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Introduction

Since the advent of quantummechanics in the early twentieth century, physicists struggled to �nd
a general scheme to construct a quantum mechanical analogue to a given classical system. Such
a quantization procedure becomes necessary since, even though nature seems to be inherently
governed by quantum physics, our inability to directly perceive quantum mechanical features
forces us to rely on classical physics as a guideline to construct and interpret quantum mechanical
systems. In mathematical terms a classical mechanical system is often described by a manifold
M , to be understood as the phase space of the system, with points inM representing individual
states, together with a symplectic structure ω (or more generally a Poisson structure π) governing
the dynamics of the system [AM85]. The commutative algebra C∞(M) of real or complex
functions on M together with its Poisson bracket { · , · } is then interpreted as the algebra of
observables. On the other hand, the states of a quantum mechanical system are given by unit
vectors in some Hilbert space H and its algebra of observables is given by the non-commutative
algebra of operators B(H) on H with the induced commutator [ · , · ]. A quantization is then
generally supposed to yield, for a given classical system (M,ω), a Hilbert space H and a linear
quantization map Q : C∞(M) → B(H) ful�lling the following property [AE05]:

Q({f, g}) = 1

iℏ
[Q(f), Q(g)]. (1)

The hope to �nd such a perfect quantization is destroyed by various no-go theorems, such as the
Groenewold-van Hove Theorem [Gro46], which forces us to weaken some of our assumptions.

Deformation Quantization Over the years many quantization schemes have been proposed,
such as geometric quantization [Woo97], C∗-algebraic deformation quantization [Rie94], strict
deformation quantization [Lan98; Rie89] and convergent deformation quantization [Wal19]. In
this thesis we will focus on formal deformation quantization. In formal deformation quantization,
as introduced in [Bay+78], one assumes that (1) only holds asymptotically. More precisely, given
a Poisson manifold M with Poisson bracket { · , · } on C∞(M), the algebra of complex-valued
functions on M , a star product is an associative multiplication

⋆ =

∞∑
r=0

: C∞(M)JλK ⊗C C∞(M)JλK → C∞(M)JλK (2)

of the form

f ⋆ g =

∞∑
r=0

λrCr(f, g) (3)

with bidi�erential operators Cr : C∞(M)⊗C C∞(M) → C∞(M) such that
a.) f ⋆ g = fg +

∑∞
r=1 λ

rCr(f, g),

b.) 1
iλ [f, g]⋆ = {f, g}+ λ(. . . ),

c.) 1 ⋆ f = f = f ⋆ 1.
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M

C

D

Mred = C/D

Figure 1: Reduction of coisotropic submanifold C ⊆M with characteristic distribution D.

The in general non-commutative algebra (C∞(M)JλK, ⋆) is then interpreted as the observable
algebra of the quantized system. In order to get in contact with the standard formulation of
quantum mechanics we interpret λ as a formal replacement of ℏ, but then we still need to
establish a suitable notion of convergence and �nd a representation on a (pre-)Hilbert space.
This leads to strict deformation quantization, which we will not discuss here, see [Wal19] for
an overview. Such star products are nothing but associative deformations of the commutative
algebra C∞(M) in the sense of Gerstenhaber [Ger64], and this deformation problem is gov-
erned by the Hochschild cohomology HH(C∞(M)) [Hoc45]. The existence and classi�cation of
star products was proved over the years for many situations, see e.g. [CG82; DL83b] for the
existence of star product on cotangent bundles. In [DL83a] and [Fed94] the existence on gen-
eral symplectic manifolds was proven. This development culminated in Kontsevich's Formality
Theorem establishing the existence and classi�cation of formal star products on general Poisson
manifolds [Kon03].

Geometric Reduction In classical mechanics symmetry reduction plays an important role.
Mathematically, this is usually phrased in terms of Marsden-Weinstein reduction [MW74] on
a symplectic manifold (M,ω). For this assume that a connected Lie group G acts on M in a
Hamiltonian fashion, i.e. there exists a momentum map J : M → g∗, with g denoting the Lie
algebra of G, such that

ϕ(ξ) = XJξ (4)

for ξ ∈ g, and ϕ denoting the in�nitesimal action of g. If 0 ∈ g is a value and regular value of
J , then C := J−1({0}) is a closed submanifold of M . Moreover, suppose that G acts freely and
properly on C, then

Mred := C/G (5)

is a symplectic manifold with symplectic form ωred ful�lling π∗ωred = ι∗ω, with ι : C → M
the inclusion and π : C → Mred the canonical projection. It turns out that C is a coisotropic
submanifold of M and that the above reduction procedure can actually be done for any coiso-
tropic submanifold of a Poisson manifold. Such coisotropic submanifolds and their reduction
were introduced by Weinstein in [Wei88] based on ideas of Poisson reduction from [MR86], see
also [Sta97]. For this consider a Poisson manifold (M,π), with · ♯ : T ∗M → TM denoting the
corresponding musical homomorphism. Then a submanifold C of M is coisotropic if and only if

Ann(TpC)
# ⊆ TpC (6)

for all p ∈ C. Every such coisotropic submanifold carries a so-called characteristic distribution
D ⊆ TC spanned by the Hamiltonian vector �elds Xf for all functions f vanishing on C. In
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the above case of the Marsden-Weinstein reduction of a symplectic manifold the leaves of this
distribution are given by the orbits of the group action on C. If the characteristic distribution
is nice enough, we can construct a reduced manifold

Mred := C/D, (7)

see Figure 1, which carries a Poisson structure πred induced by the Poisson structure π on M .

Quantization vs. Reduction The question arises how quantization relates to (symmetry)
reduction. In particular, does quantization commute with reduction? Can we quantize the re-
duction data on the classical side to allow for some kind of reduction procedure on the quantized
system such that it does not matter whether we �rst quantize and then reduce or �rst reduce
and then construct the corresponding quantum system? In other words: does the following
diagram commute?

with symmetries
classical physics

with symmetries
quantum physics

classical physics quantum physics

Q

red red

Q

(8)

This question has been asked, and sometimes answered, for many di�erent notions of reduction
and quantization, see e.g. [Mei96; GS82] for the case of geometric quantization, [BHW00] for a
BRST-type reduction in deformation quantization and [Bor04; Bor05] for the symplectic case in
deformation quantization. In this thesis we want to focus on coisotropic reduction in the Poisson
setting and its relation to formal deformation quantization. More precisely, we ask under which
conditions a given star product ⋆ on a Poisson manifold (M,π) equipped with a coisotropic
submanifold C ⊆ M induces a star product ⋆red on the reduced manifold Mred. Moreover, we
want to clarify if such compatible star products exist and how equivalence of such star products
may be investigated.

In [CF07] a similar situation is considered. There a resolution of C∞(C) by means of the
conormal bundle of C is constructed. This resolution carries a P∞-structure which, under certain
conditions, can be shown to induce a deformation of C∞(C). Note however, that this approach
only uses an in�nitesimal neighbourhood of C, while we are interested in honest global star
products allowing for a reduction.

Algebraic Reduction The general strategy is now to reformulate the geometric situation of a
coisotropic submanifold equipped with its characteristic distributions in algebraic terms, similar
to the way the algebra of observables C∞(M) is used to algebraically describe the manifold M .
Any closed submanifold C ⊆M can be described in terms of functions by its vanishing ideal

IC =
{
f ∈ C∞(M)

∣∣ f ∣∣
C
= 0
}
⊆ C∞(M). (9)

Similarly, the foliation induced by any distribution D ⊆ TM can be encoded by the subalgebra

C∞(M)D = {f ∈ C∞(M) | LXf = 0 for all X ∈ Γ∞(D)} ⊆ C∞(M). (10)

Now for a coisotropic submanifold C ⊆ (M,π) the characteristic distribution D is only de�ned
on C. This leads us to consider the subalgebra

C∞
D (M) = {f ∈ C∞(M) | LXf

∣∣
C
= 0 for all X ∈ Γ∞(D)} ⊆ C∞(M) (11)

3



INTRODUCTION

instead. Note that the vanishing ideal IC is contained in C∞
D (M). Thus we have established a

correspondence
(M,C,D)↭ (C∞(M), C∞

D (M),IC) (12)

between a manifold M equipped with a closed submanifold C on one side and a distribution D
on C and its algebra of functions C∞(M) equipped with the subalgebra C∞

D (M) of functions
which are invariant on C and the vanishing ideal IC on the other side. Motivated by coisotropic
reduction there is a reduction procedure for both sides of this correspondence. Namely, on
the geometric side, under the assumption of a simple distribution, we can construct the reduced
manifoldMred := C/D as before, while on the algebraic side we can always construct the reduced
algebra

C∞(M)red = C∞
D (M)/IC . (13)

It is then easy to see that C∞(M)red ≃ C∞(Mred) is just the algebra of functions on the reduced
manifold. If we consider again the setting of a coisotropic submanifold C ⊆ M then one can
show that IC is a Poisson subalgebra of (C∞(M), { · , · }) and that C∞

D (M) coincides with the
Poisson normalizer

BC = {f ∈ C∞(M) | {f, g} ∈ IC for all g ∈ IC} (14)

of IC . In particular, IC becomes a Poisson ideal in the Poisson subalgebra BC , and therefore
C∞(M)red carries itself a Poisson bracket, which turns Mred into a Poisson manifold.

Constraint Algebras and their Deformations We now seek to carry over the basic ideas
of deformation quantization to this more structured situation. This means we want to treat the
triple (C∞(M), C∞

D (M),IC) as a single algebraic entity and study deformations of it. Thus
we use (C∞(M), C∞

D (M),IC) as the motivating example to de�ne an (embedded) constraint
algebra A as consisting of a unital associative algebra AT together with a unital subalgebra AN

and an ideal A0 ⊆ AN. The subscript N is supposed to remind the reader of the coisotropic
situation, where AN is given as the Poisson normalizer of the Poisson subalgebra A0.

In a next step we can try to de�ne formal deformations of constraint algebras by taking the
classical de�nition of a formal deformation and formally replace algebras by constraint algebras.
In particular, replacing C∞(M) by the constraint algebra (C∞(M), C∞

D (M),IC) in (2) should
yield the de�nition of a constraint star product. To make sense of this we �rst need to clarify
some notions:

� What are modules over constraint algebras and their tensor products?

� What are constraint multidi�erential operators?

� Is there a cohomology theory governing the deformation problem of constraint algebras?
We will answer these questions by taking a categorical point of view: constraint algebras can
be realized as monoid objects internal to a certain monoidal category CModk equipped with a
tensor product ⊗k, whose objects will be called constraint k-modules. By abstract categorical
considerations, the de�nition and some �rst properties of constraint modules over constraint
algebras, as well as their tensor products, are then �xed. In contrast to classical categories of
modules, the categories of constraint modules will not form abelian categories. This will lead
to e�ects not present in classical module theory, and forces us to thoroughly examine even the
most basic constructions of constraint modules.

This categorical approach will immediately allow us to �nd constraint analogues of many
other classical algebraic concepts, such as derivations, groups, vector spaces, Lie algebras etc.
All these constraint notions will consist of a classical object as T-component, together with
a subobject as N-component and an equivalence relation or ideal as 0-component. Then, by
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construction, there is always a reduction procedure, de�ned by taking the quotient of the N-
component by the 0-component, which by de�nition always yields a classical object. It should
be noted that the motivating example (C∞(M), C∞

D (M),IC) has additional properties not
accounted for in the de�nition of constraint algebras, namely that IC is an ideal not only
in C∞

D (M) but in all of C∞(M). Such constraint algebras will be called strong, and their
modules will allow for two di�erent canonical tensor products ⊗ and ⊠, whose interplay will
be an important piece of study. Note however that, since we are interested in non-commutative
deformations of constraint algebras we should not expect A0 to stay a two-sided ideal in AT

after deformation, see Lu's coisotropic creed [Lu93]. Even in the classical geometric situation
we will encounter examples of honest non-strong constraint algebras.

Having found suitable notions of modules over constraint algebras we can introduce con-
straint di�erential operators using Grothendieck's algebraic de�nition and thus arrive at the
de�nition of constraint star products in analogy to (2), which is nothing but a formal deforma-
tion of the constraint algebra (C∞(M), C∞

D (M),IC) by constraint di�erential operators.
The classical deformation theory of C∞(M) is governed by the di�erentiable Hochschild

cohomology HHdiff(C∞(M)), which can be computed by the Hochschild-Kostant-Rosenberg
Theorem [HKR62; GR99], proving the existence of an isomorphism

HH•
diff(C∞(M)) ≃ Γ∞(Λ•TM) (15)

of Gerstenhaber algebras, identifying the Hochschild cohomology with multivector �elds on M .
When we want to �nd a constraint analogue of the classical HKR Theorem, we have to make
sense of both sides of (15) in the constraint setting.

Constraint Manifolds and Vector Bundles Consider again the correspondence (12). Here,
on the algebraic side, we have a subobject together with an equivalence relation on the subob-
ject which is compatible with the structure of the subobject in a suitable sense. In our example
we have a subalgebra and an ideal inside this subalgebra. On the geometric side, the triple
(M,C,D) carries the same underlying structure: A subobject C ⊆ M , i.e. a submanifold, to-
gether with an equivalence relation on C, which in our case comes from a distribution D on
C. We will understand in the course of this thesis that both the geometric and the algebraic
side of (12) can be derived from the notion of constraint sets. In particular, (M,C,D) can
be understood as a constraint set equipped with geometric structure, while the constraint alge-
bra (C∞(M), C∞

D (M),IC) can be seen as a constraint set equipped with algebraic structure.
Therefore we will call M = (M,C,D) a constraint manifold. From this point of view we can
reformulate the correspondence (12) as a functor

CC∞ : CManifold → CAlg,

CC∞(M) := (C∞(M), C∞
D (M),IC),

(16)

from the category of constraint manifolds to the category of constraint algebras.
The notion of constraint manifolds encompasses two extreme, but important cases, namely

that of a submanifold C ⊆ M without a distribution, described by (M,C, 0), and that of
a distribution D on M without an additional submanifold, described by (M,M,D). When
applying the functor CC∞ we obtain

CC∞(M,C, 0) = (C∞(M), C∞(M),IC) (17)

and

CC∞(M,M,D) = (C∞(M), C∞(M)D, 0). (18)

5
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Thus we see that the information of the N-component on the geometric side, i.e. the submanifold
C, is encoded in the 0-component on the algebraic side. Conversely, the geometric 0-component,
i.e. the distribution D, is described by the N-component of the algebra of functions. Therefore,
if we are searching for a common framework including both the geometric and algebraic infor-
mation, even if we are only interested in submanifolds or in distributions, we have to consider
the full constraint triple. In particular, we can not expect to be able to separate the reduction
problem into two independent problems taking care of restriction and quotients separately.

The notion of constraint manifolds suggests to also introduce constraint versions of other
geometric concepts, such as constraint vector bundles and, in particular, constraint tangent and
cotangent bundles. A constraint vector bundle E over a constraint manifold M = (M,C,D) will
consist of a vector bundle ET → M with a subbundle EN → C of the restricted vector bundle
ι#ET → C, a subbundle E0 ⊆ EN and a holonomy-free partial D-connection ∇ on EN/E0. One
should think of E0 and ∇ to de�ne an equivalence relation on EN such that the quotient is a
vector bundle. We thus get the reduced vector bundle

Ered = (EN/E0)/∇ (19)

by identifying �bres of EN/E0 along the leaves using the parallel transport of ∇. Examples of
constraint vector bundles have been considered before under various names, e.g. quotient data
[CO22] and in�nitesimal ideal systems in [JO14]. See also [MPR12] for related structures in the
study of Marsden-Weinstein reduction for symplectic-like Lie algebroids. Similar to (16) we will
obtain a constraint sections functor

CΓ∞ : CVect(M) → CMod(CC∞(M)), (20)

which yields for any constraint vector bundle a constraint CC∞(M)-module of sections. These
constraint modules of sections will allow for clear geometric interpretations. In particular, the
sections of the constraint tangent bundle TM will be given by

CΓ∞(TM)T = Γ∞(TM),

CΓ∞(TM)N =
{
X ∈ Γ∞(TM) | X

∣∣
C
∈ Γ∞(TC), [X,Y ] ∈ Γ∞(D) for all Y ∈ Γ∞(D)

}
,

CΓ∞(TM)0 =
{
X ∈ Γ∞(TM) | X

∣∣
C
∈ Γ∞(D)

}
.

(21)

Here the partial D-connection is given by the Bott connection, which is holonomy-free if the
leaf space is smooth. Motivated by the classical Serre-Swan Theorem [Swa62; Nes20] we will
identify sections of constraint vector bundles as a certain class of projective constraint modules.
This will lead us to the �rst main theorem (see Theorem 2.3.18):

Main Theorem I (Constraint Serre-Swan Theorem) The monoidal category of constraint
vector bundles over a constraint manifold M is equivalent to the monoidal category of projective
strong constraint modules over the constraint algebra CC∞(M).

We obtained a similar result for projective non-strong constraint modules in [DMW22], where
the equivalence to a category of certain systems of vector bundles was shown. In our present
terms these could be understood as strong constraint vector bundles over strong constraint
manifolds, but these objects will not be studied in this thesis.

With the constraint Serre-Swan Theorem we can, at least roughly, make sense of the right-
hand side of (15). Moreover, since all constraint notions are by de�nition equipped with a
reduction functor and all constraint analogues of classical constructions, such as taking sections,
are designed to be compatible with reduction, we will be able to show that taking sections of
(constraint) vector bundles commutes with reduction.

6
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Constraint Di�erential Operators and Symbol Calculus In order to understand the
left-hand side of (15) in the constraint world we want to study more deeply the constraint
di�erential operators CDiffOp•(M) of CC∞(M). It will turn out that CDiffOp•(M) can be
understood in geometric terms by using a constraint covariant derivative, which will lead us to
the second major result (see Theorem 2.5.26):

Main Theorem II (Constraint symbol calculus) Given a constraint covariant derivative
∇ on a constraint manifold M = (M,C,D) there is an isomorphism

Op: CΓ∞(S•⊗TM⊠ · · ·⊠ S•⊗TM) → CDiffOp•(M). (22)

Every symmetric tensor power S•⊗TM corresponds to a di�erential operator with a single
input. To obtain general multidi�erential operators we need to combine these using the tensor
product ⊠, which will be de�ned for constraint vector bundles in a similar manner as for con-
straint modules. Thus, for understanding the constraint symbol calculus we need to study both
tensor products ⊗ and ⊠ and their relationship.

Constraint Hochschild Cohomology Motivated by classical deformation theory we con-
sider the constraint Hochschild complex of the constraint algebra A given by

C•(A) := CHomk(A
⊗n,A) (23)

and we will show that this actually carries a compatible Hochschild di�erential δ, allowing to
de�ne the constraint Hochschild cohomology by

HH•(A) :=
ker δ

im δ
. (24)

This constraint Hochschild cohomology will be shown to govern the deformation theory of A in
familiar ways. To make this more precise, note that HH•(A) is constructed out of the constraint
algebra A and thus carries itself the structure of a graded constraint module, meaning that
HH•(A) consists of a T-, N- and 0-component. The T-component is just given by the classical
Hochschild cohomology of A, and therefore contains information about the deformation theory
of AT without taking into account the additional reduction information. This additional struc-
ture is now incorporated into the N-component. In particular, HH2(A)N can be identi�ed with
equivalence classes of in�nitesimal deformations of AT which preserve the reduction data, and
thus can be reduced to in�nitesimal deformations of Ared. Similarly, HH3(A)N gives obstructions
to extending deformations which are compatible with reduction in such a way that they stay
compatible. Finally, HH2(A)0 and HH3(A)0 give those in�nitesimal deformations and obstruc-
tions that vanish after reduction. We will be able to identify the zeroth Hochschild cohomology
with the constraint version of centre and the �rst Hochschild cohomology with the constraint
derivations.

Additionally, the constraint Hochschild complex C•(A) will admit a Gerstenhaber bracket
allowing us to interpret formal deformations of A as Maurer-Cartan elements in an associated
constraint di�erential graded Lie algebra. The equivalence of formal deformations can then be
reformulated using a suitable gauge action on the constraint set of Maurer-Cartan elements.

It should be noted that there exists a well-established deformation theory for diagrams of
algebras, see [FMY09; GS83]. Interpreting a constraint algebra A as a span Ared ↞ AN → AT

one might consider deformations of this diagram as a deformation of constraint algebras. How-
ever, the category of modules over a diagram, which is the main ingredient used in [GS83], is
always abelian and hence cannot agree with our notion of constraint modules. It remains to be
seen if elements of this theory can help to compute constraint Hochschild cohomology.

7
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We will apply the above results on constraint Hochschild cohomology to the constraint
algebra CC∞(M) but restricting ourselves to the di�erentiable Hochschild complex

C•
diff(CC∞(M)) := CDiffOp•(M) (25)

in order to obtain constraint star products.
Even though the interpretation of constraint Hochschild cohomology �ts well into our general

constraint scheme, here also something unexpected happens: despite all constraint objects so
far had their N-component embedded as a subobject into the T-component, this will in general
not be true for the constraint Hochschild cohomology. There will still exist a map

ιHH : HH
•
diff(CC∞(M))N → HH•

diff(CC∞(M))T, (26)

but it might not be injective. This immediately leads to problems when searching for a constraint
analogue of the HKR Theorem, because while the N-component of the left hand side of (15)
seems not to be injected into the T-component in general, the obvious constraint generalizations
of the right-hand side will.

Even though we will not be able to fully solve the problem of �nding a constraint analogue
of the HKR Theorem in this thesis, we can get deeper insights into the problem by considering
the situation of �at space. Thus we want to study the constraint Hochschild cohomology for

M = Rn := (RnT ,RnN ,Rn0) with nT ≥ nN ≥ n0. (27)

We will be able to compute the constraint Hochschild cohomology up to degree two in this case,
which gives the �nal main result of this thesis (see Theorem 3.5.9):

Main Theorem III The second constraint Hochschild cohomology for Rn = (RnT ,RnN ,Rn0)
is given by

HH2
diff(CC∞(Rn))N ≃

(
Λ2CΓ∞(TRn)N + CΓ∞(TRnT) ∧ CΓ∞(TRn)0

)
⊕
( ∞⊕
k=1

SkΓ∞(TRn0
∣∣
R

nN
) ∨ Γ∞(TRnT−nN

∣∣
R

nN
)

)
.

(28)

The term Λ2CΓ∞(TRn)N should be interpreted as bivector �elds on RnT for which both legs
are separately compatible with reduction, and hence these contributions will yield bivector �elds
on the reduced manifold. In contrast CΓ∞(TRnT) ∧ CΓ∞(TRn)0 describes bivector �elds for
which at least one leg vanishes after reduction, meaning that these contributions will reduce to
zero. The third summand is symmetric and therefore it is not a bivector �eld, but should rather
be interpreted as a higher order di�erential operator. This shows that HH2

diff(CC∞(Rn))N can
not sit injectively inside HH2

diff(CC∞(Rn))T = HH2
diff(C∞(RnT)). Moreover, these terms, when

interpreted as bidi�erential operators, can in principal have arbitrary degrees of di�erentiation
while the classical HKR Theorem tells us that only multidi�erential operators of order one in
each slot appear in cohomology.

Beside their applications in the study of reduction of star products, many of the introduced
concepts lend themselves for the study of reduction in other areas. For example, the introduction
of constraint bimodules and their tensor product naturally leads to the question of Morita theory
of constraint algebras, which itself could be an important part of the study of representations of
algebras compatible with reduction. Some �rst result can be found in [Dip18; DEW19]. More-
over, the notion of constraint projective module can be used to introduce and study K0-theory
compatible with reduction. On the geometric side, constraint vector bundles and constraint Lie
algebras could be used to study the reduction of Lie algebroids and related geometric objects.
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Structure of the Thesis

This thesis is structured into three chapters:
� Chapter 1: Starting from the notion of constraint sets we develop in a mostly categor-
ical fashion various constraint versions of well-known classical notions, such as groups,
k-modules, algebras, modules over algebras etc. Required basics from category theory
are recalled in Appendix A. From the beginning we will introduce slight variations for ev-
ery constraint notion, namely that of strong constraint and embedded (strong) constraint
objects, where strong constraint objects are constraint objects with the additional prop-
erty that the 0-component de�nes also an equivalence relation on the T-component, and
embedded (strong) constraint objects are (strong) constraint objects with N-component
embedded into the T-component. The necessity to study also non-embedded constraint
objects comes from the constraint Hochschild cohomology as introduced above. Having
de�ned these basic constraint notions we will study free and projective modules over (em-
bedded strong) constraint algebras. This will lead to a characterization of projective
modules by constraint versions of the dual basis theorem.

� Chapter 2: In this second chapter we introduce and study constraint manifolds and vector
bundles as geometric counterparts of the algebraic constraint objects in the �rst chapter.
A constraint version of the Serre-Swan Theorem will make this duality between algebra
and geometry precise. Building on this, we will introduce constraint di�erential forms
and (multi-)vector �elds, establishing a Cartan calculus on constraint manifolds. We
will then use constraint covariant derivatives to establish a symbol calculus for constraint
multidi�erential operators on constraint manifolds.
Readers mostly interested in the geometric side of the story can directly begin with this sec-
ond chapter. However, some de�nitions, like that of constraint algebras and modules, will
be needed to follow the exposition. Basics on coisotropic reduction for Poisson manifolds
can be found in Appendix B

� Chapter 3: We will bring together the geometric and algebraic objects introduced in
the �rst two chapters to study star products compatible with reduction. For this we
will introduce constraint versions of Hochschild cohomology and study deformations of
constraint algebras using techniques from the theory of di�erential graded Lie algebras.
Finally, we will compute the lowest constraint Hochschild cohomologies in the �at case.

Afterwards we will give an outlook on related open questions and possible paths for further
studies.

Bibliographical Notes

This thesis is based on three publications [DEW19], [DMW22] and [DEW22]. Since the basic
notions used there have somewhat changed over time, let us comment a bit on their relation to
the current thesis.

A �rst version of the notion of constraint algebra was introduced in [Dip18] and [DEW19]
under the name of coisotropic triple of algebras as a tool to study the behaviour of Morita
equivalence under reduction. These coisotropic triples would now be called embedded constraint
algebras, with the additional property of A0 being a left ideal in AT. The notion of bimodules
over coisotropic triples of algebras as used in [DEW19] already coincides with the notion of
constraint bimodules over constraint algebras, and reduction functors for constraint algebras
and modules were already de�ned. Thus the bicategory of bimodules over coisotropic triples of
algebras as constructed in [DEW19] can be understood as a subbicategory of the bicategory of
constraint bimodules over constraint algebras. The proofs can easily be carried over to the more
general situation of constraint algebras.
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In [DMW22] the notions of coisotropic triples of algebras and modules were replaced by
coisotropic algebras and coisotropic modules, which agree with what we call constraint algebras
and constraint modules in this thesis. Here also coisotropic index sets, now called constraint
index sets, were introduced in order to study free and projective coisotropic modules. These
results can be found in Section 1.3.1, Section 1.5.1 and Section 1.5.3. The goal of [DMW22]
was then to �nd a suitable notion of vector bundles over what we would now call a constraint
manifold, such that sections of these vector bundles correspond to constraint modules by some
sort of Serre-Swan Theorem. These vector bundles are similar to the constraint vector bundles
we introduce in Section 2.2, but they do still di�er in important aspects. In particular, there
seems to be no good notion of tangent bundles or dual bundles. We will see in the course of
this thesis that these de�ciencies come from the fact that the algebraic analogue of constraint
manifolds is given by strong constraint algebras, and hence when searching for the correct
notion of vector bundles one should also consider strong constraint modules. Although the
vector bundles introduced in [DMW22] do not agree with our objects of study many ideas and
smaller results used in Chapter 2 are based on [DMW22].

Finally, in [DEW22] the formal deformation theory of what was still called coisotropic alge-
bras was studied. The introduction of constraint Hochschild cohomology and the deformation
functor based on constraint DGLAs is based on [DEW22].

Even though this thesis is based on these three publications, a considerable amount does
appear here for the �rst time. In particular the notions of strong constraint algebras and related
objects, together with the strong tensor product, as well as the notion of constraint vector
bundles have not been studied before. Also the three main results as introduced above have not
appeared elsewhere.

Notation and Conventions

We adopt the following conventions:

� If not speci�ed otherwise, k denotes a commutative unital ring, andK denotes an arbitrary
�eld.

� We will often use the term classical to denote standard, non-constraint objects. For
example, a constraint algebra consists of three classical algebras.

� Constraint analogues of classical categories or functors will be denoted by the classical
symbol with a preceding C. For example Alg denotes the category of classical algebras
while CAlg denotes the category of constraint algebras. Similarly, C∞(M) is the classical
algebra of functions on a manifold M , while CC∞(M) denotes the constraint algebra of
functions on the constraint manifold M.

� Forgetful functors are often denoted by U and their left adjoint free functors by F. Excep-
tions occur when these functors need to be referenced at a later stage.

� All constraint constructions will admit a reduction functor. Every such reduction functor
is denoted by red, and we will specify its domain only if necessary.

� Manifolds are considered to be connected, smooth, and in particular Hausdor� and second
countable.
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Chapter 1

Constraint Algebraic Structures

We introduce numerous algebraic objects for which a reduction procedure can be de�ned. These
algebraic structures naturally appear in our study of deformation quantization of coisotropic
submanifolds. Even more, constraint algebras and their deformation theory will be our main
objects of interest.

We start by introducing constraint sets in Section 1.1, which should be thought of as tra-
ditional sets equipped with the structures required to allow for a notion of reduction. More
explicitly, these will consist of a set MT together with a map ιM : MN → MT from another set
MN which is itself equipped with an equivalence relation ∼M . The reduction of constraint sets
is then de�ned as

Mred :=MN/∼M . (1.0.1)

A constraint set with injective ιM will be called embedded, while an additional equivalence
relation on MT leads to the notion of strong constraint sets. Most examples from geometry
will lead to embedded strong constraint sets, nevertheless, honest constraint sets, even non-
embedded ones, will naturally appear. Canonical constructions, such as limits and colimits as
well as mono-, epimorphisms and notions of image and subobject will be studied for the various
�avours of constraint sets. It will be apparent that even though CSet shares a lot of features with
Set, it di�ers at important points, giving a �rst hint that introducing classical mathematical
objects internal to CSet might produce some unfamiliar e�ects.

We do not investigate constraint sets for their own sake, but as the foundation for all following
notions appearing in this thesis. Beginning with Section 1.2 we introduce additional algebraic
structure on constraint sets. The idea is to follow the classical hierarchy of algebraic notions
but implement their categorical de�nitions in the category CSet instead of the classical category
Set. Therefore, we start with constructing constraint (abelian) groups, followed by constraint k-
modules and their strong constraint cousins. Unsurprisingly, it will turn out that these derived
constraint notions share a structural similarity with constraint sets. For example a constraint
k-module will be given by a k-module ET together with a module morphism ιE : EN → ET and
an equivalence relation on EN compatible with the k-module structure. Since in most algebraic
categories equivalence relations compatible with the algebraic structure can be understood as
subobjects of a certain type, e.g. normal subgroups, submodules, ideals, etc., the equivalence
relation on the N-component will mostly be replaced by such a subobject. For constraint k-
modules this means we consider a submodule E0 of EN. The trinity of T-, N- and 0-component
will be prevalent in the rest of this work. At this point we already encounter the two di�erent
tensor products ⊗ and ⊠ for constraint modules. Their interplay and their mismatch alike will
have tremendous impact on the later chapters.

Before continuing to introduce constraint algebras and their modules we pause to take a
closer look at constraint vector spaces and their bases in Section 1.3. For this it will be useful
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to �rst study constraint index sets in Section 1.3.1. Then in Section 1.3.2 the relation of ⊗ and
⊠ for constraint vector spaces will become apparent. These results will serve as a guideline for
the later study of free and projective constraint modules.

In Section 1.4 we proceed to de�ne (strong) constraint algebras as monoid objects internal
to the category CModk of constraint k-modules and introduce modules over such constraint
algebras.

Even though the main example for constraint modules over constraint algebras, namely that
of constraint manifolds and their vector bundles, will not be introduced until Chapter 2 the
reader acquainted with classical di�erential geometry will anticipate the relevance of free and
projective constraint modules. Therefore, we will study these notions in both the strong and
non-strong case and will �nd characterizations of projective constraint modules analogous to
the classical situation, using a lifting property, as summands of free modules and as allowing for
a sort of dual basis.

In the last section of this chapter we collect additional constraint notions which will be
useful later on but which are either special cases of objects we studied before or whose de�nition
and properties follow in a more or less straightforward way from what has been done before.
In particular, Section 1.6.1 contains the basics of graded constraint modules and foundational
results for homological algebra of those. At last, in Section 1.6.2, constraint (di�erential graded)
Lie algebras and related structures are introduced.

1.1 Constraint Sets

Consider the motivating example of a coisotropic submanifold C of a Poisson manifold M .
Forgetting all the geometric structure and just remembering the bare set-theoretic minimum
needed for reduction leaves us with the set M , a subset C and an equivalence relation de�ned
on C given by the characteristic distribution. This motivates the following de�nition.

De�nition 1.1.1 (Constraint set)

i.) A constraint set M consists of a map ιM : MN →MT of sets, together with an equivalence
relation ∼M on MN.

ii.) A morphism f : M → N of constraint sets (or constraint morphism) consists of maps
fT : MT → NT and fN : MN → NN such that fT ◦ ιM = ιN ◦ fN and fN preserves the
equivalence relation, i.e. fN(x) ∼N fN(y) for all x ∼M y. The set of constraint morphisms
from M to N is denoted by Map(M,N).

iii.) The category of constraint sets and their morphisms is denoted by CSet.

We will often suppress the map included in the de�nition of constraint sets and just write
M = (MT,MN,∼M ). Following our motivation it would be natural to include injectivity of ιM
in the de�nition of constraint sets. In fact, most examples of coisotropic sets will be of this
form and thus they will get their own name later on. But injectivity of ιM is not preserved
under some important categorical constructions which are compatible with reduction. Hence we
excluded this property from the de�nition of constraint sets.

Let us collect some important properties of the category CSet. For this we need the notion of
pushforward and pullback of equivalence relations: Let f : M → N be a map between sets, and
let ∼M and ∼N be equivalence relations onM and N , respectively. We denote by f∗(∼N ) = ∼f∗

the pullback equivalence relation on M de�ned by

x ∼f∗ x
′ :⇔ f(x) ∼N f(x′). (1.1.1)

14
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In general we say that a map is compatible with the equivalence relations if ∼M ⊆ f∗(∼N ).
Moreover, by f∗(∼M ) = ∼f∗ we denote the pushforward equivalence relation on N given as the
equivalence relation generated by

f(x) ∼f∗ f(x
′) for all x ∼M x′. (1.1.2)

Note that this implies that f∗(∼M ) is discrete outside of im(f). The discrete equivalence relation
will always be denoted by ∼dis. With this we can give a description of useful co/limits in CSet,
see Example A.3.4 for the general de�nitions.

Proposition 1.1.2 (Co/limits in CSet) Let M,N,P be constraint sets, and let f, g : M → N
as well as h : P → N be constraint morphisms.

i.) The initial object in CSet is given by (∅, ∅,∼), with ∼ the unique equivalence relation on
∅.

ii.) The �nal object in CSet is given by 1 := ({pt}, {pt},∼), with {pt} any one-element set
and ∼ the unique equivalence relation on {pt}.

iii.) The product is given by

(M ×N)T =MT ×NT,

(M ×N)N =MN ×NN,
(1.1.3)

with the product map ιM×N = ιM × ιN : MN ×NN −→ MT ×NT and the product relation
∼M×N given by

(x1, y1) ∼M×N (x2, y2) :⇔ x1 ∼M x2 and y1 ∼N y2. (1.1.4)

iv.) The coproduct is given by

(M ⊔N)T =MT ⊔NT,

(M ⊔N)N =MN ⊔NN,
(1.1.5)

with the coproduct map ιM ⊔ ιN : MN ⊔NN −→MT ⊔NT and the relation

x ∼M⊔N y :⇔ x ∼M y or x ∼N y. (1.1.6)

Here ⊔ denotes the disjoint union of sets.

v.) The pullback of f and h is given by the constraint set

(M ×f h P )T =MT ×fT hT
PT = {(x, y) ∈MT × PT | fT(x) = hT(y)},

(M ×f h P )N =MN ×fN hN
PN = {(x, y) ∈MN × PN | fN(x) = hN(y)},

(1.1.7)

with the relation ∼ ×f h
given by

(x1, y1) ∼ ×f h
(x2, y2) ⇔ x1 ∼M x2 and y1 ∼P y2 (1.1.8)

and projection maps

(prMT ,pr
M
N ) : (M ×f h P ) −→M, (1.1.9)

(prPT ,pr
P
N ) : (M ×f h P ) −→ P. (1.1.10)
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vi.) The equalizer of f and g is given by the constraint set

eq(f, g)T = eq(fT, gT) = {x ∈MT | fT(x) = gT(x)},
eq(f, g)N = eq(fN, gN) = {x ∈MN | fN(x) = gN(x)},

(1.1.11)

with the equivalence relation given by the restriction of ∼M and the morphism
i = (iT, iN) : eq(f, g) → M given by the inclusions iT and iN of eq(fT, gT) and eq(fN, gN)
into MT and MN, respectively.

vii.) The coequalizer of f and g is given by the constraint set

coeq(f, g)T = coeq(fT, gT),

coeq(f, g)N = coeq(fN, gN),
(1.1.12)

with the equivalence relation given by (qN)∗(∼N ) with qN : NN → coeq(f, g)N and the mor-
phism q = (qT, qN) : N → coeq(f, g) of constraint sets. Here qN : NN → coeq(fN, gN) and
qT : NT → coeq(fT, gT) denote the coequalizer in Set of fN, gN and fT, gT, respectively.
More explicitly, coeq(fT, gT) is given by N/∼ with ∼ the equivalence relation generated by
y1 ∼ y2 if and only if there exist x ∈M such that f(x) = y1 and g(x) = y2.

viii.) The category CSet has all �nite limits and colimits.

Proof: Since the strategy to prove these statements is always the same, we will not perform
everything at great length. Let us instead prove i.) and v.) in detail, then the rest should be
clear.

Since ∅ is the initial object in Set we know that there exist unique maps ∅ → MT and
∅ →MN. It also follows by the uniqueness that

∅ MT

∅ MN

id ιM

commutes. Moreover, ∅ → MN is clearly compatible with the equivalence relations. Thus we
obtain a constraint morphism (∅, ∅,∼∅) →M which is unique, since its components are.

For v.) consider another constraint set X with constraint morphisms ϕ : X → M and
ψ : X → P such that f ◦ ϕ = h ◦ ψ. This means we have the diagram:

XT

XN (M ×f h P )T PT

MT NT

(M ×f h P )N PN

MN NN

ψT

ψN

ϕN

hT

ϕT

fT

hN

fN
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Since (M ×f hP )T and (M ×f hP )N are pullbacks of sets, there exist unique κT : XT → (M ×f hP )T
and κN : XN → (M ×f hP )N making the T- and N-planes in the above diagram commute. Again,
by the universal property of (M ×f h P )T, we see that ι ×f h

◦ κN = κT ◦ ιX . It remains to show
that κN is compatible with the equivalence relations. For this consider x1 ∼X x2. Since ϕ and
ψ are constraint maps, we have ϕN(x1) ∼M ϕN(x2) and ψN(x1) ∼P ψN(x2). Then by (1.1.8) we
get κN(x1) ∼ ×f h

κN(x2). Thus κ is a constraint morphism.
Parts ii.), iii.), iv.) and vii.) follow analogously. The category CSet has all �nite limits and

colimits for general reasons, since it has pullbacks and a terminal object as well as coequalizers,
coproducts and an initial object, see [Bor94a, Prop. 2.8.2]. □

Remark 1.1.3 In [KP14] the closely related category Equiv of sets equipped with an equivalence
relation is examined. Many of our results can be derived by understanding CSet as a comma
category of Set and Equiv.

Up to now constraint sets seem to be very well behaved. Indeed all the above constructions
can be understood as combining easy constructions of sets and equivalence classes. Therefore one
might expect CSet to resemble the category Set, but this is only partially true as the following
characterization of (regular) monomorphisms and epimorphisms shows, see Appendix A or the
abstract de�nitions.

Proposition 1.1.4 (Mono- and epimorphisms in CSet) Let f : M → N be a morphism of
constraint sets.

i.) The morphism f is a monomorphism if and only if fT and fN are injective.

ii.) The morphism f is an epimorphism if and only if fT and fN are surjective.

iii.) The morphism f is a regular monomorphism if and only if fT and fN are injective and
(fN)

∗(∼N ) = ∼M .

iv.) The morphism f is a regular epimorphism if and only if fT and fN are surjective and
∼N = (fN)∗(∼M ).

Proof: We only show i.) and iii.), the statements for epimorphisms follow analogously.
Let g1, g2 : X → M with f ◦ g1 = f ◦ g2 be given and assume that fT and fN are injective.

Then it follows from fT ◦ (g1)T = fT ◦ (g2)T and fN ◦ (g2)N = fN ◦ (g2)N that (g1)T = (g2)T and
(g1)N = (g2)N hold, and thus g1 = g2 follows. For the other implication suppose that f is a
monomorphism. Let now g1, g2 : X

′ →MT be given with fT ◦ g1 = fT ◦ g2. De�ne

U :=
{
(m1,m2, x) ∈MN ×MN ×X ′ | g1(x) = ιM (m1), g2(x) = ιM (m2) and fN(m1) = fN(m2)

}
.

Then X = (X ′, U,∼dis) with ιX = pr3 is a constraint set. Moreover, (g1, pr1) : X → M and
(g2,pr2) : X → M are constraint morphisms with f ◦ (g1,pr1) = f ◦ (g2,pr2). Since f is a
monomorphism by assumption, it follows g1 = g2, and thus fT is injective. To show that fN is
injective let g1, g2 : X ′ → MN with fN ◦ g1 = fN ◦ g2 be given. Then X = (X ′, X ′,∼dis) with
ιX = idX′ is a constraint set. Moreover, (ιM ◦ g1, g1) : X → M and (ιM ◦ g2, g2) : X → M are
constraint morphisms with f ◦ (ιM ◦ g1, g1) = f ◦ (ιM ◦ g2, g2). Since f is a monomorphism it
follows that g1 = g2 and hence fN is injective. This shows the �rst part.

For the second part, recall that a regular monomorphism is the equalizer of some pair
of parallel morphisms. Suppose f is a regular monomorphism, then it is a monomorphism
by a general result from category theory, see [Bor94a, Prop. 2.4.3]. Moreover, there exist
h1, h2 : N → Y such that M = eq(h1, h2) and f = i, with i as in Proposition 1.1.2 vi.). Then
∼M is just the restriction of ∼N . In other words, f∗N(∼N ) = ∼M . For the reverse implication
assume that fT and fN are injective and f∗N(∼N ) = ∼M . In Set every injective function can
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be written as an equalizer of its characteristic function and the function that is constant 1.
In our situation this means fT = eq(1, ξMT

) and fN = eq(1, χMN
) with χT : NT → {0, 1} the

characteristic function of the subsetMT ⊆ NT and χN : NN → {0, 1} the characteristic function of
MN ⊆ NN. Then the combined characteristic functions (χT, χN), (1, 1) : N → ({0, 1}, {0, 1},∼dis)
form constraint morphisms. By Proposition 1.1.2 vi.), we have f = eq((1, 1), (χT, χN)). □

Remark 1.1.5 In a general category there exist many variations of monos (epis), e.g. extremal,
strong, strict, e�ective. In Set all these notions agree, while in CSet they form two classes. Since
it can be shown that all other notions of monos (epis) are equivalent to either regular or plain
monos (epis), we only need to consider these two.

The fact that not every monomorphism of constraint sets is regular will have far reaching
consequences for all further investigations. A �rst noteworthy consequence is that a morphism
which is mono and epi need not be an isomorphism:

Example 1.1.6 Consider the constraint sets M and N with MT = MN = NT = NN = {1, 2}
and ∼M the discrete and ∼N the trivial equivalence relation. Then f = (id, id) : M → N is
monomorphism and epimorphism of constraint sets. But it is not an isomorphism, as id : NN →
MN does not preserve the equivalence relation.

This example directly shows that CSet is not balanced, meaning that a morphism which is
mono and epi is not necessarily an isomorphism, and thus, in contrast to Set, cannot be a topos,
see [Joh14] for details on topoi. Nevertheless, constraint isomorphisms can be characterized
using regular mono- and epimorphisms:

Lemma 1.1.7 Let f : M → N be a morphism of constraint sets. The following statements are
equivalent:

i.) The constraint morphism f is an isomorphism.

ii.) The constraint morphism f is a monomorphism and a regular epimorphism.

iii.) The constraint morphism f is a regular monomorphism and an epimorphism.

Proof: Suppose f is an isomorphism, then there exists an inverse constraint morphism
f−1 : N → M . Thus fT and fN are invertible and hence surjective and injective. Now sup-
pose (x, x′) ∈ f∗N(∼N ). Then by de�nition fN(x) ∼N fN(x

′) and applying f−1
N yields x ∼M x′.

Hence f∗N(∼N ) = ∼M , and thus f is a regular monomorphism. Suppose (y, y′) ∈ ∼M , then
f−1
N (y) ∼N f−1

N (y′). Applying fN shows (y, y′) ∈ (fN)∗(∼M ) and thus (fN)∗(∼M ) = ∼N . Hence
f is also a regular epimorphism. This shows i.) =⇒ ii.) and i.) =⇒ iii.).

Suppose ii.). By de�nition fT and fN are isomorphisms. It only remains to show that f−1
N

is compatible with the equivalence relations. For this let y, y′ ∈ NN with y ∼N y′ be given.
Since fN is an isomorphism there exist unique x, x′ ∈ MN such that fN(x) = y and fN(x′) = y′.
Moreover, since f is a regular monomorphism we know that f∗N(∼N ) = ∼M , meaning that
x ∼M x′. Hence, f−1 is a constraint morphism, and therefore f is a constraint isomorphism.

The implication iii.) =⇒ i.) follows analogously. □

Related to this mismatch of regular and plain monomorphisms is the de�nition of a subset
of a constraint set. We could either de�ne a subset as an equivalence class of monomorphisms or
of regular monomorphisms. It is common to choose regular monomorphisms in such a situation
and we will follow this strategy.

De�nition 1.1.8 (Constraint subset) A constraint subset of a constraint set M consists of
subsets UT ⊆MT and UN ⊆MN such that ιM (UN) ⊆ UT.
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Every constraint subset U of M de�nes a constraint set U = (UT, UN,∼M|UN
). The obvious

inclusion i : U → M is a regular monomorphism. With this we can now de�ne the image and
preimage of a constraint morphism.

De�nition 1.1.9 (Image and preimage) Let f : M → N be a morphism of constraint sets.

i.) Let U ⊂ N be a constraint subset with inclusion i : U → N . The preimage of U along f
is de�ned by

f−1(U) :=M ×f i U. (1.1.13)

More explicitly, we have

f−1(U) =
(
f−1
T (UT), f

−1
N (UN), ∼M

∣∣
f−1
N (UN)

)
(1.1.14)

ii.) The image of f is de�ned by

im(f) :=
(
im(fT), im(fN), ∼im

)
(1.1.15)

with ∼im= (fN)∗(∼M ).

iii.) The regular image of f is de�ned by

regim(f) :=
(
im(fT), im(fN), ∼regim

)
(1.1.16)

with f(x1) ∼regim f(x2) if and only if f(x1) ∼N f(x2).

Example 1.1.10 Image and regular image of a constraint morphism do not agree in general.
To see this let M = ({1, 2}, {1, 2},∼dis) and N = ({1, 2}, {1, 2},∼N ) with 1 ∼N 2 be given
and consider the constraint morphism f = (id{1,2}, id{1,2}) : M → N . Then im(f) = M while
regim(f) = N .

Using the image we can factorize every constraint morphism as a regular epimorphism fol-
lowed by a monomorphism, while the regular image yields a factorization as an epimorphism
followed by a regular monomorphism. We will mainly use the regular image, since using our
de�nition of constraint subset it is in fact a constraint subset of the codomain, while the image
is not.

Let us now turn our attention to the set of all constraint morphisms between constraint sets.
This set can actually be upgraded to a constraint set itself.

Proposition 1.1.11 (Closed monoidal structure on CSet) LetM and N be constraint sets.

i.) Setting

CMap(M,N)T := Map(MT, NN),

CMap(M,N)N := Map(M,N),
(1.1.17)

together with the inclusion ι : Map(M,N) → Map(MT, NT) given by ι((fT, fN)) = fT and
the equivalence relation on CMap(M,N) given by

f ∼ g :⇔ ∀x ∈MN : f(x) ∼N g(x), (1.1.18)

de�nes a constraint set CMap(M,N).

ii.) The functor CMap(M, · ) : CSet → CSet is right adjoint to the functor · ×M : CSet → CSet,
i.e. CSet is a cartesian closed category.
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Proof: The �rst part is a simple check. For the second part recall the de�nition of adjoint
functors from De�nition A.2.12. Fix X ∈ CSet and de�ne functors F = · × X and G =
CMap(X, · ). Then ev(M) : CMap(X,M)×X →M given by

ev(M)T : Map(XT,MN)×XT ∋ (f, x) 7→ f(x) ∈MT,

ev(M)N : Map(X,M)×XN ∋ (f, x) 7→ fN(x) ∈MN

is a constraint map. Similarly, coev(M) : M → CMap(X,M ×X) de�ned by

coev(M)T : MT ∋ m 7→ (x 7→ (m,x)) ∈ Map(XT,MT ×XT),

coev(M)N : MN ∋ m 7→
(
x 7→ (x, ιM (m)), x 7→ (m,x)

)
∈ Map(X,M ×X)

is a constraint map. In particular, these are compatible with the equivalence relations. They
de�ne natural transformations, since for a morphism f : M → N the diagrams

CMap(X,M)×X M

CMap(X,N)×X N

ev(M)

CMap(X,f)×X f

ev(N)

and

M CMap(X,M ×X)

N CMap(X,N ×X)

coev(M)

f CMap(X,f×X)

coev(N)

commute. It remains to check that

idM×X = ev(M ×X) ◦ F(coev(M)) and idCMap(X,M) = G(ev(M)) ◦ coev(CMap(X,M))

hold. We need to check this separately on the T- and N-component. Thus let (m,x) ∈MT×XT

and f : XT →MT be given. Then

ev(M ×X)T
(
F(coev(M)T)

)
(m,x) = ev(M ×X)T

(
coev(M)T(m), x

)
= (m,x)

and (
G
(
ev(M)T

)(
coev

(
CMap(X,M)

)
T

)
(f)
)
(x) =

(
x′ 7→ ev(M)T(f, x

′)
)
(x) = f(x).

The same computations hold for the N-component, which �nally shows that G is indeed right
adjoint to F and we obtain a cartesian closed category. □

Before we turn our attention to a more special class of constraint sets let us investigate more
closely the relationship of constraint sets and classical sets. We have obvious forgetful functors

UT : CSet → Set, M 7→MT (1.1.19)

and

UN : CSet → Set, M 7→MN (1.1.20)

forgetting everything but the indicated components. When looking at Proposition 1.1.2 it be-
comes clear that the T-components of de�nitions and constructions internal to CSet will just be
the classical de�nitions and constructions for the T-components. We summarize this:

Lemma 1.1.12 The forgetful functor UT : CSet → Set is cartesian closed and preserves �nite
limits and colimits.

It will be a recurring theme for all our constraint de�nitions, constructions and theorems
that their T-components will recover their classical analogues.

The forgetful functor UT has an obvious left adjoint given by FT(M) := (M,M,∼dis). Thus
we can also understand Set as the full subcategory of CSet consisting of constraint sets M with
MT =MN and ∼M = ∼dis.
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1.1.1 Embedded Constraint Sets

Most examples of constraint sets as they appear in Chapter 2 will exhibit MN as a subset of
MT.

De�nition 1.1.13 (Embedded constraint set)

i.) A constraint set M with injective ιM is called an embedded constraint set.

ii.) The full subcategory of CSet consisting of embedded constraint sets is denoted by CembSet.

Note that for a morphism f = (fT, fN) of embedded constraint sets the map fN is completely
determined by fT. Hence we will often identify f with fT. Then fN is just the restriction of f
to the N-component.

Proposition 1.1.14 (The category CembSet)

i.) The subcategory CembSet of CSet is closed under �nite limits and has all �nite colimits.

ii.) The subcategory CembSet is an exponential ideal in CSet, this means for all X ∈ CSet and
M ∈ CembSet we have CMap(X,M) ∈ CembSet.

iii.) The category CembSet is cartesian closed.

Proof: We show that CembSet is a re�ective subcategory of CSet. Denote by I : CembSet → CSet
the inclusion. Mapping a constraint set M = (MT,MN,∼M ) to

M emb := (MT, ιM (MN), (ιM )∗ ∼M )

de�nes a functor · emb : CSet → CembSet, with (ιM )∗ ∼M the induced equivalence relation on
the image of ιM . The functor · emb is left adjoint to I, thus CembSet is a re�ective subcategory
of CSet and hence is closed under �nite limits and has all �nite colimits, see [Bor94a, Sec. 3.5].
For the second part note that by [Joh02, Prop. 4.3.1] it would be enough to show that · emb

preserves �nite products. But let us show this more directly: Let f, g ∈ CMap(X,M) be given
with fT = gT. Diagrammatically we have:

XT MT

XN MN

fT

gT

ιX

fN

gN

ιM

Since fT = gT we have ιM ◦ fN = ιMgN and thus by the injectivity of ιM we obtain fN = gN.
Thus ι : Map(X,M) → Map(XT,MT) as de�ned in Proposition 1.1.11 is injective. This shows
the second part. The third part is now a direct consequence of the second. □

At this point it seems that we could restrict ourselves to the category CembSet since all
categorical constructions exist in this category. However, note that even though colimits exist
in CembSet they do not necessarily agree with the respective colimits in the surrounding category
CSet, as the next example illustrates:

Example 1.1.15 Consider two embedded constraint sets M and N given by M := ({pt}, ∅,∼)
and N := ({0, 1}, {0, 1},∼dis) together with the constraint maps f ≡ 0 and g ≡ 1 from M to
N . Their coequalizer is then given by coeq(f, g) = ({0}, {0, 1},∼dis), which is obviously not
embedded.
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This will have consequences for the reduction of (embedded) constraint sets as we will shortly
discuss.

The subcategory CembSet of embedded constraint sets can also be characterized by general
categorical terms as the subcategory of regular projective objects:

Proposition 1.1.16 Let P ∈ CSet be a constraint set. Then the following statements are
equivalent:

i.) Every regular epimorphism M → P splits.

ii.) P is a regular projective object in CSet, i.e. for every regular epimorphism f : M → N
and every morphism g : P → N there exists a morphism h : P →M such that f ◦ h = g.

iii.) We have P ∈ CembSet.

Proof: Assume i.). Given f and g as in ii.) consider the pullback P ×g f M . It is easy to
see that pr1 : P ×g f M → P is a regular epimorphism. By assumption pr1 splits, i.e. there
exists i : P → P ×g f M such that pr1 ◦ i = idP . Then χ = pr2 ◦ i gives the desired morphism.
Conversely, choosing g = idP in ii.) directly yields i.). Now assume again ii.). We want
to show that ιP : PN → PT is injective. For this consider MT := PT × PN, MN := PN and
ιM := ιP × idPN

. Then f = (pr1, idpN) : M → P is a regular epimorphism and hence splits by
assumption. Therefore, there exists h : P → M with f ◦ h = idP . Thus hT ◦ ιP = ιM ◦ hN is
injective since ιM and hN are injective. Then ιP must also be injective. Finally, assume iii.) and
let f : M → P be a regular epimorphism. It follows that f

∣∣
M0

: M0 → P0 is surjective and thus
there exists a splitting h : P0 →M0. Now we can extend h successively to PN and PT, obtaining
a splitting of f . □

1.1.2 Reduction of Constraint Sets

Constraint sets were introduced in order to formalize the set theoretic information underlying
geometric reduction principles. Thus they are de�ned in such a way to allow for a reduction
procedure already on this set theoretic level.

De�nition 1.1.17 (Reduction functor) The functor red: CSet → Set given by mapping a
constraint set M to Mred := MN/∼M and a constraint morphism f : M → N to the induced
morphism fred : Mred → Nred is called reduction functor.

This reduction procedure can now be shown to be compatible with the various constructions
from Proposition 1.1.2:

Proposition 1.1.18 (Properties of reduction)

i.) The functor red: CSet → Set preserves all �nite limits and colimits.

ii.) The functor red: CSet → Set is cartesian closed.

Proof: A straightforward computation shows that red preserves the �nal object and pullbacks,
and thus preserves all �nite limits. Moreover, it preserves coproducts as well as coequalizer, and
hence preserves all �nite colimits. For the second part note that since red preserves products it
is a cartesian functor. Moreover, since the �nal object 1 is the unit of the monoidal structure,
the �rst part shows that red preserves this unit. Finally, we have a canonical injection

CMap(M,N)red ↪→ Map(Mred, Nred),

which is also surjective, since using the axiom of choice any morphism in Map(Mred, Nred) can
be lifted to a morphism in Map(MN, NN) compatible with the equivalence relations, and then
be extended to MT. □
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This result shows that CSet is the correct category for studying constructions compatible
with reduction.

Remark 1.1.19

i.) The reduction functor can be understood as �rst forgetting the T-component and then
computing a coequalizer in the resulting category, whose objects have been called coiso-
tropic pairs in [DEW19]. Since taking colimits commutes with colimits, whenever the
forgetful functor commutes with colimits, so does the whole reduction. This point of view
could lead to a more general theory for the relation of reduction to co/limits.

ii.) Let f, g : M → N be maps between sets. Then their pullback is given by the subset
{x ∈ M | f(x) = g(x)} ⊆ M . Thus pullbacks can be understood as describing subsets
of elements ful�lling a given equation. Since the reduction of constraint sets commutes
with limits, pullbacks reduce to pullbacks. In other words, elements of a constraint set
ful�lling the equation f(x) = g(x) will reduce to elements satisfying the reduced equation
fred([x]) = gred([x]). However it is important to note that the functor red does not re�ect
limits, meaning that even if the reduced equation fred([x]) = gred([x]) is ful�lled we can
not infer that also f(x) = g(x) must hold.

iii.) By contrast, the reduction of embedded constraint sets, which is given by the composition
red ◦ I of the inclusion I : CembSet → CSet with the above reduction functor, may not
preserve colimits, since I does not, as shown in Example 1.1.15. Thus even if we are mainly
interested in examples which yield embedded constraint sets, the moment we construct
colimits we are forced to work in the bigger category CSet if we want our construction to
stay compatible with reduction.

1.1.3 Strong Constraint Sets

Another special type of constraint sets appears in the setting of Hamiltonian actions of Lie
groups G on a symplectic or Poisson manifold M . In this case the coisotropic submanifold is
given by the zero level set C of the momentum map, but the equivalence relation on C can be
viewed as the restriction of the orbit relation on M . In this situation the underlying constraint
set carries an additional equivalence relation on the T-component.

De�nition 1.1.20 (Strong constraint set)

i.) A constraint set M together with an equivalence relation ∼T
M on MT such that im(ιM ) is

saturated, i.e. from ιM (x) ∼T
M y follows y ∈ im(ιM ) for all x ∈ MN, y ∈ MT, and ∼T

M

restricts to (ιM )∗(∼M ) on im(ιM ), is called a strong constraint set.

ii.) A morphism f : M → N of strong constraint sets (or constraint morphism) is a morphism
of constraint sets with fT preserving the equivalence relation, i.e. ∼T

M⊆ f∗T(∼T
N ).

iii.) The category of strong constraint sets and their morphisms is denoted by CstrSet. The
category of embedded strong constraint sets, i.e. those with injective ιM : MN → MT, is
denoted by Cemb

str Set.

Observe that embedded strong constraint sets are just given by a subset MN ⊆MT together
with an equivalence relation ∼T onMT such thatMN is saturated with respect to ∼T. Moreover,
morphisms of strong constraint sets are again completely determined by their T-components.

Even though strong constraint sets will appear as the structure underlying many objects of
interest (in particular the functions on constraint manifolds, see Proposition 2.1.5), we will not
investigate them in full detail. This is justi�ed by the fact that in geometric situations we will
be confronted only with embedded strong constraint sets, and in algebraic situations it is easier
to work with subobjects instead of equivalence relations.
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The next proposition clari�es the relation between constraint and strong constraint sets.

Proposition 1.1.21 (The category CstrSet)

i.) Forgetting the equivalence relation on the T-component yields a functor U : CstrSet → CSet.

ii.) The functor U : CstrSet → CSet has a left adjoint · str : CSet → CstrSet given on objects by
M str =M , together with the equivalence relation (ιM )∗(∼M ) on MT.

iii.) The category CstrSet is CSet-enriched with

CstrMap(M,N)T := Map(MT, NT),

CstrMap(M,N)N := {f ∈ CMap(U(M),U(N))N | fT(x) ∼T
N fT(y) for all x ∼T

M y},
(1.1.21)

with the obvious inclusion ι : CstrMap(M,N)N → CstrMap(M,N)T and the equivalence
relation on CstrMap(M,N)N given by

f ∼ g :⇔ ∀x ∈MT : fT(x) ∼T
N gT(x) and ∀x ∈MN : fN(x) ∼N gN(x) (1.1.22)

for M,N ∈ CstrSet.

iv.) The functor U is CSet-enriched.

Proof: The �rst part is clear. For the second part, choose the constraint morphisms

εM : U(M)str →M and ηM : M → U(M str)

to be the identity on bothMT andMN. Hence they clearly de�ne the evaluation and coevaluation
of the adjunction. The third part is an easy check, using the usual composition of maps as
composition in the enriched category. The last part is then just the fact that we have a canonical
morphism CstrMap(M,N) → CMap(U(M),U(N)). □

It is important to note that the CSet-enrichment of CstrSet does not agree with its internal
hom with respect to the cartesian monoidal structure, which we have not spelled out. The reason
we do not consider the closed structure is that the forgetful functor U : CstrSet → CSet is not
closed, and hence the internal hom will not be compatible with reduction. Whereas, considering
the CSet-enrichment we can de�ne a functor of reduction on CstrSet by simply forgetting to CSet
�rst, and thus obtain a co/limit-preserving reduction

red: CstrSet → Set. (1.1.23)

There is another important relation between strong constraint and constraint sets: The CSet-
enriched category CstrSet is powered and copowered, cf. [Bor94b, Chap. 6.5], meaning that
morphisms into and products with a strong constraint set can be equipped with the structure
of a strong constraint set.

Proposition 1.1.22 (Co/Power in CstrSet) Let M ∈ CSet and N ∈ CstrSet be given.

i.) We have CMap(M,U(N)) ∈ CstrSet with

f ∼T g :⇔ ∀x ∈MT : f(x) ∼T
N g(x) (1.1.24)

for f, g ∈ Map(MT, NT).

ii.) We have M × U(N) ∈ CstrSet with

(x, y) ∼T (x′, y′) :⇔
{
x = x′ and y ∼T

N y′ if x /∈ im(ιM ) or x′ /∈ im(ιM )

x ∼(ιM )∗ x
′ and y ∼T

N y′ else.
(1.1.25)
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We will often suppress the forgetful functor U in our notation. With the two previous
propositions we get for a �xed strong constraint set N functors

CMap( · , N) : CSetopp → CstrSet (1.1.26)

and
CstrMap( · , N) : CstrSet

opp → CSet. (1.1.27)

1.2 Constraint k-Modules

After having de�ned the category CSet as a replacement for Set which admits a reduction
procedure, we can now start to implement virtually all the classical mathematical objects internal
to this category. In this chapter we will concentrate on algebraic notions. Thus we could
proceed as follows: Since CSet is (cartesian) monoidal we can construct the category of monoids
internal to CSet, giving a notion of constraint monoids. Requiring invertibility leads us to
constraint groups. Now considering monoids internal to the category of constraint abelian groups
yields constraint rings, and additionally constraint modules over such. Continuing, we obtain
categories of constraint algebras, constraint modules over algebras etc. Constructing all these
algebraic notions in this way has the advantage that all resulting structures will automatically
come equipped with a functor of reduction.

Since not all intermediate steps will be needed in this thesis we will only spell out those
constructions important for our discussion. In Section 1.2.1 we introduce constraint groups and
their actions. On one hand these will be the basis to de�ne constraint k-modules in Section 1.2.2,
on the other hand constraint groups will feature prominently as the gauge group acting on
Maurer-Cartan elements of constraint di�erential graded Lie algebras, see Section 3.2.

1.2.1 Constraint Groups

If we consider groups internal to the category CSet of constraint sets we would obtain a group
homomorphism ιG : GN → GT together with an equivalence relation on GN compatible with
the group structure. Such equivalence relations can equivalently be given by normal subgroups,
leading us to the following de�nition.

De�nition 1.2.1 (Constraint group)

i.) A constraint group is given by a triple of groups G = (GT,GN,G0), with G0 ⊆ GN a
normal subgroup, together with a group homomorphism ιG : GN → GT.

ii.) A morphism Φ: G → H of constraint groups G and H is given by a pair of group homomor-
phisms ΦT : GT → HT and ΦN : GN → HN such that ΦT ◦ ιG = ιH ◦ ΦN and ΦN(G0) ⊆ H0.

iii.) The category of constraint groups is denoted by CGroup.

Example 1.2.2

i.) LetM ∈ CSet be a constraint set. The invertible constraint endomorphisms ofM de�ne a
constraint subset CAut(M) ⊆ CMap(M,M). They form a constraint group by considering
the equivalence relation on CAut(M)N as the normal subgroup

CAut(M)0 = {f ∈ CAut(M)N | ∀x ∈MN : f(x) ∼M x}. (1.2.1)

ii.) Let M ∈ CembSet be an embedded constraint set. Let furthermore G be a group acting
on MT via Φ: G×MT → MT. Then (G,GMN

,G∼), with GMN
the stabilizer subgroup of

the subset MN and G∼ the normal subgroup of GMN
consisting of all g ∈ GMN

such that
Φg(x) ∼ x for all x ∈MN, is a constraint group.
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Using the constraint automorphism group we could de�ne an action of a group G on a
constraint set M to be a constraint group morphism Φ: G → CAut(M). To phrase this in more
elementary terms note that the equivalence relation on the product of two constraint groups G
and H is given by the normal subgroup

(G×H)0 = G0 ×H0. (1.2.2)

De�nition 1.2.3 (Action of constraint group)

i.) Let G be a constraint group and M a constraint set. An action of G on M is given by an
action ΦT : GT ×MT → MT of GT on MT and an action ΦN : GN ×MN → MN of GN on
MN such that ιM ◦ ΦN = ΦT ◦ (ιG × ιM ) and (ΦN)g(x) ∼M x for all g ∈ G0 and x ∈MN.

ii.) Let G and H be constraint groups acting on constraint sets M and N , respectively. A
morphism of constraint group actions is given by a pair (ϕ, f) consisting of a constraint
group morphism ϕ : G → H and a morphism f : M → N of constraint sets, such that

fT
(
(ΦG

T )g(x)
)
= (ΦH

T )ϕ(g)
(
fT(x)

)
(1.2.3)

for all g ∈ GT, x ∈MT and

fN
(
(ΦG

N )g(x)
)
= (ΦH

N )ϕ(g)
(
fN(x)

)
(1.2.4)

for all g ∈ GN, x ∈MN holds. Such a map f will also be called equivariant along ϕ.

iii.) The category of actions of constraint groups on constraint sets together with the above
de�ned morphisms is denoted by CGroupAct.

Nevertheless, it is sometimes useful to think of a group action in terms of a morphism
Φ: G → CAut(M), or, equivalently, as a morphism Φ: G×M →M of constraint sets ful�lling
the usual properties of group actions in every component. As is commonly done, we will often
use ▷ for a generic group action, and sometimes even omit writing out the action entirely.

Example 1.2.4 Let (G,GMN
,G∼) be the constraint group constructed from a group action of

G on MT as in Example 1.2.2 ii.). Then (Φ,Φ
∣∣
GMN

) clearly gives a constraint action on M .

Next we want to consider constraint orbit spaces of constraint group actions.

Lemma 1.2.5 (Constraint orbit space) Let M ∈ CSet together with an action of a con-
straint group G on M be given. Then M/G de�ned by

(M/G)T :=MT/GT,

(M/G)N :=MN/GN,
(1.2.5)

together with
ιM/G : (M/G)N → (M/G)T, ιM/G(GNx) := GTιM (x) (1.2.6)

and equivalence relation on GN given by

GNx ∼M/G GNy :⇔ ∃g, g′ ∈ GN : (g ▷ x) ∼M (g′ ▷ y) (1.2.7)

for all x, y ∈MN/GN, is a constraint set.

Proof: The map ιM/G is well-de�ned since ιM ◦ΦN = ΦT ◦ (ιG× ιM ) holds by the de�nition of
constraint group action. Moreover, it is easy to check that ∼M/G de�nes an equivalence relation
on MN/GN. □
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We call M/G the constraint orbit space of the action of G on M .

Remark 1.2.6 For a given constraint group action of G on M we could also construct an
equivalence relation internal to CSet, i.e. a constraint subset RG ⊆ M × M with the usual
properties. Then M/G as de�ned above is indeed the coequalizer of this internal equivalence
relation, and ∼M/G is just the pushforward relation of ∼M along the quotient map.

Constructing the constraint orbit space from a constraint group action is actually functorial.

Proposition 1.2.7 (Orbit space functor) Mapping every constraint group action Φ of G on
M to its orbit space M/G de�nes a functor COrb : CGroupAct → CSet.

Proof: Consider an equivariant map f : M → N along a morphism ϕ : G → H of constraint
groups. By the classical theory we know that fT and fN induce maps f̌T : MT/GT → NT/HT

and f̌N : MN/GN → NN/HN which are compatible with ιM/G and ιN/H. It remains to show that
f̌N is compatible with the equivalence relations. For this let GNx,GNy ∈MN/GN be given with
GNx ∼M/G GNy. Hence there exist g, g′ ∈ GN such that g ▷ x ∼M g′ ▷ y. Then, since fN is
compatible with the equivalence relations, we get

ϕ(g) ▷ fN(x) = fN(g ▷ x) ∼N fN(g
′ ▷ y) = ϕ(g′) ▷ fN(y),

showing that f̌N(GNx) = HNfN(x) ∼N/H HNfN(y) = f̌N(GNy). Thus f̌N is a morphism of
constraint sets. □

1.2.1.1 Reduction of Constraint Groups

As in the case of constraint sets we have a reduction functor red: CGroup → Group given by

Gred = GN/G0. (1.2.8)

Note that G0 is exactly the kernel of the projection map π : GN → Gred. Thus we immediately
get

CAut(M)red ⊆ Aut(Mred). (1.2.9)

The next example shows that, in general, we cannot expect more.

Example 1.2.8 Let MT = MN = {1, 2, 3} with equivalence relation ∼ given by the only non
trivial relation 2 ∼ 3. Then Mred = {[1], [2]}. The map f([1]) = [2], f([2]) = [1] is obviously
invertible on Mred, but there cannot exist an automorphism g of M with gred = f , since from
this it would follow that g(2) = 1 = g(3).

Remark 1.2.9

i.) It will be a recurring theme that an (often functorial) construction on certain objects which
we can also de�ne for their constraint analogues will commute with reduction. To be a
bit more precise, consider the following picture: Assume we have a functorial construction
F : C → D on a category C with values in the category D and its constraint analogue
CF : CC → CD on the category of constraint objects �internal� to C. Then the diagram

CC CD

C D

CF

red red
η

F

(1.2.10)
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will often commute up to a natural isomorphism. Nevertheless, there will also occur
situations in which (1.2.10) only commutes up to an injective natural transformation η.
This typically happens when F and CF construct certain limits in C and CC, respectively.
Since red does not necessarily commute with taking limits this leads to η not being an
isomorphism. For us this will be of interest when F, and hence CF map sets to their subsets
ful�lling a given equation.

ii.) To make the above assignment of a constraint category CC to a given category C precise
we would need to restrict ourselves to categories allowing for a well-behaved notion of
equivalence relation. Then we expect C to be functorial, and every CC would automatically
admit a reduction functor red: CC → C.

Next we want to investigate how constraint group actions behave with respect to reduction.

Lemma 1.2.10 (Reduction of group actions) Let G be a constraint group acting via
Φ: G → CAut(M) on a constraint set M . Then Φred de�nes an action of Gred on Mred.

Proof: Since reduction is functorial on the category of constraint groups, and with the help of
(1.2.9) we see immediately that Φ reduces to Φred : Gred → Aut(Mred), giving a group action of
Gred on Mred. □

Again, this is functorial. To state this, we denote by GroupAct the category of classical group
actions and equivariant maps along group morphisms between them.

Proposition 1.2.11 Reducing constraint group actions de�nes a functor

red: CGroupAct → GroupAct. (1.2.11)

Proof: Let G and H be constraint groups acting on constraint sets M and N , respectively.
Moreover, let f : M → N be an equivariant constraint map along a constraint group morphism
ϕ : G → H. These reduce to a map fred : Mred → Nred and a group morphism ϕred : Gred → Hred,
with

fred([g] ▷ [x]) = [f(g ▷ x)] = [ϕ(g) ▷ f(x)] = ϕred([g]) ▷ fred([x]),

showing that fred is equivariant along ϕred. □

This raises directly the question if constructing orbit spaces is compatible with reduction.
For this denote by Orb : GroupAct → Set the classical construction of the orbit space. We obtain
the following result, cf. Remark 1.2.9.

Proposition 1.2.12 (Orbit spaces vs. reduction) There exists a natural isomorphism η mak-
ing the following diagram commute:

CGroupAct CSet

GroupAct Set

COrb

red red
η

Orb

(1.2.12)

Proof: De�ne η : COrb ◦ red =⇒ red ◦ Orb for every constraint action Φ: G → CAut(M) by

ηΦ : (M/G)red →Mred/Gred, ηΦ([GNx]) := Gred[x].
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To see that this map is well-de�ned consider GNy ∼M/G GNx. Then there exist g, g′ ∈ GN such
that g ▷ x ∼M g′ ▷ y. Hence

Gred[x] = Gred[g
−1g′ ▷ y] = Gred([g

−1g′] ▷ [y]) = Gred[y]

holds, showing that ηΦ does not depend on the choice of a representative. Now ηΦ is obviously
invertible with inverse given by η−1

Φ (Gred[x]) = [GNx]. To show that η is a natural transformation
consider another constraint actionΨ: H → CAut(N) and an equivariant constraint map f : M →
N along a constraint group morphism ϕ : G → H. Then for all [GNx] ∈ (M/G)red we have

ηΨ
(
f̌red([GNx])

)
= ηΨ([HNfN(x)]) = Hred([fN(x)]) = Hred(fred([x]))

= f̌red(Gred[x]) = f̌red(ηΦ([GNx])). □

1.2.1.2 Strong constraint groups

For completeness let us also remark on strong constraint groups. As a group internal to CstrSet
a strong constraint group consists of a group morphism ιG : GN → GT and normal subgroups
G0 ⊆ GN and GT

0 ⊆ GT such that ιG(G0) ⊆ GT
0 . Moreover, ιG(GN) ⊆ GT needs to be saturated.

It is easy to see that this enforces GT
0 = ιG(G0). Thus strong constraint groups can be de�ned

as follows:

De�nition 1.2.13 (Strong constraint group)

i.) A constraint group G such that ιG(G0) ⊆ GT is a normal subgroup is called strong con-
straint group.

ii.) A morphism of strong constraint groups is just a morphism of constraint groups.

iii.) The category of strong constraint groups will be denoted by CstrGroup.

Note that in contrast to strong constraint sets the morphisms between strong constraint
groups are just the morphisms of their underlying constraint groups. Hence, we will write
CHom(G,H) instead of CstrHom(G,H) for the constraint set of constraint group homomorphisms,
cf. Proposition 1.1.21 iii.).

From the de�nition it is clear that there exists a forgetful functor U : CstrGroup → CGroup.
The reduction of strong constraint groups is then given by �rst forgetting to the category of
constraint groups:

red = red ◦ U : CstrGroup → CGroup. (1.2.13)

1.2.2 Constraint k-Modules

We could continue by de�ning constraint rings as monoids internal to the category of abelian
constraint groups. Since we will not need these objects during this thesis we instead move
on to constraint modules over a certain class of rings. For the rest of this chapter let k be a
commutative unital ring.

De�nition 1.2.14 (Constraint k-modules)

i.) A constraint k-module is given by a triple E = (ET, EN, E0) of k-modules together with a
module homomorphism ιE : EN → ET such that E0 ⊆ EN is a submodule.

ii.) A morphism Φ: E → F of constraint k-modules is a pair (ΦT,ΦN) of module homomor-
phisms ΦT : ET → FT and ΦN : EN → FN such that ΦT ◦ ιE = ιF ◦ ΦN and ΦN(E0) ⊆ F0.

iii.) The category of constraint k-modules is denoted by CModk and the set of morphisms be-
tween constraint k-modules E and F is denoted by Homk(E,F).

29



CHAPTER 1. CONSTRAINT ALGEBRAIC STRUCTURES

There is an obvious forgetful functor U : CModk → CSet, forgetting all algebraic structures.
The equivalence relation on U(E)N is induced by the submodule E0 ⊆ EN. It can be shown that
(CModk,U) is an algebraic category in the sense of [AHS90] and hence behaves in many respects
as we would expect from a category of objects equipped with algebraic structure. In particular,
as we will see in the next proposition, many categorical constructions in CModk are given by
the corresponding constructions in CSet equipped with the structure of a constraint k-module.

Proposition 1.2.15 (Co/limits in CModk) Let E, F and G be constraint k-modules and let
Φ,Ψ: E → F as well as Θ: G → F be constraint morphisms.

i.) The initial and �nal object in CModk agree and are given by 0 := (0, 0, 0).

ii.) The binary product and binary coproduct in CModk agree and are given by

(E ⊕ F)T = ET ⊕ FT,

(E ⊕ F)N = EN ⊕ FN,

(E ⊕ F)0 = E0 ⊕ F0,

(1.2.14)

with ι⊕ = ιE + ιF : EN ⊕ FN → ET ⊕ FT.

iii.) The pullback of Φ and Θ is given by the constraint k-module

(E ×Φ Θ G)T = ET ×ΦT ΘT
GT,

(E ×Φ Θ G)N = EN ×ΦN ΘN
GN,

(E ×Φ Θ G)0 = E0 ×ΦN ΘN
G0,

(1.2.15)

with projection maps

(prET,pr
E
N) : (E ×Φ Θ G) −→ E, (1.2.16)

(prG
T , pr

G
N ) : (E ×Φ Θ G) −→ G. (1.2.17)

iv.) The kernel of Φ is given by the constraint k-module

ker(Φ)T = ker(ΦT),

ker(Φ)N = ker(ΦN),

ker(Φ)0 = ker(ΦN) ∩ E0,

(1.2.18)

with ιker : ker(ΦN) → ker(ΦT) the morphism induced by ιE.

v.) The cokernel of Φ is given by the constraint k-module

coker(Φ)T = FT/ im(ΦT),

coker(Φ)N = FN/ im(ΦN),

coker(Φ)0 = F0/ im(ΦN),

(1.2.19)

with ιcoker : FN/ im(ΦN) → FT/ im(ΦT) the morphism induced by ιF.

vi.) The coequalizer of Φ and Ψ is given by the constraint k-module

coeq(Φ,Ψ)T = coeq(ΦT,ΨT),

coeq(Φ,Ψ)N = coeq(ΦN,ΨN),

coeq(Φ,Ψ)0 = qN(F0),

(1.2.20)

with q = (qT, qN) : F → coeq(Φ,Ψ). Here qT and qN denote the coequalizer morphisms of
ΦT, ΨT and ΦN, ΨN, respectively.
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vii.) The category CModk has all �nite limits and colimits.

Proof: The form of the T- and N-components follow directly from Proposition 1.1.2 and the
classical characterization of co/limits of k-modules. It only remains to show that in each case
the equivalence relation as given in Proposition 1.1.2 translates to the correct 0-components. We
show this for iv.), the rest can be done analogously. For this note that ker(Φ) is the equalizer
of 0: E → F and Φ. The equivalence relation on eq(ΦN, 0) is given by the restriction of the
equivalence relation on E, thus ker(Φ)0 = ker(Φ)N ∩ E0. □

In categories of sets equipped with algebraic structure, like groups, module algebras etc., we
are used to the fact that a morphism respecting the algebraic structure is mono (epi) if and only
if its underlying map of sets is mono (epi). The same holds for CModk, forcing us to distinguish
regular from plain monos and epis.

Proposition 1.2.16 (Mono- and epimorphisms in CModk) Let Φ: E → F be a morphism
of constraint k-modules.

i.) Φ is a monomorphism if and only if ΦT and ΦN are injective module homomorphisms.

ii.) Φ is an epimorphism if and only if ΦT and ΦN are surjective module homomorphisms.

iii.) Φ is a regular monomorphism if and only if it is a monomorphism with Φ−1
N (F0) = E0.

iv.) Φ is a regular epimorphism if and only if it is an epimorphism with ΦN(E0) = F0.

Proof: This is just a repetition of the arguments used in the proof of Proposition 1.1.4. The
conditions (ΦN)

∗(∼F) = ∼E and (ΦN)∗(∼E) = ∼F for regular mono- and epimorphisms translate
to Φ−1

N (F0) = E0 and ΦN(E0) = F0, respectively. □

Example 1.2.17

i.) By the explicit formulas of Proposition 1.2.15 iv.) we see that the canonical inclusion
i : ker(Φ) → E is a regular monomorphism.

ii.) By the explicit formulas of Proposition 1.2.15 vi.) we see that q : F → coeq(Φ,Ψ) is a
regular epimorphism.

Remark 1.2.18 Big parts of classical homological algebra solely rely on the fact that the usual
categories of modules form abelian categories. Since in CModk regular and plain monos (or
epis) do not agree in general, it follows directly that CModk is not abelian. This is the reason
why in the theory of constraint algebraic objects many e�ects appear which are unfamiliar if
viewed from the point of view of classical algebra. Another consequence is that we cannot rely
on general techniques from abelian categories and hence we need to thoroughly examine even
the most basic constructions in our categories of constraint algebraic objects.

In any abelian category there is a canonical epi-mono factorization as

coker(ker(Φ)) ≃ ker(coker(Φ)) (1.2.21)

for every morphism Φ. In the non-abelian category CModk there is no such canonical isomor-
phism, leading to two di�erent factorizations: We can either use coker(ker(Φ)) to obtain an
epi-regular mono factorization or we can use ker(coker(Φ)) and get a regular epi-mono fac-
torization. These factorizations correspond to the image and regular image, respectively, see
De�nition 1.1.9.
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Proposition 1.2.19 (Image and regular image) Let Φ: E → F be a morphism of con-
straint k-modules.

i.) The image of Φ, as a morphism of constraint sets, is a constraint k-module given by
coker(ker(Φ)). More explicitly:

im(Φ) ≃
(
im(ΦT), im(ΦN), im(ΦN

∣∣
E0
)
)
. (1.2.22)

ii.) The regular image of Φ, as a morphism of constraint sets, is a constraint k-module given
by ker(coker(Φ)). More explicitly:

regim(Φ) ≃
(
im(ΦT), im(ΦN), im(ΦN) ∩ F0

)
. (1.2.23)

Proof: Again the T- and N-components are clear, since ker(coker) and coker(ker) agree for
classical module morphisms. For the 0-component we have by Proposition 1.2.15

im(Φ)0 = coker(kerΦ)0 = E0/ ker(ΦN) ≃ im(ΦN

∣∣
E0
)

and
regim(Φ)0 = ker(cokerΦ)0 = ker(coker(Φ)N) ∩ F0 ≃ im(ΦN) ∩ F0. □

In analogy to constraint sets we can now de�ne constraint submodules as follows.

De�nition 1.2.20 (Constraint submodule) Let E be a constraint k-module. A constraint
submodule of E consists of submodules FT ⊆ ET and FN ⊆ EN such that ιE(FN) ⊆ FT.

Every submodule can be understood as a regular monomorphism i : F → E de�ned on the
constraint module F = (FT, FN, i

−1
N (E0)). Observe that the regular image of a morphism of

constraint k-modules is a constraint submodule, while the image is not.
The existence of zero morphisms and coequalizers allows us to introduce quotients of con-

straint modules.

De�nition 1.2.21 (Quotient module) Let F ⊆ E be a constraint submodule. The quotient
E/F is de�ned as the coequalizer of the inclusion i : F → E and the zero morphism 0: F → E.
More explicitly:

E/F = (ET/FT, EN/FN, E0/FN). (1.2.24)

Here E0/FN denotes the submodules of EN/FN generated by equivalence classes [x] of x ∈ E0.
We could also de�ne a quotient module with respect to more general submodules, i.e. non
regular monomorphisms, but since the coequalizer does not depend on the 0-component of F
this will not make a di�erence. The independence of the quotient on the 0-component of the
divisor will be important when we de�ne constraint cohomology, see Section 1.6.1.

Let us now equip the category CModk with the additional structure of a monoidal category,
see Appendix A.4 for the de�nition of monoidal categories.

Proposition 1.2.22 (Monoidal structure on CModk)

i.) Let E,F ∈ CModk. Then

(E ⊗k F)T := ET ⊗k FT,

(E ⊗k F)N := EN ⊗k FN,

(E ⊗k F)0 := E0 ⊗k FN + EN ⊗k F0,

(1.2.25)

with ι⊗ = ιE ⊗ ιF : EN ⊗k FN → ET ⊗k FT, is a constraint k-module.
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ii.) The category CModk equipped with the tensor product ⊗k and unit (k,k, 0) is a symmetric
monoidal category.

Proof: For the �rst part note that E0 ⊗k FN denotes the submodule of EN ⊗k FN generated
by elements of the form x ⊗ y ∈ E0 ⊗k FN. Then i.) is clear. The constraint module (k,k, 0)
is obviously the unit for ⊗. It remains to show that there is an associativity isomorphism for
⊗. This is given by the usual associativity isomorphism on the T- and N-component, and it
preserves the 0-component:

((E ⊗k F)⊗k G)0 = E0 ⊗k FN ⊗k GN + EN ⊗k F0 ⊗k GN + EN ⊗k FN ⊗k G0 = (E ⊗k (F⊗k G))0.

□

It is easy to see that the set Homk(E,F) of constraint morphisms between constraint k-
modules carries the structure of a k-module, leading to a Modk enrichment on CModk. The
module Homk(E,F) can be enhanced to a constraint k-module and this internal hom turns out
to be compatible with the tensor product of constraint modules.

Proposition 1.2.23 (Internal hom in CModk)

i.) Let E,F ∈ CModk. Then

CHomk(E,F)T := Homk(ET,FT),

CHomk(E,F)N := Homk(E,F),

CHomk(E,F)0 := {Φ ∈ Homk(E,F) | ΦN(EN) ⊆ F0},
(1.2.26)

with ιHom : Homk(E,F) ∋ (ΦT,ΦN) 7→ ΦT ∈ Homk(ET,FT), is a constraint k-module.

ii.) For �xed E ∈ CModk the functor ( · ⊗kE) : CModk → CModk is left adjoint to CHomk(E, · ),
i.e. CModk is closed monoidal.

Proof: The proof is completely analogous to that of Proposition 1.1.11. Alternatively, observe
that (1.2.26) is a constraint subset of CMap(E,F) which is compatible with composition. □

The fact that CModk is closed monoidal implies that there is a natural isomorphism

Homk(E ⊗k F, G) ≃ Homk(E,CHomk(F, G)) (1.2.27)

for all E,F, G ∈ CModk. A straightforward computation shows that (1.2.27) can be enhanced
to an isomorphism

CHomk(E ⊗k F, G) ≃ CHomk(E,CHomk(F, G)) (1.2.28)

of constraint k-modules. Here the T-component is just the usual tensor-hom adjunction of k-
modules and the N-component is exactly (1.2.27). It is also worth noting that as part of the
adjunction we obtain the evaluation map

ev : CHomk(E,F)⊗k E → F, evT/N(Φ⊗ x) = Φ(x) (1.2.29)

and the coevaluation map

coev : F → CHomk(E, E ⊗k F), coevT/N(y)(x) = x⊗ y. (1.2.30)

After investigating properties of the category CModk itself, let us next look at how we can
relate it to other known categories. By the way we de�ned constraint k-modules it is clear that
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forgetting all algebraic structure and using the equivalence relation induced by the 0-component
yields a functor

U : CModk → CSet. (1.2.31)

It is then easy to see that it preserves �nite limits and is lax closed, since CHomk(E,F) ⊆
CMap(U(E),U(F)). There is also a forgetful functor to the T-component UT : CModk → Modk,
similar to (1.1.19). Moreover, we can identify the category Modk of classical k-modules with
the subcategory of CModk consisting of constraint modules of the form (E, E, 0). We will often
use this identi�cation implicitly. In particular we will write k = (k,k, 0).

1.2.2.1 Embedded Constraint Modules

Similar to the case of embedded constraint sets we can also consider constraint k-modules E
with injective module morphism ιE. We will denote the subcategory of CModk consisting of such
embedded constraint k-modules by CembModk.

Proposition 1.2.24 (The category CembModk)

i.) CembModk is a re�ective subcategory of CModk with re�ector ·emb : CModk → CembModk
given by

Eemb := (ET, ιE(EN), ιE(E0)). (1.2.32)

ii.) The subcategory CembModk of CModk is closed under �nite limits.

iii.) CembModk is closed symmetric monoidal with respect to ⊗emb
k

de�ned by

E ⊗emb
k

F := (E ⊗k F)emb. (1.2.33)

iv.) The functor · emb : (CModk,⊗k) → (CembModk,⊗emb
k

) is monoidal.

Proof: By de�nition CembModk is a full subcategory of CModk. To show that · emb is left
adjoint to the embedding U : CembModk → CModk consider the natural transformations

ε : ( · emb) ◦ U =⇒ id
CembModk

and η : idCModk =⇒ U ◦ ( · emb)

given by εE := idE and ηE := (idET , ιE). The triangle identities are then easily checked, and we
immediately see that ε is a natural isomorphism. This yields the �rst part. Since every re�ective
subcategory is closed under limits, the second part follows directly from the �rst. For the last
two parts we use a simple version of Day's re�ection theorem, see Theorem A.5.3. To see that
· emb is monoidal, see De�nition A.4.5, it remains to show that

(ηE ⊗ ηF)
emb : (E ⊗k F)emb → (Eemb ⊗k Femb)emb

is an isomorphism for all E,F ∈ CModk. This is clear, since (ηE ⊗ ηF)
emb
N (ιE(x) ⊗ ιF(y)) =

ιE(x)⊗ ιF(y). □

The tensor product of two injective module maps is in general not injective. Thus E ⊗k F
might not be embedded, even if E and F are. The de�nition of ⊗emb

k
cures this defect. However,

this results in U : CembModk → CModk not being a monoidal functor. Moreover, CembModk is
not closed under colimits as the next example shows, cf. Example 1.1.15.

Example 1.2.25 Consider the embedded constraint R-module E = (R2,R2, 0) and its embed-
ded constraint submodule F = (R, 0, 0). Then its quotient E/F = (R,R2, 0) is not embedded.
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1.2.2.2 Reduction on CModk

Since the 0-component encodes the equivalence relation on the N-components, reduction is
simply given by their quotient. We collect properties of the reduction functor:

Proposition 1.2.26 (Reduction on CModk)

i.) Mapping constraint k-modules E to Ered := EN/E0 and constraint morphisms to the induced
morphisms on the quotient we obtain a functor

red: CModk → Modk. (1.2.34)

ii.) The functor red: CModk → Modk is monoidal.

iii.) The functor red: CModk → Modk is lax closed with injective natural transformation red ◦
CHomk ⇒ Homk ◦(red× red).

iv.) The functor red: CModk → Modk preserves �nite limits and colimits.

Proof: The �rst part is obvious. To show that red is monoidal, observe that kred = k/0 ≃ k.
Moreover, [x⊗ y] 7→ [x]⊗ [y] gives an isomorphism

(E ⊗k F)red = (EN ⊗k FN)/(E0 ⊗k FN + EN ⊗k F0) ≃ EN/E0 ⊗k FN/F0 = Ered ⊗k Fred.

These isomorphisms are clearly natural. Since morphisms of constraint modules preserve the 0-
component we obtain a morphism ηE,F : CHomk(E,F)red → Homk(Ered,Fred), which is injective
since CHomk(E,F) contains exactly those morphisms which vanish after reduction. This shows
the lax closedness of red. It is easy to see that reduction preserves the co/limits listed in
Proposition 1.2.15. From this it follows directly that red preserves all �nite limits and colimits.□

By contrast, reduction on the monoidal category (CembModk,⊗emb
k

) is in general not monoidal,
since U : CembModk → CModk is not.

1.2.3 Strong Constraint k-Modules

Considering k-modules constructed internal to the category CstrSet of strong constraint sets we
would obtain an abelian strong constraint group E = (ET, EN, E0) together with k-multiplications.
From De�nition 1.2.13 it is clear that abelian strong constraint groups do not di�er from abelian
constraint groups. Thus, as objects, strong constraint k-modules coincide with constraint k-
modules. However, thinking of the 0-component as de�ning an equivalence relation on the
T-component leads to a di�erent kind of tensor product.

To motivate the de�nition we anticipate the introduction of (strong) constraint algebras in
Section 1.4.1: A constraint algebra A will be de�ned as a constraint k-module together with a
multiplication µ : A⊗k A → A. By de�nition of ⊗k this will implement A0 as a two-sided ideal
in AN. Now for a strong constraint algebra A we expect A0 to behave like a two-sided ideal
in AT. To implement this idea, at least for embedded modules, we need to modify our tensor
product to

(E ⊠k F)0 = E0 ⊗k FT + ET ⊗k F0. (1.2.35)

In order to turn E ⊠k F into a constraint module we have to enlarge the N-component to

(E ⊠k F)N = EN ⊗k FN + E0 ⊗k FT + ET ⊗k F0. (1.2.36)

If we want to implement this tensor product also for non-embedded modules, we have to replace
the internal sum of submodules in (1.2.35) and (1.2.36) by an external direct sum. To prevent
counting elements in E0 ⊗k FN and elements in EN ⊗k F0 twice we have to quotient by an
appropriate ideal. This leads to the following de�nition:
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Proposition 1.2.27 (Strong tensor product)

i.) Let E,F ∈ CModk. Then

(E ⊠k F)T := ET ⊗k FT,

(E ⊠k F)N :=
(EN ⊗k FN)⊕ (E0 ⊗k FT)⊕ (ET ⊗k F0)

IE
F

,

(E ⊠k F)0 :=
(E0 ⊗k FN + EN ⊗k F0)⊕ (E0 ⊗k FT)⊕ (ET ⊗k F0)

IE
F

,

(1.2.37)

with

IE
F := span

k
{(x0 ⊗ y, 0, 0)− (0, x0 ⊗ ιF(y), 0) | x0 ∈ E0, y ∈ FN}

+ span
k
{(x⊗ y0, 0, 0)− (0, 0, ιE(x)⊗ y0) | x ∈ EN, y0 ∈ F0}

(1.2.38)

and ι⊠ = ιE ⊗ ιF + ιE ⊗ idFT
+ idET ⊗ιF, is a constraint k-module.

ii.) The category CModk equipped with the tensor product ⊠k is a symmetric monoidal category
with unit (k,k, 0).

Proof: The �rst part is clear. For the second part consider the constraint k-module E⊠kF⊠k G
de�ned by

(E ⊠k F⊠k G)T := ET ⊗k FT ⊗k GT,

(E ⊠k F⊠k G)N :=
(EN ⊗k FN ⊗k GN)⊕ (E0 ⊗k FT ⊗k GT)⊕ (ET ⊗k F0 ⊗k GT)⊕ (ET ⊗k FT ⊗k G0)

J
,

(E ⊠k F⊠k G)0 :=
(E ⊗k F⊗k G)

0
⊕ (E0 ⊗k FT ⊗k GT)⊕ (ET ⊗k F0 ⊗k GT)⊕ (ET ⊗k FT ⊗k G0)

J
,

with

J := span
k
{((x0 ⊗ y ⊗ z), 0, 0, 0)− (0, (x0 ⊗ ιF(y)⊗ ιG(z)), 0, 0) | x0 ∈ E0, y ∈ FN, z ∈ GN}

+ span
k
{((x⊗ y0 ⊗ z), 0, 0, 0)− (0, 0, (ιE(x)⊗ y0 ⊗ ιG(z)), 0) | x ∈ EN, y ∈ F0, z ∈ GN}

+ span
k
{((x⊗ y ⊗ z0), 0, 0, 0)− (0, 0, 0, (ιE(x)⊗ ιF(y)⊗ z)) | x ∈ EN, y ∈ FN, z0 ∈ G0}.

Note that we implicitly use the associativity of the classical tensor product. It is now easy
to write down canonical isomorphisms between E ⊠k F ⊠k G and (E ⊠k F) ⊠k G as well as
E ⊠k (F ⊠k G) by specifying it on every direct summand separately and checking that it is
well-de�ned on the quotient by J. It is then a straightforward but incredibly tedious task to
check all properties of a monoidal category, see De�nition A.4.1 □

De�nition 1.2.28 (The category CstrModk) We call ⊠k the strong tensor product of con-
straint k-modules and denote the monoidal category (CModk,⊠k) by CstrModk.

Note that as categories CModk and CstrModk are the same, they only di�er by their monoidal
structure. Even though there is no di�erence between modules from CModk and CstrModk we
will write E ∈ CstrModk and call E a strong constraint k-module if we want to stress that the
tensor product to be used is ⊠k. Later on, when we consider modules over constraint algebras,
we will need to distinguish strong constraint from constraint modules more carefully.

Note that we can easily reformulate the 0-component as

(E ⊠k F)0 ≃
(E0 ⊗k FT)⊕ (ET ⊗k F0)

span
k
{(x0 ⊗ ιF(y0), 0)− (0, (ιE(x0)⊗ y0))}

. (1.2.39)
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To unwind the de�nition of ⊠k observe that (E ⊠k F)N is a colimit of k-modules:

E0 ⊗k FN E0 ⊗k FT

EN ⊗k F0 EN ⊗k FN

ET ⊗k F0 (E ⊠k F)N

id⊗ιF

ιE⊗id

(1.2.40)

From this the following characterization of morphisms on strong tensor products follows directly.

Lemma 1.2.29 Let E,F, G ∈ CstrModk be given. A constraint morphism Φ: E ⊠k F → G is
equivalently given by module morphisms

ΦT : ET ⊗k FT → GT, (1.2.41)

ΦNN
N : EN ⊗k FN → GN, (1.2.42)

ΦT0
N : ET ⊗k F0 → G0, (1.2.43)

Φ0T
N : E0 ⊗k FT → G0, (1.2.44)

such that

ιG ◦ ΦNN
N = ΦT ◦ (ιE ⊗ ιF), (1.2.45)

ιG ◦ ΦT0
N = ΦT ◦ (idET ⊗ιF), (1.2.46)

ιG ◦ Φ0T
N = ΦT ◦ (ιE ⊗ idFT

) (1.2.47)

hold.

Since CstrModk and CModk are the same as categories, we see that CstrMod obtains actually
two monoidal structures ⊠k and ⊗k. These are obviously not independent.

Proposition 1.2.30 The identity functor CstrModk → CModk is lax monoidal with the mor-
phism E⊗k F → E⊠k F given by the identity on the T-component and the inclusion in the �rst
summand in the N-component for all E,F ∈ CstrModk.

Proof: Since the units for ⊗k and ⊠k agree, the identity functor clearly preserves them. For all
E,F ∈ CstrModk the map µE,F : E⊗kF → E⊠kF is de�ned by (µE,F)T = id and (µE,F)N = pr ◦i1,
with

i1 : EN ⊗k FN → (EN ⊗k FN)⊕ (E0 ⊗k FT)⊕ (ET ⊗k F0)

the inclusion into the �rst component and pr the projection on the quotient as a constraint
k-module morphism. It is now a straightforward check that µE,F ful�ls the properties of a lax
monoidal functor, see [Bor94a, Def. 7.5.1]. □

Moreover, CModk, and therefore CstrModk too, are CModk-enriched categories. However,
CstrModk is not closed monoidal with respect to ⊠k but only with respect to ⊗k. Thus we will
not repeat the structure and compatibilities for the internal hom.

37



CHAPTER 1. CONSTRAINT ALGEBRAIC STRUCTURES

1.2.3.1 Embedded Strong Constraint Modules

Recall that the subcategory of constraint modules E with injective ιE is denoted by CembModk.
In general we know that E ⊠k F might not be embedded, even if E and F are. However, by
Proposition 1.2.24 we see that CembModk is a re�ective subcategory of CModk, and we can use
this to de�ne a new tensor product on CembModk.

Proposition 1.2.31

i.) CembModk is symmetric monoidal with respect to ⊠emb
k

de�ned by

E ⊠emb
k

F := (E ⊠k F)emb. (1.2.48)

ii.) The functor · emb : (CModk,⊠k) → (CembModk,⊠emb
k

) is monoidal.

Proof: We use again Day's re�ection theorem, see Theorem A.5.3. The only thing left to show
then is (η⊗ η)emb : (E⊠kF)emb → (Eemb⊠kFemb)emb, with ηE : E → Eemb given by (ηE)T = idET

and (ηF)N(x) = ιE(x), is an isomorphism for all E,F ∈ CModk. This is clear since

(η ⊗ η)emb(ιE(x)⊗ ιF(y)) = ιE(x)⊗ ιF(y). □

More explicitly, we have

(E ⊠emb
k

F)T = ET ⊗k FT,

(E ⊠emb
k

F)N = EN ⊗k FN + ET ⊗k F0 + E0 ⊗k FT,

(E ⊠emb
k

F)T = E0 ⊗k F0 + E0 ⊗k FT,

(1.2.49)

where we consider the N- and 0-components to be the submodules generated by elements of the
given form. This is exactly what we expected when motivating the de�nition of ⊠k.

De�nition 1.2.32 (The category Cemb
str Mod

k
) The monoidal category (CembModk,⊠emb

k
) is

denoted by Cemb
str Mod

k
.

In analogy to constraint modules it should be noted that the forgetful functor U : Cemb
str Mod

k
→

CstrModk is not monoidal. Summarizing, we showed that the two monoidal structures ⊗k and
⊠k induce monoidal structures ⊗emb

k
and ⊠emb

k
on Cemb

str Mod
k
. The compatibility from Proposi-

tion 1.2.30 carries over to the embedded modules.

Proposition 1.2.33

i.) The identity functor Cemb
str Mod

k
→ CembModk is lax monoidal with E ⊗emb

k
F → E⊠emb

k
F

for all E,F ∈ Cemb
str Mod

k
given by the identity on the T-component and the inclusion in

the N-component.

ii.) Let E,F ∈ Cemb
str Mod

k
be given. Then there is an isomorphism of constraint k-modules

such that (
E ⊠emb

k F

E ⊗emb
k F

)
T

≃ 0,(
E ⊠emb

k F

E ⊗emb
k F

)
N

≃
(

E0 ⊗emb
k

FT

FN

)
⊕
(

ET

EN

⊗emb
k

E0

)
,(

E ⊠emb
k F

E ⊗emb
k F

)
0

≃
(

E ⊠emb
k F

E ⊗emb
k F

)
N

.

(1.2.50)

Proof: The proof for the �rst part is completely analogous to that of Proposition 1.2.30. The
second part follows from the explicit description of ⊠emb

k
in (1.2.49) and the de�nition of ⊗emb

k

in Proposition 1.2.22. □
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1.2.3.2 Reduction

The categories CstrModk and CModk only di�er by their monoidal structure. Hence the results
from Proposition 1.2.26 apply also for the reduction of strong constraint modules. The only
new structure introduced, namely ⊠k, coincides with ⊗k after reduction as already indicated in
Proposition 1.2.33:

Proposition 1.2.34 (Reduction on CstrModk) The functor reduction functor

red: (CstrModk,⊠k) → (Modk,⊗k) (1.2.51)

is monoidal. In particular we have

(E ⊠k F)red ≃ (E ⊗k F)red (1.2.52)

for all E,F ∈ CstrModk.

Proof: We directly have

(E ⊠k F)red =
(E ⊠k F)N
(E ⊠k F)0

≃ EN ⊗k FN

E0 ⊗k FN + EN ⊗k F0

= (E ⊗k F)red

for E,F ∈ CstrModk. The properties of a monoidal functor can by checked directly by writing
out the above isomorphism on elements, see De�nition A.4.5 for the de�nition of monoidal
functor. □

1.3 Interlude: Constraint Linear Algebra

Before we continue to construct (strong) constraint algebras in Section 1.4, let us take a step
back and examine the structures present on the categories of (strong) constraint k-modules in
the special case of k being a �eld. In other words we will consider constraint vector spaces.

One of the main features distinguishing vector spaces from general modules is the existence
of a basis. For a constraint vector space V a constraint basis should be given by a constraint
subset B ⊆ V . Though we could introduce bases this way, it is more convenient to use a
slightly di�erent notion of sets in the constraint setting, namely that of constraint index sets.
These will also play an important role in our study of free and projective constraint modules in
Section 1.5. We will introduce and study constraint index sets in Section 1.3.1 before we come
back to constraint vector spaces in Section 1.3.2.

1.3.1 Constraint Index Sets

Recall that our algebraic notions, like constraint groups and modules, have underlying constraint
sets. This can be understood as a consequence of constructing these objects as algebraic objects
internal to the category CSet and its relatives. Nevertheless, in our de�nitions of constraint
groups and modules we rephrased the equivalence relation on the N-component in terms of
normal subgroups and submodules. Thus instead of forgetting to the underlying constraint
set, where we recover the equivalence relation from the 0-component, we could also forget all
algebraic structure but keep the 0-component as a subset of the N-component. This leads to a
di�erent notion of underlying set for constraint objects:
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De�nition 1.3.1 (Constraint index sets)

i.) A constraint index set consists of a map ιM : MN → MT of sets together with a subset
M0 ⊆MN.

ii.) A morphism f : M → N of constraint sets M and N (or constraint morphism) consists
of maps fT : MT → NT and fN : MN → NN such that fT ◦ ιM = ιN ◦ fN and fN(M0) ⊆ N0.

iii.) The category of constraint index sets and their morphisms is denoted by CindSet.

Example 1.3.2 There are obvious forgetful functors from the categories CGroup and CModk
to CindSet by forgetting all algebraic structure.

Proposition 1.3.3 (Co/limits in CindSet) Let M , N and P be constraint index sets and let
f, g : M → N as well as h : P → N be constraint morphisms.

i.) The initial object in CindSet is given by (∅, ∅, ∅).
ii.) The �nal object in CindSet is given by ({pt}, {pt}, {pt}).
iii.) The product is given by

(M ×N)T =MT ×NT,

(M ×N)N =MN ×NN,

(M ×N)0 =M0 ×N0,

(1.3.1)

with the product map ιM×N = ιM × ιN : MN ×NN −→MT ×NT.

iv.) The coproduct is given by

(M ⊔N)T =MT ⊔NT,

(M ⊔N)N =MN ⊔NN,

(M ⊔N)0 =M0 ⊔N0,

(1.3.2)

with the coproduct map ιM ⊔ ιN : MN ⊔NN −→MT ⊔NT.

v.) The pullback of f and h is given by

(M ×f h P )T =MT ×fT hT
PT,

(M ×f h P )N =MN ×fN hN
PN,

(M ×f h P )0 = (fN)
−1(N0) ×fN hN

(hN)
−1(N0),

(1.3.3)

with projection maps

(prMT ,pr
M
N ) : (M ×f h P ) −→M, (1.3.4)

(prPT ,pr
P
N ) : (M ×f h P ) −→ N. (1.3.5)

vi.) The equalizer of f and g is given by

eq(f, g)T = eq(fT, gT) = {x ∈MT | fT(x) = gT(x)},
eq(f, g)N = eq(fN, gN) = {x ∈MN | fN(x) = gN(x)},
eq(f, g)0 = i−1

N (M0) = {x ∈M0 | fN(x) = gN(x)},
(1.3.6)

with i = (iT, iN) : eq(f, g) → M given by the inclusions iT and iN of eq(fT, gT) and
eq(fN, gN) into MT and MN, respectively.
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vii.) The coequalizer of f and g is given by

coeq(f, g)T = coeq(fT, gT),

coeq(f, g)N = coeq(fN, gN),

coeq(f, g)0 = qN(N0)

(1.3.7)

with the morphism q = (qT, qN) : N → coeq(f, g) of constraint index sets. Here the maps
qN : NN → coeq(fN, gN) and qT : NT → coeq(fT, gT) denote the coequalizer in Set of fN, gN
and fT, gT, respectively.

viii.) The category CindSet has all �nite limits and colimits.

Proof: The proof follows from the same arguments as the proof of Proposition 1.1.2. In
particular, the T- and N-components are given by the classical statements in Set. The 0-
component is then always given by the smallest subset of the N-component such that the involved
morphisms become constraint. □

As for constraint sets and constraint modules we have to distinguish between monos (epis)
and regular monos (epis).

Proposition 1.3.4 (Mono- and epimorphisms in CindSet) Let f : M → N be a constraint
morphism between constraint index sets.

i.) f is a monomorphism if and only if fT and fN are injective maps.

ii.) f is an epimorphism if and only if fT and fN are surjective maps.

iii.) f is a regular monomorphism if and only if it is a monomorphism with f−1
N (N0) =M0.

iv.) f is a regular epimorphism if and only if it is an epimorphism with fN(M0) = N0.

Proof: Statements i.) and ii.) follow by the same arguments used in Proposition 1.1.4. Then
iii.) and iv.) follow by the characterization of equalizer and coequalizer in Proposition 1.3.3.□

Similarly to the case of constraint sets, it is not enough for a constraint morphism between
constraint index sets to be an epimorphism and monomorphism in order to be invertible, cf.
Lemma 1.1.7:

Lemma 1.3.5 Let f : M → N be a constraint morphism between constraint index sets. The
following statements are equivalent:

i.) The constraint morphism f is an isomorphism.

ii.) The constraint morphism f is a regular monomorphism and an epimorphism.

iii.) The constraint morphism f is a monomorphism and a regular epimorphism.

Proof: A constraint morphism is an isomorphism if and only if it is a bijection on the T-, N-
and 0-components. Being a bijection on T- and N-components amounts to fT and fN being
bijective. Moreover, fN restricts to a bijection on the 0-component if and only if fN(M0) = N0

or equivalently f−1
N (N0) =M0. □

We de�ne subsets of constraint index sets as images of regular monomorphisms.

De�nition 1.3.6 (Constraint index subsets) A constraint subset of a constraint index set
M consists of subsets UT ⊆MT and UN ⊆MN such that ιM (UN) ⊆ UT.
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We can view a constraint subset (UT, UN) of a constraint index set M itself as a constraint
index set U = (UT, UN, UN ∩M0) with a regular monomorphism i : U → M as embedding. For
constraint subsets of constraint index set the following de�nitions will be useful:

De�nition 1.3.7 (Union and Intersection of constraint subsets) Let M ∈ CindSet and
constraint subsets U, V ⊆M be given.

i.) The intersection of U and V is de�ned by

U ∩ V := (UT ∩ VT, UN ∩ VN, U0 ∩ V0), (1.3.8)

with ιU∩V = ιM
∣∣
UN∩VN

.

ii.) The union of U and V is de�ned by

U ∪ V := (UT ∪ VT, UN ∪ VN, U0 ∪ V0), (1.3.9)

with ιU∪V = ιM
∣∣
UN∪VN

.

Note that U ∪ V and U ∩ V form again subsets of M since U0 ∩ V0 = (UN ∩ VN) ∩M0 and
U0 ∪ V0 = (UN ∪ VN) ∪M0.

Let us from now on focus on embedded constraint index sets, i.e. those constraint index
sets M with injective ιM : MN → MT. We will denote their category by Cemb

ind Set. Even though
most of what follows can be also considered inside the bigger category CindSet this would only
complicate the exposition, and it will not be needed in the rest of the thesis.

For (embedded) strong constraint k-modules we have constructed two di�erent kinds of
tensor products. There are now similar constructions available for embedded constraint index
sets, which are not present in the classical category of sets.

De�nition 1.3.8 (Tensor products and dual) Let M,N ∈ Cemb
ind Set.

i.) The tensor product of M and N is de�ned by

(M ⊗ N)T :=MT ×NT,

(M ⊗ N)N :=MN ×NN,

(M ⊗ N)0 := (MN ×N0) ∪ (M0 ×NN).

(1.3.10)

ii.) The strong tensor product of M and N is de�ned by

(M ⊠ N)T :=MT ×NT,

(M ⊠ N)N := (MN ×NN) ∪ (MT ×N0) ∪ (M0 ×NT),

(M ⊠ N)0 := (MT ×N0) ∪ (M0 ×NT).

(1.3.11)

iii.) The dual of M is de�ned by

(M∗)T :=MT,

(M∗)N :=MT \M0,

(M∗)0 :=MT \MN.

(1.3.12)

iv.) The reduction of M is de�ned by

Mred :=MN \M0. (1.3.13)
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Since there is no dual for the sets MN and N0 we will often write M∗
N and M∗

0 instead of
(M∗)N and (M∗)0, respectively. All of the above constructions can be shown to be functorial.
Moreover, it is easy to see that ×, ⊗ and ⊠ yield monoidal structures on Cemb

ind Set. Using the
dual we can decompose the (strong) tensor product as follows.

Lemma 1.3.9 Let M,N ∈ Cemb
ind Set.

i.) It holds that

(M ⊗ N)T = (M ⊗ N)N ⊔ (M∗
0 ×NT) ⊔ (MT ×N∗

0 ),

(M ⊗ N)N = (M ⊗ N)0 ⊔ (Mred ×Nred).
(1.3.14)

ii.) It holds that

(M ⊠ N)T = (M ⊠ N)N ⊔ (M∗
0 ×N∗

N) ⊔ (M∗
N ×N∗

0 ),

(M ⊠ N)N = (M ⊠ N)0 ⊔ (Mred ×Nred)

= (M ⊗ N)N ⊔ (M∗
0 ×N0) ⊔ (M0 ×N∗

0 ),

(M ⊠ N)0 = (M ⊗ N)0 ⊔ (M∗
0 ×N0) ⊔ (M0 ×N∗

0 ).

(1.3.15)

It can be useful to picture the components of ⊗ and ⊠ as subsets of the cartesian product
as follows:

M ⊗ N

N0

NN \N0

NT \N0

M0 MN \M0MT \M0

M ⊠ N

N0

NN \N0

NT \N0

M0 MN \M0MT \M0

Figure 1.3.1: M ⊗ N and M ⊠ N as subsets of M ×N . N-components in green, 0-components
in blue.

Notation 1.3.10 We will use scaled down versions of Figure 1.3.1. These will be rotated by
45◦ counter-clockwise, such that M0 ×N0 is represented by the bottom diamond. For example,
for constraint index sets M and N we write

(M ⊗ N)N =M N (M ⊠ N)N =M N

(M ⊗ N)0 = N N (M ⊠ N)0 =M N

as subsets of MT ×NT.
We can also combine the whole constraint index set into one picture by using an overlay of

N-and 0-component:

M ⊗ N =M N M ⊠ N =M N.

Observe that in this notation the dual is given by inverting the colours, i.e. white becomes black,
black becomes white and grey stays grey. We can also replace M and N by their duals if we
also re�ect the diamond along its horizontal axis, e.g. M N =M∗ N∗. The reduction of
a diamond is given by its grey parts, e.g. (M N)red =M N .
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With this notation the following compatibilities are easy to prove.

Proposition 1.3.11 Let M,N ∈ Cemb
ind Set.

i.) We have
(M ⊗ N)red =Mred ×Nred. (1.3.16)

ii.) We have
(M ⊠ N)red =Mred ×Nred. (1.3.17)

iii.) We have
(M∗)red =Mred. (1.3.18)

iv.) We have
(M ⊗ N)∗ =M∗ ⊠ N∗. (1.3.19)

v.) We have
(M ⊠ N)∗ =M∗ ⊗ N∗. (1.3.20)

vi.) We have
(M∗)∗ =M. (1.3.21)

Proof: We compute iii.) and vi.) explicitly: We have

(M∗)red = (M∗)N \ (M∗)0 = (MT \M0) \ (MT \MN) =MN \M0 =Mred

and (
(M∗)∗

)
N
= (M∗)T \ (M∗)0 =MT \ (MT \MN) =MN,(

(M∗)∗
)
0
= (M∗)T \ (M∗)N =MT \ (MT \M0) =M0.

The rest is a straightforward application of the notation introduced in Notation 1.3.10:

(M ⊗ N)red = (M N)red =M N =Mred ×Nred,

(M ⊠ N)red = (M N)red =M N =Mred ×Nred,

and

(M ⊗ N)∗ = (M N)∗ =M N =M∗ N∗ =M∗ ⊠ N∗,

(M ⊠ N)∗ = (M N)∗ =M N =M∗ N∗ =M∗ ⊗ N∗. □

For a �nite constraint index set M = (MT,MN,M0) we can de�ne its cardinality as

|M | := (|MT|, |MN|, |M0|). (1.3.22)

Thus every �nite constraint index setM has an associated cardinality consisting of three natural
numbers |M |T := |MT|, |M |N := |MN| and |M |0 := |M0| with |M |0 ≤ |M |N. If M is embedded
we additionally have |M |N ≤ |M |T.

Corollary 1.3.12 Let M = (MT,MN,M0) and N = (NT, NN, N0) be �nite embedded constraint
index sets.

i.) The cardinality of the product of M and N is given by

|M ×N |T = |M |T · |N |T,
|M ×N |N = |M |N · |N |N,
|M ×N |0 = |M |0 · |N |0.

(1.3.23)
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ii.) The cardinality of the disjoint union of M and N is given by

|M ⊔N |T = |M |T + |N |T,
|M ⊔N |N = |M |N + |N |N,
|M ⊔N |0 = |M |0 + |N |0.

(1.3.24)

iii.) The cardinality of the tensor product of M and N is given by

|M ⊗ N |T = |M |T · |N |T,
|M ⊗ N |N = |M |N · |N |N,
|M ⊗ N |0 = |M |N · |N |0 + |M |0 · |N |N − |M |0 · |N |0.

(1.3.25)

iv.) The cardinality of the strong tensor product of M and N is given by

|M ⊠ N |T = |M |T · |N |T,
|M ⊠ N |N = |M |N · |N |N + (|M |T − |M |N) · |N |0 + |M |0 · (|N |T − |N |N),
|M ⊠ N |0 = |M |T · |N |0 + |M |0 · |N |T − |M |0 · |N |0.

(1.3.26)

v.) The cardinality of the dual of M is given by

|M∗|T = |M |T,
|M∗|N = |M |T − |M |0,
|M∗|0 = |M |T − |M |N.

(1.3.27)

vi.) The cardinality of the reduction of M is given by

|Mred| = |M |N − |M |0. (1.3.28)

For �nite embedded constraint index sets we will more suggestively write M + N for the
disjoint union and M ·N for their product.

Remark 1.3.13 The cardinality | · | yields a map from �nite embedded constraint index sets
to CN3

0 := {(nT, nN, n0) ∈ N3
0 | n0 ≤ nN ≤ nT}, and isomorphic constraint index sets have the

same cardinality. Conversely, to every n ∈ CN3
0 we can associate the �nite embedded constraint

index set ({1, . . . , n0}, {1, . . . , nN}, {1, . . . , nT}). We will often use this identi�cation implicitly
and for example write k ∈ nN instead of k ∈ {1, . . . , nN}. In particular, when we apply the
above constructions to triples of natural numbers this means we apply them to their associated
�nite embedded constraint index sets, e.g. nred = nN \ n0 = {n0 + 1, . . . , nN}.

In contrast to constraint sets, the reduction of constraint index sets does not commute with
forgetting algebraic structure. This is not surprising since forgetting to constraint index sets
also forgets the equivalence relation needed for reduction. Nevertheless, as we will see soon,
when considered as bases of constraint vector spaces the reduction of constraint index sets is
compatible and yields the correct basis of the reduced space.

Remark 1.3.14 Note that given a constraint set M = (MT,MN,∼M ) we can construct a
constraint index set out of it: Choose (using the axiom of choice) a splitting sM : Mred →MN of
the projection prM : MN →Mred, thenM ′ := (MT,MN,MN\im sM ) is a constraint index set with
M ′

red ≃ Mred. This procedure is in general not functorial, since this would require a coherent
choice of splitting for all constraint sets. Moreover, there is in general no way to reconstruct the
equivalence relation ∼M from M ′. Thus CSet and CindSet should not be considered equivalent.
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In the category Set of sets the axiom of choice is equivalent to the statement that every
epimorphism splits. Even though we assume the axiom of choice to hold in Set, this does not
imply an equivalent statement about the splitting of regular or plain epimorphisms in CindSet.

Example 1.3.15

i.) Consider the constraint embedded index sets

M =
(
{1, 2}, {1, 2}, {1}

)
and N =

(
{1, 2}, {1, 2}, {1, 2}

)
. (1.3.29)

Then f = (id, id) : M → N is an epimorphism, but it does not split since id : NN → MN

does not preserve the 0-component.

ii.) Consider the constraint index sets

M =
(
{1, 2}, {1, 2}, {1, 2}

)
and N =

(
{1}, {1, 2}, {1, 2}

)
. (1.3.30)

Then f = (1, id) : M → N is a regular epimorphism but it does not split, since there exists
no constraint morphism extending id : NN →MN.

It turns out that constraint index sets for which every regular epimorphism into them splits
are exactly the embedded constraint index sets, cf. Proposition 1.1.16.

Proposition 1.3.16 Let P ∈ CindSet be a constraint index set. Then the following statements
are equivalent:

i.) Every regular epimorphism M → P splits.

ii.) For every regular epimorphism Φ: M → N and every morphism Ψ: P → N there exists a
morphism χ : P →M such that Φ ◦ χ = Ψ.

iii.) We have P ∈ Cemb
ind Set.

Proof: The proof is completely analogous to the one of Proposition 1.1.16. □

1.3.2 Constraint Vector Spaces

Let K be a �eld. We want to study (embedded) constraint K-vector spaces in this section. On
the one hand, these will give us a �rst impression about what kind of e�ects we can expect
for free and projective constraint modules over more general constraint rings or algebras. On
the other hand, these constraint vector spaces will describe the pointwise structure given by
constraint vector bundles, which will be introduced in Section 2.2. For simplicity, we de�ne
constraint vector spaces to be embedded from the start.

De�nition 1.3.17 (Constraint vector space) Let K be a �eld.

i.) An embedded constraint K-module is called constraint vector space over K.

ii.) The category of constraint K-vector spaces is denoted by CVectK.

Thus a constraint vector space V simply consists of a K-vector space VT together with
subspaces V0 ⊆ VN ⊆ VT. It is now easy to see that every constraint vector space is free in the
following sense:

Proposition 1.3.18 (Constraint vector spaces are free) Every constraint K-vector space
is free, i.e. there exists a constraint subset i : B ↪→ V such that for every constraint map
ϕ : B →W there exists a unique linear constraint map Φ: V →W such that Φ ◦ i = ϕ.

Proof: Choose a basis for V0 and extend it successively to VN and VT. □
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We will call such a constraint subset i : B ↪→ V a constraint basis of V . Since for vector
spaces the cardinality of all bases agree, the same is true for constraint vector spaces, allowing
us to de�ne the dimension of a constraint vector space by

dim(V ) :=
(
dim(VT), dim(VN), dim(V0)

)
. (1.3.31)

As usual we call V �nite dimensional if dim(V ) is a �nite constraint index set.

Example 1.3.19 For n0 ≤ nN ≤ nT ∈ N0 there is a constraint vector spaceRn := (RnT ,RnN ,Rn0).
By Proposition 1.3.18 every �nite dimensional constraint vector space is of this form.

Let us quickly recall some constructions for constraint vector spaces, known already from
constraint modules. Since we only consider K-vector spaces, we drop the index for the tensor
products.

Proposition 1.3.20 Let V,W ∈ CVectK be �nite dimensional constraint vector spaces and let
BV and BW be constraint bases of V and W , respectively.

i.) BV ⊔BW is a constraint basis for

V ⊕W = (VT ⊕WT, VN ⊕WN, V0 ⊕W0) (1.3.32)

and we have dim(V ⊕W ) = dim(V ) + dim(W ).

ii.) BV ⊗ BW is a constraint basis for

V ⊗W = (VT ⊗WT, VN ⊗WN, VN ⊗W0 + V0 ⊗WN) (1.3.33)

and we have dim(V ⊗W ) = dim(V )⊗ dim(W ).

iii.) BV ⊠ BW is a constraint basis for

V ⊠W =
(
VT⊗WT, (VN⊗WN)+(VT⊗W0)+(V0⊗WT), (VT⊗W0)+(V0⊗WT)

)
(1.3.34)

and we have dim(V ⊠W ) = dim(V )⊠ dim(W ).

iv.) (BV )
∗, i.e. the constraint dual set of BV , is a constraint basis for

V ∗ = CHomK(V,K) =
(
(VT)

∗, AnnVT(V0), AnnVT(VN)
)
, (1.3.35)

where AnnVT(V0) and AnnVT(VN) denote the annihilators of V0 and VN considered as sub-
spaces of (VT)

∗ and we have dim(V ∗) = dim(V )∗.

Proof: These are all simple checks. For iv.) recall that by the de�nition of constraint internal
hom we have

(V ∗)N = {α ∈ (VT)
∗ | α(VN) ⊆ K, α(V0) ⊆ 0} = AnnVT(V0)

since K = (K,K, 0) as a constraint vector space. Similarly,

(V ∗)0 = {α ∈ (VT)
∗ | α(VN) ⊆ 0} = AnnVT(VN).

Note that we use the identi�cation of dim(V ) and dim(W ) with �nite embedded constraint
index sets as well as their compositions from De�nition 1.3.8. □

In the following we check some of the well-known compatibilities of dualizing with the dif-
ferent notions of tensor products.
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Proposition 1.3.21 Let V,W ∈ CVectK be �nite dimensional constraint vector spaces.

i.) We have canonically
(V ⊕W )∗ ≃ V ∗ ⊕W ∗ (1.3.36)

and therefore dim
(
(V ⊕W )∗

)
= dim(V )∗ + dim(W )∗.

ii.) We have canonically
(V ⊗W )∗ ≃ V ∗ ⊠W ∗ (1.3.37)

and therefore dim
(
(V ⊗W )∗

)
= dim(V )∗ ⊠ dim(W )∗.

iii.) We have canonically
(V ⊠W )∗ ≃ V ∗ ⊗W ∗ (1.3.38)

and therefore dim
(
(V ⊠W )∗

)
= dim(V )∗ ⊗ dim(W )∗.

iv.) We have canonically
CHom(V,W ) ≃W ⊠ V ∗ (1.3.39)

and therefore dim
(
CHom(V,W )

)
= dim(W )⊠ dim(V )∗.

Proof: Except for iv.) these can be shown by choosing constraint dual bases of V and W and
the use of Proposition 1.3.20. Then the dimensions follow from Corollary 1.3.12. For the last
part note that for w ⊗ α ∈ WT ⊗ V ∗

0 +W0 ⊗ V ∗
T we have (w ⊗ α)(v) = w · α(v) ∈ W0 for all

α ∈ VN. With this it is easy to see that BW ⊠ (BV )
∗ is a basis for CHom(V,W ). □

This result shows that the two tensor products ⊗ and ⊠ are intimately linked. In particular,
(1.3.37) shows that we could have deduced ⊠ from ⊗ by de�ning V ⊠ W := (V ∗ ⊗ W ∗)∗, at
least in the �nite-dimensional case. Moreover, by de�nition, these tensor products are related
by an injective morphism

V ⊗W ↪→ V ⊠W, (1.3.40)

and they distribute in the sense that there exists a morphism

U ⊗ (V ⊠W ) → (U ⊗ V )⊠W. (1.3.41)

Both morphisms are not isomorphisms in general, as the next example shows:

Example 1.3.22 Consider the constraint vector space Rn = (R3,R2,R1) from Example 1.3.19
with n = (3, 2, 1).
i.) Then it holds that

dim(Rn ⊗ Rn) = n⊗ n = (9, 4, 3) (1.3.42)

and

dim(Rn ⊠ Rn) = n⊠ n = (9, 6, 5) (1.3.43)

by Proposition 1.3.20 and Corollary 1.3.12. Thus Rn ⊗ Rn and Rn ⊠ Rn cannot be
isomorphic.

ii.) We have

dim(Rn ⊗ (Rn ⊠ Rn)) = n⊗ (n⊠ n) = (27, 12, 11) (1.3.44)

and

dim
(
(Rn ⊗ Rn)⊠ Rn

)
= (n⊗ n)⊠ n = (27, 16, 15). (1.3.45)

This shows that Rn ⊗ (Rn ⊠ Rn) and (Rn ⊗ Rn)⊠ Rn are not isomorphic.

Remark 1.3.23 The relations between ⊗ and ⊠ can be derived from the fact that CVectK
together with ⊗ and · ∗ forms a ∗-autonomous category, see [Bar79].
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1.4 Constraint Algebras and Modules

In this section we will de�ne our main objects of interest: constraint algebras and their modules.
Following our philosophy to construct new constraint notions as objects internal to certain
constraint categories, we will de�ne constraint algebras as monoids internal to the categories of
constraint k-modules introduced in Section 1.4.1. Since CModk carries two di�erent monoidal
structures, this will lead to the de�nitions of constraint algebras in Section 1.4.1 and strong
constraint algebras in Section 1.4.2. In both cases we can also consider the subcategories of
embedded constraint k-modules which lead to embedded (strong) constraint algebras. In these
sections we will also introduce the corresponding notion of (strong) constraint modules over
(strong) constraint algebras.

1.4.1 Constraint Algebras and their Modules

The following de�nition is just a reformulation of monoids internal to (CModk,⊗k), cf. Ap-
pendix A.4 for the de�nition of monoids internal to a monoidal category.

De�nition 1.4.1 (Constraint algebra)

i.) A constraint k-algebra is a triple A = (AT,AN,A0) consisting of unital associative k-
algebras AT and AN together with a two-sided ideal A0 ⊆ AN and a unital algebra homo-
morphism ι : AN → AT.

ii.) A morphism ϕ : A → B of constraint k-algebras is given by a pair of unital algebra
homomorphisms ϕT : AT → BT and ϕN : AN → BN such that ιB ◦ ϕN = ϕT ◦ ιA and
ϕN(A0) ⊆ B0.

iii.) The category of constraint k-algebras is denoted by CAlgk.

When the underlying ring k is clear from context, we will write simply CAlg for the category
of constraint algebras.

Example 1.4.2 Let M ∈ CSet be a constraint set.
i.) Consider the ring k as a constraint set (k,k,∼dis). Then CMap(M,k) is a constraint

algebra given by

CMap(M,k)T = Map(M,k),

CMap(M,k)N = {f ∈ Map(MT,k) | f(ιM (x)) = f(ιM (y)) for all x ∼M y},
CMap(M,k)0 =

{
f ∈ Map(MT,k)

∣∣ f ∣∣
im ιM

= 0
}
.

(1.4.1)

ii.) Every ring k can be seen as a constraint algebra k = (k,k, 0).

iii.) Let V be a constraint vector space over a �eld K. Then CEnd(V ) is a constraint algebra
with respect to composition of constraint morphisms.

Since CModk is a symmetric monoidal category, we can de�ne commutative constraint alge-
bras. In this case we can de�ne a constraint version of the center.

Proposition 1.4.3 (Constraint center) Let k be a commutative ring and let A ∈ CAlg be a
constraint algebra. Then Z(A), de�ned by

Z(A)T := Z(AT),

Z(A)N := Z(AN),

Z(A)0 := Z(AN) ∩ A0,

(1.4.2)

is a commutative constraint algebra, the center of A.
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From an algebraic point of view it is natural to study modules over constraint algebras. Since
Example 1.4.2 i.) shows that constraint algebras encode the algebraic structure of functions on
a space allowing for reduction and vector bundles should correspond to certain modules, the
next de�nition is also interesting from a geometric standpoint.

De�nition 1.4.4 (Modules over constraint algebras) Let A,B ∈ CAlg be constraint alge-
bras.

i.) A constraint right A-module is a constraint k-module E = (ET, EN, E0) with a right AT-
module structure on ET and a right AN-module structure on EN such that E0 ⊆ EN is an
AN-submodule, ιE : EN → ET is an AN-module morphism and EN · A0 ⊆ E0.

ii.) A constraint left B-module is a constraint k-module E = (ET, EN, E0) with a left BT-
module structure on ET and a left BN-module structure on EN such that E0 ⊆ EN is an
BN-submodule, ιE : EN → ET is an BN-module morphism and B0 · EN ⊆ E0.

iii.) A constraint (B,A)-bimodule is a constraint k-module E = (ET, EN, E0) with commuting
constraint left B- and right A-module structures.

iv.) A morphism Φ: E → F between constraint left-/right-/bi-modules is a pair (ΦT,ΦN) of
left-/right-/bi-module morphisms ΦT : ET → FT and Φ: EN → FN such that ΦT◦ιE = ιF◦ΦN

and ΦN(E0) ⊆ F0.

v.) The categories of constraint right A-modules, left B-modules and (B,A)-bimodules are
denoted by CModA, CModB and CBimod(B,A), respectively.

Again, this de�nition can also be understood as modules internal to the monoidal category
(CModk,⊗k). As we would expect, right A-modules can be understood as (k,A)-bimodules,
writing again k = (k,k, 0), and similarly for left modules. Moreover, constraint k-modules as
de�ned in Section 1.2 are nothing but constraint (k,k)-bimodules.

We will not go into details of the construction of limits and colimits for modules over con-
straint algebras here. Su�ce to say that the underlying constraint k-modules are given by the
corresponding construction from Section 1.2 and the A-module structures on the respective com-
ponents are the obvious ones. Since the tensor product of constraint modules over a constraint
algebra will be important later on, we spell it out in detail.

Proposition 1.4.5 (Tensor product of constraint modules) Let A,B, C ∈ CAlg be given
and let F ∈ CBimod(C,B) as well as E ∈ CBimod(B,A) be constraint bimodules. Then the
constraint (C,A)-bimodule F⊗B E is given by

(F⊗B E)
T
= FT ⊗BT

ET,

(F⊗B E)
N
= FN ⊗BN

EN,

(F⊗B E)
0
= FN ⊗BN

E0 + F0 ⊗BN
EN,

(1.4.3)

with ι⊗ = ιF ⊗ ιE.

Proof: Denote by λ : B ⊗k E → E the left B-multiplication on E and by ρ : F ⊗k B → F
the right B-multiplication on F. Then F ⊗B E is de�ned as the coequalizer of idF ⊗λ and
ρ ⊗ idE as constraint morphisms from F ⊗⊗k B ⊗k E to F ⊗k E. Applying Proposition 1.2.22
and Proposition 1.2.15 vi.) gives the desired result. □

With this tensor product we can construct a bicategory of constraint modules analogous to
the classical bicategory of bimodules, see [JY21] for a modern treatment of bicategories.
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Proposition 1.4.6 (The bicategory CBimod) Using constraint algebras as objects, constraint
bimodules as 1-morphisms, morphisms of constraint bimodules as 2-morphisms and the tensor
product of constraint modules as composition de�nes a bicategory CBimod.

Remark 1.4.7 In classical algebra two algebras A and B are considered to be Morita equivalent
if their respective categories of representations, i.e. their categories of (right-)modules, are
equivalent. This can then be reformulated to the fact that A and B are equivalent internal to
Bimod, meaning that there exists an invertible 1-morphism between A and B. It turns out that
these invertible 1-morphisms are given by �nitely generated projective full (B,A)-bimodules.
The bicategory CBimod now opens up a way to study Morita theory of constraint algebras by
de�ning constraint algebras to be Morita equivalent if they are equivalent internal to CBimod.
In order to characterize constraint Morita equivalence bimodules it seems reasonable to study
�nitely generated projective constraint modules �rst. Even though we will not be concerned
with Morita theory this can be seen as a motivation for Section 1.5. The Morita theory of
a subcategory of constraint algebras has been studied in [Dip18; DEW19] under the name of
Morita equivalence for coisotropic algebras. There you can also �nd a more detailed construction
of CBimod.

The internal hom of constraint k-modules carries over to a constraint module structure on
the homomorphisms of constraint modules over constraint algebras.

Proposition 1.4.8 (Module structure on module morphisms) Let A and B be constraint
algebras and let E ∈ CBimod(B,A) as well as F ∈ CBimod(C,A). Then the right A-module
morphisms form a constraint (C,B)-bimodule given by

CHomA(E,F)T := HomAT
(ET,FT),

CHomA(E,F)N :=
{
(ΦT,ΦN) ∈ HomAT

(ET,FT)×HomAN
(EN,FN) |

ΦT ◦ ιE = ιF ◦ ΦN and ΦN(E0) ⊆ F0

}
,

CHomA(E,F)0 := {Φ ∈ CHomA(E,F)N | ΦN(EN) ⊆ F0}.

(1.4.4)

With this proposition it is clear that the categories CModB and CModA of constraint left and
right modules are enriched over CModk. Moreover, we can de�ne duals for constraint modules.

De�nition 1.4.9 (Dual module) Let A ∈ CAlg and E ∈ CModA. We call the constraint left
A-module E∗ := CHomA(E,A) the dual module of E.

To give a �rst example of a constraint module over a constraint algebra we introduce the
notion of derivations of constraint algebras.

De�nition 1.4.10 (Derivation) Let A ∈ CAlg be a constraint algebra and let M ∈ CBimod(A,A)
be an A-bimodule. A derivation with values in M is a morphism D : A −→ M of constraint
k-modules such that

D ◦ µ = ℓ ◦ (id⊗D) + r ◦ (D ⊗ id) (1.4.5)

holds, where r and ℓ denote the right and left A-multiplications of M, respectively, and µ is the
multiplication of A. The set of derivations will be denoted by Der(A,M). If M = A we write
Der(A).

Lemma 1.4.11 Let A ∈ CAlg be a constraint algebra and let M ∈ CBimod(A,A) be an A-
bimodule. A derivation D = (DT, DN) with values in M is a morphism of constraint k-modules
such that

DT(ab) = aDT(b) +DT(a)b (1.4.6)
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holds for all a, b ∈ AT and
DN(ab) = aDN(b) +DN(a)b (1.4.7)

holds for all a, b ∈ AN.

Proof: This is exactly the componentwise evaluation of (1.4.5) on elements. □

We can arrange the constraint derivations as a constraint submodule of the internal homo-
morphism CHomk(A,M) as follows.

Proposition 1.4.12 (k-module of derivations) Let A ∈ CAlg be a constraint algebra and
let M ∈ CBimod(A,A) be a constraint A-bimodule. Then

CDer(A,M)T := Der(AT,MT),

CDer(A,M)N :=
{
(DT, DN) ∈ Homk(A,M)

∣∣ DT ∈ Der(AT,MT),

DN ∈ Der(AN,MN)
}
,

CDer(A,M)0 :=
{
(DT, DN) ∈ Der(A,M)N

∣∣ DN(AN) ⊆ M0

} (1.4.8)

de�nes a constraint k-module CDer(A,M).

One needs to be careful with the notation, since Der(A) has di�erent meanings depending
on whether A is a constraint or a classical algebra. Also note that CDer(A,M)N = Der(A,M)
is just the set of derivations of a constraint algebra A with values in the constraint module M
as given in De�nition 1.4.10. The constraint k-module of derivations on A with values in A is
denoted by CDer(A).

As for classical algebras the derivations turn out to be a bimodule if the algebra is commu-
tative:

Corollary 1.4.13 (A-module of derivations) Let A ∈ CAlg be a commutative constraint
algebra. Then CDer(A) is a constraint A-bimodule.

1.4.1.1 Embedded Constraint Algebras and their Modules

The subcategory of constraint algebras A with injective ιA : AN → AT will be denoted by
CembAlg.

Corollary 1.4.14 Let A ∈ CembModk be a constraint module. Then a monoid structure on
A internal to (CembModk,⊗emb

k
) is equivalently given by an algebra structure on AT such that

AN ⊆ AT is a subalgebra and A0 ⊆ AN is a two-sided ideal.

Proof: This is clear by the de�nition of ⊗emb
k

in Proposition 1.2.24. □

In other words, CembAlg is exactly the category of monoids internal to CembModk with
tensor product ⊗emb

k
. Again by Proposition 1.2.24 it is easy to see that CembAlg is a re�ective

subcategory of CAlg. Unsurprisingly, we will call such algebras embedded.

Example 1.4.15

i.) Let M ∈ CSet be a constraint set. Then the constraint algebra Map(M,k), as already
considered in Example 1.4.2 i.), is embedded. This can be understood as a consequence
of k = (k,k, 0) being an embedded constraint algebra, see also Proposition 1.1.22.
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ii.) LetM ∈ CstrSet be a strong constraint set. Then CstrMap(M,k) is an embedded constraint
algebra given by

CstrMap(M,k)T = Map(MT,k),

CstrMap(M,k)N = {f ∈ Map(MT,k) | f(x) = f(y) for all x ∼T
M y},

CstrMap(M,k)0 =
{
f ∈ CstrMap(M,k)N

∣∣ f ∣∣
im ιM

= 0
}
.

(1.4.9)

iii.) Let M ∈ Cemb
str Set be an embedded strong constraint set with inclusion MN ⊆ MT. Then

CstrMap(M,k)N is the subalgebra of functions constant along the equivalence classes of
∼T
M and CstrMap(M,k)0 is the intersection of this subalgebra with the vanishing ideal of

MN.

Remark 1.4.16 In [DEW19] so called coisotropic triples of algebras were considered. These
are embedded constraint algebras with the additional property of A0 being a left ideal in AT.
Note, that CstrMap(M,k) from Example 1.4.15 iii.) is not of this form, since CstrMap(M,k)0
is not an ideal in AT.

Considering embedded constraint bimodules leads to the bicategory CembBimod. Since we
will not need the full bicategory, let us stick to the following situation:

Proposition 1.4.17 (The category CembBimod(A)) Let A ∈ CembAlg be given.

i.) The category CembBimod(A) is a re�ective subcategory of CBimod(A) with re�ector
·emb : CBimod(A) → CembBimod(A) given by

Eemb := (ET, ιE(EN), ιE(E0)). (1.4.10)

ii.) The subcategory CembBimod(A) is closed under �nite limits.

iii.) CembBimod(A) is closed monoidal with respect to ⊗emb
A de�ned by

E ⊗emb
A F := (E ⊗A F)emb. (1.4.11)

iv.) The functor · emb : (CBimod(A),⊗A) → (CembBimod(A),⊗emb
A ) is monoidal, and the func-

tor U : (CembBimod(A),⊗emb
A ) → (CBimod(A),⊗A) is lax monoidal.

Proof: The proof is completely analogous to the one of Proposition 1.2.24. More conceptually,
one could carry over the monoidal adjunction from Proposition 1.2.24 to realize CembBimod
as a re�ective sub-bicategory of CBimod. Then CembBimod(A) is automatically a re�ective
subcategory of CBimod(A). □

1.4.1.2 Reduction

By the de�nition of constraint algebras internal to the monoidal category (CModk,⊗k) together
with the fact that red: CModk → Modk is monoidal it induces a reduction functor

red: CAlg → Alg (1.4.12)

given by Ared = AN/A0.
Similarly, we obtain an induced reduction functor on constraint bimodules. For the sake of

exposition let us spell this out.
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Proposition 1.4.18 (Reduction of constraint bimodules)

i.) Let A,B ∈ CAlg be constraint algebras and E ∈ CBimod(B,A). Then Ered = EN/E0 is a
(Bred,Ared)-bimodule.

ii.) Reduction de�nes a functor of bicategories red: CBimod → Bimod to the bicategory of
algebras and bimodules.

iii.) Let A ∈ CAlg be a constraint algebra. The functor red: CModA → ModAred
is lax closed

with injective natural transformation red ◦ CHomA ⇒ HomAred
◦(red× red).

Proof: Since B0 · EN ⊆ E0 and EN · A0 ⊆ E0 hold by de�nition of a constraint bimodule, we
get a well-de�ned (Bred,Ared)-bimodule structure on Ered. The proof of the second part can be
found, for the special case of embedded constraint algebras with A0 ⊆ AT a left ideal, in detail
in [Dip18; DEW19]. This proof directly carries over to our situation. For the last part it is easy
to see that there is a morphism CHomA(E,F)N → CHomAred

(Ered,Fred) whose kernel is exactly
given by CHomA(E,F)0, cf. Proposition 1.2.26. □

The reduction of constraint left or right modules is then to be understood as a special case
of reduction of bimodules. In particular we get from Proposition 1.4.18 also the existence of
reduction functors

red: CModA → ModAred
(1.4.13)

and
red: CModB → ModBred

. (1.4.14)

Example 1.4.19 Let A ∈ CAlg be given. Every (DT, DN) ∈ Der(A)N de�nes a derivation on
Ared = AN/A0 since the condition DN(A0) ⊆ A0 is automatically satis�ed. Hence we have a k-
linear map CDer(A)N → Der(Ared). The kernel of this linear map is exactly given by CDer(A)0,
thus there exists an injective module homomorphism

CDer(A)red ↪→ Der(Ared). (1.4.15)

This is simply the restriction of the canonical morphism CHomk(A,A)red ↪→ Homk(Ared,Ared)
from Proposition 1.2.26 to the submodule CDer(A)red.

Example 1.4.20 Our notion of a constraint algebra generalizes and uni�es previous notions
used in non-commutative geometry referring to features of the derivations:
i.) A submanifold algebra in the sense of [Mas96] and [DAn20] can equivalently be described

as a constraint algebra A with AT = AN such that the canonical module morphism (1.4.15)
is an isomorphism.

ii.) A quotient manifold algebra in the sense of [Mas96] can equivalently be described as a
constraint algebra A with AN ⊆ AT a subalgebra and A0 = 0 such that Z(Ared) ≃
Z(A)red, Der(Ared) ≃ CDer(A)red via (1.4.15) and

AN = {a ∈ AT | DT(a) = 0 for all (DT, DN) ∈ CDer(A)0} (1.4.16)

holds. Here Z(A) denotes the constraint center of the constraint algebra A, see Proposi-
tion 1.4.3.

1.4.2 Strong Constraint Algebras and their Modules

We replace now the tensor product ⊗k on CModk by the strong tensor product ⊠k. Even though
in later chapters we will only need the embedded situation, let us, for conecptual reasons, quickly
introduce non-embedded strong constraint algebras and modules.
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De�nition 1.4.21 (Strong constraint algebra)

i.) A strong constraint algebra is a monoid object internal to the category CstrModk equipped
with the strong tensor product ⊠k.

ii.) The category of strong constraint algebras is denoted by CstrAlg.

Despite being conceptually clear, we need to unwrap the de�nition in order to be able to
actually work with it. We expect a strong constraint algebra to resemble a constraint algebra
A with the additional property that A0 behaves like a two-sided ideal in AT. For embedded
algebras this will be true, but if ιA : AN → AT is not injective, it will turn out to be more
complicated.

Proposition 1.4.22 Let A,B ∈ CstrModk and f : A → B a morphism of constraint k-
modules.

i.) The structure of a strong constraint algebra on A is equivalently given by the following
data:

a.) an algebra structure (µT, 1T) on AT,

b.) an algebra structure (µNN
N , 1NN

N ) on AN,

c.) an (AT,AT)-bimodule structure (µT0
N , µ

0T
N ) on A0,

such that

d.) ιA : AN → AT is an algebra homomorphism,

e.) ιA
∣∣
A0

: A0 → AT is a morphism of (AT,AT)-bimodules,

f.) the (AN,AN)-bimodule structure on A0 de�ned by (µT0
N ◦ (ιA ⊗ id), µ0T

N ◦ (id⊗ιA))
agrees with the one de�ned by the restriction of µNN

N .

ii.) The morphism f being a morphism of strong constraint algebras is equivalent to the follow-
ing properties:

a.) fT : AT → BT is an algebra homomorphism.

b.) fN : AN → BN is an algebra homomorphism.

c.) fN
∣∣
A0

: A0 → B0 is a morphism of (AT,AT)-bimodules.

Proof: Consider constraint k-module maps µ = (µT, µN) : A ⊠k A → A and 1: (k,k, 0) → A.
Then by Lemma 1.2.29 we know that µ is given by

µT : AT ⊗k AT → AT, µNN
N : AN ⊗k AN → AN,

µT0
N : AT ⊗k A0 → A0, µ0T

N : A0 ⊗k AT → A0.

Writing out the associativity and unit diagrams of De�nition A.4.6 in terms of these maps
we obtain a k-algebra structure on AT by considering µT and 1T. Similarly, µNN

N and 1NN
N

yield the algebra structure on AN and µT0
N , µ0T

N give the right- and left module structure on
A0, respectively. The compatibilities are then required to turn everything into morphisms of
constraint modules. The second part follows directly by spelling out De�nition A.4.8 in terms
of the di�erent components. □

Strong constraint algebras were de�ned as internal monoids with respect to ⊠k. Continuing,
we obtain strong constraint modules internal to (CstrModk,⊠k).
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De�nition 1.4.23 (Modules over strong constraint algebras) Let A,B ∈ CstrAlg be strong
constraint algebras.

i.) A strong constraint (B,A)-bimodule is a (B,A)-bimodule internal to the monoidal cate-
gory (CstrModk,⊠k).

ii.) A strong constraint left B-module is a strong constraint (B,k)-module.

iii.) A strong constraint right A-module is a strong constraint (k,A)-module.

iv.) The categories of strong constraint right A-modules, left B-modules and (B,A)-bimodules
are denoted by CstrModA, CstrModB and CstrBimod(B,A), respectively.

We will denote the set of constraint morphisms between strong constraint right A-modules
E and F by HomA(E,F).

Let us take a closer look at strong constraint right A-modules for a strong constraint algebra
A. The structure for left- and bimodules then follows analogously.

Proposition 1.4.24 Let A ∈ CstrAlg and E ∈ CstrModk. Then the structure of a strong con-
straint right A-module on E is equivalently given by the following data:

i.) an AT-module structure ρT : ET ⊗k AT → ET on ET,

ii.) an AN-module structure ρNN
N : EN ⊗k AN → EN on EN,

iii.) an AT-module structure ρ0T
N : E0 ⊗k AT → E0 on E0,

iv.) a morphism ρT0
N : ET ⊗k A0 → E0 of right AT- and AN-modules,

such that

v.) ιE : EN → ET is a morphism of right AN-modules,

vi.) E0 ⊆ EN is an AN-submodule,

vii.) ιE
∣∣
E0
: E0 → ET is a morphism of AT-modules.

Proof: A strong constraint right A-module E is given by a constraint k-module E together
with a constraint map ρ : E ⊠k A → A ful�lling the usual axioms for a right action, see De�-
nition A.4.11. By Proposition 1.2.27 and the fact that the strong tensor product is given by a
colimit, see (1.2.40), the map ρN is equivalently described by k-module morphisms

ρNN
N : EN ⊗k AN → EN, ρT0

N : ET ⊗k A0 → E0, and ρ0T
N : E0 ⊗k AT → E0,

ful�lling

ρT0
N (ιE(x), a) = ρNN

N (x, a) for all x ∈ EN, a ∈ A0,

ρ0T
N (x, ιA(a)) = ρNN

N (x, a) for all x ∈ E0, a ∈ AN.

From the fact that ρ de�nes a module structure on E it follows directly that ρT and ρT0
N de�ne

right AT-module structures on ET and E0, respectively. Moreover, EN becomes a right AN-module
via ρNN

N . □

The strong tensor product of strong constraint k-modules now carries over to strong con-
straint A-modules. The following is a reformulation of the tensor product of internal modules,
see Proposition A.4.18, internal to (CModk,⊠k) and spelled out in components.
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Proposition 1.4.25 (Strong tensor product of strong constraint modules) Let A,B and
C be strong constraint algebras and let F ∈ CstrBimod(C,B) and E ∈ CstrBimod(B,A) be strong
constraint bimodules. Then the strong constraint (C,A)-bimodule F⊠B E is given by

(F⊠B E)T := FT ⊗BT
ET,

(F⊠B E)N :=
(FN ⊗BN

EN)⊕ (F0 ⊗BT
ET)⊕ (FT ⊗BT

E0)

IB
F,E

,

(F⊠B E)0 :=

(
F0 ⊗BN

EN + FN ⊗BN
E0

)
⊕ (F0 ⊗BT

ET)⊕ (FT ⊗BT
E0)

IB
F,E

,

(1.4.17)

with

IB
F,E := span

k
{(x0 ⊗ y, 0, 0)− (0, x0 ⊗ ιE(y), 0) | x0 ∈ F0, y ∈ EN}

+ span
k
{(x⊗ y0, 0, 0)− (0, 0, ιF(x)⊗ y0) | x ∈ FN, y0 ∈ E0}.

(1.4.18)

1.4.2.1 Embedded Strong Constraint Algebras and their Modules

Let A ∈ CstrAlg be a strong constraint algebra with multiplication µ : A⊠kA → A. If ιA : AN →
AT is injective, then µNN

N , µ0T
N and µT0

N are completely determined by µT. Hence in this case the
notion of strong constraint algebras simpli�es drastically.

Corollary 1.4.26 Let A ∈ CembModk. Then a strong constraint algebra structure on A is
equivalently given by an algebra structure on AT such that AN ⊆ AT is a subalgebra and A0 ⊆ AT

is a two-sided ideal with A0 ⊆ AN.

Note that non-embedded strong constraint algebras carry additional structure with respect
to constraint algebras, while embedded strong constraint algebras do not. They just ful�l the
additional property of A0 being a two-sided ideal in AT.

Example 1.4.27

i.) Let M ∈ CembSet be an embedded constraint set. Then CMap(M,k) is an embedded
strong constraint algebra, cf. Example 1.4.15 i.).

ii.) Let M ∈ Cemb
str Set be an embedded strong constraint set. Then CstrMap(M,k) is an em-

bedded constraint algebra which is in general not strong constraint, since CstrMap(M,k)0
is not a two-sided ideal in CstrMap(M,k)T in general, cf. Example 1.4.15 iii.).

Remark 1.4.28 Non-commutative examples of constraint algebras will rarely be strong, see
e.g. the coisotropic creed in [Lu93]. We will come back to this in Chapter 3.

Let us now turn to modules. We call a strong constraint bimodule E embedded if ιE is
injective, and we denote the category of embedded strong constraint (B,A)-bimodules by
Cemb
str Bimod(B,A), etc. In this case the various left and right multiplications in Proposi-

tion 1.4.24 are determined by their T-components. This gives the following characterization:

Lemma 1.4.29 Let A,B ∈ Cemb
str Alg and E ∈ Cemb

str Mod
k
. Then the structure of a strong

constraint (B,A)-module is equivalently given by a (BT,AT)-bimodule structure on ET such that

i.) EN ⊆ ET is a (BN,AN)-submodule,

ii.) E0 ⊆ ET is a (BT,AT)-submodule,

iii.) E0 ⊆ EN is a (BN,AN)-submodule.
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Similarly to embedded strong constraint algebras also embedded strong constraint modules
are just constraint modules with an additional property instead of additional structure as in the
non-embedded situation.

Lemma 1.4.30 Let A,B ∈ Cemb
str Alg and let E,F ∈ Cemb

str Bimod(B,A) be strong constraint
bimodules. Then a bimodule morphism Φ: E → F is equivalently given by a (BT,AT)-bimodule
morphism ΦT : ET → FT such that ΦT(EN) ⊆ FN and ΦT(E0) ⊆ F0.

Since constraint morphisms of embedded constraint modules are determined by their be-
haviour on the T-components, it is clear that also CHomA(E,F) is embedded if E and F are
embedded.

Proposition 1.4.31 Let A,B, C ∈ Cemb
str Alg be embedded strong constraint algebras and let E ∈

Cemb
str Bimod(B,A) as well as F ∈ Cemb

str Bimod(C,A) be embedded strong constraint bimodules.
Then the right A-module morphisms CHomA(E,F) form an embedded strong constraint (C,B)-
bimodule.

Proof: It is clear that CHomA(E,F) is an embedded constraint (C,B)-bimodule. To see that
it is a strong bimodule, consider Φ ∈ CHomA(E,F)0 and c ∈ CT. Then for all x ∈ EN we have
(c · Φ)(x) = c · Φ(x) ∈ CT · F0 ⊆ F0 and thus c · Φ ∈ CHomA(E,F)0. Analogously, we obtain
Φ · b ∈ CHomA(E,F) for all b ∈ BT. □

Even though for a strong constraint module E ∈ CstrBimod(B,A) the constraint endomor-
phisms CEndA(E) = CHomA(E, E) form a strong constraint module, they will in general not
be a strong constraint algebra, since the composition of Φ ∈ CEndA(E)T with Ψ ∈ CEndA(E)0
might not end up in the 0-component. Nevertheless, CEndA(E) is still a constraint algebra with
respect to composition.

By Proposition 1.4.31 the dual module E∗ = CstrHomA(E,A) in particular is an embedded
strong constraint module. It is also easy to see that the direct sum E ⊕ F of two embedded
strong constraint algebras is again embedded strong constraint.

Proposition 1.4.32 Let A,B ∈ Cemb
str Alg and E,F ∈ Cemb

str Bimod(B,A). Then there exists a
canonical isomorphism

(E ⊕ F)∗ ≃ E∗ ⊕ F∗ (1.4.19)

of embedded strong constraint (B,A)-bimodules.

Proof: The bimodule morphism Φ: E∗
T⊕F∗

T → (E⊕F)∗T given by Φ(α+β)(v+w) := α(v)+β(w)
for all α ∈ E∗, β ∈ F∗, v ∈ E and w ∈ F is invertible, with inverse given by Φ−1(η) =
(η ◦ iE, η ◦ iF). Here iE and iF denote the canonical inclusions of E and F in E ⊕F. It is now a
straightforward proof to show that both Φ and Φ−1 are constraint morphisms. □

The strong tensor product of two embedded strong constraint modules will in general not be
embedded. In other words, Cemb

str Bimod(A) is not a monoidal subcategory of (CstrBimod(A),⊠A),
nevertheless, it carries enough structure to transfer⊠A to a monoidal structure on Cemb

str Bimod(A),
similar to Proposition 1.2.31:

Proposition 1.4.33 (The category Cemb
str Bimod(A)) Let A ∈ Cemb

str Alg be given.

i.) The category Cemb
str Bimod(A) is a re�ective subcategory of CstrBimod(A) with re�ector

·emb : CstrBimod(A) → Cemb
str Bimod(A) given by

Eemb := (ET, ιE(EN), ιE(E0)). (1.4.20)
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ii.) The subcategory Cemb
str Bimod(A) is closed under �nite limits.

iii.) The category Cemb
str Bimod(A) is monoidal with respect to ⊠emb

A de�ned by

E ⊠emb
A F := (E ⊠A F)emb. (1.4.21)

iv.) The functor · emb : (CstrBimod(A),⊠A) → (Cemb
str Bimod(A),⊠emb

A ) is monoidal, and the
functor U : (Cemb

str Bimod(A),⊠emb
A ) → (CstrBimod(A),⊠A) is lax monoidal.

Proof: The properties v.) to vii.) from Proposition 1.4.24 ensure that Eemb is an embedded
strong constraint module as in Lemma 1.4.29. With this i.) is clear, and ii.) follows directly.
Part iii.) and iv.) follow again from Day's re�ection theorem, see Theorem A.5.3. For this we
only need to see that (ηE ⊗ ηF)

emb : (E ⊠A F)emb → (Eemb ⊠A Femb)emb, with ηE : E → Eemb

given by (ηE)T = idET and (ηF)N(x) = ιE(x), is an isomorphism for all E,F ∈ CstrBimod(A).
This is clear since

(ηE ⊗ ηF)
emb
(
ιE(x)⊗ ιF(y)

)
= ιE(x)⊗ ιF(y). □

This embedded strong constraint tensor product resembles the motivating formulas for the
strong tensor product, see (1.2.35) and (1.2.36):

Corollary 1.4.34 Let A ∈ Cemb
str Alg, and let E,F ∈ Cemb

str Bimod(A) be A-bimodules. Then we
have

(E ⊠emb
A F)T = ET ⊗AT

FT,

(E ⊠emb
A F)N = EN ⊗AT

FN + E0 ⊗AT
FT + ET ⊗AT

F0,

(E ⊠emb
A F)0 = E0 ⊗AT

FT + ET ⊗AT
F0.

(1.4.22)

Having the strong tensor product and duals at hand, we obtain a canonical morphism re-
sembling Proposition 1.3.21 iv.) from constraint vector spaces.

Proposition 1.4.35 Let A ∈ Cemb
str Alg and let E,F ∈ Cemb

str Bimod(A) be A-bimodules. Then

FT ⊗AT
E∗
T ∋ y ⊗ α 7→ (x 7→ y · α(x)) ∈ HomAT

(ET,FT) (1.4.23)

de�nes a constraint morphism F⊠emb
A E∗ → CHomA(E,F)T.

Proof: The map (1.4.23) is the canonical AT-module morphism from classical algebra. To show
that it is a constraint A-module morphism consider �rst y⊗ α ∈ (F⊠emb E∗)0 = F E∗. Here
we use the notation introduced in Notation 1.3.10. If x ∈ EN, then y ·α(x) ∈ F0 ·AT+FT ·A0 ⊆ F0.
Hence (1.4.23) maps 0-component to 0-component. Now let y ⊗ α ∈ F E∗ ⊆ (F⊠emb

A E∗)N.
If x ∈ E0, then y · α(x) ∈ FN · A0 ⊆ F0. If x ∈ EN, then y · α(x) ∈ FN · AN ⊆ FN. Thus (1.4.23)
is a constraint morphism. □

1.4.2.2 Strong Hull

We obtain a forgetful functor U : CstrAlg → CAlg by mapping a strong constraint algebra (A, µ)
to the constraint algebra A obtained by dismissing the AT-bimodule structure on A0. This
functor obviously restricts to U : Cemb

str Alg → CembAlg. In this case we can easily describe its
corresponding free construction.
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CAlg

CembAlg

· emb

CstrAlg

Cemb
str Alg

· emb

· str

Figure 1.4.1: Overview of the di�erent categories of constraint algebras. Unnamed arrows denote
forgetful functors.

Proposition 1.4.36

i.) Let A ∈ CembAlg, then

Astr
T = AT,

Astr
N = AN + AT · A0 · AT,

Astr
0 = AT · A0 · AT

(1.4.24)

is a strong constraint algebra Astr ∈ Cemb
str Alg.

ii.) Mapping A ∈ CembAlg to Astr ∈ Cemb
str Alg and morphisms ϕ : A → B to ϕstr : Astr → Bstr

given by ϕstr = ϕ de�nes a functor · str : CembAlg → Cemb
str Alg.

iii.) The functor · str is left adjoint to the forgetful functor U : Cemb
str Alg → CembAlg.

iv.) Cemb
str Alg is a re�ective subcategory of CembAlg.

Proof: The �rst and second part are straightforward checks. For the third part let ηA : A →
U(Astr) be the obvious inclusion for every A ∈ CAlg, and let εB : (UB)str → B be the identity
for every B ∈ Cemb

str Alg. It is now easy to check that the maps η and ε are the unit and counit
of the required adjunction. The last part is clear, since the counit ε is just the identity. □

We will call Astr the strong hull of A. See Figure 1.4.1 for an overview of the various
categories of constraint algebras and their relationship. For functions on embedded strong
constraint sets the construction of the strong hull can be viewed as the algebraic analogue of
forgetting the equivalence relation outside of the subset.

Proposition 1.4.37 Let K be a �eld. The diagram

Cemb
str Set CembAlg

CembSet Cemb
str Alg

CstrMap( · ,K)

U · str

CMap( · ,K)

(1.4.25)

commutes up to a natural isomorphism. Here U : Cemb
str Set → CembSet denotes the functor forget-

ting the equivalence relation outside of the N-component, see Proposition 1.1.21.
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Proof: Since K is a �eld, Proposition 1.4.36 applies. Now on the T-component the diagram
commutes strictly. On the one hand we know by Example 1.4.2 i.) that for every embedded
strong constraint setM the ideal CMap(U(M),k)0 is just the vanishing ideal IMN

ofMN. On the
other hand Proposition 1.1.21 iii.) characterizes CstrMap(M,k)0 as those functions vanishing on
MN which are constant along the equivalence classes on MT. Using the characteristic function
χMN

: MT → {0, 1} we can write every f ∈ IMN
as f = χMN

· f , with χ ∈ CstrMap(M,k)0
and f ∈ AT. Hence the 0-components agree. Similarly, every g ∈ CstrMap(M,k)N is constant
along equivalence classes on MN and can be written as g = (1 − χMN

) · g + χMN
· g, with

(1− χMN
) · g ∈ CMap(M,k)N and χMN

· g ∈ CMap(M,k)str0 . □

There is again the obvious forgetful functor U : CstrModA → CModA by forgetting the module
structure ρ = (ρT, ρN) to (ρT, ρ

NN
N ). Analogously to the algebra case there is also a way to

construct strong constraint modules out of non-strong ones if we assume the algebra and the
module to be embedded.

Proposition 1.4.38 (Strong hull) Let A,B ∈ Cemb
str Alg.

i.) Let E ∈ CembBimod(B,A). Then

Estr
T

:= ET,

Estr
N

:= EN + BT · E0 · AT + B0 · ET + ET · A0,

Estr
0

:= BT · E0 · AT + B0 · ET + ET · A0

(1.4.26)

is a strong constraint (B,A)-bimodule.

ii.) Mapping E ∈ CembBimod(B,A) to Estr ∈ Cemb
str Bimod(B,A) and morphisms Φ: E → F to

Φstr : Estr → Fstr given by Φstr := Φ de�nes a functor

· str : CembBimod(B,A) → Cemb
str Bimod(B,A). (1.4.27)

iii.) Cemb
str Bimod(B,A) is a re�ective subcategory of CembBimod(B,A) with re�ector · str.

Proof: The �rst and second part are clear. For the third part, note that by Lemma 1.4.29
and Lemma 1.4.30 the category Cemb

str Bimod(B,A) is a full subcategory of CembBimod(B,A).
To show that · str is left adjoint to the embedding U : Cemb

str Bimod(B,A) → CembBimod(B,A)
consider the counit ε, de�ned for every E ∈ Cemb

str Bimod(B,A) by εE := idE, and the unit η,
de�ned for every F ∈ CembBimod(B,A) by the obvious inclusion ηF : F → Fstr. The triangle
identities are then easily veri�ed, and since ε is an isomorphism, we see that Cemb

str Bimod(B,A)
is a re�ective subcategory. □

For any A ∈ Cemb
str Alg we know that CembBimod(A) is a monoidal category with tensor prod-

uct ⊗emb
A as given in Proposition 1.4.17. We would now like to transport this monoidal structure

to the re�ective subcategory Cemb
str Bimod(A), but in this generality Day's re�ection theorem does

not apply. Nevertheless, when we restrict ourselves to symmetric bimodules over commutative
strong constraint algebras this can be achieved. We denote the category of symmetric embedded
strong constraint bimodules by Cemb

str Bimod(A)sym.

Proposition 1.4.39 Let A ∈ Cemb
str Alg be a commutative embedded strong constraint algebra.

i.) Cemb
str Bimod(A)sym is a monoidal category with respect to ⊗str

A de�ned by

E ⊗str
A F := (E ⊗emb

A F)str. (1.4.28)

ii.) The functor · str : (CembBimod(A)sym,⊗emb
A ) → (Cemb

str Bimod(A)sym,⊗str
A ) is monoidal.
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Proof: We use again Day's re�ection theorem, see Theorem A.5.3. For this note that Propo-
sition 1.4.38 restricts to the subcategories of symmetric bimodules. Hence CembBimod(A)sym is
a re�ective subcategory of Cemb

str Bimod(A). Furthermore, we have canonically

(Estr ⊗emb
A Fstr)strN = (Estr ⊗emb

A Fstr)N + AT · (Estr ⊗emb
A Fstr)0 · AT

+ A0 · (Estr ⊗emb
A Estr)T + (Estr ⊗emb

A Estr)T · A0

= Estr
N ⊗AT

Fstr
N + AT · (Estr

0 ⊗AT
Fstr

N ) · AT + AT · (Estr
N ⊗AT

Fstr
0 ) · AT

+ A0 · (ET ⊗AT
ET) + (ET ⊗AT

ET) · A0

= EN ⊗AT
FN + AT · (E0 ⊗AT

FN) · AT + AT · (EN ⊗AT
F0) · AT

+ A0 · (ET ⊗AT
ET) + (ET ⊗AT

ET) · A0

= (E ⊗emb
A F)str

for all symmetric bimodules E and F. Thus by Theorem A.5.3 we see that ⊗str
A de�nes a

monoidal structure on Cemb
str Bimod(A)sym such that · str becomes a monoidal functor. □

Using the de�nition of the strong hull and · emb as de�ned in Proposition 1.2.24 directly
yields the following explicit description of ⊗str:

Corollary 1.4.40 Let A ∈ Cemb
str Alg be commutative, and let E,F ∈ Cemb

str Bimod(A)sym be sym-
metric A-bimodules. Then we have

(E ⊗str
A F)T = ET ⊗AT

FT,

(E ⊗str
A F)N = EN ⊗AT

FN,

(E ⊗str
A F)0 = E0 ⊗AT

FN + EN ⊗AT
F0.

(1.4.29)

Proposition 1.4.41 Let A ∈ Cemb
str Alg be commutative. The category Cemb

str Bimod(A)sym is
closed monoidal with respect to ⊗str

A . The internal hom is given by CHomA(E,F).

Proof: In Proposition 1.4.31 we showed that CHomA(E,F) is again an embedded strong con-
straint bimodule. The symmetry is clear. For the T-component we have the classical evaluation
evFT

: HomAT
(ET,FT) ⊗AT

ET → ET and coevaluation coevFT
: FT → HomAT

(ET,FT ⊗AT
ET).

These are easily seen to be constraint morphisms. □

Clearly, the two monoidal structures on Cemb
str Bimod(A)sym are not unrelated. Looking at

Corollary 1.4.34 and Corollary 1.4.40 we see that for E,F ∈ Cemb
str Bimod(A)sym we have a

canonical inclusion
E ⊗str

A F ↪→ E ⊠emb
A F.

Moreover, dualizing turns one tensor product into another.

Proposition 1.4.42 Let A ∈ Cemb
str Alg be commutative, and let E,F, G ∈ Cemb

str Bimod(A)sym be
symmetric A-bimodules.

i.) There is a canonical morphism CstrHomA(E ⊠
emb
A F, G) → CstrHomA(E ⊗str

A F, G) of
constraint A-bimodules induced by E ⊗str

A F → E ⊠emb
A F.

ii.) There is a canonical morphism E∗ ⊗str
A F∗ → (E⊠emb

A F)∗ of constraint A-bimodules given
by

E∗
T ⊗AT

F∗
T ∋ α⊗ β 7→ (x⊗ y 7→ α(x) · β(y)) ∈ (ET ⊗AT

FT)
∗. (1.4.30)

iii.) There is a canonical morphism E∗⊠emb
A F∗ → (E⊗str

A F)∗ of constraint A-bimodules given
by

E∗
T ⊗AT

F∗
T ∋ α⊗ β 7→ (x⊗ y 7→ α(x) · β(y)) ∈ (ET ⊗AT

FT)
∗. (1.4.31)
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Proof: On the T-components both maps are de�ned by the canonical map from classical
algebra, which is clearly an AT-bimodule morphism. It remains to show that the maps preserve
the substructures. For the �rst part let α⊗ β ∈ (E∗ ⊗str

A F∗)0 = E∗ F∗.
� For x⊗ y ∈ E F = (E ⊠emb

A F)0 we have α(x) · β(y) ∈ A0 · AT + AT · A0 = A0.

� For x⊗ y ∈ E F ⊆ (E ⊠emb
A F)N we have α(x) · β(y) ∈ A0 · AN + AN · A0 = A0.

Thus (1.4.30) maps 0-component to 0-component. Next suppose α ⊗ β ∈ E∗ F∗ ⊆ (E∗ ⊗str
A

F∗)N.
� For x⊗ y ∈ E F = (E ⊠emb

A F)0 we have α(x) · β(y) ∈ A0 · AT + AT · A0 = A0.

� For x⊗ y ∈ E F ⊆ (E ⊠emb
A F)N we have α(x) · β(y) ∈ AN · AN = AN.

This shows that (1.4.30) also maps N-component to N-component and therefore is a constraint
morphism. For the second part consider at �rst α⊗ β ∈ (E∗ ⊠emb

A F∗)0 = E∗ F∗.
� For x⊗ y ∈ E F = (E ⊗str

A F)N we have α(x) · β(y) ∈ A0 · AT + AT · A0 = A0,
showing that (1.4.31) maps 0-component to 0-component. Next choose α ⊗ β ∈ E∗ F∗ ⊆
(E ⊗str

A F)N.
� For x⊗ y ∈ E F = (E ⊗str

A F)0 we have α(x) · β(y) ∈ A0 · AN + AN · A0 = A0.

� For x⊗ y ∈ E F ⊆ (E ⊗str
A F)N we have α(x) · β(y) ∈ AN · AN = AN.

This shows that (1.4.31) also preserves the N-components and hence is a constraint morphism.□

We cannot expect (1.4.30) and (1.4.31) to be isomorphisms, since they do not even need to
be isomorphisms on the T-component. However, in classical algebra we know that for �nitely
generated projective modules these indeed become isomorphisms, see also Proposition 1.3.21 for
the case of �nite dimensional constraint vector spaces. We will see in Section 1.5 that they
also become constraint isomorphisms if the involved modules are �nitely generated projective
as constraint modules.

Since Cemb
str Bimod(A)sym is closed monoidal, we can de�ne an insertion morphism as the

composition

i : CstrHomA(E ⊗A F, G)⊗A E −→ CstrHom(E,CstrHomA(F, G))⊗A E
ev−→ CstrHom(F, G),

(1.4.32)

and we will write iX(Φ): F → G for X ∈ E and Φ: E ⊗A F → G. Using Proposition 1.4.42 i.)
we can de�ne a constraint insertion morphism as

i : CstrHomA(E ⊠A F, G)⊗A E −→ CstrHomA(E ⊗A F, G)⊗A E

−→ CstrHom(E,CstrHomA(F, G))⊗A E
ev−→ CstrHom(F, G),

(1.4.33)

similar to (1.4.32).

1.4.2.3 Reduction

The reduction of strong constraint modules is again given by �rst applying the forgetful functor
U : CstrBimod → CBimod and then using the reduction functor on CBimod, see Proposition 1.4.18.
Similar to Proposition 1.2.34 we can show that the tensor product and strong tensor product
do not di�er after reduction:

Proposition 1.4.43 (Reduction on CstrBimod) Let A,B, C ∈ CstrAlg be given, and let
E ∈ CstrBimod(C,B) and F ∈ CstrBimod(B,A). Then there is a canonical isomorphism

(E ⊠B F)red ≃ Ered ⊗Bred
Fred. (1.4.34)

63



CHAPTER 1. CONSTRAINT ALGEBRAIC STRUCTURES

Proof: Recall the de�nition of ⊠B from Proposition 1.4.25:

(E ⊠B F)N =
(EN ⊗BN

FN)⊕ (E0 ⊗BT
FT)⊕ (ET ⊗BT

F0)

IB
E,F

,

(E ⊠B F)0 =

(
E0 ⊗BN

FN + EN ⊗BN
F0

)
⊕ (E0 ⊗BT

FT)⊕ (ET ⊗BT
F0)

IB
E,F

,

with

IB
E,F =span

k
{(x0 ⊗ y, 0, 0)− (0, x0 ⊗ ιF(y), 0) | x0 ∈ E0, y ∈ FN}

+ span
k
{(x⊗ y0, 0, 0)− (0, 0, ιE(x)⊗ y0) | x ∈ EN, y0 ∈ F0}.

Note that the second and third term in (F⊠B F)N directly vanish after reduction. Then the
obvious map EN ⊗BN

FN → (E ⊠B F)red, obtained ny mapping into the �rst component, yields
the desired isomorphism. □

For embedded strong constraint algebras and modules note again that reduction will not
be compatible with many constructions, since the embedding of Cemb

str Alg into CstrAlg or of
Cemb
str Bimod into CstrBimod will, in general, not be monoidal and not preserve colimits.

1.5 Regular Projective Modules

In classical geometry projective modules over the algebra of functions play an important role
since they can be identi�ed with vector bundles over smooth manifolds and thus serve as the
algebraic description of vector bundles. We will examine the constraint analogue of this relation-
ship in Section 2.3. From an algebraic point of view projective modules can be understood as a
slight generalization of the concept of free modules. Therefore we will investigate free (strong)
constraint modules in Section 1.5.1 and Section 1.5.2 before we focus on projective (strong)
constraint modules in Section 1.5.3 and Section 1.5.4. It will turn out that projective (strong)
constraint modules can be characterized in several di�erent ways similarly to the classical situ-
ation: by a lifting property, as direct sums of free modules, or by a dual basis lemma.

1.5.1 Free Constraint Modules

As a �rst important family of constraint modules we will introduce free modules in this section.
Morally, these should be constraint modules with a constraint basis. For this we need to specify
a category of objects of potential bases. We start with the obvious choice of constraint sets
and the forgetful functor U : CModA → CSet. Then we search for a left adjoint to this. In the
following we use brackets in the exponent of A(M) to indicate the use of direct sums instead of
products indexed by M .

Proposition 1.5.1 (CSet-free constraint module) Let A ∈ CAlg be a constraint algebra.

i.) For every constraint set M ∈ CSet setting

(A(M))T := A
(MT)
T ,

(A(M))N := A
(MN)
N ,

(A(M))0 :=
{
x ∈ A

(MN)
N

∣∣∣ ∀m ∈MN :
∑

n∼Mm

xn ∈ A0

}
,

(1.5.1)
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together with the map ιA(M) : (A(M))N → (A(M))T given by

ιA(M)

( ∑
m∈MN

bNmx
m
)
:=

∑
m∈MN

bTιM (m)x
m, (1.5.2)

de�nes a constraint right A-module. Here bTm and bNm denote the basis elements of the free

modules A
(MT)
T and A

(MN)
N , respectively, and by xm we denote the corresponding coe�-

cients.

ii.) For every constraint set M ∈ CSet the constraint right A-module A(M) satis�es the fol-
lowing universal property: For every E ∈ CModA and f : M → E there exists a unique
morphism Φ: A(M) → E of constraint right A-modules such that

A(M) E

M

Φ

i
f

(1.5.3)

commutes, where i : M → A(M) is given by iT/N(m) := b
T/N
m .

iii.) The functor F : CSet → CModA given by

F(M) := A(M) (1.5.4)

on objects and
F(f) : A(M) → A(N), F(f)(bT/Nm ) := b

T/N
f(m) (1.5.5)

on morphisms is left adjoint to the forgetful functor U : CModA → CSet.

Proof: The �rst part is a simple check of De�nition 1.4.4. For the second part note that i is
indeed a map of constraint sets, since for x ∼M y and m ∈MN arbitrary we have∑
n∼Mm

(iN(x)− iN(y))n =
∑

n∼Mm

(bNx − bNy )n =
∑

n∼Mm

δxn − δyn =

{
δxx − δyy = 0 if m ∼M x,

0 else.

Since A
(MN)
N and A

(MT)
T are free modules we get by the classical universal properties module

morphisms ΦN : A
(MN)
N → EN and ΦT : A

(MT)
T → ET. Moreover, we have ιE ◦ fN = ιE ◦ ΦN ◦ iN

and ιE ◦fN = fT ◦ ιM = ΦT ◦ iT ◦ ιM = ΦT ◦ ιA(M) ◦ iN, and hence the universal property of A
(MN)
N

together with the injectivity of iN ensures ιE ◦ΦN = ΦT ◦ ιA(M) . To show that ΦN preserves the
0-component let x ∈ (A(M))0 be given. Then

ΦN(x) =
∑

m∈MN

ΦN(b
N
m)x

m

=
∑

[m]∈MN/∼M

∑
n∼Mm

fN(n)x
n

=
∑

[m]∈MN/∼M

∑
n∼Mm

(fN(n)− fN(m))xn + fN(m)xn

=
∑

[m]∈MN/∼M

∑
n∼Mm

(fN(n)− fN(m))︸ ︷︷ ︸
∈E0

xn + fN(m) ·
∑

[m]∈MN/∼M

∑
n∼Mm

xn︸ ︷︷ ︸
∈A0

.

Thus Φ := (ΦT,ΦN) is a constraint morphism. Finally, the uniqueness is clear since the unique-
ness of ΦT and ΦN is guaranteed by the classical universal property. The third part is just the
usual reformulation of universal properties via adjoint functors. □
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By (1.5.2) it is clear that an injective constraint set M yields an injective constraint algebra
A(M).

De�nition 1.5.2 (CSet-free constraint module) Let A ∈ CAlg be a constraint algebra. A
constraint A-module E ∈ CModA is called CSet-free if there exists a constraint set M ∈ CSet
such that E ≃ A(M).

Though this yields a conceptually clear notion of free constraint modules, it is sort of clumsy
to work with, since the 0-component is de�ned using an equivalence relation on MN. To remedy
this de�ciency we can use constraint index sets instead:

Proposition 1.5.3 (CindSet-free constraint module) Let A ∈ CAlg be a constraint algebra.

i.) For every constraint index set M ∈ CindSet setting

(A(M))T := A
(MT)
T ,

(A(M))N := A
(MN)
N ,

(A(M))0 := A
(MN\M0)
0 ⊕ A

(M0)
N ,

(1.5.6)

together with the map ιA(M) : (A(M))N → (A(M))T given by

ιA(M)

( ∑
m∈MN

bNmx
m
)
:=

∑
m∈MN

bTιM (m)x
m, (1.5.7)

de�nes a constraint right A-module. Here bTm and bNm denote the basis elements of the free

modules A
(MT)
T and A

(MN)
N , respectively.

ii.) For every constraint index set M ∈ CindSet the constraint right A-module A(M) satis�es
the following universal property: For every E ∈ CModA and f : M → E there exists a
unique morphism Φ: A(M) → E of constraint right A-modules such that

A(M) E

M

Φ

i
f

(1.5.8)

commutes, where i : M → A(M) is given by iT/N(m) := b
T/N
m .

iii.) The functor F : CindSet → CModA given by

F(M) := A(M) (1.5.9)

on objects and
F(f) : A(M) → A(N), F(f)(bT/Nm ) := b

T/N
f(m) (1.5.10)

on morphisms is left adjoint to the forgetful functor U : CModA → CindSet.

Proof: The proof works similar to that of Proposition 1.5.1: The �rst part is a simple check
of the de�nition of constraint right A-modules. For the second part note that i is indeed a map
of constraint index sets. Then ΦT and ΦN are given by the unique morphisms that exist by the
universal properties of A

(MT)
T and A

(MN)
N , and ΦN preserves the 0-component, since

ΦN

( ∑
m∈MN\M0

bNmx
m +

∑
m∈M0

bNmx
m
)
=

∑
m∈MN\M0

ΦN(b
N
m)x

m +
∑
m∈M0

Φ(bNm)x
m
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=
∑

m∈MN\M0

fN(m) xm︸︷︷︸
∈A0

+
∑
m∈M0

fN(m)︸ ︷︷ ︸
∈E0

xm

if xm ∈ AN for all m ∈ MN and xm ∈ A0 for all m ∈ M0. The third part follows again by
abstract nonsense. □

As for CSet-free modules, we also get by (1.5.7) that an embedded constraint index set M
yields an embedded constraint module A(M).

De�nition 1.5.4 (CindSet-Free constraint module) Let A ∈ CAlg be a constraint algebra.
A constraint A-module E ∈ CModA is called CindSet-free if there exists a constraint index set
M ∈ CindSet such that E ≃ A(M). Every such M is called a constraint basis of E, and if M is
�nite we call A(M) �nitely generated free.

Example 1.5.5 Every constraintK-vector space is a free strong constraintK-module by Propo-
sition 1.3.18, and the notions of bases agree.

While the categories CSet and CindSet are not equivalent, cf. Remark 1.3.14, the respective
free modules are closely related, as the next results show.

Lemma 1.5.6 (From CSet-free to CindSet-free modules) Let A ∈ CAlg be a constraint al-
gebra and M ∈ CSet.

i.) There exist M̂ ∈ Cemb
ind Set and a regular epimorphism Φ: A(M̂) → A(M).

ii.) If M ∈ CembSet, then Φ can be chosen to be an isomorphism.

Proof: Choose a splitting s : Mred →MN of the projection prM : MN →Mred. Then we de�ne
M̂ ∈ Cemb

ind Set by

M̂T :=MN ⊔ (MT \ ιM (MN)),

M̂N :=MN,

M̂0 :=MN \ im s

and denote q := s ◦ prM : MN → im s. Now de�ne Φ: A(M̂) → A(M) by

ΦT(x) :=
∑
i∈im s

bιM (i)x
i +

∑
i∈MN\im s

(
bιM (i) − bιM (q(i))

)
xi +

∑
i∈MT\ιM (MN)

bix
i,

ΦN(x) :=
∑
i∈im s

bix
i +

∑
i∈MN\im s

(
bi − bq(i)

)
xi.

To see that Φ is indeed a constraint morphism we compute

ΦT(ιA(M̂)(bi)) = ΦT(bιM (i)) =

{
bιM (i) if i ∈ im s

bιM (i) − bιM (q(i)) if i ∈MN \ im s

and

ιA(M)(ΦN(bi)) =

{
ιA(M)(bi) if i ∈ im s

ιA(M)(bi − bq(i)) if i ∈MN \ im s
=

{
bιM (i) if i ∈ im s

bιM (i) − bιM (q(i)) if i ∈MN \ im s.

Moreover, for x ∈ A
(M̂)
0 we know xi ∈ A0 if i ∈ im s and hence for �xed j ∈MN we get∑

i∼M j

(
ΦN(x)

)i
=

∑
i∼M j∩(MN\im s)

xi +
(
ΦN(x)

)q(j)
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=
∑

i∈[j]∩(MN\im s)

xi + xq(j) −
∑

i∈[j]∩(MN\im s)

xi

= xq(j) ∈ A0,

where [j] denotes the equivalence class of j. By the de�nition of Φ it is clear that ΦT and ΦN

are surjective. Additionally, we have ΦN(A
(M̂)
0 ) = A

(M)
0 , because for x ∈ A

(M)
0 we can de�ne

yN ∈ A
(M̂)
0 by yi :=

∑
j∈[i] x

j for i ∈ im s and yi := xi for i ∈ MN \ im s. Then by construction

y ∈ A
(M̂)
0 and ΦN(y) = x. Thus Φ is a regular epimorphism. Finally, ΦN is always injective. In

case that M ∈ CembSet, i.e. ιM is injective, we also get that ΦT is injective, and therefore Φ is
an isomorphism of constraint modules. □

We see that at least every CembSet-free module is also Cemb
ind Set-free. However, as the next

lemma shows even in the embedded situation this correspondence is not perfect.

Lemma 1.5.7 (From CindSet-free to CSet-free modules) Let A ∈ CAlg be a constraint al-
gebra and M ∈ CindSet.

i.) There exist M̌ ∈ CembSet and a regular epimorphism Φ: A(M̌) → A(M).

ii.) If M ∈ Cemb
ind Set and MN ̸= M0, then M̌ can be chosen in such a way that Φ is an

isomorphism.

iii.) If M ∈ Cemb
ind Set and MN = M0, then there exists an isomorphism between A(M̌) and

A(M⊔{pt}).

Proof: First, assume that MN \M0 is non-empty. Then choose an element k ∈ MN \M0 and
de�ne M̌T := MN ⊔ (MT \ ιM (MN)), M̌N := MN and ∼M̌ as the equivalence relation generated
by i ∼ k for all i ∈M0. Now de�ne Φ: A(M̌) → A(M) by

ΦT(x) :=
∑
i∈M0

(
bιM (i) + bιM (k)

)
xi +

∑
i∈MN\M0

bιM (i)x
i +

∑
i∈MT\ιM (MN)

bix
i,

ΦN(x) :=
∑
i∈M0

(
bi + bk

)
xi +

∑
i∈MN\M0

bix
i.

To see that Φ is indeed a constraint morphism we compute

ΦT(ιA(M̌)(bi)) = ΦT(bi) =

{
bιM (i) if i ∈MN \M0

bιM (i) + bιM (k) if i ∈M0

and

ιA(M)(ΦN(bi)) =

{
ιA(M)(bi) if i ∈MN \M0

ιA(M)(bi + bk) if i ∈M0

=

{
bιM (i) if i ∈MN \M0

bιM (i) + cιM (k) if i ∈M0.

Moreover, for x ∈ A
(M̌)
0 and i ∈ MN \M0 we have

(
ΦN(x)

)i
= xi ∈ A0 if i ̸= k, and if i = k

we have
(
ΦN(x)

)i
= xk +

∑
j∈M0

xj ∈ A0. Surjectivity of ΦT and ΦN follow directly. Finally,

for x ∈ A
(M)
0 we can de�ne y ∈ A

(M̌)
0 by yk := xk −∑j∈M0

xj and yi := xi for i ̸= i0. Then

by construction y ∈ A
(M̌)
0 . Moreover, ΦN(y) = x. This shows that Φ is a regular epimorphism.

If ιM is injective then one can check that ΦT and ΦN are injective too and therefore Φ is an
isomorphism of constraint modules.
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If MN =M0 de�ne M ′ := (MT ⊔ {pt}, MN ⊔ {pt}, M0). Then

ΨT(x) :=
∑
i∈MT

bix
i, ΨN(x) :=

∑
i∈MN

bix
i

de�nes a regular epimorphism Ψ: A(M ′) → A(M). Applying the �rst part to M ′ and composing
the regular epimorphisms we obtain a suitable Φ in this case as well. □

Though the notions of Cemb
ind Set- and CembSet-free modules are not equivalent, in most cases

this di�erence will not be crucial. Since the interpretation of the generating set is, especially
in geometric situations, more intuitive we will in the following mostly consider Cemb

ind Set-free
modules.

Let us now investigate how free constraint modules behave with respect to some important
constructions we have introduced for general modules before.

Proposition 1.5.8 Let A ∈ CAlg and M,N ∈ CindSet be given.

i.) We have
A(M) ⊕ A(N) ≃ A(M⊔N). (1.5.11)

ii.) We have
A(M) ⊗ A(N) ≃ A(M⊗N). (1.5.12)

Proof: The �rst part follows directly from the fact that ⊔ is the coproduct in CindSet and the
free functor F : CindSet → CModA is left adjoint and hence preserves colimits. For the second
part the T- and N-components are clear. For the 0-component note that

(A
(MN\M0)
0 ⊕ A

(M0)
N )⊗ A

(NN)
N ≃ A

(MN×NN\N0)
0 ⊕ A

(MN×N0)
N

and
A

(MN)
N ⊗ (A

(NN\N0)
0 ⊕ A

(N0)
N ) ≃ A

(NN×M0)
N ⊕ A

(NN×MN\M0)
0 .

This leads to

(A(M) ⊗ A(N))0 = A
(MN\M0)×(NN\N0)
0 ⊕ A

(MN×N0)∪(M0×MN)
N

as expected. □

In classical algebra we know that duals of �nitely generated free modules are again free. This
is no longer true for free constraint modules.

Proposition 1.5.9 (Duals of free constraint modules) Let A ∈ CembAlg be given. For
�nite n ∈ Cemb

ind Set we have

(An)∗T ≃ AnT
T ,

(An)∗N ≃ An0
0 ⊕ AnN−n0

N ⊕ AnT−nN
T ,

(An)∗0 ≃ AnN
0 ⊕ AnT−nN

T .

(1.5.13)

Proof: From classical algebra we know that (AnT
T )∗ is free with dual basis (bi)nT

i=1. Let α =∑nT
i=1 αib

i ∈ (An)∗N be given. Then from α(AnN
N ) ⊆ AN it follows that αi ∈ AN for all i =

1, . . . , nN. Since α(A
n0
N ) ⊆ A0 we additionally get αi ∈ A0 for all i = 1, . . . , n0. This shows the

N-component. Now let α ∈ (An)∗0 be given. Then the 0-component follows from α(AnN
N ) ⊆ A0.□

For non-embedded constraint algebras (An)∗ would look more complicated, since the N-com-
ponent then consists of pairs of functionals. Modules of this particular form will again show up
when we look at free strong constraint modules.
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1.5.1.1 Reduction

The reduction of CSet- and CindSet-free modules yields classical free modules over the reduced
algebra:

Proposition 1.5.10 (Reduction of free constraint modules) Let A ∈ CAlg be a constraint
algebra.

i.) There exists a natural isomorphism making the diagram

CSet CModA

Set ModAred

F

red red

F

(1.5.14)

commute, where F denotes the respective free construction. In particular we have

(A(M))red ≃ (Ared)
(Mred) (1.5.15)

for all M ∈ CSet.

ii.) There exists a natural isomorphism making the diagram

CindSet CModA

Set ModAred

F

red red

F

(1.5.16)

commute, where F denotes the respective free construction. In particular we have

(A(M))red ≃ (Ared)
(Mred) (1.5.17)

for all M ∈ CindSet.

Proof: For M ∈ CSet de�ne ηM : (A(M))red → (Ared)
(Mred) by

ηM

([ ∑
m∈MN

bmx
m
])

:=
∑

[m]∈Mred

b[m]

[ ∑
m′∼Mm

xm
′]
,

where b[m] denotes the basis element of (Ared)
(Mred) corresponding to the equivalence class [m].

This map is clearly well-de�ned on (A(M))red and injective. For surjectivity let
∑

[m]∈Mred
b[m][x

[m]] ∈
(Ared)

(Mred) be given. Using the axiom of choice, choose a splitting i : Mred → MN of the quo-
tient map MN → Mred. Then

∑
m∈im(i) bmx

[m] is a suitable preimage of
∑

[m]∈Mred
b[m][x

[m]].
Naturality can now be checked by a direct computation: Let f : M → N be a morphism of
constraint sets, then

(F(fred) ◦ ηM )
([ ∑

m∈MN

bmx
m
])

= F(fred)
( ∑

[m]∈Mred

b[m]

[ ∑
m′∼Mm

xm
′])

=
∑

[n]∈Nred

b[n]

( ∑
[m]∈f−1

red([n])

[ ∑
m′∼Mm

xm
′])

=
∑

[n]∈Nred

b[n]

( ∑
n′∼Nn

[ ∑
m∈f−1(n)

xm
])
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= ηN

([ ∑
n∈nN

bn
∑

m∈f−1(n)

xm
])

= (ηN ◦ F(f)red)
([ ∑

m∈MN

bmx
m
])
.

We can use the same isomorphism η for a constraint index set M . Alternatively, we can see it
more directly:

(A(M))red =
A

(MN)
N

A
(MN\M0)
0 ⊕ A

(M0)
N

≃ A
(MN\M0)
N

A
(MN\M0)
0

≃ A
(Mred)
red . □

1.5.2 Free Strong Constraint Modules

For strong constraint modules we will focus on free modules generated by constraint index sets.
Thus we are searching for a left adjoint functor to the forgetful functor U : CstrModA → CindSet
for a �xed strong constraint algebra A. Note that this functor factors through CModA by �rst
forgetting to constraint A-modules and then to their underlying constraint index sets. For
both of those forgetful functors we have already found left adjoints in Proposition 1.4.38 and
Proposition 1.5.3.

Lemma 1.5.11 (CindSet-free strong constraint module) Let A ∈ CstrAlg be a strong con-
straint algebra.

i.) For every constraint index setM ∈ CindSet the strong constraint right A-module
(
U(A)(M))str

satis�es the following universal property: For every E ∈ CstrModA and f : M → E there
exists a unique morphism Φ:

(
U(A)(M))str → E of strong constraint right A-modules such

that (
U(A)(M))str E

M

Φ

i f

(1.5.18)

commutes, where i : M →
(
U(A)(M))str is given by iT/N(m) := b

T/N
m .

ii.) The functor F : CindSet → CstrModA given by

F(M) :=
(
U(A)(M)

)str
(1.5.19)

is left adjoint to the forgetful functor U : CstrModA → CindSet.

Proof: The �rst and second statement are equivalent by general category theory, while the
second part holds since F is de�ned as the composition of the left adjoints of U : CindSet →
CModA and U : CModA → CstrModA. □

For a strong constraint algebra A we will write A(M) := U(A)(M) for any M ∈ CindSet. No
confusion should arise, since from the context it is clear whether A is a strong constraint or a
plain constraint algebra.

De�nition 1.5.12 (CindSet-free strong constraint module) Let A ∈ CstrAlg be a strong
constraint algebra. A strong constraint A-module E ∈ CstrModA is called CindSet-free if there
exists a constraint index set M ∈ CindSet such that E ≃ A(M). Every such M is called a
constraint basis of E, and if M is �nite we call A(M) �nitely generated free.
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Remark 1.5.13 Free constraint modules have been introduced in [Men20; DMW22], but the
relation to free strong constraint modules had not been developed.

In the embedded case CindSet-free strong constraint modules take on an easy form.

Lemma 1.5.14 Let A ∈ CstrAlg be a strong constraint algebra and M ∈ Cemb
ind Set.

i.) We have

A
(M)
T = A

(MT)
T ,

A
(M)
N = ιA(A0)

(MT\MN) ⊕ A
(MN\M0)
N ⊕ ιA(A0)

(MN\M0)

span
k

{
(x, 0)− (0, ι(x))

∣∣ x ∈ A
(MN\M0)
0

} ⊕ A
(M0)
T ,

A
(M)
0 = ιA(A0)

(MT\MN) ⊕ ιA(A0)
(MN\M0) ⊕ A

(M0)
T .

(1.5.20)

ii.) If additionally ιA : AN → AT is injective it holds that

A
(M)
T = A

(MT)
T ,

A
(M)
N = A

(MT\MN)
0 ⊕ A

(MN\M0)
N ⊕ A

(M0)
T ,

A
(M)
0 = A

(MT\M0)
0 ⊕ A

(M0)
T .

(1.5.21)

Proof: The �rst part follows directly from the construction of U(A)(M) in Proposition 1.5.3
and the de�nition of the strong hull in Proposition 1.4.38. The second part then follows imme-
diately. □

The next result shows that, at least in the �nitely generated case, Cemb
ind Set-free strong con-

straint modules over an embedded strong constraint algebra are closed under many operations,
such as direct sums, tensor products, strong tensor products and duals.

Proposition 1.5.15 (Duals of free modules) Let A ∈ Cemb
str Alg be an embedded strong con-

straint algebra and let n,m ∈ Cemb
ind Set be �nite.

i.) (An)∗ is free and (An)∗ ≃ A(n∗).

ii.) An ⊕ Am is free and An ⊕ Am ≃ An⊔m.

iii.) An ⊗emb
A Am is free and An ⊗emb

A Am ≃ An⊗m.

iv.) An ⊠emb
A Am is free and An ⊠emb

A Am ≃ An⊠m.

v.) If m ⊆ n is a constraint index subset, then An/Am is free and An/Am ≃ An\m.

Proof: For the T-component all the above identities hold by the classical theory. Part ii.)
follows from the fact that the free functor Cemb

ind Set → Cemb
str ModA is a left adjoint, and thus

preserves colimits. This also explains v.). For iii.) and iv.) it is straightforward to check that
n⊗m ∋ (i, j) 7→ bi⊗ bj ∈ An⊗ Am and n⊠m ∋ (i, j) 7→ bi⊗ bj ∈ An⊠Am ful�l the universal
properties of An⊗m and An⊠m, respectively. □

Recall from Proposition 1.5.9 that duals of free constraint modules are in general not free
again. For a given strong constraint algebra A ∈ CstrAlg we can consider the free module U(A)n

of its underlying constraint algebra. Then it turns out that its dual will still not be free as a
constraint module, but it will be free as a strong constraint module.
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Proposition 1.5.16 Let A ∈ Cemb
str Alg be an embedded strong constraint algebra and let n ∈

Cemb
ind Set be �nite.

i.) The dual (U(A)n)∗ is a free strong constraint A-module with

(U(A)n)∗ ≃ A(n∗). (1.5.22)

ii.) The strong hull (U(A)n)str is a free strong constraint A-module with

(U(A)n)str ≃ An. (1.5.23)

Proof: The �rst part follows directly from Proposition 1.5.9. For the second part we have(
(U(A)n)str

)
N
= AnN

N + (AnN−n0
0 ⊕ An0

N ) · AT + AnT
T · A0

= AnN
N + (AnN−n0

0 ⊕ An0
T ) + AnT

0

= AnN−n0
N ⊕ An0

T ⊕ AnT−nN
0

= (An)N.

A similar computation yields the correct 0-component. □

1.5.2.1 Reduction

As we expect, free strong constraint modules reduce to free modules over the reduced algebra.

Proposition 1.5.17 (Reduction of free strong constraint modules) Let A ∈ Cemb
str Alg be

an embedded strong constraint algebra. There exists a natural isomorphism making the diagram

CindSet Cemb
str ModA

Set ModAred

F

red red

F

(1.5.24)

commute, where F denotes the respective free construction. In particular we have

(A(M))red ≃ (Ared)
(Mred) (1.5.25)

for all M ∈ CindSet.

Proof: We have a canonical isomorphism

(A(M))red =
A

(MT\MN)
0 ⊕ A

(MN\M0)
N ⊕ A

(M0)
T

A
(MT\M0)
0 ⊕ A

(M0)
T

≃ A
(MN\M0)
N

A
(MN\M0)
0

≃ A
(Mred)
red ,

for which it is straightforward to see that it forms a natural transformation, see also Proposi-
tion 1.5.10. □

1.5.3 Projective Constraint Modules

Classical projective modules over an algebra A can be described in several equivalent ways. They
can be understood as projective objects in the abelian category ModA, as direct summands of
free modules or as modules allowing for a dual basis (in the sense of the dual basis lemma).
When de�ning projective constraint modules it seems most natural to start with the most
abstract, categorical point of view. An object in a given category is called projective if it
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satis�es a certain lifting property with respect to epimorphisms. Considering the fact, that in
the category of constraint modules we have to distinguish di�erent kinds of epimorphisms, see
Proposition 1.2.16, there also exist di�erent notions of projective constraint modules. As usual
we will use the stronger notion of regular epimorphisms.

De�nition 1.5.18 (Projective module) Let A ∈ CAlg be a constraint algebra. A constraint
A-module P ∈ CModA is called projective if for every E,F ∈ CModA, morphism Ψ: P −→ F
and regular epimorphism Φ: E −→ F there exists a morphism χ : P −→ E such that Φ ◦ χ = Ψ.
Diagrammatically:

E

P F

Φ

Ψ

χ (1.5.26)

Remark 1.5.19 Requiring the lifting property only for plain epimorphisms instead of regular
ones would yield a too restrictive class of objects. To see this, assume that P has the lifting
property with respect to all epimorphisms. Consider now E := (PT,PN, 0), F := P and Φ =
(idPT

, idPN
). By assumption there exists a splitting χN of idPN

, which is then given by χN = idPN
,

such that χN(P0) ⊆ 0. Hence such projective modules would only allow for trivial 0-components.

In classical algebra every free module is projective. The following example shows that this
fails in general for constraint modules.

Example 1.5.20 Consider the constraint algebra R = (R,R, 0) and the constraint index set
M = ({0}, {0, 1}, ∅). Note that the unique map ιM : {0, 1} → {0} is surjective but not injective.
Thus we obtain a free constraint R-module RM ≃ (R1,R2, 0) with ιRM (x, y) = x + y. This
constraint module is not projective, since for R2 = (R2,R2, 0) the constraint morphism Φ =
(ιRM , idR2) : R2 → RM is a regular epimorphism, but there cannot exist a constraint splitting
χ of Φ, because such a splitting would ful�l χT ◦ ιRM = idR2 ◦χN = idR2 , in con�ict with the
fact that ιRM is not injective.

In the above example the projectivity of A(M) fails due to the non-injectivity of ιA(M) . For
general A ∈ CAlg and M ∈ CindSet the free module A(M) has non-injective ιA(M) . But if both
A and M are embedded, the corresponding free modules are indeed projective:

Lemma 1.5.21 Let A ∈ CembAlg be an embedded constraint algebra. For every M ∈ Cemb
ind Set

the free constraint module A(M) is projective.

Proof: Let A(M) be a free constraint module with M ∈ Cemb
ind Set. Suppose the following

morphisms are given
E

A(M) F

Φ

Ψ

with Φ a regular epimorphism. Since Φ and Ψ induce morphisms ϕ : E → F and ψ : M → F
of constraint index sets we know by Proposition 1.3.16 that there exists ξ : M → E such that
ϕ ◦ ξ = ψ. Then by the freeness of A(M) there exists Ξ: A(M) → E such that Φ ◦ Ξ restricted
to M is just ψ. Hence Φ ◦ Ξ = Ψ. □

In the following we will concentrate on the case A ∈ CembAlg. With this we can show that
the category CModA has enough projectives in the following sense:
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Proposition 1.5.22 Let A ∈ CembAlg be a constraint algebra. For every constraint module
E ∈ CModA there exists M ∈ Cemb

ind Set and a regular epimorphism Φ: A(M) → E.

Proof: Consider the constraint set M given by MN = EN, MT = EN × ET and ιM = idEN ×ιE,
which is injective. Then ϕ = (pr2, idEN) : M → E is a regular epimorphism. By the universal
property of A(M) there exists Φ: A(M) −→ E such that Φ ◦ i = ϕ. Then Φ is a regular
epimorphism since so is ϕ. □

We can now use Proposition 1.5.22 to show that projective modules over A ∈ CembAlg are
always embedded.

Lemma 1.5.23 Let A ∈ CembAlg be an embedded constraint algebra and let P ∈ CModA be
projective. Then ιP : PN → PT is injective, i.e. P ∈ CembModA.

Proof: By Proposition 1.5.22 there exists E ∈ CembModA and a regular epimorphism Φ: E →
P. Since P is projective there exists χ : P → E such that Φ ◦ χ = idP. In particular, χN is
injective and thus from χT ◦ ιP = ιE ◦ χN it follows that ιP is injective. □

Another important notion in the characterization of projective constraint modules is that of
a split exact sequence. A sequence of morphisms of constraint modules

0 E F G 0Φ Ψ (1.5.27)

is a called short exact if Φ is a monomorphism, im(Φ) = ker(Ψ), and Ψ is a regular epimorphism.
It is called split exact if in addition there exists χ : G → F such that Ψ ◦ χ = idG.

Remark 1.5.24 It can be shown that CembModA is a homological category in the sense of
[BB04, Lemma 4.1.6]. The above de�nition of short exact sequences is in line with the de�nition
of short exact sequences in general homological categories.

Proposition 1.5.25 Let A ∈ CAlg be a constraint algebra and let P ∈ CModA be a projective
module. Then every short exact sequence of the form

0 E F P 0Φ Ψ (1.5.28)

is split exact.

Proof: Since P is projective and Ψ is a regular epimorphism the sequence splits by the uni-
versal property of P. □

Despite CModA not being an abelian category, the splitting lemma nevertheless holds for
constraint modules.

Proposition 1.5.26 (Splitting lemma in CModA) Let A ∈ CAlg be a constraint algebra. A
short exact sequence

0 E F G 0Φ Ψ (1.5.29)

in CModA splits if and only if it is isomorphic as a sequence to

0 E E ⊕ G G 0
iE prG (1.5.30)

with the canonical inclusion iE and projection prG.
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Proof: Suppose there exists χ : F −→ E such that Ψ ◦ χ = idG. Then we know that FT ≃
ET ⊕ GT and FN ≃ EN ⊕ GN by the splitting lemma in the respective categories of modules. We
denote these isomorphisms by θT and θN, respectively. To show that these form a constraint
morphism consider that θ = (Φ◦pr1)+(χ◦pr2) is a composition of constraint morphisms, thus so
is θ itself. Moreover, for every y ∈ F0 we have y = (y−(χ◦Ψ)(y))+(χ◦Ψ)(y) ∈ E0⊕ G0, hence θ
is an isomorphism of constraint modules. Conversely, suppose θ : E⊕ G → F is an isomorphism
such that θ ◦ iE = Φ and Ψ ◦ θ = prG. Then θ ◦ iG is clearly a splitting for (1.5.29). □

The following result shows that projective modules can be described as direct summands
of Cemb

ind Set-free modules. The proof is completely analogous to the usual case, see e.g. [Jac89,
Prop. 3.10].

Theorem 1.5.27 (Projective modules) Let A ∈ CembAlg be a constraint algebra and P ∈
CModA be given. The following statements are equivalent:

i.) The module P is projective.

ii.) Every short exact sequence 0 → E → F → P → 0 splits.

iii.) The moduleP is a direct summand of a Cemb
ind Set-free module, i.e. there existsM ∈ Cemb

ind Set
and E ∈ CModA such that A(M) ≃ P⊕ E.

iv.) There exist M ∈ Cemb
ind Set and e = (eT, eN) ∈ CEndA(A

(M)) such that e2 = e and P ≃
eA(M) = im(e).

Proof: i.)⇒ ii.): This is exactly Proposition 1.5.25.
ii.)⇒ iii.): By Proposition 1.5.22 there exists a short exact sequence 0 → E → A(M) →

P → 0 with M ∈ Cemb
ind Set. This sequence splits by assumption, and therefore by the splitting

lemma we have A(M) ≃ E ⊕P.
iii.)⇒ i.): We have a split exact sequence 0 → E → A(M) → P → 0 with M ∈ Cemb

ind Set.
Let Ψ: P −→ F and Φ: G −→ F be given with Φ a regular epimorphism. We get the following
diagram:

0 E A(M) P 0

G F

ι π

Ψ

σ

Φ

Since A(M) is projective there exists a morphism η : A(M) → G such that Φ ◦ η = Ψ ◦ π. Then
η ◦ σ : P → G yields the desired morphism making P projective.

iii.)⇔ iv.): If A(M) ≃ P ⊕ E, then choose for e ∈ EndA(A
(M)) the projection on P. If

P ≃ eA(M), then E := ker(e) gives the correct direct summand. □

De�nition 1.5.28 (Finitely generated projective modules) Let A ∈ CembAlg and letP ∈
CembModA be a projective constraint module.

i.) An embedded constraint index set M such that A(M) ≃ P⊕ E is called generating set of
the projective module P.

ii.) If M can be chosen �nite we call P �nitely generated projective.

iii.) The category of �nitely generated projective constraint modules over A is denoted by
CProj(A).

Remark 1.5.29 With the help of Theorem 1.5.27 iii.) it is easy to see that direct sums of
projective constraint modules are again projective. This directly opens the possibility to de�ne
constraint K0-theory for constraint algebras.
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In addition to the above characterizations of projective modules we can also use a constraint
version of a dual basis.

Proposition 1.5.30 (Dual basis) Let A ∈ CembAlg be a constraint algebra andP ∈ CembModA.
The following statements are equivalent:

i.) P is projective with generating set M ∈ Cemb
ind Set.

ii.) There exist families (en)n∈MT
⊆ PT and (en)n∈MT

⊆ (PT)
∗ = HomAT

(PT,AT) such that

x =
∑
n∈MT

ene
n(x) (1.5.31)

for all x ∈ PT where for �xed x only �nitely many of the en(x) di�er from 0. Moreover,
the following properties need to be satis�ed:

a.) One has en ∈ PN for n ∈MN.

b.) One has en ∈ P0 for n ∈M0.

c.) One has en(PN) ⊆ AN for n ∈MT.

d.) One has en ∈ (P∗)N for n ∈MT \M0 = (M∗)N.

e.) One has en(PN) = 0 for n ∈MT \MN = (M∗)0.

Proof: Let P ≃ eA(M) be projective with idempotent e ∈ CEndA(A
(M)) and generating set

M ∈ Cemb
ind Set. Denote by bn ∈ A

(MT)
T the standard basis and by bn the canonical coordinate

functionals. De�ning en = eT(bn) for n ∈ MT as well as en = bn
∣∣
eA(M) gives a usual dual basis

for A
(MT)
T . Thus we get (1.5.31). Since e is a constraint morphism and it holds bn ∈ (A(M))N for

n ∈MN and bn ∈ (AM )0 for n ∈M0 we get a.) and b.). For x ∈ A
(MN)
N it holds that bn(x) ∈ AN

for all n ∈ MT and bn(x) = 0 for all n ∈ MT \MN. Moreover, if x ∈ A
(MN\M0)
0 ⊕ A

(M0)
T we get

bn(x) ∈ A0 for all n ∈MT \M0. Hence c.), d.) and e.) follow. Let now such a dual basis in the
above sense be given. The map M → P de�ned by n 7→ en is a morphism of constraint index
sets because of a.) and b.). By the universal property of free constraint modules we thus get
an induced morphism q : A(M) → P. We de�ne i : P → A(M) by

i(x) :=
∑
n∈MT

bne
n(x).

The map i is clearly a module morphism as the en are, and it is a constraint morphism by c.),
d.) and e.). We now show q ◦ i = idP: For x ∈ PT we have

q(i(x)) = q
( ∑
n∈MT

bne
n(x)

)
=
∑
n∈MT

ene
n(x) = x

by assumption. Thus the constraint endomorphism e := i ◦ q ∈ CEndA(A
(M)) is an idempotent

and P ≃ eA(M) via the maps i and q
∣∣
eA(M) . Hence P is projective. □

In Proposition 1.5.9 we have seen that duals of free constraint modules need not be free in
general. One might hope that duals of free modules are at least projective. But even this fails
as the next example shows. In particular we also see that duals of projective constraint modules
need not be projective.

Example 1.5.31 Consider a constraint algebra A ∈ CembAlg with AN ̸= AT and �nite n ∈
Cemb
ind Set with nT ̸= nN. Then An is projective by Lemma 1.5.21. We know(

(An)∗
)
N
= An0

0 ⊕ AnN−n0
N ⊕ AnT−nN

T (1.5.32)

from Proposition 1.5.9, which can never be a direct summand of some Am
N . Thus it follows from

Theorem 1.5.27 that An cannot be projective.
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1.5.3.1 Reduction

The notion of projectivity is compatible with the reduction functor of constraint modules.

Proposition 1.5.32 (Reduction of projective constraint modules) Let A ∈ CembAlg be
a constraint algebra and letP ∈ CModA be projective. ThenPred is projective, and ifP ≃ eA(M)

for some M ∈ Cemb
ind Set, then Pred ≃ eredA

(Mred)
red .

Proof: SupposeP ≃ P⊕E, with e ∈ CEndA(A
(M)) the projection ontoP. Then (A(M))red ≃

Pred⊕Ered with ered ∈ EndAred
((A(M))red) the corresponding projection. Since Proposition 1.5.17

yields (A(M))red ≃ A
(Mred)
red the claim holds. □

1.5.4 Projective Strong Constraint Modules

For strong constraint modules over a strong constraint algebra A the situation is quite similar
to that of non-strong modules. Therefore, in this section we will omit proofs that can be carried
over from Section 1.5.3 word by word.

De�nition 1.5.33 (Projective strong module) Let A ∈ CstrAlg be a strong constraint al-
gebra. A strong constraint A-module P ∈ CstrModA is called projective if for every E,F ∈
CstrModA, morphism Ψ: P −→ F and regular epimorphism Φ: E −→ F there exists a mor-
phism χ : P −→ E such that Φ ◦ χ = Ψ. Diagrammatically:

E

P F

Φ

Ψ

χ (1.5.33)

The category of strong constraint modules over an embedded strong constraint algebra A ∈
Cemb
str Alg has enough projectives as the next proposition shows.

Proposition 1.5.34 Let A ∈ Cemb
str Alg be an embedded strong constraint algebra.

i.) For every M ∈ Cemb
ind Set the free constraint module A(M) is projective.

ii.) For every strong constraint module E ∈ CstrModA there exists M ∈ Cemb
ind Set and a regular

epimorphism Φ: A(M) → E.

iii.) If P ∈ CstrModA is projective, then P ∈ Cemb
str ModA.

Note that here the free module A(M) is the free strong constraint module in the sense of
Lemma 1.5.14. With this the usual characterization of projective modules in terms of summands
of free modules and projections also holds in the case of strong constraint modules.

Theorem 1.5.35 (Projective strong modules) Let A ∈ Cemb
str Alg be an embedded strong

constraint algebra and P ∈ CstrModA be given. The following statements are equivalent:

i.) The module P is projective.

ii.) Every short exact sequence 0 → E → F → P → 0 splits.

iii.) The moduleP is a direct summand of a Cemb
ind Set-free module, i.e. there existsM ∈ Cemb

ind Set
and E ∈ CstrModA such that A(M) ≃ P⊕ E.

iv.) There exist M ∈ Cemb
ind Set and e = (eT, eN) ∈ CEndA(A

(M)) such that e2 = e and P ≃
eA(M) = im(e).
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De�nition 1.5.36 (Finitely generated projective modules) Let A ∈ Cemb
str Alg and letP ∈

Cemb
str ModA be a projective strong constraint module.

i.) An embedded constraint index set M such that A(M) ≃ P⊕ E is called generating set of
the projective module P.

ii.) If M can be chosen �nite we call P �nitely generated projective.

iii.) The category of �nitely generated projective strong constraint modules over A is denoted
by CstrProj(A).

Remark 1.5.37

i.) Projective constraint modules have been introduced in [Men20; DMW22], while the notion
of projective strong constraint modules appears here for the �rst time.

ii.) Similar to the situation of projective constraint modules, the direct sum of projective
strong constraint modules is again projective. This allows for the introduction of K0-
theory of strong constraint algebras, which will in general di�er from the K0-theory of
constraint algebras.

There exists again a characterization in terms of a dual basis, but it di�ers slightly from the
dual basis for non-strong projective modules, cf. Proposition 1.5.30.

Proposition 1.5.38 (Dual basis) Let A ∈ Cemb
str Alg be an embedded strong constraint algebra

and P ∈ Cemb
str ModA. Then the following statements are equivalent:

i.) P is projective with generating set M ∈ Cemb
ind Set.

ii.) There exist families (en)n∈MT
⊆ PT and (en)n∈MT

⊆ (PT)
∗ = HomAT

(PT,AT) such that

x =
∑
n∈MT

ene
n(x) (1.5.34)

for all x ∈ PT where for �xed x only �nitely many of the en(x) di�er from 0. Moreover,
the following properties need to be satis�ed:

a.) One has en ∈ PN for n ∈MN.

b.) One has en ∈ P0 for n ∈M0.

c.) One has en ∈ (P∗)N for n ∈MT \M0 = (M∗)N.

d.) One has en ∈ (P∗)0 for n ∈MT \MN = (M∗)0.

Proof: Let P ≃ eA(M) be projective with idempotent e ∈ CEndA(A
(M)) and generating set

M ∈ Cemb
ind Set. Denote by bn ∈ A

(MT)
T the standard basis and by bn the canonical coordinate

functionals. De�ning en = eT(bn) for n ∈ MT as well as en = bn
∣∣
eA(M) gives a usual dual basis

for A
(MT)
T . Thus we get (1.5.34). Since e is a constraint morphism and it holds bn ∈ (A(M))N for

n ∈MN and bn ∈ (AM )0 for n ∈M0 we get a.) and b.). For x ∈ A
(MT\MN)
0 ⊕A

(MN\M0)
N ⊕A

(M0)
T

it holds that bn(x) ∈ AN for all n ∈MT \M0 and bn(x) ∈ A0 for all n ∈MT \MN. Moreover, if
x ∈ A

(MN\M0)
0 ⊕A

(M0)
T we get bn(x) ∈ A0 for all n ∈MT \M0. Hence c.) and d.). Let now such

a dual basis in the above sense be given. The map M → P de�ned by n 7→ en is a morphism
of constraint index sets because of a.) and b.). By the universal property of free constraint
modules we thus get an induced morphism q : A(M) → P. We de�ne i : P → A(M) by

i(x) :=
∑
n∈MT

bne
n(x).
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The map i is clearly a module morphism as the en are, and it is a constraint morphism by c.)
and d.). We now show q ◦ i = idP: For x ∈ PT we have

q(i(x)) = q
( ∑
n∈MT

bne
n(x)

)
=
∑
n∈MT

ene
n(x) = x

by assumption. Thus the constraint endomorphism e := i ◦q ∈ CEndA(A
(M)) is an idempotent

and P ≃ eA(M) via the maps i and q
∣∣
eA(M) . Hence P is projective. □

We can view such a constraint dual basis as a pair ({en}n∈M , {en}n∈M∗) of constraint subsets
indexed by M and M∗, respectively. By a constraint indexed subset {xi}i∈I of a constraint set
X indexed by a constraint index set I we simply mean a constraint map I → X.

Proposition 1.5.39 (Duals of projective modules) Let A ∈ Cemb
str Alg be a strong constraint

algebra and let P ∈ CstrProj(A) be �nitely generated projective.

i.) P∗ is �nitely generated projective.

ii.) If ({ei}i∈M , {ei}i∈M∗) is a constraint dual basis of P, then ({ei}i∈M∗ , {ei}i∈M ) is a con-
straint dual basis for P∗.

Proof: By Theorem 1.5.35 iii.) we know that there exists a �nite M ∈ Cemb
ind Set and a A-

module E such that AM ≃ P⊕E. Then by Proposition 1.5.15 we have AM∗ ≃ (AM )∗ ≃ P∗⊕E∗,
and therefore P∗ is again �nitely generated projective. For the second part recall that we
know from classical algebra that ({ei}, {ei})i∈MT

is a dual basis for P∗
T , by identifying ei with

its insertion functional δei . Then using (M∗)∗ = M we see that properties a.) and b.) of
Proposition 1.5.38 for the dual basis of P exactly give c.) and d.) of Proposition 1.5.38 for P∗,
and vice versa. □

By Proposition 1.5.34 iii.) we know that for a commutative A ∈ Cemb
str Alg the category

CstrProj(A) is a full subcategory of Cemb
str Bimod(A)sym, using the identi�cation of one-sided mod-

ules over a commutative algebra with symmetric bimodules. The category Cemb
str Bimod(A)sym

carries two distinct monoidal structures: ⊗str and ⊠emb, see Section 1.4.2. We want to under-
stand if CstrProj(A) is closed under taking ⊗str and ⊠emb products.

Proposition 1.5.40 (Tensor product on CstrProj(A)) Let A ∈ Cemb
str Alg be commutative and

E,F ∈ CstrProj(A).

i.) CstrProj(A) is a monoidal subcategory of (Cemb
str Bimod(A)sym,⊗str

A ). In particular, E⊗str
A F

is �nitely generated projective.

ii.) If ({ei}i∈M , {ei}i∈M∗) and ({fj}j∈N , {f j}j∈N∗) are dual bases of E and F, respectively,
then ({ei ⊗ fj}(i,j)∈M⊗N , {ei ⊗ f j}(i,j)∈(M⊗N)∗) is a dual basis for E ⊗str

A F.

Proof: We �rst prove the second part. From classical algebra we know that(
{ei ⊗ fj}(i,j)∈MT×NT

, {ei ⊗ f j}(i,j)∈MT×NT

)
is a dual basis for ET ⊗AT

FT. We need to check properties a.) to d.) from Proposition 1.5.38:
For this recall that with the notation of Notation 1.3.10 we have

(M ⊗ N)N =M N, (M ⊗ N)∗N =M N,

(M ⊗ N)0 =M N, (M ⊗ N)∗0 =M N.

and
(E ⊗str

A F)N = E F and (E ⊗str
A F)0 = E F.

With this we can go through all the di�erent cases:
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� (i, j) ∈M N : Then ei ⊗ fj ∈ E F = (E ⊗str
A F)N holds.

� (i, j) ∈ M N : We clearly have ei ⊗ fj ∈ E F = (E ⊗str
A F)0, since at least one of ei

and fj lies in the 0-component.

� (i, j) ∈M N : Suppose x⊗ y ∈ E F. Then

(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ AT · A0 + A0 · AT = A0,

and thus ei ⊗ f j ∈ (E ⊗A F)∗0 .

� (i, j) ∈M N : For this let �rst x⊗ y ∈ E F be given, then

(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ AN · AN = AN.

Moreover, for x⊗ y ∈ E F we have

(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ A0 · AN + AN · A0 = A0.

Thus we get ei ⊗ f j ∈ (E ⊗str
A F)∗N.

This shows ii.). Hence we have E⊗str
A F ∈ CstrProj(A), and since also A ∈ CstrProj(A) holds by

Proposition 1.5.34 i.), we see that CstrProj(A) is a monoidal subcategory of Cemb
str Bimod(A)sym.□

Proposition 1.5.41 (Strong Tensor product on CstrProj(A)) Let A ∈ Cemb
str Alg be commu-

tative and E,F ∈ CstrProj(A).

i.) CstrProj(A) is a monoidal subcategory of (Cemb
str Bimod(A)sym,⊠emb

A ). In particular, E ⊠emb
A F

is �nitely generated projective.

ii.) If ({ei}i∈M , {ei}i∈M∗) and ({fj}j∈N , {f j}j∈N∗) are dual bases of E and F, respectively,
then ({ei ⊗ fj}(i,j)∈M⊠N , {ei ⊗ f j}(i,j)∈(M⊠N)∗) is a dual basis for E ⊠emb

A F.

Proof: We �rst prove the second part. From classical algebra we know that

({ei ⊗ fj}(i,j)∈MT×NT
, {ei ⊗ f j}(i,j)∈MT×NT

)

is a dual basis for ET ⊗AT
FT. We need to check properties a.) to d.) from Proposition 1.5.38:

For this recall that with the notation of Notation 1.3.10 we have

(M ⊠ N)N =M N, (M ⊠ N)∗N =M N,

(M ⊠ N)0 =M N, (M ⊠ N)∗0 =M N

and
(E ⊠emb

A F)N = E F and (E ⊠emb
A F)0 = E F.

With this we can go through all the di�erent cases:
� (i, j) ∈M N = (M ⊠ N)0: Then ei ⊗ fj ∈ E F = (E ⊠emb

A F)0 holds, since at least
one of ei and fj lies in the 0-component.

� (i, j) ∈M N ⊆ (M ⊠ N)N: We clearly have ei ⊗ fj ∈ E F ⊆ (E ⊠emb
AT

F)N.

� (i, j) ∈M N = (M ⊠ N)∗0 : Suppose x⊗ y ∈ E F = (E ⊠emb
A F)0, then

(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ AT · A0 + A0 · AT = A0,

since both ei and f j map 0-components to 0-components. Moreover, for x⊗ y ∈ E F ⊆
(E ⊠emb

A F)N we have

(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ AN · A0 + A0 · AN = A0,

and thus ei ⊗ f j ∈ (E ⊠emb
AT

F)∗0 .
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� (i, j) ∈ M N ⊆ (M ⊠ N)∗N: For this let �rst x ⊗ y ∈ E F = (E ⊠emb
A F)0 be given,

then
(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ AT · A0 + A0 · AT = A0,

since both ei and f j map 0-components to 0-components. Moreover, for x⊗ y ∈ E F ⊆
(E ⊠emb

A F)N we have

(ei ⊗ f j)(x⊗ y) = ei(x) · f j(y) ∈ AN · AN = AN.

Thus we get ei ⊗ f j ∈ (E ⊠emb
A F)∗N.

This shows ii.). Hence we have E⊠emb
A F ∈ CstrProj(A), and since also A ∈ CstrProj(A) holds by

Proposition 1.5.34 i.), we see that CstrProj(A) is a monoidal subcategory of Cemb
str Bimod(A). □

We are now in a position to show that the canonical morphisms from Proposition 1.4.35 and
Proposition 1.4.42 are in fact isomorphisms, when restricting to �nitely generated projective
modules.

Proposition 1.5.42 Let A ∈ Cemb
str Alg and E,F ∈ CstrProj(A).

i.) The canonical morphism F ⊠emb
A E∗ → CstrHomA(E,F) given by (1.4.23) is an isomor-

phism.

ii.) The canonical morphism E∗ ⊗str
A F∗ → (E ⊠emb

A F)∗ given by (1.4.30) is an isomorphism.

iii.) The canonical morphism E∗ ⊠emb
A F∗ → (E ⊗str

A F)∗ given by (1.4.31) is an isomorphism.

Proof: In all three cases we show that the well known inverse maps on the T-components are
in fact constraint maps, and therefore yield constraint inverses. To do this we need to �x dual
bases ({ei}i∈M , {ei}i∈M∗) and ({fj}j∈N , {f j}j∈N∗) of E and F, respectively. For the �rst part
consider the map

HomAT
(ET,FT) ∋ Φ 7→

∑
i∈MT

Φ(ei)⊗ ei ∈ FT ⊗ E∗
T. (∗)

This is the inverse to (1.4.23) on the T-component. Hence we need to show that (∗) is a
constraint morphism. For this let Φ ∈ CstrHomA(E,F)N be given.

� If i ∈MT \MN =M∗
0 , then Φ(ei)⊗ ei ∈ FT ⊗ E∗

0 ⊆ (F⊠emb
A E∗)0.

� If i ∈ MN \M0 ⊆ M∗
N, then, since in particular i ∈ MN holds, we obtain Φ(ei) ⊗ ei ∈

FN ⊗ E∗
N ⊆ (F⊠emb

A E∗)N.

� If i ∈M0, then Φ(ei)⊗ ei ∈ F0 ⊗ E∗
T ⊆ (F⊠emb

A E∗)0.
Hence (∗) preserves the N-component. To show that it also preserves the 0-component, we only
need to reconsider the second case from above.

� If i ∈ MN \M0 ⊆ M∗
N, then, since in particular i ∈ MN holds, we obtain Φ(ei) ⊗ ei ∈

FN ⊗ E∗
0 ⊆ (F⊠emb

A E∗)0.
This shows that (∗) is a constraint inverse to (1.4.23).

For part ii.) we need to show that

(ET ⊗AT
FT)

∗ ∋ α 7→
∑

(i,j)∈MT×NT

α(ei ⊗ fj) · ei ⊗ f j ∈ E∗
T ⊗AT

F∗
T (∗∗)

de�nes a constraint morphism (E ⊠emb
A F)∗ → E∗ ⊗str

A F∗. Recall that the families
({ei ⊗ fj}(i,j)∈M⊠N , {ei ⊗ f j}(i,j)∈M∗⊗N∗) form a dual basis of E ⊠emb

A F, while the fami-
lies ({ei ⊗ f j}(i,j)∈M∗⊗N∗ , {ei ⊗ fj}(i,j)∈M⊠N ) are a dual basis of E∗ ⊗str

A F∗. Now suppose
α ∈ (E ⊠emb

A F)∗N.
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� If (i, j) ∈M N = (M∗⊗N∗)0, then α(ei⊗fj)·ei⊗f j ∈ AT ·(E∗⊗str
A F∗)0 = (E∗⊗str

A F∗)0.

� If (i, j) ∈M N ⊆ (M∗ ⊗ N∗)N, then, since also M N ⊆ (M ⊠ N)N holds, we get

α( ei ⊗ fj︸ ︷︷ ︸
∈(E⊠F)N

) · ei ⊗ f j ∈ AN · (E∗ ⊗str
A F∗)N = (E∗ ⊗str

A F∗)N.

� If (i, j) ∈M N = (M ⊠ N)0, then

α(ei ⊗ fj︸ ︷︷ ︸
(E⊠F)0

) · ei ⊗ f j ∈ A0 · (E∗ ⊗str
A F∗)T ⊆ (E∗ ⊗str

A F∗)0.

Thus (∗∗) preserves the N-component. Next take α ∈ (E ⊠emb
A F)∗0 . Since (E ⊠emb

A F)∗0 ⊆
(E ⊠emb

A F)∗N we only need to check one of the above cases.
� If (i, j) ∈ M N ⊆ (M∗ ⊗ N∗)N, then, since also since M N ⊆ (M ⊠ N)N holds, we
get

α( ei ⊗ fj︸ ︷︷ ︸
∈(E⊠F)N

) · ei ⊗ f j ∈ A0 · (E∗ ⊗str
A F∗)N = (E∗ ⊗str

A F∗)0.

Hence (∗∗) also preserves the 0-component, showing that it is a constraint inverse to (1.4.30).
For part iii.) we proceed similarly. But this time we need to show that (∗∗) de�nes a con-

straint morphism (E⊗str
A F)∗ → E∗⊠emb

A F∗. Recall that ({ei⊗fj}(i,j)∈M⊗N , {ei⊗f j}(i,j)∈M∗⊠N∗)
is a dual basis of E ⊗str

A F and ({ei ⊗ f j}(i,j)∈M∗⊠N∗ , {ei ⊗ fj}(i,j)∈M⊗N ) is a dual basis of
E∗ ⊠emb

A F∗. Now suppose α ∈ (E ⊗str
A F)∗N.

� If (i, j) ∈ M N = (M∗ ⊠ N∗)0, then α(ei ⊗ fj) · ei ⊗ f j ∈ AT · (E∗ ⊠emb
A F∗)0 =

(E∗ ⊠emb
A F∗)0.

� If (i, j) ∈M N ⊆ (M∗ ⊠ N∗)N, then, since also M N ⊆ (M ⊗ N)N holds, we get

α( ei ⊗ fj︸ ︷︷ ︸
∈(E⊗F)N

) · ei ⊗ f j ∈ AN · (E∗ ⊠emb
A F∗)N = (E∗ ⊠emb

A F∗)N.

� If (i, j) ∈M N = (M ⊗ N)0, then

α(ei ⊗ fj︸ ︷︷ ︸
(E⊗F)0

) · ei ⊗ f j ∈ A0 · (E∗ ⊠emb
A F∗)T ⊆ (E∗ ⊠emb

A F∗)0.

Thus (∗∗) preserves the N-component. Next take α ∈ (E⊗str
A F)∗0 . Since (E⊗str

A F)∗0 ⊆ (E⊗str
A F)∗N

we only need to check one of the above cases.
� If (i, j) ∈ M N ⊆ (M∗ ⊠ N∗)N, then, since also since M N ⊆ (M ⊗ N)N holds, we
get

α( ei ⊗ fj︸ ︷︷ ︸
∈(E⊗F)N

) · ei ⊗ f j ∈ A0 · (E∗ ⊠emb
A F∗)N = (E∗ ⊠emb

A F∗)0.

Hence (∗∗) also preserves the 0-component, showing that it is a constraint inverse to (1.4.31).□

Proposition 1.5.42 i.) shows that CstrHom(E,F) is again �nitely generated projective.

Corollary 1.5.43 Let A ∈ Cemb
str Alg and E,F, G,H ∈ CstrProj(A).

i.) There exists a canonical isomorphism

CstrHom(E ⊗str
A F, G) ≃ CstrHom(F, G ⊠emb

A E∗). (1.5.35)
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ii.) There exists a canonical isomorphism

CstrHom(E,F)⊠emb
A CstrHom(G,H) ≃ CstrHom(E ⊗str

A G,F⊠emb
A H). (1.5.36)

Proof: By Proposition 1.5.42 we have canonical isomorphisms

CstrHom(E ⊗str
A F, G) ≃ G ⊠emb

A (E ⊗str
A F)∗

≃ G ⊠emb
A E∗ ⊠emb

A F∗

≃ CstrHom(F, G ⊠emb
A E∗),

and

CstrHom(E,F)⊠emb
A CstrHom(G,H) ≃ E∗ ⊠emb

A F⊠emb
A G∗ ⊠emb

A H

≃ (E ⊗str
A G)∗ ⊠emb

A F⊠emb
A H

≃ CstrHom(E ⊗str
A G,F⊠emb

A H). □

Remark 1.5.44 With Corollary 1.5.43 it is easy to show that CstrProj(A) forms a ∗-autonomous
category, see [Bar79]. Moreover, CstrProj(A) can be understood as the category of linear ad-
joints in the linear distributive category Cemb

str Bimod(A)sym, analogous to the classical fact that
�nitely generated projective modules can be considered as the dualizable objects in the monoidal
category of modules, cf. [Egg10; CS99]. This suggests that most of the structure on CstrProj(A)
can actually be derived in the more abstract setting of linear distributive categories. But, at the
moment, there seems to exist no �eshed out theory of monoids, modules and their linear duals
internal to linear distributive categories.

1.5.4.1 Reduction

The notion of projectivity is compatible with the reduction functor of strong constraint modules.

Proposition 1.5.45 (Reduction of projective strong constraint modules) Let A be an
embedded strong constraint algebra and P ∈ CstrModA. Then Pred is projective, and if P ≃
eA(M) for some M ∈ Cemb

ind Set, then Pred ≃ eredA
(Mred)
red .

1.6 More Constraint Structures

In this short, last section of the �rst part, we collect some more constraint algebraic notions
which will be needed in Chapter 2 and Chapter 3. The de�nitions and properties should not
be surprising at this point. Thus we will restrict ourselves to what is needed later on, instead
of giving the full-�edged theories. In particular, we introduce constraint cochain complexes
and their cohomology in Section 1.6.1, while Section 1.6.2 is concerned with non-associative
constraint algebraic structures, such as (di�erential graded) Lie algebras and Poisson algebras.

1.6.1 Constraint Cochain Complexes

Let us start to introduce Z-graded constraint modules. Even though we could also allow for a
grading by a more general constraint set or constraint group, this is not necessary at this point.

De�nition 1.6.1 (Graded constraint module)

i.) A (Z-)graded constraint k-module is a Z-indexed family {Mi}i∈Z of constraint k-modules
Mi ∈ CModk.
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ii.) A morphism {Mi}i∈Z −→ {N i}i∈Z of graded constraint k-modules is given by a Z-indexed
family {Φi}i∈Z of morphisms Φi : Mi −→ N i.

iii.) We denote the category of graded constraint k-modules by CMod•
k
.

We can always combine the indexed family of a graded constraint module into a single
constraint module M• =

⊕
i∈ZMi. Conversely, if a given constraint module M decomposes

into a direct sum indexed by Z we write M• if we want to emphasize the graded structure. This
way, every constraint module can be viewed as a graded constraint module by placing it at i = 0
with all other degrees being trivial.

A more �exible notion of morphism between graded constraint modules is given by a mor-
phism of degree k, i.e. a family Φi : Mi −→ N i+k.

We will use the usual induced tensor products

M ⊗k N =
⊕
n∈Z

( ⊕
k+ℓ=n

Mk ⊗k Nℓ
)

(1.6.1)

and

M ⊠k N =
⊕
n∈Z

( ⊕
k+ℓ=n

Mk ⊠k Nℓ
)

(1.6.2)

and the symmetry with the usual Koszul signs. This turns CMod•
k
into a monoidal category,

which is symmetric when considering symmetric modules.
We can now introduce constraint complexes as graded constraint modules together with a

constraint di�erential.

De�nition 1.6.2 (Constraint complex)

i.) A constraint complex is a graded constraint module M• together with a constraint degree
+1 morphism δ• : M• −→ M•+1 such that δ ◦ δ = 0.

ii.) A morphism of constraint complexes is a morphism Φ: M• −→ N• of graded constraint
modules, such that Φ ◦ δM = δN ◦ Φ.

iii.) The category of constraint complexes is denoted by Ch(CModk).

Since morphisms of complexes commute with the di�erential δ, it is easy to see that we
obtain a functor by constructing the cohomology of the constraint complex.

Proposition 1.6.3 (Constraint cohomology) Let M• ∈ Ch(CModk) be a constraint cochain
complex with di�erential δ. The maps

Mi 7−→ Hi(M, δ) = ker δi/ im δi−1 (1.6.3)

for i ∈ Z de�ne a functor H : Ch(CModk) −→ CMod•
k
.

Remark 1.6.4 ((Regular) image) Note that constraint cohomology is de�ned by using the
image of morphisms of constraint modules and not the regular image, see Proposition 1.2.19.
However, choosing the regular image instead would not make a di�erence since the 0-component
of the denominator is not used in the quotient of constraint modules, see De�nition 1.2.21.
Moreover, note that this means that in general we cannot decide whether ker δ = im δ by
computing cohomology, but we can decide if ker δ = regim δ holds.
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1.6.1.1 Reduction

Since graded constraint modules and constraint complexes are given by Z-indexed families of
constraint modules it should be clear that applying the reduction functor in every degree yields
functors red: CMod•

k
→ Mod•

k
and red: Ch(CModk) → Ch(Modk).

Proposition 1.6.5 (Cohomology vs. reduction) There exists a natural isomorphism such
that

Ch(CModk) CModk

Ch(Modk) Modk

H

red red

H

(1.6.4)

commutes.

Proof: De�ne η for every M ∈ Ch(CModk) by

η(M) : H(M)red ∋
[
[x]H

]
red

7→
[
[x]red

]
H
∈ H(Mred).

For δi−1
N y ∈ im δi−1

N we have [δi−1
N y]red = δi−1

red [y]red and hence [[δi−1
N y]red]H = 0. Moreover, for

[x0]H ∈ H(M)0 we have x0 ∈ Mi
0 and hence [[x0]red]H = 0. Thus η is well-de�ned. Similarly, it

can be shown that the inverse η−1(M) : H(Mred) −→ H(M)red given by [[x]red]H 7→ [[x]H]red is
well-de�ned. Finally, for Φ: M• −→ N• we have(

η(N) ◦
[
[Φi]H

]
red

)([
[x]H

]
red

)
=
(
η(N)

)([
[Φi(x)]H

]
red

)
=
[
[Φi(x)]red

]
H

=
([

[Φi]red
]
H
◦ η(M)

)([
[x]H

]
red

)
,

showing that η : red ◦ H ⇒ H ◦ red is indeed a natural isomorphism. □

A morphism Φ: M• → N• of constraint cochain complexes is called a quasi-isomorphism if
the induced map H(Φ) is an isomorphism of constraint modules. We remark that the reduction
functor red: Ch(CModk) → Ch(Modk) maps quasi-isomorphisms of constraint complexes to
quasi-isomorphisms of cochain complexes.

1.6.2 Constraint Lie Algebras

Let us collect some constraint notions involving brackets instead of associative compositions.
These notions will be important for our notions of constraint vector �elds as introduced in
Section 2.4.2 and constraint deformation theory, see Section 3.2.

De�nition 1.6.6 (Constraint Lie algebra) A constraint Lie algebra is a constraint k-
module g together with a bracket

[ · , · ] : g⊗k g → g, (1.6.5)

with [ · , · ]◦∆ = 0 and ful�lling the usual Jacobi identity in every component. Here ∆(ξ) = ξ⊗ ξ
denotes the usual diagonal.

Equivalently, a constraint Lie algebra is given by a Lie algebra morphism ιg : gN → gT

between two Lie algebras gN and gT together with a Lie ideal g0 ⊆ gN. Then a morphism of
constraint Lie algebras is simply a morphism of constraint k-modules such that it is a Lie algebra
morphism on both T- and N-component. We denote the category of constraint Lie algebras by
CLieAlg.
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Example 1.6.7

i.) Let E be a constraint k-module. The internal endomorphisms CEndk(E) are a con-
straint Lie algebra given by the usual commutator [ · , · ]ET on CEndk(E)T and the pair
([ · , · ]ET , [ · , · ]EN) on CEndk(E)N.

ii.) Let A ∈ CAlg be a constraint algebra. The constraint derivations CDer(A) as introduced
in Proposition 1.4.12 forms a constraint Lie algebra which can be seen as a constraint Lie
subalgebra of CEndk(A).

Note that even for a strong constraint algebra, we only obtain a constraint Lie algebra
CDer(A), and not a strong constraint Lie algebra, i.e. a constraint Lie algebra with bracket
de�ned on g⊠k g.

We can now state the de�nition of a constraint Lie-Rinehart algebra, cf. [Rin63; Hue03] for
the classical notion.

De�nition 1.6.8 (Constraint Lie-Rinehart algebra) A constraint Lie-Rinehart algebra con-
sists of the following data:

i.) A commutative constraint algebra A.

ii.) A constraint A-module g together with a Lie algebra structure [ · , · ].
iii.) A constraint morphism ρ : g → CDer(A) of constraint Lie algebras and constraint A-

modules.

such that
[ξ, a · η] = ρ(ξ)(a) · η + a[ξ, η] (1.6.6)

holds for all ξ, η ∈ gT/N and a ∈ AT/N.

Let us continue to combine constraint Lie algebras with constraint complexes. We state the
de�nition directly as pairs of di�erential graded Lie algebras (DGLAs).

De�nition 1.6.9 (Constraint di�erential graded Lie algebra)

i.) A constraint DGLA g over k is a pair of DGLAs (g•T, [ · , · ]T,dT) and (g•N, [ · , · ]N, dN) over
k together with a degree 0 morphism ιg : g

•
N → g•T of DGLAs and a graded Lie ideal g•0 ⊂ g•N

such that dN(g
•
0) ⊆ g•+1

0 .

ii.) For two constraint DGLAs g and h, a morphism Φ: g• → h• of constraint DGLAs is a
pair of DGLA morphisms ΦT : g

•
T → h•T and ΦN : g

•
N → h•N such that ΦT ◦ ιg = ιh ◦ΦN and

ΦN(g
•
0) ⊆ h•0 .

iii.) The category of constraint DGLAs will be denoted by CDGLA.

Note that a morphism of constraint DGLAs can equivalently be understood as a morphism of
constraint modules such that its components are DGLA morphisms. A constraint Lie algebra is
a constraint DGLA with trivial di�erential and concentrated in degree 0. Similarly, a constraint
graded Lie algebra can be de�ned as a constraint DGLA with trivial di�erential.

Since every constraint DGLA g is, in particular, a constraint complex we can always construct
its corresponding cohomology H(g). Moreover, every morphism Φ: g• → h• of constraint DGLAs
is a morphism of constraint complexes and therefore it induces a morphism H(Φ): H•(g) → H•(h)
on cohomology. Clearly, H(g) is a constraint graded Lie algebra and every induced morphism
H(Φ) is a morphism of constraint graded Lie algebras. If H(Φ) is an isomorphism we call Φ a
quasi-isomorphism.

A special case of a constraint Lie algebra which will be important in reformulating coisotropic
reduction in constraint terms is that of a constraint Poisson algebra.
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De�nition 1.6.10 (Constraint Poisson algebra) A constraint Poisson algebra is a constraint
algebra A together with a constraint Lie bracket { · , · } such that {a, · } ∈ CDer(A)T/N/0 for every
a ∈ AT/N/0.

In other words, a constraint Poisson algebra consists of a morphism ιA : AN → AT of Poisson
algebras together with a Poisson ideal A0 ⊆ AN.

Example 1.6.11 In the study of singular Riemannian foliation in [NS22] so-called I-Poisson
manifolds are introduced. An I-Poisson manifold is a Poisson manifold together with a locally
�nitely generated subsheaf I of Poisson subalgebras of C∞(M). Every such I-Poisson manifold
induces a constraint Poisson algebra (C∞(M),N(I(M)), I(M)).

1.6.2.1 Reduction

For a constraint DGLA (g,d) the reduction gred := gN/g0 gives a well-de�ned functor

red: CDGLA → DGLA (1.6.7)

since by de�nition g0 is a di�erential graded Lie ideal in gN. It is then clear that reduction of
constraint DGLAs preserves quasi-isomorphisms. This functor clearly restricts to a reduction
functor

red: CLieAlg → LieAlg. (1.6.8)

for constraint Lie algebras. Together with the reduction of constraint derivations, see Exam-
ple 1.4.19, this also shows that a constraint Lie-Rinehart algebra (A, g) can be reduced to a
classical Lie-Rinehart algebra

(A, g)red := (Ared, gred). (1.6.9)

Similarly, we obtain for a constraint Poisson algebra (A, { · , · }) a reduced Poisson algebra

(A, { · , · })red := (Ared, { · , · }red). (1.6.10)

88



Chapter 2

Constraint Geometric Structures

Recall the situation of coisotropic reduction in Poisson geometry: There we consider a coisotropic
submanifold C of a Poisson manifold M . Then the reduced manifold Mred is given by the
quotient of C by its characteristic distribution D ⊆ TC, which is spanned by the Hamiltonian
vector �elds Xf of functions f vanishing on C, andMred carries a canonical Poisson structure. If
we forget about the Poisson structures, but keep the underlying geometric information needed to
construct the reduced manifold, we end up with a smooth version of constraint sets: A manifold
M , together with a submanifold C and an equivalence relation on C de�ned by the distribution
D. These so called constraint manifolds are the main object of study in this chapter.

In principle, more general notions of constraint manifolds would be possible: The equiva-
lence relation on C need not be induced by a distribution D, we could as well study equivalence
relations coming from discrete group actions, or even more general equivalence relations which
may or may not allow for a smooth quotient space. Nevertheless, since we are mainly inter-
ested in the coisotropic setting and there already non-trivial e�ects appear, we will stick with
distributions in this thesis.

In Section 2.1 we give a precise de�nition of constraint manifolds and study some �rst
properties. In particular, we will see that smooth functions CC∞(M) on a constraint manifoldM

carry the structure of an embedded strong constraint algebra, giving a �rst link to the constraint
algebraic objects from Chapter 1. After introducing vector bundles over constraint manifolds in
Section 2.2 we will see in Section 2.3 that sections of constraint vector bundles form embedded
strong constraint CC∞(M)-modules. Moreover, in Theorem 2.3.18 we will give a constraint
version of the Serre-Swan Theorem, showing that the category CVect(M) of constraint vector
bundles is equivalent to the category Proj(CC∞(M)) of projective strong constraint modules.
Having established the strong relationship of constraint geometric structures with constraint
algebras and modules we can proceed to study di�erential forms and multivector �elds on
constraint manifolds in Section 2.4, which will again carry rich algebraic structures. Finally, in
Section 2.5 we will consider di�erential operators on constraint manifolds and use constraint
covariant derivatives to establish a symbol calculus on constraint manifolds, allowing to identify
constraint (multi-)di�erential operators with certain sections of constraint vector �elds.

2.1 Constraint Manifolds

Following our philosophy from Chapter 1 we would like to de�ne constraint manifolds as some
kind of manifold object internal to a category of constraint objects replacing a classical category
which is suitable for de�ning manifolds. In the geometric situation it is not so clear how this can
be achieved. Looking at the classical situation there are various possibilities to generalize the
de�nition of a smooth manifold to the constraint setting: We could use the classical de�nition by
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charts to de�ne constraint manifolds. For this we �rst need to introduce constraint topological
spaces (which can be done, since we have a good notion of constraint subsets), and establish an
extensive theory to make sense of notions like constraint Hausdor� space, second countability etc.
Another approach could be to consider manifolds as sheaves, or more precisely, locally ringed
spaces, which locally look like smooth functions on Rn. Then constraint manifolds should be
understood as sheaves taking values in Cemb

str Alg which locally look like constraint functions on
R(nT,nN,n0). All these strategies would need a considerable amount of theory building before
we could even state the de�nition of a constraint manifold. At one point it might be useful to
develop such a theory in detail, but for our purposes it will be enough to simply de�ne constraint
manifolds as constraint objects internal to the category Manifold of smooth manifolds, i.e. as
a manifold M together with a smooth embedded submanifold C and a distribution D ⊆ TC
allowing for a smooth quotient. Such distributions will in particular be regular and integrable,
and will be called simple.

De�nition 2.1.1 (Constraint manifold)

i.) A constraint manifold M = (MT,MN, DM) consists of a smooth manifold MT, a closed
embedded submanifold ιM : MN →MT and a simple distribution DM ⊆ TMN on MN.

ii.) A smooth map ϕ : M → N (or constraint map) between constraint manifolds is given by a
smooth map ϕ : MT → NT such that ϕ(MN) ⊆ NN and Tϕ(DM) ⊆ DN.

iii.) The category of constraint manifolds and smooth maps is denoted by CManifold.

If we consider only a single constraint manifold we will often write M = (M,C,D), with D ⊆
TC the distribution on the closed submanifold C ⊆M , instead of using subscripts. Additionally,
we will sometimes denote the inclusion of C in M by ι : C →M .

Remark 2.1.2

i.) So far constraint objects were also allowed to have non-injective maps from N- to T-compo-
nents. Thus it would be natural to replace the submanifold C ⊆ M by a smooth map
ι : C → M . Nevertheless, we will stick to the simpler notion with C being an embedded
submanifold.

ii.) There exist more equivalence relations on C allowing for a smooth quotient than are
given by simple distributions. For example, actions of discrete groups are not included
in this setting. See [Ser06] for Godement's theorem, which shows that the quotient by
an equivalence relation R ⊆ C × C is smooth if and only if R is a closed embedded
submanifold and pr1 : R → C is a surjective submersion. We chose to stick to our more
special de�nition, since this is the situation dictated by coisotropic reduction in Poisson
geometry. Implementing these more general features would, on one hand, lead to a more
involved theory. On the other hand, it should be clear for most of the following results
how these can be transferred to the general situation.

iii.) From a geometric point of view it would be desirable to allow also for non-smooth quotients.
In particular, one might be interested in integrable and regular distributions which are
not simple. Many of the following results hold in this more general situation, and we will
indicate whenever a result actually uses the simplicity of the distribution.
In Vinogradov's secondary calculus [Vin98], see also [Vit14], one treats the geometry of a
possibly singular quotient by cohomological methods. This can be another way to enlarge
the class of constraint manifolds.

iv.) Another way to include non-smooth quotients would be to enlarge the category of smooth
manifolds, e.g. to the category of di�eological spaces or di�erentiable stacks, such that
quotients exists in more general situations.
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Then constraint objects in these categories can be studied instead.

We will call the �nite constraint index set

dim(M) :=
(
dim(M),dim(C), rank(D)

)
(2.1.1)

the constraint dimension of the constraint manifold M = (M,C,D).

Example 2.1.3

i.) Let G be a Lie group acting via Φ: G × C → C in a free and proper way on a closed
submanifold C ⊆ M . Then the images of the in�nitesimal action TeΦp : g → TC, for all
p ∈ C, de�ne a simple distribution on C, inducing the structure of a constraint manifold.

ii.) Let C ⊆ M be a coisotropic submanifold of a Poisson manifold (M,π). Then if the
characteristic distribution D is simple M = (M,C,D) de�nes a constraint manifold.

iii.) Every b-manifold [GMP14], i.e. an oriented manifoldM together with an oriented codimen-
sion 1 submanifold Z, is a constraint manifold (M,Z, 0). Morphisms between b-manifolds,
so-called b-maps, are constraint maps with an additional transversality condition.

iv.) Let n = (nT, nN, n0) be a �nite constraint index set. Then RnN ⊆ RnT together with the
distribution TRn0 ⊆ TRnN de�nes a constraint manifold. Note that by identifying TRn0

with Rn0 and TRnN with RnN this is simply a constraint vector space, see Section 1.3.2.

As classical manifolds locally look like a patch of euclidean space, so do constraint man-
ifolds locally look like a patch of �constraint euclidean space� Rn = (RnT ,RnN ,Rn0), as in
Example 2.1.3 iv.). While for p ∈ M \ C there is locally no additional information to that of
the manifold M , so we can �nd a neighbourhood homeomorphic to (Rdim(M),Rdim(M), 0), this
changes for p ∈ C. In this case we can identify a neighbourhood isomorphic to Rdim(M) =
(Rdim(M),Rdim(C),Rrank(D)), as the next result shows.

Lemma 2.1.4 (Local structure of constraint manifolds) Let M = (M,C,D) be a con-
straint manifold.

i.) If U ⊆M is open, then M
∣∣
U
:= (U,U ∩ C,D

∣∣
U
) is a constraint manifold.

ii.) For every p ∈ C there exists a coordinate chart (U, x) around p such that

x(U ∩ Lp) =
(
Rn0 × {0}

)
∩ x(U) (2.1.2)

and

x(U ∩ C) =
(
RnN × {0}

)
∩ x(U), (2.1.3)

where Lp denotes the leaf of the distribution D through p and n = (nT, nN, n0) = dim(M)
is the dimension of M.

Proof: The �rst part is clear. For the second part choose a foliation chart on C∩U and extend
it as a submanifold chart to U . □

We will call charts of the above form adapted charts for a given constraint manifold.
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2.1.1 Functions on Constraint Manifold

Let M = (M,C,D) be a constraint manifold with distribution D ⊆ TC. Forgetting the smooth
structure onM and C and equipping C with the equivalence relation induced by the foliation of
D gives a constraint set. Obviously, this construction is functorial, giving the forgetful functor

U : CManifold → CembSet.

By Example 1.4.27 i.) the R-valued constraint functions on U(M) constitute an embedded
strong constraint algebra. When we equip (R,R, 0) with its canonical smooth structure we can
consider the constraint subalgebra of smooth functions on M.

Proposition 2.1.5 (Functions on constraint manifolds) Mapping every constraint man-
ifold M = (M,C,D) to

CC∞(M)T := C∞(M,R),

CC∞(M)N :=
{
f ∈ C∞(M,R) | LXf

∣∣
C
= 0 for all X ∈ Γ∞(D)

}
,

CC∞(M)0 :=
{
f ∈ C∞(M,R) | f

∣∣
C
= 0
}
,

(2.1.4)

and every constraint morphism ϕ : M → N between constraint manifolds to

ϕ∗ : CC∞(N) → CC∞(M), ϕ∗(f) := f ◦ ϕ (2.1.5)

de�nes a functor CC∞ : CManifold → Cemb
str Alg

opp
.

Proof: Note that CC∞(M)N is a subalgebra of C∞(M,R) by the fact that LX is R-linear
and satis�es a Leibniz rule. The 0-component is obviously contained in the N-component and,
since it is just the vanishing ideal of C, it is a two-sided ideal in C∞(M,R). This shows that
CC∞(M) is indeed an embedded strong constraint algebra. Now given a smooth constraint
map ϕ : M → N we have (ϕ∗f)(p) = f(ϕ(p)) = 0 for f ∈ CC∞(N)0 and all p ∈ MN. Thus
ϕ∗(CC∞(N)0) ⊆ CC∞(N)0. To show that ϕ∗ also preserves the N-component let f ∈ CC∞(N)N
be given. Then for Xp ∈ DM

∣∣
p
, p ∈ MN we have Xp(ϕ

∗f) = Tpϕ(Xp)f = 0 since Tpϕ(Xp) ∈
DN

∣∣
ϕ(p)

by assumption. This shows ϕ∗f ∈ CC∞(M)N. □

Example 2.1.6

i.) Let M = (M,C,D) be a constraint manifold of dimension n = (nT, nN, n0), p ∈ C and
(U, x) an adapted chart around p as in Lemma 2.1.4. Then

xi ∈ C∞(M
∣∣
U
)0 if i ∈ {nN + 1, . . . , nT} = (n∗)0,

xi ∈ C∞(M
∣∣
U
)N if i ∈ {n0 + 1, . . . , nT} = (n∗)N,

xi ∈ C∞(M
∣∣
U
)T if i ∈ {1, . . . , nT} = (n∗)T,

(2.1.6)

ii.) Let C ⊆M be a coisotropic submanifold of a Poisson manifold (M,π) and denote by M =
(M,C,D) the corresponding constraint manifold. Then, as for any constraint manifold,
CC∞(M)0 = IC is the vanishing ideal of C, and additionally

CC∞(M)N = BC = {f ∈ C∞(M) | {f, g} ∈ IC for all g ∈ IC} (2.1.7)

is the Poisson normalizer of IC .
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Example 2.1.6 i.) hints at the fact that CC∞(M) can also be understood as a sheaf of
embedded strong constraint algebras on the topological space M . Let us denote the stalk of
the sheaf of smooth functions on M at the point p by C∞

p (M) = CC∞
p (M)T. The subsets

of CC∞
p (M)T given by germs of functions in CC∞(M)N and CC∞(M)0 will be denoted by

CC∞
p (M)N and CC∞

p (M)0, respectively. Then it is easy to see that

CC∞
p (M) :=

(
CC∞

p (M)T,CC∞
p (M)N,CC∞

p (M)0
)

(2.1.8)

is the stalk of the sheaf CC∞ of constraint functions on M, and thus in particular an embedded
strong constraint algebra.

Remark 2.1.7 For any open cover {Uα}α∈I of a classical manifoldM there exists a subordinate
partition of unity given by compactly supported functions χα ∈ C∞

0 (M). This often allows to
glue locally de�ned objects together by �rst extending every locally de�ned objects to a global
one by multiplying with some χα. For a constraint manifold not every open cover admits a
partition of unity consisting of functions χα ∈ CC∞(M)N. In particular, every Uα ⊆ M with
U ∩ C ̸= ∅ needs to be saturated.

Remark 2.1.8 Recall that for algebraic objects we always considered the strong constraint
notions alongside the constraint ones. The same can be done for manifolds by de�ning strong
constraint manifolds as constraint manifolds with a globally de�ned equivalence relation, i.e.
with D ⊆ TM . Functions on such a strong constraint manifold M would then be given by
Cstr C∞(M) ∈ CembAlg with Cstr C∞(M)N given by functions globally constant along the leaves
of D and Cstr C∞(M)0 given by those globally invariant functions vanishing on C. Note that in
general Cstr C∞(M) will be a non-strong constraint algebra. Such strong constraint manifolds
appear for example in the Marsden-Weinstein reduction with a Lie group G acting on the
manifold M .

Obviously, any strong constraint manifold M can be turned into a constraint manifold by
forgetting the equivalence relation, i.e. the distribution D, outside of C. This yields a forgetful
functor U : CstrManifold → CManifold. On the algebraic side this corresponds to the strong hull
of Cstr C∞(M), making the diagram

CstrManifold CembAlg
opp

CManifold Cemb
str Alg

opp

Cstr C∞

U · str

CC∞

(2.1.9)

commute, see also Proposition 1.4.37.

2.1.2 Reduction

On every constraint manifold M = (M,C,D) we have an equivalence relation ∼M on C for
which equivalence classes coincide with the leaves of D. Requiring a simple distribution simply
means that C/D = C/∼M is a smooth manifold and pr: C → Mred is a surjective submersion.
Hence by the de�nition of constraint manifolds the quotient MN/DM is a smooth manifold, and
smooth maps of constraint manifolds drop to smooth maps on the quotients:

De�nition 2.1.9 (Reduced manifold) The functor red: CManifold → Manifold given by
mapping a constraint manifold M = (M,C,D) to Mred := C/D and a constraint morphism
ϕ : M → N to

ϕred : Mred → Nred, ϕred([p]) := [ϕ(p)] (2.1.10)

is called reduction functor.
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Constructing the embedded strong constraint algebra of smooth functions on a constraint
manifold then commutes with reduction:

Proposition 2.1.10 (Constraint functions vs. reduction) There exists a natural isomor-
phism such that the following diagram commutes:

CManifold Cemb
str Alg

opp

Manifold Algopp

CC∞

red red

C∞

(2.1.11)

Proof: Observe that every f ∈ CC∞(M)N drops to a function fred ∈ C∞(Mred), and the kernel
of this map is exactly given by the vanishing ideal CC∞(M)0. Hence we obtain an inclusion
CC∞(M)red ⊆ C∞(Mred). To show surjectivity of this map, choose a tubular neighbourhood
V of C with projection prV : V → C and a bump function χ ∈ C∞(M,R) with χ

∣∣
C

= 1 and
χ
∣∣
M\V = 0. Note that the closedness of C is needed for the existence of such a χ. Then every

function f ∈ C∞(Mred) can �rst be pulled back to a function π∗redf on C and afterwards pulled
back to V via pr∗V (π

∗
redf), where πred : C → Mred denotes the projection to the quotient. Finally,

we can extend it to all of M using χ obtaining f̂ := χ · (pr∗V (π∗redf)). Since f̂
∣∣
C

= π∗redf we
clearly get f̂ ∈ CC∞(M)N and (f̂)red = f . Hence we get CC∞(M)red = C∞(Mred). For the
naturality consider a smooth constraint map ϕ : M → N. Then for every f ∈ C∞(N)red we have

(ϕ∗)red(fred) = (ϕ∗(f))red = (f ◦ ϕ)red = fred ◦ ϕred = (ϕred)
∗(fred).

This shows that (2.1.11) commutes up to a natural isomorphism. □

Proposition 2.1.11 Let M = (M,C,D) be a constraint manifold. For every p ∈ C there is a
canonical isomorphism CC∞

p (M)red ≃ C∞
[p](Mred).

Proof: De�ne η : CC∞
p (M)red → C∞

[p](Mred) by

η([germp f ]) := germ[p] fred.

It is obviously an algebra morphism. To show that it is an isomorphism, we �rst assume
that η([germp f ]) = 0. Thus there exists an open neighbourhood U ⊆ Mred of [p] such that
fred

∣∣
U
= 0. Then π−1

M (U) ⊆ C is an open neighbourhood of p such that π∗Mfred
∣∣
π−1
M

(U)
= 0. Since

π−1
M (U) is open in C and C is an embedded submanifold, there exists an open neighbourhood
V of p in M such that V ∩ C = π−1

M (U) and f
∣∣
V ∩U = π∗Mfred

∣∣
π−1
M

(U)
= 0. Therefore, we

have germp f ∈ CC∞
p (M)0, leading to [germp f ] = 0. This shows that η is injective. For the

surjectivity of η recall that by Proposition 2.1.10 we have CC∞(M)red ≃ C∞(Mred) and thus
every germ[p] g ∈ C∞

[p](Mred) is of the form germ[p] fred for some f ∈ CC∞(M)N. □

2.2 Constraint Vector Bundles

Fix a constraint manifold M = (M,C,D). A vector bundle E over M should now consist of
a vector bundle ET → MT which is compatible with reduction. By our general philosophy
for constructing constraint objects we expect a subbundle EN → C of ι#ET → C together
with an equivalence relation on EN such that the quotient space de�nes a vector bundle over
Mred. This equivalence relation should be compatible with the geometry in two ways: First, it
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should identify points in a common �bre in a linear way, so that we obtain a linear �bre in the
quotient. And, second, it should identify di�erent �bres over the same leaf, to give a well-de�ned
vector bundle over the leaf space Mred at all. The �rst part can be implemented by requiring a
subbundle E0 → C of EN. For the second part we need the notion of a partial connection (or
partial covariant derivative), cf. [Bot72].

De�nition 2.2.1 (Partial connection) Let E → C be a vector bundle over a manifold C,
and let D ⊆ TC be regular involutive distribution on C. A partial D-connection on E is given
by a bilinear map

∇ : Γ∞(D)⊗ Γ∞(E) → Γ∞(E) (2.2.1)

such that
∇fXs = f∇Xs (2.2.2)

and
∇X(fs) = (LXf)s+ f∇Xs (2.2.3)

for all f ∈ C∞(C), X ∈ Γ∞(D) and s ∈ Γ∞(E).

Note that partial D-connections always exist by restricting a connection on E to D. More-
over, every partialD-connection can be extended to a connection on E by choosing a complement
D⊥ of D inside TC and a partial D⊥ connection, then taking the sum of those. Given a curve
γ : I → C inside a �xed leaf of D connecting p, q ∈ C we obtain corresponding parallel transport
Pγ : Ep → Eq. Let us show that this parallel transport is actually independent of the chosen
extension of ∇.

Lemma 2.2.2 Let E → C be a vector bundle over a manifold C and let D,D⊥ ⊆ TC be
subbundles such that TC = D ⊕ D⊥. Moreover, let ∇ be a partial D-connection and ∇⊥ be a
partial D⊥-connection on E. For every smooth path γ : I → C such that γ̇(t) ∈ Dγ(t) for all
t ∈ I the parallel transport along γ of ∇+∇⊥ is independent of ∇⊥.

Proof: Let γ : I → C be a smooth curve with γ(0) = p, γ(1) = q and γ̇(t) ∈ Dγ(p) for all
t ∈ I. For every sp ∈ Ep the parallel transport along γ is given by the unique s ∈ Γ∞(γ#E)
with s(p) = sp and (γ#∇′) ∂

∂t
s = 0 with ∇′ := ∇+∇⊥. The pullback covariant derivative is the

unique covariant derivative on γ#E such that

γ#
(
(γ#∇′) ∂

∂t
γ#u

)
= ∇′

γ̇(t)u (∗)

for all u ∈ Γ∞(E). Since γ̇(t) ∈ Dγ(p) we have ∇′
γ̇(t)u = ∇γ̇(t)u, thus the right hand side of (∗)

and therefore the parallel transport does not depend on ∇⊥. □

Thus every partial D-connection has a well-de�ned notion of parallel transport. If this
parallel transport is independent of the chosen (leafwise) path, we will call the D-connection ∇
holonomy-free. Note that every holonomy free partial connection is �at, but the converse does
not hold in general. With this we are now ready to de�ne constraint vector bundles.

De�nition 2.2.3 (Constraint vector bundle) Let constraint manifolds M = (MT,MN, DM)
and N = (NT, NN, DN) be given.

i.) A constraint vector bundle E = (ET, EN, E0,∇) over M consists of a vector bundle ET →
MT, a subbundle EN → MN of ι#ET, a subbundle E0 → MN of EN and a holonomy-free
partial DM-connection on EN/E0.
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ii.) Let E = (ET, EN, E0,∇E) and F = (FT, FN, F0,∇F ) be constraint vector bundles over
constraint manifolds M and N, respectively. A morphism Φ: E → F of constraint vector
bundles over a smooth map ϕ : M → N is given by a vector bundle morphism ΦT : ET → FT

such that

a.) ι#ΦT restricts to a vector bundle morphism ΦN : EN → FN,

b.) ΦN(E0) ⊆ F0 and

c.) ΦN is compatible with the connections, i.e.

Φ∗
N

(
∇F ∗

Tpϕ(vp)
α
)
= ∇E∗

vp (Φ
∗
Nα) (2.2.4)

for all p ∈ MN, vp ∈ DM

∣∣
p
and α ∈ Γ∞(FN/F0)

∗, with the pullback of forms
Φ∗

N : Γ
∞(EN/E0)

∗ → Γ∞(FN/F0)
∗ induced by ΦN.

iii.) The category of constraint vector bundles is denoted by CVect. For a �xed constraint man-
ifold M we denote by CVect(M) the category of constraint vector bundles over M with
vector bundle morphisms over idM.

Remark 2.2.4 If we refrain from requiring simplicity of the distribution in the de�nition of
constraint manifolds, it would be more natural to drop the holonomy-freeness in the de�nition of
constraint vector bundles. Instead, it seems reasonable to require a �at partial covariant deriva-
tive. This would also bring us closer to the situation of in�nitesimal ideal systems considered in
[JO14].

For every constraint vector bundle E over a constraint manifold M = (M,C,D) and p ∈M
we can consider the �bre ET

∣∣
p
. If p ∈ C is a point in the submanifold, we have subspaces de�ned

by the subbundles EN and E0, leading to a constraint vector space

E
∣∣
p
:=
(
ET

∣∣
p
, EN

∣∣
p
, E0

∣∣
p

)
. (2.2.5)

For p ∈ M \ C we de�ne E
∣∣
p
:= (ET

∣∣
p
, 0, 0). Since M and C are supposed to be connected the

dimension of this constraint vector space is independent of the base point p ∈ C. Thus we call
the constraint index set

rank(E) :=
(
rank(ET), rank(EN), rank(E0)

)
(2.2.6)

the rank of E.
Note that for a morphism Φ: E → F of constraint vector bundles over the identity the

requirement (2.2.4) simpli�es to
∇vpΦ(s) = Φ(∇vps) (2.2.7)

for all s ∈ Γ∞(EN/E0) and vp ∈ D
∣∣
p
. The following simple observation will be useful later on.

Lemma 2.2.5 Let Φ: E → F be a morphism of constraint vector bundles over a constraint
manifold M = (M,C,D) covering the identity. Then Φ is an isomorphism of constraint vector
bundles if and only if it is a �berwise isomorphism, i.e. Φ

∣∣
p
: E
∣∣
p
→ F

∣∣
p
is an isomorphism of

constraint vector spaces for all p ∈M .

Proof: Since ΦT is a vector bundle morphism over the identity we know that it is an isomor-
phism if and only if it is a �berwise isomorphism by classical di�erential geometry. The same
holds for the restrictions to the subbundles EN and E0. The compatibility of Φ−1 with the
covariant derivative is automatic, since using (2.2.7) we have Φ(∇vpΦ

−1(t)) = ∇vpt, from which
∇vpΦ

−1(t) = Φ−1(∇vpt) follows. □
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Example 2.2.6 Instances of constraint vector bundles have, under di�erent names, appeared
in the literature before.
i.) In [CO22, Def 2.2] the notion of quotient data (qM ,K,∆) for a vector bundle E → M

is introduced, see also [Mac05, �2.1]. Here qM : M → M̃ denotes a surjective submersion
with connected �bres, K ⊆ E is a subbundle and δ is a smooth assignment taking a pair
of points x, y ∈M on the same qM -�bre to a linear isomorphism ∇x,y : Ey/Ky → Ex/Kx.
This directly gives a constraint vector bundle (E,E,K) over (M,M, ker(TyM )) with ∇̄
the partial connection induced by ∆.

ii.) By Batchelor's Theorem [Bat80; BP13] graded manifolds of degree one correspond to
vector bundles over manifolds. Under this identi�cation a graded submanifold of a degree
one graded manifold corresponds to a constraint vector bundle (E, ι#E,F ) over (M,C, 0),
see [Cue19].

Example 2.2.7 (Trivial constraint vector bundle) Let M = (M,C,D) be a constraint
manifold and k = (kT, kN, k0) a �nite constraint index set. Then

M×Rk :=
(
M ×RkT , C ×RkN , C ×Rk0 ,L

)
(2.2.8)

de�nes a constraint vector bundle. Here L denotes the component-wise Lie derivative.

We will call a constraint vector bundle of that form trivial. Constraint vector bundles
isomorphic to trivial vector bundles will be called trivializable.

As an important tool we need the existence of local frames adapted to the structure of a
constraint vector bundle. For this observe that every constraint vector bundle E = (ET, EN, E0)
over a constraint manifold M = (M,C,D) can be restricted to an open subset U ⊂M giving a
constraint vector bundle E

∣∣
U
= (ET

∣∣
U
, EN

∣∣
U∩C , E0

∣∣
U∩C) over M

∣∣
U
.

Lemma 2.2.8 Let E = (ET, EN, E0,∇) be a constraint vector bundle of rank k = (kT, kN, k0)
over a constraint manifoldM = (M,C,D). Let furthermore E⊥

0 → C and E⊥
N → C be subbundles

of ι#ET such that EN = E0 ⊕ E⊥
0 and ι#ET = EN ⊕ E⊥

N . Then for every p ∈ C there exists a
local frame e1, . . . , ekT ∈ Γ∞(ET

∣∣
U
) on an open neighbourhood U ⊆M around p such that

i.) ι#ei ∈ Γ∞(E0

∣∣
U∩C) for all i = 1, . . . , k0,

ii.) ι#ei ∈ Γ∞(E⊥
0

∣∣
U∩C) and ∇Xι

#ei = 0 for all X ∈ Γ∞(D) and i = k0 + 1, . . . , kN,

iii.) ι#ei ∈ Γ∞(E⊥
N

∣∣
U∩C) for all i = kN + 1, . . . , kT.

Proof: Take a local frame g1, . . . , gkN−k0 of Ered on an open neighbourhood V̌ ⊆ Mred of πM(p).
Using Proposition 2.2.16 ii.) we obtain a local frame g1, . . . , gkN−k0 of E

⊥
0 ≃ EN/E0 on the open

neighbourhood π−1
M (V̌ ) with ∇Xgi = 0 for all X ∈ Γ∞(D) and i = 1, . . . , kN − k0. Choose

additionally local frames f1, . . . , fk0 of E0 and h1, . . . , hkT−kN of E⊥
N on a possibly smaller open

neighbourhood V . Using a tubular neighbourhood prU : U → C ∩ V of C ∩ V inside V we can
pull back those local frames to a local frame

ei :=


pr#U fi if i = 1, . . . , k0

pr#U gi−n0 if i = k0 + 1, . . . , kN

pr#U hi−nN if i = kN + 1, . . . , kT

of ET ful�lling the required properties. □

Remark 2.2.9 Even though the existence of a smooth reduced vector bundle was used in the
proof of Lemma 2.2.8 this result actually only depends on local considerations, and therefore
could also be obtained for regular and integrable distributions D on C and �at partial connec-
tions on EN/ENull by using foliation charts.
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Recall from [Bot72] that for a given manifold M with a regular involutive distribution D ⊆
TM there exists a canonical partial D-connection on the normal bundle TM/D, the so-called
Bott connection, given by

∇Bott
X Y = [X,Y ] (2.2.9)

for X ∈ Γ∞(D) and Y ∈ Γ∞(TM/D). Here Y denotes the equivalence class of Y ∈ Γ∞(TM).
With this we can now construct a constraint tangent bundle out of a constraint manifold.

Proposition 2.2.10 (Constraint tangent bundle) Let M = (M,C,D) be a constraint man-
ifold. Then TM := (TM, TC,D,∇Bott) is a constraint vector bundle over M.

Proof: We clearly have TC ⊆ TM , and since D is regular it is a subbundle of TC. It
only remains to show that ∇Bott is holonomy-free. For this let p, q ∈ C in the same leaf be
given. Moreover, let γ, γ̃ : I → C be paths in the leaf of p and q such that γ(0) = p =
γ̃(0), γ(1) = q = γ̃(1). In particular, we have πM ◦ γ = πM ◦ γ̃, with πM : C → Mred the
projection onto the leaf space. We need to show that the parallel transport of vp ∈ TpC/Dp

along γ agrees with the parallel transport along γ′. We have Pγ,p→q(vp) = γ#(s(1)), where
γ# : γ#(TC/D) → TC/D is the canonical vector bundle morphism given by γ#(t, vγ(t)) = vγ(t)

and s ∈ Γ∞(γ#(TC/D)) is the unique section with ∇#
∂
∂t

s = 0 and γ#(s(0)) = vp. Similarly,

we have Pγ̃,p→q(vp) = γ̃#(s̃(1)). Since D = kerTπM we know that TπM : TC/D → TMred is
well-de�ned and induces an isomorphism TC/D ≃ π#MTMred. With this we get a canonical
isomorphism

γ#(TC/D) ≃ γ#π#MTMred ≃ (πM ◦ γ)#TMred

≃ (πM ◦ γ̃)#TMred ≃ γ̃#π#MTMred ≃ γ̃#(TC/D)

which is compatible with the pullback covariant derivatives on γ#(TC/D) and γ̃#(TC/D),
respectively. Hence s and s′ solve the same initial value problem and therefore have to agree.
Then Pγ,p→q(vp) = Pγ̃,p→q(vp), showing that ∇Bott is holonomy-free. □

We will call TM = (TM, TC,D,∇Bott) the (constraint) tangent bundle of M and write TpM
for the constraint tangent space TM

∣∣
p
as usual.

Proposition 2.2.11 (Constraint tangent bundle functor) Mapping constraint manifolds
to their constraint tangent bundles and smooth maps ϕ : M → N between constraint manifolds
M and N to the tangent map Tϕ : TM → TN de�nes a functor

T : CManifold → CVect. (2.2.10)

Proof: For the T-components the statement is clear, and since Tϕ is completely determined
by Tϕ : TMT → TNT the only thing left to show is that Tϕ is actually a constraint morphism.
Since ϕ mapsMN to NN we immediately get that ι#Tϕ restricts to Tϕ : TMN → TNN. Moreover,
by De�nition 2.1.1 we have Tϕ(DM) ⊆ DN. It remains to show that Tϕ is compatible with the
Bott connections. We check (2.2.4) locally. For this let (Ũ , x) and (Ṽ , y) be adapted coordinates
around p and ϕ(p), respectively. Since ϕ restricts to a smooth map ϕ : MN → NN it is enough
to consider U := Ũ ∩ MN and V := V ∩ NN. Then DM

∣∣
U

is spanned by ∂
∂x1

, . . . , ∂
∂xn0 and

DN

∣∣
V
is spanned by ∂

∂yj
, . . . ∂

∂ym0 . Thus we can identify TMN/DM with the subbundle spanned

by ∂
∂xn0+1 , . . . ,

∂
∂xnN , and similarly TNN/DN with the subbundle spanned by ∂

∂ym0+1 , . . . ,
∂

∂ymN .
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Note that the projection · to TMN/DM and to TNN/DN is then given by projection on the
corresponding subbundles. We will denote these by pr0. For ϕ

j
i :=

∂(yj◦ϕ◦x−1)
∂xi

we have

Tpϕ
( ∂

∂xi

∣∣∣
p

)
=

mN∑
j=1

ϕji (p)
∂

∂yj

∣∣∣
ϕ(p)

with ϕji constant along R
n0 for all j > n0. Then for any

vp =

n0∑
k=1

vkp
∂

∂xk
∈ DM

∣∣
p

we have(
∇∗
Tpϕ(vp)

dyj
)( ∂

∂yi

∣∣∣
ϕ(p)

)
= Tpϕ(vp)

(
dyj
( ∂

∂yi

)∣∣∣
ϕ(p)

)
− dyj

∣∣
ϕ(p)

(
∇Tpϕ(vp)

∂

∂yi

)
= −

n0∑
k=1

mN∑
ℓ=1

vkpϕ
ℓ
k(p) dy

j
∣∣
ϕ(p)

([
∂

∂yℓ
,
∂

∂yi

]∣∣∣
ϕ(p)

)
= 0

for all n0 < i ≤ nN and m0 < j ≤ mN. Thus the left hand side of (2.2.4) vanishes. For the right
hand side we compute

(
∇vp(Tϕ)

∗ dyj
)( ∂

∂xi

)∣∣∣
p
= vp

((
(Tϕ)∗ dyj

)( ∂

∂xi

))
−
(
(Tϕ)∗ dyj

)(
∇vp

∂

∂xi

)∣∣∣
p

with (
(Tϕ)∗ dyj

)(
∇vp

∂

∂xi

)∣∣∣
p
=

n0∑
k=1

vkp
(
(Tϕ)∗ dyj

)([ ∂

∂xk
,
∂

∂xi

])∣∣∣
p
= 0

and (
(Tϕ)∗ dyj

)( ∂

∂xi

)∣∣∣
p
= dyj

∣∣
ϕ(p)

(
Tpϕ

( ∂
∂xi

∣∣∣
p

))
=

mN∑
ℓ=1

ϕℓi(p) dy
j
∣∣
ϕ(p)

( ∂

∂yℓ

∣∣∣
ϕ(p)

)
= ϕji (p).

Since vp(ϕ
j
i ) = 0 we see that also the right hand side of (2.2.4) vanishes. Thus, Tϕ is indeed a

morphism of constraint manifolds. □

As in classical di�erential geometry, we can lift the usual constructions known for constraint
vector spaces, see Section 1.3.2, to constraint vector bundles. Even though we did not introduce
constraint vector bundles using vector bundle charts, the following constructions correspond
at least morally to what we expect from a �berwise de�nition. For the construction of the
constraint homomorphism bundle we need the following lemma:

Lemma 2.2.12 Let E,F be constraint vector bundles over a constraint manifoldM = (M,C,D).
De�ne vector bundles

CHom(E,F )N :=
{
Φp ∈ Hom(ι#ET, ι

#FT)
∣∣ Φp(EN

∣∣
p
) ⊆ FN

∣∣
p
and Φp(E0

∣∣
p
) ⊆ F0

∣∣
p

}
(2.2.11)

and

CHom(E,F )0 :=
{
Φp ∈ Hom(ι#ET, ι

#FT)
∣∣ Φp(EN

∣∣
p
) ⊆ F0

∣∣
p

}
(2.2.12)
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over C. Then

Θ: CHom(E,F )N/CHom(E,F )0 → Hom(EN/E0, FN/F0) (2.2.13)

de�ned by

Θ(Φp)(vp) := Φp(vp) (2.2.14)

is an isomorphism of vector bundles. Here · denotes the projection to the quotient.

Proof: It is clear that Θ is a well-de�ned map. Moreover, it is a vector bundle morphism
since it is essentially given by evaluation. The �berwise injectivity is again clear by de�nition,
while for the �berwise surjectivity we need to choose complements E⊥

0 and E⊥
N of E0 inside

EN and EN inside ι#ET. Thus ι#ET = E0 ⊕ E⊥
0 ⊕ E⊥

N and EN/E0 ≃ E⊥
0 . Then for every

Ψp ∈ Hom(EN/E0, FN/F0) set Φ(vp) = Ψ(vp) for all vp ∈ E⊥
0 and Φ(vp) = 0 for all vp ∈ E0 or

vp ∈ E⊥
N . With this we have Θ(Φp) = Ψp. Thus we have an isomorphism of vector bundles as

claimed. □

Proposition 2.2.13 Let M = (M,C,D) be a constraint manifold and E = (ET, EN, E0,∇E)
and F = (FT, FN, F0,∇F ) constraint vector bundles over M with rank(E) = (nT, nN, n0) and
rank(F ) = (mT,mN,m0).

i.) De�ning E ⊕ F by

(E ⊕ F )T := ET ⊕ FT,

(E ⊕ F )N := EN ⊕ FN,

(E ⊕ F )0 := E0 ⊕ F0,

∇E⊕F := ∇E ⊕∇F

(2.2.15)

yields a constraint vector bundle over M, called the direct sum. For p ∈ C it holds

(E ⊕ F )
∣∣
p
= E

∣∣
p
⊕ F

∣∣
p
, (2.2.16)

and it follows
rank(E ⊕ F ) = rank(E) + rank(F ). (2.2.17)

ii.) De�ning E ⊗ F by

(E ⊗ F )T := ET ⊗ FT,

(E ⊗ F )N := EN ⊗ FN,

(E ⊗ F )0 := E0 ⊗ FN + EN ⊗ F0,

∇E⊗F := ∇E ⊗ id+ id⊗∇F

(2.2.18)

yields a constraint vector bundle over M, called the tensor product. For p ∈ C it holds

(E ⊗ F )
∣∣
p
= E

∣∣
p
⊗ F

∣∣
p
, (2.2.19)

and therefore
rank(E ⊗ F ) = rank(E)⊗ rank(F ). (2.2.20)

iii.) De�ning E ⊠ F by

(E ⊠ F )T := ET ⊗ FT,

(E ⊠ F )N := EN ⊗ FN + E0 ⊗ ι#FT + ι#ET ⊗ F0,

(E ⊠ F )0 := E0 ⊗ ι#FT + ι#ET ⊗ F0,

∇E⊠F := ∇E ⊗ id+ id⊗∇F

(2.2.21)
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yields a constraint vector bundle over M, called the strong tensor product. For p ∈ C it
holds

(E ⊠ F )
∣∣
p
= E

∣∣
p
⊠ F

∣∣
p
, (2.2.22)

and thus
rank(E ⊠ F ) = rank(E)⊠ rank(F ). (2.2.23)

iv.) De�ning E∗ by

(E∗)T = (ET)
∗,

(E∗)N = Annι#ET
(E0),

(E∗)0 = Annι#ET
(EN),

(2.2.24)

with Annι#ET
(E0) and Annι#ET

(EN) the annihilator subbundles of E0 and EN with respect
to ι#ET and ∇E∗

the dual covariant derivative, yields a constraint vector bundle over M,
called the dual vector bundle. For p ∈ C it holds

E∗∣∣
p
= (E

∣∣
p
)∗, (2.2.25)

and it follows
rank(E∗) = rank(E)∗. (2.2.26)

v.) De�ning CHom(E,F ) by

CHom(E,F )T := Hom(ET, FT),

CHom(E,F )N :=
{
Φp ∈ Hom(ι#ET, ι

#FT)
∣∣ Φp(EN

∣∣
p
) ⊆ FN

∣∣
p

and Φp(E0

∣∣
p
) ⊆ F0

∣∣
p

}
,

CHom(E,F )0 :=
{
Φp ∈ Hom(ι#ET, ι

#FT)
∣∣ Φp(EN

∣∣
p
) ⊆ F0

∣∣
p

}
,

∇Hom
X A := ∇F

X ◦A−A ◦ ∇E
X ,

(2.2.27)

where A ∈ Γ∞(CHom(E,F )N/CHom(E,F )0) is identi�ed with the module morphism
A : Γ∞(EN/E0) → Γ∞(FN/F0) using Lemma 2.2.12 and X ∈ Γ∞(D), yields a constraint
vector bundle, called the homomorphism bundle. For p ∈ C it holds

CHom(E,F )
∣∣
p
= CHom(E

∣∣
p
, F
∣∣
p
), (2.2.28)

and thus
rank(CHom(E,F )) = rank(E∗)⊠ rank(F ). (2.2.29)

Proof: i.): Note that the direct sum of subbundles is a subbundle of the direct sum and
(E ⊕ F )N/(E ⊕ F )0 ≃ (EN/E0) ⊕ (FN/F0). Moreover, the parallel transport of ∇E⊕F is given
by the direct sum of the parallel transports of ∇E and ∇F , and thus it is holonomy-free. By
de�nition we have (E ⊕ F )

∣∣
p
= ((ET ⊕ FT)

∣∣
p
, (EN ⊕ FN)

∣∣
p
, (E0 ⊕ F0)

∣∣
p
) = E

∣∣
p
⊕ F

∣∣
p
. And from

this rank(E ⊕ F ) = rank(E) + rank(F ) directly follows.
ii.): We need to show that (E ⊗ F )0 actually forms a subbundle of EN ⊗ FN. Let p ∈ C be

given, then the dimension of (E0 ⊗ FN)
∣∣
p
∩ (EN ⊗ F0)

∣∣
p
= (E0 ⊗ F0)

∣∣
p
is independent of p, and

thus (E ⊗ F )0 has constant rank and therefore de�nes a subbundle of EN ⊗ FN. The parallel
transport of ∇E⊗F on (E ⊗ F )N/(E ⊗ F )0 ≃ (EN/E0)⊗ (FN/F0) is given by the tensor product
of the parallel transports, and hence is holonomy-free.
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iii.): With an analogous argument we see that (E ⊠ F )N and (E ⊠ F )0 are well-de�ned sub-
bundles with (E ⊠ F )N/(E ⊠ F )0 ≃ (EN/E0)⊗ (FN/F0) and holonomy-free covariant derivative.

iv.): For the dual bundle we have by de�nition subbundles

Annι#ET
(EN) ⊆ Annι#ET

(E0) ⊆ ι#(ET)
∗

holds. Moreover, Annι#ET
(E0)/Annι#ET

(EN) ≃ (EN/E0)
∗ holds and since ∇E is holonomy-free

so is the dual covariant derivative ∇E∗
.

v.): Finally, for the homomorphism bundle note that ι#Hom(ET, FT) ≃ Hom(ι#ET, ι
#FT).

By using adapted local frames as in Lemma 2.2.8 it is then easy to see that CHom(E,F )N
and CHom(E,F )0 form subbundles of ι#CHom(E,F )T. Moreover, since ∇Hom is the covariant
derivative obtained from the isomorphism Hom(EN/E0, FN/F0) ≃ (EN/E0)

∗ ⊗ (FN/F0) and
duals as well as tensor products of holonomy-free covariant derivatives are again holonomy-
free, so is ∇Hom. All statements about the rank of the involved constructions follow from
Proposition 1.3.20. □

Recall from (1.3.41) that the order of ⊗ and ⊠ can in general not be changed arbitrarily.
We always have a constraint vector bundle morphism

E ⊗ (F ⊠ G) → (E ⊗ F )⊠ G, (2.2.30)

for constraint vector bundles E, F and G over M, but it will in general not be an isomorphism.

Example 2.2.14 Let M = (M,C,D) be a constraint manifold. Then the constraint cotangent
bundle is given by

(T ∗M)T = T ∗M

(T ∗M)N = Annι#T ∗M (D)

(T ∗M)0 = Annι#T ∗M (TC).

(2.2.31)

Note that we can canonically identify Annι#T ∗M (D)/Annι#T ∗M (TC) ≃ AnnTC(D). Under this
identi�cation ι#α becomes just the pullback (or restriction) ι∗α ∈ AnnTC(D) of the form α to
C. Then the dual Bott connection is given by

∇Bott
X ι∗α = LXι

∗α. (2.2.32)

Having two di�erent notions of tensor products also leads to two separate notions of symmet-
ric and antisymmetric powers. We denote by Sk⊗E and Λk⊗E the symmetric and antisymmetric
tensor powers with respect to ⊗ and by Sk⊠E and Λk⊠E the respective tensor powers with respect
to ⊠. By de�nition of the tensor products we have

(Sk⊗E)T = SkET,

(Sk⊗E)N = SkEN,

(Sk⊗E)0 = Sk−1EN ∨ E0,

(Λk⊗E)T = ΛkET,

(Λk⊗E)N = ΛkEN,

(Λk⊗E)0 = Λk−1EN ∧ E0,

(2.2.33)

with ∨ denoting the symmetric tensor product. Similarly, we have

(Sk⊠E)T = SkET,

(Sk⊠E)N = SkEN + Sk−1ET ∨ E0,

(Sk⊠E)0 = Sk−1ET ∨ E0,

(Λk⊠E)T = ΛkET,

(Λk⊠E)T = ΛkEN + Λk−1ET ∧ E0,

(Λk⊠E)T = Λk−1ET ∧ E0

(2.2.34)
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for the strong constraint tensor product. Here we suppressed the pullback ι# for the T-bundles,
since from the context it is clear that we only can take tensor products of vector bundles over
the submanifold.

We can now determine how these constructions interact. To show these, we essentially apply
the results from Proposition 1.3.20 �berwise.

Proposition 2.2.15 Let M = (M,C,D) be a constraint manifold and let E and F be constraint
vector bundles over M.

i.) We have (E ⊕ F )∗ ≃ E∗ ⊕ F ∗.

ii.) We have (E ⊗ F )∗ ≃ E∗ ⊠ F ∗.

iii.) We have (E ⊠ F )∗ ≃ E∗ ⊗ F ∗.

iv.) We have CHom(E,F ) ≃ E∗ ⊠ F .

Proof: i.): We know from classical di�erential geometry, that Φ(α, β)(x, y) := α(x) + β(y)
de�nes an isomorphism Φ: E∗

T ⊕ F ∗
T → (ET ⊕ FT)

∗. It preserves the N-component, since for
p ∈ C and αp ∈ (E∗∣∣

p
)N = Ann(E0

∣∣
p
), βp ∈ (F ∗∣∣

p
)N = Ann(F0

∣∣
p
) we have Φ(αp, βp)(vp, wp) = 0

for all vp ∈ E0

∣∣
p
and wp ∈ F0

∣∣
p
. This shows Φ((E∗ ⊕ F ∗)N) ⊆ (E ⊕ F )∗N. Similarly, we see

that Φ((E∗ ⊕F ∗)0) ⊆ (E ⊕F )∗0 . Moreover, this clearly gives isomorphisms Φ
∣∣
p
: (E∗ ⊕F ∗)

∣∣
p
→

(E⊕F )∗
∣∣
p
for all p ∈ C. To show that Φ is compatible with the partial derivatives, we compute(
∇(E⊕F )∗

X Φ(α, β)
)
(v, w) = LX(Φ(α, β)(v, w))− Φ(α, β)

(
∇E⊕F
X (v, w)

)
= LX(α(v)) + LX(β(w))− α(∇E

Xv)− β(∇F
Xw)

= (∇E∗
X α)(v) + (∇F ∗

X β)(w)

= Φ
(
∇E∗⊕F ∗

X (α, β)
)
(v, w).

Thus Φ is a morphism of constraint vector bundles. Since Φ is injective and we know by
Proposition 2.2.13 that rank(E∗ ⊕F ∗) = rank(E)∗ + rank(F )∗ = rank((E ⊕F )∗), showing that
Φ is a �berwise isomorphism, and therefore by Lemma 2.2.5 an isomorphism of constraint vector
bundles.

ii.): The map Φ: E∗
T⊗F ∗

T → (ET⊗FT)
∗ de�ned by Φ(αp⊗βp)(vp⊗wp) := αp(vp) ·βp(wp) is

an isomorphism of vector bundles. Let αp⊗ βp ∈ (E∗⊠ F ∗)0 = Annι#ET
(EN)⊗ ι#FT + ι#ET ⊗

Annι#FT
(FN). Then for all vp ⊗ wp ∈ EN ⊗ FN it holds

Φ(αp ⊗ βp)(vp ⊗ wp) := αp(vp) · βp(wp) = 0.

Thus Φ preserves the 0-subbundle. For αp ⊗ βp ∈ E∗
N ⊠ F

∗
N = Annι#ET

(E0)⊗ Annι#FT
(F0) we

have
Φ(αp ⊗ βp)(vp ⊗ wp) := αp(vp) · βp(wp) = 0

for all vp ⊗ wp ∈ E0 ⊗ ι#FT + ι#ET ⊗ F0. Thus Φ also preserves the N-component. It remains
to show that Φ is compatible with the partial derivatives:(

∇(E⊗F )∗

X Φ(α⊗ β)
)
(v ⊗ w) = LX(Φ(α⊗ β)(v ⊗ w))− Φ(α⊗ β)

(
∇E⊗F
X (v ⊗ w)

)
= LX(α(v))β(w) + α(v)LX(β(w))

− α(∇E
Xv)⊗ β(w)− α(v)⊗ β(∇F

Xw)

= (∇E∗
X α)(v)⊗ β(w) + α(v)⊗ (∇F ∗

X β)(w)

= Φ
(
∇E∗⊗F ∗

X (α⊗ β)
)
(v ⊗ w).
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It is now straightforward to show that Φ is a morphism of constraint vector bundles and an
isomorphism in every �bre, and therefore an isomorphism of constraint vector bundles.

iii.): Here we can use the same map Φ: E∗
T ⊗ F ∗

T → (ET ⊗ FT)
∗ as before. Which is an

isomorphism by the same arguments.
iv.): Consider the isomorphism Φ: E∗

T ⊗ FT → Hom(ET, FT) given by Φ(αp ⊗ wp)(vp) :=
αp(vp) · wp. Again, Φ becomes a constraint morphism and a �berwise isomorphism for reasons
of rank, and therefore an isomorphism. □

2.2.1 Reduction

On every constraint vector bundle E the subbundle E0 together with the partial D-connection
∇E de�nes an equivalence relation on EN by vp ∼E wp if and only if p ∼M q and there exists a
path γ : I → C in the leaf of p such that wq = Pγ,p→q(vp) is the parallel transport of vp along γ.
Here · denotes the equivalence class in EN/E0. Since ∇E is holonomy-free this is independent
of the chosen leafwise path, and thus indeed gives a well-de�ned equivalence relation.

Proposition 2.2.16 (Reduction of constraint vector bundles) Let E = (ET, EN, E0,∇E)
be a constraint vector bundle over a constraint manifold M = (M,C,D).

i.) There exists a unique vector bundle structure on

prEred
: EN/∼E → Mred, prE([vp]) = πM(p), (2.2.35)

with πM : C → Mred, such that the quotient map

πE : EN → EN/∼E , πE(vp) = [vp] (2.2.36)

is a submersion and a vector bundle morphism over πM.

ii.) There exists an isomorphism

Θ: (EN/E0) → π#M(EN/ ∼E), Θ(vp) = (p, [vp]) (2.2.37)

of vector bundles ful�lling
Θ−1(q, [vp]) = Pγ,p→q(vp) (2.2.38)

for vp ∈ EN

∣∣
p
and p ∼M q.

Proof: We can split the quotient procedure into two steps. First we consider the quotient
vector bundle EN/E0 → C with quotient map πE0 : EN → EN/E0 being a submersion and
vector bundle morphism. Now the partial D-connection ∇E induces an equivalence relation
on EN/E0 by vp ∼∇E wp if and only if p ∼M q and wp = Pγ,p→q(vp). In the language of Lie
groupoids it is easy to see that the parallel transport of ∇E de�nes a linear action of the Lie
groupoid R(πM) = C ×πM πM

C on (EN/E0). Then [HM90, Lemma 4.1] gives the existence
of a unique vector bundle structure on pr∇ : (EN/E0)/ ∼∇E→ Mred such that the quotient
map π∇ : (EN/E0) → (EN/E0)/ ∼∇E is a submersion and a vector bundle morphism over πM.
Combining these we obtain a unique vector bundle structure on EN/∼E ≃ (EN/E0)/ ∼∇E such
that πE = π∇E ◦ πE0 is a submersion and vector bundle morphism over πM. The second part is
again directly given by [HM90, Lemma 4.1]. □

We will mostly write (EN/E0)/∇E instead of (EN/E0)/∼∇E = EN/ ∼E .

De�nition 2.2.17 (Reduced vector bundle) Let E = (ET, EN, E0,∇E) be a constraint vec-
tor bundle over a constraint manifoldM = (M,C,D). Then the vector bundle Ered := (EN/E0)/∇E

over Mred is called the reduced vector bundle of E.
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Morphisms of constraint vector bundles are designed to yield well-de�ned morphisms between
the reduced vector bundles, allowing for a reduction functor, as expected.

Proposition 2.2.18 (Reduction functor) Mapping constraint vector bundles to their reduced
bundles de�nes a functor red: CVect → Vect.

Proof: We need to show that morphisms of constraint vector bundles induce morphisms be-
tween the respective reduced bundles. For this let Φ: E → F be a morphism of constraint
vector bundles E → M and F → N over a smooth map ϕ : M → N. Since Φ restricts to a vector
bundle morphism ΦN : EN → FN which maps the subbundle E0 to F0 we obtain a well-de�ned
vector bundle morphism ΦN : EN/E0 → FN/F0, which is compatible with the covariant derivates
in the sense of (2.2.4). Now suppose that vp ∼E wq. Then, by de�nition of the equivalence
relation, we have wq = Pγ,p→q(vp), which means there exists a leafwise path γ : I → M with
γ(a) = p, γ(b) = q for some a, b ∈ I and s ∈ Γ∞(γ#(EN/E0)) with s(a) = vp, s(b) = wq such
that γ#∇ ∂

∂t
s = 0. De�ne now

γ̂ := ϕ ◦ γ : I → N and ŝ := Φ ◦ s : I → γ#ϕ#F = γ̂#F.

Then it holds

γ̂#∇ ∂
∂t
ŝ = γ#ϕ#∇ ∂

∂t
(Φ ◦ s) = Φ

(
γ#∇ ∂

∂t
s
)
= 0,

where we used the fact that the pullback covariant derivative satis�es the universal property of
the pullback in the �bred category of vector bundles with covariant derivatives. Thus we get
Φ(wq) = Pγ̂,ϕ(p)→ϕ(q)Φ(vp), showing that Φ preserves the equivalence relation and thus drops
to a map Φred : Ered → Fred. It is smooth since locally there exist sections of the projection
map πred : EN → Ered. Moreover, it is clearly �berwise linear, hence de�ning a vector bundle
morphism Φred : Ered → Fred. □

Example 2.2.19 Consider a trivial bundle M×Rk as in Example 2.2.7. Then

(C ×RkN)/(C ×Rk0) ≃ C ×RkN−k0 (2.2.39)

and since the D-connection is just given by the Lie derivative we get (M×Rk)red ≃ Mred×Rkred .

Proposition 2.2.20 Let M = (M,C,D) be a constraint manifold, and let E,F ∈ Vect(M) be
constraint vector bundles over M.

i.) There exists a canonical isomorphism (E ⊕ F )red ≃ Ered ⊕ Fred.

ii.) There exists a canonical isomorphism (E ⊗ F )red ≃ Ered ⊗ Fred.

iii.) There exists a canonical isomorphism (E ⊠ F )red ≃ Ered ⊗ Fred.

iv.) There exists a canonical isomorphism CHom(E,F )red ≃ Hom(Ered, Fred).

v.) There exists a canonical isomorphism (E∗)red ≃ (Ered)
∗.

Proof: The idea is the same for all parts: We pull all involved vector bundles back to C
along πM : C → Mred and then use Proposition 2.2.16 ii.) to compare them. Since πM is a
surjective submersion this will be enough to infer isomorphy on Mred. For the �rst part we use
the following sequence of isomorphisms:

π#M(E ⊕ F )red ≃ (E ⊕ F )N
(E ⊕ F )0

=
EN ⊕ FN

E0 ⊕ F0

≃ EN

E0

⊕ FN

F0

≃ π#M(Ered ⊕ Fred).
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Similarly, we have

π#M(E ⊗ F )red ≃ (E ⊗ F )N
(E ⊗ F )0

=
EN ⊗ FN

EN ⊗ F0 + E0 ⊗ FN

≃ EN

E0

⊗ FN

F0

≃ π#M(Ered ⊗ Fred)

and

π#M(E ⊠ F )red ≃ (E ⊠ F )N
(E ⊠ F )0

=
EN ⊗ FN + ET ⊗ F0 + E0 ⊗ FT

ET ⊗ F0 + E0 ⊗ FT

≃ EN ⊗ FN

ET ⊗ F0 + E0 ⊗ FT

≃ EN

E0

⊗ FN

F0

≃ π#M(Ered ⊗ Fred),

as well as

π#MCHom(E,F )red ≃ CHom(E,F )N
CHom(E,F )0

≃ Hom(
EN

E0

,
FN

F0

)

≃ Hom(π#MEred, π
#
MFred)

≃ π#MHom(Ered, Fred).

The last part follows by choosing for F the trivial constraint line bundle in iv.). □

The above isomorphisms can be shown to be part of natural isomorphisms, turning the
functor red: CVect(M) → Vect(Mred) into an additive, closed and monoidal functor with respect
to both tensor products.

Proposition 2.2.21 There exists a natural isomorphism making the following diagram com-
mute:

CManifold CVect

Manifold Vect

T

red red

T

(2.2.40)

Proof: We construct an isomorphism Ψ: π#M(TM)red → π#MT (Mred). From Proposition 2.2.16
we know that π#M(TM)red ≃ TC/D. Moreover, recall that we can pull back every germ f[p] ∈
C∞
[p](Mred) to π∗Mf[p] ∈ C∞

p (C). Thus we can de�ne

Ψ: TC/D ∋ [vp] 7→ (p, vp ◦ π∗M) ∈ π#MT (Mred),

giving a �berwise injective vector bundle morphism since D is obviously the kernel. To show
surjectivity let (p, w[p]) ∈ π#MT (Mred) be given. Since πM is a surjective submersion, there exists
a local section σ : V → C on an open neighbourhood V ⊆ Mred around [p]. With this we can set
vp(fp) := w[p]((σ

∗f)[p]) for any f ∈ C∞(π−1
M (V )), and thus Ψ([vp]) = (p, w[p]). This shows that

Ψ is a �berwise isomorphism and hence an isomorphism of vector bundles. Then Ψ induces the
isomorphism (TM)red ≃ T (Mred) as required. □

2.3 Sections of Constraint Vector Bundles

In order to motivate the de�nition of sections of constraint vector bundles consider the total
space of a constraint vector bundle E = (ET, EN, E0) over a constraint manifold M = (M,C,D)
in the following way: The vector bundle ET is clearly a smooth manifold, and since C ⊆ M
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is a closed submanifold so is EN ⊆ ET. Additionally, by identifying EN/E0 with E⊥
0 such that

EN ≃ E0 ⊕ E⊥
0 , there is a distribution DE on EN which is given by DE := TE0 ⊕ Hor(E⊥

0 ),
with Hor(E⊥

0 ) ⊆ TEN denoting the horizontal bundle constructed out of ∇E . Thus we can
understand the total space of a constraint vector bundle as a constraint manifold. The vector
bundle projection pr: E → M turns out to be a smooth map of constraint manifolds. Thus a
constraint section of E should be a constraint map s : M → E such that pr ◦s = idM. This
means in particular that s restricted to C yields a section ι#s of EN. Moreover, ι#s should map
equivalent points in C to equivalent vectors in EN. In other words, ι#s should either map to E0

or be covariantly constant along the leaves of D. These considerations motivate the following
de�nition of the constraint module of sections.

Proposition 2.3.1 (Functor of constraint sections) Let M = (M,C,D) be a constraint
manifold. Mapping a constraint vector bundle E = (ET, EN, E0,∇) to

CΓ∞(E)T = Γ∞(ET)

CΓ∞(E)N =
{
s ∈ Γ∞(ET)

∣∣ ι#s ∈ Γ∞(EN),∇Xι#s = 0 for all X ∈ Γ∞(D)
}

CΓ∞(E)0 =
{
s ∈ Γ∞(ET)

∣∣ ι#s ∈ Γ∞(E0)
}
,

(2.3.1)

and a constraint vector bundle morphism Φ: E → F over the identity to

Φ: CΓ∞(E) → CΓ∞(F ), Φ(s)(p) := Φ
(
s(p)

)
(2.3.2)

de�nes a functor CΓ∞ : CVect(M) → Cemb
str ModCC∞(M).

Proof: First note that CΓ∞(E)T is clearly a CC∞(M)T-module. In general we have ι#(f ·s) =
ι∗f · ι#s for s ∈ Γ∞(ET) and f ∈ C∞(M). Thus for f ∈ CC∞(M)N and s ∈ CΓ∞(E)N we have
ι#(f · s) ∈ Γ∞(EN) and

∇E
X(ι

#(f · s)) = ∇E
X(ι

∗f · ι#s) = LXι
∗f · ι#s+ ι∗f · ∇E

Xι
#s = ι∗f · ∇E

Xι
#s = 0

for all X ∈ Γ∞(D), where we used LXι
∗f = 0. Now let s ∈ Γ∞(ET) and f ∈ CC∞(M)0 be

given, then ι#(f · s) = ι∗f · ι#s = 0 ∈ Γ∞(D). If s ∈ Γ∞(E)0 and f ∈ C∞(M), we get again
ι#(f · s) ∈ Γ∞(E0). Hence we see that CΓ∞(E) is indeed a strong CC∞(M)-module. Let now
Φ: E → F be a constraint morphism of constraint vector bundles. Then Φ can be restricted
to a morphism between the N- or 0-components, meaning that Φ commutes with ι#. Moreover,
since Φ is by de�nition compatible with the partial connections, it maps �at sections to �at
sections. Hence Φ induces a constraint module morphism between the modules of sections. □

It should be stressed that CΓ∞(E)N and CΓ∞(E)0 consist of globally de�ned sections, with
additional properties on C. In particular, CΓ∞(E)0 consists of those sections of ET which on
C are sections of the subbundle E0, while CΓ∞(E)N consists of sections of ET such that on
C it is a section of the subbundle EN whose E0 component can be arbitrary, but everything
complementary to E0 needs to be covariantly constant along the leaves.

Example 2.3.2 ((Co-)Tangent bundle) Let M = (M,C,D) be a constraint manifold.
i.) For the constraint tangent bundle TM we get

CΓ∞(TM)T = Γ∞(TM),

CΓ∞(TM)N =
{
X ∈ Γ∞(TM)

∣∣ X∣∣
C
∈ Γ∞(TC) and

[X,Y ] ∈ Γ∞(D) for all Y ∈ Γ∞(D)},
CΓ∞(TM)0 =

{
X ∈ Γ∞(TM)

∣∣ X∣∣
C
∈ Γ∞(D)

}
,

(2.3.3)

by the de�nition of the Bott connection, see (2.2.9).
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ii.) For the constraint cotangent bundle T ∗M we get

CΓ∞(T ∗M)T = Γ∞(T ∗M),

CΓ∞(T ∗M)N =
{
α ∈ Γ∞(T ∗M)

∣∣ iX ι∗α = 0 and

LXι
∗α = 0 for all X ∈ Γ∞(D)},

CΓ∞(T ∗M)0 =
{
α ∈ Γ∞(T ∗M)

∣∣ ι∗α = 0
}
,

(2.3.4)

by the de�nition of the dual vector bundle in (2.2.24). In other words CΓ∞(T ∗M)N are
exactly those one-forms on M which are basic when restricted to C, and CΓ∞(T ∗M)0 are
those which vanish on C. Here we have to carefully distinguish between the pullback ι#α as
a section of the pullback bundle ι#T ∗M and the pullback (or restriction) ι∗α ∈ Γ∞(T ∗C)
of the form α along ι.

Example 2.3.3 Given a b-manifold M with codimension 1 submanifold Z ⊆M the constraint
vector �elds CΓ∞(TM) are given by those vector �elds onM which are tangent to Z, hence they
agree with the b-vector �elds, see [GMP14]. Note that the b-vector �elds are always sections of
the so called b-tangent bundle. In contrast, we will later see that CΓ∞(M)N is in general not
given by all sections of a vector bundle on M , since it will in general not be projective. Thus we
can also interpret constraint manifolds as generalization of b-manifolds to higher codimensions.

Example 2.3.4 (Constraint Lie algebroid) We can now de�ne a constraint Lie algebroid
as a morphism ρ : E → TM of constraint vector bundles together with a constraint Lie bracket
[ · , · ] on CΓ∞(E) such that CC∞(M) together with CΓ∞(E) becomes a constraint Lie-Rinehart
algebra, see De�nition 1.6.8. Particular instances of constraint Lie algebroids have been intro-
duced in [JO14] as in�nitesimal ideal systems. These are equivalent to constraint Lie algebroids
of the form M = (M,M,D) and E = (A,A,K,∇). Note that even though the T- and N-
components of M and E agree, this is not the case for CΓ∞(TM) and CΓ∞(E). It is then clear
that the reduction of constraint Lie algebroids, and hence also in�nitesimal ideal systems, yields
classical Lie algebroids over Mred. Such constraint Lie algebroids will be studied in [DK].

Another example of constraint Lie algebroids is given by so-called Lie pairs, i.e. pairs (A,L)
of Lie algebroids with L ⊆ A a Lie subalgebroid over a common manifold M . Multivector �elds
and di�erential operators on Lie pairs have been studied in [BSX21; SVX22] using methods
from the theory of L∞- and A∞-algebras.

Example 2.3.5 Let M = (M,C,D) be a constraint manifold of dimension n = (nT, nN, n0),
p ∈ C and (U, x) an adapted chart around p as in Lemma 2.1.4. Then

∂

∂xi
∈ CΓ∞(M

∣∣
U
)T if i ∈ {1, . . . , nT},

∂

∂xi
∈ CΓ∞(M

∣∣
U
)N if i ∈ {1, . . . , nN},

∂

∂xi
∈ CΓ∞(M

∣∣
U
)0 if i ∈ {1, . . . , n0}.

(2.3.5)

This example motivates the de�nition of a constraint local frame.

De�nition 2.3.6 (Constraint local frame) Let E = (ET, EN, E0) be a constraint vector bun-
dle of rank k = rank(E) over a constraint manifold M = (M,C,D). A local frame of E on an
open U ⊆M , is a local frame e1, . . . , ekT of ET on U , such that

i.) e1, . . . , ekN ∈ CΓ∞(E
∣∣
U
)N and ι#e1, . . . , ι#ekN is a local frame for EN on U ∩ C, and

ii.) e1, . . . , ek0 ∈ CΓ∞(E
∣∣
U
)0 and ι#e1, . . . , ι#ek0 is a local frame for E0 on U ∩ C.
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The existence of local frames for constraint vector bundles is guaranteed by Lemma 2.2.8.
To show that every vp ∈ ET

∣∣
p
is the value of some section s ∈ Γ∞(ET) one can simply extend a

local frame for ET to all of M by means of a cut-o� function. Now for vp ∈ EN

∣∣
p
this is not so

easy any more, since a cut-o� function would now need to be an element of CC∞(M)N itself, to
end up with a section in CΓ∞(E)N. Recall from Remark 2.1.7 that the existence of such cut-o�
functions for arbitrary open subsets can not be guaranteed in general. Nevertheless, we can use
the reduced manifold to construct such constraint sections as follows:

Corollary 2.3.7 Let E = (ET, EN, E0,∇E) be a constraint vector bundle over a constraint
manifold M = (M,C,D).

i.) For each p ∈ C and vp ∈ E0

∣∣
p
there exists an s ∈ CΓ∞(E)0 such that s(p) = vp.

ii.) For each p ∈ C and vp ∈ EN

∣∣
p
there exists an s ∈ CΓ∞(E)N such that s(p) = vp.

Proof: For the �rst part choose a local frame e1, . . . , en0 of E0 around p with n0 = rank(E0).
Then using vp =

∑n0
k=1 v

k
pek(p) we can de�ne a local section

∑n0
k=1 v

k
pek which we extend to a

section s̃ ∈ Γ∞(E0) ⊆ Γ∞(ι#ET) by means of a bump function. In order to extend s̃ to a section
of ET choose a tubular neighbourhood V ⊆M of C with bundle projection πV : V → C. Then
pulling back s̃ to V via πV and afterwards extending to all of M using a suitable bump function
gives a globally de�ned section s ∈ Γ∞(ET) with ι#s = s̃ ∈ Γ∞(E0) and s(p) = s̃(p) = vp.
Note that the existence of such a bump function requires the closedness of C. For ii.) choose
a complementary vector bundle E⊥

0 → C to E0 inside of EN, i.e. EN = E0 ⊕ E⊥
0 and hence

E⊥
0 ≃ EN/E0. Then vp = v0p + v⊥p with v0p ∈ E0

∣∣
p
and v⊥p ∈ E⊥

0

∣∣
p
. By i.) we �nd a section

s0 ∈ Γ∞(E)0 such that s0(p) = v0p. Now choose š ∈ Γ∞(Ered) such that š(πM(p)) = [v⊥p ].
Then by Proposition 2.2.16 ii.) we can identify π#Mš with a section s⊥ ∈ Γ∞(EN/E0) such that
∇Xs

⊥ = 0 for all X ∈ Γ∞(D). Then using a tubular neighbourhood as before to extend s0+ s⊥

to all of M we obtain the desired section. □

Remark 2.3.8 Note that the proof of Corollary 2.3.7 i.) still works if we refrain from D being
simple. In the proof of the second part, however, we crucially used the smooth structure on
Mred. In particular, the holonomy-freeness of ∇ is needed in order to extend s to a section in
CΓ∞(E)N. Thus it is not clear if this statement still holds for non-simple distributions.

As a �rst important property of the sections functor we show that it is compatible with
direct sums.

Proposition 2.3.9 Let E = (ET, EN, E0,∇E) and F = (FT, FN, F0,∇F ) be constraint vector
bundles over a constraint manifold M = (M,C,D). Then

CΓ∞(E ⊕ F ) ≃ CΓ∞(E)⊕ CΓ∞(F ) (2.3.6)

as strong constraint CC∞(M)-modules.

Proof: From classical di�erential geometry we know that Φ: Γ∞(ET)⊕Γ∞(F )T → Γ∞(E⊕F )
given by Φ(s, s′)(p) := s(p)⊕s′(p) is an isomorphism of C∞(M)-modules. Now let s ∈ CΓ∞(E)N
and s′ ∈ CΓ∞(F )N be given. Then clearly Φ(s, s′)(p) = s(p)⊕ s′(p) ∈ EN

∣∣
p
⊕ FN

∣∣
p
for all p ∈ C.

Moreover, it holds

∇⊕
XΦ(s, s

′) = ∇E
Xs⊕∇F

Xs
′ = 0 (2.3.7)

by the de�nition of ∇⊕ in Proposition 2.2.13. Thus Φ preserves the N-component. Next, let
s ∈ CΓ∞(E)0 and s′ ∈ CΓ∞(F )0 be given. Then Φ(s, s′)(p) = s(p)⊕ s′(p) ∈ E0

∣∣
p
⊕ F0

∣∣
p
for all
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p ∈ C shows that Φ also preserves the 0-components. For Φ to be a constraint isomorphism it
remains to show that Φ−1(CΓ∞(E⊕F )0) = CΓ∞(E)0⊕CΓ∞(F )0, cf. Lemma 1.3.5. For this let
t ∈ CΓ∞(E⊕F )0 be given. Then we know that t = s⊕ s′ for some s ∈ Γ∞(ET) and t ∈ Γ∞(FT).
For all p ∈ C we have

s(p)⊕ s′(p) = (s⊕ s′)(p) = t(p) ∈ (E ⊕ F )0
∣∣
p
= E0

∣∣
p
⊕ F0

∣∣
p
,

and thus s ∈ CΓ∞(E)0 and s′ ∈ CΓ∞(F )0. Therefore, Φ is a constraint isomorphism. □

Similarly, sections of constraint vector bundles are compatible with internal homs:

Proposition 2.3.10 Let E = (ET, EN, E0,∇E) and F = (FT, FN, F0,∇F ) be constraint vector
bundles over a constraint manifold M = (M,C,D). Then

CΓ∞(CHom(E,F )) ≃ CHomCC∞(M)(CΓ
∞(E),CΓ∞(F )) (2.3.8)

as strong constraint CC∞(M)-modules.

Proof: On the T-component we have the isomorphism

η : Γ∞(Hom(ET, FT)) → HomC∞(M)(Γ
∞(ET),Γ

∞(FT))

given by
η(A)(s)

∣∣
p
:= A

∣∣
p
(s
∣∣
p
)

for all p ∈ M and s ∈ Γ∞(ET). We �rst show that η is indeed a constraint morphism: If
A ∈ CΓ∞(CHom(E,F ))0, then for every p ∈ C and s ∈ CΓ∞(E)0 we have η(A)(s)

∣∣
p

=

A
∣∣
p
(s
∣∣
p
) ∈ F0

∣∣
p
since s

∣∣
p
∈ E0

∣∣
p
. Thus η preserves the 0-component. Consider now A ∈

CΓ∞(CHom(E,F ))N. For all p ∈ C and s ∈ CΓ∞(E)0 we have η(A)(s)
∣∣
p
= A

∣∣
p
(s
∣∣
p
) ∈ F0

∣∣
p

since s
∣∣
p
∈ E0

∣∣
p
. Moreover, if s ∈ CΓ∞(E)N, then η(A)(s)

∣∣
p
= A

∣∣
p
(s
∣∣
p
) ∈ FN

∣∣
p
and

∇F
Xη(A)(s)

∣∣
C
= η

(
∇CHom
X A

∣∣
C︸ ︷︷ ︸

=0

)
(s
∣∣
C
) + η(A)(∇E

Xs
∣∣
C︸ ︷︷ ︸

=0

) = 0.

Thus η(A)(s) ∈ CΓ∞(F )N. Summarizing, this shows that η is a constraint morphism.
It remains to show that η is regular surjective. For this recall from classical di�erential

geometry that for every A ∈ HomC∞(M)(Γ
∞(ET),Γ

∞(FT)) the corresponding preimage is given
by A(p)(sp) := A(s)(p) for all sp ∈ ET

∣∣
p
and s ∈ Γ∞(ET) such that s(p) = sp. Note that this

does not depend on the choice of the section s. Here we use the usual abuse of notation.
Now let A ∈ CHomCC∞(M)(CΓ

∞(E),CΓ∞(F ))N be given. Then for every p ∈ C and sp ∈
EN

∣∣
p
there exists a section s ∈ CΓ∞(E)N with s(p) = sp by Corollary 2.3.7. Then we have

A(p)(sp) = A(s)(p) ∈ FN

∣∣
p
since A(s) ∈ CΓ∞(F )N. Similarly, if sp ∈ E0

∣∣
p
, then there exists

s ∈ CΓ∞(E)0 with s(p) = sp and thus A(p)(sp) = A(s)(p) ∈ F0

∣∣
p
. We also need to show that

∇CHom
X A

∣∣
C
= 0 for all X ∈ Γ∞(D). For this let p ∈ C and sp ∈ (EN/E0)

∣∣
p
be given. Again by

Corollary 2.3.7 we �nd a section s ∈ CΓ∞(E)N such that s(p) = sp. Then(
∇CHom
X A

∣∣
C

)
(p)(sp) =

(
∇CHom
X A

∣∣
C

)
(s
∣∣
C
)(p)

= ∇F
X

(
A
∣∣
C
(s
∣∣
C
)
)
(p)−A

∣∣
C

(
∇E
Xs
∣∣
C

)
= ∇F

X

(
A(s)

∣∣
C

)
(p) = 0,
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since ∇E
Xs
∣∣
C
= 0 and A(s)

∣∣
C
∈ CΓ∞(F )N. This shows A ∈ CΓ∞(CHom(E,F ))N, and hence η is

surjective on the N-component.
Recall from Lemma 1.3.5 that we additionally have to check that η is also surjective on

the 0-component. Thus let A ∈ CHomCC∞(M)(CΓ
∞(E),CΓ∞(F ))0 be given. Then for s ∈ C

and sp ∈ EN

∣∣
p
we �nd again by Corollary 2.3.7 a section s ∈ CΓ∞(E)N with s(p) = sp. Then

A(p)(sp) = A(s)(p) ∈ F0

∣∣
p
since A(s) ∈ CΓ∞(F )0. This �nally shows that η is a regular

epimorphism and hence a constraint isomorphism. □

Remark 2.3.11 Note that we used Corollary 2.3.7 to prove Proposition 2.3.10. Hence by
Remark 2.3.8 it is not clear if the Proposition 2.3.10 remains valid for non-simple distributions.

Corollary 2.3.12 Let E = (ET, EN, E0,∇E) be a constraint vector bundle over a constraint
manifold M = (M,C,D). Then

CΓ∞(E∗) ≃ CΓ∞(E)∗ (2.3.9)

as strong constraint CC∞(M)-modules.

Proof: Choose F = M×R in Proposition 2.3.10. □

In classical di�erential geometry the famous Serre-Swan Theorem states that the category
Vect(M) of vector bundles over a �xed manifold M is equivalent to the category Proj(C∞(M))
of �nitely generated projective C∞(M)-modules. By Proposition 2.3.1 we know that sections
of constraint vector bundles form strong constraint modules over the strong constraint algebra
CC∞(M) of functions on the constraint manifold M. Thus for a constraint analogue of the
Serre-Swan Theorem we expect projective strong constraint modules to be the correct algebraic
notion.

Before tackling the full Serre-Swan Theorem, let us take a look at the case of free strong
constraint CC∞(M)-modules. As in classical di�erential geometry these relate to trivial vector
bundles, now in the sense of Example 2.2.7. Recall from Lemma 2.2.8 that every constraint
vector bundle admits local frames adapted to the constraint structure.

Proposition 2.3.13 Let M = (M,C,D) be a constraint manifold and let E = (ET, EN, E0,∇)
be a constraint vector bundle over M of rank k = (kT, kN, k0). Then the following statements are
equivalent:

i.) The constraint vector bundle E is trivializable.

ii.) There exists a global frame of E.

iii.) The strong constraint module CΓ∞(E) is free and CΓ∞(E) ≃ CC∞(M)k.

Proof: i.)⇒ ii.): If E is trivializable there exists a constraint vector bundle isomorphism
Φ: E → M×Rk inducing an isomorphism

Φ: CΓ∞(E) → CΓ∞(M×Rk)

on sections. Let f1, . . . , fkT ∈ Γ∞(M × RkT) be the canonical global frame. Then ei :=
Φ−1(fi) is a global frame for ET, such that e1, . . . , ekN ∈ CΓ∞(E)N and e1, . . . , ek0 ∈ CΓ∞(E)0.
Moreover, since ι#f1, . . . , ι#fkN and ι#f1, . . . , ι

#fk0 form global frames for the trivial vector
bundles C ×RkN and C ×Rk0 , respectively, and since Φ induces isomorphisms on EN and E0,
we see that ι#e1, . . . , ι#ekN and ι#e1, . . . , ι#ek0 form global frames for EN and E0, respectively.

ii.)⇒ iii.): Every s ∈ CΓ∞(E)T can be written as s =
∑kT

i=1 siei with si ∈ C∞(M). If
s ∈ CΓ∞(E)N, then from

ι#s =

kT∑
i=1

ι∗si · ι#ei ∈ Γ∞(EN)
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it follows that skN+1, . . . , skT ∈ CC∞(M)0. Moreover, since

0 = LXs =

kN∑
i=k0+1

(LXι
∗si) · ei

for all X ∈ Γ∞(D) we get sk0+1, . . . , skN ∈ CC∞(M)N. And thus CΓ∞(E)N ≃ (CC∞(M)k)N. If
s ∈ CΓ∞(E)0 we have

ι#s =

kT∑
i=1

ι∗si · ι#ei ∈ Γ∞(E0)

and thus sk0+1, . . . , skT ∈ CC∞(M)0, giving CΓ∞(E)0 ≃ (CC∞(M)k)0. Together this yields
CΓ∞(E) ≃ CC∞(M)k.

iii.)⇒ i.): Suppose we have an isomorphism Φ: CΓ∞(E) → CC∞(M)k. From classical
di�erential geometry we know that ET ≃M×RkT by mapping vp ∈ E

∣∣
p
to Ψ(vp) := Φ(s)(p) for

any s ∈ Γ∞(ET) with s(p) = vp, and Ψ does not depend on the choice of s. We need to check
that Ψ is an isomorphism of constraint vector bundles. For this let p ∈ C and vp ∈ EN

∣∣
p
be given.

By Corollary 2.3.7 ii.) there exists s ∈ CΓ∞(E)N with s(p) = vp. Hence Ψ(vp) ∈ Φ(s)(p) ∈
(C × RkN)

∣∣
p
since Φ(s) ∈ CΓ∞(M × Rk)N. Similarly, if vp ∈ E0

∣∣
p
then by Corollary 2.3.7 i.)

there exists s ∈ CΓ∞(E)0 such that s(p) = vp. Then Ψ(vp) = Φ(s)(p) ∈ (C × RnN)
∣∣
p
, since

Φ(s) ∈ CΓ∞(M × RnT)0. The same arguments show that Ψ−1 : (M × RkT) → ET preserves
the N- and 0-components, hence inducing isomorphisms ΨN : EN → (C ×RkN) and Ψ0 : E0 →
(C×Rk0). To show that Ψ is compatible with the covariant derivatives note that it induces also
an isomorphism ΨN/0 : (EN/E0) → (C ×RkN−k0). Then for s ∈ Γ∞(EN/E0) we have

Ψ
(
∇E
vps
)
= Ψ

( kN−k0∑
i=n0+1

∇E
vp(s

iei)
)
= Ψ

( kN−k0∑
i=n0+1

(LXs
i)ei

)
=

kN−k0∑
i=n0+1

(LXs
i)Ψ(ei)

for all X ∈ Γ∞(D), showing that Ψ is indeed an isomorphism of constraint vector bundles. □

Remark 2.3.14 We again used Corollary 2.3.7 in the above proof. Hence by Remark 2.3.8 it
is not clear if the the above equivalences still hold for non-simple distributions.

The existence of local frames for constraint vector bundles can therefore be understood as
local freeness of CΓ∞(E).

As a �rst step towards the constraint Serre-Swan Theorem we show that every �nitely
generated projective strong constraint module over the constraint algebra of functions can be
realized as sections of a constraint vector bundle.

Proposition 2.3.15 Let M = (M,C,D) be a constraint manifold and P ∈ CstrProj(CC∞(M))
a �nitely generated projective strong constraint CC∞(M)-module. Then there exists a constraint
vector bundle E = (ET, EN, E0,∇) over M such that CΓ∞(E) ≃ P.

Proof: Since P is �nitely generated projective there exists a �nite constraint index set n ∈
Cemb
ind Set and a projection e ∈ CEndA(A

(M)) with e2 = e such that P ≃ eCC∞(M)n. By
Proposition 2.3.10 the projection e can be viewed as a constraint section of CEnd(M × Rn).
Moreover, since e is completely determined by its T-component we can identify it with a matrix
e ∈ MnT(C∞(M)). This leads to a vector bundle morphism

ΦT : M ×RnT →M ×RnT , (p, v) 7→ (p, e(p)v)
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of constant rank. And therefore we can de�ne ET := im(eT) as a subbundle of M ×RnT . Since
e ∈ CΓ∞(End(M×Rn))N we know ι#e ∈ Γ∞(End(C ×RnN)) leading to a constant rank vector
bundle morphism

ΦN : C ×RnN → C ×RnN , (p, v) 7→ (p, ι#e(p)v).

This allows us to de�ne EN := im(e
∣∣
C
) as a subbundle of ι#ET. Moreover, since ι#ep preserves

also the 0-component of the �bre we can restrict ΦN to C × Rn0 , giving a subbundle E0 :=
im(ΦN

∣∣
C×Rn0

) of EN. Finally, we can de�ne a partial D-connection on EN/E0 by

∇Xs :=

nN∑
i=n0+1

ΦN(bi) · LXs
i

for all s ∈ Γ∞(E)N with s =
∑nN

i=1ΦN(bi)s
i and X ∈ Γ∞(D). Here the bi denote the canonical

basis sections of C × RnN . This clearly gives a well-de�ned covariant derivative. To show
that ∇ is path-independent consider sp =

∑nN
i=n0+1ΦN(bi)(p)s

i
p ∈ (EN/E0)

∣∣
p
. Then the section

s =
∑nN

i=n0+1ΦN(bi)s
i
p is clearly covariantly constant and thus induces the parallel transport

along any leafwise curve γ : I → C. It remains to show that CΓ∞(E) is isomorphic to P as
a strong constraint CC∞(M)-module. It is straightforward to check that Ψ: im e → CΓ∞(E)
de�ned by

ΨT(s) := (p 7→ (p, s(p)))

is an isomorphism of constraint modules. And hence CΓ∞(E) ≃ im e ≃ P follows. □

To show that sections of constraint vector bundles are always �nitely generated projective
we actually need the requirement of a simple distribution:

Proposition 2.3.16 Let E = (ET, EN, E0,∇) be a constraint vector bundle over a constraint
manifold M = (M,C,D). Then CΓ∞(E) is a �nitely generated projective strong constraint
CC∞(M)-module.

Proof: We construct a dual basis in the sense of Proposition 1.5.38. For this we �rst choose
a complement E⊥

0 of E0 inside EN, hence we get EN = E0 ⊕ E⊥
0 with E⊥

0 ≃ EN/E0, and
additionally a complement E⊥

N of EN inside ι#ET. This yields ι#ET = E0 ⊕ E⊥
0 ⊕ E⊥

N . Now
choose a �nite dual basis of Γ∞(Ered) given by gj ∈ Γ∞(Ered) and gj ∈ Γ∞(E∗

red), for j ∈ J⊥
0 .

By Proposition 2.2.16 we can pull back the dual basis to a dual basis of E⊥
0 , which we still

denote by gj ∈ Γ∞(E⊥
0 ) and gj ∈ Γ∞((E⊥

0 )∗). Note that these sections ful�l ∇Xgj = 0 and
∇∗
Xg

j = 0 for X ∈ Γ∞(D). Additionally, choose a dual basis {fj , f j}j∈J0 of E0 and a dual basis
{hj , hj}j∈J⊥

N
of E⊥

N . This way we obtain a dual basis {cj , cj}i∈JC of ι#ET with JC = J0⊔J⊥
0 ⊔J⊥

N

cj =


fj if j ∈ J0

gj if j ∈ J⊥
0

hj if j ∈ J⊥
N

and cj =


f j if j ∈ J0

gj if j ∈ J⊥
0

hj if j ∈ J⊥
N

.

To extend the dual basis to all of M we choose a tubular neighbourhood prV : V → C, with
ιV : V ↪→M an open neighbourhood of C. Then we can pull back the cj and cj to obtain a dual
basis of ι#V ET, which we again denote by {cj , cj}j∈JC . On the open subset ιM\C : M \ C ↪→ M

choose another dual basis {dk, dk}k∈K of ι#M\CET. We now need to patch these dual bases
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together. For this choose a quadratic partition of unity χ1, χ2 ∈ C∞(M) with χ2
1 + χ2

2 = 1 and
suppχ1 ⊆ V and suppχ2 ⊆M \ C. Then {ei, ei}i∈IT with IT = JC ⊔K de�ned by

ei =

{
χ1 · ci if i ∈ JC

χ2 · di if i ∈ K
and ei =

{
χ1 · ci if i ∈ JC

χ2 · di if i ∈ K

forms a dual basis for ET. It remains to show that this dual basis ful�ls the properties of
Proposition 1.5.38. For this consider the constraint set I with IT as above, IN = J0 ⊔ J⊥

0 ⊔K
and I0 = J0⊔K. By construction we have ei ∈ CΓ∞(E)N for i ∈ IN and ei ∈ CΓ∞(E)0 for i ∈ I0.
From the fact that gj ∈ Γ∞(AnnE0) and hj ∈ Γ∞(AnnEN) it follows that ei ∈ CΓ∞(E∗)N for
i ∈ IT \ I0 and ei ∈ CΓ∞(E∗)0 for i ∈ IT \ IN. □

Remark 2.3.17 In the above proof we heavily used the existence of a reduced vector bundle on
a smooth reduced manifold. Thus it is not clear if the above statement still holds for non-simple
distributions. Nevertheless, this situation is of great interest for its geometric applications, hence
the question if all modules of sections are projective, even for non-simply distributions, deserves
further attention.

The above results lead us now to a constraint version of the Serre-Swan Theorem:

Theorem 2.3.18 (Constraint Serre-Swan) Let M = (M,C,D) be a constraint manifold.
The functor CΓ∞ : CVect(M) → CstrProj(CC∞(M)) is an equivalence of categories.

Proof: Proposition 2.3.16 shows that CC∞ actually maps to CstrProj(CC∞(M)), while Propo-
sition 2.3.10 proves that CC∞ is fully faithful. Finally, by Proposition 2.3.15 it is essentially
surjective, and therefore an equivalence of categories. □

Remark 2.3.19 In [DMW22; Men20] a similar result for non-strong projective constraint mod-
ules over CC∞(M) as a non-strong constraint algebra was found. The geometric objects used
there are similar but not identical to the notion of constraint vector bundles, in particular the
vector bundle EN is a subbundle of ET de�ned on all of M , and ∇ is a partial connection on
ι#EN instead of EN/E0.

The constraint Serre-Swan Theorem �nally justi�es the study of projective strong constraint
modules, and their predecessors in Section 1.5. This important result allows us now to examine
the compatibility of the sections functor with the di�erent notions of tensor products. Con-
sider vector bundles E and F over a constraint manifold M. By the Serre-Swan Theorem we
know that CΓ∞(E) and CΓ∞(F ) are �nitely generated projective strong constraint modules,
moreover, Proposition 1.5.40 and Proposition 1.5.41 tell us that also CΓ∞(E)⊠emb

CC∞(M) CΓ
∞(F )

and CΓ∞(E) ⊗str
CC∞(M) CΓ

∞(F ) are �nitely generated projective and hence embedded. This is
something we cannot expect for �nitely generated projective modules over arbitrary embedded
strong constraint algebras, since their (strong) tensor products need in general not be embedded.
From now on we will write CΓ∞(E) ⊠CC∞(M) CΓ

∞(F ) and CΓ∞(E) ⊗CC∞(M) CΓ
∞(F ) instead,

since on CstrProj(CC∞(M)) there will be no risk of confusion.

Lemma 2.3.20 Let M = (M,C,D) be a constraint manifold and let E,F ∈ CVect(M) be
constraint vector bundles over M.

i.) Setting

IE,F (s⊗ t)(p) := s(p)⊗ t(p) (2.3.10)

de�nes a constraint morphism IE,F : CΓ∞(E) ⊗CC∞(M) CΓ
∞(F ) → CΓ∞(E ⊗ F ). These

morphisms constitute a natural transformation I : ⊗CC∞(M) ◦ (CΓ∞ × CΓ∞) ⇒ CΓ∞ ◦ ⊗.
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ii.) Setting

JE,F (s⊗ t)(p) := s(p)⊗ t(p) (2.3.11)

de�nes a constraint morphism JE,F : CΓ∞(E) ⊠CC∞(M) CΓ
∞(F ) → CΓ∞(E ⊠ F ). These

morphisms constitute a natural transformation J : ⊠CC∞(M) ◦ (CΓ∞ × CΓ∞) ⇒ CΓ∞ ◦⊠.

Proof: In both cases we know from classical di�erential geometry that the IE,F are a morphism
of AT-modules on the T-components, forming natural transformations. It remains to show that
I and J are constraint morphisms, meaning that they preserve the N- and 0-components.

For the �rst part let s⊗ t ∈ CΓ∞(E) CΓ∞(F ) =
(
CΓ∞(E)⊗CC∞(M) CΓ

∞(F )
)
0
. Then

I(s⊗ t)(p) = s(p)⊗ t(p) ∈ E0

∣∣
p
⊗ FN

∣∣
p
+ EN

∣∣
p
⊗ F0

∣∣
p

for all p ∈ C, and therefore I(s⊗ t) ∈ CΓ∞(E⊗F )0. Now consider s⊗ t ∈ CΓ∞(E) CΓ∞(F ) ⊆
(CΓ∞(E)⊗CC∞(M) CΓ

∞(F ))N, then

I(s⊗ t)(p) = s(p)⊗ t(p) ∈ EN

∣∣
p
⊗ FN

∣∣
p

for all p ∈ C, hence I(s⊗ t)
∣∣
C
∈ Γ∞(

(
E ⊗ F )N

)
. Moreover, for X ∈ Γ∞(D) we have

∇XI(s⊗ t)
∣∣
C
= ∇Xs

∣∣
C
⊗ t
∣∣
C
= ∇Xs

∣∣
C
⊗ t
∣∣
C
+ s
∣∣
C
⊗ ∇Xt

∣∣
C
= 0,

showing that I(s⊗ t) ∈ CΓ∞(E ⊗ F )N.
For the second part we start with s⊗t ∈ CΓ∞(E) CΓ∞(F ) =

(
CΓ∞(E)⊠CC∞(M)CΓ

∞(F )
)
0
.

Then
J(s⊗ t)(p) = s(p)⊗ t(p) ∈ E0

∣∣
p
⊗ ι#FT

∣∣
p
+ ι#ET

∣∣
p
⊗ F0

∣∣
p

for all p ∈ C, and therefore J(s⊗t) ∈ CΓ∞(E⊠F )0. Now consider s⊗t ∈ CΓ∞(E) CΓ∞(F ) ⊆(
CΓ∞(E)⊠CC∞(M) CΓ

∞(F )
)
N
, then

J(s⊗ t)(p) = s(p)⊗ t(p) ∈ EN

∣∣
p
⊗ FN

∣∣
p

for all p ∈ C, hence J(s⊗ t)
∣∣
C
∈ Γ∞((E ⊠ F )N). Moreover, for X ∈ Γ∞(D) we have

∇XJ(s⊗ t)
∣∣
C
= ∇Xs

∣∣
C
⊗ t
∣∣
C
= ∇Xs

∣∣
C
⊗ t
∣∣
C
+ s
∣∣
C
⊗ ∇Xt

∣∣
C
= 0,

showing that J(s⊗ t) ∈ CΓ∞(E ⊠ F )N. □

The canonical morphisms 2.3.10 and 2.3.11 can be constructed without using the Serre-Swan
Theorem. But to see that these are in fact isomorphisms we need constraint dual bases.

Proposition 2.3.21 Let M = (M,C,D) be a constraint manifold.

i.) The sections functor CΓ∞ : (CVect(M),⊗) →
(
CstrProj

(
CC∞(M)

)
,⊗CC∞(M)

)
is monoidal.

ii.) The sections functor CΓ∞ : (CVect(M),⊠) →
(
CstrProj

(
CC∞(M)

)
,⊠CC∞(M)

)
is monoidal.

Proof: We �rst show that the natural transformations I and J from Lemma 2.3.20 are in
fact natural isomorphisms. For this we construct inverses. Let E,F ∈ CVect(M) and let
({ei}i∈M , {ei}i∈M∗) as well as ({fj}j∈N , {f j}j∈N∗) be �nite dual bases of E and F , respectively.
From classical di�erential geometry we know that ({ei ⊗ fj}(i,j)∈MT×NT

, {ei ⊗ f j}(i,j)∈MT×NT
)

is a dual basis of Γ∞(ET ⊗ FT) and that

K(X) =
∑
i∈MT

∑
j∈NT

(ei ⊗ f j)(X) · ei ⊗C∞(M) fj ,
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for X ∈ Γ∞(ET ⊗ FT), de�nes an inverse K : Γ∞(E ⊗ F ) → Γ∞(E) ⊗C∞(M) Γ
∞(F ) to I.

Here we use ⊗C∞(M) as the algebraic tensor product to separate it from the geometric tensor
product ⊗ of sections. To show that K is a constraint morphism we prove that the families
({ei ⊗ fj}(i,j)∈M⊗N , {ei ⊗ f j}(i,j)∈(M⊗N)∗) form a dual basis for CΓ∞(E ⊗ F ):

� (i, j) ∈ (M ⊗ N)N =M N : Then by Lemma 2.3.20 we know that

ei ⊗ fj = IE,F (ei ⊗C∞(M) fj) ∈ CΓ∞(E ⊗ F )N.

� (i, j) ∈ (M ⊗ N)0 = M N : Then we know that ei ⊗ fj = IE,F (ei ⊗C∞(M) fj) ∈
CΓ∞(E ⊗ F )0.

� (i, j) ∈ (M ⊗ N)∗N =M N = (M∗ ⊠ N∗)N: Then we know that

ei ⊗ f j = JE∗,F ∗(ei ⊗C∞(M) f
j) ∈ CΓ∞(E∗ ⊠ F ∗)N ≃ CΓ∞(E ⊗ F )∗N.

� (i, j) ∈ (M ⊗ N)∗0 =M N : Then we know that

ei ⊗ f j = JE∗,F ∗(ei ⊗C∞(M) f
j) ∈ CΓ∞(E∗ ⊠ F ∗)0 ≃ CΓ∞(E ⊗ F )∗0 .

This shows thatK is a constraint morphism, and therefore I is an isomorphism. With completely
analogous arguments, on can show that J is an isomorphism as well. The unit object in CVect(M)
is for both products given byM×R. Since CΓ∞(M×R) ≃ CC∞(M) the section functor preserves
the monoidal units, and hence gives a monoidal functor in both cases. □

Since CΓ∞ is monoidal and compatible with direct sums, we also get

S•⊗CΓ
∞(E) ≃ CΓ∞(S•⊗E), Λ•

⊗CΓ
∞(E) ≃ CΓ∞(Λ•

⊗E), (2.3.12)

as well as

S•⊠CΓ
∞(E) ≃ CΓ∞(S•⊠E), Λ•

⊠CΓ
∞(E) ≃ CΓ∞(Λ•

⊠E) (2.3.13)

for any constraint vector bundle E. For sections of constraint vector bundles we can make the
relation of the strong and non-strong tensor products precise. In particular, their di�erence will
be located on the submanifold C only.

Proposition 2.3.22 Let M = (M,C,D) be a constraint manifold and let E,F ∈ CVect(M) be
constraint vector bundles over M. Then there exists an isomorphism of constraint CC∞(M)-
modules such that

(CΓ∞(E)⊠CC∞(M) CΓ
∞(F ))

T
≃ (CΓ∞(E)⊗CC∞(M) CΓ

∞(F ))
T
,

(CΓ∞(E)⊠CC∞(M) CΓ
∞(F ))

N
≃ (CΓ∞(E)⊗CC∞(M) CΓ

∞(F ))
N

⊕ Γ∞(E0)⊗C∞(C) Γ
∞(ι#FT/FN)

⊕ Γ∞(ι#ET/EN)⊗C∞(C) Γ
∞(F0),

(CΓ∞(E)⊠CC∞(M) CΓ
∞(F ))

0
≃ (CΓ∞(E)⊗CC∞(M) CΓ

∞(F ))
0

⊕ Γ∞(E0)⊗C∞(C) Γ
∞(ι#FT/FN)

⊕ Γ∞(ι#ET/EN)⊗C∞(C) Γ
∞(F0).

(2.3.14)

Proof: Choose complementary vector bundles E⊥
0 and E⊥

N over C such that ι#ET = EN⊕E⊥
N =

E0 ⊕ E⊥
0 ⊕ E⊥

N . In particular we have E⊥
N ≃ EN/E0 and E⊥

T ≃ ι#ET/EN. Similarly, choose
complementary vector bundles F⊥

0 and F⊥
N . Additionally, we need a tubular neighbourhood

prV : V → C, with ιV : V ↪→ M an open neighbourhood of C. Using this we can extend the
vector bundles E0, E⊥

T , F0 and F⊥
T to V by pulling them back along prV . Finally, we need
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a bump function χ such that χ
∣∣
C

= 1 and χ
∣∣
M\V = 0. With this we can turn the right

hand side of (2.3.14) into a constraint module by de�ning ι on Γ∞(E0)⊗C∞(C) Γ
∞(ι#FT/FN)⊕

Γ∞(ι#ET/EN)⊗C∞(C) Γ
∞(F0) as

ι(t1 ⊗ t2) := χ · pr#V (t1 ⊗ t2).

Now let s =
∑

i∈I s
i
1 ⊗ si2 ∈ (CΓ∞(E) ⊠CC∞(M) CΓ

∞(F ))N = CΓ∞(E ⊠ F )N be given. Since
(E ⊠ F )N ≃ (EN ⊗ FN)⊕ (E0 ⊗ F⊥

T )⊕ (E⊥
T ⊗ F0) we can write I as I = INN ⊔ I0T ⊔ IT0 with

i ∈ INN ⇐⇒ si1
∣∣
C
⊗ si2

∣∣
C
∈ Γ∞(EN)⊗C∞(C) Γ

∞(FN),

i ∈ I0T ⇐⇒ si1
∣∣
C
⊗ si2

∣∣
C
∈ Γ∞(E0)⊗C∞(C) Γ

∞(F⊥
T ),

i ∈ IT0 ⇐⇒ si1
∣∣
C
⊗ si2

∣∣
C
∈ Γ∞(E⊥

T )⊗C∞(C) Γ
∞(F0).

Extending the sections �rst to V by pullback and then to M by use of χ yields

s−
∑

i∈I0T⊔IT0

ι
(
si1
∣∣
C
⊗ si2

∣∣
C

)
∈
(
CΓ∞(E)⊗CC∞(M) CΓ

∞(F )
)
N
.

Thus we can de�ne

ΨN(s) :=
(
s−

∑
i∈I0T⊔IT0

ι(si1
∣∣
C
⊗ si2

∣∣
C
),
∑
i∈I0T

si1
∣∣
C
⊗ si2

∣∣
C
,
∑
i∈IT0

si1
∣∣
C
⊗ si2

∣∣
C

)
.

It is then easy to see that ΨN preserves the 0-component and together with the canonical
isomorphism ΨT on the T-component de�nes a constraint module morphism. Moreover, the
inverse of ΨN is given by

Ψ−1
N (s, t, u) = s+ ι(t) + ι(u).

Thus we get indeed an isomorphism as required. □

With (2.3.14) it becomes obvious that the tensor products ⊗ and ⊠ indeed di�er the moment
that E0 is non-trivial and FN ⊊ ι#FN is an honest subbundle, since then

Γ∞(E0)⊗C∞(C) Γ
∞(ι#FT/FN) ≃ Γ∞(E0 ⊗ ι#FT/FN) (2.3.15)

does not vanish.

2.3.1 Reduction

As closure of this section we can show that the constraint Serre-Swan Theorem reduces to
the classical Serre-Swan Theorem. More precisely, taking sections commutes with reduction as
shown in the following:

Proposition 2.3.23 (Constraint sections vs. reduction) Let M = (M,C,D) be a con-
straint manifold. There exists a natural isomorphism making the following diagram commute:

CVect(M) CstrProj(CC∞(M))

Vect(Mred) Proj(C∞(Mred))

CΓ∞

red red

Γ∞

(2.3.16)
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Proof: Our goal is to construct an isomorphism ηE : CΓ∞(E)red → Γ∞(Ered) for every con-
straint vector bundle E over M. Thus let s ∈ CΓ∞(E)N be given. For any (possibly non-smooth)
section σ : Mred → C of the quotient map πM we can de�ne a map ηE(s) : Mred → Ered by
ηE(s)(p) := [s(σ(p))], which is a section of the vector bundle projection prEred

. Note that this
map is independent of the choice of the section σ, since s ∈ CΓ∞(E)N. Thus ηE(s) is also smooth,
since locally we can choose σ to be smooth. So we end up with ηE(s) ∈ Γ∞(Ered). Note also
that ηE is clearly CC∞(M)N-linear along the projection πCC∞(M) : CC∞(M)N → C∞(Mred).
Now suppose ηE(s) = 0. Then [s(σ(p))] = 0 for all p ∈ Mred and every section σ. Thus
ι#s ∈ Γ∞(E0). This means that ker ηE = CΓ∞(E)0 and therefore it induces an injective
morphism ηE : CΓ∞(E)red → Γ∞(Ered) of CC∞(M)red ≃ C∞(Mred)-modules. It remains to
show that ηE is also surjective. For this let t ∈ Γ∞(Ered) be given. Now choose a splitting
EN ≃ E0 ⊕ ι#Ered using Proposition 2.2.16 ii.) and de�ne s(q) := Θ−1(t(πM(q))) for all q ∈ C
and extend it to a section of ET by use of a tubular neighbourhood. By (2.2.38) s is covariantly
constant as a section of EN/E0, and therefore we have s ∈ CΓ∞(E)N. Finally, we have ηE(s) = t,
showing that ηE is surjective, and thus an isomorphism. □

2.4 Constraint Cartan Calculus

The close relationship between constraint vector bundles and constraint modules as established
by the constraint Serre-Swan Theorem allows us to introduce further analogues of classical
geometric structures on constraint manifolds, such as di�erential forms and multivector �elds.
For both di�erential forms and multivector �elds we can choose between the strong and non-
strong tensor product, leading to two di�erent graded constraint modules each. In Section 2.4.1
we will see that the classical de Rham di�erential is only well-de�ned on CΩ⊠(M), but not
on CΩ⊗(M). In fact, the classical Cartan calculus, including the insertion of vector �elds
and Lie derivative of forms, is canonically given on CΩ⊠(M), thus singeling out CΩ⊠ as the
correct constraint analogue of di�erential forms. When we study constraint multivector �elds in
Section 2.4.2 we �nd that here the situation is quite di�erent, since both CX⊠(M) and CX⊗(M)
carry the structure of a constraint Gerstenhaber algebra. Moreover, while CX⊗(M) seems to
be the reasonable choice for constraint multivector �elds, since these are dual to the constraint
forms CΩ⊠(M), in the study of coisotropic reduction we will need CX⊠(M). Thus for constraint
multivector �elds there does not seem to be a preferred choice.

To ease notation we will, when considering constraint modules given by sections of constraint
vector bundles, drop the subscript CC∞(M) from the tensor products and simply write ⊗ and
⊠ instead of ⊗CC∞(M) or ⊠CC∞(M). Only when taking tensor products over other algebras or the
base ring, we will use the usual subscripts.

2.4.1 Di�erential Forms

Before studying constraint di�erential forms we need to better understand constraint vector
�elds. The following lemma shows how constraint vector �elds can locally be characterized by
their coe�cient functions.

Lemma 2.4.1 Let M = (M,C,D) be a constraint manifold of dimension n = (nT, nN, n0) and
consider X ∈ Γ∞(TM).

i.) We have X ∈ CΓ∞(TM)N if and only if for every adapted chart (U, x) around p ∈ C it
holds

Xi ∈ CC∞(M
∣∣
U
)N if i ∈ (n∗)N, (2.4.1)

Xi ∈ CC∞(M
∣∣
U
)0 if i ∈ (n∗)0, (2.4.2)
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where X
∣∣
U
=
∑nT

i=1X
i ∂
∂xi

.

ii.) We have X ∈ CΓ∞(TM)0 if and only if for every adapted chart around p ∈ C it holds

Xi ∈ CC∞(M
∣∣
U
)0 if i ∈ (n∗)N, (2.4.3)

where X
∣∣
U
=
∑nT

i=1X
i ∂
∂xi

.

Proof: By Example 2.3.5 locally we always �nd adapted coordinates such that

ι#(
∂

∂xi
) ∈ Γ∞(D

∣∣
U
), if i ∈ {1, . . . , n0},

and

ι#(
∂

∂xi
) ∈ Γ∞(TC

∣∣
U
), if i ∈ {n0 + 1, . . . , nN}.

We have X ∈ CΓ∞(TM)N if and only if ι#X ∈ Γ∞(TC) and [Y, ι#X] ∈ Γ∞(D) hold for all
Y ∈ Γ∞(D). The �rst condition exactly means that locally we have Xi ∈ CC∞(M

∣∣
U
)0 for all

i ∈ {nN + 1, . . . , nT} = (n∗)0. Moreover, since D is locally spanned by ∂
∂x1

, . . . , ∂
∂xn0 the second

condition shows Xi ∈ CC∞(M)N for i ∈ {n0 + 1, . . . , nT} = (n∗)N. This shows the �rst part.
The second part follows since X ∈ CΓ∞(TM)0 if and only if ι#X ∈ Γ∞(D). □

With the help of this local characterization we can now identify constraint vector �elds with
constraint derivations, see Proposition 1.4.12, using the Lie derivative:

Proposition 2.4.2 Let M = (M,C,D) be a constraint manifold. Then

L : CΓ∞(TM) → CDer(CC∞(M)) (2.4.4)

given by the Lie derivative is an isomorphism of constraint CC∞(M)-modules.

Proof: From classical di�erential geometry we know that L is an isomorphism on the T-com-
ponents. To show that L is a constraint morphism considerX ∈ CΓ∞(TM)0 and f ∈ CC∞(M)N.
Then

(LXf)
∣∣
C
= Lι#Xf

∣∣
C
= 0,

since X
∣∣
C

∈ Γ∞(D). Thus L maps the 0-component to the 0-component. Now let X ∈
CΓ∞(TM)N be given. Then for f ∈ CC∞(M)N we get

LY (LXf)
∣∣
C
= L[Y,ι#X]f

∣∣
C
+ Lι#X LY f

∣∣
C︸ ︷︷ ︸

=0

= L[Y,ι#X]f
∣∣
C
= 0,

for all Y ∈ Γ∞(D), since [Y, ι#X] ∈ Γ∞(TC). Finally, for f ∈ CC∞(M)0 we have f
∣∣
C
= 0 and

therefore
(LXf)

∣∣
C
= Lι#Xf

∣∣
C
= 0,

which shows that L is a constraint morphism. Since the T-component of L is just the classical
Lie derivative, which is an isomorphism, L is a constraint monomorphism. To show that L
is also a regular epimorphism let D ∈ CDer(CC∞(M))N be given. Since D is in particular a
derivation of C∞(M) we know that there exists X ∈ Γ∞(TM) such that LX = D. Choose
an adapted chart (U, x) around p ∈ C, then X

∣∣
U

=
∑nT

i=1X
i ∂
∂xi

. Since LX is a constraint
derivation we get Xi = LX(x

i) ∈ CC∞(M
∣∣
U
)0 for all i ∈ {nN + 1, . . . , nT} = (n∗)0 and

Xi = LX(x
i) ∈ CC∞(M

∣∣
U
)N for all i ∈ {n0 + 1, . . . , nT} = (n∗)N, by Example 2.1.6 i.). And

thus X ∈ CΓ∞(TM)N using Lemma 2.4.1 i.). With the same line of reasoning we obtain
X ∈ CΓ∞(TM)0 if D ∈ CDer(CC∞(M))0, showing that L is a regular epimorphism, and
therefore an isomorphism. □
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With this we can transport the constraint Lie algebra structure from CDer(CC∞(M)) to
CΓ∞(TM). This is just the usual Lie bracket of vector �elds, but now we see that it is actu-
ally compatible with the constraint structure. Alternatively, one could directly check that the
classical Lie bracket of vector �elds yields a constraint Lie algebra structure.

With this at hand let us introduce constraint di�erential forms. Since there are two tensor
products available we can de�ne constraint di�erential forms in two ways.

De�nition 2.4.3 (Constraint Di�erential Forms) Let M = (M,C,D) be a constraint man-
ifold. We denote by

CΩ•
⊗(M) := Λ•

⊗CΓ
∞(T ∗M) =

∞⊕
k=0

Λk⊗CΓ
∞(T ∗M) (2.4.5)

and

CΩ•
⊠(M) := Λ•

⊠CΓ
∞(T ∗M) =

∞⊕
k=0

Λk⊠CΓ
∞(T ∗M) (2.4.6)

the graded strong constraint modules of constraint di�erential forms on M.

Note that CΩ•
⊗(M) ≃ (Λ•

⊠CΓ
∞(TM))∗ and CΩ•

⊠(M) ≃ (Λ•
⊗CΓ

∞(TM))∗. Thus α ∈ CΩk⊗(M)

can be evaluated at X1 ⊗ . . . ⊗ Xk ∈ Λ•
⊠CΓ

∞(TM), while α ∈ CΩk⊠(M) can be evaluated at
X1 ⊗ . . .⊗ Xk ∈ Λ•

⊗CΓ
∞(TM). For CΩ•

⊠(M) there is a good constraint Cartan calculus as we
see in the following.

Proposition 2.4.4 (Cartan calculus) Let M = (M,C,D) be a constraint manifold.

i.) CΩ•
⊠(M) is an embedded graded commutative strong constraint algebra with respect to the

wedge product ∧.
ii.) The insertion of vector �elds into forms de�nes a constraint CC∞(M)-module morphism

i : CΓ∞(TM) → CDer−1(CΩ•
⊠(M)), (2.4.7)

with CDer−1(CΩ•
⊠(M)) denoting the graded constraint derivations of degree −1.

iii.) The Lie derivative de�nes a R-linear constraint morphism

L : CΓ∞(TM) → CDer0(CΩ•
⊠(M)) (2.4.8)

into the graded constraint derivations of degree 0 of CΩ•
⊠(M).

iv.) The de Rham di�erential de�nes a graded constraint derivation

d: CΩ•
⊠(M) → CΩ•+1

⊠ (M) (2.4.9)

of degree +1.

Proof: In all cases we only need to show that the involved maps are actually constraint maps.
For the �rst part this is clear by the de�nition of CΩ•(M). For the insertion consider X ∈
CΓ∞(TM)0. Then iX α ∈ CΓ∞(TM)0 for all α ∈ CΓ∞(T ∗M)N. Since iX is a derivation of the
wedge product it maps CΩ•(M)N to CΩ•(M)0. Now consider X ∈ CΓ∞(TM)N. Then again by
the derivation property it is easy to see that iX(CΩ

•(M)N) ⊆ CΩ•(M)N and iX(CΩ
•(M)0) ⊆

CΩ•(M)0. Thus i is a constraint morphism. Since the Lie derivative is again a derivation and
we know, by Proposition 2.4.2 and from the fact that LXY = [X,Y ], that LX is a constraint
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endomorphism of CΓ∞(TM), it follows that L is a constraint morphism. For the de Rham
di�erential we can argue with the formula

(dα)(X0 ⊗ · · · ⊗ Xk) =

k∑
i=0

(−1)kLXi(α(X0, . . . ,
i∧, . . . , Xk))

+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . ,
i∧, . . . ,

j
∧, . . . , Xk),

for X0 ⊗ . . . ⊗ Xk ∈ (Λ•
⊗CΓ

∞(TM))T to see that d is a constraint morphism. For example, if
α ∈ CΩk⊠(M)0 is given, we have

(dα)(X0 ⊗ · · · ⊗ Xk) ∈ CC∞(M)0

for all X0, . . . , Xk ∈ CΓ∞(TM)N, since from

α(X0, . . . ,
i∧, . . . , Xk) ∈ CC∞(M)0

it follows that

LXiα(X0, . . . ,
i∧, . . . , Xk) ∈ CC∞(M)0

and from [Xi, Xj ] ∈ CΓ∞(TM)0 it follows

α([Xi, Xj ], X0, . . . ,
i∧, . . . ,

j
∧, . . . , Xk) ∈ CC∞(M)0.

Thus we have dα ∈ CΩk+1
⊠ (M)0. In a similar way we can argue for α ∈ CΩk⊠(M)N. □

Since i, L and d are completely determined by their T-components, we immediately get all
the usual formulas from the classical Cartan calculus, such as e.g. Cartan's magic formula

LX = [iX ,d]. (2.4.10)

We cannot expect a similarly well behaved Cartan calculus on CΩ•
⊗(M), since in this case the

de Rham di�erential is not well-de�ned, as the next example shows.

Example 2.4.5 ConsiderM = (RnT ,RnN ,Rn0) with n0 ≥ 1 and let α = x1 dxnT ∈ CΓ∞(T ∗M)0.
Then we have

dα = dx1 ∧ dxnT ∈ CΓ∞(T ∗M)T ∧ CΓ∞(T ∗M)0 ⊈ CΩ2
⊗(M)0. (2.4.11)

Remark 2.4.6 The constraint de Rham di�erential can also be understood as the constraint Lie
algebroid di�erential [Mac05, Chapter 7] for the constraint Lie algebroid TM, see Example 2.3.4.

Even though CΩ•
⊗(M) does not carry as rich an algebraic structure as CΩ•

⊠(M) it will
nevertheless play an important role as those constraint forms which are dual to constraint
multivector �elds of the form Λ•

⊠CΓ
∞(TM).

De�nition 2.4.7 (Constraint de Rham cohomology) Let M = (M,C,D) be a constraint
manifold. We call the constraint complex (CΩ•

⊠(M),d) the (constraint) de Rham complex of
M. Its cohomology is called the constraint de Rham cohomology of M and will be denoted by
H•
dR(M).
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Recall from Proposition 1.6.3 and De�nition 1.2.21 that HkdR(M)N =
ker dkN
imdk−1

N

with

im dk−1
N =

{
ω ∈ Ωk(M)

∣∣ ∃η ∈ CΩk−1
⊠ (M)N : dη = ω

}
. (2.4.12)

Thus there might exist ω ∈ CΩk⊠(M)N which is exact in the classical sense, but not exact as a
constraint form. This means that even if HdR(M) is trivial, HdR(M) might be non-trivial. Here
the fact that the category CembModk is not closed under colimits enters crucially, since this
allows for a non-embedded cohomology, cf. Example 1.2.25. Nevertheless, there is a constraint
Poincaré Lemma:

Proposition 2.4.8 (Constraint Poincaré Lemma) For Rn = R(nT,nN,n0) the constraint de
Rham cohomology is given by

HkdR(R
n) =

{
(R,R, 0) for k = 0

(0, 0, 0) for k ≥ 1
. (2.4.13)

Proof: The T-component is exactly the classical Poincaré Lemma. For k = 0 forms are just
functions and hence there do not exist exact ones. A function is closed if and only if it is
constant. Thus H0

dR(R
n)N consists of the constant functions, which are on RnN constant along

Rn0 . But this is ful�lled by every constant function, hence H0
dR(R

n)N = R. The only constant
function that vanishes on Rn0 is the zero function, hence H0

dR(R
n)0 = 0. Now let k ≥ 1 be

given and consider a closed ω ∈ CΩk⊠(R
n)T. From the classical Poincaré Lemma we know that

ω = dη is exact with

η
∣∣
x
(v1, . . . , vk−1) =

∫ 1

0
tk−1ω

∣∣
tx
(x, v1, . . . , vk−1) dt. (∗)

Now if ω ∈ CΩk⊠(R
n)0, then ι∗η vanishes, since ω vanishes on Rn0 . If ω ∈ CΩk⊠(R

n)N we know
ι∗ω(w1, . . . , wk) = 0 for all w1 ⊗ . . . wk ∈ (Rn)⊗k0 . Then clearly ι∗η(v1, . . . vk−1) = 0 for all
v1 ⊗ . . . vk−1 ∈ ((Rn)⊗k−1)0. Moreover, ι∗ω is constant along Rn0 , thus

ω
∣∣
t(x+y)

(x+ y, v1, . . . , vk−1) = ω
∣∣
tx
(x, v1, . . . , vk−1)

for all x, v1, . . . , vk−1 ∈ RnN and y ∈ Rn0 . Then ι∗η is constant along Rn0 by (∗). □

2.4.1.1 Reduction

Both types of constraint forms reduce to the classical forms on the reduced manifolds:

Proposition 2.4.9 (Constraint forms vs. reduction) Let M = (M,C,D) be a constraint
manifold.

i.) There exists a canonical isomorphism CΩ•
⊗(M)red ≃ Ω•(Mred) of graded CC∞(M)red-

modules.

ii.) There exists a canonical isomorphism CΩ•
⊠(M)red ≃ Ω•(Mred) of complexes.

Proof: We combine established results to the following chain of canonical isomorphisms:

CΩ•
⊗(M)red =

( ∞⊕
k=0

Λk⊗CΓ
∞(T ∗M)

)
red

≃
∞⊕
k=0

(Λk⊗CΓ
∞(T ∗M))red

≃
∞⊕
k=0

ΛkCΓ∞(T ∗M)red ≃
∞⊕
k=0

ΛkΓ∞(T ∗Mred) = Ωk(Mred).
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Since we know that the reduction of ⊠ and ⊗ agree and the reduced de Rham di�erential
dred ful�ls the same local characterization as the de Rham di�erential on Mred the second part
follows. □

Since by Proposition 1.6.5 cohomology commutes with reduction in general, we obtain as a
special case

HdR(M)red ≃ HdR(Mred). (2.4.14)

2.4.2 Multivector Fields and Poisson Manifolds

Let us now turn our attention to constraint multivector �elds. As for constraint di�erential
forms we can de�ne multivector �elds using both tensor products available.

De�nition 2.4.10 (Constraint multivector �elds) LetM = (M,C,D) be a constraint man-
ifold. Then we denote by

CX•
⊗(M) := Λ•

⊗CΓ
∞(TM) ≃ CΓ∞(Λ•

⊗TM) (2.4.15)

and

CX•
⊠(M) := Λ•

⊠CΓ
∞(TM) ≃ CΓ∞(Λ•

⊠TM) (2.4.16)

the graded strong constraint modules of constraint multivector �elds on M.

In low degrees we can easily characterize constraint multivector �elds in local charts.

Lemma 2.4.11 Let M = (M,C,D) be a constraint manifold of dimension n = (nT, nN, n0) and
consider π ∈ X2(M).

i.) We have π ∈ CX2
⊗(M)N if and only if for every p ∈ C there exists a local chart (U, x)

around p such that π
∣∣
U
=
∑nT

i,j=1 π
ij ∂
∂xi

∧ ∂
∂xj

with

πij ∈ CC∞(M
∣∣
U
)0 if (i, j) ∈ (n∗ ⊠ n∗)0 = n n,

πij ∈ CC∞(M
∣∣
U
)N if (i, j) ∈ (n∗ ⊠ n∗)N = n n.

(2.4.17)

ii.) We have π ∈ CX2
⊗(M)0 if and only if for every p ∈ C there exists a local chart (U, x)

around p such that π
∣∣
U
=
∑nT

i,j=1 π
ij ∂
∂xi

∧ ∂
∂xj

with

πij ∈ CC∞(M
∣∣
U
)0 if (i, j) ∈ (n∗ ⊠ n∗)N = n n. (2.4.18)

iii.) We have π ∈ CX2
⊠(M)N if and only if for every p ∈ C there exists a local chart (U, x)

around p such that π
∣∣
U
=
∑nT

i,j=1 π
ij ∂
∂xi

∧ ∂
∂xj

with

πij ∈ CC∞(M
∣∣
U
)0 if (i, j) ∈ (n∗ ⊗ n∗)0 = n n,

πij ∈ CC∞(M
∣∣
U
)N if (i, j) ∈ (n∗ ⊗ n∗)N = n n.

(2.4.19)

iv.) We have π ∈ CX2
⊠(M)0 if and only if for every p ∈ C there exists a local chart (U, x)

around p such that π
∣∣
U
=
∑nT

i,j=1 π
ij ∂
∂xi

∧ ∂
∂xj

with

πij ∈ CC∞(M
∣∣
U
)0 if (i, j) ∈ (n∗ ⊗ n∗)N = n n. (2.4.20)
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Proof: Let us proof i.), the other statements follow analogously: For every p ∈ C we �nd by
Example 2.3.5 an adapted chart (U, x) such that

∂

∂xi
∈ CΓ∞(TU)0 if i ∈ n0 and

∂

∂xi
∈ CΓ∞(TU)N if i ∈ nN.

By de�nition we have π ∈ CX2
⊗(M) if and only if for every p ∈ C it holds that π(p) ∈ TpC∧TpC

and LXπ
∣∣
C
= 0 for all X ∈ Γ∞(D). Thus, using π

∣∣
U
=
∑nT

i,j=1 π
ij ∂
∂xi

∧ ∂
∂xj

we see that πij = 0

whenever i < nN or j > nN, i.e. whenver (i, j) ∈ n n. Moreover, we have

L ∂

∂xk
π
∣∣
U∩C =

nN∑
i,j=n0+1

∂

∂xk
πij

∂

∂xi
∧ ∂

∂xj

for all k = 1, . . . , n0, which vanishes if and only if πij ∈ CC∞(M
∣∣
U
)N for all i, j = n0+1, . . . , nN,

i.e. if (i, j) ∈ n n. Together this yields i.). □

The following example shows that every constraint manifold constructed from a coisotropic
submanifold of a Poisson manifold carries a constraint bivector �eld in CX2

⊠(M), while a Poisson
submanifold yields a constraint bivector �eld in CX2

⊗(M).

Example 2.4.12 Let (M,π) be a Poisson manifold.
i.) If C ⊆ M is a closed coisotropic submanifold allowing for a smooth reduction we denote

by M = (M,C,D) the constraint manifold with D the characteristic distribution of the
coisotropic submanifold C. Let n = (nT, nN, n0) be its constraint dimension. Then π ∈
Λ2Γ∞(TM) is a bivector �eld, ful�lling ι#π ∈ Γ∞(TC∧TC+ι#TM∧D) = Γ∞((Λ⊠TM)N).
In an adapted coordinate chart (U, x) around p ∈ C, cf. Lemma 2.2.8, we have

ι#π
∣∣
U∪C =

nN∑
i,j=n0+1

πij
∂

∂xi
∧ ∂

∂xj
, (2.4.21)

and thus for all ℓ = 1, . . . n0

∇ ∂

∂xℓ
ι#π

∣∣
U∪C =

nN∑
i,j=n0+1

πij
[
∂

∂xℓ
,
∂

∂xi

]
∧ ∂

∂xj
+

nN∑
i,j=n0+1

πij
∂

∂xi
∧
[
∂

∂xℓ
,
∂

∂xj

]
= 0

holds. Here we crucially use that πij ∈ CC∞(U)N for all i, j = n0, . . . , nN. Since D is
locally spanned by ∂

∂x1
, . . . , ∂

∂xn0 we have π ∈ CX2
⊠(M)N.

ii.) Since every Poisson submanifold is in particular coisotropic, every closed Poisson sub-
manifold gives a constraint manifold M = (M,C, 0) the constraint manifold with trivial
distribution. Let n = (nT, nN, 0) be its constraint dimension. Then π ∈ Λ2Γ∞(TM) re-
stricts to a bivector �eld π

∣∣
C
∈ Λ2Γ∞(TC) = Γ∞((Λ2TM)N). Since D is trivial we thus

get π ∈ CX2
⊗(M)N.

iii.) Every closed Poisson submanifold C of a Poisson manifold M can also be equipped with
another distribution D given by the symplectic leaves of C. In general , the leaf space will
not be symplectic, but e.g. for certain types of Poisson manifolds of compact type at least
an orbifold structure on the leaf space can be achieved, see [CFM19b; CFM19a]. Note
that in the case of a smooth leaf space we obtain a constraint manifold M = (M,C,D)
with a constraint Poisson structure π ∈ Λ2CX2

⊗(M)N. The reduced space then describes
the transversal structure.
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This suggests that a constraint manifold equipped with a constraint bivector �eld π ∈
CX2
⊠(M)N ful�lling the Jacobi identity induces a coisotropic structure on its submanifold. On

the other hand π ∈ CX2
⊗(M)N ful�lling the Jacobi identity seems to induce a Poisson structure

on C, which drops to Mred. To make this precise we �rst introduce the Schouten bracket for
constraint multivector �elds.

Proposition 2.4.13 (Constraint Schouten bracket) Let M = (M,C,D) be a constraint
manifold. The classical Schouten bracket de�nes constraint graded Lie algebra structures

J · , · K : CXk+1
⊗ (M)⊗k CX

ℓ+1
⊗ (M) → CXk+ℓ+1

⊗ (M) (2.4.22)

and

J · , · K : CXk+1
⊠ (M)⊗k CX

ℓ+1
⊠ (M) → CXk+ℓ+1

⊠ (M) (2.4.23)

with respect to the degree shifted by 1.

Proof: This follows directly from the formula

JX0 ∧ · · · ∧Xk, Y0 ∧ · · · ∧ YℓK =
k∑
i=0

ℓ∑
j=0

(−1)i+j [Xi, Yj ] ∧X1 · · ·
i∧ · · ·Xk ∧ Y0 ∧ · · ·

j
∧ · · · ∧ Yℓ

and the fact that [ · , · ] is a constraint Lie bracket on CX1(M). □

It is important to note that even for CX•
⊠(M) we do not obtain a strong constraint Lie

algebra structure. One way to see this is to note that CDer(CC∞(M)) is only a constraint Lie
algebra, even though CC∞(M) is a strong constraint algebra. Ultimately, this comes from the
fact that CHom is adjoint to ⊗ and not ⊠.

Corollary 2.4.14 Let M = (M,C,D) be a constraint manifold. Then

i.)
(
CX•+1

⊗ (M), d = 0, J · , · K
)
is a constraint DGLA.

ii.)
(
CX•+1
⊠ (M), d = 0, J · , · K

)
is a constraint DGLA.

In contrast to constraint di�erential forms there is no preferred choice of the tensor products,
at least from the point of view of available algebraic structure. Nevertheless, Example 2.4.12 i.)
shows that if we are interested in coisotropic submanifolds we are forced to consider CX2

⊠(M)
instead of CX2

⊗(M). Thus we de�ne the constraint analogue of a Poisson manifold as follows.

De�nition 2.4.15 (Constraint Poisson manifold) A constraint Poisson manifold consists
of a constraint manifold M = (M,C,D) together with a constraint bivector �eld π ∈ CX2

⊠(M)N
such that Jπ, πK = 0.

We can characterize constraint Poisson manifolds exactly as Poisson manifolds with coiso-
tropic submanifolds.

Proposition 2.4.16 Let M = (M,C,D) be a constraint manifold and π ∈ Γ∞(Λ2TM). Then
the following statements are equivalent:

i.) (M, π) is a constraint Poisson manifold.

ii.) {f, g} := π(df, dg) de�nes a constraint Poisson bracket on CC∞(M).

iii.) (M,π) is a Poisson manifold and C ⊆M is a coisotropic submanifold with characteristic
distribution D.
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Proof: We �rst show the equivalence of i.) and ii.). Thus assume (M, π) is a constraint Poisson
manifold. Then { · , · } is a Poisson bracket on CC∞(M)T by classical results. It remains to show
that it is a constraint map. For this recall that π ∈ CX2

⊠(M)N and

d⊗ d: CC∞(M)⊗ CC∞(M) → CΓ∞(T ∗M)⊗ CΓ∞(T ∗M) = CΓ∞(TM⊠ TM)∗.

Since the evaluation is a constraint map we see that { · , · } is constraint. On the other hand, if
π induces a constraint Poisson bracket, then π is a classical Poisson structure on M . It remains
to show that π ∈ CX2(M)N. For this consider local adapted coordinates, such that

π
∣∣
U
=

nT∑
i,j=1

πij
∂

∂xi
∧ ∂

∂xj
.

Then we have {xi, xj} = πij showing that (2.4.19) holds, and therefore π is a constraint Poisson
bivector.

Next we show the equivalence of ii.) and iii.). Assume (M, π) is a constraint Poisson
manifold. Since π ∈ Λ2Γ∞(TM) is a bivector �eld on M with Jπ, πK = 0 it is a Poisson
structure on M . Moreover, for f ∈ IC we have

Xf = π( · , df) = − idf π ∈ CΓ∞(TM)0

by Proposition 2.4.4. This shows Xf (p) ∈ TpC for p ∈ C, and thus C ⊆ M is a coisotropic
submanifold. To show that D is the corresponding characteristic distribution consider p ∈ C
and let (U, x) be an adapted chart around p as in Lemma 2.1.4. Since CC∞(M

∣∣
U
)0 is generated

by xnN+1, . . . , xnT the characteristic distribution is spanned by

Xxi = − idxj π
∣∣
U
=

nT∑
j=1

πij
∣∣
U

∂

∂xj
∈ CΓ∞(TM

∣∣
U
)0.

From Lemma 2.4.11 iv.) it follows that Xxi(p) =
∑n0

j=1 π
ij(p) ∂

∂xj

∣∣
p
and therefore the charac-

teristic distribution is given by D. The reverse implication is exactly given by Example 2.4.12
i.). □

Remark 2.4.17 This result will have far reaching consequences for the deformation quan-
tization of Poisson manifolds equipped with coisotropic submanifolds as considered in Sec-
tion 3.1. This will be discussed in more detail later on, but let us mention here that requiring
π ∈ CX2

⊗(M)N instead of π ∈ CX2
⊠(M)N would correspond to C ⊆M being a Poisson submani-

fold, or equivalently CC∞(M) being a strong constraint Poisson algebra. Thus the choice of the
tensor product, ⊗ or ⊠ amounts to the choice between a Poisson and a coisotropic submanifold.

2.4.2.1 Reduction

Both types of constraint multivector �elds are well behaved under reduction:

Proposition 2.4.18 (Multivector �elds vs. reduction) LetM = (M,C,D) be a constraint
manifold.

i.) There exists a canonical isomorphism CX•
⊗(M)red ≃ X•(Mred) of DGLAs.

ii.) There exists a canonical isomorphism CX•
⊠(M)red ≃ X•(Mred) of DGLAs.
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Proof: Similar to the proof of Proposition 2.4.9 this is a chain of canonical isomorphisms
introduced before:

CX•
⊗(M)red =

( ∞⊕
k=0

Λk⊗CΓ
∞(TM)

)
red

≃
∞⊕
k=0

(Λk⊗CΓ
∞(TM))red

≃
∞⊕
k=0

ΛkCΓ∞(TM)red ≃
∞⊕
k=0

ΛkΓ∞(TMred) = Xk(Mred).

Since the de�ning equation of the Schouten bracket holds for the reduced Schouten bracket we
get an isomorphism of (di�erential) graded Lie algebras. The second part follows since ⊠ and
⊗ agree after reduction, and the Schouten bracket is given by the same formula. □

Since the reduced Schouten bracket is de�ned on representatives we can infer that constraint
Poisson manifolds reduce to classical Poisson manifolds.

Corollary 2.4.19 Let (M, π) be a constraint Poisson manifold. Then (Mred, πred) is a Poisson
manifold.

Example 2.4.20 Let us revisit the examples of Example 2.4.12. For this let (M,π) be a Poisson
manifold.
i.) For every closed Poisson submanifold C ⊆ M the reduction of the constraint Poisson

manifold ((M,C, 0), π) is given by (C, π
∣∣
C
).

ii.) For every closed coisotropic submanifold C ⊆ M the reduction of the constraint Poisson
manifold ((M,C,D), π) agrees with the classical coisotropic reduction.

iii.) Since every Poisson submanifold is in particular coisotropic we also get for every closed
Poisson submanifold C ⊆ M a constraint Poisson manifold M = (M,C,D) with π ∈
CX2
⊠(M).

Even though we can always reduce Poisson structures, it is not clear that, in general, all
Poisson structures on Mred come from a constraint Poisson structure on M, since, even though
we can always lift a bivector �eld to M, it is not obvious how it can be extended from C to M
such that it still ful�ls Jπ, πK = 0, see also Remark 1.1.19 ii.).

2.5 Constraint Symbol Calculus

In this last section about constraint geometry we want to study (multi-)di�erential operators
on a manifold which are compatible with reduction, i.e. constraint (multi-)di�erential operators
on constraint manifolds. We start in Section 2.5.1 by introducing algebraic constraint di�eren-
tial operators and study the particular case of constraint di�erential operators on sections of
constraint vector bundles. This will lead to a constraint leading symbol. In order to �nd a full
constraint symbol we de�ne constraint covariant derivatives in Section 2.5.2, which we use in
Section 2.5.3 to establish a constraint symbol calculus. Finally, Section 2.5.4 is concerned with
the generalization of the constraint symbol calculus to constraint multidi�erential operators.

2.5.1 Di�erential Operators

By an approach of Grothendieck, �rst introduced in [Gro67], for a classical commutative algebra
A di�erential operators can be de�ned recursively as

DiffOpk(A) :=
{
D ∈ Endk(A)

∣∣ [La, D] ∈ DiffOpk−1(A) for all a ∈ A
}
, (2.5.1)
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for k ≥ 0 and
DiffOp−1(A) := {0}, (2.5.2)

where La denotes the left multiplication with the �xed element a ∈ A.
Instead of repeating the classical de�nitions internal to our categories of constraint algebras

and modules, let us directly give the following de�nition.

De�nition 2.5.1 (Constraint di�erential operators) Let A ∈ CembAlg be a commutative
embedded constraint algebra, and let E,F be embedded constraint A-modules. For k ∈ Z we
de�ne the constraint di�erential operators as

CDiffOpk(E;F)T := DiffOpk(ET;FT)

CDiffOpk(E;F)N :=
{
D ∈ DiffOpk(ET;FT)

∣∣ D ∈ CHomk(E,F)N

}
,

CDiffOpk(E;F)0 :=
{
D ∈ DiffOpk(ET;FT)

∣∣ D ∈ CHomk(E,F)0

}
,

(2.5.3)

and write
CDiffOp•(E;F) :=

⊕
k∈Z

CDiffOpk(E;F). (2.5.4)

Note that CDiffOpk(E;F), and also CDiffOp•(E;F), become strong constraint A-bimodules
with respect to the classical AT-bimodule structure given by (a ·D)(b) = a ·D(b) and (D ·a)(b) =
D(a · b).

Let us now focus on the case of di�erential operators on the sections of constraint vector bun-
dles. We will write CDiffOp•(E;F ) instead of CDiffOp•

(
CΓ∞(E);CΓ∞(F )

)
and CDiffOp•(M)

for CDiffOp•
(
CC∞(M);CC∞(M)

)
.

Example 2.5.2 ConsiderM = Rn = (RnT ,RnN ,Rn0). Then for any multi index I = (i1, . . . , ir) ∈
Nr

0 we write

∂I =
∂r

∂xi1 · · · ∂xir ∈ CDiffOpr(Rn)T. (2.5.5)

We have ∂I ∈ CDiffOpr(Rn)N if and only if it only di�erentiates in direction of the subspaceRnN ,
since then it preserves CC∞(Rn)N and CC∞(Rn)0. Similarly, we have ∂I ∈ CDiffOpr(Rn)0 if and
only if it only di�erentiates in direction of RnN and at least once in direction of the distribution
Rn0 . In other words

n⊗r ∋ I 7→ ∂I ∈ CDiffOpr(Rn), (2.5.6)

with n⊗r as de�ned in De�nition 1.3.8, is a constraint map.

This example leads to the following useful observation.

Lemma 2.5.3 Let E be a constraint vector bundle over a constraint manifold M = (M,C,D)
of dimension n = (nT, nN, n0) and let e1, . . . , erankE ∈ CΓ∞(E)T be a constraint local frame. For
all r ∈ N the following statements hold:

i.) If s ∈ CΓ∞(E)N, then the map

φ : n⊗r ⊗ (rankE)∗ ∋ (I, α) 7→ ∂Is
α ∈ CC∞(M), (2.5.7)

with sα = eα(s), is constraint, i.e. φ ∈ CMap
(
n⊗r ⊗ (rankE)∗,CC∞(M)

)
N
.

ii.) If s ∈ CΓ∞(E)0, then it holds φ ∈ CMap(n⊗r ⊗ (rankE)∗,CC∞(M))0.

In this case we can locally characterize di�erential operators as follows.
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Proposition 2.5.4 (Local form of constraint di�erential operators) Let E and F be con-
straint vector bundles over a constraint manifold M = (M,C,D) of dimension n = (nT, nN, n0)
and let D ∈ CDiffOpk(E;F )T, for k ∈ N0. Consider local adapted coordinates (U, x) on M and
let e1, . . . , erank(ET) ∈ Γ∞(ET) be a constraint local frame. Then

D
∣∣
U
(s) =

k∑
r=0

rank(ET)∑
α=1

1

r!
DI
U,α · ∂Isα (2.5.8)

with DI
U ∈ CΓ∞(FT

∣∣
U
) and sα = eα(s).

i.) It holds D ∈ CDiffOpk(E;F )N if and only if

DI
U,α ∈ CΓ∞(F )N if (I, α) ∈

(
(n∗)⊠r ⊠ rankE

)
N

DI
U,α ∈ CΓ∞(F )0 if (I, α) ∈

(
(n∗)⊠r ⊠ rankE

)
0
,

(2.5.9)

ii.) It holds D ∈ CDiffOpk(E;F )0 if and only if

DI
U,α ∈ CΓ∞(F )0 if (I, α) ∈

(
(n∗)⊠r ⊠ rankE

)
N
. (2.5.10)

Proof: Evaluating D
∣∣
U
on xi1 · · ·xir · eα yields DI

U,α. Now from Example 2.1.6 i.) it follows
that xi1 · · ·xir ∈ CC∞(M)N if I ∈ ((n∗)⊠r)N and that xi1 · · ·xir ∈ CC∞(M)0 if I ∈ ((n∗)⊠r)0.
Moreover, since we use a constraint local frame we know eα ∈ CΓ∞(E)N if and only if α ∈
rank(E)N and eα ∈ CΓ∞(E)0 if and only if α ∈ rank(E)0. Then for D ∈ CDiffOpk(E;F )N we
immediately get (2.5.9). And similarly we obtain for D ∈ CDiffOpk(E;F )0 directly (2.5.10).
For the other implication assume (2.5.9) holds. Let s ∈ CΓ∞(E)0. Then all terms of (2.5.8)
end up in CΓ∞(F )0: By Lemma 2.5.3 we have either (I, α) ∈ (n⊗r ⊗ rankE)0 and thus ∂Isα ∈
CC∞(M)0, or (I, α) ∈ (n⊗r⊗ (rankE)∗)∗N = ((n∗)⊠r⊠ rankE)N and thus DI

U,α ∈ CC∞(F )0. For
s ∈ CΓ∞(E)N we have ∂Isα ∈ CC∞(M)0 if (I, α) ∈ (n⊗r⊗ (rankE)∗)0 and ∂Isα ∈ CC∞(M)N if
(I, α) ∈ (n⊗r⊗(rankE)∗)N. Thus if (I, α) ∈ (n⊗r⊗(rankE)∗)T\(n⊗r⊗(rankE)∗)N = ((n∗)⊠r⊠
rankE)0, then DI

U,α ∈ CΓ∞(F )0, and if (I, α) ∈ (n⊗r ⊗ (rankE)∗)N \ (n⊗r ⊗ (rankE)∗)0 ⊆
((n∗)⊠r ⊠ rankE)N, then DI

U,α ∈ CΓ∞(F )N. This gives the �rst part. The second part follows
by completely analogous considerations. □

If E = F = M×R the local formula simpli�es as follows.

Corollary 2.5.5 Let M = (M,C,D) be a constraint manifold of dimension n = (nT, nN, n0)
and let D ∈ CDiffOpk(M)T, for k ∈ N0. Locally we can write

D
∣∣
U
=

k∑
r=0

1

r!
DI
U ∂I (2.5.11)

with DI
U ∈ CC∞(M)T.

i.) It holds D ∈ CDiffOpk(M)N if and only if

DI
U ∈ CC∞(M)N if I ∈

(
(n∗)⊠r

)
N

DI
U ∈ CC∞(M)0 if I ∈

(
(n∗)⊠r

)
0
.

(2.5.12)

ii.) It holds D ∈ CDiffOpk(M)0 if and only if

DI
U ∈ CC∞(M)0 if I ∈

(
(n∗)⊠r

)
N

(2.5.13)

129



CHAPTER 2. CONSTRAINT GEOMETRIC STRUCTURES

For every di�erential operator D ∈ DiffOpk(E;F ) the classical leading symbol

σk(D) ∈ Γ∞(SkTM)⊗ E∗ ⊗ F (2.5.14)

is locally given by

σk(D)
∣∣
U
=

nT∑
i1,...,ik=1

rankE∑
α=1

1

k!

∂

∂xi1
∨ · · · ∨ ∂

∂xik
⊗ eα ⊗ D

(i1,...,ik)
U,α . (2.5.15)

For constraint di�erential operators this becomes a constraint section.

Proposition 2.5.6 (Constraint leading symbol) Let E and F be constraint vector bundles
over a constraint manifold M = (M,C,D).

i.) The leading symbol de�nes a constraint morphism

σk : CDiffOpk(E;F ) → CΓ∞((Sk⊗TM⊗ E∗)⊠ F
)

(2.5.16)

of strong constraint CC∞(M)-modules.

ii.) If E = F = M×R the leading symbol becomes a constraint morphism

σk : CDiffOpk(M) → CΓ∞(Sk⊗TM) (2.5.17)

of strong constraint CC∞(M)-modules.

Proof: The T-component of σk is just the classical leading symbol. So it only remains to
show that σk is a constraint morphism. For this let D ∈ CDiffOpk(E;F )N be given. If (I, α) ∈
((n∗)⊠k ⊠ rankE)0 we have D

(i1,...,ik)
U,α ∈ CΓ∞(F )0 by Proposition 2.5.4. If

(I, α) ∈
(
(n∗)⊠k ⊠ rankE

)
N
\
(
(n∗)⊠k ⊠ rankE

)
0
⊆
(
n⊗k ⊗ (rankE)∗

)
N

we have ∂
∂xi1

∨ · · · ∨ ∂
∂xik

⊗ eα ∈ CΓ∞(Sk⊗TM⊗ E∗)N and D(i1,...,ik)
U,α ∈ CΓ∞(F )N. Moreover, for

(I, α) ∈
(
(n∗)⊠k ⊠ rankE

)
T
\
(
(n∗)⊠k ⊠ rankE

)
N
=
(
n⊗k ⊗ (rankE)∗

)
0

we obtain ∂
∂xi1

∨· · ·∨ ∂
∂xik

⊗ eα ∈ CΓ∞(Sk⊗TM⊗E∗)0. Thus σk preserves the N-component. Let

now D ∈ CDiffOpk(E;F )0 be given. Then for (I, α) ∈ ((n∗)⊠k ⊠ rankE)N we have D(i1,...,ik)
U,α ∈

CΓ∞(F )0 by Proposition 2.5.4, and for

(I, α) ∈
(
(n∗)⊠k ⊠ rankE

)
T
\
(
(n∗)⊠k ⊠ rankE

)
N
=
(
n⊗k ⊗ (rankE)∗

)
0

we get ∂
∂xi1

∨ · · · ∨ ∂
∂xik

⊗ eα ∈ CΓ∞(Sk⊗TM⊗ E∗)0 as before. The second part is just a special
case of the �rst. □

Restricting the leading symbol to CDer(CC∞(M)) gives the inverse

σ1
∣∣
CDer

(
CC∞(M)

) : CDer(CC∞(M)) → CΓ∞(TM) (2.5.18)

of the Lie derivative, see Proposition 2.4.2. Observe, that the local formula for constraint
di�erential operators recovers the local formulas of constraint vector �elds from Lemma 2.4.1.
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2.5.1.1 Reduction

Let us �rst consider the reduction of constraint di�erential operators on general constraint
modules.

Proposition 2.5.7 (Constraint di�erential operators vs. reduction) Let A ∈ CembAlg
be a commutative embedded constraint algebra, and let E,F be embedded constraint A-modules.
For each k ∈ N0 there is a natural injective morphism

CDiffOpk(E;F)red → DiffOpk(Ered;Fred) (2.5.19)

of Ared-modules.

Proof: Since by de�nition we have CDiffOpk(E;F) ⊆ CHomk(E,F) and CHomk(E,F)red ≃
Homk(Ered,Fred) by Proposition 1.2.26 we obtain an injective morphism CDiffOpk(E;F)red →
Homk(Ered,Fred). The recursive condition in (2.5.1) still holds after reduction, cf. Remark 1.1.19
ii.), which shows that we obtain the required morphism. □

Note again that we can in general not expect the morphism (2.5.19) to be an isomorphism,
cf. Remark 1.1.19 ii.). Let us now take a look at reduction of constraint di�erential operators
of sections:

Proposition 2.5.8 (Constraint di�erential operators of sections vs. reduction)
Let E and F be constraint vector bundles over a constraint manifold M = (M,C,D).

i.) Let D ∈ CDiffOpk(E;F )N, then locally

(
Dred

∣∣
U

)
(s) =

k∑
r=0

∑
n0<I≤nN

1

r!
(DI

U,α)red · ∂Isα, (2.5.20)

for s ∈ Γ∞(Ered).

ii.) The constraint leading symbol σk induces the classical leading symbol

(σk)red : DiffOpk(Ered;Fred) → Γ∞(SkTMred ⊗ E∗
red ⊗ Fred) (2.5.21)

on the reduced manifold Mred.

Proof: Let ě1, . . . , ěrankEred
∈ CΓ∞(Ered

∣∣
U
) be a local frame. Then by the same construction as

in the proof of Lemma 2.2.8 we obtain a constraint local frame e1, . . . , erankET
∈ CΓ∞(ET

∣∣
π−1
red(U)

).

Moreover, from Proposition 2.3.23 we know that there exists ŝ ∈ CΓ∞(E)N such that s = [ŝ].
Then it follows from Proposition 2.5.4 that

(Dred

∣∣
U
)(s) =

(
D
∣∣
π−1
red(U)

(ŝ)
)
red

=

k∑
r=0

rank(ET)∑
α=1

1

r!
(DI

U,α)red · [∂I ŝα]

holds. From Proposition 2.5.4 we also know that (DI
U,α)red = 0 if (I, α) ∈ ((n∗)⊠r ⊠ rankE)0.

If (I, α) ∈ (n⊗r ⊗ (rankE)∗)0 then [∂I ŝ
α] = 0 by Lemma 2.5.3. The remaining summands

give (2.5.20). Since the leading symbol is characterized by the highest order terms of the local
expression it follows from (2.5.20) that (σk)red is indeed the leading symbol for the reduced
di�erential operators. □
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2.5.2 Covariant Derivatives

We introduce covariant derivatives by copying the classical de�nition.

De�nition 2.5.9 (Constraint covariant derivative) Let E = (ET, EN, E0) be a constraint
vector bundle over a constraint manifold M = (M,C,D). A constraint covariant derivative is a
morphism

∇ : CΓ∞(TM)⊗R CΓ∞(E) → CΓ∞(E) (2.5.22)

of constraint R-modules such that

∇fXs = f∇Xs (2.5.23)

and

∇Xfs = (LXf)s+ f∇Xs (2.5.24)

for all X ∈ CΓ∞(TM)T, s ∈ CΓ∞(E)T and f ∈ CC∞(M)T.

Condition (2.5.23) could be rephrased as saying that ∇ is a left CC∞(M)-module morphism.

Remark 2.5.10 The question arises why we use ⊗R and not ⊠R in the de�nition of con-
straint covariant derivatives. One way to answer this is by observing that the Lie derivative
L : CΓ∞(TM) ⊗k CC∞(M) → CC∞(M) is not well-de�ned if we would use ⊠k instead of ⊗k,
and hence (2.5.24) would cause problems. Another justi�cation comes from the fact that we
can rephrase a classical covariant derivative as a map ∇ : Γ∞(E) → Homk(Γ

∞(TM),Γ∞(E)).
Using this as a starting point, we could de�ne a constraint covariant derivative by a constraint
map ∇ : CΓ∞(E) → CHomk(CΓ

∞(TM),CΓ∞(E)). Using Proposition 1.5.42 this translates to

∇ : CΓ∞(E) → CΓ∞(T ∗M)⊠k CΓ
∞(E) (2.5.25)

and applying Corollary 1.5.43 yields our de�nition of constraint covariant derivative using ⊗k.

Corollary 2.5.11 Let E = (ET, EN, E0) be a constraint vector bundle over a constraint manifold
M = (M,C,D). Let ∇ be a covariant derivative on ET. Then ∇ is a constraint covariant
derivative on E if and only if the following properties hold:

i.) ∇Xs ∈ CΓ∞(E)N for all X ∈ CΓ∞(TM)N and s ∈ CΓ∞(E)N.

ii.) ∇Xs ∈ CΓ∞(E)0 for all X ∈ CΓ∞(TM)N and s ∈ CΓ∞(E)0.

iii.) ∇Xs ∈ CΓ∞(E)0 for all X ∈ CΓ∞(TM)0 and s ∈ CΓ∞(E)N.

Example 2.5.12 Let E = M × Rk be a trivial constraint vector bundle over a constraint
manifold M = (M,C,D) as in Example 2.2.7. By Proposition 2.3.13 we know that CΓ∞(E) ≃
CC∞(M)k is a free strong constraint module. The componentwise Lie derivative then de�nes a
constraint covariant derivative on E.

This example also shows the local existence of constraint covariant derivates. Global exis-
tence can be shown using the constraint Serre-Swan Theorem:

Proposition 2.5.13 (Existence of constraint covariant derivatives) On any constraint vec-
tor bundle E = (ET, EN, E0,∇E) over a constraint manifold M = (M,C,D) exists a constraint
covariant derivative.
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Proof: By Theorem 2.3.18 we know that CΓ∞(E) is �nitely generated projective. Let {ei, ei}i∈n
be a constraint dual basis of CΓ∞(E) as in Proposition 1.5.38, then every s ∈ CΓ∞(E)T can be
written as s =

∑nT
i=1 e

i(s)ei. We de�ne

∇Xs :=

nT∑
i=1

LX(e
i(s))ei

for every X ∈ Γ∞(TM) and s ∈ Γ∞(ET). An easy computation shows that ∇ de�nes indeed
a covariant derivative on ET. We still need to show that ∇ is compatible with the constraint
structure. By Proposition 1.5.38 we know that

∇Xs =

n0∑
i=1

LX(e
i(s)) · ei︸︷︷︸

∈CΓ∞(E)0

+

nN∑
i=n0+1

LX(e
i(s)) · ei︸︷︷︸

∈CΓ∞(E)N

+

nT∑
i=nN+1

LX(e
i(s)) · ei︸︷︷︸

∈CΓ∞(E)T

. (∗)

Thus the �rst term in (∗) is always in CΓ∞(E)0. Now let X ∈ CΓ∞(TM)N be given. Again by
Proposition 1.5.38 we get the following case by case study:

� For s ∈ CΓ∞(E)N we have ei(s) ∈ CC∞(M)N and hence LX(e
i(s)) ∈ CC∞(M)N for

all i = n0 + 1, . . . , nN. Hence the second term of (∗) is in CΓ∞(E)N. Moreover, for
i = nN + 1, . . . , nT we have ei(s) ∈ CC∞(0) and hence LX(e

i(s)) ∈ CC∞(0). Therefore
also the third term is in CΓ∞(E)N.

� If s ∈ CΓ∞(E)0, then ei(s) ∈ CC∞(M)0 for all i = n0 + 1, . . . , nT. Thus both the second
and third term of (∗) are elements in CΓ∞(E)N.

Suppose X ∈ CΓ∞(TM)0.
� For all s ∈ CΓ∞(E)N we have ei(s) ∈ CC∞(M)0 and hence LX(e

i(s)) ∈ CC∞(M)0,
showing that (∗) ends up in CΓ∞(E)0.

Thus ∇ is a constraint covariant derivative. □

Proposition 2.5.14 Let E = (ET, EN, E0,∇E) be a constraint vector bundle over a constraint
manifold M = (M,C,D).

i.) If ∇ and ∇̃ are constraint covariant derivatives for E then, ∇ − ∇̃ is CC∞(M)-bilinear,
hence ∇− ∇̃ ∈ CΓ∞(T ∗M⊠ CEnd(E))N.

ii.) If ∇ is a constraint covariant derivative on E and A ∈ CΓ∞(T ∗M⊠ CEnd(E))N, then

∇̃Xs := ∇Xs+A(X ⊗ s), (2.5.26)

with X ∈ CΓ∞(TM)T, s ∈ CΓ∞(E)T, de�nes another constraint covariant derivative on
E.

Proof: For the �rst part, a quick check or the well-known classical statement shows that
∇− ∇̃ is bilinear, i.e. ∇− ∇̃ ∈ CΓ∞(TM) ⊗ CΓ∞(E) → CΓ∞(E). By Corollary 1.5.43 this is
equivalently given by an element in CΓ∞(T ∗M⊠ CEnd(E)). For the second part note that

CΓ∞(T ∗M⊠ CEnd(E)
)
≃ CΓ∞(TM)∗ ⊠ CEndCC∞(M)

(
CΓ∞(E)

)
,

thus the evaluation of A on X ⊗ s is indeed a constraint morphism by (1.2.29), showing that ∇̃
is a constraint covariant derivative. □

The above shows that the set of constraint covariant derivatives forms an a�ne space over
CΓ∞(T ∗M⊠ CEnd(E)

)
N
.
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Remark 2.5.15 Even though we have not formally introduced constraint a�ne spaces, it be-
comes clear that the constraint set of covariant derivatives on E is a constraint a�ne space
over CΓ∞(T ∗M ⊠ CEnd(E)). In particular ∇ and ∇̃ are equivalent, if and only if ∇ − ∇̃ ∈
CΓ∞(T ∗M⊠ CEnd(E))0.

Proposition 2.5.16 Let E = (ET, EN, E0) and F = (FT, FN, F0) be constraint vector bundles
over a constraint manifold M = (M,C,D).

i.) Suppose ∇ is a constraint covariant derivative on E, then ∇∗ de�ned by

(∇∗
Xα)(s) := LX

(
α(s)

)
− α(∇Xs), (2.5.27)

for X ∈ CΓ∞(TM)T, α ∈ CΓ∞(E∗) and s ∈ CΓ∞(E)T, de�nes a constraint covariant
derivative on E∗.

ii.) Suppose ∇E and ∇F are constraint covariant derivative on E and F , respectively. Then
∇E⊗F de�ned by

∇E⊗F
X (s⊗ t) := (∇E

Xs)⊗ t+ s⊗ (∇F
Xt) (2.5.28)

for X ∈ CΓ∞(TM)T, s ∈ CΓ∞(E)T and t ∈ CΓ∞(F )T de�nes a constraint covariant
derivative on E ⊗ F .

iii.) Suppose ∇E and ∇F are constraint covariant derivative on E and F , respectively. Then
∇E⊠F de�ned by

∇E⊠F
X (s⊗ t) := (∇E

Xs)⊗ t+ s⊗ (∇F
Xt) (2.5.29)

for X ∈ CΓ∞(TM)T, s ∈ CΓ∞(E)T and t ∈ CΓ∞(F )T de�nes a constraint covariant
derivative on E ⊠ F .

Proof: On the T-components these constructions are just given by the usual canonical con-
structions for covariant derivatives on E∗

T and ET⊗FT. Thus a straightforward check of the three
properties from Corollary 2.5.11 shows that these are indeed constraint covariant derivatives.□

By Remark 2.5.10 a constraint covariant derivative ∇E on a constraint vector bundle E can
be understood as a constraint map ∇ : CΓ∞(E) → CΓ∞(T ∗M) ⊠k CΓ∞(E). If we additionally
choose a constraint covariant derivative on TM, then by Proposition 2.5.16 iii.) we obtain a
constraint covariant derivative on T ∗M⊠ E. Thus we obtain an iterated covariant derivative

∇ ◦ · · · ◦ ∇︸ ︷︷ ︸
k-times

: CΓ∞(E) → CΓ∞(T ∗M)⊠k ⊠k CΓ
∞(E). (2.5.30)

Symmetrizing yields the following notion of symmetrized covariant derivative.

De�nition 2.5.17 (Symmetrized constraint covariant derivative) Let E = (ET, EN, E0)
be a constraint vector bundle over a constraint manifold M = (M,C,D). Moreover, let ∇E and
∇ be constraint covariant derivatives on E and TM, respectively. The constraint morphism

DE : CΓ∞(S•⊠T
∗M⊠ E) → CΓ∞(S•+1

⊠ T ∗M⊠ E) (2.5.31)

de�ned by

(DEα)(X0, . . . , Xk) :=

k∑
i=0

∇E
Xi

(
α(X0, . . . ,

i∧, . . . , Xk)
)

−
∑
i ̸=j

α
(
∇XiXj , X0, . . . ,

i∧, . . . ,
j
∧, . . . , Xk

)
,

(2.5.32)

for α ∈ CΓ∞(Sk⊠T
∗M ⊠ E)T and X0, . . . , Xk ∈ CΓ∞(TM)T, is called symmetrized constraint

covariant derivative.
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Since DE is de�ned as a composition of constraint maps, it is itself a constraint morphism.
If we consider the trivial bundle E = M×R with its canonical constraint covariant derivative

from Example 2.5.12, then we denote the symmetrized covariant derivative corresponding to a
constraint covariant derivative ∇ for TM simply by

D: CΓ∞(S•⊠T
∗M) → CΓ∞(S•+1

⊠ T ∗M). (2.5.33)

2.5.2.1 Reduction

As expected, the reduction of a constraint covariant derivative yields a covariant derivative on
the reduced bundle.

Proposition 2.5.18 (Covariant derivative vs. Reduction) Let E be a constraint vector
bundle over M = (M,C,D). Moreover, let ∇ be a constraint covariant derivative on E.

i.) The reduction ∇red : Γ
∞(TMred) ⊗k Γ

∞(Ered) → Γ∞(Ered) de�nes a covariant derivative
on Ered.

ii.) For the dual covariant derivative it holds (∇∗)red = (∇red)
∗.

iii.) If F is another constraint vector bundle over M with covariant derivative ∇̃, we get

(∇E⊗F )red = ∇Ered⊗Fred = (∇E⊠F )red. (2.5.34)

iv.) For the symmetrized constraint covariant derivative it holds (DE)red = DEred.

Proof: Since taking sections commutes with reduction by Proposition 2.3.23, all reduced maps
are de�ned for the correct domains and codomains. The de�ning equations for all involved
morphism carry over to the reduction by Remark 1.1.19 ii.). □

2.5.3 Symbol Calculus

We de�ne

is : CΓ
∞((Sk⊗TM⊗ E∗)⊠ F )⊗ CΓ∞(Sℓ⊠T

∗M⊠ E) → CΓ∞(Sk−ℓ⊗ TM⊠ F ) (2.5.35)

by using CΓ∞(Sℓ⊠T
∗M⊠E) ≃

(
CΓ∞(Sk⊗TM⊗ E∗)

)∗. More precisely, on factorizing tensors we
have

is(X ⊗ α⊗ t)(ω ⊗ s) = α(s) · is(X)(ω)⊗ t, (2.5.36)

where X ∈ CΓ∞(Sk⊗TM)T, α ∈ CΓ∞(E∗)T, t ∈ CΓ∞(F )T ω ∈ CΓ∞(Sℓ⊠T
∗M)T and s ∈

CΓ∞(E)T. This can then be extended to a constraint morphism

is : CΓ
∞((S•⊗TM⊗ E∗)⊠ F )⊗ CΓ∞(S•⊠T

∗M⊠ E) → CΓ∞(S•⊗TM⊠ F ), (2.5.37)

see also (1.2.29) for the evaluation morphism for constraint modules. With this, and with the
help of the symmetrized constraint covariant derivative we can now introduce the full constraint
symbol:

Theorem 2.5.19 (Constraint symbol calculus) Let E and F be constraint vector bundles
over a constraint manifold M = (M,C,D). Moreover, let ∇E be a constraint covariant derivative
on E and ∇ a constraint covariant derivative on TM.
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i.) Then
Op: CΓ∞((S•⊗TM⊗ E∗)⊠ F )

)
→ CDiffOp•(E;F ) (2.5.38)

de�ned by

Op(X)s :=
1

k!
is(X)(DE)ks, (2.5.39)

for X ∈ CΓ∞((Sk⊗TM⊗ E∗)⊠ F )) and s ∈ CΓ∞(E), is a morphism of strong constraint
CC∞(M)-modules.

ii.) For X ∈ CΓ∞((Sk⊗TM⊗ E∗)⊠ F ))T we have

σk
(
Op(X)

)
= X, (2.5.40)

where σk denotes the leading symbol as usual.

iii.) Op is an isomorphism of strong constraint CC∞(M)-modules.

Proof: By the classical theory we know that Op ful�ls all the above properties on the T-compo-
nent. For the �rst part note that Op is de�ned as a composition of constraint morphism, and
thus de�nes itself a constraint morphism to CHomk(CΓ

∞(E),CΓ∞(F )). Since we know that
Op(X) is a di�erential operator it follows that Op actually maps to the constraint submodule
CDiffOp•(E;F ) of CHomk(CΓ

∞(E),CΓ∞(F )). The second part is just the classical statement.
Nevertheless, from this follows directly that Op is a monomorphism. To show that it is also
a regular epimorphism we repeat the classical argument for constructing preimages. Let D ∈
CDiffOpk(CΓ∞(E);CΓ∞(F ))T be given. Then D − Op(σk(D)) has order k − 1. We write
Xk := σk(D), then by induction we obtain D = Op(Xk+ · · ·+X0), and thus Op is surjective. If
D ∈ CDiffOpk(E;F )N, then we have Xk ∈ CΓ∞((Sk⊗TM⊗ E∗)⊠ F ))N and therefore Op is also
surjective on the N-component. Similarly, using D ∈ CDiffOpk(E;F )0 we get that Op is indeed
a regular epimorphism. Hence Op is a regular epimorphism and monomorphism, and therefore
a constraint isomorphism. □

For E = F = M×R we immediately get the following isomorphism for di�erential operators
of CC∞(M).

Corollary 2.5.20 Let M = (M,C,D) be a constraint manifold and let ∇ be a constraint co-
variant derivative for TM. Then

Op: CΓ∞(S•⊗TM) → CDiffOp•(M), (2.5.41)

with

Op(X)(f) =
1

k!
is(X)Dkf for X ∈ CΓ∞(Sk⊗TM) (2.5.42)

is an isomorphism of constraint CC∞(M)-modules.

2.5.3.1 Reduction

It turns out that the reduction of the constraint full symbol map yields the full symbol on the
reduced vector bundles:

Proposition 2.5.21 Let E and F be constraint vector bundles over a constraint manifold M =
(M,C,D). Moreover, let ∇E be a constraint covariant derivative on E and ∇ a constraint
covariant derivative on TM. Then

Opred : Γ
∞(S•TMred ⊗ E∗

red ⊗ Fred)
)
→ DiffOp•(Ered;Fred) (2.5.43)

is the symbol calculus associated to the vector bundles Ered and Fred equipped with the covariant
derivatives (∇E)red and ∇red.
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Proof: Since reduction commutes with tensor products and taking sections we have

CΓ∞((S•⊗TM⊗ E∗)⊠ F )
)
red

≃ Γ∞(S•TMred ⊗ E∗
red ⊗ Fred)

)
.

Together with Proposition 2.5.7 this shows that Opred is indeed of the form (2.5.43). The reduced
map is given by

Opred([X]) =
1

k!
is([X])(DE)kred =

1

k!
is([X])(DEred)k

due to Proposition 2.5.18 iv.). This shows that Opred is the associated symbol calculus on the
reduced manifold. □

The full symbol map allows us to improve the canonical morphism (2.5.43) for the reduced
di�erential operators to an isomorphism:

Corollary 2.5.22 Let M = (M,C,D) be a constraint manifold.

i.) If E and F are constraint vector bundles, then

CDiffOpk(E;F )red ≃ DiffOpk(Ered;Fred) (2.5.44)

for all k ∈ N0.

ii.) It holds
CDiffOpk(M)red ≃ DiffOpk(Mred) (2.5.45)

for all k ∈ N0.

2.5.4 Multidi�erential Operators

Grothendieck's de�nition of di�erential operators can be extended to de�ne multidi�erential
operators DiffOpK(E1, . . . , Eℓ;F) of order K = (k1, . . . , kℓ) on A-modules E1, . . . , Eℓ with values
in an A-module F. We write I ≤ K for I = (i1, . . . , ir) and K = (k1, . . . , kr) if iℓ ≤ kℓ for all
ℓ ∈ {1, . . . r}. Moreover, we write len(I) = r for the length of the multi index.

Note that DiffOpK(E1, . . . , Eℓ;F) ⊆ Homk(E1 ⊗k . . . ⊗k Eℓ;F). With this we can de�ne
constraint multidi�erential operators as those classical multidi�erential operators compatible
with the constraint structure.

De�nition 2.5.23 (Constraint multidi�erential operators) Let A ∈ CembAlg be a com-
mutative embedded constraint algebra, and let E1, . . . , Eℓ,F be embedded constraint A-modules.
For a multi index K = (k1, . . . , kℓ) ≥ 0 we de�ne the constraint multidi�erential operators as

CDiffOpK(E1, . . . , Eℓ;F)T := DiffOpK
(
(E1)T, . . . , (Eℓ)T;FT

)
CDiffOpK(E1, . . . , Eℓ;F)N :=

{
D ∈ DiffOpK

(
(E1)T, . . . , (Eℓ)T;FT

)
|

D ∈ CHomk(E1 ⊗k · · · ⊗k Eℓ,F)N
}
,

CDiffOpK(E1, . . . , Eℓ;F)0 :=
{
D ∈ DiffOpK

(
(E1)T, . . . , (Eℓ)T;FT

)
|

D ∈ CHomk(E1 ⊗k · · · ⊗k Eℓ,F)0
}
.

(2.5.46)

Note that CDiffOpK(E1, . . . , Eℓ;F) becomes a strong constraint A-bimodule with respect to
the classical left AT-module structure given by (a ·D)(b) = a ·D(b). Moreover, the constraint
module of all multidi�erential operators CDiffOp•(E1, . . . , Eℓ;F) is �ltered, in the sense that for
multi indices 0 ≤ L ≤ K we have

CDiffOpL(E1, . . . , Eℓ;F) ⊆ CDiffOpK(E1, . . . , Eℓ;F). (2.5.47)

We now want to �nd a symbol calculus for constraint multidi�erential operators taking as
arguments sections of constraint vector bundles. For this we �rst need to study the local form
of constraint multidi�erential operators.
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Proposition 2.5.24 (Local form of constraint multidi�erential operators)
Let E1, . . . , Eℓ and F be constraint vector bundles over a constraint manifold M = (M,C,D)
of dimension n = (nT, nN, n0) and let D ∈ CDiffOpK(E1, . . . , Eℓ;F )T with K = (k1, . . . , kℓ).

Consider local adapted coordinates (U, x) on M and let e(i)1 , . . . , e
(i)

ni
T
∈ CΓ∞(Ei)T be constraint

local frames with ni = rankEi. Then

D
∣∣
U
(s1, . . . , sℓ) =

∑
0≤R≤K

1

R!
DR,I1,...,Iℓ
U,α1,...,αℓ

∂I1s
α1
1 · · · ∂Iℓsαℓ

ℓ (2.5.48)

for all si ∈ CΓ∞(Ei)T, with D
R,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(FT

∣∣
U
), Ij = (i

(j)
1 , . . . , i

(j)
rj ), and s

αj

j = e
αj

(j)(sj).

i.) It holds D ∈ CDiffOpK(E1, . . . , Eℓ;F )N if and only if

DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )N (2.5.49)

for (I1, α1, . . . , Iℓ, αℓ) ∈
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
N
, and

DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )0 (2.5.50)

for (I1, α1, . . . , Iℓ, αℓ) ∈
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
0
.

ii.) It holds D ∈ CDiffOpK(E1, . . . , Eℓ;F )0 if and only if

DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )0 (2.5.51)

for (I1, α1, . . . , Iℓ, αℓ) ∈
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
N

Proof: We have

DR,I1,...,Iℓ
U,α1,...,αℓ

= D
∣∣
U
(xi

(1)
1 · · ·xi

(1)
r1 · e(1)α1

, . . . , xi
(ℓ)
1 · · ·xi

(ℓ)
rℓ · e(ℓ)αℓ

).

Now from Example 2.1.6 i.) it follows that

xi
(j)
1 · · ·xi

(j)
rj · e(j)αj

∈ CΓ∞(Ej)N if (Ij ⊠ αj) ∈ ((n∗)⊠rj ⊠ rankEj)N

and that

xi
(j)
1 · · ·xi

(j)
rj · e(j)αj

∈ CΓ∞(Ej)0 if (Ij ⊠ αj) ∈ ((n∗)⊠rj ⊠ rankEj)0.

Then for D ∈ CDiffOpK(E1, . . . , Eℓ;F )N we immediately get (2.5.49). And similarly we obtain
for D ∈ CDiffOpK(E1, . . . , Eℓ, F )N directly (2.5.51). For the other implication assume (2.5.49)
holds. Let s1 ⊗ · · · ⊗ sℓ ∈ (CΓ∞(E1) ⊗ · · · ⊗ CΓ∞(Eℓ))0. Then all terms of (2.5.48) end up in
CΓ∞(F )0: We write

S :=
((
n⊗r1 ⊗ (rankE1)

∗)⊠ · · ·⊠
(
n⊗rℓ ⊗ (rankEℓ)

∗)).
Recall that (I1, α1, . . . , Iℓ, αℓ) ∈ SN if at least one of the pairs (Ij , αj) has Ij = (i

(j)
1 , . . . , i

(j)
rj ) ∈

n
rj
N and αj ∈ rank(Ej)T\rank(Ej)0 such that for at least onem ∈ {1, . . . , rj} it holds i(j)m ∈ n0 or
αj ∈ rank(Ej)T \rank(Ej)N. Thus either (I1, α1, . . . , Iℓ, αℓ) ∈ SN, and hence ∂Ijsαj

j ∈ CC∞(M)0
for at least one j ∈ {1, . . . , ℓ}, or

(I1, α1, . . . , Iℓ, αℓ) ∈ ST \ SN =
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
0
,
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and henceDR,I1,...,Iℓ
U,α1,...,αℓ

. For s1⊗ . . .⊗sℓ ∈ (CΓ∞(E1)⊗· · ·⊗CΓ∞(Eℓ))N all terms of (2.5.48) end up
in CC∞(F )N: If (I1, α1, . . . , Iℓ, αℓ) ∈ S0, then ∂Ijs

αj

j ∈ CC∞(M)0 for at least one j ∈ {1, . . . , ℓ}.
If

(I1, α1, . . . , Iℓ, αℓ) ∈ SN \ S0 ⊆
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
N
,

we have ∂Ijsαj

j ∈ CC∞(M)N for all j and DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )N. Finally if

(I1, α1, . . . , Iℓ, αℓ) ∈ ST \ SN =
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
0
,

then DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )0. This gives the �rst part. The second part follows by completely
analogous considerations. □

The classical leading symbol σk(D) ∈ Γ∞((Sk1TM ⊗ E∗
1)⊗ · · · ⊗ (SkℓTM ⊗ E∗

ℓ )⊗ F
)
for a

multidi�erential operator D ∈ DiffOpK(E1, . . . , Eℓ;F ) is locally given by

σK(D)
∣∣
U
=

1

K!
(∂⊗I1 ⊗ eα1

(1))⊗ · · · ⊗ (∂⊗Iℓ ⊗ eαℓ

(ℓ))⊗ DK,I1,...,Iℓ
U,α1,...,αℓ

, (2.5.52)

with
∂⊗Ij :=

∂

∂xi
(j)
1

∨ · · · ∨ ∂

∂x
i
(j)
kj

∈ Γ∞(SkjTM). (2.5.53)

For constraint di�erential operators this will become a constraint section:

Proposition 2.5.25 (Constraint leading symbol) Let E1, . . . , Eℓ and F be constraint vec-
tor bundles over a constraint manifold M = (M,C,D).

i.) The leading symbol de�nes a constraint morphism

σK : CDiffOpK(E1, . . . , Eℓ;F ) → CΓ∞((Sk1⊗ TM⊗E∗
1)⊠ · · ·⊠ (Skℓ⊗ TM⊗E∗

ℓ )⊠F
)
(2.5.54)

of strong constraint CC∞(M)-modules.

ii.) If E1 = · · · = Eℓ = F = M×R the leading symbol becomes a constraint morphism

σK : CDiffOpK(M) → CΓ∞(Sk1⊗ TM⊠ · · ·⊠ Skℓ⊗ TM
)

(2.5.55)

of strong constraint CC∞(M)-modules.

Proof: It only remains to shows that σK is actually a constraint morphism. We use again the
shorthand

S :=
((
n⊗r1 ⊗ (rankE1)

∗)⊠ · · ·⊠
(
n⊗rℓ ⊗ (rankEℓ)

∗)).
First suppose D ∈ CDiffOpK(E1, . . . , Eℓ;F )N. For (I1, α1, . . . , Iℓ, αℓ) ∈ S0 it holds

∂⊗Ij ⊗ e
αj

(j) ∈ (S
kj
⊗ TM⊗ E∗

j )0

for one j ∈ {1, . . . , ℓ}. If

(I1, α1, . . . , Iℓ, αℓ) ∈ SN \ S0 ⊆
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
N
,

then DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )N by Proposition 2.5.24 and ∂⊗Ij ⊗ e
αj

(j) ∈ (S
kj
⊗ TM ⊗ E∗

j )N for all
j = 1, . . . , ℓ by the de�nition of S. Next, consider

(I1, α1, . . . , Iℓ, αℓ) ∈ ST \ SN =
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
0
.
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Then DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )0 holds again by Proposition 2.5.24. Therefore, σK preserves the N-
component. Finally, let D ∈ CDiffOpK(E1, . . . , Eℓ;F )0 be given. Then for (I1, α1, . . . , Iℓ, αℓ) ∈
S0 it holds again ∂⊗Ij ⊗ e

αj

(j) ∈ (S
kj
⊗ TM⊗ E∗

j )0 for one j ∈ {1, . . . , ℓ}. And if

(I1, α1, . . . , Iℓ, αℓ) ∈ ST \ S0 =
((
(n∗)⊠r1 ⊠ rankE1

)
⊗ · · · ⊗

(
(n∗)⊠rℓ ⊠ rankEℓ

))
N
,

we obtain DR,I1,...,Iℓ
U,α1,...,αℓ

∈ CΓ∞(F )0 by Proposition 2.5.24. Thus, σK is a constraint morphism.
The second part is a direct consequence. □

It is important to note that in the constraint leading symbol (2.5.54) both kinds of tensor
products appear. In particular, we cannot rearrange the factors on the right hand side of (2.5.54)
in an arbitrary way, see also (1.3.41).

If constraint covariant derivatives ∇Ei on constraint vector bundles Ei, i = 1, . . . , ℓ, are
given, we de�ne

DK := (DE1)k1 ⊗ . . .⊗ (DEℓ)kℓ : CΓ∞(E1)⊗ · · · ⊗ CΓ∞(Eℓ)

→ CΓ∞(Sk1⊠ T
∗M⊠ E1)⊗ · · · ⊗ CΓ∞(Skℓ⊠ T

∗M⊠ Eℓ)
(2.5.56)

Note that CΓ∞((S•⊗TM⊗ E∗
1)⊠ · · ·⊠ (S•⊗TM⊗ E∗

ℓ )⊠ F
)
, which is the dual of target space of

DK , is �ltered by multi indices K = (k1, . . . , kℓ). With this we can now give the full symbol
calculus for constraint multidi�erential operators.

Theorem 2.5.26 (Constraint multisymbol calculus) Let E1, . . . , Eℓ and F be constraint
vector bundles over a constraint manifold M = (M,C,D). Moreover, let ∇E1 , . . . ,∇Eℓ be con-
straint covariant derivatives for E1, . . . , Eℓ and let ∇ be a constraint covariant derivative for
TM.

i.) Then

Op: CΓ∞((S•⊗TM⊗ E∗
1)⊠ · · ·⊠ (S•⊗TM⊗ E∗

ℓ )⊠ F
)

−→ CDiffOp•(E1, . . . , Eℓ;F ),
(2.5.57)

de�ned by

Op(X1 ⊗ · · · ⊗ Xℓ)(s1, . . . , sℓ) :=
1

k1! . . . kℓ!
is(X1 ⊗ · · · ⊗ Xℓ)D

K(s1 ⊗ · · · ⊗ sℓ) (2.5.58)

for Xj ∈ CΓ∞(S
kj
⊗ TM⊗E∗

j )T and sj ∈ CΓ∞(Ej)T, with K = (k1, . . . , kℓ) and j = 1, . . . , ℓ,
is a �ltration preserving morphism of strong constraint CC∞(M)-modules.

ii.) For Xj ∈ CΓ∞(S
kj
⊗ TM⊗ E∗

j )T, j = 1, . . . , ℓ we have

σK
(
Op(X1 ⊗ · · · ⊗ Xℓ)

)
= X1 ⊗ · · · ⊗ Xℓ, (2.5.59)

where σK denotes the leading symbol.

iii.) Op is a �ltration preserving isomorphism of strong constraint CC∞(M)-modules.

Proof: By the classical theory we know that Op ful�ls all the above properties on the T-
component, see [Pal65, Chap. IV, �9] for a version of the symbol calculus for multidi�erential
operators. For the �rst part note that Op is de�ned as a composition of constraint morphism,
and thus de�nes itself a constraint morphism to CHomk(CΓ

∞(E1) ⊗ · · · ⊗ CΓ∞(Eℓ),CΓ
∞(F )).

Since we know that Op(X1⊗ · · ·⊗Xℓ) is a multidi�erential operator it follows that Op actually
maps to the constraint submodule CDiffOp•(E1, . . . , Eℓ;F ). The second part is just the classical
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statement. Nevertheless, from this follows directly that Op is a monomorphism. To show that
it is also a regular epimorphism we repeat the classical argument for constructing preimages:
Let D ∈ CDiffOpK(E1, . . . , Eℓ;F )T be given. Then D − Op(σK(D)) has total order |K| − 1.
We write XK := σK(D), then by induction we obtain D = Op(

∑
0≤R≤K XR), and thus Op is

surjective. If D ∈ CDiffOpK(E1, . . . , Eℓ;F )N, then we have

XK ∈ CΓ∞((Sk1⊗ TM⊗ E∗
1)⊠ · · ·⊠ (Skℓ⊗ TM⊗ E∗

ℓ )⊠ F
)

and therefore Op is also surjective on the N-component. Similarly, for a di�erential operators
D ∈ CDiffOpK(E1, . . . , Eℓ;F )0 we get that Op is indeed a regular epimorphism. Hence Op is a
regular epimorphism and monomorphism, and therefore a constraint isomorphism. □

For E1 = · · · = Eℓ = F = M × R we immediately get the following isomorphism for
multidi�erential operators of CC∞(M).

Corollary 2.5.27 Let M = (M,C,D) be a constraint manifold and let ∇ be a constraint co-
variant derivative for TM. Then

Op: CΓ∞(S•⊗TM⊠ · · ·⊠ S•⊗TM
)
→ CDiffOp•(M), (2.5.60)

given by

Op(X1 ⊗ · · · ⊗ Xℓ) :=
1

k1! · · · kℓ!
is(X1 ⊗ · · · ⊗ Xℓ)D

K (2.5.61)

for X1 ⊗ · · · ⊗ Xℓ ∈ CΓ∞(Sk1⊗ TM ⊠ · · · ⊠ Skℓ⊗ TM
)
, is a �ltration preserving isomorphism of

constraint CC∞(M)-modules.

2.5.4.1 Reduction

The various compatibilities of constraint multidi�erential operators with reduction are by now
quite obvious and can be proven in a completely analogous fashion to those of constraint di�er-
ential operators in Section 2.5.1 and Section 2.5.3. We will therefore just give the statements
without repeating the proofs.

Proposition 2.5.28 (Constraint multidi�erential operators vs. reduction)
Let A be a commutative embedded constraint algebra, and let E1, . . . , Eℓ,F be embedded constraint
A-modules. For any multi index K = (k1, . . . , kℓ) ∈ Nℓ

0 there is a natural injective morphism

CDiffOpK(E1, . . . , Eℓ;F)red → DiffOpK((E1)red, . . . , (Eℓ)red;Fred) (2.5.62)

of Ared-modules.

For multidi�erential operators this becomes an isomorphism:

Proposition 2.5.29 (Constraint multidi�erential operators of sections vs. reduction)
Let E1, . . . , Eℓ and F be constraint vector bundles over a constraint manifold M = (M,C,D) of
dimension n = (nT, nN, n0).

i.) Let D ∈ CDiffOpK(E1, . . . , Eℓ;F )N of order K = (k1, . . . , kℓ) be given. Then locally

Dred

∣∣
U
(s1, . . . , sℓ) =

∑
0≤R≤K

∑
n0<I1,...,Iℓ≤nN

1

R!
(DR,I1,...,Iℓ

U,α1,...,αℓ
)red ∂I1s

α1
1 · · · ∂Iℓsαℓ

ℓ (2.5.63)

for all si ∈ CΓ∞((Ei)red
∣∣
U
).
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ii.) The constraint leading symbol σK for constraint multidi�erential operators induces the
classical leading symbol

σK : DiffOpK
(
(E1)red, . . . , (Eℓ)red;Fred

)
−→ Γ∞(Sk1TMred ⊗ (E1)

∗
red ⊗ · · · ⊗ SkℓTMred ⊗ (Eℓ)

∗
red ⊗ Fred

) (2.5.64)

on the reduced manifold Mred.

iii.) Let ∇E1 , . . . ,∇Eℓ be constraint covariant derivatives for E1, . . . , Eℓ and let ∇ be a con-
straint covariant derivative for TM. Then

Opred : Γ
∞(S•TMred ⊗ (E1)

∗
red ⊗ · · · ⊗ S•TMred ⊗ (Eℓ)

∗
red ⊗ Fred

)
−→ DiffOp•

(
(E1)red, . . . , (Eℓ)red;Fred

) (2.5.65)

is the symbol calculus associated to the vector bundles (E1)red, . . . , (Eℓ)red and Fred equipped
with the covariant derivatives (∇E1)red, . . . , (∇Eℓ)red and ∇red.

iv.) It holds

CDiffOp•(E1, . . . , Eℓ;F )red ≃ DiffOp•
(
(E1)red, . . . , (Eℓ)red;Fred

)
(2.5.66)

as �ltered strong constraint CC∞(M)-modules.

v.) It holds
CDiffOp•(M)red ≃ DiffOp•(Mred) (2.5.67)

as �ltered strong constraint CC∞(M)-modules.
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Chapter 3

Deformation Theory of Constraint

Algebras

Formal deformation quantization aims to construct a quantum analogue of a given classical
mechanical system by deforming the multiplication of the algebra C∞(M) of smooth functions
on a Poisson manifold (M,π) into a non-commutative multiplication ⋆ on the algebra C∞(M)JλK
of formal power series. An important observation from classical deformation quantization is that
given such a star product ⋆ we can always reconstruct a Poisson bracket on C∞(M) from the
⋆-commutator. It is now reasonable to only consider those star products which recover the
Poisson structure on M . If we start with a constraint Poisson manifold (M, π) we obtain a
commutative strong constraint algebra CC∞(M), and there are two reasonable ways to de�ne a
constraint star product: either as a deformation into a strong constraint algebra multiplication
or, more generally, as a deformation into a constraint multiplication. If we would consider
deformations as strong constraint algebras, it can be shown that the induced Poisson bracket
on CC∞(M) would be a strong constraint Poisson bracket. And thus, from our discussion after
Proposition 2.4.16, the submanifold C ⊆M would need to be a Poisson submanifold. Thus if we
want to consider star products which are compatible with honest coisotropic submanifolds we
are forced to consider deformations of CC∞(M) as, in general, non-strong constraint algebras.

Following these ideas we will introduce constraint star products and deformations of con-
straint algebras in Section 3.1. Then, following general ideas from deformation theory, we will
study Maurer-Cartan elements and their equivalence for constraint DGLAs in Section 3.2 be-
fore we introduce constraint Hochschild cohomology in Section 3.3. Then in Section 3.4 we will
identify constraint Hochschild cohomology as the cohomology theory governing the deformation
problem of constraint algebras. Finally, in Section 3.5 we will take some �rst steps into the di-
rection of a constraint Hochschild-Kostant-Rosenberg theorem. In particular, we will compute
the second constraint Hochschild cohomology of the constraint functions on Rn in Section 3.5,
which already exhibits unexpected contributions.

3.1 Constraint Star Products

Recall from Proposition 2.1.5 the de�nition of the constraint algebra of functions CC∞(M) on
a constraint manifold M = (M,C,D). Let us de�ne the strong constraint algebra CC∞(M)JλK
of formal power series by

CC∞(M)JλK :=
(
CC∞(M)TJλK, CC∞(M)NJλK, CC∞(M)0JλK

)
. (3.1.1)

With this we can state our de�nition of constraint star product:

143



CHAPTER 3. DEFORMATION THEORY OF CONSTRAINT ALGEBRAS

De�nition 3.1.1 (Constraint star product) Let (M, π) be a constraint Poisson manifold.
A (formal) constraint star product ⋆ on (M, π) is a CJλK-linear constraint map

⋆ : CC∞(M)JλK ⊗CJλK CC∞(M)JλK → CC∞(M)JλK (3.1.2)

of the form

⋆ =
∞∑
r=0

λrCr, (3.1.3)

with C-bilinear constraint maps Cr : CC∞(M)⊗C CC∞(M) → CC∞(M), ful�lling:

i.) ⋆ is associative.

ii.) 1 ⋆ f = f = f ⋆ 1.

iii.) ⋆ = µ0 +
∑∞

r=1 λ
rCr, with µ0 the pointwise multiplication on CC∞(M).

iv.) 1
iℏ [f, g]⋆ = {f, g}+ λ(. . . ).

v.) Cr is a constraint bidi�erential operator, for all r ∈ N0.

Example 3.1.2 (Standard ordered star product) Consider the classical standard-ordered
star product

f ⋆std g =

∞∑
r=0

1

r!

(
ℏ
i

)r ∑
i1,...,ir

∂rf

∂pi1 . . . ∂pir

∂rg

∂qi1 . . . ∂qir
(3.1.4)

on T ∗Rn ≃ R2n with coordinates (q1, . . . , qn, p1, . . . , pn). By a change of coordinates any co-
isotropic subspace C can be identi�ed with Rn+k with coordinates (q1, . . . qn, p1, . . . pk) and
its characteristic distribution is then given by RnT−k with coordinates (qn−k+1, . . . , qn). Thus
we can consider the constraint vector space M = (R2n,Rn+k ⊕ {0}n−k, {0}k ⊕ Rn−k ⊕ {0}n).
From classical deformation quantization we know that ⋆std de�nes a star product on R2n and
it is straightforward to check that ⋆std indeed de�nes a constraint multiplication. For this it is
important to note that for i1, . . . , ir ≤ k we have

∂r

∂pi1 . . . ∂pir
∈ CDiffOpr(CC∞(M))N and

∂r

∂qi1 . . . ∂qir
∈ CDiffOpr(CC∞(M))N. (3.1.5)

But if there is one ℓ ∈ {1, . . . , r} such that iℓ > k, then ∂r

∂pi1 ... ∂pir
is not constraint any more.

Nevertheless, in this case we have

∂r

∂qi1 . . . ∂qir
∈ CDiffOpr(CC∞(M))0 (3.1.6)

by Example 2.5.2, making (3.1.4) a constraint star product.

We want to study constraint star products using a constraint version of Gerstenhaber's
theory of deformation of associative algebras. Thus in the rest of this section we will consider
possibly non-unital constraint algebras. Then we want to consider deformations of a constraint
algebra A with respect to the (constraint) ring kJλK = (kJλK,kJλK, 0). In general, the constraint
module of formal power series of a given constraint module E is de�ned as

EJλK := (ETJλK, ENJλK, E0JλK) (3.1.7)

with ιEJλK given by the λ-linear extension of ιE. The classical limit of a given constraint kJλK-
module E is de�ned by

cl(E) := E/λE. (3.1.8)
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This de�nes a functor cl : CModkJλK → CModk, and it can be shown that taking the classical
limit commutes with reduction, i.e. there is a natural isomorphism making the diagram

CModkJλK CModk

ModkJλK Modk

cl

red red

cl

(3.1.9)

commute, see our work [DEW19, Thm. 7.13] for details.
Now we can de�ne a formal associative deformation of a constraint algebra A to be a

constraint kJλK-algebra B together with an isomorphism α : cl(B) → A. It is easy to see that
this de�nition agrees with the one from deformation via Artin rings, see e.g. [Man09]. Usually,
one is interested in more speci�c deformations, namely those that are e.g. free k-modules. This
leads us to the following de�nition:

De�nition 3.1.3 (Deformation of constraint algebra) Let A ∈ CAlgk be a (possibly non-
unital) constraint algebra. A (associative formal) deformation of A is given by an associative
multiplication µ : AJλK ⊗kJλK AJλK → AJλK on AJλK turning it into a constraint kJλK-algebra,
such that cl(AJλK, µ) ≃ A.

Note that we have two formal associative deformations µT and µN for ATJλK and ANJλK of
the form µT = (µT)0 + λ(µT)1 + λ2(. . . ) and µN = (µN)0 + λ(µN)1 + λ2(. . . ), respectively, such
that the undeformed map ιA is an algebra homomorphism and such that A0JλK is a two-sided
ideal in ANJλK with respect to µN. We insist on the AN and A0 being the same up to taking
formal series. Also the algebra morphism ιA is not deformed.

Remark 3.1.4 There are di�erent approaches to study the deformations of diagrams of associa-
tive algebras, e.g. via derived bracket as in [FZ15] or with an operadic approach as in [FMY09].
See also [GS83]. Nevertheless, our goal is to deform the multiplicative structure of a constraint
algebra, but not the morphism it contains. A thorough comparison to these deformations of
diagrams needs to be done.

We say that two formal associative deformations µ and µ′ of (A, µ0) are equivalent if there
exists T = id+λ(. . .) ∈ CAutkJλK(AJλK)N such that T ◦ µ = µ′ ◦ (T ⊗ T ), i.e. we have

TT(µT(a, b)) = µ′T(TT(a), TT(b)) and TN(µN(a, b)) = µ′N(TN(a), TN(b)) (3.1.10)

for a, b ∈ AT/N. Thus, as in the case of associative algebras, there exists a unique D =∑∞
k=0 λ

kDk ∈ CHomkJλK(AJλK,AJλK)N such that T = exp(λD).

Remark 3.1.5 Suppose that (A, µ0) is a unital constraint algebra with unit 1. Then we know
from classical deformation theory, see [Ger68, Sec. 20], that any deformation of AN is again
unital. This unit also serves as a unit for the deformation of the constraint algebra A. Then
the multiplication with this unit yields an equivalence to a deformation of A with unit given by
1. Thus in the following we can always assume to deform unital constraint algebras into unital
constraint algebras.

Let us show that a constraint deformation of a commutative constraint algebra always in-
duces a constraint Poisson structure on it:
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Proposition 3.1.6 Let (A, µ0) be a commutative constraint algebra, and let µ = µ0+λµ1+ · · ·
be an associative formal deformation of A. Then

{ · , · } := µ1 − µ1 ◦ τ, (3.1.11)

with τ denoting the �ip, de�nes a constraint Poisson structure on A.

Proof: From classical deformation theory we know that { · , · }T and { · , · }N de�ne Poisson
structures on AT and AN. Since { · , · } is de�ned by a composition of constraint maps it gives
a constraint Poisson structure on A. □

When considering A = CC∞(M) the above result shows that every deformation induces the
structure of a constraint Poisson manifold on M. In this sense, property iv.) of De�nition 3.1.1
is always ful�lled for some constraint Poisson structure. Together with Remark 3.1.5 we see
that a constraint star product is nothing but a formal associative deformation of the strong
constraint algebra CC∞(M) by bidi�erential operators.

One particular scenario we will be interested in the context of deformation quantization of
phase space reduction is the following. This, and the following two examples are taken from our
work [DEW22, Sec. 4].

Example 3.1.7 We will work over a �eld K instead of a general ring. Let A = (AT,AN,A0)
be a unital embedded constraint algebra such that additionally A0 ⊆ AT is a left ideal, then
AN ⊆ N(A0) is a unital subalgebra of the normalizer of this left ideal. Consider now a formal
associative deformation µT of AT with the additional property that the formal series A0JλK are
still a left ideal inside ATJλK with respect to µT. Then we know that the normalizer AAAN :=
NµT(A0JλK) ⊆ ATJλK with respect to µT satis�es cl(AAAN) ⊆ N(A0). We assume additionally
cl(AAAN) ⊆ AN. This would be automatically true if AN coincides with the undeformed normalizer
but poses an additional condition otherwise.

It is now easy to check that AAAN ⊆ ATJλK is a closed subspace with respect to the λ-adic
topology. Moreover, if λa ∈ AAAN for some a ∈ ATJλK we can conclude a ∈ AAAN. Hence AAAN ⊆
ATJλK is a deformation of a subspace in the sense of [BHW00, Def. 30], i.e. we have a subspace
D ⊆ AT and linear maps qr : D −→ AT, for r ∈ N, such that AAAN = q(DJλK), where q = ιD +∑∞

r=1 λ
rqr with ιD being the canonical inclusion of the subspace. By our assumption D ⊆ AN,

but the inclusion could be proper. Moreover, since by our assumption A0JλK ⊆ N(A0JλK) = AAAN,
we have A0 ⊆ D.

Since we work over a �eld, we can �nd a complement C ⊆ D such that A0 ⊕ C = D. This
allows to rede�ne the maps qr to

q′r
∣∣
C
= qr

∣∣
C

and q′r
∣∣
A0

= 0. (3.1.12)

The resulting map q′ then satis�es q′(DJλK) = AAAN and q′
∣∣
A0

= idA0
. We can then use q′ to pass

to a new deformation µ′T of AT with the property that A0JλK is still a left ideal in ATJλK with
respect to µ′T and the normalizer of this left ideal is now given by DJλK ⊆ ATJλK. It follows that
µ′T provides a deformation of the constraint algebra (AT,D,A0) in the sense of De�nition 3.1.3.

Of course, it might happen that D ̸= AN and hence this construction will not provide a
deformation of the original constraint algebra in general. It turns out that this can be controlled
as follows: We assume in addition that the deformed normalizer AAAN is large enough in the sense
that the classical limit

cl : AAAred = AAAN

/
(A0JλK) → Ared = AN

/
A0 (3.1.13)

between the reduced algebras is surjective. As K is a �eld, this gives us a split Q : Ared −→ AAAred

which we can extend λ-linearly to Q : AredJλK → AAAred. It is then easy to see that this is in fact
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a KJλK-linear isomorphism. It follows, that in this case we necessarily have D = AN. Thus
the previous construction gives indeed a deformation µ′T of the original constraint algebra. This
seemingly very special situation will turn out to be responsible for one of the main examples
from deformation quantization.

In the following we present two examples from deformation quantization which can be inter-
preted as deformations of constraint algebras in the above sense. These show that even though
we will mainly be interested in the abstract deformation theory of constraint algebras, these
actually appear in well-studied situations. Note, however, that both examples should illustrate
the concept of a deformation of a constraint algebra without actually computing the correspond-
ing Hochschild cohomology. Even in these examples it seems to be a rather di�cult task to
compute the constraint Hochschild cohomology of a constraint manifold M = (M,C,D).

3.1.1 Example I: BRST Reduction

The �rst example comes from BRST reduction of star products. We recall the situation of
[BHW00; GW10]. Consider a Poisson manifold M with a strongly Hamiltonian action of a
connected Lie group G and momentum map J : M −→ g∗, where g is the Lie algebra of G.
One assumes that the classical level surface C = J−1({0}) ⊆ M is a non-empty (necessarily
coisotropic) submanifold by requiring 0 to be a regular value of J . Moreover, we assume that
the action on C is free and proper. Then we have a constraint manifold M = (M,C,D) with D
the characteristic distribution on C. This leads to the strong constraint algebra

A := CC∞(M) =
(
C∞(M), BC , IC

)
, (3.1.14)

where IC = ker ι∗ ⊆ C∞(M) is the vanishing ideal of the constraint surface C ⊆M and BC its
Poisson normalizer, cf. Example 2.1.6 ii.). Next, we assume to have a star product ⋆ strongly
invariant under the action of G which admits a deformation J of J into a quantum momentum
map. In the symplectic case such star products always exist since we assume the action of G
to be proper, see [RW16] for a complete classi�cation and further references. In the general
Poisson case the situation is less clear.

Out of this a constraint CJλK-algebra AAA = (C∞(M)JλK,BBBC ,IIIC) is then constructed, where
IIIC := ker ι∗ ⊆ C∞(M)JλK is the quantum vanishing ideal given by the kernel of the deformed
restriction ι∗ := ι∗◦S. Here S = id+

∑∞
k=1 λ

kSk is a formal power series of di�erential operators
guaranteeing that IIIC is indeed a left ideal with respect to ⋆. In fact, S can be chosen to be
G-invariant.

We now want to construct a constraint algebra structure on AJλK = (C∞(M)JλK,BCJλK,JCJλK)
which is isomorphic to AAA. For this, note that S : C∞(M)JλK −→ C∞(M)JλK is invertible, hence
we get a star product

f ⋆S g := S(S−1f ⋆ S−1g) (3.1.15)

on C∞(M)JλK. From ι∗ = ι∗ ◦ S it directly follows that S maps IIIC to ICJλK. It is slightly
less evident, but follows from the characterization of the normalizer BBBC as those functions
whose restriction to C are G-invariant, that S maps the normalizer BBBC to the normalizer BBBS

C

of IIIC with respect to ⋆S . Finally, we know that f ∈ BBBC if and only if for all ξ ∈ g it
holds that 0 = LξC ι

∗f = LξC ι
∗Sf , where LξC denotes the Lie derivative in the direction of

the fundamental vector �eld ξC . Hence f ∈ BBBC if and only if Sf ∈ BCJλK. Thus S is an
isomorphism of constraint algebras

S : (AAA, ⋆) → (CC∞(M)JλK, ⋆S). (3.1.16)

In particular, we have a deformation of the classical constraint algebra in this case, and the
constraint algebra AAA is isomorphic to it.
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3.1.2 Example II: Coisotropic Reduction in the Symplectic Case

While the previous example makes use of a Lie group symmetry, the following relies on a coisotro-
pic submanifold only. However, at the present state, we have to restrict ourselves to a symplectic
manifold (M,ω). Thus let ι : C −→ M be a coisotropic submanifold. We assume that the clas-
sical reduced phase space Mred = C

/
∼ is smooth with the projection map π : C −→ Mred

being a surjective submersion. In other words, we consider a constraint symplectic manifold
M = (M,C,D), with D the characteristic distribution as before, and Mred = Mred. It follows
that there is a unique symplectic form ωred on Mred with π∗ωred = ι∗ω. We follow closely
the construction of Bordemann in [Bor05; Bor04] to construct a deformation of the classical
constraint algebra CC∞(M) = (C∞(M),BC ,JC) as before.

To this end, one considers the product M × M−
red with the symplectic structure pr∗M ω −

pr∗Mred
ωred. Then

I : C ∋ p 7→ (ι(p), π(p)) ∈M ×Mred (3.1.17)

is an embedding of C as a Lagrangian submanifold. By Weinstein's Lagrangian neighbourhood
theorem [Wei71] one has a tubular neighbourhood U ⊆M ×Mred and an open neighbourhood
V ⊆ T ∗C of the zero section ιC : C −→ T ∗C in the cotangent bundle πC : T ∗C −→ C with a
symplectomorphism Ψ: U −→ V , where T ∗C is equipped with its canonical symplectic structure,
such that Ψ ◦ I = ιC .

In the symplectic case, star products ⋆ are classi�ed by their characteristic or Fedosov class
c(⋆) in H2

dR(M,C)JλK. The assumption of having a smooth reduced phase space allows us now
to choose star products ⋆ on M and ⋆red on Mred in such a way that ι∗c(⋆

∣∣
U
) = π∗c(⋆red). Note

that this is a non-trivial condition on the relation between ⋆ and ⋆red which, nevertheless, always
has solutions. Given such a matching pair we have a star product ⋆ ⊗ ⋆oppred on M × M−

red by
taking the tensor product of the individual ones. Note that we need to take the opposite star
product on the second factor as we also took the negative of ωred needed to have a Lagrangian
embedding in (3.1.17). It follows that the characteristic class c

(
(⋆⊗ ⋆oppred )

∣∣
U

)
= 0 is trivial.

On the cotangent bundle T ∗C the choice of a covariant derivative induces a standard-ordered
star product ⋆std together with a left module structure on C∞(C)JλK via the corresponding
symbol calculus, see [BNW98]. The characteristic class of ⋆std is known to be trivial, c(⋆std) = 0,
see [Bor+03]. Hence the pullback star product Ψ∗(⋆std

∣∣
V
) is equivalent to (⋆⊗ ⋆oppred )

∣∣
U
. Thus we

�nd an equivalence transformation between Ψ∗(⋆std) and ⋆⊗ ⋆red on the tubular neighbourhood
U . Using this, we can also pullback the left module structure to obtain a left module structure
on C∞(C)JλK for the algebra C∞(M ×Mred)JλK. Note that here we even get an extension to all
functions since the left module structure with respect to ⋆std coming from the symbol calculus is
by di�erential operators and Ψ ◦ I = ιC . Hence the module structure with respect to ⋆⊗ ⋆oppred is
by di�erential operators as well. This ultimately induces a left module structure ▷ on C∞(C)JλK
with respect to ⋆ and a right module structure ◁ with respect to ⋆red such that the two module
structures commute: We have a bimodule structure. Moreover, it is easy to see that the module
endomorphisms of the left ⋆-module are given by the right multiplications with functions from
C∞(Mred)JλK, i.e.

End(C∞(M)JλK,⋆)(C∞(C)JλK)opp ∼= C∞(Mred)JλK. (3.1.18)

Moreover, one can construct from the above equivalences a formal series S = id+
∑∞

r=1 λ
rSr of

di�erential operators Sr on M such that the left module structure is given by

f ▷ ψ = ι∗(S(f) ⋆ prol(ψ)), (3.1.19)

for f ∈ C∞(M)JλK and ψ ∈ C∞(C)JλK, where prol : C∞(C)JλK −→ C∞(M)JλK is the prolon-
gation coming from the tubular neighbourhood U and the choice of a bump function.
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The left module structure is cyclic with cyclic vector 1 ∈ C∞(C)JλK. This means that

IIIC =
{
f ∈ C∞(M)JλK

∣∣ f ▷ 1 = 0
}

(3.1.20)

is a left ⋆-ideal and C∞(C)JλK ∼= C∞(M)JλK
/
IIIC as left ⋆-modules. Moreover, the normalizer

BBBC = N⋆(IIIC) (3.1.21)

with respect to ⋆ gives �rstBBBC

/
IIIC

∼= End(C∞(M)JλK,⋆)(C∞(C)JλK)opp for general reasons. Then
this yields the algebra isomorphism BBBC

/
IIIC

∼= C∞(Mred)JλK.
Thanks to the explicit formula for ▷ we can use the series S to pass to a new equivalent star

product ⋆′ such that III′
C = ICJλK. We see that this brings us precisely in the situation of Ex-

ample 3.1.7: The constraint algebra AAA = (C∞(M)JλK,BBBC ,IIIC) is isomorphic to a deformation
of the classical constraint algebra CC∞(M) we started with. Note that it might not be directly
a deformation of CC∞(M) as we still might have to untwist �rst IIIC using S and then BBBC as
in Example 3.1.7. This way we can give a re-interpretation of Bordemann's construction in the
language of deformations of constraint algebras.

3.2 Constraint Deformation Functor

By a well-known principle of classical deformation theory, a deformation problem is controlled
by a certain di�erential graded Lie algebra, see e.g. [Man09]. Thus, the �rst step to discuss
the deformation theory of constraint algebras consists in introducing a constraint deformation
functor for a constraint DGLA. For this we will need constraint Maurer-Cartan elements and a
notion of gauge equivalence.

Recall that a Maurer-Cartan element in a DGLA g• is an element ξ ∈ g1 satisfying the
Maurer-Cartan equation

dξ +
1

2
[ξ, ξ] = 0. (3.2.1)

While up to here we did not have to make any further assumption about the ring k of scalars,
from now on we assume Q ⊆ k in order to have a well-de�ned Maurer-Cartan equation and
gauge action later on. We denote by MC(g) the set of all Maurer-Cartan elements of a DGLA.

De�nition 3.2.1 (Constraint set of Maurer-Cartan elements) Let g be a constraint
DGLA. The constraint set MC(g) of Maurer-Cartan elements of g is given by

MC(g) =
(
MC(gT), MC(gN), ∼MC

)
, (3.2.2)

together with ιMC : MC(gN) → MC(gT) given by the map ιg : g•N → g•T of g and where the relation
∼MC is de�ned by

ξ1 ∼MC ξ2 ⇐⇒ ξ1 − ξ2 ∈ g10 (3.2.3)

for ξ1, ξ2 ∈ MC(gN).

Example 3.2.2 (Constraint multivector �elds) Let M = (M,C,D) be a constraint mani-
fold. By Corollary 2.4.14 we know that (CX•+1

⊠ (M), d = 0, J · , · K) is a constraint DGLA. Then
MC(CX•

⊠(M))T is the set of Poisson structures on M , and, by De�nition 2.4.15, MC(CX•
⊠(M))N

is exactly the set of constraint Poisson structures on M. Two such constraint Poisson structures
π1 and π2 are equivalent as Maurer-Cartan elements if and only if π1−π2 ∈ CX•

⊠(M)0, i.e. if at
least one leg of the bivector π1 − π2 points into the direction of the distribution, and therefore
the bivector vanishes after reduction, c.f. Lemma 2.4.11 iv.).
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Lemma 3.2.3 (Maurer-Cartan functor) Mapping constraint DGLAs to their constraint sets
of Maurer-Cartan elements de�nes a functor

MC : CDGLA → CSet. (3.2.4)

Proof: Every morphism Φ: g → h of constraint DGLAs induces maps ΦT : MC(gT) → MC(hT)
and ΦN : MC(gN) → MC(hN). Moreover, since ΦN : gN → hN preserves the 0-component its
induced map on MC(gN) maps equivalent elements to equivalent elements. □

As in the setting of classical DGLAs, for a given constraint DGLA (g, [ · , · ],d) and a given
Maurer-Cartan element ξ0 ∈ MC(g)N we can always obtain a twisted constraint DGLA by
gξ0 = (g, [ · , · ], dξ0) with

dξ0 := d + [ξ0, · ]. (3.2.5)

Here we are using the tensor-hom adjunction in the sense of (1.2.28).
Note that for any constraint DGLA g and constraint algebra A the tensor product g⊗ A is

again a constraint DGLA by the usual construction. For this observe that g0 ⊗ AN + gN ⊗ A0

is indeed a Lie ideal in gN ⊗ AN.
Reformulating the equivalence of deformations of a given Maurer-Cartan element in terms

of its twisted constraint DGLA requires a notion of a constraint gauge group. To de�ne this
we either need to assume that the DGLA we are starting with has additional properties, e.g.
being nilpotent, or we can use formal power series instead. Since later on we are interested in
formal deformation theory, we will choose the latter option. It is now easy to see that gJλK is a
constraint DGLA for any constraint DGLA g by λ-linear extension of all structure maps.

Note that the gauge action will require to haveQ ⊆ k since we need the (formal) exponential
series and the (formal) Baker-Campbell-Hausdor� (BCH) series.

Proposition 3.2.4 (Gauge group) Let g be a constraint Lie algebra. Then

G(g) =
(
λgTJλK, λgNJλK, λg0JλK

)
(3.2.6)

with multiplication • given by the Baker-Campbell-Hausdor� formula [Esp15, Eq. 2.4.8.]

λξ • λη = λξ + λη +
1

2
[λξ, λη] + · · · (3.2.7)

is a constraint group.

Proof: The additional prefactor λ makes all the BCH series λ-adically convergent. The well-
known group structures on gTJλK and gNJλK are given by the BCH formula and we clearly have
a group morphism gNJλK → gTJλK. Finally, we need to show that λg0JλK is a normal subgroup
of λgNJλK. For this let λg ∈ λgNJλK and λh ∈ λg0JλK be given. Since by the BCH formula
λg • λh • (λg)−1 = λg0 + λh0 − λg0 + λ2(· · · ), where all higher order terms are given by Lie
brackets and g0 is a Lie ideal in gN, we see that λg • λh • (λg)−1 ∈ λg0JλK. □

By abuse of notation we will write G(g) = G(g0) for every constraint DGLA g. With the
composition • on G(g) de�ned by the Baker-Campbell-Hausdor� formula it is immediately clear
that every morphism Φ: g → h of constraint DGLAs induces a morphism G(Φ): G(g) → G(h)
of the corresponding gauge groups, given by the λ-linear extension of Φ. In other words, we
obtain a functor G : CDGLA → CGroup.

The usual gauge action of the formal group on the (formal) Maurer-Cartan elements can
now be extended to a constraint DGLA as follows:
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Proposition 3.2.5 (Gauge action) Let (g, [ · , · ],d) be a constraint DGLA. Then the con-
straint group G(g) acts on the constraint set MC(λgJλK) by

λg ▷T ξ := eλ adT(g)(ξ)− λ
∞∑
k=0

(λ adT(g))
k

(1 + k)!
(dTg) (3.2.8)

for λg ∈ G(g)T and ξ ∈ MC(λgJλK)T as well as

λg ▷N ξ := eλ adN(g)(ξ)− λ
∞∑
k=0

(λ adN(g))
k

(1 + k)!
(dNg) (3.2.9)

for λg ∈ G(g)N and ξ ∈ MC(λgJλK)N.

Proof: Clearly, ▷T and ▷N de�ne actions of G(g)T and G(g)N on MC(λgJλK)T and MC(λgJλK)N,
respectively, by classical results, see [Esp15]. Moreover, writing out the exponential series and
using the fact that ad(g) = [g, · ] and d commute with ιg directly yields

ιg(λg ▷N ξ) = eλ adT(ιg(g))(ιg(ξ))− λ

∞∑
k=0

(
λ adT(ιg(g))

)k
(1 + k)!

(dTιg(g))

= λιg(g) ▷T ιg(ξ).

Finally, we have for any λg ∈ G(g)0 and ξ ∈ MC(λgJλK)N

eλ adN(g)(ξ)− ξ =

∞∑
k=0

λk

k!
(adN(g))

k(ξ)− λ

∞∑
k=0

(λ adN(g))
k

(1 + k)!
(dNg)− ξ

=

∞∑
k=1

λk

k!
(adN(g))

k(ξ)− λ

∞∑
k=0

(λ adN(g))
k

(1 + k)!
(dNg) ∈ λg0JλK,

since dNg ∈ g0JλK and adN(g)(ξ) ∈ g0JλK. □

This shows that the constraint sets of Maurer-Cartan elements admit more structure, namely
that of an action of the associated gauge group. This suggests that the functorMC of Lemma 3.2.3
factors through CGroupAct, cf. De�nition 1.2.3.

Corollary 3.2.6 Mapping constraint DGLAs (g, [ · , · ],d) to their corresponding gauge action
of G(g) on MC(λgJλK) de�nes a functor MC : CDGLA → CGroupAct.

Proof: Let Φ: g → h be a morphism of constraint DGLAs. Its λ-linear extension gives mor-
phisms Φ: MC(λgJλK) → MC(λhJλK) and Φ: G(g) → G(h). With this we get

ΦT(λg ▷T ξ) = ΦT

(
eλ adT(g)(ξ)− λ

∞∑
k=0

(λ adT(g))
k

(1 + k)!
(dTg)

)
= eλ adT(ΦT(g))(ΦT(ξ))− λ

∞∑
k=0

(
λ adT(ΦT(g))

)k
(1 + k)!

(dTΦT(g))

= λΦT(g) ▷T ΦT(ξ),

for all λg ∈ G(g)T and ξ ∈ MC(λgJλK)T. With an analogous computation we �nd that also
ΦN(λg ▷N ξ) = λΦN(g) ▷N ΦT(ξ) holds for all λg ∈ G(g)N and ξ ∈ MC(λgJλK)T, showing that Φ is
an equivariant map. □
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Maurer-Cartan elements are said to be equivalent if they lie in the same orbit of the gauge
action. Hence the object of interest for deformation theory is not the set of Maurer-Cartan
elements itself but its set of equivalence classes. More precisely, let us denote by

Def(g) := MC(λgJλK)/G(g) (3.2.10)

the orbit space of the gauge action of the gauge group G(g) on the constraint set MC(λgJλK) of
Maurer-Cartan elements. The corresponding functor Def : CDGLA → CSet is called deformation
functor.

3.2.1 Reduction

The question arises if the above constructions of the constraint set of Maurer-Cartan elements,
the constraint gauge group and the deformation functor commute with reduction. The next
theorem shows that this is partially true, in the sense that at least an injective natural transfor-
mation exists, see [DEW22, Thm. 3.14].

Theorem 3.2.7 (Deformation functor vs. reduction)

i.) There exists an injective natural transformation η : red ◦MC =⇒ MC ◦ red, i.e.

CDGLA CSet

DGLA Set

MC

red red
η

MC

(3.2.11)

commutes with η injective.

ii.) There exists a natural isomorphism such that the diagram

CDGLA CGroup

DGLA Group

G

red red
η

G

(3.2.12)

commutes with η bijective.

iii.) There exists an injective natural transformation η : red ◦ Def =⇒ Def ◦ red, i.e.

CDGLA CSet

DGLA Set

Def

red red
η

Def

(3.2.13)

commutes with η injective.

Proof: For this proof we need to construct natural transformations η, consisting of T- and
N-components. Since the computations are identical in both cases, we omit the subscripts.
i.) In the following we denote by [ · ]MC the equivalence classes of elements in MC(gN) and by

[ · ]g the equivalence classes of elements in gN. For any constraint DGLA g de�ne

ηg : MC(g)red → MC(gred) by ηg([ξ]MC) = [ξ]g.
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This map is well-de�ned since [ξ]MC ⊆ [ξ]g and

dred[ξ]g +
[
[ξ]g, [ξ]g

]
red

=
[
dNξ + [ξ, ξ]N

]
g
= [0]g

for every ξ ∈ MC(gN). To show that ηg is injective let [ξ1]MC, [ξ2]MC ∈ MC(g)red be given
such that [ξ1]g = [ξ2]g. Then ξ2 ∈ [ξ1]g and hence ξ1 − ξ2 ∈ g10 . Thus by de�nition
ξ1 ∼MC ξ2 and therefore [ξ1]MC = [ξ2]MC. To show naturality of η let a morphism Φ: g → h
of constraint DGLAs be given. This induces morphisms Φ: MC(g)red → MC(h)red and
Φ: MC(gred) → MC(hred) by applying ΦN to representatives. Then we have

(ηh ◦ Φ)([ξ]MC) = ηh([ΦN(ξ)]MC) = [ΦN(ξ)]h = Φ([ξ]g) = Φ(ηg([ξ]MC)),

showing that η is natural.

ii.) Then ηg : G(g)red → G(gred) given by [λg]G 7→ λ[g]g, where [g]g denotes the equivalence
class of g in gred, is well-de�ned. Indeed, ηg is just the λ-linear extension of the obvious
identity gN/g0 = gred. Moreover, ηg is a group morphism, since [ · ]g : gN → gred is a
morphism of DGLAs and • is given by sums of iterated brackets. Naturality follows
directly.

iii.) By de�nition Def factors as Def = COrb ◦MC, with functors MC : CDGLA → CGroupAct
and COrb : CGroupAct → CSet as in Proposition 1.2.7. By Proposition 1.2.12 COrb com-
mutes with reduction, so we only need to consider MC. For this we show that η from i.)
is equivariant:

ηg([λg]G ▷ [ξ]MC) = ηg([λg ▷ ξ]MC) = [λg ▷ ξ]g = [λg]G ▷ [ξ]g.

Here we implicitly used ii.). Now composing η with the natural isomorphism from Propo-
sition 1.2.12 yields the wanted injective natural transformation. □

The missing surjectivity in Theorem 3.2.7 i.) comes again from the fact that the reduction
functor does not re�ect limits, cf. Remark 1.1.19.

3.3 Constraint Hochschild Cohomology

We now want to introduce a constraint version of Hochschild cohomology for associative algebras.
This constraint Hochschild complex will turn out to be the constraint DGLA which controls the
deformation problem of constraint algebras.

In this section we assume that Q ⊆ k. Let M,N ∈ CModk be constraint k-modules. We
de�ne for any n ∈ N

Cn(M,N) := CHomk(M
⊗n,N) (3.3.1)

with CHomk denoting the internal hom as usual. Recall that

Cn(M,N)T = Homk(M
⊗n
T ,NT),

Cn(M,N)N = Homk(M
⊗n,N),

Cn(M,N)0 =
{
(fT, fN) ∈ Homk(M

⊗n,N)
∣∣ fN(M⊗n

N ) ⊆ N0

}
,

with ιn : C
n(M,N)N ∋ (fT, fN) 7→ fT ∈ Cn(M,N)T. Note that a morphism f = (fT, fN) ∈

Cn(M,N)N ful�ls fN((M⊗n)0) ⊆ N0 where, by de�nition of the tensor product, we have

(M⊗n)0 =

n∑
i=1

M⊗i−1
N ⊗ M0 ⊗ M⊗n−i

N . (3.3.2)
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In other words, fN maps to N0 if at least one tensor factor comes from M0. This clearly de�nes
a graded constraint k-module C•(M,N). Since M⊗0 ≃ (k,k, 0) it holds C0(M,N) = N .

Let us now consider the case N = M. Then we write C•(M) = C•(M,M). We now want
to transfer the Gerstenhaber algebra structure of the classical Hochschild complex to C•(M).
For this denote by [ · , · ]MT and [ · , · ]MN the Gerstenhaber brackets for the modules MT and
MN, respectively. Then we need to show that [ · , · ]MN preserves the 0-components. This follows
directly from the usual formula for the Gerstenhaber bracket, see [Ger63].

De�nition 3.3.1 (Gerstenhaber bracket) Let M ∈ CModk. Then the morphism

[ · , · ] : C•(M)⊗ C•(M) → C•(M) (3.3.3)

of constraint k-modules de�ned by

[ · , · ]T = [ · , · ]MT and [ · , · ]N =
(
[ · , · ]MT , [ · , · ]MN

)
(3.3.4)

is called the constraint Gerstenhaber bracket.

Since [ · , · ]MT and [ · , · ]MN induce graded Lie algebra structures on the classical Hochschild
complexes of MT and MN it is easy to see that C•(M) together with the constraint Gerstenhaber
bracket [ · , · ] forms a graded constraint Lie algebra.

Remark 3.3.2 The constraint Gerstenhaber bracket can also be derived from a constraint pre-
Lie algebra structure on C•(M), which in turn results from a sort of partial composition. These
partial compositions can be interpreted as the usual endomorphism operad structure of M in
CModk.

As in the classical theory of deformations of associative algebras, we can characterize asso-
ciative multiplications by using the Gerstenhaber bracket.

Lemma 3.3.3 Let M ∈ CModk be a constraint module. Then a morphism µ : M⊗ M → M of
constraint k-modules is an associative constraint algebra structure on M if and only if

[µ, µ]N = 0. (3.3.5)

Proof: First, note that a constraint morphism µ : M⊗ M → M is an element in C2(M)N and
hence consists of a pair (µT, µN) and [ · , · ]N = ([ · , · ]MT , [ · , · ]MN). From the classical theory
for associative algebras we know that µT and µN are associative multiplications if and only if
[µT, µT]

MT = 0 and [µN, µN]
MN = 0 hold. □

Note that (3.3.5) only involves the N-component of the constraint Gerstenhaber bracket
[ · , · ]. Using the constraint structure of C2(M) we get ι2(µ) = µT ∈ C2(M)T, from which
directly [µT, µT]T = 0 follows.

Let us now move from a module M to an algebra (A, µ). Then we can use the multiplication
to construct a di�erential on C•(A).

Proposition 3.3.4 (Constraint Hochschild di�erential) Let (A, µ) ∈ CAlgk be a con-
straint algebra. Then the morphism δ : C•(A) → C•+1(A) of constraint k-modules, de�ned
by its components

δT = −[ · , µT]T and δN = −[ · , µ]N, (3.3.6)

is a constraint chain map of degree 1 with δ2 = 0.
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Proof: Since µT is an associative multiplication on AT we know that δT : C•(AT) → C•+1(AT)
is a di�erential. Moreover, it is clear that δN : C•(A)N → C•(A)N is also a di�erential and it
preserves the 0-component by the de�nition of [ · , · ]N. Finally, we have for (ΦT,ΦN) ∈ Cn(A)N
that (δT ◦ ιn)(ΦT,ΦN) = δT(ΦT) = ιn+1(δN((ΦT,ΦN))) holds, and hence (δT, δN) is a constraint
morphism. □

Note that δ can be understood as δ = −[ · , µ] using the tensor-hom adjunction (1.2.28).
The constraint Hochschild di�erential can be interpreted as twisting the constraint DGLA
(C•(A), [ · , · ], 0) with the Maurer-Cartan element µ ∈ C2(A)N, but with signs chosen in such
a way that it corresponds to the usual Hochschild di�erential. More explicitly we have the
following result.

Corollary 3.3.5 Let (A, µ) ∈ CAlgk be a constraint algebra. Then the constraint Hochschild
di�erential δ : C•(A) → C•+1(A) is given by δ = (δAT , (δAT , δAN)), where δAT and δAN denote
the Hochschild di�erentials of the algebras (AT, µT)and (AN, µN), respectively. In particular, for
ϕ ∈ Cn+1 and a0, . . . , an ∈ AT we have

(δϕ)(a0, . . . , an) = a0ϕ(a1, . . . , an) + (−1)nϕ(a0, . . . , an−1)an

+

n∑
i=0

(−1)i+1ϕ(a0, . . . , aiai+1, . . . , an).
(3.3.7)

From this explicit characterization of the constraint Hochschild di�erential in terms of the
classical Hochschild di�erentials it becomes clear that (C•(A), [ · , · ], δ) is a constraint DGLA.

De�nition 3.3.6 (Constraint Hochschild complex) Let (A, µ) ∈ CAlgk be a constraint al-
gebra. The constraint DGLA

(
C•(A), [ · , · ], δ

)
is called the constraint Hochschild complex of

A.

As we would expect, the constraint Hochschild complex also carries an additional multipli-
cation, the so-called cup product.

De�nition 3.3.7 (Constraint cup product) Let (A, µ) ∈ CAlgk be a constraint algebra.
The constraint morphism ∪ : C•(A)⊗ C•(A) → C•(A) de�ned by

ϕ ∪T ψ := µT ◦ (ϕ⊗ ψ) and ϕ′ ∪N ψ
′ := (µT, µN) ◦ (ϕ′ ⊗ ψ′), (3.3.8)

for ϕ, ψ ∈ C•(A)T and ϕ′, ψ′ ∈ C•(A)N, is called the constraint cup product.

Let us quickly summarize the properties for the constraint cup product.

Proposition 3.3.8 Let (A, µ) ∈ CAlgk be a constraint algebra.

i.) The cup product ∪ turns C•(A) into a graded constraint algebra.

ii.) If A is a strong constraint algebra, then C•(A) is a strong constraint algebra with respect
to ∪.

iii.) The Hochschild di�erential δ is a graded derivation of degree 1 with respect to the cup
product ∪.

Proof: The �rst and the last part follow directly from the fact that these properties hold on
T- and N-component separately by the classical theory. The second part follows, since in this
case µ is well-de�ned on ⊠ by de�nition of a strong constraint algebra. □

Now let us turn to the cohomology of the constraint Hochschild complex.

155



CHAPTER 3. DEFORMATION THEORY OF CONSTRAINT ALGEBRAS

De�nition 3.3.9 (Constraint Hochschild cohomology) Let (A, µ) ∈ CAlgk be a constraint
algebra. The cohomology HH•(A) = ker δ/ im δ of the Hochschild complex C•(A) is called the
constraint Hochschild cohomology of A.

Using the de�nition of kernel, image and quotient in CModk, as given in Section 1.2.2, we
can express the constraint Hochschild cohomology more explicitly as follows.

Lemma 3.3.10 The constraint Hochschild cohomology of A ∈ CAlgk is given by

HH•(A)T = HH•(AT),

HH•(A)N = ker δN/ im δN,

HH•(A)0 = ker(δN
∣∣
0
)/ im δN,

(3.3.9)

with

ker δn+1
N =

{
(fT, fN) ∈ Cn+1(A)N

∣∣ δATfT = 0 and δANfN = 0
}

(3.3.10)

⊆ ker δn+1
AT

× ker δn+1
AN

,

im δnN =
{
(fT, fN) ∈ Cn+1(A)N

∣∣ ∃(gT, gN) ∈ Cn(A)N : δATgT = fT (3.3.11)

and δANgN = fN
}
,

and

ker(δnN
∣∣
0
) =

{
(fT, fN) ∈ Cn+1(A)0

∣∣ δATfT = 0 and δANfN = 0
}

(3.3.12)

⊆ ker δnAT
× ker δnAN

.

With this we can compute the zeroth and �rst constraint Hochschild cohomology of a given
constraint algebra. For this recall the characterization of centre of a constraint algebra in
Proposition 1.4.3 and of constraint derivations from Proposition 1.4.12, and de�ne the constraint
inner derivations of a given constraint algebra A by

CInnDer(A)T := InnDer(AT),

CInnDer(A)N :=
{
(DT, DN) ∈ CDer(A)N

∣∣ ∃a ∈ AN : DN = [ · , a]N
and DT = [ · , ιA(a)]T

}
,

CInnDer(A)0 :=
{
(DT, DN) ∈ CDer(A)0

∣∣ ∃a ∈ A0 : DN = [ · , a]N
and DT = [ · , ιA(a)]T

}
.

(3.3.13)

The following also shows that in low degrees the interpretation of the constraint Hochschild
cohomology is analogous to that for usual algebras.

Proposition 3.3.11 Let A ∈ CAlgk be a constraint algebra.

i.) We have

HH0(A)T = Z(AT),

HH0(A)N =
{
a ∈ AN

∣∣ a ∈ Z(AN) and ιA(a) ∈ Z(AT)
}
,

HH0(A)0 =
{
a0 ∈ A0

∣∣ a0 ∈ Z(AN) and ιA(a0) ∈ Z(AT)
}
.

(3.3.14)

Hence HH0(A) = Z(A).
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ii.) We have

HH1(A)T = Der(AT)/ InnDer(AT),

HH1(A)N = Der(A)N/
{
(DT, DN) ∈ Der(A)N

∣∣
∃a ∈ AN : DT = [ · , ιA(a)], DN = [ · , a]

}
,

HH1(A)0 = Der(A)0/
{
(DT, DN) ∈ Der(A)N

∣∣
∃a ∈ AN : DT = [ · , ιA(a)], DN = [ · , a]

}
.

(3.3.15)

Hence HH1(A) = CDer(A)/CInnDer(A).

Proof: The �rst claim is clear by Lemma 3.3.10 and δ−1 = 0. The T-component of the second
part is clear by the classical result for the �rst Hochschild cohomology of the classical algebra
AT. For the N-component consider D = (DT, DN) ∈ ker δ1N. Then δ

ATDT = 0 and δANDN = 0,
hence DT and DN are derivations and it follows D ∈ Der(A)N. Similarly, we get D ∈ Der(A)0
for D ∈ ker(δ1N

∣∣
0
). Now let D ∈ im δ0N, then there exists a : k → A with DT = δATaT = [ · , aT]

and DN = δANaN = [ · , aN]. Since aT = ι(aN) the second part holds. □

3.3.1 Reduction

Assigning the (constraint) Hochschild complex to a given (constraint) algebra is not functorial
on all of CAlgk. But if we restrict ourselves to the subcategory CAlg×

k
of constraint algebras

with invertible morphisms we get a functor C• : CAlg×
k
→ CDGLA by mapping each constraint

algebra to its constraint Hochschild complex and every algebra isomorphism ϕ : A → B to
C•(ϕ) : C•(A) → C•(B) given by C•(ϕ)(f) = ϕ ◦ f ◦ (ϕ−1)⊗n for f ∈ Cn(A)T/N. A similar
construction clearly also works for usual algebras. We can now show that this functor commutes
with reduction up to an injective natural transformation.

Proposition 3.3.12 (Hochschild complex vs. reduction) There exists an injective natu-
ral
transformation η : red ◦ C• =⇒ C• ◦ red, i.e.

CAlg×
k

CDGLA

Alg×
k

DGLA

C•

red red
η

C•

(3.3.16)

commutes with η injective.

Proof: For every constraint algebra A de�ne ηA : C•(A)red → C•(Ared) by

ηA([f ])([a1], . . . , [an]) = [fN(a1, . . . , an)].

for [f ] = [(fT, fN)] ∈ Cn(A)red. First note that ηA([f ]) : A⊗n
red → Ared is well-de�ned since if ai ∈

A0 for any i = 1, . . . , n we have fN(a1, . . . , an) ∈ A0 and hence [fN(a1, . . . , an)] = 0. Moreover,
ηA is well-de�ned since for f ∈ Cn(A)0 we have fN(a1, . . . , an) ∈ A0 and thus η([f ]) = 0. To see
that η is indeed a natural transformation we need to show that for every isomorphism ϕ : A → B
we have ηB ◦ C•(ϕ)red = C•([ϕ]) ◦ ηA. But it is clear after inserting the de�nitions. Finally,
suppose ηA([f ]) = ηA([g]). This means that (fN − gN)(a1, . . . , an) ∈ A0 and therefore [f ] = [g].
Thus ηA is injective. □
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Combining Proposition 1.6.5 with Proposition 3.3.12 immediately yields the following com-
patibility of Hochschild cohomology with reduction:

Corollary 3.3.13 There exists an injective natural transformation η : red ◦HH• =⇒ HH• ◦ red.
In particular, for any constraint algebra A we have

HH•(A)red ⊆ HH•(Ared). (3.3.17)

3.4 Formal Deformations via Hochschild Cohomology

Throughout this section we will again assume that the scalars satisfy Q ⊆ k in order to make
use of the description of deformations by Maurer-Cartan elements.

Let (A, µ0) ∈ CAlgk be a constraint k-algebra. By De�nition 3.1.3 a formal associative
deformation (AJλK, µ) is given by an associative multiplication µ : AJλK⊗AJλK → AJλK making
AJλK a constraint kJλK-algebra such that cl(A, µ) is given by (A, µ0), or in other words

µ = µ0 +
∞∑
k=1

λkµk (3.4.1)

with µk : A ⊗ A → A.
Such deformations can now be understood as Maurer-Cartan elements in the constraint

DGLA λC•(A)JλK corresponding to (AJλK, µ0).

Lemma 3.4.1 Let (A, µ) ∈ CAlgk be a constraint k-algebra. A multiplication µ = µ0 +M ,
with M =

∑∞
k=1 λ

kµk is a formal associative deformation of µ0 if and only if

δM +
1

2
[M,M ] = 0. (3.4.2)

Proof: By Lemma 3.3.3 we know that we have to check that [µT, µT]AT
= 0 and [µN, µN]AN

= 0.
Thus, consider the total component of µ as µT = (µ0)T +MT. We have

[µT, µT] = [(µ0)T +MT, (µ0)T +MT] = 2δMT + [MT,MT],

where we used the associativity of (µ0)T and the graded skew-symmetry of Gerstenhaber bracket.
The very same holds for the N-component. □

Equivalence of formal deformations can be phrased using the constraint Gerstenhaber bracket
as follows:

Proposition 3.4.2 Let (A, µ0) be a constraint algebra and let µ and µ′ be deformations of A.
Then µ and µ′ are equivalent via T = exp(λD) if and only if

eλ[D, · ](µ) = µ′ (3.4.3)

holds, where [ · , · ] denotes the constraint Gerstenhaber bracket.

Proof: This follows directly since the statement holds in the T- and N-components separately
by classical deformation theory. □

This allows us to conclude that the equivalence of deformations coincides with gauge equiv-
alence of Maurer-Cartan elements:
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Theorem 3.4.3 (Equivalence classes of deformations) Let k be a commutative ring with
Q ⊆ k. Let (A, µ0) be a constraint k-algebra. Then the constraint set of equivalence classes of
formal associative deformations of A coincides with Def(C•(A)), where C•(A) is the constraint
Hochschild DGLA of A.

Proof: Let µ and µ′ be two deformations of µ0. By Proposition 3.4.2 we know that µ and µ′

are equivalent deformations of µ0 if and only if there exists D ∈ λC1(AJλK) such that

eλ[D, · ](µ) = µ′. (∗)
Using µ = µ0 +M and µ′ = µ0 +M ′ with M =

∑∞
k=1 λ

kµk as well as δN = [µ0, · ]N for the
Hochschild di�erential it is easy to see that (∗) is equivalent to

λD ▷N M =M ′,

meaning that the Maurer-Cartan elements M and M ′ are gauge equivalent. □

Finally, we can reformulate the classical theorem about the extension of a deformation up
to a given order for constraint algebras.

Theorem 3.4.4 (Obstructions) Let k be a commutative ring with Q ⊆ k. Let (A, µ0) ∈
CAlgk be a constraint k-algebra.

i.) Furthermore, let µ(k) = µ0 + · · ·+ λkµk ∈ C2(A)N be an associative deformation of µ0 up
to order k. Then

Rk+1 =
(1
2

k∑
ℓ=1

[
(µℓ)T, (µk+1−ℓ)T

]AT ,
1

2

k∑
ℓ=1

[
(µℓ)N, (µk+1−ℓ)N

]AN
)
∈ C3(A)N (3.4.4)

is a constraint Hochschild cocycle, i.e. δNRk+1 = 0. The deformation µ(k) can be extended
to order k + 1 if and only if Rk+1 = δNµk+1. In this case every such µk+1 yields an
extension µ(k+1) = µ(k) + λk+1µk+1.

ii.) Let µ1 ∈ C2(A)N. Then µ = µ0 + λµ1 is an associative deformation of µ0 up to order 1
if and only if δNµ1 = 0. Moreover, if µ′1 is another deformation up to order 1 of µ0 then
these two deformations are equivalent up to order 1 if and only if µ1 − µ′1 is exact.

Proof: By classical deformation theory of associative algebras it is clear that (3.4.4) is closed
since δN = (δAT , δAN). If Rk+1 is exact, we know that µ(k)T and µ(k)N can be extended via (µk+1)T
and (µk+1)N, respectively. Thus µk+1 yields an extension of µ(k). On the other hand, if µ(k)

can be extended, we know that (Rk+1)T = δAT(µk+1)T and (Rk+1)N = δAN(µk+1)N. Hence,
Rk+1 = δNµk+1. For the second part, consider the �rst part for k = 0, then δNµ1 = R1 = 0
follows directly. By Proposition 3.4.2 two deformations µ = µ0 + µ1 and µ′ = µ0 + µ′1 are
equivalent if and only if there exists D ∈ CHomk(AJλK,AJλK)N such that ead(D)(µ) = µ′. If
we only want to consider deformations up to order 1 we can restrict to the case D = D0 ∈
CHomk(A,A)N. Then we get equivalently µ+ λ[D0, µ] = µ′. The �rst order term then directly
yields µ′1 − µ1 = −δND0. □

Thus HH2(A)N classi�es in�nitesimal constraint deformations while HH3(A)N gives the ob-
structions to extending such deformations in a constraint way. The constraint module HH3(A)
carries more information than just the obstructions to deformations of the constraint algebra
A. Since HH3(A)T = HH3(AT) it also encodes the obstructions of deformations of the classical
algebra AT. Moreover, HH3(A)0 is important for the reduction of HH3(A) and hence controls
which obstructions on A descend to obstructions on Ared. In particular, we have seen in Corol-
lary 3.3.13 that HH3(A)red ⊆ HH3(Ared). The components of HH2(A) can be interpreted in a
similar fashion.
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3.5 Second Constraint Hochschild Cohomology on Rn

Let us now turn again to constraint star products on a constraint manifold M. We have seen
in Section 3.1 that such a constraint star product is nothing but a di�erentiable formal defor-
mation of the constraint algebra CC∞(M). Thus following Section 3.4 we are interested in
the subcomplex C•

diff(CC∞(M)) ⊆ C•(CC∞(M)) of di�erential constraint Hochschild cochains.
Thus we want to be able to compute HH•

diff(CC∞(M)). In classical deformation theory the
Hochschild-Kostant-Rosenberg Theorem computes the di�erential Hochschild cohomology for a
given smooth manifold M , see [HKR62] for the original result.

Theorem 3.5.1 (HKR Theorem) Let M be a smooth manifold. Then

U : X•(M) → HH•
diff(C∞(M)), U(X)(f1, . . . , fk) :=

1

k!
idf1,...,dfk X (3.5.1)

is an isomorphism of Gerstenhaber algebras.

Here the Gerstenhaber algebra structure on X•(M) is given by ∧ and the Schouten bracket
J · , · K, while on HH•

diff(C∞(M)) it is given by the cup product ∪ and the Gerstenhaber bracket
[ · , · ].

For a constraint manifold M = (M,C,D) we know from Proposition 3.3.11 that

HH0
diff

(
CC∞(M)

)
= CC∞(M) (3.5.2)

and

HH1
diff

(
CC∞(M)

)
= CDer

(
CC∞(M)

)
≃ CΓ∞(TM). (3.5.3)

This suggests that constraint multivector �elds might compute constraint Hochschild cohomol-
ogy. But for higher constraint multivector �elds we have to choose between CX•

⊗(M) and
CX•
⊠(M). Now Example 3.2.2 shows, that if we are interested in deforming not merely Poisson

but coisotropic submanifolds, we need to go with CX•
⊠(M). The next result shows that the

constraint version of (3.5.1) is well-de�ned at the level of cochains and also yields an injection
in cohomology.

Proposition 3.5.2 Let M = (M,C,D) be a constraint manifold.

i.) The map

U : CX•
⊠(M) → C•

diff(C∞(M)), U(X)(f1, . . . , fk) :=
1

k!
idf1,...,dfk X (3.5.4)

is a morphism between the constraint complexes
(
X•
⊠(M),d = 0

)
and

(
C•
diff(CC∞(M)), δ

)
.

ii.) The induced morphism
U : CX•

⊠(M) → HH•
diff

(
CC∞(M)

)
(3.5.5)

is a regular monomorphism.

Proof: The map U can be seen as the lowest order of Op from Corollary 2.5.27. Note that in
this caseDf = df , and hence this restriction ofOp is indeed independent of the chosen constraint
covariant derivative. Thus U is a constraint regular monomorphism. Moreover, from classical
theory we know that δ ◦ U = 0, and hence U is a morphism of constraint complexes. For the
second part note that UT : X

•(M) → C•
diff(CC∞(M)) is an isomorphism by the classical HKR

theorem. Since quotients of embedded constraint modules need not necessarily be embedded,
UN : CX

•
⊠(M)N → HH•

diff(CC∞(M))N is not given by the restriction of UT, but it ful�ls ιHH◦UN =
UT ◦ ιCX⊠

. Since the right hand side is injective so is UN. Thus U is a monomorphism. To

160



3.5. SECOND CONSTRAINT HOCHSCHILD COHOMOLOGY ON Rn

show that it is regular, consider UN(X) = [U(X)] ∈ HH•
diff(CC∞(M))0. Then by de�nition

U(X) ∈ C•
diff(CC∞(M))0 and thus since U is a constraint monomorphism on cochain level we

get X ∈ CX•
⊠(M)0. □

Even though CX•
⊠(M) already yields interesting, and perhaps even unexpected, contributions

to HH•
diff(CC∞(M))N, we cannot hope for (3.5.5) to be an isomorphism:

Example 3.5.3 Let M = Rn = (RnT ,RnN ,Rn0) with 0 < n0 < nN < nT. and consider

∂(1,nT) =
∂2

∂x1 ∂xnT
∈ C1

diff(CC∞(Rn))T. (3.5.6)

This di�erential operator is clearly not constraint: We have x1xnT ∈ CC∞(Rn)0 but

∂(1,nT)(x
1xnT) = 1 /∈ CC∞(Rn)0. (3.5.7)

Nevertheless, applying the Hochschild di�erential yields

δ(∂(1,nT)) = − ∂1 ∪ ∂nT − ∂nT ∪ ∂1, (3.5.8)

which is constraint. In fact, δ(∂(1,nT)) ∈ C2
diff(CC∞(Rn))0, since for f, g ∈ CC∞(Rn)N we have

δ(∂(1,nT))(f, g) = − ∂f

∂x1︸︷︷︸
=0

· ∂g
∂xnT

− ∂f

∂xnT
· ∂g
∂x1︸︷︷︸
=0

= 0. (3.5.9)

To show that δ(∂(1,nT)) de�nes a non-trivial class in cohomology assume that δ(∂(1,nT)) = δ(D)

for some D =
∑∞

r=0

∑
I∈n⊗r DI ∂I ∈ C1

diff(CC∞(Rn))T. Then D − δ(∂(1,nT)) is closed, hence a
derivation, and it follows D = ∂(1,nT) +

∑nT
i=1D

i ∂i. Evaluating on x1xnT shows that D is not
constraint. Finally, since δ(∂(1,nT)) is symmetric it cannot be in the image of U. Thus we have
found a non-trivial cohomology class, not coming from constraint multivector �elds.

This example can easily be generalized to construct non-vanishing symmetric cohomology
classes with arbitrary order of di�erentiation: For this consider ∂I ∈ C1

diff(CC∞(Rn))T with
I = (i1, . . . , ir) such that for one ℓ ∈ {1, . . . , r} it holds nN < iℓ and ik ≤ n0 for all k ̸= ℓ.
Then ∂I is not constraint, but in δ(∂I) there appears in every term at least one ∪-factor from
C1
diff(CC∞(Rn))0, showing that δ(∂I) is constraint. It is then straightforward to see that it also

yields a non-vanishing class in cohomology.
In the following we will concentrate on the local case M = Rn = (RnT ,RnN ,Rn0) and its

second constraint Hochschild cohomology. By the product rule from classical calculus we have
for i1, . . . , ir ∈ {1, . . . nT} and f, g ∈ C∞(M) that

∂r(f · g)
∂xi1 . . . ∂xir

=
r∑
s=0

∑
σ∈Sr

1

s!(r − s!)

∂sf

∂xiσ(1) . . . ∂xiσ(s)
· ∂(r−s)g

∂xiσ(s+1) . . . ∂xiσ(r)

=

r∑
s=0

∑
σ∈Sh(s,r−s)

∂sf

∂xiσ(1) . . . ∂xiσ(s)
· ∂(r−s)g

∂xiσ(s+1) . . . ∂xiσ(r)
.

(3.5.10)

Here Sh(s, r − s) denotes the set of (s, r − s)-shu�e permutations, i.e. σ ∈ Sr such that
σ(1) < · · · < σ(s) and σ(s+1) < · · · < σ(r). In order to write (3.5.10) in a more concise fashion
we use the following notation: For a multi index I = (i1, . . . , ir) and s ∈ {1, . . . , r} we de�ne

Is := (i1, . . . , is) and Is := (is+1, . . . , ir). (3.5.11)
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Moreover, for a permutation σ ∈ Sr we set σ(I) := (iσ(1), . . . , iσ(r)). With this (3.5.10) reads

∂I(f · g) =
r∑
s=0

∑
σ∈Sh(s,r−s)

∂σ(I)sf · ∂ σ(I)s
g. (3.5.12)

We can now use (3.3.7) to express the Hochschild di�erential applied to some ∂I as

δ(∂I) =

r−1∑
s=1

∑
σ∈Sh(s,r−s)

∂σ(I)s ∪ ∂ σ(I)s
. (3.5.13)

Lemma 3.5.4 Let I = (i1, . . . , ir) ∈ (n⊗r)N.

i.) It holds δ(∂I) ∈ C2
diff(CC∞(Rn))N if and only if I ∈ (n⊗r)N or

∃ℓ ∈ {1, . . . , r} : iℓ ∈ nT \ nN and ∀k ̸= ℓ : ik ∈ n0. (3.5.14)

ii.) It holds δ(∂I) ∈ C2
diff(CC∞(Rn))0 if and only if I ∈ (n⊗r)0 or

∃ℓ ∈ {1, . . . , r} : iℓ ∈ nT \ nN and ∀k ̸= ℓ : ik ∈ n0. (3.5.15)

Proof: Let us �rst show the second part: By Proposition 2.5.24 ii.) the terms with

(σ(I)s, σ(I)s ) ∈ ((n∗)⊠ ⊗ (n∗)⊠)N = (n⊗s ⊠ n⊗r−s)∗N

need to vanish. Thus we have δ(∂I) ∈ C2
diff(CC∞(Rn))0 if and only if

(σ(I)s, σ(I)s ) ∈ (n⊗s ⊠ n⊗r−s)0 for all s = 1, . . . , r − 1 and all σ ∈ Sh(s, r − s).

By Lemma 1.3.9 we can write

(n⊗s ⊠ n⊗r−s)0 = (n⊗s ⊗ n⊗r−s)0 ⊔
(
(n⊗s)∗0 × (n⊗r−s)0

)
⊔
(
(n⊗s)0 × (n⊗r−s)∗0

)
= (n⊗r)0 ⊔

(
(n⊗s)∗0 × (n⊗r−s)0

)
⊔
(
(n⊗s)0 × (n⊗r−s)∗0

)
.

Now for (σ(I)s, σ(I)s ) to end up in ((n⊗s)∗0 × (n⊗r−s)0) ⊔ ((n⊗s)0 × (n⊗r−s)∗0) we clearly need
at least one ℓ ∈ {1, . . . , r} with iℓ ∈ n∗0 = nT \ nN. If there is one other k ∈ {1, . . . r} with
ik ∈ nT\n0 then the permutation τ ∈ Sh(1, r−1) which moves ik to the �rst or last position gives
a contradiction. This shows the second part. For the �rst part it follows from Proposition 2.5.24
i.) that only the terms in

(n⊗s ⊠ n⊗r−s)N = (n⊗s ⊗ n⊗r−s)N ⊔
(
(n⊗s)∗0 × (n⊗r−s)0

)
⊔
(
(n⊗s)0 × (n⊗r−s)∗0

)
= (n⊗r)N ⊔

(
(n⊗s)∗0 × (n⊗r−s)0

)
⊔
(
(n⊗s)0 × (n⊗r−s)∗0

)
.

need to vanish. Then the same arguments as before apply. □

Proposition 3.5.5 Let D =
∑

len(I)≤rD
I ∂I ∈ C1

diff(CC∞(Rn))T be given.

i.) It holds δ(D) ∈ C2
diff(CC∞(Rn))N if and only if

DI ∈ CC∞(Rn)N if ∀ℓ ∈ {1, . . . , r} : iℓ ∈ nN \ n0 (3.5.16)

and

DI ∈ CC∞(Rn)0 if ∃ℓ ∈ {1, . . . , r} : iℓ ∈ nT \ nN

and ∃k ̸= ℓ : ik ∈ nT \ n0.
(3.5.17)
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ii.) It holds δ(D) ∈ C2
diff(CC∞(Rn))0 if and only if

DI ∈ CC∞(Rn)0 if ∀ℓ ∈ {1, . . . , r} : iℓ ∈ nN \ n0 (3.5.18)

and

DI ∈ CC∞(Rn)0 if ∃ℓ ∈ {1, . . . , r} : iℓ ∈ nT \ nN

and ∃k ̸= ℓ : ik ∈ nT \ n0.
(3.5.19)

Proof: We have

δ(D) = −
∑

len(I)≤r

DIδ(∂I) = −
∑

len(I)≤r

len(I)−1∑
s=1

∑
σ∈Sh(s,len(I)−s)

DI · ∂σ(I)s ∪ ∂ σ(I)s
.

Assume δ(D) ∈ C2
diff(CC∞(Rn))N. By Proposition 2.5.24 this holds if and only if DI ∈

CC∞(Rn)0 for(
σ(I)s, σ(I)s

)
∈
(
(n∗)⊠s ⊗ (n∗)⊠r−s

)
0
= (n⊗s)∗0 × (n⊗r−s)∗N ⊔ (n⊗s)∗N × (n⊗r−s)∗0 ,

and DI ∈ CC∞(Rn)N for(
σ(I)s, σ(I)s

)
∈
(
(n∗)⊠s ⊗ (n∗)⊠r−s

)
N
\
(
(n∗)⊠s ⊗ (n∗)⊠r−s

)
0

= (n⊗s)∗red × (n⊗r−s)∗red.

Here we used Lemma 1.3.9. This shows the �rst part. The second part follows then directly
from Proposition 2.5.24. □

Suppose D ∈ C1
diff(CC∞(Rn))T such that δ(D) is constraint. Then we are interested in

those parts of D which are not constraint. To separate the non-constraint part, denote by

prol : C∞(RnN) → C∞(RnT) (3.5.20)

the constant extension of functions on RnN to functions on RnT . With this we can always write

f =
(
f − prol(f

∣∣
R

nN
)
)
+ prol(f

∣∣
R

nN
), (3.5.21)

splitting f ∈ C∞(RnT) into a part vanishing on the submanifold and the rest, thus we obtain
a direct sum decomposition

C∞(RnT) ≃ IRnN ⊕ C∞(RnN). (3.5.22)

Since we can view Rnred ≃ {0}n0 ⊕RnN\n0 as a subspace of RnN , we can similarly decompose
C∞(RnN) to obtain

C∞(RnT) ≃ IRnN ⊕ C∞(Rnred)⊕ IRnred (RnN), (3.5.23)

with IRnred (RnN) denoting those functions on RnN vanishing on the subspace Rnred . Note
that CC∞(Rn)0 = IRnN and CC∞(Rn)N = IRnN ⊕ C∞(Rnred), thus IRnred (RnN) should be
understood as a complement to CC∞(Rn)N in CC∞(Rn)T. We will denote the projections to
these summands by

pr0 : C∞(RnT) → IRnN , (3.5.24)

pr⊥0 : C∞(RnT) → C∞(Rnred), (3.5.25)

prN := pr0 +pr⊥0 : C∞(RnT) → IRnN ⊕ C∞(Rnred), (3.5.26)

pr⊥N : C∞(RnT) → IRnred (RnN). (3.5.27)

We can �nd a similar decomposition of DiffOpr(Rn):
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Proposition 3.5.6 The R-module maps pr0, pr
⊥
0 , pr

⊥
N : C1

diff(C∞(RnT)) → C1
diff(C∞(RnT))

de�ned by

pr0(D) :=
∑

I∈(n⊗r)0

DI ∂I (3.5.28)

pr⊥0 (D) :=
∑

I∈(nred)r

prN(D
I) ∂I +

∑
I∈(n⊗r)∗0

pr0(D
I) ∂I (3.5.29)

pr⊥N (D) :=
∑

I∈(nred)r

pr⊥N (D
I) ∂I +

∑
I∈(n⊗r)∗0

pr⊥0 (D
I) ∂I (3.5.30)

are projections with
pr0 +pr⊥0 +pr⊥N = id, (3.5.31)

as well as

im(pr0) = C1
diff(CC∞(Rn))0 (3.5.32)

and

im(prN) = C1
diff(CC∞(Rn))N (3.5.33)

for prN := pr0 +pr⊥0 .

Proof: Note that

nrT = (n⊗r)0 ⊔
(
(n⊗r)N \ (n⊗r)0

)
⊔
(
(n⊗r)T \ (n⊗r)N

)
= (n⊗r)0 ⊔ (nred)

r ⊔ (n⊗r)∗0 ,

with (n⊗r)N = (n⊗r)0⊔(nred)r. Then, with the help of Example 2.5.2, everyD ∈ C1
diff(CC∞(Rn))T

of order r can uniquely be written as

D =
∑

I∈(n⊗r)0

DI ∂I +
∑

I∈(nred)r

prN(D
I) ∂I +

∑
I∈(n⊗r)∗0

pr0(D
I) ∂I

+
∑

I∈(nred)r

pr⊥N (D
I) ∂I +

∑
I∈(n⊗r)∗0

pr⊥0 (D
I) ∂I

with ∑
I∈(n⊗r)0

DI ∂I ∈ C1
diff(CC∞(Rn))0,

∑
I∈(nred)r

prN(D
I) ∂I ∈ C1

diff(CC∞(Rn))N

and ∑
I∈(n⊗r)∗0

pr0(D
I) ∂I ∈ C1

diff(CC∞(Rn))N.

Thus pr0, pr
⊥
0 and pr⊥N are indeed projections with im(pr0) ⊆ C1

diff(CC∞(Rn))0 and im(prN) ⊆
C1
diff(CC∞(Rn))N. The surjectivity of these maps follows from evaluating at xi1 · · ·xir . □

This shows that D ∈ C1
diff(CC∞(Rn))N is constraint if and only if pr⊥N (D) = 0. Suppose

again that δ(D) is constraint, then by Proposition 3.5.5 we know that pr⊥N (D
I) = 0 for all

I ∈ nrred and pr0(D
I) = 0 whenever there exist k, ℓ ∈ {1, . . . , r} with k ̸= ℓ such that iℓ ∈ nT \nN
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and ik ∈ nT \ n0. Hence Proposition 3.5.6 shows that that the constraint Hochschild 2-cochains
which are exact but not constraint exact, are those di�erential operators of order r with

pr⊥N (D) =
∑
I∈S

pr⊥0 (D
I) ∂I ̸= 0 (3.5.34)

with
Sr := {I ∈ nrT | ∃ℓ ∈ {1, . . . , r} : iℓ ∈ nT \ nN and ∀k ̸= ℓ : ik ∈ n0}, (3.5.35)

i.e. which di�erentiate once in a direction perpendicular to the subspace RnN and (r− 1)-times
in direction of the distribution Rn0 . Using the constraint symbol calculus from Section 2.5.3
leads us to the following de�nition.

De�nition 3.5.7 (Extended constraint bivector �elds) For the constraint manifold Rn =
(RnT ,RnN ,Rn0) we de�ne the strong constraint CC∞(Rn)-module CXkext(R

n) of extended con-
straint bivector �elds by

CX2
ext(R

n)T := CX2
⊠(R

n)T,

CX2
ext(R

n)N := CX2
⊠(R

n)N ⊕
( ∞⊕
k=1

SkΓ∞(TRn0
∣∣
R

nN
) ∨ Γ∞(TRnT−nN

∣∣
R

nN
)
)
,

CX2
ext(R

n)0 := CX2
⊠(R

n)0 ⊕
( ∞⊕
k=1

SkΓ∞(TRn0
∣∣
R

nN
) ∨ Γ∞(TRnT−nN

∣∣
R

nN
)
)
,

(3.5.36)

with ιext : CX2
ext(R

n)N ∋ (X,D) 7→ X ∈ CX2
ext(R

n)T.

It is important to remark that CX2
ext(R

n) is not embedded. The additional terms in (3.5.36)
should be interpreted as certain higher order di�erential operators living only on the submanifold
RnN . To make this identi�cation precise, de�ne for every D = Di1,...,ir ∂

∂xi1
∨ · · · ∨ ∂

∂xir
∈

Γ∞(SrTRnT
∣∣
R

nN
) on RnN its prolongation

prol(D) := prol(Di1,...,ir)
∂

∂xi1
∨ · · · ∨ ∂

∂xir
∈ Γ∞(SrTRnT) (3.5.37)

by extending the coe�cient functions toRnT in a constant fashion. Since the constraint manifold
Rn carries a canonical constraint covariant derivative, see Example 2.5.12, we can then identify
prol(D) with a di�erential operator.

We now want to extend the morphism U from Proposition 3.5.2 to include these new terms:

Proposition 3.5.8 (Extended constraint HKR map) Consider the constraint manifold
Rn = (RnT ,RnN ,Rn0).

i.) The map Uext : CX
2
ext(R

n) → C2
diff(CC∞(Rn)) de�ned by

(Uext)T(X) := U(X)

(Uext)N(X,D) := U(X) + δ
(
Op(prol(D))

) (3.5.38)

is a morphism between constraint k-modules.

ii.) The induced morphism

Uext : CX
2
ext(R

n) → HH2
diff(CC∞(Rn)) (3.5.39)

is a regular monomorphism.
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Proof: The constraint module of extended bivector �elds can be understood as a direct sum
of CX2

⊠(M) and a constraint module consisting in the N- and 0-components of the second term
of (3.5.36). Then Uext is the sum of the constraint module morphisms U and δ ◦Op ◦prol, and
therefore a morphism of constraint k-modules itself.

To show the second part recall from Theorem 3.5.1 that Uext is an isomorphism on the
T-components. Now assume that [(Uext)N(X,D)] = 0. Since U(X) is an antisymmetric bid-
i�erential operator and δ(Op(prol(D))) is a symmetric bidi�erential operator these two parts
have to vanish separately in cohomology. Then from Proposition 3.5.2 it follows X = 0. To
show that also [δ(Op(prol(D)))] = 0 assume that there exists D̃ =

∑k
r=0

∑
I∈n⊗r

1
r!D̃

I ∂I ∈
C1
diff(CC∞(Rn))N such that δ(Op(prol(D))) = δ(D̃). Then Op(prol(D)) − D̃ is closed and

hence a derivation. Since Op(prol(D)) is a di�erential operator of order at least 2, we obtain

Op(prol(D)) =

k∑
r=2

∑
I∈n⊗r

1

r!
D̃I ∂I .

From Corollary 2.5.5 it follows that Op(prol(D)), and thus also D̃, is not constraint, giving
a contradiction to D̃ ∈ C1

diff(CC∞(Rn))N. This shows that (3.5.39) is a monomorphism. For
its regularity suppose that [(Uext)N(X,D)] ∈ HH2

diff(CC∞(Rn))0. By De�nition 3.5.7 we have
D ∈ CX2

ext(R
n)0, and thus [δ(Op(prol(D)))] ∈ HH2

diff(CC∞(Rn))0. Then from

[U(X)] = [(Uext)N(X,D)]− [δ(Op(prol(D)))] ∈ HH2
diff(CC∞(Rn))0

it follows from the fact that U is a regular monomorphism, see Proposition 3.5.2, that X ∈
CX2

ext(R
n)0. □

With this we have found contributions to the second constraint Hochschild cohomology which
go beyond the classical Hochschild cohomology as computed by the HKR theorem. The next
and �nal theorem shows that no other contributions appear.

Theorem 3.5.9 (Second constraint Hochschild cohomology on Rn) The morphism

Uext : CX
2
ext(R

n) → HH2
diff

(
CC∞(Rn)

)
(3.5.40)

as de�ned in Proposition 3.5.8 is an isomorphism of constraint R-modules.

Proof: It remains to show that Uext is an epimorphism. On the T-component it is an epimor-
phism by Theorem 3.5.1. To show the surjectivity on theN-component letB ∈ C2

diff(CC∞(Rn))N
be given with δ(B) = 0. Then the classical HKR theorem tells us that we can write B =
δ(D) + Alt(B) with D ∈ C1

diff(CC∞(Rn))T and Alt(B) ∈ CDiffOp(1,1)(Rn)N the antisymmetric
part of B. From this it follows δ(D) ∈ C1

diff(CC∞(Rn))N. By Proposition 3.5.6 D splits as
D = prN(D) pr⊥N (D), with prN(D) ∈ C1

diff(CC∞(Rn))N and

pr⊥N (D) = Op

(
prol

(∑
I∈S

DI
∣∣∣
R

nN
∂i1 ∨ · · · ∨ ∂ir

))
,

where S =
⋃∞
r=0{I ∈ nrT | ∃ℓ ∈ {1, . . . , r} : iℓ ∈ nT \ nN and ∀k ̸= ℓ : ik ∈ n0}. Thus

B = δ(prN(D)) + (Uext)N

(
σ(X),

∑
I∈S

DI
∣∣∣
R

nN
∂i1 ∨ · · · ∨ ∂ir

)
,

showing that Uext : CX
2
ext(R

n) → HH2
diff(CC∞(Rn)) is surjective on the N-components, and

therefore an isomorphism. □
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Theorem 3.4.4 shows that the second constraint Hochschild cohomology can be interpreted as
the constraint set of equivalence classes of in�nitesimal deformations. More precisely,
HH2

diff(CC∞(Rn))T is the set of equivalence classes of classical in�nitesimal deformations of
C∞(M), while HH2

diff(CC∞(Rn))N are equivalence classes of constraint in�nitesimal deforma-
tions, i.e. deformations which respect the reduction information. In the local case ofM = Rn we
see that HH2

diff(CC∞(Rn)) is not embedded, which means there are non-equivalent constraint
deformations which are equivalent when we forget about the reduction data. And these equiv-
alence classes are exactly characterized by the additional symmetric parts in CX2

ext(R
n)N, see

(3.5.36).

3.5.1 Reduction

Observe that these symmetric contributions also appear in CX2
ext(R

n)0, and hence should vanish
after reduction. More precisely, we have the following statement:

Proposition 3.5.10 Consider the constraint manifold Rn = (RnT ,RnN ,Rn0).

i.) The morphism Uext : CX
2
ext(R

n) → C2
diff(CC∞(Rn)) reduces to the classical HKR map

(Uext)red : X
2(Rnred) → C2

diff(C∞(Rnred)) (3.5.41)

on Rnred.

ii.) The isomorphism Uext : CX
2
ext(R

n) → HH2
diff(CC∞(Rn)) reduces to the classical HKR iso-

morphism
(Uext)red : X

2(Rnred) → HH2
diff(C∞(Rnred)) (3.5.42)

on Rn.

Proof: For the �rst part note that (CX2
ext(R

n))red ≃ X2(Rnred) holds since (CX2
⊠(R

n))red ≃
X2(Rnred) by Proposition 2.4.18 and the additional symmetric terms vanish after reduction.
Moreover, (C2

diff(CC∞(Rn)))red ≃ C2
diff(C∞(Rnred)) holds by Proposition 3.3.12 and the fact

that every multidi�erential operator on RnN−n0 can be extended to a constraint multidi�erential
operator on Rn. Then (Uext)red becomes the classical HKR map, by its explicit de�nition in
(3.5.38) and (3.5.4).

The second part follows since taking cohomology commutes with reduction as we know from
by Proposition 1.6.5. □
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Outlook

We have established in this thesis a general framework which allows to treat geometric and alge-
braic features of coisotropic reduction on equal footing. This allowed us to introduce constraint
star products, which are essentially star products compatible with reduction. These induce
automatically star products on the reduced spaces, and therefore quantization commutes with
reduction in this setting. Nevertheless, the existence of such constraint star products is not
obvious, and we adapted classical techniques from deformation theory to establish constraint
Hochschild cohomology, which governs the deformation problem of constraint algebras. As a
�rst step towards a constraint HKR Theorem we were able to compute the zeroth and �rst con-
straint Hochschild cohomologies in the general situation and the second constraint Hochschild
cohomology in the �at case. This second constraint Hochschild cohomology turned out to con-
tain symmetric terms of arbitrary di�erentiation order, which are unexpected from the point of
view of the classical HKR Theorem. This leads to the following open questions, that should be
studied in future projects:

� The explicit characterization in Theorem 3.5.9 of the second constraint Hochschild co-
homology HH2

diff(CC∞(Rn)) gives strong hints on how the higher constraint Hochschild
cohomologies may be described. Besides the constraint multivector �elds CX•

⊠(M) we
expect contributions given by constraint Hochschild cochains which are exact with non-
constraint potentials. Such a potential ϕ should di�erentiate only k times in the direction
of RnT−nN , where k is the number of slots, and at least once in the direction of the distribu-
tion Rn0 , since then δ(ϕ) will have at least one factor in the 0-component of the constraint
di�erential operators, making δ(ϕ) itself constraint. It then needs to be shown that all
additional contributions appearing in higher orders of constraint Hochschild cohomology
are of this special form.

� Globalizing a constraint HKR Theorem for Rn to an arbitrary constraint manifold M will
not always be possible, since there need not exist partitions of unity compatible with the
constraint structure. Thus classical proofs for the HKR Theorem that use such a glueing
procedure, as can be found e.g. in [GR99], cannot directly be applied in the constraint
situation. Instead it seems reasonable to take a classical proof of the HKR Theorem which
is inherently global [DL95], and reformulate this in the constraint framework. The case
of Rn already suggests that a constraint HKR map depends on the choice of a constraint
covariant derivative. Whether the resulting isomorphism in cohomology really depends on
that choice remains to be seen.

� A constraint algebra A can equivalently be understood as a span Ared ↞ AN → AT of
associative algebras. Deformations of such diagrams of algebras have been studied e.g.
in [FMY09; FZ15; GS83]. This deformation theory of diagrams deforms the algebras as
well as the morphisms of the diagram, while for a deformation of constraint algebras we
only want to deform the algebras. Moreover, the category of modules over such diagrams
is abelian, while the category of constraint modules is not. Thus, even though the de-
formation theory of constraint algebras is obviously linked to the deformation theory of
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diagrams, we have to expect di�erences in the details. The exact relationship between
these deformation theories is yet to be uncovered.

� Constraint manifolds were introduced using simple distributions, but as already discussed
in Remark 2.1.2 it would be useful to allow for more general quotient procedures. On one
hand we could allow for general equivalence relations which still provide a smooth quotient
space. In this situation most of the results of constraint di�erential geometry as presented
in Chapter 2 should still hold. On the other hand, we might want to allow for more singular
reduction. In this case, one might abandon the geometry completely and instead focus on
its algebraic description using constraint algebras, or one could enlarge the categories of
geometric objects we allow. For example we could study constraint versions of orbifolds,
di�eological spaces etc. The properties of these constraint objects will then greatly rely
on the categories of objects they depend on.

� Based on the di�erential geometry of constraint manifolds, as introduced in Chapter 2,
the reduction of more sophisticated geometric objects, such as Lie (bi-)algebroids, can be
investigated, see [DK].

� Strong constraint manifolds, i.e. constraint manifolds with globally de�ned equivalence
relations, are natural objects to study. These can be understood as generalizations of
Marsden-Weinstein reduction, instead of coisotropic reduction, where the global distri-
bution comes from a well-behaved global group action of a Lie group G on a manifold
M . Functions on such strong constraint manifolds coming from Marsden-Weinstein re-
duction would form non-strong constraint algebras, consisting of globally invariant func-
tions C∞(M)G in the N-component and globally invariant functions vanishing on the
submanifold IC∩ C∞(M)G in the 0-component. See [�W83] for a formulation of Marsden-
Weinstein reduction in terms of these classes of functions.

� The reduction of di�erential operators and multivector �elds in the setting of Hamiltonian
Lie group actions was studied in [EKS22b; EKS22a] using L∞-algebras. There, reduction
of di�erential operators and multivector �elds is encoded in an L∞-morphism to the re-
duced objects. To bring this in contact with our constraint reduction scheme it should
be useful to introduce constraint L∞-algebras and morphisms, based on our notion of
constraint DGLAs.

� The bicategories CBimod and CstrBimod suggest to study the representation theory of
(strong) constraint algebras from a Morita theoretic perspective, see Remark 1.4.7. This
has been done for a special class of constraint algebras in [DEW19]. Besides the purely
algebraic insights this will entail, representation theories of constraint algebras is also inter-
esting from the point of view of deformation quantization. To bring a formal deformation
of a (constraint) algebra of functions into contact with physics we need to choose a suit-
able representation, hence it would be desirable to compare the representation theories via
Morita theory.

� The introduction of projective constraint modules in Section 1.5 suggests to de�ne a con-
straint version of algebraic K-theory, which might be the �rst step towards a constraint
algebraic index theorem, i.e. an algebraic index theorem compatible with reduction.
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Appendix A

Categorical Tools

We will give the basic de�nitions of category theory here, not least to �x our notation. See
[Mac98] for the standard textbook on category theory or for example [KS06; Bra16] for more
modern introductions. Section A.1 to Section A.4 are mainly taken from [Dip18].

Category theory is a branch of mathematics that tries to reveal the underlying mechanics
of constructions done in di�erent branches of mathematics, in order to uncover the common
features and to allow to transfer techniques from one �eld of mathematics to another. As such
category theory takes a bird's eye perspective of mathematics, leading us to consider such things
as the collection of all vector spaces or of all sets, etc. Here one might get suspicious, since this
sounds a lot like we immediately run into Russel's paradox. To avoid this we do not consider
the set of all sets, but the collection of all sets. What we mean by collection is now depending
on the foundations of category theory we choose. For our purposes it will be enough to be aware
that a collection can be bigger than a set, and does not need to share all of the properties we are
used to from axiomatic systems like ZFC. For an overview over possible foundations of category
theory see [Shu08].

A.1 Categories and Morphisms

In this section we will give the basic de�nitions of categories and examine some important
properties of morphisms.

De�nition A.1.1 (Category) A category C consists of the following data:

i.) A collection C0 of objects.

ii.) For any two objects A,B ∈ C0 a set C(B,A) = Hom(A,B) of morphisms from A to B,
called hom-set, where f ∈ C(B,A) will be written f : A −→ B.

iii.) For any three objects A,B,C ∈ C0 a map ◦ : C(C,B)×C(B,A) −→ C(C,A), which assigns
to any appropriate pair of morphisms f, g their composition f ◦ g.

iv.) For each object A ∈ C0 a morphism idA ∈ C(A,A), called the identity morphism at A.

These data are required to ful�l the following properties:

i.) Associativity: For any four objects A,B,C,D ∈ C0 and any f ∈ C(D,C), g ∈ C(C,B)
and h ∈ C(B,A) it holds

(f ◦ g) ◦ h = f ◦ (g ◦ h). (A.1.1)

ii.) Left and right identity laws: For any A,B ∈ C0 and any f ∈ C(B,A) it holds

idB ◦f = f = f ◦ idA . (A.1.2)
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If it is clear that we are talking about objects of a given category we will often drop the
subscript and simply write C instead of C0. Thus by C ∈ C we mean an object of the category
C. Note also that the order of objects in our notation of hom-sets is di�erent from the standard
notation. What we call category is sometimes called a locally-small category in the literature,
but since we will not need categories with hom-sets being mere classes instead of sets we will
stick to this convention. A category C where the collection C0 of objects is a set is called a small
category, whereas a category with C0 not being a set is called a large category.

Example A.1.2 (Categories)

i.) The trivial category 1 consists of one object ∗ ∈ 10 = {∗} and one morphism id∗ ∈ 11(∗, ∗).
ii.) The interval category 2 consists of two objects 0 and 1 and three morphisms; the identities

on 0 and 1 and exactly one morphism 0 −→ 1.

iii.) Any class of objects can be turned into a category by adding only the identity morphisms
for every object. Categories of this kind are called discrete.

iv.) Given any category C with composition ◦ we can build the opposite category Copp by
keeping the objects Copp

0 = C0 but using the inverted hom-sets Copp(B,A) = C(A,B) with
composition f ◦opp g = g ◦ f .

One important way to construct a category out of two given categories is by taking their
product.

De�nition A.1.3 (Product category) Let C and D be two categories. The product category
C×D is the category with

i.) objects being ordered pairs (C,D) of objects C ∈ C and D ∈ D,

ii.) morphisms being pairs (f, g) : (C,D) −→ (C ′, D′) of morphisms f ∈ C(C ′, C) and g ∈
D(D′, D),

iii.) composition of morphisms (f, g) : (C,D) −→ (C ′, D′) and (f ′, g′) : (C ′, D′) −→ (C ′′, D′′)
given by the componentwise composition (f ′ ◦ f, g′ ◦ g) : (C,D) −→ (C ′′, D′′) and

iv.) identity morphisms given by pairs (idC , idD) of the identity morphisms in C and D.

We think of morphisms between objects as di�erent ways to relate these objects, and the
hom-sets consist only of those morphisms that respect the inner structure of the objects. This
is how we construct most categories, but following the philosophy of category theory we should
actually think of this the other way around: The inner structure of an object is determined by
all possible ways of relating it to other objects. Following this idea we cannot distinguish two
objects that behave in the same way in relation to all other objects. Thus, we should not think
of objects being equal, but only isomorphic in the following sense.

De�nition A.1.4 (Isomorphism) Let C be a category. Two objects a, b ∈ C0 are isomorphic
if there exist morphisms f : A −→ B and g : B −→ A such that g ◦ f = idA and f ◦ g = idB hold.
The morphisms f and g are called isomorphisms.

The idea that the only notion of sameness in a category is that of being isomorphic is
sometimes called the principle of equivalence.

In the category Set of sets it is easy to show that a function between sets is injective if and
only if it is left cancellable and a function is surjective if and only if it is right cancellable. This
allows us to transfer these notions to arbitrary categories, where we cannot talk about elements
of an object, but only about morphisms between objects.
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De�nition A.1.5 (Monomorphism) Let C be a category. A morphism f : B −→ C is called
monomorphism (or mono for short) if for all morphisms g1, g2 : A −→ B it holds

f ◦ g1 = f ◦ g2 =⇒ g1 = g2. (A.1.3)

If we want to highlight the fact that a morphism is a monomorphism we will depict it as

A B
f

in diagrams.

Proposition A.1.6 In a category C the following statements hold:

i.) Every isomorphism is a monomorphism.

ii.) The composition of two monomorphisms is a monomorphism.

iii.) If the composition f ◦ g is a monomorphism, then g is a monomorphism.

De�nition A.1.7 (Epimorphism) Let C be a category. A morphism f : A −→ B is called
epimorphism (or epi for short) if for all morphisms g1, g2 : B −→ C it holds

g1 ◦ f = g2 ◦ f =⇒ g1 = g2. (A.1.4)

If we want to stress that a morphism is an epimorphism we will depict it as

A B
f

in diagrams.

Proposition A.1.8 In a category C the following statements hold:

i.) Every isomorphism is an epimorphism.

ii.) The composition of two epimorphisms is an epimorphism.

iii.) If the composition f ◦ g is an epimorphism, then f is an epimorphism.

Note that in general categories every isomorphism is a mono and epi, but not every morphism
that is mono and epi has to be an isomorphism.

The following more special classes of monos and epis occur quite often.

De�nition A.1.9 (Section & retraction) Let C be a category and let morphisms f : A −→ B
and g : B −→ A be given, such that g ◦ f = idA. Then f is called a section of g and g is called
a retraction of f . Furthermore, A is called a retract of B.

Lemma A.1.10 Every section is a monomorphism and every retraction is an epimorphism.

Proof: Let f : A −→ B and g : B −→ A such that g◦f = idA. Let furthermore h1, h2 : X −→ A
such that f ◦h1 = f ◦h2, then g◦f ◦h1 = g◦f ◦h2 and thus h1 = h2. Hence f is a monomorphism.
Now let k1, k2 : A −→ Y such that k1 ◦ g = k2 ◦ g. Then from k1 ◦ g ◦ f = k2 ◦ g ◦ f follows
k1 = k2 and hence g is an epimorphism. □

We will also use the terms split monomorphism for sections and split epimorphism for re-
tractions. In many categories we encounter objects with very small hom-sets for every other
object.

173



APPENDIX A. CATEGORICAL TOOLS

De�nition A.1.11 (Initial, terminal & zero object) Let C be a category, C ∈ C.

i.) C is called initial object if for every object D ∈ C there exists a unique morphism f : C −→
D.

ii.) C is called terminal object if for every object B ∈ C there exists a unique morphism
g : B −→ C.

iii.) C is called zero object if it is initial and terminal.

We will mostly use 0 for zero objects. Note that initial and terminal objects, and hence zero
objects as well, are unique up to isomorphisms, so we often speak of the initial, terminal or zero
object.

The existence of a zero object also allows to speak of zero morphisms.

De�nition A.1.12 (Zero morphism) Let C be a category with zero object 0. The zero mor-
phism 0A,B : A −→ B between two objects A and B is the unique morphism that factors through
0.

In general we say that a morphism f : A −→ C factors through B if there exist morphisms
g : A −→ B and h : B −→ C such that f = h ◦ g.

Using the existence of a zero object we can generalize the concept of kernel of a linear map
between vector spaces.

De�nition A.1.13 (Kernel) Let C be a category with zero object 0 and let f : A −→ B. An
object K together with a morphism k : K −→ A is called kernel of f if it satis�es the following
universal property: it holds f ◦ k = 0K,B and for any morphism k′ : K ′ −→ A such that f ◦ k′ =
0K′,B there is a unique morphism u : K ′ −→ K such that k ◦ u = k′. Expressed as a diagram:

A

K B

K ′

f
k

0K,Bk′

u

0K′,B

. (A.1.5)

It is clear that the kernel is unique up to isomorphism if it exists at all. We will also write
ker(f) for the kernel morphism of f and Ker(f) for the kernel object of f .

Corollary A.1.14 Every kernel is a monomorphism.

A useful observation is that if f is a monomorphism its kernel is the zero object together
with the zero morphism. Another important case is that if 0: A −→ B is the zero morphism,
then the kernel is clearly A together with the identity morphism.

De�nition A.1.15 (Cokernel) Let C be a category with zero object 0 and let f : A −→ B.
An object C together with a morphism c : B −→ C is called cokernel of f if it satis�es the
following universal property: it holds c ◦ f = 0A,C and for any morphism c′ : B −→ C ′ such that
c′ ◦ f = 0A,C′ there is a unique morphism u : C −→ C ′ such that u ◦ c = c′. Expressed as a
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diagram:
B

A C

C ′

c

c′

f

0A,C

0A,C′

u

. (A.1.6)

The cokernel is unique up to isomorphism if it exists. We will also write coker(f) for the
cokernel morphism of f and Coker(f) for the cokernel object of f .

Corollary A.1.16 Every cokernel is an epimorphism.

It can easily be seen that the cokernel of an epimorphism is the zero object together with
the zero morphism and the cokernel of the zero morphism 0: A −→ B is B together with the
identity morphism.

A.2 Functors and Natural Transformations

In this section we will take a step back and instead of investigating the relation of objects in a
given category using morphisms, we want to study how we can relate categories using so-called
functors. As it turns out, in contrast to objects and morphisms in categories, there is even a
way to relate morphisms between categories by natural transformations.

De�nition A.2.1 (Functor) A (covariant) functor F from a category C to a category D, writ-
ten F : C −→ D, is a map sending each object A ∈ C0 to an object FA ∈ D and each morphism
f ∈ C(B,A) to a morphism Ff ∈ D(FB,FA) such that

i.) F preserves composition, i.e. F(f ◦ g) = Ff ◦ Fg, for any f ∈ C(C,B) and g ∈ C(B,A),

ii.) F preserves identity morphisms, i.e. F idA = idFA, for each object A ∈ C0.

A contravariant functor is a functor F, where instead of Ff ∈ D(FB,FA) we have Ff ∈
D(FA,FB) and instead of i.) it holds F(f ◦ g) = Fg ◦ Ff .

We will usually only use the term functor for covariant functors.

Example A.2.2 (Functors) Let C, D be a categories.
i.) The map idC : C −→ C sending each object and each morphism to itself is the so-called

identity functor on C.

ii.) For every object A ∈ C0 there is a functor IdA : 1 −→ C by IdA(∗) = A and IdA(id∗) = idA.

iii.) Fix an object B ∈ C0. Then mapping each object C ∈ C0 to the set Hom(B,C) and each
morphism f : X −→ Y to the map

Hom(B, f) : Hom(B,X) −→ Hom(B, Y ); g 7−→ f ◦ g (A.2.1)

is a covariant functor Hom(B, · ) : C −→ Set. Similarly, mapping each object A ∈ C0 to
the set Hom(A,B) and each morphism f : X −→ Y to the map

Hom(f,B) : Hom(Y,B) −→ Hom(X,B); g 7−→ g ◦ f (A.2.2)

is a contravariant functor Hom( · , B) : C −→ Set. These functors are called Hom-functors.
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iv.) The functor τ : C × D −→ D × C given by τ(A,B) = (B,A) and τ(f, g) = (g, f) is a
functor called �ip.

We will call a functor F : C −→ D faithful if for any pair of objects A,B ∈ C the map
F : C(B,A) −→ D(FB,FA) is injective, and F is called full if it is surjective on hom-sets. A
functor is called fully faithful if it is full and faithful.

Composing two functors by composing the maps on objects and morphisms yields again a
functor.

Proposition A.2.3 (Composition of functors) Let F : A −→ B and G : B −→ C be func-
tors between categories A, B, C. Mapping each object A ∈ A to GFA ∈ C and each morphism
f ∈ A(B,A) to GFf ∈ C(GFB,GFA) de�nes a functor G ◦ F : A −→ C called composition.

Ignoring all issues that arise by taking categories of large categories, this enables us to
view functors as morphisms between categories. We will denote the category of categories with
functors as morphisms by Cat.

Next we want to de�ne the notion of subcategory. This is not as straightforward as it �rst
seems, and in general there does not seem to exist a universally accepted de�nition. We will
follow the idea that a subcategory B of a category C should be a subcollection B0 of the objects
C0, and for every pair B,B′ ∈ B a subset HomB(B,B

′) of the hom-set HomC(B,B
′). This leads

us to the following de�nition of embedding.

De�nition A.2.4 (Embedding of Categories) A functor F : C −→ D between categories C
and D is called an embedding of categories, if it is injective on objects and faithful.

Obviously, a functor is an embedding in this sense if and only if it is injective on all morphisms.
Moreover, for every embedding F : C −→ D the image F(C) of C in D is isomorphic to C, see
[Mac98, p. 14]. This notion of embedding allows us to de�ne subcategories.

De�nition A.2.5 (Subcategory) A category C together with an embedding I : C −→ D is
called a subcategory of D.

A subcategory C of a category D is called full if the embedding I : C −→ D is full. It should
be noted that this de�nition of subcategory does violate the principle of equivalence, since being
injective on objects requires to identify objects.

On top of comparing categories by functors there is also a way to compare functors between
the same categories.

De�nition A.2.6 (Natural transformation) Let C and D be categories and F,G : C −→ D
be functors. A natural transformation η from F to G, written η : F =⇒ G, is an assignment of
a morphism η(A) : F(A) −→ G(A) in D to every object A ∈ C0, such that for each morphism
f ∈ C(B,A) the following diagram commutes

FA FB

GA GB

Ff

η(A) η(B)

Gf

. (A.2.3)

The morphisms η(A) are called components of η. If all components η(A) : FA −→ FB of a
natural transformation are isomorphisms it is called a natural isomorphism.
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Natural transformations can roughly be seen as a consistent choice of turning images under
F into images under G. We will depict a natural transformation η : F =⇒ G between functors
F,G : C −→ D as

C D

F

G

η .

Using natural transformations we can de�ne the notion of equivalence of categories.

De�nition A.2.7 (Equivalence of categories) Let C and D be categories. An equivalence
of the categories C and D is a pair of functors F : C −→ D and G : D −→ C together with natural
isomorphisms η : G ◦ F =⇒ idC and ε : F ◦ G =⇒ idD. We call C and D equivalent if there exists
an equivalence between them.

Sometimes, one just states that F : C −→ D is an equivalence of C and D, implying the
existence of a suitable functor G : D −→ C. Equivalent categories share the same categorical
properties. Some �rst results are gathered in the next proposition. But we will see later that
equivalent categories share a lot more properties.

Proposition A.2.8 Let C and D be categories. Let furthermore F : C −→ D, G : D −→ C be
an equivalence of categories with natural isomorphisms η : G ◦ F =⇒ idC and ε : F ◦ G =⇒ idD.

i.) The functors F and G are faithful and full.

ii.) A morphism f : B −→ C in C is a monomorphism if and only if Ff : FB −→ FC is a
monomorphism in D.

iii.) A morphism f : A −→ B in C is an epimorphism if and only if Ff : FA −→ FB is an
epimorphism in D.

Again we can compose natural transformations. But this time there are actually two di�erent
versions of composition.

Proposition A.2.9 (Vertical composition of natural transformations) Let η : F =⇒ G
and µ : G =⇒ H be natural transformations between functors F,G,H : C −→ D. Their vertical
composition µ ◦ η : F =⇒ H is a natural transformation given by morphisms

(µ ◦ η)(A) = µ(A) ◦ η(A) : FA −→ HA (A.2.4)

for any A ∈ C.

Proof: In the diagram

FA FB

GA GB

HA HB

Ff

η(A) η(B)

Gf

µ(A) µ(B)

Hf

the upper and lower squares commute since η and µ are natural transformations. Hence the big
rectangle commutes, showing that µ ◦ η is a natural transformation. □
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The reason this is called vertical composition is that we can illustrate it as

C D

F

G

H

η

µ
⇝ C D

F

H

µ◦η .

Proposition A.2.10 (Horizontal composition of natural transformations)
Let η : F1 =⇒ G1 and µ : F2 =⇒ G2 be natural transformations between functors F1,G1 : A −→ B
and F2,G2 : B −→ C. Their horizontal composition µ ∗ η : (F2 ◦ F1) =⇒ (G2 ◦ G1) is a natural
transformation given by the morphisms

(µ ∗ η)(A) = µ(G1A) ◦ F2η(A) (A.2.5)

for each A ∈ A.

Proof: We need to show that the diagram

(F2 ◦ F1)A (F2 ◦ F1)B

(G2 ◦ G1)A (G2 ◦ G1)B

µ(G1A)◦F2η(A)

(F2◦F1)f

µ(G1B)◦F2η(B)

(G2◦G1)f

commutes for all f : A −→ B. We get

(G2 ◦ G1)f ◦ µ(G1A) ◦ F2η(A)
(a)
= µ(G1B) ◦ F2G1f ◦ F2η(A) = µ(G1B) ◦ F1(G1f ◦ η(A))
(b)
= µ(G1B) ◦ F2(η(B) ◦ F1f) = µ(G1B) ◦ F2η(B) ◦ F2F1f,

where we used in (a) the diagram (A.2.3) for the natural transformation µ and in (b) for the
natural transformation η. □

The horizontal composition can be visualized as

A B C

F1

G1

F2

G2

η µ ⇝ A C

F2◦F1

G2◦G1

µ∗η .

Remark A.2.11 Since µ is a natural transformation the de�nition of µ ∗ η by (A.2.5) is equiv-
alent to (µ ∗ η)(A) = G2η(A) ◦ µ(F1A).

De�nition A.2.12 (Adjoint functors) Let C and D be categories. An adjunction between
these categories consists of functors F : C → D and G : D → C as well as natural transformations
ε : F ◦ G =⇒ idD and η : idD =⇒ G ◦ F such that for each A ∈ C and each B ∈ C

idFA = ε(FA) ◦ F(η(A)) (A.2.6)

and

idGY = G(ε(Y )) ◦ η(G(Y )) (A.2.7)

holds. We call F left adjoint to G, and reversely G right adjoint to F.

We sometimes write F ⊣ G if F is left adjoint to G. In some contexts ev is used instead of ε
and coev is used instead of η.
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A.3 Limits and Colimits

Many of the standard notions in category theory we have seen so far � like initial/terminal object,
kernel/cokernel, but also equalizer, pullbacks etc. � are special cases of a more general notion,
so-called limits and colimits. For this we �rst have to give a precise de�nition of a diagram in
a category.

De�nition A.3.1 (Diagram) Let C be a category and I a small category. A functor D : I −→
C is called a diagram of shape I.

For a diagram D : I −→ C we will often write DI instead of D(I) for I ∈ I to indicate that
one should think of a diagram as an indexed class of objects and morphisms. Before de�ning
limits and colimits for diagrams we introduce the general notions of sources and sinks.

De�nition A.3.2 (Sources and sinks) Let C be a category.

i.) A source is an object C ∈ C0 together with a family of morphisms (fi : C −→ Ci)i∈I indexed
by some class I.

ii.) A sink is an object C ∈ C0 together with a family of morphisms (fi : Ci −→ C)i∈I indexed
by some class I.

We will also denote a source simply by its family of morphisms, since then the corresponding
object is clear. Given a diagram D : I −→ C and a source (fI : C −→ DI)I∈I, we say that this
source is a source of the diagram D if for all u : I −→ J in I the triangle

DI DJ

C

Du

fI fJ

(A.3.1)

commutes. We will denote such a source of a diagram by the pair (C, fI)I∈I since the domain
and codomain of each fI are clear from the diagram D. Note that sources of a diagram are also
often called cones in the literature. Dually we can de�ne sinks of a diagram. With this we can
de�ne for any diagram in a category the limit and colimit of it.

De�nition A.3.3 (Limit) Let D : I −→ C be a diagram in C of shape I. A limit of D is a
source (L, ℓI)I∈I of the diagram D with the following universal property: For any other source
(C, fI)I∈I of the diagram D there exists a unique morphism f : C −→ L with ℓI ◦ f = fI for all
I ∈ I. Put diagrammatically:

DI DJ

L

C

Du

ℓI ℓJ

f

fI fJ

(A.3.2)

commutes.
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The dual notion of a limit uses sinks of a diagram instead and is called colimit. Limits and
colimits of diagrams need not exist, but if they do they are unique up to unique isomorphisms
as usual.

Limits appear everywhere in category theory. To some degree one could even say that
category theory is the study of limits. To see why this is the case we list some limits we
encounter during this thesis.

Example A.3.4 (Limits and colimits) Let C be a category.
i.) An initial object is the limit of the empty diagram. Dually, a terminal object is the colimit

of the empty diagram.

ii.) The limit of a diagram D given by a discrete category I is the product of the objects
DI ∈ C. Dually, the colimit of such a discrete diagram is the coproduct.

iii.) If C has a zero object 0, the kernel of a morphism f : A −→ B is the limit of the diagram

A B
f

0
. (A.3.3)

Dually, the cokernel of f is the colimit of (A.3.3).

iv.) Generalizing the last example we call the limit of a diagram

A B
f

g
(A.3.4)

the equalizer of f and g. Dually, the colimit of (A.3.4) is called coequalizer of f and g.

v.) The limit of a diagram of the form

B

A C

g

f

(A.3.5)

is called pullback of f and g and denoted by f×C g. Dually, the colimit of (A.3.5) is called
pushout.

Proposition A.3.5 Let C be a category.

i.) Every equalizer is a monomorphism.

ii.) Every coequalizer is an epimorphism.

The reverse implication need not hold in general.

De�nition A.3.6 (Regular epi- and monomorphisms) Let C be a category.

i.) A morphism f : A→ B is called regular monomorphism if it is the equalizer of some pair
of morphisms.

ii.) A morphism f : A→ B is called regular epimorphism if it is the coequalizer of some pair
of morphisms.

We have already seen that initial objects, kernels and in general limits need not exist. Thus
it is of interest if we can transport existing limits to other categories via functors.
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De�nition A.3.7 (Preservation of limits) Let F : C −→ D be a functor and D : I −→ C a
diagram.

i.) The functor F is said to preserve a limit (fI : L −→ DI)I∈I if (FfI : FL −→ FDI)I∈I is a
limit of the diagram F ◦ D : I −→ D.

ii.) The functor F is said to preserve limits if it preserves limits of all shapes.

An important example of limit preserving functors is an equivalence of categories. Although
this is not surprising, since equivalent categories should have the same categorical properties,
the proof actually needs knowledge about adjunctions. Thus we simply state the theorem here
and refer to [Uni13, Chap. 9] for a proof.

Proposition A.3.8 (Equivalences preserve limits) Every equivalence F : C −→ D of catego-
ries preserves limits.

A.4 Monoids and Modules

We collect basic de�nitions and constructions of monoids and their modules internal to a given
monoidal category, see e.g. [KS06] for more about monoidal categories.

De�nition A.4.1 (Monoidal category) A monoidal category is a category C equipped with
the following data:

i.) A functor
⊗ : C× C → C (A.4.1)

called tensor product.

ii.) An object 1 ∈ C0 called unit.

iii.) A natural isomorphism

asso : ⊗ ◦ (⊗ × id) =⇒ ⊗ ◦ (id×⊗) (A.4.2)

called associativity. Diagrammatically:

C× C× C C× C

C× C C

⊗×id

id×⊗

⊗

⊗

asso (A.4.3)

iv.) Two natural isomorphisms
left : ⊗ ◦ (Id1 × id) =⇒ id (A.4.4)

called left identity and
right : ⊗ ◦ (id×Id1) =⇒ id (A.4.5)

called right identity. Diagrammatically:

1× C C C× 1

C× C C C

Id1×id left

≃ ≃

id id×Id1
right

⊗ ⊗

(A.4.6)

These data are required to ful�l the following coherence conditions:
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v.) Associativity coherence: the diagram

((A⊗ B)⊗ C)⊗ D (A⊗ (B ⊗ C))⊗ D

(A⊗ B)⊗ (C ⊗ D) A⊗ ((B ⊗ C)⊗ D)

(A⊗ (B ⊗ (C ⊗ D)))

asso(A,B,C)⊗idD

asso(A⊗B,C,D) asso(A,B⊗C,D)

asso(A,B,C⊗D) idA ⊗asso(B,C,D)

(A.4.7)
commutes for all objects A,B,C,D ∈ C0.

vi.) Identity coherence: the diagram

(A⊗ 1)⊗ B A⊗ (1⊗ B)

A⊗ B

asso(A,1,B)

right(A)⊗idB idA ⊗ left(B)
(A.4.8)

commutes for all objects A,B ∈ C0.

A monoidal category is called strict if the associativity, as well as the left and right identity
are not mere isomorphisms but strict equalities.

Example A.4.2

i.) The category Set of sets together with the cartesian product and any one-point set as unit
is a monoidal category.

ii.) The category Ab of abelian groups together with the tensor product of groups and the
group of integers Z as unit is a monoidal category.

iii.) The category Bimod(R,R) of bimodules over some ring R together with the tensor product
of bimodules and R as unit is a monoidal category.

The commutativity of a monoidal category is captured by the following notion. Here τ
denotes the �ip functor τ : C× C → C× C, τ(A, b) = (B,A).

De�nition A.4.3 (Symmetric monoidal category) A monoidal category C together with a
natural isomorphism

B : ⊗ =⇒ ⊗ ◦ τ (A.4.9)

such that
B ◦ B = id (A.4.10)

holds, is called symmetric if the diagram

(A⊗ B)⊗ C A⊗ (B ⊗ C)

(B ⊗ A)⊗ C (B ⊗ C)⊗ A

B ⊗ (A⊗ C) B ⊗ (C ⊗ A)

asso(A,B,C)

B(A,B)⊗id B(A,B⊗C)

asso(B,A,C) asso(B,C,A)

id⊗B(A,C)

(A.4.11)
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commutes for all A,B,C ∈ C0. The natural isomorphism B is called symmetric braiding.

Example A.4.4

i.) The monoidal category Set with the cartesian product is symmetric.

ii.) The monoidal category Ab with the tensor product of groups is symmetric.

iii.) For every commutative ring R the monoidal category Bimodsym(R,R) of symmetric bimod-
ules is symmetric.

De�nition A.4.5 (Lax Monoidal Functor) Let C and D be monoidal categories. A lax
monoidal functor is a functor F : C → D together with the following data:

i.) A morphism ε : 1D → F(1C).

ii.) A natural transformation η : ⊗D ◦F× F =⇒ F ◦ ⊗C.

These data are required to make the following diagrams commute for all A,B,C ∈ C:

i.) Associativity:(
F(A)⊗D F(B)

)
⊗D F(C) F(A)⊗D

(
F(B)⊗D F(C)

)

F(A⊗C B)⊗D F(C) F(A)⊗D F(B ⊗C C)

F
(
(A⊗C B)⊗C C

)
F
(
A⊗C (B ⊗C C)

)

η(A,B)⊗id

assoD(F(A),F(B),F(C))

id⊗η(B,C)

η(A⊗CB,C) η(A,B⊗CC)

F(assoC(A,B,C))

(A.4.12)

ii.) Unitality:

1D ⊗D F(A) F(1C)⊗D F(A)

F(A) F(1C ⊗C A)

ε⊗id

leftD(F(A)) η(1C,A)

F(leftC(A))

(A.4.13)

and
F(A)⊗D 1D F(A)⊗D F(1C)

F(A) F(A⊗C 1C)

id⊗ε

rightD(F(A)) η(A,1C)

F(rightC(A))

(A.4.14)

A lax monoidal functor with invertible ε and η is called monoidal, while an oplax monoidal
functor is a lax monoidal functor between the opposite categories.

By the microcosm principle [BD98] monoidal categories are the correct categorical setting
to de�ne monoids.

De�nition A.4.6 (Monoid) Let C be a monoidal category. A monoid object (or simply
monoid) is an object A ∈ C0 equipped with a morphism

µ : A⊗ A −→ A (A.4.15)

called multiplication and a morphism

η : 1 −→ A (A.4.16)
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called unit such that

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ A

A

asso

µ⊗idA idA ⊗µ

µ µ

(A.4.17)

and

1⊗ A A⊗ A A⊗ 1

A

η⊗idA

left
µ

idA ⊗η

right

(A.4.18)

commute.

This de�nition is just the usual de�nition of monoids written in terms of the maps that are
involved, instead of in terms of elements. In a symmetric monoidal category we can also de�ne
commutative monoids.

De�nition A.4.7 (Commutative monoid) A monoid A in a symmetric monoidal category
C is called commutative if the diagram

A⊗ A A⊗ A

A

B

µ µ
(A.4.19)

commutes. Here B denotes the symmetric braiding of C and µ denotes the multiplication of A.

A morphism of monoids can then be phrased as follows.

De�nition A.4.8 (Morphism of monoids) Let C be a monoidal category and let A and A′

be monoids with multiplications µ, µ′ and units η, η′, respectively. A morphism f : A −→ A′ is
a morphism of monoids if

A⊗ A A′ ⊗ A′

A A′

f⊗f

µ µ′

f

(A.4.20)

and
1

A A′

η
η′

f

(A.4.21)

commute.
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Written in elements (A.4.20) is just the compatibility with multiplication and (A.4.21) is the
preservation of the unit.

Corollary A.4.9 (Category of monoids) The monoids of a monoidal category C together
with morphisms of monoids as morphisms form a category, called category of monoids of C and
denoted by Mon(C).

Proof: For any monoid A the identity morphism idA is obviously a morphism of monoids. Let
f : A −→ A′ and g : A′ −→ A′′ be two morphisms of monoids. Then

(g ◦ f) ◦ µ = g ◦ µ′ ◦ (f ⊗ f) = µ′′ ◦ (g ⊗ g) ◦ (f ⊗ f) = µ′′ ◦ ((g ◦ f)⊗ (g ◦ f))

and
(g ◦ f) ◦ η = g ◦ η′ = η′′

show that g ◦ f : A −→ A′′ is a morphism of monoids. □

Any lax monoidal functor F : C → D induces a functor F : Mon(C) → Mon(D). For a sym-
metric monoidal category C the full subcategory of Mon(C) consisting of commutative monoids
is denoted by Moncom(C).

Example A.4.10

i.) In Set (commutative) monoid objects are usual (commutative) monoids and morphisms of
such monoid objects are the usual monoid homomorphisms.

ii.) In Ab (commutative) monoid objects are unital (commutative) rings and morphisms of
monoids are ring morphisms. Hence Mon(Ab) is Ring.

iii.) In Bimod(R,R) (commutative) monoid objects are unital (commutative) associative alge-
bras over the (commutative) ring R and morphisms of monoids are unital algebra homo-
morphisms. Hence Mon(Bimod(R,R)) is AlgR.

Thinking of monoids in a monoidal category as rings or algebras suggests how to proceed
from here. We can de�ne now modules over monoids by a categorical version of the usual
de�nition.

De�nition A.4.11 (Right module over a monoid) Let C be a monoidal category and let
A ∈ Mon(C) be a monoid. A right module over A is an object M ∈ C equipped with a morphism

ρ : M ⊗ A −→M, (A.4.22)

such that the diagrams

M ⊗ A⊗ A M ⊗ A

M ⊗ A M

ρ⊗idA

idM ⊗µ ρ

ρ

(A.4.23)

and

M ⊗ 1 M ⊗ A

M

idM ⊗η

right ρ
(A.4.24)

commute.
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A left module over a monoid A is then de�ned analogously. Note that we implicitly used the
associativity isomorphism in (A.4.23). Requiring an additional compatibility between given left
and right module structures gives a bimodule.

De�nition A.4.12 (Bimodule over monoids) Let C be a monoidal category and let A,B ∈
Mon(C) be monoids. A (B,A)-bimodule is an object M ∈ C together with morphisms

λB : B ⊗M −→M (A.4.25)

and
ρA : M ⊗ A −→M, (A.4.26)

such that M is a left B-module with respect to λB and a right A-module with respect to ρA and

B ⊗M ⊗ A M ⊗ A

B ⊗M M

λB⊗idA

idB ⊗ρA ρA

λB

(A.4.27)

commutes.

Note that any monoid A ∈ Mon(C) can be seen as a (A,A)-bimodule by taking as left and
right actions the multiplication of the monoid. As before also the notion of morphisms can be
transferred to the categorical case without any problems.

De�nition A.4.13 (Morphism of right modules) Let C be a monoidal category. Moreover,
let A ∈ Mon(C) be a monoid and let (M,ρM ), (M ′, ρM ′) be right A-modules. A morphism
f : M −→M ′ is called morphism of right modules if

M ⊗ A M ′ ⊗ A

M M ′

f⊗idA

ρM ρM′

f

(A.4.28)

commutes.

A morphism of left modules is de�ned analogously and a morphism of bimodules is simply
a morphism that respects both the left and right module structure.

Corollary A.4.14 (Categories of modules) Let C be a monoidal category and consider mo-
noids A,B ∈ Mon(C). Left B-modules, right A-modules and (B,A)-bimodules together with the
appropriate notion of morphism form categories, denoted by A-ModC, ModC-B and BimodC(B,A),
respectively.

Proof: We only prove the statement for right modules, the other cases can be done similarly.
First, it is clear that for any right A-module (M,ρM ) the identity morphism idM in C is a
module morphism. Moreover, for right A-module morphisms f : (M,ρM ) −→ (M ′, ρM ′) and
g : (M ′, ρM ′) −→ (M ′′, ρM ′′) we have

ρM ′′ ◦ (g ◦ f)⊗ idA = ρM ′′ ◦ (g ⊗ idA) ◦ (f ⊗ idA) = g ◦ ρM ′ ◦ (f ⊗ idA) = (g ◦ f) ◦ ρM ,

and thus g ◦ f is a morphism of right A-modules. Finally, from the associativity of the compo-
sition in C follows directly the associativity of the composition of module morphisms. □
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These categories of modules indeed reproduce the various notions of modules we know from
algebra.

Example A.4.15

i.) In Set a module over a monoid is just an action of a monoid on a set.

ii.) In Ab a module over a monoid is a module over a ring in the usual sense of algebra.

iii.) In Bimod(R) a module over a monoid is a module over an algebra over R.

The main feature of the tensor product of modules over a given ring (or algebra) is that
we are able to either let a ring element act from the right on the left component of the tensor
product or from the left on the right component of the tensor product. This suggests to de�ne
the tensor product as the coequalizer of these two actions. But to de�ne the tensor product this
way we need an additional requirement for the monoidal category we start with.

De�nition A.4.16 (Tensor product of modules) Let C be a monoidal category with co-
equalizers and let B ∈ Mon(C) be a monoid. For any left B-module M ∈ B-ModC and right
B-module N ∈ ModC-B the coequalizer of the left and right actions

N ⊗ B ⊗M N ⊗M N ⊗B M
ρN⊗idM

idN ⊗λM
(A.4.29)

de�nes N ⊗B M ∈ C0, which is called tensor product of N and M over B.

This construction can actually be seen as a functor as follows.

Proposition A.4.17 Let C be a monoidal category with coequalizers and let B ∈ Mon(C) be a
monoid. The tensor product of modules over B de�nes a functor

⊗B : ModC-B ×B-ModC −→ C. (A.4.30)

Proof: Let f : M −→ M ′ and g : N −→ N ′ be morphisms between left B-modules M,M ′ ∈
B-ModC and right B-modules N,N ′ ∈ ModC-B, respectively. Together with the coequalizer
property of N ⊗B M and N ′ ⊗B M

′ we get

N ⊗ B ⊗M N ⊗M N ⊗B M

N ′ ⊗ B ⊗M ′ N ′ ⊗M ′ N ′ ⊗B M
′

ρN⊗idM

idN ⊗λM
g⊗idB ⊗f

p

g⊗f

ρN′⊗idM′

idN′ ⊗λM′

p′

,

where p and p′ denote the coequalizers of the given actions. The left square of this diagram
commutes for both actions. Indeed,

(idN ′ ⊗λM ′) ◦ (g ⊗ idB ⊗f) = (idN ′ ◦g)⊗ (λM ′ ◦ idB ⊗f)
= (g ◦ idN )⊗ (f ◦ λM )

= (g ⊗ f) ◦ (idN ⊗λM )

and

(ρ′N ⊗ idM ′) ◦ (g ⊗ idB ⊗f) = (ρN ′ ◦ g ⊗ idB)⊗ (idM ′ ◦f)
= (g ◦ ρN )⊗ (f ◦ idM )
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= (g ⊗ f) ◦ (ρN ⊗ idM )

holds due to f and g being module morphisms and the functoriality of ⊗. Thus it follows that

(p′ ◦ g ⊗ f) ◦ (ρN ⊗ idM ) = (p′ ◦ g ⊗ f) ◦ (idN ⊗λM ),

and hence by the universal property ofN⊗BM there exists a unique morphism g⊗Bf : N⊗BM →
N ′⊗B M

′. Then idN ⊗B idM = id(N ⊗B M) is clear, and the fact that ⊗B respects composition
can be deduced by adding another coequalizer diagram at the bottom of the diagram above. □

In case that N is not only a right B-module but a (C,B)-bimodule we would like to transfer
the left C-bimodule structure onto the tensor product N ⊗B M . The same would be desirable
forM being a (B,A)-bimodule. To achieve this we need that the tensor product of the monoidal
category preserves coequalizers in the following sense: we say that ⊗ preserves coequalizers in
the �rst component if for every coequalizer

A B Q
f

g

p
(A.4.31)

and every C ∈ C0

A⊗ C B ⊗ C Q⊗ C
f⊗idC

g⊗idC

p⊗idC (A.4.32)

is a coequalizer. Analogously, we de�ne preserving coequalizers in the second component.

Proposition A.4.18 (Tensor product of bimodules) Let C be a monoidal category with co-
equalizers such that ⊗ preserves coequalizers in both components. For M ∈ BimodC(B,A) and
N ∈ BimodC(C,B) the tensor product N ⊗B M over B is a (C,A)-bimodule with actions given
by idN ⊗BρM and λN ⊗B idM .

Proof: We only construct the right A-module structure on N ⊗B M . The left C-module
structure can then be de�ned in a completely analogous fashion. Since ⊗ preserves coequalizers
in the �rst component we get two coequalizers

N ⊗B (M ⊗ C)

N ⊗ B ⊗M ⊗ C N ⊗M ⊗ C

(N ⊗B M)⊗ C

ρN⊗idM ⊗ idC

idN ⊗λM⊗idC

p′

p⊗idC

.

Then if follows from the universal property of coequalizers that N ⊗B (M ⊗C) ≃ (N ⊗BM)⊗C.
Thus we can de�ne the right C action of N ⊗B M by idN ⊗BρM : (N ⊗B M)⊗ C ≃ N ⊗B (M ⊗
C) −→ N ⊗B M . Using the associativity isomorphisms of the tensor product one can easily
verify that the such de�ned left and right actions indeed commute. □

With this the functor ⊗B from Proposition A.4.17 gives directly a functor

⊗B : BimodC(C,B)× BimodC(B,A) −→ BimodC(C,A). (A.4.33)

Putting all of these constructions together we are �nally able to construct a bicategory with
objects given by monoids in a monoidal category. The 1-morphisms of this bicategory are the
bimodules over the given monoids and 2-morphisms are bimodule morphisms.
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Theorem A.4.19 (The bicategory BimodC) Let C be a monoidal category with coequalizers
such that ⊗ preserves coequalizers in both components. Then the following data de�nes a bicat-
egory BimodC:

i.) The objects (BimodC)0 = Mon(C) are given by the monoids in C.

ii.) For any two monoids A,B ∈ Mon(C) the category of 1- and 2-morphisms from B to A is
given by BimodC(B,A), the category of (B,A)-bimodules together with bimodule homomor-
phisms, see Corollary A.4.14.

iii.) For any three monoids A,B,C ∈ Mon(C) the tensor product functor

⊗B : BimodC(C,B)× BimodC(B,A) −→ BimodC(C,A) (A.4.34)

given as in Proposition A.4.18.

iv.) For each monoid A ∈ Mon(C) the identity over A is A itself considered as an (A,A)-
bimodule.

Proof: The statements listed hold true due to the referred results. In order to de�ne a bicate-
gory the existence of natural transformations for associativity and left/right units are required.
These can be constructed by transferring the natural isomorphisms of the monoidal category C,
but this involves a lot of small statements to be checked, as well as some not so trivial arguments
for functor categories. Surprisingly, this result seems to be common knowledge among category
theorists, but there is no publication doing exactly these computations (as far as the author
knows), so we cannot give a reference for this proof. Nevertheless, there are some generaliza-
tions of this construction available in the literature. See [Lei04, Sec. 5.3] for a discussion using
generalized multicategories or [Hau17, Sec. 2] using ∞-categories. □

Example A.4.20

i.) The bicategory BimodAb is the bicategory of rings, modules and module homomorphisms.

ii.) The bicategory BimodBimod(R) is the bicategory of R-algebras, bimodules and module ho-
momorphisms.

A.5 Re�ection Theorems

Consider a functor U : X → C from an arbitrary category to a monoidal category (C,⊗). Under
which conditions can we �pull back� the monoidal structure from C to a monoidal structure on
X? This is clearly possible if U is an equivalence of categories, but it is also possible in a more
general setup.

De�nition A.5.1 (Re�ective subcategory) Let C be a category.

i.) A full subcategory of C is a category X together with a fully faithful functor U : X → C.

ii.) A re�ective subcategory of C is a full subcategory U : X → C such that U admits a left
adjoint.

Having a re�ective subcategory is close to having an equivalence of categories as the following
lemma shows.

Lemma A.5.2 Let U : X → C be a functor. Then the following statements are equivalent:

i.) X is a re�ective subcategory of C via U.

ii.) The functor U has a left adjoint F : C → X such that the counit ε : FU ⇒ idX is a natural
isomorphism.
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In [Day70; Day72] Day gave a list of equivalent conditions under which a closed symmet-
ric monoidal structure on C induces a closed symmetric monoidal structure on X such that F
becomes monoidal. We give a simpli�ed version of Day's re�ection theorem for monoidal cate-
gories without any additional closedness or symmetry requirement. The proof follows the idea
of [Day70].

Theorem A.5.3 (Re�ection Theorem) Let C be a monoidal category and let U : X → C be
a re�ective subcategory with unit denoted by η : idC ⇒ UF. If

F(η ⊗ η)A,B : F(A⊗ B) → F(UF(A)⊗ UF(B)) (A.5.1)

is an isomorphism for all A,B ∈ C, then there exists a monoidal structure on X such that F
becomes a monoidal functor, which is unique up to monoidal equivalence.

Proof: De�ne ⊗̂ : X × X → X by ⊗̂ := F ◦ ⊗ ◦ (U × U) and 1̂ := F1. We de�ne the natural
isomorphisms l̂eft : ⊗̂ ◦ (Id1× id) → id and r̂ight : ⊗̂ ◦ (id×Id1) → id by setting l̂eftX and r̂ightX
for every X ∈ X as the unique isomorphisms making

F(1⊗ UX) FUX

F(UF1⊗ UFUX)

F(UF1⊗ UX) X

F leftUX

εX

F(η⊗η)−1
1,UX

F(id⊗Uε−1
X )

l̂eftX

and

F(UX ⊗ 1) FUX

F(UFUX ⊗ UF1)

F(UX ⊗ UF1) X

F rightUX

εX

F(η⊗η)−1
UX,1

F(Uε−1
X ⊗id)

r̂ightX

commute. Similarly, we de�ne âsso : ⊗̂ ◦ (⊗̂ × id) ⇒ ⊗̂ ◦ (id×⊗̂) by setting âssoX,Y,Z as the
unique isomorphism making

F((UX ⊗ UY )⊗ UZ) F(UX ⊗ (UY ⊗ UZ))

F(UF(UX ⊗ UY )⊗ UFUZ) F(UFUX ⊗ UF(UY ⊗ UZ))

F(UF(UX ⊗ UY )⊗ UZ) F(UX ⊗ UF(UY ⊗ UZ))

FassoUX,UY,UZ

F(η⊗η)UX,UY ⊗UZF(η⊗η)−1
UX⊗UY,UZ

F(UεX⊗id)F(id⊗Uε−1
Z )

âssoX,Y,Z

commute. We need to check the coherences. For the identity coherence take the above de�ning
diagrams for r̂ight and l̂eft and take the ⊗̂-product with X and Y , respectively. Gluing the
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resulting diagrams together yields the following:

F((UX ⊗ 1)⊗ UY ) F(UX ⊗ (1⊗ UY ))

F(UF(UX ⊗ U1̂)⊗ UY ) F(UX ⊗ UF(U1̂⊗ UY ))

F(UX ⊗ UY )

F(UX ⊗ UY )

F(rightUX ⊗ id)

FassoUX,1,UY

F(id⊗ leftUY )

F(Ur̂ightX⊗id)

âssoX,1̂,Y

F(id⊗Ul̂eftY )

The inner triangle is the identity coherence we need to verify, while the outer triangle commutes
by the identity coherence for ⊗. The unlabelled morphisms from the inner triangle to the
outer triangle are given by the sides of de�ning diagrams for âsso, l̂eft and r̂ight. Since these
commute we obtain the identity coherence for ⊗̂. With the same strategy we can glue the
de�ning diagram for âsso to every edge of the associativity coherence for ⊗̂. Then the outer
pentagon is the associativity coherence for ⊗, showing that the inner pentagon also commutes.
Since this diagram becomes too large, we refer instead to [Day70].

To show the uniqueness suppose ⊗̃ is another monoidal structure on X such that F becomes
monoidal. Then the identity functor on X yields a monoidal equivalence, since we have natural
isomorphism implementing

X⊗̃Y ≃ FUX⊗̃FUY ≃ F(UX ⊗ UY ) ≃ X⊗̂Y

for all X,Y ∈ X. □
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Appendix B

Poisson Geometry

For the convenience of the reader we give some basic de�nitions and results from Poisson geom-
etry and coisotropic reduction. All of this can be found in a similar fashion in standard text
books like [MR99] and [CFM21]. See also [OR04] for an in-depth treatment of various reductions
schemes.

De�nition B.1 (Poisson algebra) Let k be a commutative unital ring with 1 ̸= −1. A Pois-
son algebra is a pair (A, { · , · }) of an associative algebra A over k and a k-linear map

{ · , · } : A ⊗k A −→ A (B.1)

ful�lling the following properties for all a, b, c ∈ A:

i.) Antisymmetry:
{a, b} = −{b, a} (B.2)

ii.) Jacobi identity:
{a, {b, c}} = {{a, b}, c}+ {b, {a, c}} (B.3)

iii.) Leibniz rule:
{a, bc} = {a, b}c+ b{a, c} (B.4)

The map { · , · } is called Poisson bracket.

A morphism of Poisson algebras Φ: (A, { · , · }A) −→ (B, { · , · }B) between two Poisson
algebras is an algebra homomorphism Φ: A −→ B with Φ({a, a′}A) = {Φ(a),Φ(a′)}B for all
a, a′ ∈ A.

De�nition B.2 (Poisson manifold) A Poisson manifold is a pair (M, { · , · }) of a smooth
manifold M together with a map { · , · } : C∞(M)⊗k C∞(M) −→ C∞(M) turning C∞(M) into
a Poisson algebra.

A Poisson map Φ: (M1, { · , · }1) −→ (M2, { · , · }2) between two Poisson manifolds is a
smooth map Φ: M1 →M2 such that Φ∗ : C∞(M2) −→ C∞(M1) is a morphism of Poisson alge-
bras. By antisymmetry and Leibniz rule every Poisson bracket { · , · } is a biderivation, hence for
every Poisson manifold (M, { · , · }) there exists a bivector �eld π ∈ Γ∞(Λ2TM), called Poisson
tensor, such that

{f, g} = π(df ⊗ dg) (B.5)

for all f, g ∈ C∞(M). Hence we will also denote a Poisson manifold by (M,π) if we want to
stress the Poisson tensor. Every such Poisson tensor induces a musical homomorphism

· # : T ∗M ∋ αp 7→ α#
p := πp( · , αp) ∈ TM, (B.6)
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which allows us to de�ne the Hamiltonian vector �eld

Xf := (df)# (B.7)

for every f ∈ C∞(M).

De�nition B.3 (Coisotropic submanifold) Let (M,π) be a Poisson manifold. A subman-
ifold C ⊆ M is called coisotropic if TpC ⊆ TpM is a coisotropic subspace for all p ∈ C, i.e.
if

(TpC
ann)♯ ⊆ TpC (B.8)

holds for all p ∈ C.

We can always view a Poisson manifold in two di�erent ways: we can either focus on a
geometric description as a pair (M,π) of a manifold with additional structure, or on an algebraic
description by considering instead the Poisson algebra (C∞(M), { · , · }). In a similar way we
can assign to a submanifold C ⊆M an algebraic object, the vanishing ideal of C

IC :=
{
f ∈ C∞(M) | f

∣∣
C
= 0
}
. (B.9)

Proposition B.4 (Vanishing ideal) Let M be a manifold with closed submanifold ι : C −→
M .

i.) The vanishing ideal IC of C is an ideal inside the algebra C∞(M).

ii.) The algebras C∞(M)/IC and C∞(C) are isomorphic via the map

C∞(M)/IC ∋ [f ] 7−→ ι∗f ∈ C∞(C). (B.10)

The inverse of (B.10) can be constructed using a tubular neighbourhood. The following propo-
sition gives a geometric and an algebraic characterization of coisotropic submanifolds using the
vanishing ideal.

Proposition B.5 (Coisotropic submanifolds) Let (M,π) be a Poisson manifold and let
C ⊆M be a submanifold. Then the following statements are equivalent:

i.) The submanifold C is coisotropic.

ii.) For all f ∈ IC it holds Xf (p) ∈ TpC for all p ∈ C.

iii.) The vanishing ideal IC is a Poisson subalgebra of C∞(M).

The distribution generated by the Hamiltonian vector �elds of functions vanishing on the
coisotropic submanifold will play an important role in coisotropic reduction.

De�nition B.6 (Characteristic distribution) Let (M,π) be a Poisson manifold with coiso-
tropic submanifold C ⊆M . The distribution on C spanned by the Hamiltonian vector �elds Xf

of a function f ∈ IC is called the characteristic distribution of C.

It can then be shown that this is in fact an integrable distribution on C, given by the
subspace (TpC

ann)♯ ⊆ TpC at every point p ∈ C. Again, we would like to have an equivalent
algebraic description of this quite geometric notion, similar to the ones we presented for Poisson
manifolds and coisotropic submanifolds. For this we �rst need the following construction.

De�nition B.7 (Poisson normalizer) Let A be a Poisson algebra and let I ⊆ A be an
ideal for the associative and commutative product as well as a Poisson subalgebra. The Poisson
subalgebra given by

BI = {a ∈ A | {a,I} ⊆ I} (B.11)

is called the Poisson normalizer of I.
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It is clear that BI is the largest Poisson subalgebra containing I as a Poisson ideal. If
I = IC is the vanishing ideal of a submanifold C ⊆ M we will simply write BC . Thus we
can always assign a Poisson normalizer BC ⊆ C∞(M) to a coisotropic submanifold C ⊆ M
of a Poisson manifold M . In general one even calls an ideal I ⊆ A in a Poisson algebra
coisotropic if I is in addition a Poisson subalgebra. This Poisson normalizer now encodes the
same information as the characteristic distribution of a coisotropic submanifold, thus giving us
the algebraic formulation we were searching for.

Proposition B.8 Let (M,π) be a Poisson manifold with coisotropic submanifold C ⊆M . For
a function f ∈ C∞(M) the following statements are equivalent:

i.) One has f ∈ BC .

ii.) The Hamiltonian vector �eld Xf is tangent to C.

iii.) The function ι∗f ∈ C∞(C) is constant along the leaves of the characteristic foliation of
C.

iv.) One has Lι∗Xg ι
∗f = 0 for all g ∈ IC , where ι∗Xg denotes the restriction of Xg to C,

which is possible since C is coisotropic.

Finally, we want to identify all points along the leaves of the characteristic distribution,
thus obtaining a quotient Mred = C/∼. If this quotient is indeed a manifold we can equip the
algebra of functions C∞(Mred) with a Poisson structure πred. The corresponding quotient on
the algebraic side is given by BC/IC , which is a Poisson algebra consisting of the functions on
C that are constant along the leaves of the characteristic distribution. The observation that the
geometric and the algebraic description lead to essentially the same reduction is made precise
by the following theorem.

Theorem B.9 (Coisotropic reduction) Let (M,π) be a Poisson manifold with a closed co-
isotropic submanifold C ⊆M such that the projection

π : M −→ C/∼ =Mred (B.12)

is a surjective submersion for a smooth structure on the leaf space Mred of the characteristic
distribution of C. Then there exists a unique Poisson structure πred on Mred such that

BC/IC ∋ [f ] 7−→ ι∗f ∈ π∗ C∞(Mred) ⊆ C∞(C) (B.13)

is an isomorphism of Poisson algebras.
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Glossary

Symbols

E,F, G, . . . (constraint) modules 29
E∗ (constraint) dual of the (constraint) module E 51
A,B, . . . (constraint) algebras 49
Astr strong hull of the constraint algebra A 60
A(M) free (strong) constraint right A-module generated by M 64
k (commutative) unital ring 10
K �eld 10
ℏ Planck's constant 1
⋆ star product 1
× product 15, 40
⊕ direct sum 30, 47, 100
⊔ coproduct or disjoint union 15, 40
eq equalizer 16, 40
coeq coequalizer 16, 30, 41
∩ intersection 42
∪ union of (constraint) sets or cup product 42, 155
ker kernel 30
coker cokernel 30
im image 19, 32
regim regular image 19, 32
ev evaluation 20, 33
coev coevaluation 20, 33
i insertion 120
U forgetful functor 10
F free functor 10
C∞(M) real or complex valued smooth functions on a manifold M 1
CC∞(M) real or complex valued smooth functions on a constraint manifold M 92
Cstr C∞(M) real or complex valued smooth functions on a strong constraint manifold M

93
Γ∞(E) smooth sections of the vector bundle E 5
CΓ∞(E) constraint sections of a constraint vector bundle E 107
C∞(M)D functions on M invariant along the distribution D 3
C∞
D (M) functions on M which are on a submanifold invariant along the distribution

D 3
IC vanishing ideal of the subset C 3
∇ (constraint) covariant derivative or partial connection 95, 131
∇Bott Bott-connection 98
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GLOSSARY

{ · , · } (constraint) Poisson bracket 1, 88
[ · , · ] commutator, (constraint) Lie bracket or (constraint) Gerstenhaber bracket

1, 86
J · , · K (constraint) Schouten bracket 124
L Lie derivative 119
Map(M,N) set of maps between (constraint) sets 14
CMap(M,N) constraint set of maps between constraint sets 19
CstrMap(M,N) strong constraint set of maps between strong constraint sets 24
CHomk(E,F) constraint module of k-linear morphisms of constraint modules 33
CHomA(E,F) constraint module of A-linear morphisms of constraint modules 51
CHom(E,F ) constraint homomorphism bundle between constraint vector bundles E and

F 99
CEnd(V ) constraint endomorphisms of a constraint vector space or constraint vector

bundle V 49
Aut(M) automorphisms of M 28
CAut(M) constraint automorphisms of a constraint set M 25
Z(A) (constraint) center of a (constraint) algebra A 49
Der(A) derivations of a (constraint) algebra 51
CDer(A) constraint set of derivations of a constraint algebra 52
CInnDer(A) constraint set of inner derivations of a constraint algebra 156
⊗ tensor product of constraint index sets or constraint vector bundles 42, 47, 100
⊗k tensor product over the ring k 32
⊗emb
k

embedded tensor product over the ring k 34
⊠ strong tensor product of constraint index sets or constraint vector bundles

42, 47, 100
⊠k strong tensor product over the ring k 36
⊠emb
k

embedded strong tensor product over the ring k 38
⊗A tensor product over the (constraint) algebra A 50
⊗emb

A embedded tensor product over the constraint algebra A 53
⊠emb

A embedded strong tensor product over the constraint algebra A 59
Sk⊗E k-fold symmetric tensor power of E 102
Λk⊗E k-fold antisymmetric tensor power of E 102
Sk⊠E k-fold symmetric strong tensor power of E 102
Λk⊠E k-fold antisymmetric strong tensor power of E 102

shorthand for subsets of products 43
dim dimension of a (constraint) vector spaces or (constraint) manifolds 47, 91
TM constraint tangent bundle of a constraint manifold M 98
E∗ (constraint) dual bundle of the (constraint) vector bundle E 101
rank(E) rank of a (constraint) vector bundle E 96
AnnV (U) annihilator of the subspace (subbundle) U of V 47, 101
DiffOp di�erential operators 127
CDiffOp constraint di�erential operators 127
σk (constraint) leading symbol 129
CΩ•

⊗(M) constraint di�erential forms on a constraint manifold M 120
CΩ•

⊗(M) constraint di�erential forms on a constraint manifold M 120
CX•

⊗(M) constraint multivector �elds on a constraint manifold M 123
CX•
⊠(M) constraint multivector �elds on a constraint manifold M 123

CX2
ext(M)T extended constraint bivector �elds on a constraint manifold M 165

d de Rham di�erential 120
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GLOSSARY

δ (constraint) Hochschild di�erential 154
H cohomology functor 85
HH• (constraint) Hochschild cohomology 156
HdR de Rham cohomology 121
MC(g) Maurer-Cartan elements of a (constraint) di�erential graded Lie algebra g

149
G(g) gauge group of a (constraint) Lie algebra g 150
Def deformation functor 152
Cn(A) (constraint) Hochschild complex 153
U Hochschild-Kostant-Rosenberg map 160
Uext extended constraint Hochschild-Kostant-Rosenberg map 165

Categories

CSet constraint sets 14
CembSet embedded constraint sets 21
CstrSet strong constraint sets 23
CindSet constraint index sets 40
Cemb
ind Set embedded constraint index sets 42

Group groups 27
CGroup constraint groups 25
GroupAct groups actions and equivariant maps along morphisms of groups 28
CGroupAct constraint groups actions and equivariant maps along morphisms of groups

26
Modk k-modules 35
CModk constraint k-modules 29
CMod•

k
graded constraint k-modules 85

Ch(CModk) constraint complexes of k-modules 85
CembModk embedded constraint k-modules 34
CstrModk strong constraint k-modules 36
Cemb
str Mod

k
embedded strong constraint k-modules 38

Alg algebras 53
CAlg constraint algebras 49
CembAlg embedded constraint algebras 52
CstrAlg strong constraint algebras 55
Cemb
str Alg embedded strong constraint algebras 57

CModA constraint right A-modules 50
CstrModA strong constraint right A-modules 56
CModB constraint left B-modules 50
CstrModB strong constraint left B-modules 56

CBimod(B,A) constraint (B,A)-bimodules 50
CstrBimod(B,A) strong constraint (B,A)-bimodules 56
Cemb
str Bimod(B,A) embedded strong constraint (B,A)-bimodules 57, 58

Cemb
str Bimod(A)sym symmetric embedded strong constraint A-bimodules 61

Bimod bicategory of algebras and their bimodules 54
CBimod bicategory of constraint algebras and their bimodules 51
CembBimod bicategory of embedded constraint algebras and their bimodules 53
CProj(A) �nitely generated projective constraint A-modules 76
CstrProj(A) �nitely generated projective strong constraint A-modules 79
LieAlg Lie algebras 88
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GLOSSARY

CLieAlg constraint Lie algebras 86
DGLA di�erential graded Lie algebras 88
CDGLA constraint di�erential graded Lie algebras 87
Manifold constraint manifolds 93
CManifold constraint manifolds 90
CstrManifold strong constraint manifolds 93
Vect(M) vector bundles over �xed manifold M 111
CVectK constraint K-vector spaces 46
CVect constraint vector bundles 96
CVect(M) constraint vector bundles over �xed constraint manifold M 96
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Index

A
adapted chart, 91, 92
adjoint functors, 178

B
basis of constraint vector space, 47
bimonoid, 186

C
cardinality of constraint index set, 44
category, 171
center, 49
classical limit, 144
coequalizer, 180

constraint k-modules, 30
constraint index sets, 41
constraint sets, 16

coevaluation, 20, 33
coisotropic submanifold, 91, 92, 124, 125,

194
cokernel, 174, 180

constraint k-modules, 30
colimit, 180
constraint

k-module, 29
algebra, 49
automorphisms, 25
bimodule, 50
bivector �elds, 123
Cartan calculus, 120
cohomology, 85, 87
complex, 85
cotangent bundle, 102
covariant derivative, 132
cup product, 155
de Rham cohomology, 121
de Rham di�erential, 120
deformation, 158
deformation functor, 152
derivations, 87

di�erential forms, 120
di�erential graded Lie algebra, 87, 149
di�erential operators, 128
embedded, see embedded constraint
endomorphisms, 49, 87
functions on a set, 49, 52, 57
functions on constraint manifold, 92, 94
Gerstenhaber bracket, 154
group, 25
action, 26

HKR map, 165
Hochschild cohomology, 156, 166
Hochschild complex, 153, 155
Hochschild di�erential, 154
Hochschild-Kostant-Rosenberg

Theorem, 169
homomorphism bundle, 101, 110
index sets, 40
inner derivations, 156
leading symbol, 130, 139
left module, 50
Lie algebra, 86
Lie algebroid, 108
Lie algebroids, 121
Lie derivative, 119, 120
Lie-Rinehart algebra, 87
local frame, 97, 108
manifold, 90
Maurer-Cartan element, 149
Maurer-Cartan functor, 150
multidi�erential operator, 137
multivector �elds, 123, 149, 160
Poisson algebra, 88, 146
Poisson manifold, 125, 146
right module, 50
Schouten bracket, 125
sections, 107, 117
set, 14
star product, 144
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INDEX

strong, see strong constraint
symbol calculus, 135, 140
symbol map, 136
tangent bundle, 98
vector bundle, 95
vector �elds, 118
vector space, 46

coproduct, 180
constraint k-modules, 30
constraint index sets, 40
constraint sets, 15

covariant derivative, 135
partial, see partial connection

D
deformation of constraint algebra, 145
derivations, 51, 52
diagram, 179
dimension

constraint manifold, 91
constraint vector space, 47

direct sum
constraint k-modules, 30
constraint vector bundles, 100
constraint vector spaces, 47

dual
constraint covariant derivative, 134
constraint index set, 42
constraint vector bundle, 101, 111
constraint vector space, 47

dual basis, 77, 79
dual module, 51, 69, 72, 80

E
embedded constraint

k-module, 34
algebra, 52
bimodule, 53
set, 21

embedded strong constraint
k-module, 38
algebra, 57
bimodule, 57
tensor product
k-modules, 38

epimorphism, 173
constraint k-modules, 31
constraint index sets, 41
constraint sets, 17
regular, 74, 180

constraint k-modules, 31
constraint index sets, 41
constraint sets, 17

equalizer, 180
constraint index sets, 40
constraint sets, 16

equivalence
categories, 177, 181
deformations, 145, 159

evaluation, 20, 33

F
�ber of a constraint vector bundle, 96
�nal object

constraint k-modules, 30
constraint index sets, 40
constraint sets, 15

formal power series, 143
free

constraint module, 64, 66
strong constraint module, 71

free strong constraint modules, 111
functor, 175

G
gauge action, 151
gauge group, 150
graded constraint module, 84
graded manifold, 97

H
Hochschild-Kostant-Rosenberg Theorem,

160
holonomy free, 95

I
image

constraint k-modules, 32
constraint sets, 19
factorization, 31
regular, 85
constraint k-modules, 32
constraint sets, 19

in�nitesimal ideal system, 108
initial object, 174, 180

constraint k-modules, 30
constraint index sets, 40
constraint sets, 15

insertion, 63, 120, 135
internal hom

constraint k-modules, 33
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constraint modules, 51
embedded strong constraint bimodules,

58
intersection of constraint index subsets, 42

K
K-Theory, 170
kernel, 174, 180

constraint k-modules, 30

L
LieBracket, 154
limit, 179

M
Maurer-Cartan element, 149
monoid object, 183
monoidal category, 181

symmetric, 182
monomorphism, 173

constraint k-modules, 31
constraint index sets, 41
constraint sets, 17
regular, 180
constraint k-modules, 31
constraint index sets, 41
constraint sets, 17

Morita equivalence, 51, 170
multidi�erential operator, 137

N
natural transformation, 176

P
partial connection, 95
partition of unity, 93
Poincaré Lemma, 122
Poisson submanifold, 124
preimage of constraint subset, 19
product, 180

category, 172
constraint k-modules, 30
constraint index sets, 40
constraint sets, 15

projective
constraint index set, 46
constraint module, 74, 76
constraint set, 22
strong constraint modules, 78

pullback, 180
constraint k-modules, 30

constraint index sets, 40
constraint sets, 15

pushout, 180

Q
quotient data, 97
quotient manifold algebra, 54
quotient of constraint modules, 32

R
rank of a constraint vector bundle, 96
reduction

k-modules, 35
algebras, 53
automorphisms, 27
bimodules, 54
cohomology, 86
constraint index sets, 42
deformation functor, 152
derivations, 54
di�erential forms, 122
di�erential graded Lie algebras, 88
di�erential operators, 131
free constraint modules, 70
free strong constraint modules, 73
group action, 28
groups, 27
HKR map, 167
Hochschild cohomology, 157
Lie algebras, 88
manifold, 93
multivector �elds, 126
Poisson manifold, 127
projective modules, 78
projective strong constraint modules,

84
sections, 117
sets, 22
strong constraint bimodules, 63
strong constraint sets, 24
strong tensor product
k-modules, 39

symbol calculus, 136, 141
symbol map, 136
tensor product
k-modules, 39

vector bundles, 104
re�ection theorem, 190
re�ective subcategory, 189
right module, 185
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S

saturated subset, 23, 93
sections, see constraint sections
Serre-Swan Theorem, 114
simple distribution, 90
splitting lemma, 75
strong constraint

k-module, 36
algebra, 55
bimodule, 56
group, 29
manifold, 93
set, 23

strong hull
constraint algebra, 60
constraint bimodule, 61
constraint set, 24

strong tensor product
constraint k-modules, 36
constraint covariant derivatives, 134
constraint index sets, 42
constraint vector bundles, 100, 115, 116
constraint vector spaces, 47
embedded, 59
strong constraint bimodules, 57

subcategory, 176

submanifold algebra, 54
submodule of constraint module, 32
subset

constraint index set, 41
constraint set, 18

symmetric braiding, 183
symmetrized constraint covariant

derivative, 134

T
tensor product

constraint k-modules, 32
constraint bimodules, 50
constraint covariant derivatives, 134
constraint index sets, 42
constraint vector bundles, 100, 115, 116
constraint vector spaces, 47
embedded strong, see embedded strong

constraint
module objects, 187, 188
strong, see strong tensor product

terminal object, 174, 180
trivial constraint vector bundle, 97, 105,

111, 132

U
union of constraint index subsets, 42
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