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Preface
This PhD thesis arose from a research collaboration between my work group at
Würzburg University and Prof. Fritz Röpke, an astrophysicist in Heidelberg. He
studies numerically the temporal evolution of stars. His need to numerically solve the
compressible Euler equations with gravity near a stationary solution gave rise to the
questions addressed in this PhD thesis. The research itself was done in collaboration
both with Prof. Rony Touma in Lebanon and also with Prof. Min Tang from Shanghai,
China.

This dissertation treats an important topic in applied mathematics. Numerical
methods for hyperbolic balance laws of fluid type have typically been devised for the
one-space dimensional case, for example the widely used Godunov-type methods.
In applications flows need to be computed in three space dimension. It has been
shown in the PhD thesis of Wasilij Barsukow that three important flow features in
three space dimension are: asymptotic limits, stationary solutions and vortices. The
numerical methods should be devised in such a way that the numerical discretization
preserves these important multi dimensional features. One dimensional methods
have difficulties preserving these features. This thesis by Farah Kanbar goes some
way towards the goal of devising schemes for non-linear partial differential equations
that preserve these features.

This thesis focuses on two of the above features, namely stationary solutions and
asymptotic limits:

• stationary solutions are solutions of the hyperbolic balance law that do not
change in time. The discretization should be such, that it exactly maintains a
particular numerical discretization of stationary solutions.

• asymptotic limits refers to hyperbolic balance laws which are endowed with
a small parameter. Taking the limit of this parameter to zero, one obtains a
new partial differential equation. The example coming for the astrophysical
application, mentioned in the beginning, is the limit of compressible flow
equations to incompressible flow. Another limit is the limit of mesoscopic
kinetic equations to their macroscopic counterpart. The numerical scheme
should be devised in such a way, that the discretization of the balance law with
a small parameter converges to a discretization of the limit equation as the
small parameter goes to zero.

The overall outcome of this thesis is that one needs an interplay between stationary
preserving schemes and asymptotic preserving schemes, in order to achieve numerical
schemes that are able to preserve both features. In the literature these are examples
of so called structure preserving schemes. They play an important role in applications.

The success of the research in this PhD thesis can be gauged by the five research
publications in international journals that came out of this.
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Thus this PhD thesis contributed in a significant way towards the goals of the
questions in numerical analysis raised by Fritz Röpke.

Würzburg, in Feb. 2023
Christian Klingenberg
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Abstract

In this thesis, we are interested in numerically preserving stationary solutions of
balance laws. We start by developing finite volume well-balanced schemes for
the system of Euler equations and the system of Magnetohydrodynamics (MHD)
equations with gravitational source term. Since fluid models and kinetic models are
related, this lead us to investigate Asymptotic Preserving (AP) schemes for kinetic
equations and their ability to preserve stationary solutions. Kinetic models typically
have a stiff term, thus AP schemes are needed to capture good solutions of the model.
For such kinetic models, equilibrium solutions are reached after large time. Thus we
need a new technique to numerically preserve stationary solutions for AP schemes.
We find a criterion for Stationary Preserving (SP) schemes for kinetic equations which
states, that AP schemes under a particular discretization are also SP. In an attempt to
mimic our result for kinetic equations in the context of fluid models, for the isentropic
Euler equations we developed an AP scheme in the limit of the Mach number going
to zero. Our AP scheme is proven to have a SP property under the condition that
the pressure is a function of the density and the latter is obtained as a solution of
an elliptic equation. The properties of the schemes we developed and its criteria are
validated numerically by various test cases from the literature.

Zusammenfassung

In dieser Arbeit interessieren wir uns für numerisch erhaltende stationäre Lösungen
von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced
Finite-Volumen Verfahren für das System der Euler-Gleichungen und das System der
MHD-Gleichungen mit Gravitationsquell term. Da Strömungsmodelle und kinetische
Modelle miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP)
Verfahren für kinetische Gleichungen und ihre Fähigkeit, stationäre Lösungen zu
erhalten. Kinetische Modelle haben typischerweise einen steifen Term, so dass
AP Verfahren erforderlich sind, um gute Lösungen des Modells zu erhalten. Bei
solchen kinetischen Modellen werden Gleichgewichtslösungen erst nach langer Zeit
erreicht. Daher benötigen wir eine neue Technik, um stationäre Lösungen für AP
Verfahren numerisch zu erhalten. Wir finden ein Kriterium für stationär-erhaltende
(SP) Verfahren für kinetische Gleichungen, das besagt, dass AP Verfahren unter
einer bestimmten Diskretisierung auch SP sind. In dem Versuch unser Ergebnis für
kinetische Gleichungen im Kontext von Strömungsmodellen nachzuahmen, haben
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wir für die isentropen Euler-Gleichungen ein AP Verfahren für den Grenzwert der
Mach-Zahl gegen Null, entwickelt. Unser AP Verfahren hat nachweislich eine SP
Eigenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und
letztere als Lösung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des
von uns entwickelten und seine Kriterien werden anhand verschiedener Testfälle aus
der Literatur numerisch validiert.
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Abbreviations
AP Asymptotic Preserving

CFL Courant–Friedrichs–Lewy

CTM Constrained Transport Method

FV Finite Volume

IMEX Implicit-Explicit

MAC Marker and Cell

MHD Magnetohydrodynamics

NT Nessyahu-Tadmor

PDE Partial Differential Equations

SP Stationary Preserving

TVD Total Variation Diminishing

UC Unstaggered Central

UGKS Unified Gas Kinetic Scheme

1D one-dimensional

2D two-dimensional
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Chapter 1

Introduction

The models

Partial Differential Equations (PDE): A partial differential equation is an equation
that imposes relations between partial derivatives of a function of more than one
variable. The function is the unknown to be found. Partial differential equations
are largely used in applied mathematics, physics and engineering. The equations
play a big role in the modern scientific understanding of sound, heat, diffusion,
electrostatics, electrodynamics, thermodynamics, fluid dynamics, elasticity, general
relativity, and quantum mechanics, etc. There are three types of partial differential
equations: hyperbolic, parabolic and elliptic. In this thesis we focus on hyperbolic
partial differential equations. The solutions of hyperbolic equations are “wave-like”,
such that perturbations of the initial or the boundary data travel along the character-
istics of the equation.

Fluid Mechanics: Fluid Mechanics is a division of physics concerned with the
mechanics of the fluid under internal and external forces. It studies fluids in their
static or dynamic states. Fluid dynamics is a subsection of fluid mechanics that
decscribes the flow of fluids (liquids and gases) and it is divided into two other
subsections: aerodynamics, the study of air and other gases in motion, and hydro-
dynamics, the study of liquids in motion. The solution to a fluid dynamics problem
typically involves the calculation of various physical properties of the fluid, such as
flow velocity, pressure, density, and temperature, as functions of space and time.
In this thesis three fluid models are considered. The first model is the system of
Euler equations with gravitational source term which we will introduce in chapter
2. This system is widely studied because of its importance in modelling physical
phenomena such as astrophysical and atmospheric phenomena including supernova
explosions [56], climate modelling, and weather forecasting [12]. A special case
of the Euler equations are the isentropic Euler equations which we will also see in
chapter 4. The system of MHD equations, defined in chapter 2, is a combination of
the Euler equations of fluid dynamics and Maxwell’s equations of electromagnetism.
A gravitational source term is added to the ideal MHD equations in this work.

Kinetic theory of gases: In chapter 3, several kinetic models are considered.
They describe a gas as a large number of identical submicroscopic particles (atoms
or molecules), all of which are in constant, rapid, and random motion. Their size is
assumed to be much smaller than the average distance between the particles. Kinetic
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1 Introduction

models describe the time evolution of probability density distribution of particles that
travel freely for a certain distance, and then change their directions due to collision
or scattering. They usually include a transport term that takes into account the
movement of the particles, and integral terms that take into account the scattering,
tumbling or colliding.

Numerical Methods

Solving partial differential equations is a broad topic in applied mathematics. How-
ever, finding exact solutions for these equations is not always possible. There is,
correspondingly, a vast amount of modern mathematical and scientific research on
methods to numerically approximate solutions of certain partial differential equations
using computers. A numerical method for partial differential equations is a mathemat-
ical tool designed to find numerical solutions for the equation. The implementation
of a numerical method with an appropriate convergence check in a programming
language is called a numerical algorithm. Computing a numerical solution is finding
the discrete version of the continuous solution of the PDE via a numerical algorithm.

Finite Volume (FV) Central Scheme: To design a numerical scheme, one has to
consider time and space. A finite volume method is a reformulation of Godunov’s
method for the spatial discretization and is based on averaging the conserved vari-
ables in each cell and approximating the fluxes between the cells. We use finite
volume central schemes as base scheme in chapter 2 which relies on the fact that
central schemes are easy to implement and robust finite volume schemes that avoid
the time consuming process of solving Riemann problems arising at the cell inter-
faces. Furthermore, central schemes have proven to be efficient schemes for the
simulation of systems of hyperbolic conservation laws. Nessyahu and Tadmor [61]
have introduced the Nessyahu-Tadmor (NT) scheme, a non-oscillatory central finite
volume scheme that is based on evolving piecewise linear numerical solution on
two staggered grids. Useful extensions of the NT scheme to multi-space dimensions
followed in [5, 36, 46, 6, 7, 44, 77]. These extensions were successfully used to
solve problems arising in aerodynamics, hydrodynamics, and magnetohydrodynamics
[7, 43, 74, 76].

In order to avoid switching between an original and a staggered grid in the NT-type
schemes, Unstaggered Central (UC) schemes for hyperbolic systems of conservation
laws were developed in [45, 73], where the numerical solution is evolved on a single
grid. The UC schemes were then extended to hyperbolic balance laws such as shallow
water equations on variable waterbeds, Ripa systems, and Euler with gravity systems
[80, 78, 79, 74]. The main goal of the UC schemes is to evolve the numerical solution
on a single grid and to use a staggered ghost grid in an intermediate step, followed
by a back projection step, see figure 2.3.

Schemes for Kinetic Models: Three different AP schemes for three different
kinetic models are considered in chapter 3. Developing the three AP schemes is

2



1 Introduction

not a focus of this thesis as they are taken from the literature. However, their SP
property and whether they satisfy the proposed criterion or not are evaluated in
this thesis. The three schemes are parity equations-based scheme for the neutron
transport equation, Unified Gas Kinetic Scheme (UGKS) for the chemotaxis kinetic
model, and IMEX scheme with the Penalization method for the Boltzmann equation.

Marker and Cell (MAC) Schemes: A finite difference staggered approached,
suggested by Goudon et al. [34] is chosen in chapter 4. The staggered discretization
follows the principles of MAC schemes [38]. The idea of MAC is to place the variables
of the system in different locations on the grid. The detailed description of the
method can be found in chapter 4.

Properties of the Numerical Methods

Well-balanced Schemes: Of particular interest are stationary solutions of the PDE.
Those solutions need to be taken into account in the discretization of the scheme. We
define well-balanced schemes as schemes that are designed to preserve a prior known
stationary solution. One example of these solutions is the case of zero velocity called
hydrostatic equilibrium. One way to fulfil the well-balanced requirement of the nu-
merical scheme is by designing the discretization in the source term in the balance law
by following that of the divergence of the flux function. There are several methods
to develop a well-balanced scheme that all require that the steady state is known or
given. Several attempts were previously made for designing well-balanced schemes
for balance laws [8, 80, 20, 22, 84, 85, 86, 35, 81, 68, 10, 9, 23, 24, 53, 18, 82, 19].

Asymptotic Preserving Schemes: The parameter ε which is the Knudsen number
(for kinetic models), is the ratio of the mean free path and the domain typical length
scale [26]. This parameter pops up in the equations after rescaling, creating a stiff
term where it is located. A similar parameter for the fluid models (Mach number)
also appears in the equations after rescaling, leaving stiff terms behind. Numerical
schemes do not behave well when such parameter exists. This is because when ε
goes to zero it causes very small time steps. Hence, AP schemes that allow very small
values of this parameter become popular in this area. A numerical scheme is AP if
when the parameter goes to zero in the discretized scheme, it converges to a good dis-
cretization of the corresponding limit model. The aim of AP schemes is to discretize
the stiff term of the equation implicitly, which leads to an Implicit-Explicit (IMEX)
discretization of the model. The main advantage of AP schemes is that their stability
and convergence are independent of the parameter.

Stationary Preserving Schemes For schemes such as AP schemes, the solution
after some time reaches a quasi-stationary state, meaning numerically that the
difference between the global equilibrium and the solution after finite time is smaller
than machine precision. Which means the steady solution is not given and is not
known. For this reason, more than well-balancing, we need a discretization that

3



1 Introduction

preserves any state that might show up as time evolves. Thus, it is of interest to have
a numerical scheme that maintains stationary solutions up to machine precision. We
call such schemes SP schemes. A scheme is SP if the following two requirements are
satisfied:

• The discrete stationary solution provides a good approximation for the steady
state solution;

• Starting from a discrete stationary solution, the solution of the time evolutionary
problem does not change.

Numerically, one can test that the time evolutionary problem converges to a discrete
stationary solution after finite time, and their difference is smaller than machine
precision.

Organization of the Thesis

Chapter 1 provides a background for the topics covered in this thesis with a review of
prior works. In chapter 2, we present one-dimensional (1D) and two-dimensional
(2D) well-balanced central schemes with applications to the Euler and MHD equations
with gravitational source term. Then we present three schemes for kinetic models in
chapter 3. The three schemes are proven to satisfy a common criterion. In chapter
4, an AP scheme for the isentropic Euler equations with gravitational source term
is developed and then proven under certain conditions to be SP. And finally, we
conclude by proposing some future work.

4



Chapter 2

Well-balanced Central Schemes with the
Subtraction Method

2.1 Introduction

As mentioned in the introduction, the first task in my project was to develop a
well-balanced, unstaggered, second-order, finite volume central scheme for the Euler
equations with gravitational source term via a subtraction method [51]. A normal
extension was to apply the obtained scheme to the system of MHD equations with
gravitational source term [52]. The developed numerical schemes avoid solving
Riemann problems at the cell interfaces and avoid switching between an original
and a staggered grid. Their main feature is that they are capable of preserving any
given steady state up to machine accuracy by updating the numerical solution in
terms of a relevant reference solution. The methodology proposed results in a well-
balanced scheme capable of capturing any given steady state. In this work we follow
a special reconstruction in the conservative variables that will fulfil the well-balanced
requirement and will allow a proper capture of the steady states. This well-balanced
approach will be blended with the unstaggered central finite volume scheme for
hyperbolic systems of conservation laws [73]. The proposed method follows the
subtraction method developed by Berberich, Chandrashekar and Klingenberg [8].
It consists of evolving the error function between the vector of conserved variables
and a given steady state, instead of evolving the vector of conserved variables. Our
scheme is then implemented and used to solve classical problems from the recent
literature. We consider the Courant–Friedrichs–Lewy (CFL) convergence condition
for our numerical scheme. It enforces an upper bound on the time step, otherwise the
explicit scheme produces irrelevant results. In sections 2.2 and 2.3, we present the 1D
and 2D schemes for general balance laws respectively. The discretization is proven to
be Total Variation Diminishing (TVD) in section 2.4. We apply the developed schemes
to the 1D and 2D Euler and then to the 2D MHD system in section 2.5.

2.2 1D Unstaggered Well-balanced FV Central Scheme

In this section we develop a new 1D unstaggered well-balanced central scheme for
balance laws. The proposed method follows the subtraction method introduced in

5



2 Well-balanced Central Schemes with the Subtraction Method

[8]. Consider the 1D balance law given by{
ut + f(u)x = S(u, x), x ∈ Ω ⊂ R, t > 0

u(x, 0) = u0(x)
(2.1)

where u is the vector of conserved variables, f(u) is the flux function and S(u, x)
is the source term. We consider for our computational domain Ω an interval of the
real axis, and we partition it using the control cells defined to be the subintervals
Ci =

[
xi− 1

2
, xi+ 1

2

]
of equal width ∆x = xi+ 1

2
− xi− 1

2
and centered at the nodes xi.

We also define the dual ghost cells Di+ 1
2
= [xi, xi+1] with centers xi+ 1

2
= xi +

∆x
2 .

The main and the staggered 1D grids are illustrated in figure (2.1). The time-step
will be denoted by ∆t, and it is computed using the CFL condition,

∆t = CFL
∆x

max(|λk|)
, (2.2)

where 0 ≤ CFL ≤ 0.5 and λk is the maximum eigenvalue of the flux jacobian matrix
∂f(u)
∂u . For a positive integer n we set tn+1 = tn +∆t.

x

Ci

[ ]
Di+ 1

2

[ ]
xi− 1

2
xi xi+ 1

2
xi+1 xi+ 3

2

Figure 2.1: The 1D grid partitioned into control cells Ci =
[
xi− 1

2
, xi+ 1

2

]
and dual cells Di+ 1

2
= [xi, xi+1] .

We assume that the numerical solution un
i at time tn is known at the nodes xi

where un
i is used to approximate the exact solution u(xi, t

n). We start the derivation
of our numerical scheme by first assuming that ũ is a given stationary solution of
system (2.1), and we follow the subtraction method introduced in [8]. Let ∆u = u−ũ,
we substitute u = ∆u + ũ in the balance law in system (2.1),

(∆u + ũ)t + f(∆u + ũ)x = S(∆u + ũ, x), (2.3)

and taking into account that ũ is a stationary solution, this results in,

(∆u)t + f(∆u + ũ)x = S(∆u + ũ, x). (2.4)

On the other hand, since ũ is a stationary solution of (2.1), then the balance law
reduces to,

f(ũ)x = S(ũ, x) (2.5)

Subtracting (2.5) from (2.4) leads to,

(∆u)t + [f(∆u + ũ)− f(ũ)]x = S(∆u + ũ, x)− S(ũ, x). (2.6)

6



2.2 1D Unstaggered Well-balanced FV Central Scheme

But since S(u, x) is a linear functional in terms of the conserved variables, then
equation (2.6) simplifies to,

(∆u)t + [f(∆u + ũ)− f(ũ)]x = S(∆u, x). (2.7)

Our proposed numerical scheme follows a classical finite volume construction; we
define the piecewise linear interpolants that approximate the exact solution ∆u(x, tn)
on the cells Ci as follows:

Li(x, t
n) = ∆un

i + (x− xi)
(∆un

i )
′

∆x
, ∀x ∈ Ci (2.8)

where (∆un
i )

′

∆x is a limited numerical spatial derivative approximating ∂∆u
∂x (x, tn)|x=xi

and the slope (∆un
i )

′ is obtained using the (MC-θ) limiter (2.9). The numerical base
scheme evolves a piecewise linear solution Li(x, t), in each cell Ci, that approximates
the analytic solution ∆u(x, t) with

∆un
i =

1

∆x

∫
Ci

Li(x, t
n) dx ≈ 1

∆x

∫
Ci

∆u(x, tn) dx.

Before proceeding with the presentation of the numerical scheme we introduce some
notations that will be used throughout the remaining of the chapter. In order to
approximate the spatial numerical derivatives, the (MC-θ) limiter is considered which
is defined as

(∆un
i )

′ = minmod
[
θ
(
∆un

i −∆un
i−1

)
,
∆un

i+1 −∆un
i−1

2
, θ
(
∆un

i+1 −∆un
i

)]
(2.9)

where θ is a parameter that takes any value 1 < θ < 2, while the minmod function is
defined as:

minmod(a, b, c) =

{
sign(a)min{|a|, |b|, |c|}, if sign(a) = sign(b) = sign(c)
0, Otherwise.

Next, we integrate (2.7) over the domain Rn
i+ 1

2

= Di+ 1
2
× [tn, tn+1]:∫∫

Rn

i+1
2

(∆u)t + [f(∆u + ũ)− f(ũ)]xdR =

∫∫
Rn

i+1
2

S(∆u, x)dR. (2.10)

We apply Green’s formula to the double integral on the left-hand side of equation
(2.10), which allows us to change the double integral into a line integral by the
following formula: ∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
R

(Pdx+Qdy),

7



2 Well-balanced Central Schemes with the Subtraction Method

with ∂Q
∂x = [f(∆u + ũ)− f(ũ)]x and ∂P

∂y = −(∆u)t. Equation (2.10) writes as:

∮
∂Rn

i+1/2

[f(∆u + ũ)− f(ũ)]dt−∆udx =

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt, (2.11)

where the boundary of the rectangle Rn
i+1/2 is ∂Rn

i+1/2 = [xi, xi+1] ∪ [tn, tn+1] ∪
[xi+1, xi] ∪ [tn+1, tn] plotted in figure 2.2.

x

t

tn

tn+1

xi xi+1

∂Rn
i+1/2

Figure 2.2: The boundary ∂Rn
i+1/2

(dashed) in the space-time plane.

Dividing the line integral over the four segments, we get:

∫ xi+1

xi

[
[f((∆u + ũ)(x, tn))− f(ũ(x, tn))]dt−∆u(x, tn)dx

]
+

∫ tn+1

tn

[
[f((∆u + ũ)(xi+1, t))− f(ũ(xi+1, t))]dt−∆u(xi+1, t)dx

]
+

∫ xi

xi+1

[
[f((∆u + ũ)(x, tn+1))− f(ũ(x, tn+1))]dt−∆u(x, tn+1)dx

]
+

∫ tn

tn+1

[
[f((∆u + ũ)(xi, t))− f(ũ(xi, t))]dt−∆u(xi, t)dx

]
=

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt (2.12)

8



2.2 1D Unstaggered Well-balanced FV Central Scheme

Splitting the integrals and rearranging them simplifies equation (2.12) to:

−
∫ xi+1

xi

∆u(x, tn)dx+

∫ tn+1

tn
[f((∆u + ũ)(xi+1, t))− f(ũ(xi+1, t))]dt

+

∫ xi+1

xi

∆u(x, tn+1)dx−
∫ tn+1

tn
[f((∆u + ũ)(xi, t))− f(ũ(xi, t))]dt

=

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt. (2.13)

The following integrals are approximated using second-order quadratures,∫ xi+1

xi

∆u(x, tn)dx = ∆xLi(xi+ 1
2
, tn) = ∆x∆un

i+ 1
2
,

and ∫ xi+1

xi

∆u(x, tn+1)dx = ∆xLi(xi+ 1
2
, tn+1) = ∆x∆un+1

i+ 1
2

.

Finally, the calculations on the left-hand side of equation (2.13) yield,

∆un+1
i+ 1

2

= ∆un
i+ 1

2
− 1

∆x

[∫ tn+1

tn
{f((∆u + ũ)(xi+1, t))− f((∆u + ũ)(xi, t))} dt

]

+
∆t

∆x
f(ũ(xi+1))−

∆t

∆x
f(ũ(xi)) +

1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt. (2.14)

The flux integrals in equation (2.14) are estimated using the midpoint quadrature
rule as follows: ∫ tn+1

tn
f((∆u + ũ)(xi, t))dt ≈ f((∆u + ũ)n+

1
2

i )∆t,

∫ tn+1

tn
f((∆u + ũ)(xi+1, t))dt ≈ f((∆u + ũ)n+

1
2

i+1 )∆t.

Plugging these integrals in equation (2.14), leads to:

∆un+1
i+ 1

2

= ∆un
i+ 1

2
− ∆t

∆x
[f(∆un+ 1

2
i+1 + ũi+1)− f(ũi+1)− f(∆un+ 1

2
i + ũi) + f(ũi)]

+
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt.

(2.15)

The forward projection step (∆un
i+ 1

2

) of ∆un
i onto the staggered grid is calculated

using Taylor expansion of ∆u(x, tn) in space, using the fact that ∆u(x, tn) is approxi-
mated by a linear function Li(x, t

n) i.e. ∆u(x, tn)≈Li(x, t
n) in the cells of centers xi

9



2 Well-balanced Central Schemes with the Subtraction Method

and xi+1,∫ xi+1

xi

∆u(x, tn)dx =

∫ x
i+1

2

xi

∆u(x, tn)dx+

∫ xi+1

x
i+1

2

∆u(x, tn)dx,

=
∆x

2
Li(xi+ 1

4
, tn) +

∆x

2
Li(xi+ 3

4
, tn),

=
∆x

2

(
∆un

i + (xi+ 1
4
− xi)

(∆un
i )

′

∆x

)
+

∆x

2

(
∆un

i+1 + (xi+ 3
4
− xi+1)

(∆un
i+1)

′

∆x

)
,

=
∆x

2

(
∆un

i +∆un
i+1

)
+

∆x

8

(
(∆un

i )
′ − (∆un

i+1)
′) .

Hence,

∆un
i+ 1

2
=

1

2

(
∆un

i +∆un
i+1

)
+

1

8

(
(∆un

i )
′
− (∆un

i+1)
′
)
, (2.16)

The predicted values ∆un+ 1
2

i appearing in equation (2.15) are obtained at the inter-
mediate time tn+

1
2 using a first-order Taylor expansion in time and the balance law

(2.3).
The first-order Taylor expansion in time is:

∆u(x, t) ≈ ∆u(x, a) + (t− a)∆ut(x, a), for any a and t.
For a specific point xi,
∆u(xi, t) ≈ ∆u(xi, a) + (t− a)∆ut(xi, a).
Let a = tn,
∆u(xi, t) ≈ ∆u(xi, t

n) + (t− tn)∆ut(xi, t
n),

then let t = tn+
1
2 .

Hence,

∆u(xi, t
n+ 1

2 ) ≈ ∆u(xi, t
n) +

∆t

2
∆ut(xi, t

n),

∆un+ 1
2

i ≈ ∆un
i +

∆t

2
[−[f(∆u + ũ)− f(ũ)]x|(xi,tn) + [S(∆u, x)]|(xi,tn)],

which can be written as,

∆un+ 1
2

i = ∆un
i +

∆t

2

[
− (fn

i )
′

∆x
+

f̃i
′

∆x
+ Sn

i

]
(2.17)

where (fn
i )′

∆x and f̃i
′

∆x are approximate flux derivatives with (fn
i )

′ = Jfn
i
.(un

i )
′ and

f̃i
′
= Jf̃i

′ .ũ′
i. Here also, (un

i )
′ and ũ′

i are approximated by the (MC-θ) limiter (2.9).
Sn
i is the discretized source term at time tn.

10



2.2 1D Unstaggered Well-balanced FV Central Scheme

On the other hand, the integral of the source term in (2.15) is discretized using
the midpoint quadrature rule with respect to time and space,

∫ tn+1

tn

∫ xi+1

xi

S(∆u, x)dxdt ≈ ∆t

∫ xi+1

xi

S(∆un+ 1
2 , x)dx,

≈ ∆t∆x

S(∆un+ 1
2

i ) + S(∆un+ 1
2

i+1 )

2

 .

Finally, the projection step (∆un+1
i ) of ∆un+1

i+ 1
2

back onto the original grid is calculated
using Taylor expansions in space in the same way the forward projection step (2.16)
was computed,

∆un+1
i =

1

2
(∆un+1

i− 1
2

+∆un+1
i+ 1

2

) +
1

8
((∆un+1

i− 1
2

)
′
− (∆un+1

i+ 1
2

)
′
). (2.18)

Equation (2.18) gives the solution of the balance law at the next time on the original
grid. The Geometry of the UC scheme and that of the NT scheme is given in figure
2.3. We see how both schemes avoid dealing with Riemann problems at the interfaces.
The difference is that, the NT scheme evolves the solution on two grids, while the UC
scheme evolves the solution on a single grid.

11



2 Well-balanced Central Schemes with the Subtraction Method

x

u

un
i

un
i+1

un+1
i+ 1

2

xi− 1
2

xi xi+ 1
2

xi+1 xi+ 3
2

x

u

un
i−1

un
i

un
i+1

un+1
i− 1

2 un+1
i+ 1

2

un+1
i

xi− 3
2

xi−1 xi− 1
2

xi xi+ 1
2

xi+1 xi+ 3
2

Figure 2.3: Geometry of the 1D NT scheme (left) and of the 1D UC scheme (right).

To complete the presentation of the 1D scheme, we still need to demonstrate that
it is capable of capturing any stationary solution up to machine accuracy. Without
any loss of generality, we assume that the updated solution satisfies un

i = ũi, i.e.,
∆un

i = 0 at time t = tn. Performing one iteration using the proposed numerical
scheme, one can show that:

1. ∆un+ 1
2

i = 0.

2. ∆un+1
i+ 1

2

= 0.

3. ∆un+1
i = 0.

The proof of 2 and 3 follows immediately after 1 is established. We start by showing
1.

The prediction step (2.17) leads to,

∆un+ 1
2

i = ∆un
i +

∆t

2

[
−f ′(∆un

i + ũi)

∆x
+

f ′(ũi)

∆x
+ S(∆un

i , x)

]
. (2.19)

12



2.3 2D Unstaggered Well-balanced FV Central Scheme

But since ∆un
i = 0, then we obtain,

∆un+ 1
2

i =
∆t

2

[
−f ′(ũi)

∆x
+

f ′(ũi)

∆x

]
.

Hence, ∆un+ 1
2

i = 0; the proof of points 2 and 3 follows immediately. We conclude
that the updated numerical solution un+1

i remains stationary up to machine precision.

2.3 2D Unstaggered Well-balanced FV Central Scheme

In this section we extend the proposed well-balanced scheme we derived in section
2.2 to the case of the 2D balance laws, using the subtraction technique developed in
[8]. The well-balanced property of the proposed 2D scheme is presented at the end
of this section. We consider the 2D balance law:{

Ut + F (U)x +G(U)y = S(U, x, y), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
(2.20)

where U is the vector of conserved variables, F (U), G(U) are the fluxes in the x-
and y- directions, respectively, and S(U, x, y) is the source term. We consider a
Cartesian domain decomposition of the computational domain Ω where the control
cells are the rectangles Ci,j =

[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
centered at the nodes

(xi, yj). We define the dual staggered cells Di+ 1
2 ,j+

1
2
= [xi, xi+1]× [yj , yj+1] centered

at (xi+ 1
2
, yj+ 1

2
). Here, xi+ 1

2
= xi+

∆x
2 and yj+ 1

2
= yj+

∆y
2 , where ∆x = xi+ 1

2
−xi− 1

2

and ∆y = yj+ 1
2
− yj− 1

2
. The visualization of the 2D grids is given in figure 2.4.

(xi− 1
2
, yj− 1

2
)

(xi, yj)

(xi−1, yj+1) (xi+1, yj+1)

(xi+1, yj−1)(xi−1, yj−1)

Figure 2.4: The cells of the main grid Ci,j (blue cell) and of the staggered grid Di− 1
2
,j− 1

2
(green cell).

Before proceeding with the derivation of the 2D numerical method, and for
convenience, we introduce the average value notations:

ρi,j+ 1
2
=

ρi,j + ρi,j+1

2
, ρi+ 1

2 ,j
=

ρi,j + ρi+1,j

2
, ρi,(j) =

ρi,j+ 1
2
+ ρi,j− 1

2

2

13



2 Well-balanced Central Schemes with the Subtraction Method

ρ(i),j =
ρi+ 1

2 ,j
+ ρi− 1

2 ,j

2
, [[ρ]]i,j+ 1

2
= ρi,j+1 − ρi,j

[[ρ]]i+ 1
2 ,j

= ρi+1,j − ρi,j , [[ρ]]i,(j) = ρi,j+ 1
2
− ρi,j− 1

2
, [[ρ]](i),j = ρi+ 1

2 ,j
− ρi− 1

2 ,j
.

We follow the same strategy as in section 2.2; we assume that Ũ is a given stationary
solution of system (2.20) and we define ∆U = U − Ũ. We substitute U = ∆U + Ũ in
the balance law (2.20), we obtain:

(∆U)t + F (∆U + Ũ)x +G(∆U + Ũ)y = S(∆U + Ũ, x, y). (2.21)

On the other hand, since Ũ is a stationary solution, then balance law in (2.20) reduces
to

F (Ũ)x +G(Ũ)y = S(Ũ, x, y). (2.22)

Subtracting equation (2.22) from equation (2.21), we obtain

(∆U)t+[F (∆U+ Ũ)−F (Ũ)]x+[G(∆U+ Ũ)−G(Ũ)]y = S(∆U+ Ũ, x, y)−S(Ũ, x, y).
(2.23)

Using the fact that the source term S(U, x, y) in equation (2.20) is linear in terms of
the conserved variables, then equation (2.23) reduces to

(∆U)t + [F (∆U + Ũ)− F (Ũ)]x + [G(∆U + Ũ)−G(Ũ)]y = S(∆U, x, y). (2.24)

The proposed numerical scheme consists of evolving the balance law (2.24) instead
of evolving the balance law in system (2.20). The numerical solution U will be then
obtained using the formula U = ∆U + Ũ. The numerical scheme that we shall use to
evolve ∆U(x, y, t) follows a classical finite volume approach; it evolves a piecewise
linear function Li,j(x, y, t) defined on the control cells Ci,j and used to approximate
the analytic solution ∆U(x, y, t) of system (2.20). Without any loss of generality we
can assume that ∆Un

i,j is known at time tn and we define Li,j(x, y, t
n) on the cells

Ci,j as follows.

Li,j(x, y, t
n) = ∆Un

i,j + (x− xi)
(∆Un,x

i,j )′

∆x
+ (y − yj)

(∆Un,y
i,j )

′

∆y
, ∀(x, y) ∈ Ci,j ,

where
(∆Un,x

i,j )′

∆x and
(∆Un,y

i,j )′

∆y are limited numerical gradients approximating
∂∆U
∂x (x, yj , t

n)|x=xi
and ∂∆U

∂y (xi, y, t
n)|y=yj

, respectively, at the point (xi, yj , t
n). The

(MC-θ) limiter (2.9) is used to compute the slopes (∆Un,x
i,j )′ and (∆Un,y

i,j )
′ in order

to avoid spurious oscillations. Next, we integrate the balance law (2.24) over the
rectangular box Rn

i+ 1
2 ,j+

1
2

= Di+ 1
2 ,j+

1
2
× [tn, tn+1],

∫∫∫
Rn

i+1
2
,j+1

2

(∆U)t + [F (∆U + Ũ)− F (Ũ)]x + [G(∆U + Ũ)−G(Ũ)]ydR

=

∫∫∫
Rn

i+1
2
,j+1

2

S(∆U, x, y)dR. (2.25)
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2.3 2D Unstaggered Well-balanced FV Central Scheme

We use the fact that ∆U is approximated using piecewise linear interpolants similar
to Li,j on the cells Ci,j; following the derivation of the unstaggered central schemes
in [73], equation (2.25) is rewritten as:

∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2
− 1

∆x∆y

∫∫∫
Rn

i+1
2
,j+1

2

[F (∆U + Ũ)− F (Ũ)]x

+ [G(∆U + Ũ)−G(Ũ)]ydR+
1

∆x∆y

∫∫∫
Rn

i+1
2
,j+1

2

S(∆U, x, y)dR. (2.26)

For the flux integrals, we apply the divergence theorem that changes the volume
integral into surface integral. Equation (2.26) becomes then:

∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2
− 1

∆x∆y

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

[F (∆U+ Ũ)−F (Ũ)] ·nxdAdt

− 1

∆x∆y

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

[G(∆U + Ũ)−G(Ũ)] · nydAdt

+
1

∆x∆y

∫∫∫
Rn

i+1
2
,j+1

2

S(∆U, x, y)dR (2.27)

where n = (nx, ny) is the outward pointing unit normal at each point on the boundary
∂Di+ 1

2 ,j+
1
2
(the boundary of Di+ 1

2 ,j+
1
2
), see figure 2.5.

Next, we approximate the integrals

I =

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

[F (∆U + Ũ)− F (Ũ)].nxdxdydt

and

J =

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

[G(∆U + Ũ)−G(Ũ)].nydxdydt.
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2 Well-balanced Central Schemes with the Subtraction Method

(xi, yj) (xi+1, yj)

(xi+1, yj+1)(xi, yj+1)

n = (0, 1)

n = (0,−1)

n = (1, 0)n = (−1, 0)

Figure 2.5: The boundary ∂Di+ 1
2
,j+ 1

2
and the outward pointing unit normal vector n = (nx, ny) on each side of

the boundary.

I =

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

[F (∆U + Ũ)− F (Ũ)] · nxdxdydt

=

∫ tn+1

tn

∫ yj+1

yj

[F ((∆U + Ũ)(xi+1, y, t))− F (Ũ(xi+1, y, t))] · 1dy

+

∫ tn+1

tn

∫ xi

xi+1

[F ((∆U + Ũ)(x, yj+1, t))− F (Ũ(x, yj+1, t))] · 0dx

+

∫ tn+1

tn

∫ yj

yj+1

[F ((∆U + Ũ)(xi, y, t))− F (Ũ(xi, y, t))] · −1dy

+

∫ tn+1

tn

∫ xi+1

xi

[F ((∆U + Ũ)(x, yj , t))− F (Ũ(x, yj , t))] · 0dx

An approximation of each integral using the midpoint rule leads to:

I =
∆t∆y

2

[
[F ((∆U + Ũ)(xi+1, yj , t

n+ 1
2 ))− F (Ũ(xi+1, yj , t

n+ 1
2 ))]

+ [F ((∆U + Ũ)(xi+1, yj+1, t
n+ 1

2 ))− F (Ũ(xi+1, yj+1, t
n+ 1

2 ))]
]

− ∆t∆y

2

[
[F ((∆U + Ũ)(xi, yj , t

n+ 1
2 ))− F (Ũ(xi, yj , t

n+ 1
2 ))]

+ [F ((∆U + Ũ)(xi, yj+1, t
n+ 1

2 ))− F (Ũ(xi, yj+1, t
n+ 1

2 ))]
]
.
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Hence,

I =
∆t∆y

2

[
[F ((∆U+ Ũ)

n+ 1
2

i+1,j)−F (Ũ
n+ 1

2

i+1,j)] + [F ((∆U+ Ũ)
n+ 1

2
i+1,j+1)−F (Ũ

n+ 1
2

i+1,j+1)]

− [F ((∆U + Ũ)
n+ 1

2
i,j )− F (Ũ

n+ 1
2

i,j )]− [F ((∆U + Ũ)
n+ 1

2
i,j+1)− F (Ũ

n+ 1
2

i,j+1)]
]
.

Similar approximation for J implies,

J =
∆t∆x

2

[
[G((∆U+ Ũ)

n+ 1
2

i,j+1)−G(Ũ
n+ 1

2

i,j+1)]+ [G((∆U+ Ũ)
n+ 1

2
i+1,j+1)−G(Ũ

n+ 1
2

i+1,j+1)]

− [G((∆U + Ũ)
n+ 1

2
i,j )−G(Ũ

n+ 1
2

i,j )]− [G((∆U + Ũ)
n+ 1

2
i+1,j)−G(Ũ

n+ 1
2

i+1,j)]
]
.

Hence equation (2.27) becomes,

∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2

− ∆t

2∆x

[
[F ((∆U + Ũ)

n+ 1
2

i+1,j)− F (Ũ
n+ 1

2

i+1,j)] + [F ((∆U + Ũ)
n+ 1

2
i+1,j+1)− F (Ũ

n+ 1
2

i+1,j+1)]

− [F ((∆U + Ũ)
n+ 1

2
i,j )− F (Ũ

n+ 1
2

i,j )]− [F ((∆U + Ũ)
n+ 1

2
i,j+1)− F (Ũ

n+ 1
2

i,j+1)]
]

− ∆t

2∆y

[
[G((∆U + Ũ)

n+ 1
2

i,j+1)−G(Ũ
n+ 1

2

i,j+1)] + [G((∆U + Ũ)
n+ 1

2
i+1,j+1)−G(Ũ

n+ 1
2

i+1,j+1)]

− [G((∆U + Ũ)
n+ 1

2
i,j )−G(Ũ

n+ 1
2

i,j )]− [G((∆U + Ũ)
n+ 1

2
i+1,j)−G(Ũ

n+ 1
2

i+1,j)]
]

+
1

∆x∆y

∫∫∫
Rn

i+1
2
,j+1

2

S(∆U, x, y)dR. (2.28)

The integral of the source term is being approximated using the midpoint quadrature
rule both in time and space:∫∫∫

Rn

i+1
2
,j+1

2

S(∆U, x, y)dR ≈ ∆t∆x∆y

S(∆Un+ 1
2

i,j ) + S(∆Un+ 1
2

i+1,j) + S(∆Un+ 1
2

i,j+1) + S(∆Un+ 1
2

i+1,j+1)

4

 . (2.29)

The forward projection step in equation (2.28) consists of projecting the solution at
time tn onto the staggered grid. It is performed using linear interpolations in two
space dimensions in addition to Taylor expansions in space; we obtain:

∆Un
i+ 1

2 ,j+
1
2
=

1

2
(∆U

n

i+ 1
2 ,j

+∆U
n

i+ 1
2 ,j+1)

− 1

16
([[∆Un,x]]i+ 1

2 ,j
+ [[∆Un,x]]i+ 1

2 ,j+1)

− 1

16
([[∆Un,y]]i,j+ 1

2
+ [[∆Un,y]]i+1,j+ 1

2
). (2.30)
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2 Well-balanced Central Schemes with the Subtraction Method

Here, ∆Un,x and ∆Un,y are the spatial partial derivatives of ∆Un that are approxi-
mated using the (MC-θ) limiter (2.9).

Finally, the evolution step (2.28) at time tn+1 on the staggered nodes can be
written as,

∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2

− ∆t

2
[Dx

+F (∆Un+ 1
2

i,j + Ũi,j)−Dx
+F (Ũi,j) +Dx

+F (∆Un+ 1
2

i,j+1 + Ũi,j+1)

−Dx
+F (Ũi,j+1)]

− ∆t

2
[Dy

+G(∆Un+ 1
2

i,j + Ũi,j)−Dy
+G(Ũi,j) +Dy

+F (∆Un+ 1
2

i+1,j + Ũi+1,j)

−Dy
+G(Ũi+1,j)]

+ ∆t.S(∆Un+ 1
2

i,j ,∆Un+ 1
2

i+1,j ,∆Un+ 1
2

i,j+1,∆Un+ 1
2

i+1,j+1). (2.31)

With

S(∆Un+ 1
2

i,j ,∆Un+ 1
2

i+1,j ,∆Un+ 1
2

i,j+1,∆Un+ 1
2

i+1,j+1) =S(∆Un+ 1
2

i,j ) + S(∆Un+ 1
2

i+1,j) + S(∆Un+ 1
2

i,j+1) + S(∆Un+ 1
2

i+1,j+1)

4

 .

Here Dx
+ and Dy

+ are the forward differences given by,
Dx

+F (Ui,j) =
F (Ui+1,j)−F (Ui,j)

∆x , Dy
+F (Ui,j) =

F (Ui,j+1)−F (Ui,j)
∆y .

The predicted values in equation (2.31) are generated at time tn+
1
2 using a first

order Taylor expansion in time in addition to the balance law (2.20):

∆Un+ 1
2

i,j = ∆Un
i,j +

∆t

2

[
−
(Fn

i,j)
′

∆x
+

F̃ ′
i,j

∆x
−

(Gn
i,j)

′

∆y
+

G̃′
i,j

∆y
+ Sn

i,j

]
, (2.32)

where
(Fn

i,j)
′

∆x ,
F̃ ′

i,j

∆x ,
(Gn

i,j)
′

∆y and
G̃′

i,j

∆y denote the approximate flux derivatives with

(Fn
i,j)

′ = JFn
i,j
.Un,x

i,j , F̃ ′
i,j = JF̃i,j

.Ũ
x

i,j , (G
n
i,j)

′ = JGn
i,j
.Un,y

i,j , G̃′
i,j = JG̃i,j

.Ũ
y

i,j . Here, we

also use the (MC-θ) limiter (2.9) to compute the slopes Un,x
i,j , Ũ

x

i,j , Un,y
i,j , and Ũ

y

i,j in
order to avoid spurious oscillations. Sn

i,j is the discrete source term.
Finally we apply a back projection step similar to the one in (2.30). In order to

retrieve the solution at the time tn+1 on the original cells Ci,j , we obtain

∆Un+1
i,j =

1

2
(∆U

n+1

i,j− 1
2
+∆U

n+1

i,j+ 1
2
)

− 1

16
([[∆Un+1,x]](i),j− 1

2
+ [[∆Un+1,x]](i),j+ 1

2
)

− 1

16
([[∆Un+1,y]]i− 1

2 ,(j)
+ [[∆Un+1,y]]i+ 1

2 ,(j)
), (2.33)
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2.4 TVD Property of the Scheme Applied to Scalar Conservation Law

where ∆Un+1,x
i,j and ∆Un+1,y

i,j denote the spatial partial derivatives of the numerical
solution obtained at time tn+1 and node (xi, yj) approximated using the (MC-θ)
limiter (2.9).

To complete the presentation of the numerical scheme, we need to verify the
well-balanced property of the proposed scheme and to show that it is capable of
maintaining stationary solutions of the Euler system with gravitational source term.

Suppose that the numerical solution obtained at time t = tn satisfies Un
i,j = Ũi,j ,

i.e., ∆Un
i,j = 0. Performing one iteration using the proposed numerical scheme, one

can show that:

1. ∆Un+ 1
2

i,j = 0.

2. ∆Un+1
i+ 1

2 ,j+
1
2

= 0.

3. ∆Un+1
i,j = 0.

In fact, it is straight forward to establish 2 and 3 once 1 is established. We will present
the proof of 1 only.

The prediction step (2.32) leads to

∆Un+ 1
2

i,j = ∆Un
i,j +

∆t

2

[
−

F ′(∆Un
i,j + Ũi,j)

∆x
+

F ′(Ũi,j)

∆x

−
G′(∆Un

i,j + Ũi,j)

∆y
+

G′(Ũi,j)

∆y
+ S(∆Un

i,j , x, y)

]
. (2.34)

But since ∆Un
i,j = 0, then we obtain,

∆Un+ 1
2

i,j =
∆t

2

[
−F ′(Ũi,j)

∆x
+

F ′(Ũi,j)

∆x
− G′(Ũi,j)

∆y
+

G′(Ũi,j)

∆y

]
.

Hence, ∆Un+ 1
2

i,j = 0. Therefore, we conclude that the updated numerical solution
remains stationary up to machine precision.

2.4 TVD Property of the Scheme Applied to Scalar Conser-
vation Law

In this section, we establish the Total Variation Diminishing (TVD) property of our
proposed numerical schemes. To prove that the scheme is TVD, one needs to prove
that TV (u(t+∆t)) ≤ TV (u(t)).

Let the scalar conservation law,

ut + f(u)x = 0. (2.35)

19



2 Well-balanced Central Schemes with the Subtraction Method

with f(u)x = a(u)ux. As in (2.1) and (2.20), we will discretize the equation,

∆ut + h(∆u)x = 0, (2.36)

where ∆u = u − ũ and h(∆u) = f(∆u + ũ) − f(ũ) and ũ a time independent
reference solution. Using our unstaggered central scheme, the numerical solution
of the scalar equation (2.36) is updated at time tn+1 as follows: First, we apply a
forward projection step,

∆un
i+ 1

2
=

1

2

(
∆un

i +∆un
i+1

)
+

1

8

(
(∆un

i )
′
−
(
∆un

i+1

)′)
. (2.37)

Then, we predict the solution values at time tn+
1
2 with the aid of the predictor step,

∆u
n+ 1

2
i = ∆un

i − ∆t

2

[
(hn

i )
′

∆x

]
. (2.38)

Next, we apply the time evolution step

∆un+1
i+ 1

2

= ∆un
i+ 1

2
− λ

[
h(∆u

n+ 1
2

i+1 )− h(∆u
n+ 1

2
i )

]
, (2.39)

with λ = ∆t
∆x . Finally, we apply the backward projection step

∆un+1
i =

1

2

(
∆un+1

i− 1
2

+∆un+1
i+ 1

2

)
+

1

8

((
∆un+1

i− 1
2

)′

−
(
∆un+1

i+ 1
2

)′)
. (2.40)

Theorem 1. Assume that the numerical spatial derivatives be chosen as,

0 ≤ ∆u
′

i.sgn(∆ui+1 −∆ui) ≤ Cst∆u. |minmod (∆ui+1 −∆ui,∆ui −∆ui−1)| ,

0 ≤ h
′

i.sgn(∆ui+1 −∆ui) ≤ Csth. |minmod (∆ui+1 −∆ui,∆ui −∆ui−1)| ,

with Cst∆u = α and the following CFL condition holds,

λ.max|a(ui)| ≤ β,

where

β = λ
Csth
Cst∆u

≤
√
4 + 4α− α2 − 2

2α
,

and α < 4 (for β > 0). Then the scheme satisfies the TVD property.

Proof. Inspired by the TVD proof in [61] and [39], one can say that it is sufficient

to prove that |Ai| ≤ 1
2 and |Ci+ 1

2
| ≤ 1

2 with Ai =

1
8

((
∆un+1

i− 1
2

)′

−
(
∆un+1

i+1
2

)′)
(
∆un+1

i+1
2

−∆un+1

i− 1
2

) and
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2.4 TVD Property of the Scheme Applied to Scalar Conservation Law

Ci+ 1
2
=

λ

[
h(∆u

n+1
2

i+1 )−h(∆u
n+1

2
i )

]
− 1

8

(
(∆un

i )
′
−(∆un

i+1)
′
)

∆un
i+1−∆un

i
.

First, we show that |Ai| ≤ 1
2 ,

1

8

∣∣∣∣∣∣∣
(
∆un+1

i− 1
2

)′

−
(
∆un+1

i+ 1
2

)′

(
∆un+1

i+ 1
2

−∆un+1
i− 1

2

)
∣∣∣∣∣∣∣

≤ 1

8
max


∣∣∣∣∣∣∣

(
∆un+1

i− 1
2

)′

(
∆un+1

i+ 1
2

−∆un+1
i− 1

2

)
∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

(
∆un+1

i+ 1
2

)′

(
∆un+1

i+ 1
2

−∆un+1
i− 1

2

)
∣∣∣∣∣∣∣
 ≤ α

8
≤ 1

2
. (2.41)

Next, we show that |Ci+ 1
2
| ≤ 1

2 ,∣∣∣∣∣∣
λ
[
h(∆u

n+ 1
2

i+1 )− h(∆u
n+ 1

2
i )

]
− 1

8

(
(∆un

i )
′
−
(
∆un

i+1

)′)
∆un

i+1 −∆un
i

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣h(∆u
n+ 1

2
i+1 )− h(∆u

n+ 1
2

i )

∆un
i+1 −∆un

i

∣∣∣∣∣∣+ 1

8

∣∣∣∣∣∣ (∆un
i )

′
−
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣h(∆u
n+ 1

2
i+1 )− h(∆u

n+ 1
2

i )

∆u
n+ 1

2
i+1 −∆u

n+ 1
2

i

∣∣∣∣∣∣ .
∣∣∣∣∣∣∆u

n+ 1
2

i+1 −∆u
n+ 1

2
i

∆un
i+1 −∆un

i

∣∣∣∣∣∣+ 1

8

∣∣∣∣∣∣ (∆un
i )

′
−
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣∣ .
(2.42)

From the CFL condition, one concludes that,

λ

∣∣∣∣∣∣h(∆u
n+ 1

2
i+1 )− h(∆u

n+ 1
2

i )

∆u
n+ 1

2
i+1 −∆u

n+ 1
2

i

∣∣∣∣∣∣ ≤ β. (2.43)

Next, from the predictor step ∆u
n+ 1

2
i , the second absolute value to the right-hand

side of inequality (2.42) is bounded by∣∣∣∣∣∣∆u
n+ 1

2
i+1 −∆u

n+ 1
2

i

∆un
i+1 −∆un

i

∣∣∣∣∣∣ =
∣∣∣∣∣∆un

i+1 − λ
2h

′

i+1 −∆un
i + λ

2h
′

i

∆un
i+1 −∆un

i

∣∣∣∣∣
=

∣∣∣∣∣∆un
i+1 −∆un

i − λ
2 (h

′

i+1 − h
′

i)

∆un
i+1 −∆un

i

∣∣∣∣∣
≤ 1 +

λ

2

∣∣∣∣∣ h
′

i+1 − h
′

i

∆un
i+1 −∆un

i

∣∣∣∣∣ ≤ 1 +
λ

2
max

(∣∣∣∣∣ h
′

i+1

∆un
i+1 −∆un

i

∣∣∣∣∣ ,
∣∣∣∣∣ h

′

i

∆un
i+1 −∆un

i

∣∣∣∣∣
)

≤ 1 +
λ

2
Csth ≤ 1 +

αβ

2
. (2.44)
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Finally, we have

1

8

∣∣∣∣∣∣ (∆un
i )

′
−
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣∣ ≤ 1

8
max

∣∣∣∣∣∣
(
∆un

i+1

)′
∆un

i+1 −∆un
i

∣∣∣∣∣∣ ,
∣∣∣∣∣ (∆un

i )
′

∆un
i+1 −∆un

i

∣∣∣∣∣
 ≤ α

8
.

(2.45)

Performing the following term-by-term operations, (2.43)×(2.44)+(2.45) results in,∣∣∣∣∣∣
λ
[
h(∆u

n+ 1
2

i+1 )− h(∆u
n+ 1

2
i )

]
− 1

8

(
(∆un

i )
′
−
(
∆un

i+1

)′)
∆un

i+1 −∆un
i

∣∣∣∣∣∣
≤ β(1 +

1

2
αβ) +

1

8
α ≤ 1

2
. (2.46)

This follows from the definition of β, and we conclude that,

|Ci+ 1
2
| ≤ 1

2
. (2.47)

The total variation in the updated solution is now,

TV (∆u(t+∆t)) =
∑
i

|∆ui+1(t+∆t)−∆ui(t+∆t)| ,

≤
∑
i

∣∣∣∆un+1
i+ 3

2

−∆un+1
i+ 1

2

∣∣∣ ∣∣∣∣12 +Ai+1

∣∣∣∣+ ∣∣∣∆un+1
i+ 1

2

−∆un+1
i− 1

2

∣∣∣ ∣∣∣∣12 −Ai

∣∣∣∣ ,
=
∑
i

∣∣∣∆un+1
i+ 1

2

−∆un+1
i− 1

2

∣∣∣ ,
≤
∑
i

∣∣∣∆un
i+1 −∆un

i

∣∣∣∣∣∣1
2
− Ci+ 1

2

∣∣∣+ ∣∣∣∆un
i+1 −∆un

i

∣∣∣∣∣∣1
2
+ Ci− 1

2

∣∣∣,
=
∑
i

∣∣∣∆un
i+1 −∆un

i

∣∣∣ =∑
i

|∆ui+1(t)−∆ui(t)| = TV (∆u(t)),

here we followed a re-indexing step twice. We conclude that

TV (u(t+∆t))− TV (u(t)) = TV (∆u(t+∆t) + ũ)− TV (∆u(t) + ũ),

≤ TV (∆u(t+∆t)) + TV (ũ)− TV (∆u(t))− TV (ũ),

= TV (∆u(t+∆t))− TV (∆u(t)) ≤ 0.

Hence,

TV (u(t+∆t)) ≤ TV (u(t)).

Theorem 1 states that the scheme is TVD in the scalar case, which assures,
according to the Lax-Wendroff theorem [58] , the convergence of the scheme to a
weak solution of the conservation law in the scalar case.
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2.5 Numerical Results

2.5 Numerical Results

In this section, we implement the proposed well-balanced numerical schemes and
use them to solve classical problems from the recent literature. The main property
of the proposed schemes will be tested when we consider numerical experiments
featuring stationary solutions. In all test cases, we will consider an ideal gas with
γ = 1.4 and a parameter value θ = 1.5 for the limiter (2.9). The CFL condition is set
to 0.485 in (2.2).

2.5.1 Application to the 1D Euler system with gravitational source term

The model

The 1D Euler system with gravitational source term is given by:{
ut + f(u)x = S(u, x), x ∈ Ω ⊂ R, t > 0.

u(x, 0) = u0(x),
(2.48)

where

u =

 ρ
ρu
E

 , f(u) =

 ρu
ρu2 + p
(E + p)u

 , S(u) =

 0
−ρϕx

−ρuϕx

 .

Here, ρ is the fluid density, u is the velocity, p is the pressure and E = 1
2ρu

2 + p
γ−1

is the non-gravitational energy which includes the kinetic and internal energy of
the fluid. The gravitational potential ϕ = ϕ(x) is a given function and γ is the ratio
of specific heats. In the absence of the gravitational source term, system (2.48)
reduces to a hyperbolic system of conservation laws with a complete set of real
eigenvalues and a corresponding set of linearly independent eigenvectors. We present
the eigenvalues of the flux jacobian ∂f(u)

∂u , λ1 = u, λ2 = u+ c, λ3 = u− c, where c is

the sound speed given by c =
√

γp
ρ .

1D isothermal equilibrium

We start our numerical experiments by verifying that the numerical scheme is capable
of preserving any steady state at the discrete level. We consider for our first test
case the isothermal equilibrium problem with a linear gravitational field ϕx = g = 1
previously considered in [80]. The numerical solution is computed on 200 grid points
of the interval [0,1]. The final time is t = 0.25. The equilibrium at the PDE level is
defined such that, ut = 0. The isothermal equilibrium state is given by:

ρ(x) = ρ0exp(−ρ0g

p0
x),

u(x) = 0,

p(x) = p0exp(−ρ0g

p0
x).

23



2 Well-balanced Central Schemes with the Subtraction Method

The above formulas for ρ, u, and p ensure that ut = 0 at the PDE level. However, we
need to prove that un+1 = un, in order to prove that the equilibrium is preserved
numerically. Here we set ρ0 = 1, p0 = 1. The reference solution ũ chosen in this
experiment is exactly the isothermal equilibrium state. The results are illustrated in
figures 2.6 and 2.7 where we plot the numerical solution at t = 0.25 and we compare
it to the exact solution. This figure shows that the equilibrium is exactly preserved
and a perfect match between the computed solution and the exact one is observed.
Note that in [80], this equilibrium needed a very specific well-balanced strategy to
be preserved.
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Figure 2.6: 1D isothermal equilibrium: density (top) and momentum (bottom) at time t = 0.25.
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To test the ability of the scheme to capture perturbations around the equilibrium,
a small perturbation is added to the initial pressure. Hence, it is now given as:

p(x) = p0exp(−ρ0g

p0
x) + ηexp(−100

ρ0g

p0
(x− 0.5)2),

where η = 0.01. The perturbation will be updated from the pressure at each time by
the following formula,

kn+1
i = pn+1

i − p0exp(−ρ0g

p0
xi), ∀i and ∀n.

In figure 2.8 we plot the perturbation k obtained at time t = 0.25 and we compare
it to the initial perturbation on 200 grid points. Outflow boundary conditions are
applied. The plots show that the proposed numerical scheme is capable of capturing
small perturbations. The order of convergence of the proposed numerical scheme is
calculated using the L1-norm for the density, pressure and the energy components
and the obtained results are reported in Table 2.1.

N L1-error ρ Order L1-error p Order L1-error E Order
200 2.765× 10−6 — 3.797× 10−6 — 9.948× 10−6 —
400 7.314× 10−7 1.89 1.029× 10−6 1.88 2.575× 10−6 1.95
800 1.765× 10−7 2.05 2.400× 10−7 2.10 6.003× 10−7 2.19

Table 2.1: 1D isothermal equilibrium: L1-error and order of convergence.

1D moving equilibrium

Next, we verify that the proposed numerical scheme is capable of preserving moving
equilibrium states. We consider the test case previously presented in [82]. A non-
linear gravitational field ϕ(x) = exp(x)(−exp(x) + γ(exp(−γx)) is considered. The
numerical solution is computed at time t = 10 on 200 grid points of the interval [0,1].
The moving equilibrium state is given by:

ρ(x) = ρ0exp(−ρ0g

p0
x),

u(x) = exp(x),

p(x) = exp(−ρ0g

p0
x)γ .

ρ0 = 1 and p0 = 1 are given. The considered reference solution in this case is the
equilibrium state itself. Figure ?? shows that the density, velocity, energy and pressure
are exactly preserved at time t = 10. The curves are exactly on top of each other
which ensures that the steady state is perfectly preserved with zero error.
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1D shock tube problem

We consider for our next experiment the shock tube problem with a linear grav-
itational field with ϕx = g = 1, which was previously considered in [80]. The
computational domain is the interval [0,1]. Reflecting boundary conditions are
considered. The reference solution ũ considered in this experiment is the isothermal
equilibrium. Notice here that we are not solving steady state problems, so any other
smooth solution could be considered. The initial conditions are given by:

ρ(x) =

{
1, if x ≤ 0.5,

0.125, otherwise,

u(x) = 0,

p(x) =

{
1, if x ≤ 0.5,

0.1, otherwise.

The numerical solution is computed on 100, 200, and 400 grid points at the final
time t = 0.2. The obtained results are reported in figures 2.11 and 2.12, where we
show the profile of the density, velocity, energy, and pressure. The obtained results
are in perfect agreement with those appearing in the literature.

2.5.2 Application to the 2D Euler system with gravitational source term

The model

The 2D Euler system with gravitational source term is given by:{
Ut + F (U)x +G(U)y = S(U), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
(2.49)

where

U =


ρ

ρu1

ρu2

E

 , F (U) =


ρu1

ρu2
1 + p

ρu1u2

(E + p)u1

 , G(U) =


ρu2

ρu1u2

ρu2
2 + p

(E + p)u2

 ,

and

S(U) =


0

−ρϕx

−ρϕy

−ρu1ϕx − ρu2ϕy

 .

Here ρ is the fluid density, u1 and u2 are the velocity components in the x- and y-
directions, respectively, p is the pressure and E = 1

2ρ(u
2
1 + u2

2) +
p

γ−1 is the non-
gravitational energy which includes the kinetic and internal energy of the fluid. The
gravitational potential ϕ = ϕ(x, y) is a given function and γ is the ratio of specific
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2.5 Numerical Results

heats. Similar to the 1D case, and in absence of the gravitational source term, the
system reduces to a hyperbolic system of conservation laws with real eigenvalues
and a complete set of linearly independent eigenvectors. The eigenvalues of the flux
jacobian ∂F (U)

∂U are, λ1 = u1 − c, λ2 = u1, λ3 = u1, λ4 = u1 + c. For the the flux
jacobian ∂G(U)

∂U , λ1 = u2−c, λ2 = u2, λ3 = u2, λ4 = u2+c, where c is the sound speed

given by c =
√

γp
ρ . In this section we apply the 2D well-balanced unstaggered central

scheme we developed in section 2.3 and we solve the classical 2D Euler system with
gravitational source term featuring stationary solutions and other equilibrium states.

2D isothermal equilibrium

The first numerical experiment we consider aims to validate the well-balanced
property of the proposed 2D scheme. We consider the isothermal equilibrium state
problem [19, 82, 80]. This experiment is a direct extension of the 1D experiment
previously considered in subsection 2.5.1. The initial conditions correspond to a
stationary state and are given by:

ρ(x, y) = ρ0exp(−ρ0
p0

(ϕxx+ ϕyy)),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = p0exp(−ρ0
p0

(ϕxx+ ϕyy).

(2.50)

ρ0 = 1.21 and p0 = 1 are given. The gravitational potential is linear with ϕx = 1 and
ϕy = 1. The computational domain is the square [0, 1]2 discretized using 60× 60 grid
points. We apply the 2D scheme and compute the numerical solution at the final time
t = 0.25. Figure 2.13 shows the profile of the density and the energy.

2D Unidirectional equilibrium perturbation

In this test case we extend the 1D perturbation problem to the 2D case where both
the equilibrium state and the perturbation are initially set along the x or the y-
axis. Whenever set in the x-direction [80], the equilibrium state and the pressure
perturbation are given by:

ρ(x, y) = exp(−x)),

u1(x, y) = 0,

u2(x, y) = 0,

p(x, y) = exp(−x) + ηexp(−100(x− 0.5)2).

Similar initial data are defined if the perturbation is set in the y-direction. The
perturbation will be updated at each time by the following formula,

kni,j = pni,j − exp(−xi).
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2 Well-balanced Central Schemes with the Subtraction Method

The numerical solution is computed at time t = 0.25 using our proposed numerical
scheme with η = 0.001. The obtained results are reported in figure 2.15. The
observed profiles are similar to those of the 1D case, as well as those reported
in the literature. Figure 2.14 shows a comparison between cross sections of the
pressure of the 2D problem (with perturbations set in the x- and y- directions) and
the corresponding one of the 1D problem. All three curves are in perfect match. The
L1-norm for the density component and the order of convergence of the numerical
scheme are reported in table 2.2.

N L1-error ρ Order
2002 2.8461× 10−7 —
4002 7.0611× 10−8 2.01
8002 1.6840× 10−8 2.06

Table 2.2: 2D Unidirectional equilibrium perturbation: L1-error and order of convergence for the density.

2D moving equilibrium

This test case is an extension of the 1D moving equilibrium problem to the 2D case;
it is meant to verify that the proposed numerical scheme is capable of preserving 2D
steady states with non-zero velocities. The initial coefficients are given by:

ρ(x, y) = ρ0exp(−ρ0g

p0
(x+ y)),

u1(x, y) = exp(x+ y),

u2(x, y) = exp(x+ y),

p(x, y) = exp(−ρ0g

p0
(x+ y))γ .

ρ0 = 1, p0 = 1, and g = 1. We consider a nonlinear gravitational potential given
by ϕ(x, y) = exp(x+ y)(−exp(x+ y) + γ(exp(−γ(x+ y))). The numerical solution
is computed at the final time t = 0.25. The equilibrium is preserved exactly and a
1D/2D comparison is held on the density component at the final time in figure 2.16.
The comparison shows a perfect match, thus confirming the potential of the proposed
scheme to handle stationary equilibria.

2D shock tube problem

We consider for our last experiment the 2D sod shock tube problem. As in the 1D
case, the reference solution Ũ is the isothermal equilibrium solution (2.50).
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2.5 Numerical Results

We consider first the flow along the x-direction with the linear gravitational field
with ϕx = 1 and ϕy = 0; the initial data are given by:

ρ(x, y) =

{
1, if x ≤ 0.5,

0.125, otherwise.

u1(x, y) = 0 = u2(x, y).

p(x, y) =

{
1, if x ≤ 0.5,

0.1, otherwise.

The computational domain is the square [0, 1]2 discretized using 400× 10 grid points.
In a similar way, we define the initial data along the y-direction, where the same
computational domain is discretized using 10 × 400 grid points. The numerical
solution is computed at the final time t = 0.2 using the proposed well-balanced
scheme. The obtained numerical results are reported in figures 2.17 and 2.18 where
we present a comparison between cross sections of the 2D problem set along the x-
and y- directions for the density, velocity, energy and pressure and the corresponding
solution of the 1D problem. A perfect match between the plots is observed and the
obtained results are in perfect agreement with corresponding ones appearing in the
literature.

2.5.3 Application to the 2D MHD equations with gravitational source
term

The model

Ideal Magnetohydrodynamics (MHD) equations model problems in physics and
astrophysics. The MHD system is a combination of the Navier-Stokes equations of
fluid dynamics and the Maxwell equations of electromagnetism. A gravitational
source term is added to the ideal MHD equations in two space dimensions in order to
model more complicated problems arising in astrophysics and solar physics such as
modeling wave propagation in idealized stellar atmospheres [69, 11]. The system of
MHD equations with gravitational source term in two space dimensions is given by:{

Ut + F (U)x +G(U)y = S(U), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
(2.51)

where

U =



ρ
ρu1

ρu2

ρu3

E
B1

B2

B3


, F (U) =



ρu1

ρu2
1 +Π11

ρu1u2 +Π12

ρu1u3 +Π13

Eu1 + u1Π11 + u2Π12 + u3Π13

0
Λ2

−Λ3


,
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2 Well-balanced Central Schemes with the Subtraction Method

G(U) =



ρu2

ρu2u1 +Π21

ρu2
2 +Π22

ρu2u3 +Π23

Eu2 + u1Π21 + u2Π22 + u3Π23

−Λ3

0
Λ1


, S(U) =



0
0

−ρϕy

0
−ρu2ϕy

0
0
0


.

Here ρ is the fluid density, ρu is the momentum with u = (u1, u2, u3), p is the pressure,
B = (B1, B2, B3) is the magnetic field, and E is the kinetic and internal energy of the
fluid given by the following equation E = p

γ−1 + 1
2ρ|u|

2 + 1
2 |B|

2 with γ the ratio of
specific heats. ϕ = ϕ(x, y), with ϕx = 0 and ϕy = g, is the gravitational potential and
it is a given function. Λ = u × B, Π11,Π22 and Π33 are the diagonal elements of the
total pressure tensor and Π12,Π13 and Π23 are the off-diagonal tensor are given by
the following formulas:
Πii = p+ 1

2 (B
2
j +B2

k −B2
i ) and Πij = − 1

2BiBj , for i, j, k = 1, 2, 3.
To determine the time-step using the CFL condition (2.2), we present the eigenvalues
of the flux jacobian in the x-direction,
λ1 = u1−cf , λ2 = u1−b1, λ3 = u1−cs, λ4 = u1, λ5 = u1, λ6 = u1+cs, λ7 = u1+b1,
λ8 = u1 + cf . The eigenvalues of the flux jacobian in the y-direction are analogously
defined.

Here,

cf =

√
1

2

(
a2 + b2 +

√
(a2 + b2)

2 − 4a2b21

)
, (2.52)

and

cs =

√
1

2

(
a2 + b2 −

√
(a2 + b2)

2 − 4a2b21

)
, (2.53)

are respectively the fast and slow wave speed with a =
√

γp
ρ is the sound speed

and b =
√
b21 + b22 + b23 with bi = Bi√

ρ , i ∈ {1, 2, 3}. For additional reading on the
hyperbolic analysis of the system, readers are refered to [32, 64].

The conservation of momentum is exposed to Lorentz force from the magnetic
field and to gravitational force. In addition, the conservation of the total energy
(internal, kinetic and magnetic) has the gravitational potential energy as a source
term. A list of numerical experiments has been considered in order to verify the
robustness and accuracy of our method in the case of the system of MHD equations.

Constrained Transport Method (CTM)

From electromagnetic theory, the magnetic field B must be solenoidal i.e. ∇ · B = 0
at all times. The divergence-free constraint on the magnetic field reflects the fact that
magnetic mono-poles have not been observed in nature. The induction equation for
updating the magnetic field imposes the divergence on the magnetic field. Hence,
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2.5 Numerical Results

a numerical scheme for the MHD equations should maintain the divergence-free
property of the discrete magnetic field at each time-step. Numerical schemes usually
fail to satisfy the divergence-free constraint and numerical instabilities and unphysical
oscillations may be observed [72]. Several methods were developed to overcome
this issue. The projection method, in which the magnetic field is projected into a
zero divergence field by solving an elliptic equation at each time step [13]. Another
procedure is the Godunov-Powell procedure [65, 66, 31], where the Godunov-Powell
form of the system of the MHD equations is discretized instead of the original system.
The Godunov-Powell system has the divergence of the magnetic field as a part of
the source term. Hence, divergence errors are transported out of the domain with
the flow. A third approach is the CTM [14, 67, 28]. The CTM was modified from its
original form to the case of staggered central schemes [3]. It was later extended to
the case of unstaggered central schemes [75]. In this work we consider the version of
CTM developed in [75]. At the end of each iteration, we apply the CTM corrections
to the magnetic field components. Starting from a magnetic field that satisfies the
divergence-free constraint ∇ · Bn

i,j = 0, we would like to prove ∇ · Bn+1
i,j = 0. The

discrete divergence using central differences at time tn is given by,

∇ · Bn
i,j =

(
∂Bx

∂x

)n

i,j

+

(
∂By

∂y

)n

i,j

=
(Bx)

n
i+1,j − (Bx)

n
i−1,j

2∆x
+

(By)
n
i,j+1 − (By)

n
i,j−1

2∆y

= 0.

The vector of conserved variables Un+1 is computed by the numerical scheme, but
∇.Bn+1

i,j might not be zero. Therefore, we compute the magnetic field Bn+1
i,j by

discretizing the induction equation at the cell centers of Ci,j ,

∂

∂t

(
Bx

By

)
− ∂

∂x

(
0
Ω

)
+

∂

∂y

(
Ω
0

)
= 0,

where Ω = (−u × B)z = −uxBy + uyBx. Hence, the discretization of the induction
equation is the following,

(Bx)
n+1

i+1
2
,j+1

2

−(Bx)
n

i+1
2
,j+1

2

∆t +
Ω

n+1
2

i+1
2
,j+3

2

−Ω
n+1

2

i+1
2
,j− 1

2

2∆y = 0,

(By)
n+1

i+1
2
,j+1

2

−(By)
n

i+1
2
,j+1

2

∆t −
Ω

n+1
2

i+3
2
,j+1

2

−Ω
n+1

2

i− 1
2
,j+1

2

2∆x = 0.

Then,(Bx)
n+1
i+ 1

2 ,j+
1
2
= (Bx)

n
i+ 1

2 ,j+
1
2
− ∆t

2∆y

(
Ω

n+ 1
2

i+ 1
2 ,j+

3
2

− Ω
n+ 1

2

i+ 1
2 ,j−

1
2

)
,

(By)
n+1
i+ 1

2 ,j+
1
2
= (By)

n
i+ 1

2 ,j+
1
2
+ ∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2 ,j+

1
2

− Ω
n+ 1

2

i− 1
2 ,j+

1
2

)
.

(2.54)
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Now, we compute Ω
n+ 1

2

i+ 1
2 ,j+

1
2

using the numerical solution computed at time tn and

tn+1 in order to obtain second order of accuracy in time,

Ω
n+ 1

2

i+ 1
2 ,j+

1
2

=
1

2

[
Ωn+1

i+ 1
2 ,j+

1
2

+Ωn
i+ 1

2 ,j+
1
2

]
,

=
1

2

[
Ωn+1

i+ 1
2 ,j+

1
2

+
Ωn

i,j +Ωn
i+1,j +Ωn

i,j+1 +Ωn
i+1,j+1

4

]
.

Next, we calculate ∇.(B)n+1
i+ 1

2 ,j+
1
2

∇.(B)n+1
i+ 1

2 ,j+
1
2

=
(Bx)

n+1
i+ 3

2 ,j+
1
2
− (Bx)

n+1
i− 1

2 ,j+
1
2

2∆x︸ ︷︷ ︸
=I

+
(By)

n+1
i+ 1

2 ,j+
3
2
− (By)

n+1
i+ 1

2 ,j−
1
2

2∆y︸ ︷︷ ︸
=J

.

(2.55)

We compute now I and J as

I =
(Bx)

n+1
i+ 3

2 ,j+
1
2
− (Bx)

n+1
i− 1

2 ,j+
1
2

2∆x
,

=
1

2∆x

[
(Bx)

n
i+1,j + (Bx)

n
i+2,j+1 + (Bx)

n
i+2,j + (Bx)

n
i+1,j+1

4

− ∆t

2∆y

(
Ω

n+ 1
2

i+ 3
2 ,j+

3
2

− Ω
n+ 1

2

i+ 3
2 ,j−

1
2

)
−

(Bx)
n
i−1,j + (Bx)

n
i,j+1 + (Bx)

n
i,j + (Bx)

n
i−1,j+1

4

+
∆t

2∆y

(
Ω

n+ 1
2

i− 1
2 ,j+

3
2

− Ω
n+ 1

2

i− 1
2 ,j−

1
2

)]
.

J =
(By)

n+1
i+ 1

2 ,j+
3
2
− (By)

n+1
i+ 1

2 ,j−
1
2

2∆y
,

=
1

2∆y

[
(By)

n
i,j+1 + (By)

n
i+1,j+1 + (By)

n
i+1,j+2 + (By)

n
i,j+2

4

+
∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2 ,j+

3
2

− Ω
n+ 1

2

i− 1
2 ,j+

3
2

)
−

(By)
n
i,j−1 + (By)

n
i+1,j−1 + (By)

n
i+1,j + (By)

n
i,j

4

− ∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2 ,j−

1
2

− Ω
n+ 1

2

i− 1
2 ,j−

1
2

)]
.
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The sum of I and J is,

I + J =
1

8∆x

[
(Bx)

n
i+1,j − (Bx)

n
i−1,j + (Bx)

n
i+2,j+1 − (Bx)

n
i,j+1

+ (Bx)
n
i+2,j − (Bx)

n
i,j + (Bx)

n
i+1,j+1 − (Bx)

n
i−1,j+1

]
+

∆t

4∆x∆y

[ (
−Ω

n+ 1
2

i+ 3
2 ,j+

3
2

+Ω
n+ 1

2

i+ 3
2 ,j+

3
2

)
+
(
Ω

n+ 1
2

i+ 3
2 ,j−

1
2

− Ω
n+ 1

2

i+ 3
2 ,j−

1
2

)
+
(
Ω

n+ 1
2

i− 1
2 ,j+

3
2

− Ω
n+ 1

2

i− 1
2 ,j+

3
2

)
+
(
Ω

n+ 1
2

i− 1
2 ,j−

1
2

− Ω
n+ 1

2

i− 3
2 ,j−

1
2

) ]
+

1

8∆y

[
(By)

n
i,j+1 − (By)

n
i,j−1 + (By)

n
i+1,j+1 − (By)

n
i+1,j−1

+ (By)
n
i+1,j+2 − (By)

n
i+1,j + (By)

n
i,j+2 − (By)

n
i,j

]
.

Hence,

I + J =
1

4

[
(Bx)

n
i+1,j − (Bx)

n
i−1,j

2∆x
+

(By)
n
i,j+1 − (By)

n
i,j−1

2∆y

+
(Bx)

n
i+2,j+1 − (Bx)

n
i,j+1

2∆x
+

(By)
n
i+1,j+2 − (By)

n
i+1,j

2∆y

+
(Bx)

n
i+2,j − (Bx)

n
i,j

2∆x
+

(By)
n
i,j+2 − (By)

n
i,j

2∆y

+
(Bx)

n
i+1,j+1 − (Bx)

n
i−1,j+1

2∆x
+

(By)
n
i+1,j+1 − (By)

n
i+1,j−1

2∆y

]
, (2.56)

and the divergence of the magnetic field on the staggered grid ∇· (B)n+1
i+ 1

2 ,j+
1
2

reduces
to,

∇ · (B)n+1
i+ 1

2 ,j+
1
2

=
1

4

[
∇ · Bn

i,j +∇ · Bn
i+1,j+1 +∇ · Bn

i+1,j +∇ · Bn
i,j+1

]
= 0. (2.57)

Finally, we compute the magnetic field on the main grid Bn+1
i,j as the average of its

values on the staggered grid,

Bn+1
i,j =

1

4

[
Bn+1
i+ 1

2 ,j+
1
2

+ Bn+1
i+ 1

2 ,j−
1
2

+ Bn+1
i− 1

2 ,j+
1
2

+ Bn+1
i− 1

2 ,j−
1
2

]
.

Hence,

∇ · Bn+1
i,j = 0. (2.58)

On a side note, the CTM maintains the second order of the base scheme as discretiza-
tions were performed with second order of accuracy.
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Smooth solution

In order to numerically validate the second order accuracy of our scheme, we consider
the first test case from [83]. For simplcity, we consider a variant of the the flow
presented in [83]. The initial data is an MHD sine wave propagating over the
computational domain [-2,2]×[-2,2] until time t = 0.1,

U = [ρ, u1, u2, u3, B1, B2, B3, p] = [1 + 0.99 sin(x− 2t), 1, 1, 0, 0.1, 0.1, 0, 1], (2.59)

with γ = 1.4. Tabel 2.3 lists the numerical L1-errors for the density component on
different grids together with the order of the scheme.

N ×N L1-error ρ Order
200×200 8.0190× 10−4 —
400×400 1.9357× 10−4 2.05
800×800 4.5111× 10−5 2.10

1600×1600 9.6607× 10−6 2.22

Table 2.3: Smooth solution: L1-error and order of convergence.

2D shock tube problem

For the first numerical test case, we consider a shock tube problem for the system
of ideal MHD equations extracted from [4]. The simulation takes place over the
computational domain [−1, 1] × [0, 1]. U = [ρ, u1, u2, u3, B2, B3, p] is initially given
as U = [1, 0, 0, 0,

√
4, 0, 1] for x < 0.5 and U = [0.125, 0, 0, 0,−

√
4, 0, 0.1] for x > 0.5

and B1 = 0.75
√
4. This test case features seven discontinuities. It was originally

introduced for the non-scaled MHD equations [4]. Hence, removing π from the
initial data makes it a valid test case for the scaled MHD equations. We compute
the solution at the final time t = 0.25 on 400 × 400 grid. Because the numerical
divergence at the final time was zero, there was no need to apply the CTM. The cross
sections in figures 2.19 and 2.20 show a very good agreement with the results in the
literature. In order to investigate the effect of the CTM on the computed solution,
we did a convergence study in figure 2.21 and (2.22) while applying the CTM. As it
is very clear in the figures above, applying the CTM for the UC schemes has a small
smearing out effect on the solution.

Four stages Ideal MHD Riemann problem

This test case is considered to prove the ability of our scheme to solve ideal MHD
problems and preserve the divergence-free constraint. The initial data consist of four
constant states [4, 75] . The initial four constant states are given as follows,

(ρ, u1, u2, p) =


(1, 0.75, 0.5, 1) if x > 0 and y > 0

(2, 0.75, 0.5, 1) if x < 0 and y > 0

(1,−0.75, 0.5, 1) if x < 0 and y < 0

(3,−0.75,−0.5, 1) if x > 0 and y < 0

(2.60)
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with an initial uniform magnetic field B = (2, 0, 1). The numerical solution is
computed in the square [−1, 1]× [−1, 1] on 400×400 grid points.

Figure 2.23 illustrates the density at the final time tf = 0.8 with and without
applying constrained transport treatment to the magnetic field components. Similar
comparison on the divergence of the magnetic field is illustrated in figure 2.24. The
results highlight the robustness of the numerical scheme in the sense that even
without treatment we are able to show numerical simulation while other schemes
simply blow up without special treatment of the magnetic field.

MHD vortex

For our third test case, we consider the MHD vortex for the homogeneous ideal
MHD equations [8]. The initial data represent a moving stationary solution of the
system of the ideal MHD equations and are given by, r2 = x2 + y2, ρ = 1, u1 =

u0 − κp exp(
1−r2

2 )y, u2 = v0 + κp exp(
1−r2

2 )x, u3 = 0, B1 = −mp exp(
1−r2

2 )y, B2 =

−mp exp(
1−r2

2 )x, B3 = 0, and p = 1 +
(

m2
p

2 (1− r2)− κ2
p

2

)
. We set the parameters

mp = 1, κp = 1, u0 = 0, and v0 = 0. The vortex is advected through the domain
[−5, 5]× [−5, 5] with a velocity (u0, v0). Steady state boundary conditions are used
in this test case. In figure 2.25, we present the pressure profile at the final time
t = 100 2π√

eκp
≈ 100 3.14

κp
on different grids. The steady state gets preserved exactly as

the background solution Ũ is the vortex itself. No treatment of the magnetic field has
been done in [8] as the selection of the MHD test cases is restricted to this steady
state, which gets preserved exactly. However, treating the magnetic field is a necessity
in other test cases as we will see later.

Hydrodynamic wave propagation

The aim of this test case is to test the well-balanced property of the subtraction method
by simulating a steady state solution under hydrodynamic wave propagation. The
experiment is carried out in two steps. The first step is to check that the subtraction
method preserves the steady state. The initial data are the hydrodynamic steady state
in the computational domain [0, 4]× [0, 1].

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
),u = 0,B = 0. (2.61)

With H = p0

gρ0
= 0.158, p0 = 1.13 and g = 2.74. The subtraction method preserves

the hydrodynamic steady state exactly after choosing the reference solution Ũ at the
steady state itself. Figure 2.26 shows a very simple comparison of the density and
the energy cross section at t = 0 and the final time t = 1.8. The second step is to add
perturbation to the steady state as a time dependent sinusoidal wave that propagates
from the bottom boundary of the vertical velocity and exits from the top one. The
wave formula is as the following,

un
2i,{0,−1}

= exp(−100(xi,{0,−1} − 1.9)2)c sin(6πtn). (2.62)
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2 Well-balanced Central Schemes with the Subtraction Method

The bottom boundary is a localized piston at x = 1.9. Figure 2.27 shows the profile
of the wave at the final time t = 1.8 for c = 0.003 (left) and for c = 0.3 (right) for
800× 200 grid points. The waves propagate in both cases from bottom to top under
the effect of the pressure and gravity forces. The case where c = 0.003 models a
small perturbation and c = 0.3 models a stronger wave. The results are in a very
good agreement with the ones in [31]. More importatntly they match the results
of the most accurate (third order) of the three schemes compared in [31]. Hence,
the scheme is well-balanced in the sense that it preserves the steady state and can
capture its perturbations.

MHD wave propagation

In this test case, we model propagating waves that not only undergo the effects of
pressure and gravity, but also that of the magnetic field. The test case is extracted
from [31]. We consider the magnetohydrodynamic steady state defined as,

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
),u = 0,B = (0, µ, 0),∇ · B = 0.

(2.63)

Where µ is a parameter that takes different values for each part of the experiment.
The waves model a perturbation of the steady state that starts from the bottom
boundary of the normal velocity as the following,

un
i,{0,1} =

{ Bi,{0,1}
|Bi,{0,1}|

c sin(6πtn) for x ∈ [0.95, 1.05],

0 Otherwise,
(2.64)

with c = 0.3. The computational domain is [0, 2]× [0, 1]. We use the wave propagation
boundary conditions suggested in [31]. These boundaries are periodic boundaries in
the x-direction for U and p and Neumann type boundary conditions in the y-direction
as the following,

ρni,1 = ρni,2e
∆y
H , ρni,0 = ρni,1e

∆y
H

ρni,ny−1 = ρni,ny−2e
−∆y
H , ρni,ny = ρni,ny−1e

−∆y
H

for 1 ≤ i ≤ nx. Similar boundaries for the momentum ρu and the pressure p. Energy
boundaries are computed from the pressure. For the magnetic field boundaries, we
simply copy the data from the cell before. We present the profile of the velocity in
the direction of the magnetic field,

uB =< u,B > /|B|, (2.65)

at the final time t = 0.54 for different values of µ. As µ increases, the effect of the
magnetic field on the propagating wave increases. The wave profile gets compressed
as the magnetic field takes higher values. The plasma parameter is given by β = 2p

B2
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[31]. It measures the relative strength of the thermal pressure to the magnetic field,
and is crucial in determining the dynamics of the plasma. The β-isolines are illustrated
in black and the lines of the magnetic field are illustrated in white. The parameter β
indicates the effects of the pressure and the magnetic field on the propagating wave
such that, for β > 1, the region is pressure dominated, while for β < 1, the region is
magnetic field dominated. In figure 2.28, the profile of the velocity in the direction
of the magnetic field, in the case of µ almost zero, is illustrated, which is exactly
the velocity in the y-direction in this case. The wave propagates freely along the
computational domain taking a radial profile in the absence of the magnetic field on
400 × 200 grid points. Figure 2.29, shows the profile of the propgating wave under
the effect of a stronger magnetic field for µ = 1 on 400 × 200 grid points without
applying CTM. In addition, figure 2.29 presents the divergence of the magnetic
field which is clearly not zero. On the other hand, we present the same results with
applying CTM on 1200 × 600 grid points in figure 2.30. Applying the CTM results in
a zero discrete divergence of the magnetic field up to machine precision. Another
effect of applying the CTM is the diffusion we see in figure 2.30, which was resolved
by evolving the solution on a finer grid. Additionally, we present the velocity in the
direction perpendicular to the magnetic field in figure 2.31 for µ = 1 at different
times.

Our results, obtained with the second order scheme, are comparable with the
results in [31], obtained with third order schemes, which ensures the robustness of
our scheme and its capability of solving physically challenging problems, such as
wave propagation under the effect of pressure and gravity.

2.5.4 MHD wave propagation - weak magnetic field

In order to test the effect of a more complicated non-constant magnetic field on the
wave propagation, we choose a test case featuring a non-trivial magnetic steady state
from [31],

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
), u = 0, ∇ · B = 0, (2.66)

where B is defined as Fourier expansion of vector harmonic functions,

B = (B1, B2, B3) =

(
M∑
k=0

fk sin

(
2kπx

X

)
e−

2kπx
X ,

M∑
k=0

fk cos

(
2kπx

X

)
e−

2kπx
X , 0

)
(2.67)

with fk are the Fourier coefficients given by the vector FR/3 where FR is defined as,

FR = {f0, ..., f14} = {0.552802906842; −0.696736253842; 0.908809914778;

− 0.813921192337; 0.360524088458; 0.115217242296; −0.281974513346;

0.143723957761; 0.049431756210; −0.110095259045; 0.053464228949;

0.011695376102; −0.028284735991; 0.013116555865; 0.001434008866 }. (2.68)
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M is the total number of Fourier modes, which is 14 in this case. X equals 4 is the
length of the domain in the x-direction. The simulation is carried in the computational
domain [0, 4]× [0, 1]. After preserving the steady state, perturbation (2.64) is added
to the velocity in the y-direction with magnitude c = 3 × 10−4. The results on a
800× 200 mesh at the final time t = 0.9 is illustrated in figure (2.32). This test case
shows the ability of the scheme to capture very small perturbations around the steady
state. This was possible because of the fact that our scheme preserves the steady state
exactly. Figure (2.33) shows the discrete divergence of the magnetic field initially
and at the final time. In this case, we do not need to apply the CTM as the initial
discrete divergence is preserved.

2.6 Conclusion

In conclusion, we develop 1D and 2D second order unstaggered finite volume central
schemes for general balance laws. The proposed scheme is capable of preserving any
type of known equilibrium states due to a special reformulation that computes the
numerical solution in terms of a specific reference state. Applications to the systems
of Euler and MHD equations with gravitational source term are presented in the
numerical results section. A comparison between the obtained numerical results
and the corresponding literature ensures the robustness and the accuracy of the
developed schemes. In this work, we chose the CTM as a procedure to clean the
divergence of the magnetic field. We realized that, it has a smearing out effect on the
solution especially in the physically challenging test cases. For this reason, the CTM
is applied dynamically whenever needed. Meaning that, in the test cases where the
numerical divergence is zero at the final time and no numerical instabilities has been
observed, we do not apply it. This leaves us with a second order well-balanced finite
volume numerical scheme that captures solutions of the MHD equations and satisfies
the divergence-free constraint.
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Figure 2.7: 1D isothermal equilibrium: energy (top) and pressure (bottom) at time t = 0.25.
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Figure 2.8: 1D isothermal equilibrium: profile of the initial perturbation (dashed curve) and the perturbation at the
final time t = 0.25 (dotted curve).
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Figure 2.9: 1D moving equilibrium: profile of the density (top) and velocity (bottom) obtained at time t = 10.
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Figure 2.10: 1D moving equilibrium: profile of the energy (top), and pressure (bottom) obtained at time t = 10.
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Figure 2.11: 1D shock tube problem: density (top), velocity (bottom) at time t = 0.2.
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Figure 2.12: 1D shock tube problem: energy (top), pressure (bottom) at time t = 0.2.
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Figure 2.14: 2D Unidirectional equilibrium perturbation: 1D/2D comparison of the pressure perturbation k at time
t = 0.25.

Figure 2.15: 2D Unidirectional equilibrium perturbation: initially along x (top left), at t = 0.25 along x (top right),
initially along y (bottom left), at t = 0.25 along y (bottom right).
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Figure 2.17: 2D shock tube problem: 1D-2D comparison density (left) and velocity (right) at time t = 0.2.
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Figure 2.18: 2D shock tube problem: 1D-2D comparison energy (left), pressure (right) at time t = 0.2.
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Figure 2.19: 2D shock tube problem: cross sections of the density and the velocity components at time t = 0.25.

Figure 2.20: 2D shock tube problem: cross sections of the energy and the magnetic field components at time
t = 0.25.

50



2.6 Conclusion

Figure 2.21: 2D shock tube problem: cross sections of the density and the velocity components at time t = 0.25 on
200×200 (dashed line), 400 × 400 (solid red line), and 800 × 800 (solid black line) grid points.

Figure 2.22: 2D shock tube problem: cross sections of the energy and the magnetic field components at time
t = 0.25 on 200×200 (dashed line), 400 × 400 (solid red line), and 800 × 800 (solid black line) grid points.
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Figure 2.23: Four stages Riemann problem: ρ with CTM (left) and without CTM (right) at the final time t = 0.8.

Figure 2.24: Four stages Riemann Problem: divB with CTM (left) and without CTM (right) at the final time t = 0.8.
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Figure 2.25: MHD vortex: pressure profile at the final time on 32 × 32, 64 × 64 and 128 × 128 grid points
respectively.
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energy E (right) initially and at the final time t = 1.8.
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Figure 2.27: Hydrodynamic wave propagation: wave profile u2 for c = 0.003 (left) and c = 0.3 (right) at the final
time t = 1.8.
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Figure 2.28: MHDwave propagation: velocity in a direction parallel to the magnetic field uB =< u,B > /|B| for
µ = 0 on 400 × 200 grid points at the final time t = 0.54.
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Figure 2.29: MHDwave propagation: velocity in a direction parallel to the magnetic field uB =< u,B > /|B| for
µ = 1 on 400 × 200 grid points at the final time t = 0.54 without CTM.
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Figure 2.30: MHD wave propagation: velocity in a direction parallel to the magnetic field uB =< u,B > /|B| for
µ = 1 on 1200 × 600 grid points at the final time t = 0.54 with CTM.
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Figure 2.31: MHD wave propagation: u⊥B =< (u1, u2), (−B2, B1) > /|B| for µ = 1 on 400 × 200 grid points
at different times.
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Figure 2.32: MHD wave propagation - weak magnetic field: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| (left) and perpendicular to the magnetic field u⊥B =< (u1, u2), (−B2, B1) > /|B| (right)
on 800 × 200 grid points at the final time t = 0.9.
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Figure 2.33: div·B initially at t = 0 (left) and at the final time t = 0.9 (right).
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Chapter 3

AP and SP Schemes for Kinetic equations

3.1 Introduction

After working on well-balancing techniques for the Euler equations. We started
looking at possibilities to generalize the well-balancing approach. Digging deeper
into the derivation of the Euler equations, we noticed a connection between the Euler
equations and the kinetic models such that, rescaled kinetic models (as we will see
in the following sections) converge to fluid equations. When the average distance
between two successive velocity changes is small, i.e., the mean free path is small,
one has to use resolved space and time steps that are less than the mean free path.
Moreover, the probability density function in kinetic models depends not only on
space and time, but also on velocity. The high dimensionality and the small mean
free path led to an extremely high computational cost, and AP schemes that allow
mean free path independent meshes became popular in the last decades.

AP schemes were first proposed in [57, 26] for the neutron transport equation
and have been successfully extended to a lot of applications, we refer to the review
paper [47] for more discussions. Different AP schemes have been developed for
various kinetic models, including the neutron transport equation [1, 49, 57, 60], the
velocity jump model for E.Coli chemotaxis [15, 21], and the Boltzmann equation
[29, 54, 16, 41]. The Knudsen number ε is the ratio of the mean free path and the
domain typical length scale [26]. To prove that a scheme is AP, one has to show
that when the Knudsen number goes to zero in the discretized scheme, it converges
to a good discretization of the corresponding limit model. The main advantage of
AP schemes is that their stability and convergence are independent of the Knudsen
number. For such models, since the equilibrium is not known at the begining, it can
only be reached after a certain amount of time, which means it is not known and
cannot be initially given as the well-balanced techniques require. Moreover, as the
parameter in the equation takes a new value, a new equilibrium pops up. Hence, the
common well-balanced techniques will not be useful here and the need for stationary
preserving schemes, as mentioned before, arises. The investigation first adressed two
questions: how can we see the SP property for the corresponding AP schemes; and
how can we project what we understand at the kinetic level back to the fluid level.
Our key observation is that, as far as the Maxwellian of the distribution function of
an AP scheme can be updated explicitly, the second requirement of the SP property is
satisfied immediately. Our proof of the SP property is independent of ε and applicable
whenever the discretization linearly depends on the Maxwellian of the collision
operator. Numerically, one can check that the time evolutionary problem converges
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to a discrete stationary solution after finite time, and their difference is smaller than
machine precision. In the subsequent part, we will consider three different classes of
AP schemes for which one can prove their SP properties as examples on which our
criterion applies. Once we are able to show that for an AP scheme, the space and
velocity discretization of the stationary equation provides a good approximation to
the steady state solution for all ε, and the Maxwellian of the distribution function is
updated explicitly, the SP property follows immediately. To show the universality of
our observation, we test different kinetic models for different AP schemes, as listed
in Table 3.1.

For this aim, we considered three schemes for three different kinetic models in
sections 3.2, 3.3 and 3.4; see table 3.1. We tried to prove the SP property for each
scheme separately and a useful conclusion has been drawn [27]. In each section,
we present the kinetic model and its corresponding AP scheme with the SP property
followed by some numerical evidence. For the velocity space in the numerical test
cases, the standard Gaussian quadrature set is used.

Kinetic Model Scheme
Neutron transport equation Parity-equations based
Chemotaxis kinetic model UGKS

Boltzmann equation IMEX Penalization method

Table 3.1: A list of kinetic models together with their corresponding schemes.

3.2 Parity equations-based scheme for the Neutron trans-
port equation

In this section we check the parity equations-based AP scheme for the neutron
transport equation in [47, 48]. This scheme is then proven to be SP as well.

3.2.1 The neutron transport equation

Consider the1D neutron transport equation:

∂tf +
1

ε
v · ∇xf =

σT

ε2
(
1

2

∫ 1

−1

fdv′ − f)− σa(
1

2

∫ 1

−1

fdv′) + q (3.1)

with x ∈ [xL, xR] and v ∈ [−1, 1]. f = f(t, x, v) is the particle distribution function
and v is the particle velocity. We present the scheme for a simplified neutron transport
equation with σT = 1, σa = 0 , q = 0. The extension to more general cases does not
add any difficulties.

3.2.2 Discretization of the model

When σT = 1, σa = 0 , q = 0 in (3.1), the parity equations-based scheme in [48] can
be summarized by the following steps:
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• Rewrite (3.1) into two equations. For v ≥ 0,

ε∂tf(v) + v∂xf(v) =
1

ε

(
1

2

∫ 1

−1

fdv − f(v)

)
,

ε∂tf(−v)− v∂xf(−v) =
1

ε

(
1

2

∫ 1

−1

fdv − f(−v)

)
.

(3.2)

• Introduce the even and odd parities that are

r(t, x, v) =
1

2
[f(t, x, v) + f(t, x,−v)], j(t, x, v) =

1

2ε
[f(t, x, v)− f(t, x,−v)].

• Add and subtract the equations in (3.2) and rewrite them into the following
diffusive relaxation system,

∂tr + v∂xj = − 1

ε2
(r − ρr),

∂tj + ηv∂xr = − 1

ε2
[j + (1− ϵ2η)v∂xr],

(3.3)

where ρr =
∫ 1

0
rdv′ and η = η(ε) is such that, 0 ≤ η ≤ 1

ε2 in order to guarantee
the positivity of η(ε) and (1 − ϵ2η(ε)) so the problem remains well-posed
uniformly in ε. η is chosen as η(ε) = min(1, 1

ε ).

• Split the equations (3.3) into two steps:

– Relaxation step: {
∂tr = − 1

ϵ2 (r − ρr),

∂tj = − 1
ϵ2 [j + (1− ϵ2η)v∂xr].

– Transport step: {
∂tr + v∂xj = 0,

∂tj + ηv∂xr = 0.

• Discretize the two steps as follows:

– For the transport step, we use an explicit first order upwind scheme on its
diagonal form such that{

r
n+ 1

2
i = rni − v ∆t

∆xD
ujni ,

j
n+ 1

2
i = jni − ηv ∆t

∆xD
urni ,

(3.4)

where Dufn
i = fn

i+1 − fn
i and Dcfn

i =
fn
i+1−fn

i−1

2 are the upwind and the
central spatial differences respectively.
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3 AP and SP Schemes for Kinetic equations

– For the relaxation step, we use an implicit backward Euler method that
writes 

rn+1
i −r

n+1
2

i

∆t = − 1
ε2 (r

n+1
i − ρn+1

ri ),

jn+1
i −j

n+1
2

i

∆t = − 1
ε2 (j

n+1
i + (1− ϵ2η)vDc

∆xr
n+1
i ).

By integrating the above first equation over V (the velocity space), we
find, ρn+1

ri = ρ
n+ 1

2
ri . Then,{

rn+1
i = Ar

n+ 1
2

i +Bρ
n+ 1

2
ri ,

jn+1
i = Aj

n+ 1
2

i −B(1− ε2η)vDc

∆xr
n+1
i ,

(3.5)

with A and B being defined as:

A = ε2

ε2+∆t and B = ∆t
ε2+∆t .

The fully space-time discretized parity equations-based AP scheme is given by the
transport step (3.4) and the relaxation step (3.5). The boundary conditions for r and
j are the same as in [48] and are obtained using the following relations:

r + εj|x=xL
= FL(v) and r − εj|x=xR

= FR(v) (3.6)

when ε << 1, j can be approximated by,

j = −v∂xr (3.7)

from the second equation in (3.3). Hence, the boundary conditions for r and j are,

r − εv∂xr|x=xL
= FL(v) and r + εv∂xr|x=xR

= FR(v) (3.8)

j = −v∂xr (3.9)

where FL(v) and FR(v) are the inflow boundary conditions of f . The AP proof of the
scheme has previously been done [48], [47], [15].

3.2.3 SP property

The purpose of this section is to prove that the scheme has the SP property. As
mentioned in the introduction, the scheme has to meet two requirements. The first
requirement is satisfied when an AP discretization of the steady state equation is
provided. The proof is given in Appendix B. For the second requirement, we need
to prove that starting from a discrete stationary solution, the solution of the time

64



3.2 Parity equations-based scheme for the Neutron transport equation

evolutionary problem does not change. Plugging (3.4) in (3.5) and using the fact
that ρn+

1
2

r = ρn+1
r , the equations for updating rn+1 and jn+1

i can be written as:

rn+1
i − rni

∆t
+ v

Du

∆x
jni = − 1

ε2
(rn+1

i − ρn+1
ri ), (3.10a)

jn+1
i − jni

∆t
+ ηv

Du

∆x
rni = − 1

ε2
(jn+1

i + (1− ε2η)v
Dc

∆x
rn+1
i ). (3.10b)

A discrete stationary solution to (3.10) are rni and jni that satisfies:

v
Du

∆x
jni = − 1

ε2
(rni − ρnri), (3.11a)

ηv
Du

∆x
rni = − 1

ε2
[jni + (1− ε2η)v

Dc

∆x
rni ]. (3.11b)

Lemma 1. When rni and jni are solutions of the steady state equation discretization
(3.11), then rn+1

i = rni and jn+1
i = jni . Hence the parity equations-based scheme

satisfies the second requirement of the SP property.

Proof.

• For r: Since ρnri =
∫ 1

0
rni , inserting (3.11a) in (3.10a) and integrating over [0, 1]

yields ρn+1
r = ρnr .

Using (3.11a) and ρn+1
r = ρnr , (3.10a) gives

rn+1
i − rni

∆t
− 1

ε2
(rni − ρnri) = − 1

ε2
(rn+1

i − ρnri).

Hence,

(
1

∆t
+

1

ϵ2
)(rn+1

i − rni ) = 0.

and then rn+1
i = rni .

• For j: Using rn+1 = rn, (3.10b) becomes

jn+1
i − jni

∆t
+ ηv

Du

∆x
rni = − 1

ϵ2
[jn+1
i + (1− ϵ2η)v

Dc

∆x
rni ]. (3.12)

From (3.11b), (3.12) writes,

jn+1
i − jni

∆t
− 1

ϵ2
[jni + (1− ϵ2η)v

Dc

∆x
rni ] = − 1

ϵ2
[jn+1
i + (1− ϵ2η)v

Dc

∆x
rni ].

Then,

(
1

∆t
+

1

ϵ2
)(jn+1

i − jni ) = 0

and thus jn+1
i = jni .
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Using this Lemma, the scheme satisfies both requirements of the SP property as
mentioned in the bullet points in the introduction. This is because, starting from a
discrete stationary solution, our discretization of the time evolutionary problem does
not change this discrete stationary solution. This way we have shown that the parity
equations-based scheme (which is AP) has both the AP and SP properties.

3.2.4 Numerical results

To validate the AP and SP properties of the parity equations-based scheme, we use
the same initial and boundary conditions as problem 1 in section 6 in [48]. The
initial condition, given by the distribution function is f(x, v, t = 0) = 0, and the
computational domain is x ∈ [0, 1]. The boundary conditions are as in (3.8) and (3.9)
with

FL(v) = 1 and FR(v) = 0.

This data are consistent as can be seen by (3.8) and (3.9). The mesh and time step
sizes are respectively ∆x = 0.025 and ∆t = 0.0002 with the S16 Gaussian quadrature
points for the velocity. In figure 3.1, we plot the density at time t = 0.05 for ε = 10−2,
ε = 10−3, ε = 10−6 and compare it to its diffusion limit. The curves get close to
each other when ε gets very small. The curve corresponding to ε = 10−6 is exactly
on top of the curve of the diffusion limit equation. This verifies the AP property of
the scheme. Furthermore, we plot in figure 3.2 the time evolution of the distance
between the numerical stationary solution ρsr and the numerical solution ρr of the
time evolutionary equation given by the L∞ norm

||ρr − ρsr||∞ = max
j

{ρrj − ρsrj}.

One can see that this distance does not change after we reach the steady state. After
that we give the norm at discrete times in Table 3.2 where we also show that the
SP property is valid for all ε << 1. Figure 3.2 and Table 3.2 indicate that the SP
property is well satisfied.

T 0 2 4 6 8
L∞ 0.995 1.051× 10−3 1.683× 10−6 2.696× 10−9 4.120× 10−12

T 0 2 4 6 8
L∞ 1 9.111× 10−4 1.263× 10−6 1.752× 10−9 2.176× 10−12

Table 3.2: Neutron Transport: L∞-norm of the difference between the solution and the stationary solution in the
time interval [0,8] for ε = 10−2 (top) and ε = 10−8 (bottom).

3.3 UGKS scheme for the chemotaxis kinetic model

In this section we first extend the UGKS in [60, 54, 55] to the time evolutionary
chemotaxis model, then show its AP and SP properties. The AP scheme is derived by
Min Tang and Casimir Emako.
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3.3 UGKS scheme for the chemotaxis kinetic model

3.3.1 The chemotaxis kinetic model

The chemotaxis kinetic model models bacteria that undergo run and tumble process
as mentioned in [40, 70, 71]. During the run phase, bacteria move along a straight
line and change their directions during the tumble phase.

This is called the velocity jump process and can be modeled by the Othmer-
Dunbar-Alt model that writes [2, 62]:

{
∂tf + 1

εv · ∇xf = 1
ε2 [

1
|V |
∫
V
(1 + εϕ(v′ · ∂xS))f(v′)dv′ − (1 + εϕ(v · ∂xS))f(v)],

∂tS −D∆S + αS = βρ, ρ(x, t) := 1
|V |
∫
V
f(v)dv·

(3.13)
Here f(x, v, t) is the probability density function at time t, position x and moving
with velocity v; ϕ is an odd decreasing function such that ϕ(−u) = −ϕ(u); S(x, t) is
the concentration of a chemical substance where the parameters D, α, β are positive
constants; ε is the Knudsen number. When ϕ = 0, the chemotaxis kinetic model
reduces to the neutron transport equation. As ε → 0, f(x, v, t) converges to ρ0(x, t),
where ρ0(x, t) solves the following Keller-Segel equation [17, 42, 63]:

{
∂tρ0 = 1

3∆ρ0 +∇(( 1
|V |
∫
V
vϕ(v∂xS)dv)ρ0),

∂tS −D∆S + αS = βρ0.
(3.14)

3.3.2 Discretization of the model

Before discussing about the more complex equation for f , we first discretize the
equation for the chemical concentration S. Let Sn

i ≈ S(xi, t
n), the following centered

finite difference method is used to update S:

Sn+1
i − Sn

i

∆t
= D

Sn+1
i+1 − 2Sn+1

i + Sn+1
i−1

∆x2
− αSn+1

i + βρni . (3.15)

After Sn+1
i is obtained, we approximate ∂xS

n+1 by a piecewise constant function
such that

∂xS(x, t
n+1) ≈ ∂xS(xi+ 1

2
, tn+1) ≈

Sn+1
i+1 − Sn+1

i

∆x
:= σi+ 1

2
, for ∀x ∈ [xi, xi+1).

(3.16)
The UGKS is a finite volume approach for discretizing the kinetic equation of f . By
integrating the chemotaxis kinetic model (3.13) over [xi− 1

2
, xi+ 1

2
] × [tn, tn+1] × V

and letting fn
i = 1

∆x

∫ x
i+1

2
x
i− 1

2

f(x, v, tn) dx, ρni = 1
|V |
∫
V
fn
i dv, the total density ρn+1

i

67
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and density fluxes fn+1
i is updated as follows

ρn+1
i − ρni

∆t
+

Fn
i+ 1

2

− Fn
i− 1

2

∆x
= 0, (3.17)

fn+1
i − fn

i

∆t
+

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(
ρn+1
i − fn+1

i

)
+

1

ε

(
1

| V |

∫
V

ϕ(v′σi+ 1
2
)fn

i (v
′) dv′ − ϕ(vσi+ 1

2
)fn

i

)
. (3.18)

Here the numerical fluxes are given by

Φn
i+ 1

2
=

1

ε∆t

∫ tn+1

tn
vf(xi+ 1

2
, v, t) dt,

Fn
i+ 1

2
=

1

|V |

∫
V

( 1

ε∆t

∫ tn+1

tn
vf(xi+ 1

2
, v, t) dt

)
dv·

(3.19)

It is important to note that σi+ 1
2

approximates ∂xS in the interval [xi, xi+1), while fn
i

is the average density over the cell [xi− 1
2
, xi+ 1

2
). This choice is important to obtain

the correct advection term in the limit Keller-Segel model when ε becomes small.
We use discrete ordinate method for the velocity discretization, but for simplicity,
we write the scheme in continuous velocity. The most crucial step for UGKS is to
determine Φn

i+ 1
2

and Fn
i+ 1

2

. The details are listed below:

• Find the approximation of f(xi+ 1
2
, v, t). The 1D chemotaxis model (3.13)

can be rewritten as:

∂tf +
1 + εϕ(v∂xS

ε)

ε2
f +

v

ε
∂xf =

1

ε2
T 1f, (3.20)

where (T 1f)(x, t) :=
1

| V |

∫
V

(
1 + εϕ(v′∂xS)

)
f(x, v′, t)dv′. Consider the inter-

val [xi, xi+1), multiplying both sides of (3.20) by exp

(
(1+εϕ(vσ

i+1
2
)

ε2 t

)
yields

d

dt

[
f(x+

v

ε
t, v, t) exp

(
(1 + εϕ(vσi+ 1

2
)

ε2
t

)]

=
T 1f(x, t)

ε2
exp

(
(1 + εϕ(vσi+ 1

2
)

ε2
t

)
.

Integrating the above equation over (tn, t) yields to,

f(xi+ 1
2
, v, t) = f(xi+ 1

2
− v

ε
(t− tn), v, tn) exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)

+
1

ε2

∫ t

tn
T 1f(xi+ 1

2
− v

ε
(t− s), s) exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− s)

)
ds.

(3.21)
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This is an exact expression for f(xi+ 1
2
, v, t) that will be used to determine

Φn
i+ 1

2

, Fn
i+ 1

2

in (3.19). At this stage, we need to approximate f(x, v, tn) and

(T 1f)(x, t) on the right hand side of (3.21). f is approximated by a piecewise
constant function and T 1f by a piecewise linear function as follows:

f(x, v, tn) =

{
fn
i , x < xi+ 1

2
,

fn
i+1, x > xi+ 1

2
,

T 1f(x, t) =

T 1fn
i+ 1

2
+ δLT 1fn

i+ 1
2
(x− xi+ 1

2
), x < xi+ 1

2
,

T 1fn
i+ 1

2
+ δRT 1fn

i+ 1
2
(x− xi+ 1

2
), x > xi+ 1

2
.

Here, T 1fn
i+ 1

2

, δLT 1fn
i+ 1

2

, and δRT 1fn
i+ 1

2

are defined by:

T 1fn
i+ 1

2
:=

1

| V |

∫
V −

(1 + εϕ(vσi+ 1
2
))fn

i+1 +
1

| V |

∫
V +

(1 + εϕ(vσi+ 1
2
))fn

i ,

δLT 1fn
i+ 1

2
:=

T 1fn
i+ 1

2

− T 1fn
i

∆x/2
,

δRT 1fn
i+ 1

2
:=

T 1fn
i+1 − T 1fn

i+ 1
2

∆x/2
,

with V + = V ∩ R+ and V − = V ∩ R−. Substituting the above approximations
into equation (3.21) yields an expression for f(xi+ 1

2
, v, t) such that for v > 0,

f(xi+ 1
2
, v, t) = fn

i exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
+

T 1fn
i+ 1

2

1 + εϕ(vσi+ 1
2
)

×

(
1− exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

))
+ vε

δLT 1fn
i+ 1

2

(1 + εϕ(vσi+ 1
2
))2

×

[(
1 +

1 + εϕ(vσi+ 1
2
)

ε2
(t− tn)

)
exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
− 1

]
,

(3.22)
and for v < 0,

f(xi+ 1
2
, v, t) = fn

i+1 exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
+

T 1fn
i+ 1

2

1 + εϕ(vσi+ 1
2
)

×

(
1− exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

))
+ vε

δRT 1fn
i+ 1

2

(1 + εϕ(vσi+ 1
2
))2

×

[(
1 +

1 + εϕ(vσi+ 1
2
)

ε2
(t− tn)

)
exp

(
−
(1 + εϕ(vσi+ 1

2
)

ε2
(t− tn)

)
− 1

]
.

(3.23)
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• Determine Φn
i+ 1

2

, Fn
i+ 1

2

. The flux Φn
i+ 1

2

(v) in (3.19) can be approximated by

Φi+ 1
2
(v) = Avfn

i+1 +BvT 1fn
i+ 1

2
+ Cv2δRT 1fn

i+ 1
2
, for v < 0,

Φi+ 1
2
(v) = Avfn

i +BvT 1fn
i+ 1

2
+ Cv2δLT 1fn

i+ 1
2
, for v > 0,

(3.24)

where the coefficients A(v, ε,∆t), B(v, ε,∆t), and C(v, ε,∆t) can be deter-
mined explicitly, such that

A(v, ε,∆t) : =
ε

∆t
(
1 + εϕ(vσi+ 1

2
)
) (1− exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

,

B(v, ε,∆t) : =
1

ε(1 + εϕ(vσi+ 1
2
))

− ε

∆t(1 + εϕ(vσi+ 1
2
))2

(
1− exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

,

C(v, ε,∆t) : =
2ε2

∆t(1 + εϕ(vσi+ 1
2
))3

(
1− exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

− 1

(1 + εϕ(vσi+ 1
2
))2

(
1 + exp

(
−

1 + εϕ(vσi+ 1
2
)

ε2
∆t
))

.

(3.25)
Furthermore, Fn

i+ 1
2

in (3.19) is given by

Fn
i+ 1

2
=

1

|V |

∫
V −

Avfn
i+1dv +

1

|V |

∫
V +

Avfn
i dv +

1

|V |
T 1fn

i+ 1
2

∫
V

vBdv

+
1

|V |
δRT 1fn

i+ 1
2

∫
V −

Cv2dv +
1

|V |
δLT 1fn

i+ 1
2

∫
V +

Cv2dv·
(3.26)

This concludes the construction of the scheme.

3.3.3 SP property

The UGKS scheme has to meet the two requirements of the SP property. The AP
discretization of the steady state equation is given in Appendix C. For the second
requirement, we assume that we start from a steady state solution, that at the discrete
level satisfies,

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(ρni − fn

i ) +
1

ε

(
1

|V |

∫
V

ϕ(v′σi+ 1
2
)fn

i (v
′) dv′ − ϕ(vσi+ 1

2
)fn

i

)
.

(3.27)
Integrating equation (3.27) over v yields

Fn
i+ 1

2

− Fn
i− 1

2

∆x
= 0.
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From (3.17) one can deduce that,

ρn+1
i = ρni , (3.28)

which indicates that the macroscopic density is preserved. Using (3.27), the equation
of updating fn+1 in (3.18) can be written as,

fn+1
i − fn

i

∆t
=

1

ε2

(
(ρn+1

i − ρni )− (fn+1
i − fn

i )
)
.

Then from (3.28),

(
1 +

∆t

ϵ2
)
(fn+1

i − fn
i ) = 0,

which gives fn+1
i = fn

i . This concludes the SP property of the UGKS.

3.3.4 Numerical results

Parameters in equation (3.13) are chosen as in Gosse [33] such that,

χS = 1, D = 15, β = 60, α = 3.

and ϕ is of the form
ϕ(u) = −χS tanhu.

The computational domain is set to be x ∈ [−1, 1]. We impose specular boundary
conditions for f and Dirichlet conditions for S. The initial density distribution is
composed of two bumps located at x = ±0.65 given by:

f(x, v, 0) = 5(exp(−10(x−0.65)2−20(v+0.45)2)+exp(−10(x+0.65)2−20(v−0.45)2)).

We use ∆x = 2/500 for the space discretization and v ∈ [−1, 1] with the S32 Gaussian
quadrature points for the velocity. The limiting scheme of the UGKS is an explicit
solver for the diffusion equation. Therefore, to ensure the stability of the numerical
scheme, the time step ∆t is chosen as below

∆t =

{
0.5∆x2, for ε < ∆x,

0.5ε∆x, else.

In order to verify the AP property of our scheme, the total densities ρ at time t = 1 are
displayed in figure 3.3 for different values of ε ranging from 10−2 to 10−6. In order to
check the SP property, we give the time evolution of the L∞-norm of the difference
between the solution and the stationary solution in the time interval [0,100] in
Table 3.3 for ε = 1 and ε = 10−3. These results ensure that the SP property is
independent of ε.
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T 0 30 60 65 100
L∞ 0.9064 8.260× 10−7 3.767× 10−11 7.474× 10−12 1.662× 10−12

T 0 5 10 50 100
L∞ 0.6493 3.024× 10−7 2.064× 10−9 2.199× 10−10 1.476× 10−10

Table 3.3: Chemotaxis: L∞-norm of the difference between the solution and the stationary solution in the time
interval [0,100] for ε = 1 (top) and ε = 10−3 (bottom).

3.4 IMEX scheme with the Penalization method for the Boltz-
mann equation

In this section, we consider the penalization method developed in [29] for the
Boltzmann equation. This method together with an IMEX discretization of the
equation give an AP scheme for the Boltzmann equation. One can find the AP proof
in [29]. Here we show that the penalization method is not only AP but also SP. In
[25], the authors propose a multistep high order IMEX AP scheme for the BGK model
and the Boltzmann equation. The scheme is originally developed for the BGK model
and then extended by the penalization method to the Boltzmann equation. One can
think of the scheme proposed in [25] as the high order version of the scheme in [29].
The authors prove that the IMEX AP scheme, without penalization, is SP uniformly in
ε. Our criterion can be applied successfully to the high order IMEX AP scheme in [25]
after penalization. Our proof, in contrast to theirs, requires the linear dependence of
the Maxwellian of the collision operator.

3.4.1 The Boltzmann equation

The Boltzmann equation describes the time evolution of the density distribution of
gas particles. It is given by

∂tf + v · ∇xf =
Q(f)

ε
.

Here f(x, v, t) is the probability density distribution of particles at time t, position
x and with velocity v. Q is the Boltzmann collision operator where only binary
interactions are considered. Let (v, v∗) and (v′, v′∗) be respectively the velocities of
the two colliding particles before and after the collision related by{

v′ = 1
2 ((v − v∗)− |v − v∗|σ),

v′∗ = 1
2 ((v − v∗) + |v − v∗|σ).

With σ ∈ Sdv−1. Q is given by

Q(f)(v) =

∫
Rdv

∫
Sdv−1

B(|v − v∗|, cos θ)(f(v′∗)f(v′)− f(v∗)f(v))dσdv∗. (3.29)
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The collision kernel B is a non-negative function given by B(|u|, cos θ) = Cλ|u|λ,
where u = (v−v∗)

|v−v∗| and cos θ = u · σ, for some λ ∈ [0, 1] and a constant Cλ > 0. For
more details, one can look at the Boltzmann equation description in [29]. ε is the
dimensionless Knudsen number and

∫
v
ω(v)Q(f)dv = 0 for ω(v) = (1, v, |v|2). The

equilibrium distribution of Q is the Maxwellian distribution Mρ,u,T , i.e. Q(Mρ,u,T ) =
0 and it is given by,

Mρ,u,T (v) =
ρ

(2πT )
dv
2

1

exp |v−u|2
2T

,

where ρ, u, and T are the density, velocity and temperature of the gas, and dv is the
dimension of the velocity space. As ε → 0, the zeroth, first and second moments of
the distribution function solve the Euler equations.

3.4.2 IMEX scheme with the penalization method

The penalization method was originally developed in [29, 47]. The purpose is to split
the collision term of the Boltzmann equation into a stiff part and less stiff part. More
precisely, the Boltzmann equation is written in the following form:

∂tf + v · ∇xf =
Q(f)− P (f)

ε
+

P (f)

ε
,

where Q(f) is the Boltzmann collision operator and P (f) is a relaxation operator,
namely P (f) = β[Mρ,u,T (v)− f(v)], where β is a strictly positive parameter. P (f)
has the same equilibrium as Q(f). It satisfies

∫
v
P (f)ω(v)dv = 0 for ω(v) = (1, v, |v|2)

and P (Mρ,u,T ) = 0. As in [29], βn is chosen to be 2πρn such that both operators
P (f) and the full Boltzmann operator Q(f) have the same loss term corresponding
to the dissipative part.

The following IMEX discretization of the Boltzmann equation is proposed in [29]:

fn+1 − fn

∆t
+ v · ∇xf

n =
Q(fn)− P (fn)

ε
+

P (fn+1)

ε
. (3.30)

For the discretization of the Boltzmann operator, one can use a fast spectral Fourier-
Galerkin method [30], and for the transport part, a first or second order finite volume
scheme can be employed. This gives an AP discretization for the Boltzmann equation
as proven in [29].

3.4.3 SP property

Because we computed our numerical results in a space homogeneous set up, proving
that the discretization of the steady state equation is AP, is unnecessary, knowing
that the full scheme is AP [29]. We only need to prove that starting from a discrete
stationary solution, the solution of the time evolutionary problem does not change.
Suppose that the solution satisfies the stationary equation at time tn, i.e.

v · ∇xf
n =

Q(fn)− P (fn)

ε
+

P (fn)

ε
. (3.31)
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It follows from the properties of the collision operator Q and the relaxation operator
P that: ∫

v

ω(v)v · ∇xf
n = 0, (3.32)

with ω(v) = (1, v, |v|2).
Now multiply (3.30) by ω(v) and integrate over the velocity space. Using the

conservation properties of Q, P and (3.32), one observes that the Maxwellian of the
distribution function is preserved. Substituting (3.31) in (3.30) gives,

fn+1 − fn

∆t
=

−P (fn)

ε
+

P (fn+1)

ε
.

Now, we plug in P by its defnition P (f) = β[Mρ,u,T (v)− f(v)],

fn+1 − fn

∆t
= −βn[Mn − fn]

ε
+

βn+1[Mn+1 − fn+1]

ε
.

Since Mn+1 = Mn and βn+1 = βn, fn+1 = fn and the steady state is preserved.

3.4.4 Numerical results

In this section, we consider the 2D Bose gas experiment 3.3 in [41] to test the AP and
the SP property of the penalization method presented in [29]. We solve the space
homogeneous quantum Boltzmann equation in 2D velocity space which is a special
case of the classical Boltzmann equation for a particular collision operator Qq.

∂tf =
Qq(f)− P (f)

ε
+

P (f)

ε
.

As defined in [41], the quantum collision operator is another version of the collision
operator (3.29) and given by

Qq(f)(v) =

∫
Rdv

∫
Sdv−1

B(|v − v∗|, cos θ)
(
f ′
∗f

′(1± θ0f)(1± θ0f∗)

− f∗f(1± θ0f
′)(1± θ0f

′
∗)
)
dσdv∗

where θ0 = hdv and h is the rescaled Planck constant. The upper sign corresponds to
the Bose gas, while the lower sign to the Fermi gas. In this experiment we consider
the Bose gas case. The idea can be extended to more general collision operators.
Hence, scheme (3.30) is simplified to

fn+1 =
ε

ε+ βn+1∆t
fn +∆t

Qq(f
n)− P (fn)

ε+ βn+1∆t
+

βn+1∆t

ε+ βn+1∆t
Mn+1.

The initial distribution function is given as in [41],

f0(v) =
ρ0

4πT0

(
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

))
,
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where ρ0 = 1, T0 = 3/8, and u0 = (1, 1/2). The computational domain is [−8, 8]
2

with 64 grid points. The quantum Maxwellian [41] is given as,

Mq(v) =
1

θ0

1

z−1 exp |v−u|2
2T − 1

,

where θ0 = 0.12, z = 0.001590, T = 1 is the temperature, and u = 0 is the macro-
scopic velocity. In figure 3.4, we test the AP property of the penalization method. A
cross section of the distribution function for different values of ε is plotted on the left
and a zoomed part of the plot on the right. The curves get closer to each other as ε
converges to 0 which implies the AP property. Next, we investigate the SP property.

Figure 3.5 shows contours of the 2D distribution function and the contour lines
of the difference between the distribution function f and its equilibrium at t = 200.
We computed the L∞-norm of the difference between f and its equilibrium in the
time interval [0, 200] in figure 3.6 as evidence that f converges exponentially to the
equilibrium. Table 3.4 presents the L∞ norm of the distances between the time
evolutionary simulation and the equilibrium at some discrete times, where one can
find exactly when the initial distribution function reaches its equilibrium.

T 0 20 50 100 150 200
L∞ 0.545 1.2× 10−3 6.58× 10−7 3.49× 10−12 7.61×10−13 5.62×10−13

Table 3.4: Boltzmann: L∞-norm of the difference between f and its equilibrium starting from t=0 until the final time
t=200 for ε = 1.

3.5 Conclusion

Proving the SP property for the three AP schemes, leads neadly to a criterion, empha-
sising that AP schemes with a discretization that linearly depends on the Maxwellian
are also SP [27]. We realized that the linear dependency on the Maxwellian in the
source term is the key to proving that the moments are being updated explicitly not
implicitly. This in turn is the key to proving ultimately that the updated solution at
the next time tn+1 does not change in the case of steady state solutions.
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Figure 3.1: Neutron Transport: Left: the density ρr at time t = 0.05 for ε = 10−2, ε = 10−3, ε = 10−6 and the
solution of the diffusion limit equation; right: a zoomed part of the left plot.
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Figure 3.2: Neutron Transport: time evolution of the L∞-norm of the difference between the solution and the
stationary solution in the time interval [0,8] for ε = 10−8.
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Figure 3.3: Chemotaxis: left, the density ρ at time t = 1 for ε = 10−2, 10−3, 10−4, 10−5, 10−6; right, a zoomed
part of the left plot.
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the distribution function and its equilibrium (bottom) at the final time t = 200.
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Chapter 4

AP and SP Schemes for the Isentropic Eu-
ler Equations with Gravity

4.1 Introduction

The resulted criterion at the kinetic level causes us to consider how to translate this
to the fluid level. For this reason, we consider again a fluid model in this section
and we try to develop an AP scheme and investigate the relationship between AP
and SP properties for fluid models [50]. We start with a special case of the Euler
system, namely the isentropic Euler system. We extend the AP scheme developed
by Goudon et al. for the isentropic Euler equations to the case with gravitational
source term. In section 4.2, we introduce the model. We present the AP and SP
semi-discrete numerical scheme in section 4.3 and the fully-dicrete scheme in the 1D
and 2D framework in section 4.4. Some numerical test cases from the litrature to
validate the properties of the scheme are considered in section 4.5.

4.2 The Isentropic Euler Equations with Gravity

4.2.1 The model

The Isentropic Euler equations with gravitational source term is a special case of the
Euler equations (2.49) and is given by,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu ⊗ u) +∇p(ρ) = −ρ∇ϕ.
(4.1)

Where ρ is the density, u is the velocity field, p is the pressure, and ρu is the momen-
tum. The pressure law is given by p(ρ) = Aργ , where A and γ are positive constants.
ϕ is the gravitational potential, a given function of space.

4.2.2 Scaling

One scales the equations (4.1) to describe the low Mach number (incompressible)
limit. Let x0, t0, ρ0, p0, u0 be a set of characteristic scales for the variables. The
dimensionless variables are then given by, x̂ = x

x0
, t̂ = t

t0
, ϕ̂ = ϕ

ϕ0
, ... with ϕ0 = p0

ρ0
.
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Substitute the variables in the equations,

1

t0
∂t̂(ρ̂ρ0) +

1

x0
∇.x̂(ρ̂ρ0ûu0) = 0,

1

t0
∂t̂(ρ̂ρ0ûu0) +

1

x0
∇.x̂(ρ̂ρ0ûu0 ⊗ ûu0) +

1

x0
∇x̂(p̂p0) = −(ρ̂ρ0)

1

x0
∇.x̂(ϕ̂ϕ0).

(4.2)

then,

ρ0
t0

∂t̂ρ̂+
ρ0u0

x0
∇.x̂(ρ̂û) = 0,

ρ0u0

t0
∂t̂(ρ̂û) +

ρ0u2
0

x0
∇.x̂(ρ̂û ⊗ û) +

p0
x0

∇x̂(p̂) = −ρ0ϕ0

x0
ρ̂∇.x̂ϕ̂.

(4.3)

Drop the hat,

ρ0
t0

∂tρ+
ρ0u0

x0
∇.(ρu) = 0,

ρ0u0

t0
∂t(ρu) +

ρ0u2
0

x0
∇.(ρu ⊗ u) +

p0
x0

∇p = −ρ0ϕ0

x0
ρ∇ϕ.

(4.4)

Multiply by t0
ρ0

and use the fact that u0 = x0

t0
,

∂tρ+∇.(ρu) = 0,

u0∂t(ρu) + u0∇.(ρu ⊗ u) +
p0

ρ0u0
∇p = −ϕ0

u0
ρ∇ϕ.

(4.5)

So,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu ⊗ u) +
p0

ρ0u2
0

∇p = −ϕ0

u2
0

ρ∇ϕ.
(4.6)

Then,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu ⊗ u) +
1

ε2
∇p(ρ) = − 1

ε2
ρ∇ϕ,

(4.7)

are the non-dimensionalized equations with ε2 =
ρ0u2

0

P0
. Taking the gravitational

source term to the left-hand side and using the pressure law, system (4.7) is then,

∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu ⊗ u) +
1

ε2
ρ∇W = 0,

(4.8)

with
W =

Aγ

γ − 1
ργ−1 + ϕ. (4.9)
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4.2.3 The incompressible limit equations

Assume that the Chapman-Enskog asymptotic expansions of the variables are,

ρ = ρ(0) + ερ(1) + ε2ρ(2) + ...

u = u(0) + εu(1) + ε2u(2) + ...

W = W (0) + εW (1) + ε2W (2) + ... .

The expansion of ρ∇W can be seen as,

ρ∇W = (ρ(0) + ερ(1) + ε2ρ(2) + · · · )∇(W (0) + εW (1) + ε2W (2) + · · · ),

= ρ(0)∇W (0) + ε
(
ρ(0)∇W (1) + ρ(1)∇W (0)

)
+ ε2

(
ρ(0)∇W (2) + ρ(1)∇W (1) + ρ(2)∇W (0)

)
+ · · · . (4.10)

Comparing the O( 1
ε2 ) terms in system (4.8) and using ρ(0) ̸= 0, one deduces that

∇W (0) = 0. Then looking at the O( 1ε ) terms yields ∇W (1) = 0. From the definition
of W in (4.9), ∇W (0) = 0 leads to,

Aγ

γ − 1

(
ρ(0)

)γ−1
+ ϕ(x) = c

with c being a constant independent of x.(
ρ(0)

)γ−1
+

γ − 1

Aγ
ϕ(x) = c′

with c′ being a constant independent of x. c′ is proved to be 1 by the boundary
conditions of ρ.

ρ(0) =

(
1− γ − 1

γA
ϕ(x)

) 1
γ−1

, (4.11)

which indicates that when ε ≪ 1, ρ(0) becomes stationary. To find the equation that
u(0) satisfies, we consider the O(1) terms in system (4.8) such that

∂tρ
(0) +∇ · (ρ(0)u(0)) = 0,

∂t(ρ
(0)u(0)) +∇ · (ρ(0)u(0) ⊗ u(0)) + ρ(0)∇W (2) + ρ(1)∇W (1) + ρ(2)∇W (0) = 0.

(4.12)

Using ∇W (0) = ∇W (1) = 0, system (4.12) can be written as

∇ · (ρ(0)u(0)) = 0,

∂tu(0) + u(0)∇ · u(0) +∇W (2) = 0.
(4.13)

(4.13) is the incompressible isentropic Euler equations.
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4.3 Semi-discrete Numerical Scheme

4.3.1 The scheme

Following the splitting technique introduced in [37] and used in [34], we split the
divergence in the density equation as well as the pressure and the gravitational source
term in the momentum equation. Let

ρ0 =

(
1− γ − 1

γA
ϕ(x)

) 1
γ−1

.

System (4.7) can be written as:

∂tρ+ α∇ · (ρu) + (1− α)∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu ⊗ u) +
1

ε2
∇ [p(ρ)− a(t)ρ] +

1

ε2
a(t)∇ρ

= − 1

ε2
ρ∇ϕ− a(t)

ε2
ρ∇ ln ρ0 +

a(t)

ε2
ρ∇ ln ρ0.

(4.14)

We will see the necessity of this modification in the AP proof later on. The system is
splitted into the following two subsystems:

∂tρ+ α∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu ⊗ u) +
1

ε2
∇ [p(ρ)− a(t)ρ] = − 1

ε2
ρ∇ϕ− a(t)

ε2
ρ∇ ln ρ0,

(4.15)

and

∂tρ+ (1− α)∇ · (ρu) = 0,

∂t(ρu) +
1

ε2
a(t)∇ρ =

a(t)

ε2
ρ∇ ln ρ0,

(4.16)

where 0 ≤ α < 1 is a constant and the time dependent function a(t) > 0 depends on
the hyperbolicity of the system (4.15). The first system (4.15) takes into account the
slow speed, in the conservative form, it can be written as

Ut + F (U)x +G(U)y = S(U), (4.17)

with

U =

 ρ
ρu
ρv

 , F (U) =

 αρu

ρu2 + p(ρ)−a(t)ρ
ε2

ρuv

 ,

G(U) =

 αρv
ρuv

ρv2 + p(ρ)−a(t)ρ
ε2

 , S(U) =

 0

− 1
ε2 ρϕx − a(t)

ε2 ρ(ln ρ0)x
− 1

ε2 ρϕy − a(t)
ε2 ρ(ln ρ0)y

 ,
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where u = (u, v)T . The eigenvalues of the jacobian matrix of F (U) are

λ1 = u, λ2 = u+ c, λ3 = u− c, with c(ρ, u) =

√
(1− α)u2 + α

p′(ρ)− a(t)

ε2
.

Similar calculations hold for G(U), the flux along y. The choice of a(t) is to guarantee
the hyperbolicity of the system (4.15). We choose a(t) such that the eigenvalues of
the jacobian matrices of F (U), G(U) are real and positive i.e. p′(ρ) ≥ a(t).

Hence, a(t) is chosen as the following, a(t) = min
x

{p′(ρ)}. But, with this choice,

spurious oscillations are observed in some test cases for large values of ε. They appear
in regions where the density is nearly uniform and the material velocity vanishes.
Indeed, in these regions, the corresponding sound speed vanishes and the spurious
oscillations are probably due to a lack of numerical diffusion in the Slow Dynamic
part of the splitting. Now, we add the function l(t) that eliminates the spurious
oscillations that might appear for large ε. Thus, a(t) = min

x
{p′(ρ)} − l(t)ε2, l(t) is a

constant such that a(t) ≥ l(t)(1− ε2) > 0 for ε < 1. In the numerical tests we choose
l(t) = 0 or l(t) = 1, for more details, see [34]. Let ∆t be the time step, t0 = 0, and
for a positive integer n, we set tn+1 = tn +∆t. The two subsystems (4.15), (4.16)
can now be discretized as,{

ρ∗−ρn

∆t + α∇ · (ρu)n = 0,
(ρu)∗−(ρu)n

∆t +∇ · (ρu ⊗ u)n + 1
ε2∇ [p(ρ)− a(t)ρ]

n
= − 1

ε2 ρ
n∇ϕ− an

ε2 ρ
n∇ ln ρ0,

(4.18)
and {

ρn+1−ρ∗

∆t + (1− α)∇ · (ρu)n+1 = 0,
(ρu)n+1−(ρu)∗

∆t + 1
ε2 a(t

n)∇ρn+1 = an

ε2 ρ
n+1∇ ln ρ0.

(4.19)

4.3.2 The AP property

To illustrate the idea, we start from the AP proof of the semi-discretized scheme. By
substituting ρ∗, u∗ from the first system (4.32) into the second one (4.33), the two
semi-discrete systems (4.32) and (4.33) can be viewed as,

ρn+1 − ρn

∆t
+ α∇ · (ρu)n + (1− α)∇ · (ρu)n+1 = 0,

(ρu)n+1 − (ρu)n

∆t
+∇ · (ρu ⊗ u)n +

1

ε2
∇ [p(ρ)− aρ]

n
+

1

ε2
an∇ρn+1

= − 1

ε2
ρn∇ϕ− an

ε2
ρn∇ ln ρ0 +

an

ε2
ρn+1∇ ln ρ0.

(4.20)
In order to prove the AP property of the semi-discrete scheme we need to prove that
as ε goes to zero, (4.20) is a good discretization of the incompressible limit equation
(4.13).
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We reformulate the momentum equation in (4.20) before the expansion, as at the
PDE level. Let

M(ρ) =

∫ ρ

q

1

ρ′
dρ′, N(ρ) =

∫ ρ

q

Aγ(ρ′)γ−2dρ′ (4.21)

with q > 0 being a constant independent of ρ. We write the last two terms on the
left hand side of the momentum equation in (4.20) and its right hand side, into the
multiplication of ρ and a term of divergence form:

• The two terms involving ρn+1.

1

ε2
an∇ρn+1 − an

ε2
ρn+1∇ ln ρ0 =

an

ε2
[
∇ρn+1 − ρn+1∇ ln ρ0

]
=

an

ε2
ρn+1

[
∇M(ρn+1)−∇ ln ρ0

]
.

The last equality holds due to the definition of M(ρ) in (4.21).

• The two terms involving ρn.

1

ε2
∇ [p(ρ)− a(t)ρ]

n
+

1

ε2
ρn∇ϕ+

an

ε2
ρn∇ ln ρ0

=
1

ε2
[
γA(ρn)γ−1∇ρn − an∇ρn + anρn∇ ln ρ0 + ρn∇ϕ

]
,

=
1

ε2
ρn
[
γA(ρn)γ−2∇ρn +∇ϕ− an

∇ρn

ρn
+ an∇ ln ρ0

]
,

=
1

ε2
ρn [∇N(ρn) +∇ϕ− an[∇M(ρn)−∇ ln ρ0]] .

The last equality holds due to the definition of N(ρ) in (4.21).

Hence, the momentum equation can be rewritten as,

(ρu)n+1 − (ρu)n

∆t
+∇ · (ρu ⊗ u)n +

1

ε2
ρn
[
∇N(ρn) +∇ϕ

− an[∇M(ρn)−∇ ln ρ0]
]
+

an

ε2
ρn+1

[
∇M(ρn+1)−∇ ln ρ0

]
= 0. (4.22)

And the semi-discrete system of equations (4.20) can be rewritten as,

ρn+1 − ρn

∆t
+ α∇ · (ρu)n + (1− α)∇ · (ρu)n+1 = 0,

(ρu)n+1 − (ρu)n

∆t
+∇ · (ρu ⊗ u)n +

1

ε2
ρn [∇N(ρn) +∇ϕ− an[∇M(ρn)−∇ ln ρ0]]

+
an

ε2
ρn+1

[
∇M(ρn+1)−∇ ln ρ0

]
= 0.

(4.23)
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Definition 1. (ρ, u, v) are said to be well-prepared data if they satisfy,

ρn = ρ(0) + ερ(1) +O(ε2) =

(
1− γ − 1

γA
ϕ

) 1
γ−1

+O(ε2), ∇ · (ρ(0)u(0)n) = 0.

(4.24)

Lemma 2. Choose (ρ, u, v) to be well-prepared, then when ε ≪ 1,

L =
1

ε2
ρn [∇N(ρn) +∇ϕ− an[∇M(ρn)−∇ ln ρ0]]

= ρ(0)∇
[
(N(ρn))(2) − a(0)(M(ρn))(2)

]
+O(ε).

Proof. Let the expansion of an be given by

an = a(0)n + εa(1)n + ε2a(2)n +O(ε3). (4.25)

Due to (4.24), from the definition a(t) = min
x

{p′(ρ)}, we find

a(0)n = min
x

{p′(ρ(0))} = a(0), a(1)n = 0. (4.26)

Moreover, the expansions of M(ρn) = Mn and N(ρn) = Nn around ρ(0) are given as

Mn = M(ρn) =M
(
ρ(0) + ερ(1) + ε2ρ(2)n +O(ε3)

)
,

=M(ρ(0)) + ε(ρ(1) + ερ(2)n)M
′
(ρ(0))

+
ε2

2
(ρ(1) + ερ(2)n)2M

′′
(ρ(0)) +O(ε3),

=M(ρ(0)) + ε2ρ(2)nM
′
(ρ(0)) +O(ε3),

Nn = N(ρn) =N(ρ(0)) + ε2ρ(2)nN
′
(ρ(0)) +O(ε3).

(4.27)

Due to the definition of M(ρ) and ρ(0), we have

ln(ρ(0))γ−1 = ln
(
1− γ − 1

γA
ϕ
)
.

Thus,

(γ − 1)
∇ρ(0)

ρ(0)
=

−γ−1
γA ∇ϕ

(1− γ−1
γA ϕ)

which gives

(∇Mn)(0) −∇ ln ρ0 =
1

ρ(0)
∇ρ(0) −∇ ln ρ0 = 0.

Similarly, using the definitions of N(ρ) and the definition of ρ(0) in (4.11), we have

(∇Nn)(0) +∇ϕ = ∇N(ρ(0)) +∇ϕ = 0.
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Therefore, from the above results, we find

L =
ρ(0)

ε2

[
(∇Nn)(0) +∇ϕ− a(0)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+

ρ(0)

ε

[
(∇Nn)(1) − a(0)n(∇Mn)(1) − a(1)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+

ρ(1)

ε

[
(∇Nn)(0) +∇ϕ− a(0)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+ ρ(0)

[
(∇Nn)(2) − a(0)n(∇Mn)(2) − a(1)n(∇Mn)(1) − a(2)n[(∇Mn)(0) −∇ ln ρ0]

]
+ ρ(1)

[
(∇Nn)(1) − a(0)n(∇Mn)(1) − a(1)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+ ρ(2)n

[
(∇Nn)(0) +∇ϕ− a(0)n

[
(∇Mn)(0) −∇ ln ρ0

]]
+O(ε)

=ρ(0)
[
(∇Nn)(2) − a(0)(∇Mn)(2)

]
+O(ε).

Hence, we conclude the proof of the lemma.

Then we compare O( 1
ε2 ) terms in the momentum equation in (4.23) and the only

term left of order 1
ε2 is,

a(0)ρ(0)n+1
[
(∇Mn+1)(0) −∇ ln ρ0

]
= 0,

but a(0) ̸= 0 and ρ(0)n+1 ̸= 0, thus

(∇Mn+1)(0) = ∇ ln ρ0. (4.28)

Then
∇ln(ρ(0)n+1) = ∇ln(1− γ − 1

γA
ϕ)

1
γ−1 ,

which yields

ln(ρ(0)n+1)γ−1 = ln(1− γ − 1

γA
ϕ) + c,

and ρ(0)n+1 satisfies

ρ(0)n+1 = c

(
1− γ − 1

γA
ϕ

) 1
γ−1

.

Here c is an arbitrary constant determined by the boundary condition of ρ. If the
boundary condition of ρ does not change with time, from the definition of ϕ(x), we
find ρ(0)n+1 = ρ(0). The O( 1ε ) terms in the momentum equation (4.22) are

a(0)nρ(0)n+1(∇Mn+1)(1) +
(
a(0)nρ(1)n+1 + a(1)nρ(0)n+1

)
∇
[
M (0)n+1 − ln ρ0

]
= 0.

Due to (4.28), (∇Mn+1)(1) = 0. The boundary condition of ρn+1 leads to ρ(1)n+1 = 0.
Now compare O(1) terms in the density equation in (4.20),

ρ(0)n+1 − ρ(0)n

∆t
+ α∇ · (ρ(0)u(0))n + (1− α)∇ · (ρ(0)u(0))n+1 = 0. (4.29)
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Because ρ(0)n+1 = ρ(0)n = ρ(0) is time independent and the initial data are well
prepared, then equation (4.29) gives

∇ · (ρ(0)u(0)n+1) = 0. (4.30)

Compare O(1) terms in the momentum equation,

(ρ(0)u(0))n+1 − (ρ(0)u(0))n

∆t
+∇ · (ρ(0)u(0) ⊗ u(0))n + ρ(0)∇

(
(Nn)(2) − a(0)(Mn)(2)

)
+ a(0)ρ(0)n+1(∇Mn+1)(2) +

(
a(0)ρ(1)n+1 + a(1),nρ(0)n+1

)
(∇Mn+1)(1)

+
(
a(0)ρ(2)n+1 + a(1)nρ(1)n+1 + a(2)nρ(0)n+1

)
∇
[
M (0)n+1 − ln ρ0

]
= 0.

Using the fact that ρ(0)n+1 = ρ(0)n = ρ(0) is constant in time and (∇Mn+1)(0) =
∇ ln ρ0 and (∇Mn+1)(1) = 0, the equation simplifies to,

u(0)n+1 − u(0)n

∆t
+ u(0)n∇ · u(0)n +∇(Nn − a(0)Mn + a(0)Mn+1)(2) = 0.

Therefore, as ε goes to zero, the solution of (4.20) converges to

∇ · (ρ(0)u(0))n+1 = 0,

u(0)n+1 − u(0)n

∆t
+ u(0)n∇ · u(0)n + (∇Wn+1)(2) = 0,

(4.31)

with Wn+1 = Nn−a(0)Mn+a(0)Mn+1. Therefore, (4.31) is a good discretization of
the incompressible limit equations (4.13) and the semi-discrete scheme (4.20) is AP.

4.4 Fully discrete Numerical Scheme

In order to complete the presentation of the numerical scheme, we still need space
discretization. In this work, we follow the staggered discretization on a Cartesian
grid suggested by Goudon et al. [34] which follows the principles of MAC schemes
[38]. System (4.20) splits into two systems, the slow explicit system:{

ρ∗−ρn

∆t + α∇ · (ρu)n = 0,
(ρu)∗−(ρu)n

∆t +∇ · (ρu ⊗ u)n + 1
ε2∇ [p(ρ)− a(t)ρ]

n
= − 1

ε2 ρ
n∇ϕ− an

ε2 ρ
n∇ ln ρ0,

(4.32)
and {

ρn+1−ρ∗

∆t + (1− α)∇ · (ρu)n+1 = 0,
(ρu)n+1−(ρu)∗

∆t + 1
ε2 a(t

n)∇ρn+1 = an

ε2 ρ
n+1∇ ln ρ0.

(4.33)

We will deal with each system separately in one and two space dimensions.
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4.4.1 The 1D numerical scheme

In the 1D setup, our computational domain Ω = [xL, xR], an interval of the real axis, is
partitioned into subintervals [xi, xi+1], for i ∈ {1, ..., N}. We define xi+ 1

2
= xi+xi+1

2 as
centers of the subintervals. Let ∆xi,∆xi+ 1

2
be the length of the interval [xi− 1

2
, xi+ 1

2
]

and [xi, xi+1] respectively. In our calculations, we set ∆xi = ∆xi+ 1
2
= ∆x.

The density ρ is evolved on the centers xi+ 1
2

of the primal cells. The velocity u

is evaluated on the points xi . The density on the edges of the primal mesh can be
defined by averages,

ρi =
ρi+ 1

2
+ ρi− 1

2

2
. (4.34)

We start by presenting a discretization for the slow explicit system (4.32),

ρ∗
i+1

2
−ρn

i+1
2

∆t + α
[
Fi+1−Fi

∆x

]
= 0,

ρ∗
i u

∗
i −ρn

i u
n
i

∆t +
ζ
i+1

2
−ζ

i− 1
2

∆x + 1
ε2

Πn

i+1
2
−Πn

i− 1
2

∆x = − 1
ε2 ρ

n
i

ϕ
i+1

2
−ϕ

i− 1
2

∆x

−an

ε2 ρ
n
i

ln ρ
0,i+1

2
−ln ρ

0,i− 1
2

∆x .

(4.35)

With Πn
i+ 1

2

is the modified pressure term at the node xi+ 1
2

and is defined as

Πn
i+ 1

2
= p
(
ρni+ 1

2

)
− andρ

n
i+ 1

2
.

and is the discrete version of the time dependent function a(t) at time tn, defined as

and = min
i

{
p′(ρni+ 1

2
)
}
− lε2.

The flux terms in the density equation are computed with the following formula,

Fi = F+
i + F−

i = F+(ρi− 1
2
, ui) + F−(ρi+ 1

2
, ui),

with

F+(ρ, u) =


0 if u ≤ −c(ρ, u)

ρ
4c(ρ,u) (v + c(ρ, u))2 if |u| ≤ c(ρ, u)

ρu if u ≥ c(ρ, u)

F−(ρ, u) =


ρu if u ≤ −c(ρ, u)

− ρ
4c(ρ,u) (v − c(ρ, u))2 if |u| ≤ c(ρ, u)

0 if u ≥ c(ρ, u)

The flux terms in the momentum equation are computed as the following,

ζi+ 1
2
= uiF

+
i+ 1

2

+ ui+1F
+
i+ 1

2

,
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with

F±
i+ 1

2

=
1

2

(
F±
i + F±

i+1

)
.

The next step is to discretize the fast implicit system (4.33),
ρn+1

i+1
2

−ρ∗
i+1

2

∆t + (1− α)

[
(Fn+1)Up

i+1−(Fn+1)Up
i

∆x

]
= 0,

ρn+1
i un+1

i −ρ∗
i u

∗
i

∆t +
an
d

ε2

ρn+1

i+1
2

−ρn+1

i− 1
2

∆x =
an
d

ε2 ρ
n+1
i

ln ρ
0,i+1

2
−ln ρ

0,i− 1
2

∆x .

(4.36)

Here (Fn+1)Up
i is the upwind flux function obtained as following,

(Fn+1)Up
i = ρn+1

i− 1
2

[
un+1
i

]+ − ρn+1
i+ 1

2

[
un+1
i

]−
.

Where
[
X
]+

= |X|+X
2 . Now, in order to solve this implicit system we first write un+1

i

from the momentum equation in (4.36) as a function of ρn+1,

un+1
i =

1

ρn+1
i

[
ρ∗i u

∗
i −

an∆t

ε2

ρn+1
i+ 1

2

− ρi− 1
2

∆x
+
an∆t

ε2
ρn+1
i

ln ρ0,i+ 1
2
− ln ρ0,i− 1

2

∆x

]
. (4.37)

Substitute the flux terms by their values in the density equation,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

[
un+1
i+1

]+ − ρn+1
i+ 3

2

[
un+1
i+1

]−
− ρn+1

i− 1
2

[
un+1
i

]+
+ ρn+1

i+ 1
2

[
un+1
i

]−]
= 0. (4.38)

Keeping in mind that
[
X
]+

= |X|+X
2 ,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

|un+1
i+1 |+ un+1

i+1

2
− ρn+1

i+ 3
2

|un+1
i+1 | − un+1

i+1

2

− ρn+1
i− 1

2

|un+1
i |+ un+1

i

2
+ ρn+1

i+ 1
2

|un+1
i | − un+1

i

2

]
= 0. (4.39)

Rearranging the terms yields to,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2
|un+1

i+1 |+
ρn+1
i+ 1

2

+ ρn+1
i+ 3

2

2
un+1
i+1

+
ρn+1
i+ 1

2

− ρn+1
i− 1

2

2
|un+1

i | −
ρn+1
i+ 1

2

+ ρn+1
i− 1

2

2
un+1
i

]
= 0. (4.40)
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However, from the definition of ρn+1
i , the equation can be rewritten into this

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2
|un+1

i+1 |+ ρn+1
i+1 u

n+1
i+1

+
ρn+1
i+ 1

2

− ρn+1
i− 1

2

2
|un+1

i | − ρn+1
i un+1

i

]
= 0. (4.41)

Next, we substitute un+1
i by its value in the density equation,

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2ρn+1
i+1∣∣∣ρ∗i+1u

∗
i+1 −

an∆t

ε2

ρn+1
i+ 3

2

− ρi+ 1
2

∆x
+

an∆t

ε2
ρn+1
i+1

ln ρ0,i+ 3
2
− ln ρ0,i+ 1

2

∆x

∣∣∣
+
(
ρ∗i+1u

∗
i+1 −

an∆t

ε2

ρn+1
i+ 3

2

− ρi+ 1
2

∆x
+

an∆t

ε2
ρn+1
i+1

ln ρ0,i+ 3
2
− ln ρ0,i+ 1

2

∆x

)
+

ρn+1
i+ 1

2

− ρn+1
i− 1

2

2ρn+1
i∣∣∣ρ∗i u∗

i −
an∆t

ε2

ρn+1
i+ 1

2

− ρi− 1
2

∆x
+

an∆t

ε2
ρn+1
i

ln ρ0,i+ 1
2
− ln ρ0,i− 1

2

∆x

∣∣∣
−
(
ρ∗i u

∗
i −

an∆t

ε2

ρn+1
i+ 1

2

− ρi− 1
2

∆x
+

an∆t

ε2
ρn+1
i

ln ρ0,i+ 1
2
− ln ρ0,i− 1

2

∆x

)]
= 0. (4.42)

The previous system of N nonlinear equations is to be solved using the Newton-
Raphson method. We are interested in solving the system f(x)=0 with
0 = [0.....0]T ,

x = [x1x2...xN ]T =
[
ρn+1

3
2

ρn+1
5
2

...ρn+1
N+ 1

2

]T
,

f(x) = [f1(x)f2(x)...fN (x)]T ,
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where T denotes the transpose operator and fi(x) =

ρn+1
i+ 1

2

− ρ∗
i+ 1

2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2

− ρn+1
i+ 3

2

2ρn+1
i+1∣∣∣ρ∗i+1u

∗
i+1 −

an∆t

ε2

ρn+1
i+ 3

2

− ρi+ 1
2

∆x
+

an∆t

ε2
ρn+1
i+1

ln ρ0,i+ 3
2
− ln ρ0,i+ 1

2

∆x

∣∣∣
+
(
ρ∗i+1u

∗
i+1 −

an∆t

ε2

ρn+1
i+ 3

2

− ρi+ 1
2

∆x
+

an∆t

ε2
ρn+1
i+1

ln ρ0,i+ 3
2
− ln ρ0,i+ 1

2

∆x

)
+

ρn+1
i+ 1

2

− ρn+1
i− 1

2

2ρn+1
i∣∣∣ρ∗i u∗

i −
an∆t

ε2

ρn+1
i+ 1

2

− ρi− 1
2

∆x
+

an∆t

ε2
ρn+1
i

ln ρ0,i+ 1
2
− ln ρ0,i− 1

2

∆x

∣∣∣
−
(
ρ∗i u

∗
i −

an∆t

ε2

ρn+1
i+ 1

2

− ρi− 1
2

∆x
+

an∆t

ε2
ρn+1
i

ln ρ0,i+ 1
2
− ln ρ0,i− 1

2

∆x

)]
. (4.43)

After solving the system of nonlinear equations for ρn+1, (ρu)n+1 is recovered from
the momentum equation. The full presentation of the 1D scheme is summarized by
the slow step (4.35) together with the fast step (4.36).

4.4.2 The 2D numerical scheme

The space discretization follows the idea of a recent work by Goudon et.al. [34],
where the authors design an AP scheme for the isentropic Euler equations. We
consider a computational domain [xL, xR] × [yL, yR] and Cartesian 2D grid points.
The grid points are xi, yj for i, j ∈ {1, ..., Nx} and j ∈ {1, ..., Ny} and we define
xi+ 1

2
= xi+xi+1

2 and yj+ 1
2
=

yj+yj+1

2 for i ∈ {1, ..., Nx − 1}, j ∈ {1, ..., Ny − 1}. Let
∆xi,∆xi+ 1

2
,∆yj , and ∆yj+ 1

2
be respectively the length of the interval [xi− 1

2
, xi+ 1

2
],

[xi, xi+1], [yj− 1
2
, yj+ 1

2
] and [yj , yj+1]. In our calculations, we set ∆xi = ∆xi+ 1

2
= ∆x

and ∆yj = ∆yj+ 1
2
= ∆y. Let ∆t be the time step. As in Figure 4.1, the density ρ is

defined at the points (xi+ 1
2
, yj+ 1

2
), while the velocity u in the x-direction is evaluated

on the points (xi, yj+ 1
2
) and the velocity v in the y-direction is evaluated on the

points (xi+ 1
2
, yj). The density on the edges of the primal mesh can be defined by the

average value of two neighbouring cells such that

ρi,j+ 1
2
=

ρi+ 1
2 ,j+

1
2
+ ρi− 1

2 ,j+
1
2

2
,

ρi+ 1
2 ,j

=
ρi+ 1

2 ,j+
1
2
+ ρi+ 1

2 ,j−
1
2

2
.
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ρi+ 1
2 ,j+

1
2

ui,j+ 1
2 ui+1,j+ 1

2

vi+ 1
2 ,j

vi+ 1
2 ,j+1

(i, j + 1) (i+ 1, j + 1)

(i+ 1, j)(i, j)

Figure 4.1: MAC discretization.

The numerical solution is evolved on the staggered grid and the fluxes are defined
as in [34]. We start by presenting a discretization for the slow explicit system (4.32),

ρ∗
i+1

2
,j+1

2
−ρn

i+1
2
,j+1

2

∆t + α

[
Fx,n

i+1,j+1
2

−Fx,n

i,j+1
2

∆x +
Fy,n

i+1
2
,j+1

−Fy,n

i+1
2
,j

∆y

]
= 0,

ρ∗
i,j+1

2
u∗
i,j+1

2
−ρn

i,j+1
2
un

i,j+1
2

∆t +
ζu,x

i+1
2
,j+1

2

−ζu,x

i− 1
2
,j+1

2

∆x +
ζu,y
i,j+1−ζu,y

i,j

∆y + 1
ε2

Πn

i+1
2
,j+1

2
−Πn

i− 1
2
,j+1

2

∆x

= − 1
ε2 ρ

n
i,j+ 1

2

ϕ
i+1

2
,j+1

2
−ϕ

i− 1
2
,j+1

2

∆x − an

ε2 ρ
n
i,j+ 1

2

ln ρ
0,i+1

2
,j+1

2
−ln ρ

0,i− 1
2
,j+1

2

∆x ,

ρ∗
i+1

2
,j
v∗
i+1

2
,j
−ρn

i+1
2
,j
vn

i+1
2
,j

∆t +
ζv,x
i+1,j−ζv,x

i,j

∆x +
ζv,y

i+1
2
,j+1

2

−ζv,y

i+1
2
,j− 1

2

∆y + 1
ε2

Πn

i+1
2
,j+1

2
−Πn

i+1
2
,j− 1

2

∆y

= − 1
ε2 ρ

n
i+ 1

2 ,j

ϕ
i+1

2
,j+1

2
−ϕ

i+1
2
,j− 1

2

∆y − an

ε2 ρ
n
i+ 1

2 ,j

ln ρ
0,i+1

2
,j+1

2
−ln ρ

0,i+1
2
,j− 1

2

∆y ,

(4.44)
with

Πn
i+ 1

2 ,j+
1
2
= P

(
ρni+ 1

2 ,j+
1
2

)
− anρni+ 1

2 ,j+
1
2

where an is the discrete version of a(t) defined as,

an = min
i,j

{
P

′
(ρni+ 1

2 ,j+
1
2
)

}
− lε2.

The flux terms are

F x
i,j+ 1

2
= F x,+

i,j+ 1
2

+ F x,−
i,j+ 1

2

= F+(ρi− 1
2 ,j+

1
2
, ui,j+ 1

2
) + F−(ρi+ 1

2 ,j+
1
2
, ui,j+ 1

2
),

F y

i+ 1
2 ,j

= F y,+

i+ 1
2 ,j

+ F y,−
i+ 1

2 ,j
= F+(ρi+ 1

2 ,j−
1
2
, vi+ 1

2 ,j
) + F−(ρi+ 1

2 ,j+
1
2
, vi+ 1

2 ,j
),
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ζu,x
i+ 1

2 ,j+
1
2

= ui,j+ 1
2
F x,+

i+ 1
2 ,j+

1
2

+ ui+1,j+ 1
2
F x,+

i+ 1
2 ,j+

1
2

, ζu,yi,j = ui,j− 1
2
F y,+
i,j + ui,j+ 1

2
F y,+
i,j

ζv,xi,j = vi− 1
2 ,j

F x,+
i,j + vi+ 1

2 ,j
F x,+
i,j , ζv,y

i+ 1
2 ,j+

1
2

= vi+ 1
2 ,j

F y,+

i+ 1
2 ,j+

1
2

+ vi+ 1
2 ,j+1F

y,+

i+ 1
2 ,j+

1
2

with

F+(ρ, u) =


0, if u ≤ −c(ρ, u),

ρ
4c(ρ,u) (v + c(ρ, u))2, if |u| ≤ c(ρ, u),

ρu, if u ≥ c(ρ, u),

F−(ρ, u) =


ρu, if u ≤ −c(ρ, u),

− ρ
4c(ρ,u) (v − c(ρ, u))2, if |u| ≤ c(ρ, u),

0, if u ≥ c(ρ, u),

and

F x,±
i+ 1

2 ,j+
1
2

=
1

2

(
F x,±
i,j+ 1

2

+ F x,±
i+1,j+ 1

2

)
, F y,±

i,j =
1

2

(
F y,±
i+ 1

2 ,j
+ F y,±

i− 1
2 ,j

)
.

The flux terms in the momentum equation along the x-direction are computed as
follows,

ζu,x
i+ 1

2 ,j+
1
2

= ui,j+ 1
2
F x,+

i+ 1
2 ,j+

1
2

+ ui+1,j+ 1
2
F x,−
i+ 1

2 ,j+
1
2

,

= ui,j+ 1
2

F x,+

i,j+ 1
2

+ F x,+

i+1,j+ 1
2

2
+ ui+1,j+ 1

2

F x,−
i,j+ 1

2

+ F x,−
i+1,j+ 1

2

2
,

= ui,j+ 1
2

F+(ρi− 1
2 ,j+

1
2
, ui,j+ 1

2
) + F+(ρi+ 1

2 ,j+
1
2
, ui+1,j+ 1

2
)

2

+ ui+1,j+ 1
2

F−(ρi+ 1
2 ,j+

1
2
, ui,j+ 1

2
) + F−(ρi+ 3

2 ,j+
1
2
, ui+1,j+ 1

2
)

2
.

ζu,x
i− 1

2 ,j+
1
2

= ui−1,j+ 1
2
F x,+

i− 1
2 ,j+

1
2

+ ui,j+ 1
2
F x,−
i− 1

2 ,j+
1
2

,

= ui−1,j+ 1
2

F x,+

i−1,j+ 1
2

+ F x,+

i,j+ 1
2

2
+ ui,j+ 1

2

F x,−
i−1,j+ 1

2

+ F x,−
i,j+ 1

2

2
,

= ui−1,j+ 1
2

F+(ρi− 3
2 ,j+

1
2
, ui−1,j+ 1

2
) + F+(ρi− 1

2 ,j+
1
2
, ui,j+ 1

2
)

2

+ ui,j+ 1
2

F−(ρi− 1
2 ,j+

1
2
, ui−1,j+ 1

2
) + F−(ρi+ 1

2 ,j+
1
2
, ui,j+ 1

2
)

2
.
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ζu,yi,j = ui,j− 1
2
F y,+
i,j + ui,j+ 1

2
F y,−
i,j ,

= ui,j− 1
2

F y,+

i+ 1
2 ,j

+ F y,+

i− 1
2 ,j

2
+ ui,j+ 1

2

F y,−
i+ 1

2 ,j
+ F y,−

i− 1
2 ,j

2
,

= ui,j− 1
2

F+(ρi+ 1
2 ,j−

1
2
, vi+ 1

2 ,j
) + F+(ρi− 1

2 ,j−
1
2
, vi− 1

2 ,j
)

2

+ ui,j+ 1
2

F−(ρi+ 1
2 ,j+

1
2
, vi+ 1

2 ,j
) + F−(ρi− 1

2 ,j+
1
2
, vi− 1

2 ,j
)

2
.

ζu,yi,j+1 = ui,j+ 1
2
F y,+
i,j+1 + ui,j+ 3

2
F y,−
i,j+1,

= ui,j+ 1
2

F y,+

i+ 1
2 ,j+1

+ F y,+

i− 1
2 ,j+1

2
+ ui,j+ 3

2

F y,−
i+ 1

2 ,j+1
+ F y,−

i− 1
2 ,j+1

2
,

= ui,j+ 1
2

F+(ρi+ 1
2 ,j+

1
2
, vi+ 1

2 ,j+1) + F+(ρi− 1
2 ,j−

1
2
, vi− 1

2 ,j
)

2

+ ui,j+ 3
2

F−(ρi+ 1
2 ,j+

3
2
, vi+ 1

2 ,j+1) + F−(ρi− 1
2 ,j+

3
2
, vi− 1

2 ,j+1)

2
.

Now, in a similar manner we compute the flux terms in the momentum equation
along the y-direction,

ζv,xi,j = vi− 1
2 ,j

F x,+
i,j + vi+ 1

2 ,j
F x,−
i,j ,

= vi− 1
2 ,j

F x,+

i,j+ 1
2

+ F x,+

i,j− 1
2

2
+ vi+ 1

2 ,j

F x,−
i,j+ 1

2

+ F x,−
i,j− 1

2

2
,

= vi− 1
2 ,j

F+(ρi− 1
2 ,j+

1
2
, ui,j+ 1

2
) + F+(ρi− 1

2 ,j−
1
2
, ui,j− 1

2
)

2

+ vi+ 1
2 ,j

F−(ρi+ 1
2 ,j+

1
2
, ui,j+ 1

2
) + F−(ρi+ 1

2 ,j−
1
2
, ui,j− 1

2
)

2
.

ζv,xi+1,j = vi+ 1
2 ,j

F x,+
i+1,j + vi+ 3

2 ,j
F x,−
i+1,j ,

= vi+ 1
2 ,j

F x,+

i+1,j+ 1
2

+ F x,+

i+1,j− 1
2

2
+ vi+ 3

2 ,j

F x,−
i+1,j+ 1

2

+ F x,−
i+1,j− 1

2

2
,

= vi+ 1
2 ,j

F+(ρi+ 1
2 ,j+

1
2
, ui+1,j+ 1

2
) + F+(ρi+ 1

2 ,j−
1
2
, ui+1,j− 1

2
)

2

+ vi+ 3
2 ,j

F−(ρi+ 3
2 ,j+

1
2
, ui+1,j+ 1

2
) + F−(ρi+ 3

2 ,j−
1
2
, ui+1,j− 1

2
)

2
.
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ζv,y
i+ 1

2 ,j+
1
2

= vi+ 1
2 ,j

F y,+

i+ 1
2 ,j+

1
2

+ vi+ 1
2 ,j+1F

y,−
i+ 1

2 ,j+
1
2

,

= vi+ 1
2 ,j

F y,+

i+ 1
2 ,j

+ F y,+

i+ 1
2 ,j+1

2
+ vi+ 1

2 ,j+1

F y,−
i+ 1

2 ,j
+ F y,−

i+ 1
2 ,j+1

2
,

= vi+ 1
2 ,j

F+(ρi+ 1
2 ,j−

1
2
, vi+ 1

2 ,j
) + F+(ρi+ 1

2 ,j+
1
2
, vi+ 1

2 ,j+1)

2

+ vi+ 1
2 ,j+1

F−(ρi+ 1
2 ,j+

1
2
, vi+ 1

2 ,j
) + F−(ρi+ 1

2 ,j+
3
2
, vi+ 1

2 ,j+1)

2
.

ζv,y
i+ 1

2 ,j−
1
2

= vi+ 1
2 ,j−1F

y,+

i+ 1
2 ,j−

1
2

+ vi+ 1
2 ,j

F y,−
i+ 1

2 ,j−
1
2

,

= vi+ 1
2 ,j−1

F y,+

i+ 1
2 ,j−1

+ F y,+

i+ 1
2 ,j

2
+ vi+ 1

2 ,j

F y,−
i+ 1

2 ,j−1
+ F y,−

i+ 1
2 ,j

2
,

= vi+ 1
2 ,j−1

F+(ρi+ 1
2 ,j−

3
2
, vi+ 1

2 ,j−1) + F+(ρi+ 1
2 ,j−

1
2
, vi+ 1

2 ,j
)

2

+ vi+ 1
2 ,j

F−(ρi+ 1
2 ,j−

1
2
, vi+ 1

2 ,j−1) + F−(ρi+ 1
2 ,j+

1
2
, vi+ 1

2 ,j
)

2
.

The next step is to discretize the fast implicit system (4.33) by



ρn+1

i+1
2
,j+1

2

−ρ∗
i+1

2
,j+1

2

∆t

+(1− α)
[ (Fn+1)Up,x

i+1,j+1
2

−(Fn+1)Up,x

i,j+1
2

∆x +
(Fn+1)Up,y

i+1
2
,j+1

−(Fn+1)Up,y

i+1
2
,j

∆y

]
= 0,

ρn+1

i,j+1
2

un+1

i,j+1
2

−ρ∗
i,j+1

2
u∗
i,j+1

2

∆t

+
an
d

ε2

ρn+1

i+1
2
,j+1

2

−ρn+1

i− 1
2
,j+1

2

∆x =
an
d

ε2 ρ
n+1
i,j+ 1

2

ln ρ
0,i+1

2
,j+1

2
−ln ρ

0,i− 1
2
,j+1

2

∆x ,

ρn+1

i+1
2
,j
vn+1

i+1
2
,j
−ρ∗

i+1
2
,j
v∗
i+1

2
,j

∆t

+an

ε2

ρn+1

i+1
2
,j+1

2

−ρn+1

i+1
2
,j− 1

2

∆y = an

ε2 ρ
n+1
i+ 1

2 ,j

ln ρ
0,i+1

2
,j+1

2
−ln ρ

0,i+1
2
,j− 1

2

∆y ,

(4.45)

where (Fn+1)Up,x

i,j+ 1
2

and (Fn+1)Up,y

i+ 1
2 ,j

are the upwind fluxes defined as following,

(Fn+1)Up,x

i,j+ 1
2

= ρn+1
i− 1

2 ,j+
1
2

[
un+1
i,j+ 1

2

]+ − ρn+1
i+ 1

2 ,j+
1
2

[
un+1
i,j+ 1

2

]−
.

(Fn+1)Up,y

i+ 1
2 ,j

= ρn+1
i+ 1

2 ,j−
1
2

[
vn+1
i+ 1

2 ,j

]+ − ρn+1
i+ 1

2 ,j+
1
2

[
vn+1
i+ 1

2 ,j

]−
.

(4.46)

Here [·]+ = max{·, 0} and [·]− = −min{·, 0} represents respectively the positive and
negative parts of the given function. The fast implicit part is solved via solving an
elliptic equation of ρ. From the last two equations in (4.45), un+1

i,j+ 1
2

and vn+1
i+ 1

2 ,j
can

99



4 AP and SP Schemes for the Isentropic Euler Equations with Gravity

be written as a function of ρn+1 such that

un+1
i,j+ 1

2

=
1

ρn+1
i,j+ 1

2

[
ρ∗i,j+ 1

2
u∗
i,j+ 1

2
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

∆x

+
an∆t

ε2
ρn+1
i,j+ 1

2

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i− 1

2 ,j+
1
2

∆x

]
, (4.47)

and

vn+1
i+ 1

2 ,j
=

1

ρn+1
i+ 1

2 ,j

[
ρ∗i+ 1

2 ,j
v∗i+ 1

2 ,j
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j−
1
2

∆y

+
an∆t

ε2
ρn+1
i+ 1

2 ,j

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j−
1
2

∆y

]
. (4.48)

Substitute the velocities by their values in the density equation from (4.45) (for
simplicity, see the 1D discretization),

ρn+1
i+ 1

2 ,j+
1
2

− ρ∗
i+ 1

2 ,j+
1
2

∆t
+ (1− α)

[
(Fn+1)Up,x

i+1,j+ 1
2

− (Fn+1)Up,x

i,j+ 1
2

∆x

+
(Fn+1)Up,y

i+ 1
2 ,j+1

− (Fn+1)Up,y

i+ 1
2 ,j

∆y

]
= 0.

ρn+1
i+ 1

2 ,j+
1
2

− ρ∗
i+ 1

2 ,j+
1
2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 3

2 ,j+
1
2

2ρn+1
i+1,j+ 1

2

∣∣∣∣∣ρ∗i+1,j+ 1
2
u∗
i+1,j+ 1

2

− an∆t

ε2

ρn+1
i+ 3

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i+1,j+ 1

2

ln ρ0,i+ 3
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j+
1
2

∆x

∣∣∣∣∣
+
(
ρ∗i+1,j+ 1

2
u∗
i+1,j+ 1

2
− an∆t

ε2

ρn+1
i+ 3

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i+1,j+ 1

2

ln ρ0,i+ 3
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j+
1
2

∆x

)
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+
ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

2ρn+1
i,j+ 1

2

∣∣∣∣∣ρ∗i,j+ 1
2
u∗
i,j+ 1

2
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i,j+ 1

2

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i− 1

2 ,j+
1
2

∆x

∣∣∣∣∣
−
(
ρ∗i,j+ 1

2
u∗
i,j+ 1

2
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i,j+ 1

2

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i− 1

2 ,j+
1
2

∆x

)]

+
(1− α)

∆y

[
ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j+
3
2

2ρn+1
i+ 1

2 ,j+1

∣∣∣ρ∗i+ 1
2 ,j+1v

∗
i+ 1

2 ,j+1 −
an∆t

ε2

ρn+1
i+ 1

2 ,j+
3
2

− ρn+1
i+ 1

2 ,j+
1
2

∆y

+
an∆t

ε2
ρn+1
i+ 1

2 ,j+1

ln ρ0,i+ 1
2 ,j+

3
2
− ln ρ0,i+ 1

2 ,j+
1
2

∆y

∣∣∣
+
(
ρ∗i+ 1

2 ,j+1v
∗
i+ 1

2 ,j+1 −
an∆t

ε2

ρn+1
i+ 1

2 ,j+
3
2

− ρn+1
i+ 1

2 ,j+
1
2

∆y
+

an∆t

ε2
ρn+1
i+ 1

2 ,j+1

ln ρ0,i+ 1
2 ,j+

3
2
− ln ρ0,i+ 1

2 ,j+
1
2

∆y

)
+

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j−
1
2

2ρn+1
i+ 1

2 ,j

∣∣∣ρ∗i+ 1
2 ,j

v∗i+ 1
2 ,j

− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j−
1
2

∆y

+
an∆t

ε2
ρn+1
i+ 1

2 ,j

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j−
1
2

∆y

∣∣∣
−
(
ρ∗i+ 1

2 ,j
v∗i+ 1

2 ,j
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j−
1
2

∆y
+

an∆t

ε2
ρn+1
i+ 1

2 ,j

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j−
1
2

∆y

)]
= 0. (4.49)

The previous system 4.49 of N2 nonlinear equations is to be solved using the Newton-
Raphson method. We are interested in solving the system f(x)=0 with
0 = [0.....0]T ,

x = [x1x2...xN2 ]T =
[
ρn+1

3
2 ,

3
2

...ρn+1
3
2 ,N+ 1

2

ρn+1
5
2 ,

3
2

...ρn+1
5
2 ,N+ 1

2

...........ρn+1
N+ 1

2 ,
3
2

...ρn+1
N+ 1

2 ,N+ 1
2

]T
,

f(x) = [f1(x)f2(x)...fN2(x)]T , where T denotes the transpose operator.
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Here, f[(i−1)∗N+j](x) =

ρn+1
i+ 1

2 ,j+
1
2

− ρ∗
i+ 1

2 ,j+
1
2

∆t
+

(1− α)

∆x

[
ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 3

2 ,j+
1
2

2ρn+1
i+1,j+ 1

2

∣∣∣∣∣ρ∗i+1,j+ 1
2
u∗
i+1,j+ 1

2

− an∆t

ε2

ρn+1
i+ 3

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i+1,j+ 1

2

ln ρ0,i+ 3
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j+
1
2

∆x

∣∣∣∣∣
+
(
ρ∗i+1,j+ 1

2
u∗
i+1,j+ 1

2
− an∆t

ε2

ρn+1
i+ 3

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i+1,j+ 1

2

ln ρ0,i+ 3
2 ,j+

1
2
− ln ρ0,i+ 1

2 ,j+
1
2

∆x

)
+

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

2ρn+1
i,j+ 1

2

∣∣∣∣∣ρ∗i,j+ 1
2
u∗
i,j+ 1

2
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i,j+ 1

2

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i− 1

2 ,j+
1
2

∆x

∣∣∣∣∣
−
(
ρ∗i,j+ 1

2
u∗
i,j+ 1

2
− an∆t

ε2

ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i− 1

2 ,j+
1
2

∆x
+

an∆t

ε2
ρn+1
i,j+ 1

2

ln ρ0,i+ 1
2 ,j+

1
2
− ln ρ0,i− 1

2 ,j+
1
2

∆x

)]

+
(1− α)

∆y

[
ρn+1
i+ 1

2 ,j+
1
2

− ρn+1
i+ 1

2 ,j+
3
2

2ρn+1
i+ 1

2 ,j+1
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4.4 Fully discrete Numerical Scheme

After solving the system of nonlinear equations for ρn+1, (ρu)n+1 and (ρv)n+1 are
recovered from the momentum equations. The full presentation of the 2D scheme is
summarized by the slow step (4.44) together with the fast step (4.45).

4.4.3 The AP property for the 2D numerical scheme

As we did at the PDE level, we take the gravitational terms in the momentum
equations in system (4.51) to the left-hand side and reformulate the system as
follows:
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2
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2
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(4.51)

with
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2
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We will show the AP property based on (4.51).
Assume that the Chapman-Enskog asymptotic expansion of the discrete variables

are
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= ρ

(0)n

i+ 1
2 ,j+

1
2

+ ερ
(1)n

i+ 1
2 ,j+
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Definition 2. The discrete data (ρ, u, v) are said to be well-prepared if they satisfy,
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(4.52)
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where (F (0),n)Up,x, (F (0),n)Up,y are defined as in (4.46) with ρn+1, un+1 being replaced
by ρ(0),n, u(0),n.

Lemma 3. Choose (ρ, u, v) to be well-prepared, then
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(4.53)
The expansion of an is the same as in (4.25), (4.26). Now, let’s look at the

expansion of Ld. Noting a(0)n = a(0) and (4.53), we have
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which conclude the proof.

Similarly,
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Comparing O( 1
ε2 ) terms in the momentum equation in the x-direction, one gets
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Because a
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d ̸= 0 and ρ

(0),n+1

i,j+ 1
2

̸= 0, then

Dx
i,j+ 1

2
ln ρ(0)n+1 = −Dx

i,j+ 1
2
ln(1− γ − 1

γA
ϕ)

1
γ−1 .

104



4.4 Fully discrete Numerical Scheme

Hence, the boundary conditions of ρn+1 yield
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Similar result can be obtained from comparing O( 1
ε2 ) terms in the momentum

equation in the y-direction. From the above calculations, we deduce that ρ(0)
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independent of time. Similarly, comparing O( 1ε ) terms in the momentum equation
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Substitute the fluxes by their values,
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The discrete well-prepared initial data in (4.52) lead to,
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Comparing order O(1) terms in the momentum equation in x-direction,
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Using (4.54) the equation can be simplified to,

u
n+1(0)

i,j+ 1
2

− u
n(0)

i,j+ 1
2

∆t
+

ζu,x
i+ 1

2 ,j+
1
2

− ζu,x
i− 1

2 ,j+
1
2

∆x
+

ζu,yi,j+1 − ζu,yi,j

∆y

+Dx
i,j+ 1

2

[
(Nn)(2) − a(0)(Mn)(2) + a(0)(Mn+1)(2)

]
= 0.

Finally the momentum limit equation in the x-direction is,

u
n+1(0)

i,j+ 1
2

− u
n(0)

i,j+ 1
2

∆t
+

ζu,x
i+ 1

2 ,j+
1
2

− ζu,x
i− 1

2 ,j+
1
2

∆x

+
ζu,yi,j+1 − ζu,yi,j

∆y
+

W
(2)n+1

i+ 1
2 ,j+

1
2

−W
(2)n+1

i− 1
2 ,j+

1
2

∆x
= 0. (4.56)

Similar calculations are performed on the momentum equation in the y-direction,
which yields
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Therefore, the fully-discrete incompressible limit system is:
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4.4.4 The SP property of the 2D numerical scheme

In this section we prove that the developed AP scheme for the isentropic Euler equa-
tions with gravitational source term is SP. The stationary state under consideration
is
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and for ∀ε, (4.51) becomes
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(4.59)

One can check that (ρn+1
i+ 1

2 ,j+
1
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, un+1
i,j+ 1

2

, vn+1
i+ 1

2 ,j
) = (ρs

i+ 1
2 ,j+
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, us
i,j+ 1

2

, vs
i+ 1

2 ,j
) satisfies

(4.59), this concludes the proof of the SP property of the fully-discretized scheme.

4.5 Numerical Results

We validate the 1D and 2D numerical schemes in this section, with an interest in the
AP and the SP property of both schemes. Experiments are chosen for the isentropic
Euler equations with and without gravitational source term. Note that in the absence
of the gravitational source term, the scheme reduces to the AP scheme developed by
Goudon et al. [34]. As in [34], we choose α = ε2 and l = 0 in the definition of a(t)
for all numerical experiments.
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4.5.1 1D test cases

1D Riemann problem

To validate the robustness of the numerical scheme, we extract from [34] a 1D
Riemann problem for different values of ε. The initial conditions are

ρ(x, 0) =

{
1 + ε2 if x < 0.5,

1 if x > 0.5,

u(x, 0) =

{
1− ε if x < 0.5,

1 + ε if x > 0.5.

The pressure is given by p(ρ) = Aργ with A = 1 and γ = 2. The solution is computed
along the interval [0, 1] over 200 grid points for δt = βδx, with β = 0.2, 0.1 or 0.01.
To test the AP property of the scheme, three differenet cases for different values of ε
are considered. The density and the velocity are illustrated at the final time T = 0.1
for ε =

√
0.99 and β = 0.2 in figure 4.2, at the final time T = 0.05 for ε =

√
0.1 and

β = 0.1 in figure 4.3, and at the final time T = 0.007 for ε =
√
0.001 and β = 0.01

in figure 4.4. Note that in the cases where ε is small (ε =
√
0.1 or

√
0.001), the

AP scheme gives relevant results for β = 0.2, while explicit scheme simply returns
negative density. By adjusting β, the AP scheme gives better results, and the explicit
scheme returns positive density. For more details about the comparison, please refer
to section 3.1 in [34]. The plots are in prefect match with the ones in the Literature.
The solution can still be captured as ε gets smaller which proves the AP property of
the 1D scheme (4.35)-(4.36).
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Figure 4.2: 1D Riemann problem: density (left) and velocity (right) initially, and at the final time Tfinal=0.1 for
ε =

√
0.99 and β = 0.2.
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Figure 4.3: 1D Riemann problem: density (left) and velocity (right) initially, and at the final time Tfinal=0.05 for
ε =

√
0.1 and β = 0.1.

1D steady state

As proven analytically, the AP scheme is also SP. For this purpose, we try to simulate
a steady state solution, and prove numerically that the scheme preserves such a state.
One example of a steady state for the isentropic Euler equations with gravitational
source term is ρ(x) =

(
A(1− γ−1

γ
1
Aϕ(x))

) 1
γ−1

,

u(x) = 0.
(4.60)

With the pressure law given as p(ρ) = Aργ where A = 1 and γ = 1.4, and a
gravitational potential ϕ(x) = x. At the PDE level, (4.60) is a steady state solution.
The computational domain is the interval [0, 1] discretized over 200 grid points.
We choose ε =

√
0.99 and δt = βδx with β = 0.01. With the knowledge that the

scheme should preserve the steady state independent of the choice of ε. We run our
simulations till the final time t = 0.1 and compare it to the steady state solution in
figure 4.5. The density plot at the final time lies exactly on top of the initial density.
The velocity error is approximately 10−7 and this error stays as it is as time increases,
an indication that the scheme has reached the numerical steady state. It is worth
mentioning that no well-balancing treatment is applied here. In other words, the AP
schemes with their IMEX structure fulfill the need for any SP treatment. At least for
the isentropic Euler equations with gravitational source term, the SP property follows
from the AP property.
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Figure 4.4: 1D Riemann problem: density (left) and velocity (right) initially, and at the final time Tfinal=0.007 for
ε =

√
0.001 and β = 0.01.

4.5.2 2D test cases

2D Riemann problem

An extension of the 1D Riemann Problem is considered in this section. The initial
data are given as

ρ(x, y, 0) =

{
1 + ε2 if x < 0.5,

1 if x > 0.5,

u(x, y, 0) =

{
1− ε if x < 0.5,

1 + ε if x > 0.5,

v(x, y, 0) = 0.

The 1D flow in 2D setup takes place in the direction of the horizontal velocity. The
computational domain is the square (0, 1)× (0, 1) divided into 200× 200 grid points.
A comparison between the 1D results and the 2D cross sections is illustrated. The
density and the velocity are plotted at the final time T = 0.1 for ε =

√
0.99 and

β = 0.2 in figure 4.6, at the final time T = 0.05 for ε =
√
0.1 and β = 0.1 in figure

4.7, and at the final time T = 0.007 for ε =
√
0.001 and β = 0.01 in figure 4.8. The

results show the accuracy and the robustness of the 2D scheme (4.44)-(4.45) as well
as the AP property.
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Figure 4.5: 1D steady state: profile of the density (left) and the momentum (right) initially and at the final time t = 0.1
.

2D steady state

In this section, we test the SP property of the 2D scheme. An extension of the 1D
steady state along the y-axis is considered

ρ(x, y) =

(
A(1− γ − 1

γ

1

A
ϕ(x, y))

) 1
γ−1

, (4.61)

(4.62)

with zero velocity field u = 0 in the square (0, 1)× (0, 1), over 200×200 grid points,
and a gravitational potential ϕ(x, y) = x. A direct comparison between the 1D plots
and the 2D cross sections is illustrated in figure 4.9. This test case proves that the
2D AP scheme preserves steady states numerically without the need for any extra
well-balancing, which is a strong statement, suggesting that we can prove, so far
(analytically and numerically), for AP schemes for the isentropic Euler equations with
gravitational source term.

2D translating vortex

A traveling vortex from [34] is considered in this section. The computational domain
is the square [0, 1] × [0, 1] discretized over 32×32 grid points with ε = 0.8 and
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Figure 4.6: 2D Riemann problem: density (left) and velocity (right) initially, and at the final time Tfinal=0.1 for
ε =

√
0.99 and β = 0.2.

δt = 5× 10−4. The initial data are given as

ρ(x, y, 0) = 110 +
ε2

(4π)2
f(r),

u(x, y, 0) = ν0 + g(r)(0.5− y),

v(x, y, 0) = ν1 + g(r)(x− 0.5),

with

r = 4π((x− 0.5)2 + (y − 0.5)2))
1
2 ,

f(r) = (1.5)2δ(r)(k(r)− k(π)),

g(r) = 1.5(1 + cos(r))δ(r),

δ(r) = 1r<π.

The pressure law is given as p(ρ) = 1
2ρ

2 and ν0 = 0.6, ν1 = 0. We compare our
computed numerical solution to the exact solution,

ρ(x, y, t) = ρ(x− ν0t, y − ν1t, 0),

u(x, y, 0) = u(x− ν0t, y − ν1t, 0),

v(x, y, 0) = v(x− ν0t, y − ν1t, 0).

The vortex gets translated at speed (ν0, ν1), as one can see in figures 4.10 and 4.11.
We present initially and at the final time, the horizontal velocity in figures 4.12 and

112



4.5 Numerical Results

0 0.2 0.4 0.6 0.8 1

x

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

T=0

Tfinal=0.05

2d-Tfinal=0.05

0 0.2 0.4 0.6 0.8 1

x

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

u

T=0

Tfinal=0.05

2d-Tfinal=0.05

Figure 4.7: 2D Riemann problem: density (left) and velocity (right) initially, and at the final time Tfinal=0.05 for
ε =

√
0.1 and β = 0.1.

4.13, and the vertical velocity in figures 4.14 and 4.15. To avoid spurious oscillation,
we set l in definition of a(t) to 1.

2D stationary vortex

For our last test case, we consider a stationary vortex for the system of isentropic Euler
equations with gravitational source term. The aim is to prove that our numerical
scheme is both SP, as for a fixed ε, the vortex is a stationary solution of the system
and AP, as the numerical solution becomes a solution of the incompressible version
of the isentropic Euler system as ε goes to zero. We take the vortex for the shallow
water equations defined in [59], and we change its initial data to fit the the rescaled
shallow water equations. The initial condistions are given as,

ρ(x, y, t) = 1− ε2

4
e2(1−r2) − ϕ(x, y), u(t, x, y) = ye1−r2 , v(t, x, y) = −xe1−r2 .

Here r2 = x2 + y2, ϕ(x, y) = 0.2e0.5(1−r2) is the gravitational potential. The pressure
law is p(ρ) = Aργ with A = 1

2 and γ = 2. The vortex rotates in the computational
domain (−1, 1) x (−1, 1) with steady state boundary conditions over 32 x 32 grid
points. Figure 4.16 illustrates the profile of the velocity q =

√
u2 + v2 initially and

figures 4.17-4.18 at the final time t = 1 for ε = 10−1, 10−2, 10−3, 10−4 respectively.
The significance of this test case lies in the fact that the scheme preserves the steady
state and at the same time converges as ε goes to zero. The result ensures the ability
of our numerical scheme to preserve steady states and to capture the solution as
ε gets smaller. This test case proves that the developed numerical scheme for the
system of isentropic Euler equations with gravitational source term is both SP and
AP.
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Figure 4.8: 2D Riemann problem: density (left) and velocity (right) initially, and at the final time Tfinal=0.007 for
ε =

√
0.001 and β = 0.01.

4.6 Conclusion

The proof of the SP property at the semi-discrete level clearly depends on the pressure
law and the fact that we are in the isentropic case. An AP scheme for the isentropic
Euler equations is SP under the condition that the pressure is a function of the density
and that the latter is obtained as a solution of an elliptic equation [50].
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Figure 4.9: 2D steady state: profile of the density (left) and the momentum (right) initially and at the final time
t = 0.1.
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Figure 4.10: Translating vortex: the initial density ρ at T = 0 (top) and at the final time T = 0.5 (bottom).
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Figure 4.11: Translating vortex: a cross section of the the initial density ρ at T = 0 with mini,j ρi+ 1
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Figure 4.12: Translating vortex: the initial horizontal velocity u at T = 0 (top) and at the final time T = 0.5 (bottom).
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Figure 4.14: Translating vortex: the initial profile of the vertical velocity v at T = 0 (top) and at the final time T = 0.5
(bottom).
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Figure 4.16: Steady vortex: the velocity q =
√
u2 + v2 initially on 32 x 32 grid points.
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Figure 4.17: Steady vortex: the velocity q =
√
u2 + v2 at the final time T = 1 for ε = 10−1, 10−2 on 32 x 32

grid points respectively from top left to bottom right.
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Figure 4.18: Steady vortex: the velocity q =
√
u2 + v2 at the final time T = 1 for ε = 10−3, 10−4 on 32 x 32

grid points respectively from top left to bottom right.
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Chapter 5

Conclusion and Future Work
In this work we investigated the relationship between AP and SP property of a
numerical scheme for a parameterized model, such as kinetic equations and low
Mach isentropic Euler equations. In other words, we were curious about the long time
behavior of a numerical scheme, as well as its behavior as the rescaling parameter
approaches zero.

The first aim of this thesis was to develop a well-balanced finite volume central
scheme for the system of Euler equations with gravitational source term using the
subtraction method, and to extend this well-balancing approach to the system of
MHD equations with gravitational source term. Which was succefully accomplished
via the subtraction method combined with the CTM in the case of the system of MHD
equations.

The second aim was to investigate the SP property of numerical schemes for kinetic
models, which became of big interest due to the fact that the Euler equations can be
viewed as the limit of the Boltzmann equation. The question was to investigate under
which circumstances, AP schemes are SP. The aim was achieved after we introduced
a criterion, emphasising that AP schemes with a discretization that linearly depends
on the Maxwellian are also SP.

For our third aim, we were interested in projecting the relation between AP
and SP schemes for the kinetic models to fluid models. We considered the system
of isentropic Euler equations as our first model. In this case, an AP scheme was
developed and proven to have the SP property under the condition that the pressure
is a function of the density, and the latter is obtained as a solution of an elliptic
equation. One interesting extension would be to look at this relation for the full low
Mach Euler equations with gravitational source term. Knowing that, in this case, the
equation of state is not just the pressure law, and the energy equation is involved.
One may also try to find a relation between the low Mach and SP property of the
scheme under certain conditions.

To sum up, AP schemes, discretized in a particular way, should be capable of
preserving any stationary solutions without any additional treatment. This holds true
for kinetic models and for hyperbolic balance laws.

125





Chapter 6

Appendices

Appendix A. AP property of the UGKS

In this section, we provide a formal derivation of the AP property for the UGKS
proposed in (3.17)–(3.18). When ε goes to zero, asymptotic expansions of A,B, and
C given in (3.25) read A = O(ε), B = 1

ε − ϕ(vσi+ 1
2
) + O(ε), C = −1 + O(ε). The

leading order term of (3.18) yields fn+1
i = ρn+1

i +O(ε) and we only need to show
that (3.17) satisfies the equation for ρ in (3.14), at the discrete level. Suppose that
fn
i = ρni +O(ε), then 

T 1fn
i+ 1

2
=

1

2

(
ρni + ρni+1

)
+O(ε),

δLT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε),

δRT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε).

We deduce that the expansion of Fn
i+ 1

2

reads:

Fn
i+ 1

2
= −

ρni + ρni+1

2|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
−

ρni+1 − ρni
3∆x

+O(ε).

Therefore,

Fn
i+ 1

2

− Fn
i− 1

2

∆x
= −

ρni+1 − 2ρni + ρni−1

3(∆x)2
+
(
−
( 1

|V |

∫
V

vϕ(vσi+ 1
2
)dv
)ρni + ρni+1

2

+
( 1

|V |

∫
V

vϕ(vσi− 1
2
)dv
)ρni + ρni−1

2

)
+O(ε).

In the limit of ε → 0, the discretization (3.17) becomes

ρn+1
i − ρni

∆t
=

ρni+1 − 2ρni + ρni−1

3(∆x)2
+

(
1

|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
ρni + ρni+1

2

− 1

|V |

(∫
V

vϕ(vσi− 1
2
)dv

)
ρni + ρni−1

2

)
,

which is a consistent discretization of the equation for ρ in (3.14). Therefore, the
proposed scheme is AP after coupling with the discretization for S(x, t) in (3.15).
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Appendix B. AP property of the stationary discretization of
the parity equations-based scheme

Consider the behavior of the scheme as ε → 0 for a stationary discretization of the
fully space-time discretized parity equations-based scheme. Equations (3.4) and (3.5)
are then,

• Transport step: {
vDu

∆x j
n
i = 0

ηvDu

∆x r
n
i = 0

• Relaxation step: {
− 1

ε2 (r
n
i − ρnri) = 0

− 1
ε2 (j

n
i + (1− ε2η)vDc

∆xr
n
i = 0

Consider the relaxation step as ε → 0,

rni = ρnri jni = −vDc

∆xρ
n
ri

So,

v
Du

∆x
jni = 0∫ 1

0

v
Du

∆x
(−v

Dc

∆x
ρnri) = 0

DuDc

∆x2 ρnri

∫ 1

0

v2dv = 0

1

3

DuDc

∆x2 ρnri = 0

which is a consistent discretization of the stationary equation of the diffusion limit.
Hence, the discretization of the stationary equation is AP.
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6 Appendices

Appendix C. AP property of the stationary discretization of
UGKS

In this section, we provide a formal derivation of the AP property of the stationary
discretization of the UGKS which results from setting ρn+1 = ρn and fn+1 = fn in
(3.17)–(3.18),

Fn
i+ 1

2

− Fn
i− 1

2

∆x
= 0, (6.1)

Φn
i+ 1

2

− Φn
i− 1

2

∆x
=

1

ε2
(ρni − fn

i ) +
1

ε

(
1

| V |

∫
V

ϕ(v′σi+ 1
2
)fn

i (v
′) dv′ − ϕ(vσi+ 1

2
)fn

i

)
.

(6.2)

Formulas A, B, and C given in (3.25) are time dependent, but when ε goes to zero,
asymptotic expansions of A,B, and C read A = O(ε), B = 1

ε −ϕ(vσi+ 1
2
)+O(ε), C =

−1 +O(ε) which is time independent. Hence, choosing A,B, and C as in (3.25), for
the stationary discretization will not affect the AP proof. We only need to show that
(6.1) satisfies the stationary equation of the Keller-Segel equation (3.14) for ρ at the
discrete level. Suppose that fn

i = ρni +O(ε), then


T 1fn

i+ 1
2
=

1

2

(
ρni + ρni+1

)
+O(ε),

δLT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε),

δRT 1fn
i+ 1

2
=

ρni+1 − ρni
∆x

+O(ε).

We deduce that the expansion of Fn
i+ 1

2

reads:

Fn
i+ 1

2
= −

ρni + ρni+1

2|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
−

ρni+1 − ρni
3∆x

+O(ε).

Therefore,

Fn
i+ 1

2

− Fn
i− 1

2

∆x

=−
ρni+1 − 2ρni + ρni−1

3(∆x)2
+
(
−
( 1

|V |

∫
V

vϕ(vσi+ 1
2
)dv
)ρni + ρni+1

2

+
( 1

|V |

∫
V

vϕ(vσi− 1
2
)dv
)ρni + ρni−1

2

)
+O(ε).
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In the limit of ε → 0, the discretization (6.1) becomes

ρni+1 − 2ρni + ρni−1

3(∆x)2
+

(
1

|V |

(∫
V

vϕ(vσi+ 1
2
)dv

)
ρni + ρni+1

2
−

1

|V |

(∫
V

vϕ(vσi− 1
2
)dv

)
ρni + ρni−1

2

)
= 0,

which is a consistent discretization of the stationary equation for ρ in (3.14). There-
fore, the proposed stationary discretization is AP after coupling with the discretization
for S(x, t) in (3.15).
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Asymptotic and Stationary 
Preserving Schemes for
Kinetic and Hyperbolic Partial
Differential Equations

Farah KanbarIn this thesis, we are interested in numerically 
preserving stationary solutions of balance laws. 
We start by developing finite volume well-bal-
anced schemes for the system of Euler equations 
and the system of Magnetohydrodynamics (MHD) 
equations with gravitational source term. Since 
fluid models and kinetic models are related, this 
leads us to investigate Asymptotic Preserving (AP) 
schemes for kinetic equations and their ability to 
preserve stationary solutions.

In an attempt to mimic our result for kinetic 
equations in the context of fluid models, for the 
isentropic Euler equations we developed an AP 
scheme in the limit of the Mach number going to 
zero. The properties of the schemes we develo-
ped and its criteria are validated numerically by 
various test cases from the literature.
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