
Defining and Implementing
Domain-Specific Languages

with Prolog

— Dissertation —

Falco Nogatz

January 2022

Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Supervisor: Prof. Dr. Dietmar Seipel

This document is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License (CC BY-ND 4.0):
http://creativecommons.org/licenses/by-nd/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

To my loving wife Tessa.

Abstract

The landscape of today’s programming languages is manifold. With the diversity of
applications, the difficulty of adequately addressing and specifying the used programs
increases. This often leads to newly designed and implemented domain-specific lan-
guages. They enable domain experts to express knowledge in their preferred format,
resulting in more readable and concise programs. Due to its flexible and declara-
tive syntax without reserved keywords, the logic programming language Prolog is
particularly suitable for defining and embedding domain-specific languages.

This thesis addresses the questions and challenges that arise when integrating
domain-specific languages into Prolog. We compare the two approaches to define
them either externally or internally, and provide assisting tools for each. The gram-
mar of a formal language is usually defined in the extended Backus–Naur form.
In this work, we handle this formalism as a domain-specific language in Prolog,
and define term expansions that allow to translate it into equivalent definite clause
grammars. We present the package library(dcg4pt) for SWI-Prolog, which enriches
them by an additional argument to automatically process the term’s corresponding
parse tree. To simplify the work with definite clause grammars, we visualise their
application by a web-based tracer.

The external integration of domain-specific languages requires the programmer to
keep the grammar, parser, and interpreter in sync. In many cases, domain-specific
languages can instead be directly embedded into Prolog by providing appropriate op-
erator definitions. In addition, we propose syntactic extensions for Prolog to expand
its expressiveness, for instance to state logic formulas with their connectives ver-
batim. This allows to use all tools that were originally written for Prolog, for in-
stance code linters and editors with syntax highlighting. We present the package
library(plammar), a standard-compliant parser for Prolog source code, written in
Prolog. It is able to automatically infer from example sentences the required oper-
ator definitions with their classes and precedences as well as the required Prolog
language extensions. As a result, we can automatically answer the question: Is it
possible to model these example sentences as valid Prolog clauses, and how?

We discuss and apply the two approaches to internal and external integrations
for several domain-specific languages, namely the extended Backus–Naur form,
GraphQL, XPath, and a controlled natural language to represent expert rules in
if-then form. The created toolchain with library(dcg4pt) and library(plammar) yields
new application opportunities for static Prolog source code analysis, which we also
present.

Zusammenfassung

Die Landschaft der heutigen Programmiersprachen ist vielfältig. Mit ihren unter-
schiedlichen Anwendungsbereichen steigt zugleich die Schwierigkeit, die eingesetz-
ten Programme adäquat anzusprechen und zu spezifizieren. Immer häufiger werden
hierfür domänenspezifische Sprachen entworfen und implementiert. Sie ermöglichen
Domänenexperten, Wissen in ihrem bevorzugten Format auszudrücken, was zu les-
bareren Programmen führt. Durch ihre flexible und deklarative Syntax ohne vor-
belegte Schlüsselwörter ist die logische Programmsprache Prolog besonders geeignet,
um domänenspezifische Sprachen zu definieren und einzubetten.

Diese Arbeit befasst sich mit den Fragen und Herausforderungen, die sich bei der
Integration von domänenspezifischen Sprachen in Prolog ergeben. Wir vergleichen
die zwei Ansätze, sie entweder extern oder intern zu definieren, und stellen jeweils
Hilfsmittel zur Verfügung. Die Grammatik einer formalen Sprache wird häufig in
der erweiterten Backus–Naur–Form definiert. Diesen Formalismus behandeln wir in
dieser Arbeit als eine domänenspezifische Sprache in Prolog und definieren Term-
expansionen, die es erlauben, ihn in äquivalente Definite Clause Grammars für Pro-
log zu übersetzen. Durch das Modul library(dcg4pt) werden sie um ein zusätzliches
Argument erweitert, das den Syntaxbaum eines Terms automatisch erzeugt. Um die
Arbeit mit Definite Clause Grammars zu erleichtern, visualisieren wir ihre Anwen-
dung in einem webbasierten Tracer.

Meist können domänenspezifische Sprachen jedoch auch mittels passender Opera-
tordefinitionen direkt in Prolog eingebettet werden. Dies ermöglicht die Verwendung
aller Werkzeuge, die ursprünglich für Prolog geschrieben wurden, z.B. zum Code-
Linting und Syntax-Highlighting. In dieser Arbeit stellen wir den standardkonformen
Prolog-Parser library(plammar) vor. Er ist in Prolog geschrieben und in der Lage,
aus Beispielsätzen automatisch die erforderlichen Operatoren mit ihren Klassen und
Präzedenzen abzuleiten. Um die Ausdruckskraft von Prolog noch zu erweitern, schla-
gen wir Ergänzungen zum ISO Standard vor. Sie erlauben es, weitere Sprachen direkt
einzubinden, und werden ebenfalls von library(plammar) identifiziert. So ist es bspw.
möglich, logische Formeln direkt mit den bekannten Symbolen für Konjunktion, Dis-
junktion, usw. als Prolog-Programme anzugeben.

Beide Ansätze der internen und externen Integration werden für mehrere domänen-
spezifische Sprachen diskutiert und beispielhaft für GraphQL, XPath, die erweiter-
te Backus–Naur–Form sowie Expertenregeln in Wenn–Dann–Form umgesetzt. Die
vorgestellten Werkzeuge um library(dcg4pt) und library(plammar) ergeben zudem
neue Anwendungsmöglichkeiten auch für die statische Quellcodeanalyse von Prolog-
Programmen.

Acknowledgements

Writing this thesis would not have been possible without the constant help and
support granted to me by numerous people. First of all, I would like to thank my
supervisor, Dietmar Seipel, for six years of guidance and support. I am grateful for
the sharing of ideas, your patience, as well as your confidence in my progress as a
researcher.

I would also like to thank my fantastic co-authors Salvador Abreu, Thom Frühwirth,
Sebastian Krings, and Philipp Körner for their help in writing and collaborating on
a broad variety of papers. All the articles incorporated in this thesis have benefited
from suggestions and constructive criticism given by the anonymous reviewers of
WLP 2016, SLATE 2016, LTC 2017, WLP 2017, RuleML+RR 2018, PPDP 2018,
SLATE 2019, and ICLP 2019 as well as the COMLAN journal, for whose time and
work I am grateful.

Furthermore, I would like to express my gratitude to my family and friends who
withstood all the annoyances my commitment to this work caused at times. Thanks
to my friends and former colleagues from the University of Ulm, who inspire me still
today. Finally, I am deeply indebted to my wife, Tessa, for your love, your care, and
your support that has helped throughout the entire period.

During my time in Würzburg, I was lucky enough to participate actively in the
institute’s teaching activities, and I would like to thank all the students I taught
and supervised for the interesting times. In particular, I would like to express my
gratitude towards Julia Kübert, Jona Kalkus, Lucas Kinne, Kevin Jonscher, and
Daniel Haumann. Their work contributed to the ideas presented in this thesis as
well as to joint publications and open-source software.

The work at hand has been proofread by Petra Gospodnetic, Timo Oess, and Tessa
Nogatz. Your reviews on parts of this thesis helped me fix many errors. Thank you!

Finally, I would like to express my gratitude to the assessment committee for your
time and your invaluable comments and recommendations.

Contents

Nomenclature VII

1. Introduction 1
1.1 Motivation . 3
1.2 Goals and Addressed Problems 4
1.3 Main Results . 5
1.4 Thesis Structure . 8

1.4.1 Overview and Objectives per Chapter 8
1.4.2 How to Read this Thesis 11
1.4.3 Source Code Examples and Prolog Predicates 11

1.5 Contributions. 12
1.5.1 Publications in Journals and Conference Proceedings . . . 13
1.5.2 Open-Source Software 16

2. Logic-Based Programming 21
2.1 The Declarative Programming Paradigm 22
2.2 First-Order Logic as the Basis for Logic Programs 25
2.3 Theory of Unification . 28
2.4 Computation with Logic Programs 30

2.4.1 Top-Down Depth-First Inference with SLD Resolution . . . 31
2.4.2 Nondeterminism and Backtracking 32
2.4.3 Variables for Parameter Passing and Return Values 34

2.5 Logic Program Example: append 35
2.5.1 SLD Resolution for All Solutions. 36
2.5.2 Linear Refutation for a Particular Solution. 38

3. Programming in Prolog 41
3.1 Writing Prolog Programs . 42

3.1.1 Terms as First-Class Citizens 43
3.1.2 Rules and Facts about Predicates 45

3.2 Working with Prolog . 46
3.2.1 Unification and Arithmetic Expressions 47
3.2.2 Program Execution and Control Predicates 48
3.2.3 Properties of Predicates and Programs. 49

I

3.3 Data Structures. 52
3.3.1 Lists. 53
3.3.2 Pairs . 53
3.3.3 Difference Lists . 54
3.3.4 Strings . 54
3.3.5 Dicts . 55

3.4 Prolog Example: append/3 . 58
3.5 Reflection and Code Listings 60
3.6 Term Inspection and Higher-Order Predicates. 61
3.7 Dynamic Predicates. 63
3.8 Modules . 64

4. Domain-Specific Languages 67
4.1 Terminology . 69
4.2 Integration Techniques . 72

4.2.1 Embedding . 72
4.2.2 Compilation . 74
4.2.3 Preprocessing and Extensible Compilers 75

4.3 Prolog as a DSL in other Host Languages 76
4.3.1 Java . 76
4.3.2 Python . 79
4.3.3 JavaScript . 80
4.3.4 Haskell . 83
4.3.5 Julia. 85
4.3.6 The Prolog Transport Protocol 86

4.4 The Status Quo on the Integration of DSLs in Prolog 88

5. Prolog as a Host for Internal DSLs 91
5.1 Operator Notation for Terms without Parentheses 92

5.1.1 Precedences in the Parsing of Expressions 94
5.1.2 Infix Operator Associativity 94
5.1.3 Prefix and Postfix Operators. 95
5.1.4 Common and Predefined Operators and Predicates 96

5.2 Program Transformations via Term Expansions 99
5.2.1 Implementation and Usage in SWI-Prolog 99
5.2.2 Term Expansions for TAP Test Generation 101
5.2.3 Preventing Name Conflicts with Built-in Predicates 103

II

5.3 Program Execution with Meta-Interpreters 105
5.3.1 Vanilla Meta-Interpreter 105
5.3.2 Adaptions to Handle DSLs and Nondeterminism 106

5.4 Declarative If-then Rules for Expert Knowledge 107
5.4.1 Definition as an Internal DSL 107
5.4.2 Binary Expression Tree 110
5.4.3 Expanding If-then Rules to Plain Old Prolog Clauses . . . 111
5.4.4 Meta-Interpretation . 113

5.5 From DSLs to Controlled Natural Languages 113
5.6 EBNF as an Internal DSL for Context-free Grammars 114

6. External DSL Integration with Quasi-Quotations and DCGs 119
6.1 Embed External DSLs in SWI-Prolog 121

6.1.1 Processing Content from the Outside-World 121
6.1.2 Code-Inlining with Quasi-Quotations 123

6.2 Definite Clause Grammars . 125
6.2.1 Syntax. 126
6.2.2 Procedural Semantics 127
6.2.3 Execution via Meta-Interpreter 129
6.2.4 Standard Term Expansion Scheme 130
6.2.5 From EBNF to DCGs 132

6.3 Declarative If-then Rules as an External DSL 133
6.3.1 Definition as an External DSL 134
6.3.2 Comparison of the Two Approaches 135

6.4 GraphQL for Deductive Databases 136
6.4.1 Example Query and Result 137
6.4.2 The GraphQL Type System 137
6.4.3 Integration with Quasi-Quotations, DCGs, and Dicts . . . 138

7. A Tracing Meta-Interpreter for Web-based DCG Visualisation 141
7.1 Important Criteria for an Interactive Visualisation 142
7.2 User Interface and Example Application 145
7.3 Collection of Run-Time Information 146

7.3.1 Intercepting the Built-in Tracer 147
7.3.2 Automatic Generation of Parse Trees 149
7.3.3 Modified Meta-Interpreter 149

7.4 Client-Server Architecture with Pengines 151

III

8. Automatic Parse Tree Generation for DCGs 153
8.1 Representing an External DSL as a Prolog Term 155

8.2 Process Parse Trees in DCGs with State Passing 156

8.2.1 Comparison of Context-Sensitive DCG Extensions 157

8.2.2 Properties of the Modified DCG 158

8.2.3 Adapted Use of phrase/3 159

8.3 Source-to-Source Transformation 160

8.3.1 The Library dcg4pt . 160

8.3.2 Formation Principles. 161

8.3.3 Modified DCG Body. 163

8.4 Optionals and Sequences of Nonterminals 165

8.4.1 Parse Trees with Lists 166

8.4.2 Handling and Transformation 167

8.4.3 Support for Parsing and Serialising 169

8.5 Related Extensions for DCGs 172

9. A Prolog Parser and Serialiser in Prolog 175
9.1 The Library plammar . 176

9.1.1 Intended Applications 177

9.1.2 Provided Predicates . 180

9.1.3 Command Line Interface. 182

9.1.4 Foundations . 182

9.2 Tokenisation with the ISO Prolog Standard’s EBNF 183

9.2.1 Expanding the Internal DSL into DCGs with Parse Trees . 184

9.2.2 Context-Sensitive Requirements 186

9.2.3 Tokens and Optional Layout Text 188

9.2.4 Tokenisation Example: append/3 189

9.3 Tokenisation with a Finite-State Machine 192

9.3.1 Addressed Problems . 192

9.3.2 Handling of Layout Text 194

9.3.3 State Transition Rules for Tokens 195

9.3.4 Parsing of Numbers . 198

9.3.5 Implementation in Prolog 199

9.4 Term Parsing . 200

9.5 Towards an Abstract Syntax Tree 203

IV

10. Prolog Operator Inference and Language Extensions 209
10.1 Operators as a Constraint Satisfaction Problem 211

10.1.1 Motivational Example 212
10.1.2 Native Implementation with Chaining Variables. 214
10.1.3 Attributed Variables 215
10.1.4 Constraint-Logic Programming over Finite Domains . . . 218
10.1.5 Operator Inference in the Library plammar 220

10.2 Prolog Language Extensions 223
10.2.1 Motivational Examples 224
10.2.2 Tokenisation Level . 225
10.2.3 From Tokens to Valid Terms 228

10.3 GraphQL as an Internal DSL 229
10.4 XPath Expressions in Prolog 231

11. Conclusion 237
11.1 Empirical Results . 237
11.2 Future Work . 239

Bibliography 243

A. List of Contributions i
A.1 Published in Journals . i
A.2 Published in Peer-Reviewed Conference Proceedings ii
A.3 Additional Open-Source Software iii

B. Source Code Listings and Operator Tables iv

C. Non-Standard Definition of Predicates and Operators xix

D. Index on Prolog Language Extensions xxviii

List of Figures xli

List of Tables xliii

List of Listings xlvi

V

Nomenclature

General
EBNF Extended Backus–Naur Form

AOT Ahead-of-Time Compiler

API Application Programming Interface

AST Abstract Syntax Tree

CNL Controlled Natural Language

CSP Constraint Satisfaction Problem

CST Concrete Syntax Tree

DSL Domain-Specific Language

GPL General-Purpose Language

JIT Just-in-Time Compiler

MI Meta-Interpreter

REPL Read–Eval–Print Loop

W3C World Wide Web Consortium

Computer and Domain-Specific Languages
JSON JavaScript Object Notation

ACE Attempto Controlled English

CHR Constraint Handling Rules

CSV Comma-Separated Values

DCG Definite Clause Grammar

DTD Document Type Definition

MathML Mathematical Markup Language

PEG Parsing Expression Grammar

PHP PHP: Hypertext Preprocessor (recursive acronym)

RDF Resource Description Format

SGML Standard Generalized Markup Language

TAP Test Anything Protocol

XML Extensible Markup Language

XSD XML Schema Definition

VII

1
Introduction

What gets created depends on who is creating it.

— Verónica Dahl1

In a world of about 200 countries, there are more than 6000 spoken languages today.
But this number is in a high state of flux: at the end of the 21st century, half of
the spoken languages in the world could be extinct by the current trend [46]. Every
language that is not a language of government, commerce, or wider communica-
tion, is threatened in the modern world. Though the omnipresence of world-wide
communications using the internet lowers the bar for distributed work teams across
countries, it requires common languages. This again results in a downward spiral for
language minorities.

While the number of spoken languages decreases, the opposite is true for program-
ming languages, as can be seen in the usage statistics of GitHub
(https://github.com/). GitHub is the largest Git repository hosting service in the
world with more than 96 million projects, with contributions by around 40 million
developers. In 2017, the open-source projects hosted at GitHub were reported to be
written in 337 unique programming languages. In the recent four years, this number
increased by more than 10 %.2 All in all, the English Wikipedia lists more than 700
programming languages of historic and current use,3 which does not even include
markup languages like HTML or LATEX, and data formats and their applications,
e. g., XML and MathML.

1Quote from “Founding Mother of Logic Programming”, https://medium.com/a-computer-of-
ones-own/verónica-dahl-founding-mother-of-logic-programming-c8ccaee969bb. Verónica Dahl is
an Argentine/Canadian computer scientist and was one of the first female graduates at the Uni-
versité d’Aix-Marseille in France to receive a doctorate in Artificial Intelligence. In 1997, she was
honoured by the Association for Logic Programming (ALP) as one of 15 scientists recognised as
Pioneers of Logic Programming.

2GitHub publishes annual reports called GitHub Octoverse with statistics about the usage
of their services and the hosted projects. The latest report, covering the data of the
year 2021, is available online at https://octoverse.github.com/. Older versions can be accessed
as https://octoverse.github.com/2020/ and similar.

3List of programming languages, https://en.wikipedia.org/wiki/List_of_programming_languages

1

https://github.com/
https://medium.com/a-computer-of-ones-own/ver%C3%B3nica-dahl-founding-mother-of-logic-programming-c8ccaee969bb
https://medium.com/a-computer-of-ones-own/ver%C3%B3nica-dahl-founding-mother-of-logic-programming-c8ccaee969bb
https://octoverse.github.com/
https://octoverse.github.com/2020/
https://en.wikipedia.org/wiki/List_of_programming_languages

Chapter 1. Introduction

The increasing number of computer languages – to subsume programming and
markup languages – has multiple reasons. Firstly, the creation of a new language has
become easy. With the help of parser generators like ANTLR,4 it just needs the defi-
nition of the language’s syntax as a context-free grammar to generate an appropriate
lexer and parser. But even without a deeper understanding of grammars and formal
languages, new languages and data formats can be easily created by simply restrict-
ing existing languages to fit in a particular application domain. For instance, the
mathematical markup language MathML [54] is an application of XML for describing
mathematical notations. It is a strict subset of the popular extensible markup lan-
guage XML [11], hence respecting all of XML’s syntax requirements. MathML only
further restricts the document’s structure to a well-defined set of allowed attributes,
elements, and data types. These additional requirements are specified in a Relax NG
Schema [119], which is similar to the more popular XML Schema [35] and document
type definition (DTD).

A second reason for the growing number of computer languages is the rise of com-
puters and applications in all areas of our lives, resulting in an increasing variety
of application domains and requirements. The latter encourages the creation of new
programming and markup languages. Like the aforementioned MathML, a language
might be tailored to a specific application domain. So-called domain-specific lan-
guages (DSLs) have been used in various areas such as graphics, financial, high-
performance computing, and many others. Because of their well-defined purposes,
these domain-specific languages often increase productivity, reliability, maintainabil-
ity, and flexibility in comparison to general-purpose languages. A literature overview
of the topic of domain-specific languages is given in [120]. It highlights the advan-
tages of working with different languages in a single software project, as well as the
usefulness of defining new languages only for a particular field of applications, and
possible means for their integration into existing software systems.

In this thesis, we focus on the definition, implementation, and usage of domain-
specific languages in Prolog. This chapter gives an introduction to the work at
hand. Section 1.1 emphasises the use of Prolog to define and use domain-specific
languages. In Section 1.2, we formulate the goals of this thesis as well as the addressed
problems. The main results are summarised in Section 1.3. In Section 1.4, we give an
overview of the subsequent chapters and their contents. It also introduces important
notions, terms and abbreviations that are used throughout the work. Section 1.5
makes the connection from the chapters to our supporting contributions, which
have been published in journals and conference proceedings, as well as the created
software that has been published under open-source licenses on GitHub.

4ANTLR (Another Tool for Language Recognition, [93]), https://www.antlr.org/, is a widely-used
Java-based parser generator.

2

https://www.antlr.org/

1.1. Motivation

1.1. Motivation

Although the toolset to create a domain-specific language has been improved, the
overall process is still a challenging software engineering task – beginning with the
definition of the requirements, to the language’s implementation, and finally its
integration into an existing software environment, which always requires glue code
to a general-purpose language. Prolog has been proven useful as an integrating tool,
supporting a wide range of external resources [140]. Not only because of Prolog’s
long history as a programming language, but also because systems like SWI-Prolog
provide libraries and built-in predicates to access different data stores and data
formats.

In addition, Prolog provides several means to parse and process other computer
languages. All major Prolog systems ship with support for definite clause gram-
mars (DCG) [57, 96]. DCGs have been subject of research since 1980. They are a
powerful mean to describe grammars in first-order logic, and bring all of Prolog’s
built-in capabilities to drive the parsing process. With its support for logic variables,
unification, and backtracking, DCGs allow to define powerful parsers that are not
restricted to context-free grammars.

Defined in this way, the code of a domain-specific language can be put in a sep-
arate file, and read in and parsed by Prolog. This is the traditional way to inte-
grate external languages into Prolog. However, with quasi-quotations, which were
introduced in SWI-Prolog in 2013 [137], domain-specific languages can also be di-
rectly embedded into normal Prolog code, which lowers the barrier for both the
creators of the domain-specific language, as well as for Prolog developers integrating
it with the host language. Although quasi-quotations are not yet part of the ISO
Prolog standard [55], they are a syntactic enhancement particularly suited for the
work with domain-specific languages, as they overcome Prolog’s traditionally poor
multi-line string handling and the need for otherwise escaped special characters and
line-endings. As a result, code of the external domain-specific language can be put
literally next to the program logic specified in the host language Prolog, without the
need of further adjustments.

However, not all domain-specific languages require such a traditional approach of in-
tegration in the host language Prolog. Instead, some computer languages might al-
ready be a subset of Prolog or need only minor adjustments to be so. Given that, their
sentences could be directly taken as Prolog terms, resulting in an internal language.
This way, we can omit the challenging and often error-prone process of formally
defining the DSL’s syntax in the form of a context-free or a definite clause grammar,
since the internal integration of a DSL does not rely on a user-defined parser.

3

Chapter 1. Introduction

After having defined appropriate prefix, suffix, and infix operators, the actual parsing
is left to the Prolog system; the resulting term is later used by an interpreter to
process the encoded information. This approach is similar to the aforementioned
example of MathML, which is compatible with all tools that were originally designed
to work with XML. For instance, it is not necessary to build separate code formatters
for MathML, given that the ones already available for XML are suitable as well.

In contrast to imperative programming languages, Prolog comes with a flexible syn-
tax without keywords, thus providing the possibility to define the domain-specific
language internally. This way, Prolog is suitable as a host for integrating other
languages. Although the approach to define an internal domain-specific language re-
quires the adherence to Prolog’s syntax, it relieves the programmer from the burden
of keeping in sync three important parts – a user-defined grammar, its corresponding
parser, and a subsequent interpreter. In addition, combined with Prolog’s macro-like
term and goal expansion, the Prolog term representing the domain-specific language
can be modified at compile-time. It is not restricted to the structure defined by
the operators, which are originally just necessary to allow the embedding of the
domain-specific language into Prolog.

The syntax of a domain-specific language and its means for integration into an ex-
isting software environment, independent of the used host language, are important
criteria in the acceptance of a newly created language or data format and should not
be underestimated. The syntax should be as close as possible to the conventional
notation used in the application domain, while still being easy to adapt for experts of
the host language. In this regard Prolog, with its flexible syntax and well-established
tools to create expressive parsers, has clear advantages over imperative programming
languages. Even when compared to other declarative programming languages like
Haskell, Prolog offers greater expressiveness and syntactical flexibility, and there-
fore provides higher chances to define a domain-specific language internally by just
extending its built-in operator table appropriately.

1.2. Goals and Addressed Problems

The subject of this thesis is the discussion of two approaches to implement domain-
specific languages in Prolog: externally by defining a parser using DCGs, or internally
by extending Prolog’s operator table by appropriate operator definitions. We develop
general criteria to decide which approach fits better for an already given or newly
created DSL. Since these criteria can be applied using static analysis of example
sentences, we provide a system that can answer whether given example sentences
are a valid subset of Prolog. If so, it is possible to define the DSL internally. In this

4

1.3. Main Results

case, required operator definitions are automatically inferred. As a result, we answer
the question “Is it possible to model these example sentences as valid Prolog terms,
and how?” theoretically as well as by an assisting tool. We discuss several limitations
of the programming language Prolog to define DSLs internally, and how to overcome
them by enhancing and modifying the syntax of the Prolog programming language
as defined in the ISO Prolog standard. Most of these syntactical enhancements are
backwards compatible to existing Prolog systems, others require only minor changes
of constants that could be set by program flags.

For the definition of external DSLs, we simplify the process of writing and debugging
grammars, parsers, and interpreters in Prolog, and how to intertwine them. Since
all these steps typically work on an (abstract) syntax tree as their shared data
structure, we extend the classical compilation scheme of DCGs to implicitly create
a corresponding parsing tree.

Finally, the objectives to define DSLs externally or internally are applied to popular
languages that are to be connected with Prolog, namely the extended Backus–Naur
form (EBNF), GraphQL, and XPath. We expand our considerations about internal
and external Prolog DSLs to a newly defined domain-specific language to express ex-
pert knowledge in the form of declarative if-then rules. This DSL has been applied
in the field of change management in organisational psychology to build knowl-
edge bases.

1.3. Main Results

In this section, we briefly summarise the main results of this thesis.

Discussion on the Two Approaches. With DCGs, there are few limitations to
domain-specific languages that can be parsed in the traditional way with grammars.
Because the set of external DSLs is a superset of internal DSLs, our discussion
on whether implementing a DSL externally or internally is mainly focussed on the
applicability of Prolog operator definitions to describe the language, resulting in an
internal DSL.

Extensions to the Programming Language Prolog. When discussing internal
DSLs, we present several parts of the ISO Prolog standard where the language
definition could be enhanced to support more domain-specific languages. In partic-
ular, nearly all sentences from other programming languages already form a list of
valid Prolog tokens – simply put, words starting with an uppercase letter could be

5

Chapter 1. Introduction

handled as variables, and all others as atoms. Most problems therefore arise only
when these tokens are combined into valid Prolog terms.

We discuss extensions of the ISO Prolog standard to allow a more flexible syntax,
while still being able to unambiguously parse the given code. For all of these syntax
modifications, we discuss whether they are backwards compatible or could be set
as a program-wide flag. This approach has already been used in existing Prolog
implementations to provide better compatibility with external systems, e. g., in SWI-
Prolog [136, Sec. 5].

Assisting Tools for the Definition and Usage of External DSLs. Though DCGs
have been subject of research since 1980 [96], the tools to assist programmers in
the process of defining grammars are still rare and limited. As part of our work, we
present an interactive, web-based tool to visualise the execution of a DCG.

The main contribution of this thesis, in respect of defining parsers in Prolog to add
support of external DSLs, is library(dcg4pt). Its main features can be summarised
as follows:

– Grammars specified as DCGs in Prolog are source-to-source transformed into
traditional DCGs that store an additional argument that holds the correspond-
ing syntax tree. Since our tool allows and implements modifications of the syn-
tax tree, we use the term parse tree in this thesis instead, which covers both
concrete and abstract syntax trees as well as intermediate hierarchical terms
that represent a program. The name library(dcg4pt) stands for definite clause
grammars for parse trees.

– library(dcg4pt) can be used as a drop-in replacement for existing DCGs, i. e.,
no further adjustments on the grammar have to be made.

– Grammars of computer languages often make use of sequences and optional
nonterminals. Our library extends the notation of DCGs by meta-nonterminals
to add support for sequences of nonterminals as well as symbols of any arity.
This idiom can also be used to denote an element as optional.

– library(dcg4pt) has been developed with a focus on logical purity. It can be
used both for parsing and serialisation, i. e., to create a parse tree by a given
source code, but also the other way round to serialise a given parse tree back
to a string or file. Although in this thesis we focus on the first direction,
library(dcg4pt) has been applied by the author in [82] to create a feature-rich
linter and code formatter for Prolog programs that ensures the adherence to
common coding guidelines.

6

1.3. Main Results

Automatic Operator Inference for Internal DSLs. In existing Prolog systems,
an operator’s definition has to be given before it can be used. In general, these
operators are built-in, provided by an included library, or specified in the executed
source code. If not given in advance, the program cannot be parsed. To the best of
our knowledge, there is no Prolog system that relaxes this condition and is able to
parse a Prolog term with some of its contained operators not yet being present in
the operator table.

Therefore, we develop and present library(plammar). It is a flexible and by de-
fault strictly standard-compliant parser for Prolog source code, written in Prolog.
library(plammar) is able to infer possible operator definitions based on examples. Its
main features can be summarised as follows:

– The library is used for static analysis of Prolog source code. It provides pred-
icates to parse code snippets into a list of tokens, and transform it into a
concrete or abstract syntax tree.

– Our library supports several Prolog dialects and can therefore handle source
code that was originally written for SWI-Prolog as well as for GNU Prolog,
or any other Prolog system that respects the ISO Prolog standard. Language
features that are not (yet) part of the standard can be finely tuned, and sepa-
rately enabled or disabled.5 As a consequence, library(plammar) allows to give
newly discussed language features and syntax extensions a shot.

– Similar to library(dcg4pt), library(plammar) can be used both for parsing and
serialisation. This way, it forms the basis for expressive Prolog source code
transformations, which we emphasise as future work when concluding this
thesis.

Exemplary Applications for EBNF, GraphQL, and XPath. We apply both ap-
proaches to define DSLs for real-life computer languages. We add support for Graph-
QL in Prolog using both the classical approach to define a parser with DCGs, as
well as by extending the Prolog programming language. In addition, we present how
to define XPath as an internal Prolog DSL, and discuss the required changes to the
syntax of Prolog to use GraphQL as an internal DSL, too. As an introductory exam-
ple, we refer to our work done in [109, 110, 126], and implement a simple language to
model knowledge in the field of change management in the form of if–then rules.

5For instance, SWI-Prolog allows to use digit groups in large integers in the form of 10 000

and 10_000 instead of only writing 10000 [136, Sec. 2.16.1.5]. This deviation from the ISO
Prolog standard can be deactivated only by using the more general iso(true/false) flag,
which also includes further changes. Our contribution library(plammar) provides the options
allow_digit_groups_with_space(true/false) and allow_digit_groups_with_underscore(true/false) to sep-

arately enable and disable this SWI-Prolog-specific language feature.

7

Chapter 1. Introduction

Since it lays the foundation for our implementation of a fully-featured Prolog parser,
we discuss how to define context-free grammars given in EBNF as an internal DSL in
Prolog. This way, parts of Prolog’s syntax rules as given in the ISO Prolog standard
can be directly used as Prolog source code. The resulting Prolog program allows to
parse and to serialise Prolog code.

1.4. Thesis Structure

The overall objective of the thesis is to push the state of the art when defining and
using DSLs in Prolog, both internally and externally. With library(plammar), we
provide a tool that assists with the decision on which technique to use. In addition,
we discuss and present ways and tools to simplify the implementation of parsers
for external DSLs, and the inference of appropriate operator definitions for inter-
nal DSLs. The actual contents and contributions of the chapters of this thesis are
presented below.

1.4.1. Overview and Objectives per Chapter

The document is organised into eleven chapters. After Chapter 1, which gives an
introduction to the research problems and constitutes the motivation for this thesis,
we continue with Chapters 2 to 4 on the foundations of the logic programming
paradigm, Prolog, and its integration as a DSL into other programming languages.

– Chapter 2 gives an orientation about the context of the thesis at hand. We
present the general idea of declarative programming and logic-based program-
ming languages. Since those share first-order logic as their mutual foundation,
we introduce its basic concepts and notions. Most of the terms introduced in
this chapter are reconsidered again in the context of Prolog later throughout
this work.

– Chapter 3 starts with a short introduction to Prolog and its foundations. Its
syntax, as defined in the ISO Prolog standard, is presented in more detail,
since it is the basis for the Prolog parser and serialiser that is described later
in Chapter 9. Chapter 3 also introduces more advanced Prolog idioms and
libraries which are either not defined in the ISO Prolog standard or not part
of all major Prolog systems, but used in several subsequent chapters.

– Chapter 4 first introduces DSLs in general, and gives an overview of the ways to
define and use them. The chapter concludes with a detailed survey of existing
solutions to integrate Prolog as a DSL into other programming languages,

8

1.4. Thesis Structure

which is the opposite direction of what is discussed in this thesis but often
raises similar research questions.

Chapters 5 and 6 present the two opposite approaches to integrate DSLs, either
internally or externally, into Prolog.

– Chapter 5 provides an overview of the possibilities Prolog offers to mimic a
DSL. It includes a detailed introduction to Prolog’s parentheses-free syntax
based on user-defined operators. We introduce two approaches to further pro-
cess an internally specified DSL – either by term expansions, or with the help
of a meta-interpreter. As two practically used examples, we define if-then rules
and EBNF as internal Prolog DSLs.

– In Chapter 6, we present how to define languages externally with the help
of definite clause grammars, and integrate them next to Prolog source code
with quasi-quotations. Since DCGs constitute an internal DSL to describe
grammars, the aforementioned considerations are adapted to their processing.
For comparison, Chapter 6 reconsiders if-then rules again and defines them as
an external DSL. As an example application, we present library(graphql), an
external query language for deductive databases.

Though this external approach looks straight-forward, its current state of the art is
verbose and error-prone. In Chapters 7 and 8 we therefore present two tools that
assist with the definition of and work with external DSLs and DCGs.

– Chapter 7 introduces a web-based tool that improves the work with definite
clause grammars. The graphical tracer visualises the execution of a DSL’s un-
derlying DCG. We therefore discuss several techniques to interactively collect
information about applied grammar rules.

– One of the main contributions of this thesis, library(dcg4pt), is presented in
Chapter 8. We extend the classical structural term expansion of DCGs in
order to store an additional parse tree argument. With its support for meta-
nonterminals to specify optional and sequences of nonterminals, it is well-suited
to define the syntax of external DSLs in a way that automatically creates a
corresponding parse tree, and still can be used for both parsing and serialisa-
tion.

An application is given with our Prolog parser library(plammar) in Chapter 9,
which adopts the aforementioned considerations to treat Prolog like any other ex-
ternal DSL.

9

Chapter 1. Introduction

– In Chapter 9, we apply the classical approach to add support for a language
using a lexer and parser to the programming language Prolog. As one of the
main contributions, we provide library(plammar), a Prolog-based parser and
serialiser for Prolog. We present several improvements to achieve a reason-
able parsing performance. After all, the techniques presented in this chapter
also underline Prolog’s built-in capabilities to define parsers, compilers, and
interpreters for any domain-specific language.

With library(plammar), Prolog source code can be analysed statically. This forges
a bridge in Chapter 10 to the initial question of which extensions to the operator
table and to the syntax of Prolog are required so that a given DSL can be integrated
internally.

– In Chapter 10, we elaborate on library(plammar)’s capabilities to automati-
cally infer possible operator definitions from given example code snippets. Such
operator definitions are necessary to specify the internal DSL. In addition, sev-
eral extensions to the syntax of Prolog as originally defined in the ISO Prolog
standard are discussed. They can be divided in changes that are related to
the lexer and those that define which tokens constitute valid Prolog terms and
programs. We reconsider GraphQL again, which was formerly defined as an
external DSL, and can be instead implemented internally by appropriate type
definitions and some of the proposed Prolog language extensions. As a second
example, we present the definition of XPath expressions as an internal DSL.
It has been applied in a Prolog-based XML Schema validator.

The thesis finally concludes in Chapter 11 with a summary and an outline of po-
tential future work and remaining challenges in the definition and usage of DSLs in
Prolog.

Appendices. Appendix A lists all scientific contributions of the author during the
thesis in a condensed form. In addition, we mention developed software that covers
different topics. In Appendix B, we provide additional source code examples which
we shortened in the chapters before. Appendix C contains predicate definitions that
are not part of the ISO Prolog standard or shipped with all major Prolog system but
referred to throughout the thesis. An index and description of all language extensions
supported by library(plammar) is given in Appendix D.

10

1.4. Thesis Structure

1.4.2. How to Read this Thesis

It is the intention that this thesis is self-contained and its chapters are only loosely
coupled. However, the implementation of library(plammar) as described in Chapter 9
treats Prolog as an external DSL, i. e., the methods that were introduced for external
DSLs in Chapter 6 are then applied to parse Prolog on its own. In addition, it makes
use of library(dcg4pt), which is introduced in Chapter 8, and the definition of EBNF
as an internal DSL from Chapter 5.

Though we shortly introduce the language Prolog and its history in Chapters 2
and 3, we assume the reader to have a basic knowledge of the fundamentals of
Prolog. Required advanced language features that are not part of the ISO Prolog
standard, or that are not included in the most popular Prolog systems (e. g., dicts and
attributed variables), or that were added only recently to SWI-Prolog are introduced
throughout the work at hand when needed.

Since our work is strongly related to the syntax of Prolog, we often refer to definitions
of Part I of the ISO Prolog standard. For the sake of simplicity, we refer to them as
Iso, with Iso 6.3 representing the syntax definitions given in [55, Sec. 6.3].

1.4.3. Source Code Examples and Prolog Predicates

The provided tools, in particular library(dcg4pt) and library(plammar), are entirely
written in Prolog and available as open-source packages in the list of add-ons for
SWI-Prolog. In this thesis, we include several examples of concrete Prolog source
code of these libraries, as well as exemplary applications in Prolog’s toplevel. This
should allow readers to follow our considerations and try out actual executable code
snippets. In our opinion, this is in particular useful for tracing the execution of the
programs we present. The same applies for term expansions, which are otherwise
often a cause for obfuscation, due to their nature of changing compiled code in-
place.

Besides Prolog as the targeted host language, this thesis includes several other source
code fragments, in particular when discussing various domain-specific languages that
are aimed to be integrated. To clearly indicate the currently discussed language, all
code listings contain a flag in the top-right corner with an appropriate language
indicator or abbreviation. Only if code contains language extensions that are spe-
cific to SWI-Prolog and otherwise incompatible, we use SWI-Prolog instead of
the more general Prolog flag. The source code examples in Chapter 10 do not
carry a flag that indicates their depicted language, because they form valid Prolog
programs only if the discussed extension is implemented and enabled. To distinguish

11

Chapter 1. Introduction

Prolog queries that are executed from actual Prolog source code, we mark them by
the Toplevel flag. The computed answer might be shortened and reformatted;
alternative solutions computed via backtracking are indicated by the ; symbol.

References to source code elements (e. g., for predicates or operators) in the running
text are written in typewriter font; their programming language should appear by
the context. Source code symbols which might be otherwise confused with punctua-
tion marks, as well as longer code fragments are highlighted by a grey background .
In case of facts, rules, and toplevel goals, we omit the trailing full stop . in this
notation for the sake of readability, e. g., in ?- halt . Placeholders in source code
elements in the running text are furthermore printed in cursive characters if they
strictly need to be replaced, because no free variable is allowed at their position. For
instance, in the functor name of an abstract predicate Tag (Arg) the variable Tag
has to be bound, since the compound is otherwise an invalid Prolog term.

When referring to Prolog predicates and operators, we always specify their full func-
tor, i. e., the functor name together with its arity, separated by / . In addition, we
indicate Prolog predicates and operators which are part of the ISO Prolog stan-
dard by a subscripted “ISO” (e. g., clause/2ISO), and those that are shipped with
SWI-Prolog similarly by “SWI” (e. g., dict_pairs/3SWI). Non-standard predicates,
operators, and program flags for which we provide a description and their implemen-
tation, are annotated by a reference to their definition in the corresponding section,
Appendix B, or Appendix C in square brackets instead, e. g., in otherwise/0[C.7].
Predicate functors and operators without a subscripted text are defined in the sec-
tion they appear in. Nonterminals intended to be used or defined by definite clause
grammars are denoted by // instead of / , e. g., integer//0. We always use this
full notation for nonterminals even in case of an arity of 0 in order to avoid confusion
with terms of the same name, e. g., when discussing the nonterminal’s corresponding
parse tree.

1.5. Contributions

During this thesis, multiple works closely related to the discussed subject have been
published in journals, conference proceedings, and as open-source software on Git-
Hub. They are listed in this section. We group the contributions by their type and
put them in context to their corresponding chapter of this thesis. The scientific
contributions are also part of the Bibliography and cited in the chapters. A condensed
version of this list is given in Appendix A, ordered by the publication’s date. In
publications with co-authors that highlight Falco Nogatz, the author of this thesis
has contributed the majority of the content, including implementations.

12

1.5. Contributions

1.5.1. Publications in Journals and Conference Proceedings

In [109, 110, 126], the general idea of defining an internal DSL has been discussed
for rapid prototyping in Prolog. These publications describe its application for if-
then rules to model knowledge in the field of organisational psychology. [109] is the
extended journal version of the conference paper [110]. The if-then rules serve as a
recurring, running example throughout the thesis. Compared to the aforementioned
publications, we extend their definition as an internal Prolog DSL in Section 5.4,
and expand the idea of their meta-interpretation and possible term expansions into
plain old Prolog clauses.

[126] Rüdiger von der Weth, Dietmar Seipel, Falco Nogatz, Katrin
Schubach, Alexander Werner, and Franz Wortha. Modellierung von
Handlungswissen aus fragmentiertem und heterogenem Rohdatenmate-
rial durch inkrementelle Verfeinerung in einem Regelbanksystem. Psy-
chologie des Alltagshandelns, 9(2):33–48, 2016.

[110] Dietmar Seipel, Rüdiger von der Weth, Salvador Abreu, Falco No-
gatz, and Alexander Werner. Declarative Rules for Annotated Expert
Knowledge in Change Management. In 5th Symposium on Languages,
Applications, Technologies (SLATE 2016).

[109] Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Domain-
Specific Languages in Prolog for Declarative Expert Knowledge in Rules
and Ontologies. Computer Languages, Systems & Structures (COM-
LAN), 51C:102–117, 2018.

Prolog has a long history of representing knowledge, either using a DSL or in the
form of a controlled natural language (CNL). Combining both approaches, Prolog
has proven to be suitable for defining new DSLs with a natural language flavour, like
for the relational query language SQL. In the extended abstract [108], the knowledge
representation in Prolog using these two approaches is discussed. This comparison
is taken up again in Section 5.5 of the work at hand.

[108] Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Prolog
for Expert Knowledge Using Domain-Specific and Controlled Natural
Languages. In 8th Language & Technology Conference: Human Lan-
guage Technologies as a Challenge for Computer Science and Linguistics
(LTC 2017), pages 138–140, 2017.

13

Chapter 1. Introduction

CNLs are subject of recent research particularly because smart voice-controlled de-
vices are becoming more present in daily life, with many different applications inte-
grated into platforms like Amazon’s conversational agent Alexa. In [83], we present a
framework that assists with the development of skills for Amazon Alexa in Prolog.

[83] Falco Nogatz, Julia Kübert, Dietmar Seipel, and Salvador Abreu.
Alexa, how can I reason with Prolog? In 8th Symposium on Languages,
Applications, Technologies (SLATE 2019), volume 74 of OpenAccess Se-
ries in Informatics (OASIcs), pages 17:1–17:9, 2019.

In Chapter 7, we present an interactive, web-based visualisation for DCGs. It is
based on the corresponding publication [81], but focusses on the discussion of how
to collect the required DCG tracing information. In this regard, we treat DCGs as
an internal Prolog DSL to describe grammars, and compare their application via
modified term expansions, as well as via a modified tracing meta-interpreter with
built-in tracing.

[81] Falco Nogatz, Jona Kalkus, and Dietmar Seipel. Web-based Visu-
alisation for Definite Clause Grammars using Prolog Meta-Interpreters:
System Description. In 20th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2018), pages 25:1–25:10.
ACM, 2018.

Our library(dcg4pt), which is in detail presented in Chapter 8, has been first intro-
duced in [85]. In this paper, we also propose to define EBNF as an internal DSL
in order to make use of the syntax grammars specified in the ISO Prolog standard.
Section 5.6 of this thesis expands this idea, which leads to our library(plammar)
from Chapter 9.

[85] Falco Nogatz, Dietmar Seipel, and Salvador Abreu. Definite Clause
Grammars with Parse Trees: Extension for Prolog. In 8th Symposium
on Languages, Applications, Technologies (SLATE 2019), volume 74 of
OpenAccess Series in Informatics (OASIcs), pages 7:1–7:14, 2019.
Honoured with the symposium’s Best Paper Award.

An earlier version of the implementation of GraphQL as an external Prolog DSL has
been published in [84]. This paper shortly discusses Prolog’s limitations to define
GraphQL internally as well, which is finally taken up again in the work at hand in
Section 10.3.

[84] Falco Nogatz and Dietmar Seipel. Implementing GraphQL as a
Query Language for Deductive Databases in SWI-Prolog Using DCGs,

14

1.5. Contributions

Quasi Quotations, and Dicts. In Proc. 30th Workshop on (Constraint)
Logic Programming (WLP 2016).

An application of the Prolog parser we present in Chapter 9 has been presented in the
publication [82]. It makes use of our library(plammar) to analyse the adherence to
coding style guidelines. The implemented linter is applied to several thousand source
code files from SWI-Prolog’s package ecosystem, and therefore serves as a real-world
test for compliance to the ISO Prolog standard and the reasonable performance of the
resulting Prolog parser. The empirical study results in optimisations for library(plam-
mar) using a finite-state machine as presented in Section 9.3.

[82] Falco Nogatz, Philipp Körner, and Sebastian Krings. Prolog Coding
Guidelines: Status and Tool Support. In Technical Communications of
the 35th International Conference on Logic Programming (ICLP 2019).
The authors contributed equally. My focus was on the integration of
library(plammar), and the study on and support for Prolog extensions
that are provided by SWI-Prolog, which forms Sections 3 and 4.2 of this
article.

The definition of XPath as an internal DSL as presented in Section 10.4 is used
to extend an XML Schema validator that is completely written in Prolog. It has
been first presented in [80]. A revised version of this system description has been
published in [79].

[80] Falco Nogatz, Jona Kalkus, and Dietmar Seipel. Declarative XML
Schema Validation with SWI-Prolog: System Description. In Proc. 31st
Workshop on (Constraint) Logic Programming (WLP 2017).

[79] Falco Nogatz and Jona Kalkus. Declarative XML Schema Valida-
tion with SWI-Prolog. In Dietmar Seipel, Michael Hanus, and Salvador
Abreu, editors, Declarative Programming and Knowledge Management –
Revised Selected Papers of Declare 2017, pages 187–197, 2018.

The seamless integration of Prolog with other programming languages has been sub-
ject to research for years, though most solutions focus on the embedding of Prolog,
i. e., treating Prolog as a domain-specific language. Since the general research ques-
tions are similar – for instance: Is it possible to embed (a subset of) Prolog as an
internal DSL into another language? Which changes to the syntax of Prolog are re-
quired to do so? –, we present some of these existing systems in other programming
languages in Section 4.3. One example is CHR.js, an interpreter and compiler which

15

Chapter 1. Introduction

extends JavaScript by Constraint Handling Rules (CHR). This constraint-logic pro-
gramming language is shipped with all major Prolog systems. In [78, Sec. 5], we com-
pare the means that Prolog and JavaScript provide to integrate the domain-specific
language CHR into the host language JavaScript. It is the basis for Section 4.3.3 of
this thesis.

[78] Falco Nogatz, Thom Frühwirth, and Dietmar Seipel. CHR.js:
A CHR Implementation in JavaScript. In Rules and Reasoning (Rule-
ML+RR 2018), volume 11092, pages 131–146. Springer, 2018.

1.5.2. Open-Source Software

Where possible, software components created as part of this thesis have been packed
as a standalone library for SWI-Prolog. They have been published as part of SWI-
Prolog’s public package list,6 and as open-source repositories on GitHub. For each
software component we provide a short description (in slanted font), and information
about the project’s context and positioning with respect to this thesis. Additional
software that was created by the author during the thesis but is not directly related
to the domain of discourse is mentioned in Appendix A.3.

Chapter 8 describes how to adopt the classical term expansion for DCGs in order
to store an additional argument that holds the parse tree. The corresponding imple-
mentation, library(dcg4pt), can be used as a drop-in replacement for SWI-Prolog’s
built-in compilation of DCGs:

library(dcg4pt). https://github.com/fnogatz/dcg4pt, MIT License.
Extend definite clause grammars for Prolog by an additional argument
to automatically store the parse tree.

The Prolog parser, which we present in Chapter 9, has been bundled as library(plam-
mar), which is a portmanteau word for Prolog grammar. Inferring possible operator
definitions from given example code snippets is just a small piece of its functionality.
Besides parsing, it also supports the serialisation of a Prolog program based on its
concrete or abstract syntax tree. In [82], library(plammar) is used to create abstract
syntax trees from Prolog programs, and as a by-product checks the adherence to
various Prolog coding style guidelines.

library(plammar). https://github.com/fnogatz/plammar, MIT License.
A Prolog grammar written in Prolog, for parsing and serialising Prolog
code.

6Packs (add-ons) for SWI-Prolog, https://www.swi-prolog.org/pack/list.

16

https://github.com/fnogatz/dcg4pt
https://github.com/fnogatz/plammar
https://www.swi-prolog.org/pack/list

1.5. Contributions

plammar-community-evaluation. https://github.com/fnogatz/plammar-
community-evaluation, MIT License.
Data of the empirical study in [82].

The framework that assists with the development of skills for Amazon’s conversa-
tional agent Alexa in Prolog as presented in [83] has not been bundled as a library
for SWI-Prolog, as it needs to be adapted for each new skill. As an example applica-
tion, we combine Amazon Alexa with the CNL Attempto Controlled English (ACE)
and process commands with the help of the Prolog-based ACE Reasoner.

alexa.pl. http://github.com/fnogatz/alexa.pl, MIT License.
Amazon Alexa skill development with SWI-Prolog.
This framework used to create skills for Amazon Alexa was originally
created as part of the bachelor’s thesis of Julia Kübert [69].

library(race). https://github.com/fnogatz/race, MIT License.
Prolog client for the SOAP interface of the Attempto Reasoner RACE.

The XML Schema validator for SWI-Prolog, that motivates the definition of XPath
as an internal DSL in Section 10.4 is published as library(xsd). It makes use of
library(date_time) to add support for date-based comparisons in XPath functions.

library(xsd). https://github.com/fnogatz/xsd, MIT License.
Validate an XML Document against an XML Schema in SWI-Prolog.
This tool has been developed as part of a practical course at the Uni-
versity of Würzburg, Germany. In addition to the author’s work, it con-
tains student contributions from Jona Kalkus, Kevin Jonscher, and Lucas
Kinne.

library(date_time). https://github.com/fnogatz/date_time, MIT Li-
cense.
Logical arithmetic on dates and times in Prolog.
This library is an adapted and improved version of the original date_time
library that is part of Amzi! Core Components by Amzi!, Inc., to be com-
patible with SWI-Prolog’s module system.

Most of these libraries have been developed in a test-driven way by the help of
library(tap). Their command line interfaces make use of library(cli_table) to print
nicely formatted ASCII tables, e. g., to give a list of all possible operator definitions
that library(plammar) has inferred.

17

https://github.com/fnogatz/plammar-community-evaluation
https://github.com/fnogatz/plammar-community-evaluation
http://github.com/fnogatz/alexa.pl
https://github.com/fnogatz/race
https://github.com/fnogatz/xsd
https://github.com/fnogatz/date_time

Chapter 1. Introduction

library(tap). https://github.com/fnogatz/tap, MIT License.
Write tests with SWI-Prolog with the Test Anything Protocol (TAP).
Original project handed over from Michael Hendricks in February 2019.

library(cli_table). https://github.com/fnogatz/cli_table, MIT License.
Pretty Unicode tables for the command line with Prolog.

To test our libraries under different versions of SWI-Prolog, we have created swivm,
the SWI-Prolog version manager. In library(plammar), we implemented several Pro-
log language extensions that have been added to and are supported by different
versions of SWI-Prolog. The corresponding settings have been tested with the help
of swivm, as it allows to install and execute SWI-Prolog in all versions since SWI-
Prolog 5, back from 2002. In addition, swivm allows to automatise the installation
of multiple, coexistent installations of SWI-Prolog, which makes it a valuable part
in workflows for continuous integration, delivery, and testing.

swivm. https://github.com/fnogatz/swivm, MIT License.
Bash script to manage multiple active SWI-Prolog versions.
It is a heavily modified fork of the popular Node.js version manager nvm.7

The interactive, web-based visualisation for DCGs, which we present in Chapter 7,
is based on SWI-Prolog’s built-in Pengines module.

DCG Visualiser. https://github.com/fnogatz/dcg-visualiser, MIT Li-
cense.
A web-based visualisation for definite clause grammars.
This web application using SWI-Prolog’s Pengines library was originally
created as part of the master’s thesis of Jona Kalkus [59].

Originally developed as part of the author’s master’s thesis in 2015, we implemented
a JavaScript module that adds support for CHR. In Section 4.3.3, it serves as an
example for the opposite direction than discussed in this thesis, as it seamlessly
integrates the logic-based programming paradigm into the imperative scripting lan-
guage JavaScript. Since 2015, CHR.js has been continuously maintained and further
improved for the publication at Rules and Reasoning [78].

CHR.js. https://github.com/fnogatz/CHR.js, MIT License.
Compile and run Constraint Handling Rules in JavaScript.

Finally, we mention in Section 9.5 a web-based visualisation of the concrete and
abstract syntax trees that are produced by library(plammar). It is based on the

7Node Version Manager nvm, https://github.com/nvm-sh/nvm, MIT License.

18

https://github.com/fnogatz/tap
https://github.com/fnogatz/cli_table
https://github.com/fnogatz/swivm
https://github.com/fnogatz/dcg-visualiser
https://github.com/fnogatz/CHR.js
https://github.com/nvm-sh/nvm

1.5. Contributions

AST Explorer by Felix Kling, https://github.com/fkling/astexplorer. Our fork at
https://github.com/fnogatz/astexplorer contains adaptions that are required to dis-
play Prolog parse trees. This includes minor changes to allow the AST Explorer to
request the displayed syntax tree as a JSON document from a remote server. This
server component is based again on SWI-Prolog’s Pengines, and bundled with our
library(plammar) in its server directory.

19

https://github.com/fkling/astexplorer
https://github.com/fnogatz/astexplorer

2
Logic-Based Programming

Reasoning using rules and exceptions is an
important feature of our everyday life.

— Bob Kowalski8

The evolution to more than 700 different programming languages as mentioned in
Chapter 1 has been a long journey with many partings of the way. As a result, to-
day’s world of programming languages is big and diverse. Regarding their underlying
programming paradigm, they can be roughly classified in two categories: imperative
and declarative. Imperative programming puts emphasis on how to solve a given
problem, while declarative programming languages describe the requirements that
have to be fulfilled by a possible solution. In Prolog, the latter is done in the form of
implications. The foundation to deduce knowledge in a closed world based on these
implications is the theory of first-order logic. In this chapter, we shortly introduce
it and the history of logic programming as its application.

The chapter is organised as follows. In Section 2.1, we first give a brief overview
of the concept of declarative programming in general. This paradigm again can be
partitioned into two major branches: functional and logic programming languages.
The latter are usually based on first-order logic, for which we give an introduction in
Section 2.2. Though there are various universal evaluation methods for logic-based
programming languages, all of them are based on the substitution of logic variables in
the given problem description. This process, which is called unification, is introduced
in Section 2.3. In Section 2.4, we show the fundamentals of the top-down deduction
strategy that is used by Prolog, the SLD resolution. Finally in Section 2.5, we provide
the example logic program append. This predicate can be used to concatenate or
split lists, and serves as a running example throughout this thesis.

8Quote from “Time to think like a computer” [68]. Robert Anthony ‘Bob’ Kowalski is an American
logician and computer scientist, who spent most of his career in the United Kingdom. He de-
veloped the SLD resolution and the procedural interpretation of Horn clauses (cf. Section 2.4),
which established the basis for the operational semantics of logic programming. Consequently,
Kowalski was honoured as one of the 15 Pioneers of Logic Programming by the ALP in 1997.

21

Chapter 2. Logic-Based Programming

Programming Languages

Imperative
e. g., Java, C++ Declarative

Functional Programming
e. g., Haskell, Scala

Logic Programming
e. g., Datalog, Prolog

Figure 2.1: Programming paradigms and some of their representatives.

2.1. The Declarative Programming Paradigm

The world of programming languages can be classified in various ways. In this work,
we do so using the program’s area of application, with general-purpose languages
on the one hand and domain-specific languages on the other. Another classification
is based on the underlying mental model of programming. In the paradigm of im-
perative programming, developers express commands for the computer to perform,
just like in the imperative mood in natural languages. Imperative programming fo-
cusses on the description of how the program should operate, effectively resulting
in a set of instructions to change the program’s state. In contrast, in the paradigm
of declarative programming, one focusses on what the program should accomplish,
without specifying the exact steps that have to be performed to achieve this.

Declarative languages can be further divided in functional and logic programming
languages. Functional languages treat the computation as the evaluation of mathe-
matical functions, whereas logic programming languages treat the computation as
axioms and derivation rules. For instance, Haskell and Scala are popular functional
programming languages; Datalog and Prolog are among the oldest yet most popular
logic programming languages. Figure 2.1 illustrates the schema of different program-
ming paradigms with some of their most popular representatives.

However, this classification based on programming paradigms is not strict. For in-
stance, there is a trend in imperative programming languages to implement func-
tional features. Recent versions of JavaScript ship with traditional functional con-
structs like map and fold; external libraries on-top allow to write JavaScript code
that looks similar to Scala or Haskell [36]. In addition, there are attempts to combine
the benefits of logic-based languages with traditional imperative programming lan-
guages, e. g., in [29, 89]. In most cases, this is done because of the concise and precise
syntax that comes with declarative language constructs – a map is simply easier to
read and understand than a loop that adds complexity because of an additional loop
variable, or break and continue statements.

22

2.1. The Declarative Programming Paradigm

algorithm

logic control+

Abstract
procedure
definitions

Definitions of
data structures

Strategy
for order

Strategy for
alternatives

Strategy for
direction

Data
storage

Figure 2.2: Components of algorithms.

The underlying programming paradigm also affects the program execution. In im-
perative programming languages, the program is described as a sequence of instruc-
tions. They are either directly compiled into low-level machine code (e. g., for C++),
or executed one after another by a virtual machine (e. g., for Java). This way, the
description of the problem (or of its solution, respectively) is encoded implicitly in
the sequence of instructions, without a chance to clearly differentiate between the
problem’s characteristics, and the method used for its solution.

In contrast to this, in logic programming only the description of the problem is
specified by the developer. The method for deducing an answer is universally de-
fined in a generalised solver and thus separated from the problem description. This
separation has been expressed by Robert ‘Bob’ Kowalski in the following well-known
equation [67]:

algorithm = logic + control.

Here, logic indicates the description of the problem, including the definition of data
structures and abstract procedures. On the other hand, control stands for the gen-
eralised evaluation mechanism to get a proper solution. There are various ways
to implement the control component. These computation methods have to define
strategies on how to handle multiple procedures (parallel or sequential?), alterna-
tives (depth-first or breadth-first?), the solving direction (top-down or bottom-up?),
and how to store their data.

This separation with its subquestions is depicted in Figure 2.2, which is a slightly
adapted version of Kowalski’s original work [67, p. 425]. Having a separate logic and
control component has several advantages:

– Both parts can be developed independently, and may use different languages.
In this regard, the logic can be specified in a DSL, while the control part can
be implemented in some other language, e. g., C++, to ensure a fast execution.
As a consequence, when describing the problem, it is not necessary to know

23

Chapter 2. Logic-Based Programming

how the control part operates on this description; knowledge of the declarative
reading of the problem specification suffices.

– Since the control component is universally defined, it works with any (sub-)
set of problem descriptions. For an underdetermined problem description, the
universal solver returns a partial solution. By specifying more constraints of
the problem, a returned solution can then be refined step-by-step, resulting in
an incremental solver.

– Changes to the control affect only the efficiency to find a solution. This allows
to incrementally refine and improve the universal method that handles the
problem description.

This separation of concerns – splitting the algorithm into a logic and a control com-
ponent – is the reason why our intended host language Prolog is sometimes referred
to as a domain-specific language tailored to applications of logic programming. While
the way a problem is described (i. e., the logic part) is usually the same for all Pro-
log systems, their control component could be specified in various general-purpose
languages.

When developing algorithms or software at scale, besides logic and control a third
part is of great importance: their explanations and source code documentation. Sim-
ilar to declarative programming, the literate programming paradigm as conceived by
Donald Knuth shifts the programmer’s focus from writing software in the manner
and order imposed by the computer to develop them in the order demanded by the
logic instead [64]. Systems following this concept allow to arbitrarily mix comments
and source code, and the program’s execution is independent from the literate order
of source code snippets. The program’s code is then origin for both the machine
executable code and its documentation.

In this regard, logic programming languages are suitable also for the literate pro-
gramming paradigm – because of the inherent separation, the control component
could be implemented in a way that it does not rely on the source code order. In
addition, logic programming languages are usually small-syntax languages with only
minor syntax restrictions, leaving a lot of freedom to define new means for embed-
ding comments, which thus can be closely interwoven with the executable source
code. First attempts have been made with SWI-Prolog’s library(pldoc) [131].

There are various approaches to implement the control component of logic program-
ming languages. Besides Prolog, there are also other logic programming languages
like Datalog, which usually differ in their syntax and procedural semantics. But with
all being representatives of the logic-based programming paradigm, these languages

24

2.2. First-Order Logic as the Basis for Logic Programs

have in common that their logic component is usually based on first-order logic, for
which we give a short introduction in the next section.

2.2. First-Order Logic as the Basis for Logic Programs

First-order logic is an extension of propositional logic. In addition to declarative
propositions, it allows the use of quantified variables, functions, and predicates. It
is therefore also called predicate logic, predicate calculus, or quantificational logic.
The term first-order is used to distinguish the calculus from the zeroth-order propo-
sitional logic on the one hand, and higher-order logic on the other [4]. The latter
additionally allows predicates and functions to have predicates as arguments, or in
which one or both of predicates or functions can be quantified (“there is a predicate
so that. . . ”, and similar propositions).

While in propositional logic variables are either true (⊤) or false (⊥), in first-order
logic they are entities in the domain D of discourse, which we call the universe.
Predicates take entities of D to define their relations; though predicates with zero
or one argument are also possible.

The semantics of first-order logic is described in Sections 2.3 and 2.4. In this section,
we first introduce its syntax. Similar to the specification of a programming language,
the syntax describes the finite sequences of symbols that are legal expressions in
first-order logic.

Alphabet. The alphabet is a countably infinite set of symbols that can be used to
form an expression. Symbols are either logical or non-logical. Logical symbols have
always the same meaning and are not dependent on the domain of discourse. First
of all, they include the logical symbols known from propositional logic:

– truth constants for true and false, usually denoted as ⊤ and ⊥,

– logical connectives like ∧ for conjunction, ∨ for disjunction,→ for implication,
↔ for equivalence, and the unary operator ¬ for negation,

– an infinite set V of variables, which we denote by uppercase letters at the end
of the alphabet, i. e., V = {X, Y, Z, . . . }, and

– punctuation symbols like parentheses and brackets.

25

Chapter 2. Logic-Based Programming

Secondly, as an extension to propositional logic, first-order logic also includes the
quantifier symbols ∀ for universal quantification and ∃ for existential quantification.
For more descriptive variable identifiers, longer names starting by an uppercase letter
might be used.

Another extension to the alphabet known from propositional logic are non-logical
symbols. They represent predicates (relations) and functions on the domain of
discourse, and are therefore specific to the described problem. From a syntacti-
cal point of view, predicates and functions are similar: they consist of a predi-
cate symbol or function symbol, and an arbitrary number of arguments. We de-
note predicate symbols by lowercase letters from the end of the alphabet Π =
{ p, q, r , . . . }, whereas function symbols are denoted by the leading lowercase let-
ters Σ = { a, b, . . . , f , g, h, . . . }. For more descriptive identifiers, longer symbols
starting by a lowercase letter might also be used. Π and Σ are the predicate signa-
ture or function signature, respectively. Together, they form the set of non-logical
symbols, which are specific to the described problem and context.

In literature, the notation for elements of Π and V is sometimes vice versa, with
lowercase letters used for predicate symbols, and uppercase letters used for variables.
We use the formerly introduced notation, as it aligns with the syntax of Prolog.

Term. Given the alphabet of logical and non-logical symbols, we specify how to
build complex terms and formulas. In first-order logic, a term is inductively defined.
It has one of the following forms:

1. A variable symbol of V = {X, Y, Z, . . . }. Unlike propositional variables (which
can either be ⊤ or ⊥), they can represent any entity in the domain of discourse.

2. A compound term of the form f(t1, . . . , tn), where f is a function symbol,
and t1, . . . , tn is the ordered set of terms as its arguments. The number of
arguments is called arity. A compound term with an arity of 0, e. g., just a, is
called constant.

The set of terms is denoted by T . Only expressions which can be obtained by finitely
many applications of this inductive definition are terms. In particular, no expres-
sion involving a predicate symbol is a term. Consequently, compound terms do not
contain elements of Π as arguments, thus it is not possible to express propositions
about predicates, which in contrast would be allowed in higher-order logic.

Besides terms, whose arguments are not further restricted, ground terms are terms
that contain no variables. They are again inductively defined:

1. A constant is a ground term.

26

2.2. First-Order Logic as the Basis for Logic Programs

2. If f is a function symbol with an arity of n ≥ 1, and t1, . . . , tn are ground
terms, then f(t1, . . . , tn) is a ground term.

The set of all ground terms of a formula in first-order logic is called the Herbrand
universe, named after the French mathematician Jacques Herbrand (1908–1931).

Formula. Formulas are typically denoted by uppercase letters {F, G, . . . }. Given
terms over signatures (Σ, Π), a formula in first-order logic is inductively defined by
the following rules:

1. If p is a predicate symbol of Π with an arity of n ≥ 0 and t1, . . . , tn are terms,
then p(t1, . . . , tn) is a formula. For n = 0 we write p.

2. If F is a formula, then ¬F is a formula.

3. ⊤ and ⊥ are formulas.

4. If F and G are formulas and ⊕ is a binary logical connective defined in the
alphabet, then F ⊕G is a formula.

5. If F is a formula and X is a variable of V, then ∀X F (“for all X, F holds”)
and ∃X F (“there exists X such that F holds”) are formulas.

Formulas built only from the first rule are called atomic formulas. A formula built
only from rules 1 and 2 is called a literal. Ground atomic formulas are widely used
to describe properties of a formula, e. g., interpretations and its models; literals are
often used for proofs and derivations.

Free and Bound Variables in a Formula. In a formula, a variable may occur free
or bound. Intuitively, a variable occurrence X is free in a formula F if it is not
quantified by ∀ or ∃. With the given inductive definition of formulas, X occurs free
in an atomic formula F = p(t1, . . . , tn) if and only if X occurs in F (rule 1). In
complex formulas with logical connectives, X is free (or bound, respectively) if and
only if X is free (or bound) in the operands (rules 2–4). In a quantified formula
∀Y F or ∃Y F (rule 5), X is free if and only if X is free in F and X ̸= Y ; X is
bound if and only if X = Y or X is bound in F .

A formula in first-order logic with no free variable occurrences is called a first-order
sentence. In the following, we restrict ourselves to formulas of this form, since they
have well-defined truth variables under an interpretation.

27

Chapter 2. Logic-Based Programming

Horn Clause. The finite disjunction of literals {L1, . . . , Lm, ¬Lm+1, . . . , ¬Ln }
with universally quantified variables from V in Li is called a clause. Every formula
given in first-order logic can be represented by a clause that is equisatisfiable, i. e.,
though it is not required to have the same model, it is satisfiable if and only if the
original formula is satisfiable. An equisatisfiable clause to a given formula can be
obtained using standard techniques like Skolemisation and equivalent transforma-
tions.

The special case of a clause with only a single positive literal (m = 1) is called Horn
clause. They are named for the American mathematician Alfred Horn (1918–2001),
who first pointed out their significance in 1951, and form the foundation of logic
programming. With De Morgan’s law, a Horn clause with variables X1, . . . , Xp ∈ V

can be equivalently written as a formula of the form

∀X1 . . . ∀Xp (L1 ← L2 ∧ · · · ∧ Ln).

Logic Program. Because after the Skolemisation all variables X1, . . . , Xp ∈ V are
bound and universally quantified, they are usually omitted. We call

L1 ← L2 ∧ · · · ∧ Ln

with atomic formulas L1, . . . , Ln a definite clause. The finite set of definite clauses
and facts forms a logic program.

For n = 2 and L2 = ⊤, the definite clause L1 ← ⊤ is called a fact and is written as
L1 for short. Otherwise, the definite clause is called rule. L1 is the head in both cases,
and L2∧ . . .∧Ln the body of a rule. Variables which occur only in the body are called
local variables. Using logic equivalent transformations, the quantification of all local
variables can be moved from the rule’s head to its body, changing their universal
quantifier ∀ to the existential quantifier ∃ due to the negation of the implication.

2.3. Theory of Unification

Following the definition of free and bound variables in formulas as introduced in Sec-
tion 2.2, the same variable symbol X might occur simultaneously free and bound in
different parts of a formula, e. g., in G = p(f(X)) ∧ ∀X ¬p(X). In the first operand
of the conjunction, X is free, while in the second it is universally quantified and
therefore bound. We usually avoid such ambiguities by renaming the variables ap-
propriately. This is done via substitutions.

28

2.3. Theory of Unification

Substitution. A substitution σ : V → T is a mapping from variables to terms, i. e.,

σ = {X1 7→ t1, . . . , Xn 7→ tn },

with pairwise different variables Xi. The mapping Xi 7→ ti is called the binding of
the variable Xi to the term ti. We write Xi/ti for short. A substitution with only
ground terms ti is called ground substitution. The empty (identity) substitution is
denoted by ϵ.

Applying a substitution σ on a formula F is written in postfix notation as Fσ.
It means to simultaneously replace every occurrence of a variable Xi in F by the
term ti. The result Fσ is called an instance of that formula F .

It is t1σ = t2σ if and only if t1 and t2 are syntactically equivalent over the Her-
brand universe, i. e., with the containing free variables being bound over all ground
terms. For an instance Fσσ′ with substitutions σ and σ′, there is a substitution θ

so that Fσσ′ = Fθ. The substitution θ is called the composition of σ and σ′, with
θ = σσ′.

In our exemplary formula G = p(f(X)) ∧ ∀X ¬p(X), the first variable occurrence
of X can be renamed by σ = {X/Y } and the instance p(f(X)) σ = p(f(Y)).
G′ = p(f(Y)) ∧ ∀X ¬p(X) eliminates the ambiguous usage of the variable name X.
Though G and G′ are not equivalent as they have different models due to the re-
named variable, G is satisfiable if and only if G′ is satisfiable.

Unification. In the previous paragraph, we have shown how to apply a given substi-
tution to a formula. A common task in first-order logic is to find a substitution σ so
that for two given literals t1 and t2 the equation t1σ = t2σ holds. This substitution σ

is called unifier, the process of finding it is called unification.

For instance, given a is a constant in the Herbrand universe, two literals t1 = p(f(Y))
and t2 = p(X) can be unified by the substitution σ = {X/f(a), Y/a }, with t1σ =
t2σ = p(f(a)).

Most General Unifier. For the previous example, we easily find additional sub-
stitutions that satisfy the equation t1σ = t2σ, e. g., σ′ = {X/f(f(a)), Y/f(a) },
or σ′′ = {X/f(Y) }. For two given literals there is either no unifier or infinitely
many. For instance, for t1 = p(X) and t2 = p(a), we could add additional variables
and renamings, like in σ′′ = {X/Y, Y/a, Z/a }.

We therefore introduce the notion of the most general unifier (MGU). A substi-
tution θ is MGU of two literals t1 and t2 if and only if t1θ = t2θ, and if for all

29

Chapter 2. Logic-Based Programming

other unifiers σ, there is a substitution σ′ so that σ = θσ′. In the previous example
with t1 = p(X) and t2 = p(a), the MGU is θ = {X/a }. This MGU is unique, but
there are also examples with various valid MGUs, e. g., for two literals t1 = p(X)
and t2 = p(Y).

The unification algorithm [100] reports unsolvability or computes a complete and
minimal singleton substitution of two given literals. For first-order unification,
a MGU can be effectively computed in linear time [71, 94].

Occurs Check. As stated before, only expressions which can be obtained by finitely
many applications of the inductive definition are terms. As a consequence, given
two literals t1 and t2, their unifier is a finite substitution, i. e., a finite set of vari-
ables that are mapped to terms. Nevertheless, this could still result in infinite
terms once the application of the unifier is not idempotent. For instance, two lit-
erals t1 = p(f(X)) and t2 = p(X) have the MGU θ = {X/f(X) }, leading to the
infinite term t1θn = t2θn = p(fn(X)). To avoid infinite terms as solutions, the
unification algorithm sometimes contains an additional check that in the computed
variable substitution Xi/ti with a compound term ti, ti does not include the variable
Xi again. This additional check, called occurs check, has a great effect on the perfor-
mance of the unification algorithm. It is therefore omitted by default in most Prolog
systems. By not performing the occurs check, the worst case complexity of unify-
ing a term t1 with a term t2 is reduced in many cases from O(size(t1) + size(t2))
to O(min(size(t1), size(t2))) [97]. In particular, the frequent case of variable-term
unifications (i. e., t1 = Xi) is performed in O(1).

2.4. Computation with Logic Programs

First-order logic can be seen as a formal and unified language to describe the re-
quirements relevant to a solution of a given problem. In a logic program, these
requirements are specified in the form of definite clauses and facts, which therefore
resemble the syntax and data structures of a programming language. Even the lan-
guage’s semantics are well-defined by the declarative reading of the formula, with
all solutions for the specified problem being members of the formula’s model. How-
ever, it remains open how to concretely calculate this model, i. e., the procedural
semantics of logic programs. In particular it is of interest if a given ground atomic
formula p(t1, . . . , tn), the goal, is part of the model. In case of an atomic formula
with free variables, the substitution σ should be computed so that p(t1, . . . , tn)σ is
in the model.

30

2.4. Computation with Logic Programs

There are two major approaches to this reasoning with logic programs in a goal-
oriented way. In top-down problem solving, we reason backwards from the conclu-
sion, repeatedly reducing goals to subgoals via definite clauses until all subgoals can
be proven by facts. In bottom-up problem solving, beginning with the facts new asser-
tions are repeatedly derived forward to the hypothesis, until eventually the original
goal is solved directly by the derived assertions. There are several proof procedures
for each approach. For instance, bottom-up computation can be achieved with the
help of hyperresolution [100]. In this section, we introduce the foundations and some
properties of the SLD resolution. It is the top-down proof procedure that Prolog’s
execution is based on.

2.4.1. Top-Down Depth-First Inference with SLD Resolution

Resolution is a rule of inference leading to a refutation theorem-proving technique.
While propositional logic relies on a propositional variable Xi and its complemen-
tary ¬Xi, first-order logic uses the literal Li and its complement modulo unifica-
tion ¬Liσ. Given two clauses

K1 = L1,1 ∨ · · · ∨ L1,n1 ,
K2 = L2,1 ∨ · · · ∨ L2,n2 ,

with L1,i = ¬L2,iσ for a unifier σ, we can infer the formula

F = (K1 \ L1,i ∧K2 \ L2,i)σ,

if K1 \ L1,i and K2 \ L2,i have no variables in common. F is called the resolvent
of the premises K1 and K2. Typically, the resolution rule is iteratively applied in a
suitable way for proving that a given formula in first-order logic is unsatisfiable.

The general idea of resolution has been refined by Kowalski in 1974 [66] to calculate
a unifier σ so that for a given atomic formula F , Fσ can be inferred from the logic
program. The atomic formula F in question is called query and is usually indicated
by a leading “←”, so it is written as ← F .

Calculating the unifier σ can be achieved by finding a sequence of resolvents
G0, . . . , Gn with appropriate unifiers σ1, . . . , σn−1 that ends in the empty clause
Gn = □, starting with the query F = ¬G0. Then, the sequence σ = σ1σ2 . . . σn−1

used in the refutation is called the computed answer substitution for the goal F

in the logic program P . Typically, the computed answer substitution is restricted
to the variables that occur in the goal F , since all other variables in σ were local
variables in the applied definite clauses.

31

Chapter 2. Logic-Based Programming

SLD resolution is short for selective linear definite clause resolution. This refers to
the fact that the only literal resolved in a resolution step is one that is uniquely
selected by a selection function. It is linear in the sense that the proof of refutation
needed for the computed answer substitution can be achieved by a linear sequence
of goals G0, . . . , Gn.

The presented approach implicitly defines a search tree of alternative computations,
in which the initial goal clause is associated with the root of the tree. Since there
might be multiple clauses in the logic program whose head K unifies with the selected
literal of the goal, each alternative is represented in the search tree by an edge from
the current goal. The child nodes are built from the goal clause obtained by the
resolution step of the current goal and the chosen alternative. There are two kinds
of leaves in this search tree: success nodes are those, whose resolution results in
the empty clause; failure nodes on the other hand are those, for which there is no
corresponding clause in P whose head unifies with the selected literal, i. e., this goal
cannot be proven by the logic program P .

2.4.2. Nondeterminism and Backtracking

The SLD resolution introduces several sources of nondeterminism. Firstly, as a goal
Gi could consist of multiple literals Li,1, . . . , Li,ni , it remains unclear which is used
first for resolution (i. e., to find a clause in P with a complement modulo unification
to this literal). This order is defined by the selection function s, which maps a goal Gi

to the used literal Li,k.

In the SLD resolution, the selection function s is defined to choose the literal that
has been most recently introduced into the resolvent. In the simplest case, such a
last-in-first-out (LIFO) selection function can be specified by the order in which
literals are written. Given the LIFO stack represented as a string, we simply use the
left-most written literal, and denote this particular selection function by sl.

However, there is no restriction to s on the literal that can be selected. Therefore,
the selection function used in the resolution step could be defined more sophisti-
cated. Because it directly influences the steps needed to, e. g., find a refutation,
the choice of the selection function s greatly influences the computational perfor-
mance of the resolution. Prolog is based on the SLD resolution with its LIFO-based
selection function sl. Since the choice of sl is particularly interesting for large com-
binatorial problems (e. g., in constraint satisfaction problems, cf. Section 10.1.4),
Prolog’s choice for the prioritisation of recently added subgoals can be manipulated
by writing a proper meta-interpreter (cf. Section 5.3).

32

2.4. Computation with Logic Programs

A second nondeterminism is introduced by the choice of the corresponding clause
K\L in P , represented by the different edges in the search tree. This again influences
the program’s performance and completeness: if the search space contains infinite
branches and the search strategy chooses these in preference to finite branches, the
computation does not terminate. In Prolog, the program’s clauses are applied in
the order they appear in the source code; a meta-interpreter can opt for a different
approach.

Besides the questions on how to select the first subgoal for the next resolution
step and how to select a possible corresponding clause, a third characteristic is to
whether traverse through the search tree of alternative computations in a breadth-
first or depth-first manner. If it is asked for all possible solutions, both approaches
are identical regarding the program’s performance. With respect to completeness,
depth-first computation again does not terminate for search spaces with infinite
branches.

If only the first answer is of interest, depth-first computation generally yields faster
possible solutions. Once the computation reaches a failure node in the search tree,
i. e., the current goal cannot be proven, the next alternative clause in the parent’s
node is applied; if there is none remaining in the search tree, this node is again
treated as a failure node, and so on. This process is called backtracking and is a
major language feature of Prolog.

In case there is not a single success node in the SLD search tree for a query p(X) –
i. e., it is failing –, it is known that its negation ¬p(X) is true. This is due to the
closed-world assumption, which presumes that any real-world statement that is true
is also true in the first-order logic formalisation, either given as fact or as it can be
inferred by the SLD resolution. Conversely, what cannot be inferred by resolution
is known to be false. It is an important premise for the reasoning with negations,
which SLD resolution is based on.

Logic programs typically consist mostly only of positive literals in the rule’s bodies.
A negated literal ¬p is usually only used as a condition to apply a rule, e. g., in
F = q(X) ← s(X) ∧ ¬p(X). Here, it is not possible to infer the negated goal
¬p(X) with the help of only SLD resolution. However, because of the closed-world
assumption it is known that ¬p(X) is true if and only if p(X) cannot be inferred, i. e.,
it is failing. This refutation technique for negated goals is therefore called negation
as failure.

33

Chapter 2. Logic-Based Programming

2.4.3. Variables for Parameter Passing and Return Values

In Section 2.2, we introduced the terms free and bound as properties of variables
that occur in first-order logic formulas, either standalone or quantified by ∃ or ∀.
Since logic programs are built from definite clauses, all variables in a formula are
required to be either universally quantified, or existentially quantified in case of local
variables, making this distinction obsolete.

Both terms are differently connoted in the context of computation. Here, a variable X

is free if there is no corresponding substitution σi = {X/t } in the computed answer
substitution σ, or t is a free variable in the same way. Conversely, the variable X is
bound if it is substituted by a compound term t, including constants.

A variable cannot occur simultaneously free and bound in different parts of a formula,
since variables with the same symbol represent the identical entity in the domain of
discourse. This concept is fundamentally different to variables known from impera-
tive programming languages like Java, which handle a variable as a memory address
and thus allow subsequent assignments. In logic programs, once the binding of a
variable is established in the computed answer substitution, it cannot be modified.
Only by backtracking a variable binding can be resolved, because a variable might
hold different values in the various branches of the SLD search tree.

If the variable X is bound to a compound term t which is not ground, i. e., it contains
a free variable Y , the variable X is called partially bound or partially instantiated.
Though the binding of X cannot be undone, the variable’s value can be further
determined in the same branch of the search tree by (partially) binding the included
variable Y . In this way, the known value of a variable can be specified in greater
detail throughout the computation of a logic program.

As a result of having variables which can be partially bound, there is no need to
explicitly declare input arguments and return values as required when defining func-
tions and methods in most imperative programming languages – logic variables can
serve as both. This allows for a bidirectional parameter-passing mechanism, where
input and output can switch places. Consequently, the same logic program often
describes both directions of computation. This behaviour is limited only by the
operational semantics, i. e., how the computation handles the presented causes of
nondeterminism and if the search tree is traversed depth-first or breadth-first, and
if there are no side effects.

34

2.5. Logic Program Example: append

2.5. Logic Program Example: append

As an introductory example, we consider the logic program P that describes the
predicate append(X , Y , Z) with the meaning: Z is the result of concatenating the
lists X and Y together, i. e., joining the lists end to end. It is described using the
formulas F1 and F2 in first-order logic as follows:

F1 : ∀Y append(nil, Y, Y)
F2 : ∀X∀Y ∀Z∀E

append(cons(E, X), Y, cons(E, Z))← append(X, Y, Z)

Here, we use the constant symbol nil to denote an empty list, and the function
cons(E , X) (“constructs”) to describe a list with the first element E and a remaining
list of X. In addition, we use the constant symbols { a, b, . . . } to represent list
elements, so the Herbrand universe is

HU (P) = { nil, a, b, . . . , cons(nil, nil), cons(a, nil), . . . ,

cons(cons(nil, nil), nil), . . . }.

Note that the Herbrand universe simply contains all combinations of functions and
constants, including those which are not intended but valid according to the logic
program’s declarative reading. For instance,

append(nil, cons(a, a), cons(a, a))

is element of the model of P because of F1, though in practice we restrict ourselves
to instances cons(E , X) where X is a list, i. e., either nil or of the form cons(·, ·)
again, in contrast to X = a as used as the predicate’s last two arguments in the
previous example.

The formulas F1 and F2 are given in the form created by normalisation steps, as
having created a prenex normal form, and performing Skolemisation afterwards. To
assist with the understanding of F2, we provide an equivalent formula F ′

2 where E

is moved to the rule’s body, and the local variables L and M are introduced to put
the unification from the rule’s head in its body instead:

F2 ≡ F ′
2 := ∀X∀Y ∀Z

append(X, Y, Z)← ∃E∃L∃M
X = cons(E, L) ∧ Z = cons(E, M) ∧ append(L, Y, Z)

In the logical reading, “=” acts as predicate that is true if both arguments can be
unified. In the formulas, we use the infix notation “A = B” for “=(A, B)”.

35

Chapter 2. Logic-Based Programming

Similar to the transformations of F2, F1 can be rewritten as F ′
1 by moving the

unification of X and Z with nil and Y from the rule’s head to the rule’s body and
thus making it explicit:

F1 ≡ F ′
1 := ∀X∀Y ∀Z append(X, Y, Z)← X = nil ∧ Y = Z

In the logic program P , a model has to satisfy all formulas, i. e., F1 (or F ′
1, respec-

tively) and F2 (F ′
2) implicitly represent a logical conjunction. Because F ′

1 and F ′
2

have an identical rule head, they can be combined into a single rule. Consequently,
P can be equivalently modelled by the single formula F ′ ≡ F ′

1 ∧ F ′
2:

F ′ := ∀X∀Y ∀Z
append(X, Y, Z)←

(X = nil ∧ Y = Z) ∨
(∃E∃L∃M
X = cons(E, L) ∧ Z = cons(E, M) ∧ append(L, Y, Z))

We will refer to these alternative forms F ′
1, F ′

2, and F ′ later in this work when
discussing possible implementations of P in Prolog and other logic-based systems.

2.5.1. SLD Resolution for All Solutions

In the previous section, we introduced append(X, Y, Z) as a predicate that holds
the result of concatenating the lists X and Y in the last argument Z. Given two
lists X = cons(a, nil) and Y = cons(b, nil), the SLD resolution should return the
computed answer substitution {Z/cons(a, cons(b, nil)) }. It is the only success node
in the SLD search tree for this query.

However, as stated in Section 2.4.3, there is no difference in input and output in logic
programs. An alternative declarative reading of P is that X and Y are the result of
splitting the ordered list Z at any position in-between. Thus, for a goal with only Z

being bound, the SLD resolution returns appropriate substitutions for X and Y .
This is the inverse function of the original meaning, i. e., the predicate append can
be used to produce all combinations of two lists that together form the list Z.

Figure 2.3 shows the SLD search tree for an example query:

← append(X0, Y0, cons(a, cons(b, nil)))

36

2.5. Logic Program Example: append

← append(X0, Y0, cons(a, cons(b, nil))) 1

□2a ← append(X1, Y1, cons(b, nil)) 2b

□3a ← append(X2, Y2, nil) 3b

□ 4

{Y0/cons(a, cons(b, nil)),
X0/nil} F1 F2

{E1/a, X0/cons(a, X1),
Y0/Y1, Z1/cons(b, nil) }

F1
{X1/nil, Y1/cons(b, nil)} F2

{E2/b, X1/cons(b, X2),
Y1/Y2, Z2/nil }

F1 {X2/nil, Y2/nil }

Figure 2.3: SLD search tree for the query ← append(X0, Y0, cons(a, cons(b, nil))).

Simply put, this query asks for all pairs (X0, Y0) of lists so that concatenating them
results in the list that holds only the constants a and b.

In the SLD search tree, nodes depict goals. The goals are indicated by a leading “←”
again. The empty clause is denoted by □ and forms a success node. Each edge in
the tree represents a performed resolution step. The edges are annotated by the
used formula of P under the given substitutions. Variable symbols are enumerated,
with X0 and Y0 being the free variables from the query, and Xi, Yi, Zi and Ei with
i > 0 newly introduced local variables originating from the rule’s body.

The circled numbers in Figure 2.3 indicate the order in which the computation of
all three possible answer substitutions is performed by the SLD resolution:

1 The search tree’s root is formed by the initial query. It is used to find clauses
and facts in program P , it can be unified with.

2a The query can be unified with the fact F1 under the substitution
{Y0/cons(a, cons(b, nil)), X0/nil}, which forms the computed answer substi-
tution, as no local variables have been introduced. With this substitution,
the current subgoal is inferred, and the computation continues with the next
subgoal of 1 . Since it consists only of a single literal, 2a ends in a success
node with the empty goal.

2b To search for additional solutions, 2a backtracks to 1 , trying alternative
unifications for the initial query. It can also be unified with the rule F2 under
the substitution {E1/a, X0/cons(a, X1), Y0/Y1, Z1/cons(b, nil) }. The new goal

37

Chapter 2. Logic-Based Programming

is the rule’s body under this substitution, i. e., ← append(X1, Y1, cons(b, nil)).
It depicts a sub-problem of the initial question, asking for all pairs (X1, Y1) of
lists that together form the list which contains only b.

3a This goal again can be unified with the fact F1 under the substitution
{X1/nil, Y1/cons(b, nil)}. Together with the substitution of 2b , this results in
the computed answer substitution {X0/cons(a, nil), Y0/cons(b, nil)}.

3b To search for additional solutions, the application of F1 is backtracked, and F2

is used for the goal of 2b instead. The new goal ← append(X2, Y2, nil) asks
for all pairs (X2, Y2) which together form the empty list nil.

4 There is only a single solution for this sub-problem: X2 and Y2 both have to
be empty lists. This case is handled by the fact F1, which unifies with the goal
of 3b , resulting in the third computed answer substitution
{X0/cons(a, cons(b, nil)), Y0/nil}. The goal, on the contrary, cannot be unified
with the head of F2, because this rule requires the third argument of append
to be of the form cons(·, ·).

The search for alternative solutions terminates, as there is no other path in the
SLD search tree. This is established by consecutively backtrack from 4 to the root
node 1 , where no step allows alternative clauses to resolve the currently examined
goal with. In conclusion, there are only three ways to split the list of a and b, which
all get successfully computed in the success nodes 2a , 3a , and 4 .

2.5.2. Linear Refutation for a Particular Solution

As introduced in Section 2.4.1, the term “SLD resolution” refers to the fact that
the proof of refutation for a single computed answer substitution can be achieved
by a linear sequence of goals. It is the path of nodes from the root with the initial
query to a particular success node in the SLD search tree. Figure 2.4 visualises this
successful refutation for the answer substitution computed in 4 of Figure 2.3. Here,
the linear sequence of goals is:

1 ← append(X0, Y0, cons(a, cons(b, nil)))
2b ← append(X1, Y1, cons(b, nil))
3b ← append(X2, Y2, nil)
4 □

The graph in Figure 2.4 uses the same notation and step numbers as introduced
for Figure 2.3. In addition, the edges are labelled by the partially bound values of
both variables in question, X0 and Y0. For instance, in 2b it is known that X0 is

38

2.5. Logic Program Example: append

← append(X0, Y0, cons(a, cons(b, nil))) 1append(cons(E1, X1), Y1, cons(E1, Z1))
← append(X1, Y1, Z1)

← append(X1, Y1, cons(b, nil)) 2bappend(cons(E2, X2), Y2, cons(E2, Z2))
← append(X2, Y2, Z2)

← append(X2, Y2, nil) 3bappend(nil, Y3, Y3)

□ 4

{E1/a, X0/cons(a, X1),
Y0/Y1, Z1/cons(b, nil) } X0/cons(a, X1),

Y0/Y1

{E2/b, X1/cons(b, X2),
Y1/Y2, Z2/nil } X0/cons(a,

cons(b, X2)),
Y0/Y2

{X2/nil, Y2/nil,
Y3/nil } X0/cons(a,

cons(b, nil)),
Y0/nil

Figure 2.4: A linear refutation for the query ← append(X0, Y0, cons(a, cons(b, nil)))
that results in the computed answer substitution
{X0/cons(a, cons(b, nil)), Y0/nil }.

the term cons(a, cons(b, X2)) with a free variable X2, and Y0 is unified with the free
variable Y2. Both X2 and Y2 are finally bound to nil in 4 , resulting in bindings to
ground terms for X0 and Y0.

39

3
Programming in Prolog

1972 — Alain Colmerauer designs the logic language Prolog. His goal is to
create a language with the intelligence of a two-year-old. He proves he has

reached his goal by showing a Prolog session that says “No.” to every query.

— A Brief, Incomplete, and Mostly Wrong
History of Programming Languages9

The formalism of first-order logic as introduced in Chapter 2 is the basis for various
logic programming languages. Their syntax is often quite similar and differs only
in language-specific notations for the alphabet, i. e., how to denote logical and non-
logical symbols. These differences range from varying source code symbols for truth
values and logical connectives to conventions on how to denote variables, predicates,
and functions.

In contrast, the semantics of the various logic programming languages is diverse.
This is a result of the strict separation of the control component we presented in
Section 2.1 – the actual computation is detached from the problem’s description and
thus can be performed in various ways. First of all, the formulas in first-order logic
can be processed in a top-down or bottom-up manner, i. e., either starting from the
user’s query, or from all the facts in the knowledge base. But even then, the theoretic
ideas of a particular computation method leave several open questions, like how to
handle the various sources of nondeterminism in the case of the SLD resolution. All
these definitions regarding the syntax and operational semantics together constitute
a programming language.

Prolog was one of the first logic programming languages with its roots in the first-
order logic. It was developed and implemented in Marseille, France, in 1972 by Alain

9Quote by Scala software engineer James Iry from the blog post “A Brief, Incomplete, and
Mostly Wrong History of Programming Languages” (7 May 2009), available from http://james-
iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html. Alain Colmerauer (1941–
2017) was a French computer scientist. Being the creator of the programming language Prolog,
he is one of the 15 Pioneers of Logic Programming as honoured by the ALP in 1997. In ad-
dition, he was one of the main founders of the field of constraint-logic programming with the
development of the Prolog III system.

41

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

Chapter 3. Programming in Prolog

Colmerauer with Philippe Roussel, based on Robert Kowalski’s procedural interpre-
tation of Horn clauses (cf. Section 2.4.1). The name originates from programmation
en logique, French for programming in logic. In this chapter, we shortly introduce the
basic concepts of programming in Prolog. For a more detailed introduction to Prolog
we refer to [10, 20]; for more advanced Prolog usage we recommend [26, 86].

Terminology related to Prolog can be confusing, as unlike most other programming
languages (e. g., PHP), Prolog has no canonical implementation, but instead many
established systems, often with incompatible language extensions. The basic syntax
of Prolog is specified in the ISO Prolog standard [55]. In the work at hand, we refer to
it simply as Prolog. Actual implementations, e. g., SWI-Prolog and GNU Prolog, are
given explicitly. Only where needed for differentiation, we provide specific versions
of these implementations.

The introduction to Prolog in this chapter’s first parts roughly follows the order of its
theoretical counterpart in Chapter 2. The definitions get lifted from first-order logic
to Prolog, with considerations regarding the language’s syntax in Section 3.1 and
its semantics and the underlying computational model in Section 3.2. This section
also discusses the operator for unification in Prolog. In Section 3.3, we introduce
common Prolog term structures, like strings, pairs, and lists. They are needed for the
implementation of the exemplary first-order logic program of the predicate append,
which is adapted for Prolog in Section 3.4. In Section 3.5, we introduce the Prolog
idioms to examine, introspect, and modify the structure and behaviour of a loaded
Prolog program. The clauses can be decomposed, analysed, and built just as normal
Prolog terms, as we show in Section 3.6. This technique is particularly useful for
creating dynamic Prolog programs, where clauses are modified at run-time. As a
typical example, we present in Section 3.7 how to define Prolog predicates that
mimic global variables. Finally in Section 3.8, we give a short introduction to SWI-
Prolog’s module system.

3.1. Writing Prolog Programs

In the same way we did for first-order logic in Section 2.2, we first describe the lan-
guage’s alphabet. It is the foundation to define the symbols that are legal expressions
in Prolog. Because of its long history, Prolog’s alphabet is traditionally composed
only of the 7-bit US-ASCII character set. It consists of 95 printable characters for
digits, lowercase and uppercase letters, punctuation marks, and a few miscellaneous
symbols. The list of all printable characters is encoded in our implementation of
char_code/2 in Appendix C.5. Today’s systems usually provide a larger alphabet.
For instance, SWI-Prolog offers full Unicode support.

42

3.1. Writing Prolog Programs

In addition to the printable characters, the ISO Prolog standard defines the seven
symbolic control characters from ASCII code 7 up to 13. Among those, only the
horizontal tab \t (9), line feed \n (10), and carriage return \r (13) are of practical
relevance when writing Prolog programs. Unlike, for example, Haskell, the source
code of Prolog is not whitespace-sensitive, i. e., the program’s meaning does not rely
on the indentation of the code. As a consequence, the symbolic control characters
and the space character between symbols can be interchanged without changing the
program’s semantics.

3.1.1. Terms as First-Class Citizens

Given this alphabet, valid symbols can be composed. Since all data – including
Prolog programs for themselves – are represented by Prolog terms, our introduction
begins with the different symbols they can be built from: variables, atoms, and
numbers.

Variable. A variable in Prolog is a string of letters, digits, and underscores _ ,
beginning either with an uppercase letter or with an underscore. As in first-order
logic, they are logic variables (cf. Section 2.4.3), and thus all the occurrences of the
name of an ordinary variable stand for the same variable within one clause, i. e., the
variables of the same name depict the identical entity in the domain of discourse.
Only the anonymous variable, whose symbol is just the underscore character, is
different in the way that every occurrence of _ denotes a new, distinct variable. It
is used to fill in places, where any value is allowed, not burdening the mind of the
Prolog programmer with an otherwise useless name for an ordinary, fresh variable.

Like a logic program in first-order logic, a Prolog program consists of a finite set of
definite clauses and facts. All variables are implicitly quantified, either universally
in case of variables that appear in the rule’s head, or existentially in case of local
variables that appear only in the rule’s body. Consequently, there is no need for
logical symbols for explicit variable quantification in Prolog.

Atom. Unlike for first-order logic, Prolog’s alphabet cannot be easily differentiate
into logical and non-logical symbols. This is because a symbol’s meaning is solely
determined by the Prolog program it appears in. Together with the known definitions
of built-in predicates provided by the ISO Prolog standard, the used Prolog system,
and loaded libraries, this forms the set of allowed symbols.

Similar to first-order logic, character sequences starting with a lowercase letter are
used to denote predicate symbols and function symbols. After the initial lowercase

43

Chapter 3. Programming in Prolog

letter, they can include digits and the underscore char _ . In addition, any sequence
of characters that is enclosed in single quotation marks ’...’ is allowed. Strings of
only special characters, e. g., ==> and #˜! , are not required to be put in quotation
marks, and are standalone valid symbols, called graphic symbol. A symbol, which is
of one of these three classes – a string starting with a lowercase letter, enclosed in
quotation marks, or consisting of only special characters –, is called an atom. It can
be viewed as the program’s smallest data item that is not divisible into parts.

Though there are no reserved symbols for the Boolean data type in Prolog, it is
convention to use the atoms true and false (or alternatively fail), which are also
built-in predicates with an arity of zero. In Prolog systems with an alphabet with
full Unicode-support, the graphic symbols ⊤ and ⊥ can be equally used as atoms.
Numbers are not considered to be atoms in Prolog. Instead, they are one possible
shape of terms.

Term. Syntactically, all data objects in Prolog are terms. They are inductively
defined. A term is of one of the following forms:

1. A variable symbol of the aforementioned form, i. e., a character sequence be-
ginning with an uppercase letter or the underscore char _ .

2. An atom of the aforementioned form, e. g., append , ’append/3’ , or / .

3. A number. Fractional numbers use . as decimal point. Supported sizes and
precisions depend on the Prolog system.

4. A compound term of the form a(t1,...,tn) , where a is an atom called functor
name, followed by t1,...,tn as the ordered set of terms as its arguments,
which are enclosed by parentheses and separated by commas. The number of
arguments is called the term’s arity. It is greater than or equal to 1, as in
case of n = 0 the compound term collapses to the atom a. We call a/n the
(principal) functor of the compound term.

Atoms and numbers are summarised as atomic terms, as opposed to compound
terms. The definition of ground terms applies as introduced for first-order logic in
Section 2.2.

Throughout this work, we use the standard notation a/n which is based on the slash
character. It is used consistently in literature to denote a predicate’s functor. Only
for functor names that consist only of special characters (i. e., graphic symbols),
there are two different conventions. In case the functor notation should also serve as
a valid Prolog term, the functor name a has to be enclosed in parentheses. Without,
it would form a single atom ending with / . Because it is easier to grasp, we stick

44

3.1. Writing Prolog Programs

to the simple notation without parentheses, i. e., =/2 instead of (=)/2 to denote
the binary predicate with functor name = .

3.1.2. Rules and Facts about Predicates

A Prolog program uses rules and facts to define a predicate as a relation between
its arguments.

Predicate. A predicate has a name p, which is an atom, and zero or more argu-
ments. The arguments are Prolog terms, enclosed in parentheses, and separated by
commas. From a syntactical point of view, a predicate is just a term – either an
atom in case of zero arguments, or a compound term with the functor p/n in case
of n ≥ 1 arguments. The functor of a predicate p without arguments is defined
as p/0.

The special meaning of predicates compared to arbitrary Prolog terms comes from
their occurrences in the head of clauses, thus their meaning in the program’s declar-
ative reading.

Clause. A Prolog program consists of a finite set of definite clauses. As introduced
for first-order logic, a definite clause is characterised by a single element in the
positive head. A clause can be either a rule or a fact.

A rule in Prolog is of the following form:

Head :- Body.

Head is a predicate, i. e., either just p in case of a predicate with zero arguments, or
p(t1,...,tn) in case of a predicate with a functor of p/n. Body is a Prolog goal which
consists of one or more predicates. It may contain the logical conjunction, which is
denoted by , , and the disjunction, which is denoted by ; . The logical reading of a
rule is the same as introduced for the first-order logic formula Head ← Body: Head
is true if Body is true.

A clause, whose body is known to be always true (or empty, respectively), is called
a fact. In this case, it is written as follows:

Head.

45

Chapter 3. Programming in Prolog

The full stop . denotes the clause’s end. The collection of all rules and facts with
the same functor in the rule’s head defines the corresponding predicate p/n.

In addition to facts and rules, Prolog programs can also contain directives. A directive
is a rule with an empty Head, i. e., it is of the following form:

:- Body.

Directives may be placed anywhere in the Prolog source code. The goal Body is
executed by the Prolog system when the directive is encountered, because this rule
does not depend on a query due to the missing Head. Therefore, directives are often
used to specify a program’s initial query to be executed at run-time, or to provide
annotations for the compiler and related tools. For instance, there are directives
to define properties of a predicate for an improved compilation, and others to set
program flags, or to include external libraries and source code files.

Source Code Annotations. Prolog supports two types of source code annotations,
which are ignored by the Prolog interpreter:

– A single line comment starts with the percent sign % and includes everything
up to the next newline character \n .

– A bracketed comment starts with the character sequence /* and includes
everything up to the character sequence */ , including newline characters.

As a consequence, it is not possible to define atoms as graphic symbols, with its
sequence of special characters starting with % or /* .

3.2. Working with Prolog

The main way to run Prolog programs is by Prolog’s read–eval–print loop (REPL),
which is called the toplevel. It is an interactive Prolog environment that takes a
single user input, executes it, returns the result to the user and starts afresh. Terms
entered at the toplevel are treated as goals, with the variables being existentially
quantified. This allows to handle the goal as a query, answering the question “Is
there any computed answer substitution for which the given predicate holds?” The
toplevel thus outputs the computed variable bindings, or just yes in case of an
empty answer substitution, or no if the goal fails.

In the work at hand, we mark code listings that illustrate the work with the toplevel
by the Toplevel flag; queries in the running text are marked by the prefix “?-”,

46

3.2. Working with Prolog

e. g., ?- halt . We omit the trailing full stop . for the sake of readability, though
it is actually required by the toplevel to denote the goal’s end.

A Prolog source code file can be loaded in the toplevel with consult/1SWI. Addi-
tionally, most Prolog systems expect the first argument of their toplevel executable
to be a filename of the Prolog code that should be loaded.

3.2.1. Unification and Arithmetic Expressions

The toplevel computes the answer substitution by finding for each predicate in the
goal corresponding clauses with a head that unifies. Therefore, the search for a
most general unifier of two literals is an important feature and the foundation for
the computational model of Prolog programs. The unification affects the success or
failure of goals and causes the (partial) binding of free variables. We refer to [100]
for a detailed description of the unification algorithm in general, and to Iso 7.3 for a
description of the corresponding implementation in Prolog. Simply put, two atomic
terms unify only if they are the same; two compound terms unify only if they have
the same functor and their corresponding arguments unify pairwise. A free variable
always unifies with a term by binding to that term.

The ISO Prolog standard defines the built-in predicate =/2ISO for the unification
of two terms A and B. It is usually used as an infix operator, i. e., A = B. The
additional occurs check that avoids infinite, cyclic terms in the resulting vari-
able bindings (cf. Section 2.3) is omitted by default in all major Prolog systems
for efficiency when using =/2ISO. Implementations following the ISO Prolog stan-
dard provide the built-in predicate unify_with_occurs_check/2[C.6] for sound
unification that detects circular variable bindings. For the operator =/2, Prolog
implementations are free to choose the sound unification with occurs check (as
implemented in unify_with_occurs_check/2[C.6]), or use an unsound or looping
unification algorithm instead, given that both work correct for all cases that are
not subject to occurs check. Many Prolog systems allow to set the program flag
occurs_check(true) to indicate that =/2ISO always should perform the occurs
check. However, many problems can be elegantly solved in Prolog by using infinite
and cyclic terms, e. g., our implementation of recursive GraphQL type systems as
presented in Section 6.4.

The predicates var/1ISO and nonvar/1ISO can be used to test if a given symbol is
a free variable or if the variable is already bound, respectively. In the latter case,
ground/1ISO is true if the variable is bound to a ground term. Together it is possible
to also detect partially bound variables. These three predicates are often used as
preconditions in case a predicate is allowed to be used only unidirectional.

47

Chapter 3. Programming in Prolog

Unlike in most other programming languages, the equal sign = in Prolog does not
cause the assignment of a term to a variable, and instead compares and unifies its two
operands solely with regard to their structures. Consequently, =/2ISO also does not
cause evaluation if one of the operands is an arithmetic term, i. e., A = 1+2 simply
binds the variable A to the term +(1,2). To evaluate an arithmetic expression, Prolog
provides additional predicates, which are again usually used as infix operators.

The goal A is 1+2 causes the expression 1+2 to be evaluated and to bind the
variable A to the result. The predicate is/2ISO is similar to the assignment operator
of other programming languages, restricted to arithmetic expressions. As such, it
is not commutative and requires the first operand to be either a free variable or
a number, and the second operand to be a ground term. Similarly, the operators
=:=/2ISO, =\=/2ISO, </2ISO, =</2ISO, >/2ISO, and >=/2ISO first evaluate the two given
arithmetic expressions and then compare their values.

Though it is a known concept in other programming languages, Prolog has no nota-
tion for named “don’t care” variables, which are typically used to indicate positions
where a term is expected that is never referenced otherwise. However, it is a com-
mon Prolog programming convention to indicate variables of that sort similar to the
anonymous variable _ by starting their symbols by the underscore character. From
a semantic point of view, these longer variable symbols are of no special mean-
ing, i. e., the variable _var could similarly be written as Var without changing
the program’s meaning, since all appearances of this variable symbol depict the
identical entity. In all major Prolog systems, variables that follow this pattern do
not throw a singleton warning – as otherwise, the single occurrence of a variable
symbol is a strong indicator for spelling mistakes in variable names or for missing
unifications. By setting SWI-Prolog’s program flag toplevel_print_anon to false,
variables starting with an underscore character are also not printed in the toplevel,
e. g., ?- _X = 42 just returns true. This may be used to hide bindings in complex
queries from the toplevel. Since the anonymous variable _ has a special meaning
and always introduces a new, distinct variable, its bindings are never printed in the
toplevel.

3.2.2. Program Execution and Control Predicates

Prolog implements the SLD resolution as defined in Section 2.4. The SLD search
tree is built depth-first, one branch at a time, using backtracking when it encounters
a failure node. The clauses are applied in the order of their verbatim appearance in
the source code. This behaviour can be modified by implementing a Prolog meta-
interpreter, e. g., to traverse the search tree in parallel.

48

3.2. Working with Prolog

It is possible to cut alternative branches in the SLD search tree with the predi-
cate !/1ISO, which is called the cut. It discards all choice points created since enter-
ing the predicate in which it appears. If in some inner node of the SLD search tree
the rule that was used to infer the current subgoal contains the cut, all following
alternatives in this node are ignored, though backtracking still allows to go back to
a higher node in the SLD search tree and try alternatives there. Effectively, !/1ISO is
a goal which always succeeds, but cannot be backtracked past. It is often used for
efficiency reasons or for shorter source code, since preconditions of alternative rules
with the same head have to be stated only in one of the rule’s body.

Prolog relies on the closed-world assumption to handle negation – its SLD resolution
can tell if a goal is false by trying to prove it. If this attempt fails, it concludes that
the proposition is false. A negated goal can be stated with the predicate \+/1[C.2],
which is supposed to be a mnemonic for “not provable” with the backslash \ as
Prolog’s symbol for negation, and the plus + for “provable”. The implementation
of the \+/1 is based on the cut, as given in Appendix C.2.

3.2.3. Properties of Predicates and Programs

In this section, we introduce notions for properties of Prolog predicates and pro-
grams. They are used throughout this work to describe predicates in source code
annotations [136, Sec. 4.1 and Sec. 5] and might be processed by automatic source
code documentation infrastructure [49, 131], as well as by directives for the compiler,
e. g., for verification and static type analysis [75] and improved efficiency [123].

Termination. The negation with \+/1[C.2] illustrates that there are two kinds of
termination in Prolog: universal termination, and existential termination. By back-
tracking, all possible answer substitutions are computed for a positive goal G . If there
are infinitely many solutions, the query ?- G, false never terminates – it does not
terminate universally. In contrast, the negated goal \+(G) is known to be false if
there is just one solution for the goal G . Consequently, the query ?- \+(G), false
terminates in case G terminates existentially, giving at most one solution. Whether
a predicate terminates existentially or terminates universally, is undecidable in gen-
eral.

In its declarative reading, the computed answer of a query that ends with false/0ISO

necessarily will always be false. It is, however, a common construct in Prolog
programs to force backtracking over all solutions, called failure-driven loop.

49

Chapter 3. Programming in Prolog

Determinism. This problem arises from Prolog’s design to express relations instead
of functions. In functional programming languages like Haskell, a function returns
at most one result, while in Prolog a relation can describe multiple entities which
are all returned by backtracking. The predicate’s property, how often it is intended
to succeed, is called determinism, and is one of the following:

– A predicate is called semi-deterministic (abbreviated in source code annota-
tions as semidet), if it is expected to fail or to succeed with only a single answer
that is always the same for the same input. For instance, the predicates for
type tests var/1ISO and acyclic_term/1ISO are semi-deterministic.

– A predicate is called deterministic (det), if it succeeds exactly once. For in-
stance, the predicate is/2ISO is deterministic for valid arithmetic expressions.

– A predicate is called multi-deterministic (multi), if it succeeds at least once.
It is often used for generators.

– If otherwise the predicate can succeed arbitrarily often (including never), it is
called non-deterministic (nondet).

These four determinism values originate from the declarative logic programming
language Mercury [112]. In literature, the first two are often simply referred to as
deterministic, while the latter two are subsumed under the phrase non-deterministic.
However, all four kinds are common in Prolog source code annotations to describe
the backtracking properties of a Prolog predicate in more detail.

Note that our definition of nondeterminism differs from those of algorithms: though
a predicate is non-deterministic, for the same inputs it usually computes the same
answer substitutions in the same order.

Built-in and User-defined Predicates. The query we used as an example for non-
termination contains the goal false/0ISO. Together with about a hundred other
predicates it is defined in the ISO Prolog standard (Iso 8); additional predicates that
can be directly queried are usually provided by the used Prolog system. They form
the set of built-in predicates. On the other hand, own predicates that are implemented
by facts and rules are called user-defined.

Some built-in predicates are shipped in a library, e. g., append/3[3.4] is part of SWI-
Prolog’s library(lists). It can be loaded by calling ?- use_module(library(lists)) .
In addition, SWI-Prolog supports autoloading: when a predicate is found missing at
run-time, its implementing library is searched and the predicate is imported lazily
using the predicate use_module/2SWI.

50

3.2. Working with Prolog

Variable Instantiation and Logical Pureness. In theory, Prolog predicates just
describe relations. In practical applications though, not all problems can be described
this way. For instance, as mentioned in Section 3.2.1, the built-in predicate is/2ISO

requires the second argument to be ground. Although for the goal A is 1+2 the
variable A is bound to the number 3, is/2ISO cannot be used the other way round
to generate all terms that evaluate to 3.

As can be seen, there are predicates with requirements regarding the content of their
arguments. The set of constraints per argument is called the predicate’s (instanti-
ation) mode. It is denoted by a tuple of symbols that correspond to each of the
predicate’s argument:

+ The argument has to be (partially) bound. This likely describes one of the
predicate’s input arguments.

++ The argument has to be ground, thus a stricter mode than + .

- The argument should be a free variable. This likely describes one of the pred-
icate’s output arguments.

-- The argument has to be a free variable. This is a stricter mode than - .
It acknowledges the common use case that a predicate’s output is tested to be
a known value. In this case, even for a mode - the argument would already
be bound.

? There are no restrictions to the argument. This likely describes an argument
that is used alternatively as the predicate’s input or output, or serves as both
(e. g., in case of a partially bound variable).

@ The argument will not further be instantiated. Typically, this argument is used
only for type tests, e. g., via var/1ISO or acyclic_term/1ISO.

: The argument will be meta-interpreted in some way.

For instance, the built-in predicate is/2ISO has the mode (?,+). The mode is often
specified in the predicate’s description, for instance as part of source code annota-
tions. There, the symbols are used as a prefix for a variable name that describes the
predicate’s argument, e. g., in is(?Number,+Expression) . This detailed notation of
the mode is called the predicate’s signature.

A single predicate might have multiple modes. For instance, SWI-Prolog’s imple-
mentation of char_code/2SWI supports the modes (+,-) and (-,+), i. e., at least
the character or the code has to be bound to get the other. Our implementation in
Appendix C.5 on the other hand has no such restriction and follows the mode (?,?).
It can thus be used to backtrack over all pairs by calling ?- char_code(Char,Code)

51

Chapter 3. Programming in Prolog

with free variables Char and Code. In this work’s listings that define Prolog predi-
cates, we specify their instantiation modes in source code annotations placed at the
beginning.

Dependence on the type of an argument is a sign for a (logical) impure predicate.
The instantiation modes -- and - differ only for predicates which are not steadfast.
This is the case for a predicate g, which has an argument V, that succeeds for the
query ?- g(V), V = t , but fails for ?- V = t, g(V) , with t being a term but a free
variable.

3.3. Data Structures

In contrast to other programming languages, Prolog has a limited number of built-in
data types and data structures. Besides variables, atoms, and the primitive data type
of numbers, it only allows the construction of compound terms to model complex
data. To test the type of a symbol, the ISO Prolog standard defines several determin-
istic predicates. With var/1ISO and nonvar/1ISO, a given symbol is tested to be a free
variable or if the variable is already bound. In the latter case, atomic/1ISO is true if
the term is not bound to a compound term, i. e., it is an atom, string, integer, float, or
number in general – which can be tested via the built-in predicates atom/1ISO, and
string/1ISO, integer/1ISO, float/1ISO, and number/1ISO, respectively. The predi-
cate compound/1ISO on the other hand is true if the given term is of no primitive
type and, instead, is bound to a compound term. Together with atoms, they make
up the class of callables, which can be tested with the predicate callable/1ISO. This
is a type test typically performed for arguments to meta-predicates like the family
of call/nISO. However, it only tests the general structure of the given bound term’s
surface. Though terms like (true, integer, 3) follow the structural requirements
to be treated as a callable, the goal ?- true, integer, 3 cannot be executed and
raises an error because of the unknown predicate integer/0, and a type error for
calling the integer value 3.

Complex data in Prolog can be built as compound terms. With its inductive def-
inition, they represent hierarchical data structures, and thus naturally correspond
to trees, with atomic terms and variables as their leaves. In this section, we intro-
duce compound term structures that are commonly used in Prolog applications and
throughout the work at hand.

52

3.3. Data Structures

3.3.1. Lists

As introduced for first-order logic in Section 2.5, lists are simply trees where each
node has a single child and holds the list element’s value. Instead of nil, Prolog uses
the atom [] to denote the empty list. The atom . is used as the constructs function
in the ISO Prolog standard. This way, the list which contains only the atoms a and
b is represented by the term .(a,.(b,[])) .

Instead of this verbose notation, the ISO Prolog standard also allows to write a list
as a comma-separated sequence of terms, enclosed by square brackets. The afore-
mentioned list thus is the same as the term [a,b] .

Terms with the constructs function ./2ISO can also be written using the square
bracket notation: the term [H|T] is the same as .(H,T) . This notation is frequently
used to split a list into its head H and the tail T, or vice versa to construct a list by
specifying its first element and the remaining list. Both variants can be combined in
any way, e. g., [a,b|[]] represents the same list of two elements a and b.

The predicate is_list/1SWI can be used to check if the given variable is bound to a
list, i. e., it is either the empty list [] , or the term [_|T] , with T being a list again.
Though not part of the ISO Prolog standard, this predicate is part of all major
Prolog systems, and is autoloaded in SWI-Prolog’s library(lists) [136, Sec. 4.29].

3.3.2. Pairs

A pair can be constructed as a compound term with a functor p/2. For instance, the
term pair(a,b) denotes the pair of the atoms a and b. By defining and using pair/2
as an infix operator, the term can be equally written as a pair b . With graphic
symbols, i. e., atoms built from only special characters, this results in a short and
descriptive notation, e. g., a-b . Typical infix operators to denote pairs are -/2ISO,
:/2ISO, //2ISO, or =/2ISO. The latter does not conflict with the ISO Prolog standard
predicate for unification, as it is used in the term as a function symbol instead of its
meaning as a predicate. Sometimes, a pair is also represented by the compound term
Key(Value) (e. g., in SWI-Prolog’s autoloaded library(pairs)). Though this notation
does not allow to backtrack over all keys in case of unification, as the functor name
of a compound term is required to be an atom in Prolog and thus Key cannot be
left as a free variable.

53

Chapter 3. Programming in Prolog

3.3.3. Difference Lists

A typical example to use a pair with functor -/2ISO is the notation of a difference
list. It is a pair of a normal list, whose tail is a logic variable T, and T. For instance,
[a,b|T]-T denotes the pair of a list [a,b|T] and the variable T. The list contains
the atoms a and b as its first elements.

A difference list is called open (difference) list (or alternatively partial list), if T is
a free variable or again an open list. In contrast, if T is bound to ground term, the
difference list is called closed (difference) list. In this notation, the list which contains
only the atoms a and b is represented by the closed difference list [a,b]-[] .

Difference lists are a means to address the performance issues coming from Prolog’s
lack of lists with random access, as it is provided by arrays in other programming
languages. Instead of first having to consecutively traverse through the whole list
to add a new element c at the very end, T can be simply partially bound to the
term [c|T2], resulting in the open list [a,b,c|T2]-[c|T2] , with T2 being a free
variable and [c|T2] an open list again, which thus can be processed alike.

The previous example unveils the origin of the phrase “difference list”: the original
list [a,b] is the difference (happily using the atom - as its infix operator) of the
lists [a,b|T] and T. Practical applications of difference lists include problems where
the resulting list gets lazily evaluated, e. g., when reading in files in chunks (cf.
Section 6.1), or Prolog’s definite clause grammars (cf. Section 6.2).

3.3.4. Strings

Though there is a dedicated syntax to denote strings by enclosing them in the
double quote character " , Prolog has no corresponding primitive data type. Instead,
a string can be thought of as a sequence of characters, and thus be represented
by a list. Treating strings this way has a long tradition in Prolog. It has several
advantages, e. g., it allows to define strings with holes by using free variables as
list elements. All predicates which originally are defined for lists work on strings,
too. However, there is a recent debate in the Prolog community on how to handle
strings [87, 129]. SWI-Prolog 7 introduced a new primitive data type for strings:
text enclosed in double quote characters is read as an object that lives on the global
stack. With strings regarded as lists, there are also different notions. Some systems
represent each character as a one-character atom, others use the character’s code as
integer instead. In the latter case, "abc" is the same as the term [97,98,99].

54

3.3. Data Structures

We do not elaborate on the discussion of the preferred format, as from a syntactical
point of view, the original notation "abc" in the Prolog source code is the same for
all variants. In addition, all Prolog systems following the ISO Prolog standard allow
to determine how the string "abc" is read in by Prolog via the flag double_quotes.
It sets the internal representation of strings as one of:

– codes: [97,98,99]
The string represents a list, with each element being the integer code of the
corresponding character as returned by char_code/2[C.5].

– chars: [a,b,c]
The string represents a list of one-character atoms. This approach is convenient
and makes debugging easy. In addition, it hides encoding problems from the
programmer as it does not rely on a conversion from the character to its code
via char_code/2.

– atom: abc
The string represents the corresponding atom, possibly enclosed by single quo-
tation marks. This option is typically used only in cases where identity com-
parison is the main operation and where strings are not processed further.

– string: "abc"
The string represents a primitive data type available in SWI-Prolog 7 and
higher. SWI-Prolog’s predicate string/1SWI can be used to test if a given
variable is bound to this atomic data type.

In strings, the backslash \ serves as an escape character, e. g., in "\"\\" , which
denotes [",\]. In addition to strings which are enclosed by the double quote charac-
ter " , the ISO Prolog standard similarly defines strings enclosed by the back quote
character ` , though its meaning is left open. Some Prolog systems use these two
kinds to read in the enclosed character sequences in different internal representa-
tions.

3.3.5. Dicts

A similar idea as building lists from compound terms can be used to mimic a data
type for named key-value associations, that is often available in other programming
languages. The pairs of key and value can be modelled in the form of a compound
term with two arguments, which are then put in a list.

As an example, instead of using a predicate called person/2 with an argument for
each property, the person’s data can be modelled as follows:

55

Chapter 3. Programming in Prolog

person(1, [firstName=’Alice’, birth=1986]). Prolog

This comes with a great flexibility, as the number of keys is not limited by the
predicate’s functor. Additional key-value pairs can be easily amended without having
to change all predicate calls for the adjusted arity. In addition, the person/n facts
are not required to all have the same, fixed arity of n, which is useful for optional
values, e. g., in case of an unknown birth year.

Using the list representation, a single value can be retrieved just by unification, e. g.,
using memberchk/2[C.8] to get the person’s first name:

1 first(Id, Name) :- Prolog

2 person(Id, KV),
3 memberchk(firstName=Name, KV).

However, representing key-value associations as a list in Prolog has several disad-
vantages. Firstly, this notation does not ensure the uniqueness of contained keys.
And secondly, it does not provide a short notation to directly access a child node.
As a result, accessing data comes with the linear worst-time complexity known from
normal lists due to their internal representation as compound terms.

SWI-Prolog 7 introduced dicts as a new data type for named key-value asso-
ciations [129]. Their syntax resembles the one of the JavaScript Object Nota-
tion (JSON). Because JSON is a popular data exchange format for web applications,
this new syntax of dicts should be easier to use for developers of other programming
languages than Prolog’s traditional key-value association lists, and simplifies the
development of web services with SWI-Prolog.

SWI-Prolog’s dicts are of the following form:

Tag{ Key1: Value1, Key2: Value2, ... } SWI-Prolog

Compared to JSON, every dict has a leading tag Tag, which can be used to name
the type of the dict. The tag is either an atom or a variable. Since the variable
does not need to be bound, we can use the anonymous variable _ as the dict’s tag,
resulting in an anonymous dict _{. . . } . The curly brackets can contain an arbitrary
number of key-value pairs. Each key is an atom and has to be unique within the dict.
The associated value can be any valid term. In particular, it is possible to create
nested dicts.

For instance, the person’s data can be similarly represented with the help of an
anonymous dict instead of the association list we used before:

56

3.3. Data Structures

person(1, _{ firstName: ’Alice’, birth: 1986 }). SWI-Prolog

Unlike for lists, the value in a dict can be directly accessed by its key. SWI-Prolog
provides two methods:

– Dict.Key retrieves the value of the key Key in a dict Dict. This is called the
dot notation for dicts. Dict has to be bound to a dict, Key is allowed to be a
free variable, i. e., the mode is .(+Dict,?Key) .

– Dict.get(Key) has the same effect as Dict.Key, but silently fails instead of
throwing an error if the specified key Key does not appear in the dict Dict. It
can therefore be also used as a precondition when expecting a particular key.
Its mode is the same as for ./2, i. e., +Dict.get(?Key) .

Both notations rely on the infix operator ./2[C.13], which was introduced in SWI-
Prolog 7 together with dicts. Internally, goals that contain the infix operator ./2[C.13]

are compiled to calls of the predicate ./3[C.14].

Dicts can be unified following the standard symmetric Prolog unification rules,
although the unification will fail if both dicts do not contain the same set of
keys. For partial unification, SWI-Prolog provides the two infix operator :</2[C.15]

and >:</2[C.16]. Select :< From is true if the association list corresponding to the
dict Select is a subset of those of the dict From. Dict1 >:< Dict2 is true if the
values of all keys that appear both in Dict1 and Dict2 can be unified. In addition,
both operators :</2[C.15] and >:</2[C.16] unify the tags of their operands. Listing 3.1
gives various examples of using these operators.

Because of using the infix operator ./2 for functions on dicts, SWI-Prolog version 7
breaks with the classical notation of lists as defined in the ISO Prolog standard (cf.
Section 3.3.1). SWI-Prolog instead relies on the operator [|]/2SWI for list construc-
tion. This breaking change of SWI-Prolog version 7 has been widely discussed in the
logic programming community and appears not be considered for adoption either in
the standard or other implementations of Prolog.

Besides the proprietary data structures of dicts, there are alternative, native Pro-
log term representations to express nested data. Among others, Seipel et al. intro-
duced the field notation [104], which is based on association lists and triples of
the form Type:Attributes:Children. It integrates a declarative query mechanism
called FnQuery [107], and is, e. g., used to represent and query XML documents in
Prolog.

57

Chapter 3. Programming in Prolog

Listing 3.1: Example queries for the unification of two dicts.
?- p{ a: 1, b: 2 } = P{ a: A, b: B }. Toplevel SWI-Prolog
P = p, A = 1, B = 2 .

?- p{ a: 1, b: 2 } = P{ a: A }.
false .

?- P{ a: A } :< p{ a: 1, b: 2 }.
P = p, A = 1 .

?- p{ a: 1, b: 2 } :< P{ a: A }.
false .

?- p{ a: 1, b: 2 } >:< P{ a: A, c: 3 }.
P = p, A = 1 .

3.4. Prolog Example: append/3

The definition of the predicate append from Section 2.5 can now be easily rewritten
as a Prolog program. Listing 3.2 presents three possible implementations, where
the first is in lines 1–5. It uses two clauses, with line 3 corresponding to the fact
of formula F1, and the recursive rule of F2 implemented in lines 4–5. The mode
of append/3 is (?,?,?) – as retraced step-by-step in Sections 2.5.1 and 2.5.2, the
predicate can be called differently, making it suitable for both concatenating and
splitting lists.

The second approach depicted in lines 7–10 of Listing 3.2 uses the combined for-
mula F ′ instead. The logical disjunction is made explicit by the built-in predicate
;/2ISO and moved to the rule’s body. Though the declarative reading is the same
for both variants, the first implementation of lines 1–5 should be preferred. It al-
lows the compiler to statically analyse the clauses of append/3 and index them by
their arguments, which results in faster execution times [17, 123]. Today’s Prolog
systems all support indexing of the predicate’s first argument (which is sufficient
for our implementation of append/3), and most also of multiple arguments, e. g.,
SWI-Prolog [136, Sec. 2.18].

The third alternative implementation in line 13 of Listing 3.2 is targeted to difference
lists (cf. Section 3.3.3) instead. The underlying concept of this implementation is as
follows: a list C can be built from two lists A and B, if A is C without (“minus”) B.
Since C is a difference list, it is of the form Z-T. B is also a difference list, and must
have the same tail as C, so it can be represented by Y-T. Then, A is the list Z without

58

3.4. Prolog Example: append/3

Listing 3.2: Three alternative implementations of the predicate append/3, based on
the formulas which we introduced in Section 2.5, and difference lists.

1 %% append(?List1, ?List2, ?List1_then_List2) Prolog
2 % implementation based on F1 and F2
3 append([], Y, Y).
4 append([E|X], Y, [E|Z]) :-
5 append(X, Y, Z).
6

7 % alternative implementation, based on F ′

8 append(X, Y, Z) :-
9 (X = [], Y = Z

10 ; X = [E|L], Y = [E|M], append(L, Y, Z)).
11

12 % alternative implementation with difference lists
13 append_difflists(Z-Y, Y-T, Z-T).

Listing 3.3: Example queries for append/3 and append_difflists/3.
1 ?- append(X,Y,[a,b]). 2 ?- append(_,[a|_],L). Toplevel

X = [], Y = [a, b] ; L = [a|_] ;
X = [a], Y = [b] ; L = [_, a|_] ;
X = [a, b], Y = [] ; L = [_, _, a|_] ;
false . % ... and more solutions

3 ?- append_difflists([a|T1]-T1, [b|T2]-T2, L).
T1 = [b|T2], L = [a, b|T2]-T2 .

(“minus”) Y. The fact in line 13 simply puts the described unifications C = Z-T ,
B = Y-T , and A = Z-Y in the clause’s head.

Since the implementation with difference lists uses only a single unification, it is of
complexity O(1) instead of O(n) in the traditional append/3 implementation, with
n as the list length of the first argument. However, unlike append/3, the version
relying on difference lists cannot be used to split a list. Nothing in Prolog enforces the
constraint that the tail (i. e., the second argument in the -/2ISO pair) of a difference
list is a sublist of the list (i. e., the first argument). Therefore, in our implementation
of append_difflists/3 in Listing 3.2, for goals with free variables in the first two
arguments, Y will bind to something which is neither a sublist of Z nor a superlist
of T.

Listing 3.3 gives three examples of using these predicates in the toplevel for vari-
ous questions. In 1 , we show three computed answer substitutions for two lists X
and Y, which are requested to form together the list [a,b]. The results and their

59

Chapter 3. Programming in Prolog

order are the same as we got in Section 2.5.1. The second example in 2 illus-
trates that append/3 can be used to implement the predicate member/2. Since
?- member(?Elem,?List) is true if Elem appears in the list List, we can alter-
natively search via append/3 for a partial list in List that starts with Elem. The
goal of 2 terminates only existentially but not universally, as in each step n the
open list that has a set at the n-th position is returned. Finally, the example 3

addresses the implementation with difference lists. In the process of concatenation,
T has to be the list that starts with b, so T1 gets partially bound.

Besides the ternary append/3, many Prolog systems ship with the predicate ap-
pend/2, which concatenates a list of lists. Unlike the more general flatten/2, which
we describe in Appendix C.12, it handles only well-formed two-dimensional lists.

3.5. Reflection and Code Listings

It is worth noting that the recursive rule in the append/3 Prolog program of Sec-
tion 3.4 (lines 4–5 of Listing 3.2) itself is again a valid Prolog term. Given that :-/2ISO

is an infix operator, the rule’s head is its first operand, and the rule’s body the sec-
ond. In fact, all program information encoded in a Prolog source can be completely
represented just by Prolog data structures. In its declarative reading, clauses again
are first-order logic predicates, or terms from a syntactical point of view. This prop-
erty of a programming language is called homoiconicity.

Some programming languages (e. g., Java, Python) offer the ability to examine,
introspect, and modify their own structure and behaviour. This capability is called
reflection. Since Prolog is a homoiconic language, Prolog programs are valid Prolog
terms. They can be analysed and processed like any other Prolog term. This allows
reflection and program transformations – from a syntactical point of view, there is
no distinction between code and data. All clauses are treated as data, with means
for adding, removal, and modification, as we introduce in Section 3.7. Consequently,
the set of all clauses of a loaded Prolog program is also called database.

However, it is not possible to select all rules of a predicate p/n with a head of
p(V1,...,Vn) by simply calling ?- p(V1,...,Vn) :- Body. in the toplevel, because
though the ISO Prolog standard defines :-/2 as an infix operator, the standard
does not define it as a Prolog predicate. Instead, facts and rules are of special
meaning – their head is unified during SLD resolution and is often indexed for
better performance. Therefore, Prolog offers the predicate clause/2ISO. The goal
clause(:Head,?Body) backtracks over all clauses that unify with Head; for facts,
Body is bound to true/0ISO. This way, it is possible to find meta data related to a

60

3.6. Term Inspection and Higher-Order Predicates

goal in the database. As a result, clause/2ISO allows to create metacircular inter-
preters and write evaluators that use non-standard search orders [88]. To address
the initial question, this allows to explicitly define the predicate :-/2 by the rule
:-(H,B) :- clause(H,B). – though we strongly advise against, as it may break
third-party modules. Given this predicate definition, querying clauses in the form of
the goal ?- (Head :- Body) is possible.

Prolog provides the predicates listing/{0, 1, 2}SWI in addition to the standard
clause/2ISO, mainly for debugging purposes. They allow to print the source code of
a complete module (arity 0) or of a given predicate (arity 1) in a human-readable
format, possibly with options set for the output (arity 2). They are part of li-
brary(listing), which is autoloaded in SWI-Prolog. The produced text-based listing
includes relevant declarations, like dynamic/1. It cannot be used for reflection, be-
cause the source code information is printed to the standard output stream instead
of binding to a variable.

3.6. Term Inspection and Higher-Order Predicates

While reflection is used to examine the rules of a Prolog program, there are also
dedicated predicates for term inspection. They are an alternative for unification
that allow to decompose and analyse terms:

– functor/3ISO can be used to compose and decompose compound terms.
functor(?Term,?Name,?Arity) is true when Term is a term with Name/Arity
as its functor.

– arg/3ISO allows accessing a single argument of a given compound term.
arg(?N,+Term,?Value) is true when Value is the N-th argument of the
term Term.

– The =../2ISO predicate is called univ and is typically used as an infix operator.
?Term =.. [?Name|?Args] is true when Term is a term with a functor name
of Name and Args as a (possibly empty) list of its arguments.

These predicates cannot be defined by a finite set of clauses as originally required
by first-order logic, and can therefore be considered higher-order predicates. Besides
terms, they can be equally used to create predicates. This is in particular useful when
working with higher-order predicates or meta-predicates, i. e., Prolog predicates that
take predicates as their arguments.

61

Chapter 3. Programming in Prolog

Meta-Predicates call/nISO. A popular example for meta-predicates is the family
of call/nISO predicates. With the presented predicates for term inspection, it is
possible to create goals that are not known at compile-time, and call them at run-
time. The built-in predicate call/nISO takes a goal as its first argument, appends all
following arguments to the goal’s argument list and calls the result. The ISO Prolog
standard requires the meta-predicates call/nISO defined for arities of 1 ≤ n ≤ 8.
Higher arities are supported by many Prolog systems as well, but usually handled
by the compiler, i. e., they are not apparent for Prolog’s reflection and code listing
capabilities. The meta-predicate ?- call(Goal) acts as if the variable Goal was
written plain as a goal in the rule’s body, except for restricting the scope of possi-
bly contained cuts. A cut inside ?- call(Goal) only affects choice points created
by Goal, which becomes clear by the predicate’s underlying implementation as a
separate clause:

1 %% call(:Goal)

2 :- meta_predicate call(0).
3 call(Goal) :- Goal. Prolog

The definitions of the meta-predicates call/nISO with n ≥ 2 rely on the univ opera-
tor =../2 for term inspection and the dynamic construction of the applied goals at
run-time. An exemplary implementation of call/2ISO is given in Appendix C.1.

Meta-Argument Specifiers. The directive meta_predicate/1SWI, which we used in
the aforementioned implementation of call/1ISO, declares a meta-predicate and its
arguments. This information is used by the compiler for cross-referencing predicates,
to denote module-sensitive arguments, as well as for debugging purposes and syntax
highlighting. The directive :- meta_predicate Head (Spec1, . . . , Specn) declares
the meta-predicate functor Head /n and provides a meta-argument specifier Speci

for each i-th argument of the predicate. Typical meta-argument specifiers are:

+ The argument is (partially) bound on all calls of the meta-predicate.

- The argument is a free variable on all calls of the meta-predicate.

? The argument is either a variable or (partially) bound.

N An integer value 0 , . . . , 9 denotes an argument that is a term referring to a
predicate with N more arguments.

// The argument denotes a goal of a definite clause grammar, which we introduce
in Section 6.2. Typically, this argument is a nonterminal defined in a grammar
rule’s left-hand side.

62

3.7. Dynamic Predicates

At positions with a meta-argument specifier of N or // , no free variable is allowed.
Consequently, it is not possible to answer the question “Is there some predicate of
functor P /(n+N) that can be called with the given arguments?”, which aligns with
first-order logic’s restriction to not support propositions about predicates.

As seen before, the unary meta-predicate call/1ISO has a single meta-argument
specifier 0 , as its first and only argument is a predicate of functor P /n. The predi-
cate call/2ISO, on the other hand, is declared as :- meta_predicate call(1,?)
because its first argument is a term of functor P /n that refers to the predi-
cate P /(n+1) – since the second argument of call/2 is appended as an argument
to the term P /n before it is called. Analogous, each predicate of the call/n family
has the number n− 1 as its first meta-argument specifier which is followed by n−1
arguments with specifier ? .

Toplevel Internals. As an example for the usefulness of the family of call/nISO

predicates, we consider Prolog’s toplevel. It is usually implemented as a failure-
driven loop and uses the meta-predicate call/1ISO together with the predicate
read/1ISO, which reads a Prolog term from the current input stream and unifies
it with the variable given as its argument. The toplevel essentially performs the
goal ?- read(G), call(G), write(G), false to first read a term G from the input
stream, call it, and write the possibly (partially) bound term back to the user. With
false/0ISO, these steps are backtracked to obtain all results for G, and repeatedly
ask the user for further goals. The approach with a failure-driven loop though re-
moves all globally set variables and constraints when backtracking over call(G).
We therefore recommend to implement the toplevel as a recursive loop instead. Our
suggestion has been adapted by SWI-Prolog of version 7.3.28, which allows to set
the used mode by the program flag toplevel_mode [136, Sec. 2.12].

3.7. Dynamic Predicates

The means for reflection we presented in the previous section are focussed on just
examining the clauses of an already loaded Prolog program. In addition to this, the
facts and rules can also be modified at run-time. This way, data can be stored that
persists the program’s lifecycle. The ISO Prolog standard defines multiple predicates
to work with the Prolog database:

– The built-in predicate asserta/1ISO and assertz/1ISO dynamically asserts a
given clause as first (suffix a) or last clause (z) of the predicate it defines.

63

Chapter 3. Programming in Prolog

Listing 3.4: Implementation of global variables using a dynamic predicate ’$val’/2
for data storage.

1 % declare predicate ’$val’/2 for data storage as dynamic Prolog
2 :- dynamic(’$val’/2).
3

4 %% setval(+Name, +Value)
5 setval(Name, Value) :-
6 retractall(’$val’(Name,_)),
7 assert(’$val’(Name, Value)).
8

9 %% getval(?Name, ?Value)
10 getval(Name, Value) :-
11 ’$val’(Name, Value).

– Given a term T, the goal ?- retract(T) unifies with the first matching clause
head in the database and removes this rule or fact. It supports backtracking
and fails in case there is no unifying clause head.

– The predicate retractall/1ISO deletes all clauses that unify with a given
term – possibly none, thus it is always succeeding.

Compared to classical database systems, there is no update command. However,
with the help of assert/1ISO and retractall/1ISO, it is possible to define a predi-
cate setval/2 to replace one clause by another, which is for instance typically done
to mimic global variables. Listing 3.4 provides an exemplary implementation. The
predicate getval/2 retrieves an already set value. Both predicates are based on the
data storage in facts of ’$val’/2, which is a dynamic predicate. Its name follows
Prolog’s convention to denote internal predicates by functor names starting with
the dollar symbol. Following the ISO Prolog standard, predicates that are modified
dynamically at run-time need to be declared using the dynamic/1ISO directive (List-
ing 3.4, l. 2). In the implementation of setval/2, the call of retractall/1ISO (l. 6)
succeeds even if there is not yet a clause ’$val’/2 in the database, thus no data
initialisation is required.

3.8. Modules

For programming in the large and to improve the reusability of Prolog code, it is
required and advised to split codebases into smaller logical components. Part II of
the ISO Prolog standard [56] defines a module system for Prolog. Because of Prolog’s
long history, module systems have received considerable attention before and after
Part II of the ISO Prolog standard was published in 2000, e. g., in [19, 45, 74].

64

3.8. Modules

Though today most Prolog systems implement some kind of module system, they are
often differently focussed and incompatible. This mainly arose from the system’s long
lifetime, as well as conflicting requirements to their module systems. For instance,
GNU Prolog [32] initially did not implement any module system and opted for the
implementation of a cleaner yet proprietary alternative mechanism instead, which is
called contextual logic programming [3]. The module system of Ciao [50] on the other
hand extends the ISO Prolog standard to allow separate compilation and creation
of standalone executables based on modules [16] and allows to selectively avoid the
loading of predicates defined in the ISO Prolog standard. The portability of the
module systems provided by Ciao, SICStus Prolog [18], YAP [24], and SWI-Prolog
is compared in [133].

In addition to the systems’ long histories, there are many reservations regarding
the module system defined in the ISO Prolog standard, so it is not implemented by
any of the major Prolog systems. Though they are consequently incompatible, all
provided module systems provide means to structure Prolog source code into distinct
files for separation, modularisation, and to avoid name conflicts of predicates. The
Prolog Commons10 working group was founded in 2009 in order to start to address
some of the compatibility problems and issues with the current state of Part II of
the ISO Prolog standard [128].

In SWI-Prolog, a module is treated as a collection of predicates and operators which
defines a public interface. Its syntax is derived from the Quintus Prolog module
system. This module system was the starting point for a number of Prolog systems,
such as SICStus Prolog, Ciao and YAP, thus most of them provide compatibility
layers or guidelines for migrating existing modules from one system to the other.

By default, there are two modules:

– The system module holds all built-in predicates and operators, including those
from libraries shipped with SWI-Prolog like library(lists).

– The user module contains all user-defined predicates and operators and is
initially empty. It forms the working space of the user, i. e., predicates and
operators which are not defined in some other modules are part of this user
module. It automatically imports the system module, thus making all built-in
predicates available.

A new module can be defined using the module/{2, 3}SWI directive at the very be-
ginning of the Prolog source code file. The directive declares the module’s name as
an atom in its first argument and lists the public (i. e., externally visible) predicates
10Prolog Commons, https://prolog-commons.org.

65

https://prolog-commons.org

Chapter 3. Programming in Prolog

and operators as its second. The third, optional argument can be used to declare
the system’s dialect and is supported for compatibility with the Prolog Commons
initiative. All clauses following the module/{2, 3}SWI directive are loaded into this
module. Since the user module (and consequently the system module) is always
imported, all user-defined and built-in predicates can be used without explicitly
importing them.

Importing the predicates from another module is achieved using the directive
use_module/{1, 2}SWI. It takes a filename as its first argument. This is why modules
should be defined in a file of the same name. The optional second argument takes
a list of predicates and operators which should be imported. A major advantage is
that internal predicates of modules, as well as the module’s public predicates which
are not imported, cannot cause name conflicts with the predicates of other modules,
including the user module. If two different modules define a predicate with the
same functor, they can be addressed by explicitly stating the module via the infix
operator :/2SWI, e. g., in ?- lists:append([a],[b],X) .

66

4
Domain-Specific Languages

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

— Martin Fowler11

If one asks developers for their most favourite programming language, the answers
will be of large variety. Front-end developers might prefer Java or Swift; web de-
velopers choose JavaScript, HTML and CSS; and Python and Prolog could be the
languages of choice for researchers in the field of artificial intelligence and machine
learning. In each of these areas, there are only a handful of predominant program-
ming languages – apparently, they are already somehow specific to their application
domain. Though this is often not the result of the language’s expressiveness, but a
community standard.

Nevertheless, modern software does not reside in a closed world. Every system needs
to interact with its users and other software components, with the help of standard-
ised interfaces or data exchange formats. Therefore, developers are not only faced
with their single favourite computer language, but also have to integrate additional
languages and data formats.

As an example, we consider the relational database system MySQL.12 It uses the
structured query language (SQL), a domain-specific language for data query, data
manipulation, data definition, and data control over relational tables. For instance,
the query SELECT * FROM users returns all rows and columns from the table users.
The SQL query only defines what to do, but it does not specify how. That means,
although the domain-specific language has a strictly defined syntax, its semantics
is subject to the actual implementation. As a consequence, most of today’s SQL-
based database management systems perform query optimisations beforehand, or
11Quote from “Refactoring: Improving the Design of Existing Code” [38, p. 15]. Martin Fowler is

a British software developer, who spent most of his career in the United States. He popularised
many modern software engineering principles and is one of the authors of The Manifesto for
Agile Software Development.

12MySQL, https://www.mysql.com/, is one of the most widely-used open-source databases in the
world. It is utilised by many popular websites, including Facebook, Twitter, and Wordpress.com.

67

https://www.mysql.com/

Chapter 4. Domain-Specific Languages

dynamically decide when to use an index. Both aspects are not encoded in the
query, as they do not affect its result, but only its performance.

However, SQL is just a single component of the relational database management
system MySQL, providing a standardised interface both for users as well as for
access by various general-purpose programming languages. Under the hood, MySQL
is implemented in C and C++ [23]. For import and export, it supports several data
exchange formats, e. g., comma-separated values (CSV).

It is a challenge in the process of software development to combine all these languages
into a single product. Apparently, they differ not only in their syntax, but also in
their underlying mental model of computation. As can be seen, SQL mostly follows
a declarative approach to express the computation’s logic without describing its
control flow. On the other hand, it comes with procedural descriptions for control
flow and exception handling, similar to C++’s imperative programming model that
precisely express the commands for the computer to perform.

The different semantics of the considered languages is only one side of the coin.
Another challenging question is how to integrate them into a single software com-
ponent, and in particular how to support their specific syntaxes. It is often neither
possible nor desirable to split a large codebase only based on the used programming
language, with separate files for every used language, Instead, it is for instance com-
mon to put SQL statements right beside the code of the host language that processes
the returned data rows. This can be done in various ways. Database statements in
SQL are traditionally embedded as a string right next to the code of the host lan-
guage. However, building large SQL statements from smaller, string-based blocks
often comes with the risk of SQL injections. Since user input has to be properly
sanitised anyway, there is a shift towards the use of fully-featured layers for object-
relational mapping (ORM), thus integrating SQL in a way that more resembles the
host language’s syntax.

In this chapter, we consider the problems that arise when integrating different lan-
guages, as briefly sketched in this introduction. Firstly, in Section 4.1, we clarify the
meaning of domain-specific languages and other terms in the context of this work,
as there are various definitions in literature. The two major approaches to the inte-
gration of existing DSLs into a host language are described in Section 4.2. Though
the work at hand is focussed on using Prolog as the host language to integrate var-
ious external DSLs, the opposite direction raises similar research questions. Since
Prolog is often regarded as a domain-specific language for logic programming, there
are many systems of other languages that either integrate or connect to (a subset
of) Prolog. Section 4.3 provides an overview of these existing solutions, and how
they handled the omnipresent impedance mismatch of the different programming

68

4.1. Terminology

paradigms. Finally in Section 4.4, we summarise the existing approaches when using
Prolog vice versa as the targeted host language. This section builds a bridge to the
Chapters 5 and 6, which discuss in more detail the integration of DSLs in Prolog
internally and externally.

4.1. Terminology

In literature, there are various definitions and notions for languages, programming
languages, and domain-specific languages. In this section, we introduce the various
meanings, and put them into context for the work at hand.

Languages. In this thesis, we consider the use of Prolog as a host language to
integrate other computer languages. In literature, host languages are also called
hosting languages, or base languages.

The integrated computer languages could be of various kinds:

– Programming languages (e. g., Assembler, PHP, Prolog) are formal languages
to specify machine instructions. Their grade of abstraction might vary.

– Markup languages (e. g., HTML, MathML, LATEX) extend a document by syn-
tactical annotations used to format the contained text.

– Query languages (e. g., SQL, GraphQL, XPath) are used to specify queries on
information systems.

– And others, like those for style sheets (e. g., cascading style sheets CSS), and
for modelling (e. g., unified modeling language UML).

In the context of this thesis, we refer to all these kinds of computer languages simply
as languages. In particular, we do not distinguish languages that are executable from
those which are not. This follows Prolog’s core principle that data and logic are not
separated and share first-order logic predicates as their unified representation. As a
consequence, the main focus of this thesis is on the syntax of the integrated language.
Its semantics can be defined just as a normal Prolog program, possibly written as
a Prolog meta-interpreter. For the discussion of connecting a language with Prolog,
programming languages designed to contain executable source code are not treated
differently from markup languages.

69

Chapter 4. Domain-Specific Languages

Domain-Specific and General-Purpose Languages. Once we build a bridge be-
tween Prolog and the integrated language, it can be directly used from within the
Prolog program, extending Prolog’s original syntax, expressiveness, and adding sup-
port for new data formats. We therefore also refer to the integrated language as a
domain-specific language (DSL) in the context of this work. Note that this is different
to some literature that regards a DSL as a computer language which is specialised to
a particular application domain, in contrast to a general-purpose language (GPL).
Since there is no exact and standardised definition of domain-specific languages, the
question what exactly is a DSL is subject to debate. In [120], the following definition
is proposed:

A domain-specific language (DSL) is a programming language or exe-
cutable specification language that offers, through appropriate notations
and abstractions, expressive power focussed on, and usually restricted
to, a particular problem domain.

This definition focusses on the problem domain, instead of the language’s expres-
siveness or kind. However, the line between domain-specific languages and general-
purpose languages is not always sharp, as in practice a language may have features
that make it well suited particularly for a special application domain, but might
simultaneously be also applicable more broadly. Conversely, a language may in prin-
ciple be capable of various areas of application, but practically used only for a specific
domain of problems. For instance, JavaScript was originally created by Netscape to
allow dynamic behaviour of websites after the page was loaded in the web browser,
but has since become a general-purpose language used both on client-side and server-
side. In contrast, LATEX is a Turing-complete language, and could consequently be
used for any task, but is in practice only applied as a markup language almost
exclusively in the research community.

As can be seen, for an existing language it is hard to classify it as domain-specific
or general-purpose language. Often it can be done only in retrospective. There-
fore, we summarise all languages, whose integration in a host language was already
considered, simply as DSL. With this term, we do not imply restrictions to their
application area or expressiveness, which is often the case when referring to DSLs
in literature. Consequently, our presented considerations are equally applicable to
(possibly a subset of) a GPL, though its syntax would be fairly restricted.

Internal and External DSLs. There are two approaches when integrating a DSL in
a host language. Firstly, the DSL can be defined using only the syntactical features
of the host language. In most imperative programming languages, the means are of-
ten limited to clever naming of functions, procedures, and variables. Others allow to

70

4.1. Terminology

define macros to extend the programming language’s syntax. Many declarative pro-
gramming languages on the other hand provide a more flexible syntax. For instance,
a DSL in Prolog can be defined as a subset of the host language by specifying appro-
priate operator definitions. We call a language that is composed by Prolog tokens
forming valid Prolog terms an internal DSL. On the other hand – which describes
the second approach –, the integrated language needs to be parsed and interpreted
using standard compiler tools. Depending on the DSL’s complexity, this requires the
use of a lexer, parser, and/or interpreter. We refer to a language that is integrated
using this classical compiler construction approach as an external DSL.

Note that this distinction is only based on the used integration technique. Though
in this thesis several criteria to decide whether to implement a language either as
internal or external DSL in Prolog are presented, this separation is not exclusive:
any language that has been modelled internally could also be integrated by defining
an appropriate fully-featured parser. As a consequence, following this definition, the
set of internal DSLs is a strict subset of external DSLs. To put it the other way
round, not all external DSLs are valid subsets of their host language and thus can
be defined internally, where on the other hand every language can be integrated
externally.

Grammar. Using an external DSL always requires a step to translate the integrated
document into a data structure of the host language that represents its content.
In the case of Prolog, the external DSL has to be translated into native Prolog
terms. Though the embedded document can be processed by any means of the host
language (e. g., ordinary Prolog predicates), this parsing step is typically based on
a specification of the external DSL in the form of a formal grammar. We use the
term grammar as an umbrella term for any kind of formal language specification,
thus covering both context-free and context-sensitive grammars. It also does not
imply a corresponding parser generator or concrete evaluation mechanism, though
the grammars could always be implemented using Prolog’s formalism of definite
clause grammars, as introduced in Section 6.2.

Embedding. Terminology related to the integration of a DSL in a host language
can be confusing, as the term “embedding” has been overloaded in three ways.
Firstly, it is often used for the overall integration process – without a special focus
on the phases of language design, implementation, and connection –, i. e., embedding
just describes the idea of connecting two languages in a single software project. In
addition, the term “embedding” is also used to describe the following two actual in-
tegration techniques. In Section 4.2.1, we define it as a means to reuse and compose

71

Chapter 4. Domain-Specific Languages

Domain-Specific Languages

Internal
(Embedded)

External
(Standalone)

Homogeneous
specialisation using only idioms

originally provided by the host language

Heterogeneous
extension of the host language with

program transformation handled outside

Figure 4.1: Taxonomy of domain-specific languages.

only idioms of the host language in a particular way that fits to the DSL’s lan-
guage design. Languages implemented this way are sometimes also explicitly called
domain-specific embedded languages. In literature, however, the term “embedding”
also covers the definition of a DSL as an extension or specialisation of the host
language, which usually require adaptions on the host language’s compiler. To dif-
ferentiate both techniques, the terms homogeneous embedding and heterogeneous
embedding have been used. In Figure 4.1, we provide an overview of the taxonomy
of DSLs, following [117, 125].

Because the three meanings of “embedding” are a source of possible confusion, we use
the term “embedding” only for the integration technique we present in Section 4.2.1,
i. e., for internal domain-specific languages.

4.2. Integration Techniques

There are two major approaches to integrate a DSL into a host language: embed-
ding and compilation. In the following, we give a more detailed overview of both
techniques. It is the foundation for our discussion on the integration of DSLs with
respect to Prolog in Chapters 5 and 6.

4.2.1. Embedding

For novel DSLs, the easiest approach is to start with the means provided by the
host language, i. e., to create the integrated language as an extension of (a restricted
version of) the host language. By only using the syntactic mechanisms of the host
language – e. g., with user-defined functions and operators –, idioms of the embedded
language are expressed, thus being valid terms in both the integrated and the host
language. As a consequence, there is no need to define a separate parser, since the
compilation is left to the host language’s parser. This relieves the burden of the

72

4.2. Integration Techniques

programmer to keep the grammar, parser, and interpreter in sync. The result is
an implementation infrastructure that supports rapid prototyping of newly defined
domain-specific languages. The main advantage of this approach is that all features
of the host language remain available and can be used as-is, i. e., they do not need
to be re-implemented from scratch.

Though there are few tools dedicated to the design and implementation of a domain-
specific language using this approach, all software development tools originally writ-
ten for the host language can be applied, including syntax highlighting, auto-comple-
tion, and static code analysis. Code fragments of the external language can be put
directly beside code of the host language. Its usage is not different than working
with the host language, as they share their run-time environment. Only if the host
language requires a compilation step, it is also needed for the integrated language.
However for greater control on the execution of the internal DSL, applications some-
times ship with a self-defined interpreter. Since it is built using same language as
the host and domain-specific language, it is called a meta-interpreter.

Languages following the implementation technique as an internal DSL are called
domain-specific embedded languages [52] or embedded domain-specific languages [53,
65], or EDSL for short. A major drawback of embedding is its limited expressiveness
and syntactical flexibility. Though the DSL has been adapted for the application
domain, the embedded idioms have to be valid in the host language, and are there-
fore restricted to its syntax. Therefore, in many cases the optimal domain-specific
notation has to be compromised to fit the limitations of the host language. Given
an existing external data format, chances are low that it can be represented as a
subset of the host language.

A very basic yet instructional example for the extension of a host language to enhance
the program’s readability in Algol 60 is given in [34]:

And there was a little-known syntactic variant in the Algol 60 official syn-
tax that encouraged a more readable form for made-up procedures. This
allowed a comment in a procedure call to be replaced by the following
construct:

): <some comment> (Algol 60

and this would allow [for (i, 1, 10, print(a[i]))] to be written
as follows [...]:

[for (i): from (1): to (10): do (print(a[i]))] Algol 60

which looks a lot like the Algol base language but done as a meta-
extension by the programmer for the benefit of other programmers.

73

Chapter 4. Domain-Specific Languages

Other examples for the approach to create a DSL by extending the host language’s
syntax are Frob and Fran [98], two domain-specific extensions of Haskell to con-
trol a robot and describe reactive animations, and the PIC-like drawing language
FPIC [60] which is embedded in ML.

4.2.2. Compilation

Compilation is the classical approach to add support for a new language in a par-
ticular host language. Based on a given syntax definition – often in the form of a
context-free grammar –, a dedicated method for parsing is written. One can use stan-
dard compiler tools, like the Java-based parser generator ANTLR [93]. The resulting
parser creates a corresponding representation using the host language’s data types,
which can be later used for interpreting the encoded information and instructions.
Therefore, compilation is usually done in combination with interpretation. The used
programming languages can differ in all of these steps.

Following this approach, the external language can be put in a separate file and thus
be read in from the host language. To what extent code fragments can be embed-
ded directly into the host language’s source code depends on the host language’s
capabilities to handle multi-line strings, and requirements with respect to escaping
symbols of the embedded language that are otherwise special characters in the host
language.

The main advantage of implementing a language this way is a great flexibility. There
are no restrictions to the embedded language’s syntax, so no concessions regarding
the language’s notation and primitives have to be made. Vice versa, this technique
can be used to add support for any existing language and data format. Having a
dedicated parser and interpreter also simplifies the error handling, as missing primi-
tives can be acknowledged by self-defined error messages. In addition, optimisations
and static analysis can be made at compiler level. The resulting program therefore
come with a reasonable performance.

Clearly, this great flexibility comes at a price. Even with assisting tools, building
a compiler and interpreter from scratch requires in-depth knowledge about compilers,
state machines, language theory, and grammars. Aside from this, it is hard to reuse
existing grammars and parsers, as there is no standard in how to extend, restrict, and
combine those describing different DSLs. Once written, modifications to a grammar,
the corresponding parser, or the interpreter require changes in all of the other parts,
resulting in a tightly coupled software system with a lot of challenges regarding
maintenance and continuous development. Designing and implementing languages
this way is difficult and resists evolution [52].

74

4.2. Integration Techniques

There are no canonical examples of DSLs that are integrated into a host language
using this compilation approach, since all general-purpose languages provide inter-
faces to work with external data formats. On the other hand, most data exchange
formats were not designed with an executing programming language in mind, so
they were originally not intended to be a strict subset of some host language.

4.2.3. Preprocessing and Extensible Compilers

The decision to whether implement a DSL internally by embedding or externally
using compilation depends on both the syntax of the integrated DSL as well as of
the host language. It can be observed that there are more EDSLs defined internally
in small-syntax languages like Lisp, Haskell, and Smalltalk, as their syntax is less
restricted and the number of predefined keywords is limited. Large-syntax languages
like Java and C++ on the other hand typically require techniques such as prepro-
cessing or extending the compiler [29, 73]. These are techniques that can be used
together with embedding or compilation.

Preprocessing or Macro Processing. In a preprocessing step, the DSL’s language
constructs are translated into statements of the host language. In contrast to the
compilation approach, the DSL is defined as an extension to the host language, so
only some parts have to be replaced in order to be executable. The main advantages
are simplicity and expressiveness, as it does not require a complete language defini-
tion or compiler implementation, while still all of the host language’s idioms can be
used. On the other hand, static checking and optimisation cannot be done at the do-
main level. Since the preprocessing step is often implemented by string replacements
using regular expressions, it is error-prone, and so is the generated code.

Extensible Compiler or Interpreter. Instead of relying on string-based replace-
ments, the preprocessing step can be integrated in the host language’s compiler.
This way, the DSL is still defined as an extension to the host language, but type
checking and optimisation is possible and performed as part of the host language’s
build step. Some compilers support this as a means for code composition [115], e. g.,
the ANSI C compiler framework Catacomb. The Tcl [92] interpreter is another good
example, as it has been extended for dozens of domains.

Tradeoffs. Both the preprocessing and extensible compilers are common techniques
when extending large-syntax languages. However, they lose some of the advantages
that come with a pure language embedding approach, e. g., the compatibility and

75

Chapter 4. Domain-Specific Languages

adaptability of existing tools originally designed for the host language, and the lack
of additional build steps. After all, embedding DSLs in these languages might result
in more problems than are solved. “Extending Java has at times been a frustrating
experience”, the authors of the Java testing framework jMock [39] conclude in their
EDSL experience report [40].

4.3. Prolog as a DSL in other Host Languages

Sometimes, Prolog is also regarded as a DSL, tailored to the specific application
domain of logic programming, knowledge representation, and deduction. In this the-
sis, we do not elaborate on the discussion of whether Prolog is a DSL or GPL, and
instead just use Prolog as our preferred host language to embed other languages.
However, as the embedding of Prolog in some other GPL raises similar research ques-
tions as discussed in our work, we give a short overview in this section of existing
systems that integrate Prolog in various programming languages.

All presented approaches have a common goal: combining the logic-based program-
ming paradigm with another language to create a system that is more expressive than
its parts. However, the major challenge is the different execution model (imperative
vs. declarative, often with required support for backtracking). As a consequence,
systems have to make architectural decisions both for a natural integration regard-
ing the syntax of Prolog and the host language, as well as the more fundamental
discussion of integrating different semantics. This often comes with interoperability
problems due to the paradigmatic gap.

Existing connectors to Prolog from other languages usually stick with the host lan-
guage’s syntax to integrate Prolog idioms. The syntax of Prolog is therefore modified
in order to fit into the syntactical requirements of the host language, or the Prolog
parts have to be put in separate files. In both ways, Prolog is effectively treated as
an external DSL. Besides syntax incompatibilities, this approach is often justified
by better developer experiences, as programmers are usually only familiar with the
host language’s syntax.

4.3.1. Java

Combining Prolog and Java has been subject to research for decades. [90, Sec. 2] gives
an overview of systems that combine these two languages.

76

4.3. Prolog as a DSL in other Host Languages

4.3.1.1. SWI-Prolog’s Prolog/Java Interface JPL

Because it ships with SWI-Prolog, Jpl [111] is one of the most well-known and
sophisticated interfaces between the two languages. It provides a two-way binding,
based on the Java Native Interface (JNI) to connect to a Prolog engine, and the
Prolog Foreign Language Interface (FLI) [136, Sec. 12] which allows to call foreign
language functions as Prolog predicates. To integrate Prolog into Java, Jpl provides
special classes that mimic the syntax of Prolog. For instance, the predicate call
?- consult(’database.pl’). can be stated using Jpl as follows:

Query q1 = new Query(Java

"consult",
new Term[] {new Atom("database.pl")}

);

Prolog snippets cannot be put verbatim next to Java code. Instead, Prolog can
be used only as an external DSL. Though Jpl provides bidirectional classes and
methods to directly interact with Prolog terms, queries, and answers, their usage
leads to verbose Java code for simple compound Prolog terms. In addition, this kind
of integration requires the developers to have knowledge and deep understanding of
both language’s internals.

4.3.1.2. CAPJa Connector Architecture

In the integration framework Connector Architecture for Prolog and Java (CAPJa)
[89, 90], the mapping from Prolog terms to Java classes and vice versa is done fully
automatically, and can be further manipulated using Java class annotations. This
way it is possible to define classes, terms, and their mappings as a data interchange
format once, and then work with plain old Java objects. For instance, in Listing 4.1,
two persons are described using a self-defined Person class. With CAPJa’s default
mapping, they are mapped to the compound Prolog term person/3 (l. 14). @PlView
class annotations would allow to modify this mapping of Person, e. g., to use the
person’s identifier in the list of children instead of nesting the terms.

The CAPJa framework is completely implemented in Java and imposes no modifica-
tions to the Java Virtual Machine or Prolog. Under the hood, CAPJa ships with an
extensible system of gateways that provide connectivity with various Prolog systems,
so it can be easily changed without further code modifications. The gateway uses
a text-based data exchange format between Java and Prolog, called portable Prolog
interface (PPI) [91] for Java. It is based on standard streams stdin, stdout and
stderr, and serialised Prolog terms to communicate between Prolog and Java.

77

Chapter 4. Domain-Specific Languages

Listing 4.1: Default object mapping in CAPJa. Condensed code example from [90,
Sec. 3].

1 class Person { Java
2 private int id;
3 private String givenName;
4 private String familyName;
5 private Person[] children;
6 // ... constructor, getter, setter
7 }
8

9 Person p1 = new person(1, ’Homer’, ’Simpson’);
10 Person p2 = new person(2, ’Bart’, ’Simpson’);
11 p1.setChildren(new Person[]{p2});
12

13 // corresponding Prolog term using default mapping:
14 // person(1,’Homer’,’Simpson’,[person(2,’Bart’,’Simpson’,[])])

An advantage of this integration approach is that Prolog and Java developers can
work separately on their parts, remaining with their preferred language: Java for
object-oriented development, and Prolog for rule-based components. On the other
hand, CAPJa solely focusses on the interaction and interfaces of the two languages,
rather than provide a seamless integration of their different syntax. This way, Prolog
is treated again as an external DSL.

4.3.1.3. Constraint-logic Object-oriented Language Muli

The constraint-logic object-oriented programming language Muli [28] instead is re-
alised in the form of an extensible compiler. It extends Java by logic variables and
encapsulated, constraint-based search. Though it is not focussed on the integra-
tion of Prolog, it adapts several concepts known from logic- and constraint-based
programming languages, resulting in a system that resembles SWI-Prolog with its
library(clpfd) for constraint-logic programming over finite domains, just extended
for object-oriented programming.

Muli is implemented as a minimal language extension to Java 8. It is a superset of
Java with additional constraint solving and nondeterminism features. Consequently,
every Java program is also a Muli program that can be compiled and executed by
Muli. Regarding Muli’s syntax, only a single keyword is added to Java’s original
grammar. Variables can be marked as logic variable using the free keyword, e. g.,
in int x free . This syntactical extension of Java’s compiler is fairly simple and
requires only minor modifications in Java’s EBNF rules for declaring a field; it is

78

4.3. Prolog as a DSL in other Host Languages

Listing 4.2: XML Schema to specify an object mapping as used by GOOMN.
1 <?xml version="1.0" ?> XML Schema
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3 <xs:element name="person" type="Person" />
4 <xs:complexType name="Person">
5 <xs:sequence>
6 <xs:element name="givenName" type="xs:string" />
7 <xs:element name="familyName" type="xs:string" />
8 <xs:element name="children">
9 <xs:complexType>

10 <xs:sequence name="person"
11 type="Person" maxOccurs="unbounded" />
12 </xs:complexType>
13 </xs:element>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:schema>

described more in detail in [29]. The more challenging part here is to define and
implement the operational semantics of Muli programs that use logic variables, as
the free variables and the constraint solving problems introduce nondeterminism.

4.3.2. Python

The Python/Prolog Database Connectivity (PyPlC) [9] toolchain aims to provide a
portable interface for the interpreted programming language Python. With PyPlC,
Prolog structures are converted into corresponding object-oriented structures that
can be easily processed by Python and vice versa. Similar to CAPJa, the mapping
from Prolog terms to classes of the host language can be generated automatically.

In regard to portability, PyPlC resembles the ideas of the famous Open Database
Connectivity (ODBC) interface for accessing relational database management sys-
tems. This standard application programming interface (API) is implemented by
all major SQL systems. In addition, the API is supported by many programming
languages and libraries to connect to a database system using a standardised set
of instructions. Therefore, in contrast to CAPJa’s Java-based mapping of Prolog
terms to classes, Bodenlos et al. define a language-independent, XML-based format
to describe Prolog data structures in [9]. This format, which is called general object-
orientated mapping notation (GOOMN), contains all information about data types
and structures of compound terms. For each component of a Prolog structure, the
GOOMN specification provides a meaningful name, as well as a generic description

79

Chapter 4. Domain-Specific Languages

of the type. Once a Prolog database is described this way, it can in principle be
mapped to any object-oriented programming language due to its generic nature.
Listing 4.2 shows an example XML Schema that describes the Person class we used
for CAPJa (cf. Listing 4.1).

PyPlC creates a Python mapper class for each XSD type specified in the XML
Schema and integrates it into the PyPlC module. By changing the GOOMN no-
tation, the mapping process is completely customisable: for instance, the software
developer can decide whether a component should be mapped or not. Since it is
possible to pre-compile the mapper classes, the processing speed can be significantly
increased.

To still benefit from the advantages of the integrated logic programming system,
the query processing and data storage in PyPlC is left to the connected Prolog
interpreter, usually SWI-Prolog. Therefore, and to follow the example of ODBC,
PyPlC offers a Python/Prolog query language, called PyPlQL. It is inspired by
the query language JPQL, which is shipped with CAPJa. PyPlQL is an internal
domain-specific language in Python, influenced by corresponding data structures of
the two languages of interest, Python and Prolog. Simply put, a PyPlQL query
is a Python function, whose parameters declare the required objects and whose
function body describes the conditions to be fulfilled by a Boolean expression. Such
functions are not executed as they are; instead, they get transmitted to PyPlC,
which transforms and passes them on to the Prolog instance. The successful variable
binding gets transformed and returned again as a Python object. Listing 4.3 gives an
example on how to use PyPlC and PyPlQL to load an externally defined Prolog
fact base database.pl with the GOOMN mapping database_goomn.xml and ask
for all persons with a family name of “Simpson”.

4.3.3. JavaScript

Measured against distribution and popularity, JavaScript is currently one of the
most popular programming languages. Douglas Crockford, who developed the Java-
Script Object Notation (JSON), once stated that every personal computer in the
world had at least one JavaScript interpreter installed on it and in active use [27].
In addition, JavaScript is already a popular target language for compilation, as it
accounts for more than 300 languages that compile to it.13 By integrating logic-based
programming languages to JavaScript, one benefits from this broad distribution of
run-time environments.
13List of languages that compile to JavaScript, https://github.com/jashkenas/coffeescript/wiki/list-

of-languages-that-compile-to-js, document revision February 21, 2021.

80

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

4.3. Prolog as a DSL in other Host Languages

Listing 4.3: Load and query a Prolog database in PyPlC. Adapted example from [9,
Sec. 3].

1 pyplc = Pyplc(’swipl’) # create an instance of PyPlC Python
2

3 # import the Prolog database and the corresponding GOOMN
4 pyplc.import_database(’database.pl’, ’database_goomn.xml’)
5

6 # define and execute query
7 def person_query
8 (p : Person):
9 p.familyName == ’Simpson’

10 res = pyplc.retrieveAll(person_query)
11

12 # print all retrieved persons
13 for p in res:
14 print(’Given Name: ’ + p.givenName)

JavaScript and Prolog have a property common: both traditionally lack support for
multi-line strings, but have been recently enhanced in this regard by new language
idioms. Since version 6.3.17, SWI-Prolog ships with quasi-quotations, which we intro-
duce in detail in Section 6.1. JavaScript on the other hand supports tagged template
strings. They have been introduced to JavaScript in the standard ECMAScript 2015
(formerly ECMAScript 6) [141]. They are of the following basic form:

tag`Content` JavaScript

For instance, a multi-line HTML snippet can be embedded as an external DSL in
JavaScript as follows:

html`<h1>Hello, ${name}!</h1> JavaScript

<p>How are you today?</p>`

Similar to quasi-quotations in SWI-Prolog, a tagged template string of the previous
form invokes a function call of the user-defined function tag (called the template
handler), i. e., in this example html(content) . Expressions from the outside-world
can be referred to in the embedded document using the ${ . . . } notation. To process
the given string content, it is split by the embedded expressions:

let name = ’Alice’ JavaScript

function html(strings, ...values) {
return strings[0] + values[0] + strings[1]

}
html`<h1>Hello, ${name}!</h1>` // returns ’<h1>Hello, Alice!<h1>’

81

Chapter 4. Domain-Specific Languages

Listing 4.4: Rules in CHR.js to calculate the greatest common divisor. Adapted ex-
ample from [78, Sec. 5].

1 var CHR = require(’chr’) // load CHR.js JavaScript
2 var chr = new CHR() // initialise CHR runtime, e.g., constraint store
3 chr`
4 gcd(0) <=> ${ console.log(’Finished’) }
5 gcd(N) \\ gcd(M) <=> 0 < N, N <= M | gcd(M-N)`

Unlike Prolog, JavaScript has no built-in grammar formalism to modify the parser
that is used for the embedded document. Instead, third-party libraries have to be
used to parse the given content strings and generate the corresponding replacement.
Similarly to other languages providing features like quasi-quotations and tagged
template strings, there is no standard like the DCGs known from Prolog for Java-
Script.

4.3.3.1. CHR.js JIT Interpreter and AOT Compiler

In [78], we use tagged template strings to embed the constraint-logic programming
language Constraint Handling Rules (CHR) [41] as a domain-specific language in
JavaScript. Listing 4.4 presents the classical CHR example of computing the greatest
common divisor of an arbitrary number of integers specified in gcd/1 constraints.
Regarding the traditional syntax of CHR, the embedding in JavaScript requires
only minor modifications. Firstly, since in JavaScript the backslash \ is an escape
character in strings, it has to be escaped by a second backslash. Secondly, instead
of explicitly declaring CHR constraints in order to differentiate them from built-in
constraints (i. e., operators and functions provided by the host language JavaScript,
for instance console.log()), we rely on the expression embedding using the ${. . . }
notation.

CHR.js provides both a just-in-time (JIT) interpreter and an ahead-of-time (AOT)
compiler. The JIT interpreter allows to embed CHR code snippets in JavaScript
using tagged template strings as presented in Listing 4.4. This allows to put the
CHR rules directly next to the code of the host language JavaScript, but relies on a
separate parser, i. e., CHR is treated as an external DSL. The AOT compiler on the
other hand extends the JavaScript grammar – the CHR rules are treated as first-class
citizens, so it is not needed to enclose them by tagged template strings. In short,
CHR is embedded internally following the preprocessing approach we introduced in
Section 4.2.3.

82

4.3. Prolog as a DSL in other Host Languages

Listing 4.5: Initialisation of Tau Prolog with a Prolog fact base.
1 var pl = require(’tau-prolog’) // load Tau Prolog JavaScript
2 var session = pl.create() // create a Prolog session
3

4 // ?- consult(’database.pl’).
5 var q1 = new pl.type.Term(
6 ’consult’,
7 [new pl.type.Term(’database.pl’, [])]
8)
9 session.query(q1)

10

11 // alternatively load data in a tagged template string
12 session.consult`
13 person(1, ’Homer’, ’Simpson’).
14 person(2, ’Bart’, ’Simpson’).`

In order to parse the JavaScript source code, we formalised the syntax of the CHR
rules in [76, Sec. 4.3] using a Parsing Expression Grammar (PEG) [37] and its Java-
Script parser generator PEG.js.14 The JavaScript constraint solver created by the
AOT compiler is of competitive performance [78].

4.3.3.2. Tau Prolog Interpreter

Tau Prolog [99] is a client-side Prolog interpreter fully implemented in JavaScript.
Similar to Java’s JPL (cf. Section 4.3.1), it provides JavaScript prototypes to con-
struct Prolog terms. These are similar to classes known from object-oriented pro-
gramming languages. Consequently, the JavaScript code to create a simple goal in
Listing 4.5 (ll. 4–9) resembles those of Jpl. In addition, Tau Prolog also makes use
of quasi-quotations to embed Prolog code verbatim in JavaScript (ll. 11–13). These
strings are transformed internally into an abstract syntax trees, which forms the
basis for the in-browser execution. In this regard, Tau Prolog is implemented similar
to the CHR.js JIT interpreter, with Prolog treated as an external domain-specific
language.

4.3.4. Haskell

The previously presented systems and frameworks integrate Prolog in an object-
oriented programming language. These usually come with a large number of pre-
14PEG.js, https://pegjs.org/, is a parser generator for JavaScript. Its syntax is similar context-free

grammars and Prolog’s definite clause grammars.

83

https://pegjs.org/

Chapter 4. Domain-Specific Languages

Listing 4.6: Systematic translation of the predicate append/3 to Haskell, following
the definition of the logic program as formula F ′ in Section 2.5.

1 append(x, y, z) = Haskell
2 (x .= nil & y .= z) ||
3 (exists (\e -> exists (\l -> exists (\m ->
4 x .= cons(e, l) & z .= cons(e, m) & append(l, y, z)))))

defined keywords and great constraints regarding the DSL’s syntax. Consequently,
none of these systems rely on the embedding of Prolog; only Muli uses an extensi-
ble compiler for modifications of the Java programming language. Haskell one the
other hand is a small-syntax language, and therefore comes with a higher flexibility
regarding the embedding of DSLs (cf. Section 4.2.3). Its syntax is nevertheless not
compatible with Prolog. Existing approaches to embed Prolog in Haskell are mainly
focussed on how to close the semantic gap of both languages and programming
paradigms.

To overcome syntactic differences, the authors of [113] define an algebraic data type
Predicate for predicates, Term for terms, and various other types, e. g., to hold
the list of substitutions in a unification. In addition, four Haskell functions need
to be defined: (&) and (||) denote conjunction and disjunction of predicates,
(.=) forms a predicate expressing the equality of two terms, and exists expresses
existential quantification. These four functions suffice to translate any pure Prolog
program.

Based on these functions, the classical append/3 predicate can be expressed in
Haskell as presented in Listing 4.6. It strictly follows the definition of the formula F ′

in first-order logic we specified in Section 2.5. Lines 1–2 correspond to the rule F ′
1,

which is an alternative representation of the fact F1. Lines 3–6 implement the recur-
sive rule F ′

2 with explicit existential quantification of the variables E, L, and M .

The program transformation from source code originally written for Prolog to the
data types and functions in Haskell can be done automatically:

1. Since variables in Haskell are denoted by lowercase letters, they are renamed
accordingly.

2. Prolog’s unification is replaced by the newly defined (.=) function.

3. Local variables in a rule’s body have to be explicitly existentially quantified
using the exists function and lambda expressions (l. 3).

84

4.3. Prolog as a DSL in other Host Languages

4. Conjunctions and disjunctions are replaced by the functions (&) and (||) .
Prolog rules with the same predicate in the head are combined into one disjunc-
tion, with unifications originally stated in the rule’s head being transformed
into logical preconditions.

Similar to Prolog, Haskell allows to define new operators with their precedences.
Nevertheless, Haskell maintains only the ten precedence levels from 0 to 9, in contrast
to Prolog’s 0 to 1200. For instance, in Listing 4.6 we use the infix operators & , ||
and .= . In contrast to Prolog, Haskell does not support postfix operators, reducing
its capabilities to embed DSLs internally.

4.3.5. Julia

Julia [8] is a high-level, high-performance, dynamic programming language, which
is mainly used for numerical analysis and computational science. It is a faster alter-
native to MATLAB, with a compiler written in C, C++, and Scheme.

The Julia package Julog.jl15 provides a @julog macro that can be used to define
logical terms and Horn clauses in a Prolog-style syntax. Listing 4.7 shows how to
implement and query the predicate append/3. It looks fairly similar to the original
Prolog code, as in particular the notations for predicate symbols and variable sym-
bols are the same as in Prolog, i. e., terms look the same in Prolog and Julog. With
respect to the definition of clauses, only minor changes are needed for Julog code to
be compatible with the original syntax of Prolog:

– A clause does not end with the full stop.

– Facts have to be stated with an explicit rule body of true .

– <<= is used instead of Prolog’s infix operator :-/2ISO to separate the rule’s
head and body.

– Conjunctions are denoted by the & instead of Prolog’s infix operator ,/2ISO.

– Negation is denoted by the prefix ! instead of Prolog’s operator \+/1[C.2].
The cut is instead available as an explicit predicate cut .

Julog supports forward-chaining proof search (i. e., bottom-up evaluation) using the
derivations function, as well as the classical backward-chaining proof search (top-
down) via SLD resolution with the resolve function. However, the SLD resolution
is implemented as a breadth-first search instead of Prolog’s depth-first approach,
15Julog.jl, https://github.com/ztangent/Julog.jl, Apache License 2.0. The code example of List-

ing 4.7 is based on version 0.1.11, September 2021.

85

https://github.com/ztangent/Julog.jl

Chapter 4. Domain-Specific Languages

Listing 4.7: Definition and usage of the predicate append/3 in Julia.
1 clauses = @julog [Julia
2 append([], Y, Y) <<= true,
3 append([E | X], Y, [E | Z]) <<= append(X, Y, Z)
4]
5 query = @julog [append(X, Y, [a,b])]
6 satisfiable, substitution = resolve(query, clauses)
7 # satisfiable = true
8 # substitution = 3-element Array{Any,1}
9 # {X => [], Y = [a,b]}

10 # {X => [a], Y = [b] }
11 # {X => [a,b],Y = [] }

resulting in a different semantics for partially solved solutions and in particular
for the application of the cut. There is no equivalent for Prolog’s operator ;/2, so
disjunctions have to be made implicit by stating alternative rules.

4.3.6. The Prolog Transport Protocol

Integrating Prolog into another language, particularly when following another pro-
gramming paradigm, often comes with several conceptual and technical difficulties
regarding different data structures and execution models. This question is similar to
the well-known object-relational impedance mismatch. It can be encountered when a
relational database management system is being served by an application program
that was written in an object-oriented programming language or style. There, ob-
jects or class definitions must be mapped to database tables defined by a relational
schema. Similarly, when integrating Prolog, the backtracking-based nondeterminism
has to be mapped to pagination, and logic variables to built-in data types.

This mapping is similar for all imperative programming languages, since conversa-
tions with a Prolog instance follow a communication protocol that has been for-
malised as the Prolog Transport Protocol (PLTP) in [70, Sec. 4]. It is based on the
Prolog 4-port model [14] (cf. Section 7.3.1), extended with exceptions and I/O. It
follows a request-reply format that makes it suitable for imperative programming
languages and transport layers. Therefore, it lays the foundation for remote proce-
dure calls in Prolog. SWI-Prolog uses PLTP for the inter-thread communication of
distributed Prolog applications, and to provide the web-based Pengines interface.
The latter allows a Prolog server and JavaScript client to communicate via PLTP
over HTTP (PLTPHTTP).

86

4.3. Prolog as a DSL in other Host Languages

0start

1

2

8

7

6

3

4

5

create created

destroydestroyed

ask

success

success(false)

failure, error

output pull output

prompt

respond

next

stop

stopped

Figure 4.2: Finite-state machine for the Prolog Transport Protocol, based on [70].

PLTP is built on top of a finite-state machine. Figure 4.2 shows an adapted version
from [70]. Since PLTP is based on a request-reply communication protocol, normal
edges describe requests, dashed edges replies; the states are depicted accordingly,
with states that require an action from the client filled grey, and white otherwise.
The states are as follows:

0 Disconnected

1 Connecting

2 Idle

3 Running query

4 Query produced output

5 User interaction

6 Idle after query processing

7 Query stopped

8 Disconnecting

State 3 describes the four different outcomes when querying Prolog:

2 The query processing in stopped in case of an occurred error or failure, or if
there is no (further) successful refutation in the SLD tree. In the toplevel, the
user would be asked for a new query, denoted by ?- .

4 An output via I/O is produced. In the toplevel, this output would simply
be printed.

5 The user gets prompted for additional information via I/O, e. g., using read/1.
This would be denoted by |: in the toplevel.

6 The computed answer substitution of a successful SLD refutation is given back,
allowing the user to ask for another solution or to stop the query processing.

87

Chapter 4. Domain-Specific Languages

In the toplevel, this could be answered either by ; (or alternatively n for
“next”) or . (or alternatively a for “abort”).

With PLTP, the client component and Prolog server can be developed indepen-
dently, and for various transport layers. Currently, SWI-Prolog is the only Prolog
system with support for the protocol. Given that other systems like GNU Prolog
or Tau Prolog also implement PLTPHTTP in the future, it would be possible to in-
terchange Prolog backends. In this regard, PLTP is similar to the Portable Prolog
Gateway (PPG) which is shipped with CAPJa [89, Sec. 7.3]. The PPG is based on
the streams for standard input stdin, standard output stdout, and standard error
stderr. Besides SWI-Prolog, it has been successfully tested with several Prolog sys-
tems such as the Ciao system [12, 50], GNU Prolog [32], the XSB system [116], and
YAP [24]. The PPG therefore emphasises the feasibility of a system-independent
communication protocol, and lays the foundation for a PLTP implementation based
on standard streams, i. e., PLTPstdio.

4.4. The Status Quo on the Integration of DSLs in Prolog

In the previous section, we provided an overview of existing systems that integrate
Prolog in various other programming languages. The problem put the other way
round is subject of research in this thesis. Before discussing Prolog’s capabilities
of integrating internal and external DSLs in Chapters 5 and 6 in more detail, this
section provides an overview of existing DSLs that can be connected with Prolog.
Additional examples of real-world programming languages with considerations re-
garding the integration of their code snippets into Prolog can be found in [130].

Internal DSLs. Not only because of its long history and ongoing development,
SWI-Prolog offers a large software ecosystem that adds support for many popular
computer languages and interfaces. But as of now, only a minor part is integrated in
the form of an internal DSL. This is mostly because DSLs which have been designed
without having Prolog in mind usually require syntax adaptions to be compatible
with existing Prolog systems. As part of our work in Chapter 9, we discuss to instead
slightly adapt the requirements to be valid Prolog syntax to allow more external
DSLs to be defined and used internally.

In Section 4.3.5, we presented the integration of Prolog into the dynamic program-
ming language Julia, which needs only modifications in the syntax of clauses, while
terms can be represented similarly in both languages. This makes Julia a good

88

4.4. The Status Quo on the Integration of DSLs in Prolog

candidate for integrating the DSL internally in Prolog. In fact, SWI-Prolog’s li-
brary(pljulia)16 allows Prolog code to use an embedded instance of Julia and de-
fines several self-defined operators to mimic Julia language features. The Prolog
code though requires several modifications to be fully compatible with native Julia
code.

The most common application of this technique to define appropriate Prolog opera-
tors is to create a completely new DSL, without the intend to use this internal DSL
later in another host language. Popular examples are extensions of the logic pro-
gramming language in Prolog, for instance Constraint Handling Rules (CHR) [41],
and the probabilistic extension for Prolog ProbLog [62]. This also covers most test-
ing libraries for Prolog like our library(tap), which allow to simply specify the test
cases and expected results in the form of a Prolog program. The declaration of tests
can then be directly executed once the operators are defined as Prolog predicates as
well. In Chapter 5, we discuss this technique in more detail.

Foreign Language Interface. Compared to the internal definition of a DSL, there
are many more languages that are not integrated as a subset of Prolog. Instead,
support for these languages is added either by defining a custom-built compiler, or
by connecting Prolog to existing compilers written in C or C++. The latter can be
done by calling foreign code from within Prolog.

In SWI-Prolog, it is possible to define a foreign predicate, which internally is a C or
C++ function with the same number of arguments. The passed C/C++ and Prolog
terms can be converted and passed along both systems by a bidirectional interface,
effectively making all C and C++ programs available for Prolog. This allows to reuse
existing C/C++-based compilers for external DSLs, and at the same time comes with
a great flexibility and performance.

To use SWI-Prolog’s foreign language interface [136, Ch. 12], foreign code must be
put into a SWI-Prolog extension that is later included by
use_module(library(...)) . SWI-Prolog provides foreign interfaces to interact with
existing C and C++ programs; Java could be connected via the bidirectional Pro-
log/Java interface JPL (cf. Section 4.3.1.1). The foreign extensions can be given
by source as well as by providing only their executable binary. Packages containing
foreign code are supported by most modern operating systems, e. g., with DLLs
under Windows, or shared objects under Linux.

For instance, this approach is used for the implementation of library(sgml), a parser
for the Standard Generalized Markup Language (SGML). It is defined as a C-library
16library(pljulia), https://github.com/samer–/pljulia, GNU GPL v3.

89

https://github.com/samer--/pljulia

Chapter 4. Domain-Specific Languages

for SWI-Prolog that has been built from scratch, resulting in a lightweight and fast
parser [138]. Since XML shares the same tree-model as SGML with some additional
restrictions, library(sgml) forms the base for all XML processing tools in SWI-Prolog,
as well as all its derived data formats. This also includes the Resource Description
Format (RDF), a W3C standard for expressing meta data about web-resources, that
is heavily used in semantic web applications in Prolog [139].

Another popular example of using existing foreign libraries to connect to external
DSLs is library(odbc),17 SWI-Prolog’s interface to ODBC, the Microsoft standard
for Open Database Connectivity. This standardised interface is supported by a wide
variety of SQL-based relational database systems. Under Linux, SWI-Prolog links to
unixODBC ;18 under Windows, odbc32.lib is used. The provided Prolog predicates
closely follow the ODBC API and provide therefore a low-level, yet fast access to
the database management system.

External DSLs. Only a minor part of SWI-Prolog’s packages that add support for
other languages and data formats make use of Prolog’s built-in capabilities to de-
fine parsers and compilers, in particular DCGs. One example is library(protobufs),19

which adds support for Google’s Protocol Buffers. It is a language-neutral, platform-
neutral, extensible mechanism for serialising structured data – similar to XML, but
smaller, faster, and simpler. In SWI-Prolog, it is again based on a small C-library,
but also uses DCGs to interpret the incoming data stream. The aforementioned
library(pljulia) does similarly by converting the results from the embedded Julia
instance back to Prolog terms with the help of DCGs.

Most current applications of DCGs in Prolog are related to natural language pro-
cessing. In Chapters 6 to 8, we introduce our contributions that assist with the
integration of external DSLs using these grammars.

17SWI-Prolog ODBC Interface, https://www.swi-prolog.org/pldoc/package/odbc.html.
18unixODBC, http://www.unixodbc.org/, is an open-source implementation of the ODBC inter-

face, shipped with most versions of Linux and Mac OS.
19Google’s Protocol Buffers Library, https://www.swi-prolog.org/pldoc/package/protobufs.html.

90

https://www.swi-prolog.org/pldoc/package/odbc.html
http://www.unixodbc.org/
https://www.swi-prolog.org/pldoc/package/protobufs.html

5
Prolog as a Host for Internal

Domain-Specific Languages

Internal domain-specific languages are well designed by default.

— Marjan Mernik20

In the software development process, the solution to a problem requires to think
about the data structures and how to process it. In this regard, we could change
Robert Kowalski’s famous equation from Section 2.1 to algorithm = data + control,
with the same underlying idea: at best, the two parts, data (instead of logic) and
control, are only loosely coupled, and can be changed independently. This allows to
separate the two phases in the process of software development of modelling and
processing data.

For large software this is already often the case, as classes and relationships are
modelled before the actual implementation happens. However, the means to repre-
sent the data are always restricted to the concrete syntax and mental model of the
used host language. Here, the homoiconic programming language Prolog has several
advantages, since every Prolog data representation is also a valid Prolog program.
The data can be simply stated as an executable program and further processed. This
allows to first model the data with a flexible and hardly restricted syntax, and later
define predicates that work on it, all in the same programming environment.

This approach is especially useful for rapid prototyping. Jan Wielemaker, main de-
veloper of SWI-Prolog, underlined this in a general advice regarding software devel-
opment with Prolog:21

20Quote from the Preface to “Formal and Practical Aspects of Domain-Specific Languages: Re-
cent Developments” [72]. Marjan Mernik is a Slovenian computer scientist and professor at the
University of Maribor, whose main research interests include the intersection of programming
languages and software engineering. From 2014–2014, he was Editor-in-Chief of the international
journal Computer Languages, Systems and Structures (COMLAN).

21Answer by Jan Wielemaker in the SWI-Prolog Discourse forum thread “Represent Account-
ing Equation Using SWI-Prolog”, https://swi-prolog.discourse.group/t/represent-accounting-
equation-using-swi-prolog/1465/16, November 12, 2019.

91

https://swi-prolog.discourse.group/t/represent-accounting-equation-using-swi-prolog/1465/16
https://swi-prolog.discourse.group/t/represent-accounting-equation-using-swi-prolog/1465/16

Chapter 5. Prolog as a Host for Internal DSLs

My favorite message: do not represent your knowledge/rules as exe-
cutable Prolog. Instead, create a representation as Prolog terms that
expresses the rules in a format your domain experts will like. Next, write
a Prolog program that make them work. This can either be by interpret-
ing them, compiling them to executable Prolog or even compile them
into something else (JavaScript, C, ...).
The first step is typically easy. The others are a bit harder, but can be
delayed until you hit scalability issues.
Note that such a format make[s] your domain experts happy and make[s]
it much simpler to reason about your rules and find inconsistencies, pro-
duce explanations, etc.

Following this advice, it seems reasonable to use Prolog only as an intermediate
language to express knowledge in a suitable way, often as a domain-specific language
With Prolog’s flexible syntax, the resulting data representation can be easily written
and processed by domain experts and is a valid Prolog program at the same time.
Thus, Prolog can be easily used either for direct data processing, or to convert the
data in an external representation.

In Chapter 3, we presented the basics of programming in Prolog, with a syntax
that is based on terms as the language’s first-class citizens. In this chapter, we first
introduce in Section 5.1 operators as functors as a means to write Prolog terms and
thus programs in a more natural way. It relates to the data representation in the form
of Prolog terms, as suggested in the quotation by Wielemaker. In Section 5.2, we
introduce means to run data transformations at compile-time. Section 5.3 reconsiders
the idea of interpreting data of this internal DSL representation with a Prolog meta-
interpreter. As an example, we present in Section 5.4 the definition of an internal DSL
for natural-language-flavoured if-then rules. They have been successfully applied to
represent expert knowledge in the field of change management in organisational
psychology. In Section 5.5, we discuss common features and differences between
domain-specific languages and controlled natural languages. The chapter concludes
in Section 5.6 with the definition of EBNF as an internal Prolog DSL. This formalism
to describe context-free grammars is often used by syntax definitions of computer
languages and thus provides the basis for parsing and serialising external Prolog
DSLs as discussed in Chapter 6.

5.1. Operator Notation for Terms without Parentheses

In general, DSLs are used to formulate propositions about real-world entities. These
can be identified by numbers, strings, and variables, which happen to be the smallest

92

5.1. Operator Notation for Terms without Parentheses

units of all Prolog programs. Complex propositions can be composed using com-
pound terms. As introduced in Section 3.1.1, compound terms normally begin with
the functor name, which is an atom, followed by a list of arguments in parentheses.
But exceptions apparently exist: for instance, arithmetic expressions are written in
the usual infix way, e. g., as 1+2. Similarly, some of Prolog’s built-in predicates are
usually called alike, like the predicate is/2ISO to evaluate an arithmetic expression
in ?- X is 1+2 .

Support for the infix notation of +/2 in arithmetic expressions could be taken as
granted, as it is a common language feature among all modern programming lan-
guages. However traditionally, statements are written by their instruction or op-
erator first, e. g., in Lisp and assembly languages. In the functional programming
language Haskell, functions are usually called using this prefix notation, i. e., the
function name followed by its arguments – though unlike in Prolog no parentheses
are required. In Haskell, function names consisting of only special characters (like +
and ++) are expected two be infix operators; all other names of binary functions
can be enclosed by the back quote character ` to use them in infix notation, e. g.,
in 3 `mod` 2 .

Though Prolog similarly allows to use graphic symbols like + as atoms without the
need for additional quote characters, there is no automatism which considers them
as infix operators just based on their syntax as in Haskell. Instead, operators have
to be explicitly declared in Prolog, using the op/3ISO predicate. It is usually used as
a directive in a Prolog program (cf. Section 3.1.2), since the definition of all used
Prolog operators is required for the compiler to successfully parse the program they
appear in. It has the signature op(+Precedence,+Type,:Name) . Multiple operators of
the same type and precedence can be defined by a single call of op/3ISO with a list of
all names as its last argument. Specifying an operator’s precedence as 0 via op/3ISO

effectively removes all existing definitions of this operator.

A declaration of an operator via op/3ISO only affects the supported external appear-
ances of the operator in the program’s source code. Internally, the standard repre-
sentation for compound terms, called functional notation or canonical notation, is
still used, i. e., 1+2 is handled in Prolog as it was +(1,2) , without any means to
distinguish it from the operator notation using the operator after the Prolog program
was read in. Every compound term can be expressed in functional notation, thus
making the syntax without any operator definitions a subset of Prolog in which all
programs can be stated non-ambiguous. Throughout this work at hand, we use the
phrase operand in contrast to argument to indicate it is part of a compound term
stated in the operator notation, though semantically there is no difference between
the operator’s notation “operand” and the functional notation’s “argument”.

93

Chapter 5. Prolog as a Host for Internal DSLs

Listing 5.1: A simple Prolog rule and its equivalent term in functional notation.
p(X, Y) :- X is Y+2*3. Prolog
% representation as a compound term in functional notation:
% :-(p(X,Y),is(X,+(Y,*(2,3))))

5.1.1. Precedences in the Parsing of Expressions

In addition to the operator’s name, the parsing of a term in functional notation relies
on the operator’s priority over other terms. It is required to disambiguate expressions
in which the structure of a term is not made explicit through the use of parentheses.
For instance, the term 1+2*3 with infix operators +/2 and */2 could be parsed
either as +(1,*(2,3)) or *(+(1,2),3) . Therefore, every definition of an operator
also contains its precedence, which is an integer from 1 to 1200. Note that the ISO
Prolog standard uses only the broader notion of priority, which on the contrary is
defined as an integer from 0 to 1201.22 Though this notion is not as frequently used
in literature, we use it similarly throughout the work at hand to distinguish a term’s
priority from the precedence of the term’s principal functor, i. e., the corresponding
operator’s property defined via op/3ISO.

The term’s principal functor is determined by and equal to the operator with the
highest precedence, i. e., the priority of just 1+2 equals the precedence that is defined
for +/1 in the op/3ISO directive. Following the general notation of arithmetic terms,
1+2*3 should be parsed as +(1,*(2,3)) , thus the precedence of +/2 is higher than
that of */2.

Because Prolog is homoiconic, these considerations can be extended to complete
rules. As shown in Listing 5.1, the principal functor of the term that represents
the rule is :-/2. It should have the highest precedence, followed by is/2, +/2,
and finally */3. All in all, the rule can be represented by the canonical term
:-(p(X,Y),is(X,+(Y,*(2,3)))) .

5.1.2. Infix Operator Associativity

Another ambiguity can be found in terms with multiple occurrences of the same
operator, as they have the same precedence. For instance, the term 1+2+3 may rep-
resent either +(1,+(2,3)) or +(+(1,2),3) , i. e., the term’s principal functor could
be the first or the second occurrence of +/2. This is determined by the operator’s
22The priority of variables and atoms as well as of terms written in functional notation or in

parentheses is 0. The additional value of 1201 is introduced to describe terms that cannot be
built from operators, and could be equally defined as having a priority of infinity (inf in Prolog).

94

5.1. Operator Notation for Terms without Parentheses

type (or specifier in the ISO Prolog standard). For infix operators, the type is one of
xfx, xfy, or yfx. In these identifiers, f denotes the position of the functor name of
the infix operator, and x and y indicate the operator’s associativity. In case of y, the
operand at this position has to be of a priority equal to or less than the operator’s,
and alternatively in case of x it must be of strictly lower priority. For the examples in
this section, we assume that for each type an operator with the same name with the
same type has been defined, i. e., xfx/2 denotes the binary operator of type xfx.

Following the restrictions to the placeholder x, the type xfx denotes an operator
that is not associative at all – both operands are required to be of strictly less prece-
dence than the operator itself. However, terms can always be explicitly written in
parentheses, which gives it zero priority, so 1 xfx (2 xfx 3) and (1 xfx 2) xfx 3
are valid terms again.

In contrast, the type xfy is right-associative. Only the second operand must be of
lower priority; the other can be of the same priority as the principal functor’s prece-
dence, effectively allowing to omit the parentheses. The left-associative type yfx is
the other way round. Thus the terms 1 xfy 2 xfy 3 and 1 yfx 2 yfx 3 are valid
Prolog terms, representing the compound terms xfy(1,xfy(2,3))
and yfx(yfx(1,2),3) . There is no type yfy, as it would again make the term
1 yfy 2 yfy 3 ambiguous, with the first or second appearance of yfy as the term’s
principal functor.

In the exemplary rule for p(X,Y) in Listing 5.1, using the associative type xfy would
allow that, e. g., is/2 is of the same precedence as +/2, as parentheses are then also
not required in the rule’s definition. In the ISO Prolog standard, however, these two
operators are defined with different precedences, as it allows is/2 to be of type xfx
instead of xfy, thus preventing the otherwise meaningless term X is 1 is 2 just
by syntactical restrictions. As can be seen, for practical applications the operator’s
type and precedence have to be chosen carefully, and often depend on each other.
A main result of our work in Chapter 9 is the automatic deduction of appropriate
operator definitions based only on example sentences.

5.1.3. Prefix and Postfix Operators

Besides the types xfx, xfy, and yfx for binary functors, Prolog also allows the
definition of unary prefix and postfix operators. The types are fx, fy, xf and yf,
indicating by x and y the same restrictions regarding their operand’s precedence as
before. For instance, the predicate for negation \+/1[C.2] is usually used as a prefix
operator, i. e., written as \+ g instead of \+(g) for a goal g that is expected to be

95

Chapter 5. Prolog as a Host for Internal DSLs

Listing 5.2: Outputs by write_canonical/1ISO, write/1ISO, and the toplevel for a
given rule.

?- T = (p(X, Y) :- X is Y+2*3), Toplevel
write_canonical(T), nl, write(T).

:-(p(X,Y),is(X,+(Y,*(2,3)))) % functional notation
p(X,Y):-X is Y+2*3 % operator notation where feasible
T = (p(X,Y):-X is Y+2*3) . % computed answer substitution for query

not provable. Here, using the type fy over fx makes the double application without
parentheses in \+ \+ g a valid term.

Whether it is defined as infix, prefix, or postfix is called the operator’s class. It is pos-
sible to have more than one operator of the same name, as long as they are of different
classes. The ISO Prolog standard contains the restriction that there should be no in-
fix and postfix operators with the same name, as it allows a parser to decide immedi-
ately the type of an operator without too much look ahead. Nevertheless, several sys-
tems like SWI-Prolog and SICStus Prolog lift this restriction, as the operator’s class
is decidable unambiguously at latest when the term or Prolog program is read in com-
pletely. We discuss this language extension as allow_infix_and_postfix_op[D.13]

in Chapter 10.

5.1.4. Common and Predefined Operators and Predicates

The definition of the prefix operator \+/1[C.2] is part of the ISO Prolog standard. The
complete list of built-in operators is depicted in Table 5.1. With the exception of ,/2,
they can be overridden and deleted (by precedence zero) per module. To examine
the set of operators currently in force, the built-in predicate current_op/3ISO can
be used.

The built-in predicate write_canonical/{1, 2}ISO writes the given term using only
the functional notation, i. e., ignoring all operator definitions and enclosing atoms
by single quote characters ’ where necessary. The alternative write/{1, 2}ISO in
contrast writes the given term using all appropriate operators. Listing 5.2 shows the
different outputs for the rule for p/2 of Listing 5.1. In the initial query it has to be put
in parentheses, as the precedence of :-/2ISO is higher than that of =/2ISO according
to the ISO Prolog standard. The first output from write_canonical/1ISO strictly
uses the functional notation. The second output, which acknowledges the operator
definitions of the ISO Prolog standard, resembles our initial query, with only some
spaces being omitted. This is possible, because it is known that an unquoted atom
like :- consists of only special characters, thus the subsequent X concludes the

96

5.1. Operator Notation for Terms without Parentheses

Table 5.1: Operator table of the ISO Prolog standard.

Precedence Type Operators
1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ,
900 fy \+
700 xfx = \= == \== @< @=< @> @>=

=.. is =:= =\= < =< > >=
500 yfx + - /\ \/
400 yfx * / // rem mod div1 << >>
200 xfx **
200 xfy ˆ
200 fy +1 - \

1 Added in Technical Corrigendum 2 of [55].

Table 5.2: Additional operators defined by SWI-Prolog.

Precedence Type Operators
1150 fx dynamic multifile discontiguous initialization

thread_local thread_initialization
public module_transparent meta_predicate
volatile

1105 xfy |
1050 xfy *->
990 xfx :=
700 xfx =@= \=@= as >:<
600 xfy :
500 yfx xor
500 fx ?
400 yfx rdiv
100 yfx .

1 fx $

97

Chapter 5. Prolog as a Host for Internal DSLs

graphical symbol and starts a new variable symbol. The output of the toplevel uses
the operator notation by default and is therefore the same as the previous line.23

In addition to the built-in operators defined in the ISO Prolog standard, all Pro-
log systems define commonly used operators, whose definitions are either loaded
automatically or as part of a module. In Table 5.2, we list the operators that are
additionally defined by SWI-Prolog:

– The fx-operators of precedence 1150 are usually used as directives in a Prolog
program. The predicates dynamic/1SWI, multifile/1SWI, discontiguous/1SWI,
and initialization/1SWI declare a predicate property as defined in Iso 7.4.2.
Equivalent counterparts for multi-threaded applications [136, Sec. 10] are pro-
vided by thread_local/1SWI and thread_initialization/1SWI. Predicates,
whose definition changes during run-time because of asserting or retracting
clauses (cf. Section 3.7), should be declared by the dynamic/1SWI directive
beforehand. The predicates public/1SWI and module_transparent/1SWI de-
fine additional predicate properties used by SWI-Prolog, or for compatibil-
ity with other systems. The directive meta_predicate/1SWI allows to declare
meta-predicates as introduced in Section 3.6. Finally, volatile/1SWI declares
a predicate to not be saved in the program’s saved state [136, Sec. 13.2].

– Technical Corrigendum 2 of [55] defines the bar | as a token but not operator.
It shall be only an infix operator with precedence greater than or equal to 1001,
SWI-Prolog uses 1105. If not defined as an operator, the bar can be used
only infix as the separator of head and tail in the list notation of terms (cf.
Section 3.3.1).

– SWI-Prolog provides short notations for the If-then predicate using the oper-
ators ->/2SWI and *->/2SWI. The latter uses a soft-cut and is known under the
name if/3 in some other Prolog systems.

– The operators :/2SWI, >:</2SWI, ./2SWI, and :=/2SWI have been added to SWI-
Prolog in version 7 for working with dicts (cf. Section 3.3.5). The first allows
the notation of key-value pairs. >:</2SWI provides a modified unification for
dicts, while the others are used to access keys and apply functions on dicts.

– The infix operators =@=/2SWI and \=@=/2SWI define the testing for variant, which
is weaker than equivalence via ==/2ISO, but stronger than unification via =/2ISO.

– The prefix operator $/1SWI can be used in the toplevel to access a variable
of a previous query and is mainly intended for debugging purposes and the

23The default output format of the toplevel can be changed by the flags answer_write_options
and print_write_options.

98

5.2. Program Transformations via Term Expansions

interactive work with a program in the toplevel. The operator as/2SWI is used
by SWI-Prolog’s module system. Finally, the operators xor/2SWI and rdiv/2SWI

define functions on Boolean values and rational numbers.

Note that though a functor name is known to be an operator – either built-in by the
ISO Prolog standard or in the used Prolog system, or user-defined after an explicit
call of op/3ISO – it does not mean that an operation is performed when such an
operator is encountered. There are many built-in operators that neither implement
an arithmetic function nor a corresponding predicate. The definition of an operator
alone has no effect on a program’s semantics (despite the removal of ambiguities in
the parsing of terms). Instead, an operator only enables more expressive ways to
rephrase an otherwise equivalent program of functional notation.

5.2. Program Transformations via Term Expansions

With no distinction between code and data, Prolog makes it easy to work on
and modify Prolog source code from within the language. As introduced in Sec-
tion 3.7, facts and rules in an already loaded program can be removed and added
at run-time with the help of the built-in predicates retract/1ISO, retractall/1ISO,
and assert{a,z}/1ISO. Instead of modifications to Prolog’s database at run-time,
all major Prolog systems additionally provide a mechanism that adds support for
macro expansions, and conditional compilation that is performed already at compile-
time. This mechanism is called term expansion. For the expansion of bodies of
clauses, it is also referred to as goal expansion. Its advantage compared to dy-
namic predicates is clear: complex program transformations can be made once at
compile-time instead of first loading a Prolog program and then rewrite the clauses
at run-time. As a result, term expansions allow to write concise programs, whose
performance is still reasonable, as they do not rely on just-in-time indexing of dy-
namic clauses, and might profit from static code optimisations that happen only at
compile-time.

5.2.1. Implementation and Usage of Term Expansions in SWI-Prolog

Though term expansions are not part of the ISO Prolog standard, most Prolog
systems provide a similar interface. In this section, we give a short introduction
to the term expansion as performed by SWI-Prolog. It is based on its man-
ual [136, Sec. 4.3.1]. The implementation of the underlying built-in predicates
term_expansion/2SWI and goal_expansion/2SWI as well as the performed order
of steps might vary in other Prolog systems. A comparison of the means that

99

Chapter 5. Prolog as a Host for Internal DSLs

various Prolog systems provide to expand Prolog terms at compile-time is given
in [133, 134].

When loading code into SWI-Prolog, its compiler calls expand_term/2SWI on each
term read from the input. This leads to four preprocessing steps:

1. Handling of conditional compilation directives.
To simplify writing portable code, SWI-Prolog introduced several directives
that can be used to enclose code fragments, whose compilation is tied on pre-
requisites. For instance, with the help of if/1SWI and endif/0SWI, it is possible
to first check if a goal provided as the argument in if/1SWI is true, and only
then compile the code in-between the block built by if/1SWI and endif/0SWI:

:- if(Goal). Prolog

% platform dependent code

:- endif.

Conditional compilation is usually the method of choice to load different li-
braries on different Prolog systems or dialects. Similarly, missing predicates
which are commonly built-in for other systems can be defined.

2. Execution of user-defined term expansions.
Prolog developers can define term expansions in the predicate
term_expansion(+Term1,-Term2). The first argument is a Prolog term as
it occurs literally in the source code that is to be compiled. The second ar-
gument denotes its replacement. This can be for example a list of clauses.
This way it is possible to replace a simple clause by a complex set of facts
and rules. Note that definitions of term_expansion/2SWI can be put at any
place in a Prolog source code file, though they apply only to clauses following
behind. To define new expansions, the full power of Prolog rules can be used.
In particular, it is possible to define multiple term expansions with the same
first argument Term1, as the correct one is picked at compile-time using back-
tracking, in case the body of the term_expansion/2SWI rule fails. On the other
hand, the first successful term expansion is used and cannot be undone. Con-
sequently, possible term expansions should be stated from the most specific to
the most general alternative.

3. Call expansion for definite clause grammars.
SWI-Prolog ships with the built-in predicate dcg_translate_rule/2SWI. It is
called to expand embedded definite clause grammars into plain old Prolog code.
We introduce the expansion scheme for DCGs in more detail in Section 6.2.

100

5.2. Program Transformations via Term Expansions

4. Execution of goal expansions.
As mentioned before, it is possible to define expansions that apply only for
goals appearing in the body of rules. This is done with the help of the user-
defined predicate goal_expansion/2SWI. It is similar to term_expansion/2SWI

of step 2 and is applied to all rule bodies that appear in the program or are
produced in one of the previous steps.

These steps are repeated for all newly created terms until a fixpoint is reached. In
particular, it is possible to define an expansion that replaces a DCG grammar rule by
another one, which later gets translated into normal Prolog code using SWI-Prolog’s
dcg_translate_rule/2SWI.

If for a loaded clause no unifying and succeeding definition of term_expansion/2SWI

and goal_expansion/2SWI is found, the term is handled without modifications, i. e.,
acting as if the all-matching facts term_expansion(T,T) and goal_expansion(T,T)
were defined.

5.2.2. Term Expansions for TAP Test Generation

We use term expansions in all of our projects for the definition of tests. Our li-
brary(tap) allows to specify tests in Prolog following the Test Anything Proto-
col (TAP).24 It defines a standard to output results from test tools independent
of the used programming language and system. This interface is supported by a
wide range of tools for running, rendering and analysing the test results. At the
time of writing this thesis, our library(tap) is the only Prolog package to produce
TAP-conform text output. The add-on for SWI-Prolog has originally been written
by Michael Hendricks and is maintained by the author of this thesis since Febru-
ary 2019.

In general, the assertions in any testing environment have to be specified in a well-
defined format, which therefore acts as a domain-specific language for test spec-
ifications. Since Prolog is homoiconic, tests can be specified using the same lan-
guage as the program, i. e., just by Prolog clauses. For instance, in library(plunit) –
the testing environment for SWI-Prolog and SICStus Prolog – tests are given in
the body of test/{1, 2}SWI rules, which again have to be placed in blocks between
begin_tests/1SWI and end_tests/1SWI directives [140, Sec. 8.2].

In library(tap), we do not rely on those special predicates and directives. Instead,
tests are specified simply as Prolog clauses, and expanded after loading the module,
as shown in the example given in Listing 5.3. Predicates that should be tested or
24Test Anything Protocol, https://testanything.org/.

101

https://testanything.org/

Chapter 5. Prolog as a Host for Internal DSLs

Listing 5.3: Specification of tests with library(tap).
1 % possibly load external libraries Prolog
2 :- use_module(to_be_tested).
3 % define tested or helper predicates
4 equal(A, B) :- A =:= B.
5

6 :- use_module(library(tap)). % all following clauses are expanded
7 ’two plus two is four’ :- 4 is 2+2.
8 ’zero not equal to one’(false) :- equal(0, 1).
9 6 is 3*2.

are required to perform the tests can be either loaded from external modules (l. 2),
or defined in the same source code file the tests are specified. For instance, the
predicate equal/2 is defined in line 4 and tested with arguments 0 and 1 in
line 8.

By term expansion, all clauses following the including of library(tap) (l. 6) are ex-
tended into tests with the predicate’s name as the test name. For small tests (l. 9),
the name can be omitted. Then, the test body is used as its name. This is achieved
by the following Prolog code snippet, which serves as a small example on how to
expand a fact into a rule:

1 term_expansion(Fact, (Head :- Fact)) :- Prolog

2 \+ functor(Fact, :-, _), % Fact is not a rule

3 Fact \== end_of_file,
4 format(atom(Head), "~w", [Fact]), % Head = ’6 is 3*2’

5 tap:register_test(Head). % remember to call the test ’6 is 3*2’

Given the original clause 6 is 3*2 in line 9 of Listing 5.3, this fact is replaced
by a rule with the same head as an atom (created by the de-facto standard predi-
cate format/3SWI), and the original clause in its body. The first clause in the body of
term_expansion/2SWI (l. 2) ensures that only facts are expanded, i. e., the examined
term is not of the functor :-/2ISO. The next line is necessary because SWI-Prolog
offers the special term end_of_file to add clauses at the very end of a file, which
should not be tested and replaced by our library(tap). The special term end_of_file
serves as an anchor and makes it possible to expand an otherwise empty file into a
complex Prolog program. The predicate register_test/1 provided by library(tap)
later executes the tests by meta-calling the added rule with an head of Head us-
ing call/1ISO.

102

5.2. Program Transformations via Term Expansions

5.2.3. Preventing Name Conflicts with Built-in Predicates

A common problem when defining internal Prolog DSLs is the potential risk to
name collisions with already existing built-in predicates, either provided by the ISO
Prolog standard or used Prolog system. As introduced in Section 5.1.4, the definition
of operators can be overridden and deleted per module by redefining the operator’s
type and precedence (of possibly zero in case of deletion). However, this affects
only the possible ways to represent terms, but does not impact clauses describing
the corresponding predicate. Predicates already defined in the system module (cf.
Section 3.8) are automatically loaded in all modules, resulting in conflicts in case
the internal DSL’s term representation uses identical functors.

For instance, in our example in Listing 5.3, the fact 6 is 3*2 describes a test
case for the is/2 predicate. The term expansions provided by library(tap) transform
this fact into a new rule of the predicate ’6 is 3*2’/0. Without the described term
expansion, the Prolog compiler throws an error once the is/2 fact is encountered, as
the ISO Prolog standard predicate is already defined in the system module, namely
to calculate arithmetic expressions. SWI-Prolog returns the following message when
loading the source code of Listing 5.3 without library(tap):

ERROR: No permission to modify static procedure ‘is/2’ Toplevel

There are two approaches to work around this name collision: explicitly redefining
the system predicate, or wrapping definitions of and calls for this predicate by term
and goal expansions. Both techniques allow to reuse predicate names that are oth-
erwise reserved for built-in predicates, thus broadening the range of languages that
can be described as an internal Prolog DSL.

Redefine System Predicate. The ISO Prolog standard avoids conflicts of names
of user-defined and built-in predicates by simply disallowing clauses about predi-
cates that are part of the standard (Iso A.1.4). Only with modules as introduced in
Section 3.8, it is possible to define two predicates with the same functor but differ-
ent meanings. But since predicates and operators of the system module are always
available, the internal DSL’s predicates ought to be explicitly qualified via the opera-
tor :/2SWI to avoid conflicts, resulting in more verbose clauses like 6 test:is 3*2 .

SWI-Prolog allows to give alternative clauses for any system predicate after its ex-
plicit declaration via the redefine_system_predicate/1SWI directive. In Listing 5.4,
we give an example for redefining the binary built-in predicate is/2ISO in the user
module. The redefine_system_predicate/1SWI directive was originally introduced
to facilitate the compatibility between different Prolog systems. It allows new clauses

103

Chapter 5. Prolog as a Host for Internal DSLs

Listing 5.4: Redefining the is/2ISO predicate in the user module with an additional
indirection to the original predicate in the system module.

1 :- redefine_system_predicate(is(_,_)). Prolog
2 prolog is nice.
3

4 % manually add bypass for built-in predicate as very last clause
5 is(A,B) :- system:is(A,B).
6 % or alternatively state term expansion anywhere
7 term_expansion(end_of_file, (is(A,B) :- system:is(A,B))).

of built-in predicates in any module, including the user module, which makes the
alternative predicate definition available in all modules. The system’s original def-
inition is no longer available in the default user namespace, thus often breaking
compatibility with other modules. This can be overcome by adding a clause which
maps the predicate’s new definition to the original from the system module. It can
be given manually as the very last clause of this predicate, as presented in line 5 of
Listing 5.4. Alternatively, this clause can be added anywhere in the source code as
a term expansion for the special end_of_file term, as defined in line 7.

Wrap Predicate via Term Expansions. Term expansions are also the means of
choice to avoid name conflicts with built-in predicates in the first place. Instead of
redefining the predicate of the system module, the predicates formed by sentences
in the internal Prolog DSL are translated into predicates with unique functors. For
instance, the user-defined predicate is/2, which otherwise conflicts with in the user
module, can be expanded into facts of the functor dsl_is/2:

1 term_expansion(A is B, dsl_is(A, B)). Prolog

2 goal_expansion(A is B, (dsl_is(A, B) ; is(A, B))).

Propositions stated in the internal Prolog DSL, for instance prolog is nice , are
translated into facts of the predicate dsl_is/2 (l. 1). If a goal calls is/2, clauses
of this newly created predicate dsl_is/2 are applied first, and the system predi-
cate is/2ISO alternatively (l. 2).

Note that both approaches – redefining the system predicate via the
redefine_system_predicate/1SWI directive, and wrapping the user-defined predi-
cate with the help of term expansions – expect the predicates used in the internal
DSL and the built-in predicates to be of the same instantiation mode. For the
presented is/2 wrappers, we expect only queries with the original mode (-,+)
of is/2ISO. If additional modes are required, the predicate of the system module has

104

5.3. Program Execution with Meta-Interpreters

to be wrapped accordingly, namely to either catch possible instantiation errors, or
to ensure it is called only with correctly bound values via var/1ISO and nonvar/1ISO

(cf. Section 3.2.1) in the first place.

5.3. Program Execution with Meta-Interpreters

In Sections 3.7 and 5.2 we introduced two techniques to manipulate Prolog programs:
dynamic predicates allow to modify the Prolog database at run-time, while term and
goal expansions provide macro expansions that are performed at compile-time. Both
approaches effectively translate the knowledge given in an internal Prolog DSL back
to plain old Prolog clauses, thus relying just on Prolog’s underlying SLD resolution
evaluation method and the provided built-in predicates.

Another approach to work with the knowledge specified in the form of an internal
Prolog DSL is by interpretation. With Prolog’s built-in capabilities for reflection
and term inspection as introduced in Sections 3.5 and 3.6, facts and rules can be
accessed and processed as Prolog terms. In addition, meta-predicates like call/nISO

allow to apply dynamically created goals. Together, this makes Prolog well-suited
for writing interpreters for Prolog programs in Prolog itself, thus creating a meta-
interpreter (MI).

Meta-interpreters allow to interpret, execute, and analyse the integrated data format.
This lifts the internal Prolog DSL from a language that just describes knowledge
in the form of Prolog predicates which are consultable from the Prolog toplevel, to
an executable program performing the operations defined by the meta-interpreter –
this way, meta-interpreters bring the internal DSL to life.

5.3.1. Vanilla Meta-Interpreter

The most basic meta-interpreter for Prolog is the vanilla meta-interpreter [114,
pp. 323f]. It does not add any others features than just applying a given goal based on
the known facts and rules using Prolog’s normal execution method of SLD resolution.
To execute the vanilla meta-interpreter, we define the predicate mi/1, which has the
same functionality as the built-in predicate call/1ISO. As shown in Listing 5.5, only
few lines of code are necessary to cover all possible cases that form a goal. If the
given goal is true/0ISO, the predicate mi/1 succeeds (l. 2). Goals which are compound
terms of ,/2ISO representing a logical conjunction (l. 3), or of ;/2ISO representing a
disjunction (l. 4), succeed if the first and/or second argument is satisfiable using the
meta-interpreter. Unifications succeed or fail just like in Prolog, i. e., for compound

105

Chapter 5. Prolog as a Host for Internal DSLs

Listing 5.5: Definition of the vanilla meta-interpreter for Prolog programs.
1 %% mi(:Goal) Prolog
2 mi(true). % for facts
3 mi((A , B)) :- mi(A), mi(B). % conjunction
4 mi(A ; B) :- mi(A) ; mi(B). % disjunction
5 mi(A = B) :- A = B. % unification
6 mi(A) :-
7 A \= true, A \= (_ , _), A \= (_ ; _), A \= (_ = _),
8 clause(A, B),
9 mi(B).

terms of functor =/2ISO the corresponding unification is applied (l. 5). For all other
cases, a clause whose head unifies with the current goal is determined using the
built-in meta-predicate clause/2ISO. In case of a fact, the clause’s body B is bound to
true/0ISO. Otherwise, the meta-interpreter continues to evaluate the clause’s body,
as the goal A should succeed only if the clause’s body B can be proven. If a goal
cannot be satisfied by the current clause, clause/2ISO provides alternative clauses
using backtracking, in the order they appear in the source code. Besides the logical
disjunction via ;/2ISO, it is the interpreter’s only source of backtracking.

5.3.2. Adaptions to Handle DSLs and Nondeterminism

The vanilla meta-interpreter has no additional practical benefit compared to the
built-in call/1ISO predicate. However, it serves as a starting point to write a meta-
interpreter that is specific for the given internal Prolog DSL. In addition, the meta-
interpreter allows to adjust the standard search strategy of the SLD resolution, and
treat its sources of nondeterminism (cf. Section 2.4.2) differently:

– The default selection function sl takes the left-most literal in a conjunction of
subgoals. This strategy is reflected in line 3 of Listing 5.5. Alternatively, the
right-most literal can be taken, i. e., the meta-interpreter evaluates the second
argument first. In case of a random selection function s, the compound binary
term of ,/2ISO has to be flattened into a list of subgoals first, e. g., using the
predicate term_functors_list/3[C.3].

– The second source of nondeterminism in the SLD resolution – the order in
which the possible clauses are applied –, can be addressed in line 8 of List-
ing 5.5. Instead of relying on Prolog’s default order of their appearance in the
source code, all clauses with a unifying head A could be collected first, and
then arbitrarily sorted.

106

5.4. Declarative If-then Rules for Expert Knowledge

– By default, the SLD resolution traverses the search tree in a depth-first man-
ner. Changing this requires larger modifications in the meta-interpreter, as the
current depth of the search tree has to be stored in an additional argument,
resulting in the predicate mi/2. Then, alternatives – either from logical dis-
junctives (l. 4) or multiple clauses (l. 8) – are only applied if the current depth
limit is not exceeded.

In almost all applications, the meta-interpreter for an internal Prolog DSL can use
the nondeterminism handling as provided by the SLD resolution. Then, adapting
the meta-interpreter to the DSL’s requirements leads to more clauses of mi/2 that
describe alternative compound terms as their arguments.

5.4. Declarative If-then Rules for Expert Knowledge

The operator notation of terms allows to write Prolog programs that closely resem-
ble a natural language. This way, all graphical symbols in facts and rules can be
eliminated and replaced by more descriptive operator names. Only the full stop .
is required to mark the end of a Prolog clause and thus cannot be eliminated – but
this happily complies with the normal notation of ending written sentences. By set-
ting appropriate operator precedences and types, propositions can be stated without
the need for parentheses.

In this section, we use the merits of Prolog to define a declarative internal DSL
for representing expert knowledge in the form of rules. It serves as an example
for a simple domain-specific, Prolog-based data format to represent knowledge as
rules and is revived again in Chapter 6 to illustrate the definition of external DSLs.
A first version of this internal DSL and its formal grammar is presented in our work
in [110] and its extended journal version in [109]. It has been applied to represent
expert knowledge in the field of change management in organisational psychology.
The conclusions and applications for the research field of change management are
described in [126], which justifies this approach to use an internal Prolog DSL for
rapid prototyping and incremental knowledge bases of real-world applications.

5.4.1. Definition as an Internal DSL

The expert knowledge was obtained by surveys in the form of organisational rules,
and then stated in a simple, textual, and logic-based format. To express a single
rule, we choose to follow the general form:

if Condition then Consequence. Prolog Dsl

107

Chapter 5. Prolog as a Host for Internal DSLs

Though semantically the rules are similar to Prolog’s Horn clauses, they are repre-
sented in a natural language syntax, avoiding Prolog’s rule separator symbol :-/2ISO,
and allowing the more natural statement order which specifies the condition first.
After the keywords if and then, a condition and a consequence, respectively, is
expected. Both are so-called junctions of findings. A finding has the basic form
Feature = Value . Here, the infix operator =/2 denotes “is” or “equals”. Besides equal-
ity, additional comparison operators are supported, like the symbols >/2 for “greater
than” and </2 for “smaller than”. Since the findings are Prolog terms, the feature
and value are usually strings or atoms. Therefore, they either start with a lowercase
letter or have to be enclosed in single or double quotation marks. For simple Boolean
expressions that denote the existence or absence of a given feature, the values yes
and no can be used, as they represent the Prolog constants yes/0 and no/0. Nu-
merical values can be stated verbatim in the Prolog DSL. They are of particular
practical importance, as they later allow to define rules that are based on weights,
probabilities, and their calculations.

In case of multiple findings in the rule’s condition and consequence, they can be
linked to formulas by the connectives and and or , which are implemented as binary
operators in the internal DSL. Here, as for Prolog, conjunction binds stronger than
disjunction. Classical negation can be expressed using the keywords not and neg ,
which are defined as unary prefix operators. The two different operators have been
defined only for convenience, and can be used interchangeably.

The text-based DSL is conveniently defined in Prolog by a collection of suitable
user-defined operators and their precedences, as listed in Table 5.3. The bindings
of the connectives and and or are as described, as and/2 has a lower precedence
than or/2. For both, we use infix operators of type yfx, as it allows to state multiple
junctions without the need for parentheses. All other operator types use x-specifiers
to avoid nesting of otherwise meaningless terms already at the syntactic level of
the DSL. The precedences are chosen to comply with the values from the built-in
operators is/2ISO (700) and \+/1ISO (900) – though our prefix operators for classical
negation, not/1 and neg/1, use the type fx instead, as unlike \+ \+ g the term
not not g should not be supported in our DSL.

As a simple example sentence, we express that clothes get wet if (i) the weather is
rainy and one has no umbrella, or (ii) there is a thunderstorm. This statement can
be modelled as an instance of this internal Prolog DSL as follows:

if weather = rainy and umbrella = no Prolog Dsl

or weather = thunderstorm
then clothes = wet.

108

5.4. Declarative If-then Rules for Expert Knowledge

Table 5.3: Operators that define the internal Prolog DSL for if-then rules.

Precedence Type Operators
1100 xfx then
1000 fx if
900 fx not neg
850 yfx or
800 yfx and
700 xfx is1 are
200 fx a an the no

1 Built-in operator defined in the ISO Prolog
standard.

In this listing and the following, we arbitrarily indent the terms only for the sake
of improved readability. Because Prolog is not whitespace-sensitive, the program’s
meaning does not rely on the actual indentation, i. e., we could similarly write the
complete Prolog program in a single line. Since the subjects weather , umbrella ,
and clothes begin with a lowercase letter and do not contain whitespaces, they form
Prolog atoms without further modifications, and can be stated verbatim. Similarly,
the adjectives rainy and wet can be expressed without the need to be enclosed
in quotation marks. In the given sentence, they form operands to the built-in oper-
ator =/2ISO. The complex term that describes the proposition as a sentence is built
from the user-defined operators and/2, or/2, if/1, and then/2 from Table 5.3.

With the definition of the additional operators, the internal DSL can be further
extended to resemble natural language even more. Firstly, the more descriptive built-
in infix operator is/2ISO can be used instead of the equal symbol. It just denotes
the term is(·,·) – as before with =/2ISO, which is usually the predicate symbol for
unification, it does not mean that an arithmetic evaluation is performed when the
operator is/2ISO is encountered somewhere in the term. For plural forms, we equally
define an infix operator are/2. Finally, we provide the determiners a , an , the ,
and no as prefix operators that bind the most strongly.

The complete Prolog program with the operators defined in Table 5.3 is given in
Appendix B.1. It allows to specify the example sentence as the small Prolog program
of Listing 5.6:

Listing 5.6: Example if-then rule in the internal DSL.

if the weather is rainy and there is no umbrella Prolog Dsl

or the weather is a thunderstorm
then the clothes are wet.

109

Chapter 5. Prolog as a Host for Internal DSLs

The single clause is equal to the following program, where all terms are written in
the canonical notation instead of relying on the operators:

then(if(or(and(is(the(weather), rainy), Prolog

is(there, no(umbrella))),
is(the(weather), a(thunderstorm)))),

are(the(clothes), wet)).

This program is consultable in Prolog without further modifications. Knowledge
given in the described form of if-then rules can be asked for by goals of then/2, for
instance:

?- if Condition then Consequence. Toplevel

Condition = (the weather is rainy and there is no umbrella or the
weather is a thunderstorm),

Consequence = (the clothes are wet) .

5.4.2. Binary Expression Tree

Figure 5.1 illustrates the nested term from Listing 5.6 as a binary tree. The inner
nodes depict the operators as defined in Table 5.3. Binary operators like then/2 have
two child nodes. The dashed edge on the left describes the binary operator’s first
operand, and the solid edge on the right the second operand. Prefix operators (types
fx and fy) are depicted as if they were binary operators without a first argument,
i. e., with only a single solid edge to the right. Though we do not use it in our
example, postfix operators equally would have only a dashed edge to the left. The
binary tree’s leaves are formed by the real-world entities the proposition is about,
e. g., weather , umbrella , and rainy .

This encoding of terms in operator notation forms a binary expression tree. With
in-order traversal (left, node, right), the original sentence can be built again. For in-
stance, the highlighted part in Figure 5.1 represents the Prolog term
the weather is rainy . In this binary expression tree, the original expressions
are built by recursively producing the left part first, then printing out the oper-
ator depicted in the node, and finally producing the right expression recursively
again. Since the/1 is defined as a prefix operator of type fx, the first part reads as
the weather in in-order traversal.

110

5.4. Declarative If-then Rules for Expert Knowledge

then

if

or

and

is

the

weather

rainy

is

there no

umbrella

is

the

weather

a

thunderstorm

are

the

clothes

wet

Figure 5.1: Binary tree representation of an example sentence in the internal DSL.
The highlighted part represents the Prolog term the weather is rainy
when read in infix-order.

5.4.3. Expanding If-then Rules to Plain Old Prolog Clauses

Term expansions as presented in Section 5.2 allow to transform the if-then rules
into plain old Prolog rules. Instead of the descriptive prefix and infix operators if/1
and then/2, the built-in rule notation via :-/2ISO can be used. As a consequence,
the expert knowledge is not just stated as consultable facts in the form of then/2
predicates, but instead can be used to infer knowledge from a given set of facts
and rules. Additionally, the native Prolog representation allows to combine the ex-
pert knowledge with the full power Prolog provides, while the representation as an
internal Prolog DSL can still be used.

We assume that expert knowledge in this internal DSL is either stated in the form of
the if-then rules we introduced before, or as facts like the weather is rainy . Not
different to Prolog, conjunctions of facts can be simply stated using multiple clauses;
disjunctions of facts (e. g., the weather is rainy or the weather is sunny) are
not supported, as they do not represent Horn clauses. Then, it is known that
and/2 and or/2 appear only in the body of if-then rules, i. e., they can be ex-
panded by goal expansion (step 4 in Section 5.2.1). The if-then rules in the form of
then/2 facts on the other hand are replaced by term expansions (step 2). List-
ing 5.7 shows the appropriate user-defined clauses of term_expansion/2SWI and
goal_expansion/2SWI. For the sake of simplicity in this example, we assume the
name conflict with the built-in predicate is/2ISO is resolved by just declaring so in
the redefine_system_predicate/1SWI directive as introduced in Section 5.2.3.

111

Chapter 5. Prolog as a Host for Internal DSLs

Listing 5.7: Definition of term and goal expansions for if-then rules.
1 goal_expansion(Cond1 and Cond2, (Cond1 , Cond2)). Prolog
2 goal_expansion(Cond1 or Cond2, (Cond1 ; Cond2)).
3 term_expansion(
4 if Condition then Consequence,
5 (Consequence :- Condition)).

The infix operator and/2 is replaced by the built-in conjunction ,/2ISO (l. 1), the op-
erator or/2 by calls of the built-in disjunction ;/2ISO. Because the steps for the term
expansion are repeated until a fixpoint is reached and our operators and/2 and or/2
are of the same type and relative precedences as the built-in ,/2ISO and ;/2ISO, this
also correctly replaces nested terms like A or B and C by A ; B , C , preserving
the intended logical reading and operator precedences of the nested terms. As a re-
sult, the program given in the internal Prolog DSL is translated into plain old Prolog
clauses and logical connectives as expected. The code listing via listing/1SWI (cf.
Section 3.5) reveals the translated code:

?- listing(are). Toplevel

the clothes are wet :-
(the weather is rainy,

there is no umbrella
; the weather is a thunderstorm).

In addition to the single if-then rule from Listing 5.6, further rules and facts can be
stated using this internal Prolog DSL, for instance:

if the umbrella is broken then there is no umbrella. Prolog Dsl

the weather is rainy.
the umbrella is broken.

This knowledge again gets replaced by plain old Prolog facts and rules by the term
expansions we introduced in Listing 5.7. As a result, Prolog’s normal resolution
technique can be used to infer knowledge. For instance, it is possible to retrieve
everything that is known just by calling the query ?- X is Y ; X are Y (to get
both singular and plural forms) in the toplevel:

?- X is Y ; X are Y. Toplevel

X = the weather, Y = rainy ; % the weather is rainy

X = the umbrella, Y = broken ; % the umbrella is broken

X = there, Y = no umbrella ; % there is no umbrella

X = the clothes, Y = wet . % the clothes are wet

112

5.5. From DSLs to Controlled Natural Languages

Listing 5.8: Definition of a meta-interpreter for if-then rules.
1 mi(true). % for facts Prolog
2 mi(A and B) :- mi(A), mi(B). % conjunction
3 mi(A or B) :- mi(A) ; mi(B). % disjunction
4 mi(A = B) :- A = B. % unification
5 mi(A) :-
6 A \= true, A \= (_ = _),
7 (clause(A, B) % there is a Prolog clause A :- B
8 ; (if B then A)), % or there is a fact then(if(B),A)
9 mi(B).

Here, the proposition the clothes are wet is inferred from the knowledge base
stated in the internal Prolog DSL by SLD resolution. The complete program with
all operator definitions, facts, and if-then rules is given in Appendix B.1. To infer
the knowledge by Prolog’s SLD resolution as presented, the term expansions given
in Listing 5.7 have to be added at any point before sentences in the form of the
internal DSL are formulated.

5.4.4. Meta-Interpretation

As an alternative to the translation of the internal DSL for if-then rules to plain
old Prolog code by term expansion, the provided propositions can be interpreted
instead. Only minor changes to the vanilla meta-interpreter we introduced in Sec-
tion 5.3 are required. Listing 5.8 shows the meta-interpreter that processes if-then
rules. Instead of Prolog’s built-in operators ,/2ISO and ;/2ISO for logical conjunction
and disjunction, it defines similar interpretations for the user-defined infix opera-
tors and/2 and or/2 (ll. 2–3). In addition to the vanilla meta-interpreter’s usage of
?- clause(A,B) (which searches for Prolog clauses of the form A :- B), the meta-
interpreter for if-then rules also uses rules of the form if B then A . The resulting
meta-interpreter allows to query the knowledge base given in the form of the internal
Prolog DSL, without the need to expand it into plain old Prolog clauses first.

5.5. From DSLs to Controlled Natural Languages

The operators we presented in the previous section and in Table 5.3 can be fur-
ther extended to support a wider range of language constructs. For instance,
the binary operator than/2 allows to specify comparisons as Prolog terms like
X is smaller than 3 , representing the term is(X,than(smaller,3)) , with a vari-
able X , the comparator smaller as an atom, and the number 3 . To its full extent,

113

Chapter 5. Prolog as a Host for Internal DSLs

this results in an expressive grammar, based only on the Prolog syntax and its
existing compilers. Consequently, all tools originally defined to assist with the devel-
opment of Prolog programs (e. g., for debugging, syntax highlighting) can be used
when new propositions are expressed in this internal DSL.

The sentences that can be stated this way are a subset of a natural language for the
DSL’s particular field of applications. In this regard, the internal Prolog DSL serves
as a simple controlled natural language (CNL). In our work [108], we compare these
two approaches – DSLs and CNLs – for representing knowledge in intelligent systems
in a declarative and natural way. With applications from rapid prototyping to large
intelligent systems, Prolog has been proven useful in both: for implementing internal
DSLs as introduced in this chapter, but also for the definition of a large subset of
standard English, as for instance with Attempto Controlled English (ACE) [42, 43].
Both approaches allow domain experts to express complex sets of rules without
having to learn a formal computer language first.

In principle, there is a huge overlap between DSLs and CNLs. In particular for
query languages like SQL, it cannot be determined if they are defined as a DSL
or CNL just from the outside, as their syntax often resembles questions verbalised in
natural language. On the other hand, languages that specify grammars, e. g., regular
expressions, could be easily stated as a subset of a natural language, but are instead
defined as a DSL, with postfix operators like +/1 to represent the otherwise more
descriptive notation of “at least once”. Further DSLs for rule bases in medicine have
been created in [106, 107]. In our work [83], we rely on the Prolog-based Attempto
Controlled English instead of Prolog DSLs to interactively express and process expert
knowledge using smart voice-controlled devices.

5.6. EBNF as an Internal DSL for Context-free Grammars

The syntax of many formal languages is specified in the form of a context-free
grammar, as it allows to implement efficient parsers that, for a given string, de-
termine whether and how it can be generated from the grammar. The widely used
LR(k) parsers (bottom-up parser, reading input from left to right, producing the
rightmost derivation in reverse) and LL(k) parsers (top-down, left-to-right, leftmost
derivation) analyse deterministic context-free grammars in linear time [63], given an
upper bound k ≥ 1 of tokens to look-ahead.

The extended Backus–Naur form (EBNF) is a popular notation to formally describe
context-free grammars using production rules. It is used by most ISO standards that
define programming, markup, or query languages, including EBNF on its own [58].

114

5.6. EBNF as an Internal DSL for Context-free Grammars

The list of EBNF rules consists of nonterminals and terminals, which are called
symbols. Symbols are typically alphanumeric characters, punctuation marks, and
similar, specified in quotation marks.

Each EBNF rule has three parts: a left-hand side of just a single nonterminal, a right-
hand side consisting of nonterminals and symbols, and the = symbol which separates
the two sides and reads as “is defined as”. The elements of the right-hand side
either describe an ordered sequence (denoted by commas “,”) or alternative choices
(denoted by vertical bars |, with a smaller precedence than the ordered sequence).
Repetitions are enclosed by curly brackets { . . . }, optional nonterminals by square
brackets [. . .], and comments by brackets of the form (∗ . . . ∗). The semicolon
character “;” marks the end of rule, as unlike BNF it might span across multiple
lines.

As an example, we consider in Figure 5.2 an extract of the ISO Prolog stan-
dard (Iso 6) that specifies the syntax of a variable, which we informally introduced
in Section 3.1.1. In Prolog, most tokens are allowed to be preceded by an arbi-
trary number of whitespace characters and comments, which are summed up in
the optional nonterminal layout text sequence. A variable token is either the anony-
mous variable given by the underscore character, or a named variable which has to
start with an underscore character or an uppercase letter. For instance, _ is the
anonymous variable, and _a and A are named variables. The comments in the
EBNF refer to the sections of the ISO Prolog standard where the other referred
nonterminals are defined.

The EBNF given in Figure 5.2 requires only minor modifications to be valid Prolog
code, as ;/2, =/2, and ’|’/2 can be defined as infix operators with sensible types
and precedences. By manually adjusting to the following requirements, the EBNF
already forms an internal Prolog DSL:

– Nonterminals must be valid Prolog atoms, so included whitespaces have to be
replaced, e. g., by underscore characters, or the nonterminal identifier has to
be enclosed in single quotation marks.

– The full stop . has to end the very last rule.

– Comments are written as /* . . . */ instead of (* . . . *) .

The term (* 6.4.1 *) taken by itself is valid Prolog syntax if */1 is defined as both
a prefix and postfix operator, since every Prolog term is allowed to be additionally
bracketed, thus representing the term *(*(6.4.1)), independent from the chosen
operator precedences. However, this requires the inner operand to be a valid Prolog
term. Only by chance this is the case for 6.4.1 , because it represents the binary

115

Chapter 5. Prolog as a Host for Internal DSLs

variable = [layout text sequence (∗ 6.4.1 ∗)], EBNF

variable token (∗ 6.4.3 ∗) ;
variable token = anonymous variable (∗ 6.4.3 ∗)

| named variable (∗ 6.4.3 ∗) ;
anonymous variable = variable indicator char (∗ 6.4.3 ∗) ;

named variable = variable indicator char (∗ 6.4.3 ∗),
alphanumeric char (∗ 6.5.2 ∗),
{ alphanumeric char (∗ 6.5.2 ∗) }

| capital letter char (∗ 6.5.2 ∗),
{ alphanumeric char (∗ 6.5.2 ∗) } ;

variable indicator char = underscore char (∗ 6.5.2 ∗) ;
underscore char = ”_” ;

capital letter char = ”A” | ”B” | ”C” | . . . ;
alphanumeric char = . . .

Figure 5.2: EBNF grammar rules for a variable in Prolog.

compound term .(6.4,1) for ./2 being defined as an infix operator, and the floating-
point number 6.4 as its first argument. Nevertheless, the EBNF comment is not
necessarily a valid Prolog term, e. g., in case of arbitrary text, which cannot be stated
verbatim. In addition, consecutive Prolog terms are allowed only as operands of
compound terms. Consequently, a comma or some other operator is required in front
of the comment, since the bracketed term (* 6.4.1 *) has to be an argument.

The notations of EBNF for optional nonterminals and repetitions thereof can be
used identically in the internal Prolog DSL. The first simply constitutes a list with
a single element using the square bracket notation. The second, EBNF’s repetitions,
are enclosed in curly brackets { . . . }. This also forms a valid Prolog term according
to the ISO Prolog standard (Iso 6.3.6). The so-called curly bracketed term {t} is
equal to the term {}(t) with a principal functor of {}/1ISO.

The complete definition of all required operators to use EBNF as an internal Prolog
DSL is given in Appendix B.2, together with the consultable example Prolog program
that defines the context-free grammar to parse a variable token. The EBNF grammar
given in Figure 5.2 is then represented by the following Prolog program written in
canonical notation with the classical operator ./2 for the list construction. Its term’s
principal functor is ;/2. The indentation and line breaks serve the readability:

;(=(variable, Prolog

’,’(.(layout_text_sequence, []), variable_token)),

116

5.6. EBNF as an Internal DSL for Context-free Grammars

;(=(variable_token,
’|’(anonymous_variable, named_variable)),

;(=(anonymous_variable, variable_indicator_char),
;(=(named_variable,

’|’(’,’(variable_indicator_char,
’,’(alphanumeric_char,

{}(alphanumeric_char))),
’,’(capital_letter_char, /*...*/))),

;(/*...*/))))).

This term, which represents the context-free grammar given in the internal Prolog
DSL, again serves as a starting point for either transforming it via term expansions,
for meta-interpretation, or as-is for queries in the Prolog database. For instance, we
provide in Appendix B.3 a term expansion which translates this internal DSL for
EBNF into plain old definite clause grammars, which are supported by and shipped
with all major Prolog systems.

117

6
Integration of External DSLs

with Quasi-Quotations and DCGs

I once thought Prolog was poorly standardised, but now I know better.
SQL is very poorly standardised.

— Jan Wielemaker25

The definition of a domain-specific language internally in Prolog has various advan-
tages. Firstly, all development tools that are available for Prolog can be similarly
used for the integrated language: IDEs allow syntax highlighting, code linters al-
low to check the adherence to coding style guides, and static code analysis might
provide performance improvements. In addition, the internal DSL can be easily in-
tegrating into existing Prolog environment, gaining the full advantage of Prolog’s
built-in SLD resolution to infer knowledge, and its large set of community-run li-
braries. Data given in the form of the internal DSL creates an incremental knowledge
base, and is particularly suitable for rapid prototyping.

These advantages all originate from the fact that the internal DSL solely relies on
the Prolog parser, which is an integral component of any Prolog system. This ar-
chitectural strength of defining a DSL internally is at the same time its greatest
weakness: it requires the integrated language to be a valid subset of Prolog. And
though Prolog’s syntax is flexible and without any keywords – even built-in pred-
icates and operators can be deleted and redefined –, adhering closely to the ISO
Prolog standard comes with some unchangeable rules the DSL has to comply with.
Among others, the two most important are:

– Words have to start with a lowercase letter in order to build atoms instead of
variables. Otherwise, as well as in case they contain whitespaces, they have to

25Quote from the documentation of SWI-Prolog’s ODBC interface, https://github.com/SWI-
Prolog/packages-odbc/blob/bad664/README. Jan Wielemaker is a Dutch computer scientist
and professor at the University of Amsterdam. He is the original author and today’s main
developer of SWI-Prolog.

119

https://github.com/SWI-Prolog/packages-odbc/blob/bad664/README
https://github.com/SWI-Prolog/packages-odbc/blob/bad664/README

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

be put between single, double, or back quotation marks, representing atoms,
strings, or lists.

– All sentences have to end with the full stop. In particular, . has to be the
very last symbol in the document that holds the DSL.

Since documents holding data given in the internal DSL are processed by the normal
Prolog parser, the error handling is based only on Prolog’s syntax and not adjusted to
the requirements of the domain-specific language. On the one hand, in case of invalid
Prolog programs this results in error messages that are neither descriptive enough
nor related to the actual DSL. While on the other hand, the Prolog parser might
accept sentences in the internal DSL which are perfectly valid Prolog programs, but
are not intended by the integrated DSL. For instance, potential errors like starting
an entity with an uppercase letter will not yield any warning, since it is recognised
as a variable which is syntactically allowed in the same positions as atoms by the
Prolog parser. Consequently, the sentence the Weather is _rainy admittedly is a
valid Prolog term for the/1 being defined as a prefix operator and is/2 as an infix
operator. The symbols Weather and _rainy though are Prolog variable names
according to the ISO Prolog standard, so the stated proposition is much more general
than originally intended. These syntactic pitfalls of an internal Prolog DSL might
be particularly hard to catch for users – the experts of the application domain –,
which are not very experienced with Prolog.

These disadvantages can be addressed by using a specialised parser for the DSL, in-
stead of relying on the Prolog parser that comes with every Prolog system. Though
this approach to define a domain-specific language externally lowers the barrier to
entry for users not familiar with Prolog, the implementation overhead is signifi-
cant, as a fully featured parser requires in-depth knowledge about compilers, state
machines, language theory, and grammars. Besides, additional steps to make the
external DSL executable are still required and the same as we introduced for inter-
nal domain-specific languages in Sections 5.2 and 5.3: after the parsing process, the
syntax tree representing the external language has to be either translated into corre-
sponding Prolog clauses via term expansion, or traversed through by a user-defined
interpreter.

Nevertheless, Prolog has a long history of defining parsers, as it has been applied in
the research field of natural language processing for decades. In 1978, Colmerauer
introduced Metamorphosis Grammars [22], a first framework based on first-order
logic to parse French. Its rewriting rule mechanism led to the development of defi-
nite clause grammars in 1980 [96]. This formalism to define grammars is similar to
EBNF, but based on Prolog’s execution model and the underlying SLD resolution. It

120

6.1. Embed External DSLs in SWI-Prolog

therefore comes with logic variables and backtracking, resulting in context-sensitive
grammars.

In this chapter, we adapt and extend the existing considerations and tools to work
with DCGs for the integration and definition of any external DSL. It extends typical
constructs and problems known from natural language processing to formal and
computer languages. Section 6.1 presents the two ways of connecting an external
DSL with Prolog: the document holding the domain-specific language can be read in
and parsed from an external file, or put verbatim next to plain old Prolog code using
the recently introduced quasi-quotations. The parsing of an external DSL requires a
language specification in the form of a grammar. In Section 6.2, we introduce Prolog’s
de-facto standard for specifying grammar rules, definite clause grammars (DCGs). It
extends EBNF, which we defined as an internal Prolog DSL in Chapter 5, to context-
sensitive grammars. Section 6.3 continues our considerations from Section 5.4 on if-
then rules and presents their definition as an external DSL. The chapter concludes in
Section 6.4 with a discussion on how to integrate the application layer query language
GraphQL as an external DSL and use it in combination with Prolog predicates.

6.1. Embed External DSLs in SWI-Prolog

Connecting the domain-specific language with Prolog is straightforward in case of an
internal DSL. Since it is just valid Prolog code, it can be put right next to and worked
with just like any other Prolog source code. Only if the operators or predicates with
identical functors are already defined in the existing codebase, the definition of the
internal DSL has to be taken into a separate module to avoid name conflicts.

The integration of an external DSL into a Prolog codebase on the other hand requires
additional steps, as code of the DSL and the host language cannot be intertwined.
The classical approach is to split the code into files of the integrated domain-specific
language on the one hand and the host language on the other. Since version 6.3.17,
SWI-Prolog additionally provides a special syntax to enclose any external language.
With so-called quasi-quotations, the foreign code can be put again right next to
native Prolog source code into a single file.

6.1.1. Processing Content from the Outside-World

To use a document which is given in the form of an internal DSL but in a separate
file, all of Prolog’s built-in capabilities to load code can be used:

121

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

– The ISO Prolog standard predicate read/{1, 2}ISO reads a Prolog term given
in the internal DSL from an input stream and unifies it with the variable given
as its last argument. The stream can be created by opening a file, or just using
the standard input stdin. The latter is particularly useful to prompt the user
to enter a term given in the internal DSL.

– The de-facto standard predicate consult/1SWI reads from a given filename and
parses its content as Prolog source code. Traditionally, it may be abbreviated
by just typing a number of filenames in a list, e. g., ?- [dsl] to load the
Prolog file dsl.pl.

– If the DSL is given in a separate module, it can be loaded via the predicate
use_module/{1, 2}SWI (cf. Section 3.8).

All three means to load source code given in an internal DSL rely on the Prolog
parser shipped with the used Prolog system and are therefore not applicable for
external DSLs. For such, there are alternative predicates which are similar but expect
an additional parameter to the grammar that should instead be used to process
the contained source code. Only for the predicate use_module/{1, 2}SWI there is no
equivalent for external DSLs, because modules are expected to always be valid Prolog
programs.

The central predicate to process content from the outside-world is the predi-
cate phrase/3ISO, which is defined in the proposed Part III [57] of the ISO Prolog
standard. It works on an input given as a list, since Prolog’s traditional data rep-
resentation for strings is based on lists, as introduced in Section 3.3.4. Then, the
goal ?- phrase(:Grammar, ?List, ?Rest) is true if the elements in List can be
processed by the grammar rule Grammar, leaving the list’s remainder Rest – i. e.,
List-Rest describes a difference list (cf. Section 3.3.3). The predicate phrase/2ISO is
a short form for the special case of Rest = [] , i. e., the specified grammar rule is re-
quired to process all list elements. The formalism to describe grammars like the refer-
enced Grammar as well as possible implementations of the predicates phrase/{2, 3}ISO

will be presented in the next Section 6.2.

The predicate phrase/3ISO expects that the external document’s content has already
been loaded into a list, the actual file reading is left to a preprocessing step. In this re-
gard, phrase/3ISO is similar to the predicate read/{1, 2}ISO. SWI-Prolog additionally
provides the predicates phrase_from_stream/2SWI and phrase_from_file/{2, 3}SWI.
They are part of the built-in module pure_input from library(pio), and directly
process the content from a stream or file. Though both predicates internally make
use of phrase/3ISO, they use attributed variables (which we introduce in more detail
in Section 10.1.3) to lazily read the input from an external source into the processed

122

6.1. Embed External DSLs in SWI-Prolog

list on demand with the help of open difference lists. These custom-designed pred-
icates should therefore be preferred over phrase/3ISO when reading in an external
DSL from a separate file.

6.1.2. Code-Inlining with Quasi-Quotations

Originally, Prolog has poor support for long text fragments, which are often needed
for the integration of external DSLs. Though there are several mechanisms to spec-
ify strings that span about multiple lines, they all require the user to adjust the
original multi-line string by appropriate escape characters. The ISO Prolog stan-
dard prohibits newlines that are not escaped to appear in quoted material, though
it used to be common practice before and is still allowed by some systems, like SWI-
Prolog. Following the ISO Prolog standard, newlines in strings have to be escaped
by a trailing single backslash \ . In addition, most Prolog systems also support the
character escape sequence \c . Both differ only in the system’s handling of following
whitespaces. Since the character escape sequence \c skips all graphical characters
up to but not including the next non-layout character, it allows to arbitrarily in-
dent lines in the integrated external DSL, without changing the corresponding string
representation in Prolog.

To support multi-line strings natively and to simplify the embedding of external
DSLs without the need of manually adding escape symbols, multiple extensions
to Prolog’s syntax have been discussed in [130]. Inspired by constructs in other
programming languages, for instance Haskell and JavaScript (where it is called tagged
template strings, cf. Section 4.3.3), quasi-quotations have been added to SWI-Prolog
in 2013 [137]. Since then, they have been used to embed several well-known external
languages like HTML, SQL, and the semantic query language SPARQL. As of now,
SWI-Prolog is the only Prolog system with support for quasi-quotations.

The basic form of a quasi-quotation is as follows, where Tag is a callable predicate
with an arity of 4, and Content is a string, which holds the document given in the
form of an external DSL:26

{|Tag ||Content |} SWI-Prolog

The document given in the external DSL, Content, is an arbitrary sequence of
characters from the system’s alphabet (cf. Section 3.1). If the document contains
the quasi-quotation’s closing character sequence |} , it must be escaped according
26In the following and throughout our thesis, code examples might include both quasi-quotations

and SWI-Prolog’s dicts (cf. Section 3.3.5), which might confuse the reader. Although their visual
appearance is similar, they can easily be differentiated by their start token: quasi-quotations are
opened by {| , whereas dicts begin with Tag{ .

123

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

to the rules of the target language. All other characters, in particular newlines, can
be stated in the quasi-quotation without further modifications.

As an example, the HTML fragment for a paragraph holding the text Hello, Name!
can be embedded in SWI-Prolog using a quasi-quotation. The tag can be arbitrarily
chosen, we use html(doc) :

{|html(doc)||<p>Hello, Name!</p>|} SWI-Prolog

Quasi-quotations are allowed in a Prolog program at any position where a term is
expected, i. e., they form a fifth option in the inductive definition of terms we in-
troduced in Section 3.1.1. All embedded documents given in quasi-quotations are
translated at compile-time into plain old Prolog terms with the help of term ex-
pansion and a grammar defined by the user. Given a quasi-quotation with the tag
Tag = TagName(SyntaxArgs...) , the compiler therefore calls the corresponding user-
defined predicate TagName/4 as follows:

TagName (+ContentHandle,+SyntaxArgs,+Vars,-Result) :- % ... Prolog

% ... user-defined processing of the content to create Result

% usually based on a grammar, for instance DCGs

In our example of a HTML paragraph, the term has the tag html(doc) and invokes
the following call to the user-defined predicate html/4:

html(’<p>Hello, Name!</p>’, [doc], [’Name’ = ’Alice’], Result)

The quasi-quotation’s tag Tag can be any term with the functor TagName/TagArity.
Its arguments are passed to the predicate TagName/4 as the list SyntaxArgs, which
guarantees that the predicate TagName is always of arity 4, independent from the
Tag’s original arity TagArity.27 The argument Vars provides access to variables of
the quasi-quotation’s outside-world context. It can be used to fill in placeholders
when parsing the contained document and creating a native Prolog term repre-
sentation. Though in our example we use the variable symbol Name with a value
of ’Alice’, it does not necessarily stand for the Name that appears in the HTML
paragraph – as it is given in an arbitrary DSL, Prolog’s syntax rule may not apply
to the embedded document.

The argument ContentHandle is an opaque term that carries the content of the
quasi-quoted text and position information about the source code and its layout.
For the sake of simplicity, instead of SWI-Prolog’s internal reference ContentHandle
27This can be equally expressed with the help of the univ operator (cf. Section 3.6):

?- Tag =.. [TagName|SyntaxArgs], length(SyntaxArgs, TagArity)

124

6.2. Definite Clause Grammars

we directly use the embedded source code fragment Content as an atom in our
code examples. The content of the embedded document is usually passed to
with_quasi_quotation_input/3SWI or phrase_from_quasi_quotation/2SWI. While
the first predicate creates a stream, phrase_from_quasi_quotation/2SWI parses the
enclosed string according to a given grammar, just like the original phrase/2ISO.

6.2. Definite Clause Grammars

The embedding of external DSLs in Prolog is closely connected with the built-in
predicates phrase/{2, 3}ISO. Independent from how the DSL is integrated into the
Prolog codebase – either in a separate file, or directly interwoven with the Pro-
log code using quasi-quotations –, the connected DSL has to be parsed and trans-
lated into a Prolog term. This term then represents the external document, either
as a concrete or abstract syntax tree, or as its interpretation. For this purpose,
the predicate phrase(:Grammar,?List,?Rest) applies a grammar on the difference
list List-Rest . In general, the predicate can be called in various instantiation modes.
For instance, (:,+,-) processes a given list and calculates all of its remainders ac-
cording to the given grammar via backtracking. If on the other hand List is a free
variable instead, i. e., phrase/3ISO is called as (:,-,-), the same grammar can be
used to generate all allowed documents of the external DSL. As a result, a language
described in a formalism that can be consumed by phrase/{2, 3}ISO can often be
used to parse a given document and translate it into a corresponding Prolog term,
or vice versa to serialise the document back based on a given term representation.

The first parameter of phrase/{2, 3}ISO is a callable term (cf. Section 3.3) which
denotes the grammar rule that should be used for parsing and serialisation. It is
expected to be a Prolog goal of functor p /n that can be called with two addi-
tional arguments provided by phrase/3ISO, i. e., there is a corresponding Prolog
predicate p /(n + 2). For instance, the goal ?- phrase(float(N), [-,3,.,1,4], X)
invokes a call for float(N, [-,3,.,1,4], X) . Given a sensible implementation
of the predicate float/3 that allows both integer and floating-point numbers,
the initial goal computes the three answer substitutions I = -3, X = [.,1,4] ,
I = -3.1, X = [4] , and I = -3.14, X = [] .

With respect to its first argument, the predicate phrase/{2, 3}ISO is just a meta-
predicate which wraps calls for the provided goal. Though the corresponding predi-
cate can be ordinarily defined using Prolog clauses, definite clause grammars (DCGs)
provide a short notation to express those grammar rules without having to always
specify the predicate’s two additional arguments. DCGs are not yet part of the
ISO Prolog standard, but are considered to be officially included in the future as

125

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Part III [57] of the standard. Nevertheless, as of today, DCGs are supported by all
major Prolog systems.

6.2.1. Syntax

A definite clause grammar is a set of grammar rules. Syntactically, they are similar
to Prolog’s rules, except they use -->/2ISO instead of :-/2ISO:

Head --> Body . Prolog

Nonterminals and Terminals. In the basic form of a DCG, Head is a predicate with
an arbitrary number of arguments, representing a nonterminal in the grammar. To
distinguish the notation for functors specified in grammar rules from those of normal
Prolog predicates, a nonterminal’s name and arity are separated by two slashes
instead of one. A nonterminal p with n arguments is denoted by the functor p//n.

The grammar rule’s right-hand side is a sequence of one or more nonterminals and
terminals. A terminal is a consumed (or produced, respectively) list item, and writ-
ten in square brackets like normal Prolog lists. For instance, the rule’s right-hand
side element [a,b,c] expects the three atoms a, b and c in the input list. It has
the same effect as the conjunction [a], [b], [c] . Though DCGs are often used to
process strings, i. e., a list of characters, the list items can be of any type, including
free variables and compound terms. It is also possible to specify a string enclosed in
double quote characters as a terminal, as it represents a list of characters in case of
the appropriate setting of Prolog’s double_quotes flag (cf. Section 3.3.4).

The grammar rule’s meaning is similar to those known from EBNF. The nontermi-
nal Head represents the sequence of body items B1, ..., Bn described in the rule’s
right-hand side. Unlike Prolog’s short notation for facts, there is no short form like a
prefix -->/1 to specify empty DCG bodies. A rule which describes e//0 as an empty
string is specified as one of the following:

1 e --> []. Prolog

2 e --> "".

Control Structures. Besides the conjunction ,/2ISO, the Prolog control predicates
for disjunction ;/2ISO, if-then-else (with infix operators ->/2ISO and ;/2ISO), and the
prefix operator \+/1ISO for negation can be used to express relationships between
grammar body items. The operator |/2SWI is defined for compatibility with EBNF to

126

6.2. Definite Clause Grammars

denote alternatives. All these control predicates behave as in regular Prolog clauses,
and can be used together with parentheses to pilot the processing of the grammar.

Prolog code can be embedded by using curly brackets {...} . In addition, the cut
can be used as usual and is predefined as the nonterminal !//0ISO. Although it often
improves the parsing performance, it can result in wrong or insufficient answers when
called the other way round for serialisation. The usage of the cut nonterminal !//0ISO

should therefore be used only with care.

Semicontext. Apart from having only a single nonterminal as the grammar rule’s
left-hand side, DCGs also allow the definition of rules in the form
Head, P --> B1, ..., Bn , i. e., with a conjunction of a nonterminal Head and a
list P in the rule’s head. The terminal P is called semicontext or pushback list.

6.2.2. Procedural Semantics

The grammar rules describe how to rewrite the rule’s head into its body items.
Following Prolog’s underlying SLD resolution mechanism, the rules are applied in
their order of appearance. A rule is applied if the head’s nonterminal unifies with
the current nonterminal and all body items can be applied. The body items are
consumed from left to right. With Prolog’s backtracking mechanism, multiple rules
for a single nonterminal might be tested.

When applied, a nonterminal processes the list and leaves everything as remainder
that is not processed by the rule’s right-hand side. In between, every body item
operates on the result of the previous one. The embedded Prolog code, which is
given in curly brackets, is executed at the specified position. If the grammar rule
contains a pushback list, it is prefixed to the remaining terminal list after successfully
evaluating the grammar’s body.

As an example, Listing 6.1 shows the DCG that describes a palindrome, i. e., a list
of items which reads the same backward as forward. The nonterminal elem//1 takes
a single element X from the given list. Since we restrict ourselves to palindromes
built only from the atoms a, b, and c, it is tested in the embedded Prolog snippet
via member/2SWI. Without this additional check, the nonterminal palindrome//0
would succeed for a list of any type whose elements appear the same when reading
forwards and backwards.

An empty list as well as a list with only a single element are known to be palin-
dromes (ll. 2–3). The general case of longer lists can be defined using the recursive
grammar rule of line 4: it is a palindrome, if the list without the first and last element

127

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Listing 6.1: DCG to describe a palindrome of the characters a, b, and c.
1 elem(X) --> [X], { member(X, [a,b,c]) }. Prolog
2 palindrome --> [].
3 palindrome --> elem(_).
4 palindrome --> elem(X), palindrome, elem(X).

is a palindrome, and these elements are the same. This is ensured by the grammar
rule of elem//1, which binds its first argument to the read element, and thus makes
it available for comparison via unification in the body of the palindrome//0 rule.

The argument of elem//1 provides access to the rule’s context, and is thus lift-
ing the DCG of Listing 6.1 to a context-sensitive grammar. In contrast, a DCG
with only nonterminals without arguments as the rule’s left-hand side represents
a context-free grammar. Though palindromes can be described using a context-
free grammar by stating all possible elements in the recursive rule explicitly (i. e.,
palindrome --> [a], palindrome, [a] , and similar for the atoms b and c, and all
additionally allowed terminals), the DCG’s support for logic variables makes it pos-
sible to use a single rule instead.

As an alternative to additional arguments to the nonterminals, the semicontext
notation of DCGs can also be used to provide access to the rule’s context. It is a
common approach when modelling a context-sensitive grammar rule to push back
a Prolog term to the remaining list that describes the current context, which is
then consumed by the next possible nonterminal first. This allows to pass around a
Prolog data structure on all applied rules. For instance, we could move the argument
of elem//1 to the pushback list on the rule’s left-hand side:

elem, [X] --> [X], { member(X, [a,b,c]) }. Prolog

Then, elem//0 performs the look-ahead precondition that the next list element is one
of a, b, or c, as the read element is pushed back to the processed list without modi-
fication. Therefore, the difference list processed by the DCG remains unchanged.

A grammar rule Head --> Body without an explicit semicontext is equivalent to
the rule Head, [] --> Body with the empty pushback list [] – since it is empty, no
elements are put back to the processed list. If on the other hand the pushback list is
different from the list of consumed elements, this contradicts the assumptions made
to a difference list. For instance, the following clauses are semantically equivalent:

% process the atom a , push back atom b Prolog

change, [b] --> [a].
change([a|X], [b|X]).

128

6.2. Definite Clause Grammars

However, though the two arguments [a|X] and [b|X] each describe a difference
list on their own (with [a|X]-X and [b|X]-X), they do not form a difference list
together.

6.2.3. Execution via Meta-Interpreter

Definite clause grammars on their own essentially constitute an internal Prolog DSL:
with their well-defined syntax shaped around the --> symbol, they are a subset of
Prolog with the specialised focus on the application area of parsers and serialisers.
Like any other internal DSL, the language’s semantics can be implemented either by
transforming the terms of -->/2ISO into plain old Prolog clauses, or by the definition
of a meta-interpreter. In this section, we first focus on the latter approach. In most
Prolog systems, DCGs are translated via term expansions instead. The standard
expansion scheme is presented in the following Section 6.2.4.

As introduced before, DCGs are usually applied by using the meta-predicate
phrase/{2, 3}ISO, for example in ?- phrase(palindrome, P) or
?- phrase(palindrome, [a,b,a], Rest) . It therefore serves as a good target pred-
icate to implement the meta-interpreter. The short form phrase/2ISO can be easily
mapped to phrase/3ISO:

phrase(H, A) :- phrase(H, A, []). Prolog

It might seem desirable to use the more explicit notation A-Z as a single term
instead of the two separate arguments in ?- phrase(H, A, Z) . Though the usage of
the term with infix operator -/2ISO does not result in a worse program performance
thanks to SWI-Prolog’s deep indexing [136, Sec. 2.18.1], it is slightly misleading
when DCG’s semicontext notation is used. This is because grammar rules with a
non-empty pushback list do not describe a proper difference list A-Z, as Z could
contain (the pushed back) elements which are not necessarily part of the list A.

Listing 6.2 shows the implementation of the phrase/3ISO meta-interpreter for non-
terminals and control structures. The first two clauses describe the application of
grammar rules, the others handle control structures that are allowed in the rule’s
bodies on the right-hand side:

– Line 1: Given the nonterminal H, it is searched for a corresponding DCG rule
with a unifying head, whose body B is applied.

– Line 2: If alternatively there is a rule written in semicontext notation, the
rule’s body is applied similarly, with the pushback list P prepended to the
intermediate result C, constituting the list Z. For P being the empty list [] ,

129

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Listing 6.2: Meta-interpretation of nonterminals and control structures in DCGs.
1 phrase(H, A, Z) :- (H --> B), phrase(B, A, Z). Prolog
2 phrase(H, A, Z) :- (H, P --> B), phrase(B, A, C), append(C, P, Z).
3 phrase((B1 , B2), A, Z) :- phrase(B1, A, D) , phrase(B2, D, Z).
4 phrase((B1 ; B2), A, Z) :- phrase(B1, A, Z) ; phrase(B2, A, Z).
5 phrase(\+ H, A, A) :- \+ phrase(H, A, _).
6 phrase({ P }, A, A) :- call(P).
7 phrase(!, A, A) :- !.
8 phrase([], A, A).
9 phrase([T|Rest], [T|A], Z) :- phrase(Rest, A, Z).

?- append(C, P, Z) results in C=Z, i. e., the special case of an empty pushback
list is semantically equivalent to line 1.

– Lines 3 and 4 denote the logical conjunction and disjunction of two body
elements, which are processed either consecutively (with the chaining variable D
for the intermediate result) or alternatively.

– Line 5: Many DCG implementations allow to specify negated subgoals in the
body. The rule succeeds if the subgoal cannot be applied for the given list. The
initial list A remains unchanged, as no list element is consumed or produced.

– Line 6: Embedded Prolog source code, which is enclosed in curly brackets,
gets called. Note that this allows normal backtracking in the Prolog goal P.

– Line 7: Backtracking can be governed by using Prolog’s cut !/0ISO within curly
brackets. For convenience, it is usually also defined as a nonterminal !//0, so
the cut can be stated verbatim in the grammar rule’s body.

– Finally, the lines 8 and 9 describe the handling of nonterminals, which are
given in lists. In case of an empty list on the right-hand side of a grammar
rule, nothing is read or produced. Consequently, the processed list remains
unchanged. Otherwise, the processed list has to start with the head element T,
and the remainder is applied recursively.

The complete Prolog program with the implementation of phrase/3 as a meta-
interpreter together with an example DCG is given in Appendix B.4.

6.2.4. Standard Term Expansion Scheme

In most Prolog systems, DCGs are translated into plain old Prolog clauses at
compile-time via term expansions. In this case, phrase/3ISO does not serve as a

130

6.2. Definite Clause Grammars

Listing 6.3: Term expansion for DCGs. The complete code is given in Appendix B.5.
1 term_expansion(X1 --> Y1, X2 :- Y2) :- Prolog
2 (X1 = (L, P), append(P, Z, Out)
3 ; X1 = L, Out = Z),
4 term_args_attached(L, [In, Out], X2), [C.4]

5 translate_body(Y1, Y2, In, Z). [B.5]

Listing 6.4: Listing of the generated Prolog clauses for the DCG that describes a
palindrome from Listing 6.1.

?- listing([elem, palindrome]). Toplevel
elem(X, [X|Z], Z) :- true, member(X, [a,b,c]).
palindrome(A, A).
palindrome(A, Z) :- elem(_, A, Z).
palindrome(A, Z) :- elem(X, A, B), palindrome(B, C), elem(X, C, Z).

meta-interpreter but a meta-predicate, which calls the predicate p/(n + 2) for a
given grammar rule p//n.

Listing 6.3 presents the term expansion for terms of the form X1 --> Y1 , which get
replaced by a Prolog clause (i. e., a term with functor :-/2ISO) X2 :- Y2 . Lines 2
and 3 handle the two cases for the grammar rule’s left-hand side: it is either a pair of
a nonterminal L and the pushback list P, or otherwise only L. For an empty pushback
list P, the two forms are semantically equivalent, as consequently Out unifies with Z
in both lines 2 and 3. A nonterminal p//n is expanded into the predicate p/(n+2) by
adding the two additional arguments In and Out representing the proper difference
list In-Out (l. 4). It uses the predicate term_args_attached/3, which is defined
in Appendix C.4. The goal ?- term_args_attached(A,L,B) creates the compound
term B by adding the arguments given in the list L as new last arguments to the
compound term A.

This term expansion covers only lines 1–2 from Listing 6.2. The other cases of the
meta-interpreter are handled by the referenced predicate translate_body/4, which
translates the grammar rule’s right-hand side Y1 into the corresponding Prolog rule
body Y2. It requires the same definition by structural cases as before, but is to some
extent more complicated, because the two arguments representing the difference list
are added to all body elements, and new chaining variables have to be introduced
accordingly. The full definition of the predicate translate_body/4 is given in Ap-
pendix B.5.

In Listing 6.4, we show the listing of the predicates elem/3 and palindrome/1 as
printed from the toplevel, after the term expansions have been performed. The use

131

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

of term expansions has two major advantages compared to the application of DCGs
by a meta-interpreter. Firstly, the creation of lists with preceding elements is per-
formed only once at compile-time. As discussed in Section 3.4, the complexity of
append/3 is linear to the length of the first argument, and so is the complexity of
the processing of terminals in the meta-interpreter version of phrase/3. The gen-
erated clauses for the Prolog predicates elem/3 and palindrome/2 completely lack
calls of append/3 or list deconstructions. The second advantage originates from the
improved possibilities of clause indexing. By creating a new clause for each alterna-
tive in the grammar, the translated predicates can be indexed by their arguments,
resulting in a greater performance for parsing and serialisation. In the first case, the
list prefixes of terminals provide faster access to applicable clauses, and in the latter,
the additional arguments of context-sensitive nonterminals can be indexed.

Similar to our term expansion of Listing 6.3, SWI-Prolog translates DCGs into plain
old Prolog clauses at compile-time, as one of the four compilation steps we intro-
duced in Section 5.2.1. Internally, the built-in predicate dcg_translate_rule/2SWI

is used to translate a single grammar rule. It performs additional optimisations to
the created Prolog clause. For instance, the tautology true/0ISO in the definition
of elem/3 is removed. In our implementation of the term expansions as presented
in Listing 6.4, this subgoal is created because each element in a grammar rule’s
right-hand side is translated into a corresponding Prolog goal. Consuming termi-
nals, however, only performs unifications of the difference list in the clause’s head,
thus the clause’s body is simply true/0ISO. For simple grammar rules that just con-
sume or produce symbols, SWI-Prolog’s dcg_translate_rule/2SWI therefore returns
just a single fact, putting all information about the processed difference list in the
clause’s head. This again leads to a faster execution because of SWI-Prolog’s clause
indexing capabilities.

6.2.5. From EBNF to DCGs

In its simplest form to just specify context-free grammars, DCGs are very similar to
EBNF, which we introduced in Section 5.6 and discussed its implementation as an
internal Prolog DSL. Like EBNF, a DCG is a list of grammar rules, each consisting
of a nonterminal on the left-hand side, and the rule’s body on the other. Instead
of =, the infix operator -->/2ISO is used in between. Alternatives on the right-hand
side are denoted by the Prolog operator ;/2ISO instead of |.

Compared to the context-free grammars of EBNF, DCGs provide three major ex-
tensions:

132

6.3. Declarative If-then Rules as an External DSL

– Arguments on the left-hand side. In contrast to EBNF, the nonterminal on the
left-hand side of a DCG is allowed to have an arbitrary number of arguments
of any type. Since it is common in Prolog to use the same variables for input
and output, these additional arguments can be used to both deliver and receive
information about the grammar rule’s application context.

– Complex control structures on the right-hand side. Besides the conjunc-
tion ,/2ISO and the disjunction ;/2ISO, all other Prolog control structures
can be used in the grammar rule’s right-hand side. In addition, any Prolog
code can be embedded by using curly brackets {...} .

– Pushback arguments. DCGs allow the definition of rules in the form
Head, P --> B1, ..., Bn , with P being a list of terminals that are prepended
to the parsed list after successfully evaluating the grammar’s body.

With term expansions, EBNF grammar rules stated in the form of an internal Prolog
DSL can be translated into normal DCG notation at compile-time. For instance, the
single EBNF rule underscore_char = ”_” gets replaced by the following Prolog
fact:

term_expansion(A = B, A --> B). Prolog

With similar term expansions for ”|” (alternatives), ”; ” (rule endings), ”?” (optional
elements), and ”∗ ” (sequences), the internal DSL is translated into ordinary DCGs,
which are supported by all major Prolog systems. As a result, grammars of formal
languages provided as EBNF can be directly embedded into and used in Prolog,
resulting in efficient and executable Prolog parsers.

6.3. Declarative If-then Rules as an External DSL

In Section 5.4, we introduced the DSL of declarative if-then rules to represent ex-
pert knowledge with a natural language flavour. By the definition of appropriate
operators, the DSL can be used as an internal DSL, thus relying only on the parser
for Prolog programs that comes with every Prolog system. However, every internal
Prolog DSL can also be implemented externally using an appropriate grammar. In
Listing 6.5, we define a DCG that parses if-then rules of the same format. It serves
as a motivational example for an external DSL that is processed using definite clause
grammars. Parsing natural language with Prolog has been subject of research for a
long time. Nevertheless, the observations made in this chapter can be easily adopted
to the integration of computer languages as well as of formal languages. They can

133

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Listing 6.5: DCG to parse and serialise if-then rules.
1 fact --> conjunction, ".". Prolog
2 rule --> "if", #, formula, #, "then", #, conjunction, ".".
3 formula --> conjunction ; disjunction.
4 conjunction --> finding ; finding, #, "and", #, formula.
5 disjunction --> finding, #, "or", #, formula.
6 finding --> feature, #, equal, #, value.
7 equal --> "=" ; "is" ; "are".
8 feature --> "there" ; noun_phrase.
9 value --> "rainy" ; "broken" ; "wet" ; noun_phrase.

10 noun_phrase --> determiner, #, noun.
11 determiner --> "a" ; "an" ; "the" ; "no".
12 noun --> "weather" ; "thunderstorm" ; "umbrella" ; "clothes".
13 # --> " ".

be connected with Prolog as an external DSL with the same means as the simple
grammar for English if-then rules of our motivational example.

6.3.1. Definition as an External DSL

The DCG of Listing 6.5 defines the two nonterminals fact//0 and rule//0 (ll. 1–
2), which serve as the grammar’s entry point and are intended for the use with
phrase/{2, 3}ISO. Nevertheless, it is possible to use all other nonterminals in the
same way. For instance, the goal ?- phrase(noun_phrase, NP) generates all allowed
noun phrases, like a weather , and so on.

With the Prolog flag double_quotes set to chars (cf. Section 3.3.4), nontermi-
nals in a grammar rule’s right-hand side can be stated as a string instead of a
list. The nonterminal #//0 succeeds for a whitespace character and separates two
consecutive terminals. a , an , the and no are possible terminals for the nontermi-
nal determiner//0, weather and others are possible terminals for the nonterminal
noun//0. In the internal Prolog DSL, the nouns and values (value//0) represent the
leaves in the binary expression tree. Being operands, they can be any valid Prolog
atom and are not required to be specified in advance in the definition of the internal
DSL. Similarly, the DCG could instead consume any non-empty string up to the
next whitespace character, using the following grammar rule:

noun --> [X], { X \= " " }. Prolog

noun --> [X], { X \= " " }, noun.

In the DCG of Listing 6.5, we explicitly list all allowed nonterminals to be able to
use the same grammar to both parse if-then rules and to generate all allowed yet

134

6.3. Declarative If-then Rules as an External DSL

meaningful sentences. Without, the goal ?- phrase(noun, N) will not result in a
binding for a free variable N.

6.3.2. Comparison of the Two Approaches

Using DCGs for parsing external DSLs offers a huge freedom in the design and
features of the integrated language, because with Prolog’s powerful, built-in tech-
nique for parsing and serialisation it is possible to process any string input. With
its support for additional parameters to nonterminals, and pushback lists on the
grammar rule’s left-hand side, combined with possible embeddings of Prolog source
code snippets specified in curly brackets, context-sensitive grammars can be easily
defined without a thorough understanding of automata theory.

The grammar formalism can help to clarify the syntax of the external DSL for
people who are not experts in logic programming or Prolog – particularly, because
DCGs with terminals written as strings are easy to understand even if details like
the underlying evaluation mechanism, or the handling of embedded Prolog code are
unknown. The DCG can be extended by fallback rules as the very last alternative
to return meaningful error messages in case of invalid sentences. In addition, the
external domain-specific language can be defined to be more relaxed: facts and rules
do not necessarily have to end with a full stop . , and could be separated by newlines;
strings starting with an uppercase letter or containing whitespaces do not have to
be encapsulated by quotes.

Though the internal definition of a Prolog DSL does not require the implementa-
tion of a fully-featured parser, sentences (i. e., Prolog terms) accepted by the Prolog
parser not necessarily conform to the originally intended DSL definition. For in-
stance, grammatical constraints can be ensured only at run-time as part of the
meta-interpreter. In contrast, in case of an external DSL, they can be directly en-
coded in the DCG. To ensure that the determiner a is allowed only for nouns
starting with a consonant, and an only for nouns starting with a vowel, the gram-
mar rule for determiner//0 can be adjusted as presented in Listing 6.6.

For better readability, we split the alternatives for determiner//0 into three gram-
mar rules, which is equivalent to the logical disjunction via ;/2ISO. The first line
reads as “ a is a valid determiner if it is followed by a consonant”. Since the fol-
lowing word of determiner//0 is originally consumed by the noun//0 nonterminal,
the nonterminals vowel//0 and consonant//0 are implemented as look-aheads: the
consumed whitespace and character Char are pushed back to the processed list using
DCG’s semicontext notation. The check for a vowel is performed by the embedded,
user-defined Prolog predicate is_vowel/1 (l. 6).

135

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Listing 6.6: Extending determiner//0 by grammatical constraints to use an only
for nouns starting with vowels, and to use a otherwise.

1 determiner --> "a", consonant. Prolog
2 determiner --> "an", vowel.
3 determiner --> "the" ; "no".
4 vowel, [’ ’, Char] --> [’ ’, Char], { is_vowel(Char) }.
5 consonant, [’ ’, Char] --> [’ ’, Char], { \+ is_vowel(Char) }.
6 is_vowel(Char) :- member(Char, [a,e,i,o,u]).

6.4. GraphQL for Deductive Databases

In October 2015, Facebook released GraphQL,28 an open-source application layer
query language, which has been internally developed since 2012. It provides a unified
interface between the client and the server for data fetching and manipulation. Using
GraphQL’s type system, it is possible to specify data handling of various sources
and to combine, e. g., relational with NoSQL databases. In contrast to the well-
established architectural pattern REST, GraphQL provides a single API endpoint
and supports flexible yet only previously defined queries over linked data. Already
when publicly announced in 2015, most of Facebook’s applications made use of
GraphQL as their primary data-fetching mechanism, resulting in hundreds of billions
of GraphQL API calls a day [15].

Although now used several years in production by Facebook and others, the Graph-
QL specification is still under active development. The most recent working draft
specification is of January 2022,29 and available at https://spec.graphql.org/. How-
ever, most of the changes since its initial publication in October 2015 have been
clarifications in the wording as well as formal descriptions of the underlying mech-
anisms. For instance, GraphQL’s type system definition language (often referred to
as its “SDL”) has been formally described in the form of an EBNF in 2018. It is
used to describe the capabilities of a GraphQL server.

A detailed introduction to GraphQL and the SDL’s grammatical and semantic rules
is given in [47]. For a short overview with a focus on comparing it to the well-
established REST data layer, we refer to our work [84]. This paper describes our
implementation of a GraphQL server in SWI-Prolog. In the section at hand, we
focus only on a single part of this framework: the integration of the GraphQL type
system and query syntax as an external domain-specific language in Prolog.

28GraphQL, “A query language for your API”, https://graphql.org/.
29As of January 2022.

136

https://spec.graphql.org/
https://graphql.org/

6.4. GraphQL for Deductive Databases

Listing 6.7: Example GraphQL query and corresponding JSON result.

query getAlice { GraphQL
person(name: "Alice") {

name,
years: age,
books(favourite: true) {

is implicitly a list
title,
authors {

name
}

}
}

}

1 { "data": { Json
2 "person": {
3 "name": "Alice",
4 "years": 31,
5 "books": [
6 {
7 "title": "Moby-Dick",
8 "authors": [{
9 "name": "H. Melville"

10 }]
11 }
12]
13 } } }

6.4.1. Example Query and Result

In most applications, complex, structured data is requested from the API. To provide
a single entity with all its relations from a single endpoint, a GraphQL query is
structured hierarchically. Its structure represents the data that is expected to be
returned. In general, each level of a GraphQL query corresponds to a particular
type. They can be nested and also recursive. The result document is a set of entities
with their relations specified in the type system. This clarifies the name GraphQL,
as these entities and relations can be thought of as a graph.

As a motivating example, we consider a GraphQL server to access and manipulate
data of persons along with their favourite books. Listing 6.7 presents on the left-hand
side an example query document to get some basic information about the person
named Alice. The requested data includes her name and age, which is renamed to the
property years in the result set. The query includes her favourite books with their
title and authors. The string-based format of the request message presented in the
example strictly follows the GraphQL specification, though whitespace and commas
are syntactically and semantically insignificant. The right-hand side of Listing 6.7
presents an example result for this query as a JSON document. Its structure and
entities have to follow the request: only keys which were specified in the query are
allowed to be part of the result document.

6.4.2. The GraphQL Type System

Being part of the data access and manipulation layer, GraphQL does not support
ad-hoc queries like most standard database drivers provide. Instead, queries have

137

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Listing 6.8: Type definitions for the example query of Listing 6.7 and GraphQL’s
built-in Query type.

1 type Query {
2 person(name: String!): Person,
3 book(title: String!): Book,
4 books(filter: String): [Book]
5 }
6

7 type Book {
8 title: String!,
9 authors: [Person]

10 }

12type Person { GraphQL
13name: String!,
14age: Integer,
15friends: [Person],
16books(favourite: Boolean): [Book]
17}

to satisfy the type system previously defined by the server administrator. The SDL
is expressive and supports features like inheritance, composition, interfaces, lists,
custom types, and enumerated types. By default, every type is nullable, i. e., not
every value specified in the type system or query has to be provided, unless denoted
by the exclamation mark ! .

Every GraphQL type system must specify a special root type called Query, which
serves as the entry point for the query’s validation and execution. In Listing 6.8,
we present a minimal definition of a type system to satisfy the example query of
Listing 6.7. It defines the two types Person and Book as objects. Their fields can
have arguments. For instance, when retrieving the books of a particular person, it
can be specified to return only their favourite books by providing an appropriate
Boolean flag. A detailed introduction to GraphQL’s type system is out of scope of
the section at hand. Nevertheless, our GraphQL framework for SWI-Prolog in [84]
also implements more complex properties of the type system.

6.4.3. Integration with Quasi-Quotations, DCGs, and Dicts

The working draft of GraphQL specifies the syntax for query documents as well as for
the type system in the form of a formal grammar. For integrating GraphQL into SWI-
Prolog as an external DSL, our implementation makes great use of quasi-quotations,
definite clause grammars, and dicts (cf. Section 3.3.5). Quasi-quotations are used to
directly embed the query document as well as the type definitions in the Prolog
source code. In order to define single types and the schema, our implementation
provides several quasi-quotation tags, for example schema/4 for the overall schema,
and type/4 for the declaration of a single type, which use plain old DCGs to parse
the contained strings. After all, the grammar specified in the GraphQL specification

138

6.4. GraphQL for Deductive Databases

Listing 6.9: Definition of the type quasi-quotation.
1 :- use_module(library(quasi_quotations)). SWI-Prolog
2 :- quasi_quotation_syntax(type).
3 type(ContentHandle, _SyntaxArgs, Vars, Res) :-
4 phrase_from_quasi_quotation(gql_type(Vars, Res), ContentHandle).
5

6 gql_type(Env, Type) -->
7 #, type_definitions(Env, Definitions), #,
8 { Type = object{}.put(description, _)
9 .put(fields, Definitions) }.

10 type_definitions(Env, Definitions) --> % base case
11 type_definition(Env, Name, Type),
12 { Definitions = _{}.put(Name, Type) }.

for query and type documents has been translated into a DCG, resulting in more
than 50 nonterminals just to parse queries. The entire DCG rule base to parse the
type system as well is implemented in more than 600 lines of Prolog code with more
than 100 nonterminals.

An extract from the implementation of the quasi-quotation for type/4 is given in
Listing 6.9. It uses the DCG nonterminal gql_type//2 to parse the given type,
and binds the variable Res to an internal Prolog representation based on dicts.
Its description property (l. 8) is optional and used only for debugging purposes in
GraphQL. The nonterminal #//0 consumes the semantically insignificant whitespace
and commas; type_definition//3 parses a single key-value expression and is left
here for the sake of simplicity.

After parsing the quasi-quotations using DCGs, the GraphQL schema and types
are represented by dicts. In Listing 6.10, we present an extract of the generated dict
for the type Person. Since SWI-Prolog’s compiler calls for quasi-quotations provides
access to variables of the quasi-quotation’s outside-world context, all embedded user-
defined type names starting with an uppercase letter create corresponding Prolog
variables, therefore allowing cross-referencing of types within a GraphQL schema.
The type Person, which is recursive in the field friends, can therefore be created
as stated in line 1, similarly resulting in an infinite and cyclic Prolog term. Since
only GraphQL’s types are allowed to be cyclic but not the queries, this will not lead
to non-termination on execution.

In order to execute a query, both the dict generated for the query and for the
type system are traversed simultaneously in a top-down approach. Beginning with
the root type Query specified in the GraphQL schema, our system searches for the
requested fields in the type definitions. To get the appropriate value, for every type

139

Chapter 6. External DSL Integration with Quasi-Quotations and DCGs

Listing 6.10: Generated dict for the GraphQL type Person.
1 ?- Person = {|type|| friends: [Person], ... |}. Toplevel SWI-Prolog
2 Person = object{
3 fields: _{
4 name: field{ type: string, nonNull: true, resolve: _ },
5 age: field{ type: integer, resolve: _ },
6 friends: list{ kind: field{ type: Person }, resolve: _ } },
7 books: list{
8 arguments: _{ favourite: field{ type: boolean } },
9 kind: field{ type: Book }, resolve: _ },

10 },
11 resolve: _ % not yet bound
12 }

of the schema a resolve/5 predicate has to be defined, which was initially a free
variable in Listing 6.10. This resolver is used to generate the resulting dict for a
specific type, which is the basis for the JSON document returned to the client.
For a detailed description of the resolving mechanism, we refer to our work [84,
Sec. 5]. It allows to handle data of various sources and to combine, e. g., relational
with NoSQL databases, resulting in GraphQL as a single unified query language for
deductive databases.

The definition of the GraphQL type system in the same way it is used in the Graph-
QL working draft, i. e., as a domain-specific language in Prolog, enables developers
who are not yet familiar with Prolog to build a custom GraphQL server. In addition,
it is possible to specify an application layer just by the DSL, separated from the
actual data access that is implemented by Prolog resolvers. Even for developers who
are experienced with Prolog, the notation in the form of a DSL results in a short
and readable data and query description, which might also serve as a source format
for query validation and optimisation.

140

7
A Tracing Meta-Interpreter for
Web-based DCG Visualisation

I hate almost all software. It’s unnecessary and complicated at almost
every layer. The only software that I like is one that I can easily

understand and solves my problems. The amount of complexity I’m
willing to tolerate is proportional to the size of the problem being solved.

The only thing that matters in software is the experience of the user.

— Ryan Dahl30

Compared to the definition as an internal DSL which just relies on some operators
with appropriate types and precedences, the required Prolog source code to inte-
grate the same language as an external DSL – in most cases using a definite clause
grammar – easily becomes much larger. Even without the modelling of additional
and grammatical constraints right into the grammar, the DCG for our simple DSL
for the specification of if-then rules alone constitutes a complex software system.

However, regardless of its long history and wide distribution, there are rare tools
dedicated to the work and development of DCGs. Here, its close relation to Prolog
has its drawbacks: it is often recommended to use Prolog tracers and debuggers,
although their representation and available functions do not suit well for the special-
purpose DCGs. Having to work with tools created for Prolog creates unnecessary
overhead and requires deep knowledge about this programming language, which is
actually not necessary to just understand a given DCG or its application.

In this chapter, we present an interactive, web-based visualisation and tracer for
DCGs. It can be useful both for beginners who learn DCGs, as well as for expe-
rienced users debugging their grammar. As part of our contribution, we discuss
different techniques to collect information about the execution of a DCG in SWI-
Prolog, including term expansions, trace interceptors, and meta-interpreters. After
30Shortened quote from “I hate almost all software” (2011), Google Plus blog post originally lo-

cated at https://plus.google.com/115094562986465477143/posts/Di6RwCNKCrf, archived ver-
sion available at https://gist.github.com/cookrn/4015437. Ryan Dahl is an American software
engineer and the original developer of the Node.js JavaScript platform.

141

https://plus.google.com/115094562986465477143/posts/Di6RwCNKCrf
https://gist.github.com/cookrn/4015437

Chapter 7. A Tracing Meta-Interpreter for Web-based DCG Visualisation

all, our system is a feature-rich, self-contained example application which illustrates
how to develop Prolog applications for the web using SWI-Prolog’s Pengines [70]
infrastructure. The system was created with Jona Kalkus as part of his master’s
thesis [59] at University of Würzburg, Germany. The source code of our tool is pub-
lished under MIT License at https://github.com/fnogatz/dcg-visualiser. It requires
SWI-Prolog of at least version 7 (2014). Although its concepts can be tailored for
other and older Prolog systems as well, our implementation relies on some of the ex-
tensions recently added to SWI-Prolog, resulting in a more compact Prolog program.
For instance, we use dicts for JSON creation, and SWI-Prolog’s Pengines library to
create a web-based Prolog application.

The chapter at hand is based on our corresponding publication [81]. Technical as-
pects of the client-server architecture and the inter-process communication are de-
scribed in more detail in this publication, as well as a literature review of related work
regarding interactive Prolog debuggers and program visualisations. In this chapter
on the other hand, we focus on the adaptions of the previously introduced techniques
to use and transform DCGs in order to collect all information about their execution
at run-time that are needed for a useful visualisation and tracing. The system’s aim
is to assist with the development of large definite clause grammars, as they are com-
mon and necessary when defining expressive Prolog DSLs externally. It has proven
useful in the development of our library(plammar), a large Prolog grammar written
in Prolog, which is presented in detail in Chapters 9 and 10.

The remainder of the chapter at hand is organised as follows. In Section 7.1, we define
the demands on an interactive tracer dedicated to DCGs. The resulting system and
its web-based interface is presented in Section 7.2 using the example of tracing the
parsing of if-then rules. Next, Section 7.3 discusses several approaches to collect
the information needed for this visualisation from the remote Prolog process. The
chapter concludes with an overview of the system’s overall client-server architecture
using Pengines in Section 7.4.

7.1. Important Criteria for an Interactive Visualisation

Since the early years of Prolog, there has been research on debuggers and program
visualisations. In the extensive survey on logic program analysis and debugging of
Ducassé and Noyé from 1994 [33], an overview of existing approaches at that time
is given. These and more modern tools and approaches are usually focussed on the
work with Prolog in general, so at least they already handle common techniques like
backtracking and unification.

142

https://github.com/fnogatz/dcg-visualiser

7.1. Important Criteria for an Interactive Visualisation

However, none of the existing tools can be easily used to visualise the processing of
character-based difference lists with DCGs in an intuitive way. We therefore create
a web-based tool to accomplish the following needs. To the best of our knowledge,
there is currently no tool that already fulfils these demands.

Focus on DCGs. The tool for execution and visualisation is focussed only on the
application of definite clause grammar rules. Since DCGs are often translated
into plain old Prolog clauses, only the expanded forms of the grammar rules
are available in existing graphical tracers and visualisations. Therefore, the
shown line numbers do not refer to the grammar rule’s original location, and
the tracer’s output is more verbose, as it contains both additional, implicit
arguments of the DCG that represent the difference list. In addition, the ex-
panded form makes no difference between Prolog predicates that originate from
expanded nonterminals and Prolog code that was enclosed in curly brackets –
existing visualisations simply mix both grammar rules and embedded Prolog
predicates.

Compatibility and Feature-completeness. Existing DCGs are supported out of the
box, without the need for further modifications to be compatible with the tool
for visualisation and tracing. Several existing solutions, for instance the Prolog
Visualizer,31 define a meta-interpreter for Prolog or grammars from scratch.
Although these interpreters are often easier to adapt for tracing, the users are
restricted to the limited subset of the original language as defined in the meta-
interpreter. For instance, contained user-defined operators cannot be used as
they are not provided by the original meta-interpreter.

DCGs are most likely applied with difference lists of characters. They should
be presented in a user-friendly format as strings. Nevertheless, grammars that
describe lists of any other Prolog data structures should also be supported.

Reasonable Performance. Collecting data for tracing always results in an overhead.
For instance, static code analysis and optimisations which are normally per-
formed at compile-time should be avoided, as they change the executed source
code. Nevertheless, it is intended to reach a reasonable performance even with
activated tracing.

Interactive Exploration of Rule Applications. Some existing tools generate just
static images or dependency graphs based on static code analysis. Our system
can be used interactively in a web-based environment.

31The Prolog Visualizer by Lai and Warth (2015) is a web application which features an in-depth
step-by-step execution of Prolog. A public instance is available at https://cdglabs.org/prolog/.

143

https://cdglabs.org/prolog/

Chapter 7. A Tracing Meta-Interpreter for Web-based DCG Visualisation

Fi
gu

re
7.

1:
Sc

re
en

sh
ot

of
th

e
w

eb
-b

as
ed

in
te

rf
ac

e
fo

r
D

C
G

vi
su

al
isa

tio
n

an
d

tr
ac

in
g.

144

7.2. User Interface and Example Application

This list makes no claims for completeness. However, it should cover all essential
aspects that assist with the development of grammars using DCGs.

7.2. User Interface and Example Application

Figure 7.1 presents a screenshot of the created web application opened in the Google
Chrome web browser. The interface and its functionality is inspired by collaborative
code sharing platforms like SWI-Prolog’s SWISH [7]. On the left-hand side, the code
editor is used to edit DCGs. We provide several examples to present the different
features of this tracer, which can be loaded via the Load Example dropdown element.
In the Phrase section in the left part of the application, the user can specify the
parameters for the phrase/3ISO predicate. The execution can be replayed step-by-
step and using a slider in the Controls section.

In the right panel, the execution is interactively visualised. Only nonterminals and
terminals are displayed here. By activating the setting Show input & rest lists in
the Controls section, the processed difference lists are additionally displayed in the
nodes of the search tree. The difference lists and nonterminals are written as strings
in case they represent lists of characters. Otherwise, the list elements are printed as
arbitrary Prolog terms.

By hovering over the elements on the right-hand side, the corresponding source code
fragment (which might contain arbitrary Prolog code) gets highlighted in the DCG
textbox in the application’s left part. Backtracked alternatives are highlighted in
grey, failing rule applications are marked in red.

In the example screenshot of Figure 7.1, we used the DCG of Section 6.3 to describe
if-then rules as an external Prolog DSL. Instead of logical disjunctions via ;/2ISO,
alternatives are written as multiple grammar rules with the identical nonterminal
in the rule’s left-hand side. This allows for a better visualisation and source code
highlighting when tracing the backtracking of alternatives, as otherwise only parts
of a grammar rule’s right-hand side should be highlighted, which would require the
client-side parsing and analysis of the given DCGs. From a semantic point of view,
this notation of disjunctions is equal to the DCG to parse and serialise if-then rules
we presented in Listing 6.5. Nevertheless, our tracer supports both notations for
alternatives.

The screenshot illustrates step 192 of 232 in the execution of the overall failing
goal ?- phrase(fact, "the weather is sunny.", A) . A fact//0 is known to be a
conjunction//0 followed by the full stop . as a terminal symbol. In the upper
part of the search tree, the first alternative for conjunction//0, the grammar rule

145

Chapter 7. A Tracing Meta-Interpreter for Web-based DCG Visualisation

conjunction --> finding , is applied. It does not succeed, because sunny can-
not be parsed by the nonterminal value//0: it is none of the terminals rainy ,
broken , wet , and on the other hand no valid noun_phrase//0, as it does not
start with one of the valid determiners a , an , the , and no . As a result, all
previous steps are backtracked and thus marked by a grey background, and the
second alternative for conjunction//0 is tested in the lower part of the shown
search tree. In the currently depicted step 192 of 232 of the execution, the last al-
ternative for the nonterminal determiner//0 is tested. Since it fails for the given
input sunny , the node for the nonterminal determiner//0 is marked by a red
background. In the next steps, all other alternatives are applied by backtrack-
ing, thus consecutively highlighting the failing nodes. After all, the initial goal
?- phrase(fact, "the weather is sunny.", A) is known to be failing.

Note that in the DCG we presented in Listing 6.5 the two alternative grammar rules
for the nonterminal conjunction//0 have the same prefix. As a result, it is actually
known that none of them succeeds as soon as the nonterminal finding//0 fails. This
can be made explicit by modifying the grammar rule for conjunction//0 and intro-
ducing a new one that first parses the common prefix, followed by a newly created
nonterminal conjunction_f//0 which is either empty or the rest of a conjunction
of the form · and · :

1 conjunction --> finding, conjunction_f. Prolog

2 conjunction_f --> [].
3 conjunction_f --> #, "and", #, formula.

This technique is called factoring out, and a common transformation of grammars
to resolve conflicts in LL(1) parsers, or to optimise LL(k) and LR(k) parsers (cf.
Section 5.6). We do not elaborate on this and other optimisations for grammars, as
our tool just visualises the execution of a DCG as it is.

This visualisation can grow fast for long sentences or big DCGs. Therefore the panel
on the right-hand side of our application supports zoom and scrolling, similar to
web-based map applications.

7.3. Collection of Run-Time Information

In order to implement the targeted visualisation, some information related to the
grammar rules and its execution have to be collected. Due to recursive rules, the
complete language space of a DCG can be easily infinite. To avoid handling and
visualising infinite trees, our approach is not only based on the DCG itself, but on

146

7.3. Collection of Run-Time Information

the execution of a phrase/3 query using this grammar. The main goal is to produce
a parse tree for a given query. However, two difficulties appear when we produce
a near to complete visualisation: (i) the exact execution order has to be stored,
and (ii) including also the failing branches and the performed backtracking. The
latter is rather complicated, since in Prolog we usually only have information about
succeeding rule applications rather than failing ones. In the following, we present
two approaches to extend a given DCG to collect the required data and discuss their
advantages and disadvantages.

7.3.1. Intercepting the Built-in Tracer

SWI-Prolog provides a command line based tracer which can be enabled by calling
the built-in predicate trace/0SWI. Following Prolog’s 4-port execution model [14],
every call, exit, redo, and fail step gets printed. In addition, the user is asked whether
to proceed, or skip the tracing of some subgoals, or to stop. SWI-Prolog extends the
4-port model by two additional ports, unify and exception [140, Sec. 3.6], resulting
in a 6-port model with more events that can be traced.

The tracer provides a detailed insight into the execution of a query. However, the tex-
tual presentation quickly becomes confusing in the case of extensive queries and is not
well suited for further program based analysis. Therefore SWI-Prolog offers the pos-
sibility to redefine the tracer itself, thus allowing a more explicit and detailed control
and handling of the traced events. The predicate prolog_trace_interception/4SWI

is a built-in hook which is called from the SWI-Prolog debugger before writing the
trace statements to the command line. Provided that the call of this user-defined
predicate succeeds, the built-in text-based tracer is intercepted [136, Sec. B.3]. The
hook provides information about the current port, stack frame, and choice points.
From the stack frame, additional information can be retrieved, for instance about the
source code location of the currently used clause. By defining the hook via the pred-
icate prolog_trace_interception/4SWI, we can store detailed information about
the actual execution of the given DCG.

In its simplest form, the data required for the DCG visualisation can be asserted
with the dynamic predicate step/n. An excerpt of such a custom trace interceptor
is given in Listing 7.1. For each step in the tracer, a fact step/6 is asserted. It
contains a unique, consecutive number, and the port according to SWI-Prolog’s
6-port execution model. As an example, we additionally store information about
the current event: the frame number, the currently executed goal, and its parent.
Choice is a reference to the last choice point. With prolog_choice_attribute/3SWI,
properties can be examined, like its frame number. Action has to be unified with a

147

Chapter 7. A Tracing Meta-Interpreter for Web-based DCG Visualisation

Listing 7.1: Definition of a custom trace interceptor to collect execution information
in the dynamic predicate step/n.

1 prolog_trace_interception(Port, Frame, Choice, Action) :- Prolog
2 get_counter(N), % retrieve unique program counter
3 % get information about current event
4 prolog_frame_attribute(Frame, goal, Goal),
5 prolog_frame_attribute(Frame, parent, Parent),
6 prolog_choice_attribute(Choice, frame, ChoiceFrame), % ...
7 % assert information as a dynamic predicate ‘step‘
8 assert(step(N, Port, Frame, Goal, Parent, ChoiceFrame)),
9 % continue with the execution

10 Action = continue.

term that specifies how to continue with the execution. It is typically retrieved by
asking the user. Typical values are abort, continue, and nodebug.

Each time the tracer is invoked, a fact step(N,...) is asserted. With the help of its
unique, incrementing program counter N, the program execution can be reproduced
in detail. The usage of this tracer in SWI-Prolog is identical to starting the normal,
built-in tracer. The asserted facts of the predicate step/n can be retrieved and
displayed like any other, e. g., by using listing/{1, 2, 3}SWI (cf. Section 3.5):

?- trace, phrase(noun_phrase, NP), notrace, listing(step). Toplevel

NP = "a weather" .
% step(1,...) and step(2,...)

step(3,unify,235,noun_phrase(A,[]),call_dcg(noun_phrase,A,[]),...).
step(4,call,255,determiner(A,B),noun_phrase(A,[])),...).
% ... following steps that lead to the binding of A and NP

This example shows two asserted facts. Firstly, the unification of the goal
?- noun_phrase(A, []) with a matching rule head, followed by the execution steps
required for satisfying determiner//0, which is the first item in the grammar rule
body of the nonterminal noun_phrase//0.

One of the advantages of using a custom trace interceptor is that the execution
of a query is performed directly by SWI-Prolog. This ensures that the derivation
of the result is done correctly without the need of reimplementing any logic, or
even a complete meta-interpreter. In addition, this offers the advantage that built-
in predicates can be evaluated without additional efforts. However, we encountered
a major drawback in this approach: SWI-Prolog’s frame number is not unique, so
there are cases in which the same frame reference is used by different goals. This
has been observed in the context of deterministic goals. Execution frames which

148

7.3. Collection of Run-Time Information

cannot generate further solutions are removed from the execution stack and their
frame reference is thus released. Therefore, this approach is not reliable enough for
the visualisation of DCG execution.

7.3.2. Automatic Generation of Parse Trees

It is possible to extend a given DCG to hold information about the currently used
rule by adding an additional argument to every nonterminal. This way, a parse
tree is generated on-the-fly while parsing the given input. A modification in this
way does not alter the core semantics of the given grammar rules. Only calls of
phrase/{2, 3}ISO have to be slightly adapted to hold the additional argument for
the parse tree. For instance, ?- phrase(fact(Tree), "the weather is rainy.") is
called instead of using the nonterminal fact//0.

We discuss this modification of DCGs in detail in Chapter 8 and present a trans-
formation of grammar rules at compile-time using term expansions. The generated
parse tree can then be displayed graphically, depicting the order of the execution in
the tree structure, from top to bottom and left to right, similar to depth-first search.
However, this approach supports only succeeding rule applications: if a grammar rule
cannot be applied or is backtracked, this is not depicted in the parse tree, following
Prolog’s SLD resolution mechanism. Therefore, the extension of DCGs as introduced
in Chapter 8 does not fit our requirement to also illustrate failing branches of the
grammar’s execution.

7.3.3. Modified Meta-Interpreter

Another mean to trace the execution of a DCG is by implementing an appropriate
meta-interpreter that stores the required information. In Section 6.2.3, we presented
an implementation of phrase/3ISO which does not rely on the term expansion of
the grammar rules, but instead describes their application and the handling of all
contained control structures that are allowed in the rule’s bodies on the right-hand
side. The complete meta-interpreter is given in Appendix B.4.

The meta-interpreter again implicitly handles Prolog’s backtracking, thus it cannot
be traced easily. One approach to avoid this limitation is to reimplement the logic
of backtracking in the meta-interpreter, too. This has been done by Dave Bowen for
generating AND/OR trees.32 However, it requires extensive changes to the original
32http://www.dcs.ed.ac.uk/home/mke/edinburgh/tools/tracing/andor.pl

149

http://www.dcs.ed.ac.uk/home/mke/edinburgh/tools/tracing/andor.pl

Chapter 7. A Tracing Meta-Interpreter for Web-based DCG Visualisation

meta-interpreter of phrase/3ISO. Not only have already collected data and pend-
ing goals to be passed within the meta-interpreter, also basic mechanisms such as
unification can no longer be used.

Another approach is to store information during execution in a way that is not af-
fected by backtracking. For instance, it is possible to simply print information about
the current step to the user. Alternatively, the built-in predicate assert/1ISO can
be used again. In this way, the meta-interpreter can use backtracking and unifica-
tion mechanisms, and still obtain information about failed execution steps. They are
then stored in a dynamic predicate, similar to the assertion of step/n predicates as
discussed for the trace interceptor in Section 7.3.1.

To have a fallback on all applications on the right-hand side, the goals on the right-
hand side are wrapped in a disjunction, i. e., Goal becomes
Goal ; print_indented(Goal:fail, L) , where the predicate print_indented/2
is used to log a failing grammar body at the level L. In our meta-interpreter, this
wrapper is used for every grammar rule’s right-hand side which might be back-
tracked or never succeed, so it will be nevertheless shown in the tracer. For instance,
the original goal ?- call(P) for a Prolog goal P embedded in a grammar rule (cf.
line 6 of Listing 6.2) is expressed as follows:

1 phrase({ P }, L, A, A) :-
2 call(P), print_indented(call(P):exit, L)
3 ; print_indented(call(P):fail, L).

For every successfully computed answer substitution for the goal ?- P , the predi-
cate print_indented/2 is called with the term call(P):exit as its first argument.
Only if there is no (further) solution, it is called with the argument call(P):fail ,
indicating the failing query. The complete modified meta-interpreter for DCGs with
tracing is given in Appendix B.6.

We extend the predicate phrase/3ISO by an additional argument L which stores the
current level of execution. It allows to limit possibly infinite recursions, as well as
to print nicely formatted and indented trace outputs. As a basic example, we use
print_indented/2 to print the tracer events to the user:

print_indented(A, L) :- I is 2*L, tab(I), writeln(A). Prolog

Here, SWI-Prolog’s built-in predicate tab/1SWI writes the given amount of spaces to
the current output stream.

When querying a DCG, the resulting structure is displayed as a sideways tree, with
child elements being more indented. The single lines are of the format

150

7.4. Client-Server Architecture with Pengines

Figure 7.2: Server-side components to generate the trace data.

<goal>:<call|exit|fail> or in the case of unifications
<unification>:<exit|fail> . Cuts are indicated by the atom cut , and the process-
ing of terminal symbols is denoted by empty and T:consume , respectively. Failing
clauses are also printed before calling available alternatives. Thus, an output is also
possible if a subgoal has no successful answer substitution.

7.4. Client-Server Architecture with Pengines

The definition of the predicate print_indented/2 can be easily changed to assert
step/n facts again. They are enriched by information about, among others, the
original source code location of the called rule. At the end, all the asserted facts
are collected and sent back to the web-based tracer with the help of SWI-Prolog’s
Pengines framework, where they are visualised and shown to the user.

Modified Term Expansion. By default, SWI-Prolog translates DCGs into plain old
Prolog clauses via term expansion (cf. Section 6.2.4). Since our meta-interpreter for
phrase/{2, 3, 4}SWI relies on their original representation, we bypass SWI-Prolog’s
dcg_translate_rule/2SWI by defining a user-defined term expansion for -->/2
which is executed first. It wraps the DCGs into a new predicate instead, e. g., --->/2.

Dict Generation. The server-side components that generate the data required for
the visualisation are shown in Figure 7.2. A query is evaluated by the modified
meta-interpreter as presented in Section 7.3.3, with information about the individ-
ual execution steps being temporarily stored as Prolog facts. Then, these facts are
merged into a single Prolog term, that is used to send the tracing information to
the client. We use dicts, because they allow for easy serialisation into JSON, as
introduced in Section 3.3.5.

151

Chapter 7. A Tracing Meta-Interpreter for Web-based DCG Visualisation

Server Architecture. Pengines [70] offers the means to use logic programming in
web-based projects. It is based on SWI-Prolog’s libraries for threads, HTTP clients
and servers. Pengines implements a universally applicable high-level interface be-
tween SWI-Prolog and clients. The underlying observations of the conversations
taking place between Prolog and a user resulted in the definition of the Prolog
transport protocol and its communication protocol over HTTP (PLTPHTTP). For a
more detailed introduction to PLTP, we refer to Section 4.3.6.

Our DCG visualisation is based on the demo server of the Pengines project. On
the server-side, we use the previously presented modified term expansion and DCG
meta-interpreter. For every user, a new Pengines thread is created with a separate
user module. This way, the facts are asserted in a local scope, and are destroyed
when the user disconnects. It prevents the accumulation of unnecessary facts inside
the meta-interpreter’s module, enables concurrent requests by multiple Pengines
threads, and ensures security.

To prevent the execution of possibly malicious Prolog code, the Prolog code em-
bedded in the DCGs is checked before its execution, using Pengines’ built-in se-
curity features. Allowed Prolog predicates can be declared using the predicate
sandbox:safe_goal/1SWI.

Client Architecture. The web application is based on common web technologies:
JavaScript, HTML5 and CSS3. In addition, several frameworks are used in our imple-
mentation. The layout of the application is based on MUI, which is a lightweight CSS
framework based on Google’s Material Design Guidelines. Furthermore, CodeMirror
is used as an online text editor for DCGs.

Once the user has entered a DCG and formulated a request, it is executed on the
server-side with the help of Pengines on SWI-Prolog. The dict generated by the
meta-interpreter is returned as JSON. It is rendered using the logicless template en-
gine Handlebars. Interactive features, such as displaying individual execution steps,
are realised with the help of jQuery.

152

8
Automatic Parse Tree Generation

for Definite Clause Grammars

We should forget about small efficiencies, say about 97 % of the time:
premature optimization is the root of all evil. Yet we should not pass up

our opportunities in that critical 3 %. A good programmer will not be
lulled into complacency by such reasoning, he will be wise to look

carefully at the critical code; but only after that code has been identified.

— Donald Knuth33

Definite clause grammars provide a powerful and expressive formalism to describe ex-
ternal Prolog DSLs by a context-sensitive grammar. As a running example through-
out our work, we defined the declarative if-then rules as an external DSL in Chap-
ter 6, and discussed its interactive tracing and visualisation when parsing a given
input sentence in Chapter 7. However, the practical benefits of this DCG are limited:
without further modifications, it can only be used to check whether a given string
can be parsed by the grammar, but provides no additional information on how. And
though the same DCG can often be used to generate sentences that conform to the
grammar – because Prolog makes no difference in input and output arguments, and
phrase/3ISO also allows calls to the predicate in the mode (:,-,-) –, the format and
order of the difference lists returned via backtracking cannot be controlled. Since the
application of phrase/3ISO and the provided grammar rules strictly follow Prolog’s
SLD resolution mechanism, the computed answer substitutions depend only on the
grammar rules’ and terminals’ order of appearance in the source code. In particular
for left-recursive grammar rules, this easily results in correct yet not meaningful
sequences of valid sentences, when backtracked over free variables. For instance, the
EBNF grammar that describes a valid variable token in Prolog as presented in Fig-
ure 5.2 would create the possible variable names in the order of _ , _a , _aa , _aaa ,

33Donald Knuth is an American computer scientist, mathematician, and professor emeritus at
Stanford University. He created several programming languages, including the typesetting sys-
tem TEX. In 1974, Donald Knuth was awarded the Turing Award for his monograph “The Art of
Computer Programming”, which since then became a reference work in the field of algorithms
and their analysis, and the quote is taken from.

153

Chapter 8. Automatic Parse Tree Generation for DCGs

and so on, instead of the possibly more intended and descriptive sequence starting
with _ , _a , _b , and _c .

Therefore, for practical applications, the execution of the DCG should result in a
corresponding Prolog term that represents the parsed sentence. In the second case of
serialisation, i. e., mode (:,-,-) of phrase/3ISO, this Prolog term can be consumed
to create the corresponding difference list. In its simplest form, the Prolog term is a
parse tree that contains the name of the used nonterminal and its arguments, i. e.,
the grammar rule’s left-hand side. This extension of a DCG has been proposed for
natural language processing in the past and can be done automatically as a Prolog
program transformation using term expansions.

In this chapter, we first describe in Section 8.1 possible representations of the parse
tree as nested Prolog data structures, and the classical approach to use compound
terms. In the following Section 8.2, we discuss the general methods to pass this parse
tree term on to and from the grammar rule’s execution context. The presented mod-
ification of an existing DCG to additionally process the corresponding parse tree is
generic, and can be applied as a source-to-source transformation at compile-time. We
present and discuss this preprocessing term expansion scheme for DCGs with parse
trees in Section 8.3. It also introduces the SWI-Prolog package library(dcg4pt), where
all of this functionality has been wrapped up. The library(dcg4pt) acts as a drop-in
replacement for Prolog’s traditional term expansion scheme for DCGs, which we
introduced in Section 6.2.4, so that our contribution additionally implicitly handles
the processed parse tree. Section 8.4 extends these considerations to optionals and
sequences of nonterminals, which likely appear in descriptions of formal languages,
and are therefore of particular interest when parsing and serialising external DSLs
in Prolog. The variadic number of processed terminals usually introduces possible
non-termination, which needs to be handled to preserve the grammar’s ability to
be used both for parsing and serialisation, i. e., to create a parse tree by a given
source code and vice versa. The chapter concludes in Section 8.5 with an overview
of alternative approaches to the generation of parsing trees, and other extensions for
DCGs and formal grammars in Prolog.

The chapter at hand extends our work of the corresponding publication [85, Sec. 3–5],
where the foundations of library(dcg4pt) have been introduced in a shorter form:

Falco Nogatz, Dietmar Seipel, and Salvador Abreu. Definite Clause
Grammars with Parse Trees: Extension for Prolog. In 8th Symposium
on Languages, Applications, Technologies (SLATE 2019), volume 74 of
OpenAccess Series in Informatics (OASIcs), pages 7:1–7:14, 2019.

154

8.1. Representing an External DSL as a Prolog Term

The created SWI-Prolog package library(dcg4pt) is published under MIT License
at https://github.com/fnogatz/dcg4pt. It is available for installation from SWI-
Prolog’s list of add-ons.

8.1. Representing an External DSL as a Prolog Term

The general idea of parse trees is to extend a given DCG so that for every application
of a grammar rule some information about the corresponding nonterminal and its
argument is stored in a structured Prolog term. This way, a parse tree is generated
on-the-fly while parsing the given input. The Prolog representation can be of any
type that allows nested terms, e. g., dicts, or association lists like the field notation
of Seipel et al. [104, 105]. We use compound terms, as they can be constructed and
processed just by predicates provided by the ISO Prolog standard, without the need
for a particular Prolog system or additional libraries.

The nested, compound Prolog term that represents the parse tree can be displayed
graphically. Then, the order of the execution – given it was created by normal
SLD resolution with phrase/3ISO, and not by using a meta-interpreter – as well as
the applied grammar rules can be read from the tree structure. The term represents
the program flow from top to bottom and from left to right, similar to a depth-first
search. Unlike a binary expression tree (e. g., as depicted for an exemplary if-then
rule in Figure 5.1), terminals appear only in the parse tree’s leaves, while the nodes
depict only nonterminals.

The parse tree can be easily extended by further information, e. g., about the source
code locations of the applied grammar rules. However, only succeeding rule applica-
tions are part of the created Prolog term representation – if a grammar rule cannot
be applied or is backtracked, this is not depicted in the tree, following Prolog’s
SLD resolution mechanism that returns only for succeeding paths in the search tree.
Since the parse tree is just an internal Prolog representation of the external DSL,
it is not of interest to additionally store information about failing applications of
grammar rules. For use cases where these are required, e. g., for debugging purposes,
we refer to our modified tracing meta-interpreter for DCGs of Chapter 7.

In Figure 8.1, we give a graphical visualisation of the parse tree that represents the
external DSL’s fact the weather is rainy. when parsed using the DCG for if-then
rules according to Listing 6.5. The inner nodes depict the resolved nonterminals,
while the terminals are given in the parse tree’s leaves as strings and highlighted
in grey. For the sake of simplicity, we omit the handling of whitespaces, i. e., the
presented parse tree misses all occurrences of the nonterminal #//0.

155

https://github.com/fnogatz/dcg4pt

Chapter 8. Automatic Parse Tree Generation for DCGs

fact

conjunction

finding

feature equal value

noun_phrase

determiner noun

the weather is rainy .

Figure 8.1: Parse tree of the sentence the weather is rainy. for the nonterminal
fact//0 using the DCG that describe if-then rules.

Following the ideas proposed by Abramson and Dahl [2], the parse tree argument
for a DCG rule H --> B can be represented by a compound term of the form H(T),
with H being the name of the rule’s head without arguments, and T being a term
whose structure depends on the rule’s body B. Given that B is a sequence of n termi-
nals and nonterminals, we can represent each as an argument to the term H, thus the
parse tree for the grammar rule H --> B1, ..., Bn is represented by a parse tree
of functor H/n. Original arguments of the grammar rule’s left-hand side H are not
depicted in the corresponding parse tree. This list of arguments could be added as
the parse tree’s first argument. In the following as well as in our library(dcg4pt), we
refrain from this additional distinction of the applied grammar rule to keep the pro-
cessed parse tree concise. Thus, it only depicts the name of the resolved nonterminal
together with the elements of the grammar rule’s right-hand side.

8.2. Process Parse Trees in DCGs with State Passing

In comparison to EBNF, DCGs provide three extensions that allow to describe
context-sensitive grammars, as previously summarised in Section 5.6: (i) complex
control structures in the grammar rule’s right-hand side, (ii) arguments in the gram-
mar rule’s left-hand side, and (iii) the semicontext notation with pushback lists to
prepend elements to the list of processed terminals. All of them can be used to create
or consume a parse tree in the process of parsing or serialisation. However, control
structures require global variables using dynamic predicates as introduced in Sec-
tion 3.7 to store and modify the current state of the parse tree when executing the
DCG. Global variables are therefore hardly suitable to pass the parse tree from one
grammar rule to another. In this section, we compare the other two means, namely

156

8.2. Process Parse Trees in DCGs with State Passing

arguments and pushback lists, with respect to their use with parse trees, and discuss
their properties and call semantics.

8.2.1. Comparison of Context-Sensitive DCG Extensions

In contrast to the use of global variables, both context-sensitive DCG extensions of
additional arguments in the nonterminals as well as pushback lists allow to encode
the parse tree right into the DCG notation. Then, this compound Prolog term can be
passed around and modified as a state representation when applying the grammar
rules:

Additional Argument. In the context of natural language processing, it has been
proposed to extend the grammar rule’s left-hand side by an additional argu-
ment that holds the parse tree. This way, the nonterminal finding//0 becomes
finding//1. For nonterminals with an arity greater than zero, the convention
is to add the parse tree as the new very last argument.

Semicontext Notation. With the semicontext notation of DCGs, it is possible to
push back elements to the processed list. Similar to a nonterminal’s additional
argument, this allows to pass a Prolog term from one applied grammar rule to
another. Instead of relying on the previously mentioned convention that the
parse tree is given in the nonterminal’s last argument, it is instead expected
to be the nonterminal’s immediately following list element. As a consequence,
occurrences of the nonterminal finding//0 in a grammar rule’s right-hand
side are replaced by sequences of finding, [PT] , so PT holds the parse tree
produced by finding//0.

In Listing 8.1, we present the adapted DCGs for if-then rules that additionally handle
the corresponding parse trees. To keep the compared source code listings minimal,
the source code contains only grammar rules and alternatives in their bodies that are
required to parse or serialise the example sentence the weather is rainy. via the
nonterminal fact//{1, 0}. Alternatives as well as logical disjunctions on the right-
hand side of grammar rules would be added to this Prolog program by providing
additional grammar rules that are extended by the parse tree in a similar way.

Following the graphical representation of the parse tree in Figure 8.1, we omit the
handling of whitespaces by the nonterminal #//0 in our example. Otherwise, line 17
of Listing 8.1 would also contain (a) an additional argument, or (b) a pushback list.
The grammar rules for finding//{1, 0} and noun_phrase//{1, 0} had to be changed
accordingly.

157

Chapter 8. Automatic Parse Tree Generation for DCGs

Listing 8.1: Comparison of DCG extensions to process if-then rules with a parse tree

(a) using an additional argument,
fact(fact(CT, ".")) --> Prolog

conjunction(CT), ".".
conjunction(conjunction(FT)) -->

finding(FT).
finding(finding(FT, ET, VT)) -->

feature(FT), #, equal(ET), #,
value(VT).

feature(feature(NT)) -->
noun_phrase(NT).

equal(equal("is")) --> "is".
value(value("rainy")) --> "rainy".
noun_phrase(noun_phrase(DT, NT)) -->

determiner(DT), #, noun(NT).
determiner(determiner("the")) -->

"the".
noun(noun("weather")) --> "weather".
--> " ".

(b) using a pushback list.
1 fact, [fact(CT, ".")] --> Prolog

2 conjunction, [CT], ".".
3 conjunction, [conjunction(FT)] -->
4 finding, [FT].
5 finding, [finding(FT, ET, VT)] -->
6 feature, [FT], #, equal, [ET], #,
7 value, [VT].
8 feature, [feature(NT)] -->
9 noun_phrase, [NT].

10 equal, [equal("is")] --> "is".
11 value, [value("rainy")] --> "rainy".
12 noun_phrase, [noun_phrase(DT, NT)] -->
13 determiner, [DT], #, noun, [NT].
14 determiner, [determiner("the")] -->
15 "the".
16 noun, [noun("weather")] --> "weather".
17 # --> " ".

Note that Listing 8.1 (b) does not reflect the typical usage of pushback lists. Usu-
ally, the state argument is passed around implicitly from one grammar rule to the
immediately following one, i. e., it is pushed back to the processed list and then read
again from the next applied grammar rule. In our example, the state argument on
the right-hand side of finding//0 would therefore be created by processing the non-
terminal feature//0 first, pushed back to the list, to be then consumed by the gram-
mar rule of equal//0, which again puts its state back to the list for value//0. This
approach similarly allows to build the compound term finding(FT,ET,VT). For in-
stance, the parsing process of finding//0 can be started with the constant finding
as the initial state argument, and each of the resolved nonterminals feature//0,
equal//0, and value//0 consumes the term from the processed list, adds its parse
tree as additional argument and pushes back the modified compound term, until the
Prolog term of functor finding/3 is finally created. However, since we intend to
build a hierarchical term of the applied grammar rules, we refrain from this classical
pattern of pushback lists, and follow the less complex approach to directly consume
the state argument in the parent rule of finding//0 instead.

8.2.2. Properties of the Modified DCG

Both modifications of the DCG – processing the parse tree via an additional argu-
ment, or via the pushback list – do not alter the core semantics of the grammar rules.
Neither non-termination nor nondeterminism is introduced just by the supplemen-
tary parse tree processing. In addition, it does not effect the program’s performance.

158

8.2. Process Parse Trees in DCGs with State Passing

Listing 8.2: Resulting Prolog predicates after source-to-source transformation
of fact//0 and noun//0 to use pushback lists, and the following DCG
term expansion that creates the Prolog predicates fact/2 and noun/2.

1 fact(A, [fact(FT,".")|R]) :- % ll. 1–2 Prolog
2 conjunction(A, [FT,’.’|R]). % of Listing 8.1 (b)
3 noun([w,e,a,t,h,e,r|R], [noun("weather")|R]). % l. 16

In case of the nonterminal’s additional argument on the left-hand side, it is indexed
just as another argument of the expanded Prolog clause. The pushback list on the
other hand is moved to the clause’s head by SWI-Prolog’s dcg_translate_rule/2SWI

(cf. Section 6.2.4), which also facilitates indexing. For instance, the nontermi-
nal fact//0 (lines 1–2 of Listing 8.1 (b)) is expanded to a rule with conjunction/2
in its body, and the parse tree of functor fact/2 in its second argument. The non-
terminal noun//0 (l. 16) is expanded to a single fact noun/2, as the processing of
terminals can also be moved to the clause’s head. Listing 8.2 shows the expanded
clause form of the these two grammar rules. These plain old Prolog clauses for fact/2
and noun/2 can again be looked up fast with the help of SWI-Prolog’s deep index-
ing capabilities, so both approaches to modify the DCG are similar regarding their
application performance and compared to those of the original, unmodified DCG.

8.2.3. Adapted Use of phrase/3ISO

To use these modified DCGs, only calls for ?- phrase(Body, List, Rest) have to
be slightly modified to refer to the parse tree either (a) as an argument to the given
nonterminal Body, or as (b) the first list element of Rest. Therefore, both applica-
tions of the modified DCGs in the toplevel presented in Listing 8.3 are equivalent.
Each produces the parse tree for the sentence the weather is rainy. based on the
DCG for if-then rules.

In the computed answer substitution for Listing 8.3, the variable PT holds the parse
tree we illustrated in Figure 8.1 as a compound Prolog term of functor fact/1.
Because the right-hand side of the grammar rule for finding//{1, 0} contains
three nonterminals (omitting the whitespace in #//0), it is represented by a term
finding/3 in the parse tree. As before, the modified DCGs can be used for both
parsing and serialisation, i. e., to create a parse tree by a given source code as in the
previous example in the toplevel, and vice versa by providing a bound term PT for
the parse tree instead. In both directions, only a single solution is returned, as there
is exactly one successful SLD resolution to parse the given sentence, or to serialise
it respectively.

159

Chapter 8. Automatic Parse Tree Generation for DCGs

Listing 8.3: Prolog goals to produce the parse tree for the example sentence
the weather is rainy , either as (a) an additional argument, or (b) as
the pushed back remainder of the difference list.

?- phrase(fact(PT), "the weather is rainy.", []). % (a) Toplevel
% phrase(fact, "the weather is rainy.", [PT]). % (b)
PT = fact(conjunction(finding(feature(

noun_phrase(determiner("the"), noun("weather"))),
equal("is"), value("rainy"))), ".").

8.3. Source-to-Source Transformation

The construction method of the modified grammar rules is generic for both ap-
proaches, because the additional parse tree argument and pushback list is con-
structed based on the rule’s left-hand side with its nonterminal symbol and ar-
guments, together with the structure of the rule’s right-hand side. Both parts can
be examined by Prolog’s means for reflection and term inspection. The extension of
an existing DCG to additionally work on a corresponding parse tree can therefore
be done automatically at compile-time using a generic term expansion scheme.

In the following as well as in our library(dcg4pt), we use the first introduced technique
to automatically process the corresponding parse tree when parsing and serialising:
it is added as a last argument to the nonterminals. As seen before, the presented
considerations can though be easily adapted to the alternative approach using the
DCG’s semicontext notation.

8.3.1. The Library dcg4pt

As part of our contribution, we provide the SWI-Prolog package library(dcg4pt),
which is an acronym for “definite clause grammars for parse trees”. The library
was initially published as extended DCGs with the name library(edcgs). In order to
avoid confusion with Peter Van Roy’s EDCG package, which we elaborate on as
related work in Section 8.5, our package has been renamed to the more unique yet
descriptive name library(dcg4pt).

The package defines a predicate dcg4pt_rule_to_dcg_rule(+DCG,-Expansion)
that takes a DCG grammar rule as its first argument DCG and returns in Expansion
a functionally equivalent DCG where the nonterminals have been extended by
an additional parse tree argument. The library is listed in SWI-Prolog’s package
list, therefore it can be conveniently installed by calling ?- pack_install(dcg4pt)
in the toplevel. The package’s source code is published under MIT License at

160

8.3. Source-to-Source Transformation

https://github.com/fnogatz/dcg4pt. The correctness of library(dcg4pt) is ensured
by currently more than 70 unit tests that are specified with and executed by our
library(tap), which we previously presented in Section 5.2.2. Its compatibility with
new as well as former releases of SWI-Prolog is continuously tested by our version
manager swivm (cf. Section 1.5.2).

Typically, the source-to-source DCG transformation provided by library(dcg4pt) is
used to get the extended version of every DCG rule at first. The result is translated
afterwards using SWI-Prolog’s built-in predicate dcg_translate_rule/2SWI:

1 :- use_module(library(dcg4pt)). Prolog

2 term_expansion(H --> B, Rule) :-
3 dcg4pt_rule_to_dcg_rule(H --> B, DCG),
4 dcg_translate_rule(DCG, Rule).

In most cases, one intends to automatically expand all given DCGs in a Prolog
source code file into equivalent DCGs with the additional parse tree argument. To
do so, library(dcg4pt) provides the sub-module library(dcg4pt/expand). Once loaded
via ?- use_module(library(dcg4pt/expand)) , all following DCGs are replaced with
their extended variant, without the need to manually adjust any grammar rule.
Usage examples for this automatic expansion can be found in the library’s direc-
tory test.

8.3.2. Formation Principles

Our library(dcg4pt) works as a source-to-source transformation, which takes a DCG
and defines the corresponding DCG that additionally processes the parse tree. In
contrast to the alternative of modifying the standard term expansion scheme for
DCGs (cf. Section 6.2.4), which would directly expand the given DCGs to plain
old Prolog clauses that additionally process the parse tree, we can still make use
of SWI-Prolog’s predicate dcg_translate_rule/2SWI this way. It allows to benefit
from the usual optimisations performed for DCGs as part of SWI-Prolog’s four
preprocessing steps at compilation (cf. Section 5.2). At the same time, the source-
to-source transformed DCGs created by library(dcg4pt) can be further processed via
another term expansion just like regular definite clause grammars.

The general formation principles of library(dcg4pt) are presented in Table 8.1. It
lists all possibilities that can occur in the body of a DCG rule, together with their
modified versions. In addition to terminals and nonterminals, the handling of control
structures for conjunctions and disjunctions have to be defined. Furthermore, as
similarly done for the DCG meta-interpreter and its the standard term expansion

161

https://github.com/fnogatz/dcg4pt

Chapter 8. Automatic Parse Tree Generation for DCGs

Table 8.1: Formation principles to construct the parse tree for a DCG
rule h --> Body .

Body Example DCG Extended by Parse Tree
Terminal h --> "_". h(h(’_’)) --> "_".

h --> [t]. h(h(t)) --> [t].
h --> [t,s]. h(h([t,s])) --> [t,s].
h --> []. h(h([])) --> [].
The inner part of the parse tree is the (possibly empty) list, except
in case of a single nonterminal, which is directly used instead.

Nonterminal h --> a. h(h(V)) --> a(V).
Conjunction h --> a , b. h(h(V0)) -->

{ V0 = [A|V1] }, a(A),
{ V1 = [B] }, b(B).

Disjunction h --> a | b. h(h(V)) -->
h --> a ; b. { V = A }, a(A) ;

{ V = B }, b(B).
Embedded h --> a, { p }. h(h(V)) --> a(V), { p }.
Prolog, h --> a, !. h(h(V)) --> a(V), !.
and Cut Embedded Prolog and the application of the cut has no effect on

the structure of the processed parse tree term.
Negation h --> \+ a. h(_) --> \+ a(_).

Negation-as-failure does not bind anything.
Sequence h --> sequence(?, a). h(h(V)) -->
or Optional h --> ?a. sequence(?, a, V).
(Section 8.4) And similar for the prefix operators */1, **/1, and +/1.

V is a list of parse trees.
In sequence//3, we differentiate whether the DCG is called with
bound or free arguments.

scheme (cf. Appendices B.4 and B.5), it is required to define special cases for Prolog
code that is embedded using curly brackets {...} , the cut !/0ISO, and negation
via \+/1ISO. Without, both last-mentioned would also be recognised as nonterminals
and therefore be transformed into !//1 and \+//2, though both do not process a
parse tree.

As discussed before, the parse tree is always added as the very last argument to a
nonterminal. Though we omit additional arguments in the grammar rule’s nonter-
minals for the sake of simplicity in this overview, they are supported as well, and
simply have to be reflected for the nonterminals in the produced rule. For instance,
for a rule’s left-hand side of h(Arg1, Arg2) , the head of the generated DCG rule

162

8.3. Source-to-Source Transformation

Listing 8.4: Source-to-source transformation for DCGs with parse trees.
1 %% dcg4pt_rule_to_dcg_rule(+OriginalDCG, -TransformedDCG) Prolog
2 dcg4pt_rule_to_dcg_rule(X1 --> Y1, X2 --> Y2) :-
3 X1 =.. [H|_],
4 Res =.. [H, V],
5 term_args_attached(X1, [Res], X2),
6 dcg4pt_formula_to_dcg_formula(Y1, Y2, V).

becomes h(Arg1, Arg2, h(. . .)) , and likewise for nonterminals that appear in a
grammar rule’s body.

The left-hand sides of the extended DCGs given in the overview of Table 8.1 are
always of the same kind. It is the original nonterminal amended by the parse tree
as its new last argument, which again shares a consistent structure of h(V) , with
only varying bindings for the variable V. Consequently, the definition of the predi-
cate dcg4pt_rule_to_dcg_rule/2 that transforms a given DCG X1 --> Y1 is split
into two parts, as shown in Listing 8.4. In lines 3–5, the variable Res that holds
the complete parse tree binds to the compound term H (V) , which is then added
to the list of arguments on the left-hand side X2 of the modified DCG X2 --> Y2
via term_args_attached/3, which is defined in Appendix C.4. Finally in line 6,
the modified grammar rule’s right-hand side Y2 is created based on the formation
principles we introduced before.

8.3.3. Modified DCG Body

The source-to-source transformation for DCGs of Listing 8.4 closely resembles
the standard term expansion scheme to translate DCGs into plain old Prolog
clauses (cf. Section 6.2.4 and Appendix B.5). Both program transformations have
in common that additional arguments have to be added to the original terms,
and the modifications and definition by cases relate only to the right-hand sides
of the processed (grammar) rules, so it can be put into the separate predicates
dcg4pt_formula_to_dcg_formula/3 and translate_body/4[B.5]. In both predi-
cates, the first argument takes the original grammar rule that produces a corre-
sponding modified grammar rule or Prolog clause, which then binds the variable
stated in its second argument. The translate_body/4[B.5] additionally provides
access to the processed difference list in the form of two additional arguments. This
is required to incorporate the list and its remainder in the produced Prolog clause.

The two arguments for the difference list are not required in the definition of
dcg4pt_formula_to_dcg_formula/3, as our source-to-source transformation solely

163

Chapter 8. Automatic Parse Tree Generation for DCGs

Listing 8.5: Extract of the predicate dcg4pt_formula_to_dcg_formula/3 that de-
fines the transformation for DCG bodies to handle parse trees. Its full
definition is given in Appendix B.8.

1 %% dcg4pt_formula_to_dcg_formula(+Y1, -Y2, ?Value) Prolog
2 dcg4pt_formula_to_dcg_formula([Terminal], [Terminal], Terminal).
3 dcg4pt_formula_to_dcg_formula(Terminals, Terminals, Terminals) :-
4 is_list(Terminals).
5

6 dcg4pt_formula_to_dcg_formula(X1, X2, V) :-
7 callable(X1),
8 term_args_attached(X1, [V], X2). [C.4]

9

10 dcg4pt_formula_to_dcg_formula(Y1, Y2, V) :-
11 Y1 = (_,_), !,
12 term_functors_list(Y1, [(,)], Ys1), [C.3]

13 maplist(conj_body, Ys1, Ys2, V0s, V1s), [B.8]

14 V0s = [V|V0s_],
15 append(V1s_, [Last], V1s),
16 Last = [],
17 maplist((=), V0s_, V1s_),
18 term_functors_list(Y2, [(,)], Ys2). [C.3]

works on DCGs in the first place. The handling of the difference list is added in
a following step once the modified grammar rule is finally expanded into a Prolog
clause. However, the predicate dcg4pt_formula_to_dcg_formula/3 that is referred
to in Listing 8.4 similarly requires access to the inner part V of the parse tree H (V)
from within the transformed grammar rule, which is therefore passed as its third
argument. Only after the DCG is executed at run-time, the variable V gets bound
to either an atom (in case of a single terminal in the grammar rule’s right-hand
side), a compound term (nonterminal), or a list (multiple terminals or a sequence).
Therefore, unification of V happens via embedded Prolog code enclosed in curly
brackets {...} in the produced grammar rule, as depicted in the modified DCGs
for, e. g., conjunctions and disjunctions in Table 8.1.

Listing 8.5 shows the definition of the predicate dcg4pt_formula_to_dcg_formula/3
for the first three rows of formation principles we introduced in Table 8.1. The first
part processes terminals, which are either a single terminal in a list with only one
element, to which the inner parse tree V binds to (l. 2), or a list of terminals (ll. 3–4).
For a single nonterminal, the variable V binds to the parse tree generated for it. It
can be accessed in the modified grammar as the newly introduced last argument of
the original callable X1 (ll. 6–8).

164

8.4. Optionals and Sequences of Nonterminals

The modifications required for conjunctions in DCG are the most complex and given
in lines 10–18. The conjunctions are first transformed into lists and afterwards back
to compound terms of functor ,/2 with the predicate term_functors_list/3. The
inner part of the clause creates the modified DCG body and binds the variables ac-
cordingly. In line 13, each of the body elements in Y1 is transformed into a modified
version that handles its parse tree. The predicate conj_body/4 creates the DCG
body for a single nonterminal following the formation principle introduced in Ta-
ble 8.1, with two chaining variables for the processed difference list. For instance,
for a single nonterminal a, the modified DCG body Y2 is returned as follows:

?- dcg4pt:conj_body(a, Y2, V0, V1). Toplevel

Y2 = ({V0 = [V_a|V1]}, a(V_a)).

The variable V_a binds at run-time to the parse tree of the nonterminal a. The
following lines 14–17 pairwise unify the chaining variables introduced by the multiple
calls of conj_body/4, starting with V = V01 and V01 = V10 , over Vk1 = V(k + 1)0

for the k-th DCG body, and concluding with the empty list Vn1 = [] for the very
last body element. This binding for Vn1 closes the list that represents the overall
inner value V.

The predicate conj_body/4 internally refers to dcg4pt_formula_to_dcg_formula/3
again to transform the nested DCG body elements, and additionally handles se-
quences. The full definition of both predicates is given in Appendix B.8, including
the other cases that were given in Table 8.1.

8.4. Optionals and Sequences of Nonterminals

Grammars that describe formal languages often make great use of optional non-
terminals as well as sequences thereof. For instance, for computer languages whose
syntax is not whitespace-sensitive (e. g., Prolog), the tokens can be separated by
any positive number of spaces, tabs, and newline characters for indentation, and can
include optional source code annotations. In addition, the format of these tokens is
usually described as a sequence of allowed characters. In this way, an integer con-
stant is built by a sequence of decimal digit characters; an uppercase letter character
followed by an arbitrary number of alphanumeric characters forms a valid Prolog
variable symbol. In this section, we discuss the means to handle a variadic number
of processed terminals and their implementation in library(dcg4pt).

165

Chapter 8. Automatic Parse Tree Generation for DCGs

8.4.1. Parse Trees with Lists

The usage of sequences to an arbitrary number of identical nonterminals differs
from the previous applications with parse trees of finite children, which was mainly
discussed in the field of natural language processing, e. g., in [2]. There, the number of
nonterminals processed in a grammar rule’s right-hand side is known in advance. As
a result, the parse tree argument can have a fixed number of arguments and children,
i. e., the functor of the processed Prolog term can be inferred by static code analysis
at compile-time. It is solely based on the grammar rule’s structure. For instance, for
a fact in if-then rules that is simply a conjunction, the parse tree is represented as the
unary structure fact(Conjunction) . A finding that consists of a noun phrase with
its parse tree as Feature, one of the allowed equal phrases = , is , or are as Equal,
and a parse tree representation for the finding’s value as its last argument Value is
on the other hand represented as finding(Feature, Equal, Value) .

When working with optionals and sequences on the other hand, the number of
children can change and could be not limited to a fixed value that is known in
advance, just by statically analysing the grammar rule. It is therefore desirable to use
a list in the parse tree structure if the grammar rule’s right-hand side contains at least
one optional or one sequence, and rely on a fixed number of arguments otherwise.
For a right-hand side which contains only a finite, fixed number of arguments, we
could also use a single list instead of separate arguments. But since we observed
that in practice the number of grammar rules that process a flexible number of
terminals is much less than those with a fixed sequence, we aim for the more natural
representation as compound Prolog terms.

For instance, the DCG for a named variable in Prolog should produce a parse tree of
the form named_variable(L). The general structure of a named variable has been
given in Figure 5.2 in the form of an EBNF, which we present in a shortened version
here again:

named variable = variable indicator char , EBNF

alphanumeric char ,

{ alphanumeric char }

| capital letter char ,

{ alphanumeric char } ;

In the compound term named_variable(List) that represents the parse tree of a
successful DCG application, the variable List either holds a list consisting of the
parse tree that represents the variable indicator character, followed by the non-empty

166

8.4. Optionals and Sequences of Nonterminals

sequence of parse trees which each represent an alphanumeric character. Alterna-
tively, for the second part of the disjunction, List holds a parse tree for an uppercase
letter character followed by the possibly empty list of parse trees that each represent
an alphanumeric character.

8.4.2. Handling and Transformation

To denote optionals and sequences of nonterminals, we introduce the meta-nonter-
minal sequence//2 that can be used as a DCG body element. A grammar rule’s
right-hand side sequence(?Mode, :NT(Arg1, . . . , Argn)) is processed as a sequence
of the nonterminal NT //n with arguments Argi. It is expanded by our source-to-
source transformation to sequence(?Mode, :NT(Arg1, . . . , Argn), ?PTs) , as previ-
ously presented in Table 8.1. The created sequence//3 additionally holds the se-
quence’s corresponding list of parse trees as the variable PTs. This transformation is
only a special case of the formation principle introduced for nonterminals. Therefore,
it does not need to be explicitly implemented. The original nonterminal sequence//2
is just amended by the parse tree as the last, third argument, like for other nonter-
minals.

The variable Mode is one of the atoms * , + , and ? , which correspond to the symbols
for repetitions known from regular expressions. The mode * depicts a sequence of
an arbitrary number, including zero, i. e., the grammar rule’s body element NT //n

could also consume or create the empty list. We additionally provide the mode **
with the identical meaning but different order in case of backtracking. The mode +
denotes a sequence with at least one occurrence of NT //n, and the mode ? depicts
an optional nonterminal, i. e., of exactly zero or one occurrence.

Sequences of modes * and ** both consume an arbitrary number of elements
and differ only in their strategy for backtracking: sequences of * process as few
as possible nonterminals first, while ** greedily consumes the elements, beginning
with the longest possible sequence of the given nonterminal. For unambiguous and
terminating DCGs, both variants are semantically equivalent, and differ only in their
execution times.

The meta-nonterminal sequence//2 is translated into sequence//3 by our source-
to-source transformation to additionally process the parse tree. With the standard
term expansion scheme for DCGs, this again is translated at compile-time to the
Prolog predicate sequence/5. It allows to process a DCG in various instantiation
modes, i. e., with the parse tree argument or parts of the difference lists as (possibly
partially) free variables. For instance, if the repetition mode Mode in sequence/5
is a free variable, it is inferred by the given difference list and/or parse tree. As

167

Chapter 8. Automatic Parse Tree Generation for DCGs

Listing 8.6: Computing all answer substitutions for optionals and sequences of the
nonterminal n//0 in the toplevel via backtracking.

% DCG grammar rule n --> [t]. produces n(t) parse trees Toplevel
?- sequence(Mode, n, PTs, [t, t], Rest).
1 Mode = ?, PTs = [n(t)], Rest = [t] ;

Mode = ?, PTs = [], Rest = [t, t] ;
2 Mode = (*), PTs = [], Rest = [t, t] ;

Mode = (*), PTs = [n(t)], Rest = [t] ;
Mode = (*), PTs = [n(t), n(t)], Rest = [] ;

3 Mode = (**), PTs = [n(t), n(t)], Rest = [] ;
Mode = (**), PTs = [n(t)], Rest = [t] ;
Mode = (**), PTs = [], Rest = [t, t] ;

4 Mode = (+), PTs = [n(t)], Rest = [t] ;
Mode = (+), PTs = [n(t), n(t)], Rest = [] .

a result, calling ?- sequence(Mode, NT, PTs, In, Rest) in the instantiation mode
(-,:,-,+,-) with a known input list In, and free variables Mode for the mode,
PTs for the list of parse trees, and Rest for the difference list’s remainder, computes
all valid modes and variable bindings for a given nonterminal NT.

Listing 8.6 shows the output produced by sequence/5 in the toplevel for the minimal
exemplary DCG n --> [t] , which could be equally written as n --> "t" if the
Prolog flag double_quotes is set to chars. This grammar rule describes the nonter-
minal n//0 that consumes only the single atom t . The parse tree for a non-recurring
successful application of n//0 is simply the compound term n(t) according to the
representation introduced in Section 8.1. Then, given an input list of [t, t] , ten
possible answer substitutions are computed. We shortly summarise the backtracked
results for each of the four modes:

1 For the repetition mode ? , there are only two computed answer substitutions,
since the nonterminal n//0 is applied only once or never, leaving either one or
two elements in the remainder list Rest.

2 The mode * applies the nonterminal n//0 an arbitrary number of times.
Beginning with the empty sequence, the number of consumed list elements
increases on backtracking and concludes with an empty remainder list Rest.

3 Since the mode ** instead greedily consumes list elements, its order is the
inverse of the previous mode * .

4 The repetition mode + takes at least one element and subsequently behaves
like * . Therefore there are two computed answer substitutions with an in-
creasing number of consumed list elements.

168

8.4. Optionals and Sequences of Nonterminals

Listing 8.7: Transformed grammar rule with a conjunction and sequence.
1 % Original: h --> a, sequence(*, b), c Prolog
2 h(h([A,Bs,C])) --> a(A), sequence(*, b, Bs), c(C). % naive approach
3 h(h(V0)) --> % as instead produced by library(dcg4pt)
4 { V0 = [A|V1] }, a(A),
5 sequence(*, b, Bs), { append(Bs, V2, V1) }, % works only for bound
6 % difference list
7 { V2 = [C] }, c(C).

The implementation of sequence//3 in the form of a DCG is given in Appendix B.7,
together with the declaration of the corresponding Prolog meta-predicate
sequence/5. The order of the computed answer substitutions as shown in List-
ing 8.6 is determined by the order of appearance of the grammar rules in the
definition of sequence//3.

With respect to conjunctions in a grammar rule’s body, the variadic form of the
corresponding parse tree has to be considered to support complex right-hand sides
with all possible combinations of structures and body elements. This is why the
formation principles for the modified DCG which were given in Table 8.1 make use of
embedded Prolog code snippets for the variable unifications in case of conjunctions.
For instance, a naive transformation for the DCG rule h --> a, sequence(*, b), c
results in the grammar rule given in line 2 of Listing 8.7.

But since sequence//3 describes a list Bs, the generated parse tree for h//1 would
contain a list of lists in its second argument instead of the preferred flattened
parse tree representation for the overall conjunction. Consequently, the extended
DCG given in lines 3–6 of Listing 8.7 is instead preferred and generated by our li-
brary(dcg4pt). If there is no b//1 in the sequence, the resulting parse tree for h//1 is
just the compound term h([A, C]) , with A and C being the parse trees generated
for the nonterminals a//1 and c//1. Otherwise, the parse trees generated by the
applications of b//1 are placed in between A and C in the inner list V0.

8.4.3. Support for Parsing and Serialising

The aim of library(dcg4pt)’s source-to-source transformation is to create a modified
DCG that expresses a relation between the input list and the corresponding parse
tree, i. e., from the processed string of the external DSL to some kind of (abstract)
syntax tree and vice versa. In particular, the generated Prolog program can also be
used “in reverse” to a normal parser to serialise a string by its given parse tree.

169

Chapter 8. Automatic Parse Tree Generation for DCGs

For this purpose it has to be ensured that the term expansion scheme presented in
Section 8.3 uses only Prolog predicates that are pure (cf. Section 3.2.3), i. e., they can
be used no matter which of the arguments are bound. Alternatively, these predicates
have to be implemented impure with a detection and differentiation of the executed
mode, usually inferred by inspecting the argument’s variable bindings via var/1ISO

and nonvar/1ISO.

For instance, the aforementioned rule h --> a, sequence(*, b), c could also
be expanded to use SWI-Prolog’s built-in predicate flatten/2[C.12] instead of
append/3[3.4]. The predicate flatten/2 calculates a flattened list from a list of
lists and therefore also avoids the use of nested lists in the resulting parse tree. Its
full definition is given for reference in Appendix C.12. It emphasises that the goal
?- flatten(+ListOfLists, -FlattenedList) cannot be executed the other way
round, because it is logically impure due to its dependency on the cut !/0ISO. As a
result, the generated modified DCG can only be used to parse a given string and
return the corresponding parse tree; serialisation of a given parse tree back to the
corresponding string is not possible with the required instantiation mode (+,-).

In addition, because of possibly left-recursive grammar rules, or rules that consume
or produce no terminals, the expanded rules have to behave differently depending
on whether they are called with bound or free arguments. For instance, consider the
rules that describe a named variable as presented in the EBNF from Section 8.4.1:
in the first alternative, it is the variable indicator char _ , followed by a non-empty
sequence of alphanumeric char . For a given string _abc , the right-hand side in the
EBNF for named variable should first consume the single character _ , followed by
as many whitespace characters as possible to avoid unnecessary backtracking – the
behaviour that is achieved by the repetition mode ** . On the other hand, this
greedy approach is undesirable when both arguments are free, i. e., when generating
all allowed strings that form a valid named variable in Prolog, together with their
corresponding parse tree. In that case, the smallest possible string should be created
at first – effectively expressing the repetition mode * –, as otherwise the query never
terminates. In case of the transformed grammar from Listing 8.7, an free difference
list of terminals leads to the execution of the subgoal ?- append(Bs, V2, V1) in
the embedded Prolog code in line 5. However, following the SLD resolution and the
predicate’s definition from Section 3.4, it first backtracks over a growing list in the
first argument, leaving V2 and V1 unchanged.

It is therefore necessary to handle the four combinations: the processed list can be
free our (partially) bound, and the same applies for the parse tree argument. The
four different call modes are thus automatically handled by the DCGs generated
by our library(dcg4pt). Instead of relying on append/3[3.4] as previously shown in

170

8.4. Optionals and Sequences of Nonterminals

Listing 8.7, we call the library(dcg4pt)’s predicate call_sequence_ground/6. This
way, line 5 becomes call_sequence_ground(sequence(*, b, Bs), Bs, V2, V1) in-
stead.

The definition of the predicate call_sequence_ground/6 is given in Listing 8.8.
Based on the known bindings of the variable V0, which depicts the overall parse tree,
and the processed difference list A-Z, we either first reduce the known parse tree to
smaller parts (ll. 3–6), or the list of terminals A (ll. 7–11). Calls to the predicate are
inserted in the modified DCG body as part of the source-to-source transformation
using conj_body/4, as shown in the predicate’s definition in Appendix B.8. Besides
being bound (l. 8), the difference list A-Z could also be a free attributed variable,
which is checked via attvar/1SWI (l. 9). This concept, which we introduce in more
detail in Section 10.1.3, is used in SWI-Prolog to lazily read the input from an
external source into the processed list on demand, constituting an open difference
list. Therefore nonvar/1ISO fails, but SWI-Prolog’s implementation of phrase/3ISO

handles the attributed variables A and Z as expected.

If all of the arguments of call_sequence_ground/6 are free, our library(dcg4pt)
prints a warning. Though the modified grammar can be used to generate all al-
lowed lists with their corresponding parse trees, it most likely will not end with
the expected result, like previously mentioned in this chapter’s introduction. This is
because of the underlying SLD resolution, which backtracks the last possible alterna-
tive first. In our example of named Prolog variables, it results in the non-terminating
sequence of growing variable names _a , _aa , _aaa instead of the possibly more
intended and descriptive sequence that iterates over the allowed alphanumeric char ,
resulting in the sequence of _a , _b , and so on. With both arguments being free
variables, phrase/3ISO first backtracks over the sequence, not the symbols. Changing
this requires a separate meta-interpreter for the execution of the DCG. The meta-
interpreter for definite clause grammars which we presented in Section 6.2.3 could
serve as a basis for that sort of adaptions.

Similar to the definition of the predicate call_sequence_ground/6, checks for free
and bound variables have been implemented for the application of sequences using
the sequence//3 nonterminal. The resulting Prolog programs can be used both for
parsing and serialisation, based only a single grammar specified in the form of a
DCG.

171

Chapter 8. Automatic Parse Tree Generation for DCGs

Listing 8.8: Changing the order of body elements in the transformed DCG depending
on whether the parse tree argument is bound or the difference list.

1 %% call_sequence_ground(DCGBody, Ref, Rest, PTs, A, Z) Prolog
2 :- meta_predicate call_sequence_ground(//, ?, ?, ?, ?, ?).
3 call_sequence_ground(DCGBody, V, V1, V0, A, Z) :-
4 nonvar(V0), !, % parse tree bound
5 append(V, V1, V0),
6 phrase(DCGBody, A, Z).
7 call_sequence_ground(DCGBody, V, V1, V0, A, Z) :-
8 (nonvar(A) % difference list bound
9 ; attvar(A), get_attr(A, pure_input, _PIO)), !, % or lazy list

10 phrase(DCGBody, A, Z),
11 append(V, V1, V0).

8.5. Related Extensions for DCGs

Natural Language Processing. Since its introduction by Colmerauer, Prolog was
developed with a focus on natural language processing. This resulted in a first repre-
sentation of grammars as clauses of first-order logic in 1975 by Colmerauer [21, 22].
Definite clause grammars were introduced by Pereira and Warren in 1980 [96]. As
a usage example of extra arguments in nonterminals, they manually extend rules
that parse sentences by their corresponding building structures – a term holding
information about the applied rule and the elements of the rule’s right-hand side.
To support the linguistic phenomena known as “left extra-position”, extraposition
grammars have been introduced as an extension to DCGs [95].

This idea of creating terms about the applied grammar rules was adopted by Dahl
and McCord in 1983 [30]. Their modifier structure grammars extend a grammar for
sentences in natural language with two additional arguments to obtain a meaning
representation (called semantic structure) and its corresponding syntactic structure
in the form of a parse tree. Simultaneously and independently, restriction grammars
were developed by Hirschman and Puder [51]. Their work also contains automatically
created parse trees. With definite clause translation grammars (DCTGs) [1], it is
possible to handle grammatical attributes conveniently. The translation of DCTGs
into normal Prolog clauses is like that of DCGs, but a third argument is added that
holds a computed attribute of the node. An overview of these three approaches is
given in [2, Chapters 7–8], where the idea of hiding the parse tree argument from
the user is discussed.

The aforementioned approaches are focussed on context-free grammars, covering
only the expressiveness of EBNF. In particular, they do not make use of embedded

172

8.5. Related Extensions for DCGs

Prolog code snippets on a rule’s right-hand side, and higher-order structures like
sequences. Although they expand grammar rules by an additional argument to store
a parse tree, its actual construction in a generic expansion scheme is not specified.
Hence, we have observed that they do not address the challenges that arise when
grammar rules, that consume or produce no symbols, are called with free variables
as arguments. This is a requirement for grammars which are to be used for both
parsing and serialisation.

Extended DCG Notation by Van Roy. Peter Van Roy introduced the extended
DCG notation, or EDCG for short, in [122]. It was published in 1990 as part of
the Aquarius Prolog system [121, 124].The original Prolog source code of EDCGs as
implemented by Van Roy is archived at https://github.com/mndrix/edcg. A main-
tained version is available from https://github.com/kamahen/edcg (both MIT Li-
cense). In the latter repository, Van Roy’s original code has been adapted and im-
proved by Peter Ludemann to work as an add-on for SWI-Prolog, so it can be
conveniently installed by calling ?- pack_install(edcg) in the toplevel.

EDCGs treat the difference list that is processed by definite clause grammars as
an accumulator, i. e., two variables that are chained together by an accumulator
function so they can be used for parameter passing. While DCGs provide a single,
hidden accumulator in the form of a difference list in its last two arguments, EDCGs
allow to define Prolog predicates that have arbitrarily many hidden accumulators.
The additional arguments can be used to define multiple accumulators of any type,
e. g., to calculate and store the size of the consumed terminal symbols. The hidden
arguments need to be declared ahead of the grammar’s first call using the library’s
predicates.

Thus, it is feasible to use EDCGs with a hidden accumulator that creates the corre-
sponding parse tree, similar to our library(dcg4pt). To the best of our knowledge, this
has not yet been done, as there is currently no application that uses EDCGs with
an accumulator that creates a nested compound Prolog term of functors based only
on the processed nonterminal symbols. This might be due to the fact that though
user-defined accumulator functions are declared just as normal Prolog predicates,
they only provide access to the former and following value of the accumulator (e. g.,
in case of difference lists the splitting in the head and remainder), as well as to a
passed Prolog term. Context information about the currently applied EDCG rule
is nevertheless missing in the accumulator function. Similar to the term expansion
for traditional DCGs, we therefore require a preceding program transformation to
augment the EDCG rules by the needed information in order to avoid describing
the corresponding parse tree’s structure manually in the rule’s right-hand side.

173

https://github.com/mndrix/edcg
https://github.com/kamahen/edcg

Chapter 8. Automatic Parse Tree Generation for DCGs

Nevertheless, in practice we often encountered use cases where it would be useful to
carry more than one implicit accumulator in the DCGs generated by library(dcg4pt),
for instance in the passing of program-wide flags and options in our library(plam-
mar). With classical DCGs, these parameters have to be provided by additional
arguments to the nonterminals in the rule’s left-hand side, which usually requires
the invention of many arbitrary variable names, and the chance of introducing errors
is large. In addition, modifying or extending an existing definite clause grammar by
an additional argument, is tedious. With EDCGs, it requires the definition of just
another accumulator, without further modifications to the underlying grammar.

Extended DCGs by Seipel et al. Our library(dcg4pt) has its origins in the li-
brary(edcg) module provided as part of the Declare Developers’ Toolkit DDK pack-
age [103]. This library has been used in an application of DCGs to language pro-
cessing for electronic dictionaries in linguistics by Seipel et al. [102], where parse
trees are represented as an XML term in Prolog. It is available for download at
https://www1.pub.informatik.uni-wuerzburg.de/databases/ddbase/.

The library(dcg4pt) is an improvement on the previous implementations of parse tree
handling in DCGs of [30] and [102]. Though it evolved from the DDK’s library(edcg),
it is more focussed on the applicability for both parsing and serialisation, and to work
as a drop-in replacement for Prolog’s standard term expansion scheme for DCGs.
In addition, it adds support for the four repetition modes ? , * , ** , and + of
optionals and sequences, and dynamically decides to either reduce the difference list
or parse tree into smaller parts first, depending only on the applied instantiation
mode.

174

https://www1.pub.informatik.uni-wuerzburg.de/databases/ddbase/

9
A Prolog Parser and Serialiser in Prolog

Any sufficiently complicated C or Fortran program contains an ad-hoc,
informally-specified, bug-ridden, slow implementation of half of Common Lisp.

— Greenspun’s tenth rule of programming

Philip Greenspun’s tenth rule of programming (circa 1993) expresses the opinion
that the flexibility and extensibility of complex systems implemented in low-level
languages require the same facilities as needed to implement a subset of the methods
used in Lisp. Originally specified in 1958 – a year after Fortran –, Lisp (historically
“LISP”) is the second-oldest high-level programming language, though it is still in
widespread use today. Its best-known general-purpose dialects are Racket, Common
Lisp, Scheme, and Clojure. Lisp’s characteristic, fully parenthesised prefix notation
makes no distinction between expressions and statements, i. e., both code and data is
written as expressions that are evaluated. Since Lisp functions are notated as lists,
they can be processed exactly like any other data, which allows to reason about
programs and manipulate them via meta-programming, similar to Prolog.

Greenspun’s tenth rule can also be interpreted as a satirical critique of systems
that include complex, highly configurable sub-systems, often leading to large, hardly
maintainable software projects with data exchange formats and interfaces to several
external systems. Rather than including a custom interpreter for some domain-
specific language in a high-level programming language, Greenspun’s tenth rule sug-
gests using a widely accepted, fully-featured language with an extensible syntax
instead – like Lisp. In this regard, it emphasises the use of a general-purpose lan-
guage with a flexible syntax that allows the definition of internal domain-specific
languages as opposed to complex systems of a higher-level language that require
parsers and interpreters.

Prolog fits well into these considerations. With its flexible syntax, it allows to embed
many domain-specific languages internally. Together with its homoiconicity property,
this allows to define the DSL in the same language as it is further processed. By
using Prolog’s term expansion capabilities, writing a dedicated meta-interpreter,

175

Chapter 9. A Prolog Parser and Serialiser in Prolog

or by just querying the thus obtained Prolog database as-is, there is no need for
a dedicated parser. As a consequence, the integration of languages into Prolog as
internal DSLs has been proven useful particularly for rapid prototyping. With the
various operators that are defined in the ISO Prolog standard and that are shipped
by the used Prolog system, many common constructs like arithmetic expressions
(using, e. g., +/1ISO, +/2ISO, */2ISO) and assignments via =/2ISO can be stated verbatim
without further modifications. For more expressive knowledge bases, usually only a
small number of user-defined operators has to be declared. This consequently leads
to an easily maintainable yet powerful system to integrate and store knowledge of
any application domain.

In this chapter, we present the foundations of our library(plammar), which assists
with the process of defining a DSL internally in Prolog. We adapt the concepts of
Chapters 6 and 8 and treat Prolog as if it were an external domain-specific language,
i. e., we parse it with the help of Prolog and definite clause grammars. As a result,
possible operator definitions and required language extensions that cause the given
sentence to be valid Prolog are returned. For this purpose, library(plammar) makes
use of the EBNF given in the ISO Prolog standard that formally describe the syntax
of Prolog, as well as of our library(dcg4pt) to create the corresponding parse trees.
The result is a flexible and deducing Prolog parser, completely written in Prolog,
which can be equally used the other way round as a Prolog serialiser. Consequently,
it also supports various other applications like static code analysis, and complex
program transformations.

We introduce library(plammar) in more detail in Section 9.1. In Sections 9.2 and 9.3,
we describe its first phase of lexical analysis, which converts a sequence of characters
into a list of tokens. The second phase of parsing the tokens and combining them
in order to generate a structural and meaningful representation as Prolog terms is
described in Section 9.4. Quite often, applications do not rely on all source code lay-
out information. Therefore, we present in Section 9.5 how to transform this concrete
into an abstract syntax tree. The description of the constraint satisfaction problem
that is formed by the operators’ precedences and associativities follows in Chap-
ter 10. In both chapters, we frequently rely on the exact syntax definitions as given
in Part I of the ISO Prolog standard. For better readability, we refer to them using
the abbreviation Iso, with Iso 6.3 referencing Section 6.3 of [55].

9.1. The Library plammar

As part of our contribution, we provide the SWI-Prolog package library(plammar) –
a Prolog grammar written in Prolog, for parsing and serialising Prolog code. The

176

9.1. The Library plammar

word “plammar” is a portmanteau for “Prolog grammar”. The library is published
under MIT License at https://github.com/fnogatz/plammar. It is available for in-
stallation from SWI-Prolog’s list of add-ons, therefore it can be conveniently in-
stalled by calling ?- pack_install(plammar) . It depends on our library(tap) for the
definition and application of input/output tests, library(dcg4pt) for the automatic
parse tree extension for DCGs, and our library(cli_table) to print nicely format-
ted ASCII tables in library(plammar)’s command line interface. The correctness of
library(plammar) is ensured by currently more than 300 unit tests that are speci-
fied with and executed by our library(tap) (cf. Section 5.2.2). In addition, it is used
in [82] to analyse real-world Prolog applications. For this empirical study, about
4500 Prolog files from 280 packages shipped with SWI-Prolog and its add-ons are
parsed in order to check their adherence to common Prolog coding guidelines.

In this section, we first motivate in Section 9.1.1 further applications for our
library(plammar), and how they profit from a fully-featured Prolog parser writ-
ten in Prolog. On top of the suggested use case to infer operators for possible DSL
integrations, library(plammar) can be used to analyse Prolog source code files, and
to define source-to-source transformations. In Section 9.1.2, we present a summary
of the predicates that are provided by library(plammar). Section 9.1.3 describes
its standalone command line interface. The section concludes in Section 9.1.4 with
an overview of the package’s underlying concepts and its tokenisation and parser
components.

9.1.1. Intended Applications

All the advantages of using Prolog to model expert knowledge in a particular ap-
plication domain using an internal DSL apply only if the process of defining the
required Prolog operators is fairly easy. Currently, this process is often driven by
incrementally improving a small, internal Prolog DSL, starting from only the built-
in operators. However, in an environment focussed on rapid prototyping, it is often
intended to start by expressing the overall problem, and divide it into smaller parts.
library(plammar) supports this process by automatically detecting feasible operator
definitions that make a set of given example sentences valid Prolog programs.

However, a fully-featured Prolog parser written in Prolog not only allows to solve
the constraint satisfaction problem constituted by missing operator definitions. Even
with all precedences and associativities known, there are various applications for
the parser that benefit from the fact that library(plammar) is completely written in
Prolog. In the following, we shortly introduce some of these applications.

177

https://github.com/fnogatz/plammar

Chapter 9. A Prolog Parser and Serialiser in Prolog

Static Source Code Analysis. Tools for static source code analysis have been es-
tablished in the process of software engineering in all major programming languages.
They allow developers to discover potential faults early. For instance, a misspelled
variable name is never used again, and therefore throws a singleton warning. Be-
sides the prevention of software bugs, static code analysis could highlight means for
optimisations, e. g., to eliminate loop invariants.

One way to identify so-called code smells is by visualising the source code, i. e., to
illustrate modules, predicates, and their connections. Since library(plammar) parses
Prolog like an external DSL, it also constructs a corresponding parse tree on-the-fly,
which can serve as a starting point to create source code visualisations, and to find
duplicated code or strongly coupled predicates. Another useful property is the usage
of programming patterns that go beyond the ISO Prolog standard. Using static
source code analysis, a given Prolog program can be tested for compatibility with
different target environments, i. e., in which Prolog systems it can be used without
or with only minor changes, or if a particular version thereof is required.

Enforcement of Coding Conventions. Another typical static source code analysis
is regarding its adherence to coding standards. This is useful in particular for open-
source projects with a wide variety of contributors with different backgrounds. In
combination with a continuous integration (CI) pipeline, this allows to automatically
enforce the project’s naming conventions and consistent code indentations [142].
In our work [82], library(plammar) has been used to empirically evaluate modules
that are shipped with SWI-Prolog or provided in its list of add-ons regarding their
adherence to some popular Prolog coding guidelines of [25].

For instance, a typical coding standard is to limit the length per source code line
to a fixed number. Covington et al. suggest to use a column width of 78 or 79
characters, which can be lowered for maximum readability down to 55 charac-
ters. Since Prolog has no distinction of variables for input and output, in the lin-
ter based on library(plammar) we can simply call the coding convention setting
max_line_length(Int) with a free variable, as it will bind Int to the maximum
column width of the examined Prolog file. This neat application of logic variables
emphasises the use of Prolog for implementing linters and static source code analysis
tools for software projects written in Prolog, or any other language.

Code Formatter. While linters usually just warn about the breach of coding con-
ventions, code formatters are used to automatically rewrite source code in the desired
way, which ultimately results in a program transformation. These typically require
to first parse the program based on a grammar, then generate an abstract syntax

178

9.1. The Library plammar

tree, modify it, and finally serialise it again. As introduced with our library(dcg4pt),
we can use the same language specification – i. e., the same grammar and code –
for the parsing and serialisation steps. They share a single data structure: the parse
tree which was automatically added by our tool’s modified term expansion. The
resulting Prolog program can be used in both directions without any modification.
Compared to the common approach to use a parser generator like ANTLR [93] in-
stead, library(plammar) relieves the programmer from the burden of keeping two
tools, for parsing and serialisation, in sync.

Incremental Rollout of Experimental Language Features. Besides operators,
some DSLs require minor syntactic changes to Prolog to be valid and meaningful
terms, like the var_prefix[D.7] program flag. Though the fact Prolog is great is
a syntactically valid if-then rule, it becomes relevant only if Prolog is (in contrast
to the ISO Prolog standard) not handled as a variable but atom, as otherwise the
universally quantified variable Prolog implicates that everything is great. By setting
var_prefix(true), the fact can be used as-is, which underlines the usefulness of
such program flags for the expressiveness of Prolog, though they are supported by
only a minor part of the Prolog systems, and are not standardised at all.

In other programming languages, it has proven to be useful to have implementa-
tions that are flexible enough to enable and disable such individual language fea-
tures, for backwards compatibility on the one hand, but also for testing new, exper-
imental syntactic changes before going productive on the other. For instance, new
language features that are discussed for the inclusion in JavaScript go trough five
stages (strawperson – proposal – draft – candidate – finished), before being officially
released in the ECMAScript standard, thus evolving an addition from an idea to a
fully specified feature, complete with acceptance tests and implementations in mul-
tiple systems. In this process, newly discussed features are available for usage, tests,
and real-world applications from the beginning. Even if not yet implemented in all
systems, their adoption is facilitated by the availability of program transpilers that
polyfill features which are missing in the target environment by source-to-source
transformations to backwards compatible standard expressions. In the case of Java-
Script, which experienced the addition of far-reaching changes and significant new
syntax for writing complex applications when moving to ECMAScript 2015 (for-
merly ECMAScript 6) [141], the open-source transpiler Babel34 became the de-facto
standard to support legacy browsers, with more than 16 million downloads per week
in 2019.35

34Babel JavaScript compiler, https://babeljs.io/, MIT License.
35Blog post “Babel’s Funding Plans” (November 2019), https://babeljs.io/blog/2019/11/08/babels-

funding-plans.

179

https://babeljs.io/
https://babeljs.io/blog/2019/11/08/babels-funding-plans
https://babeljs.io/blog/2019/11/08/babels-funding-plans

Chapter 9. A Prolog Parser and Serialiser in Prolog

A similar toolchain to incrementally implement, test, and adopt new language fea-
tures is in contrast missing in the Prolog community, even though a common plat-
form is more tempting with the larger number of different systems that implement
the ISO Prolog standard or dialects thereof, compared to the manageable number
of JavaScript platforms. After all, many (all?) Prolog systems diverge from the ISO
Prolog standard.36 Their parsers have bugs, are written by people who misunder-
stand the specification, or are extended by proprietary syntax to introduce new
language features [82]. With library(plammar), we provide a unified platform that
targets only the Prolog syntax, without an associated run-time. It can help to iden-
tify incompatibilities between existing systems and Prolog applications, as well as
a foundation to incrementally define and test new language extensions. A major
advantage compared to its implementation in other languages is library(plammar)’s
used technology stack: based only on Prolog and DCGs, it is easily understandable
for the targeted audience of Prolog system implementers and users.

9.1.2. Provided Predicates

Analysing the syntax of a programming language usually requires two phases: (i) the
lexical analysis, that converts a sequence of characters into a sequence of tokens,
and (ii) the parsing of the tokens in order to generate a structural representation.
Our library(plammar) similarly provides the two predicates prolog_tokens/{2, 3}
and prolog_parsetree/{2, 3} which convert some Prolog source code into a list
of tokens or into the parse tree. The first always succeeds, as any input can be
lexically analysed. The predicate prolog_parsetree/{2, 3} on the other hand only
succeeds for a valid Prolog program. In this case, it returns its parse tree, which is
the program’s concrete syntax tree (CST), i. e., including all source code information
like line breaks, whitespaces, and annotations. This predicate implicitly performs
the lexical analysis via prolog_tokens/{2, 3} first; however, our module exports no
public predicate to manually convert a known list of tokens to the corresponding
parse tree.

Both predicates expect the Prolog source code as their first argument, and the rep-
resentation as token list or parse tree as the second. The third optional argument
can be used to provide a list of settings that can be processed by SWI-Prolog’s
library(option) [136, Sec. A.26]. If not specified, the empty list is used, thus falling
back to the settings’ (reasonably chosen) default values. The options are typically
specified in the format Property (Value) . Most allow only a Boolean Value, which

36Conformity Testing I: Syntax, list of compliance to the ISO Prolog standard for popular Pro-
log systems, collected by Ulrich Neumerkel: https://www.complang.tuwien.ac.at/ulrich/iso-
prolog/conformity_testing.

180

https://www.complang.tuwien.ac.at/ulrich/iso-prolog/conformity_testing
https://www.complang.tuwien.ac.at/ulrich/iso-prolog/conformity_testing

9.1. The Library plammar

is stated as true or false . For compatibility with library(option) and SWI-Prolog’s
program flags, we also support the atoms yes and no . The properties are formu-
lated so that the implicit default is always false .

In many applications, only the program’s abstract syntax tree (AST) is of interest,
for instance in case of compilation or interpretation. The library(plammar) therefore
also ships with the predicate prolog_ast/{2, 3}, which removes from the parse tree
all information that is not necessary for the depicted program’s execution, i. e., all
contained source code annotations and layout information.

Following the ideas of library(dcg4pt), all predicates provided by library(plammar)
have been developed with a focus on their usage as relations, i. e., with support for
various instantiation modes. Thus they handle the input of only the Prolog source
code in their first argument, or only the tokens, parse tree, or abstract syntax tree
in their second argument. We also support queries with all arguments being free
variables, including the list of options in their third argument.

All of the six predicates prolog_tokens/{2, 3}, prolog_parsetree/{2, 3}, and
prolog_ast/{2, 3} support multiple formats to represent the processed Prolog
source code in their first argument:

– stream: stream(user_input)
The input is read from the given stream identifier, which is either explicitly
created using the predicate open/3ISO, or a built-in alias like user_input.

– file: file(’~/append.pl’)
The input is read from the file that is given by its name. Like for streams, this
option supports SWI-Prolog’s lazy lists to read in the file.

– string: string("append([], Y, Y).")
The given text enclosed in double quote characters is used as the predicate’s
input.

– chars: chars([a, p, p, e, n, d, ’(’, ’[’, ’]’, . . . , ’)’, ’.’])
The given list of characters is used as the predicate’s input.

Since library(plammar) is based on DCGs, all predicates internally work on lists
of characters, therefore all input formats are mapped to chars. Only the formats
string and chars allow to use the predicates of library(plammar) in all instantiation
modes, as the conversion from a string to a list of characters and vice versa can be
implemented in a logically pure way. Input streams on the other hand cannot be
used for writing, which similarly applies for the format file.

181

Chapter 9. A Prolog Parser and Serialiser in Prolog

9.1.3. Command Line Interface

The library(plammar) comes with a command line interface to parse given source
code and return the list of tokens, parse tree, or AST. It can be executed as follows:

swipl -g main cli.pl -- [options] [<filename>] Bash

Called with the flag --help instead of the filename lists all available options. The
command line interface accepts a filename as the first argument. If called without,
the source is read from standard input stdin. As usual in command line inter-
faces, the empty -- is required to separate the options given to SWI-Prolog (e. g.,
-g to declare main/0 as SWI-Prolog’s initial goal) from those processed by our
library(plammar) command line interface in cli.pl.

It is possible to create a pre-compiled file which increases the tool’s performance
significantly. The command line interface in cli.pl is compiled using SWI-Prolog’s
-c option which creates a saved state [136, Sec. 13.2]:

swipl -g main -o cli.exe -c cli.pl && chmod +x cli.exe Bash

The pre-compiled file cli.exe is automatically created during the package’s instal-
lation as a SWI-Prolog add-on, and via the Makefile target make cli . The created
file’s suffix .exe is chosen for compatibility with Windows systems. After the pre-
compilation step as mentioned before, the created executable can be called via:

./cli.exe [options] [<filename>] Bash

9.1.4. Foundations

The parser is an important component of compilers and interpreters, as it anal-
yses the source code of a programming language to create some form of internal,
hierarchical data representation. It is often preceded by a step for lexical analysis,
which first creates a sequence of tokens which the parser works on. This step is
thus also called tokenisation. With DCGs it is possible to write scannerless parsers
(also called lexerless parsers) that combine these two separate steps into a single
grammar. However, the ISO Prolog standard defines Prolog in the similar, tradi-
tional way: it first declares that a Prolog program consists of Prolog terms that
are a sequence of tokens, and later defines the grammars for tokens (Iso 6.4) and
terms (Iso 6.2 & 6.3) separately. Therefore, our implementation of library(plammar)
is also split into these two phases. Both make use of grammars but work on lists of
different types: the lexer handles the program source code as a string – i. e., a list of

182

9.2. Tokenisation with the ISO Prolog Standard’s EBNF

characters –, the parser on the other hand works with a list of tokens. This goes well
with Prolog’s built-in DCG formalism – as introduced in Section 6.2, they allow to
define grammars on difference lists of any type.

For performance reasons in the different use cases of parsing on the one hand and
serialisation on the other, the tokenisation provided by library(plammar) uses both
Prolog’s DCG formalism, and a finite-state machine. In the following Section 9.2, we
focus on the lexer implementation using the syntax description given in the form of
EBNF grammars in the ISO Prolog standard. In Section 9.3, a second, alternative
approach to implement the lexer as a finite-state machine is presented. The parser
component is discussed separately in Section 9.4.

9.2. Tokenisation with the ISO Prolog Standard’s EBNF

The syntax of Prolog is described in the ISO Prolog standard using the grammar
formalism EBNF. With our considerations from Section 5.6, this grammar can be
integrated as an internal DSL in Prolog with only minor modifications:

– In the name of nonterminals, we replace whitespaces by underscore characters.
The ISO Prolog standard does not use uppercase letters, therefore the modified
nonterminal symbols already constitute valid Prolog atoms and thus callables.

– The very last grammar rule ends with the full stop . instead of EBNF’s
semicolon symbol “;”, which can be used as infix operator ;/2ISO in Prolog to
terminate all but the last EBNF grammar rules.

– Comments are written as usual in Prolog as /* . . . */ instead of EBNF’s
(* . . . *) .

This way, the notation for Prolog terms from the EBNF of Iso 6.4 is written using
the internal Prolog DSL as follows:

term = /* 6.4 */ Ebnf Dsl

{ token /* 6.4 */ } ;

As introduced for EBNF in Section 5.6, { token } denotes the possibly empty
repetition of the nonterminal token//0. That means that following the ISO Prolog
standard, a Prolog term is lexically just a sequence of tokens, whose format is again
described by another EBNF grammar rule in Iso 6.4.

Given the Prolog syntax in the form of EBNF rules from the ISO Prolog standard,
they can be stated verbatim in a sub-module of library(plammar) using the internal

183

Chapter 9. A Prolog Parser and Serialiser in Prolog

Prolog DSL for EBNF we defined in Section 5.6. An extract of Iso 6.4 that formally
describes the syntax of a Prolog variable is given in Appendix B.2.

The overall grammar for all Prolog tokens is implemented in the module
library(plammar/token).37 Following the exact definitions of Iso 6.4, it implements
more than 100 nonterminals in about 800 lines of code, using the internal Prolog
DSL for EBNF. The processor character set of Iso 6.5, which describes Prolog’s
alphabet (cf. Section 3.1), defines additional 33 nonterminals in about 300 lines of
code. The latter include the frequently used nonterminals small_letter_char//0,
capital_letter_char//0, and decimal_digit_char//0.

9.2.1. Expanding the Internal DSL into DCGs with Parse Trees

In Appendix B.3, we present a term expansion that translates this internal DSL
representation of EBNF into multiple DCGs, one for each nonterminal. For the
usage with library(plammar), we expand the DCGs by an additional argument Opts
for the options list that is passed to library(plammar)’s prolog_parsetree/3. This
is achieved by another term expansion for DCGs that adds the variable Opts to all
nonterminals, using the predicate term_args_attached/3[C.4].

By additionally using our library(dcg4pt), which we introduced in detail in Chapter 8,
the definite clause grammars created this way can be further modified to each hold
an additional argument for their corresponding parse tree, which is represented by
a compound term. Finally, these modified DCG rules are translated into plain old
Prolog clauses using the standard term expansion scheme for DCGs, as presented in
Section 6.2.4.

Listing 9.1 shows in (a) the ISO Prolog standard’s original EBNF that describes a
Prolog term, and the following four steps of this source-to-source transformation:

(a) presents the extract of the original EBNF as specified in Iso 6.4 as an internal
Prolog DSL,

(b) depicts the equivalent DCG,

(c) shows the DCG extended by the additional argument Opts for the options list,

(d) is its modified version with a new last argument that holds the processed parse
tree from library(dcg4pt),

(e) shows the created Prolog clause for this modified DCG as generated by SWI-
Prolog’s standard term expansion for DCGs.

37Its sources are located in the project’s repository in the Prolog file prolog/plammar/token.pl .

184

9.2. Tokenisation with the ISO Prolog Standard’s EBNF

Listing 9.1: Formal description of a term’s syntax as a sequence of tokens as

(a) internal DSL for EBNF,

term = /* 6.4 */
{ token /* 6.4 */ } ;

(b) DCG,

term --> /* 6.4 */
token / 6.4 */ .

(c) DCG with options,

term(Opts) --> /* 6.4 */
token(Opts) / 6.4 */ .

(d) DCG with options and parse tree,

term(Opts, term(PTs)) --> /* 6.4 */
(token(Opts), PTs) / 6.4 */ .

(e) Prolog clause with options, parse tree,
and difference list.

term(Opts, term(PTs), A, Z) :-
*(token(Opts), PTs, A, Z).

Note that the source code annotations cannot be accessed in the term expansion,
thus they are actually not part of the created DCGs or Prolog clauses in List-
ing 9.1 (b)–(e). Nevertheless, in this and the following code examples we transfer
the comments as they help the reader to find the ISO Prolog standard’s original
definition of the referenced nonterminal.

In Section 8.4, we introduced library(dcg4pt)’s meta-nonterminal sequence//2 to
denote sequences and optionals of nonterminals. Similarly, library(plammar) defines
the prefix operators ?/1 (optional element), and */1 (possibly empty repetition) for
a concise and short notation for sequences in the DCGs of step 2. Since never used
by the ISO Prolog standard, there is no dedicated prefix operator for the non-empty
sequence. After applying all term expansions, these prefix operators result in the
Prolog predicates ?/4 and */4, which in addition to the referenced DCG body also
hold arguments for the list of parse trees, and a pair that represents the processed
difference list. Their definition is given in Appendix B.9. To support both efficient
parsing and serialisation, they necessarily differentiate between predicate calls with
a bound parse tree and others with a bound difference list.

Following the ideas of library(dcg4pt), the extended DCG for the nonterminal
term//0 describes a parse tree of the form term(PTs). According to our modi-
fied term expansion for sequences of the nonterminal token//0, the variable PTs
will always be a list of parse trees for all token, i. e., each list element is a com-
pound term token(. . .) again. This list of tokens is exactly the result one would
expect from a lexer, but also from the predicate prolog_tokens/3 that ships with
library(plammar). Consequently, it is implemented as follows, using phrase/3ISO

on the expanded nonterminal term//2, with the list of options Opts in its first
argument, and the processed parse tree term(Tokens) in its second:

185

Chapter 9. A Prolog Parser and Serialiser in Prolog

1 %% prolog_tokens(?Source, ?Tokens, ?Opts) Prolog

2 prolog_tokens(chars(Chars), Tokens, Opts) :-
3 phrase(term(Opts, term(Tokens)), Chars, []).

Though library(dcg4pt) also supports open difference lists (i. e., the very last argu-
ment Z is a free variable), library(plammar) works only on closed difference lists. This
is because of its application, which is focussed on Prolog programs. The processed
Prolog source code file is finite, and so is the list of characters and the list of tokens.
Therefore, the last argument of phrase/3ISO is known to be the empty list [] .

9.2.2. Context-Sensitive Requirements

The format of tokens in the programming language Prolog is specified in Iso 6.4.
While most of the syntax is described using only the grammar formalism EBNF, the
ISO Prolog standard also contains informally specified requirements which cannot
be expressed by context-free grammars. For instance, in addition to the grammar
rules that describe the language’s token lexically, Iso 6.4 also states the following
requirement informally:

A token shall not be followed by characters such that concatenating the
characters of the token with these characters forms a valid token [...].

This requirement cannot be expressed by a context-free grammar, because it requires
an arbitrary look-ahead. Therefore, not all nonterminals are implemented by the
internal Prolog DSL. Instead, explicit context-sensitive requirements use one of the
formats shown as intermediate steps of the program transformation. The used level
depends on whether the requirement relies on (c) just the options list, (d) the parse
tree, or (e) the difference list.

For instance, the aforementioned example of tokens, that shall not be followed by
characters that again form a valid token, requires access to the subsequent elements
of the processed difference list. The look-ahead can be implemented in two ways:

– In some of the intermediate steps (b)–(d) that represent DCGs, the grammar
rule can first consume the following characters to ensure they are not part
of the currently examined sequence, and than pushed back unchanged to the
difference list using DCG’s built-in semicontext notation. This follows the idea
of the nonterminal elem//0 which we used as an example in Section 6.2.2.

– Alternatively, the plain old Prolog clause that is created in step (e) allows
access to the elements of the processed difference list in its last two arguments.

186

9.2. Tokenisation with the ISO Prolog Standard’s EBNF

Listing 9.2: Prolog wrapper token_/4 for the nonterminal token//0 to ensure the
context-sensitive requirements of Iso 6.4.

1 token_(Opts, token(Tree), A, Z) :- Prolog
2 nonvar(A), !,
3 token(Opts, token(Tree), A, Z),
4 Some_More_Elements = [_|_], % at least one element
5 \+((token(Opts, _, A, Shorter_Z),
6 append(Some_More_Elements, Shorter_Z, Z))).
7 token_(Opts, token(Tree), A, Z) :- token(Opts, token(Tree), A, Z).

Both alternatives result in similar Prolog predicates. In library(plammar), we opted
for the second option, as it additionally allows to differentiate between the cases the
Prolog predicates are called with either a bound difference list or bound parse tree
for improved performance. In the latter case of a known parse tree, the required
look-ahead for the difference list can be skipped, because in our applications we
assume a well-formed input that describes a valid Prolog program. Therefore, the
list Tokens in the parse tree term(Tokens) cannot contain two subsequent tokens
which together would also form a valid token, making the look-ahead obsolete for
this instantiation mode (+,+,-,-).

In Listing 9.2, we present the definition of the Prolog predicate token_/4, which
serves as a wrapper for token/4 that is created by the program transformation for
EBNF. If the parse tree argument is known and the variable for the difference list A
is free (l. 7), it simply calls the original predicate. Otherwise, the predicate succeeds
only if token/4 does not succeed for a shorter remainder list Shorter_Z (ll. 4–6),
as this implies that consuming more elements from the difference list would also
result in a valid Prolog token. It uses a variadic number of additional elements,
since we cannot rely only on the subsequently following ones. For instance, the
character sequences 1 and 1.2 form valid Prolog tokens, as they can be parsed
by the nonterminals integer//0 and float_number//0. However, the intermediate
character sequence 1. forms no valid Prolog token.

Since the ISO Prolog standard contains several similar context-sensitive require-
ments, parsing Prolog is also a prime example for a realistic parser based on DCGs.
In our library(plammar), we use the EBNF formalism where feasible. The interme-
diate DCG representation as well as wrappers for the resulting Prolog predicates are
used only if required. For instance, because context-sensitive constraints are infor-
mally specified in the ISO Prolog standard, or to enable or disable optional language
features which we discuss in Chapter 10.

187

Chapter 9. A Prolog Parser and Serialiser in Prolog

Listing 9.3: Definition of tokens according to Iso 6.4.
1 token = variable | name | integer | float_number Ebnf Dsl
2 | double_quoted_list | open | open_ct | close | open_list
3 | close_list | open_curly | close_curly | ht_sep | comma
4 | back_quoted_string ;
5 variable = [layout_text_sequence /* 6.4.1 */],
6 variable_token /* 6.4.3 */ ;
7 open = layout_text_sequence, open_token /* 6.4.8 */ ;
8 open_ct = open_token /* 6.4.8 */ ;

9.2.3. Tokens and Optional Layout Text

In the previous section, we already mentioned two nonterminals for Prolog tokens
that represent numbers, integer//0 and float_number//0. Listing 9.3 shows the
EBNF from Iso 6.4 that lists all allowed tokens. As an example, Appendix B.2 gives
the complete EBNF to parse a variable in the form of the internal Prolog DSL.

In general, Prolog is not whitespace-sensitive, i. e., the program’s meaning does not
rely on the indentation of the code. The source code can be arbitrarily indented. In
the EBNF, this is realised by additionally defining a nonterminal X _token//0 for
each nonterminal X on the right-hand side of Listing 9.3, e. g., integer_token//0 to
supplement the nonterminal integer//0. Most of these X _token//0 nonterminals
can be preceded by an optional layout text sequence (lts), represented by the non-
terminal layout_text_sequence//0, as depicted in lines 5–6 of Listing 9.3 for the
variable token.

The lts is also used to resolve ambiguities. Most importantly, it allows to determine
whether an atom followed by the left parenthesis (, which is represented by the
nonterminal open_token//0, is the functor of a compound term, or a prefix oper-
ator. The first case with no lts in-between forms the token open_ct//0, while the
latter with a preceding lts forms open//0. For all other tokens stated in Listing 9.3,
the preceding lts is optional. For instance, X(1.2.3) is built by the separate to-
kens X (variable//0), ((open_ct//0), 1.2 (float_number//0), . (name//0),
3 (integer//0), and) (close//0), which is identical for the character sequence
X(1.2 . 3) with additional whitespaces, but slightly changed from open_ct//0
to open//0 if there is also a lts immediately after X. Nevertheless, though forming
valid Prolog tokens, all these three character sequences can never be part of a valid
Prolog term according to the ISO Prolog standard, as we later argue and verify with
library(plammar) in Section 10.1.5.

188

9.2. Tokenisation with the ISO Prolog Standard’s EBNF

Since whitespaces are significant in some of the source code examples in the following
sections and Chapter 10, a required whitespace is indicated as · . In contrast, nor-
mal whitespace characters can always be left without changing the depicted term’s
meaning. In both cases of · and , the lts can also be built from single line
comments %. . . or bracketed comments /*. . . */ . For instance, p · (1, 2) can be
stated as p (1, 2) or p/* of */(1, 2) , but not as p(1, 2) without the lts. The
first represents a unary compound term p/1 written in prefix notation, with the
pair (1, 2) as its single argument, whereas p(1, 2) is the compound term of
arity 2.

9.2.4. Tokenisation Example: append/3

As an example, we consider the following extract of our implementation of the
predicate append/3 from Section 3.4:

1 %% append(?List1, ?List2, ?List1_then_List2) Prolog

2 append([], Y, Y).
3 append([E|X], Y, [E|Z]) :-
4 append(X, Y, Z).

Its list of tokens can be created by our library(plammar) by calling
?- prolog_tokens(file(’append.pl’), Tokens) . Listing 9.4 shows the elements
of the list Tokens. Symbols in the first level of indentation depict single tokens, for
instance name//0 (ll. 1–14), open_ct//0 (l. 15). The inner part of their corresponding
parse tree is reasonably indented for better readability. Symbols highlighted in grey
boxes depict the parse trees’ leaves and thus refer to the processed characters.

The first name//0 token describes the predicate’s name append of the program’s fact.
The preceding single line comment is part of this token’s lts. Because by conven-
tion we document a predicate’s expected instantiation mode by two leading percent
signs %% , the second is part of the processed comment text, while the first one is
required as the initial end line comment character (Iso 6.5.3). Here, the structure
of the sub-tree in lines 4–9 strictly follows the definition from Iso 6.4.1: a single line
comment is the end line comment character % , followed by some commend text in
the system’s alphabet, and finally ending with the newline character.

Similarly, the other tokens are represented by their corresponding parse tree as cre-
ated by our library(dcg4pt). The token open_ct//0 (l. 15) is the only one which
does not allow a leading lts, therefore its inner parse tree is immediately a com-
pound term again instead of a list. The complete first fact of our append/3 program
is built by the tokens of lines 1–25, concluding with the end_token//0 . which

189

Chapter 9. A Prolog Parser and Serialiser in Prolog

Listing 9.4: Tokens from append/3’s source code of Section 3.4 as generated by
library(plammar).

1 name([Toplevel Output
2 layout_text_sequence([
3 layout_text(
4 comment(single_line_comment([
5 end_line_comment_char(’ % ’),
6 comment_text(’% append(?List1, ?List2, ?List1_then_List2)’, [
7 char(solo_char(end_line_comment_char(’ % ’))),
8 char(layout_char(space_char(’ ’))), ...]),
9 new_line_char(’ \n ’)])))]),

10 name_token(append,
11 letter_digit_token([
12 small_letter_char(a),
13 alphanumeric_char(
14 alpha_char(letter_char(small_letter_char(p)))), ...]))]),
15 open_ct(open_token(open_char(’ (’))),
16 open_list([open_list_token(open_list_char(’ [’))]),
17 close_list([close_list_token(close_list_char(’] ’))]),
18 comma([comma_token(comma_char(’ , ’))]),
19 variable([
20 layout_text_sequence([layout_text(layout_char(space_char(’ ’)))]),
21 variable_token(’Y’, named_variable([capital_letter_char(’ Y ’)]))]),
22 comma([comma_token(comma_char(’ , ’))]),
23 variable([... as in lines 19–21 ... Y]),
24 close([close_token(close_char(’) ’))]),
25 end([end_token(end_char(’ . ’))]),
26 name([% beginning of second clause
27 layout_text_sequence([
28 layout_text(layout_char(new_line_char(’ \n ’)))]),
29 name_token(append,
30 letter_digit_token([small_letter_char(a), ...]))]),
31 ...

190

9.2. Tokenisation with the ISO Prolog Standard’s EBNF

typically terminates a Prolog clause. The second clause begins immediately after.
Consequently, the following newline character is part of its lts.

For practical applications, it has proven to be useful to further extend the parse
tree generated by library(dcg4pt) by an additional argument for all comments (non-
terminals single_line_comment//0 and bracketed_comment//0), which stores the
processed comment text. Without, the parse tree provides direct access only to the
hierarchical, verbose term structure that follows the definitions of the ISO Prolog
standard. Given this compound term, the original text can be created again using
library(plammar)’s DCGs the other way round, as for our example:

?- PTs = [char(...), char(...), ...], Toplevel

comment_text(_Opts, comment_text(PTs), Text, []).
Text = "% append(?List1, ?List2, ?List1_then_List2)" .

This typical requirement of real-world applications creates an unnecessary overhead,
which we avoid in library(plammar). The processed character sequence is instead
stored directly in the parse tree for comments. Similarly, the processed character
sequences are stored as an additional argument in the parse tree for the following
nonterminals:

– variable_token//0,

– name_token//0 (includes character sequences enclosed in ’. . . ’),

– integer_token//0,

– float_number_token//0,

– double_quoted_list_token//0 (strings enclosed in ". . . "),

– back_quoted_string_token//0 (character sequences enclosed in `. . . `),

The classical term expansion scheme for DCGs does not allow to accumulate the
processed elements of the difference list. We therefore define in library(plammar) a
suffix operator wrap/1 to denote nonterminals that should produce the additional
argument. Then, the EBNF for the nonterminal comment_text//0 becomes as fol-
lows:

comment_text wrap = [char /* 6.5 */] ; Ebnf Dsl

As a result, in Listing 9.4 the compound terms for the nonterminals comment_text//0,
name_token//0, and variable_token//0 hold the text their parse tree represent in
their first argument, e. g., in lines 6 and 10.

191

Chapter 9. A Prolog Parser and Serialiser in Prolog

9.3. Tokenisation with a Finite-State Machine

Though the formal notation in the form of EBNF as an internal DSL allows the
syntax of the programming language Prolog to be described declaratively and yet
directly executable as a Prolog program, the grammar can be improved to parse
real-world applications more efficiently. Our library(plammar) therefore alternatively
implements the lexer as a finite-state machine for the use case of serialisation. For
the definition of the processed character set, the finite-state machine still relies on
the EBNF given in the form of an internal DSL. This approach is also used for all
calls of library(plammar) predicates with a bound parse tree.

9.3.1. Addressed Problems

In an implementation of the lexer that is based only on EBNF as described in
Section 9.2, the following three major enhancements are feasible, improving the
lexer’s performance and its memory footprint.

Common Prefixes. Without modifications, the grammar rules given in the ISO Pro-
log standard contain some nonterminals with identical prefixes on the rules’
right-hand sides. Most notably, this is related to the handling of the lts, which
is allowed to precede almost all token, as shown in Listing 9.3. Following Pro-
log’s SLD resolution mechanism, this makes the parsing of the lts redundant
and is repeated again for every alternative token type. For instance, given the
term · 1.2 , the lts depicted by · is first parsed as part of the nonterminal
variable//0, which fails for variable_token//0. For the next alternative in
the grammar rule’s right-hand side, the lts is parsed all over again, and so on,
until finally the parsing succeeds for the nonterminals float_number//0 and
float_number_token//0.

Besides the repeated parsing of the lts, this example underlines that there are
also other sources of repeated computations for identical prefixes on the EBNF
rules’ right-hand sides. The term · 1.2 first succeeds for the nonterminals
integer//0 and integer_token//0, which is backtracked only after checking
the context-sensitive requirements we discussed in Section 9.2.2: a Prolog to-
ken is valid only if combined with some subsequent characters does not also
lead to a valid token, which in our example is given for 1.2 being a valid
float_number//0 token. For this alternative, the leading numbers in front of
the decimal symbol . , are finally parsed again.

Dependency on append/3. The handling of optionals and sequences of nontermi-
nals by our library(dcg4pt) heavily relies on the predicate append/3[3.4] to

192

9.3. Tokenisation with a Finite-State Machine

combine the parse trees created by the elements in a grammar rule’s right-
hand side into a single compound term. This is mainly due to library(dcg4pt)’s
and library(plammar)’s intended use for both parsing and serialisation, which
requires logically pure predicates. As described in Section 8.4.3, we therefore
avoid logically impure predicates like flatten/2[C.12]. The same applies for
the concept of difference lists, which can conversely not be used to split a list
(cf. Section 3.4). But since append/3[3.4] is linear to the length of the first ar-
gument, the parsing performance significantly decreases for longer sequences.
While in real-world Prolog programs this has only little effect with respect
to the parsing of, e. g., variable names, atoms, and numeric values, we en-
countered in our empirical community evaluation [82] several well documented
Prolog programs with large source code annotations. Relying on append/3[3.4]

here to create the parse tree for the lts results in a huge parsing overhead,
which further increases because of the repeated processing of the lts as de-
scribed before.

Non-Optimised Recursions. Not only because of our dependency on append/3 in
the used grammars, the Prolog clauses created from the definite clause gram-
mars by library(dcg4pt) and Prolog’s standard term expansion scheme are not
available for SWI-Prolog’s tail call optimisations (sometimes also referred to
as “tail recursion optimisations” in the context of Prolog). Though this does
not affect the lexer’s performance, it results in a larger memory consumption.

Given that, it is clear that though our lexer implementation of Section 9.2, which
solely relies on the EBNF grammar given in the ISO Prolog standard, provides a
correct result and produces the corresponding parse tree as required, it does not
constitute an efficient lexer in Prolog. The first aspect of common prefixes alone
can be improved by manually re-organising the grammar rules provided by the ISO
Prolog standard, which is called factoring out: the common prefix is put in a separate
nonterminal which is parsed first, followed by the various alternatives.

However, with library(plammar) we opted for a dedicated finite-state machine in-
stead, using the common prefixes as intermediate steps when parsing. In addition, it
represents the tokens as a difference list, resulting in an efficient lexer. Because on its
reliance on difference lists, this finite-state machine is used only for the predicate’s
application of parsing, i. e., in instantiation modes where the difference list is bound.
Unlike the more general use cases of library(dcg4pt), no splitting of lists is required
in case of tokenisation.

193

Chapter 9. A Prolog Parser and Serialiser in Prolog

plstart sh

ltseof

tok

slc bc

#!
[D.5]

\n

*

*

/*

*/

*

%

\n

*

ε

*

pl prolog

eof end_of_file

lts layout_text_sequence

tok token

slc single_line_comment

bc bracketed_comment

sh shebang

Figure 9.1: Finite-state machine for handling the lts that precede Prolog tokens.

9.3.2. Handling of Layout Text

The three aspects for improvement we summarised in Section 9.3.1 mainly address
the problems that arise from combining read characters into tokens and the lts, and
are therefore only related to Iso 6.4. For the description of Prolog’s alphabet with
its processed character set on the other hand, as it is defined in Iso 6.5, our finite-
state machine still uses the DCGs produced from the EBNF rules by the program
transformations we introduced in Section 9.2. Their grammar rules do not suffer
from common prefixes or sequences which require the usage of append/3[3.4]. For
instance, the nonterminal decimal_digit_char//0 (Iso 6.5.2) just lists all allowed
possibilities, i. e., 0 – 9 . Its definition does not profit from an alternative implemen-
tation. We therefore replace only the definition of the tokens according to Iso 6.4, as
previously depicted in the internal DSL in Listing 9.3, by a finite-state machine.

Figure 9.1 gives an overview of the processing of tokens and their preceding lts.
The names of the states are abbreviated in the graph. Each edge depicts a state
transition that is applied if the denoted character sequence (highlighted in grey)
is encountered in the processed difference list; otherwise, the path denoted by the
wildcard symbol * is used.

The initial state for a Prolog program is prolog pl . It allows to distinguish the
beginning of a Prolog program from the rest. For instance, it is used by the Pro-
log language extension allow_shebang[D.5], which we present in Section 10.2.2. If
the program does not start with the character sequence #! , we continue with the
state layout_text_sequence lts . From here, the finite-state machine processes the
given difference list by moving between the states for the single_line_comment slc ,
the bracketed_comment bc , and the token tok . The latter relates to the X _token//0

194

9.3. Tokenisation with a Finite-State Machine

nonterminals of the EBNF, i. e., Prolog’s smallest lexical element. This way, instead
of parsing the preceding lts separately for each token, all layout text and source
code annotations are processed first. Only after the handled character sequence is
empty ε, the final state end_of_file eof is reached.

9.3.3. State Transition Rules for Tokens

The shape of the processed Prolog tokens is manifold. Consequently, there are many
different paths from the state token tok back to layout_text_sequence lts ,
which is therefore depicted in Figure 9.1 by a dotted edge. These paths are first
determined by the class of the following characters – for instance, a lowercase
letter a – z introduces a letter_digit_token//0, which constitutes a name in
Prolog (Iso 6.4.2). A decimal digit 1 – 9 on the other hand indicates a number,
though it is not yet determined if it is an integer (nonterminal integer//0), or frac-
tional (float_number//0). Even more different tokens can be started by the decimal
digit 0 . Because of Prolog’s short notations for binary numbers, octal numbers, hex-
adecimal numbers, and character codes, at least two more characters are required
to distinguish the valid tokens. For instance, 0xf denotes the single token for the
hexadecimal number 15, while 0xg constitutes the two tokens 0 (integer//0) and
xg (name//0).

Table 9.1 lists all character classes with their created token and the following state.
The middle column indicates the functor of the created parse tree. For some prefixes,
its outer term is the same – e. g., name_token(...) if the difference list continues by
a lowercase letter, as well as if it is the semicolon ; . In this case, Table 9.1 further
determines the parse tree’s second level, i. e., the parsed character ; produces a
Prolog term of the form name_token(semicolon_token(...)) .

Besides the state layout_text_sequence lts , we introduce additional states used
in the finite-state machine of the lexer. Their name indicates their use case. For
instance, the state seq_alphanumeric_char constitutes a sequence of characters
A – Z , a – z , 0 – 9 , and the underscore _ . Unlike the corresponding DCG non-
terminals produced by library(dcg4pt), the processing of these repetitions relies on
difference lists instead of the idioms introduced in Section 8.4.

The definitions of the most common sequences is given in Table 9.2. For a given state
and prefix in the processed difference list, it lists the following state, and additional
conditions where necessary. For instance, the state seq_hexadecimal_digit_char
can also contain underscores and spaces in case the language extensions
allow_digit_groups_with_{space,underscore}[D.8,D.9] are enabled. If none of the
provided prefixes is used, the lexer continues in the state layout_text_sequence lts .

195

Chapter 9. A Prolog Parser and Serialiser in Prolog

Table 9.1: Transition rules in the finite-state machine for the state token.

Prefix Token Following State
_ variable/anonymous_variable layout_text_sequence

for trailing lts
_ variable/named_variable seq_alphanumeric_char
A – Z name/letter_digit seq_alphanumeric_char

for var_prefix[D.7]

A – Z variable/capital_variable seq_alphanumeric_char
a – z name/letter_digit seq_alphanumeric_char
’ name/quoted seq_single_quoted_item
" name/double_quoted_list seq_double_quoted_item
` name/back_quoted_text seq_back_quoted_item

for back_quoted_text[D.6]

; name/semicolon layout_text_sequence
! name/cut layout_text_sequence
, comma layout_text_sequence
| ht_sep layout_text_sequence
[open_list layout_text_sequence
] close_list layout_text_sequence
{ open_curly layout_text_sequence
} close_curly layout_text_sequence
(open for preceding lts layout_text_sequence

open_ct for empty lts layout_text_sequence
) close layout_text_sequence
. end layout_text_sequence
. name/graphic seq_graphic_token_char

if followed by one of the following graphic tokens
, $, & , * , + , - , / , : , < , = , > , ? , @ , ^ , ~

name/graphic seq_graphic_token_char
0’ integer/character_code single_quoted_char
0b integer/binary_constant seq_binary_digit_char
0o integer/octal_constant seq_octal_digit_char
0x integer/hexadecimal_constant seq_hexadecimal_digit_char
0 – 9 integer or float_number number, cf. Figure 9.2

196

9.3. Tokenisation with a Finite-State Machine

Ta
bl

e
9.

2:
St

at
e

tr
an

sit
io

n
ru

le
s

fo
r

so
m

e
im

po
rt

an
t

ch
ar

ac
te

r
gr

ou
ps

.
If

no
pr

efi
x

m
at

ch
es

or
th

e
gi

ve
n

co
nd

iti
on

is
no

t
sa

tis
fie

d,
th

e
au

to
m

at
a

co
nt

in
ue

s
in

th
e

st
at

e
la

yo
ut

_t
ex

t_
se

qu
en

ce
.

St
at

e
P

re
fix

C
on

di
ti

on
s

Fo
llo

w
in

g
St

at
e

si
ng

le
_q

uo
te

d_
ch

ar
’

al
lo

w_
si

ng
le

_q
uo

te
_c

ha
r_

in
la

yo
ut

_t
ex

t_
se

qu
en

ce
_c

ha
ra

ct
er

_c
od

e_
co

ns
ta

nt
[D

.1
2]

se
q_

al
ph

an
um

er
ic

_c
ha

r
_

,
A

–
Z

,
a

–
z

,
0

–
9

se
q_

al
ph

an
um

er
ic

_c
ha

r
se

q_
bi

na
ry

_d
ig

it
_c

ha
r

0
,

1
se

q_
bi

na
ry

_d
ig

it
_c

ha
r

_0
,

_1
al

lo
w_

di
gi

t_
gr

ou
ps

_w
it

h_
un

de
rs

co
re

[D
.9

]
se

q_
bi

na
ry

_d
ig

it
_c

ha
r

0
,

1
al

lo
w_

di
gi

t_
gr

ou
ps

_w
it

h_
sp

ac
e [

D
.8

]
se

q_
bi

na
ry

_d
ig

it
_c

ha
r

se
q_

oc
ta

l_
di

gi
t_

ch
ar

0
–

7
se

q_
oc

ta
l_

di
gi

t_
ch

ar
_0

–
_7

al
lo

w_
di

gi
t_

gr
ou

ps
_w

it
h_

un
de

rs
co

re
[D

.9
]

se
q_

oc
ta

l_
di

gi
t_

ch
ar

0
–

7
al

lo
w_

di
gi

t_
gr

ou
ps

_w
it

h_
sp

ac
e [

D
.8

]
se

q_
oc

ta
l_

di
gi

t_
ch

ar
se

q_
de

ci
ma

l_
di

gi
t_

ch
ar

0
–

9
se

q_
de

ci
ma

l_
di

gi
t_

ch
ar

_0
–

_9
al

lo
w_

di
gi

t_
gr

ou
ps

_w
it

h_
un

de
rs

co
re

[D
.9

]
se

q_
de

ci
ma

l_
di

gi
t_

ch
ar

0
–

9
al

lo
w_

di
gi

t_
gr

ou
ps

_w
it

h_
sp

ac
e [

D
.8

]
se

q_
de

ci
ma

l_
di

gi
t_

ch
ar

se
q_

he
xa

de
ci

ma
l_

0
–

9
,

A
–

F
,

a
–

f
se

q_
he

xa
de

ci
ma

l_
di

gi
t_

ch
ar

di
gi

t_
ch

ar
_0

–
_9

,_
A

–
_F

,_
a

–
_f

al
lo

w_
di

gi
t_

gr
ou

ps
_w

it
h_

un
de

rs
co

re
[D

.9
]

se
q_

he
xa

de
ci

ma
l_

di
gi

t_
ch

ar
se

q_
gr

ap
hi

c_
to

ke
n_

ch
ar

#
,

$
,

&
,

*
,

+
,

-
,

/
,

:
,

<
,

=
,

>
,

?
,

@
,

^
,

~
se

q_
gr

ap
hi

c_
to

ke
n_

ch
ar

197

Chapter 9. A Prolog Parser and Serialiser in Prolog

tok

num

int

frac

exp

lts

0 – 9

*

0 – 9
0 – 9

0 – 9

[D.10]

.0 – .9

E0 – E9
e0 – e9

E-0 – E-9
e-0 – e-9

*

*

_0 – _9
0 – 9

[D.9], [D.8]

*

0 – 9

0 – 9
[D.8]

_0 – _9
[D.9]

tok token

lts layout_text_sequence

num number

int integer

frac fraction

exp exponent

Figure 9.2: Extract of the finite-state machine for parsing numbers.

9.3.4. Parsing of Numbers

As mentioned before, parsing numbers in Prolog just as described in Iso 6.4.4 & 6.4.5

possibly creates unnecessary backtracking, because of the common prefix on the
right-hand sides of the nonterminals integer//0 and float_number//0. Figure 9.2
shows an extract of the finite-state machine that is used for parsing numbers, begin-
ning with the state token tok , and ending in the state layout_text_sequence lts

again.

Figure 9.2 describes the different paths to constitute a valid number token in Pro-
log:

– An integer is built from only decimal digits. The parse tree is of the form
integer_token(...) .
tok – num – lts

– A fractional is built from decimal digits, followed by . , and again decimal
digits. The parse tree is of the form float_number_token(...) .
tok – num – frac – lts

– Additionally, the float_number_token can be extended by an exponent.
tok – num – frac – exp – lts

198

9.3. Tokenisation with a Finite-State Machine

– Following Iso 6.4.5, the exponent is allowed only after the fractional part. This
requirement is relaxed by some Prolog systems, so that 1e3 becomes a valid
float_number_token. In library(plammar), it can be enabled by the option
allow_integer_exponential_notation[D.10].
tok – num – exp – lts

– SWI-Prolog supports splitting long integers into digit groups [136, Sec. 2.16.1.5],
both by single spaces or underscores between decimal digits. library(plammar)
provides similar language extensions, which we present in Section 10.2.2. It is
not allowed to mix this notation for long integers with floating-point numbers,
therefore we introduce a separate state integer int .
tok – num – int – lts

9.3.5. Implementation in Prolog

The finite-state machine is implemented in library(plammar) in the form of the
predicate tokens/5:

%% tokens(?Opts, +State, -Tokens, +A, ?LTS) Prolog

Since the processed difference list A-Z is known to be closed, we omit the empty
list Z in the list of arguments for token/5. Given the bound list of characters in A,
it binds the variable Tokens to the list of tokens. The list of options Opts can be
given or its settings inferred. The variable State determines the current state and
is initially bound to the atom prolog. The names of all other states follow the
previously introduced finite-state machines, i. e., lts is encoded as lts.

The very last argument LTS of tokens/5 serves multiple purposes. In the state lts, it
is a difference list that gradually collects the individual parse trees for the processed
layout text, starting from the empty difference list L-L (an open list L with the
remainder L). It uses the nonterminal layout_text//0 as defined using the internal
Prolog DSL for EBNF (Iso 6.4.1). As a result, for the input /**/ , the following
difference list for the lts is created:

[layout_text(layout_char(space_char(’ ’))), Prolog

layout_text(comment(bracketed_comment(...)),
layout_text(layout_char(space_char(’ ’))) |R]-R

The closed list (i. e., with R=[]) is passed to all following states in the last argu-
ment LTS of tokens/5, until the state lts is reached again at some point, which
starts with a fresh difference list again. Passing lts to the other states is required

199

Chapter 9. A Prolog Parser and Serialiser in Prolog

Listing 9.5: Backtracked solutions for the tokenisation of the input 1_0 .
?- _Opts = [allow_digit_groups_with_underscore(YesNo)], Toplevel

prolog_tokens(string("1_0"), Tokens, _Opts).
1 YesNo = true, Tokens = [

integer([integer_token(’1_0’, integer_constant([
decimal_digit_char(1),
underscore_char(’_’),
decimal_digit_char(0)]))])] ;

2 YesNo = false, Tokens = [
integer([integer_token(1, integer_constant([

decimal_digit_char(1)]))]),
variable([variable_token(’_0’, named_variable([

variable_indicator_char(underscore_char(’_’)),
alphanumeric_char(decimal_digit_char(0))]))])].

to differentiate between the tokens open//0 and open_ct//0, as well as because the
lts is part of the created parse tree of the following token – as depicted in lines 2–9
of Listing 9.4 in the exemplary parse tree for the append/3[3.4] Prolog program.

Each clause of tokens/5 in our library(plammar) constitutes another state. All in
all, the Prolog implementation of the finite-state machine relies on 36 different states.
Their state transitions are defined in more than 500 lines of Prolog code. Following
our argumentation for using a dedicated lexer implementation based on a finite-state
machine at the beginning of this Section 9.3, it is known that the predicate tokens/5
is called with only the aforementioned instantiation mode, i. e., with a bound char-
acter list A. However, our implementation still avoids logically impure predicates like
the cut !/0ISO. Consequently, the tokenisation can still be backtracked. For instance,
for the input 1_0 , library(plammar) returns two possible ways of tokenisation for
an unknown value for the option allow_digit_groups_with_underscore[D.9], as
shown in Listing 9.5. In the first computed answer substitution 1 , it is parsed as
a single integer that constitutes the number 10, using the notation for long inte-
gers with digit groups separated by the underscore _ . The second answer in 2 is
compliant to the ISO Prolog standard instead. It parses the input as the integer 1,
immediately followed by the named variable _0 .

9.4. Term Parsing

Just like tokens are described in the ISO Prolog standard using EBNF grammars
that describe sequences of characters, Iso 6.3 formally defines what sequences of
tokens constitute valid Prolog terms. They are the building blocks of clauses and

200

9.4. Term Parsing

Listing 9.6: Definition of Prolog clauses and program text according to Iso 6.2.
1 prolog_text = p_text ; Ebnf Dsl
2 p_text = directive_term, p_text ;
3 | clause_term, p_text ;
4 clause_term = term(_), end ;
5 directive_term = term(_), end ;

directives, and after all complete Prolog programs. Valid Prolog source code is sim-
ply called Prolog text in the ISO Prolog standard. It is defined by the nonterminal
prolog_text//0 in Iso 6.2, together with the formal grammar for clauses and direc-
tives.

We can adapt the ideas from the tokenisation component for the Prolog term
and program parsing. It is as described before – only that tokens created by
prolog_tokens/{2, 3} are processed by the DCGs rather than characters. The
Prolog clauses are again based on the EBNF grammar given in the ISO Prolog
standard. They are specified in our internal Prolog DSL, which is then transformed
into DCGs and finally plain old Prolog clauses, performing the same program trans-
formations we presented for the tokenisation component in Section 9.2.

The nonterminal prolog_text//0 serves as an entry point for the predicates
prolog_parsetree/{2, 3} that are provided by library(plammar) to parse a given
string, stream, or Prolog source code file into its corresponding parse tree, or use it
vice versa for the serialisation of a given parse tree into the corresponding source
code. Listing 9.6 shows the nonterminal’s definition from Iso 6.2 in the form of
the internal Prolog DSL for EBNF. Everything that can be parsed as a valid term
also constitutes a valid Prolog clause together with the end//0 token. Directives are
defined similar, only that the principal functor of this term is required to be :-/1ISO.
From a syntactical point of view, there is no difference between clauses and direc-
tives.

Parsing Prolog source code requires to annotate all terms by their priority. Therefore,
the referred nonterminal term//1 is of arity 1, with a free variable as its argument.
In the definitions of the nonterminals clause_term//0 and directive_term//0 it
is a free variable, since the actual priority of this term does not matter, and can be
anything from 0 to 1200. A general overview of the meaning of term priorities and
operator precedences was already given in Section 5.1.1.

Every Prolog term is either an atomic term (Iso 6.3.1), a variable (Iso 6.3.2), a curly
bracketed term {...} (Iso 6.3.6), a list (Iso 6.3.5), a term in double quoted list
notation enclosed by "..." (Iso 6.3.7), or a compound term. Compound terms

201

Chapter 9. A Prolog Parser and Serialiser in Prolog

Listing 9.7: Definition of numbers as terms according to Iso 6.3.
1 /* 6.3.1.1 */ term(0) = [integer(_)] Ebnf Dsl
2 | [float_number(_)] ;
3 /* 6.3.1.2 */ term(0) = negative_sign_name,
4 [integer(_)]
5 | negative_sign_name,
6 [float_number(_)] ;
7 negative_sign_name = [name([name_token(’-’, _)])] ;
8 | [name([_, name_token(’-’, _)])] ;

written in functional notation (Iso 6.3.3) are of priority 0. Given in operator nota-
tion (Iso 6.3.4), their priority is identical to the precedence of the compound term’s
principal functor, i. e., ranging from 1 to 1200.

All other Prolog terms – most importantly variables, numbers, and strings written in
double quoted list notation – are always of priority 0. The same applies for all atoms
that are not defined as operators using op/3ISO; otherwise, the standalone operator
is of the highest priority 1201. This constraint ensures that an operator is not the
immediate operand of another operator. As a result, the character sequence \+ · / 1
is not a valid Prolog term, though the slash //2ISO is an infix operator, and \+ and 1
on their own are valid Prolog terms. However, it is always possible to explicitly put
a term into parentheses, which resets its priority to 0, i. e., (\+) / 1 becomes a
valid Prolog term again. Another alternative is to allow operators as operands, as
proposed by our language extension allow_operator_as_operand[D.19].

The grammar to process the list of tokens generated in the lexical analysis is spec-
ified in library(plammar/parser).38 Following the exact definitions of Iso 6.2 & 6.3,
it implements 70 nonterminals in about 650 lines of code, using the internal Pro-
log DSL for EBNF. An extract of this grammar from Iso 6.3.1 is given in List-
ing 9.7, which describes the parsing of numbers. Similar to the notation of DCGs,
elements given in square brackets [...] represent terminals, i. e., the parse trees
like integer(...) and float_number(. . .) are elements in the list of tokens gen-
erated by the lexer. Following this notation, a term is built from the integer//0
token (l. 1), or the float_number//0 token (l. 2), or alternatively each preceded
by the nonterminal negative_sign_name//0 (ll. 3–6) in case of negative numbers.
This also underlines why the finite-state machine for tokenising numbers, which we
presented in detail in Section 9.3.4, does not include a path for negative numbers –
they are constituted as a single term only in the parsing step.

38The sources of library(plammar/parser) are located in the project’s repository in the Prolog file
prolog/plammar/parser.pl .

202

9.5. Towards an Abstract Syntax Tree

The two cases in the definition of the nonterminal negative_sign_name//0 (ll. 7–
8) are required because the name token - can also be preceded by a lts, whose
parse tree would be given as the first list element. Following our definition of li-
brary(dcg4pt) from Chapter 8, terminals are put verbatim into the processed parse
tree. In the previous sections, this effected only single characters. With the elements
like integer(_) in Listing 9.7, the complete nested compound term is part of the
parse tree created for term//0.

Recall the example from Section 9.2.4. Listing 9.8 shows an extract of the parse tree
for our implementation of the predicate append/3 from Section 3.4. It is created by
the goal ?- prolog_parsetree(file(’append.pl’), PT) . Lines 2–23 depict the first
fact from the append/3 program. Following the definition of Iso 6.3.3, the compound
term is the sequence of an atom, the opening parenthesis open_ct, a list of arguments
(denoted by the nested parse tree with the functor name arg_list), and the closing
parenthesis.

9.5. Towards an Abstract Syntax Tree

The generic structure of the parse tree is based on the grammar’s nonterminals,
which allows to easily follow the application of the EBNF rules in the ISO Prolog
standard when parsing Prolog programs. However, the produced concrete syntax
tree (CST) is verbose. In many applications, only the abstract syntax tree (AST) is
of interest. It contains only the parts of the parse tree that are required to compile
or interpret the depicted program. Consequently, all layout information – i. e., infor-
mation about indentations, line breaks, and source code annotations – is removed.

For this purpose, our library(plammar) provides the predicates prolog_ast/{2, 3}.
They parse a Prolog source code snippet and return its corresponding AST. Besides
the removal of all lts, it transforms common parse tree structures into more compact
nested Prolog terms. This way, the CST that represents a compound term – the
sequence of an atom, the open_ct, a nested structure for its arguments, and finally
the close token, as for instance given in lines 3–22 of Listing 9.8 – is translated
into the shorter AST term compound(Functor, ListOfArguments) . Taking up on
our running example, Listing 9.9 shows the complete AST for the append/3 Prolog
program, as returned by the goal ?- prolog_ast(file(’append.pl’), AST) .

As for the predicates prolog_tokens/{2, 3} and prolog_parsetree/{2, 3}, their
AST-related counterpart prolog_ast/{2, 3} can also be used the other way round
for the serialisation of a given tree. However, this transformation is underdeter-
mined, as new line breaks and possible indentations have to be arbitrarily added. In

203

Chapter 9. A Prolog Parser and Serialiser in Prolog

Listing 9.8: Parse tree from append/3’s source code of Section 3.4 as generated by
library(plammar). The result of the tokenisation is given in Listing 9.4.

1 prolog([Toplevel Output
2 clause_term([
3 term([
4 atom(name([
5 layout_text_sequence(...),
6 name_token(append, letter_digit_token(...))])),
7 open_ct(open_token(open_char(’(’))),
8 arg_list([
9 arg(term(atom([

10 open_list([open_list_token(...)]),
11 close_list([close_list_token(...)])]))),
12 comma([comma_token(comma_char(’,’))]),
13 arg_list([
14 arg(term(variable([
15 layout_text_sequence(...),
16 variable_token(’Y’, ...)]))),
17 comma([comma_token(comma_char(’,’))]),
18 arg_list(
19 arg(term(variable([
20 layout_text_sequence(...),
21 variable_token(’Y’, ...)]))))])])]),
22 close([close_token(close_char(’)’))])]),
23 end([end_token(end_char(’.’))])]),
24 clause_term([% beginning of second clause
25 term(xfx, [...])])
26 ...

Listing 9.9: Abstract syntax tree from append/3’s source code of Section 3.4 as gen-
erated by library(plammar). Its parse tree is given in Listing 9.8.

1 prolog([Toplevel Output
2 fact(compound(
3 atom(append),
4 [list([], eol), variable(’Y’), variable(’Y’)])),
5 rule(% beginning of second clause
6 compound(% head
7 atom(append),
8 [list([variable(’E’)], variable(’X’)),
9 variable(’Y’),

10 list([variable(’E’)], variable(’Z’))
11]),
12 [compound(% elements in the rule body
13 atom(append),
14 [variable(’X’), variable(’Y’), variable(’Z’)])])])

204

9.5. Towards an Abstract Syntax Tree

Source Code Tokens Parse Tree
CST AST

prolog_tokens(?Prog, ?Tokens)
prolog_parsetree(?Prog, ?PT)
prolog_ast(?Prog, ?AST)

C
od

e
Fo

rm
at

tin
g

C
od

e
Q

ua
lit

y

Existing Prolog Program
+Prog1

Reformatted Prolog Program
-Prog2

AST1

AST2

Linting

Refactoring &
Reformatting

Figure 9.3: Overview of the architecture of a tool that reformats Prolog source code
and checks the adherence to coding conventions using library(plammar).

the Opts list in the third argument of prolog_tokens/3, it is possible to provide
an option style_option(ListOfStyles). There, many different coding formatting
conventions can be specified. For instance, if the option newline_after_rule_op is
set to true, a line break is added after the clause’s principal functor :-/2ISO. For a
given Prolog source code snippet, these coding conventions can be similarly inferred
by providing free variables in the style_option list.

In our work [82], this mechanism has been used in an empirical community evalua-
tion to automatically check the adherence to Prolog coding guidelines in the form
of a code linter. The well-known coding conventions of Covington et al. [25] include
constraints regarding the correct code formatting on the one hand, and those with
respect to the code quality on the other. With library(plammar), the first class
of checks is performed while transforming the CST into the corresponding AST,
whereas the second just uses the created AST, as it provides all the necessary infor-
mation to, e. g., check naming conventions for predicates and variables. As a result,
possible code smells are detected as a by-product at each transformation step of
library(plammar).

The transformations from a Prolog source code snippet to its corresponding AST,
and its serialisation back to a string also brings the opportunity to implement a
tool that automatically refactors and reformats Prolog source code. An overview of
the architecture of such a tool is shown in Figure 9.3. With two consecutive calls
?- prolog_ast(+Prog1, -AST) and ?- prolog_ast(-Prog2, +AST, +Opts) that are
connected by the chaining variable AST, we can for instance automatically add
whitespace characters after every comma in the arg_list of a compound term.
The created code listing can be adjusted according to our needs by changing the
settings in the style_option list in Opts.

205

Chapter 9. A Prolog Parser and Serialiser in Prolog

Figure 9.4: Screenshot of an adapted version of the web-based AST Explorer for
library(plammar).

The transformation rules from a CST to AST and vice versa are implemented in
the sub-module library(plammar/pt_ast).39 Together with the Prolog clauses that
check and produce the source code’s indentation, this module sums up to more than
1200 lines of Prolog code.

As part of our contribution, we also integrated the Prolog parser library(plammar)
into the AST Explorer, https://astexplorer.net/, an open-source web application
that provides parsers for several programming languages, including PHP, JavaScript,
and SQL. Figure 9.4 presents the graphical representation of the generated parse tree
for the Prolog program of Section 3.4 that defines the append/3 predicate. Based on
SWI-Prolog’s Pengines [70] infrastructure (cf. Sections 4.3.6 and 7.4), library(plam-
mar) ships with a simple web server that listens for HTTP Post requests that
transfer Prolog source code snippets in their message body. As its response, the
corresponding CST or AST is returned as a JSON document of the format expected
by the AST Explorer.

39The sources of library(plammar/pt_ast) are located in the project’s repository in the Prolog file
prolog/plammar/pt_ast.pl . The rules to check the general format of the Prolog source code – e. g.,

if each Prolog clause consists of a maximal number of subgoals – are split into the separate file
format_check.pl; all rules regarding the indentation are located in the file format_space.pl.

206

https://astexplorer.net/

9.5. Towards an Abstract Syntax Tree

In addition to the integration into the AST Explorer, the Pengines endpoint can
also be used directly. For instance, the following cURL40 command returns the CST
representation as a Prolog term for the input program and(1,X,X) :

curl -H "Accept: text/x-prolog" -H "Content-Type: plain/text" \ Bash

-X POST -d ’and(1,X,X).’ http://localhost:8081/

By changing the HTTP Accept-header from text/x-prolog to application/json ,
the JSON representation needed for the AST Explorer is returned instead.

40cURL is a command line tool for sending and receiving data including files using URL syntax,
typically used with the HTTP protocol. As of today, it is pre-installed in most UNIX-based
operating systems.

207

10
Internal DSL Integration with Operator

Inference and Language Extensions

We employ an empirical approach, using optical character recognition software,
which finds that merely 93 % of paint splatters parse as valid Perl.

— Colin McMillen41

The integration of a DSL internally in Prolog is typically much easier in the course
of the language’s first definition, as the DSL can then be tailored to the few syntax
constraints the programming language Prolog comes with. However, though the
absolute number of required operator declarations is often quite small, the process
to develop their precise definitions – both for newly created and existing DSLs –
carries with it the complexity of Prolog term parsing. Therefore, it typically requires
a deep knowledge of Prolog’s term parsing internals, existing operators, their types
and precedences, as well as dependencies on each other. Given an example sentence,
it is in general difficult to answer the question at hand which can be coined as “Is it
possible to define it as an internal DSL, and how?”. The solution to this problem
demands an idea which operators have to bind the strongest, and which of them
are of prefix, postfix, or infix type, so that the DSL becomes a valid Prolog term or
program. It may be the case that this added syntactic weight is counter-productive
when defining and working with internal DSLs in Prolog, as it places a burden on
the application-domain specialists who would define and use the DSL.

41Quote from “93 % of Paint Splatters are Valid Perl Programs” (Colin McMillen, and the fic-
tional second author Tim Toady) from SIGBOVIK 2019. SIGBOVIK is an annual humorous
multidisciplinary conference “celebrating the inestimable research work of Harry Q. Bovik”, and
“specializing in lesser-known areas of academic research”. The original paper is available from
https://www.famicol.in/sigbovik/. In the experimental setup, most programs were considered
valid due to a language feature of Perl that is not commonly present in most other program-
ming languages: Perl supports unquoted strings, in which a sequence of alphanumeric characters
by itself is parsed as though it were a quoted string. Without whitespace characters, the same
applies for Prolog’s atoms.

209

https://www.famicol.in/sigbovik/

Chapter 10. Prolog Operator Inference and Language Extensions

Given example sentences of the considered language and some knowledge about the
contained data, our library(plammar) is able to infer the required operator definitions
with their types, together with the allowed range of possible precedences. After all,
the dependencies with respect to priorities that come along with complex term
parsing constitute a constraint satisfaction problem over all operator precedences.

Prolog is traditionally strong in solving such combinatorial problems and con-
straints about integers in finite domains. To reason about the operators’ prece-
dences, library(plammar) integrates SWI-Prolog’s constraint solver CLP(FD). Its
background, possible implementations using attributed variables, and results in the
context of Prolog source code parsing are presented in Section 10.1.

Besides the declaration of user-defined operators, a second possibility to adapt Prolog
for a given application domain is to overcome some of the host language’s originally
strict syntactic requirements. For instance, SWI-Prolog allows to restrict the nota-
tion of named variable tokens to those starting with the underscore character _ .
The first alternative in the EBNF definition of named variable in Figure 5.2 can be
deactivated by the program flag var_prefix[D.7], so that symbols starting with an
uppercase letter do not form a variable and are instead treated as an atom. This
supports the seamless integration of DSLs that rely on symbols starting with upper-
case letters. Similarly, there are various other constraints in the ISO Prolog standard
that can be relaxed in order to support a broader variety of DSLs to be integrated
internally. Section 10.2 provides an overview and extensive list of possible language
extensions for Prolog.

The chapter continues in Section 10.3 with an example application that requires user-
defined operators as well as some of the presented language extensions: the query
language GraphQL – which we previously integrated in the traditional, external way
using DCGs in Chapter 6 – represents valid Prolog terms and thus can alternatively
be implemented as an internal Prolog DSL. In Section 10.4, similar considerations
are made for XPath expressions that can be part of XML Schema documents. By
defining appropriate operators and enabling some language extensions, the XPath
expressions can be directly processed as Prolog terms, which allows to refrain from
a fully-featured XPath parser in our library(xsd). The results have been used to
enhance the XML Schema validator for SWI-Prolog. This application is presented
in more detail in our papers [79, 80].

As before, we refer to definitions of the ISO Prolog standard by the abbreviation Iso.
In code examples, s and t denote terms that are known to be valid in Prolog. Normal
whitespaces depict any lts, whereas · is strictly required to be not empty.

210

10.1. Operators as a Constraint Satisfaction Problem

10.1. Operators as a Constraint Satisfaction Problem

In Section 9.4, library(plammar)’s approach to combine tokens into Prolog’s bigger
building blocks, the terms, is introduced. So far, we discussed in detail the parsing
process for atomic terms and numbers (Iso 6.3.1), as well as for variables (Iso 6.3.2).
Their parsing does not differ from those of similar language constructs in other
programming languages. In particular, it does not come with additional difficulties
that arise from Prolog’s flexible syntax. The same applies for terms written in double
quoted list notation enclosed in "..." (Iso 6.3.7), as well as for curly bracketed
terms (Iso 6.3.6) – their CST creation is made up only of combining tokens and
terms together, in the latter case the open_curly token, the inner term, and the
close_curly token, resulting in the overall parse tree for the compound term. Here,
the curly bracketed term is valid regardless the inner term’s priority.

Compound terms written in functional notation (Iso 6.3.3) are parsed similarly,
though the ISO Prolog standard comes with a first restriction regarding the terms
that are allowed as the compound term’s arguments: according to Iso 6.3.3.1, the non-
terminal arg//0 is either an operator of any precedence, or a term with a priority of
less than 1000. The first alternative ensures that the compound term f(:-, +, /)
is syntactically valid whatever operators are currently defined. The second on the
other hand disallows terms like f(a :- b, c) , avoiding possible confusion regard-
ing the meaning of the inner comma. It might depict the conjunction within the
stated clause in the unary term f/1, or alternatively separate the arguments of the
binary f/2. Therefore, to express terms about clauses, they have to be put into an
extra pair of parentheses, as it resets the term’s priority, i. e., f((a :- b, c)) is
a valid compound term of functor f/1 again. Similar considerations are made for
compound terms in list notation, as their definition in Iso 6.3.5 refers to the same
nonterminal arg//0 to describe the structure of each list item. Consequently, they
have to be terms with a priority from 1 to 999, too.

The previous example underlines the difficulties that arise when parsing Prolog
terms. Given the character sequence f(\+ a) , it can be a valid Prolog term or not,
which depends only on the precedence given to the prefix operator \+/1. Following
its built-in definition with a precedence of 900 (Iso 6.3.4.4, cf. Table 5.1), no addi-
tional parentheses are required. However, users are allowed to reset the operator’s
precedence to any value, as well as to remove the operator at all by specifying a
precedence of 0, which then would make f(\+ a) a syntactically invalid Prolog
expression.

To make this question more difficult, given only this standalone source code snippet,
it is not even clear whether f/1’s argument \+ a depicts the term \+(a) or a(\+),

211

Chapter 10. Prolog Operator Inference and Language Extensions

as similar to \+/1, the atom a/1 could be defined as a postfix operator with a
precedence smaller than 1000. What is known for sure is that not both are defined
as operators, as otherwise one of them is required to be put in parentheses, as we
already discussed for the example term (\+) / 1 in Section 9.4. However, what
happens if f/1 is also defined as a prefix operator? Would it also be allowed to write
f \+ a for short?

As it can be seen, a given Prolog source code snippet can be parsed in different
ways, depending only on the currently defined operators, and their types and prece-
dences. These operator definitions are required to be known before parsing any Pro-
log code,42 thus it can be statically analysed in reasonable time. However, by also
supporting the parsing of Prolog terms without knowing the operator definitions in
advance, it is possible to answer the question whether a given character sequence
could possibly constitute a valid Prolog term, and how. As a result, given some code
fragments of an external DSL, we can figure out if it can also be stated internally.

In this section, we describe an approach which converges from a few examples to a
Prolog-friendly syntax which requires no parentheses, using compound terms in op-
erator notation. This is achieved by solving a constraint satisfaction problem (CSP)
to determine the precedence and associativity of a set of tokens which are desig-
nated as operators, which may subsequently be directly used to parse the DSL. To
the best of our knowledge, our library(plammar) is the first parser for Prolog that
allows to analyse programs and external source code this way, without knowing the
exact definitions of the contained Prolog operators in advance.

10.1.1. Motivational Example

As an introductory example, we reconsider the character sequence f \+ a and raise
the question: Is it possible to define operators so that this is a valid Prolog term? The
ISO Prolog standard defines the precedences of operators to be in the range from 1
to 1200. Having \+/1 as a built-in right-associative (fy) operator with a precedence
of 900 additionally restricts possible definitions for f/1 and/or a/1 as prefix or
42In general, parsing Prolog requires the thorough knowledge about all operator definitions within

a Prolog software system or package in advance and at compile-time. Although Part II of
the ISO Prolog standard on Prolog’s module system introduces the directives module/{2, 3} and
use_module/{2, 3}, used to declare a module and all its exported or imported operator definitions
(cf. Section 3.8), a module’s entry points remain unclear. Hence, for practical applications that
rely on the parsing of Prolog code of unknown sources – e. g., IDEs, linters, and code formatters –,
it is required to analyse the package’s call hierarchy to get all applied operator definitions. This
is impossible in general, as the module system allows accessing (possibly) internal module files.
This again underlines the need for a more flexible Prolog parser that allows to process Prolog
programs with some operator definitions being yet unknown. Some Prolog systems, most notably
Ciao, use refined module systems to allow for more thorough static analysis [16].

212

10.1. Operators as a Constraint Satisfaction Problem

Listing 10.1: Introductory example to restrict a variable Prec to finite domains.
1 solution(Prec) :- Prolog
2 domain(Prec, [600, 601, 602]),
3 domain(Prec, [602, 603, 604]).

postfix operators. Furthermore, there can be solutions with the inner \+ not being
only a prefix operator, but at the same time also the infix operator \+/2.

To answer this in the most general way, we aim for a solution that returns the
possible range of values for each operator’s precedence. This requires a mechanism
that allows to incrementally restrict the possible domain of a variable, starting from
the range from 1 to 1200. As long as this domain has not been broken down to a
single value, the variable depicting each operator’s precedence should remain free.

As introduced for first-order logic in Section 2.2 and for unification in Prolog in Sec-
tion 3.2.1, a logic variable is either bound or free. The only way to bind a variable
to a value – in our case, a term that depicts the remaining domain of the operator’s
precedence – is by unification. Thereafter, the variable cannot be distinguished from
this term. Once the binding is established, it cannot be modified or destroyed any-
more. Other variable bindings can be made only by backtracking over alternative
solutions in the SLD tree. Using only Prolog’s standard predicates, it is not clear
how to store partial knowledge to a variable X, without actually binding it to a
single value or a term holding all this information. It simply cannot be bound to a
compound term first, and become a number once the remaining domain collapses to
a single possible value.

In the traditional, declarative way, the domain of a variable therefore has to be en-
coded by several first-order predicates. If, e. g., it is known that a solution requires
the precedence of an operator to be one of the numbers 600, 601, 602, and at the
same time one of 602, 603, 604, this could be written as presented in Listing 10.1.
Here, the variable Prec depicts the precedence of a particular operator, and the pred-
icate domain/2 has to be implemented accordingly to handle the encoded relations
for a goal ?- domain(?Prec, +List) . In particular, it should follow these rules:

– Given a set of at least two domains as domain/2 predicates, it should simplify
them. If there is more than one remaining element, Prec should be bound to
the list of possible solutions.

– If there is only a single remaining solution, i. e., the remaining list has a length
of 1, Prec should be bound to this value.

– If the given domains are inconsistent, domain/2 should fail.

213

Chapter 10. Prolog Operator Inference and Language Extensions

Listing 10.2: Implementation of domain/3 with chaining variables.
1 %% domain(+Term, +Ordset, -Domain) Prolog
2 domain(Prec, Ordset, var_candidates(Prec,Ordset)) :-
3 var(Prec), !,
4 test_for_single(Prec, Ordset).
5 domain(var_candidates(Prec,L0), Ordset, var_candidates(Prec,LN)) :-
6 ord_intersection(L0, Ordset, LN),
7 test_for_single(Prec, LN).
8

9 %% test_for_single(-Var, +List)
10 test_for_single(_, []) :- !, false. % empty list: inconsistency
11 test_for_single(Prec, [Prec]) :- !. % single element: bind
12 test_for_single(_, _). % otherwise: continue

With classical logic variables, this behaviour cannot be achieved. In line 2 of List-
ing 10.1, the variable Prec should be bound to a term that stores the three possible
values 600, 601, and 602. On the other hand, after line 3, Prec must be bound to
the single solution 602. This is not possible, because Prec cannot be both a list (or
nested term) and the integer 602; the SLD resolution mechanism provides no means
to check in line 2 if the predicate domain/2 is called later another time.

10.1.2. Native Implementation with Chaining Variables

A possible way to fix the otherwise illogical reading of Listing 10.1 is to define a
predicate domain/3 instead, which additionally stores the current knowledge about
the variable Prec in its last argument. It is then used as a chaining variable between
the calls of domain/3, explicitly passing the state from one call to another:

1 solution(Prec0) :- Prolog

2 domain(Prec0, [600, 601, 602], Prec1),
3 domain(Prec1, [602, 603, 604], _).

The predicate domain/3 has to be implemented according to the rules specified
in Section 10.1.1. A possible implementation is presented in Listing 10.2. Given
a free variable as its first argument, the chaining variable is bound to the term
var_list(X, List) which acts as a storage for its state, with List as the ordered
list of possible values (ll. 2–4). If on the other hand, the first argument is already
bound to a term of this form, the stored list is combined with the new list of possible
values (ll. 5–7). This is done with the help of the predicate ord_intersection/3[C.9].
It computes the intersection of two given ordered sets and is part of SWI-Prolog’s

214

10.1. Operators as a Constraint Satisfaction Problem

Listing 10.3: Example queries for domain/3, deducing an inconsistency, a single so-
lution, and a remaining list of two elements.

?- domain(Prec, [600, 601, 602], D0), Toplevel
domain(D0, [603, 604], D1).

false . % found an inconsistency

?- domain(Prec, [600, 601, 602], D0),
domain(D0, [601, 602, 603, 604], D1).

D0 = var_candidates(Prec, [600, 601, 602]),
D1 = var_candidates(Prec, [601, 602]) .
% Prec remains free as there are multiple solutions in D1

?- domain(Prec, [600, 601, 602], D0),
domain(D0, [602, 603, 604], D1).

Prec = 602, D0 = var_candidates(602, [600, 601, 602]),
D1 = var_candidates(602, [602]) .

built-in library(ordsets) [136, Sec. A.26]. In both cases, the resulting list is tested ac-
cording to the aforementioned rules to have either no remaining element, only a single
one, or more, using the predicate test_for_single/2 as defined in lines 9–12.

Given these definitions, Prolog is able to recognise an inconsistency in the given
domains, to deduce the single solution for Prec, or to return an ordered set of
possible values as part of the state term bound to the last argument in domain/3.
Examples for these three cases when using domain/3 in SWI-Prolog’s toplevel are
presented in Listing 10.3.

Note that with term expansions it is possible to recognise goals that are called
multiple times in a rule’s body at compile-time. As a consequence, the original
rules of Listing 10.1 can be source-to-source transformed into equivalent ones with
chaining variables. However, though feasible, one should not use term expansion to
overhaul an otherwise illogical program.

10.1.3. Attributed Variables

With attributed variables, it is possible to achieve the same behaviour without ex-
tending the original domain/2 from Listing 10.1 by an additional argument. Instead
of storing the information about restricted domains in a special data structure that
has to be passed on each call, it can be assigned as an attribute to the variable Prec.
Attributed variables are the basis for constraint-logic programming in SWI-Prolog’s
library(clpfd), which we rely on in our implementation of operator precedences and

215

Chapter 10. Prolog Operator Inference and Language Extensions

term priorities in library(plammar). We introduce the work with library(clpfd) in
more detail in Section 10.1.4.

Attributed variables are not part of the ISO Prolog standard. Though they are
implemented in all major Prolog systems [133, 134], there is no consensus in the
Prolog community on their exact definition and interfaces. Unlike for term expan-
sions, there is no de-facto standard for attributed variables. In our work, we make
use of attributed variables as provided by SWI-Prolog. Its interface is identical to
the one realised by Bart Demoen for hProlog in 2002 [31]. SICStus Prolog [18,
Sec. 10.3] offers predicates of the same names but with slightly different semantics
and arguments.

Even though the details differ in the various Prolog systems that implement at-
tributed variables, the predicates they provide share the same idea and can be di-
vided in three kinds, which we introduce in the following.

Predicates for Attribute Manipulation. First of all, we need a predicate for the
addition of an attribute to a variable. All major Prolog systems implement this in a
predicate called put_attr/n, though its arity n varies. In SWI-Prolog, an attributed
variable is a relation between a variable Var, a module Mod, and a value Val. There-
fore, the predicate put_attr/3SWI takes these three arguments. It does not check for
an already set attribute of the same module, but instead simply replaces it.43 As a
consequence, it can also be used to change an existing attribute.

For the retrieval of an already set value, get_attr/3SWI realises the same signature
for the three arguments +Var, +Mod, and -Val. It unifies Val with the currently
set value, without deleting it. If Var is not an attributed variable, or the named
attribute Mod is not associated to Var, get_attr/3SWI fails silently.

Unlike the previous predicates, the removal of an attribute is not part of all im-
plementations of attributed variables in the various Prolog systems. SWI-Prolog
provides del_attr/2SWI for this purpose. The goal del_attr(+Var,+Mod) deletes
the attribute named Mod for a variable Var. If Var loses its last set attribute it is
transformed back into a traditional Prolog variable. To distinguish a normal Prolog
variable from one with set attributes, the predicate attvar/1SWI can be used. It is
needed since Prolog’s built-in predicate var/1ISO succeeds for all variables, regardless
of possibly set attributes.
43When backtracked, put_attr(+Var,+Mod,+Val) in SWI-Prolog restores the old value. That means

that unlike ordinary variables, an attribute is a mutable term, with support for destructive
assignments. In our work and the presented introductory example, we do not rely on backtracking
the unification of attributed variables.

216

10.1. Operators as a Constraint Satisfaction Problem

Predicates to Reason about the Unification. In comparison to traditional logic
variables, attributed variables are special only when it comes to unification. Uni-
fying the attributed variable X in the module Mod with a term Y schedules the
goal Mod:attr_unify_hook(+Curr,+Y) . The built-in predicate attr_unify_hook/2SWI

can be extended by the user. The user-defined clause is automatically invoked by
the Prolog engine at the first possible opportunity (that is why it is called hook).
Therefore, goals of the form Mod:attr_unify_hook(·,·) are not part of the SLD res-
olution tree as introduced in Section 2.4, but are called before proceeding with the
next leaf.

Curr is the attribute that was associated to the variable in this module Mod, Y is any
term the attributed variable X is unified with. As a result, Mod:attr_unify_hook(·,·)
is not invoked with the arguments of the unification =/2ISO, but rather the at-
tribute’s value and one term, which could also be another attributed variable.
In this case, attr_unify_hook/2SWI is typically implemented to combine both at-
tributes and associate the combined attribute with Y using put_attr/3SWI. If the
goal Mod:attr_unify_hook(·,·) fails, the whole unification fails.

Predicates to Change the Display. By default, SWI-Prolog’s toplevel simply prints
the attributes of a variable as terms of put_attr/3SWI:

?- put_attr(X, some, 1), put_attr(X, other, 2). Toplevel

put_attr(X, some, 1),
put_attr(X, other, 2) .

In this regard, it simply repeats the last effective put_attr/3SWI goal for each variable
Var and module Mod. This behaviour can be changed by defining the predicate
attribute_goals/3SWI in the used module. It is automatically invoked by the Prolog
engine for each variable with a set attribute that is going to be printed in the
toplevel.44

Example. Given the previously introduced predicates, the original domain/2 as
used in Listing 10.1 – without an additional third argument – can be shortly de-
fined as presented in Listing 10.4. We store the list of possible solutions in the
module candidates. Note that this attribute is first defined for a fresh variable Y
and then unified with the original variable Prec, to invoke the unification hook
candidates:attr_unify_hook/2. It handles the unification of an attributed vari-
able with another term, and as part of this, it also differentiates between the three
44Mod:attribute_goals/3 has three arguments since it is usually defined as the DCG nonterminal

Mod:attribute_goals(+AttVar)//, with AttVar being the attributed variable.

217

Chapter 10. Prolog Operator Inference and Language Extensions

Listing 10.4: Implementation of domain/2 with attributed variables.
1 %% domain(+Term, +Ordset) Prolog
2 domain(Prec, Ordset) :- put_attr(Y, candidates, Ordset), Prec = Y.
3

4 attr_unify_hook(Domain, Y) :-
5 (get_attr(Y, candidates, Domain_Y) ->
6 % Y is an attributed variable in the same module
7 ord_intersection(Domain, Domain_Y, New_Domain),
8 put_attr(Y, candidates, New_Domain),
9 test_for_single(Y, New_Domain)

10 ; var(Y) ->
11 % Y is a variable, possibly with attributes in other modules
12 put_attr(Y, candidates, Domain)
13 ; otherwise ->
14 % Y is not a variable
15 ord_memberchk(Y, Domain)).
16

17 :- op(500, xfy, in).
18 attribute_goals(X, [X in Domain|Rest], Rest) :-
19 get_attr(X, candidates, Domain).

cases (cf. Section 10.1.1) when unified with another attributed variable. If two at-
tributed variables of the candidates are unified (ll. 5–9), their stored lists of possible
values are combined; the result is used as a replacement for Y’s attribute (l. 8). We
use our previously defined test_for_single/2 from Listing 10.2 to fail for two
disjunctive sets, or bind Y in case of a single remaining solution.

If Y is a variable without an attribute set in the candidates module (ll. 10–12), the
attribute is added instead. Given that Y is bound (ll. 13–15), it is ensured to be one
of the possible remaining solutions with the help of ord_memberchk/2[C.10].

In lines 17–19, we use attribute_goals/3SWI to define how to display set attributes
in the toplevel. By defining the infix operator in/2, the result is nicely printed as in
the following example call:

?- domain(Prec, [600, 601, 602]), Toplevel

domain(Prec, [601, 602, 603]).
Prec in [601, 602] .

10.1.4. Constraint-Logic Programming over Finite Domains

In the previous section, we defined only a single mean to store all possible integer
values of an operator’s precedence in the form of a list, and to incrementally tighten

218

10.1. Operators as a Constraint Satisfaction Problem

Listing 10.5: Basic usage example of library(clpfd).
?- use_module(library(clpfd)). % load CLP(FD) Toplevel
true .

?- 601 #=< Prec, Prec #=< 603.
Prec in 601..603 .

?- 601 #=< Prec, Prec #=< 603, label([Prec]).
Prec = 601 ;
Prec = 602 ;
Prec = 603 .

this domain. This alone is enough to reason about various priorities in a complex
Prolog term, because their initial range is restricted by the ISO Prolog standard to
the countable values from 1 to 1200. However, since almost all Prolog programs also
reason about integers, there is a wide range of well-established existing constraint
solvers implemented in and for Prolog. For SWI-Prolog, these are library(clpb), li-
brary(clpqr), and library(clpfd). Their naming follows the structure Constraint-Logic
Programming over X , where X is the targeted application area. The CLP(B) mod-
ule handles Boolean values, CLP(Q,R) rational and real numbers, and CLP(FD) is
dedicated to integers over finite domains, which happens to suit well for our use case
of operator precedences.

The constraint solver CLP(FD) [118] provides predicates for declarative integer
arithmetic. They serve as drop-in replacements for Prolog’s traditional arithmetic
predicates like is/2ISO, </2ISO, =:=/2ISO and similar, and are for dissociation called
constraints instead. In our application for library(plammar), we mostly rely on the
constraints #</2SWI and #=</2SWI, which have the same meaning as their built-in
counterparts without the # . Arithmetic expressions are written as before using the
classical infix operators like +/2ISO and */2ISO. In contrast to the logically impure
predicates </2ISO and =</2ISO, the constraints constitute relations between their
arguments, which therefore can also be both free variables. Consequently, the con-
straints’ instantiation modes are just (?,?).

The implementation of library(clpfd) in SWI-Prolog [136, Sec. A.9] is based on at-
tributed variables. The domain of a variable Prec is printed along with the computed
answer substitution in the toplevel similar to what we did in Listing 10.4, but with
the additional infix operator ../2SWI to denote ranges. Listing 10.5 shows a minimal
usage example of library(clpfd) in the toplevel. The third goal uses its enumera-
tion predicate label/1SWI, which takes a list of attributed variables, and binds them
systematically to values of their currently set finite domain.

219

Chapter 10. Prolog Operator Inference and Language Extensions

With CLP(FD), we can encode the constraints to the priorities of terms in the
definite clause grammars as follows:

arg --> { Prec #< 1000 }, term(Prec). Prolog

This example realises our initially discussed restriction from Iso 6.3.3.1 that argu-
ments of compound terms in functional notation as well as list elements have to be of
a priority not greater than 999. Consequently, there is no conflict with the comma,
whose precedence of 1000 cannot be changed (Iso 6.3.4.3).

Further constraints are added with respect to the operator’s type for compound
terms that are written in operator notation. For instance, the infix right-associative
operator type xfy with precedence N implies that the priority of the first operand
is strictly less than N , whereas the priority of the second operand is equal to or
less than N . In library(plammar), the constraints for all operator types are mod-
elled in the predicates prec_constraints/{3, 4}, whose definitions are given in Ap-
pendix B.10.

10.1.5. Operator Inference in the Library plammar

By default, library(plammar) takes into account only operators that are given in
the ISO Prolog standard, or explicitly defined via op/3ISO directives in the ex-
amined Prolog source code. In both cases, the constraints about the operators’
precedences behave the same as Prolog’s traditional arithmetic predicates, be-
cause all variables are known and bound to integer values. Only be providing
the option infer_operators(Os) in the third argument of prolog_parsetree/3
or prolog_ast/3, the free variable Os is bound to a list of possible operator def-
initions so that the given source code syntactically becomes valid Prolog. The list
consists of compound terms of the form op(?Precedence,?Type,?Name) , which can
be later directly used to declare the operators in a Prolog program via op/3ISO di-
rectives. If the variable Os is partially bound, it is used as a template, and free
variables for the operators’ precedences and types are bound as expected.

Solution for the Motivational Example. Listing 10.6 shows an example application
for our motivational example f \+ a . Since backslashes in double quoted strings
need to be escaped, and a valid Prolog program ends the clause with the full stop, we
call library(plammar)’s prolog_parsetree/3 with an input of string("f \\+ a.") .

In the ISO Prolog standard, \+/1ISO is defined as a prefix operator of type fy with a
precedence of 900. This built-in operator is taken into account by library(plammar),

220

10.1. Operators as a Constraint Satisfaction Problem

Listing 10.6: Calculation of possible operator definitions for the given character se-
quence f \+ a. via prolog_parsetree/3.

1 ?- prolog_parsetree(string("f \\+ a."), _PT, Toplevel
2 [infer_operators(Os)]).
3 % \+(f, a).
4 Os = [op(B,xfx,\+)], B in 1..1200 ;
5 Os = [op(B,xfy,\+)], B in 1..1200 ;
6 Os = [op(B,yfx,\+)], B in 1..1200 ;
7 % a(\+(f)).
8 Os = [op(B,xf,\+), op(C,xf,a)], B #< C, B in 1..1199, C in 2..1200 ;
9 Os = [op(B,xf,\+), op(C,yf,a)], B #=< C, B in 1..1200, C in 1..1200 ;

10 Os = [op(B,yf,\+), op(C,xf,a)], B #< C, B in 1..1199, C in 2..1200 ;
11 Os = [op(B,yf,\+), op(C,yf,a)], B #=< C, B in 1..1200, C in 1..1200 ;
12 % f(\+(a)).
13 Os = [op(A,fx,f)], A in 901..1200 ;
14 Os = [op(A,fx,f), op(B,fx,\+)], B #< A, A in 2..1200, B in 1..1199 ;
15 Os = [op(A,fx,f), op(B,fy,\+)], B #< A, A in 2..1200, B in 1..1199 ;
16 Os = [op(A,fy,f)], A in 900..1200 ;
17 Os = [op(A,fy,f), op(B,fx,\+)], B #=< A, A in 1..1200, B in 1..1200 ;
18 Os = [op(A,fy,f), op(B,fy,\+)], B #=< A, A in 1..1200, B in 1..1200 .

which therefore assumes this operator as given, or explicitly returns it as part of the
list Os, in case it is required or allowed to be redefined.

Given that the character sequence f \+ a. is a valid Prolog program, it could
represent the clause \+(f, a) , a(\+(f)) , or f(\+(a)) , which are all returned by
prolog_parsetree/3 as shown in Listing 10.6. The first variant can be achieved by
defining \+/2 as an infix operator, i. e., it is of the type xfx, xfy, or yfx, which are
returned via backtracking.45 In this case, its precedence B can be arbitrarily chosen.
The absence of f and a in the returned list Os implies that they are not allowed
to be defined as operators as well. If one of them was also an operator, it must be
put in parentheses to be valid argument of the infix operator \+/2, which does not
follow the given character sequence.

The two other alternatives require the inner \+ to be either a postfix operator
(ll. 7–11), or a prefix operator (ll. 12–18). In both cases, the resulting term’s prin-
cipal functor has to be defined as a postfix or prefix operator, too. As a result, the
combinations of their types {xf,yf} and {fx,fy} results in four computed answer
substitutions each. The additional answers in lines 13 and 16 take into account the
45Note that the initial declaration of \+/1 as a prefix operator of type fy is not touched, since

Iso 6.3.4.3 allows a name to be defined for all operator classes at the same time. The ISO Prolog
standard’s recommendation to not use the same name as both infix and postfix operator is
discussed for the language extension allow_infix_and_postfix_op[D.13] again in Section 10.2.3.

221

Chapter 10. Prolog Operator Inference and Language Extensions

definition of \+/1ISO from the ISO Prolog standard, and therefore restrict the prefix
operator f/1 to be of type fx or fy with its precedence chosen accordingly as ≥ 901
or ≥ 900, respectively.

It is worth noting that the operator definitions returned by prolog_parsetree/3
in Listing 10.6 do not cover the clauses f(a(\+)) and a(f(\+)) . They would be
returned if \+/1 was not already defined in the ISO Prolog standard as a prefix op-
erator, thus requiring additional parentheses to be used as an argument for a postfix
operator a/1 or a prefix operator f/1. Consequently, for a character sequence f g a
instead of f \+ a , library(plammar) returns 19 possible solutions: the eleven from
Listing 10.6 without the redundant lines 13 and 16, and additional four for each of
the clauses f(a(g)) and a(f(g)) .

Valid Tokens Do Not Imply Valid Terms. In Section 9.2.3, we presented the
tokenisation of the character sequence X(1.2.3) . With library(plammar), we can
verify that though this input constitutes valid tokens, they can never be part of
a valid Prolog term. This can be tested by calling prolog_parsetree/3 with the
inputs X(1.2.3) and l X(1.2.3) r . The first tries to parse the character sequence
as-is. The second additionally allows to use the input within a larger term with
other operators l and r, which can be of any type and precedence, so that X
and (1.2.3) can be operands of different operators. However, library(plammar)
always returns false, as no operators can be inferred to make the inputs valid
Prolog.

The critical part here is X(T) , with T being any valid Prolog term, including the
presented character sequence 1.2.3 , which could represent the compound term
.(1.2, 3) for an infix operator ./2. In the parser component of the ISO Prolog
standard, whose implementation is presented in Section 9.4, the open_ct//0 token is
either part of a term that is enclosed in parentheses (open//0 and close//0, but also
open_ct//0 and close//0), or of a compound term. In the first case, the terms X
and the enclosed (T) are not allowed to follow subsequently without some operator
in-between. The second case on the other hand requires the left-hand side to be
a name//0 token.

If-then Rules for Expert Knowledge. In Section 5.4, we define an internal Pro-
log DSL to express knowledge in the form of if-then rules. With library(plammar),
it is possible to infer the required Prolog operators just from the given exam-
ple sentences, and some known restrictions to the solution. For instance, given
the example sentence “if the weather is rainy and there is no umbrella or the
weather is a thunderstorm then the clothes are wet”, it is known that words

222

10.2. Prolog Language Extensions

Listing 10.7: Calculation of possible operator definitions for if-then rules.
1 ?- solution(Ops). Toplevel
2 Ops = [op(700,xfx,is), op(700,xfx,are), op(P_a,fx,a),
3 op(P_the,fx,the), op(P_no,fx,no), op(P_if,fx,if),
4 op(P_then,xfx,then), op(P_and,yfx,and), op(P_or,yfx,or)],
5 P_then in 702..1200,
6 P_if in 2..699,
7 P_and #=< P_or, P_and in 701..1199,
8 P_or #< P_then, P_or in 701..1199,
9 P_the #< P_if, P_the in 1..698,

10 P_a in 1..699 ,
11 P_no in 1..699 ; % ...

like weather and wet depict entities in the domain of discourse, and therefore
should not be returned as operators. In library(plammar), besides the positive list
of op(Precedence,Type,Name) terms in the infer_operators option, we can also
specify a list of things that should not form operators in the disallow_operators
option. This way, disallow_operators([op(_,_,weather), op(_,yf,_)]) avoids the
generation of weather as an operator of any type, as well as solutions that rely on
postfix operators of type yf.

The full source code to generate possible operator definitions so that the afore-
mentioned example sentence becomes valid Prolog is given in Appendix B.11. Its
first computed answer substitution is shown in Listing 10.7. It can be further re-
stricted by providing additional CLP(FD) constraints. For instance, to reflect that
conjunction via and/2 binds stronger than the disjunction or/2, we can add the con-
straint P_and #< P_or , which incrementally tightens the range of precedence values
for P_and. Our manually created operator definitions for if-then rules from Table 5.3
is an instance of the returned operator precedences.

10.2. Prolog Language Extensions

When it comes to the internal integration of DSLs, there are several options that
allow relaxing the syntactic requirements for Prolog programs. In general, the ISO
Prolog standard as well as our Prolog parser implementation in library(plammar)
as presented in Chapter 9 offers two facilities for extending Prolog’s syntax or for
defining deviations. Firstly, both can be related to the lexer component, i. e., we can
change what forms a valid token in Prolog (cf. Sections 9.2 and 9.3, Iso 6.4 & 6.5).
The second option is a customisation of the ISO Prolog standard’s rules what tokens
form valid Prolog terms in the parser component (cf. Section 9.4, Iso 6.2 & 6.3).

223

Chapter 10. Prolog Operator Inference and Language Extensions

Listing 10.8: Internal Prolog DSL to express logic formulas.
1 :- set_prolog_flag(allow_variable_name_as_functor, true). SWI-Prolog
2 :- op(1000, xfy, ∧).
3 :- op(1100, xfy, ∨).
4 :- op(1200, xfx, ←).
5

6 Path(a, c) ← Edge(a, c) ∨ Edge(a, b) ∧ Path(b, c).

Because almost all character sequences already constitute valid sequences of Prolog
tokens, usually the latter approach is preferred to define new language constructs in
a backwards compatible way. Changes on the tokenisation level on the other hand
often just extend the language’s alphabet by additionally allowed characters.

10.2.1. Motivational Examples

As a motivational example, Listing 10.8 applies both techniques for language exten-
sions together with user-defined Prolog operators. It allows to express logic formulas
with their connectives verbatim as an internal domain-specific language in SWI-
Prolog. Following the ISO Prolog standard, Prolog’s alphabet is restricted to the
7-bit US-ASCII character set. SWI-Prolog expands this constraint to all Unicode
characters, including for the definition as operators. Additionally, the language ex-
tension allow_variable_name_as_functor[D.21] allows to use symbols starting with
an uppercase letter as functors in compound terms. It is similarly supported by both
our library(plammar) and recent versions of SWI-Prolog. Only because of these ex-
tensions, domain experts are able to state logic formulas as Prolog clauses using
the traditional notation as illustrated in Listing 10.8, where Path and Edge are
predicates, and ← , ∨ and ∧ denote implication, disjunction, and conjunction,
respectively. Though syntactically a , b and c are Prolog atoms as well, their in-
tended meaning of logic variables can be realised at compile-time by an appropriate
term expansion (cf. Section 5.2).

Listing 10.9 provides a second example for a DSL that can be integrated internally.
The definition of the predicate print_list_of_lists closely resembles an imper-
ative programming language, but is an executable SWI-Prolog program as well. In
Sections 10.2.2 and 10.2.3, we discuss the language extensions that are required to
successfully and unambiguously parse it as valid Prolog code. There, we restrict our-
selves to options of library(plammar) which have been already mentioned in the two
motivational examples, or are referenced by the internal integrations of GraphQL
and XPath in Sections 10.3 and 10.4.

224

10.2. Prolog Language Extensions

Listing 10.9: Exemplary internal Prolog DSL with language extensions that are also
supported by SWI-Prolog.

1 :- set_prolog_flag(allow_variable_name_as_functor, true). SWI-Prolog
2 :- op(100, xf, {}).
3 :- op(100, xf, []).
4 :- op(500, xf, ;).
5 :- op(600, xfx, ∈).
6 :- op(600, fx, while), op(500, fx, function).
7

8 function print_list_of_lists() {
9 while (X ∈ [[a, b], [1, 2, 3]]) {

10 writeln(LENGTH(X));
11 writeln(X[0]);
12 }
13 }.

The complete index of all language extensions that we propose and that can be used
with library(plammar) is given in Appendix D. The index is divided regarding the
extension’s application in the overall parsing process, i. e., whether they apply on
the tokenisation or parser level. It might serve as a reference, since for each language
extension we additionally provide a source code example that is invalid according to
the ISO Prolog standard but valid after enabling the discussed flag.

In library(plammar), each extension can be enabled separately in the list of options
that is passed via the third argument in the predicates
prolog_{tokens,parsetree,ast}/3. Some of the proposed language extensions
were originally introduced by SWI-Prolog and are therefore already supported by
its recent versions. These cases are indicated in Appendix D, and library(plammar)’s
option name is the same as used by SWI-Prolog’s environment flags [136, Sec. 2.12],
like for instance the aforementioned allow_variable_name_as_functor[D.21] in
Listings 10.8 and 10.9. In contrast to our implementation, which aims to be com-
patible with many different Prolog systems and dialects and thus requires delicate
distinctions of features, some of SWI-Prolog’s deviations from the ISO Prolog stan-
dard cannot be disabled separately or at all.

10.2.2. Tokenisation Level

Language extensions for Prolog on the tokenisation level either target the alphabet,
or they declare refined tokens or new tokens. For each of these three areas, we present
a selection of extensions that are supported by library(plammar) in this section and
elaborate on their advantages for the integration of external languages. The complete

225

Chapter 10. Prolog Operator Inference and Language Extensions

list is given in Appendices D.1 to D.12. Most of these extensions on the tokenisation
level have their origin in deviations from the ISO Prolog standard by some popular
Prolog system. They are covered by library(plammar) and have proven to be partic-
ularly useful when parsing Prolog programs of various sources, as performed in our
empirical community evaluation of Prolog programming styles in [82].

Alphabet. The first class of extensions on the tokenisation level is oriented towards
the language’s alphabet, i. e., the set of characters valid Prolog programs consist of.
Extensions expand the countably infinite set of symbols that can be used to form a
token (cf. Section 3.1).

For instance, the flag allow_unicode[D.1] enables the literal usage of Unicode char-
acters. Traditionally, Prolog’s alphabet is restricted to the 7-bit US-ASCII character
set, thus symbols like ∈ cannot be used anywhere in the Prolog source code. As a
consequence, ∈ does not constitute a valid operator name, neither can it be stated
as part of source code annotations. For the integration of external DSLs that rely
on Unicode characters, the setting allow_unicode(true) enables the full Unicode
character set in library(plammar).

Further language extensions of this class are provided by the options
allow_symbolic_no_output_char_c[D.4], allow_symbolic_escape_char_e[D.4],
and allow_symbolic_space_char_s[D.4], which add the originally missing sym-
bolic control characters \c , \e , and \s from the 7-bit US-ASCII set to Prolog’s
alphabet.

Refined Tokens. Only a minor part of extensions on the tokenisation level affect the
language’s set of allowed characters. In contrast, most extensions combine or restrict
tokens that are already allowed by the ISO Prolog standard. Because Prolog does not
permit two operands to be adjacent, any two Prolog tokens that are consecutively
written in a DSL’s source code and of which neither is declared as an operator
can never constitute a valid Prolog term. We previously discussed this for the input
X(1.2.3) in Section 10.1.5. Consequently, the sequence of such tokens can be defined
as a new, combined token. Other Prolog language extensions then again provide
restrictions to the tokens as defined in the ISO Prolog standard to change their
meanings.

One example for a refined token has been introduced in Section 9.3.4 when dis-
cussing the efficient parsing of numbers: SWI-Prolog allows to split long integers into
digit groups, separating them either by single spaces or underscores. This can be en-
abled in library(plammar) by the two options allow_digit_groups_with_space[D.8]

226

10.2. Prolog Language Extensions

and allow_digit_groups_with_underscore[D.9]. Since separating large numeric
literals into digit groups by underscores is supported by several other program-
ming languages, this Prolog language extension supports their integration as inter-
nal DSLs. Further compatibility with representations of numbers from other lan-
guages is provided by the extensions allow_integer_exponential_notation[D.10]

and rational_syntax[D.11].

As introduced in Section 3.1.1 and formally specified in the EBNF definition of the
nonterminal variable in Figure 5.2 of Section 5.6, a Prolog variable starts either
by an uppercase letter, or by the underscore as its prefix. By enabling the setting
var_prefix[D.7], only the second form denotes valid variable names. Symbols be-
ginning with an uppercase letter are then treated as atoms instead. Although this
language extension does not expand Prolog’s expressiveness, it contributes to the
integration of case-sensitive external languages as internal Prolog DSLs since we
work around the possibly unintended special meaning of logic variables.

New Tokens. In a third form of language extensions on the tokenisation level,
we define new tokens that otherwise cannot be parsed at all, although all of their
characters are part of Prolog’s alphabet.

For instance, the input \u2208 neither constitutes a single token nor a sequence
of tokens according to the ISO Prolog standard. It can be accepted as valid Prolog
source code only after enabling the setting allow_unicode_character_escape[D.2].
This language extension adds support for the de-facto standard known from other
programming languages to encode Unicode characters like ∈ , which is of hexadec-
imal number 2208. The following flags constitute similar extensions:

– allow_missing_closing_backslash_in_character_escape[D.3]: \xa

– back_quoted_text[D.6]: `example`

– allow_single_quote_char_in_character_code_constant[D.12]: 0’’

– allow_newline_as_quote_char[D.12]: 0’<newline>

– allow_tab_as_quote_char[D.12]: 0’<tab>

In many programming languages, it is possible to specify the program loader script
path at the file’s beginning. This character sequence is started by #! (called shebang
or hashbang). Due to its special meaning, it is allowed only in the program’s very first
line of code. In our implementation of the Prolog lexer as introduced in Section 9.3.2,
it thus appears in the finite-state machine as sh directly after the initial state pl .
Allowing the shebang via the setting allow_shebang[D.5] simplifies the processing of

227

Chapter 10. Prolog Operator Inference and Language Extensions

source code from another programming language. Its support has to be realised at
the tokenisation level, since the arbitrary character sequence that follows #! is not
required to be a valid Prolog term, thus just defining both #/1 and !/1 as prefix
operators does not suffice.

10.2.3. From Tokens to Valid Terms

There are many sequences of tokens that do not constitute valid Prolog terms. As
introduced in the previous section, these cases offer the chance to extend the ISO
Prolog standard. In addition to refined tokens, this can also be achieved on the term
parsing level, i. e., by extending Prolog’s definition of what tokens constitute a term.
Extensions of this form are guaranteed to be backwards compatible, since they only
add new language constructs and do not modify the existing. Their implementation
expands Prolog’s strength in modelling languages as internal DSLs.

In this section, we introduce a selection of language extensions on the term pars-
ing level. The complete list with detailed information is given in Appendices D.13
to D.24. In the following, we restrict ourselves to the motivational example of List-
ing 10.9. It combines some of the proposed extensions to internally integrate a DSL
that resembles an imperative scripting language. In the given form, it is already sup-
ported by recent versions of SWI-Prolog. We shortly describe each applied extension
with respect to its corresponding line of code:

1 By using the flag allow_variable_name_as_functor[D.21], the functors of
compound terms are allowed to start by an uppercase letter. This way,
LENGTH(X) in line 10 of Listing 10.9 is read in as if it were written as
’LENGTH’(X) . This extension was originally suggested by Robert van Engelen
and is supported by SWI-Prolog since at least version 2.8 from 1990 [127].

2 Without further modifications, both { } and { t } are valid Prolog terms ac-
cording to the ISO Prolog standard. Seen individually, the empty curly brack-
ets of line 2 constitutes a valid atom (Iso 6.3.1.3). However, curly brackets are
used in most imperative programming languages to enclose code blocks. With
the extension allow_curly_block_op[D.16], it is allowed to use the atom {}
as an operator of any type. With the presented operator definition, the curly
bracketed term of lines 8–13 is treated as a postfix operator with the argument
function print_list_of_lists() .

3 Besides curly bracketed terms to enclose code blocks, imperative program-
ming languages often use postfix terms in square brackets to denote ar-

228

10.3. GraphQL as an Internal DSL

ray subscripting as in line 11. This can be similarly enabled by the flag
allow_square_block_op[D.17].

4 Iso 6.3.4.3 recommends to not declare the same name as an infix and postfix
operator. This is justified by possible optimisations for the parser, though
several systems like SWI-Prolog and SICStus Prolog lift this restriction. In
library(plammar), this extension can be enabled by the flag
allow_infix_and_postfix_op[D.13]. It is required to terminate the second
statement in line 11 by ; . In contrast, ;/2ISO of the previous line represents
the infix operator as defined by the ISO Prolog standard.

5 As introduced in Section 10.2.2, the flag allow_unicode[D.1] is required to be
able to define ∈/2 as an infix operator. It is later used in line 9.

8 In line 6, we define the keywords while/2 and function/1 as prefix operators.
Consequently, print_list_of_lists() is the operand of {}/1. It is a valid
Prolog term only by the flag allow_compounds_with_zero_arguments[D.14],
which allows to use compound terms with an empty arguments list.

Note that similar to operator definitions, our library(plammar) is able to auto-
matically infer the required settings to accept an otherwise invalid Prolog pro-
gram. This is because we allow all arguments of the predicates prolog_tokens/3,
prolog_parsetree/3, and prolog_ast/3 to be free or only partially bound vari-
ables, in particular the third argument that represents the list of options. Con-
sequently, we can infer the required Prolog language extensions just by example
sentences of the external DSL. This finally answers the question if it is possible
to integrate it internally, how, and on which Prolog systems, since the proposed
language extensions are variously supported by existing implementations.

10.3. GraphQL as an Internal DSL

In Section 6.4, we present the integration of the application layer query language
GraphQL into Prolog. The resulting framework implements the GraphQL type sys-
tem and query syntax as an external DSL in Prolog. Instances of GraphQL’s formally
specified type system definition language can be stated without further modifications
in quasi-quotations, which are transformed via DCGs into corresponding Prolog data
representations based on dicts.

This traditional approach to integrate an external DSL is powerful yet complex. As
argued in our work [84, Sec. 3], it is required because some elements of the GraphQL
syntax conflict with those of Prolog – at least if one aims for full compliance with the

229

Chapter 10. Prolog Operator Inference and Language Extensions

Listing 10.10: GraphQL type definitions from Listing 6.8 as internal Prolog DSL.
1 :- set_prolog_flag(var_prefix[D.7], true). GraphQL DSL
2 :- op(100, fx, type).
3 :- op(600, xfy, :).
4 :- op(500, xf, !). % allow_operator_as_operand[D.19]

5 :- op(400, xfy, {}). % allow_curly_block_op[D.16]

6 :- op(200, xf, {}). % allow_infix_and_postfix_op[D.13]

7

8 schema(_schema) :-
9 _schema =

10 type Query {
11 person(name: String!): Person,
12 book(title: String!): Book,
13 books(filter: String): [Book]
14 }
15

16 type Book {
17 title: String!,
18 authors: [Person]
19 }
20

21 type Person {
22 name: String!,
23 age: Integer,
24 books(favourite: Boolean): [Book],
25 friends: [Person]
26 }.

ISO Prolog standard. By lowering some of Prolog’s syntax requirements as proposed
in Section 10.2, GraphQL’s type system can alternatively be specified as an internal
Prolog DSL. Listing 10.10 presents the required operator declarations to state the
exemplary GraphQL type definitions from Listing 6.8 internally as Prolog terms in
the clause schema/1.

In line 3 of Listing 10.10, we declare :/2 as an infix operator, so GraphQL’s key-value
pairs become syntactically valid. Although the type xfx would be more appropriate
to avoid chaining, our definition follows SWI-Prolog, which uses the operator :/2SWI

to explicitly qualify modules, and in the syntax of dicts. The declaration of !/1
as a postfix operator allows the specification of non-nullable GraphQL types. The
predicate !/0ISO is frequently used in Prolog to cut solutions in the SLD resolution.
Being additionally defined as an operator normally entails that calls have to be
wrapped in parentheses (Iso 6.3.1.3), which might conflict with existing programs.
This can be avoided by the language extension allow_operator_as_operand[D.19].

230

10.4. XPath Expressions in Prolog

The curly block operator {} finally enables the statement of the key-value lists,
but in contrast to dicts allows a lts after Query, Book, and Person. With the
option allow_infix_and_postfix_op[D.13], it has been defined both as postfix and
infix operator to avoid commas between the type blocks.

The canonical representation of the resulting compound term can be printed using
the built-in predicate write_canonical/1:

?- schema(_s), write_canonical(_s). Toplevel

{}({ ’,’(:(person(:(name, !(String))), Person),
’,’(:(book(:(title, !(String))), Book), ...

Note that unlike in our implementation with quasi-quotations in Section 6.4, the
types like String and Person denote atoms and not variables, i. e., their references
have to be implemented by the processing meta-interpreter or term expansions.

The clause from lines 8–26 of Listing 10.10 can also be used as an example input for
library(plammar) to automatically infer the required operators to constitute a valid
Prolog program. It similarly calculates the possible operator definitions for : , ! ,
type , and the dependencies regarding their precedences and types. With respect to
the required language extensions, library(plammar)’s first solutions contain only the
flags allow_curly_block_op[D.16] and allow_infix_and_postfix_op[D.13]. To be
valid Prolog, it is not relevant whether the elements that start with an uppercase
letter – Query, String, and the other types – represent variables or atoms. This is be-
cause at any position in a valid Prolog program where a variable is allowed, an atom
could be equally stated, even without any language extension. On the other hand,
by explicitly giving the flag var_prefix[D.7] as an option to library(plammar), many
additional term representations are returned, since the former variables like Query
then can also constitute operators. Therefore, for inputs where symbols starting with
an uppercase letter should be handled as atoms but do not constitute operators, we
suggest to either run library(plammar) with an explicit var_prefix(false) flag, or
by passing these atoms to the disallow_operators list (cf. Section 10.1.5).

10.4. XPath Expressions in Prolog

The extensible markup language (XML) [11] is one of the most used data formats
to store and exchange structured data. In particular in the context of web services,
XML documents are often used for data transfer and as configuration files. These
use cases emphasise the importance for tools that guarantee an expected format of
the used XML documents.

231

Chapter 10. Prolog Operator Inference and Language Extensions

A typical approach to specify the structure of an XML document is to formally define
its schema as a finite set of allowed attributes, elements, and primitive data types.
In its simplest form, this can be achieved by a document type definition (DTD).
More expressive languages like the Relax NG Schema [119] and the XML Schema
Definition (XSD) [35] additionally allow to specify very detailed constraints on the
structure and content of XML nodes.

SWI-Prolog traditionally has a good support for XML. This originates from its tight
connections to the emerging research field of semantic data, for instance with SWI-
Prolog’s semantic web framework Cliopatria [132]. It uses RDF/XML [6] as its pri-
mary data exchange format, which again is an application of XML and thus depends
on stable and fast parsers and schema validators. As part of our contribution, we de-
veloped the XML Schema validator for SWI-Prolog, library(xsd). It contains student
contributions from Jona Kalkus, Kevin Jonscher, and Lucas Kinne. library(xsd) is
published under MIT License at https://github.com/fnogatz/xsd. It is available for
installation from SWI-Prolog’s list of add-ons and can thus be conveniently installed
via ?- pack_install(xsd) . The module ships with more than 1000 tests using our
library(tap).

With library(xsd), documents in XML and XSD can be directly embedded via quasi-
quotations into Prolog source code. The code snippets are therefore parsed and
processed like an external DSL (cf. Chapter 6). In the validation process, the XML
nodes are flattened into plain old Prolog facts, following the author’s previous work
with xsd2json.46 In the validation process, both the generated syntax trees of the
XML and XSD documents are traversed simultaneously. For more details on the
architecture and implementation of library(xsd), we refer to our work [79, 80].

While the overall XSD documents are integrated externally, the possibly contained
XPath expressions are in contrast treated as native Prolog terms in our library(xsd).
XPath is an important part of XSD since version 1.1 became a W3C Recommen-
dation in 2012 [44], as it heavily relies on it for the specification of assertions and
conditional type assignments. Although completely backwards compatible, these new
XSD features require the handling of expressive, declarative rules which can often
not be easily added to existing tools. As a result, the number of XSD validators
with support for the most recent XSD 1.1 standard is still limited.47 Processing the
contained XPath expressions just as normal Prolog terms in library(xsd) allows us to
46xsd2json is a standalone tool that translates an XSD into an equivalent JSON Schema us-

ing Prolog and Constraint Handling Rules (CHR). It is published under MIT License at
https://github.com/fnogatz/xsd2json. A detailed system description is given in our paper [77].

47Three of the most popular tools with support for XSD 1.1 are Apache
Xerces2 Java (https://xerces.apache.org, Apache License 2.0), Oxygen XML
Editor (https://www.oxygenxml.com, proprietary license), and Saxon Xslt
(https://www.saxonica.com, proprietary license).

232

https://github.com/fnogatz/xsd
https://github.com/fnogatz/xsd2json
https://xerces.apache.org
https://www.oxygenxml.com
https://www.saxonica.com

10.4. XPath Expressions in Prolog

Listing 10.11: Examples for XPath expressions that are embedded in an XML
Schema of version 1.1. The complete XSD is given together with a
conforming XML document in Appendix B.12.

1 <xs:restriction base="xs:date"> XML Schema
<xs:assertion test="fn:day-from-date($value) eq 24" />

</xs:restriction>

2 <xs:complexType>
<xs:assert test="entry[@id mod 2 eq 0]/@class = ’even’ or

entry[@id mod 2 eq 1]/@class = ’odd’" />
<xs:assert test="every $i in 1 to count(entry)-1 satisfies

(entry[$i] lt entry[$i+1])" />
</xs:complexType>

3 <xs:element name="entry" maxOccurs="unbounded" type="entry">
<xs:alternative test="@class = ’even’" type="entry-even" />

</xs:element>

4 <xs:key name="entry-id-key"><!-- similar for xs:unique -->
<xs:selector xpath="entry" />
<xs:field xpath="@id" />

</xs:key>

implement the corresponding rules for the XML Schema validation as normal Prolog
clauses.

Listing 10.11 provides examples for each of the XSD 1.1 elements that rely on XPath
expressions to specify constraints: xs:assertion, cx:assert, xs:alternative,
xs:key and xs:unique. It is an extract of the XSD document that is given in
Appendix B.12. There, we additionally provide an XML document that conforms
to the embedded constraints:

1 fn:day-from-date($value) eq 24 is a restriction to the simple type xs:date.
It is fulfilled only for dates with a day component of 24, as in 1993-05-24.

2 Similarly, constraints for complex types can be stated in xs:assert nodes.
The first example ensures that every XML node <entry> with an even-
numbered attribute id has the class attribute set to even, and similar for
odd-numbered values of id. The second xs:assert is true if the values given
in the <entry> nodes are sorted in ascending order.

3 Type alternatives can be specified as XPath expressions in xs:alternative
nodes. Here, the XSD type entry-even is used for all <entry> nodes with their

233

Chapter 10. Prolog Operator Inference and Language Extensions

class attribute set to even. Otherwise, the XML node is validated against the
type entry.

4 Only for completeness we also mention xs:key nodes here. Their selectors are
based on a small subset of XPath. Restrictions via xs:key and xs:unique are
widely used, since they are part of the older XSD 1.0 standard. In the shown
example, all id attributes of the <entry> nodes have to be unique.

In our library(xsd), we use SWI-Prolog’s built-in parser to process the embedded
XPath expressions as normal Prolog terms. Given the necessary operator definitions
that constitute this internal DSL, they are correctly parsed by the ISO Prolog stan-
dard’s predicate read_term/2ISO. In addition, the Prolog program that validates a
given XML document against the embedded XPath expressions can be elegantly
written using the same operators. For instance, the evaluation of arithmetic expres-
sions is specified in clauses of this form:

:- op(700, xfx, [lt, in]). Prolog

xpath_expr(Context, Value1 lt Value2, Result) :- % ...

xpath_expr(Context, Var in Generator, Result) :- % ... and similar

The complete list of operators required for XPath as an internal DSL is given in
Appendix B.13. With every/1 and $/1 as prefix operators, to/2, satisfies/2,
lt/2 and in/2 as infix operators, and finally the square brackets []/1 as postfix
operator (cf. Section 10.2.3), the second XPath expression in 2 is read as the
following Prolog term in canonical form:

?- read_term(XPath,[]), write_canonical(XPath). Toplevel
|: every $i in 1 to count(entry)-1 satisfies (entry[$i] lt entry[$i+1]).
satisfies(every(in($(i), to(1, -(count(entry), 1))),

lt([]([$(i)], entry),
[]([+($(i), 1)], entry)))

XPath = (every $i in ...). % toplevel prints binding of XPath

In addition to allow_square_block_op[D.17], the internal integration of XPath de-
pends on a second language extension for Prolog. This is due to the frequent use
of the character sequence () to denote an empty sequence. The ISO Prolog stan-
dard defines { , } , [, and] as dedicated tokens. Their pairs { } and []
(with optional lts in-between) constitute atoms according to Iso 6.3.1.3. However,
an equivalent term for the empty pair of parentheses () is missing in the ISO
Prolog standard. We thus propose the language extension allow_empty_atom[D.15],
which adds to the ISO Prolog standard’s EBNF (cf. Section 9.2) the following two
grammar rules:

234

10.4. XPath Expressions in Prolog

atom = open, close ; Ebnf Dsl

atom = open_ct, close ;

We also would like to emphasise that Wielemaker et al. noted the need for such a
language feature in [130].

235

11
Conclusion

The worst thing that happened to logic programming is that we stuck with Prolog.

— Statement in the discussions at Declare 201748

In this work work, we have provided a number of contributions regarding the defi-
nition and application of domain-specific languages in Prolog as well as the efficient
implementation of Prolog parsers. Furthermore, we proposed and discussed several
extensions that expand Prolog’s expressiveness and compatibility among various
systems. For a summary of each chapter, we refer to Section 1.4.1.

In Section 11.1, we present empirical results of using library(plammar) to statically
analyse Prolog source from packages provided by the community and shipped with
SWI-Prolog. It continues our summary of the thesis’ main results and their impli-
cations on the field of research from Section 1.3. This section also emphasises the
usefulness and practical applications of the created toolchain and the internally in-
tegrated Prolog DSLs, and provides insights on the current dissemination of the
proposed language extensions in the Prolog community. Possible avenues for further
improvements and research are given in Section 11.2.

11.1. Empirical Results

To the best of our knowledge, the package library(plammar) is the first parser for
Prolog that allows to automatically infer operator definitions and required flags from
example sentences. It has many practical applications and improves the work with
Prolog in general, as well as the definition and implementation of domain-specific
languages in Prolog in particular.
48Quote at the Declare 2017 Conference and Summer School on Declarative Programming at the

University of Würzburg in September 2017, at which the author was one of the local organ-
isers. In the community discussions about the status quo of logic programming, an attendee
noticed that sticking to the traditional syntax and semantics of Prolog would block the progress
and population growth of the logic programming paradigm in its entirety. Quote taken from
https://twitter.com/ulmerleben/status/910495526168203264.

237

https://twitter.com/ulmerleben/status/910495526168203264

Chapter 11. Conclusion

Parse Tree Generation and Serialisation with Sequences. The package
library(plammar) is based on library(dcg4pt). Though the idea of an additional
argument to hold parse trees in definite clause grammars has been examined before,
we extend the classical considerations for natural language processing by sequences
of nonterminals of arbitrary numbers, which is a common requirement for pars-
ing and serialising formal language. In addition, the underlying term expansion is
agnostic to the mode the DCG is called with. Depending on whether the list argu-
ment and/or parse tree argument is bound, it either greedily consumes or produces
elements, or starts with the smallest sequence first.

Inference of Operators and Flags. In our work [82, Sec. 4.1], we evaluate the status
of and adherence to coding guidelines in the Prolog community. It requires to parse
Prolog source code of various sources. In large Prolog codebases, the declarations
of user-defined operators as well as the set program flags are usually split across
multiple files. To be still able to process a large number of Prolog files independently
and in parallel, the used library(plammar) has to infer most of the operators and
used flags. All in all, the considered codebase consists of more than 4500 Prolog
files from 251 packages of the community and 34 packages that are shipped with
SWI-Prolog. With a fixed timeout set to 10 seconds, more than 90 % of all Prolog
files were successfully parsed by library(plammar). Their sizes reach up to 1 MB
with 20.000 lines of Prolog code.49

Dissemination of Proposed Language Extensions. Some of our proposed exten-
sions for Prolog are already available in recent versions of SWI-Prolog, using the
corresponding environment flags. In the aforementioned empirical study, we also use
library(plammar) to evaluate the distribution in the Prolog programming community
of these. After all, most features are not widespread yet. One reason is that some syn-
tactic elements are situational, e. g., the usage of the shebang #! to specify the pro-
gram’s loader script path (allow_shebang[D.5]). For others, there might be suitable
alternatives. For instance, the option allow_integer_exponential_notation[D.10]

becomes obsolete once the traditional exponential notation with a leading fractional
part is consistently used. Additionally, these extensions were introduced fairly recent
into SWI-Prolog while many of the more than 280 examined packages already exist
significantly longer. Thus, it is quite unlikely that existing code is rewritten only to
use new language features.

However, dicts[D.18] seem to be an exception regarding their increasing adoption in
the Prolog programming community. Around 14 % of the 251 examined community
49A list of all tested packages with their parsing output from library(plammar) is available at

https://github.com/fnogatz/plammar-community-evaluation.

238

https://github.com/fnogatz/plammar-community-evaluation

11.2. Future Work

packages and 25 % of those that are additionally shipped with SWI-Prolog make use
of dicts at some point. This is an indicator of both active development and adaption
of new language features, as well as of the interest in the community to use proper
associative data structures.

Toolchain for Program Transformations. In [85], we describe how to use li-
brary(dcg4pt) and library(plammar) for transformations on Prolog programs. All
three predicates prolog_tokens/3, prolog_parsetree/3, and prolog_ast/3 are
logically pure, so they can be used for the parsing of Prolog programs and their
serialisation as well. Since the question of how to concretely format the clauses
encoded in an AST is underdetermined, we define sensible code formatting rules
in library(plammar). They are based on the coding guidelines given by Covington
et al. [25].

Internal Integration of DSLs. The presented internal integrations simplifies the
work with popular domain-specific languages in Prolog. The definition of EBNF is
used by library(plammar) and illustrates the strengths of the presented approach to
define DSLs internally: the formal language specification given in the ISO Prolog
standard immediately constitutes an executable Prolog program as well. Similar
observations can be made with GraphQL. Given the type system in a well-defined
format, which was slightly adapted to be compatible with Prolog, our library(graphql)
creates the corresponding application layer. And finally the definition of XPath
as an internal Prolog DSL significantly reduces the programming overhead, as the
application of selectors and assertions is implemented in library(xsd) simply as a tree
traversal over Prolog data structures.

11.2. Future Work

In the future, we need to investigate two main directions. Firstly, the current
toolchain with library(dcg4pt) and library(plammar) can be improved and optimised,
in particular regarding its performance as well as the code’s maintainability and
reusability. Secondly, we can examine further extensions to Prolog and emphasise
their usefulness for the integration of DSLs in the logic programming community.
In the following, we discuss some of this future work in more detail.

Further Applications with library(plammar). In Section 9.1.1, we already moti-
vated several applications for our library(plammar) and emphasised how they profit

239

Chapter 11. Conclusion

from a fully-featured Prolog parser written in Prolog. The greatest potential prob-
ably lies in tools that assist with the development of Prolog programs and internal
DSLs. Because of its flexible syntax with user-defined operators, integrated devel-
opment environments (IDEs) are usually missing typical features like syntax high-
lighting, code completion, and debugging tools when it comes to Prolog. A possible
approach to overcome this limitation is to implement the standardised language
server protocol (LSP) [13, 101] on top of library(plammar). The LSP constitutes
a unified API that is supported by most modern development tools. Current inte-
grations of LSP with Prolog make use of SWI-Prolog’s introspection capabilities,
and SWI-specific predicates for code formatting, e. g., portray_clause/2SWI.50 As a
result, they return useful insights only for valid Prolog programs. An implementa-
tion based on library(plammar) on the other hand enables a more forgiving parsing
experience and thus provides valuable feedback during the process of development.

In Section 9.5, we describe the architecture of a tool that reformats Prolog source
code and checks the adherence to coding conventions using library(plammar).
Though this already returns promising results for Prolog programs of any kind,
we intend to broaden the scope of language features our automatic code formatter
and linter can be applied to. In particular, it could provide specialised formatting
rules for internal Prolog DSLs. For instance, though they are among the most widely
used Prolog DSLs, the Prolog community has not yet decided on how to consis-
tently format rules in CHR (cf. Section 4.3.3.1), and how to best state constraints
in CLP(FD) (cf. Section 10.1.4).

Improve Run-Time Performance. As illustrated by the results of our empiri-
cal study in Section 11.1, the overall run-time performance of library(dcg4pt) and
library(plammar) is already promising and allows to use them to parse and seri-
alise fairly large Prolog programs. However, we still see potentials for further im-
provements. First of all, the work with formal languages that contain sequences of
arbitrary number sometimes results in consecutive evaluations of identical goals –
already inferred knowledge gets discarded because of backtracking alternatives, even
though there are some subgoals which might occur identically in later computations
again. A similar problem has been observed before in our XML Schema validator
library(xsd) [79, Sec. 3]. The resulting performance issues can be resolved by mem-
oisation techniques, e. g., using SWI-Prolog’s tabled execution [136, Sec. 7] with the
table/1SWI directive.
50Two existing implementations of the LSP for Prolog are the Language Server Protocol server for

SWI-Prolog (https://github.com/jamesnvc/lsp_server, BSD License) by James Cash, and the
VIM-Plugin for Prolog (https://github.com/LukasLeppich/prolog-vim, MIT License) by Lukas
Leppich.

240

https://github.com/jamesnvc/lsp_server
https://github.com/LukasLeppich/prolog-vim

11.2. Future Work

Listing 11.1: Implementation of prolog_tokens/3 with a varying execution order
of the goals in the rule body.

1 prolog_tokens(string(String), Tokens, Options) :- Prolog
2 !,
3 I0 = string_chars(String, Chars),
4 I1 = prolog_tokens(chars(Chars), Tokens, Options),
5 (nonvar(String) -> Instructions = (I0, I1)
6 ; Instructions = (I1, I0)),
7 call(Instructions).

Another performance bottleneck in library(plammar) is the use of SWI-Prolog’s
library(option) to pass and return the required operator definitions and language ex-
tensions in the third argument of the predicates prolog_tokens/3,
prolog_parsetree/3, and prolog_ast/3. The open lists easily get very long for
large Prolog programs. Because of Prolog’s implementation in the form of linked lists
and the lack of data structures with random access, this creates an overhead in the
parsing process that is linear to the number of operators. Again, memoisation via
tabling or the use of associative lists via dicts or SWI-Prolog’s library(assoc) [136,
Sec. A.4] could improve the parsing performance of our library(plammar).

(Automatically) Improve Code Quality. Some of the aforementioned improve-
ments could be identified automatically and realised by the help of program trans-
formations. Similarly, our implementations of library(dcg4pt) and library(plammar)
currently contain several predicates that are explicitly agnostic to their call mode –
i. e., the execution order of goals stated in a rule’s body only depends on which of its
arguments are already bound. For instance, consider the definition of the predicate
prolog_tokens/3 in Listing 11.1. It is used to parse the Prolog source code given
as a string in the first argument String and return the corresponding list of tokens,
i. e., for the call mode (+,?). Alternatively, a string should be returned in the first
argument in case Tokens is already bound, i. e., for the call mode (?,+). The order
of the goals I0 and I1 varies because string_chars/2ISO throws a not sufficiently
instantiated exception in case of two free variables, so in the second case, I0 has to
be called last.

This is because string_chars/2ISO describes a relationship between values. In li-
brary(delay),51 Michael Hendricks proposes to wrap these predicates in a delay/1
predicate. Then, the variables are annotated via attributed variables (cf. Sec-
tion 10.1.3) with their required call mode, and the actual predicate call happens as

51library(delay), https://github.com/mndrix/delay, The Unlicense.

241

https://github.com/mndrix/delay

Chapter 11. Conclusion

soon as it reasonably can. It is subject of future research to discuss how to auto-
matically identify in a given Prolog program predicates that define constraints on
their arguments.

Discussion on the Future of Prolog. In the long term, we see the potential for our
library(plammar) to assist with the discussion of experimental new language features
in Prolog. With its ability to easily define program transformations, library(plam-
mar) could become what the open-source transpiler Babel currently is for the Java-
Script community: a tool to experiment with new language constructs that are tran-
spiled into plain old Prolog terms. This could significantly improve the dissemination
of newly discussed flags, because they are realised only once in library(plammar)
instead of concurrently and independently adding support in all major Prolog sys-
tems.

242

Bibliography

[1] Harvey Abramson. Definite Clause Translation Grammars. Technical report,
1984.

[2] Harvey Abramson and Verónica Dahl. Logic Grammars (Symbolic Computa-
tion). Springer, 1989.

[3] Salvador Abreu and Daniel Diaz. Objective: In Minimum Context. In Proc.
19th International Conference on Logic Programming (ICLP 2003), pages 128–
147.

[4] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory,
volume 27. Springer Science & Business Media, 2002.

[5] Nicos Angelopoulos, Vítor Santos Costa, Joao Azevedo, Jan Wielemaker, Rui
Camacho, and Lodewyk Wessels. Integrative Functional Statistics in Logic
Programming. In International Symposium on Practical Aspects of Declarative
Languages (PADL 2013), pages 190–205. Springer, 2013.

[6] Dave Beckett and Brian McBride. RDF/XML Syntax Specification (Revised).
W3C Recommendation, 10(2.3), 2004.

[7] Wouter Beek and Jan Wielemaker. SWISH: An Integrated Semantic Web
Notebook. In International Semantic Web Conference (Posters & Demos),
2016.

[8] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A
Fresh Approach to Numerical Computing. SIAM Review, 59:65–98, 2017.

[9] Stefan Bodenlos, Daniel Weidner, and Dietmar Seipel. PyPlC – Towards a
Prolog Database Connectivity for Python. In Proc. 32nd Workshop on Logic
Programming (WLP 2018).

[10] Ivan Bratko. Prolog Programming for Artificial Intelligence. Pearson Educa-
tion, 2001.

[11] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible Markup Language (XML). World Wide Web Journal,
2(4):27–66, 1997.

[12] Francisco Bueno, Daniel Cabeza, Manuel Carro, Manuel Hermenegildo, Pe-
dro López-García, and Germán Puebla. The Ciao Prolog System – Refer-
ence Manual, 1997. System and online version of the manual available from
https://ciao-lang.org.

243

https://ciao-lang.org

Bibliography

[13] Hendrik Bünder. Decoupling Language and Editor – The Impact of the Lan-
guage Server Protocol on Textual Domain-Specific Languages. In Proc. of
the 7th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2019), pages 129–140, 2019.

[14] Lawrence Byrd. Understanding the Control Flow of Prolog Programs. Logic
Programming Workshop, 1980.

[15] Lee Byron. GraphQL: A Data Query Language, September 2015.

[16] Daniel Cabeza and Manuel Hermenegildo. A new Module System for Prolog.
In Proc. International Conference on Computational Logic (CL 2000), LNAI
1861, pages 131–148. Springer, 2000.

[17] Mats Carlsson. Freeze, Indexing, and Other Implementation Issues in
the WAM. In Proc. 4th International Conference on Logic Programming
(ICLP 1987).

[18] Mats Carlsson and Thom Frühwirth. SICStus Prolog User’s Manual. Books
on Demand, 2014. Available from https://sicstus.sics.se/documentation.html.

[19] Weidong Chen. A Theory of Modules Based on Second-Order Logic. In Proc.
4th IEEE International Symposium on Logic Programming, pages 24–33, 1987.

[20] William F. Clocksin and Christopher S. Mellish. Programming in Prolog: Using
the ISO Standard. Springer Science & Business Media, 2012.

[21] Alain Colmerauer. Les grammaires de métamorphose. Technical report,
Groupe d’Intelligence Artificielle, Université de Marseille-Luminy, 1975.

[22] Alain Colmerauer. Metamorphosis Grammars. In Natural language communi-
cation with computers, pages 133–188. Springer, 1978.

[23] Oracle Corp. MySQL 8.0 Reference Manual. 2020. Available from
https://dev.mysql.com/doc/refman/8.0/en/.

[24] Vítor Santos Costa, Costa, Luıs Damas, Rogério Reis, and
Rúben Azevedo. YAP User’s Manual, 2002. Available from
https://www.dcc.fc.up.pt/~michel/yap.pdf.

[25] Michael A. Covington, Roberto Bagnara, Richard A. O’Keefe, Jan Wiele-
maker, and Simon Price. Coding Guidelines for Prolog. Theory and Practice
of Logic Programming, 12(6):889–927, jun 2012.

[26] Michael A. Covington, Donald Nute, and André Vellino. Prolog Programming
in Depth. Prentice Hall, 2nd edition, 1997.

244

https://sicstus.sics.se/documentation.html
https://dev.mysql.com/doc/refman/8.0/en/
https://www.dcc.fc.up.pt/~{}michel/yap.pdf

Bibliography

[27] Douglas Crockford. JavaScript: The World’s Most Misunderstood Program-
ming Language. Douglas Crockford’s Javascript, 2001.

[28] Jan C. Dageförde and Herbert Kuchen. A Constraint-Logic Object-Oriented
Language. In Proc. 33rd Annual ACM Symposium on Applied Computing
(SAC 2018), pages 1185–1194, 2018.

[29] Jan C. Dageförde and Herbert Kuchen. A Compiler and Virtual Machine
for Constraint-Logic Object-Oriented Programming with Muli. Journal of
Computer Languages (COLA), 53:63–78, 2019.

[30] Verónica Dahl and Michael C. McCord. Treating Coordination in Logic Gram-
mars. American Journal of Computational Linguistics, 9(2):69–80, 1983.

[31] Bart Demoen. Dynamic Attributes, their hProlog Implementation, and a first
Evaluation. Report CW, 350, 2002.

[32] Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the Implementation
of GNU Prolog. Theory and Practice of Logic Programming, 12(1-2):253–282,
2012.

[33] Mireille Ducassé and Jacques Noyé. Logic Programming Environments: Dy-
namic Program Analysis and Debugging. The Journal of Logic Programming,
19:351–384, 1994.

[34] Stéphane Ducasse. Squeak: Learn Programming with Robots. Apress, 2005.

[35] David C Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition. W3C Recommendation, 16, 2004.

[36] Michael Fogus. Functional JavaScript: Introducing Functional Programming
with Underscore.js. O’Reilly, 2013.

[37] Bryan Ford. Parsing Expression Grammars: a Recognition-Based Syntactic
Foundation. In ACM SIGPLAN Notices, volume 39, pages 111–122. ACM,
2004.

[38] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 2018.

[39] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. Mock Roles,
not Objects. In Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications (OOP-
SLA 2004), pages 236–246, 2004.

245

Bibliography

[40] Steve Freeman and Nat Pryce. Evolving an Embedded Domain-Specific Lan-
guage in Java. In Companion to the 21st ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications (OOPSLA 2006),
pages 855–865, 2006.

[41] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press,
2009.

[42] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled
English for Knowledge Representation. In Reasoning Web, pages 104–124.
Springer, 2008.

[43] Norbert E. Fuchs and Rolf Schwitter. Attempto Controlled English (ACE).
In Proc. 1st International Workshop on Controlled Language Applications
(CLAW 1996).

[44] Shudi Gao, C Michael Sperberg-McQueen, Henry S Thompson, Noah Mendel-
sohn, David Beech, and Murray Maloney. W3C XML Schema Definition Lan-
guage (XSD) 1.1 Part 1: Structures. W3C Candidate Recommendation, 2009.

[45] Rémy Haemmerlé and François Fages. Modules for Prolog revisited. In Proc.
22nd International Conference on Logic Programming (ICLP 2006), pages 41–
55.

[46] Ken Hale. Endangered Languages: On Endangered Languages and the Safe-
guarding of Diversity. Language, 68:1–42, 1992.

[47] Olaf Hartig and Jorge Pérez. Semantics and Complexity of GraphQL. In Proc.
of the 2018 World Wide Web Conference, pages 1155–1164, 2018.

[48] Günter Hegewald, Wilhelm Nickel, and Manfred Nogatz. Sortimentsopti-
mierung in der fleischverarbeitenden Industrie. Aus der Arbeit des VEB
Maschinelles Rechnen Dresden, 7, 1970.
In memoriam of Manfred Nogatz, 1934–2019.

[49] Manuel Hermenegildo. A Documentation Generator for (C)LP Systems. In
Proc. International Conference on Computational Logic, pages 1345–1361.
Springer, 2000.

[50] Manuel Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-García,
Edison Mera, José F Morales, and Germán Puebla. An Overview of Ciao
and its Design Philosophy. Theory and Practice of Logic Programming, 12(1-
2):219–252, 2012.

[51] Lynette Hirschman and Karl Puder. Restriction Grammar: A Prolog Imple-
mentation. Logic Programming and its Applications, pages 244–261, 1985.

246

Bibliography

[52] Paul Hudak. Building Domain-Specific Embedded Languages. ACM Comput-
ing Surveys, 28(4es), 1996.

[53] Paul Hudak. Modular Domain-Specific Languages and Tools. In Proc. 5th In-
ternational Conference on Software Reuse (ICSR 1998), pages 134–142, 1998.

[54] Patrick Ion and Robert Miner. Mathematical Markup Language (MathML)
1.0 Specification, July 1999. Available from https://www.w3.org/TR/REC-
MathML/.

[55] ISO/IEC 13211-1. Information Technology – Programming Languages – Pro-
log – Part 1: General Core. ISO Standard, International Organization for
Standardization, 1995.

[56] ISO/IEC 13211-2. Information Technology – Programming languages – Pro-
log – Part 2: Modules. ISO Standard, International Organization for Stan-
dardization, 2000.

[57] ISO/IEC 13211-2. Information Technology – Programming languages – Pro-
log – Part 3: Definite Clause Grammar Rules. ISO Standard, International
Organization for Standardization, 2015.

[58] ISO/IEC 14977. Information Technology – Syntactic Metalanguage – Ex-
tended BNF. ISO Standard, International Organization for Standardization,
1996.

[59] Jona Kalkus. An Interactive Visualisation for Definite Clause Grammars.
Master Thesis, University of Würzburg, Germany, 2017.

[60] Samuel N. Kamin and David Hyatt. A Special-Purpose Language for
Picture-Drawing. In Proc. USENIX Conference on Domain-Specific Languages
(DSL 1997), pages 297–310. USENIX Association, 1997.

[61] Alan Kay. The Future of Programming as Seen from the 1960s. 2005. In the
Foreword to [34].

[62] Angelika Kimmig, Bart Demoen, Luc De Raedt, Vítor Santos Costa, and Ri-
cardo Rocha. On the Implementation of the Probabilistic Logic Programming
Language ProbLog. Theory and Practice of Logic Programming, 11(2-3):235–
262, 2011.

[63] Donald E. Knuth. On the Translation of Languages from Left to Right. In-
formation and control, 8(6):607–639, 1965.

[64] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–
111, 1984.

247

https://www.w3.org/TR/REC-MathML/
https://www.w3.org/TR/REC-MathML/

Bibliography

[65] Tomaž Kosar, Pablo E. Martı, Pablo A. Barrientos, and Marjan Mernik. A Pre-
liminary Study on Various Implementation Approaches of Domain-Specific
Language. Information and Software Technology, 50(5):390–405, 2008.

[66] Robert Kowalski. Predicate Logic as Programming Language. In IFIP
Congress, volume 74, pages 569–574, 1974.

[67] Robert Kowalski. Algorithm = Logic + Control. Communications of the ACM,
22(7):424–436, 1979.

[68] Robert Kowalski. Time to Think like a Computer, 2011. Available from
http://www.doc.ic.ac.uk/~rak/papers/NS.pdf.

[69] Julia Kübert. Attempto Controlled English für Amazon Alexa. Bachelor
Thesis, University of Würzburg, Germany, 2018.

[70] Torbjörn Lager and Jan Wielemaker. Pengines: Web Logic Programming Made
Easy. Theory and Practice of Logic Programming, 14(4-5):539–552, 2014.
Demo Pengines application server available from https://github.com/SWI-
Prolog/pengines.

[71] Alberto Martelli and Ugo Montanari. An Efficient Unification Algorithm.
ACM Transactions on Programming Languages and Systems (TOPLAS 1982),
4(2):258–282, 1982.

[72] Marjan Mernik. Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments. IGI Global, 2012.

[73] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-Specific Languages. ACM Computing Surveys, 37(4):316–
344, 2005.

[74] Dale Miller. A Logical Analysis of Modules in Logic Programming. The
Journal of Logic Programming, 6:79–108, 1989.

[75] Alan Mycroft and Richard A. O’Keefe. A Polymorphic Type System for Pro-
log. Artificial Intelligence, 23(3):295–307, 1984.

[76] Falco Nogatz. CHR.js: Compiling Constraint Handling Rules to JavaScript.
Master Thesis, Ulm University, Germany, 2015.

[77] Falco Nogatz and Thom Frühwirth. From XML Schema to JSON Schema:
Translation with CHR. In Proc. 11th International Workshop on Constraint
Handling Rules, 2014.

248

http://www.doc.ic.ac.uk/~rak/papers/NS.pdf
https://github.com/SWI-Prolog/pengines
https://github.com/SWI-Prolog/pengines

Bibliography

[78] Falco Nogatz, Thom Frühwirth, and Dietmar Seipel. CHR.js: A CHR Imple-
mentation in JavaScript. In Rules and Reasoning (RuleML+RR 2018), volume
11092, pages 131–146. Springer, 2018.

[79] Falco Nogatz and Jona Kalkus. Declarative XML Schema Validation with
SWI-Prolog. In Dietmar Seipel, Michael Hanus, and Salvador Abreu, editors,
Declarative Programming and Knowledge Management – Revised Selected Pa-
pers of Declare 2017, pages 187–197, 2018.

[80] Falco Nogatz, Jona Kalkus, and Dietmar Seipel. Declarative XML Schema
Validation with SWI-Prolog: System Description. In Proc. 31st Workshop on
(Constraint) Logic Programming (WLP 2017).

[81] Falco Nogatz, Jona Kalkus, and Dietmar Seipel. Web-based Visualisation for
Definite Clause Grammars using Prolog Meta-Interpreters: System Descrip-
tion. In 20th International Symposium on Principles and Practice of Declar-
ative Programming (PPDP 2018), pages 25:1–25:10. ACM, 2018.

[82] Falco Nogatz, Philipp Körner, and Sebastian Krings. Prolog Coding Guide-
lines: Status and Tool Support. In Technical Communications of the 35th
International Conference on Logic Programming (ICLP 2019).

[83] Falco Nogatz, Julia Kübert, Dietmar Seipel, and Salvador Abreu. Alexa, how
can I reason with Prolog? In 8th Symposium on Languages, Applications,
Technologies (SLATE 2019), volume 74 of OpenAccess Series in Informatics
(OASIcs), pages 17:1–17:9, 2019.

[84] Falco Nogatz and Dietmar Seipel. Implementing GraphQL as a Query Lan-
guage for Deductive Databases in SWI-Prolog Using DCGs, Quasi Quota-
tions, and Dicts. In Proc. 30th Workshop on (Constraint) Logic Programming
(WLP 2016).

[85] Falco Nogatz, Dietmar Seipel, and Salvador Abreu. Definite Clause Grammars
with Parse Trees: Extension for Prolog. In 8th Symposium on Languages,
Applications, Technologies (SLATE 2019), volume 74 of OpenAccess Series in
Informatics (OASIcs), pages 7:1–7:14, 2019.

[86] Richard A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

[87] Richard A. O’Keefe. An Elementary Prolog Library. Technical report, 2011.
Available from http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm.

[88] George Souza Oliveira and Anderson Faustino da Silva. Towards an Efficient
Prolog System by Code Introspection. In Technical Communications of the
30th International Conference on Logic Programming (ICLP 2014).

249

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

Bibliography

[89] Ludwig Ostermayer. Integration of Prolog and Java with the Connector Ar-
chitecture CAPJa. PhD thesis, Julius Maximilians University Würzburg, Ger-
many, 2017.

[90] Ludwig Ostermayer, Frank Flederer, and Dietmar Seipel. CAPJA – A Connec-
tor Architecture for Prolog and Java. In Proc. 10th Workshop on Knowledge
Engineering and Software Engineering (KESE 2014).

[91] Ludwig Ostermayer, Frank Flederer, and Dietmar Seipel. PPI – A Portable
Prolog Interface for Java. In Proc. 28th Workshop on Logic Programming
(WLP 2014), pages 38–52, 2014.

[92] John K. Ousterhout. Scripting: Higher-Level Programming for the 21st Cen-
tury. IEEE Computer, 31(3):23–30, 1998.

[93] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k) Parser
Generator. Software: Practice and Experience, 25(7):789–810, 1995.

[94] Michael S. Paterson and Mark N. Wegman. Linear Unification. In Proc. 8th
annual ACM Symposium on Theory of Computing (STOC 1976), pages 181–
186, 1976.

[95] Fernando Pereira. Extraposition Grammars. American Journal of Computa-
tional Linguistics, 7(4):243–256, 1981.

[96] Fernando Pereira and David Warren. Definite Clause Grammars for Language
Analysis – a Survey of the Formalism and a Comparison with Augmented
Transition Networks. Artificial intelligence, 13(3):231–278, 1980.

[97] Fernando Pereira, David Warren, David Bowen, Lawrence Byrd, and Luis
Pereira. C-Prolog User’s Manual Version 1.5. Technical report, SRI Interna-
tional, 1988. Available from https://www2.cs.duke.edu/csl/docs/cprolog.html.

[98] John Peterson, Paul Hudak, and Conal Elliott. Lambda in Motion: Controlling
Robots with Haskell. In International Symposium on Practical Aspects of
Declarative Languages (PADL 1999), pages 91–105. Springer, 1999.

[99] José A. Riaza. Tau Prolog: A Prolog Interpreter in JavaScript, 2017. Available
from http://tau-prolog.org/.

[100] John Alan Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM (JACM), 12(1):23–41, 1965.

[101] Roberto Rodriguez-Echeverria, Javier Luis Cánovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. Towards a Language Server Protocol Infrastructure

250

https://www2.cs.duke.edu/csl/docs/cprolog.html
http://tau-prolog.org/

Bibliography

for Graphical Modeling. In Proc. of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, pages 370–380,
2018.

[102] Christian Schneiker, Dietmar Seipel, Werner Wegstein, and Klaus Prätor.
Declarative Parsing and Annotation of Electronic Dictionaries. In 6th In-
ternational Workshop on Natural Language Processing and Cognitive Science
(NLPCS 2009), pages 122–132, 2009.

[103] Dietmar Seipel. Knowledge Engineering for Hybrid Deductive Databases. In
Proc. 29th Workshop on Logic Programming (WLP 2015).

[104] Dietmar Seipel. Processing XML-Documents in Prolog. In Proc. 17th Work-
shop on Logic Programming (WLP 2002).

[105] Dietmar Seipel. PL4XML – An SWI-Prolog Library for XML Data Man-
agement (Manual), 2007. Available from http://www1.pub.informatik.uni-
wuerzburg.de/databases/DisLog/fnq_manual.pdf.

[106] Dietmar Seipel and Joachim Baumeister. Declarative Specification and Inter-
pretation of Rule-Based Systems. In Proc. 21st International Florida Artifi-
cial Intelligence Research Society Conference (FLAIRS 2008), pages 359–364.
AAAI Press, 2008.

[107] Dietmar Seipel, Joachim Baumeister, and Marbod Hopfner. Declaratively
Querying and Visualizing Knowledge Bases in XML. In Proc. 15th Interna-
tional Conference on Applications of Declarative Programming and Knowledge
Management (INAP 2004), LNAI 3392, pages 16–31. Springer, 2005.

[108] Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Prolog for Expert Knowl-
edge Using Domain-Specific and Controlled Natural Languages. In 8th Lan-
guage & Technology Conference: Human Language Technologies as a Challenge
for Computer Science and Linguistics (LTC 2017), pages 138–140, 2017.

[109] Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Domain-Specific Lan-
guages in Prolog for Declarative Expert Knowledge in Rules and Ontologies.
Computer Languages, Systems & Structures (COMLAN), 51C:102–117, 2018.

[110] Dietmar Seipel, Rüdiger von der Weth, Salvador Abreu, Falco Nogatz, and
Alexander Werner. Declarative Rules for Annotated Expert Knowledge in
Change Management. In 5th Symposium on Languages, Applications, Tech-
nologies (SLATE 2016).

[111] Paul Singleton, Fred Dushin, and Jan Wielemaker. JPL 3.0: A Bidi-
rectional Prolog/Java Interface, 2004. Available from https://www.swi-
prolog.org/packages/jpl and https://jpl7.org/.

251

http://www1.pub.informatik.uni-wuerzburg.de/databases/DisLog/fnq_manual.pdf
http://www1.pub.informatik.uni-wuerzburg.de/databases/DisLog/fnq_manual.pdf
https://www.swi-prolog.org/packages/jpl
https://www.swi-prolog.org/packages/jpl
https://jpl7.org/

Bibliography

[112] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The Execution
Algorithm of Mercury, an Efficient Purely Declarative Logic Programming
Language. The Journal of Logic Programming, 29(1-3):17–64, 1996.

[113] J. Michael Spivey and Silvija Seres. Embedding Prolog in Haskell. In Proceed-
ings of Haskell, volume 99, pages 1999–28, 1999.

[114] Leon Sterling and Ehud Y Shapiro. The Art of Prolog: Advanced Programming
Techniques. MIT Press, 1994.

[115] James M. Stichnoth and Thomas R Gross. Code Composition as an Imple-
mentation Language for Compilers. In Proc. USENIX Conference on Domain-
Specific Languages (DSL), pages 119–132. USENIX Association, 1997.

[116] Terrance Swift and David S. Warren. XSB: Extending Prolog with Tabled
Logic Programming. Theory and Practice of Logic Programming, 12(1-2):157–
187, 2012.

[117] Laurence Tratt. Domain-Specific Language Implementation via Compile-Time
Meta-Programming. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS 2008), 30(6):1–40, 2008.

[118] Markus Triska. The Finite Domain Constraint Solver of SWI-Prolog.
In Proc. International Symposium on Functional and Logic Programming
(FLOPS 2012), volume 7294 of LNCS, pages 307–316, 2012.

[119] Eric van der Vlist. Relax NG: A Simpler Schema Language for XML. O’Reilly,
2003.

[120] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages:
An Annotated Bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[121] Peter Van Roy. Can Logic Programming Execute as Fast as Imperative Pro-
gramming? PhD thesis, Computer Science Division, UC Berkeley, 1990.

[122] Peter Van Roy. Extended DCG Notation: A Tool for Applicative Programming
in Prolog. Technical Report UCB/CSD 90/583, Computer Science Division,
UC Berkeley, 1990.

[123] Peter Van Roy, Bart Demoen, and Yves D Willems. Improving the Execution
Speed of Compiled Prolog with Modes, Clause Selection, and Determinism. In
International Joint Conference on Theory and Practice of Software Develop-
ment, pages 111–125. Springer, 1987.

252

Bibliography

[124] Peter Van Roy and Alvin M. Despain. High-performance Logic Pro-
gramming with the Aquarius Prolog Compiler. Computer, 25(1):54–
68, 1992. Additional information about Aquarius Prolog available from
https://www.info.ucl.ac.be/~pvr/aquarius.html.

[125] Didier Verna. Extensible Languages: Blurring the Distinction between DSL
and GPL. In Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments, pages 1–31. IGI Global, 2013. Published in [72].

[126] Rüdiger von der Weth, Dietmar Seipel, Falco Nogatz, Katrin Schubach,
Alexander Werner, and Franz Wortha. Modellierung von Handlungswissen
aus fragmentiertem und heterogenem Rohdatenmaterial durch inkrementel-
le Verfeinerung in einem Regelbanksystem. Psychologie des Alltagshandelns,
9(2):33–48, 2016.

[127] Jan Wielemaker. SWI-Prolog Reference Manual 2.9.6, 1990.

[128] Jan Wielemaker. SWI-Prolog: History and Focus for the Future. ALP Issue,
152, 2012.

[129] Jan Wielemaker. SWI-Prolog Version 7 Extensions. In Proc. Workshop on Im-
plementation of Constraint and Logic Programming Systems and Logic-based
Methods in Programming Environments (WLPE 2014), pages 109–123, 2014.

[130] Jan Wielemaker and Nicos Angelopoulos. Syntactic Integration of External
Languages in Prolog. In Proc. Workshop on Logic-based Methods in Program-
ming Environments (WLPE 2012), pages 40–50, 2012.

[131] Jan Wielemaker and Anjo Anjewierden. PIDocPlDoc: Wiki style Literate
Programming for Prolog. In Proc. 17th Workshop on Logic-based Methods in
Programming Environments (WLPE 2007).

[132] Jan Wielemaker, Wouter Beek, Michiel Hildebrand, and Jacco van Ossen-
bruggen. Cliopatria: A SWI-Prolog Infrastructure for the Semantic Web. Se-
mantic Web, 7(5):529–541, 2016.

[133] Jan Wielemaker and Vítor Santos Costa. Portability of Prolog Programs:
Theory and Case-Studies. preprint arXiv:1009.3796, 2010.

[134] Jan Wielemaker and Vítor Santos Costa. On the Portability of Prolog Ap-
plications. In International Symposium on Practical Aspects of Declarative
Languages (PADL 2011), pages 69–83. Springer, 2011.

[135] Jan Wielemaker, Leslie De Koninck, Thom Frühwirth, Markus Triska, and
Marcus Uneson. SWI-Prolog Reference Manual 7.1. Books on Demand, 2014.

253

https://www.info.ucl.ac.be/~{}pvr/aquarius.html

Bibliography

[136] Jan Wielemaker, Leslie De Koninck, Thom Frühwirth, Markus Triska, and
Marcus Uneson. SWI-Prolog Reference Manual, 2021. Update of [135] for
the latest stable SWI-Prolog version 8.4.1, November 2021. Available from
https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.4.1.pdf.

[137] Jan Wielemaker and Michael Hendricks. Why It’s Nice to be Quoted:
Quasiquoting for Prolog. In Proc. 23rd Workshop on Logic-based Methods
in Programming Environments (WLPE 2013).

[138] Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and
the Web. Theory and Practice of Logic Programming, 8(3):363–392, 2008.

[139] Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-Based Infrastruc-
ture for RDF: Scalability and Performance. In International Semantic Web
Conference, pages 644–658. Springer, 2003.

[140] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-
Prolog. Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

[141] Allen Wirfs-Brock. ECMAScript Language Specification, ECMA-
262, 6th Edition, June 2015. Available from https://www.ecma-
international.org/publications-and-standards/standards/ecma-262/.

[142] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and
Massimiliano Di Penta. How Open Source Projects Use Static Code Analysis
Tools in Continuous Integration Pipelines. In Proceedings of the 14th Inter-
national Conference on Mining Software Repositories (MSR), pages 334–344.
IEEE, 2017.

254

https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.4.1.pdf
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

A
List of Contributions

I cannot begin to express to you how surreal this ride has been, because none of us
grew up feeling like winners. So thank you to the bullies, to the popular kids, to the

gym teachers who taunted us, who rejected us, and who made fun of the way we ran.
Without you we never would have gone into comedy!

— Steve Levitan, Creator of “Modern Family”, receiving the Emmy Award 2013

This appendix lists the author’s contributions during the thesis that are related
to the definition of and work with DSLs in Prolog, or logic-based programming
languages in other host languages. It is a condensed version of Section 1.5.1, grouped
by the work’s type, with Appendix A.1 listing scientific contributions that have
been published in journals, and those published in conference proceedings listed in
Appendix A.2. The items are sorted chronologically, with the name of the author of
this thesis each being highlighted.

For an exhaustive list and descriptions of assisting open-source software that was
created by the author we refer to Section 1.5.2. Additional software that was devel-
oped during the thesis but is not directly related to the domain of discourse is listed
in Appendix A.3.

A.1. Published in Journals

– Rüdiger von der Weth, Dietmar Seipel, Falco Nogatz, Katrin Schubach,
Alexander Werner, and Franz Wortha. Modellierung von Handlungswissen
aus fragmentiertem und heterogenem Rohdatenmaterial durch inkrementel-
le Verfeinerung in einem Regelbanksystem. Psychologie des Alltagshandelns,
9(2):33–48, 2016.

– Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Domain-Specific Lan-
guages in Prolog for Declarative Expert Knowledge in Rules and Ontologies.
Computer Languages, Systems & Structures (COMLAN), 51C:102–117, 2018.

i

Appendix A. List of Contributions

A.2. Published in Peer-Reviewed Conference Proceedings

– Falco Nogatz and Dietmar Seipel. Implementing GraphQL as a Query Lan-
guage for Deductive Databases in SWI-Prolog Using DCGs, Quasi Quota-
tions, and Dicts. In Proc. 30th Workshop on (Constraint) Logic Programming
(WLP 2016).

– Dietmar Seipel, Rüdiger von der Weth, Salvador Abreu, Falco Nogatz, and
Alexander Werner. Declarative Rules for Annotated Expert Knowledge in
Change Management. In 5th Symposium on Languages, Applications, Tech-
nologies (SLATE 2016).

– Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Prolog for Expert Knowl-
edge Using Domain-Specific and Controlled Natural Languages. In 8th Lan-
guage & Technology Conference: Human Language Technologies as a Challenge
for Computer Science and Linguistics (LTC 2017), pages 138–140, 2017.

– Falco Nogatz, Jona Kalkus, and Dietmar Seipel. Declarative XML Schema
Validation with SWI-Prolog: System Description. In Proc. 31st Workshop on
(Constraint) Logic Programming (WLP 2017).

– Falco Nogatz, Thom Frühwirth, and Dietmar Seipel. CHR.js: A CHR Imple-
mentation in JavaScript. In Rules and Reasoning (RuleML+RR 2018), volume
11092, pages 131–146. Springer, 2018.

– Falco Nogatz and Jona Kalkus. Declarative XML Schema Validation with
SWI-Prolog. In Dietmar Seipel, Michael Hanus, and Salvador Abreu, editors,
Declarative Programming and Knowledge Management – Revised Selected Pa-
pers of Declare 2017, pages 187–197, 2018.

– Falco Nogatz, Jona Kalkus, and Dietmar Seipel. Web-based Visualisation
for Definite Clause Grammars using Prolog Meta-Interpreters: System Descrip-
tion. In 20th International Symposium on Principles and Practice of Declara-
tive Programming (PPDP 2018), pages 25:1–25:10. ACM, 2018.

– Falco Nogatz, Dietmar Seipel, and Salvador Abreu. Definite Clause Gram-
mars with Parse Trees: Extension for Prolog. In 8th Symposium on Languages,
Applications, Technologies (SLATE 2019), volume 74 of OpenAccess Series in
Informatics (OASIcs), pages 7:1–7:14, 2019.
Honoured with the symposium’s Best Paper Award.

– Falco Nogatz, Julia Kübert, Dietmar Seipel, and Salvador Abreu. Alexa,
how can I reason with Prolog? In 8th Symposium on Languages, Applications,

ii

A.3. Additional Open-Source Software

Technologies (SLATE 2019), volume 74 of OpenAccess Series in Informatics
(OASIcs), pages 17:1–17:9, 2019.

– Falco Nogatz, Philipp Körner, and Sebastian Krings. Prolog Coding Guide-
lines: Status and Tool Support. In Technical Communications of the 35th
International Conference on Logic Programming (ICLP 2019).

A.3. Additional Open-Source Software

In addition to the list of software that was created by the author as stated in Sec-
tion 1.5.2, we developed the toolchain tablediff for efficient SQL table synchronisa-
tion:

– tablediff. https://github.com/fnogatz/tablediff, MIT License.
Shell scripts to get a minimal set of SQL commands for table synchronisation.
Toolchain that was developed for jfnetwork GmbH in Kitzingen, Germany, as
part of a industry cooperation with the University of Würzburg.

iii

https://github.com/fnogatz/tablediff

B
Source Code Listings and Operator Tables

In this appendix we provide additional source code examples and definitions of
operators which were shortened or split in the thesis before.

Contents

B.1 If-then Rules as an Internal Prolog DSL v
B.2 EBNF Grammar Rules as an Internal Prolog DSL. vi
B.3 Expanding EBNF Grammar Rules to DCGs. vii
B.4 Meta-Interpreter for DCGs . viii
B.5 Term Expansion for DCGs . ix
B.6 Meta-Interpreter for DCGs with Tracing xi
B.7 Meta-Nonterminal sequence//3 xii
B.8 Transformation for DCG Bodies with Parse Trees xiii
B.9 Meta-Predicates */4 and ?/4 . xiv
B.10 Operator Types and Their Precedence Constraints xv
B.11 Operator Inference for If-then Rules xvi
B.12 XML Schema 1.1 with Embedded XPath Expressions xvi
B.13 Operators for XPath as an Internal Prolog DSL xviii

iv

B.1. If-then Rules as an Internal Prolog DSL

B.1. If-then Rules as an Internal Prolog DSL

In Section 5.4, if-then rules are defined as an internal Prolog domain-specific language
by providing appropriate operator definitions by op/3[5.1]. It allows to specify expert
knowledge in a natural-language-flavoured way, while still conforming to Prolog’s
syntax.

1 :- op(1100, yfx, then). Prolog

2 :- op(1000, fx, if).
3 :- op(900, fx, [neg, not]).
4 :- op(850, yfx, or).
5 :- op(800, yfx, and).
6 % op(700, xfx, is). % is part of the ISO Prolog standard

7 :- op(700, xfx, are).
8 :- op(200, fx, [a, an, the, no]).
9

10 % avoid name conflict with built-in is/2, cf. Section 5.2.3

11 :- redefine_system_predicate(is(_,_)). [5.2.3]

12

13 % if-then sentences can be stated as:

14 if the weather is rainy and there is no umbrella
15 or the weather is a thunderstorm
16 then the clothes are wet.
17 if the umbrella is broken then there is no umbrella.
18

19 % or as facts:

20 the weather is rainy.
21 the umbrella is broken.

Note the use of SWI-Prolog’s redefine_system_predicate/1SWI directive (l. 11).
It is required because the second if-then rule (l. 17) as well as the two facts (ll. 20–
21) define clauses for the predicate is/2, which is built-in to calculate arithmetic
expressions, see Section 3.2.1. For the sake of simplicity in this example, we do not
provide a fallback to the built-in functionality of the system predicate is/2ISO. Two
techniques that avoid this breaking name conflict are introduced in Section 5.2.3.

v

Appendix B. Source Code Listings and Operator Tables

B.2. EBNF Grammar Rules as an Internal Prolog DSL

In Section 5.6, we discuss how to define and use the extended Backus–Naur
form (EBNF) as an internal domain-specific language in Prolog. With appropri-
ate operators for the symbols defined for EBNF in [58], only minor modifications
are required to embed a given EBNF verbatim into Prolog source code.

1 :- op(1150, xfy, ;). Prolog

2 :- op(1100, xfx, =).
3 :- op(1001, xfy, ’|’).
4 % op(1000, xfy, ’,’). % is part of the ISO Prolog standard

5

6 % avoid name conflict with built-in ;/2, cf. Section 5.2.3

7 :- redefine_system_predicate(;(_,_)). [5.2.3]

8 Ebnf Dsl

9 variable = [layout_text_sequence /* 6.4.1 */],
10 variable_token /* 6.4.3 */ ;
11 variable_token = anonymous_variable /* 6.4.3 */

12 | named_variable /* 6.4.3 */ ;
13 anonymous_variable = variable_indicator_char /* 6.4.3 */ ;
14 named_variable = variable_indicator_char /* 6.4.3 */,
15 alphanumeric_char /* 6.5.2 */,
16 { alphanumeric_char /* 6.5.2 */ }
17 | capital_letter_char /* 6.5.2 */,
18 { alphanumeric_char /* 6.5.2 */ } ;
19 variable_indicator_char = underscore_char /* 6.5.2 */ ;
20 underscore_char = "_" ;
21 capital_letter_char = "A" | "B" | "C" | ... ;
22 alphanumeric_char = % sic!

With the operator definitions of lines 1–4, the EBNF given in lines 9–22 is a valid
Prolog clause, with a nested compound term of ;/2 as its principal functor. The types
of the operators ;/2, =/2, and ’|’/2 are as defined by the ISO Prolog standard.
Their precedences are restricted by the values for ’,’/2ISO and ’|’/2: if the comma
is defined as an operator, it has to be of precedence 1000 (Iso 6.3.4.3). The bar
operator ’|’/2 on the other hand is required to be only an infix operator, and with
precedence greater than or equal to 1001. The terms that are enclosed in square
brackets (l. 9), and curly brackets (ll. 16, 18) are valid without further operator
definitions, as they constitute a curly bracketed term and compound terms in list
notation following the ISO Prolog standard (Iso 6.3).

vi

B.3. Expanding EBNF Grammar Rules to DCGs

If integrated into an existing Prolog source code file, the presented code fragment
should be stated as the very last, since the overwriting of Prolog’s built-in operator
precedences for ;/2ISO and =/2ISO will likely result in incompatibilities. This can
be avoided by using a separate module for code of the internal DSL, because in
SWI-Prolog, operators are local to a module.

Note that ... is a valid atom in Prolog, so the presented listing can be read in
as a Prolog program without any modifications, even with the ellipses of lines 21
and 22. The EBNF of lines 9–22 then reads as the following Prolog program written
in canonical notation with the classical operator ./2 for the list construction:

;(=(variable, ’,’(.(layout_text_sequence, []), variable_token)),
;(=(variable_token, ’|’(anonymous_variable, named_variable)),

;(=(anonymous_variable, variable_indicator_char), ;(/*...*/)
))).

A longer form of this term in canonical notation is given at the end of Section 5.6.

B.3. Expanding EBNF Grammar Rules to DCGs

An EBNF that is given in the form of an internal Prolog DSL as shown in Ap-
pendix B.2 can be translated into plain old definite clause grammars via the follow-
ing term expansion. This technique is used in Section 9.2 to directly use the Prolog
syntax specification given in the ISO Prolog standard, resulting in an executable
Prolog program that parses and serialises Prolog code. There, we additionally make
use of library(dcg4pt) to also process the corresponding parse tree on the fly. The
following listing instead focusses only on the translation of EBNF to plain old DCGs,
without further arguments.

1 :- op(800, fx, *). Prolog

2 :- op(800, fx, ?).
3 ebnf_rule(X1 = Y1, X1 --> Y2) :- ebnf_body(Y1, Y2).
4 ebnf_body(T1, T2) :-
5 T1 =.. [F, X1, Y1], [3.6]

6 memberchk(F, [(,), ’|’]), [C.10]

7 ebnf_body(X1, X2),
8 ebnf_body(Y1, Y2),
9 T2 =.. [F, X2, Y2]. [3.6]

10 ebnf_body({ X1 }, *X1).
11 ebnf_body([X1], ?X1).
12 ebnf_body(X, X).

vii

Appendix B. Source Code Listings and Operator Tables

13

14 term_expansion(X1, X2s) :-
15 X1 = (_ ; _),
16 term_functors_list(X1, [(;)], X1s), [C.3]

17 maplist(ebnf_rule, X1s, X2s). [C.11]

The term expansion (ll. 14–17) applies only for terms with a principal functor of ;/2.
This precondition ensures it is used only for our internal DSL. The various EBNF
production rules are split by the infix operator ;/2 into the list X1s, and each
is translated separately using the predicate ebnf_rule/2. Consequently, the sin-
gle compound term X1 is expanded to the list of DCGs that is returned in X2s.
The created DCGs are then transformed to Prolog predicates via SWI-Prolog’s
dcg_translate_rule/2SWI. Only after that, SWI-Prolog’s compilation reaches a fix-
point (cf. Section 5.2.1), with no terms that can be further expanded.

The prefix operators */1 and ?/1 are defined in lines 1–2, and are used to represent
EBNF’s (possibly empty) repetitions and optionals (ll. 10–11). Because of the term
expansion to Prolog clauses with difference lists, they describe the predicates */3
and ?/3 – their first argument is the DCG body that is optional or repeated, the
second and third represent the list and its remainder.

As emphasised before, the code of Appendix B.2 is required to be stated only after
the aforementioned term expansion, as otherwise the internal DSL’s differing opera-
tor precedences for ;/2ISO and =/2ISO break the definition of the referenced predicates
like memberchk/2[C.8].

B.4. Meta-Interpreter for DCGs

In Section 6.2.3, the built-in meta-predicate phrase/3ISO is defined in the form of
a meta-interpreter for definite clause grammars. Since DCGs are usually translated
into plain old Prolog clauses via term expansion, we use the infix operator --->/2
instead to hold grammar rules. Otherwise, Prolog’s expansion for -->/2ISO has to be
deactivated to be able to use the original grammar rules in a meta-interpreter.

1 :- op(1200, xfx, --->). % instead of -->/2 Prolog

2 % DCG as in Listing 6.1

3 elem(X) ---> [X], { member(X, [a,b,c]) }.
4 palindrome ---> [].
5 palindrome ---> elem(_).
6 palindrome ---> elem(X), palindrome, elem(X).

viii

B.5. Term Expansion for DCGs

7

8 % declare built-in predidcates phrase/{2,3} to be redefined

9 :- redefine_system_predicate(phrase(_,_)). [5.2.3]

10 :- redefine_system_predicate(phrase(_,_,_)). [5.2.3]

11

12 %% phrase(:Body, ?List)

13 phrase(Body, List) :- phrase(Body, List, []).
14

15 %% phrase(:Body, ?List, ?Rest)

16 % nonterminals

17 phrase(Head, A, Z) :- (Head ---> Body), phrase(Body, A, Z).
18 phrase(Head, A, Z) :-
19 (Head, Pushback ---> Body),
20 phrase(Body, A, B),
21 append(B, Pushback, Z). [3.4]

22 phrase((B1 , B2), A, Z) :- phrase(B1, A, D) , phrase(B2, D, Z).
23 phrase((B1 ; B2), A, Z) :- phrase(B1, A, Z) ; phrase(B2, A, Z).
24 phrase(\+ H, A, A) :- \+ phrase(H, A, _). [3.3]

25 phrase({ P }, A, A) :- call(P).
26

27 % terminals

28 phrase([], A, A).
29 phrase([T|Rest], [T|A], Z) :- phrase(Rest, A, Z).

B.5. Term Expansion for DCGs

In Section 6.2.4, the idea of translating DCGs into plain old Prolog clauses via term
expansions is introduced. As before in Appendix B.4, we use the operator --->/2
instead of -->/2ISO to denote DCGs while avoiding conflicts with Prolog’s built-in
term expansions.

1 :- op(1200, xfx, --->). Prolog

2 term_expansion(X1 ---> Y1, X2 :- Y2) :-
3 (X1 = (L, P), append(P, Z, Out) [3.4]

4 ; X1 = L, Out = Z),
5 term_args_attached(L, [In, Out], X2), [C.4]

6 translate_body(Y1, Y2, In, Z).
7

8 %% translate_body(+,-,?,?)

ix

Appendix B. Source Code Listings and Operator Tables

9 % terminals

10 translate_body(L, true, A, Z) :-
11 is_list(L), [3.3.1]

12 append(L, Z, A). [3.4]

13 % nonterminals

14 translate_body((B1 , B2), (C1 , C2), A, Z) :-
15 translate_body(B1, C1, A, D),
16 translate_body(B2, C2, D, Z).
17 translate_body((B1 ; B2), (C1 ; C2), A, Z) :-
18 translate_body(B1, C1, A, Z),
19 translate_body(B2, C2, A, Z).
20 translate_body(\+ H1, \+ H2, A, A) :- translate_body(H1, H2, A, _).
21 translate_body(!, !, A, A).
22 translate_body({ P }, P, A, A).
23 translate_body(Nonterminal, Predicate, A, Z) :-
24 term_args_attached(Nonterminal, [A, Z], Predicate). [C.4]

25

26 % DCG as in Listing 6.1

27 elem(X) ---> [X], { member(X, [a,b,c]) }.
28 palindrome ---> [].
29 palindrome ---> elem(_).
30 palindrome ---> elem(X), palindrome, elem(X).

In contrast to the handling of DCGs in the meta-interpreter, we split the expansion
into two parts. In lines 2–6, a grammar rule with its head gets translated. For
translation of the rule’s right-hand side, it relies on the predicate translate_body/4,
which is defined in lines 8–24. It takes a DCG body as its first argument, returns
the created Prolog goal in the second argument, and holds two additional arguments
that represent the processed difference list.

The different cases for the DCG’s right-hand side can be adapted from the meta-
interpreter. For each body element, two arguments representing the difference list
have to be added, and new chaining variables have to be introduced accordingly.
We changed the order of terminals and nonterminals to move the most general case
of a nonterminal to the very ending, as otherwise it would require additional type
checks – e. g., List1 \= [’.’|_], List1 \= [{}|_] to avoid Nonterminal to be a
list or curly bracketed term again.

x

B.6. Meta-Interpreter for DCGs with Tracing

B.6. Meta-Interpreter for DCGs with Tracing

In Section 7.3.3, we introduce a modification for the meta-interpreter for DCG to
support tracing of backtracking and failing subgoals. There, the definition of the
used predicate print_indented/2 that prints a term with a given indentation level
is given. As before, we use the operator --->/2 instead of -->/2ISO to denote DCGs
in order to avoid conflicts with Prolog’s built-in term expansions.

1 %% phrase(:Body, +Level, ?List, ?Rest) Prolog

2 % nonterminals

3 phrase(Head, L, A, Z) :-
4 LL is L+1,
5 ((Head ---> Body),
6 print_indented((Head ---> Body):call, L), [7.3.3]

7 phrase(Body, LL, A, Z)
8 ; print_indented(Head:fail, L)). [7.3.3]

9 phrase(Head, L, A, Z) :-
10 LL is L+1,
11 ((Head, Pushback ---> Body),
12 print_indented((Head, Pushback ---> Body):call, L), [7.3.3]

13 phrase(Body, LL, A, C),
14 append(C, Pushback, Z) [3.4]

15 ; print_indented(Head:fail, L)). [7.3.3]

16 phrase((B1 , B2), L, A, Z) :-
17 phrase(B1, L, A, D),
18 phrase(B2, L, D, Z).
19 phrase((B1 ; B2), L, A, Z) :-
20 phrase(B1, L, A, Z);
21 phrase(B2, L, A, Z).
22 phrase(\+ H, L, A, A) :-
23 (\+ phrase(H, A, _),
24 print_indented((\+ phrase(H, A, _)):exit, L) [7.3.3]

25 ; print_indented((\+ phrase(H, A, _)):fail, L)). [7.3.3]

26 phrase({ P }, L, A, A) :-
27 (call(P), [3.6]

28 print_indented(call(P):exit, L) [7.3.3]

29 ; print_indented(call(P):fail, L)). [7.3.3]

30 phrase(!, L, A, A) :- !, print_indented(cut, L). [7.3.3]

31 % terminals

32 phrase([], L, A, A) :- print_indented(empty, L). [7.3.3]

xi

Appendix B. Source Code Listings and Operator Tables

33 phrase([T|Rest], L, [T|A], Z) :-
34 print_indented(T:consume, L), [7.3.3]

35 phrase(Rest, L, A, Z).

The meta-interpreter expects an additional argument L to hold the current level of
used nonterminals. It is incremented only in case of a newly consumed grammar
rule (ll. 3–15), and can be used, e. g., as a recursion limit.

B.7. Meta-Nonterminal sequence//3

In Section 8.3, we present the modified term expansion scheme for DCGs with
automatic parse tree processing. For sequences of nonterminals, we provide the meta-
nonterminal sequence//3, with the following meaning:
sequence(+Mode, :NT (Arg1,. . . ,Argn), ?PTs) is a sequence of the nonterminal
NT //n with arguments Argi, the sequence’s corresponding list PTs of parse trees,
and the repetition mode Mode being one of the atoms ? , * , ** , and + . A more
detailed description of the nonterminal sequence//3 and its corresponding Prolog
predicate sequence/5 is given in Section 8.3, together with a short description of
the supported modes.

1 %% sequence(?Mode, :DCGBody, ?ParseTrees, ?A, ?Z) Prolog

2 :- meta_predicate sequence(?, //, ?, ?, ?). [3.6]

3 sequence(?, B, [P]) --> call(B, P). [3.6]

4 sequence(?, _, []) --> [].
5 sequence(*, _, []) --> [].
6 sequence(*, B, [P|Ps]) --> call(B, P), sequence(*, B, Ps). [3.6]

7 sequence(**, B, [P|Ps]) --> call(B, P), sequence(**, B, Ps). [3.6]

8 sequence(**, _, []) --> [].
9 sequence(+, B, [P|Ps]) --> call(B, P), sequence(*, B, Ps). [3.6]

With the standard term expansion for DCGs from Section 6.2.4, the nonterminal
sequence//3 is translated into the Prolog predicate sequence/5 at compile-time.
Similarly, each subgoal ?- call(DCGBody, PT) in the grammar rule’s right-hand
side is automatically extended by the two additional arguments A and Z that hold
the processed difference list. This way, the body of the resulting Prolog clause after
the term expansion of the DCG from line 3 becomes ?- call(DCGBody, PT, A, Z) ,
using the built-in predicate call/4ISO.

xii

B.8. Transformation for DCG Bodies with Parse Trees

B.8. Transformation for DCG Bodies with Parse Trees

In Section 8.3, we describe the source-to-source transformation for DCGs to addi-
tionally automatically process the corresponding parse tree on execution. Similar to
the standard term expansion scheme for DCGs, this transformation is split into two
parts: the translation of the grammar rule’s left-hand side, and the body elements on
the other. The latter is defined in the predicate dcg4pt_formula_to_dcg_formula/3,
for which we presented an extract in Listing 8.5.

1 %% dcg4pt_formula_to_dcg_formula(+Y1, -Y2, ?Value) Prolog

2 dcg4pt_formula_to_dcg_formula([T], [T], T). % terminals

3 dcg4pt_formula_to_dcg_formula(Ts, Ts, Ts) :- is_list(Ts). [3.3.1]

4 dcg4pt_formula_to_dcg_formula(Y1, Y1, Y1) :- string(Y1). [3.3.4]

5

6 dcg4pt_formula_to_dcg_formula(Y1, Y2, V) :- % conjunction

7 Y1 = (_, _),
8 term_functors_list(Y1, [(,)], Ys1), [C.3]

9 maplist(conj_body, Ys1, Ys2, R0s, R1s), [C.11]

10 R0s = [V|R0s_],
11 append(R1s_, [Last], R1s), [3.4]

12 Last = [],
13 maplist((=), R0s_, R1s_), [C.11]

14 term_functors_list(Y2, [(,)], Ys2). [C.3]

15

16 dcg4pt_formula_to_dcg_formula(Y1, Y2, V) :- % disjunction

17 (Y1 = (_ ; _) ; Y1 = (_ | _)),
18 term_functors_list(Y1, [(;), ’|’], Ys1), [C.3]

19 maplist(dcg4pt_formula_to_dcg_formula, Ys1, Ys2, Vs), [C.11]

20 maplist(add_variable_binding(V), Ys2, Vs, Ysn2), [C.11]

21 term_functors_list(Y2, [(;)], Ysn2). [C.3]

22

23 dcg4pt_formula_to_dcg_formula(!, !, []). % cut

24 dcg4pt_formula_to_dcg_formula({ P }, { P }, []). % embedded Prolog

25 dcg4pt_formula_to_dcg_formula(\+ Y1, \+ Y2, _) :- % negation

26 dcg4pt_formula_to_dcg_formula(Y1, Y2, _).
27 dcg4pt_formula_to_dcg_formula(X1, X2, V) :- % nonterminal

28 term_args_attached(X1, [V], X2). [C.4]

xiii

Appendix B. Source Code Listings and Operator Tables

The code for terminals and conjunctions is described together with the predicate’s
underlying principles in Section 8.3. For conjunctions in a grammar rule’s right-hand
side, each element is transformed using the auxiliary predicate conj_body/4:

29 %% conj_body(+Y1, -Y2, ?List, ?Remainder) Prolog

30 conj_body(A, B, R0, R1) :-
31 A = *(C), !,
32 conj_body(sequence(’*’, C), B, R0, R1).
33 conj_body(A, B, R0, R1) :-
34 A = ?(C), !,
35 conj_body(sequence(’?’, C), B, R0, R1).
36 conj_body(A, B, R0, R1) :-
37 A = sequence(_, _), !,
38 dcg4pt_formula_to_dcg_formula(A, DCGBody, V),
39 B = call_sequence_ground(DCGBody, V, R1, R0). [8.4.3]

40 conj_body(A, B, R0, R1) :-
41 dcg4pt_formula_to_dcg_formula(A, DCGBody, V),
42 B = ({ R0 = [V|R1] }, DCGBody).

While the conjunction (ll. 6–14) uses chaining variables to compose the overall inner
value V, each body element serves as an alternative in case of the disjunction via ;/2
or |/2. Therefore, all modified body elements in Ys2 bind to the same value V (ll. 19–
20), which is done with the help of maplist/4[C.11] and add_variable_binding/4,
which is defined as follows:

43 %% add_variable_binding(?To, +Y1, ?Value, -Y2) Prolog

44 add_variable_binding(V, Y1, Bind, ({ Bind = V }, Y1)).

In the definition of dcg4pt_formula_to_dcg_formula/3, the case for nontermi-
nals is specified as the very last, as it allows to omit the check for a callable term
via callable/1ISO. Our implementation also does not rely on the cut !/0ISO, as
SWI-Prolog does not backtrack over term expansions in its compilation process, as
described in Section 5.2.

B.9. Meta-Predicates */4 and ?/4

In Section 9.2.1, we describe the transformation process from an EBNF given in the
form of an internal Prolog DSL to an equivalent DCG with an additional argument
for an options list and the corresponding parse tree. We define short notations for
optionals and repetitions in DCGs in the second transformation step, as they are

xiv

B.10. Operator Types and Their Precedence Constraints

frequently used in the ISO Prolog standard. The used prefix operators ?/1 and */1
become predicates of arity 4 in the subsequent program transformation steps. Fol-
lowing our considerations of Section 8.4 to support both efficient parsing and seriali-
sation, the repetitions are mapped to sequences of either mode ** or * , depending
on whether the processed difference list is bound, or the parse tree.

1 %% *(:DCGBody, ?ParseTrees, ?A, ?Z) Prolog

2 *(DCGBody, PTs, A, Z) :-
3 nonvar(A), !, % use ‘**‘ to consume as most as possible [3.2.1]

4 sequence(**, DCGBody, PTs, A, Z). [B.7]

5 *(DCGBody, PTs, A, Z) :-
6 var(A), !, % use ‘*‘ to produce as small as possible [3.2.1]

7 sequence(*, DCGBody, PTs, A, Z). [B.7]

8 ?(DCGBody, PTs, A, Z) :-
9 sequence(?, DCGBody, PTs, A, Z). [B.7]

B.10. Operator Types and Their Precedence Constraints

In Section 10.1.4, we introduce SWI-Prolog’s library(clpfd), which allows to define
arithmetic relations about integer variables of finite domains. With the help of
the constraints #</2SWI and #=</2SWI, our library(plammar) defines the predicates
prec_constraints/{3, 4}, which realise the dependencies of the various operator
precedences that are implicitly given by their types.

1 %% prec_constraints(+Type, ?Op, ?Term1, ?Term2) Prolog

2 %% prec_constraints(+Type, ?Op, ?Term)

3 prec_constraints(xfx, P_Op, P_Term1, P_Term2) :-
4 P_Term1 #< P_Op, P_Term2 #< P_Op. [10.1.4]

5 prec_constraints(yfx, P_Op, P_Term1, P_Term2) :-
6 P_Term1 #=< P_Op, P_Term2 #< P_Op. [10.1.4]

7 prec_constraints(xfy, P_Op, P_Term1, P_Term2) :-
8 P_Term1 #< P_Op, P_Term2 #=< P_Op. [10.1.4]

9 prec_constraints(xf, P_Op, P_Term) :- P_Term #< P_Op. [10.1.4]

10 prec_constraints(yf, P_Op, P_Term) :- P_Term #=< P_Op. [10.1.4]

11 prec_constraints(fx, P_Op, P_Term) :- P_Term #< P_Op. [10.1.4]

12 prec_constraints(fy, P_Op, P_Term) :- P_Term #=< P_Op. [10.1.4]

xv

Appendix B. Source Code Listings and Operator Tables

B.11. Operator Inference for If-then Rules

In Section 5.4, we define an internal Prolog DSL to express knowledge in the form
of if-then rules, so that the example sentence “if the weather is rainy and there
is no umbrella or the weather is a thunderstorm then the clothes are wet” from
Listing 5.6 is a valid Prolog program. With library(plammar), the required operator
definitions can be inferred from this example sentence. In the following, we define
the predicate solution/1, which returns a list of all required operator definitions.
A possible computed answer substitution is given in Listing 10.7.

1 :- use_module(library(plammar)). Prolog

2 solution(Ops) :-
3 Ops = [
4 op(700, xfx, is), op(700, xfx, are),
5 op(_, fx, a), op(_, fx, the), op(_, fx, no) | _],
6 NotOps = [
7 op(_, _, weather), op(_, _, rainy),
8 op(_, _, umbrella), op(_, _, thunderstorm),
9 op(_, _, clothes), op(_, _, wet)],

10 Input = string("if the weather is rainy and there is no umbrella or
the weather is a thunderstorm then the clothes are wet."),

11 prolog_parsetree(Input, _PT,
12 [infer_operators(Ops), disallow_operators(NotOps)]).

From the example, it is known that words like weather and rainy are entities the
if-then rules are about. Thus they should not be operators, which is why they are
passed to prolog_parsetree/3 in its option disallow_operators. The words is
and are should be defined as operators in the same way is/2ISO is defined in the
ISO Prolog standard; determiners on the other hand are known to be operators of
type fx.

B.12. XML Schema 1.1 with Embedded XPath Expressions

In Section 10.4, we define XPath expressions as an internal Prolog DSL. It is used
by our library(xsd) to support features that were introduced in version 1.1 of the
XML Schema Definition [44], namely assertions and conditional type expressions.
In the following, we present an exemplary XML Schema that relies on all of these
features.

xvi

B.12. XML Schema 1.1 with Embedded XPath Expressions

1 <?xml version="1.0" ?> XML Schema

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 xmlns:fn="http://www.w3.org/2005/xpath-functions">
4 <xs:element name="list" type="list">
5 <xs:key name="entry-id-key">
6 <xs:selector xpath="entry" />
7 <xs:field xpath="@id" />
8 </xs:key>
9 </xs:element>

10 <xs:complexType name="list">
11 <xs:sequence>
12 <xs:element name="entry" maxOccurs="unbounded" type="entry">
13 <xs:alternative test="@class = ’even’" type="entry-even" />
14 </xs:element>
15 </xs:sequence>
16 <xs:assert test="entry[@id mod 2 eq 0]/@class = ’even’ or
17 entry[@id mod 2 eq 1]/@class = ’odd’" />
18 <xs:assert test="every $i in 1 to count(entry)-1 satisfies
19 (entry[$i] lt entry[$i+1])" />
20 </xs:complexType>
21 <xs:complexType name="entry">
22 <xs:simpleContent>
23 <xs:extension base="day-24">
24 <xs:attribute name="id" type="xs:positiveInteger" />
25 <xs:attribute name="class" type="xs:string" />
26 </xs:extension>
27 </xs:simpleContent>
28 </xs:complexType>
29 <xs:complexType name="entry-even">
30 <xs:complexContent>
31 <xs:extension base="entry">
32 <xs:attribute name="bgColor" type="xs:string" />
33 </xs:extension>
34 </xs:complexContent>
35 </xs:complexType>
36 <xs:simpleType name="day-24">
37 <xs:restriction base="xs:date">
38 <xs:assertion test="fn:day-from-date($value) eq 24" />
39 </xs:restriction>

xvii

Appendix B. Source Code Listings and Operator Tables

40 </xs:simpleType>
41 </xs:schema>

An example XML document that is valid according to this schema is:

1 <list> XML

2 <entry id="1" class="odd">1990-01-24</entry>
3 <entry id="2" class="even" bgColor="red">1993-05-24</entry>
4 <entry id="3" class="odd">2021-12-24</entry>
5 </list>

B.13. Operators for XPath as an Internal Prolog DSL

As discussed in Section 10.4, the following user-defined operators allow to treat
XPath as an internal Prolog DSL:

Precedence Type Operators
950 xfx satisfies then
900 xfx else
900 fx every some if
850 yfx or
800 yfx and
750 xf !1

700 xfx *= ~= eq ne le lt ge gt in2 >3 <3

400 yfx ~
400 fy / /@ ./ ./@ // //@ .// .//@
400 yfx /3 /@ // //@ :: ::* mod3 idiv
400 xfx to
400 yf []4

200 fy @
1 fx $5

1 For usage in != , which does not constitute a single token.
2 Following the definition in library(clpfd).
3 Built-in operator defined in the ISO Prolog standard.
4 Requires Prolog language extension allow_square_block_op[D.17].
5 Built-in operator in SWI-Prolog [136, Sec. 4.40].

In our library(xsd), these operator definitions are specified in the sub-module li-
brary(xsd/xpath), which can be loaded via ?- use_module(library(xsd/xpath)) .

xviii

C
Non-Standard Definition of

Predicates and Operators

In this appendix we provide the definitions of proprietary Prolog predicates that we
use and refer to in this thesis but which are either not part of the ISO Prolog stan-
dard, not provided by all major Prolog implementations, or implemented differently.
Where indicated, the predicates are included in SWI-Prolog or can be automatically
loaded via additional libraries. The definitions given here differ from SWI-Prolog’s
implementation, as we do not rely on additional user-defined predicates.

Contents

C.1 Predicates call/n . xx
C.2 Predicate and Operator \+/1 . xx
C.3 Predicate term_functors_list/3. xxi
C.4 Predicate term_args_attached/3. xxi
C.5 Predicate char_code/2 . xxii
C.6 Predicate unify_with_occurs_check/2. xxii
C.7 Predicate otherwise/0 . xxii
C.8 Predicate memberchk/2 . xxiii
C.9 Predicate ord_intersection/3 xxiii
C.10 Predicate ord_memberchk/2. xxiv
C.11 Predicates maplist/n . xxiv
C.12 Predicate flatten/2 . xxv
C.13 Operator ./2 . xxv
C.14 Predicate ./3 . xxvi
C.15 Predicate and Operator :</2 . xxvi
C.16 Operator >:</2 . xxvi

xix

Appendix C. Non-Standard Definition of Predicates and Operators

C.1. Predicates call/n

1 %% call(:Closure, ExtraArg1) Prolog

2 :- meta_predicate call(1, ?). [3.6]

3 call(Closure, ExtraArg1) :-
4 Closure =.. [P|Args], [3.6]

5 append(Args, [ExtraArg1], AllArgs), [3.4]

6 Goal =.. [P|AllArgs], [3.6]

7 Goal. [3.6]

The meta-predicate call/2ISO is used to dynamically create and call a goal. The
goal ?- call(Closure, ExtraArg1) appends ExtraArg1 to the argument list of the
compound term Closure and calls the result.

In SWI-Prolog, all calls for predicates of the call/nISO family with n ≥ 2 are di-
rectly handled by the compiler [136, Sec. 4.8]. Only to allow reflection and code
listings, the predicates of arity 2 ≤ n ≤ 8 are also implemented as plain old Prolog
predicates. Our implementation can be adapted to any predicate call/n of arity n

by adding further variables ExtraArgi to the clause’s head (l. 3), and to the call for
append/3[3.4] (l. 5).

C.2. Predicate and Operator \+/1

1 %% \+(:Goal) Prolog

2 :- op(900, fy, \+). [5.1]

3 \+ Goal :-
4 call(Goal), [3.6]

5 !, [3.2.2]

6 false. [ISO]

7 \+ Goal.

The predicate \+/1ISO is used to indicate a negated goal under the closed-world
assumption, i. e., a goal that is not provable (cf. Section 3.2). It can be implemented
with the help of the cut !/0ISO. If the goal Goal terminates existentially with a
solution, the goal \+(Goal) is known to be false (ll. 3–6). Only if there is no solution
for Goal, \+(Goal) is true (l. 7). The cut is required here to prevent the undesired
backtracking after the explicit false/0ISO. The predicate \+/1ISO is often used in
the form of a unary prefix operator (l. 2).

xx

C.3. Predicate term_functors_list/3

C.3. Predicate term_functors_list/3

1 %% term_functors_list(+Term, +Functors, -List) Prolog

2 %% term_functors_list(-Term, +Functors, +List)

3 term_functors_list(Term, Names, [A,B|Rest]) :-
4 member(Name, Names), [SWI]

5 Term =.. [Name, A, TermB], [3.6]

6 term_functors_list(TermB, Names, [B|Rest]).
7 term_functors_list(A, _, [A]).

The predicate term_functor_list/3 can be used to compose (instantiation mode
(-,+,+)) and decompose (mode (+,+,-)) a compound term from the name of a
binary operator and the list of operands. It works for both left-associative and
right-associative operators. In Functors, a list of possible operators is expected.
For instance, by calling ?- term_functors_list(Term, [(;), ’|’], [a, b]) , the
two alternative notations for disjunctions, Term = (a ; b) and Term = (a | b) ,
are generated.

C.4. Predicate term_args_attached/3

1 %% term_args_attached(+Term1, +List, -Term2) Prolog

2 %% term_args_attached(-Term1, +List, +Term2)

3 %% term_args_attached(+Term1, -List, +Term2)

4 term_args_attached(Term1, List, Term2) :-
5 Term1 =.. U1, [3.6]

6 append(U1, List, U2), [3.4]

7 Term2 =.. U2. [3.6]

When working with compound terms, it is a common task to create a new term by
amending an existing by new arguments. One use case is the insertion of the two
arguments that represent the processed difference list when translating a DCG into
plain old Prolog clauses (cf. Section 6.2.4 and Appendix B.5); another for the adding
of the parse tree argument in the source-to-source transformation of DCGs (cf.
Section 8.3). The goal ?- term_args_attached(Term1, List, Term2) is true if Term2
is the compound term Term1 with the additional arguments given in the list List.
The predicate is part of our library(dcg4pt) and supports three instantiation modes.
Given two bound arguments, the missing part gets calculated.

xxi

Appendix C. Non-Standard Definition of Predicates and Operators

C.5. Predicate char_code/2

1 :- set_prolog_flag(double_quotes, chars). Prolog

2

3 %% char_code(?Character, ?Code)

4 char_code(Char, Code) :-
5 Alphabet = " !\"#$%&’()*+,-./0123456789:;<=>?@\
6 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_‘\
7 abcdefghijklmnopqrstuvwxyz{|}~",
8 append(Before, [Char|_], Alphabet), [3.4]

9 length(Before, Position), [ISO]

10 Code is Position+32. [3.2.1]

The predicate char_code/2ISO can be used to convert between a single character
(i. e., an atom of length 1) and its character code. It is part of the ISO Prolog
standard. Traditionally, Prolog is based on a 7-bit US-ASCII character set, i. e., the
code is between 0 and 127. Our implementation lists only the printable characters,
beginning with the space character, which has a code of 32. We specify the list of
possible characters as a double quoted list (ll. 6–8). Because of the program flag in
line 1 (cf. Section 3.3.4), it evaluates to a list of atoms, and can be processed by the
list predicates append/3[3.4] and length/2ISO.

C.6. Predicate unify_with_occurs_check/2

1 %% unify_with_occurs_check(?Term1, ?Term2) Prolog

2 unify_with_occurs_check(X, Y) :-
3 X = Y, [3.2.1]

4 acyclic_term(X). [ISO]

The predicate unify_with_occurs_check/2ISO performs the unification of two terms
under consideration of possibly created cyclic variable bindings. In our implementa-
tion, the latter are tested with the help of the predicate acyclic_term/1ISO of the
ISO Prolog standard. It checks that the term X does not contain cycles, i. e., the
recursive processing terminates.

C.7. Predicate otherwise/0

1 otherwise. % simply always true Prolog

xxii

C.8. Predicate memberchk/2

In several code snippets we combine multiple of Prolog’s if-then-else (with infix
operators ->/2ISO and ;/2ISO). The result is similar to switch-case statements in im-
perative programming languages. For better readability, we always use otherwise/0
as the very last condition, following the notion of Haskell and the default clause
used in most imperative programming languages.

C.8. Predicate memberchk/2

1 %% memberchk(?Elem, +List) Prolog

2 memberchk(X, [X|_]) :- !. [3.2.2]

3 memberchk(X, [_|T]) :- memberchk(X, T).

In our implementations, we often use lists to represent named key-value associations
(instead of using SWI-Prolog’s dicts, cf. Section 3.3.5). ?- memberchk(Term, List)
unifies Term with the first matching element of the list List. Unlike the traditional
alternative member/2SWI, SWI-Prolog’s built-in memberchk/2 is semi-deterministic
and does not backtrack after a successful unification for a found member.

C.9. Predicate ord_intersection/3

1 %% ord_intersection(+X, +Y, ?Z) Prolog

2 ord_intersection([], _, []) :- !. [3.2.2]

3 ord_intersection(_, [], []) :- !. [3.2.2]

4 ord_intersection([X|Xs], [Y|Ys], [X|Zs]) :-
5 X = Y, % X and Y are the same [3.2.1]

6 ord_intersection(Xs, Ys, Zs).
7 ord_intersection([X|Xs], [Y|Ys], Zs) :-
8 lt(X, Y), % X is strictly smaller than Y

9 ord_intersection(Xs, [Y|Ys], Zs).
10 ord_intersection([X|Xs], [Y|Ys], Zs) :-
11 lt(Y, X), % given that X and Y are not equal

12 % and X is not strictly smaller than Y

13 % this could also be omitted

14 ord_intersection([X|Xs], Ys, Zs).
15

16 % possible definition of lt/2

17 lt(X, Y) :-
18 (number(X) -> [3.3]

xxiii

Appendix C. Non-Standard Definition of Predicates and Operators

19 X < Y % for numbers [3.2.1]

20 ; X @< Y). % for atoms and strings [5.1.4]

In Section 10.1.2, we use ord_intersection(+X,+Y,?Z) to calculate the ordered set
representation Z of the intersection between the ordered sets X and Y. This predicate
is autoloaded in SWI-Prolog as part of the built-in library(ordsets) [136, Sec. A.26].

Note that following its logical reading, ord_intersection/3 could also be used
with, e. g., X and Z given to generate possible solutions for Y. This would only be
useful for a definition of lt/2 that can also generate candidates.

C.10. Predicate ord_memberchk/2

1 %% ord_memberchk(+X, +List) Prolog

2 ord_memberchk(X, [X|_]) :- !. [3.2.2]

3 ord_memberchk(X, [Y|T]) :-
4 lt(Y, X), [C.9]

5 ord_memberchk(X, T).

The predicate ord_memberchk/2 is a faster version of the classical member/2ISO

or memberchk/2[C.8] for ordered sets. It fails as soon as a list element is reached
that is higher than X. We use it in the definition of domains in Section 10.1.3. It is
autoloaded in SWI-Prolog’s library(ordsets) [136, Sec. A.26].

C.11. Predicates maplist/n

1 %% maplist(:, ?, ?, ?) Prolog

2 :- meta_predicate maplist(3, ?, ?, ?). [3.6]

3 maplist(_, [], [], []).
4 maplist(Goal, [X|Xs], [Y|Ys], [Z|Zs]) :-
5 call(Goal, X, Y, Z), [C.1]

6 maplist(Goal, Xs, Ys, Zs).

The family of meta-predicates maplist/n applies a goal, which is given as its
first argument, on all tuples of elements of the lists given in the remaining ar-
guments. They are autoloaded in SWI-Prolog’s library(apply). For the smallest
value n = 2, maplist/2 applies the goal on each list element. The listing shows

xxiv

C.12. Predicate flatten/2

the implementation of maplist/4, which can be easily adapted for other ari-
ties by the addition or removal of the list arguments. For instance, the goal
?- maplist([1,B,3], [6,5,C], [A,7,7], plus) applies the ternary predicate
plus/3 on each triple and computes the answer substitution A = 7, B = 2, C = 4 .

C.12. Predicate flatten/2

1 %% flatten(+NestedList, -FlatList)

2 flatten([], []) :- !. Prolog

3 flatten([L|Ls], Flattened) :-
4 !, [3.2.2]

5 flatten(L, LF),
6 flatten(Ls, LsF),
7 append(LF, LsF, Flattened). [3.4]

8 flatten(L, [L]).

The predicate flatten/2 converts a list of lists into its non-nested equivalent. It is
autoloaded in SWI-Prolog’s library(lists), with similar definitions in all major Pro-
log systems. A naive approach to combine sequences into parse trees relies on this
logically impure predicate, as discussed in Section 8.4.3. Though it results in a more
complex transformation scheme, we therefore completely avoid the use of flatten/2,
following the remarks of [136, Sec. A.21]: “Ending up needing flatten/2 often in-
dicates, like append/3[3.4] for appending two lists, a bad design.”

C.13. Operator ./2

1 :- op(100, yfx, .). Prolog

The infix operator./2 is used since SWI-Prolog of version 7 to extract values and
evaluate functions on dicts [129]. For a short introduction to dicts we refer to Sec-
tion 3.3.5. Goals containing the ./2 operator are translated to calls of ./3[C.14] by
SWI-Prolog at compile-time using term expansion.

xxv

Appendix C. Non-Standard Definition of Predicates and Operators

C.14. Predicate ./3

1 %% .(+Dict, +Function, -Result) Prolog

2 .(Dict, get(Key), Value) :-
3 dict_pairs(Dict, _Tag, KV), [SWI]

4 memberchk(Key=Value, KV). [C.10]

With the dot notation based on the infix operator ./2[C.13], it is possible to get the
value of a key, but also to evaluate a function on a dict. Predefined functions are
put/{1, 2}SWI to add or replace new (list of) keys, and get/1SWI, which is a silently
failing alternative for value accessing via Dict.Key.

Because dicts are proprietary data structures in SWI-Prolog version 7 and higher,
they cannot be implemented with only predicates of the ISO Prolog standard. In the
code listing, we give an exemplary definition of ./3 which adds the SWI-Prolog’s
get/1 function for dicts. It makes use of memberchk/2[C.8] and dict_pairs/3SWI,
which maps a dict to an equivalent associative list.

C.15. Predicate and Operator :</2

1 %% +Select :< +From Prolog

2 :- op(700, xfx, :<). [5.1]

3 Select :< From :-
4 dict_pairs(Select, SelectP), [SWI]

5 dict_pairs(From, FromP), [SWI]

6 subset(SelectP, FromP). [SWI]

Normal unification of two dicts with =/2ISO fails if both dicts do not contain the
same keys. With Select :< From , it can be tested if Select is a sub-dict of From,
i. e., the unification is performed only for keys that are present in From. In our
implementation, we use dict_pairs/2SWI again to convert the dicts into their cor-
responding association lists, which are then compared using subset/2SWI, which is
part of SWI-Prolog’s autoloaded library(lists).

C.16. Operator >:</2

1 %% +Dict1 >:< +Dict2 Prolog

2 :- op(700, xfx, >:<). [5.1]

xxvi

C.16. Operator >:</2

The operator >:</2 defines a partial unification of two dicts, unifying only values of
keys that are present in both. Values associated to keys that do not appear in the
other dict are ignored. Unlike :</2[C.15], this predicate is commutative.

xxvii

D
Index on Prolog Language Extensions

Tokenisation

D.1 allow_unicode . xxix
D.2 allow_unicode_character_escape xxix
D.3 allow_missing_closing_backslash_in_character_escape . xxix
D.4 allow_symbolic_∗_char_∗ . xxx
D.5 allow_shebang . xxx
D.6 back_quoted_text . xxx
D.7 var_prefix . xxxi
D.8 allow_digit_groups_with_space xxxi
D.9 allow_digit_groups_with_underscore xxxii
D.10 allow_integer_exponential_notation xxxii
D.11 rational_syntax . xxxiii
D.12 Additional Non-escaped Quote Characters. xxxiii

Term Parsing

D.13 allow_infix_and_postfix_op xxxiii
D.14 allow_compounds_with_zero_arguments xxxiv
D.15 allow_empty_atom . xxxiv
D.16 allow_curly_block_op . xxxv
D.17 allow_square_block_op . xxxvi
D.18 dicts . xxxvi
D.19 allow_operator_as_operand xxxvii
D.20 allow_arg_precedence_geq_1000 xxxvii
D.21 allow_variable_name_as_functor xxxvii
D.22 allow_unquoted_comma . xxxviii
D.23 allow_dot_in_atom . xxxviii
D.24 allow_implicit_end . xxxix

xxviii

D.1. allow_unicode

D.1. allow_unicode

:- op(600, xfx, ∈).
X ∈ Xs :- member(X, Xs).

Many Prolog systems, including SWI-Prolog, offer full Unicode support. However,
following the ISO Prolog standard, Prolog’s alphabet is traditionally composed
only of the 7-bit US-ASCII character set, thus symbols like ∈ cannot be used
anywhere in the Prolog source code – neither as part of a token, nor in source
code annotations. The setting allow_unicode(true) enables the full Unicode
character set in library(plammar). Internally, we use SWI-Prolog’s implementa-
tion of char_type/2SWI to get a character’s type class. This allows, for instance, all
answers for the goal ?- char_type(Char, prolog_symbol) to denote an unquoted
operator, so that ∈ could be used in an internal DSL. For external DSLs that rely
on Unicode characters, this option is also required to process the contained data
via, e. g., definite clause grammars.

D.2. allow_unicode_character_escape

unicode_num(\u2C6F, 0x2C6F).

Besides the literal appearance of Unicode characters, special characters can be repre-
sented by escape sequences beginning with \u (4-digit hexadecimal) and \U (8-digit
hexadecimal). This notation follows the de-facto standard known from other pro-
gramming languages, including JavaScript, and therefore simplifies their integration
as an internal DSL.

D.3. allow_missing_closing_backslash_in_character_escape

equal(\xa, \xa\).
equal(\40, \40\).

According to Iso 6.4.2.1, the hexadecimal and octal character escape sequences start
and end with a backslash symbol. This flag makes the trailing backslash optional,
which follows the traditional definition the older Edinburgh standard and is sup-
ported by many modern Prolog systems as well. In addition, this aligns with the
notation for hexadecimal and octal escape sequences from other languages, includ-
ing C and JavaScript.

xxix

Appendix D. Index on Prolog Language Extensions

D.4. allow_symbolic_∗_char_∗

symbolic_chars(’\c\e\s’).

In Iso 6.4.2.1, some of the symbolic control characters (e. g., carriage return \r)
are defined. This backwards compatible extension adds those missing from the 7-bit
US-ASCII character set, as they could possibly part of strings and quoted atoms
from external sources. In library(plammar), the three additional symbolic control
characters can be enabled separately by the following options:

– allow_symbolic_no_output_char_c

– allow_symbolic_escape_char_e

– allow_symbolic_space_char_s

D.5. allow_shebang

#!/usr/bin/env swipl

In many programming languages, it is possible to specify the program loader script
path in the very first source code line. This character sequence is started by #!
(called shebang or hashbang). The implementation of this language extension is pre-
sented in Section 9.3.2. Besides the actual usage for Prolog programs, the setting
allow_shebang(true) simplifies the processing of an existing source code file from
another programming language in case this language can be modelled solely as an
internal DSL apart from the leading shebang.

This language extension is not backwards compatible, because #! can also be the
legal start of a normal Prolog clause, e. g., after declaring #/1 and !/1 as prefix
operators.52 On the other hand, it has to be added at the tokenisation level, because
the arbitrary character sequence following the shebang is not required to be a valid
Prolog term.

D.6. back_quoted_text

javascript_template_string(`<h1>Hello, ${name}!</h1>`).

52Because of the special meaning of the cut token !, the character sequence #! does not constitute
a valid Prolog operator name on its own.

xxx

D.7. var_prefix

Many programming languages suffer from the lack of a syntax for multi-line strings.
If a string spans multiple lines, one often has to concatenate multiple strings. This
has been resolved in some programming languages by introducing a new literal based
on the back quote character ` , for instance in Java since version 13, JavaScript (cf.
Section 4.3.3), and Go.

In Prolog, back quoted string literals have been defined and used from the very
beginning. However, though the ISO Prolog standard defines their general format
in its EBNF, originally they do not constitute a token – Iso 6.4.7 instead explicitly
allows them as a valid language extension to denote a character string constant.
This is enabled in library(plammar) by the back_quoted_text flag, which allows to
integrate multi-line strings from other languages without further modifications.

As of today, back quoted string literals are supported by all major Prolog systems,
though their interpretation differs. In SWI-Prolog, its term representation can be
set via the back_quotes flag, which supports the same values as double_quotes,
which we presented in detail in Section 3.3.4.

D.7. var_prefix

:- op(800, fx, SELECT).

As introduced in Section 3.1.1 and formally specified in the EBNF definition of the
nonterminal variable in Figure 5.2, a Prolog variable starts either by an uppercase
letter, or with the underscore as its prefix. With the setting var_prefix(true), only
the second form denotes valid variable names. Symbols beginning with an uppercase
letter denote atoms. This setting simplifies the integration of case-sensitive external
languages as internal Prolog DSLs. Obviously, it is not backwards compatible.

SWI-Prolog supports the module-wide flag var_prefix since version 7.3.27 [136,
Sec. 2.12]. It is used in SWI-Prolog’s RDF library [138], and for the integration of
the statistical environment R [5].

D.8. allow_digit_groups_with_space

max_binary(0b1111 1111).

Sequences of integer tokens can never be part of a Prolog term, since numbers are not
allowed to be declared as operators. Therefore, they can be defined in a backwards
compatible manner as a new token that depicts a single integer written in digit

xxxi

Appendix D. Index on Prolog Language Extensions

groups only for improved readability. Its implementation in the form of a finite-
state machine is presented in Section 9.3.4. Digit groups are natively supported by
SWI-Prolog [136, Sec. 2.16.1.5].

Note that digit groups with single spaces in-between are allowed only for integers of
radix 10 or lower. For hexadecimal numbers, the term 0x0 f is ambiguous, since f
could also be declared as an operator, resulting in a valid Prolog term, too.

D.9. allow_digit_groups_with_underscore

max_hexadecimal(0xffff_ffff).

Besides using spaces, digit groups can be separated by single underscores between
digits in a numerical literal. This also works with hexadecimal numbers, because
the underscore would otherwise denote the anonymous variable token, which again
cannot be defined as an operator, thus the character sequence 0x0_f can be a
valid Prolog term only using this flag. Separating large numeric literals into digit
groups by underscores is supported by several other programming languages, includ-
ing Java (since version 7) and JavaScript (proposal for inclusion in the ECMAScript
standard). Therefore, this Prolog language extension allows their integration as in-
ternal DSLs.

D.10. allow_integer_exponential_notation

eps(1e-12).

Following Iso 6.4.5, a floating number is defined in the nonterminal float_number_-
token//0. It expects a fractional number including the decimal symbol . , optionally
followed by the exponent. As introduced for library(plammar)’s finite-state machine
in Section 9.3.4, this requirement is relaxed by some Prolog systems, which addi-
tionally allow the exponential notation immediately after an integer, avoiding the
extra .0 fractional part.

This shorter notation for exponential numbers is also supported by many other pro-
gramming languages, including Java and JavaScript. Therefore, the language exten-
sion allows their integration as part of an internal DSL in Prolog. This modification
of Prolog’s syntax is not backwards compatible if we declare e/2 as an infix opera-
tor, and similarly postfix operators like e3, e4, and so on. In this case, the character
sequences 1e-12 , 1e3 , and 1e4 also natively constitute valid Prolog terms, but of
different meanings.

xxxii

D.11. rational_syntax

D.11. rational_syntax

rational(1/3).
rational(1r3).

This new syntax for rational numbers as a primitive data type in Prolog has been
added to library(plammar) mainly because of its common usage in modern Prolog
programs. It is supported by ECLiPSe and SWI-Prolog from version 8.1.22 [136,
Sec. 2.16.1.6]. Similar to allow_integer_exponential_notation[D.10], it is not
backwards compatible for programs that expect the infix operators //2ISO and r/2,
or the postfix operators of the form rn/1 to work on integer arguments. On the
other hand, it does not extend Prolog’s expressiveness regarding DSLs, because
structures of //2 and r/2 also natively constitute valid Prolog terms.

D.12. Additional Non-escaped Quote Characters

char_code(0’’, 39).
char_code(0’ <tab> , 9).
char_code(0’
, 10).

This extension provides a backwards compatible alternative notation for the ISO
Prolog standard’s character code constants 0’\’ , 0’\t , and 0’\n . It does not
extends Prolog’s expressiveness regarding other languages, but is frequently used
in existing Prolog programs. In library(plammar), the three additional non-quoted
characters can be enabled separately by the following options:

– allow_single_quote_char_in_character_code_constant

– allow_tab_as_quote_char

– allow_newline_as_quote_char

D.13. allow_infix_and_postfix_op

:- op(500, fy, ++).
:- op(600, yf, ++).
:- op(600, xfy, ++).
f(++ x ++ x ++ x ++).

xxxiii

Appendix D. Index on Prolog Language Extensions

Iso 6.3.4.3 recommends to not declare the same name as an infix and postfix operator.
This is justified by possible optimisations for the parser, which can immediately
decide the specifier of an operator without too much look ahead. However, when
reaching the clause’s end, the term’s structure is guaranteed to be unambiguous.
For instance, the canonical term for our example is ++(++(x),++(x,++(x))) .

D.14. allow_compounds_with_zero_arguments

run().

Since version 7, SWI-Prolog also supports compound terms of the form a() that
have no arguments [136, Sec. 5.3.2], but differ from the standalone atom a . The
ISO Prolog standard instead requires compound terms to have at least one argu-
ment (Iso 6.3.3). The extension by SWI-Prolog originally aimed to allow functions
on dicts (cf. Section 3.3.5). In addition, it results in a broader support for DSLs to
be integrated internally. Most importantly, this allows to describe definitions and
calls of functions without arguments.

D.15. allow_empty_atom

:- op(600, fx, function).
function ().

The ISO Prolog standard defines { , } , [, and] as dedicated tokens. Their
pairs { } and [] (with optional lts in-between) constitute atoms (Iso 6.3.1.3).
However, there is no equivalent for the empty pair of parentheses () . It can be
added to the ISO Prolog standard’s EBNF by the following two grammar rules:

atom = open, close ; Ebnf Dsl

atom = open_ct, close ;

The second case conflicts with the previously presented language extension
allow_compounds_with_zero_arguments[D.14] for terms like run() (i. e., with
empty lts), if run/1 is additionally also declared as a prefix operator. Both flags
consume the open_ct//0 token, but depict different parse trees:

?- prolog_parsetree(string("run()."), PT, Toplevel

[allow_compounds_with_zero_arguments(true),
allow_empty_atom(true), operators([op(600,fx,run)])]).

PT = prolog([clause_term([term([atom(_), open_ct(_), close(_)])])]) ;
PT = prolog([clause_term([

xxxiv

D.16. allow_curly_block_op

term(fx, [op(atom(_)), term([open_ct(_), close(_)])])])]) .

This unambiguity can be resolved by referring only to the nonterminal open//0, i. e.,
by using only the grammar rule of the aforementioned extension to the ISO Prolog
standard’s EBNF.

We successfully used this language extension for the modelling of XPath as an in-
ternal Prolog DSL, which we present in detail in Section 10.4. The need for such a
language feature was also noted before in [130].

D.16. allow_curly_block_op

:- op(100, xf, {}).
:- op(600, xfx, while).
do { writeln(X) } while (member(X, [1,2,3])).

Without further modifications, both { } and { t } are valid Prolog terms ac-
cording to the ISO Prolog standard. The empty curly brackets constitute a single
atom (Iso 6.3.1.3) with no special meaning. The character sequence { t } on the
other hand denotes the curly bracketed term {}(t) , i. e., a compound term of func-
tor {}/1 (Iso 6.3.6).

In most imperative programming languages, curly brackets are used to enclose code
blocks, e. g., in the definition of classes, functions, or loop bodies. To support the
internal integration of these DSLs, we additionally allow to use the atom {} as
a block operator. It is typically declared as a postfix operator with type xf and
low precedence, but can be equally defined as any other type. In the canonical
representation of the compound term, the block’s inner content is added as its first
argument. This is why it is of functor {}/{2, 3}, i. e., with an arity of 2 in case of
a postfix or prefix operator, and an arity of 3 when defined as an infix operator,
unlike the traditional arities known from operators. For instance, given that {} is
defined as a postfix or prefix operator, the terms s · { t } and { t } s are valid
and read as {}({t},s) ; for an infix operator, sl · { t } sr results in the compound
term {}({t},sl,sr) . In this canonical representation, the block operator’s inner
term t is additionally stated as the curly bracketed term {}(t) .

Note that the curly block operator notation is actually not an extension but a de-
viation of the ISO Prolog standard, which in Technical Corrigendum 2 disallows to
declare the curly bracket pair as an operator (Iso 6.3.4.3). In addition, the notation
of block operators conflicts with the proposed language extension for dicts (cf. Ap-
pendix D.18). If {}/1 is defined as a postfix or infix operator, the term a{ b: c }

xxxv

Appendix D. Index on Prolog Language Extensions

is ambiguous. We therefore propose to always use the lts in front of the opening
curly bracket. With the flag dicts[D.18] disabled, the term is unambiguously parsed
as {}({:(b,c)},a) , even without a preceding lts.

Introducing block operators was proposed by José F. Morales. It was discussed
for inclusion in the ISO Prolog standard, but because of too many conflicts with
existing extensions no agreement was reached [136, Sec. 5.3.3]. In our library(plam-
mar), this language extension can be activated by the flag allow_curly_block_op.
Block operators are also supported by SWI-Prolog and YAP. In SWI-Prolog, it is
always enabled, because it takes effect only after the definition of the block operator
by the user.

D.17. allow_square_block_op

:- op(100, xf, []).
fib[N-2] + fib[N-1] >> fib[N].

Besides postfix curly bracketed terms to enclose code blocks, imperative program-
ming languages often use postfix terms in square brackets to denote array subscript-
ing. Similar to the previously presented option, the flag allow_square_block_op
enables declarations of the atom [] as an operator in library(plammar) and SWI-
Prolog. It is typically declared as a postfix operator with low precedence. In con-
trast to the curly block operator’s xf-type, array subscription is typically used as
an yf-operator to allow nested array access. Given this postfix operator declara-
tion, t[s1][s2] produces the compound term []([s2],[]([s1],t)) in canonical
notation. Similar to the curly block operator, the block’s inner terms s1 and s2 are
additionally each stated in a classical list. By disallowing the definition of [] as an
operator (Iso 6.3.4.3), t[s1][s2] cannot be parsed as a valid Prolog term.

D.18. dicts

data(alice, _{ birth: 1986 }).

In Section 3.3.5, we introduced dicts as SWI-Prolog’s primary data type for named
key-value associations. Their syntax resembles JSON and the notation for associative
arrays known from other programming languages. However, these objects can often
be recreated in an internal Prolog DSL by only using Prolog’s built-in support for
curly bracketed terms (Iso 6.3.6). To additional allow the specification of a leading
tag, the flag allow_curly_block_op[D.16] could be used equally.

xxxvi

D.19. allow_operator_as_operand

The flag dicts therefore mainly intends to create parse trees in library(plammar)
that reflect the structure of named key-value associations. Similar to the ISO Prolog
standard’s definition of lists with the nonterminals arg_list//0 and arg//0, we
defined the nonterminals key_value_list//0 and key_value//0 to process a dict’s
content.

D.19. allow_operator_as_operand

sign(- * -, +).

Following Iso 6.3.1.3, any declared operator constitutes a term with a priority of 1201.
This ensures that if an operator is used as an operand, it has to be put in paren-
theses. By relaxing this constraint and treating operators as terms with a priority
of 0 as well, character sequences like X = - become valid again. This is the de-
fault behaviour of SWI-Prolog, but can be disabled by setting the program flag
iso(true).

D.20. allow_arg_precedence_geq_1000

bitwise_or(A | B, Ored) :- Ored is A \/ B.
test(car->colour, red).

As introduced in Section 10.1, arguments of compound terms as well as list ele-
ments are expected by Iso 6.3.3 to be of a priority less than 1000. This ISO Prolog
standard compliant behaviour requires additional parentheses around terms of the
built-in operators ->/2ISO, ;/2ISO, |/2SWI, -->/2ISO, and :-/{1, 2}ISO. By lowering
this restriction, internal Prolog DSLs are allowed to omit these.

SWI-Prolog by default allows arguments of any priority. It can be disabled by setting
the program flag iso(true).

D.21. allow_variable_name_as_functor

COUNT(*).

Every compound term’s functor name is required to be an atom by the ISO Prolog
standard. This requirement can be relaxed to include variable names to be com-
patible with more DSLs. Its interpretation is left to the Prolog system. SWI-Prolog
automatically converts the functor name to the corresponding atom when reading in
compound Prolog terms of this form, so our example is identical to ’COUNT’(*) .

xxxvii

Appendix D. Index on Prolog Language Extensions

Note that the given example is also valid Prolog by using the tokenisation set-
ting var_prefix[D.7] instead, which similarly handles COUNT as an atom. While
allow_variable_name_as_functor preserves the general notation of variables, it
is not as flexible as var_prefix[D.7], since it affects only the notation of compound
terms in functional notation. It is still not allowed to define COUNT as an operator
without enclosing it in single quotation marks.

D.22. allow_unquoted_comma

two_commas([(,), (,)]).
two_commas([,,,]). % with allow_arg_precedence_geq_1000[D.20]

The comma in Prolog has a special meaning and is defined by the ISO Prolog stan-
dard as a separate token. It therefore does not constitute neither a name nor a
term. Thus, ?- X = (,) fails – even though the additional enclosing in parenthe-
ses avoid possible problems with respect to the term’s priority. Following the ISO
Prolog standard, the comma can be used only as the built-in infix operator, or as
the atom ’,’ in single quotation marks. This flag enables its usage as term, so
it can be literally used as argument in compound terms and lists. Together with
allow_arg_precedence_geq_1000[D.20], this allows for terms like [, , ,] , though
its practical benefits with respect to the integration of DSLs remain limited. In SWI-
Prolog, this behaviour can be disabled by setting the program flag iso(true).

D.23. allow_dot_in_atom

:- op(600, xfx, is.a).

The full stop . constitutes a separate token in Prolog, which is usually used to
mark the end of a clause. It can additionally be defined as an operator. This allows
cascading function notations as known from other programming languages. With
./2 as an infix operator of type yfx, car.colour.rgb constitutes the canonical
compound term .(.(car, colour), rgb) .

SWI-Prolog suggested to alternatively change the grammar for the nontermi-
nal name_token//0. The transition rules for the state seq_alphanumeric_char
in our lexer (cf. Table 9.2) therefore also accept dots embedded into atoms. The
dot must be followed by an identifier continuation character, i. e., a letter, digit
or underscore. The dot is allowed in identifiers in many languages, which makes
allow_dot_in_atom a useful flag when integrating DSLs, in particular as it paves

xxxviii

D.24. allow_implicit_end

the way for operators with embedded dots. This language extension is only back-
wards compatible for programs that neither use ./2 as an infix operator, or rely on
atoms with embedded dots as operators.

D.24. allow_implicit_end

fact

Many languages can be defined as internal Prolog DSLs. But although they are
of manifold shape due to their declaration of different operators, all these internal
DSLs have one thing in common: they are required to end with . as the (possibly
single) clause’s end//0 token. In our definition of EBNF as an internal Prolog DSL
in Section 5.6, we used the classical symbol ; to delimit individual grammar rules
but the very last, which instead ends with the end token.

According to Iso 6.2, a Prolog program consists of Prolog text, which is a sequence of
the nonterminal p_text//0. Listing 9.6 shows its original grammar from the ISO Pro-
log standard. We propose a second, alternative grammar rule for prolog_text//0:

prolog_text = term ; Ebnf Dsl

This way, the overall source code program only needs to be a valid Prolog term.
On the other hand, the addition for the nonterminal prolog_text//0 instead of the
self-referential p_text//0 ensures that we do not mix classical Prolog clauses with
those without the trailing end token. Which alternative has to be applied can be
determined in constant time and requires no backtracking. If the lexer returns .
as its very last token, the classical definition is used, and otherwise our alternative
proposal.

xxxix

List of Figures

2.1. Programming paradigms and some of their representatives 22
2.2. Components of algorithms . 23
2.3. SLD search tree for the query append(X, Y, cons(a, cons(b, nil))) . . . 37
2.4. A linear refutation for the query append(X, Y, cons(a, cons(b, nil))) . 39

4.1. Taxonomy of domain-specific languages 72
4.2. Finite-state machine for the Prolog Transport Protocol 87

5.1. Binary tree representation of a term in the internal DSL 111
5.2. EBNF grammar rules for a variable in Prolog 116

7.1. Screenshot of the web-based interface for DCG visualisation 144
7.2. Server-side components to generate the trace data 151

8.1. Parse tree using the DCG for if-then rules 156

9.1. Finite-state machine for handling the lts that precede tokens 194
9.2. Extract of the finite-state machine for parsing numbers 198
9.3. Using library(plammar) for code formatters and linters 205
9.4. Integration of library(plammar) into the web-based AST Explorer . . 206

xli

List of Tables

5.1. Operator table of the ISO Prolog standard 97
5.2. Additional operators defined by SWI-Prolog 97
5.3. Operators that define the internal Prolog DSL for if-then rules . . . 109

8.1. Formation principles to construct the parse tree for a DCG rule . . . 162

9.1. Transition rules in the finite-state machine for the state token . . . 196
9.2. Transition rules for important character groups 197

xliii

List of Listings

3.1 Example queries for the unification of two dicts 58
3.2 Three alternative implementations of the predicate append/3 . . . 59
3.3 Example queries for append/3 and append_difflists/3 59
3.4 Implementation of global variables using a dynamic predicate . . . 64

4.1 Default object mapping in CAPJa 78
4.2 XML Schema to specify an object mapping as used by GOOMN . 79
4.3 Load and query a Prolog database in PyPlC 81
4.4 Rules in CHR.js to calculate the greated common divisor 82
4.5 Initialisation of Tau Prolog with a Prolog fact base 83
4.6 Systematic translation of the predicate append/3 to Haskell 84
4.7 Definition and usage of the predicate append/3 in Julia 86

5.1 Simple Prolog rule and its equivalent term in functional notation . 94
5.2 Outputs by write_canonical/1, write/1, and the toplevel 96
5.3 Specification of tests with library(tap) 102
5.4 Redefining the is/2 predicate in the user module 104
5.5 Definition of the vanilla meta-interpreter for Prolog programs . . . 106
5.6 Example if-then rule in the internal DSL 109
5.7 Definition of term and goal expansions for if-then rules 112
5.8 Definition of a meta-interpreter for if-then rules 113

6.1 DCG to describe a palindrome of characters 128
6.2 Meta-interpreter for DCGs . 130
6.3 Term expansion for DCGs . 131
6.4 Expanded Prolog clauses for elem//1 and palindrome//0 131
6.5 DCG to parse and serialise if-then rules 134
6.6 Extending determiner//0 by grammatical constraints 136
6.7 Example GraphQL query and corresponding JSON result 137
6.8 Type definitions for the example query and GraphQL’s Query type 138
6.9 Definition of the type quasi-quotation 139
6.10 Generated dict for the GraphQL type Person 140

7.1 Definition of a custom trace interceptor 148

8.1 DCG extensions to process if-then rules with parse tree 158
8.2 Created Prolog predicates after transformation with pushback lists 159
8.3 Prolog goals to produce the parse tree for an example sentence . . 160

xlv

List of Listings

8.4 Source-to-source transformation for DCGs with parse trees 163
8.5 Transformation for DCG bodies . 164
8.6 Backtracking over optionals and sequences of a nonterminal 168
8.7 Transformed grammar rule with a conjunction and sequence 169
8.8 Changing the order of body elements in the transformed DCG . . . 172

9.1 Formal description of a term’s syntax in various formats 185
9.2 Context-sensitive wrapper for the nonterminal token//0 187
9.3 Definition of tokens according to Iso 6.4 188
9.4 Tokens from append/3’s source code 190
9.5 Backtracking solutions on tokenisation 200
9.6 Definition of Prolog clauses and program text according to Iso 6.2 201
9.7 Definition of numbers as terms according to Iso 6.3 202
9.8 Parse tree from append/3’s source code 204
9.9 Abstract syntax tree from append/3’s source code 204

10.1 Introductory example to restrict a variable to finite domains 213
10.2 Implementation of domain/3 with chaining variables 214
10.3 Example queries for domain/3 . 215
10.4 Implementation of domain/2 with attributed variables 218
10.5 Basic usage example of library(clpfd) 219
10.6 Generating operator definitions for a given character sequence . . . 221
10.7 Generating operator definitions for if-then rules 223
10.8 Internal Prolog DSL to express logic formulas 224
10.9 Internal Prolog DSL with language extensions 225
10.10 GraphQL type definitions from Listing 6.8 as internal Prolog DSL 230
10.11 Examples for XPath expressions in XSD 1.1 233

11.1 Implementation of prolog_tokens/3 with varying execution order 241

xlvi

	Nomenclature
	Introduction
	Motivation
	Goals and Addressed Problems
	Main Results
	Thesis Structure
	Overview and Objectives per Chapter
	How to Read this Thesis
	Source Code Examples and Prolog Predicates

	Contributions
	Publications in Journals and Conference Proceedings
	Open-Source Software

	Logic-Based Programming
	The Declarative Programming Paradigm
	First-Order Logic as the Basis for Logic Programs
	Theory of Unification
	Computation with Logic Programs
	Top-Down Depth-First Inference with SLD Resolution
	Nondeterminism and Backtracking
	Variables for Parameter Passing and Return Values

	Logic Program Example: append
	SLD Resolution for All Solutions
	Linear Refutation for a Particular Solution

	Programming in Prolog
	Writing Prolog Programs
	Terms as First-Class Citizens
	Rules and Facts about Predicates

	Working with Prolog
	Unification and Arithmetic Expressions
	Program Execution and Control Predicates
	Properties of Predicates and Programs

	Data Structures
	Lists
	Pairs
	Difference Lists
	Strings
	Dicts

	Prolog Example: append/3
	Reflection and Code Listings
	Term Inspection and Higher-Order Predicates
	Dynamic Predicates
	Modules

	Domain-Specific Languages
	Terminology
	Integration Techniques
	Embedding
	Compilation
	Preprocessing and Extensible Compilers

	Prolog as a DSL in other Host Languages
	Java
	Python
	JavaScript
	Haskell
	Julia
	The Prolog Transport Protocol

	The Status Quo on the Integration of DSLs in Prolog

	Prolog as a Host for Internal DSLs
	Operator Notation for Terms without Parentheses
	Precedences in the Parsing of Expressions
	Infix Operator Associativity
	Prefix and Postfix Operators
	Common and Predefined Operators and Predicates

	Program Transformations via Term Expansions
	Implementation and Usage in SWI-Prolog
	Term Expansions for TAP Test Generation
	Preventing Name Conflicts with Built-in Predicates

	Program Execution with Meta-Interpreters
	Vanilla Meta-Interpreter
	Adaptions to Handle DSLs and Nondeterminism

	Declarative If-then Rules for Expert Knowledge
	Definition as an Internal DSL
	Binary Expression Tree
	Expanding If-then Rules to Plain Old Prolog Clauses
	Meta-Interpretation

	From DSLs to Controlled Natural Languages
	EBNF as an Internal DSL for Context-free Grammars

	External DSL Integration with Quasi-Quotations and DCGs
	Embed External DSLs in SWI-Prolog
	Processing Content from the Outside-World
	Code-Inlining with Quasi-Quotations

	Definite Clause Grammars
	Syntax
	Procedural Semantics
	Execution via Meta-Interpreter
	Standard Term Expansion Scheme
	From EBNF to DCGs

	Declarative If-then Rules as an External DSL
	Definition as an External DSL
	Comparison of the Two Approaches

	GraphQL for Deductive Databases
	Example Query and Result
	The GraphQL Type System
	Integration with Quasi-Quotations, DCGs, and Dicts

	A Tracing Meta-Interpreter for Web-based DCG Visualisation
	Important Criteria for an Interactive Visualisation
	User Interface and Example Application
	Collection of Run-Time Information
	Intercepting the Built-in Tracer
	Automatic Generation of Parse Trees
	Modified Meta-Interpreter

	Client-Server Architecture with Pengines

	Automatic Parse Tree Generation for DCGs
	Representing an External DSL as a Prolog Term
	Process Parse Trees in DCGs with State Passing
	Comparison of Context-Sensitive DCG Extensions
	Properties of the Modified DCG
	Adapted Use of phrase/3

	Source-to-Source Transformation
	The Library dcg4pt
	Formation Principles
	Modified DCG Body

	Optionals and Sequences of Nonterminals
	Parse Trees with Lists
	Handling and Transformation
	Support for Parsing and Serialising

	Related Extensions for DCGs

	A Prolog Parser and Serialiser in Prolog
	The Library plammar
	Intended Applications
	Provided Predicates
	Command Line Interface
	Foundations

	Tokenisation with the ISO Prolog Standard's EBNF
	Expanding the Internal DSL into DCGs with Parse Trees
	Context-Sensitive Requirements
	Tokens and Optional Layout Text
	Tokenisation Example: append/3

	Tokenisation with a Finite-State Machine
	Addressed Problems
	Handling of Layout Text
	State Transition Rules for Tokens
	Parsing of Numbers
	Implementation in Prolog

	Term Parsing
	Towards an Abstract Syntax Tree

	Prolog Operator Inference and Language Extensions
	Operators as a Constraint Satisfaction Problem
	Motivational Example
	Native Implementation with Chaining Variables
	Attributed Variables
	Constraint-Logic Programming over Finite Domains
	Operator Inference in the Library plammar

	Prolog Language Extensions
	Motivational Examples
	Tokenisation Level
	From Tokens to Valid Terms

	GraphQL as an Internal DSL
	XPath Expressions in Prolog

	Conclusion
	Empirical Results
	Future Work

	Bibliography
	List of Contributions
	Published in Journals
	Published in Peer-Reviewed Conference Proceedings
	Additional Open-Source Software

	Source Code Listings and Operator Tables
	If-then Rules as an Internal Prolog DSL
	EBNF Grammar Rules as an Internal Prolog DSL
	Expanding EBNF Grammar Rules to DCGs
	Meta-Interpreter for DCGs
	Term Expansion for DCGs
	Meta-Interpreter for DCGs with Tracing
	Meta-Nonterminal sequence//3
	Transformation for DCG Bodies with Parse Trees
	Meta-Predicates */4 and ?/4
	Operator Types and Their Precedence Constraints
	Operator Inference for If-then Rules
	XML Schema 1.1 with Embedded XPath Expressions
	Operators for XPath as an Internal Prolog DSL

	Non-Standard Definition of Predicates and Operators
	Predicates call/n
	Predicate and Operator \+/1
	Predicate term_functors_list/3
	Predicate term_args_attached/3
	Predicate char_code/2
	Predicate unify_with_occurs_check/2
	Predicate otherwise/0
	Predicate memberchk/2
	Predicate ord_intersection/3
	Predicate ord_memberchk/2
	Predicates maplist/n
	Predicate flatten/2
	Operator ./2
	Predicate ./3
	Predicate and Operator :</2
	Operator >:</2

	Index on Prolog Language Extensions
	allow_unicode
	allow_unicode_character_escape
	allow_missing_closing_backslash_in_character_escape
	allow_symbolic_*_char_*
	allow_shebang
	back_quoted_text
	var_prefix
	allow_digit_groups_with_space
	allow_digit_groups_with_underscore
	allow_integer_exponential_notation
	rational_syntax
	Additional Non-escaped Quote Characters
	allow_infix_and_postfix_op
	allow_compounds_with_zero_arguments
	allow_empty_atom
	allow_curly_block_op
	allow_square_block_op
	dicts
	allow_operator_as_operand
	allow_arg_precedence_geq_1000
	allow_variable_name_as_functor
	allow_unquoted_comma
	allow_dot_in_atom
	allow_implicit_end

	List of Figures
	List of Tables
	List of Listings

