0.50 0.28 ± 0.43 0.01 ± 0.01 1.40 ± 0.26 0.13 ± 0.01

� / �: higher / lower value is better

Results for the WGAN Table 6.7 summarizes the results for a number of Cross and
iNALU layers between 0 and 2 for the WGAN model. For the Census dataset, in-
troducing additional specialized layers improves the JSD by large margin4. Without
iNALU layers, the results for 1 and 2 Cross layers improve slightly, while adding one
iNALU layer yields a large performance gain achieving the best JSD without Cross
layers and with one iNALU layer. While the FID supports this result, the feature
correlation error corr slightly impairs. For PaySim, introducing a Cross and iNALU
layer both slightly improves the performance, while two iNALU layers impair the
performance notably. The best performance is achieved using only one or two Cross
layers, which perform equally well. For the SAP dataset, introducing additional
layers does not further improve the performance. While configurations with one
iNALU layer and one Cross layer or two iNALU and two Cross layers perform simi-
lar for JSD, FID and corr metrics show the best results without any additional iNALU
and Cross layers. These results suggest that, depending on the dataset, specialized
layers for numeric dependencies or feature crossings can support the performance
of the WGAN model. However, this does not hold for all applications where such
dependencies are expected in the dataset, as shown for the SAP dataset.

Generative Performance Evaluation

As we evaluated the best preprocessing parameters and specific architectural choices
in the previous experiments, we now focus on a thorough evaluation and compari-
son of the generative performance of the best VAE and WGAN models for the three
datasets. For RQ 1.2, the question of modeling distributions, we exploratively eval-
uate data generated by our models side by side using KDE plots and Cumulative
Distribution Functions (CDFs). To address RQ 1.3, we compare feature correlation
plots for both models in parallel to answer which model is able to reproduce feature
correlations from the original data best.

100 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

Census Fig. 6.12 visualizes the numeric features of the Census dataset. Both mod-
els, WGAN and VAE, model the characteristics of numerical attributes quite well.
While the VAE models the age feature sightly more precisely, the fnlwgt feature
shows a notable underestimation in the low value range of the distribution. The
discrete features age and education-num are modeled by both approaches discretely
(visible as steps in the CDF plots). The WGAN approach tends to underestimate
the sharpness of long-tailed distributions such as capital-gain/loss, whereas the pre-
diction of the VAE model mostly collapses to the high density value range. Note
that for this evaluation the most extreme 1% quantiles were already clipped during
normalization, i.e., the infrequent values in the ‘tail’ account for more than 1% of the
data. The hours-per-week feature, which contains notable steps but is not as discrete
as education-num, is not well modeled by both approaches. While the WGAN overall
fits the distribution better than VAE, the steps are mostly smoothed out for both
models.

ag
e

fnl
wgt

ed
uca

tio
n-n

um

cap
ita

l-g
ain

cap
ita

l-lo
ss

ho
urs

-pe
r-w

ee
k

no
rm

al
ize

d
va

lu
e

real
synth

(a) WGAN KDE

ag
e

fnl
wgt

ed
uca

tio
n-n

um

cap
ita

l-g
ain

cap
ita

l-lo
ss

ho
urs

-pe
r-w

ee
k

no
rm

al
ize

d
va

lu
e

real
synth

(b) VAE KDE

0.0 0.5 1.0
0.0

0.5

1.0

ag
e

0.0 0.5 1.0
0.0

0.5

1.0

fn
lw

gt

0.0 0.5 1.0
0.0

0.5

1.0

ed
uc

at
io

n-
nu

m

0.0 0.5 1.0
0.0

0.5

1.0

ca
pi

ta
l-g

ai
n

0.0 0.5 1.0
0.0

0.5

1.0

ca
pi

ta
l-l

os
s

real
synth

0.0 0.5 1.0
0.0

0.5

1.0

ho
ur

s-
pe

r-w
ee

k

(c) WGAN CDF

0.0 0.5 1.0
0.0

0.5

1.0

ag
e

0.0 0.5 1.0
0.0

0.5

1.0

fn
lw

gt

0.0 0.5 1.0
0.0

0.5

1.0

ed
uc

at
io

n-
nu

m

0.0 0.5 1.0
0.0

0.5

1.0

ca
pi

ta
l-g

ai
n

0.0 0.5 1.0
0.0

0.5

1.0

ca
pi

ta
l-l

os
s

real
synth

0.0 0.5 1.0
0.0

0.5

1.0

ho
ur

s-
pe

r-w
ee

k

(d) VAE CDF

Figure 6.12: Numeric features of the Census dataset (blue) in comparison to gen-
erated synthetic data from WGAN (a), (c) and VAE (b), (d) by kernel
density estimation (a), (b) and CDF (c), (d).

6.2. Modeling Distributions with GANs and VAEs 101

In Fig. 6.13 the frequency of categorical feature values for real and generated
data is depicted in log scale. Overall, the WGAN mimics the real frequency more
precisely up to a certain frequency threshold for feature values, which then do not
occur in the generated data, visible in the upper row of features. In contrast, VAE has
a larger discrepancy for frequent feature values and generates the most infrequent
values for some features (see, for example, education), however, fails for others (race,
native-country).

101

102

103

wo
rk

cla
ss

real
synth

101

102

103

ed
uc

at
io

n

101

102

103

m
ar

ita
l-s

ta
tu

s

101

102

oc
cu

pa
tio

n
103

re
la

tio
ns

hi
p

102

103

ra
ce se
x

101

102

103
na

tiv
e-

co
un

try

(a) WGAN

101

102

103

wo
rk

cla
ss

real
synth

101

102

103

ed
uc

at
io

n

101

102

103

m
ar

ita
l-s

ta
tu

s

101

102

103

oc
cu

pa
tio

n

102

103

re
la

tio
ns

hi
p

102

103

ra
ce se
x

101

103

na
tiv

e-
co

un
try

(b) VAE

Figure 6.13: Categorical features of Census dataset (blue) in comparison to generated
synthetic data from WGAN (a) and VAE (b) in logarithmic scale.

102 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

ag
e

fn
lw

gt
ed

uc
at

io
n-

nu
m

ca
pi

ta
l-g

ai
n

ca
pi

ta
l-l

os
s

ho
ur

s-
pe

r-w
ee

k
wo

rk
cla

ss
ed

uc
at

io
n

m
ar

ita
l-s

ta
tu

s
oc

cu
pa

tio
n

re
la

tio
ns

hi
p

ra
ce se
x

na
tiv

e-
co

un
try

age
fnlwgt

education-num
capital-gain
capital-loss

hours-per-week
workclass
education

marital-status
occupation

relationship
race
sex

native-country
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) WGAN corr

ag
e

fn
lw

gt
ed

uc
at

io
n-

nu
m

ca
pi

ta
l-g

ai
n

ca
pi

ta
l-l

os
s

ho
ur

s-
pe

r-w
ee

k
wo

rk
cla

ss
ed

uc
at

io
n

m
ar

ita
l-s

ta
tu

s
oc

cu
pa

tio
n

re
la

tio
ns

hi
p

ra
ce se
x

na
tiv

e-
co

un
try

age
fnlwgt

education-num
capital-gain
capital-loss

hours-per-week
workclass
education

marital-status
occupation

relationship
race
sex

native-country
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Census data corr

ag
e

fn
lw

gt
ed

uc
at

io
n-

nu
m

ca
pi

ta
l-g

ai
n

ca
pi

ta
l-l

os
s

ho
ur

s-
pe

r-w
ee

k
wo

rk
cla

ss
ed

uc
at

io
n

m
ar

ita
l-s

ta
tu

s
oc

cu
pa

tio
n

re
la

tio
ns

hi
p

ra
ce se
x

na
tiv

e-
co

un
try

age
fnlwgt

education-num
capital-gain
capital-loss

hours-per-week
workclass
education

marital-status
occupation

relationship
race
sex

native-country
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) VAE corr
ag

e
fn

lw
gt

ed
uc

at
io

n-
nu

m
ca

pi
ta

l-g
ai

n
ca

pi
ta

l-l
os

s
ho

ur
s-

pe
r-w

ee
k

wo
rk

cla
ss

ed
uc

at
io

n
m

ar
ita

l-s
ta

tu
s

oc
cu

pa
tio

n
re

la
tio

ns
hi

p
ra

ce se
x

na
tiv

e-
co

un
try

age
fnlwgt

education-num
capital-gain
capital-loss

hours-per-week
workclass
education

marital-status
occupation

relationship
race
sex

native-country
0.0

0.2

0.4

0.6

0.8

1.0

(d) WGAN corr
ag

e
fn

lw
gt

ed
uc

at
io

n-
nu

m
ca

pi
ta

l-g
ai

n
ca

pi
ta

l-l
os

s
ho

ur
s-

pe
r-w

ee
k

wo
rk

cla
ss

ed
uc

at
io

n
m

ar
ita

l-s
ta

tu
s

oc
cu

pa
tio

n
re

la
tio

ns
hi

p
ra

ce se
x

na
tiv

e-
co

un
try

age
fnlwgt

education-num
capital-gain
capital-loss

hours-per-week
workclass
education

marital-status
occupation

relationship
race
sex

native-country
0.0

0.2

0.4

0.6

0.8

1.0

(e) VAE corr

Figure 6.14: Feature correlations for WGAN (a) and VAE (c) generated and real (b)
Census data in comparison. Absolute differences corr between data cor-
relations and WGAN (d) and VAE (e) generated correlations.

Fig. 6.14 shows the feature correlations for the data generated by WGAN and
VAE compared to the correlations of features of the real dataset. Both approaches
model feature correlations well, which are present in the real dataset. The VAE
almost perfectly reproduces the correlations with only small differences in the most
correlated features. The WGAN model has difficulties with the numeric attributes
fnlwgt and education-num, which are associated with a strong negative correlation,
although no correlation is present in the real dataset. This also becomes apparent for
the plot of absolute differences between generated and real data in the lower row,
where the VAE is almost without differences, whereas WGAN has notable errors
primarily among the numeric attributes.

To summarize, for the Census dataset both models model numeric and categorical
feature distributions as well as feature correlations well. While WGAN is more pre-
cise regarding numerical features and infrequent categorical features, VAE is more
precise replicating feature correlations.

6.2. Modeling Distributions with GANs and VAEs 103

PaySim The results for PaySim are similar to Census, as both approaches represent
the distributions and dependencies well. Fig. 6.15 shows the results for the features
for WGAN and VAE. VAE more accurately models the discrete step feature, whereas
the other numeric features are modeled by WGAN more precisely. The categorical
feature counts of the only categorical variable type (see Fig. 6.15(c) and (d)) are well
modeled for the most frequent values, while both models struggle to generate the
most infrequent value according to the real frequency.

The feature correlations present in real data are accounted for by both models.
Fig. 6.15(f) shows the correlations between all the features of the real data, while
(e) and (g) depict the absolute error between the correlations of the generated data
and the correlations of the dataset. The WGAN model is slightly more precise for
correlations within the synthesized PaySim data.

0.0 0.5 1.0
0.0

0.5

1.0

st
ep

0.0 0.5 1.0
0.0

0.5

1.0

am
ou

nt

0.0 0.5 1.0
0.0

0.5

1.0

ol
db

al
an

ce
Or

g

0.0 0.5 1.0
0.0

0.5

1.0

ne
wb

al
an

ce
Or

g

0.0 0.5 1.0
0.0

0.5

1.0

ol
db

al
an

ce
De

st

real
synth

0.0 0.5 1.0
0.0

0.5

1.0

ne
wb

al
an

ce
De

st

(a) WGAN CDF

0.0 0.5 1.0
0.0

0.5

1.0

st
ep

0.0 0.5 1.0
0.0

0.5

1.0

am
ou

nt

0.0 0.5 1.0
0.0

0.5

1.0

ol
db

al
an

ce
Or

g
0.0 0.5 1.0

0.0

0.5

1.0

ne
wb

al
an

ce
Or

g

0.0 0.5 1.0
0.0

0.5

1.0

ol
db

al
an

ce
De

st

real
synth

0.0 0.5 1.0
0.0

0.5

1.0

ne
wb

al
an

ce
De

st

(b) VAE CDF

type
101

102

103 real
synth

(c) WGAN log-counts

type

102

103 real
synth

(d) VAE log-counts

st
ep

am
ou

nt

ol
db

al
an

ce
Or

g

ne
wb

al
an

ce
Or

g

ol
db

al
an

ce
De

st

ne
wb

al
an

ce
De

st

or
gB

al
an

ce
Di

ff

de
st

Ba
la

nc
eD

iff

ty
pe

step

amount

oldbalanceOrg

newbalanceOrg

oldbalanceDest

newbalanceDest

orgBalanceDiff

destBalanceDiff

type
0.0

0.2

0.4

0.6

0.8

1.0

(e) WGAN corr

st
ep

am
ou

nt

ol
db

al
an

ce
Or

g

ne
wb

al
an

ce
Or

g

ol
db

al
an

ce
De

st

ne
wb

al
an

ce
De

st

or
gB

al
an

ce
Di

ff

de
st

Ba
la

nc
eD

iff

ty
pe

step

amount

oldbalanceOrg

newbalanceOrg

oldbalanceDest

newbalanceDest

orgBalanceDiff

destBalanceDiff

type
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) PaySim data corr

st
ep

am
ou

nt

ol
db

al
an

ce
Or

g

ne
wb

al
an

ce
Or

g

ol
db

al
an

ce
De

st

ne
wb

al
an

ce
De

st

or
gB

al
an

ce
Di

ff

de
st

Ba
la

nc
eD

iff

ty
pe

step

amount

oldbalanceOrg

newbalanceOrg

oldbalanceDest

newbalanceDest

orgBalanceDiff

destBalanceDiff

type
0.0

0.2

0.4

0.6

0.8

1.0

(g) VAE corr

Figure 6.15: Features of PaySim dataset (blue) in comparison to generated synthetic
data from WGAN (a,c) and VAE (b,d) by CDF (a), (b), log-counts (c), (d)
and abs. correlation error corr (e), (g).

104 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

SAP For SAP, both models perform comparably well. Figs. 6.16 and 6.17 depict a
selection of the 10 numeric and 42 categorical features of the generated data by both
models in relation to real data. Features that are not depicted show similar charac-
teristics. While the numeric features are modeled very accurately by WGAN, VAE
does not predict values as precise outside the high density areas (i.e., ‘long-tail’ val-
ues) as shown for Betrag Hauswaehr (see Fig. 6.16 (b)). For categorical features, both
models yield good results for frequent feature values, while underestimating infre-
quent feature values up to lost values for very infrequent values as for WGAN and
Alternative Kontonummer (see Fig. 6.17(a)). As the feature value counts are log-scaled,
some values in the real dataset are very rare (up to one occurrence) in comparison
to frequent values (>1 000 occurrences) in the dataset.

The analysis of feature correlations gives a differentiated view: As WGAN mod-
els the majority of all features very well, some features (represented by rows and
columns in the plot) have high absolute errors for correlations with other features.
In contrast, VAE has overall higher modeling errors but does not show consistently
very high errors for single features.

0.0 0.5 1.0
0.0

0.5

1.0

Be
tra

g
Ha

us
wa

eh
r

0.0 0.5 1.0
0.0

0.5

1.0

Be
tra

g

0.0 0.5 1.0
0.0

0.5

1.0
Be

tra
g_

5

0.0 0.5 1.0
0.0

0.5

1.0

Ge
sa

m
tb

es
ta

nd

0.0 0.5 1.0
0.0

0.5

1.0

Ge
sa

m
tw

er
t

real
synth

0.0 0.5 1.0
0.0

0.5

1.0

Kr
ed

itk
on

tr_
be

tra
g

(a) WGAN CDF

0.0 0.5 1.0
0.0

0.5

1.0

Be
tra

g
Ha

us
wa

eh
r

0.0 0.5 1.0
0.0

0.5

1.0

Be
tra

g

0.0 0.5 1.0
0.0

0.5

1.0

Be
tra

g_
5

0.0 0.5 1.0
0.0

0.5

1.0

Ge
sa

m
tb

es
ta

nd

0.0 0.5 1.0
0.0

0.5

1.0

Ge
sa

m
tw

er
t

real
synth

0.0 0.5 1.0
0.0

0.5

1.0

Kr
ed

itk
on

tr_
be

tra
g

(b) VAE CDF

Figure 6.16: Selected features of SAP dataset (blue) in comparison to generated syn-
thetic data from WGAN and VAE by CDF.

6.2. Modeling Distributions with GANs and VAEs 105

101

103

Al
te

rn
at

iv
e

Ko
nt

.

real
synth

103

Ba
sis

m
en

ge
ne

in
he

.
102

103

Be
st

Pr
ei

sM
ng

Ei
nh

.

103

Be
st

an
ds

bu
ch

un
g

102

103

Be
st

el
lm

en
ge

ne
in

.

101

102

103

Bu
ch

un
gs

sc
hl

ue
ss

.

102

103

Bu
ch

un
gs

ze
ile

n-
I.

103

Er
fa

ss
un

gs
M

ng
Ei

n.

(a) WGAN log-counts

101

103

Al
te

rn
at

iv
e

Ko
nt

.

real
synth

103

Ba
sis

m
en

ge
ne

in
he

.

102

103

Be
st

Pr
ei

sM
ng

Ei
nh

.

102

103

Be
st

an
ds

bu
ch

un
g

101

102

103

Be
st

el
lm

en
ge

ne
in

.

101

102

103

Bu
ch

un
gs

sc
hl

ue
ss

.

102

103

Bu
ch

un
gs

ze
ile

n-
I.

103

Er
fa

ss
un

gs
M

ng
Ei

n.

(b) VAE log-counts

0.0

0.2

0.4

0.6

0.8

1.0

(c) WGAN corr

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) SAP data corr

0.0

0.2

0.4

0.6

0.8

1.0

(e) VAE corr

Figure 6.17: Selected features of SAP dataset (blue) in comparison to generated syn-
thetic data from WGAN and VAE by log-counts (a, b) and abs. correla-
tion error corr (c, e).

106 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

6.2.4 Conclusion

In this section, we adapted two generative neural network models, the Variational
Auto-Encoder and Wasserstein Generative Adversarial Network, modeling distribu-
tions to synthesize transaction data. We first evaluated several choices to represent
numerical and categorical features in favor of precisely learning feature distributions
and correlations by different scaling approaches for numeric and embedding sizes
for categorical features. We found Variational Gaussian Mixture models beneficial
for both models and most datasets with the exception of VAE for Census, which
yielded best results with z-score normalization, and WGAN for PaySim, for which
Gaussian Mixture Models performed slightly better. Contrarily to scaling, the em-
bedding parameters did not show a large influence on generative performance for
both approaches. No parameter configuration consistently outperformed the others.

We incorporated iNALU and Cross Layers to explicitly model categorical and
numerical feature dependencies. For the VAE, Cross Layers had no considerable
influence, while iNALU layers impaired the performance. For the WGAN model,
incorporating an iNALU layer notably improved the results for Census while per-
forming comparably on the other datasets. Cross Layers improved the results only
slightly for the WGAN model with no additional benefit when mixed with iNALU
layers.

In the qualitative analysis of the best models, we found that both VAE and WGAN
effectively capture dataset distributions and dependencies and are able to synthesize
a dataset following the characteristics of the underlying real dataset trained on. For
both datasets with low feature count, Census and PaySim, the models accurately
account for characteristics of numeric and categorical variables as well as feature
correlations. For SAP, the large number of categorical features are modeled less pre-
cisely by both approaches while still preserving high accuracy for numerical vari-
ables. To summarize, the WGAN model tends to account for numeric distributions
more precisely, while the VAE is less prone to missing feature values, typically re-
ferred to as mode collapse, which is often discussed as disadvantage of GAN-based
models in general. Including specific layers for modeling categorical and numerical
dependencies can be beneficial depending on the dataset and model.

6.3. Summary 107

6.3 Summary

In this chapter, we focused on modeling of distributions and dependencies for trans-
action data with NNs. We first proposed a specialized neural architecture, the im-
proved Neural Arithmetic Logic Unit to model mathematical relations and depen-
dencies more precisely. We evaluated this architecture on several synthetic datasets
and showed its ability to model mathematical relations of various complexity im-
plicitly. Therefore, we can answer the research question RQ 1.1, to what extent ex-
trapolation of numerical dependencies can be improved by our neural architecture
as follows:

Although not all stability issues and the precise modeling of the division op-
erator have been solved, our proposed iNALU model generally improved the
extrapolation of numerical dependencies regarding precision and stability in
comparison to the previous state of the art.

Secondly, we adapted two generative neural architectures based on Generative
Adversarial Networks and Variational Auto-Encoder to evaluate their ability of mod-
eling distributions within data precisely. In this chapter, we focused on generating
synthetic data with real-world transaction data characteristics to evaluate the capa-
bilities of the model, whereas an evaluation as Anomaly Detectors will be presented
in Section 8.3. We incorporated our iNALU architecture in both models and found
that WGAN benefits from our specialized architecture. Therefore, we can answer
the research questions RQ 1.2 and RQ 1.3 on how well generative neural networks
model feature distributions and feature correlations:

For modeling distributions and correlations, both models studied are able to
capture both aspects very precisely on datasets we evaluated.

In this chapter, we therefore proposed and evaluated several neural network models
and architectures that are able to capture the characteristics of transaction data well,
which will be further investigated in the context of Anomaly Detection in Chapter 8.

108 CHAPTER 6. MODELING OF DISTRIBUTIONS AND DEPENDENCIES FOR

TRANSACTION DATA

109

Chapter 7

Representation Learning for
Transaction Data

Transactions such as journal entries in ERP systems or system logs used for computer
security contain comprehensive information, which can be used to detect fraudulent
actions or attacks within the system. These data sources typically follow various
levels of structuring ranging from relational databases to semi-structured text files
and introduce various data types, often mixed on per-sample basis, such as time-
stamps, amounts and counts, categorical values, keys, indices, and text.

To build a Machine Learning system that is capable of classifying transactions
as benign or attack, one major challenge is to choose the way how heterogeneous
data can be appropriately represented when it comes to different data types and
levels of structuring. Many Machine Learning approaches and especially Neural
Networks demand numeric values as the basic input representation. Among pos-
sible data types some of them such as amounts and counts are naturally numeric
values, which are suitable to serve as input for a Neural Network. Other data types
can be transformed into a numeric representation in several ways, possibly high-
lighting different aspects of a data point. Consider for example, a feature containing
date and time of a transaction. The feature can be represented, e.g., as (Unix) time-
stamp, i.e. the seconds counted since January 1st, 1970. This representation meets
the requirements to be a numeric value and accurately represents the actual date and
time of the data point. However, humanly derivable information from the originat-
ing data point might become less obvious, for example, the time of the day, which
might be useful for the task when precisely searching for transactions that took place
outside typical office hours. In classical Data Mining approaches, this is reflected in
the feature engineering step, where raw data are prepared and augmented to de-
rive meaningful features, often based on domain expert knowledge and domain and
task understanding. With the rise of Neural Networks in a majority of Machine
Learning application domains, this part of the Data Mining process has become less
important. Instead, the Neural Network is expected to distill and focus on relevant

110 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

features implicitly. Therefore, several approaches to represent categorical and tex-
tual features have been studied with one-hot encoding as the most basic approach.
For one-hot encoding, each feature is represented by a vector for which each pos-
sible attribute or value of a categorical variable becomes a vector dimension. This
dimension in the one-hot encoding is set to 1 for the specific attribute and 0 for all
other attribute possibilities, thereby creating vectors consisting of all 0 apart from a
single one in one dimension. As each previously unseen attribute value results in an
additional vector dimension, this sparse representation becomes very large for vari-
ables with many possible attribute values. Another aspect is the context in which
certain features occur: For example, consider a certain category of products that is
always associated with specific features of a product. In a traditional sense, this can
be modeled by expert knowledge as a derived feature, however, when using one-hot
encoding, this contextuality is not reflected within the feature representation.

As both aspects, feature sparsity and contextuality, can be associated with natural
language and texts by the large number of different tokens (sparsity) and grammat-
ical and semantic sense (contextuality), several alternative approaches for encoding
data less sparsely have been studied in the field of Natural Language Processing,
such as Word2Vec [208, 177], GloVe [233] and FastText [31]. These approaches are
referred to as word embeddings and make use of text corpora to learn dense real-
valued vector representations for words. The word context and the co-occurrence
information seen during training introduce distributional semantics [267] within this
dense vector space, also called latent space. The encoding of an attribute value within
this latent space is consequently called latent representation.

In this section, several approaches for encoding and learning representations are
adapted to the application domain of transaction logs to answer the research ques-
tion RQ 2, which approaches are most beneficial for different data types, levels
of data structuring and application domain. Besides one-hot coding, we focus on
Word2Vec, GloVe and FastText, which have already been successfully applied to
computer security related domains, such as IP-Addresses [251] and system calls [336,
337].

Originally, representation learning approaches were developed for natural lan-
guage texts. In this section, we present two adaptations for transaction data. Our
first adaptation is proposed for semi-structured Windows Audit Logs data (see Sec-
tion 5.2.3). We then propose an approach to cope with mixed data types by including
numeric features in the representation learning process and thereby adapt represen-
tation learning to SAP transaction data.

Parts of this section have been published as Ring, M., Schlör, D., Wunderlich, S., Lan-
des, D., and Hotho, A. (2021). Malware Detection on Windows Audit Logs using LSTMs.
Computers & Security, 109:102389 [255].

7.1. Representation Learning for Windows Audit Logs 111

7.1 Representation Learning for Windows Audit Logs

For the first study, we focus on the domain of computer security and the Windows
Audit Log dataset (see Section 5.2.3) in particular. For this dataset, we identified the
categorical features action, name, and target, for which meaningful representations
should be learned. The inherent structure of each feature value can offer valuable
information, which when incorporated in the representation semantically, can im-
prove the downstream task of malware detection. For example, the features name
and target can be considered as special data type of file-path within the Microsoft
Windows operating system, implicitly containing aspects of the file and folder struc-
ture of Windows, which can be used as domain knowledge to assess the semantic
quality of the latent representation. For example, files with file name endings .exe or
.dll in general are executables, which can be benign application software but also ex-
ecutable malware. By this, representation learning approaches can implicitly make
use of this semantics introduced on substring level. Additionally, the folder hierar-
chy typically follows a defined structure with folders like the system folder or the
folder for temporary files serving a dedicated purpose and an implicit best practice
where which type of files should be saved. In this case, ‘best practice’ is under-
stood as where a user typically expects a certain file to be located and includes ‘best’
practice used by attackers to hide a malicious file. In the following, we therefore
introduce the embedding methods briefly, discuss our adaptation for this dataset,
and present an explorative analysis of the latent space.

One-hot vector

One-hot vectors consider the different values of a feature. As a feature in the Win-
dows Audit Log dataset, consider for example action, which has 10 different values
specifying which file or process event is recorded: close, create, delete, execute, modify,
permissions, read, spawn, write and write_and_createReg. In that case, the one-hot vec-
tor contains 10 components where each component represents a possible value of the
feature action. The components are listed in a predefined order, i.e., the order of the
listed values of the feature action given above. For one-hot vectors, the component
that represents the current value is 1, while all other components are 0. Conse-
quently, the value close is represented by the vector ~aclose = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,
the value create by the vector~acreate = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T and so on.

Word2vec

Methodically, Word2Vec [208] is based on a neural network where the hidden layer
contains fewer neurons than the input and output layer. Using the skip-gram ap-
proach of Word2Vec, the neural network is trained with an input word and should
predict the surrounding words. After training, the weights of the hidden layer are

112 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

used as vector representations for words. Therefore, words that often appear in sim-
ilar contexts have similar vector representations, whereas words that do not appear
in similar contexts have different vector representations.

From an implementation view, the skip-gram model can be understood as a neural
network with three layers, the input layer, a hidden layer with the designated latent
dimensionality N for the extracted word vectors, and an output layer. The input and
output layers have a dimensionality of the size of the vocabulary V such that each
dimension corresponds to one word in the vocabulary. Since skip-gram predicts the
surrounding context words for a single input word, the input resembles a one-hot
encoding of the corresponding input word, whereas the output vector contains the
probability of a specific word belonging to the context of the input word.

This intuition can be formalized for a sequence of words

w1, w2, · · · , wi−c, . . . , wi, . . . , wi+c︸ ︷︷ ︸
context including word wi

, · · · , wT

to the training objective of maximizing J, the average log-transformed conditional
probability for the surrounding words wo, o ∈ Ci given Ci = {i− c, · · · , i + c} \ i for
a context size of 2c words and the input word wi over a text sequence containing T
words, i.e.

J =
1
T

T

∑
i=1

∑
o∈Ci

log p(wo | wi). (7.1)

Because the computation of p(wo | wi) is impractical for large vocabulary sizes,
Mikolov et al. [208] introduced Negative Sampling. Intuitively, instead of consider-
ing all words in the vocabulary for each word for the optimization to infer p(wo | wi)
precisely, only a number of words which are not the input word (thereby negative
samples) are sampled. For the word wo, let vwo be the output vector of the neural
network and hwi the vector of the hidden layer associated with wi, all summarized in
the parameters θ of the neural network, for a fixed parameter k denoting the number
of negative samples drawn from the probability distribution Pneg(w), log p(wo | wi)
is approximated by negθ(wo, wi).

negθ(wo, wi) := log σ
(

v>wo hwi

)
+

k

∑
wn∼Pneg(w)

log σ
(
−v>wn hwi

)
(7.2)

Mikolov et al. empirically found that k ∈ [5, 20] for small and k ∈ [2, 5] for large
datasets and choosing Pneg(w) := Û(w)3/4 for the Unigram probability distribution

Û(wi) = freq(wi)
∑j freq(wj)

performed well, decreasing the probability for frequent words

and increasing the probability for less frequently words, compared to Û(w).
During training, the weights of the neural network, i.e. the two weight matri-

ces W I of size V × N, mapping from the input layer to the hidden layer, and WO

7.1. Representation Learning for Windows Audit Logs 113

of size N × V, summarized in the parameter θ = [W I , WO], are updated via back-
propagation. When using negative sampling, in addition to the input word wi, only
the drawn negative samples wo are considered when minimizing Ĵ (Eq. 7.3) with
Stochastic Gradient Decent. Thereby, only the respective rows of the weight matri-
ces are changed [259].

Ĵ(wi; θ) = − ∑
o∈Ci

negθ(wo, wi) (7.3)

In addition to the skipgram where the surrounding context is predicted for an
input word, Mikolov et al. also proposed the Continuous Bag of Words (CBOW) as
an alternative approach, which predicts an output word based on the surrounding
context and is defined analogously [208, 259].

FastText

FastText [31] builds on the basic idea of Word2Vec but additionally represents each
word as a bag of character n-grams. The vector representation of a word is then the
sum of the representation of all character n-grams. This approach allows sharing
of subword representations between words, which improves the representations of
infrequent words. More precisely, Bojanowski et al. generalize the idea of the skip-
gram approach for Word2Vec such that v>wo hwi , or v>wn hwi respectively, is replaced by
a scoring function s : wi, wo 7→ R,

s(wi, wo) = ∑
g∈Gwi

v>wo zg (7.4)

for a set of n-grams Gwi appearing in and including word w and their respective
latent vector representation zg. The resulting objective is then trained as described
above for W2V.

GloVe

GloVe [233] is a co-occurrence-based approach, which uses local context window
information like Word2Vec but also incorporates global information similar to matrix
factorization to obtain meaningful word representations. In contrast to Word2Vec
and FastText, GloVe is not prediction-based, but rather a counting-based model. It
benefits from training on non-zero entries in the co-occurrence matrix to learn latent
word representations in a way that they follow the probability of co-occurrence of
the respective words.

In detail, let X be the matrix of co-occurrences between words, i.e. Xi,j denotes
how often a word j occurs in the context of word i and Pi,j = P(j | i) the proba-
bility of j occurring in the context of i. The idea is to learn vector representations
that resemble the ratio of co-occurrence probabilities Pi,k

Pj,k
. Therefore, Pennington et

114 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

al. reformulate this problem as a weighted least squares regression model with a
weighting function f (Xi,j) and cost function

J =
V

∑
i,j=1

f (Xi,j)(v>i v̄j + bi + b̄j − log Xi,j)
2 (7.5)

for vocabulary V, word vectors v and context word-vectors v̄ with v, v̄ ∈ Rd, i.e. the
prediction of the co-occurrence matrix by the word-vector weights and biases bi and
b̄j as trainable parameters and

f (Xi,j) =

{
(Xi,j/xmax)α for Xi,j < xmax

1 otherwise

as weighting function avoiding over-weighting of frequent and rare words. Penning-
ton et al. propose xmax = 100 and α = 0.75, which we adopt for our experiments.
The model creates two sets of word vectors w and w̄, but since context and non-
context words are generally exchangeable, the difference of both (a result of random
initialization) is mitigated by summing v̂i = vi + v̄i to finally obtain the word em-
bedding v̂i for word i.

Adaptation

In the following, we exemplarily use the feature action and explain how we represent
our data as word embeddings. The same procedure is applied for the features name
and target.

To train the models, an analogy to sentences is needed. Therefore, we consider
the sequence of events as a sentence where the action represents the words. Each
file of the dataset represents one sentence consisting of all events in the order of
occurrence. Consequently, we extract sentences like "read execute spawn modify write"
from Windows Audit Logs. Table 7.1 illustrates the generation of training samples
based on this sentence for Word2Vec.

At first, Word2Vec selects a so called input word from the training sentence. Then,
words from the surrounding window (we refer to them as context words) are used to
build training samples. Table 7.1 uses a window size of c = 2.

During training, the neural network is fed with the input word and tries to pre-
dict a context word. For each training sample, the expected output value for the
corresponding context word is 1 and 0 for all other words. An example is shown in
Table 7.1: For the first sample, read is the input word. In that case, the words execute
and spawn are in the context which should be predicted by the network for the input
read. After the training phase, the weights of the hidden layer are used as vector rep-
resentations for the values of the feature action. The adaptation for GloVe is applied
analogously.

7.1. Representation Learning for Windows Audit Logs 115

Table 7.1: Sample generation for the parameter action for word2vec.

input word context word
1 read execute spawn modify write → read execute

read spawn
2 read execute spawn modify write → execute read

execute spawn
execute modify

3 read execute spawn modify write → spawn read
spawn execute
spawn modify
spawn write

4 read execute spawn modify write → modify execute
modify spawn
modify write

5 read execute spawn modify write → write spawn
write modify

FastText expands this approach by also incorporating sub-strings, i.e. execute is
represented by the character n-grams <ex, exe, xec, ecu, cut, ute, te> and <execute>,
with < and > representing word boundary tokens. The benefit of this approach be-
comes more visible for the features name and target, where sub-strings of for example
the file name carry certain semantics, such as the prefix [system] for the windows sys-
tem root folder or a suffix such as .exe indicating an executable file, even if the full
path name was unique and never seen during training.

Extrinsic Evaluation

With this experiment, we analyze the effect of different representations for detecting
malicious behavior in Windows Audit Log events. The dataset (cf. Section 5.2.3) con-
sists of recorded files containing approximately four minutes of Windows audit log
events each, including a label for each file, which describes if the file includes events
generated during the execution of malware or only events during normal system ex-
ecution. As audit logs are sequential data for which malicious behavior has thereby
to be identified over a number of samples as collective anomaly (cf. Section 4.4), we
use Long Short-Term Memory-models (LSTM) on the sequences of event logs per file
and predict the label, i.e., whether the file contains a malicious execution. As input
for the LSTM model, we evaluate one-hot encoding and embedding representations
for categorical audit-log event features concatenated per sample.

Due to long-term dependencies given in Windows Audit Logs, we stack LSTM
layers, as stacking LSTM layers can improve the handling of long-term dependencies
in sequences [270]. A preliminary study showed that stacking three LSTM layers

116 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

Figure 7.1: LSTM model for extrinsic evaluation.

works well for our data. The model containing the LSTM layers followed by two
fully connected feed-forward layers is shown in Figure 7.1.

Preprocessing and incorporating one-hot or embedding approaches lead to a vary-
ing number of features, for which we adapt the number of neurons per layer de-
pending on the number of input features n. The first layer uses min(max(n

2 , 4), 128)
neurons, the second LSTM layer uses min(max(n

4 , 3), 64), the third LSTM layer uses
min(max(n

8 , 2), 32). The first fully connected layer uses 4 and the last layer 1 neuron
predicting a value of 0 for normal and 1 for malicious sequences. For one-hot en-
coding, small threshold values min_tar and min_proc highly increase the number of
input features. The maximum number of neurons in the first three layers are there-
fore limited to 128, 64 and 32, respectively, to avoid network architectures which are
too large. The model is trained optimizing the mean absolute error using ADAM op-
timizer with a learning rate of 10−4 for 10 epochs, a batch size of 64 and a sequence
length of 32.

In the context of Windows audit logs, some features are given which contain file
paths within the file system tree. This path can refer to executables or data, as well
as temporary files, and hence contain user-specific and random file names. While
several feature values reflect typical paths and files within a Windows system, a
large number of paths are extremely rare up to unique for a given application or
event situation. This study aims at representing features in a semantically meaning-
ful context, which for frequent values is typically implicitly defined by the context
in which they occur. However, for rare and unique values, the single context does
not allow to span a semantically meaningful space and increase the complexity and
computational demands for the training of the representation and downstream task
[146]. Additionally, previously unseen values during testing in a realistic experi-
mental setup lack an embedding representation and require specific training with
out-of-vocabulary tokens, which can be introduced by the masking of infrequent
values allowing both, a more efficient computation and a representation of novel
values.

7.1. Representation Learning for Windows Audit Logs 117

For this experiment, we introduce the thresholds min_proc and min_tar to identify
frequent and non-frequent values and thus limit the number of possible manifesta-
tions for the features process and target in the dataset. For example, all process values
which occur less frequently than min_proc in the dataset are thereby replaced by a
special out-of-vocabulary token. This token is also used for values previously un-
seen during training to represent potentially novel processes. We evaluate various
threshold choices along with the different embedding variants, as these parameters
influence the model size, computation time, and detection performance and poten-
tially depend on the representation learning approach:

While low thresholds lead to very large vectors for one-hot encoding, increasing
the computation time and networks architecture, the influence on the model for rep-
resentation learning approaches is less obvious. Especially FastText has the potential
to benefit from substring representation as infrequent strings can contain meaningful
(frequent) substrings. We therefore vary min_proc and min_tar from 0.001% to 3%
of 0.01% to 3% respectively, for one-hot encoding as the vectors and models become
impractically large for a lower threshold. For FastText, we include the thresholds
0% (i.e., no filtering) to evaluate the benefit of substring encoding for infrequent
samples.

As baseline, SVM with RBF kernel as well as a Long Short-Term Memory (LSTM)
model without process and target paths are included, and we report all metrics with
mean and standard deviation averaged over 5-fold cross-validation splits.

Results Table 7.2 shows the results of this experiment with respect to True Positive
Rate (TPR), False Positive Rate (FPR), and Accuracy (ACC). The non-sequential
SVM model is not able to capture the sequential dependencies of the dataset and
shows a low performance on all metrics. The LSTM baseline performs better with
regard to FPR and ACC but cannot predict malicious behavior well without a proper
representation of the process and target path. Including both features in our LSTM
model increases the performance on all metrics by a large margin.

Surprisingly, one-hot encoding with a min_proc and min_tar threshold of 0.1%
yields the best results. However, the differences between all approaches are very low.
Results for all models include runs with 0.99 TPR fluctuating within the magnitude
of performance variations for different runs. Thus, the differences in performance of
different approaches have to be considered as insignificant.

Different choices of the threshold have a more notable influence on the perfor-
mance. One-hot encodings achieve their best results for medium-high thresholds
min_proc = 0.1% and min_tar = 0.1%, while lower thresholds lead to only slightly
worse results with respect to FPR and ACC. The three embedding variants yield
very similar results and perform similarly with regard to the thresholds used. The
representation learning approaches, especially the models with GloVe embeddings,
also impair notably for the 3% threshold. In general, lower threshold values lead to

118 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

Table 7.2: Extrinsic evaluation results of representation learning approaches and fil-
tering for malicious event detection in Windows Audit Logs. The best
results for each encoding are shown in italics, the overall best results in
bold.

Encoding min_proc min_tar � TPR � FPR � ACC

Baseline (SVMRBF) 0.9539 ± 0.0113 0.2868 ± 0.0163 0.7889 ± 0.01215

Baseline (LSTMaction) 0.9075 ± 0.0124 0.2572 ± 0.0156 0.7948 ± 0.0081

one-hot 3% 3% 0.9908 ± 0.0035 0.1634 ± 0.0086 0.8869 ± 0.0046

one-hot 1% 1% 0.9772 ± 0.0086 0.1527 ± 0.0087 0.8897 ± 0.0061

one-hot 0.5% 0.5% 0.9941 ± 0.0012 0.1349 ± 0.0102 0.9073 ± 0.0051

one-hot 0.1% 0.1% 0.9944 ± 0.0013 0.1292 ± 0.0064 0.9112 ± 0.0031
one-hot 0.01% 0.01% 0.9921 ± 0.0031 0.1361 ± 0.0049 0.9049 ± 0.0028

FastText 3% 3% 0.9814 ± 0.0079 0.1658 ± 0.0089 0.8823 ± 0.0076

FastText 1% 1% 0.9684 ± 0.0201 0.1557 ± 0.0102 0.8848 ± 0.0108

FastText 0.5% 0.5% 0.9913 ± 0.0034 0.1453 ± 0.0134 0.8993 ± 0.007

FastText 0.1% 0.1% 0.9928 ± 0.0012 0.1374 ± 0.0097 0.9052 ± 0.0053

FastText 0.01% 0.01% 0.9903 ± 0.0045 0.1314 ± 0.0083 0.9084 ± 0.0054
FastText 0.001% 0.001% 0.9911 ± 0.0042 0.1334 ± 0.0104 0.9073 ± 0.0068

FastText 0% 0% 0.9930 ± 0.0033 0.1398 ± 0.0113 0.9036 ± 0.0059

Word2Vec 3% 3% 0.9751 ± 0.0102 0.1707 ± 0.0102 0.8769 ± 0.0088

Word2Vec 1% 1% 0.9796 ± 0.0132 0.1556 ± 0.0129 0.8886 ± 0.0081

Word2Vec 0.5% 0.5% 0.9935 ± 0.0017 0.1438 ± 0.0118 0.9011 ± 0.0064

Word2Vec 0.1% 0.1% 0.9925 ± 0.0022 0.1354 ± 0.0097 0.9064 ± 0.0046

Word2Vec 0.01% 0.01% 0.9900 ± 0.0050 0.1314 ± 0.0087 0.9082 ± 0.0060
Word2Vec 0.001% 0.001% 0.9893 ± 0.0054 0.1314 ± 0.0097 0.9080 ± 0.0065

GloVe 3% 3% 0.9500 ± 0.0172 0.2156 ± 0.0216 0.8385 ± 0.0150

GloVe 1% 1% 0.9641 ± 0.0207 0.2125 ± 0.0203 0.8452 ± 0.0154

GloVe 0.5% 0.5% 0.9839 ± 0.0108 0.1768 ± 0.0202 0.8757 ± 0.0114

GloVe 0.1% 0.1% 0.9820 ± 0.0088 0.1626 ± 0.0211 0.8846 ± 0.0122

GloVe 0.01% 0.01% 0.9925 ± 0.0036 0.1591 ± 0.0232 0.8904 ± 0.0145

GloVe 0.001% 0.001% 0.9889 ± 0.0058 0.1361 ± 0.0100 0.9047 ± 0.0068
� / �: higher / lower value is better

better results in all evaluation measures, and FastText yields the best result without
filtering. However, between 0% and 0.1% the results differ only slightly compared
to the significantly higher computational demands. All in all, the extrinsic evalua-
tion shows no clear pattern favoring one approach over the others, as all approaches
perform similarly, but it underlines the benefit of including both textual features in
a model which is able to capture the sequential dependencies of the dataset. For all
representation learning approaches, filtering infrequent values below 1% does not
impair performance, while reducing computational needs and allowing to process
previously unseen values in practice.

7.1. Representation Learning for Windows Audit Logs 119

Explorative Analysis

In this section, we pair the latent representations with domain knowledge to re-
veal further insights which aspects are captured well within the latent space. We
exemplarily analyze the latent space for the attribute target which by itself is the
most meaningful single parameter from a domain perspective as it reflects accessed
or written files and paths to started processes. The embeddings are projected into
a two-dimensional space using t-SNE [322]. To visualize the homogeneity of the
latent space with respect to the specificity of attack or normal behavior, we apply
the following coloring scheme: For all files within the dataset, we count how often
each target occurs in an attack and normal context, respectively. We then weight the
counts according to the total proportion of attack vs. normal sequences. A target
only occurring in attacks has a score of 1.0 (red), whereas a target only present in
normal behavior has a score of 0.0 (blue). A target which is present in both attack
and normal behavior equally (relative to the overall proportion) has a score of 0.5
(gray).

Figure 7.2 shows the representations for target with a threshold of min_tar =
0.001% for one-hot encoding, Word2Vec, GloVe, and FastText embeddings. The la-
tent space differs considerably between the representation variants. One-hot encod-
ings expectedly do not yield a meaningful structure, while GloVe and Word2Vec
reveal latent structures to some extent. In contrast to that, the ability of FastText to
consider substrings seems to be beneficial to create semantically meaningful clus-
ters, which reveal their preference for attack or normal behavior even in a very low-
dimensional space. When inspecting the different clusters closely, folder structure
such as common sub-folders, file name structure and file endings become visible,
as well as semantic or contextual similarity such as temporary files of various types
created as web-browser cache or system file clusters. This is also reflected in the
attack score (color), where several very homogeneous attack and normal behavior
clusters appear.

Although the quantitative evaluation could not leverage the latent structure, the
explorative analysis clearly revealed interesting patterns for all RL approaches favor-
ing FastText as approach, which is able to incorporate substring information. Further
investigations suggest that the data structure for collective anomalies defined over
a stream of audit logs of arbitrary length (including a large amount of benign log
entries) mitigates the benefit from meaningful individual representations. We there-
fore adapt this setting in the following section to point anomalies in SAP transaction
data.

120 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

Figure 7.2: t-SNE visualization of the latent space for target

7.2. Representation Learning for SAP Transactions 121

7.2 Representation Learning for SAP Transactions

Besides textual and categorical features and their representation using word embed-
ding approaches, transaction logs often contain several other heterogeneous data
types, which contain potentially useful information about the transaction. Consider,
for example, transaction logs from an SAP system. In this database or table-like
structure, features can be identified column-wise, for example, as numeric attributes,
such as the quantity or price of goods or materials, but also as columns with categor-
ical features, such as the posting key, the identifier or name of the good or material.

Since representation learning approaches have been developed for textual data as
their name Word2Vec or FastText implies, their architecture was not developed with
other data types in mind, such as numerical features. Although models trained on
large-scale text datasets show limited numeracy within a certain value range, they
are generally not able to represent numbers precisely [325], and specifically token-
based models suffer from the sparsity of large numbers, as each number token is
represented individually and might not occur frequently enough to be captured by
sampling-based training. Nevertheless, for categorical or textual features in a mixed-
type dataset, their numeric-feature context must be considered to learn meaningful
representations while reducing the complexity of predicting specific numbers digit
by digit.

Approaches for time-series data, for example, accomplish this by clustering the
datapoints and representing them by their cluster [214], while others use logarithmic
scaling and prototype numbers to aggregate numeric features [150]. Such methods
have in common that they represent values within the most fitting prototype or
cluster regardless how well they are actually represented since the objective is to fit
most of the data best. However, this objective contradicts the main task of detecting
anomalies as potential outlier values are represented together with normal data. To
overcome this problem and address outliers in the margin of feature distributions,
we choose a different approach, which explicitly takes them into account. In the
following, we therefore propose an outlier-aware discretization approach to include
numerical features and finally formulate an RL task for structured SAP transaction
data including numeric features and outliers.

7.2.1 Outlier Aware Discretization

One typical preprocessing approach for machine learning models which require cat-
egorical input data is to discretize these attributes. Therefore, the continuous value
range is typically divided into a finite number of non-overlapping intervals. The
continuous values are then replaced by the (ordinal) identifier of their associated
interval. As for the discretization technique, one can differentiate between different
properties and assumptions to choose the best fitting discretization algorithm.

122 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

A taxonomy proposed by García et al. [105] suggests classification criteria such
as supervised and unsupervised, univariate and multivariate or static and dynamic
and summarizes several approaches. Supervised methods hereby use the class label
in relation to the attributes to discretize, whereas unsupervised methods do not rely
on a label.

To learn meaningful representations of labeled and unlabeled datasets, we are
restricted to unsupervised methods. Multivariate methods focus on all attributes
jointly to find a discretization, whereas univariate approaches choose a discretiza-
tion on a per-attribute basis. Continuous attributes in transaction data generally are
independent of their distribution range and semantic as, for example, order quanti-
ties and prices per item can differ in magnitudes and are not directly related. Since
features are not comparable only by their value, univariate approaches are more
promising for our application setting. A discretization is considered dynamic when
the discretization is created coupled with the learning algorithm during the training
procedure. Static discretization, on the other hand, can be understood as a prepro-
cessing step independent of the subsequent learning algorithm. Since we want to
create representations that are independent of the specific downstream task, static
discretization on a global dataset level fits our requirements best.

Among unsupervised discretization methods, parametric approaches such as uni-
form, also called equal-width discretization, quantile, also called equal-frequency
discretization, and clustering-based approach, e.g., based on k-means, are commonly
used for a variety of data mining problems [84]. Since these are parametric methods,
they demand the number of intervals (or clusters) as a predefined parameter, which
has a direct influence on the discretization quality. To set this parameter, several
heuristics have been discussed [283] and adapted from histogram density estimators
[76] to search algorithms based on class labels [37].

For the application to anomaly detection, the frequency of observed features is
inherently important, since anomalies by definition are infrequent derivations in
feature space regarding the majority of normal data. In the most basic case, this is
manifested in one feature where the anomalies can be understood as instances from
the lowest regions of the Probability Density Function (PDF). If we choose quantile-
base discretization, the PDF is separated into bins creating equal-area chunks of the
PDF, i.e. such that the integral over the PDF bound to the bin limits is equal for every
bin. This results in the same number of instances in every bin regardless of their
explicit difference in value. As a consequence for a decent number of bins, outliers,
as they are infrequent for their own, share a bin with more frequent instances which
can be assigned to non-anomalous regions, and thus possible anomalous values of
large value will be masked irretrievably. On the other hand, discretization by width
has the downside that outliers of large value distort the potentially useful range of
the bins, which can lead to a large number of unused bins and thus fewer bins to
differentiate between values in the actual range of normal data.

7.2. Representation Learning for SAP Transactions 123

4 2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
Uniform

estimated PDF
true PDF
discretized values

4 2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4
Quantile

estimated PDF
true PDF
discretized values

4 2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4
QOUD

estimated PDF
true PDF
discretized values

4 2 0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4
QOQD

estimated PDF
true PDF
discretized values

Figure 7.3: Synthetic standard normal data with 0.02% outliers with 10 bins and
different discretization strategies. The outlier aware discretization strate-
gies (QOUD, QOQD) reflect outliers in specific discretization bins, while
learning meaningful bins for the majority of data-points contrarily to
uniform discretization with several empty bins and a coarse resolution
for the actual distribution or skewed margin-bins obfuscating the outlier
characteristics.

To overcome this issue, we propose two different approaches:

1. Quantile-Outlier-Quantile discretization (QOQD)

2. Quantile-Outlier-Uniform discretization (QOUD)

The main idea of all approaches is to explicitly introduce bins for outliers. The
bounds of the bins are determined by a high quantile. For example, for the 99%-
quantile, the contiguous range including 99% of the values are taken as normal
values and the remaining 1% is discretized into explicit anomaly bins. The normal
values are then again discretized by frequency or width, depending on the variant.

Both variants have their pros and cons, which are shown in Fig. 7.3: Quantile
discretization constructs each bin so that it has the same number of samples within
the training data, i.e., each bin appears with equal probability. This can be beneficial
for training, since there therefore are no infrequent feature values that could not
be well utilized by representation learning techniques [268]. On the other hand,
numerical dependencies are not reflected and especially the outer bins include a
wide range from in-distribution values to outliers, which cannot be distinguished
anymore. Uniform quantization, in contrast, has the advantage of taking numerical

124 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

dependencies into account, i.e. the bin number is linearly correlated with the actual
value under consideration of the feature distribution. However, this comes at the
expense of introducing a large number of empty bins and an unusable bin width, if
outliers exist, which are way out of the distribution of normal data. With the QO*D
approaches, the limitations aforementioned are mitigated to some extent: Outliers at
the distribution value-edges are explicitly modeled as possibly infrequent, but large
bins, whereas non-outliers, i.e. values from the actual distribution, are represented
well by equal width (QOUD) or equal frequency (QOQD).

This approach can be extended by introducing special bins for semantically mean-
ingful numeric values. In the context of tabular data, for example, missing values
must be represented appropriately, which can be accomplished with an additional
bin. Features which are exactly zero might also be of special interest and can be
modeled in an explicit one-value bin.

7.2.2 Representations for SAP Transactions

Applying outlier-aware discretization approaches, representations for SAP transac-
tion data can be learned, for which numeric and categorical features are taken into
account. In this experiment, we answer the question which discretization and which
representation learning method is most suitable to ensure data characteristics being
represented appropriately for financial fraud detection. From a domain-driven per-
spective, several dependencies and categorization schemes are derived to analyze
their influence on the structure of the latent space. Besides this explorative analy-
sis, we construct an extrinsic evaluation by directly predicting whether transactions
are fraudulent or non-fraudulent solely based on the latent representation of the
transaction.

Adaptation of Representation Learning Approaches to SAP Transactions

Before learning representations of transactions, numeric features are discretized first,
which allows their integration into RL approaches and thereby increases the amount
of information the methods can utilize to learn meaningful representations for cate-
gorical features as discussed before.

For this, we select the numerical feature columns and apply the discretization
techniques as discussed in Section 7.2.1 per feature. Over all, we create eight dis-
cretized datasets with 5 or 10 bins, respectively, per feature for uniform, quantile,
QOUD and QOQD discretization and apply label encoding, i.e. the numeric value
is replaced by the label of the associated discretization-bin. Categorical columns re-
main without transformation or encoding, so that the resulting datasets contain only
categorical values for each feature.

This encoding of a transaction, consisting of several categorical features, shows
similarities with sentences, paragraphs, or ultimately documents consisting of words

7.2. Representation Learning for SAP Transactions 125

which define their meaning. To learn latent representations of words, several word
embedding approaches have been shown to provide meaningful representations, as
discussed in Section 7.1, which will also be compared in this context. Most of these
word-embedding approaches build upon a prediction task, inferring context words
from an input word or vice versa. In the case of SAP transactions, this context can be
naturally defined by the other features present in a transaction, which we refer to as
sample-context. Following [108], we additionally construct a feature-context, consid-
ering the context of neighboring transactions regarding each feature. Ghasemi-Gol
et al. argue that tabular data are homogeneous along rows or column. In abstrac-
tion to transaction data, columns translate to homogeneous feature categories and
rows to homogeneous transactions. Including the feature-context also introduces
sequential information on a feature-level to some extent, which can be useful for
SAP transactions, since, for example, placing an order, posting an invoice, or other
business cases can initiate several consecutive entries in transaction logs. To model
distinguishable features for the sample-context as well, we also include the feature
name along with each value to be able to distinguish the meaning of, e.g., "X" for
the presence of two different features such as Line item display possible=X or Indicator:
Item cannot be copied=X.

Modeling features like this, we obtain a common embedding space encoding sev-
eral realizations of different features all together. Motivated by the finding that
the latent vector spaces allow arithmetic operations to combine word vectors [209]
semantically meaningful, several studies employed averaged embedding vectors of
the consisting words for phrases or sentences [294, 144, 69, 54]. Coates and Bollegala
even showed that averaging of word vectors from different embedding spaces yields
a surprisingly well-performing meta-model [62]. We follow this approach and rep-
resent a transaction by the average of its consisting feature vectors. Additionally, we
apply Paragraph2Vec [177] learning paragraph vectors of transactions alongside the
word-embeddings and create meta-embeddings by averaging all other approaches
as suggested by [62] for comparison.

As the size of the embeddings, representation learning methodology and data
foundation, discretization strategy, and number of bins are spanning a very large
parameter space, we first conduct an extrinsic evaluation with the downstream task
of fraud detection before an explorative analysis of the latent space is presented.

Extrinsic Evaluation

For extrinsic evaluation, we use the task of fraud detection on the SAP dataset (see
Section 5.1.4 for a detailed description) to find the representation learning approach
that best fits the data and the task. Therefore, we rely only on the learned transac-
tion embeddings according to which a classifier has to decide whether a transaction
represented by this embedding is considered fraud. Different approaches are com-
pared using the performance metrics F1, ROC-AUC and AP (cf. Section 4.5.1) and

126 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

a discussion of the confusion matrix, since all metrics have their individual focus
(as discussed in Section 4.5.2). Overall, we report the results of different parameter,
model and representation learning choices ranked by F1 and ROC-AUC.

We create several representations of the dataset varying between uniform, quan-
tile, QOUD, and QOQD discretization for 5 and 10 bins, each. As the dataset is di-
vided into benign training data, training data with benign and fraudulent samples,
and test data containing benign and fraudulent samples, we consider several com-
binations of these dataset splits for representation learning. Note that all represen-
tation learning approaches are unsupervised. Therefore, the complete dataset, train
(T), validation (E) and test (S) splits, can be used to learn the latent space describing
the respective data characteristics. We evaluate building “sentence”-sequences over
features spanning over all features within a transaction (Tr, Er, Sr), representing a
row in the dataset table. Column-based “sentence”-sequences are constructed from
the sequence of transactions per feature (Tc, Ec, Sc), i.e., the columns in the dataset
table. For examples, a dataset descriptor TrErSc denotes row-based sentences for
both train and validation splits, as well as column-based sentences for the test split
to learn representations from.

Regarding the benefit of each split and their associated characteristics for the task,
respectively, there is no obvious best choice: It is conceivable that learning on benign
data only emphasizes the unexpected characteristics of fraudulent transactions, es-
pecially in a one-class setting. On the other hand, it is conceivable that more data
for learning characteristic representations might be beneficial.

For feature values only present in the test set, considering all splits avoids Out-
of-vocabulary (OOV) words, which are treated differently by different represen-
tation learning approaches: While FastText is assigning substring representations
which could be learned during training and therefore has no OOV by construction,
for GloVe and Word2Vec OOV tokens have to be explicitly introduced in training,
and there is no distinction between different OOVs. Since we aggregate all feature
embeddings to a transaction embedding, we omit OOV feature values for the re-
spective dataset variants. For building the local context or, in case of GloVe, the
document corpus, we evaluate combinations of including and omitting transaction-
and feature-context. Note that there are no OOVs as long as any of transaction- or
feature-contexts of all splits are included for representation learning. As represen-
tation learning approaches, we include Word2Vec, FastText, GloVe, Paragraph2Vec,
and the aforementioned meta-model averaging all approaches and evaluating 1, 2, 4, 8
and 16 dimensions. The number of dimensions is much smaller than usual for pre-
trained word interpretation models. This adaptation is necessary, since the vocabu-
lary of the dataset is way more limited than vocabulary in typical natural language
contexts: With 186 unique values (4.4 per feature on average), the number of unique
categorical feature-values in the SAP domain is magnitudes lower in comparison to
natural language, and the numeric attributes do neither artificially introduce a large

7.2. Representation Learning for SAP Transactions 127

vocabulary, since the number of numeric feature-values is limited by the discretiza-
tion approach.

Therefore, each transaction is represented by a vector between 1 and 16 dimen-
sions to be evaluated in the downstream task. For classification, we evaluate dif-
ferent machine learning algorithms. As a one-class classifier, we include Isolation
Forest solely trained on benign data and evaluate on the test set. As supervised
approaches, kNN (k=3), Linear Support Vector Machine and Random Forest are in-
cluded. They are trained on the second training split including fraudulent data that
are oversampled for an equal class distribution using the Synthetic Minority Over-
sampling TEchnique (SMOTE) [51]. Each experiment is repeated five times with
different random seeds to mitigate statistical fluctuation, and average performance
over these runs is discussed.

Results The results ranked per F1 and ROC-AUC are depicted in Table 7.3. We
include the top 5 ranks per metric and additionally report interesting results, which
we discuss in the following in more detail.

The best results with a F1 value of 0.667 were achieved using QOQD with 5 and 10

discretization bins, respectively, and GloVe with 8 and 16 latent dimensions, respec-
tively, learned on the complete dataset using transaction-context only with kNN.
The model predicted 3 of the 6 fraud cases and all benign cases correctly. In com-
parison to the simple baseline of applying kNN directly to the data without further
preprocessing and representation learning, only GloVe-based models with represen-
tations learned on all three splits outperformed the baseline. Except one uniform dis-
cretization configuration, all other outperforming runs were discretized via QOQD.
Note that the best model according to F1 (and AP) only detected 3 of 6 fraud cases
correctly, whereas the baseline model classified 4 of 6 fraud cases correctly at the
expense of slightly more false positives.

For the ROC-AUC score, QOUD with 10 bins, GloVe with 16 dimensions trained
with transaction-context on the benign and mixed training splits performed best.
This kNN model predicted all fraud cases correctly and produced 100.2 false pos-
itives. Among the five best models according to each evaluation metric, all used
GloVe as representation learning approach. QOQD is the discretization of the five
best models regarding F1 and AP producing the least number of false positives to the
expense of missing some fraud cases. It is worth mentioning that only GloVe-based
models (8 and 16 dimensions) outperformed (according to F1) a baseline model (rank
10) directly trained on the discretized raw data without representation learning to
reduce the dimensionality, which yielded a 0.5 F1 score.

The top 5 approaches regarding ROC-AUC use QOUD, QOQD and for one in-
stance quantile discretization and predict all fraud cases correctly with 100.2 to 408.6
false positives on average. Most models benefit from transaction- and feature-context
of the training split (TrTc) or the whole dataset (TrErSrTcEcSc). In the supervised

128 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

Table 7.3: Best models regarding F1 and ROC-AUC.

rank by disc bucks dataset class rep dims � F1 � ROC-AUC � AP � TP � FP
F1

1 QOQD 5 TrErSr kNN GLV 8 0.667 ± 0.000 0.750 ± 0.000 0.500 ± 0.000 3.0 0.0
2 QOQD 10 TrErSr kNN GLV 16 0.667 ± 0.000 0.750 ± 0.000 0.500 ± 0.000 3.0 0.0
3 QOQD 5 TrErSc kNN GLV 8 0.607 ± 0.068 0.750 ± 0.000 0.400 ± 0.105 3.0 1.0
4 uniform 10 TrErSc SVC GLV 8 0.569 ± 0.102 0.833 ± 0.000 0.343 ± 0.117 4.0 4.4
5 QOQD 10 TrErSr kNN GLV 8 0.567 ± 0.091 0.700 ± 0.046 0.400 ± 0.091 2.4 0.0

· · ·
10 quantile 5 TrErTcEc kNN none 0 0.500 ± 0.000 0.833 ± 0.000 0.267 ± 0.000 4.0 6.0

· · ·

R
O

C
-A

U
C

1 QOUD 10 TrEr kNN GLV 16 0.107 ± 0.008 0.997 ± 0.000 0.057 ± 0.005 6.0 100.2
2 QOQD 5 TrErSrTcEcSc SVC GLV 4 0.082 ± 0.090 0.993 ± 0.004 0.045 ± 0.052 6.0 261.2
3 quantile 10 TrTc kNN GLV 4 0.038 ± 0.001 0.992 ± 0.000 0.019 ± 0.001 6.0 302.8
4 QOUD 5 TrErSrTcEcSc RF GLV 2 0.035 ± 0.001 0.992 ± 0.000 0.018 ± 0.001 6.0 331.6
5 QOQD 5 TrEr SVC GLV 8 0.030 ± 0.010 0.990 ± 0.002 0.015 ± 0.005 6.0 408.6
6 QOQD 10 TrErSc SVC FaT 2 0.029 ± 0.001 0.990 ± 0.000 0.014 ± 0.001 6.0 409.2

· · ·
10 quantile 5 TrErTcEc SVC W2V-cb 2 0.028 ± 0.001 0.989 ± 0.000 0.014 ± 0.000 6.0 424.6
11 uniform 5 TrErSr SVC W2V-sg 2 0.027 ± 0.001 0.989 ± 0.000 0.014 ± 0.000 6.0 434.4

· · ·
26 quantile 5 TrErTcEc SVC P2V 2 0.026 ± 0.002 0.989 ± 0.001 0.013 ± 0.001 6.0 452.4

· · ·
93 uniform 10 TrEcSc ISO P2V 16 0.019 ± 0.001 0.984 ± 0.001 0.010 ± 0.001 6.0 621.0

· · ·
983 quantile 5 TrErSrTcEcSc kNN none 0 0.500 ± 0.000 0.833 ± 0.000 0.267 ± 0.000 4.0 6.0

· · ·
� / �: higher / lower value is better

setting, kNN is the most suitable model on average for all evaluation metrics. The
best results in the one-class setting using Isolation Forest all rely on Paragraph2Vec
with 16 dimensions, trained with transaction-context for the benign training set and
feature-context for the other splits. However, the one-class models perform notably
worse than the supervised approaches (with 621 false positives and rank 93 at best
compared to 100.2 false positives for the best supervised model). Generally, models
using GloVe and QOQD yield notably better F1 and AP scores compared to all other
models. Regarding ROC-AUC, GloVe models also yield the best results on average
and occupy the top five ranks with different discretization approaches. One FastText
model is directly following on rank 6, Word2Vec models are on ranks 10 and 11 and
the best Paragraph2Vec-based model on rank 26. The meta-model does not outper-
form the individual models. Given the computational effort, the meta-model is not
a reasonable choice for this dataset and task and will therefore not be analyzed any
further in the exploratory evaluation.

Explorative Analysis

In this section, the best parameter configurations of each representation learning
method are analyzed exploratively. We therefore show the latent space of each
model on transaction level and discuss data characteristics, which can be recog-
nized within the latent space. Fig. 7.4 shows the latent representations of all test

7.2. Representation Learning for SAP Transactions 129

Figure 7.4: t-SNE visualization of 8-dimensional GloVe representations, trained with
5 bucket QOQD discretization and transaction context on the complete
dataset (best model regarding F1). The benign transactions from train
(cyan) and test (blue) splits form mostly homogeneous clusters. However,
the anomalous fraud samples map well between train and test splits.

and train transactions of the best model according to the extrinsic evaluation with
F1 score, i.e., QOQD with 5 buckets, 8 dimensional representations learned with
GloVe on the complete dataset and transaction context. Benign train (cyan) and test
(blue) transactions form mostly homogeneous clusters, which are not well separated
from each other. However, some anomalous fraud cases from train and test splits
are placed in direct neighborhood, which explains the good performance in extrinsic
classification. Regarding the ROC-AUC score, besides GloVe models giving the best
results on average, other representation learning approaches outperform the baseline
model as well and therefore might be worth to consider for the explorative analysis.
Fig. 7.5 shows the latent representations of the best FastText (a), Paragraph2Vec (b),
Word2Vec with CBOW (c) and Word2Vec with SkipGram (d) models. Interestingly,
the FastText and W2V-SkipGram models yield very similar latent spaces, although
the FastText Model could make use of character n-grams, which encode the feature
name along with its respective ordinal bucket number. For both models, the train
and test datasets are well separated, but similarly structured, with the fraud samples
mostly placed within one cluster. The Paragraph2Vec representation is much more
scattered and lacks a competitively distinct structure. Especially the fraud cases of
the training data are not visually separable from the most of the data well, whereas
the most of the test-fraud cases are placed in a less dense area, which is better sep-
arable. This structure might explain why the one-class approach works best with
Paragraph2Vec embeddings. The latent space of Word2Vec with SkipGram shows

130 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

(a) (b)

(c) (d)

Figure 7.5: Visualization of two-dimensional (a) FastText representations with 10

bucket-QOQD, (b) Paragraph2Vec with 5-bucket-quantile, (c) W2V
(CBOW) with 5-bucket-quantile, (d) W2V (skipgram) with 5-bucket-
uniform (best models regarding ROC-AUC for each representation learn-
ing approach), for benign and fraud samples on both data splits.

7.2. Representation Learning for SAP Transactions 131

similarities with its CBOW variant that isolates training and test data well. Espe-
cially the fraud cases of both datasets seem to be clustered very compactly for each
dataset split. Overall, the visual inspection of the latent spaces regarding fraudulent
and benign samples does not clearly reflect the advantage of the GloVe model (cf.
Fig. 7.4) shown by quantitative evaluation, which suggests that the t-SNE projec-
tion conceals specific characteristics supporting the distinction of fraud and benign
samples in higher dimensional space.

Fig. 7.6 shows the latent spaces of all transactions in the train and test dataset
colored by transaction type. Transaction type can be considered one of the most
relevant distinctions for different business cases and associated transaction logs such
as incoming and outgoing invoices and credit notes, material receipt and issues and
general ledger account postings. The transaction type is not directly present as a
feature, but rather identified as a combination of features and their values, which
has been annotated by domain experts to allow for reliable and fast identification of
flows of goods or money for further analysis. Transaction type as explicit feature is
thereby not included in the dataset, i.e. the structure and semantics emerging from
the latent space, which corresponds to the transaction type quite well, is extracted
by the representation learning approach from the raw features.

The parallel structure of training and test splits, which has already been discussed
for the distinction of benign and fraudulent transactions, is also reflected for transac-
tion type. FastText and Word2Vec reveal homogeneous clusters for each transaction
type next to each other for training and test, with small overlaps for G/L postings,
material issues and material receipts, which can be considered semantically similar
from a domain perspective. Paragraph2Vec and GloVe representations are less sepa-
rated in their latent space and while GloVe representations with 8 or 16 dimensions
still form mostly disjunctive subspaces in their two-dimensional t-SNE projection,
the larger proportion of Paragraph2Vec encoded transactions are clouded in indis-
tinguishable overlapping structures. This supports the finding of non-competitively
performing models with Paragraph2Vec (best model on rank 983, see Table 7.3).
Overall, the FastText and Word2Vec models show distinct and semantically use-
ful clusters. The quantitatively outstanding GloVe models show a similar semantic
structure, however, they are not visually well-separable possibly due to their two-
dimensional t-SNE projection.

7.2.3 Discussion

In contrast to our representation learning experiment on Windows audit logs, where
FastText showed the most meaningful latent structure regarding the distinction of
attack and non-attack, for SAP transactions, FastText could not outperform the other
models. This finding is not surprising, as FastText’s most prominent advantage is
the use of subword strings, which in case of path names for Windows audit logs

132 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Visualization of (a) FastText representations with 10 bucket-QOQD, (b)
Paragraph2Vec with 5-bucket-quantile, (c) W2V (CBOW) with 5-bucket-
quantile, (d) W2V (skipgram) with 5-bucket-uniform, (e) GloVe with 10-
bucket-QOUD (best ROC-AUC), (f) GloVe with 5-bucket-QOQD (best F1)
colored according to transaction type on both data splits.

7.2. Representation Learning for SAP Transactions 133

contain an inherently meaningful structure of sub-paths, file endings, and naming
conventions.

In the case of SAP transaction logs, no features with comparable inherent struc-
tures could be identified. In fact, categorical values are often single characters, de-
noting abbreviations or the presence or applicability of a feature without any feature-
context-free meaning. For this, we included the feature name along with each value
to be able to distinguish the meaning of, e.g., "X" for the presence of two different
features such as Line item display possible=X or Indicator: Item cannot be copied=X. For
the training of token-based embeddings (i.e. all approaches except FastText), the
nominally equivalent value for categorical features is distinguishable. For FastText,
subtokens can be mapped, which might be useful if two features have semantically
related feature names or values, but could also be obstructive if unrelated feature
sub-words are unified. Our analysis suggests that incorporating subword tokens
seems to be slightly beneficial regarding the extrinsic evaluation with FastText out-
performing both W2V approaches, and negligible impact regarding the exploratory
analysis, both yielding a very similar structure of the latent space.

7.2.4 Conclusion

Overall, our experiments suggest that by using word-embedding techniques, mean-
ingful representations for transaction data can be learned. For this, we evaluated
two different application settings, Windows audit logs and SAP transaction logs,
discussed their respective requirements, and proposed adaptations to learn rep-
resentations for each application domain. In an explorative analysis of the latent
spaces, we focused on the semantic structure, which is revealed by the embedding
spaces for malicious executions on the one hand and fraud/non-fraud as well as
transaction types on the other hand. While the extrinsic evaluation in the Windows
audit log domain could not show a strong benefit of one representation technique
in favor of the others regarding their detection capabilities, for SAP transaction logs
GloVe yielded the best results providing a strong baseline for fraud detection even
with simple classification approaches such as kNN.

134 CHAPTER 7. REPRESENTATION LEARNING FOR TRANSACTION DATA

135

Chapter 8

Anomaly Detection and Applications
in Transaction Fraud Detection

In this section, we will evaluate different anomaly detection approaches based on our
findings from previous chapters in various scenarios for fraud detection. Our focus
hereby is on the three possible formulations of fraud detection as supervised, semi-
supervised, and unsupervised machine learning problems. We evaluate our model
in scenarios of different complexities and examine the advantage or disadvantage
of few but labeled training data over a large amount of (partially) unlabeled or
contaminated training data.

First, we propose a neural network layer based on our iNALU architecture and
evaluate on several financial fraud detection datasets in a supervised scenario with
balanced class distributions. Second, we adapt our architecture to detection anoma-
lies on the feature-rich SAP dataset (see Section 5.1.4) and evaluate the influence
of different preprocessing decisions. We then approach anomaly detection as an
unsupervised task by incorporating our network layer in an Auto-Encoder-alike ar-
chitecture and evaluate its performance based on an anomaly score. We further
investigate several approaches to use our generative models proposed in Section 6.2
for anomaly detection and evaluate their benefit for detection fraud in transaction
data.

Parts of this chapter have been published as Schlör, D., Ring, M., Krause, A., and Hotho,
A. (2020b). Financial Fraud Detection with Improved Neural Arithmetic Logic Units. Fifth
Workshop on MIning DAta for financial applicationS [277].

136 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

Figure 8.1: Our proposed mixed layer consisting of ReLU and iNALU neurons

8.1 iNALU Driven Mixed Layer Architecture for Fraud
Detection

The presence of mathematical relationships between features is a well-known fact
in many financial settings [32, 190]. For example, PaySim [190] is a mobile money
simulator for fraud detection that generates bank transfers including the transmit-
ted amount, the old account balance, and the new account balance as features. In
this setting, these three features are closely related to each other in a mathematical
sense. Although neural networks are well suited for many complex data mining
tasks, they often have problems with the calculation of even basic mathematical op-
erations [317].

Although such relationships are not always directly related to the downstream
task to which the machine learning model is applied, a neural network architecture
capable of capturing such relations is able to model the data inherently better [317].
In Section 6.1 we introduced the iNALU as a neuron specifically designed to in-
herently model mathematical operations within neural networks. In this section,
we examine the research question if the introduction of iNALUs can improve the
performance of neural networks in the task of detecting financial fraud.

Since financial fraud detection is more complex than modeling mathematical re-
lationships in the data, we therefore propose a novel Mixed Layer architecture (see
Fig. 8.1) that incorporates ReLUs as general-purpose neurons and iNALU neurons
to capture arithmetic relationships within the data. For our experiments, we focus
on two synthetic datasets, Credit and PaySim, and two real-world datasets, CCFraud
and IEEE-CIS summarized in Table 8.1 and described in more detail in Section 5.1.
In the first experiment, we evaluate variants of our proposed model in a supervised,
class-balanced scenario each in comparison to vanilla feed-forward networks with
comparable network structure. In the second experiment, we compare the best mod-
els with several standard classifiers commonly used.

8.1. iNALU Driven Mixed Layer Architecture for Fraud Detection 137

Mixed

Layer

ReLU

Mixed

LayerInput

Output

FC Linear FC Linear

..
.

..
.

..
.

ReLU

ReLU

iNALU

iNALU

iNALU

ReLU

..
.

ReLU

ReLU

iNALU

iNALU

iNALU

..
.

Figure 8.2: Mixed Layer network model with fully connected linear input and output
layers and 1 to k Mixed Layers as used in our experiments

8.1.1 Mixed Layer model

The improved Neural Arithmetic Logic Unit (iNALU) as introduced in Section 6.1 is
a neuron that by design can model simple arithmetic relationships. More complex
relationships can be learned by stacking multiple layers of iNALUs for a deeper net-
work. However, even in the financial domain, real-world datasets generally contain
more than mathematical relationships. Therefore, we propose a model with each
layer containing 50% general purpose non-linear hidden units (ReLUs, to be precise)
and 50% iNALUs. In particular, the iNALU part and the ReLU part of each layer
have the full input dimension n as input and contribute with an output dimension of
m
2 concatenated to an output dimension of m for the complete layer (see Fig. 8.1). In
combination with a linear layer as input and output layer, the network can thereby
“route” and combine any input dimension to every part of each network layer by
learning the weights accordingly. Therefore, the model is able to represent arith-
metic and non-arithmetic feature relationships of varying complexity. We refer to
the resulting model as shown in Fig. 8.2 as a neural network with Mixed Layers
(Mixed Layers model for short).

Table 8.1: Main characteristics of the datasets

Dataset Features Samples Benign Fraud Fraud-ratio Origin

Credit 4 100 000 98 967 1033 0.010 synth.
PaySim 11 6 362 620 6 354 407 8 213 0.001 synth.
CCFraud 30 284 807 284 315 492 0.002 real
IEEE-CIS 431 590 540 569 877 20 663 0.035 real

138 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

8.1.2 Experimental setup

Architecture All experiments involve supervised training of an MLP as basic neu-
ral network architecture with linear input, non-linear dense layers with ReLUs and
a linear output layer. The number of neurons in the hidden layers varies during
the experiments. To investigate the research question RQ 3.1 if introducing iNALUs
can improve the performance of neural networks on the task of financial fraud de-
tection, we use the same architecture and replace the non-linear dense layers with
Mixed Layers.

Train-Test Split For all experiments, we use the same strategy to generate the train-
test split: For training, we randomly choose only few instances of the fraud class in
order to keep the majority of fraudulent instances for evaluation. This approach
reflects the class imbalance of the available data and emphasizes the requirement
for a model to generalize from very few fraudulent samples to find new fraudulent
cases when applied in a real-world scenario. In a preliminary study, we found that
under-sampling the majority class to some extent did not affect the performance
negatively but reduced training time by large margin. Therefore, only a random
subset of the instances is used for training: For Credit, PaySim and CCFraud we use
2 000 instances with a fraud proportion of 1%, for IEEE-CIS we use 5 000 instances
with a fraud proportion of 4%. We then use the Synthetic Minority Oversampling
TEchnique (SMOTE) [51] to synthesize a balanced training dataset.

For the test dataset, we create a balanced split of 50% fraud and 50% benign sam-
ples, exclusively containing instances which haven’t been used for training. This
is motivated by the objective of studying the ability to capture mathematical rela-
tions rather than investigating the effects of predicting strongly unbalanced data.
To represent the variety of benign instances and avoid skewed results due to ran-
dom fluctuations, we repeat this process 5 times with different random seeds and
report the average F1 score for the fraud class and for experiment 2 the ROC-AUC
additionally.

Preprocessing Each dataset is preprocessed by one-hot encoding categorical val-
ues. To ensure comparability between all datasets, we follow the preprocessing
strategy of the CCFraud dataset and apply PCA to all other datasets as well as min-
max scaling to all datasets ensuring a valid train-test split by only fitting on training
data. In a preliminary study, we verified that applying PCA to the datasets does
not negatively impact the performance of neural networks with and without Mixed
Layers. Applying PCA can also mitigate privacy issues that could possibly prevent
making a real dataset publicly available.

Training Procedure For neural network training, we use ADAM [165] as optimizer
with a learning rate of 10−3, a weight decay of 10−4 and Cross Entropy loss. The

8.1. iNALU Driven Mixed Layer Architecture for Fraud Detection 139

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cr
ed

it
[F

1]
ReLU Mixed Layers (Ours)

10
20

30
50

10
0

hi
dd

en

0.27±0.18 0.13±0.07 0.20±0.14

0.09±0.07 0.26±0.07 0.26±0.13

0.09±0.05 0.14±0.10 0.20±0.10

0.04±0.01 0.08±0.03 0.17±0.08

0.04±0.03 0.04±0.03 0.08±0.04

Abs. improvement per parameter [F1]
(1

.0
, 1

0.
0)

(1
.0

, 2
0.

0)
(1

.0
, 3

0.
0)

(1
.0

, 5
0.

0)
(1

.0
, 1

00
.0

)
(2

.0
, 1

0.
0)

(2
.0

, 2
0.

0)
(2

.0
, 3

0.
0)

(2
.0

, 5
0.

0)
(2

.0
, 1

00
.0

)
(3

.0
, 1

0.
0)

(3
.0

, 2
0.

0)
(3

.0
, 3

0.
0)

(3
.0

, 5
0.

0)
(3

.0
, 1

00
.0

)

[layers, hidden]

0.4

0.5

0.6

0.7

0.8

0.9

Pa
yS

im
 [F

1]

(1
.0

, 1
0.

0)
(1

.0
, 2

0.
0)

(1
.0

, 3
0.

0)
(1

.0
, 5

0.
0)

(1
.0

, 1
00

.0
)

(2
.0

, 1
0.

0)
(2

.0
, 2

0.
0)

(2
.0

, 3
0.

0)
(2

.0
, 5

0.
0)

(2
.0

, 1
00

.0
)

(3
.0

, 1
0.

0)
(3

.0
, 2

0.
0)

(3
.0

, 3
0.

0)
(3

.0
, 5

0.
0)

(3
.0

, 1
00

.0
)

[layers, hidden]

1 2 3
layers

10
20

30
50

10
0

hi
dd

en

0.28±0.09 0.25±0.10 0.21±0.08

0.17±0.07 0.26±0.12 0.29±0.15

0.21±0.08 0.29±0.10 0.32±0.16

0.17±0.06 0.22±0.10 0.31±0.14

0.11±0.05 0.17±0.06 0.27±0.06

Figure 8.3: F1 scores of experiment 1 on the synthetic Credit Payment and PaySim
datasets. Mixed Layers describes the neural network structure as de-
scribed in Section 8.1.1 and ReLU shows the results for the same model
architecture with respect to number of layers and hidden neurons having
Mixed Layers replaced by layers with ReLU activations. The heatmaps
show the absolute improvement of Mixed Layers compared to the respec-
tive ReLU architecture for each parameter configuration averaged over all
random seeds and their standard deviations.

batch size is set to 200 and all models are trained for 200 epochs, which have been
validated as suitable training parameters in preliminary experiments.

8.1.3 Experiment 1

In the first experiment, we explore the influence of Mixed Layers in neural network
architectures. Therefore, we construct neural networks containing Mixed Layer as
well as neural networks of identical architecture exclusively with dense layers and
ReLU activations. For each dataset all possible combinations between the number of
input neurons (chosen from 10, 20, 30, 50 and 100) and the number of layers (chosen
from 1 to 3) are evaluated to assess the performance and stability for different neural
network capacities.

140 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

CC
Fr

au
d

[F
1]

ReLU Mixed Layers (Ours)

10
20

30
50

10
0

hi
dd

en

0.12±0.07 0.10±0.06 0.16±0.09

0.07±0.04 0.06±0.02 0.10±0.06

0.04±0.03 0.06±0.02 0.08±0.03

0.02±0.02 0.00±0.03 0.08±0.04

0.01±0.01 0.01±0.03 0.05±0.02

Abs. improvement per parameter [F1]

(1
.0

, 1
0.

0)
(1

.0
, 2

0.
0)

(1
.0

, 3
0.

0)
(1

.0
, 5

0.
0)

(1
.0

, 1
00

.0
)

(2
.0

, 1
0.

0)
(2

.0
, 2

0.
0)

(2
.0

, 3
0.

0)
(2

.0
, 5

0.
0)

(2
.0

, 1
00

.0
)

(3
.0

, 1
0.

0)
(3

.0
, 2

0.
0)

(3
.0

, 3
0.

0)
(3

.0
, 5

0.
0)

(3
.0

, 1
00

.0
)

[layers, hidden]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IE
EE

-C
IS

 [F
1]

(1
.0

, 1
0.

0)
(1

.0
, 2

0.
0)

(1
.0

, 3
0.

0)
(1

.0
, 5

0.
0)

(1
.0

, 1
00

.0
)

(2
.0

, 1
0.

0)
(2

.0
, 2

0.
0)

(2
.0

, 3
0.

0)
(2

.0
, 5

0.
0)

(2
.0

, 1
00

.0
)

(3
.0

, 1
0.

0)
(3

.0
, 2

0.
0)

(3
.0

, 3
0.

0)
(3

.0
, 5

0.
0)

(3
.0

, 1
00

.0
)

[layers, hidden]

1 2 3
layers

10
20

30
50

10
0

hi
dd

en

0.00±0.36 -0.18±0.35 -0.09±0.21

-0.01±0.03 -0.12±0.24 -0.02±0.28

0.06±0.23 -0.00±0.28 -0.18±0.25

-0.03±0.30 -0.02±0.07 -0.01±0.03

-0.14±0.20 0.08±0.20 -0.02±0.26

Figure 8.4: F1 scores of experiment 1 on the real CCFraud and IEEE-CIS datasets.
Mixed Layers describes the neural network structure as described in Sec-
tion 8.1.1 and ReLU shows the results for the same model architecture
having Mixed Layers replaced by dense layers with ReLU activations. The
heatmaps show the absolute improvement of our architecture in compar-
ison to the respective ReLU architecture for each parameter configuration
averaged over all random seeds and their standard deviations.

Results The results are depicted in Fig. 8.3 and Fig. 8.4. The boxplots show the
F1 scores on our test datasets for both neural network architectures for a different
number of layers and a varying number of hidden neurons in each layer. Each
box summarizes the results of all runs for a certain parameter configuration with
different random seeds. Note that both architectures share the same train- and test-
splits for each run and parameter configuration. This ensures the comparability of
the underlying performances and boxes for each parameter. For all dataset except
IEEE-CIS, our proposed model yields very good results with F1 scores around 0.9.
The performance on the IEEE-CIS dataset is notably worse for both architectures,
and the results vary highly for different random seeds. As this dataset is much
more complex regarding the number and kind of features, the task might require a
different training strategy to achieve better results.

8.1. iNALU Driven Mixed Layer Architecture for Fraud Detection 141

For all other datasets, the performance of our model is very stable over all para-
meter configurations, which means that even a very small neural network consisting
of one Mixed Layer and 10 hidden neurons (along with a linear input and output
layer) solves the task sufficiently well. In comparison, the same architecture with one
dense layer and ReLU activations performs notably worse. To assess the actual per-
formance improvement for each possible parameter configuration, we aligned the
parameters and seeds of both architectures pairwise and report the average absolute
improvement per parameter configuration in Fig. 8.3 and Fig. 8.4. A positive im-
provement value describes a performance gain of Mixed Layers over the respective
ReLU model, whereas a negative improvement means that the ReLU model per-
forms better. The Mixed Layer model outperforms the ReLU model for all datasets
except IEEE-CIS. For Credit and PaySim, this observation holds for all network con-
figurations, whereas for the CCFraud dataset large models (50 and 100 neurons)
with one or two layers perform equally well.

8.1.4 Experiment 2

In the second experiment, we want to compare our model with several commonly
used supervised classification algorithms. To be precise, we evaluate linear Sup-
port Vector Machine (SVM), Support Vector Machine (SVM)-RBF, k-Nearest Neigh-
bors (kNN)1, Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logis-
tic Regression (LR) and XG-Boost. With IF, we also include an anomaly detection
method for comparison.

For the ReLU model, we use the most promising parameter configuration of ex-
periment 1, which is one layer with 100 neurons. For the Mixed Layers model, we
use one layer with 20 neurons. We want to emphasize that due to the good stabil-
ity of Mixed Layers over different parameter configurations, the parameter choice
for Mixed Layer in this experiment is arbitrary, and other parameter configurations
perform comparably.

Results The results of the second experiment are presented in Table 8.2. Our model
performs the best on average regarding F1 and is among the best four classifiers for
all datasets individually. All classifiers perform well on each dataset except IEEE-
CIS, on which the best models except IF only achieve F1 scores of 0.65. IF performs
best on this dataset with an F1 score of 0.74, suggesting that methods specifically
tailored to anomaly detection can capture the characteristics of this dataset better.
Comparing the F1 score averaged over all datasets (see Table 8.2, column Avg.), the
Mixed Layer architecture yields significantly2 better results compared to the best
ReLU architecture. The results evaluated with the ROC-AUC metric support our

1k = 3
2 p = 0.00932, Wilcoxon Signed-Rank Test over all datasets and repetitions

142 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

findings with the exception of IEEE-CIS, where our Mixed Layers performed worse
than the ReLU layer. An in-depth analysis showed that two of the five repetitions
with different random seeds yield notably worse results (0.41 and 0.44) which leads
to a performance drop for the mean and the high standard deviation.

Table 8.2: Average and standard deviation F1 score and ROC-AUC for several super-
vised classifiers compared to our model aggregated over different random
seeds. For ReLU and our model, we conducted this experiment using
the most promising parameter configuration from experiment 1, one layer
with 100 neurons for ReLU and one layer with 20 neurons for our Mixed
Layer model. The last column shows the average for each classifier over
all datasets. The best results per dataset are printed in bold.

Method Credit PaySim CCFraud IEEE-CIS Avg.

F1

SVM 0.88 ± 0.01 0.89 ± 0.02 0.90 ± 0.01 0.41 ± 0.27 0.77

SVM-RBF 0.92 ± 0.03 0.85 ± 0.02 0.85 ± 0.07 0.43 ± 0.23 0.76

kNN 0.89 ± 0.03 0.81 ± 0.01 0.91 ± 0.01 0.65 ± 0.03 0.81

DT 0.87 ± 0.02 0.82 ± 0.03 0.80 ± 0.08 0.49 ± 0.04 0.74

RF 0.89 ± 0.03 0.83 ± 0.03 0.88 ± 0.02 0.57 ± 0.05 0.80

NB 0.85 ± 0.03 0.76 ± 0.05 0.91 ± 0.01 0.65 ± 0.02 0.80

LR 0.88 ± 0.01 0.87 ± 0.02 0.92 ± 0.01 0.55 ± 0.15 0.81

XG-Boost 0.91 ± 0.02 0.84 ± 0.03 0.89 ± 0.01 0.62 ± 0.01 0.82

IF 0.82 ± 0.01 0.81 ± 0.01 0.88 ± 0.01 0.74 ± 0.01 0.81

ReLU 0.89 ± 0.02 0.78 ± 0.04 0.90 ± 0.02 0.65 ± 0.03 0.81

Mixed Layers 0.90 ± 0.01 0.88 ± 0.02 0.92 ± 0.01 0.65 ± 0.02 0.84

R
O

C
-A

U
C

SVM 0.95 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.49 ± 0.12 0.84

SVM-RBF 0.98 ± 0.01 0.96 ± 0.01 0.93 ± 0.05 0.59 ± 0.09 0.86

kNN 0.91 ± 0.02 0.86 ± 0.02 0.92 ± 0.01 0.54 ± 0.05 0.81

DT 0.88 ± 0.02 0.85 ± 0.02 0.83 ± 0.05 0.52 ± 0.08 0.77

RF 0.98 ± 0.01 0.95 ± 0.01 0.97 ± 0.00 0.48 ± 0.04 0.85

NB 0.93 ± 0.02 0.92 ± 0.01 0.94 ± 0.03 0.50 ± 0.01 0.82

LR 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.45 ± 0.09 0.83

XG-Boost 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.00 0.54 ± 0.01 0.87

IF 0.95 ± 0.01 0.90 ± 0.01 0.95 ± 0.00 0.74 ± 0.01 0.89

ReLU 0.96 ± 0.01 0.88 ± 0.02 0.94 ± 0.01 0.64 ± 0.02 0.85

Mixed Layers 0.97 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 0.57 ± 0.12 0.87

8.1. iNALU Driven Mixed Layer Architecture for Fraud Detection 143

8.1.5 Discussion

In our experiments, we show that neural networks benefit from including Mixed
Layers when applied to the task of fraud detection on four different datasets. This
finding suggests that Mixed Layers improve the ability of neural networks to model
mathematical relationships within the data. The neural network architectures con-
taining our mixed layers have good stability over different numbers of hidden neu-
rons and layers. Even small networks yield competitive results with several well-
established supervised classification algorithms over different synthetic and real-
world datasets. Overall, the ReLU architecture seems much less stable with respect
to different random seeds and parameter configurations.

Although our model was among the best classifiers for the IEEE-CIS dataset in
experiment 2, all methods performed notably worse compared to the other datasets.
This shows that the dataset is hard to predict in our evaluation setting and suggests
that the unstable performance observed in experiment 1 is presumably not related to
our model but rather to the dataset itself and might be explained by different aspects:
On the one hand, the dataset includes many features, which might require intensive
prepossessing and feature engineering. On the other hand, the dataset is larger than
all other datasets with respect to the number of features and fraud cases. This might
require a different training procedure than the other datasets, for example regarding
the train-test split, the network architecture, or the number of epochs for training,
as recent works suggest yielding better results incorporating feature engineering
[107, 74] or recurrent neural network architectures [213]. The observation that Iso-
lation Forest yields notably better results on IEEE-CIS also suggests that for more
complex datasets methods adapted for anomaly detection should be used instead
of standard classifiers. Since this study is not primarily conducted to achieve best
performances on each dataset but rather to examine the research question, if neural
network architectures benefit from iNALU neurons applied to the financial domain,
our experiments focused on a fair comparison instead of thorough hyper-parameter
tuning on individual datasets.

On our synthetic Credit Payment dataset, some supervised classifiers performed
surprisingly well, which by design of our dataset we did not expect. Since solving
the task correctly is fully dependent on capturing the correct mathematical relation-
ship, we expected, for example, kNN to perform worse. We suspect that the good
performance is a result of applying PCA as a preprocessing step, which might con-
tribute to modeling the correct relation within the data.

Both experiments show that our model outperforms the respective ReLU baseline
models. However, Mixed Layers with iNALUs contain more trainable parameters
than linear neurons with ReLU activations. One Mixed Layer in our experiments
contains 50% ReLUs and 50% iNALUs and an iNALU has 4 times more trainable
parameters. For a comparison of two architectures with an equal number of train-
able parameters, an architecture with Mixed Layers with a hidden dimension of 20

144 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

can be compared with an architecture with ReLU Layers with a hidden dimension
of 50. In this comparison (see Fig. 8.3 and Fig. 8.4) the Mixed Layers model still
outperforms the ReLU-based model with an F1 score of 0.837 over 0.759, averaged
over all datasets.

8.1.6 Conclusion

These experiments examined the question whether a neural network architecture
that includes hidden units specifically tailored to capture mathematical relations
is beneficial for supervised classification tasks on datasets in the financial fraud
domain.

We designed a novel Mixed Layer for neural networks that incorporates iNALUs
and ReLUs. We evaluated Mixed Layer-based neural networks on two real-world
and two synthetic datasets and compared them to neural networks with ReLU ac-
tivations. The experiments show that Mixed Layers are able to improve the perfor-
mance of neural networks on financial fraud datasets. We compared our proposed
model with several well-established classification approaches in a supervised evalu-
ation setting and found that it belonged to the best approaches for each dataset.

Since we designed our baseline architecture as well as our proposed model to solve
a supervised task, we constructed our experiments accordingly and evaluated them
on a balanced dataset. However, in a real-world setting, fraud and benign transac-
tions will not occur equally frequent, and the actual financial prejudice of having
more false positives or more false negatives will be task-dependent and require a
more detailed evaluation including metrics to reflect these circumstances. Moreover,
many approaches applied to recognize financial fraud rely on anomaly-detection
or novelty-detection techniques, which often use one-class or even unsupervised
approaches. As we generally showed the benefit of our proposed model in the su-
pervised setting, in the next sections we introduce it in other evaluation settings and
compare it to unsupervised approaches, as well as approaches specifically designed
for anomaly or novelty-detection.

8.2 Anomaly Detection with Mixed Layers on SAP Data

In previous experiments, we evaluated the benefit of introducing iNALUs in a su-
pervised setting with a balanced test set class distribution. The prerequisite for this
evaluation setting is a large dataset including a sufficient number of fraud cases,
which in general is not given for real-world applications. In this experiment, we fo-
cus on an anomaly detection evaluation setup where fraud cases are as rare as 0.3h
for the SAP dataset, which translates to 19710 benign and 6 fraud cases. Besides the
model performance, this skewed class distribution is also challenging with respect
to the interpretation of the evaluation metrics.

8.2. Anomaly Detection with Mixed Layers on SAP Data 145

As discussed in Section 4.5.2, all metrics have individual advantages and draw-
backs, and especially with respect to class imbalance the question which metric is
most suitable depends on the application-specific valuation of false positives ver-
sus false negatives. We therefore report all metrics, precision, recall, F1, AP and
ROC-AUC and discuss the confusion matrices for selected models in detail.

As first experiment, we evaluate the Mixed Layer model in a supervised scenario,
i.e., by classifying fraud and non-fraud to confirm our findings from Section 8.1 on
the feature-rich and imbalanced SAP dataset. The second experiment then focuses
on unsupervised training and incorporates our Mixed Layers in an Auto-Encoder ar-
chitecture for reconstruction error-based anomaly detection evaluating a real-world
scenario without labeled anomalies as training data.

8.2.1 Supervised Anomaly Detection with Mixed Layers

For the experimental setup and training procedure, we follow Section 8.1.4. We
evaluate the same supervised baseline methods and with One-Class SVM (OC-SVM),
we include besides Isolation Forest (IF) a second anomaly detection approach trained
on benign data. Due to the very few cases of fraud in comparison to benign data, we
refrain from a cross-validation-based evaluation and use the three subsets of the SAP
dataset as follows: The benign subset is used as a training dataset for unsupervised
approaches. The first subset including 18 fraud cases is used as training data for the
supervised approaches and the second subset including 6 fraud cases is used as test
dataset for all approaches, i.e. the supervised as well as the one-class approaches. We
use the hyperparameters from Section 8.1.4 for a fair comparison between anomaly
detection and supervised approaches, since we do not have sufficient fraud cases for
a validation split. For all supervised approaches, we apply SMOTE [51] to synthesize
a balanced training dataset.

For preprocessing, we evaluate different approaches: In addition to min-max scal-
ing and PCA processed data (as given in Section 8.1 with the CCFraud dataset
for anonymization), we also conduct our experiments without PCA and with z-
score normalization and discretization of numeric attributes with QOQD (see Sec-
tion 7.2.1) to examine the impact of different preprocessing decisions across various
approaches for the SAP dataset.

Results

Tables 8.3 and 8.4 show the results for all preprocessing variants for numeric data
with and without PCA. Regarding the metrics, there are some interesting obser-
vations: Consider, for example, Table 8.3 and XG-Boost with PCA. Despite the
model failing completely and classifying all samples as non-fraud, the ROC-AUC
(0.990) does not reflect this bad performance since classifying the 6 fraud samples
incorrectly is not significant in contrast to the 19 710 correctly predicted non-fraud

146 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

Table 8.3: Models with min-max and z-score normalization with and without PCA
evaluated with different metrics on the anomaly detection task of the SAP
fraud dataset. Best results per metric are written in bold. The highlighted
rows denote well-performing models over all metrics which are discussed
in detail. Mixed Layers perform among the best models and notably better
than the ReLU model.

PCA no PCA

Method � Prec. � Rec. � F1 � AP � ROC-AUC � Prec. � Rec. � F1 � AP � ROC-AUC

z-
sc

or
e

SVM 0.000 0.000 0.000 0.052 0.333 0.000 0.000 0.000 0.333 0.333

SVM-RBF 0.000 0.000 0.000 0.008 0.980 0.000 0.000 0.000 0.007 0.979

kNN 0.000 0.000 0.000 0.000 0.499 0.000 0.000 0.000 0.000 0.499

DT 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.500

RF 0.000 0.000 0.000 0.337 0.914 0.000 0.000 0.000 0.285 0.915

NB 0.061 0.667 0.111 0.086 0.672 0.020 1.000 0.039 0.510 0.992

LR 0.000 0.000 0.000 0.004 0.332 0.000 0.000 0.000 0.004 0.333

XG Boost 0.000 0.000 0.000 0.025 0.990 0.000 0.000 0.000 0.118 0.991

OC-SVM 0.001 0.667 0.001 0.667 0.673 0.001 1.000 0.001 0.605 0.994

IF 0.143 1.000 0.25 0.712 0.999 0.005 1.000 0.009 0.023 0.994

ReLU 0.167 0.667 0.267 0.667 0.825 0.167 0.667 0.267 0.671 0.994

Mixed Layers 0.400 1.000 0.571 1.000 1.000 0.067 0.667 0.121 0.683 0.998

M
in

M
ax

SVM 0.000 0.000 0.000 0.000 0.000 0.011 0.333 0.020 0.106 0.665

SVM-RBF 0.000 0.000 0.000 0.000 0.002 0.014 0.667 0.028 0.009 0.826

kNN 0.000 0.000 0.000 0.000 0.497 1.000 0.833 0.909 0.840 0.916

DT 0.012 0.167 0.023 0.173 0.663 0.000 0.000 0.000 0.000 0.496

RF 0.000 0.000 0.000 0.014 0.989 0.000 0.000 0.000 0.016 0.910

NB 0.000 0.000 0.000 0.000 0.001 0.010 0.333 0.019 0.172 0.661

LR 0.000 0.000 0.000 0.500 0.500 0.017 0.667 0.034 0.108 0.952

XG Boost 0.000 0.000 0.000 0.011 0.988 0.000 0.000 0.000 0.008 0.982

OC-SVM 0.000 1.000 0.001 0.565 0.999 0.001 1.000 0.001 0.008 0.982

IF 0.130 1.000 0.231 0.974 1.000 0.004 1.000 0.008 0.008 0.983

ReLU 0.000 0.000 0.000 0.000 0.001 0.000 0.500 0.001 0.000 0.544

Mixed Layers 0.000 0.000 0.000 0.167 0.168 0.011 0.333 0.02 0.175 0.979

�: higher value is better

samples. This also shows another aspect of supervised AD and its metrics as the
methods have to precisely model the decision boundary, indicating fraud or non-
fraud when evaluating precision, recall and F1 whereas for AP and ROC-AUC, the
boundary is not important as long as the fraud samples are scored higher than non-
fraud samples with regard to class probability. This is, for example, the case for
Mixed Layers with z-score normalization where all fraud samples are scored at top
positions yielding an AP and ROC-AUC score of 1.0 while the decision boundary
allows 9 false positives. For an application scenario that values fewer false positives
over detecting all fraud cases, kNN with discretization is the best approach, detect-
ing 5 of the 6 fraud cases correctly without false positives, overall yielding the best
F1 score.

8.2. Anomaly Detection with Mixed Layers on SAP Data 147

Table 8.4: Models with discretization and without scaling with and without PCA
evaluated with different metrics on the anomaly detection task of the SAP
fraud dataset. Best results per metric are written in bold. The highlighted
rows denote well-performing models over all metrics which are discussed
in detail.

PCA no PCA

Method � Prec. � Rec. � F1 � AP � ROC-AUC � Prec. � Rec. � F1 � AP � ROC-AUC

di
sc

re
ti

za
ti

on

SVM 0.333 0.333 0.333 0.333 0.463 0.333 0.333 0.333 0.334 0.663

SVM-RBF 0.000 0.000 0.000 0.377 0.675 0.000 0.000 0.000 0.373 0.673

kNN 1.000 0.833 0.909 0.865 0.917 1.000 0.833 0.909 0.865 0.917

DT 0.000 0.000 0.000 0.000 0.500 0.500 0.333 0.400 0.417 0.667

RF 0.000 0.000 0.000 0.488 0.999 0.000 0.000 0.000 0.494 0.916

NB 0.000 0.000 0.000 0.000 0.137 0.000 0.000 0.000 0.000 0.500

LG 0.250 0.333 0.286 0.358 0.772 0.250 0.333 0.286 0.358 0.772

XG Boost 0.000 0.000 0.000 0.036 0.995 0.333 0.333 0.333 0.346 0.667

OC-SVM 0.001 1.000 0.001 0.129 0.997 0.000 1.000 0.001 0.02 0.989

IF 0.034 1.000 0.066 0.467 1.000 0.005 1.000 0.011 0.02 0.993

ReLU 0.001 1.000 0.001 0.021 0.983 0.001 1.000 0.003 0.009 0.927

Mixed Layers 0.333 0.333 0.333 0.336 0.818 0.333 0.333 0.333 0.264 0.767

no
sc

al
in

g

SVM-RBF 0.019 0.667 0.036 0.009 0.828 0.000 0.000 0.000 0.008 0.665

kNN 0.059 0.833 0.110 0.028 0.913 0.014 0.667 0.028 0.015 0.910

DT 0.000 0.000 0.000 0.000 0.496 1.000 0.833 0.909 0.843 0.917

RF 0.012 0.167 0.023 0.016 0.991 0.000 0.000 0.000 0.000 0.496

SVM 0.011 0.333 0.020 0.186 0.649 0.000 0.000 0.000 0.017 0.91

NB 0.000 0.000 0.000 0.000 0.234 0.013 0.333 0.025 0.173 0.663

LR 0.017 0.667 0.034 0.190 0.952 0.016 0.667 0.031 0.012 0.986

XG Boost 0.000 0.000 0.000 0.010 0.986 0.000 0.000 0.000 0.013 0.989

OC-SVM 0.001 1.000 0.001 0.050 0.986 0.000 1.000 0.001 0.008 0.982

IF 0.009 1.000 0.017 0.006 0.976 0.004 1.000 0.009 0.009 0.984

ReLU 0.013 1.000 0.026 0.011 0.988 0.001 0.833 0.001 0.012 0.903

Mixed Layers 0.011 0.333 0.020 0.010 0.981 0.000 0.000 0.000 0.009 0.824

�: higher value is better

The anomaly detection approaches, IF and OC-SVM, reliably detect all fraud cases
across most preprocessing variants. However, they are susceptible to false positives:
In its best scenario, PCA with min-max scaling of numeric attributes, IF produces
40 false positives, classifying all 6 fraud cases as well as 19 670 non-fraud cases
correctly. Without PCA, while stably predicting all frauds correctly, both yield more
false positives. This also applies to Mixed Layers, which performs notably worse
with z-score in comparison to the experiment with PCA. A notable exception is
kNN, which performs well for min-max scaling, no scaling, and discretization.

Overall, the results of our experiment suggest that IF is a reliable choice for de-
tecting all fraud cases over various preprocessing choices, however, this comes to
the expense of more false positives in contrast to other approaches. As the model
is purely trained on benign data, it can be applied in a real-world scenario with-

148 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

out known class labels easily to find anomalous behavior with respect to benign
behavior of the past. However, this introduces the risk of accepting undiscovered
anomalous behavior and less precise classification if contamination with anomalous
samples cannot be completely ruled out for a real-world scenario. For example, the
best isolation forest with 40 false positives and no false negatives (PCA and min-
max) degrades to 278 false positives when trained on the supervised dataset which
includes 18 fraud cases.

To summarize, our Mixed Layers model performed well with appropriate prepro-
cessing choices of z-score normalization and PCA, ranking all 6 fraud cases on the
top positions while the decision boundary can be learned sufficiently well, classify-
ing all fraud cases correctly with 9 false positives. The ReLU network only detects 4

of the 6 fraud cases and yields 20 false positives. This shows the benefit of includ-
ing the iNALU in this architecture for fraud detection even in an anomaly-detection
evaluation setting without any tuning of the architecture for this specifically imbal-
anced task.

Second, kNN has proven useful with min-max scaling, and discretization, how-
ever, can be computationally expensive for larger datasets. Another drawback is the
dependence on the metric, which is used to decide on the distance of two potential
neighbors. The performance of kNN generally depends on the selection of an ap-
propriate distance metric for a given dataset that must be subject to the optimization
procedure [2]. For the application of kNN in this setting and on this dataset, the
Euclidean distance works well and is thus a reasonable choice, however, euclidean
distance is prone to the “curse of dimensionality” for a dataset with more features
[6] and thus has to be reevaluated along other metric choices for the adaptation to
other datasets.

Comparison of discretization strategies

The surprisingly good performance of kNN with discretization as preprocessing
raises the question of to what extent these results depend on our quantile outlier
QOQD discretization schema introduced in Section 7.2.1. To evaluate the influence
of the discretization strategy, in this experiment, uniform and quantile discretization
with and without the special encoding of outliers was applied and a kNN model
was trained, which showed the most promising performances in the previous exper-
iment.

Table 8.5 shows the results for the different discretization approaches. Including
outlier bins improves the results by large margin in comparison to equal frequency
quantile binning (quantile) and yields the best result for QOQD with no false posi-
tives and only one false negative. Binning by value (uniform) proves to be unsuitable
with kNN missing all fraud cases. Including a larger number of bins (10) impairs
the performance of the kNN classifier for all discretization strategies and generally
introduces more false positives except for QOUD, which yields better results.

8.2. Anomaly Detection with Mixed Layers on SAP Data 149

Table 8.5: Comparison of discretization strategies with and without PCA for 5 and
10 buckets for the kNN model. The quantile-outlier-quantile discretiza-
tion (QOQD) strategy outperforms quantile and uniform by large margin.
Quantile-outlier-uniform discretization (QOUD) performs slightly better
than quantile and uniform discretization. PCA transformation has no no-
table influence.

Discretization strategy � Prec. � Rec. � F1 � AP � ROC-AUC

PC
A

QOQD 5 buckets 1.000 0.833 0.909 0.865 0.917

QOQD 10 buckets 0.263 0.833 0.400 0.565 0.916

quantile 5 buckets 0.106 0.833 0.189 0.231 0.915

quantile 10 buckets 0.059 0.833 0.110 0.466 0.915

QOUD 5 buckets 0.000 0.000 0.000 0.000 0.499

QOUD 10 buckets 0.185 0.833 0.303 0.560 0.916

uniform 5 buckets 0.000 0.000 0.000 0.000 0.499

uniform 10 buckets 0.000 0.000 0.000 0.000 0.498

no
PC

A

QOQD 5 buckets 1.000 0.833 0.909 0.865 0.917

QOQD 10 buckets 0.263 0.833 0.400 0.566 0.916

quantile 5 buckets 0.111 0.833 0.196 0.234 0.915

quantile 10 buckets 0.064 0.833 0.119 0.476 0.915

QOUD 5 buckets 0.000 0.000 0.000 0.000 0.500

QOUD 10 buckets 0.167 0.833 0.278 0.560 0.916

uniform 5 buckets 0.000 0.000 0.000 0.000 0.499

uniform 10 buckets 0.000 0.000 0.000 0.000 0.498

�: higher value is better

The results of this experiment suggest that considering point anomalies for fea-
ture distributions in the discretization strategy helps to generalize over different
datasets and helps to improve the classification performance of comparison-based
approaches such as kNN. The difference between QOQD and QOUD however
suggests that representing feature outliers by frequency alone isn’t the key aspect
for performance, as outliers are explicitly modeled by bins consistently for both
approaches while the representation of non-outliers varies over both discretization
schemes.

8.2.2 Autoencoding Mixed Layers

In the previous sections, we evaluated Mixed Layers in a supervised classification
setting (Section 8.1.3) and in a supervised anomaly detection setting (Section 8.2). In
this section, we formulate fraud detection without explicitly labeled positive samples

150 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

for training. This setting can be interpreted as semi-supervised anomaly detection,
one-class, or unsupervised approach depending on the dataset and perspective, as
discussed in Section 4.4 in depth. More precisely, we create Auto-Encoder-based
models with and without Mixed Layers, which are trained to reconstruct the data.
The reconstruction of samples is inherently given by the architecture as input of
the encoder and output of the decoder. Input and output remark the same feature
space and the model is precisely trained to reproduce the input at the output with a
reconstruction objective, commonly `2 norm (see Eq. 4.45).

To avoid overfitting and learning the identity function, the number of parame-
ters is limited in a bottleneck layer. By this, the NNs are encouraged to focus on
characteristics which summarize a large number of instances on a low-dimensional
manifold, since the precise reconstruction of a large number of instances will reduce
the reconstruction error from a global perspective. Consequently, the precise recon-
struction of samples that do not share the characteristics with the majority of normal
data will fail. This reconstruction error, i.e., the difference between the input sample
and the output of the AE, is used as anomaly score. As discussed in Section 4.4,
it allows an evaluation ordered from the worst reconstructed (i.e., expectedly most
anomalous) to the best reconstructed (i.e., expectedly most common) sample in an
unsupervised manner without discretizing this continuum into anomalies and nor-
mal instances, for example by a threshold. Therefore, PR and ROC curves can be
used as evaluation measures, while precision, recall or F1 are unsuitable without
specific task-dependent thresholds or subsequent supervised learning.

Auto-Encoder Models

AEs are NN models and consist of encoder and decoder layers. The bottleneck
layer is, as the term suggests, the smallest layer, which is located at the end of the
encoder. Deep AEs consist of several hidden layers on both sides of the bottle neck
layer, which typically decrease in the encoder and increase in the decoder in terms
of the number of neurons per layer, as already introduced in Section 6.2.1 for the
special case of Variational Auto-Encoders. Fig. 8.6 shows the basic structure of a
Mixed Layer AE while, in general, the number of layers and neurons per layer can
vary. For more hidden layers, our AE model is constructed by reducing the number
of neurons to 50% of the previous layer up to the bottleneck layer and symmetrically
constructing the decoder with increasing layer sizes. We tested other architectural
choices in preliminary experiments including Mixed Layers at different stages of the
AE, e.g. after input layer, before output layer, at different hidden layer positions.
However, the best performance was achieved by AEs using Mixed Layers as the
bottleneck, which we therefore evaluate in detail.

8.2. Anomaly Detection with Mixed Layers on SAP Data 151

Experimental Setup

For this experiment, we evaluate a basic AE and a Mixed Layer AE (ML-AE) model
along with OC-SVM and IF on the SAP fraud dataset. This dataset contains an un-
labeled benign subset of data and two labeled subsets including fraud data. As the
ML approaches in these experiments are trained on benign data only, we use the
unlabeled benign subset as training data and have two additional datasets for val-
idation and testing, which allows us to find the optimal hyperparameters for each
model on the validation split and evaluate on the test split. We therefore performed
a grid-search over the hyperparameter space of each model. For OC-SVM we eval-
uated the linear and RBF kernel for parameters ν ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 0.95} and
for RBF γ ∈ {10−4,−3,··· ,4}. For ML-AE and AE we varied the number of layers for
encoder and decoder from 1 to 5, the number of neurons in the bottleneck layer
m ∈ {10, 20, · · · , 100}, the learning rate between {10−5, 10−4, 10−3, 10−2} and the
batch size between {8, 16, 32}. For IF, we evaluated t ∈ {24,··· ,10} trees and subsam-
pling parameters ϕ, ψ ∈ {0.2, 0.4, 0.6, 0.8, 1} and selected the best hyperparameter
configuration based on the eval dataset on the rmin metric (cf. Eq. 8.1) detailed in the
following paragraph.

The one-class experimental setup including the hyperparameter study allows eval-
uation with ROC-AUC and AP, however, F1 evaluation requires the definition of a
threshold to assign class labels from the anomaly score. Since fraudulent samples
are very rare, further splitting the labeled datasets to validate a threshold is not a
feasible option. Instead of F1 score, we report an additional metric, the maximum
rank of fraudulent samples, which is motivated by practical means: In a real-world
application, ML and automated decision-making on sensible data is required to have
the “human in the loop” for privacy and ethical concerns [88], such that, for example,
automated decisions are being reviewed before any consequences are drawn. There-
fore, the maximum rank of fraudulent samples (i.e. the rank of the least suspicious
fraud) corresponds to the number of instances a human reviewer has to examine and
therefore the workload to find all fraud cases. For the subset of fraudulent samples
D|F = {(x, y) ∈ D : y = fraud} the rank of the least suspicious fraud is given by

rmin = |{x ∈ D : as(x) ≥ min
f∈D|F

as(f)}| (8.1)

for an anomaly score as with increasing values corresponding to more anomalous
samples.

Results

The results of the hyperparameter study with regard to AP as evaluation metric
are depicted in Fig. 8.5. While IF overall performs very well on the eval dataset, it
achieves lower results on the test dataset compared to the other models which may
indicate overfitting of the hyperparameters. Overall, the range of results is very

152 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

IF ML AE OCSVM AE
Model

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AP
ev

al

IF ML AE OCSVM AE
Model

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AP
te

st

Figure 8.5: AP results for the hyperparameter study for eval and test. The results of
the models selected according to best eval results are marked with ×.

large, ranging from 0.78 to 0.13 AP on eval, while on test the span is notably smaller
with a best performance of 0.24. Contrarily, the OC-SVM yields inferior results on
the eval dataset while achieving the overall best AP of 0.78 on the test dataset. An
in-depth view on the hyperparameters suggests that they do not generalize well
between both datasets, as the main difference is the scaling parameter for the RBF
kernel γ, which highly influences the results achieving 0.07 on test for the best model
with γ = 1 according to eval, while the best model according to test with γ = 0.1
reaches 0.77 AP. The ML-AE and AE models perform comparably on eval and test.
Although some ML-AE hyperparameters yield very good results of 0.72 on test,
the best models according to eval perform mixed between 0.12 and 0.25. The AE
on the other hand does not perform comparably for the best models according to
test, however, it yields stable results comparable to ML-AE when evaluating the
best model selected from eval. Focusing on the hyperparameter choices for the best
ML-AE and AE models, both have identical hyperparameters as listed in Table 8.6
besides relatively similar architectures with one hidden layer and a bottleneck of 80

and 90 dimensions, respectively.

Table 8.6 summarizes the results for all the best models according to eval. Note
that all models list all fraud cases for eval among the first 57 most suspicious samples
for all models, with IF performing best listing all among the first 44 on average. The
other models follow closely, showing the same characteristics already discussed for
the overview of all hyperparameter runs in Fig. 8.5. However, on the test dataset
the differences become larger, as IF is outperformed by the other models by large
margin. AE, ML-AE and OC-SVM retrieve all fraudulent samples among 46 and
61 candidates, which roughly corresponds to their performance on eval and can be
handled by an auditor for manual inspection. Regarding preprocessing, IF benefits
from z-score normalization while all other approaches yield best results with QOQD
quantization.

8.3. Modeling Distributions and Dependencies for Fraud Detection 153

Conclusion

In this experiment, we evaluated ML-AE models in comparison to AE, OC-SVM
and IF in a semi-supervised one-class setting training on benign data and evaluating
on fraudulent data. We performed an extensive hyperparameter study on the eval
dataset for all models and reported the best models for the test dataset. Our findings
suggest that ML-AE and AE generalize well between both datasets yielding simi-
lar performances, while other models perform better on each dataset individually,
however, fail to generalize when evaluated in a fair comparison, i.e. selecting hy-
perparameters independently from a hold-out test dataset. Compared to our results
from supervised training without PCA (see Section 8.2.1) both baseline methods,
OC-SVM and IF, improve, while Mixed Layers performed slightly worse with re-
spect to the AP metric in the semi-supervised AE-based architecture.

8.3 Modeling Distributions and Dependencies for Fraud
Detection

In Section 6.2, we introduced WGAN and VAE architectures to model distributions
and dependencies of transaction data as generative models and evaluated their per-
formance with respect to data synthesis. As discussed in Section 4.4, the task of
anomaly detection is often approached with the same objective, namely, learning the
characteristics of normal data, for which generative models can be employed. In this
section, we therefore address the task of fraud detection from a generative modeling
perspective. As an intuition, for models trained to generate normal data, this cor-
responds to evaluating how likely it is that the model will produce or how well the
model can reproduce the queried sample, which will be detailed in Section 8.3.1.

In this experiment we focus on both anomaly detection datasets already evaluated
in the generative setting in Section 6.2, PaySim, and SAP. As Census has no fraud de-
tection objective to evaluate and does not contain strongly imbalanced classes which
can be modeled as such, instead of Census, we include the CCFraud dataset from
Section 8.1. CCFraud could not be included as a generative evaluation dataset in

Table 8.6: Best performing hyperparameter configurations of each approach.
† Non-deterministic algorithm: Results averaged over 5 random seeds.

Approach � reval
min � rtest

min � APeval � APtest � ROC-AUCeval � ROC-AUCtest Preproc. Hyperparameters

OC-SVM 51 61 0.25 0.08 1.00 1.00 QOQD {ν = 0.2, γ = 1.0}
ML-AE† 55.20

±1.64
47.40
±3.29

0.25
±0.01

0.20
±0.06

1.00
±0.00

1.00
±0.00

QOQD {neurons=(290, 90, 290),
batch_size=16, learning_rate=1e-4}

AE† 56.67
±2.50

46.17
±6.46

0.24
±0.02

0.25
±0.00

1.00
±0.00

1.00
±0.00

QOQD {neurons=(120,60,120),
batch_size=16, learning_rate=1e-4}

IF† 43.80
±1.92

151.00
±17.65

0.31
±0.01

0.03
±0.00

1.00
±0.00

0.99
±0.00

z-score {t=512, ϕ = 0.2, ψ=1}

� / �: higher / lower value is better

154 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

x1

x2

x3

...

xd−2

xd−1

xd

1

2

...

n− 1

n

· · ·

1

...

m

· · ·

1

2

...

n− 1

n

x1

x2

x3

...

xd−2

xd−1

xd

hb

Mixed Layer

h1 hj

input output

Encoder Decoder

Figure 8.6: AE with Mixed Layer of dimensionality m and linear hidden layers h1, hj
of dimensionality n. Arrows are drawn between fully connected layers.
AE without Mixed Layer is structured accordingly with ReLU activations.

Section 6.2 since all features (except time and amount) are PCA transformed and
therefore cannot be compared with generated data from a qualitative perspective.
For fraud detection, however, the generative precision in terms of explicitly mod-
eling feature distributions and dependencies is less important since the ability to
precisely identify anomalous samples can be evaluated independently. Neverthe-
less, the models have to implicitly model normal data to be beneficial for detecting
anomalous samples, as the evaluation typically relates to the ability to model nor-
mal data well while failing to reproduce or generate anomalous samples. In the next
section, we will focus on this aspect, i.e. how the trained generative models are used
to evaluate the normality of a given sample.

8.3.1 Anomaly Detection Methods

In this section, the AD methods for both models, VAE and GAN, are detailed. While
AD for VAE is generally realized straight forward and analogously to training by
reconstruction error, for GAN, multiple options are feasible, which are discussed in
more depth.

AE Reconstruction As discussed in Section 4.4, AD often involves learning a model
for normal data and identifying anomalies by reconstructing a sample through the
model from which the reconstruction error as AD score is derived. For VAE models,

8.3. Modeling Distributions and Dependencies for Fraud Detection 155

the reconstruction error can be incorporated analogously to AE models, as detailed
in Section 8.2.2.

Discriminator-based AD With GANs, on the other hand, a reconstruction-based
anomaly score is not inherently applicable, since the generator maps from random
noise space z to feature space, i.e. z can not be interpreted as specific latent repre-
sentation of a previously encoded sample from feature space such as the bottleneck
layer of an AE. Since the discriminator maps from feature space to a score dis-
tinguishing real samples from generated, it is theoretically applicable to anomaly
detection. However, as the generator learns to mimic real data better and better,
the discriminator has to focus on specific artifacts of the synthesized data which are
most certainly not present in real anomalies [219] therefore showing inferior results
compared to a classifier dedicated for the downstream task [200]. Additionally, the
training loop between generator and discriminator has to be balanced for successful
training. A perfect generator will thereby stop the discriminator from learning and
vice versa constraining the AD performance of the discriminator to the abilities of
the generator to “resemble the anomalies you expect to need to detect”, as Goodfel-
low stated [126]. Although first approaches reusing the discriminator are currently
being studied [319, 320, 200, 219], such approaches modify the training objective to
generate data outside the normal data distribution [219] or introduce changes in the
objectives and training protocol [319, 320] with unclear adaptability for AD specific
tasks and missing performance improvements over models trained outside the GAN
framework [200]. Therefore, we refrain from using discriminator-based AD for fraud
detection.

Complex Architectures for AD Besides reusing the discriminator, other approaches
have been proposed for GAN-based AD, which rely on augmented architectures
such as BiGAN [75, 182, 358, 357] or combining GANs or adversarial mechanisms
in general with AEs [79, 194, 8, 369, 296]. However, all of these methods imply large
architectural changes with potential consequences for the balancing, training pro-
cess, and stability to which GAN models are known to be prone [115]. Therefore,
we follow another methodology that allows us to use unaltered GAN architectures
already proven in the generative course. This methodology has been successfully
applied for GAN-based AD and is known as inverting the generator technique.

Generator-based AD As GANs are trained to generate normal data, the gener-
ator is expected to reproduce normal samples well while struggling to produce
specific anomalies which have not been part of the training data. Formally, we
expect a z from random latent space Z to exist for which the output of the generator
G : z 7→ x̂ is close to the associated real sample x, as the interplay between discrim-
inator and generator encourages the generator to generate samples similar to real

156 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

samples presented to the discriminator. Note that this assumption only holds when
mode collapse is avoided, i.e. the generator produces samples over the complete
sample probability space as encouraged by the WGAN-GP architecture we used in
our experiments. In a reconstructive setting, the generator is expected to produce a
certain x̂ similar to a given x, which demands an inverse mapping of the generator
G−1 : x 7→ z hence the term inverting the generator techniques. If this G−1 is given,
the generator can be used similarly to AEs by mapping a real sample x to the most
representative latent variable z (encoding) and generating the synthetic sample x̂
with G(z) (decoding). Then reconstructive anomaly scoring as used in AEs can be
applied directly. Note that determining G−1 is not trivial in practice as in general
the generator is a deep neural network comprised of several non-linear layers. While
several complex model extensions (BiGAN [358], additional encoder [7, 8], etc.) aim
to approximate G−1 by additional GAN components and thus could be considered
as ‘inverting the generator’ in a broader sense, we only consider direct approaches
on the trained generator. For this purpose, three related methods have been pre-
sented in literature, which we briefly review before evaluating their performance in
the fraud detection domain.

Inverting the Generator (ItG) The first method, hereafter referred to as ItG, was
developed by Creswell and Bharath [66, 67]. They propose inverting the generator
by starting with a randomly initialized ẑ ∼ P(Z) which is optimized ẑ→ z∗ towards
the specific z for which G(z) = x.

z∗ = min
z

(−E
x
[log(G(z)]) (8.2)

LItG(z; x) = − (x log(G(z)) + (1− x) log(1− G(z))) (8.3)

With the resulting loss function LItG(z; x), ẑ is optimized by gradient descent
leaving G itself unchanged. In practice, we adopt the seeding strategy from [72]
by performing this procedure for a set of seeds z simultaneously to increase the
robustness, motivated by the observation that several z map to a given x. The final
anomaly score is then the average over the loss of 64 seed-z after their last update
step. We follow the authors with respect to the choice of parameters for optimization
of z with lr = 0.0002 and k = 200 steps. As these steps have to be performed for
each sample x, this approach is quite computationally intensive.

ADGAN Deecke et al. [72] proposed ADGAN, another method to invert the gener-
ator. The underlying principle is similar to ItG. However, in addition to optimizing
z, the generator is re-trained at each step, which is expected to increase the flexibility
to better reconstruct x. The generator is reset to its post-training state for each sam-
ple. ADGAN therefore corresponds to the ItG approach in Eq. 8.2 with the exception
that the parameters of G are not fixed and optimized alongside z. Since inverting the

8.3. Modeling Distributions and Dependencies for Fraud Detection 157

generator is a slow method, the authors suggested using lrz = 0.25 and k = 5 steps
to update z and lrg = 5 · 10−5 for the generator, which we adopt for our experiments.

ANOGAN The third method we compare is ANOGAN by Schlegl et al. [275].
Instead of retraining the generator, this method adds the feature matching [271]
discriminator loss LD to the optimization problem for ẑ. The loss function for opti-
mizing the noise vectors z is thus given as:

LR(z; x) = ‖x− G(z)‖2
2 (8.4)

LD(z; x) = ‖ f (x)− f (G(z))‖2
2 (8.5)

L(z; x) = (1− λ) · LR(z; x) + λ · LD(z; x) (8.6)

Schlegl et al. use the last discriminator layer as f to extract meaningful features
for LD instead of the decision scalar. We follow this idea, use the last intermediate
discriminator layer as f and set λ = 0.1, lr = 0.001 and k = 100 steps. The anomaly
score is determined by the loss after the last update iteration.

8.3.2 Experiment 1: Preprocessing

In Section 6.2 we evaluated VAE and WGAN with several preprocessing and para-
meter choices with respect to their generative performance to synthesize data similar
to the original dataset. On the other hand, in this experiment, we replicate this study
for both models with a focus on AD instead of generative performance. By this we
evaluate if different objectives for the same datasets and models benefit from differ-
ent preprocessing choices. As Section 6.2.3 showed negligible influence of the em-
bedding size on the generative performance, we evaluate auto with d = min(d k

3e, 20)
for k unique feature values, no embeddings (None), 50 as embedding dimensional-
ity and min-max scaling, z-score standardization and VGM for each model in this
experiment. For CCFraud, all features are PCA-encoded or numerical attributes,
therefore, no embedding is evaluated for this dataset. For WGAN in the first pre-
processing evaluation experiment, we fix ItG as anomaly detection method, as the
other methods are based on ItG. For VAE we evaluate by reconstruction error as
discussed in the last section.

Results Table 8.7 summarizes the results. Overall, it can be observed that simi-
lar to our findings from Section 6.2.3, the embedding size demb has little influence
on the results with the exception of ROC-AUC for WGAN on PaySim, where auto
performed best for all numerical preprocessors and AP for VAE on SAP, where
demb = 50 performed best.

The VAE shows mixed results with respect to numerical encoding in different
datasets. While z-score standardization performed best for both metrics for PaySim

158 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

Table 8.7: Discriminative preprocessing results for VAE and WGAN on PaySim, SAP,
and CCFraud eval datasets averaged over 5 iterations. The best results are
written in bold.

VAE WGAN

Dataset Num demb � ROC-AUC � AP � ROC-AUC � AP

PaySim minmax auto 0.78 ± 0.03 0.04 ± 0.03 0.80 ± 0.04 0.02 ± 0.03

50 0.78 ± 0.03 0.03 ± 0.04 0.76 ± 0.07 0.01 ± 0.02

None 0.80 ± 0.07 0.04 ± 0.03 0.83 ± 0.05 0.02 ± 0.03

z-score auto 0.89 ± 0.03 0.04 ± 0.04 0.75 ± 0.05 0.03 ± 0.04
50 0.89 ± 0.03 0.05 ± 0.04 0.73 ± 0.05 0.03 ± 0.04
None 0.89 ± 0.03 0.04 ± 0.04 0.73 ± 0.04 0.03 ± 0.04

VGM auto 0.83 ± 0.06 0.04 ± 0.04 0.60 ± 0.04 0.03 ± 0.04
50 0.83 ± 0.05 0.03 ± 0.04 0.55 ± 0.04 0.03 ± 0.04
None 0.82 ± 0.04 0.03 ± 0.04 0.56 ± 0.08 0.03 ± 0.04

SAP minmax auto 1.0 ± 0.0 0.86 ± 0.11 1.0 ± 0.00 0.71 ± 0.04
50 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.00 0.71 ± 0.07
None 1.0 ± 0.0 0.93 ± 0.06 1.0 ± 0.00 0.70 ± 0.08

z-score auto 1.0 ± 0.0 0.77 ± 0.02 0.99 ± 0.00 0.67 ± 0.00

50 1.0 ± 0.0 0.77 ± 0.03 0.99 ± 0.00 0.67 ± 0.00

None 1.0 ± 0.0 0.79 ± 0.03 1.0 ± 0.02 0.67 ± 0.00

VGM auto 1.0 ± 0.0 0.87 ± 0.17 1.0 ± 0.00 0.02 ± 0.01

50 1.0 ± 0.0 0.90 ± 0.16 1.0 ± 0.00 0.01 ± 0.01

None 1.0 ± 0.0 0.77 ± 0.26 1.0 ± 0.00 0.02 ± 0.01

CCFraud minmax None 0.93 ± 0.03 0.54 ± 0.04 0.96 ± 0.01 0.16 ± 0.03
z-score None 0.94 ± 0.01 0.57 ± 0.06 0.96 ± 0.01 0.16 ± 0.03
VGM None 0.95 ± 0.02 0.53 ± 0.07 0.96 ± 0.01 0.16 ± 0.03

�: higher value is better

and on CCFraud best for AP, for SAP, minmax scaling yielded the best while stan-
dardization yielded the worst results for AP by large margin. For CCfraud and SAP,
the ROC-AUC metric does not reflect the differences well, as all models perform
very similarly. For VAE in the following experiments, we use z-score scaling for
PaySim and CCFraud and minmax scaling for SAP. In comparison to the best hy-
perparameters for the generative task, the discriminative task benefits from different
preprocessing choices depending on the dataset. For PaySim, the generative task
performed comparable for z-score scaling, which was the best result for the discrim-
inative task. For SAP in the generative task VGM clearly outperformed minmax

8.3. Modeling Distributions and Dependencies for Fraud Detection 159

scaling, while for the discriminative task, for VAE minmax scaling yielded the best
results.

For the WGAN model, min-max scaling yields the best results overall. For PaySim,
the results regarding AP, for SAP ROC-AUC and for CCFraud both metrics vary
only slightly between different preprocessing choices. In contrast, min-max clearly
outperforms the other approaches for ROC-AUC on PaySim and AP on SAP. There-
fore, we evaluate the minmax scaling for the next WGAN experiments with demb =
auto for PaySim and SAP. The preprocessing choices for WGAN differ between the
discriminative and generative task as well. For the generative task, while VGM mod-
eled the distributions according to JSD best by large margin, minmax outperformed
VGM on the discriminative task, especially for SAP.

To summarize, our experiments suggest that generative and discriminative objec-
tives for the same models and datasets require different preprocessing choices for
AD. This is not completely surprising as the generative evaluation only judges the
precise modeling of normal data, while the treatment of anomalies has almost no
influence due to their rarity alone. On the other hand, the discriminative objec-
tive does not require the models to match the real distributions precisely as long as
anomalous samples are made distinguishable, which ultimately is the only aspect
that is assessed.

8.3.3 Experiment 2: GAN Anomaly Detection Methods

In Experiment 1, we evaluated the preprocessing parameters using the ItG technique.
With ADGAN and ANOGAN, two additional variants have been proposed, which
extend the basic idea of ItG. In this experiment, we compare the three approaches to
evaluate whether both extensions, which have been originally proposed in the image
domain, also improve AD in the domain of financial transactions. As the influence of
preprocessing on the relative performance between ItG, ADGAN, and ANOGAN is
negligible since all methods are based on the ItG principle, we use the preprocessing
parameters according to Experiment 1 (cf. Section 8.3.2).

Results We conducted an experiment evaluating ItG, ADGAN and ANOGAN with
the WGAN model as introduced in Section 6.2 on the three datasets, PaySim, SAP
and CCFraud, and report ROC-AUC and AP as evaluation metrics. Table 8.8 sum-
marizes the results averaged over 5 runs. For our financial fraud detection set-
ting, ItG outperformed the other approaches on PaySim and SAP. For CCFraud,
ANOGAN slightly outperformed ItG with respect to AP, while performing equally
well for ROC-AUC. These results suggest that for ADGAN, either retraining the
generator does not improve AD in this setting or the training parameters for z are
not chosen beneficial in this context.

160 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

Table 8.8: AD methods for WGAN averaged over 5 random seeds and their standard
deviation with the best results written in bold.

ItG ADGAN ANOGAN

Dataset � ROC-AUC � AP � ROC-AUC � AP � ROC-AUC � AP

PaySimeval
0.821 ± 0.075 0.019 ± 0.028 0.769 ± 0.072 0.017 ± 0.028 0.825 ± 0.064 0.019 ± 0.028

SAPeval 0.988 ± 0.006 0.388 ± 0.067 0.961 ± 0.022 0.362 ± 0.015 0.980 ± 0.010 0.347 ± 0.055

CCFraudeval
0.951 ± 0.022 0.176 ± 0.036 0.925 ± 0.022 0.156 ± 0.040 0.958 ± 0.019 0.214 ± 0.060

PaySimtest 0.797 ± 0.045 0.020 ± 0.032 0.736 ± 0.121 0.018 ± 0.031 0.794 ± 0.069 0.012 ± 0.016

SAPtest 0.998 ± 0.001 0.695 ± 0.040 0.997 ± 0.001 0.569 ± 0.116 0.996 ± 0.002 0.424 ± 0.265

CCFraudtest
0.954 ± 0.007 0.164 ± 0.031 0.925 ± 0.022 0.155 ± 0.033 0.956 ± 0.009 0.210 ± 0.055

�: higher value is better

Table 8.9: Comparison AD threshold selection strategies for PaySim, SAP and
CCFraud eval datasets.

max normal min anomaly Contamination rate

Model Dataset � F1 � TP � FN � FP � F1 � TP � FN � FP � F1 � TP � FN � FP

VA
E

PaySim 0.052 0.4 14.4 0.4 0.005 13.0 1.8 5769 0.084 1.2 13.6 12.4
SAP 0.728 6.0 0.0 5.2 0.069 6.0 0.0 206 0.5 6.0 0.0 12.0
CCFraud 0.231 7.4 37.2 1.2 0.007 43.8 0.8 19708 0.528 25.0 19.6 25.0

W
G

A
N PaySim 0.0 0.0 14.8 0.2 0.002 13.6 1.2 14101 0.014 0.2 14.6 13.4

SAP 0.747 3.6 2.4 0.0 0.011 6.0 0.0 1370 0.367 4.4 1.6 13.6
CCFraud 0.0 0.0 44.6 0.4 0.005 43.8 0.8 17639 0.226 10.6 34.0 39.4

� / �: higher / lower value is better

Given that ADGAN with per-sample retraining of the generator (and thus back-
propagation for a large number of parameters) is very computationally intensive,
the retraining is not sustainable as the models are reset after AD calculation and
the overall performance is notably worse, we refrain from extensive hyperparam-
eter studies and further evaluate with ItG, the overall best approach, for the next
experiments.

8.3.4 Experiment 3: Fraud Detection

For Fraud Detection in an automated approach, the anomaly score with its ROC-
AUC and AP metrics is not a sufficient output as for credit card transactions, for
example, a decision for each sample is required whether it is to be treated as fraud
(e.g. by blocking the transaction or requiring further authorization) or whether it is
benign and therefore executed as desired. As discussed in Section 8.2.2, such au-
tomated decisions are not always in compliance with regularities. However, they
allow a timely response (in comparison to auditor-operated fraud detection), which
for example for deployment in micro-payment systems (PaySim) or credit-card pay-

8.3. Modeling Distributions and Dependencies for Fraud Detection 161

ment fulfillment (CCFraud) is required to prevent fraud. We therefore evaluate three
threshold-based approaches to decide on the actual class label driven by the anomaly
score of VAE and WGAN.

Without class labels, the decision function can not be trained end-to-end as given
for WGAN and VAE in our scenario as both approaches are trained to model normal
data precisely and thus judge anomalies by their deviation from the expected normal
behavior. Two options are feasible to derive the class label from anomaly score post
hoc: If the fraction of expected anomalies can be estimated, for example, from prior
audits or expert knowledge, the contamination rate can be used as decision threshold.
The contamination rate denotes the percentage of samples that are expected to be
anomalies. The class label anomaly is then assigned to the respective proportion of
the samples with the highest anomaly score evaluated. This method, however, is dif-
ficult to apply in an online or streaming approach (as given for real-time application
in payment fraud detection), since the dataset size is unknown. Also, the trained
model might suffer from data drift as the data characteristics may change over time,
so previously estimated thresholds according to the contamination rate might not be
suitable any more.

Another option applicable only in the one-class setting where the training data is
known to contain only normal data, is to use the maximum of the anomaly scores
seen during training for normal data, i.e. the “most abnormal” normal (max normal)
sample (cf. Section 4.4). However, as soon as the training data is contaminated
with anomalies, this approach will most likely miss similarly and less anomalous
anomalies present in the test dataset.

In a semi-supervised or one-class scenario, where a large number of training data
are unlabeled or from one class only, while an evaluation or validation dataset (be-
sides the actual test data) is available containing both class labels, this dataset can be
used to decide on a threshold. The decision can then be based on the least suspicious
anomaly in this evaluation dataset (min anomaly). In this experiment, we evaluate
all three approaches to decide on the class label with regard to the AD score.

Results

In Table 8.9 all three threshold selection strategies are compared on the PaySim, SAP,
and CCFraud datasets. We report TP, FN, and FP averaged over 5 seeds and the re-
sulting F1 score for VAE and WGAN. The contamination rate and min anomaly
threshold are both estimated from the eval dataset, while the max normal threshold
is estimated from the training set. The results show a differentiated pattern mainly
depending on the dataset: For both models, SAP yields the best F1 score for max
normal while for PaySim and CCFraud, the contamination rate yields the best F1

score. For SAP, WGAN slightly outperforms VAE, while for all other datasets, VAE
yields notably higher F1 scores. Min anomaly overall yields the worst results regard-
ing F1 driven by high FP rates, although this strategy marks the most true anomalies

162 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

as such. The good performance of contamination rate for PaySim and CCFraud in
contrast to the worse results for SAP can be explained by the dataset characteristics:
While for PaySim and CCFraud the eval (and test) dataset was randomly sampled
from the full dataset and thus is expected to follow the same dataset characteristics
and fraud proportion, for SAP training and eval are different datasets remarking
different fiscal years and thus different data characteristics, fraud cases, and fraud
proportions.

To summarize, our experiments suggest that for class labels to be inferred from
anomaly scores, the characteristics of the dataset and anomalies are important. If
the training dataset is anomaly-free and validation and test datasets do not originate
from the same population (i.e. the same generative process), the most suspicious
normal sample defines a suitable threshold. However, when the datasets originate
from the same population and the contamination rate can thus be estimated reliably,
contamination rate is a precise threshold strategy without too many false positives.
When the focus is not on avoiding false alarms but on finding most anomalies, for
example, when the cost of a missed fraud exceeds the cost of a false positive by
magnitudes, the min anomaly strategy might also be a suitable choice for some
applications.

The results of this experiment comparing WGAN and VAE with respect to ROC-
AUC, AP and F1 metrics are summarized in Table 8.10. In direct comparison, VAE
mostly outperforms WGAN for our AD task. Regarding ROC-AUC, the WGAN
model slightly outperforms VAE on CCFraud and regarding F1 on SAP. The re-
spective other model performs only insignificantly3 worse, all within one standard-
deviation. Contrarily, for all other datasets and metrics with the exception of PaySim
and AP, VAE significantly4 outperforms the respective WGAN.

8.3.5 Conclusion

Recalling our best results of Section 8.2 on SAP, which was achieved by IF with
min-max normalization and PCA encoding, our best VAE model performed equally
well on ROC-AUC (both 1.0), almost equally on AP (IF 0.974, VAE 0.969) and no-
tably better regarding F1 (IF 0.231, VAE 0.728). Overall, both generative models,
VAE and WGAN, yield considerably good results. Although outperforming VAE
in several generative scenarios (cf. Section 6.2), the WGAN anomaly detection ap-
proaches evaluated in this thesis, which only rely on inverting the generator without
architectural changes, cannot compete with reconstruction-based AD using VAEs.

3Mann-Whitney U Test, p > 0.26
4Mann-Whitney U Test, p ≤ 0.05

8.3. Modeling Distributions and Dependencies for Fraud Detection 163

Table 8.10: Final anomaly detection results for the Paysim, SAP and CCFraud test
datasets. Best model per metric in bold, significantly∗ different pairs are
underlined.

Dataset Model � ROC-AUC � AP � F1

PaySim WGAN 0.797 ± 0.045 0.020 ± 0.032 0.014 ± 0.029

VAE 0.892 ± 0.036 0.047 ± 0.043 0.084 ± 0.051
SAP WGAN 0.998 ± 0.001 0.695 ± 0.040 0.747 ± 0.065

VAE 1.0 ± 0.0 0.969 ± 0.025 0.728 ± 0.146

CCFraud WGAN 0.956 ± 0.009 0.210 ± 0.055 0.226 ± 0.056

VAE 0.948 ± 0.015 0.550 ± 0.072 0.528 ± 0.088

�: higher value is better
∗ Mann-Whitney U Test, p ≤ 0.05

164 CHAPTER 8. ANOMALY DETECTION AND APPLICATIONS IN TRANSACTION

FRAUD DETECTION

165

Chapter 9

Conclusion and Outlook

In this thesis, we approached anomaly detection on transaction data from different
perspectives. As capturing normal data characteristics in comparison to anomalies
is an important task-dependent and domain-dependent aspect, we studied several
architectures to emphasize learning of numeric dependencies and feature distri-
butions and proposed specific models for transaction data. We evaluated several
representation learning approaches and finally evaluated different scenarios for de-
tecting anomalies in transaction data in supervised and unsupervised, as well as
balanced and imbalanced settings for several synthetic and real financial fraud de-
tection datasets. In the following we will summarize the contributions of this thesis
as well as revisit and answer our research questions.

In the first chapter, we focused on modeling distributions and dependencies specif-
ically for transaction data. We introduced an improved neural arithmetic model
identifying and discussing several shortcomings of the preceding state-of-the-art
model. We showed the benefit of our proposed approach for modeling arithmetical
and numerical dependencies in several experiments. This allows us to answer the
first research question regarding the modeling of numerical dependencies:

RQ 1: How well do neural network models capture the characteristics of transaction
data?

RQ 1.1: To what extent can the extrapolation of numerical dependencies be improved
by a neural architecture?

Answer: Although not all stability issues and the precise modeling of the division op-
erator have been solved, our proposed iNALU model generally improved the
extrapolation of numerical dependencies regarding precision and stability in
comparison to the previous state-of-the-art.

We then adapted two generative neural models, VAE and WGAN, for model-
ing transaction data. We systematically evaluated a large number of preprocessing
choices with the aim to improve the generative performance for distributions and

166 CHAPTER 9. CONCLUSION AND OUTLOOK

feature correlations as present in transaction data. We incorporated our iNALU ar-
chitecture in both models and found that the generative performance for WGAN
could be significantly improved by incorporating our iNALU architecture for some
datasets, while performing equally well on the others. We then evaluated the gen-
erative performance of VAE and WGAN exploratively and found that both models
capture dataset distributions and feature correlations well, with WGAN modeling
numerical variables and VAE modeling categorical variables slightly better than the
respective other model. This finding answers both research questions:

RQ 1.2: How well do generative neural networks model feature distributions?

RQ 1.3: How well do generative neural networks model feature correlations?

Answer: For modeling distributions and correlations, both models studied are able to
capture both aspects very precisely on datasets we evaluated.

In the second chapter, we focused on categorical features and their representa-
tion. First, we used Windows Audit Logs as transaction dataset, which resembles
the characteristics of natural language best. We evaluated three word embedding ap-
proaches in comparison to one-hot encoding and found that one-hot vectors quan-
titatively still outperformed the word embedding approaches, while FastText em-
beddings were able to structure the relevant aspect of malicious and non-malicious
executions very well from an explorative auditor-driven perspective. We then in-
troduced outlier-aware discretization schemes to adapt this experiment to financial
transactions, encoding categorical and numerical features within the same embed-
ding space. We then evaluated the different discretization schemes and word em-
bedding approaches in a classification task, finding that GloVe-based embeddings
trained with our proposed discretization scheme outperform the baseline classifier,
although FastText and Word2Vec, which were quantitatively outperformed by the
baseline, yielded the visually most promising results. Relating to our research ques-
tion, our findings can be summarized as follows:

RQ 2: How are transactions best represented to emphasize structural similarity?

RQ 2.1: Which representation learning approach yields the most promising structure
in latent space?

RQ 2.2: Which representation learning approach yields the best performance in extrin-
sic evaluation?

RQ 2.3: To what extent does the introduction of numerical features improve represen-
tation learning in extrinsic evaluation?

Answer: We have to distinguish between exploratory analysis (RQ 2.1) as, for exam-
ple, conducted by an auditor, and quantitative performance (RQ 2.2). From

167

a quantitative point of view, outlier-aware discretization of numerical features
when incorporated in the representation learning process improved the results
in conjunction with GloVe on the SAP dataset. However, the representation
learning approaches studied could not outperform the baseline by large mar-
gin and even impaired the performance for our experiment on Windows Audit
Logs. From an exploratory point of view, we found that FastText embeddings
yielded the most promising results for both datasets. QOQD and QOUD im-
proved representation learning in extrinsic evaluation, as the best results were
obtained for models including one of our approaches.

In the last chapter, we finally approached anomaly detection from various per-
spectives. We showed that our Mixed Layer model incorporating iNALU neurons
improved the anomaly detection performance in a supervised and balanced scenario.
For an imbalanced experiment, while still outperforming the respective ReLU ref-
erence model, our model could not outperform all other approaches we examined.
Further investigation showed that the performance of the overall best approach re-
lied on our proposed outlier-aware discretization schema.

We then evaluated our model in a semi-supervised one-class scenario by propos-
ing a Mixed Layer based Auto-Encoder. In comparison to an Auto-Encoder with-
out Mixed Layers, our model performed equally well while outperforming IF and
OC-SVM regarding their generalizability over datasets with different characteristics.
Finally, we studied several approaches to incorporate WGAN and VAE for anomaly
detection. We found that the differences between the three techniques for invert-
ing the generator were only slightly relevant in our experiments, while overall, VAE
outperformed WGAN in terms of anomaly detection performance on most metrics.
Regarding RQ 3, the answer is thereby mixed.

RQ 3: To what extent do the proposed methods improve anomaly detection for trans-
action data?

RQ 3.1: Can fraud detection performance on transaction data be improved by our
Mixed Layer model?

Answer: Our experiment in the supervised scenario suggests that our Mixed Layer
model can improve fraud detection on transaction data, although in an im-
balanced setting, a simple kNN model with our outlier-aware discretization
scheme outperformed the Mixed Layer-based approach. In a semi-supervised
setting, our Mixed Layer showed to generalize well, however, an Auto-Encoder
reference model performed equally well. In summary, this suggests that our
architecture can improve fraud detection under the given circumstances.

RQ 3.2: Do our generative VAE and GAN models yield competitive anomaly detection
performances, and do optimal preprocessing and parameter choice differ from
their generative setting?

168 CHAPTER 9. CONCLUSION AND OUTLOOK

Answer: We found that VAE yields competitive performance outperforming IF on one
metric by large margin while performing equally well on the others. We found
that the parameter choice for the generative setting differs from the best pa-
rameters for anomaly detection, which showed to be more dataset-dependent
in comparison to the generative setting.

While overall the results of our experiments are promising, they come with some
limitations: As discussed in the introduction, the availability of data is a predom-
inant problem in the domains associated with transaction data, which also affects
the research presented in this thesis. Our experiments are mainly founded on syn-
thetic datasets with the exception of credit-card fraud, which has been anonymized
in such a way that the evaluation on a per-feature basis including the study of pre-
processing or representation learning approaches is not applicable. This implies
that some of the drawn conclusions may not be directly generalizable for real-world
applications, as characteristics of real-world datasets presumably increase the vari-
ability and complexity for normal data as well as for fraud. However, the research
methodology applied in this thesis can be directly transferred and re-evaluated as
such datasets might become available in the future.

Outlook From a methodological perspective, new research directions proven in
related domains, such as large transformer-based neural architectures [323] as ap-
proved in the field of Natural Language Processing for its outstanding performance,
could prove to be beneficial for transaction data for representation learning or as an
end-to-end anomaly detection model as larger datasets become available. While we
focused on generative models which are known for their ability to synthesize data
in literature and then evaluated their performance for anomaly detection, future re-
search could also turn the tables and focus on generative models that are specifically
designed for anomaly detection and evaluate their abilities as data generators.

Furthermore, the mechanisms modeling numerical or arithmetical dependencies
could be further improved, as novel approaches mainly constructed for solving arith-
metic tasks might also be useful to learn implicit relations within the given anomaly
detection tasks. For such a research direction, eXplainable Artificial Intelligence
might give further interesting insights either to make the black-box decision process
of neural models transparent or to study the direct impact of numerical dependen-
cies on the task. It can be applied as a supportive tool for auditors and with regard
to the high regulatory requirements for deploying an anomaly detection tool in this
privacy-critical domain of transaction data.

Finally, different related application domains could be addressed with the findings
of this thesis as, for example, transaction data in tabular form or similarly structured
log data occur in several closely or more distantly related fields. Potential application
examples range from SAP systems in different parts of a company to data arising
with the digitization of processes in e-government or hospitals.

169

Bibliography

[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and
Zhang, L. (2016). Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security, pages 308–318.

[2] Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat,
M. B., Eyal Salman, H. S., and Prasath, V. S. (2019). Effects of distance measure
choice on k-nearest neighbor classifier performance: a review. Big data, 7(4):221–
248.

[3] ACFE (2020). 2020 Global Occupational Fraud Study. Report To the Nations.
[Online; accessed 12. Nov. 2020].

[4] Adel, T., Ghahramani, Z., and Weller, A. (2018). Discovering interpretable rep-
resentations for both deep generative and discriminative models. In International
Conference on Machine Learning, pages 50–59. PMLR.

[5] Aggarwal, C. C. (2016). Outlier Analysis. Springer.

[6] Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). On the surprising
behavior of distance metrics in high dimensional space. In International conference
on database theory, pages 420–434. Springer.

[7] Akcay, S., Atapour-Abarghouei, A., and Breckon, T. P. (2018). Ganomaly: Semi-
supervised anomaly detection via adversarial training. In Asian conference on com-
puter vision, pages 622–637. Springer.

[8] Akçay, S., Atapour-Abarghouei, A., and Breckon, T. P. (2019). Skip-ganomaly:
Skip connected and adversarially trained encoder-decoder anomaly detection. In
2019 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

[9] Al-Rubaie, M. and Chang, J. M. (2019). Privacy-preserving machine learning:
Threats and solutions. IEEE Security & Privacy, 17(2):49–58.

[10] Albashrawi, M. (2016). Detecting financial fraud using data mining techniques:
A decade review from 2004 to 2015. Journal of Data Science, 14(3):553–569.

170 Bibliography

[11] Ali, M. Q., Khan, H., Sajjad, A., and Khayam, S. A. (2009). On achieving good
operating points on an roc plane using stochastic anomaly score prediction. In
Proceedings of the 16th ACM Conference on Computer and Communications Security,
CCS ’09, page 314–323, New York, NY, USA. Association for Computing Machin-
ery.

[12] Alpaydin, E. (2020). Introduction to machine learning. MIT press.

[13] An, J. and Cho, S. (2015). Variational autoencoder based anomaly detection
using reconstruction probability. Special Lecture on IE, 2(1):1–18.

[14] Anderson, J. A., Spoehr, K. T., and Bennett, D. J. (1994). A study in numerical
perversity: Teaching arithmetic to a neural network. Neural networks for knowledge
representation and inference, 311:335.

[15] Antipov, G., Baccouche, M., and Dugelay, J.-L. (2017). Face aging with con-
ditional generative adversarial networks. In 2017 IEEE international conference on
image processing (ICIP), pages 2089–2093. IEEE.

[16] Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training
generative adversarial networks. arXiv preprint arXiv:1701.04862.

[17] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative ad-
versarial networks. In International conference on machine learning, pages 214–223.
PMLR.

[18] Awad, Y., Nassar, M., and Safa, H. (2018). Modeling malware as a language. In
2018 IEEE International Conference on Communications (ICC), pages 1–6.

[19] Baader, G. and Krcmar, H. (2018a). Reducing false positives in fraud detection:
Combining the red flag approach with process mining. Int. Journal of Accounting
Information Systems, 31:1–16.

[20] Baader, G. and Krcmar, H. (2018b). Reducing false positives in fraud detection:
Combining the red flag approach with process mining. Int. Journal of Accounting
Information Systems, 31:1–16.

[21] Baccelli, G., Stathis, D., Hemani, A., and Martina, M. (2020). Nacu: A non-linear
arithmetic unit for neural networks. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6.

[22] Bank, E. (2019). Fifth report on card fraud. European Central Bank: Frankfurt am
Main, Germany.

[23] Barnard, E. and Wessels, L. (1992). Extrapolation and interpolation in neural
network classifiers. IEEE Control Systems Magazine, 12(5):50–53.

Bibliography 171

[24] Bartkowiak, A. M. (2011). Anomaly, novelty, one-class classification: a com-
prehensive introduction. International Journal of Computer Information Systems and
Industrial Management Applications, 3(1):61–71.

[25] Bautista, Y. J. P., Aló, R., and Wang, N. (2020). Deep learning, cloud computing
for credit/debit industry analysis of consumer behavior. In 2020 7th IEEE Inter-
national Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom), pages 1–7.
IEEE.

[26] Beggel, L., Pfeiffer, M., and Bischl, B. (2019). Robust anomaly detection in
images using adversarial autoencoders. arXiv preprint arXiv:1901.06355.

[27] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828.

[28] Bergsma, W. (2013). A bias-correction for cramér’s v and tschuprow’s t. Journal
of the Korean Statistical Society, 42(3):323–328.

[29] Berlin, K., Slater, D., and Saxe, J. (2015). Malicious behavior detection using
windows audit logs. In Proceedings of the 8th ACM Workshop on Artificial Intelli-
gence and Security, AISec ’15, page 35–44, New York, NY, USA. Association for
Computing Machinery.

[30] Besson, J., Robardet, C., and Boulicaut, J.-F. (2004). Constraint-based mining
of formal concepts in transactional data. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 615–624. Springer.

[31] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word
vectors with subword information. TACL, 5:135–146.

[32] Bolton, R. J. and Hand, D. J. (2002). Statistical Fraud Detection: A Review.
Statistical Science, pages 235–249.

[33] Boriah, S., Chandola, V., and Kumar, V. (2008). Similarity measures for categor-
ical data: A comparative evaluation. In Proceedings of the 2008 SIAM International
Conference on Data Mining (SDM), pages 243–254.

[34] Borji, A. (2018). Pros and cons of gan evaluation measures.

[35] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for op-
timal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152.

172 Bibliography

[36] Bouchacourt, D., Tomioka, R., and Nowozin, S. (2018). Multi-level variational
autoencoder: Learning disentangled representations from grouped observations.
In Thirty-Second AAAI Conference on Artificial Intelligence.

[37] Boulle, M. (2005). Optimal bin number for equal frequency discretizations in
supervized learning. Intelligent Data Analysis, 9(2):175–188.

[38] Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Ben-
gio, S. (2015). Generating sentences from a continuous space. arXiv preprint
arXiv:1511.06349.

[39] Bramer, M. (2007). Avoiding overfitting of decision trees. Principles of data
mining, pages 119–134.

[40] Branco, P., Torgo, L., and Ribeiro, R. (2015). A survey of predictive modelling
under imbalanced distributions.

[41] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[42] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and
regression trees.

[43] Breuleux, O., Bengio, Y., and Vincent, P. (2011). Quickly generating representa-
tive samples from an rbm-derived process. Neural computation, 23(8):2058–2073.

[44] Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for
high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

[45] Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2017). Neural photo editing
with introspective adversarial networks.

[46] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are
few-shot learners. arXiv preprint arXiv:2005.14165.

[47] Camino, R., Hammerschmidt, C., and State, R. (2018). Generating multi-
categorical samples with generative adversarial networks.

[48] Chalapathy, R. and Chawla, S. (2019). Deep Learning for Anomaly Detection:
A Survey. arXiv preprint arXiv:1901.03407.

[49] Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L. (2019). Data-driven
discovery of coordinates and governing equations.

[50] Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):1–58.

Bibliography 173

[51] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence Re-
search, 16:321–357.

[52] Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I., and Riazi,
M. S. (2020). Sanns: Scaling up secure approximate k-nearest neighbors search.
In USENIX Security.

[53] Chen, K., Dong, Y., Qiu, X., and Chen, Z. (2018). Neural Arithmetic Expression
Calculator. arXiv preprint arXiv:1809.08590.

[54] Chen, M. (2017). Efficient vector representation for documents through corrup-
tion.

[55] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, pages 785–794.

[56] Chen, T., Mao, Q., Lv, M., Cheng, H., and and, Y. L. (2019). Droidvecdeep:
Android malware detection based on word2vec and deep belief network. KSII
Transactions on Internet and Information Systems, 13(4):2180–2197.

[57] Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., and Sun, J. (2017). Gener-
ating multi-label discrete patient records using generative adversarial networks.
In Machine learning for healthcare conference, pages 286–305. PMLR.

[58] Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., and Sun, J. (2018). Gener-
ating multi-label discrete patient records using generative adversarial networks.

[59] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015).
The loss surfaces of multilayer networks. In Artificial intelligence and statistics,
pages 192–204. PMLR.

[60] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

[61] Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R., and Herrera,
F. (2020). Deep learning in video multi-object tracking: A survey. Neurocomputing,
381:61–88.

[62] Coates, J. and Bollegala, D. (2018). Frustratingly easy meta-embedding–
computing meta-embeddings by averaging source word embeddings. arXiv
preprint arXiv:1804.05262.

174 Bibliography

[63] Cohen, P., West, S. G., and Aiken, L. S. (2014). Applied multiple regression/correla-
tion analysis for the behavioral sciences. Psychology press.

[64] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273–297.

[65] Cramér, H. (1946). Mathematical Methods of Statistics. Princeton university press.

[66] Creswell, A. and Bharath, A. A. (2016). Inverting the generator of A generative
adversarial network. CoRR, abs/1611.05644.

[67] Creswell, A. and Bharath, A. A. (2018). Inverting the generator of a genera-
tive adversarial network. IEEE transactions on neural networks and learning systems,
30(7):1967–1974.

[68] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and
Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE Signal
Processing Magazine, 35(1):53–65.

[69] Dai, A. M., Olah, C., and Le, Q. V. (2015). Document embedding with paragraph
vectors. arXiv preprint arXiv:1507.07998.

[70] Dal Pozzolo, A., Caelen, O., Johnson, R. A., and Bontempi, G. (2015). Calibrat-
ing probability with undersampling for unbalanced classification. In 2015 IEEE
Symposium Series on Computational Intelligence, pages 159–166. IEEE.

[71] Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and
roc curves. In Proceedings of the 23rd international conference on Machine learning,
pages 233–240.

[72] Deecke, L., Vandermeulen, R. A., Ruff, L., Mandt, S., and Kloft, M. (2018).
Image anomaly detection with generative adversarial networks. In ECML/PKDD
(1), pages 3–17.

[73] Delamaire, L., Abdou, H., and Pointon, J. (2009). Credit card fraud and detec-
tion techniques: a review. Banks and Bank systems, 4(2):57–68.

[74] Deng, W., Huang, Z., Zhang, J., and Xu, J. (2021). A data mining based system
for transaction fraud detection. In 2021 IEEE International Conference on Consumer
Electronics and Computer Engineering (ICCECE), pages 542–545. IEEE.

[75] Donahue, J., Krähenbühl, P., and Darrell, T. (2016). Adversarial feature learning.
arXiv preprint arXiv:1605.09782.

[76] Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised
discretization of continuous features. In Machine learning proceedings 1995, pages
194–202. Elsevier.

Bibliography 175

[77] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[78] Duggal, R. and Gupta, A. (2017). P-telu: parametric tan hyperbolic linear unit
activation for deep neural networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops, pages 974–978.

[79] Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky,
M., and Courville, A. (2016). Adversarially learned inference. arXiv preprint
arXiv:1606.00704.

[80] Dwork, C. (2006). Differential privacy. In International Colloquium on Automata,
Languages, and Programming, pages 1–12. Springer.

[81] Eckerli, F. (2021). Generative adversarial networks in finance: an overview.
Available at SSRN 3864965.

[82] Eduardo, S., Nazábal, A., Williams, C. K., and Sutton, C. (2020). Robust varia-
tional autoencoders for outlier detection and repair of mixed-type data. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 4056–4066. PMLR.

[83] Efimov, D., Xu, D., Kong, L., Nefedov, A., and Anandakrishnan, A. (2020).
Using generative adversarial networks to synthesize artificial financial datasets.

[84] Elhilbawi, H., Eldawlatly, S., and Mahdi, H. (2019). A taxonomy of discretiza-
tion techniques based on class labels and attributes’ relationship. In 2019 14th
International Conference on Computer Engineering and Systems (ICCES), pages 316–
321.

[85] Engelmann, J. and Lessmann, S. (2020). Conditional wasserstein gan-based
oversampling of tabular data for imbalanced learning.

[86] Ernst, J., Hamed, T., and Kremer, S. (2018). A survey and comparison of perfor-
mance evaluation in intrusion detection systems. In Computer and network security
essentials, pages 555–568. Springer.

[87] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. (2002). A geometric
framework for unsupervised anomaly detection. In Applications of data mining in
computer security, pages 77–101. Springer.

[88] European Commission (2016). Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 on the protection of natural per-
sons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection Regula-
tion) (Text with EEA relevance).

176 Bibliography

[89] Everitt, B. (1988). A finite mixture model for the clustering of mixed-mode data.
Statistics & Probability Letters, 6(5):305–309.

[90] Fahlman, S. E., Hinton, G. E., and Sejnowski, T. J. (1983). Massively parallel
architectures for al: Netl, thistle, and boltzmann machines. In National Conference
on Artificial Intelligence, AAAI.

[91] Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters,
27(8):861–874.

[92] Fawcett, T. and Provost, F. (1997). Adaptive fraud detection. Data mining and
knowledge discovery, 1(3):291–316.

[93] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to
knowledge discovery in databases. AI magazine, 17(3):37–37.

[94] Feng, W., Liu, B., Xu, D., Zheng, Q., and Xu, Y. (2021). Graphmr: Graph neu-
ral network for mathematical reasoning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 3395–3404.

[95] Fisher, R. A. (1992). Statistical methods for research workers. In Breakthroughs
in statistics, pages 66–70. Springer.

[96] Fourure, D., Javaid, M. U., Posocco, N., and Tihon, S. (2021). Anomaly detection:
How to artificially increase your f1-score with a biased evaluation protocol. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 3–18. Springer.

[97] Frey, B. J., Hinton, G. E., Dayan, P., et al. (1996). Does the wake-sleep algorithm
produce good density estimators? In Advances in neural information processing
systems, pages 661–670. Citeseer.

[98] Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics &
data analysis, 38(4):367–378.

[99] Funahashi, K.-I. (1989). On the approximate realization of continuous mappings
by neural networks. Neural networks, 2(3):183–192.

[100] Gabriel, R., Gluchowski, P., and Pastwa, A. (2009). Data warehouse & data
mining. W3l GmbH.

[101] Ganguli, I., Bhowmick, R. S., and Sil, J. (2020). Performance analysis of sota
transformer network in numerical expression calculation. In 2020 IEEE 17th India
Council International Conference (INDICON), pages 1–6. IEEE.

[102] Gao, G., Gao, J., Liu, Q., Wang, Q., and Wang, Y. (2020). Cnn-based density
estimation and crowd counting: A survey. arXiv preprint arXiv:2003.12783.

Bibliography 177

[103] Gao, M., Jiang, J., Zou, G., John, V., and Liu, Z. (2019). Rgb-d-based object
recognition using multimodal convolutional neural networks: A survey. IEEE
access, 7:43110–43136.

[104] Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014). An empirical compar-
ison of botnet detection methods. Computers & Security, 45:100–123.

[105] García, S., Luengo, J., Sáez, J. A., López, V., and Herrera, F. (2013). A sur-
vey of discretization techniques: Taxonomy and empirical analysis in supervised
learning. IEEE Transactions on Knowledge and Data Engineering, 25(4):734–750.

[106] Gauerhof, L. and Gu, N. (2020). Reverse variational autoencoder for visual
attribute manipulation and anomaly detection. In 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 2103–2112. IEEE.

[107] Ge, D., Gu, J., Chang, S., and Cai, J. (2020). Credit card fraud detection using
lightgbm model. In 2020 international conference on E-commerce and internet technol-
ogy (ECIT), pages 232–236. IEEE.

[108] Ghasemi-Gol, M., Pujara, J., and Szekely, P. (2019). Tabular cell classification
using pre-trained cell embeddings. In 2019 IEEE International Conference on Data
Mining (ICDM), pages 230–239. IEEE.

[109] Ghosh, S. and Reilly, D. L. (1994). Credit card fraud detection with a neural-
network. In System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii Interna-
tional Conference on, volume 3, pages 621–630. IEEE.

[110] Glass, G. V. and Hopkins, K. D. (1996). Statistical methods in education and
psychology, pages 133–134. Allyn and Bacon, Boston [u.a.].

[111] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial Intelligence
and Statistics, pages 249–256.

[112] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural net-
works. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 315–323. JMLR Workshop and Conference Proceedings.

[113] Godfrey, L. B. and Gashler, M. S. (2015). A continuum among logarithmic,
linear, and exponential functions, and its potential to improve generalization in
neural networks. In 2015 7th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management (IC3K), volume 1, pages 481–486.
IEEE.

178 Bibliography

[114] Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M.,
Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D.,
Adams, R. P., and Aspuru-Guzik, A. (2018). Automatic chemical design using a
data-driven continuous representation of molecules. ACS central science, 4(2):268–
276.

[115] Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks.
arXiv preprint arXiv:1701.00160.

[116] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[117] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Advances in
neural information processing systems, 27.

[118] Gramopadhye, M., Singh, S., Agarwal, K., Srivasatava, N., Singh, A. M.,
Asthana, S., and Arora, A. (2021). Curl: Coupled representation learning of cards
and merchants to detect transaction frauds. In International Conference on Artificial
Neural Networks, pages 16–29. Springer.

[119] Graves, A. (2012). Supervised sequence labelling. In Supervised sequence la-
belling with recurrent neural networks, pages 5–13. Springer.

[120] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv
preprint arXiv:1410.5401.

[121] Grekow, J. and Dimitrova-Grekow, T. (2021). Monophonic music generation
with a given emotion using conditional variational autoencoder. IEEE Access,
9:129088–129101.

[122] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012).
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773.

[123] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017).
Improved training of wasserstein gans. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pages 5769–5779.

[124] Guo, X., Hong, J., Lin, T., and Yang, N. (2021). Relaxed wasserstein with ap-
plications to gans. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3325–3329. IEEE.

[125] Gwadera, R., Atallah, M. J., and Szpankowski, W. (2005). Reliable detection of
episodes in event sequences. Knowledge and Information Systems, 7(4):415–437.

http://www.deeplearningbook.org

Bibliography 179

[126] Haloui, I., Gupta, J. S., and Feuillard, V. (2018). Anomaly detection with
wasserstein gan. arXiv preprint arXiv:1812.02463.

[127] Hawkins, D. M. (1980). Identification of outliers, volume 11. Springer.

[128] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition.

[129] Heidenreich, N.-B., Schindler, A., and Sperlich, S. (2013). Bandwidth selection
for kernel density estimation: a review of fully automatic selectors. AStA Advances
in Statistical Analysis, 97(4):403–433.

[130] Heim, N., Pevnỳ, T., and Šmídl, V. (2020). Neural power units. arXiv preprint
arXiv:2006.01681.

[131] Hennig, J. A., Umakantha, A., and Williamson, R. C. (2017). A classifying
variational autoencoder with application to polyphonic music generation. arXiv
preprint arXiv:1711.07050.

[132] Herrera, J. L. L., Figueroa, H. V. R., and Ramírez, E. J. R. (2018). Deep fraud. a
fraud intention recognition framework in public transport context using a deep-
learning approach. In 2018 International Conference on Electronics, Communications
and Computers (CONIELECOMP), pages 118–125. IEEE.

[133] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).
Gans trained by a two time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems, 30.

[134] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2018).
Gans trained by a two time-scale update rule converge to a local nash equilibrium.

[135] Hilal, W., Andrew Gadsden, S., and Yawney, J. (2021). A review of anomaly
detection techniques and applications in financial fraud. Expert Systems with Ap-
plications, page 116429.

[136] Hinton, G. E. et al. (1986). Learning distributed representations of concepts.
In Proceedings of the eighth annual conference of the cognitive science society, volume 1,
page 12. Amherst, MA.

[137] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554.

[138] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, volume 1, pages 278–282. IEEE.

[139] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

180 Bibliography

[140] Hornik, K. (1991). Approximation capabilities of multilayer feedforward net-
works. Neural networks, 4(2):251–257.

[141] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366.

[142] Hou, X., Shen, L., Sun, K., and Qiu, G. (2017). Deep feature consistent vari-
ational autoencoder. In 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1133–1141. IEEE.

[143] Hou, Y., Zhai, J., and Chen, J. (2021). Coupled adversarial variational autoen-
coder. Signal Processing: Image Communication, 98:116396.

[144] Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving
word representations via global context and multiple word prototypes. In Pro-
ceedings of the 50th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 873–882.

[145] Huang, X. and Belongie, S. (2017). Arbitrary style transfer in real-time with
adaptive instance normalization. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1501–1510.

[146] Huang, X., Tan, H., Lin, G., and Tian, Y. (2018). A lstm-based bidirectional
translation model for optimizing rare words and terminologies. In 2018 interna-
tional conference on artificial intelligence and big data (ICAIBD), pages 185–189. IEEE.

[147] Islam, A. K., Corney, M., Mohay, G., Clark, A., Bracher, S., Raub, T., and Flegel,
U. (2010). Fraud detection in erp systems using scenario matching. In IFIP Int.
Information Security Conf. Springer.

[148] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image transla-
tion with conditional adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134.

[149] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144.

[150] Jiang, C., Nian, Z., Guo, K., Chu, S., Zhao, Y., Shen, L., and Tu, K. (2019).
Learning numeral embeddings. arXiv preprint arXiv:2001.00003.

[151] Jin, Z., Jiang, X., Wang, X., Liu, Q., Wang, Y., Ren, X., and Qu, H. (2021).
Numgpt: Improving numeracy ability of generative pre-trained models. arXiv
preprint arXiv:2109.03137.

[152] Jin Wang, Changqing Zhao, S. H. Y. G. O. A. A. A. (2022). Loguad: Log
unsupervised anomaly detection based on word2vec. Computer Systems Science
and Engineering, 41(3):1207–1222.

Bibliography 181

[153] Johansen, A. R. and Madsen, A. (2019). Measuring arithmetic extrapolation
performance. In 33rd Conference on Neural Information Processing Systems.

[154] John, G. H. and Langley, P. (1995). Estimating continuous distributions in
bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Ar-
tificial Intelligence, UAI’95, page 338–345, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

[155] Johnson, J. M. and Khoshgoftaar, T. M. (2020a). Hcpcs2vec: healthcare pro-
cedure embeddings for medicare fraud prediction. In 2020 IEEE 6th international
conference on collaboration and internet computing (CIC), pages 145–152. IEEE.

[156] Johnson, J. M. and Khoshgoftaar, T. M. (2020b). Semantic embeddings for
medical providers and fraud detection. In 2020 IEEE 21st international conference
on information reuse and integration for data science (IRI), pages 224–230. IEEE.

[157] Jones, K. S. (1972). A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation.

[158] Jordon, J., Yoon, J., and Van Der Schaar, M. (2018). Pate-gan: Generating
synthetic data with differential privacy guarantees. In International conference on
learning representations.

[159] Joulin, A. and Mikolov, T. (2015). Inferring algorithmic patterns with stack-
augmented recurrent nets.

[160] Kalchbrenner, N., Danihelka, I., and Graves, A. (2015). Grid Long Short-Term
Memory. arXiv preprint arXiv:1507.01526.

[161] Kanika and Singla, J. (2020). A survey of deep learning based online trans-
actions fraud detection systems. In 2020 Int. Conf. on Intelligent Engineering and
Management (ICIEM), pages 130–136. IEEE.

[162] Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4401–4410.

[163] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020).
Analyzing and improving the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–8119.

[164] Kingma, D. P. (2017). Variational inference & deep learning: A new synthesis.

[165] Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR).

182 Bibliography

[166] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling,
M. (2016). Improved variational inference with inverse autoregressive flow. Ad-
vances in neural information processing systems, 29:4743–4751.

[167] Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes.

[168] Kopparti, R. and Weyde, T. (2019). Factors for the generalisation of identity
relations by neural networks.

[169] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information processing
systems, 25.

[170] Kullback, S. and Leibler, R. A. (1951). On Information and Sufficiency. The
Annals of Mathematical Statistics, 22(1):79 – 86.

[171] Kusner, M. J. and Hernández-Lobato, J. M. (2016). Gans for sequences of
discrete elements with the gumbel-softmax distribution.

[172] Lample, G. and Charton, F. (2019). Deep learning for symbolic mathematics.

[173] Laurent, H. and Rivest, R. L. (1976). Constructing optimal binary decision
trees is np-complete. Information processing letters, 5(1):15–17.

[174] Lavrač, N., Podpečan, V., and Robnik-Šikonja, M. (2021). Introduction to Repre-
sentation Learning, pages 1–16. Springer International Publishing, Cham.

[175] Lawrence, S., Giles, C. L., and Tsoi, A. C. (1997a). Lessons in neural network
training: Overfitting may be harder than expected. In AAAI/IAAI, pages 540–545.
Citeseer.

[176] Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997b). Face recognition:
A convolutional neural-network approach. IEEE transactions on neural networks,
8(1):98–113.

[177] Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196. PMLR.

[178] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006). A
tutorial on energy-based learning. Predicting structured data, 1(0).

[179] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A.,
Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4681–4690.

Bibliography 183

[180] Lee, S.-I., Lee, H., Abbeel, P., and Ng, A. Y. (2006). Efficient l˜ 1 regularized
logistic regression. In Aaai, volume 6, pages 401–408.

[181] Leonard, J., Kramer, M. A., and Ungar, L. (1992). A neural network architecture
that computes its own reliability. Computers & chemical engineering, 16(9):819–835.

[182] Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R., and Carin, L. (2017). Al-
ice: Towards understanding adversarial learning for joint distribution matching.
Advances in Neural Information Processing Systems, 30:5495–5503.

[183] Li, J., Zhang, H., and Wei, Z. (2020a). The weighted word2vec paragraph
vectors for anomaly detection over http traffic. IEEE Access, 8:141787–141798.

[184] Li, S.-C., Tai, B.-C., and Huang, Y. (2019). Evaluating variational autoencoder
as a private data release mechanism for tabular data. In 2019 IEEE 24th Pacific Rim
International Symposium on Dependable Computing (PRDC), pages 198–1988. IEEE.

[185] Li, W., Yu, L., Wu, Y., and Paulson, L. C. (2020b). Isarstep: a benchmark for
high-level mathematical reasoning. arXiv preprint arXiv:2006.09265.

[186] Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth
ieee international conference on data mining, pages 413–422. IEEE.

[187] Liu, S., Bousquet, O., and Chaudhuri, K. (2017). Approximation and
convergence properties of generative adversarial learning. arXiv preprint
arXiv:1705.08991.

[188] Liu, W., Salzmann, M., and Fua, P. (2019). Context-aware crowd counting. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5099–5108.

[189] Liu, Y. and Wang, Y. (2019). A robust malware detection system using deep
learning on api calls. In 2019 IEEE 3rd Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC), pages 1456–1460. IEEE.

[190] Lopez-Rojas, E., Elmir, A., and Axelsson, S. (2016). PaySim: A financial mo-
bile money simulator for fraud detection. In European Modeling and Simulation
Symposium (EMSS), pages 249–255. Dime University of Genoa.

[191] Lopez-Rojas, E. A. and Axelsson, S. (2016). A review of computer simula-
tion for fraud detection research in financial datasets. In 2016 Future Technologies
Conference (FTC), pages 932–935. IEEE.

[192] Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101.

184 Bibliography

[193] Lu, Y. and Lu, J. (2020). A universal approximation theorem of deep neural
networks for expressing probability distributions.

[194] Luo, J., Xu, Y., Tang, C., and Lv, J. (2017). Learning inverse mapping by au-
toencoder based generative adversarial nets. In International Conference on Neural
Information Processing, pages 207–216. Springer.

[195] Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Auxiliary
deep generative models. In International conference on machine learning, pages 1445–
1453. PMLR.

[196] Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities im-
prove neural network acoustic models. In Proc. icml, volume 30, page 3. Citeseer.

[197] Madsen, A. and Johansen, A. R. (2019). Neural arithmetic units. In International
Conference on Learning Representations.

[198] Madsen, A. and Rosenberg Johansen, A. (2019). Measuring Arithmetic Extrap-
olation Performance.

[199] Maes, S., Tuyls, K., Vanschoenwinkel, B., and Manderick, B. (2002). Credit
Card Fraud Detection using Bayesian and Neural Networks. In Int. Naiso congress
on Neuro Fuzzy Ttechnologies, pages 261–270.

[200] Mao, X., Su, Z., Tan, P. S., Chow, J. K., and Wang, Y.-H. (2020). Is discriminator
a good feature extractor?

[201] Marsden, M., McGuinness, K., Little, S., Keogh, C. E., and O’Connor, N. E.
(2018). People, penguins and petri dishes: Adapting object counting models to
new visual domains and object types without forgetting. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8070–8079.

[202] Marti, G. (2020). Corrgan: Sampling realistic financial correlation matrices
using generative adversarial networks. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8459–8463.

[203] Masud, M. M., Al-Khateeb, T. M., Khan, L., Aggarwal, C., Gao, J., Han, J.,
and Thuraisingham, B. (2011). Detecting recurring and novel classes in concept-
drifting data streams. In 2011 IEEE 11th International Conference on Data Mining,
pages 1176–1181. IEEE.

[204] McAfee, L. (2018). Economic impact of cybercrime report.

[205] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

Bibliography 185

[206] Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013). Machine learning:
An artificial intelligence approach. Springer Science & Business Media.

[207] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation
of word representations in vector space.

[208] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Dis-
tributed representations of words and phrases and their compositionality.

[209] Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). Linguistic regularities in con-
tinuous space word representations. In Proceedings of the 2013 conference of the
north american chapter of the association for computational linguistics: Human language
technologies, pages 746–751.

[210] Mishra, S., Mitra, A., Varshney, N., Sachdeva, B., and Baral, C. (2020). Towards
question format independent numerical reasoning: A set of prerequisite tasks.
arXiv preprint arXiv:2005.08516.

[211] Mistry, B., Farrahi, K., and Hare, J. (2021). Learning division with neural
arithmetic logic modules.

[212] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Icml.

[213] Najadat, H., Altiti, O., Aqouleh, A. A., and Younes, M. (2020). Credit card
fraud detection based on machine and deep learning. In 2020 11th International
Conference on Information and Communication Systems (ICICS), pages 204–208. IEEE.

[214] Nalmpantis, C. and Vrakas, D. (2019). Signal2vec: Time series embedding rep-
resentation. In International conference on engineering applications of neural networks,
pages 80–90. Springer.

[215] Nazabal, A., Olmos, P. M., Ghahramani, Z., and Valera, I. (2020). Handling
incomplete heterogeneous data using vaes. Pattern Recognition, 107:107501.

[216] Ndubuaku, M. U., Anjum, A., and Liotta, A. (2019). Unsupervised anomaly
thresholding from reconstruction errors. In Montella, R., Ciaramella, A., Fortino,
G., Guerrieri, A., and Liotta, A., editors, Internet and Distributed Computing Systems,
pages 123–129, Cham. Springer International Publishing.

[217] Ng, A. and Jordan, M. (2002). On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Dietterich, T., Becker, S.,
and Ghahramani, Z., editors, Advances in Neural Information Processing Systems,
volume 14. MIT Press.

186 Bibliography

[218] Ng, A. Y. (2004). Feature selection, l 1 vs. l 2 regularization, and rotational
invariance. In Proceedings of the twenty-first international conference on Machine learn-
ing, page 78.

[219] Ngo, P. C., Winarto, A. A., Kou, C. K. L., Park, S., Akram, F., and Lee, H. K.
(2019). Fence gan: Towards better anomaly detection. In 2019 IEEE 31st Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pages 141–148. IEEE.

[220] Nilson, S. (2021). The nilson report. HSN Consultants, Oxnard (1970 to present).
A twice-monthly newsletter on the payment card industry.

[221] Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S.,
Packer, C., and Clune, J. (2018). Automatically identifying, counting, and describ-
ing wild animals in camera-trap images with deep learning. Proceedings of the
National Academy of Sciences, 115(25):E5716–E5725.

[222] Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with
auxiliary classifier gans. In International conference on machine learning, pages 2642–
2651. PMLR.

[223] Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Dis-
till, 2(11):e7.

[224] Omohundro, S. M. (1989). Five balltree construction algorithms. International
Computer Science Institute Berkeley.

[225] Onoro-Rubio, D. and López-Sastre, R. J. (2016). Towards perspective-free object
counting with deep learning. In European conference on computer vision, pages 615–
629. Springer.

[226] Orosz, T. (2011). Analysis of sap development tools and methods. In 2011
15th IEEE International Conference on Intelligent Engineering Systems, pages 439–443.
IEEE.

[227] Oussidi, A. and Elhassouny, A. (2018). Deep generative models: Survey.
In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV),
pages 1–8.

[228] Ozenne, B., Subtil, F., and Maucort-Boulch, D. (2015). The precision–recall
curve overcame the optimism of the receiver operating characteristic curve in rare
diseases. Journal of Clinical Epidemiology, 68(8):855–859.

[229] Pantelidis, E., Bendiab, G., Shiaeles, S., and Kolokotronis, N. (2021). Insider
threat detection using deep autoencoder and variational autoencoder neural net-
works. In 2021 IEEE International Conference on Cyber Security and Resilience (CSR),
pages 129–134. IEEE.

Bibliography 187

[230] Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., and Kim, Y.
(2018). Data synthesis based on generative adversarial networks. arXiv preprint
arXiv:1806.03384.

[231] Parzen, E. (1962). On Estimation of a Probability Density Function and Mode.
The Annals of Mathematical Statistics, 33(3):1065 – 1076.

[232] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830.

[233] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors
for word representation. In EMNLP, volume 14, pages 1532–1543.

[234] Perera, P., Oza, P., and Patel, V. M. (2021). One-class classification: A survey.

[235] Perera, P. and Patel, V. M. (2019). Learning deep features for one-class classifi-
cation. IEEE Transactions on Image Processing, 28(11):5450–5463.

[236] Phua, C., Lee, V., Smith, K., and Gayler, R. (2010). A comprehensive survey of
data mining-based fraud detection research. arXiv preprint arXiv:1009.6119.

[237] Piatetsky-Shapiro, G. (1990). Knowledge discovery in real databases: A report
on the ijcai-89 workshop. AI Magazine, 11(4):68.

[238] Pinkus, A. (1999). Approximation theory of the mlp model in neural networks.
Acta numerica, 8:143–195.

[239] Popov, I. (2017). Malware detection using machine learning based on word2vec
embeddings of machine code instructions. In 2017 Siberian symposium on data
science and engineering (SSDSE), pages 1–4. IEEE.

[240] Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the
trade, pages 55–69. Springer.

[241] Press, O., Bar, A., Bogin, B., Berant, J., and Wolf, L. (2017). Language gener-
ation with recurrent generative adversarial networks without pre-training. arXiv
preprint arXiv:1706.01399.

[242] Qin, T., Wu, K., and Xiu, D. (2019). Data driven governing equations approxi-
mation using deep neural networks. Journal of Computational Physics, 395:620–635.

[243] Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

[244] Quinlan, J. R. (1993). C 4.5: Programs for machine learning. The Morgan
Kaufmann Series in Machine Learning.

188 Bibliography

[245] Raileanu, L. E. and Stoffel, K. (2004). Theoretical comparison between the gini
index and information gain criteria. Annals of Mathematics and Artificial Intelligence,
41(1):77–93.

[246] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations. Journal of Computational
Physics, 378:686–707.

[247] Rebekić, A., Lončarić, Z., Petrović, S., and Marić, S. (2015). Pearson’s or spear-
man’s correlation coefficient-which one to use? Poljoprivreda, 21(2):47–54.

[248] Reed, S. and De Freitas, N. (2015). Neural Programmer-Interpreters. arXiv
preprint arXiv:1511.06279.

[249] Ren, Y. and Du, Y. (2020). Enhancing the numeracy of word embeddings: A
linear algebraic perspective. In CCF International Conference on Natural Language
Processing and Chinese Computing, pages 170–178. Springer.

[250] Richardson, E. and Weiss, Y. (2018). On gans and gmms.

[251] Ring, M., Landes, D., Dallmann, A., and Hotho, A. (2017). Ip2vec: Learn-
ing similarities between ip addresses. 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), pages 657–666.

[252] Ring, M., Otto, F., Becker, M., Niebler, T., Landes, D., and Hotho, A. (2015).
Condist: A context-driven categorical distance measure. In Machine Learning and
Knowledge Discovery in Databases, pages 251–266, Cham. Springer International
Publishing.

[253] Ring, M., Schlör, D., Landes, D., and Hotho, A. (2019a). Flow-based network
traffic generation using Generative Adversarial Networks. Comput. Secur., 82:156.

[254] Ring, M., Schlör, D., Landes, D., and Hotho, A. (2019b). Flow-based Network
Traffic Generation using Generative Adversarial Networks. Computer & Security,
82:156–172.

[255] Ring, M., Schlör, D., Wunderlich, S., Landes, D., and Hotho, A. (2021). Mal-
ware Detection on Windows Audit Logs using LSTMs. Computers & Security,
109:102389.

[256] Roberts, A., Engel, J., and Eck, D. (2017). Hierarchical variational autoen-
coders for music. In NIPS Workshop on Machine Learning for Creativity and Design,
volume 3.

Bibliography 189

[257] Roberts, A., Engel, J., Raffel, C., Hawthorne, C., and Eck, D. (2019). A hierar-
chical latent vector model for learning long-term structure in music.

[258] Roberts, S. and Tarassenko, L. (1994). A probabilistic resource allocating net-
work for novelty detection. Neural Computation, 6(2):270–284.

[259] Rong, X. (2016). word2vec parameter learning explained.

[260] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386.

[261] Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., and Beling, P. (2018).
Deep learning detecting fraud in credit card transactions. In 2018 Systems and
Information Engineering Design Symposium (SIEDS), pages 129–134. IEEE.

[262] Ruder, S. (2016). An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747.

[263] Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W.,
Kloft, M., Dietterich, T. G., and Müller, K.-R. (2021). A unifying review of deep
and shallow anomaly detection. Proceedings of the IEEE, 109(5):756–795.

[264] Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R.,
and Kloft, M. (2020). Deep semi-supervised anomaly detection. In International
Conference on Learning Representations.

[265] Russac, Y., Caelen, O., and He-Guelton, L. (2018). Embeddings of categorical
variables for sequential data in fraud context. In International conference on advanced
machine learning technologies and applications, pages 542–552. Springer.

[266] Sabau, A. S. (2012). Survey of clustering based financial fraud detection re-
search. Informatica Economica, 16(1):110.

[267] Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Disability
Studies, 20:33–53.

[268] Sahlgren, M. and Lenci, A. (2016). The effects of data size and frequency range
on distributional semantic models. CoRR, abs/1609.08293.

[269] Saito, T. and Rehmsmeier, M. (2015). The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced datasets.
PloS one, 10(3):e0118432.

[270] Sak, H., Senior, A. W., and Beaufays, F. (2014). Long Short-Term Memory
Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. In
International Speech Communication Association (INTERSPEECH), pages 338–342.

190 Bibliography

[271] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen,
X. (2016). Improved techniques for training gans. Advances in neural information
processing systems, 29:2234–2242.

[272] Saxena, D. and Cao, J. (2021). Generative adversarial networks (gans) chal-
lenges, solutions, and future directions. ACM Computing Surveys (CSUR), 54(3):1–
42.

[273] Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. (2019). Analysing mathemat-
ical reasoning abilities of neural models. arXiv preprint arXiv:1904.01557.

[274] Schermann, M. and Boss, S. R. (2014). The white-collar hacking contest: A
novel approach to teach forensic investigations in a digital world. In 2014 Dewald
Roode Workshop on Information Systems Security Research.

[275] Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and Langs, G.
(2017). Unsupervised anomaly detection with generative adversarial networks
to guide marker discovery. In International conference on information processing in
medical imaging, pages 146–157. Springer.

[276] Schlör, D., Ring, M., and Hotho, A. (2020a). iNALU: Improved neural arith-
metic logic unit. Frontiers in Artificial Intelligence, 3:71.

[277] Schlör, D., Ring, M., Krause, A., and Hotho, A. (2020b). Financial Fraud De-
tection with Improved Neural Arithmetic Logic Units. Fifth Workshop on MIning
DAta for financial applicationS.

[278] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer
theorem. In International conference on computational learning theory, pages 416–426.
Springer.

[279] Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt, J. (1999).
Support vector method for novelty detection. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, pages 582–588.

[280] Schreyer, M., Sattarov, T., Borth, D., Dengel, A., and Reimer, B. (2018). De-
tection of Anomalies in Large Scale Accounting Data using Deep Autoencoder
Neural Networks. In GPU Technology Conference - Silicon Valley.

[281] Schultz, M. and Tropmann-Frick, M. (2020). Autoencoder neural networks
versus external auditors: Detecting unusual journal entries in financial statement
audits. In Proceedings of the 53rd Hawaii Int. Conf. on System Sciences.

[282] Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to informa-
tion retrieval, volume 39. Cambridge University Press Cambridge.

Bibliography 191

[283] Scott, D. W. (2009). Sturges’ rule. WIREs Comput. Stat., 1(3):303–306.

[284] Scott, D. W. (2012). Multivariate density estimation and visualization. In Hand-
book of computational statistics, pages 549–569. Springer.

[285] Scott, D. W. and Sain, S. R. (2005). Multidimensional density estimation. Hand-
book of statistics, 24:229–261.

[286] Seguí, S., Pujol, O., and Vitrià, J. (2015). Learning to count with deep object
features.

[287] Shao, H., Yao, S., Sun, D., Zhang, A., Liu, S., Liu, D., Wang, J., and Abdelza-
her, T. (2020). Controlvae: Controllable variational autoencoder. In International
Conference on Machine Learning, pages 8655–8664. PMLR.

[288] Shen, A., Tong, R., and Deng, Y. (2007). Application of Classification Mod-
els on Credit Card Fraud Detection. In Int. Conf. on Service Systems and Service
Management, pages 1–4. IEEE.

[289] Shental, N., Bar-Hillel, A., Hertz, T., and Weinshall, D. (2004). Computing
gaussian mixture models with em using equivalence constraints.

[290] Shwartz-Ziv, R. and Armon, A. (2021). Tabular data: Deep learning is not all
you need. arXiv preprint arXiv:2106.03253.

[291] Siblini, W., Fréry, J., He-Guelton, L., Oblé, F., and Wang, Y.-Q. (2020). Master
your metrics with calibration. Advances in Intelligent Data Analysis XVIII, page
457–469.

[292] Simard, P. Y., Steinkraus, D., Platt, J. C., et al. (2003). Best practices for convo-
lutional neural networks applied to visual document analysis. In Icdar, volume 3.

[293] Smolensky, P. (1986). Information processing in dynamical systems: Founda-
tions of harmony theory. Technical report, Colorado Univ at Boulder Dept of
Computer Science.

[294] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and
Potts, C. (2013). Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in
natural language processing, pages 1631–1642.

[295] Sofaer, H. R., Hoeting, J. A., and Jarnevich, C. S. (2019). The area under the
precision-recall curve as a performance metric for rare binary events. Methods in
Ecology and Evolution, 10(4):565–577.

192 Bibliography

[296] Somepalli, G., Wu, Y., Balaji, Y., Vinzamuri, B., and Feizi, S. (2021). Unsuper-
vised anomaly detection with adversarial mirrored autoencoders. In Uncertainty
in Artificial Intelligence, pages 365–375. PMLR.

[297] Spindler, A., Geach, J. E., and Smith, M. J. (2021). Astrovader: astronomi-
cal variational deep embedder for unsupervised morphological classification of
galaxies and synthetic image generation. Monthly Notices of the Royal Astronomical
Society, 502(1):985–1007.

[298] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929–1958.

[299] Stearns, D. L. (2011). Electronic value exchange: Origins of the VISA electronic
payment system. Springer.

[300] Stolfo, S. J., Prodromidis, A. L., Tselepis, S., Lee, W., Fan, D. W., and Chan,
P. K. (1997). Jam: Java agents for meta-learning over distributed databases. In
KDD, volume 97, pages 74–81.

[301] Suh, S. and Choi, S. (2016). Gaussian copula variational autoencoders for
mixed data.

[302] Sun, T. and Vasarhelyi, M. A. (2018). Predicting credit card delinquencies: An
application of deep neural networks. Intelligent Systems in Accounting, Finance and
Management, 25(4):174–189.

[303] Sundararaman, D., Si, S., Subramanian, V., Wang, G., Hazarika, D., and Carin,
L. (2020). Methods for numeracy-preserving word embeddings. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 4742–4753.

[304] Sung, Y., Jang, S., Jeong, Y.-S., and Park, J. H. J. J. (2020). Malware classification
algorithm using advanced word2vec-based bi-lstm for ground control stations.
Computer Communications, 153:342–348.

[305] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance
of initialization and momentum in deep learning. In International conference on
machine learning, pages 1139–1147. PMLR.

[306] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826.

Bibliography 193

[307] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199.

[308] Takahashi, S., Chen, Y., and Tanaka-Ishii, K. (2019). Modeling financial time-
series with generative adversarial networks. Physica A: Statistical Mechanics and its
Applications, 527:121261.

[309] Tamura, K. and Matsuura, K. (2019). Improvement of anomaly detection
performance using packet flow regularity in industrial control networks. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
102(1):65–73.

[310] Testolin, A. (2020). The challenge of modeling the acquisition of mathematical
concepts. Frontiers in Human Neuroscience, 14:100.

[311] Thawani, A., Pujara, J., Szekely, P. A., and Ilievski, F. (2021). Representing
numbers in nlp: a survey and a vision. arXiv preprint arXiv:2103.13136.

[312] Theil, H. (1970). On the estimation of relationships involving qualitative vari-
ables. American Journal of Sociology, 76(1):103–154.

[313] Theis, L., Oord, A. v. d., and Bethge, M. (2015). A note on the evaluation of
generative models. arXiv preprint arXiv:1511.01844.

[314] Tikhonov, A., Yamshchikov, I. P., et al. (2017). Music generation with varia-
tional recurrent autoencoder supported by history. arXiv preprint arXiv:1705.05458.

[315] Todeschini, R. (1989). k-nearest neighbour method: The influence of data trans-
formations and metrics. Chemometrics and intelligent laboratory systems, 6(3):213–
220.

[316] Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C.-J., and Schölkopf, B.
(2017). Adagan: Boosting generative models. arXiv preprint arXiv:1701.02386.

[317] Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., and Blunsom, P. (2018). Neural
Arithmetic Logic Units. In Advances in Neural Information Processing Systems, pages
8035–8044.

[318] Trottier, L., Giguere, P., and Chaib-Draa, B. (2017). Parametric exponential
linear unit for deep convolutional neural networks. In 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 207–214. IEEE.

[319] Valvano, G., Leo, A., and Tsaftaris, S. A. (2021a). Re-using adversarial mask
discriminators for test-time training under distribution shifts. arXiv preprint
arXiv:2108.11926.

194 Bibliography

[320] Valvano, G., Leo, A., and Tsaftaris, S. A. (2021b). Stop throwing away dis-
criminators! re-using adversaries for test-time training. In Domain Adaptation and
Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global
Health, pages 68–78. Springer.

[321] van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and
Kavukcuoglu, K. (2016). Conditional image generation with pixelcnn decoders.

[322] Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal
of machine learning research, 9(11).

[323] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 30.

[324] Villani, C. (2009). Optimal transport: old and new, volume 338, page 107.
Springer.

[325] Wallace, E., Wang, Y., Li, S., Singh, S., and Gardner, M. (2019). Do nlp
models know numbers? probing numeracy in embeddings. arXiv preprint
arXiv:1909.07940.

[326] Wang, J., Tang, Y., He, S., Zhao, C., Sharma, P. K., Alfarraj, O., and Tolba, A.
(2020). Logevent2vec: Logevent-to-vector based anomaly detection for large-scale
logs in internet of things. Sensors, 20(9).

[327] Wang, M., Xu, L., and Guo, L. (2018). Anomaly detection of system logs
based on natural language processing and deep learning. In 2018 4th International
Conference on Frontiers of Signal Processing (ICFSP), pages 140–144. IEEE.

[328] Wang, Q., Fang, L., Zhu, Z., and Huang, J. (2021). Detection algorithm of the
mimicry attack based on variational auto-encoder. In 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-W),
pages 114–120. IEEE.

[329] Wang, R., Fu, B., Fu, G., and Wang, M. (2017). Deep & cross network for ad
click predictions. In Proceedings of the ADKDD’17, pages 1–7.

[330] Wang, S., Liu, G., Li, Z., Xuan, S., Yan, C., and Jiang, C. (2018). Credit card
fraud detection using capsule network. In IEEE Int. Conf. on Systems, Man, and
Cybernetics (SMC), pages 3679–3684.

[331] Wei, R. and Mahmood, A. (2020). Recent advances in variational autoen-coders
with representation learning for biomedical informatics: A survey. Ieee Access.

Bibliography 195

[332] Weng, H., Ji, S., Duan, F., Li, Z., Chen, J., He, Q., and Wang, T. (2019). Cats:
cross-platform e-commerce fraud detection. In 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pages 1874–1885. IEEE.

[333] White, T. (2016). Sampling generative networks.

[334] Wolters, T. (2000). ‘carry your credit in your pocket’: The early history of the
credit card at bank of america and chase manhattan. Enterprise & Society, 1(2):315–
354.

[335] Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. (2016). On the quantitative
analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273.

[336] Wunderlich, S., Ring, M., Landes, D., and Hotho, A. (2019). Comparison of
system call representations for intrusion detection. In International Joint Conference:
12th International Conference on Computational Intelligence in Security for Information
Systems (CISIS 2019) and 10th International Conference on EUropean Transnational
Education (ICEUTE 2019), pages 14–24. Springer.

[337] Wunderlich, S., Ring, M., Landes, D., and Hotho, A. (2020). The impact of
different system call representations on intrusion detection. Logic Journal of the
IGPL.

[338] Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853.

[339] Xu, C., Ren, J., Zhang, D., Zhang, Y., Qin, Z., and Ren, K. (2019a). Ganob-
fuscator: Mitigating information leakage under gan via differential privacy. IEEE
Transactions on Information Forensics and Security, 14(9):2358–2371.

[340] Xu, H., Chen, W., Zhao, N., Li, Z., Bu, J., Li, Z., Liu, Y., Zhao, Y., Pei, D., Feng,
Y., et al. (2018a). Unsupervised anomaly detection via variational auto-encoder
for seasonal kpis in web applications. In Proceedings of the 2018 World Wide Web
Conference, pages 187–196.

[341] Xu, K., Zhang, M., Li, J., Du, S. S., ichi Kawarabayashi, K., and Jegelka, S.
(2021). How neural networks extrapolate: From feedforward to graph neural
networks.

[342] Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veeramachaneni, K. (2019b).
Modeling tabular data using conditional gan. arXiv preprint arXiv:1907.00503.

[343] Xu, L. and Veeramachaneni, K. (2018). Synthesizing tabular data using gener-
ative adversarial networks. arXiv preprint arXiv:1811.11264.

196 Bibliography

[344] Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., and Weinberger, K.
(2018b). An empirical study on evaluation metrics of generative adversarial net-
works. arXiv preprint arXiv:1806.07755.

[345] Xue, F., Li, X., Zhang, T., and Hu, N. (2021). Stock market reactions to the
covid-19 pandemic: The moderating role of corporate big data strategies based
on word2vec. Pacific-Basin Finance Journal, 68:101608.

[346] Yan, X., Yang, J., Sohn, K., and Lee, H. (2016). Attribute2image: Conditional
image generation from visual attributes. In European Conference on Computer Vision,
pages 776–791. Springer.

[347] Yan, Y., Swersky, K., Koutra, D., Ranganathan, P., and Hashemi, M. (2020).
Neural execution engines: Learning to execute subroutines.

[348] Yang, Y., Guan, X., and You, J. (2002). Clope: a fast and effective clustering
algorithm for transactional data. In Proceedings of the eighth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 682–687.

[349] Yannikos, Y., Franke, F., Winter, C., and Schneider, M. (2010). 3lspg: Forensic
tool evaluation by three layer stochastic process-based generation of data. In Int.
Workshop on Computational Forensics. Springer.

[350] Yao, R., Liu, C., Zhang, L., and Peng, P. (2019). Unsupervised anomaly de-
tection using variational auto-encoder based feature extraction. In 2019 IEEE In-
ternational Conference on Prognostics and Health Management (ICPHM), pages 1–7.
IEEE.

[351] Ye, N. and Chen, Q. (2001). An anomaly detection technique based on a chi-
square statistic for detecting intrusions into information systems. Quality and
reliability engineering international, 17(2):105–112.

[352] Yeh, H.-Y., Yeh, Y.-C., and Shen, D.-B. (2020). Word vector models approach to
text regression of financial risk prediction. Symmetry, 12(1).

[353] Yeung, D.-Y. and Chow, C. (2002). Parzen-window network intrusion detec-
tors. In Object recognition supported by user interaction for service robots, volume 4,
pages 385–388. IEEE.

[354] Yoon, J., Jarrett, D., and Van der Schaar, M. (2019). Time-series generative
adversarial networks.

[355] Zaremba, W. and Sutskever, I. (2014). Learning to Execute. arXiv preprint
arXiv:1410.4615.

[356] Zaremba, W. and Sutskever, I. (2015). Learning to execute.

Bibliography 197

[357] Zenati, H., Foo, C. S., Lecouat, B., Manek, G., and Chandrasekhar, V. R. (2018a).
Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222.

[358] Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., and Chandrasekhar, V. (2018b).
Adversarially learned anomaly detection. In 2018 IEEE International conference on
data mining (ICDM), pages 727–736. IEEE.

[359] Zhai, S., Cheng, Y., Lu, W., and Zhang, Z. (2016). Deep structured energy based
models for anomaly detection. In International Conference on Machine Learning,
pages 1100–1109. PMLR.

[360] Zhan, Q. and Yin, H. (2018). A loan application fraud detection method based
on knowledge graph and neural network. In Proceedings of the 2nd International
Conference on Innovation in Artificial Intelligence, pages 111–115.

[361] Zhang, C., Li, H., Wang, X., and Yang, X. (2015). Cross-scene Crowd Counting
via Deep Convolutional Neural Networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 833–841.

[362] Zhang, L., Zhang, S., and Balog, K. (2019). Table2vec. Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in IR.

[363] Zhang, Y., Hu, A., Wang, J., and Zhang, Y. (2021). Detection of fraud state-
ment based on word vector: Evidence from financial companies in china. Finance
Research Letters, page 102477.

[364] Zhao, J. and Mau, J. (2020). Discovery of governing equations with recursive
deep neural networks.

[365] Zhong, P., Mo, Y., Xiao, C., Chen, P., and Zheng, C. (2019). Rethinking gen-
erative mode coverage: A pointwise guaranteed approach. Advances in Neural
Information Processing Systems, 32:2088–2099.

[366] Zhou, Y., Li, D., Huo, S., and Kung, S.-Y. (2020). Soft-root-sign activation
function. arXiv preprint arXiv:2003.00547.

[367] Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A. (2016). Generative
visual manipulation on the natural image manifold. In European conference on
computer vision, pages 597–613. Springer.

[368] Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning.
Synthesis lectures on artificial intelligence and machine learning, 3(1):1–130.

[369] Zixu, T., Liyanage, K. S. K., and Gurusamy, M. (2020). Generative adversarial
network and auto encoder based anomaly detection in distributed iot networks.
In GLOBECOM 2020-2020 IEEE Global Communications Conference, pages 1–7. IEEE.

[370] Łukasz Kaiser and Sutskever, I. (2016). Neural gpus learn algorithms.

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Related Work
	Modeling Data and Distributions
	Modeling Numerical Dependencies
	Generative Models and Data Synthesis

	Representation Learning
	Anomaly and Fraud Detection

	Foundations
	Machine Learning
	Neural Networks
	Baseline Approaches
	Naïve Bayes
	Logistic Regression
	k-Nearest Neighbors
	Support Vector Machine
	One-Class Support Vector Machine
	Tree-based Approaches

	Anomaly Detection
	Evaluation Metrics
	Basic Metrics
	Evaluation Metrics and Skewed Class Distributions

	Knowledge Discovery in Databases and Data Mining

	Datasets
	Financial Fraud Datasets
	PaySim
	CCFraud
	IEEE-CIS
	SAP

	Benchmark Datasets
	Census Dataset
	Synthetic Function Learning Datasets
	Windows Audit Log Dataset
	Credit Payment

	Modeling of Distributions and Dependencies for Transaction Data
	iNALU: Modeling and Learning Numeric Dependencies
	Improved Neural Arithmetic Logic Unit
	Limitations
	Technical Adaptations
	Design of Experiments
	Experiment 1 - Minimal Arithmetic Task
	Experiment 2 - Input Magnitude
	Experiment 3 - Simple Arithmetic Task
	Experiment 4 - Influence of Initialization
	Experiment 5 - Simple Function Learning Task
	Discussion
	Conclusion

	Modeling Distributions with GANs and VAEs
	Model Architectures
	Evaluation
	Experiments
	Conclusion

	Summary

	Representation Learning for Transaction Data
	Representation Learning for Windows Audit Logs
	Representation Learning for SAP Transactions
	Outlier Aware Discretization
	Representations for SAP Transactions
	Discussion
	Conclusion

	Anomaly Detection and Applications in Transaction Fraud Detection
	iNALU Driven Mixed Layer Architecture for Fraud Detection
	Mixed Layer model
	Experimental setup
	Experiment 1
	Experiment 2
	Discussion
	Conclusion

	Anomaly Detection with Mixed Layers on SAP Data
	Supervised Anomaly Detection with Mixed Layers
	Autoencoding Mixed Layers

	Modeling Distributions and Dependencies for Fraud Detection
	Anomaly Detection Methods
	Experiment 1: Preprocessing
	Experiment 2: GAN Anomaly Detection Methods
	Experiment 3: Fraud Detection
	Conclusion

	Conclusion and Outlook
	Bibliography

