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Perceptual changes after learning 
of an arbitrary mapping 
between vision and hand 
movements
Wladimir Kirsch* & Wilfried Kunde

The present study examined the perceptual consequences of learning arbitrary mappings between 
visual stimuli and hand movements. Participants moved a small cursor with their unseen hand twice 
to a large visual target object and then judged either the relative distance of the hand movements 
(Exp.1), or the relative number of dots that appeared in the two consecutive target objects (Exp.2) 
using a two-alternative forced choice method. During a learning phase, the numbers of dots that 
appeared in the target object were correlated with the hand movement distance. In Exp.1, we 
observed that after the participants were trained to expect many dots with larger hand movements, 
they judged movements made to targets with many dots as being longer than the same movements 
made to targets with few dots. In Exp.2, another group of participants who received the same training 
judged the same number of dots as smaller when larger rather than smaller hand movements were 
executed. When many dots were paired with smaller hand movements during the learning phase of 
both experiments, no significant changes in the perception of movements and of visual stimuli were 
observed. These results suggest that changes in the perception of body states and of external objects 
can arise when certain body characteristics co-occur with certain characteristics of the environment. 
They also indicate that the (dis)integration of multimodal perceptual signals depends not only on the 
physical or statistical relation between these signals, but on which signal is currently attended.

How observers perceive their own body is influenced not only by sensations from inside their body (i.e. by 
 interoception1) but also by information from the environment (i.e. exteroception). For example, when wear-
ing prism glasses, the felt position of the hand shifts towards where the hand looks to  be2. Conversely, how we 
perceive our environment is influenced by interoceptive states of the observer. The perceived orientation of a 
visual stimulus, e.g., is biased towards the current body orientation when that stimulus is judged relative to 
gravity and the body is  tilted3.

Such intersensory biases likely result from integration of multimodal signals which is constrained by several 
experimental  factors4. Most importantly, the magnitude of integration is determined by the observer’s believe 
that signals belong to the same object or event, the so called “unity assumption”: The more evidence suggests that 
signals from different senses relate to the same event, the stronger is their  integration5–10. For example, consider 
an observer who is confronted with auditory and visual signals, such as short sound bursts and light flashes, 
presented at different spatial locations and at different points in time. When asked to report whether the visual 
and auditory stimuli originate from the same or different spatial locations, observer’s judgments indicating the 
same spatial origin decrease when spatial or temporal discrepancy between visual and auditory stimuli increase. 
Simultaneously, the impact of one modality on another, such as a bias of auditory perception (of location) by 
visual signals, that indicates audio-visual integration decreases when the spatial or temporal conflict between 
vision and audition gets  larger11, see also Ref.9 for related observations.

Sensory integration accounts predict perceptual changes if there is a discrepancy between multimodal sig-
nals. For example, if an object is simultaneously seen and manually grabbed the perceived size of the object is 
usually in-between the visual and haptic  sizes12,13. Thus, the visual perception of the object is biased towards 
the haptic signal and vice versa, the haptic perception is biased towards the visual signal. However, intersensory 
discrepancies sometimes entail biases of the opposite direction. For example, when asked to localize an auditory 
stimulus, participants’ reports of object location are biased away from visual stimuli presented in the vicinity of 
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the auditory stimulus when they believe that the origins of both types of stimuli do not  coincide11. Such a pattern 
indicates that the signals are not integrated.

Several studies showed that multimodal signals are combined in perception although they are related to spa-
tially clearly separated objects and  events14–18. In a virtual grasping task, e.g., we presented a visual object in the 
fronto-parallel plane of the observer and asked her/him to enclose this object by a pair of manually controlled 
visual  cursors17. We then measured the perceived visual size of the object and the felt finger posture (i.e. hand 
opening). A typical result in this paradigm is that the perceived hand opening is biased by the size of the object 
and vice versa, the perceived size of the object is biases by the actual hand opening (though to lesser extent) 
when there is a spatial discrepancy between hand opening and object size. These observations suggest that a 
strict “object unity” is not a mandatory condition for multisensory integration to occur, but instead, that some 
sort of correlation or spatio-temporal correspondence suffices.

Altogether there is evidence for various possible changes in the perception of observers’ bodies and their envi-
ronment with intersensory discrepancy. This discrepancy between modalities can only be induced when a certain 
correspondence or mapping between them already exists. In the present study, we wondered about whether it is 
possible to learn two arbitrary mappings between vision and hand movements during a virtual interaction with 
a distant object and whether this can cause changes in the perception of the hand movements and of the external 
object when an intersensory discrepancy is introduced. Previous studies already demonstrated that sensory sig-
nals from different modalities can be arbitrarily  paired19–22. The present study expands the scope of this research 
by situations where multimodal signals have clearly different origins (i.e. relate to spatially separated objects).

This rather specific multisensory issue can also be informative for other related research directions. For exam-
ple, several observations indicated an impact of the perceiver’s body and its action on the perception of external 
objects. Hills were judged as steeper when wearing a heavy backpack, golf players who played well judged holes 
as larger than players who played less well, parkour experts judged walls as smaller than parkour novices, to 
name a few examples see Ref.23,24 for reviews, and Ref.25 for criticism. We have suggested that such phenomena 
could be outcomes of multisensory integration between vision and body-related (e.g. proprioceptive) signals by 
analogy with any other modality  combination26,27. The present study can be considered as an additional test of 
this claim. To put it differently, the basic question of the present study was whether it is possible to change per-
ception (e.g. of hill steepness, hole size, or wall height), by observers experiencing a systematic relation between 
their body movement and an external object (by repeatedly ascending hills, shooting golf balls, or jumping over 
walls) while a change (or a kind of discrepancy) in this intersensory relation is introduced (i.e. by comparing 
hill slop judgements with or without a backpack, successful with unsuccessful gulf puts, experts with novices 
etc.). While in this sort of research perception is biased based on some pre-experimentally established linkages 
between motor output and perceptual feedback we here want to study if such perceptual biases can be instanti-
ated by novel and deliberately arbitrary linkages encountered in the experiment alone.

In the present study, participants moved a cursor to a square shown in the center of a screen by moving a stylus 
on a graphics tablet (see Fig. 1). Then the square was filled with a number of randomly distributed dots. This 
occurred two times within a single trial and the participants were asked to estimate either which hand movement 
covered a larger distance (Experiment 1) or which square had more dots (Experiment 2). We varied the mapping 
between hand movement distance and the number of dots so that an increase in movement distance was associ-
ated either with an increase (Group A) or with a decrease (Group B) in the number of dots. Following a learning 
phase, we introduced a discrepancy to the learned mappings and measured perceptual biases. If participants 
learn to integrate hand movement distance and the quantity of random objects, then mutual perceptual biases 
should be observed. That is, an increase in the number of dots for a certain movement distance should enlarge/
shorten the perceived movement distance for Group A/Group B in Experiment 1. Conversely, an increase in 
hand movement distance for a certain number of dots should increase/decrease the perceived number of dots 
for Group A/Group B in Experiment 2.

Methods
Participants. Right-handed participants were recruited through the participant pool (SONA systems) of the 
University of Würzburg. All of them had normal or corrected-to-normal vision and received monetary compen-
sation for their participation. All participants provided written informed consent before participation. The study 
has been approved by the local ethics committee (Ethikkommission des Institutes für Psychologie der Human-
wissenschaftlichen Fakultät der Julius-Maximilians-Universität Würzburg, GZ 2019-04) and the methods were 
performed in accordance with the relevant guidelines and regulations. Experiment 1 included 33 females and 15 
males (age: M 24 years, SD 4) and Experiment 2 included 37 females and 11 males (age: M 26 years, SD 6). These 
sample sizes ensured a power of 0.95 (α = 0.05) for effect sizes of about dz = 0.5.

Apparatus. The experiments were performed in a dimly lit experimental room. Participants were seated in 
front of a 19′ monitor (Fujitsu Siemens P19-1; 1280 × 1024 pixels; 1 pixel = 0.294 mm; 60 Hz) placed at about 
105 cm distance. A chin rest supported their heads (see the left upper part of Fig. 1). The right hand was used to 
manipulate a movement device that was composed of a graphics tablet (Intuos 4 A4, Wacom), a digitizing stylus 
and a pincer like construction that held the stylus up on the tablet and enabled hand movements forward and 
backward along a track. Participants placed their fingers on two U-shaped plastic plates, which were part of the 
pincer construction. The index and the middle fingers were placed on one plate, the thumb on the other. A black 
cover prevented the vision of the hand and of the movement device. Participants pressed buttons of a computer 
mouse with the left hand to indicate their perceptual decisions. Auditory stimuli were initially presented through 
headphones. Later, due to local pandemic regulations, loudspeakers were used.
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Stimuli and trial procedure. The main trial events are shown in the lower part of Fig. 1. Before each trial, 
participants placed their hand at the location of a mechanical stop close to their body (i.e. at a start location). 
Then a visual prompt (“New trial” in German; in light grey) and a short beep tone indicted the beginning of a 
new trial. In response to this start signal, participants had to move a green cursor (a dot of 3 mm in size) that 
appeared at the lower part of the screen towards the center of a black square (4.8 × 4.8 cm) that was presented at 
the screen’s center. The cursor movement was controlled by the movement of the hand so that if the hand moved 
forward/backward the cursor moved up/down. There were no specific constraints regarding movement velocity 
except that the participants were asked to not move too fast (to not damage the apparatus) as well as too slow 
(to not lengthen the duration of the experiments). When the center of the square was reached (i.e. when the 
spatial deviation between the cursor position and the center of the square was smaller than 2.94 mm) the cursor 
disappeared and the square was filled with a number of black randomly distributed dots (1.2 mm in size). Simul-
taneously, a durable clicking noise was presented (additional feedback that the movement goal was reached) 
and the participants were required to maintain this body state for 1 s. If the hand location changed during this 
period (i.e. if the spatial deviation between the cursor position and the center of the square exceeded 2.94 mm) 
the dots disappeared, the cursor reappeared, and the participants had to perform corrective movements. Then, 
participants had to move the hand back to the start position. During this backward movement, the cursor was 
not visible. Reaching the start position was accompanied by a short beep tone that was also a signal to initiate 
the second movement to the center of the square. This second movement phase corresponded to the first move-
ment phase (except for stimulus and movement features that are described below). Finally, a blue question mark 
appeared and the participants had to judge either whether the first or the second movement distance was larger 
(in Experiment 1) or whether the first or the second visual stimulus contained more dots (in Experiment 2). The 
left mouse button was assigned to the first stimulus/movement, the right mouse button to the second.

Design. We used a method of constant stimuli so that one virtual interaction with the visual object served as 
a standard stimulus, another one as a test stimulus (random assignment to first and second movement phases). 
Each experiment was divided in three phases: a pre-learning (one block of 96 trials), a learning (4 blocks of 96 
trials each) and a post-learning phase (one block of 96 trials), which were preceded by 16 practice trials (not 
included in the analyses). One important experimental manipulation in both experiments was related to the 
spatial extent of hand movement required to reach the square’s center. That is, we varied the transformation 
of the hand movement distance to the cursor movement distance (i.e. gain). Another important manipulation 

Figure 1.  Experimental setup (upper part) and main trial events (lower part) in Experiments 1 and 2. 
Participants performed a linear hand movement on a horizontal plane with their right hand that controlled the 
movement of a visual cursor on a vertical plane following a go signal (“beep tone”). When the center of a square 
was reached by the cursor, the square was filled with a number of dots while an acoustic signal was presented 
(“durable clicks” that served as additional feedback that the movement goal was reached). After a backward 
movement, another goal directed movement was performed. Following the second backward movement, 
participants indicated whether the first or the second hand movement covered a larger distance (Experiment 1) 
or whether the first or the second square contained more dots (Experiment 2) by pressing a mouse button.
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was related to the number of dots appearing during the first and the second movement phases. The differences 
between both experiments are described below (see also Fig. 2).

Experiment 1. Here we were interested in how the perception of the body rather than visual perception of an 
object is affected by visuo-motor learning. Thus, the spatial extent of hand movements served as a standard and 
a test stimulus. In particular, the spatial extent of one of the hand movements was always about 11 cm (standard 
stimulus) and corresponded to a 1:1 mapping between cursor and stylus movements. This “standard movement” 
was paired with the square that contained either a rather small (10) or a rather large number (190) of dots in the 
pre-learning and post-learning phases. In the learning phase, an in-between number of dots was used (100). The 
distance of hand movements that served as a test stimulus varied between 7 and 15 cm in six equidistant steps of 
1.6 cm [These values are “ideal” values that we aimed by the gain manipulation. The actually measured distances 
amounted to 7.25 (SD 0.04), 8.85 (SD 0.04), 10.45 (SD 0.05), 12.03 (SD 0.05), 13.62 (SD 0.05) and 15.20 (SD 0.05) 
cm. These distances were thus slightly larger on average (M 0.23) than the ideal values. Moreover, this constant 
measurement error slightly decreased with an increase in movement distance from 0.25 (7 cm condition) to 0.20 
(15 cm condition). These small deviations from the aimed values can be assumed to not substantially influence 
the results and drawn conclusions. The only implication is that the scale of the test values used for analyses is 
very slightly distorted (by maximally 0.5 mm)]. These “test movements” were assigned to the number of dots in 
the visual stimulus so that an increase in movement distance was associated either with an increase (“mapping 
A”) or with a decrease (“mapping B”) in the number of dots. The number of dots for these test movements varied 
between 10 and 190 in equidistant steps of 36 dots. Both mappings were used with equal probability for each 
participant in the pre-learning phase. In the learning and post-learning phases, each participant experienced 
either mapping A or mapping B depending on whether he/she was assigned to Group A or B (counterbalanced 
across participants). The main question of interest was how the judgment behavior differs between the different 
numbers of dots associated with the standard movement in the post learning phase depending on visuo-motor 
learning experience (i.e. on the group membership).

Experiment 2. Here, the experimental logic was partly reversed because we were now interested in how visual 
perception of an object rather than the perception of the body is affected by visuo-motor learning. One of the 

Figure 2.  Assignment of hand movement distance to the number of dots for the standard and test stimuli in 
Exp.1 and Exp.2. The length of the dotted lines indicates the spatial extent of movement distance covered by the 
hand. The shortest line stands for about 7 cm, the largest for about 15 cm. The middle line on the left part of the 
figure indicates an intermediate distance (11 cm). The number of dots varied between 10 and 190, and was 100 
for the standard stimulus of Exp.2 (as well as of Exp.1 in the learning phase). See main text for more details.
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filled squares now served as a “standard stimulus”. It always contained 100 dots. Another filled square was the 
“test stimulus”. The number of dots in the test stimulus varied around the number of dots in the standard stimu-
lus from 10 to 190 in equidistant steps of 36 dots. The gain was adjusted so that hand movements to the standard 
stimulus were either rather short (approx. 7 cm) or rather long (15 cm) in the pre-learning and post-learning 
phases. In the learning phase, an in-between distance was used (11 cm). The distance of hand movements aimed 
at the test stimulus again varied between 7 and 15 cm in six equidistant steps of 1.6 cm. These distances were 
assigned to the number of dots in the visual stimulus in the same way as in Exp. 1. That is, an increase in move-
ment distance was associated either with an increase (“mapping A”) or with a decrease (“mapping B”) in the 
number of dots. In the pre-learning phase, both types of this assignment were used with equal probability for 
each participant. In the learning and post-learning phases, in contrast, each participant exclusively experienced 
either one or another type. That is, each participant was randomly assigned either to Group A that experienced 
mapping A or to Group B that experienced mapping B, as in Exp.1. The main question of interest was whether 
and how the judgment behavior differs between the short and long movements towards the standard stimulus in 
the post learning depending on visuo-motor learning experience (i.e. on the group membership).

Both experiments were thus identical except for the judgment type when only the test stimulus is considered. 
They differed basically in whether two different visual stimuli were assigned to a single movement (Exp.1) or 
two different hand movements were assigned to a single visual stimulus (Exp.2) when the standard stimulus 
is considered (see Fig. 2). This intended difference enabled us to examine the impact of visual stimuli on body 
perception (i.e. felt movement amplitude) and, vice versa, of body-related variables on visual perception holding 
the crucial physical stimulation unchanged across the levels of the independent measure.

Data analyses. The main measure of interest was the point of subjective equality (PSE) computed as the 
level of the test stimulus at which the test stimulus was chosen with a frequency of 50%. We used a local model-
free fitting  procedure28 to fit proportions of trials in which the test stimulus was judged as “larger” (i.e. as having 
a larger movement amplitude in Exp. 1 and more dots in Exp.2) as a function of the test stimulus for different 
characteristics of the standard stimulus, and both learning groups in the pre- and post-learning phases. The data 
as well as program scripts (E-prime, Psychology Software Tools, Pittsburgh, PA) have been made publicly avail-
able (https:// osf. io/ hcgfr/).

Five participants of Exp. 1 and one participant of Exp. 2 were excluded from further analyses due to a very 
low discrimination performance in at least one of the critical conditions (the slope of the psychometric function 
was close to zero or even negative).

Hypothesis. An increase in the number of dots for the standard movement in the post learning phase of 
Exp.1 was expected to increase the PSE for Group A, but to decrease the PSE for Group B. In a similar vein, an 
increase in hand movement distance for the standard stimulus in the post learning phase of Exp.2 was expected 
to increase the PSE for Group A, and to decrease the PSE for Group B. These interaction patterns would suggest 
sensory integration of visual and body-related signals following learning of arbitrary mappings between them.

Results
Mean judgment data and the corresponding PSE values are shown in Fig. 3. In Exp.1, an analysis of variance 
(ANOVA) of PSEs including number of dots as a within subject variable and group as a between subject variable 
revealed a significant interaction between both factors, F(1, 41) = 7.81, p = 0.008, ηp

2 = 0.160. Pairwise comparisons 
(t-tests) further showed that the effect of the number of dots was significant for Group A, t(23) = 2.72, p = 0.012, 
but not for Group B, t(18) = 1.32, p = 0.202 (see also Fig. 3 for the magnitude of the effects for each participant). 
The PSE significantly increased for Group A and only descriptively decreased for Group B when the number of 
dots associated with the standard movement increased in the post learning phase. Thus, the main hypothesis 
(of sensory integration) was supported by the results, however, only partially as the effect for Group B was not 
significant.

In Exp.2, an analysis of variance (ANOVA) of PSEs including movement distance as a within subject variable 
and group as a between subject variable revealed a significant interaction between both factors, F(1, 45) = 12.02, 
p = 0.001, ηp

2 = 0.211. Pairwise comparisons further showed that the effect of the number of dots was significant 
for Group A, t(22) = 3.94, p < 0.001, but not for Group B, t(23) = 1.57, p = 0.130. The PSE significantly decreased for 
Group A and only descriptively increased for Group B when movement distance to standard stimulus increased 
in the post learning phase. This pattern of results was of an opposite direction compared to what we predicted 
and what we observed in Exp. 1.

We also tested whether such PSE differences could be present before learning. For this purpose we performed 
the same analyses for the pre learning phase. The characteristics of the standard stimulus or movement did 
not interact with Group in these analyses, F(1, 41) = 0.17, p = 0.681, ηp

2 = 0.004 and F(1, 45) = 1.31, p = 0.259, 
ηp

2 = 0.028 for Exp.1 and Exp.2 respectively (all other p values > 0.376). These results support the view that the 
observed changes in judgment behavior observed in the post learning phase were in fact due to learning of visual 
and body-related task characteristics.

Finally, we tested whether the samples of participants of both experiments differed in regard to mean age and 
to the number of women and men, what, in theory, can lead to different outcomes of both experiments. This was 
not the case, t(45) = 1.19, p = 0.242 (for age differences) and χ2 (1) = 0.341, p = 0.559 (for sex differences). Thus, 
possible age or gender differences cannot account for the different results of Exp.1 and Exp.2.

https://osf.io/hcgfr/
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Figure 3.  Results of Exp.1 (upper part) and Exp.2 (lower part). Shown are mean judgment data for all 
conditions (line graphs), mean PSE values for the post learning phase (graphs including white and black bars), 
and the effects (i.e. PSE differences) of the varying number of dots (Exp.1) and of the varying movement 
distance (Exp.2) on judgment behavior for each individual participant (graphs including gray bars sorted by 
their magnitude). Error bars are standard errors. Asterisks denote statistical significance (p < 0.05).
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Discussion
The results of Experiment 1 revealed that a group of participants that learned to expect more dots with larger 
hand movements judged the movements made to targets with many dots as longer than the same movements 
made to targets with few dots. In another group of participants that was trained with an opposite association 
(more dots & smaller movements) no significant effects of the number of dots on the judgments of hand move-
ment distance were observed. In Experiment 2, a group of participants that learned to expect more dots with 
larger hand movements judged the same number of dots as smaller when larger rather than smaller hand move-
ments were executed. In another group of participants that was trained with an opposite association (more dots 
and smaller movements) no significant effects of the hand movement distance on the judgments of the number 
of dots were observed. We first discuss the significant effects observed in participants who learned to associate 
more dots with larger hand movements and then touch on why there were no significant effects in participants 
who learned an opposite mapping.

The main result of Experiment 1 was a change in the perception of body-related signals after a conflict was 
introduced relative to an arbitrary mapping of these and visual signals learned before (i.e. after learning that 
more dots are associated with larger movements). This outcome is in line with previous similar  reports19–22 and 
indicates that participants learned to integrate signals that were unrelated before learning, and still integrated 
them after an intersensory conflict was introduced. In essence, it suggests that the body-related signals associ-
ated with hand movements and the visual stimulus information were treated as redundant (or as features of a 
common event) to some extent after learning and this led to a coupling of these signals in perception. Sensory 
integration is usually construed as a process of weighted signal averaging with weights being proportional to 
signal precision e.g. Ref.12. If there is a discrepancy between the signals their averaging (i.e. integration) inevitably 
produces perceptual biases. The main result observed in Exp.1 presumably represent such a bias. The results of 
Experiment 2, however, revealed a perceptual bias of the opposite direction following a very similar setup as the 
same number of dots was judged as smaller (rather than larger) when larger movements were executed. This 
outcome indicated that the signals were kept separate rather than being integrated.

The main difference between the experiments was the judgment task that stressed either body-related (Exp.1) 
or visual (Exp.2) signals. One factor possibly responsible for the different outcomes might be attention devoted to 
these signals. Participants certainly allocated more attention to the modality that was emphasized by the instruc-
tion. Importantly, attending the visual signals more than body-related signals presumably entailed a multimodal 
integration of these signals, whereas attending the body-related signals more than visual signals resulted in a 
perceptual segregation of the these signals. To understand how such an outcome could emerge consider that 
focusing attention on one modality often decreases multimodal integration compared to conditions in which 
attention is more evenly distributed across  modalities29–31. This likely occurs because the expectation that mul-
timodal signals belong together (i.e. the “unity assumption”) is weakened if only one modality is  attended32. 
Thus, the way attention is distributed seems to be closely related to the participants’ assumption about the origin 
of the multimodal signals that determines their decision to integrate or not to integrate. Decisions to integrate 
seem more favored if attention is more broadly distributed across the signals. Based on this, our results indicate 
that under the present conditions participants believed to a lesser extent that the visual and body-related signals 
belong together when the judgment task directed their attention to vision rather than to their body. This could 
be so because body-related signals could better be ignored when the judgment task was visual in nature as com-
pared with the role of vision in the judgments of hand  movements31. As a result, attention was shared between 
the modalities more in the body-related than in the visual task. Such an attentional asymmetry could arise from 
a higher saliency of visual than body-related information in the visuomotor task we used (see also Ref.4).

There are, of course, also other possible explanations for the apparently opposite patterns of results observed 
in Exp.1 and 2. For example, irrespective of a possible role of attentional distribution, causal inference processes 
(i.e. unity assumption) could, in theory, be directly related to the precision of a currently attended signal. That 
is, attending a less precise (e.g. proprioceptive) signal could generally increase the readiness to integrate than 
attending a more precise (e.g. visual) signal. In addition, although the samples of participants of both experiments 
were comparable with respect to the mean age and the number of males and females (see “Results”) there could 
still have been differences between the samples with respect to other characteristics. For example, participants 
of Exp.2 could be less sensitive to their body-related signals than the participants of Exp.1. As a result, the body-
related signals were rather ignored in Exp.2, and did thus not enter multisensory integration. More research is 
needed to better evaluate these and related possibilities.

Regarding the type of the implemented mappings we observed significant perceptual biases when an increase 
in hand movement distance was associated with an increase in the quantity of visual objects. In contrast, when 
an increase in hand movement distance was paired with a decrease in the quantity of objects, only descriptive 
trends in the expected directions were evident. This outcome likely relates to the disposition or preparedness to 
associate certain stimuli more than  others33. A large stimulus magnitude in one modality seems to be more eas-
ily paired with a large rather than with a small stimulus magnitude in another modality. This apparent learning 
disposition is also an indicator of the involvement of a common representational system for magnitude in the 
brain during multimodal  learning34.

Given the obvious artificiality of the experimental situation we examined one could wonder how the pre-
sent results and conclusions can be applied to daily life. First of all, basic research on fundamental processes of 
perception and action almost always comes with paradigms that barely resemble specific real life scenarios to 
facilitate experimental control. Yet, our result indicate that our perception of own body and of external objects 
can change under certain condition even though the body and objects do not change, and one might think of 
real life scenarios where this happens. For example, when playing a string instrument musicians acquire a certain 
relationship between tactile feedback and sound intensity. If now that relationship changes (e.g. when playing in 
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a room with more dampened acoustics) the present finding would suggest that both, auditory and tactile percep-
tion change, such that e.g. a certain objectively constant force on the instrument is felt as weaker in a room that 
goes with reduced auditory feedback from the instrument. Also, consider, e.g., a basketball player who practices 
throwing a ball into a basket again and again, or a mountaineer who repeatedly ascents mountains wearing a 
backpack of a varying weight. The present results and our rationale would suggest that after a certain amount of 
practice certain body-related characteristics of the basketball player and the mountaineer, and certain correlated 
characteristics of the objects (such as of a basket and of a hill) can be associated. As a result, changes in object 
and body perception could emerge under certain conditions (i.e. if the situation causes a kind of a multisensory 
discrepancy). Such observations are in fact  reported23,24 and we treated them in more detail  elsewhere27 (see 
also “Introduction”).

The present research can also be considered in the context of studies on perceptual-motor adaptation (or 
(re-)calibration) that are discussed with reference to the Gibsonian ecological approach e.g. Ref.35, for reviews 
see Refs.36,37. According to this line of research the perceptual and motor systems are attuned or calibrated to 
each other during learning to successfully act in a particular situation. Changes in either the perceptual or motor 
system, e.g. due to growth, changing environmental conditions or due to using of different tools, can then lead 
to disturbances of such a mapping and consequently, to inaccurate actions. In response to such a disturbance the 
originally learned mapping is updated (or re-calibrated). Following this reasoning in terms of different stages of 
a dynamic process of perceptual motor adjustments e.g. Refs.37,38, the learning part of the present experiments 
can be considered as an attunement or calibration stage, whereas the post-learning part included a disturbance 
of the learned mapping. As we measured the perception of movements and visual stimuli in response to the 
disturbance, our results can be indicative of perceptual changes accompanying re-calibration.

To conclude, the present study suggests that originally unrelated characteristics of observers’ body movements 
and of environmental objects can be learned following a co-occurrence of that characteristics. This learning can 
give rise to changes in the perception of own body and of external objects when a discrepancy to the learned 
relation is introduced.

Data availability
The data as well as program scripts have been made publicly available via the Open Science Framework and can 
be accessed at https:// osf. io/ hcgfr/.
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