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Plate osteosynthesis combined 
with bone cement provides 
the highest stability for tibial head 
depression fractures under high 
loading conditions
Philipp Heilig1,3, Lars‑Christopher Faerber2,3, Mila M. Paul1, Eva Kupczyk1, Rainer H. Meffert1, 
Martin C. Jordan1 & Stefanie Hoelscher‑Doht1*

Older patients sustaining tibial head depression fractures often cannot follow the post-operative 
rehabilitation protocols with partial weight-bearing of the affected limb, leading to osteosynthesis 
failure, cartilage step-off and arthritis development. Therefore, the aim of this study was to analyse 
the biomechanical performance of different types of osteosyntheses alone and in combination with 
bone cement simulating cyclically high loading conditions of tibial head depression fractures. Lateral 
tibial head depression fractures (AO: 41-B2.2; Schatzker type III) were created in synthetic bones and 
stabilized using three different osteosyntheses alone and in combination with a commonly used bone 
cement (chronOS™): 2 screws, 4 screws in the jail technique and a lateral angle-stable buttress plate. 
After fixation, the lateral tibial plateau was axially loaded in two, from each other independent testing 
series: In the first test protocol, 5000 cycles with 500 N and in the end load-to-failure tests were 
performed. In the second test protocol, the cyclic loading was increased to 1000 N. Parameters of 
interest were the displacement of the articular fracture fragment, the stiffness and the maximum load. 
The osteosyntheses revealed a higher stiffness in combination with bone cement compared to the 
same type of osteosynthesis alone (e.g., 500 N level: 2 screws 383 ± 43 N/mm vs. 2 screws + chronOs 
520 ± 108 N/mm, increase by 36%, p < 0.01; 4 screws 368 ± 97 N/mm vs. 4 screws + chronOS 516 ± 109 N/
mm, increase by 40%, p < 0.01; plate: 509 ± 73 N/mm vs. plate + chronOs 792 ± 150 N/mm, increase 
by 56%, p < 0.01). Bone cement reduced the displacement of the plate significantly (500 N level: 
plate: 8.9 ± 2.8 mm vs. plate + chronOs: 3.1 ± 1.4 mm, reduction by 65%, p < 0.01; 1000 N level: 
16.9 ± 3.6 mm vs 5.6 ± 1.3 mm, reduction by 67%, p < 0.01). Thus, the highest stiffness and lowest 
displacement values were found when using the plate with bone cement in both loading conditions 
(500 N level: 2 screws + chronOs 3.7 ± 1.3 mm, 4 screws + chronOs 6.2 ± 2.4 mm; 1000 N level: 2 
screws + chronOs 6.5 ± 1.2 mm, 4 screws + chronOs 5.7 ± 0.8 mm). From a biomechanical perspective, 
plate osteosynthesis of tibial head depression fractures should always be combined with bone cement, 
provides higher stability than 2-screw and 4-screw fixation and is a valid treatment option in cases 
where extraordinary stability is required.

Tibial head fractures account for 10% of all fractures in older patients1,2. Depression fractures of the tibial plateau, 
alone or in combination with a split fracture, occur in younger people in high velocity traumata, whereas in 
older people they typically occur in low energy traumata due to osteoporosis1. The lateral tibial plateau is more 
frequently affected than the medial tibial plateau. Regularly, operative treatment is needed to restore the articular 
surface and prevent early arthritis developing by remaining intraarticular steps. After stabilisation of the tibial 
head depression fractures, postoperative treatment includes partial weightbearing with 15–20 kg for 3 months1. 
Older patients often cannot follow these postoperative treatment instructions and load the leg much more than 
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20 kg seen in daily clinical practice3. Moreover, recent studies trend to recommend early full weight bearing4. 
But higher loading of the tibial plateau cause complications such as early secondary loss of reduction and val-
gus/varus deformation of the leg axis5,6. Therefore, high stability is demanded from the stabilisation technique.

Possible osteosynthesis options for tibial head fractures are screw osteosyntheses with 2 screws or 4 screws 
placed at a 90° angle to each other; known as a jail or raft technique7,8. Plate osteosyntheses are also used to 
stabilise tibial head fractures. The implants are often combined with a crest bone graft or a bone cement to fill 
up the remaining metaphyseal bone defect after the reduction. Scanning the literature, there is a lack of analysis 
of different treatment options under high loading conditions. A study systematically comparing screw and plate 
osteosyntheses to each other under high loading of the tibial plateau has not yet been published. The aim of this 
study was to investigate the influence of the type of osteosynthesis, alone and in combination with bone cement, 
on the secondary subsidence under high loading in pure lateral tibial head depression fractures. We hypothesised 
that for the plate osteosynthesis a lower subsidence of the cartilage/subchondral bone under loading, compared 
to screw osteosyntheses, will be found. From the results of the study, we expect particularly important informa-
tion, which treatment option is biomechanically the most meaningful in clinical cases, when patients are unable 
to maintain postoperative partial weight-bearing.

Materials and methods
Specimen and fracture generation.  In total, 126 synthetic tibiae (Synbone 1110, SYNBONE®, Switzer-
land) were tested. These are manufactured with polyurethane foam comprising of a hard cover and a soft inlay 
structured similar to cortical bone and cancellous inner bone. The cortical thickness at the lateral side of the 
tibial plateau was 4 mm and at the shaft 3 mm. The width of the tibial plateau amounted to 74 mm and the corti-
cal/cancellous bone model was produced for external fixation methods like used in this study. Previous studies 
have confirmed that these synthetic bones have comparable biomechanical properties to osteoporotic bones of 
elderly humans9,10. The diaphysis was shortened to 20 cm and embedded in a device at 5° valgus angulation11,12. 
Five 2 mm-holes of 10 mm depth were arranged in a 12 mm circle as breaking points and depression fractures 
of the lateral plateau with 15 mm depth were reproducible generated by an indentor (Fig. 1a + b). Pure lateral 
tibial head depression fractures (AO: 41-B2.2; Schatzker type III) were macroscopically and radiographically 
confirmed, and thereby the rarely occurring split depression fractures were excluded.

Experimental groups and fixation methods.  The lateral tibial plateau was restored anatomically elevat-
ing the depressed fracture fragment like in clinical practice by the minimal invasive arthroscopic reduction and 
internal fixation (ARIF) technique13: The lateral cortical bone of the proximal tibial shaft was opened (Fig. 1d), 
the depressed fracture fragment detected by a k-wire (Kirschner-wire, controlled under X-ray) (Fig. 1e) and 
then restored anatomically by a cannulated ram (Fig. 1f). Through the channel left by the cannulated ram, the 
metaphyseal defect was filled with calcium phosphate cement (chronOS™) only in the plus cement groups. In 
the osteosyntheses only groups, the defect was left empty. The bones were then randomly assigned to fourteen 
groups (group size: n = 9; total number of specimens n = 126) (Table 1). We investigated three different types of 
osteosyntheses: 2 lateral to medial spongiosa 6.5 mm screws, 4 screws in the jail technique (2 lateral to medial 
spongiosa 6.5 mm screws, 24.0 mm cortex screws placed from anterior to posterior) and a lateral angle-stable 
buttress plate (fixed with 5.0 mm locking screws, Depuy Synthes, Johnson&Johnson Medical GmbH, Norder-
stedt, Germany), alone and in combination with a commonly used calcium phosphate cement ChronOS™ Inject 
(Fig. 2). The self-tapping screws were predrilled like in usual orthopaedic practise. Bone cement only was our 
control group. The seven possible types of osteosyntheses were then tested in two different biomechanical test 
set-ups (see below). This resulted in a group total of 14.

All osteosyntheses were performed by the same experienced senior orthopaedic surgeon. Bones were placed 
in an incubator at 37° for 24 h for cement curing. For the same test conditions, also the bones without cement 
were incubated. Fracture reduction, position of the osteosynthesis and cement replenishment were radiographi-
cally controlled.

Biomechanical test set‑up.  All tests were conducted using a material testing machine Zwick Roell Z020 
(Zwick GmbH & Co. KG, Ulm, Germany). As in previous biomechanical studies, we used axial loading as it was 
identified to be the main force acting on what during normal daily activity14–17. The same indentor used for frac-
ture generation was utilized to apply the load precisely over the reduced fracture fragment (Fig. 1c). The indentor 
was placed on the lateral plateau and before starting the biomechanical test, a pre-load of 5 N was applied. For 
the main testing series, the following set-up was used: following 10 settling cycles from 20 to 125 N, the bones 
were axially loaded from 20 to 500 N, respectively, in 5000 cycles with 25 mm/min. In a second testing series, 
the cyclic maximum load was increased to 1000 N. The cyclic loading levels with 500 and 1000 N represented 
the loading generated by a 90 kg person on the lateral tibial plateau during half and full weight bearing in daily 
life activity18,19, and were tested for applicability in a pre-series. Both cyclic loading levels were tested separately 
from each other with different specimens to analyse the initial depression (secondary subsidence) of the articu-
lar fracture fragment under loading. A load-to-failure test concluded the biomechanical test for all specimens. 
All data were recorded using testXpert II (Zwick GmbH & Co. KG, Ulm, Germany).

Parameters of interest.  Parameters of interest were displacement of the articular fracture fragment [mm], 
stiffness [N/mm] and maximum load [N]. Displacement was measured as the distance of the indentor between 
the initial bone contact at the start position and the unloaded position directly above the fragment after the 
cyclic loading phase. The stiffness was calculated at the beginning of the load–displacement curve of the load-
to-failure tests, defined as the slope in the linear part of the curve. The normalized maximum load was further 
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Figure 1.   Fracture generation, reduction and test set up are shown. The lateral tibial plateau was loaded axially 
as demonstrated for fracture generation (a+b) and during the biomechanical testing after fixation (c). The 
simulated lateral depression fractures (a+b) were reduced anatomically by an approach at the lateral metaphysis 
(d), the depressed articular fracture fragment was detected by a k-wire (e) and then elevated by a cannulated 
ram (f).

Table 1.   The fourteen test groups are shown: Seven different stabilization techniques were tested in two 
different cyclic loading protocols, one with 500 N loading and one with 1000 N loading.

Group 500 N level Osteosynthesis Bone cement Group 1000 N level

1 – ChronOs™ 8

2 2 Screws – 9

3 2 Screws ChronOs™ 10

4 4 Screws – 11

5 4 Screws ChronOs™ 12

6 Buttress plate – 13

7 Buttress plate ChronOs™ 14
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calculated by relating the absolute load to the initial maximum load of the native synthetic bone: The initial 
maximum load of the bone was determined as the maximum load, which was needed to produce the tibial head 
depression fracture in the fracture model of the synthetic bone. We calculated the normalized maximum load 
as the division of the maximum load in the load-to-failure tests and the initial maximum load of the native syn-
thetic bone, to account for a possible batch difference.

Statistical analysis.  Sample size calculation was based on a previous study in which tibial head depres-
sion fractures were fixed with screws and screws with additional bone cement9. The displacement of the 
reduced fracture was measured after 3000 cycles of loading with 250  N. Within a statistical expert opinion 
by the Institute for Mathematics and Statistics of the University of Würzburg Cohen’s d calculated from the 
means and standard deviations of the mentioned two groups was 1.48 (group 1: Norian® + screws, mean displace-
ment ± S.D. = 1.1 mm ± 0.3 mm, group 2: screws only, mean displacement ± S.D. = 1.8 mm ± 0.6 mm). Setting β 
at 0.2 and α at 0.05, a group size of n = 9 specimens per group was obtained. Moreover, conducting a post-hoc 
power analysis of the last biomechanical study from 2019 with a similar test set up, similar research hypothesis 
and n = 9 yielded a power of 99% for the displacement during the measuring cycles of the 7 different reduction 
groups20. Group size calculation was done with G*Power (Version 3.1.9.6, Heinrich Heine University Düssel-
dorf, Germany). Consequently, in all 14 groups of this study n = 9 was set.

The data of this study was first tested for normal distribution using the Shapiro–Wilk test and analysing QQ-
Diagrams. Normal distributed data was then analysed with parametric statistics by using a one-way ANOVA. If 
a Levene-Test confirmed the homogeny of the variances in the normally distributed data, one-way ANOVA was 
used to determine differences in the means. These differences were then compared using a Tukey-HSD. If the 
homogeny of the variances could not be confirmed, a Welch-Test was used to determine differences between the 
groups. If this could be confirmed, the Dunnet-T3 test was used to compare the groups.

Not normally distributed data was analysed with non-parametric statistics using a Kruskal–Wallis-Test. If 
this showed differences between the data, a Mann–Whitney-U test with a Bonferroni Correction for multiple 
testing was used to compare the groups and determine statistically significant differences. The level of signifi-
cance was set at p < 0.05.

The above-described data analysis was agreed with the Institute for Clinical Epidemiology and Biometry of the 
University Hospital of Würzburg and was performed using SPSS Statistics® (Version 23.0, IBM, Armonk, USA).

Results
The results of all groups in both loading levels (500 and 1000 N) are shown in Table 2.

Displacement.  The results presented here are the total displacement values from the settling and measur-
ing cycles (unloaded start position to unloaded end position). The displacement in the settling cycles was in all 
groups eminent, from a clinical perspective, and therefore taken into account.

The plate osteosynthesis revealed a higher displacement regardless of whether cement was used or not com-
pared to both screw osteosyntheses (group 2, 6/group 4, 6/group 9, 13/group 11, 13 [p < 0.01]) (Fig. 3a). Compar-
ing the osteosyntheses all in combination with bone cement to each other, the plate showed a trend to a lower 
displacement, but the significance levels were not reached (500 N: group 3, 5 [p = 0.90]; group 3, 7 [p = 0.64]; 
group 5, 7 [p = 0.92]) (1000 N: group 10, 12 [p = 0.11]; group 10, 14 [p = 0.14]; group 12, 14 [p = 0.86]).

No significant differences were determined comparing the screw osteosyntheses alone and in combination 
with bone cement in the testing series with 500 N (group 2, 3 [p = 0.48]; group 4, 5 [p = 0.82]). For the plate 
osteosynthesis, a significant lower displacement was determined for the combination with ChronOS™ inject 
(group 6, 7 [p < 0.01]) (Fig. 3b). In the testing series with 1000 N, a significant difference for the 4 screw and the 
plate osteosynthesis with and without bone cement were detected (group 9, 10 [p = 0.78], group 11, 12 [p = 0.01]; 
group 13, 14 [p < 0.01]) (Fig. 3c).

Figure 2.   Overview of the different treatment groups. After reduction, the lateral tibial depression fractures 
were stabilized with three different types of osteosyntheses alone and in combination with bone cement: 2 
screws (A), 4 screws in the jail or raft technique (B) and lateral angle-stable buttress plate (C). Specimens and 
the corresponding x-rays before testing are demonstrated for every osteosynthesis group with bone cement.
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Table 2.   The results of all parameters of interest are shown with the mean and standard deviation of every 
group.

Groups

Displacement 
settling + measuring cycles 
[mm] Maximum load [N]

Normalized maximum load 
[%] Initial fracture generation [N] Stiffness [N/mm]

500 N

1 (ChronOs) 6.5 ± 4.0 1788 ± 684 148 ± 64 1237 ± 196 495 ± 163

2 (2 Screws) 5.2 ± 0.7 2078 ± 207 201 ± 47 1075 ± 165 383 ± 43

3 (2 Screws + ChronOs) 3.7 ± 1.3 2990 ± 507 278 ± 37 1083 ± 173 520 ± 108

4 (4 Screws) 5.2 ± 0.7 2945 ± 251 257 ± 32 1160 ± 162 368 ± 97

5 (4 Screws + ChronOs) 6.2 ± 2.4 3085 ± 368 273 ± 70 1198 ± 189 516 ± 109

6 (Buttress Plate) 8.9 ± 2.8 2695 ± 665 222 ± 60 1228 ± 143 509 ± 73

7 (Buttress Plate + ChronOs) 3.1 ± 1.4 2832 ± 796 252 ± 139 1379 ± 200 792 ± 150

1000 N

8 (ChronOs) 5.6 ± 2.2 2324 ± 304 218 ± 58 1120 ± 250 795 ± 112

9 (2 Screws) 7.9 ± 1.1 2268 ± 251 207 ± 32 1109 ± 135 549 ± 37

10 (2 Screws + ChronOs) 6.5 ± 1.2 2777 ± 361 254 ± 35 1102 ± 124 667 ± 92

11 (4 Screws) 8.9 ± 1.4 2636 ± 359 231 ± 61 1194 ± 270 624 ± 80

12 (4 Screws + ChronOs) 5.7 ± 0.8 3144 ± 237 245 ± 35 1306 ± 194 785 ± 145

13 (Buttress Plate) 16.9 ± 3.6 3024 ± 685 275 ± 62 1121 ± 204 892 ± 145

14 (Buttress Plate + ChronOs) 5.6 ± 1.3 2780 ± 699 285 ± 76 982 ± 77 916 ± 119

Figure 3.   The results analysing the displacement of both loading levels is shown. Means ± SD, significant 
differences are indicated by *(p < 0.05 between groups). (a) In both loading levels, the plate osteosynthesis 
revealed a higher displacement compared to the screw osteosyntheses. (b) Comparing the different types of 
osteosyntheses alone and in combination with bone cement to each other, a significant lower displacement 
was determined for plate osteosynthesis in the 500 N loading level. (c) In the 1000 N testing series, a lower 
displacement was detected for the combination with bone cement for the 4 screw and the plate osteosynthesis. 
(d) The group with bone filler only (ChronOS™ inject) revealed a lower displacement in the 1000 N loading level 
compared to the three types of osteosyntheses only.
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For the control group with bone cement only, there were no differences in-between groups in the 500 N 
level testing series. Interestingly, for the 1000 N level, a significant lower displacement for the ChronOS™ inject 
only group compared to the three types of osteosyntheses without bone cement was demonstrated (group 8, 9 
[p = 0.04]; group 8, 11 [p < 0.01]; group 8, 13 [p < 0.01] (Fig. 3d).

Stiffness.  The plate osteosynthesis revealed a higher stiffness of whether cement was used or not compared 
to both screw osteosyntheses (group 2, 6/group 4, 6/group 9, 13/group 11, 13 [p < 0.01]) (Fig. 4a). The plate 
osteosynthesis in combination with bone cement determined in both loading levels a significantly higher stiff-
ness compared to the two screw osteosyntheses in combination with bone cement (group 3, 7/group 5, 7/group 
10, 14/group 12, 14 [p < 0.01]). For the 1000 N testing series, additionally a higher stiffness could be detected for 
4 screws compared to the 2 screws, both with bone filler (group 10, 12 [p = 0.03]) (Fig. 4b).

In both loading levels, the osteosyntheses demonstrated a significantly higher stiffness for the combination 
with bone cement compared to the osteosyntheses alone (500 N: group 2, 3 [p < 0.01]; group 4, 5 [p < 0.01]; group 
6, 7 [p < 0.01) (1000 N: group 9, 10 [p = 0.01]; group 11, 12 [p = 0.01]). Only the plate osteosynthesis revealed 
no significant difference in the 1000 N level with and without bone filler (group 13, 14 [p = 0.67]) (Fig. 4c+d).

Maximum load.  Comparing the three types of osteosyntheses alone (without bone filler) to each other, in 
the 500 N level the 2 screw osteosynthesis revealed a lower maximum load than the 4 screw osteosynthesis and 
the plate osteosynthesis (500 N: group 2, 4 [p < 0.01]; group 2, 6 [p = 0.03]; group 4, 6 [p = 0.08]). No differences 
for the osteosyntheses were detected in the 1000 N testing series (1000 N: group 9, 11 [p = 0.43]; group 9, 13 
[p = 0.36]; group 11, 13 [p = 0.25]) (Fig. 5a).

For the three types of osteosyntheses in combination with bone cement, no differences were determined in 
both loading levels (500 N: group 3, 5 [p = 0.17]; group 3, 7 [p = 0.34]; group 5, 7 [p = 0.13]) (1000 N: group 10, 
12 [p = 0.42]; group 10, 14 [p = 0.11]; group 12, 14 [p = 0.27]) (Fig. 5b).

Whilst a general trend to a higher maximum load could be detected for the combination of osteosynthesis 
with bone cement compared to the same osteosynthesis alone, the significance level was not reached in both 
loading levels (500 N: group 4, 5 [p = 0.16]; group 6, 7 [p = 0.80]) (1000 N: group 9, 10 [p = 0.06]; group 11, 12 
[p = 0.06]; group 13, 14 [p = 1.00]) (Fig. 5c+ d). Except, for the 2 screws tested in the 500 N level, a significance 

Figure 4.   The results of the stiffness are shown. Means ± SD, significant differences are indicated by 
*(p < 0.05 between groups). (a) A higher stiffness revealed the plate osteosynthesis compared to the two 
screw osteosyntheses in both loading levels. (b) The plate exhibited a higher stiffness compared to the screw 
osteosyntheses in both loading levels when combined with cement. Additionally, in the 1000 N level, the 4 
screws with ChronOs™ revealed a higher stiffness compared to the 2 screws with ChronOs™ (indicated by **). 
(c) A higher stiffness revealed the combination with bone cement compared to the same type of osteosynthesis 
alone in the 500 N loading level. (d) For the two screw osteosyntheses a higher stiffness was determined for the 
combination with bone cement compared to the same type of osteosynthesis without bone filler in the 1000 N 
loading level.
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difference for the combination with bone cement compared to the osteosynthesis alone could be detected (group 
2, 3 [p < 0.01]) (Fig. 5c).

The analysis of the normalized maximum load did not reveal diverging differences between the groups than 
the absolute values for the maximum load. The initial load at fracture generation did not differ significantly 
between groups (Table 2).

Mode of failure.  For the group with the two screws in combination with the ChronOS™ Inject, the mode of 
failure was determined to be the load under which the screws failed. For the four screws, it was determined at 
the load under which the two smaller screws failed. In the plate osteosynthesis group, the mode of failure was 
determined as the load under which the bone of the tibial plateau failed and the tibial shaft developed a fracture 
at the distal plate end. The osteosynthesis construct itself did not give way.

Discussion
Considering the problems seen in clinical practice when treating older patients, especially higher loading of the 
tibial plateau postoperatively than desired by the surgeon, studies analysing differences in stability of different 
osteosyntheses under high loading conditions are needed. To date, to our knowledge, there are only a few bio-
mechanical studies in which higher loading conditions of the tibial plateau were simulated to better understand 
problems associated with treating tibial head fractures. For example, McDonald et al.14 compared autologous bone 
graft to bone cement under higher loading conditions in split depression tibial plateau fractures, demonstrating 
biomechanical advantages for the bone cement. Benoit et al.15 analysed a new option of filling the metaphyseal 
bone defect with trabecular metal, revealing that a higher stability was achieved with this technique compared 
to an impacted cancellous bone graft in tibial head depression fractures. Furthermore, Blakey et al.16 simulated 
higher loading conditions when investigating an interference screw as an osteosynthesis alone in pure depression 
fractures of the tibial plateau. Under high loading conditions, low stability was found for the interference screw 
alone why using this osteosynthesis alone is not reasonable.

The options used in this study for stabilization of the simulated fractures are well-established techniques in 
tibial head fractures. In pure split or pure depression fractures, a 2 screw osteosynthesis with cancellous screws 
is often applied. A combination of 3 to 4 screws arranged in the jail technique is also described for these tibial 
head fractures in different ways as 6.5 mm cancellous screws with 4.0 mm small fragment screws or 3.5 mm 

Figure 5.   The results of the maximum load are demonstrated. Means ± SD, significant differences are indicated 
by *(p < 0.05 between groups). (a) A higher maximum load could be detected for the 4 screw and the plate 
osteosynthesis in the 500 N loading level compared to the 2 screw osteosynthesis, all without bone filler. (b) 
Comparing the three types of osteosynthesis with bone cement to each other, no differences were distinguished. 
(c) A higher maximum load for the combination with ChronOs™ inject revealed the two screw osteosynthesis 
whereas no differences were determined for the 4 screw and the plate osteosynthesis in the 500 N level. (d) No 
differences were detected between the different types of osteosyntheses without bone cement compared to the 
same type in combination with bone cement in the 1000 N testing series.
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cortical screws7–9,21. In unicondylar tibial head fractures, buttress plates usually with angle-stable screws are used 
when the type of the tibial head fracture demands a higher stability than a screw osteosynthesis alone like for 
example in split depression fractures.

Former biomechanical studies applying comparatively low loading analysed the influence of the type of 
osteosynthesis on the stability and showed advantages for the screws in the jail technique compared to only 2 
screws7,8,22. Furthermore, the screws in the jail technique also provided an equivalent high stability in combina-
tion with bone cement compared to the plate osteosynthesis under maximal loading conditions. Simulating a 
usual partial weightbearing with 20 kg, the jail technique demonstrated the lowest subsidence of the articular 
fracture fragment compared to the 2 screws and the plate22. In contrast, in this study, with higher loading of the 
tibial plateau, the plate osteosynthesis in combination with bone cement revealed a trend to the highest resistance 
against a loss of reduction in the cyclic loading phase (the lowest absolute displacement, however not statisti-
cally significant). Thus, under higher loads, a more stable osteosynthesis like the angle-stable buttress plate has 
biomechanical advantages compared to screw osteosyntheses. In addition, the plate in combination with bone 
cement demonstrated a higher stiffness compared to all other groups. It seems that the biomechanical advantages 
of the plate are more evident under maximal loading, when already higher loading conditions were performed 
previously (in the cyclic loading phase) in contrast to the results of a former study with lower cyclic loading 
conditions22. The use of a plate instead of screws in pure tibial head depression fractures must be discussed, 
however, still critically considering the more extensive necessary soft tissue preparation, even when there are 
biomechanical advantages demonstrated for higher loading. This study can only provide information about the 
in vitro conditions; the type of osteosynthesis used intraoperatively must still be discussed from case to case.

The filling up of the metaphyseal bone defect is essential to reduce the secondary loss of reduction of the 
articular fracture fragment under lower loading conditions like shown in a previous study9 as well as in this study 
under higher loading conditions. At the 1000 N level the ChronOs™ only group demonstrated the significant 
lowest displacement when compared to the other osteosyntheses without cement. This is likely due to a more 
precise filling of the metaphyseal defect as no hindering screws were in the way. In all types of osteosyntheses, 
the use of bone cement resulted in a higher stiffness compared to the osteosyntheses alone. Interestingly, signifi-
cant differences in the subsidence of the articular fracture fragment (displacement) for the combination of bone 
cement and the osteosyntheses were only seen in the 1000 N loading level. These results are well in agreement 
with a former biomechanical study with lower cyclic loading conditions22. On loading level 500 N, however, no 
differences for the screw osteosyntheses with and without bone cement were detected. It might be, that under 
higher loading conditions, the osteosyntheses are more important for the reduction of the displacement than 
under lower loading conditions.

The use of a calcium phosphate bone filler like applied in this study is well established in daily clinical work 
and associated with a higher stability compared to crest bone graft in biomechanical studies12,23.

Interestingly, the bone cement used had no influence on the mode of failure. The screw construct was found 
to be the limiting factor in this study. In the osteosynthesis group, the locking plate and screws themselves did 
not fail. Instead, the bone gave way around the implant as the load increased.

It has to be noted that the biomechanical test set-up used for this study reduced the acting forces on the 
tibial plateau to the main axial loading forces, and here on the lateral part of the plateau. However, even if this 
set-up cannot completely simulate the physiological conditions, it compares well with former biomechanical 
studies using similar test set-ups12,14–16,24, and this study contributes important biomechanical information about 
the differences in stability of several treatment options. We also recognize that the use of the indentor loaded 
exclusively the reduced fracture fragment and therefore created a more rigorous test set-up as an artificial knee 
joint as load applicator would have done. This eliminated possible disruptive factors. The use of a synthetic bone 
instead of a human bone may be regarded as another limitation, however, like demonstrated before, this special 
type of synthetic bone resembles very well the biomechanical qualities of a human osteoporotic tibial head9,10, 
and moreover, an additional advantage of the use of synthetic bones is a low interspecimen variation.

Conclusions
Under higher loading conditions, a plate osteosynthesis in combination with a bone cement provides the highest 
stability compared to screw osteosyntheses and should be considered for fracture stabilization in special patient 
cases of pure depression fractures, when a postoperative high loading is likely, and the risk of a more extensive 
operative technique is justifiable.

Data availability
The test records for all specimens can be obtained from the corresponding author upon reasonable request.
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