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Zusammenfassung

Die embryonale Entwicklung von Säugetieren unterliegt komplexen biologischen Zusammenhängen, die
es zu verstehen gilt. Bevor jedoch das gesamte Gebilde der Entwicklung zusammengesetzt werden kann,
müssen zunächst die einzelnen Bausteine genauer verstanden werden. Einer dieser Bausteine ist die
zweite Zellschicksalsentscheidung und beschreibt die Differenzierung von Zellen der inneren Zellmasse des
Embryos hin zu Epiblast- und primitiven Endodermzellen. Diese Zellen teilen sich daraufhin räumlich auf
und bilden die anschließend die Grundlagen für den Embryo und den Dottersack. In Organoiden der in-
neren Zellmasse wird ebenfalls beobachtet, wie sich diese zwei Typen von Vorläuferzellen bilden, und sich
in gewissem Maße räumlich voneinander trennen. Diesem Phänomenen widmete sich diese Arbeit im Ver-
laufe der letzten drei Jahre. Über diese Zelldifferenzierung ist bereits bekannt, dass die ersten Anzeichen
für Epiblast- und primitive Endodermdifferenzierung jeweils die Expressionslevel der Transkriptionsfak-
toren NANOG und GATA6 sind. Dabei nehmen Zellen mit niedriger Expression an GATA6 und hoher
Expression an NANOG das Epiblastschicksal an. Sind die Expressionen umgekehrt, so entsteht eine prim-
itive Endodermzelle. Bei der räumlichen Aufteilung der beiden Zelltypen ist noch nicht eindeutig geklärt,
welcher Mechanismus dazu führt. Eine gängige Hypothese besagt, dass die Ursache für die räumliche
Umlagerung der Zellen in der unterschiedlichen Adhäsion der Zellen liegt. In dieser Arbeit wird jedoch die
Möglichkeit einer globalen Zell-Zell-Kommunikation untersucht. Die gewählte Vorgehensweise bei der Un-
tersuchung dieser Phänomene folgt dem Motto ”Die Mathematik ist das nächste Mikroskop der Biologie”
[1]. Mit Hilfe mathematischer Modellierung wird das zentrale genregulierende Netzwerk im Mittelpunkt
dieser Arbeit in ein Gleichungssystem umgewandelt, welches es ermöglicht, die zeitliche Entwicklung von
NANOG und GATA6 unter Einfluss eines externen Signals zu beschreiben. Ein besonderes Augenmerk
liegt dabei auf der Herleitung neuer Modelle mit Hilfe von Methoden der statistischen Mechanik, sowie
dem Vergleich mit bestehenden Modellen. Nach einer ausführlichen Stabilitätsanalyse werden die Vorteile
des hergeleiteten Modells dadurch deutlich, dass ein exakter Zusammenhang der Modellparameter und
der Formierung von heterogenen Mischungen zweier Zelltypen gefunden wurde. Dadurch lässt sich das
Modell einfach kontrollieren und die Proportionen der resultierenden Zelltypen bereits im Voraus ab-
schätzen. Dieses mathematische Modell wird außerdem kombiniert mit einem Mechanismus zur globalen
Zell-Zell Kommunikation, sowie einem Modell zum Wachstum eines Organoiden. Dabei wird gezeigt dass
die globale Zell-Zell Kommunikation dazu in der Lage ist die Bildung von Schachbrettmustern, sowie auch
umrandenden Muster anhand unterschiedlich ausbreitender Signale zu vereinen. Zusätzlich wird der Ein-
fluss der Zellteilung und somit des Organoidwachstums auf die Musterbildung genauestens untersucht.
Es wird gezeigt, dass dies zur Bildung von Clustern beiträgt und infolgedessen eine gewisse Zufälligkeit
in ansonsten perfekt sortierte Muster einbringt.
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Summary

Mammalian embryonic development is subject to complex biological relationships that need to be under-
stood. However, before the whole structure of development can be put together, the individual building
blocks must first be understood in more detail. One of these building blocks is the second cell fate
decision and describes the differentiation of cells of the inner cell mass of the embryo into epiblast and
primitive endoderm cells. These cells then spatially segregate and form the subsequent bases for the
embryo and yolk sac, respectively. In organoids of the inner cell mass, these two types of progenitor
cells are also observed to form, and to some extent to spatially separate. This work has been devoted
to these phenomena over the past three years. Plenty of studies already provide some insights into the
basic mechanics of this cell differentiation, such that the first signs of epiblast and primitive endoderm
differentiation, are the expression levels of transcription factors NANOG and GATA6. Here, cells with
low expression of GATA6 and high expression of NANOG adopt the epiblast fate. If the expressions are
reversed, a primitive endoderm cell is formed. Regarding the spatial segregation of the two cell types, it
is not yet clear what mechanism leads to this. A common hypothesis suggests the differential adhesion
of cell as the cause for the spatial rearrangement of cells. In this thesis however, the possibility of a
global cell-cell communication is investigated. The approach chosen to study these phenomena follows
the motto ”mathematics is biology’s next microscope” [1]. Mathematical modeling is used to transform
the central gene regulatory network at the heart of this work into a system of equations that allows us
to describe the temporal evolution of NANOG and GATA6 under the influence of an external signal.
Special attention is paid to the derivation of new models using methods of statistical mechanics, as well
as the comparison with existing models. After a detailed stability analysis the advantages of the derived
model become clear by the fact that an exact relationship of the model parameters and the formation
of heterogeneous mixtures of two cell types was found. Thus, the model can be easily controlled and
the proportions of the resulting cell types can be estimated in advance. This mathematical model is
also combined with a mechanism for global cell-cell communication, as well as a model for the growth
of an organoid. It is shown that the global cell-cell communication is able to unify the formation of
checkerboard patterns as well as engulfing patterns based on differently propagating signals. In addition,
the influence of cell division and thus organoid growth on pattern formation is studied in detail. It is
shown that this is able to contribute to the formation of clusters and, as a consequence, to breathe some
randomness into otherwise perfectly sorted patterns.
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1 Introduction

If an ovum is released and successfully fertilized by a sperm cell, a single cell called zygote is formed.
As the zygote starts to divide and grow, it passes different stages of development before it implants
into the uterus. It is during these stages, that a large amount of pregnancies already fail due to loss of
the fertilized ovum. The exact amount of lost ova is still up to debate and has attracted great interest
of researchers over the last decades. Recent studies have estimated around 10-40% [2] lost ova before
implantation, which was later narrowed down to 40-50% [3]. This motivates the question of why exactly
so many preimplantations fail. For this and probably various other reasons, there exists an astounding
research interest in precisely understanding the development of mammalian embryos. In particular, the
mouse embryo has been established as a popular model organism in developmental biology. This thesis as
well is based on data and experimental observations derived from mouse embryos and mouse embryonic
stem cells (ESCs).

1.1 Mouse embryo development and ICM organoids

The preimplantation phase of the mouse embryo is shaped by two successive cell fate decisions. During
the first decision, cells become either part of the trophectoderm (TE) or the inner cell mass (ICM). The
TE consists of a single layer of cells that entirely surrounds the ICM as well as the blastocoel cavity.
The ICM will eventually give rise to the fetus. It is in the ICM where the second cell fate decision takes
place. ICM cells differentiate into either epiblast (Epi) or primitive endoderm (PrE) cells. In the course
of further development, Epi cells give rise to the embryo proper, whereas PrE cells contribute to the
yolk sac [4, 5, 6, 7]. In this thesis, only the second cell fate decision is examined in more detail. The
transcription factor (TF) NANOG has been identified as the earliest marker for the differentiation from
ICM into Epi cells [8]. Likewise, TF GATA6 has been reported to influence the decisions towards PrE
cells [9].

In the early blastocyst, i.e. embryonic day 3 (E3.0) after fertilization, both TFs NANOG and GATA6
exhibit high expressions. Subsequently, through a complex network of transcriptional regulations, ex-
pressions are regulated to become mutually exclusive (E3.0-E4.5). Therefore, cells with high expressions
of NANOG and low expressions of GATA6 are the Epi precursor cells. Conversely, low expressions of
NANOG and high expressions of GATA6 lead to PrE precursor cells. Understanding the gene regulatory
network (GRN) at the core of transcriptional regulation is vital for any attempt to develop models, meth-
ods and hypotheses at this stage of embryonic development. It was demonstrated that overexpression of
NANOG leads to a reduction of GATA6. Subsequently, NANOG was identified as an inhibitor of GATA6
[10]. Likewise, induction of GATA6 was shown to down-regulate transcription of several pluripotency
associated genes including NANOG [11]. Combined, NANOG and GATA6 mutually inhibit each other.
Additionally, both TFs were shown to be positively regulating their own expressions [12, 11]. These
interactions account for the mutual exclusivity found in Epi and PrE precursor cells. Yet they do not
explain the emergence of a heterogeneous mix of both cell types. It is suggested that an extracellular
mechanism like fibroblast growth factor (FGF) signaling is acting as the decision maker in differentia-
tion. Indeed, experiments of inhibiting the FGF/extracellular-signal regulated kinase (ERK) pathway
have shown to promote NANOG expression [13]. At the same time, treatment with exogenous FGF4
resulted in increased GATA6 expression [14]. The binding of FGF4 to its receptor FGFr2 was identified
leading to the activation of GATA6 and inhibition of NANOG [15, 16]. Furthermore, experiments have
demonstrated, that FGF4 synthesis is increased in Epi precursor cells compared to NANOG knockout
cells [17]. This suggests an activation of FGF4 by NANOG. Overall, this means that cells with high
NANOG expression synthesize more FGF4 that acts on adjacent cells to down-regulate NANOG, in turn
leading to higher expressions of GATA6. Thus, heterogeneity of Epi and PrE precursors is made possible.

At the late blastocyst stage, Epi and PrE cells are found spatially segregated with PrE cells forming
a monolayer that separates the Epi cells from the blastocoel cavity (Fig. 1). These findings were statis-
tically described as transitions from local to global patterns between embryonic stages of 65-90 to 90+
cells [18]. The exact mechanism that leads to the sorting of the cells is still up to debate. Cell sorting
due to differential adhesion could provide one possible explanation [19]. So far, this has not been proven.
A study based on the expression levels of E-cadherin, a well known cell adhesion molecule, has found
no significant evidence to support this hypothesis, because the difference in E-cadherin occurs only after
the segregation has concluded [20]. An alternative to this was presented via Eph/Ephrin ligand receptor
pairings that have been proposed to account for differential adhesion in a recent study [21]. At the same
time, it seems reasonable to investigate different mechanisms that could induce spatially segregated pat-
terns of two different cell types.
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Besides the mouse embryo, in vitro model systems have already been investigated. Mouse ESCs
from the Epi portion of the ICM have been engineered to replicate the differentiation process during
preimplantation development in vitro [22]. These ESCs express high levels of both NANOG and GATA6
and regained their ability to differentiate into PrE- and Epi-like cells. Based on these cells, ICM organoids
were grown in vitro to provide a different perspective on the full picture of Epi and PrE segregation [23].
Due to their large cell number and the symmetry provided by their spherical geometry, they are well
suited for statistical analyses. Organoids that aged 24 h and 48 h have already been shown to resemble
the total cell type proportions as well as the neighborhood proportions of the mouse blastocyst to some
extent. Furthermore, microscopy images of 48 h-organoids show signs of spatial segregation by PrE-like
cells engulfing Epi-like cells illustrated in figure 1. Further statistical analyses on these data are still an
ongoing effort and will partly be discussed throughout this thesis.

1.2 Mathematical modeling of cell differentiation in mouse ESCs

Mathematically, cell differentiation is described by the temporal evolution of transcription factors via a
system of ordinary differential equations (ODEs) that is intended to represent the various interactions
in the GRN. These models have been investigated on different levels. At the single cell level, models of
two mutually inhibiting genes were described in great detail [24, 25]. The resulting ODE systems are
characterized by two different steady state solutions which are associated with a corresponding cell fate.
These states are characterized by high expressions of one protein and low expressions of the other, and
vice-versa. Auto-activation has shown the capability to include a third steady state into the system,
that resembles a state of simultaneous high expression levels. However, the resulting cell fate decisions
are solely dependent on the initial conditions of the system and do not incorporate any extracellular
influences. At the multi-cellular level, agent-based models are used to describe every cell as a single
agent. This way, interactions between the cells can be realized. Adjacency-based interaction models, i.e.
models in which cells are capable to communicate with adjacent cells, have been thoroughly investigated in
the current research landscape. One prominent example, which was also a personal starting point for this
complete journey, is the Delta-Notch signaling pathway in Drosophila [26]. There, the reconstruction of
patterns of alternating cell types has been successfully realized. For the mouse embryo as well, adjacency-
based interaction models were used to recreate the cell-cell communication via FGF signaling [27, 28].
The averaged nearest neighbor (NN) signals used throughout these studies lead to a very characteristic
pattern that is best described as an irregular checkerboard pattern, i.e. a pattern in which cells of one type
try to avoid being adjacent to cells of equal type. The successive combination of cell division, cell sorting
and apoptosis, it has demonstrated that this leads to the desired spatial segregation of cells [29, 19, 30].
However, the successive nature of these simulations do not accurately present a realistic scenario, where all
of these processes run in parallel. Another potential mechanism that might explain the spatial segregation
of cell types is global signaling. This idea has already been explored to some extent [31]. Furthermore,
in recent findings on mouse ESCs, the ability of FGF4 to migrate over distances beyond a cell’s nearest
neighbors has been demonstrated [32].

1.3 Research questions and proposed solutions

This thesis focuses on the development and analysis of a computational model for the in silico generation
of mouse ICM organoids. The central hypothesis motivating this research is that global cell-cell com-
munication is the cause of the spatial segregation of Epi and PrE cells in ICM organoids. In order to
confirm or refute this hypothesis, simulated organoids have to reflect the experimental data as accurately
as possible. To this end, several questions must first be answered.

The first question that arises is how to quantify the experimental data to capture both local and
global characteristics of a pattern. In [23], a cell neighborhood analysis was used to reveal a local clus-
tering of PrE and Epi precursor cells. To express this by a single number, Moran’s I is used here as a
measure of spatial auto-correlation [33]. This also leads to the finding of local clustering in both 24 h- and
48 h-organoids. In order to quantify the global characteristics of an engulfing pattern, pair correlation
function (PCFs) are used [34, 35]. As a result, it turns out that the 24 h-organoids are largely unclassi-
fiable. Contrary to this, the radial distribution of cells with low NANOG and high GATA6 expression
(N–G+) in 48 h-organoids is verified. Thus, the goal of the computational model is to generate organoids
that match the characteristics of the experimental data.

The next question in line concerns the modeling of the cell fate decisions. Therefore, the mathe-
matical basis for transcriptional regulation is established. Contrary to existing transcription models, an
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investigation of different modeling approaches is taken into consideration. In a fully generalized model
with two cells, it is possible to analytically derive conditions that guarantee heterogeneity similar to [26].
For more specific models, the current state of the art is given by phenomenological models that describe
any inhibition and activation of TFs by an individual Hill equation [36]. This is compared to a ther-
modynamic model that is derived from the methods introduced in [37, 38, 39]. A third and final model
is given in the form of a special case of the thermodynamic model. By assuming the auto-activation in
the GRN to be so dominant that transcription becomes synonymous with a TF binding in the proximity
of its own promoter, a simplified model arises. For this model a thorough stability analysis reveals key
parameters that ensure heterogeneity of the simulated organoids. This feature alone assures that this
model is far superior to the others in terms of application.

The growth of an ICM organoid is a crucial part of its development. Therefore, the question arises,
how the growth of an ICM organoid can be modeled. To this end, an organoid growth model that is
partly inspired by [40, 41] is applied. In this model, cells are described by the position of their centroid in
two and three dimensions, as well as their size given by their radii. The radius is used to decide if a cell
will divide or not based on a fixed probability distribution. This leads to an estimation of the cell growth
rates and organoid growth rates that correspond to the experimental data of the ICM organoids. The
Morse potential [42] is used in an overdamped system of equations of motion to describe the adhesion
and repulsion of the cells. In combination this leads to the formation of circular (2D) and spherical (3D)
tissues that closely resemble the ICM organoids.

Cell fate decisions are controlled by the transcriptional regulation. Yet the source of heterogeneity,
i.e. a mixture of two different cell types, still has to be introduced. This is handled by the cell-cell
communication, which leads to the question how it influences the formation of different cell type patterns.
And more specifically, if it is capable of generating engulfing patterns and thus mimic the patterns found
in the ICM organoids. To this end, two different types of signal are investigated. A nearest neighbor
signal only capable of reaching adjacent cells and a distance based signal that disperses throughout
the whole organoid with decreasing intensity based on the traveled distance. For the distance-based
signaling, the signal dispersion is described by a single parameter. Even though engulfing patterns can
be reproduced with the distance based signal, the hypothesis that global signaling is responsible for the
pattern formation in ICM organoids was simultaneously disproven. Still it is demonstrated that the
pattern formation could be influenced by the way that the intercellular signal disperses throughout the
organoid. Thus, the formation of checkerboard as well as engulfing pattern is unified under the notion of
differently dispersing signals. Furthermore, the simulation results are used to classify the experimental
data. For this purpose, simulations with static and dynamic geometries were performed and compared,
highlighting the extent of cell division on pattern formation. Cell division is already believed to promote
the formation of clusters of equal cell types [43]. However, existing models focus either on cell division or
transcriptional regulation rather than both simultaneously. In this thesis, these components are combined
into a multiscale model. In the end, the ICM organoids are successfully classified through organoids that
are generated by the computational model under the influence of cell division and a global cell-cell
communication with low to medium signal dispersions.
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Mid-blastocyst
(E3.75)

Late-blastocyst
(E4.5)

24 h-organoid 48 h-organoid
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Primitive Endoderm
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Time

Time

Blastocoel

Inner cell mass
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Figure 1: Illustrative comparison of the mouse embryo during ebryonic day 3.75 and 4.5 with their
corresponding ICM organoid counterparts at 24 h and 48 h. PrE precursor cells, i.e. cells with low
NANOG expression are colored in cyan. Conversely, Epi precursor cells are colored in magenta. In the
embryo, the ICM together with the blastocoel cavity (blue) is surrounded by the trophectoderm (grey).

11



2 Methods

In this section, it will be shown how an organoid, in vitro or in silico, can be represented by a graph. This
graph forms the basis for the cell-cell interactions in the simulations but also for the chosen quantification
methods, PCF and Moran’s I. Furthermore, it provides the means to compare simulation results with
experimental data. For this comparison, a pre-processing pipeline will be established. Finally, an overview
of basic computational methods will be given.

2.1 Cell graph

Mathematically, two properties for each single cell are enough the describe the spatial composition of an
organoid. These are the position of the cells as well as the information which cells are adjacent to each
other, i.e. the cell neighborhoods. Over time, the position of any cell relative to other cells changes,
resulting in individual compositions of cell positions and neighborhoods. The goal of this section is to
provide a suitable means of representing cell positions and neighborhoods through the use of the cell
graph G. A graph G = (V,E) consists of ordered sets of vertices V and edges E.

Vertices: Let V = {v1, ..., vn}, then the vertex vi is a representation for the cell with index i. Each
vertex vi is assigned a two- or three-dimensional coordinate xi. For the experimental data, the centroids
of the cell nuclei have been calculated in [23] based on the segmentation described in [44]. The cell
centroid is a fitting measure to describe the position of a cell in space, therefore the terms ”centroid” and
”position” will be used interchangeably throughout this work. Thus, the computational model that will
be introduced in this thesis, as well as its representation as a graph are both based on the cell centroids.

Edges: By definition, vertices vi and vj are connected via an edge eij in G, if and only if eij ∈ E.
In addition to the position, cells also have a spatial extension from the cell centroid to the membrane.
Based on this, an edge is to be generated in each case, provided that the membranes of two cells are in
direct contact. The way this is approached is by propagating spheres around the cell until they meet the
spheres of other cells. Thus, the Voronoi tessellation is obtained. The spheres are used to mathematically
describe the extension from cell centroid to membrane. Therefore, the Voronoi tessellation approximates
the volume of the cells. The dual graph of the Voronoi tessellation is the Delaunay triangulation. Here,
for each two tiles that are separated by a common edge, a separate edge connects both centroids, fulfilling
our initial goal of creating a graph representing the tissue cell by cell. However, the tiles created by the
cells that are part of the convex hull of {x1, ...,xn} extend infinitely. Thus, the Delaunay triangulation
yields connections of cells that realistically cannot be in contact due to their finite cell size. To prevent
this, a cutoff value is introduced, such that edge eij is removed from G, if

|xi − xj | > cutoff. (1)

Here, | · | denotes the euclidean norm of an n-dimensional vector. This approach has already proven to
create suitable cell graph representations for breast carcinoma spheroids [44] as well as mouse embryos
and mouse ICM organoids [23]. Ideally, the cutoff is given as the sum of the radii ri and rj of the two
cells, i.e.

|xi − xj | > ri + rj . (2)

The radius of the cells is part of the simulations, therefore this approach is feasible. However, for the
experimental data there is no information on the radius of the cells. The cutoff was chosen as the mean
distance to neighboring cells of the corresponding Delaunay graph of a single organoid plus two times
its standard deviation. In a normal distribution, this would approximately amount to the 2.28% longest
edges. The distributions are slightly skewed to the right, which means that the percentage of removed
edges is slightly larger.

Distances: For any two cells i and j, their euclidean distance towards each other has already been
introduced in (1). Another relevant type of distance is the graph distance dij . This will be defined as
the length of the shortest path connecting the cells i and j. For an unweighted and undirected graph
like this, the most efficient way to calculate all of these distances is given by the breadth-first search
algorithm (BFS) [45].

2.2 Pair correlation function

In order to compare the cell differentiation patterns of in vitro and in silico organoids not only qualitatively
but also quantitatively, a measure of the spatial distribution of the different cell types is needed. To this
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cutoff
procedure

Figure 2: Voronoi tessellation (left) and Delaunay triangulation (right) before and after performing the
cutoff procedure for an exemplary 2D organoid. Black dots represent the centroids of each cell. The
images on the left depict the size of any individual cell via black edges denoting the bordering cell
membranes. On the right, red lines connect vertices of cells in contact with each other. The image in the
lower right represents the cell graph in this example.
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end, pair correlation functions (PCFs) will be utilized which are typically used as a tool to characterize
heterogeneities in the density of fluids [46]. As such they can be used to identify distances of regions
of higher particle densities by basically counting and normalizing all particle pairs found at a specific
distance towards each other. For the characterization of patterns of two different cell types, a specific
discrete version of the PCF is needed. In [34], a PCF based on a pixelated grid has already been used
to quantify patterns in a biological context. In another study, these PCFs were generalized to different
types of regular and more importantly to irregular grids [35]. This was realized by using a graph as the
foundation of defining the connectivity and thus a discrete distance between two particles. The particles
in the context of this study will be cells of two different types. For now, these will be termed u+v− or
u−v+ cells for cells that exhibit high expression levels of a protein u and low expression levels of v and
vice-versa. Mathematically, for n cells, the PCF is defined using the set of all cell pairs at distance k
(Sk), the sets of all cell pairs of equal cell type at distance k (Su

k and Sv
k) and the sets of all cells of a

certain cell type (Tu and T v):

Sk =
{
(i, j) ∈ N2 : dij = k, 1 ≤ i, j ≤ n

}
, (3)

Su
k =

{
(i, j) ∈ Sk : i, j are u+v− cells

}
, (4)

Sv
k =

{
(i, j) ∈ Sk : i, j are u−v+ cells

}
, (5)

Tu =
{
i ∈ N : i is u+v− cell 1 ≤ i ≤ n

}
, (6)

T v =
{
i ∈ N : i is u−v+ cell 1 ≤ i ≤ n

}
. (7)

The next step towards the PCF is the formation of the ratios

ruu =
|Su

k |
|Sk|

, rvv =
|Sv

k |
|Sk|

. (8)

These provide the information about the spatial distribution of the cells. However, these need to be
normalized by the probabilities of randomly picking two equal cell types

puu =
|Tu|(|Tu| − 1)

n(n− 1)
, pvv =

|T v|(|T v| − 1)

n(n− 1)
. (9)

By combining (8) with (9), the PCFs are defined via

ρu(k) =
ruu
puu

=
|Su

k |n(n− 1)

|Sk||Tu|(|Tu| − 1)
, (10)

ρv(k) =
rvv
pvv

=
|Sv

k |n(n− 1)

|Sk||T v|(|T v| − 1)
. (11)

Now that the PCFs have been introduced, it remains to show how these have to be interpreted given
different patterns. To this end, the cells in a simulated 2D organoid were assigned cell fates in different
ways. The organoid was cut vertically nx times at an equidistant spacing. The same was repeated with
ny vertical cuts. The mesh generated this way enables a systematic assignment of cell fates in different
regions of the organoid. All the cells whose centroid are in one of the rectangular regions of the mesh were
assigned to one fate, whereas the adjecent rectangles were filled with the opposite fate. This procedure
was repeated for nr radial cuts yielding radially separated cell regions. Examples for different patterns
where created using nx, ny, nr ∈ {0, 1, 3, 5} (Fig. 3). The first row of organoids were only separated in
one dimension. When the two species are completely spatially separated in one dimension, i.e. two large
adjacent cluster, the PCFs have large values in the low distance regions. This happens because the only
pairs of different cells with low distance are placed directly at the dividing line, which simply represent
fewer cells in relation to the rest. On the other hand, for larger distances you will find fewer pairs of
identical cell types, as these are mostly the cell pairs close to the boundary but on the opposite side of
the organoid. This leads to an overall decreasing trend in the PCF. Increasing the number of separations
leads to the formation of additional peaks and valleys in the PCF. The alternating regions of specific cell
fates lead to this phenomenon. Overall, the trend for ρu and ρv remains nearly identical in all three cases.
The second row of organoids was divided in both dimensions. Again, the increase of spatial divisions
lead to more peaks and valleys in the PCFs and the additional regularity of the patterns leads again
to a mostly identical trend for ρu and ρv. Outliers for long distances are quite common in this way of
pattern quantification. This is attributed to the low amount of cell pairs found at maximum distances
in an organoid (Fig. 4). When observing a single cell, the cells with graph distance k towards it form a
ring around the observed cell with a radius that increases with k. Thus the number of cell pairs |Sk| first
increases with k. However, if k is larger than the distance towards the boundary, the cells with distance
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k are no longer able to form a complete ring, thus reducing the number of possible cell pairings. If k
exceeds the maximum maximum of dij , then |Sk| = 0. Despite low numbers of cell pairs, the PCF can be
reliable for long distances, provided the pairings are mostly occupied by one cell type. Patterns, where
the long distance regions are fully occupied by a single cell type, consistently lead to large values in the
PCF (Fig. 3 last row). In addition to that, ρu and ρv finally show a different trend. While ρv starts high
and decreases with distance k, ρu increases at some point again. The increase in nr leads again to more
peaks and valleys while preserving the separation at long distances. The change in the maximum values
of the PCF comes from the change in cell type proportions. If one proportion increases, its normalization
puu or pvv decreases. Given the same pairs found at a certain distance, e.g. here at maximum distance,
the PCF increases.
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Figure 3: Exemplary PCFs for various patterns. In the top row, the organoid was divided only vertically,
whereas in the center row it was also divided horizontally. The bottom row highlights a radial partitioning
of the cells in the organoid. From left to right the number of partitionings nx, ny and nr increase from 1
over 3 to 5. The magenta curves correspond to the pairings of magenta cells. Analogously for cyan. The
patterns that lead to the PCFs are included in the top right of every graph.

2.3 Moran’s I

PCFs allow the quantification of the global cell differentiation pattern of an organoid. At the local
level, i.e. direct cell neighborhoods, the PCF values for k = 1 already yield some information about the
neighborhood. Values above 1 are a sign that equal cells are clustering together, while values below 1
indicate the opposite behavior. However, individual PCF values like this are not normalized making it
difficult to compare different organoids. Much like the PCFs, Moran’s I is an alternative measure to
quantify spatial auto-correlations. It was first introduced in [33] describing it as a test for the spatial
correlation between neighbors. As such, the aim of this section is to establish Moran’s I as a quantitative
measure to describe the clustering nature of the cells in a tissue. For a variable of interest w ∈ Rn, I is
defined via

I :=
n∑
i,j aij

(w − w̄)TA(w − w̄)

(w − w̄)T (w − w̄)
. (12)
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Figure 4: Distribution of all cell pairs |Sk| found for any distance k in the organoid presented in figure
3 (left). On the right, all cell pairs of equal distance relative to a single cell are visualized. The green
cells represent all cells with distances k = 1 (left), k = 6 (center) and k = 12 (right) towards the red cell.
From top to bottom, the red cell was chosen closer to the boundary of the organoid.

Here, w̄ denotes the mean of w, whereas A is a matrix representation for the connectivity of the cells in
an organoid. In this study, A is chosen as the adjacency matrix of graph G. Furthermore, w is chosen to
represent the fates of every cell. Therefore, the cell fates have to be interpreted as a numerical value. If
there are only two cell fates like the u+v− and u−v+ cells from the in silico organoids, w can be written
as a vector with wi ∈ {0, 1} for i = 1, ..., n. Here, the zeros and ones each stand for one of the cell fates.
It is irrelevant which number is assigned to which fate, the resulting value of I does not change as a
result.

Regular grids On a regular 8 × 8 grid, it is possible to demonstrate how I behaves according to a
given pattern (Fig. 5). In a checkerboard pattern, equal cells are never adjacent to each other as long as
the number of neighbors do not exceed 4. Thus, there is no auto-correlation between the cells leading to
the minimal value I = −1 (Fig. 5 (a)). For randomly distributed cells, I takes values close to 0 (Fig. 5
(b)). In the case of spatial separation, cells are mostly neighbored to equal cell types leading to values of
I close to 1 (Fig. 5 (c)).

Limit example (I = 1) The exact value I = 1 is usually reserved for limit cases. Creating one such
example is made possible by extending the pattern in figure 5 (c) to a k × k grid. For simplicity, we can
also assume a periodic boundary, such that every cell has exactly four neighbors. The number of cells is
k2 and the sum of matrix entries yields

k∑
i,j=1

= 4k2. (13)

Without loss of generality, assume that the cells on the left half have cell fate values wi = 1. Since w has
equal amounts of ones and zeros, the values wi − w̄ are 1/2 for cells on the left half and −1/2 for cells
on the right half. Altogether, the inner product yields

(w − w̄)T (w − w̄) = 1/4k2. (14)

Thus, I can be written as

I =
k2

4k2
(w − w̄)TA(w − w̄)

1/4k2
, (15)

=
1

k2
(w − w̄)TA(w − w̄). (16)

The final matrix vector product can be dissected into two parts. First, the cells that are in contact to
cells of different types. There is one line of contact in the middle of the grid, and another one at the
periodic boundary. This amounts to a total of 4k cells that have exactly one neighbor that is different.
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At the same time, the remaining k2 − 4k cells have equal neighbors. This yields

(w − w̄)TA(w − w̄) = (k2 − 4k)

(
1

4
+

1

4
+

1

4
+

1

4

)
+ 4k

(
1

4
+

1

4
+

1

4
− 1

4

)
. (17)

= k2 − 2k (18)

Thus, the exact value of I is given by the following formula

I =
k2 − 2k

k2
. (19)

Using l’Hospital’s rule the limit k →∞ yields I = 1.

Irregular grids On an irregular grid, where the number of neighbors of one cell i might be different
to that of another cell j, i.e. NG(i) ̸= NG(j) for some i, j ∈ 1, ..., n, the possible minimum/maximum
values of I and therefore the range of possible values changes. It is therefore necessary to classify a whole
range of different patterns and draw reference values from them for comparison. Patterns made by spatial
separation (Sec. 2.2) highlight a decreasing trend of I, as the number of spatial separations nx and ny

increase (Fig. 6). This is consistent with the idea that clusters determine the value of I. By repeatedly
separating the tissue into smaller compartments, cluster sizes and thus I will decrease. The span of I
ranges from −0.23 to 0.75. For radially separated patterns, a similar behavior is observed for the first
four organoids (Fig. 7). However, when nr increases even further, I slightly increases again. Effects like
these are to be expected when generating patterns in such a simplified way. In this specific case, the
spatial resolution of the patterning given by nr has simply become smaller than the actual cell sizes.

In conclusion, I can be used as a measure to determine the type of clustering of two different cell types
in an organoid. Large values of I mean fewer but larger clusters, while low values mean more but smaller
clusters. The values will especially make sense when comparing different types of organoids. However,
Moran’s I provides no further information about the spatial distribution of the cells. Combined with the
PCFs, two- and three dimensional patterns can now be quantified at the local and global level.

(a) checkerboard I = −1 (b) random I = 0.018 (c) separation I = 0.857

Figure 5

2.4 Data pre-processing

The goal of this section is to establish some familiarity with the experimental data. Furthermore, it
will be explained in detail how the data are processed. The data in question was provided by [23]. In
short, they were able to create organoids from ESCs of the mouse embryos ICM. The ESCs in question
were extracted from the Epiblast portion of the mouse embryo and treated with doxycycline to reach
a state of co-expression of NANOG and GATA6 [22]. Using these cells, aggregates of 200 mouse ESCs
were seeded into concave wells that were additionally centrifuged to concentrate the cell aggregates in
the middle. Afterwards, they were left to develop for 24 or 48 hours. Immunofluorescence staining
of the resulting 3D organoids was performed according to [47]. Images were then acquired using a laser
scanning confocal fluorescence microscope. The image pre-processing steps described in [23] together with
the image analysis pipeline in [44] yield segmented images with fluorescence intensity values of NANOG
and GATA6. Using k-means clustering, the cells were categorized into four different cell types according
to [48]. These cell types are N+G–, N+G–, DN and DP. These abbreviations describe expressions of
both NANOG and GATA6 in the cells. N+G– denote cells with high NANOG expression levels and low
GATA6 expression levels. For N–G+ it is the other way around. DN or N–G– means ”double negative”,
i.e. cells which exhibit low expressions of both NANOG and GATA6. On the other hand, DP or N+G+
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Figure 6: Graph showing Moran’s I for organoids with cells separated in two spatial dimensions. The
number of separations in each dimension increases by 2 for every new organoid from left to right. The
center of the organoids correspond to their Moran’s I and its corresponding position on the y-axis.
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Figure 7: Graph showing Moran’s I for organoids with radially separated cells. The number of separations
in each dimension increases by 2 for every new organoid from left to right. The center of the organoids
correspond to their Moran’s I and its corresponding position on the y-axis.
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stands for ”double positive”, i.e. high expressions of both transcription factors. N+G– and N–G+ cells
shall describe Epi and PrE precursor cells respectively and will therefore be used interchangeably. In
total, the datasat contains 76 different 3D organoids with 34 24 h-organoids and 42 48 h-organoids. For
each organoid, the dataset provide the positional information of the centroid of each cell nucleus via their
x-, y- and z-position. Furthermore, the cells have already been separated into different cell types N+G–,
N–G+, DN and DP.

While N+G– and N–G+ cells are considered to be distinct cell precursors, DN and DP cells remain
a source of uncertainty in the patterns in the ICM organoids. DP cells are mostly present in the early
stages of the embryo, whereas DN populations increase towards later stages [48, 23]. Biologically, DN
cells represent cells which are not yet committed to one of the cell fates. Contrary to this, DN cells are
likely representing late stage Epi and PrE cells, that have started to down-regulate NANOG and GATA6
expressions [49, 50]. In the data, the combined percentages of DN and DP cells range from 10% to 78%.
To take this uncertainty into consideration, DN and DP cell fates were randomly assigned to N+G– or
N–G+. The probability p to assign a cell with N+G– fate equals the sum of all N+G– cells divided by the
sum of all N+G– and N–G+ cells (Fig. 8). This ensures that the cell type proportions will not be changed
by this assignment. This process is repeated 1000 times to generate a large number of samples of possible
patterns created by a single organoid. This creates an envelope of values for the PCFs and Moran’s I by
taking the respective minimum/maximum as limiting values. Calculating the minimum/maximum values
directly is in fact not feasible as this problem is NP-hard with a computational complexity of O(2n) with
n denoting the combined number of DN and DP cells. As a fun side note, for n = 100 on a computer
with a 2GHz CPU this would amount to a computation time of roughly

Time =
Number of operations

Operations per second
=

2100

29
s = 291s ≈ 7.85 · 1019y. (20)

Separate interactive 3D visualizations were created for the 24h (https://schardts.github.io/Organoids24h)
as well as 48h (https://schardts.github.io/Organoids48h) organoids using the Plotly library in
Python [51]. These contain the PCF envelope, the cell type proportions and a rotatable 3D model of the
respective organoid (Fig. 9).

p

1− p

1000
patterns

Figure 8: An illustration of the experimental data (left) shows three different cell types. N+G- cells are
shown in magenta, N–G+ cells in cyan. Gray cells represent cells which are either DP or DN and are
therefore not further identifiable. In the following (middle), each gray cell is randomly assigned a cell
fate. Probability p reflects the proportions of N+G– cells found in the data. After 1000 repetitions, one
obtains a variety of 1000 different patterns with only two cell types (right).

2.5 Computational methods

All computational tasks were implemented in Python 3. Graphs were processed using the igraph pack-
age. The graph distance was calculated using the shortest paths function which uses an efficient
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Figure 9: Snapshot of the 3D interactive plots generated from the experimental data. In the top left
corner, an envelope of possible PCF values shows the spatial arrangement of the cells. Directly below,
the cell proportions are shown divided into N+G–, N–G+ and the combined DN and DP proportions.
On the right, the corresponding organoid is visualized as an interactive 3D model. A slider at the bottom
allows the selection of different organoids. The color scheme remains the same for all three plots.
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implementation of breadth first search (BFS) algorithm. SciPy [52] has been used for efficient Delaunay
triangulations and Voronoi tessellations through scipy.spatial. Furthermore, solving nonlinear equa-
tions and the fitting of curves to data were performed via scipy.optimize. If possible, any mathematical
operations were performed on arrays via NumPy [53]. Solving ODEs was done using the explicit Euler
method. Computational visualizations were done either in Matplotlib [54] or Plotly [51]. Vector graphic
illustrations were done in LATEXusing the TikZ library [55] or Microsoft PowerPoint.
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3 Models and analyses

3.1 Transcriptional regulation

The fate of cells in the ICM during embryo development strongly correlates with the protein expression
levels of NANOG and GATA6. In general, it is a reasonable assumption that a cell’s fate is decided by
various protein expression levels. The process of transcriptional regulation is driving the conversion of
DNA to RNA, which is mainly responsible for the protein expression. In this section, the mystery of this
regulation will be unraveled with the help of a mathematical basis that provides a better understanding
and control of the underlying processes. Right at the center of this section is the gene regulatory network
(GRN) surrounding NANOG and GATA6 (Fig. 10). At its core, the transcription factors NANOG,
here represented as u, and GATA6, represented by v, inhibit each other [10, 11]. They are known to
influence their own expression, leading to an auto-activation of both u and v. Through the FGF/Erk
signaling pathway, ICM cells are able to influence their NANOG and GATA6 expressions intercellularly.
FGF4 binding to its receptor FGFr2 increases the production of GATA6, while simultaneously inhibiting
NANOG expressions [15, 16]. This process is greatly simplified in the GRN by an external signal s, which
is not further specified at this time. The signal s acts as an inhibitor on u and an activator on v.

u v

s

Inhibition

Activation

Figure 10: Illustration of the GRN used throughout this study. Transcription factors NANOG and
GATA6 are represented by u and v respectively. Inside the cell, u and v mutually inhibit each other. An
external signal s inhibits u and activates v.

3.1.1 Generalized phenomenological models

Two cell system: This whole journey was initiated by the motivation that arose from the extensive
analytical study of the Delta-Notch system in epithelial gut tissue of Drosophila in [26]. The Delta-Notch
system is often referred to as a lateral inhibition model, due to cells of the neural cell fate inhibiting
adjacent cells from adopting the same fate. However, the lateral mechanism involved is functionally not
that of an inhibition, but rather an activation from adjacent cells. In [26], a single condition on two
generic functions was able to decide if two cells are in two different states or in the same. A similar
condition was pursued in this study. Thus, a simplified GRN, without auto-activation and adjacency-
based inhibition, was considered in the first step (Fig. 11). This was translated into a generic system of
ODEs

du1

dt
= f(v1)− u1,

du2

dt
= f(v2)− u2,

dv1
dt

= g(u1) + h(u2)− v1,

dv2
dt

= g(u2) + h(u1)− v2.

(21)

The equations reflect the GRN with u and v, now being vectors in R2, inhibiting each other inside the
cell via the functions f and g. Simultaneously, v is activated by the expression of u in the neighboring
cell, which is reflected by the function h. The type of interaction leads to conditions for trend of the
respective functions. Inhibitions are strictly monotonically decreasing, whereas activations are strictly
monotonically decreasing, which for differentiable functions implies

f ′(x) < 0, g′(x) < 0, h′(x) > 0 (22)
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The adjacency-based activation replaces the activation through the external signal s and offers a slight
foreshadowing of what is to come in this thesis. Auto-activation as well as the inhibition from the signal
were neglected at this point. The last terms in ODE system (21) describe the exponential decay and
therefore the lifetime of u and v with a decay rate of 1.

u1 v1

u2 v2
Inhibition

Activation

Figure 11: Schematic representation of the GRN describing two cells in contact to each other. Arrows
inside the cell describe intracellular interactions of u and v, whereas arrows ranging from one cell to the
other display the extracellular interactions, i.e. cell-cell communication.

The stability of a dynamic system provides valuable information about the functions and parameters
of the system. An ODE system

dxi

dt
= F (x), i = 1, ...,M

is linearly stable in x∗, if its linearization matrix LODE = F ′(x∗) has only eigenvalues with negative real
part. For (21) LODE becomes

LODE =


−1 0 f ′(v1) 0
0 −1 0 f ′(v2)

g′(u1) h′(u2) −1 0
h′(u1) g′(u2) 0 −1

 (23)

The eigenvalues are then given as the roots of the characteristic polynomial χ(λ) = det(LODE − λI4),
where I4 denotes the identity matrix in R4. To simplify this, matrix L − λI4 is divided into four 2 × 2
block matrices

LODE − λI4 =


−1− λ 0 f ′(v1) 0

0 −1− λ 0 f ′(v2)
g′(u1) h′(u2) −1− λ 0
h′(u1) g′(u2) 0 −1− λ

 =:

(
A B
C D

)
. (24)

The commutative properties CD = DC allows the determinant to be written as det(LODE − λI4) =
det(AD −BC), making it possible to calculate the characteristic polynomial by

χ(λ) = det

((
(1 + λ)2 0

0 (1 + λ)2

)
−

(
f ′(v1)g

′(u1) f ′(v1)h
′(u2)

f ′(v2)h
′(u1) f ′(v2)g

′(u2)

))
.

=
[
(1 + λ)2 − f ′(v1)g

′(u1)
] [
(1 + λ)2 − f ′(v2)g

′(u2)
]
− f ′(v1)h

′(u2)f
′(v2)h

′(u1).

(25)

In order to investigate if this system is capable of generating an inhomogeneous steady state, i.e. a
state of two different cell types, it is sufficient to derive conditions for the instability of homogeneous
steady states. A homogeneous steady state is reached, when both cells have equal expression values in
equilibrium, i.e.

u1 = u2, v1 = v2,
du

dt
= 0 =

dv

dt
.

This makes it possible to write the homogeneous steady state as
u1

u2

v1
v2

 =


u1

u1

v1
v1

 =


f(v1)
f(v1)
v1
v1

 (26)

Inserting this into (25) yields

χ(λ) =
[
(1 + λ)2 − (g ◦ f)′(v1)

]2 − [(h ◦ f)′(v1)]2. (27)
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Here, (g◦f)(u1) denotes the chaining of two functions, i.e. f(g(u1)). Using the chain rule g′(f(u1))f
′(u1) =

(f ◦ g)′(u1). The eigenvalues λ are now determined by solving χ(λ) = 0 for λ. The first step is taking
the square root of the equation and reorder it to find

(1 + λ)2 = (g ◦ f)′(v1)± (h ◦ f)′(v1). (28)

Taking again the square root finally yields the four different eigenvalues

λ1,2,3,4 = −1±
√
(g ◦ f)′(v1)± (h ◦ f)′(v1). (29)

Due to the nature of the inhibition f ′ < 0 and g′ < 0. Contrary to that h′ > 0. Combining the functions
then yields

(g ◦ f)′ > 0, (h ◦ f)′ < 0. (30)

With this information, the eigenvalues can now be analyzed step by step. A condition for the instability
of the homogeneous steady state is sought, this means Re(λ) > 0. Starting with the first ”±” sign it can
be seen that

Re
(
−1−

√
(g ◦ f)′(v1)± (h ◦ f)′(v1)

)
≤ −1 < 0. (31)

The inequality arises due to the square root being either positive or imaginary. For the second ”±” sign,
we know that (g ◦ f)′(v1)− (h ◦ f)′(v1) ≥ (g ◦ f)′(v1) + (h ◦ f)′(v1). Therefore, it is necessary to look at
the ”−” case. This results in the instability condition for the two cell system

(g ◦ f)′(u1)− (h ◦ f)′(u1) > 1. (32)

For f = 0, the condition becomes identical to the one in [26], indicating that it was successfully extended
by mutual inhibition. If condition (32) is fulfilled, the homogeneous steady state becomes unstable. In
return, a heterogeneous steady state, i.e. a state with two different cell types, arises.

One dimensional ring of n cells: The above stability condition (32) can be extended to a one-
dimensional cell line of n cells, where the first and last cell are connected to each other (Fig. 12). The
resulting ODE system will then be

dui

dt
= f(vi)− ui

dvi
dt

= g(ui) + h

(
ui+1 + ui−1

2

)
− vi, i = 1, ..., n.

(33)

Here, the activation of vi depends on the expression of u in the two neighboring cells. A periodic boundary
condition, un+1 = u1 and vn+ 1 = v1, is applied, ensuring that the cell line has no loose ends leading to
the representation as a ring of cells.

Assuming again a homogeneous steady state, i.e. ui = uj for i, j ∈ {1, ..., n} and ui = f(vi), the
linearization of the system can be expressed via

LODE =

(
−In A
B −In

)
. (34)

The diagonals are the result of the decay in (33), whereas the interactions give rise to the off-diagonal
matrices

A =


f ′(v1) 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 f ′(v1)

 . (35)

B =



g′(f(v1))
1
2h

′(f(v1)) 0 . . . 0 1
2h

′(f(v1))
1
2h

′(f(v1)) 0

0
. . .

. . .
...

...
. . . 0

0 1
2h

′(f(v1))
1
2h

′(f(v1)) 0 . . . 0 1
2h

′(f(v1)), g′(f(v1))


(36)

(37)
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ui+1 vi+1

ui vi

ui−1 vi−1

Figure 12: Schematic representation of a one-dimensional cell line arranged as a ring (left). The zoomed
in portion depicts the GRN of three cells that are connected to each other (right).

Most importantly, the product AB yields the following

AB =



(g ◦ f)′(v1) 1
2 (h ◦ f)

′(v1) 0 . . . 0 1
2 (h ◦ f)

′(v1)
1
2 (h ◦ f)

′(v1) 0

0
. . .

. . .
...

...
. . . 0

0 1
2 (h ◦ f)

′(v1)
1
2 (h ◦ f)

′(v1) 0 . . . 0 1
2 (h ◦ f)

′(v1) (g ◦ f)′(v1)


. (38)

This one will be helpful in calculating the determinant for the characteristic polynomial

det(LODE − λI2n) = det

(
−(1 + λ)In A

B −(1 + λ)In

)
, (39)

= det((1 + λ)2In −AB), (40)

= det(−AB − µIn). (41)

Again, the pairwise commutative properties of the involved block matrices lead to equality (40). With
µ = −(1 + λ)2 the eigenvalue problem of LODE has been reduced to a different eigenvalue problem for
−AB in (41). In order to calculate these, the following theorem from [56] (Theorem 3.1) is used.

Theorem 1 Let An ∈ Rn be a tridiagonal Toeplitz matrix with perturbation in the corners, i.e.

An =



b+ γ c 0 . . . 0 α
a b 0

0
. . .

. . .
...

...
. . . 0

0 b c
β 0 . . . 0 a b+ δ


. (42)

In addition to that, let θ be a solution to(a
c

)n/2
[
ac sin((n+ 1)θ) + (γδ − αβ) sin((n− 1)θ)

− c
(a
c

)1/2

(γ + δ) sin(nθ)− (cα
(a
c

)n

+ αβ) sin(θ)

]
= 0.

(43)

Then, the eigenvalues of An are given by

µ = b+ 2c
(a
c

)1/2

cos(θ). (44)
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When connecting (43) with −AB, the condition yields

1

4
(h ◦ f)′(v1)2 [sin((n+ 1)θ)− sin((n− 1)θ)− 2 sin(θ)] = 0. (45)

The strict monotonicity of h and f guarantee that (h ◦ f)′(v1) ̸= 0. In addition to that, the sine addition
theorem, sin(α + β) = sin(α)cos(β) + cos(α) sin(β), together with the symmetries sin(α) = − sin(−α)
and cos(α) = cos(−α), allow equation (45) to be reduced to

0 = sin((n+ 1)θ)− sin((n− 1)θ)− 2 sin(θ), (46)

= sin(nθ) cos(θ) + cos(nθ) sin(θ)− sin(nθ) cos(θ) + cos(nθ) sin(θ)− 2 sin(θ), (47)

= 2 cos(nθ) sin(θ)− 2 sin(θ), (48)

= 2 sin(θ)[cos(nθ)− 1]. (49)

Therefore, either sin(θ) = 0 or cos(nθ) = 1. For θ = 2kπ
n and k ∈ Z, both conditions are covered. The

resulting eigenvalues for −AB are then given by

µ = −(g ◦ f)′(v1)− (h ◦ f)′(v1) cos
(
2kπ

n

)
, for k = 1, ..., n. (50)

Using µ = −(1 + λ)2, the eigenvalues for the initial problem of LODE are given by

λ = −1±

√
(g ◦ f)′(v1) + (h ◦ f)′(v1) cos

(
2kπ

n

)
, for k = 1, ..., n (51)

It can be seen that for n = 2, the solution from the two cell case (29) can be recovered. The homogeneous
steady state then becomes unstable if

(g ◦ f)′(v1) + (h ◦ f)′(v1) cos
(
2kπ

n

)
> 1, for any k = 1, ..., n. (52)

From a mathematician’s point of view, it is a beautiful coincidence, that the circular arrangement of cells
in figure 12 leads to the emergence of a trigonometric function. For instability, it suffices to fulfill (52)
for a single k. The k ∈ Z that lead to the largest value in (52) are the ones such that the value of cos is
closest to −1. For an even number of cells, this will be k = n

2 , whereas for odd numbers, we get k = n+1
2

or k = n−1
2 , ultimately leading to the stability condition

(g ◦ f)′(v1)− (h ◦ f)′(v1) > 1, if n is even,

(g ◦ f)′(v1)− (h ◦ f)′(v1) cos
(
n+ 1

n
2π

)
> 1, if n is odd.

(53)

With (h◦f)′ < 0 and cos < 1, this yields that the stability condition for the two cell system (32) is already
sufficient to ensure stability for n cells. Extensions of this kind of stability analysis become increasingly
more difficult when increasing the dimensions of the system. Thus, the focus will be shifted towards
extensions of the GRN and the resulting system of equations.

Two cell system with additional auto-activation and adjacency-based inhibition In order to
describe the actual GRN from figure 10, the auto-activation and the inhibition from the signal still have
to be included. Similar to the activation, the inhibition is described as adjacency-based from u1 to u2

and vice-versa. So far, activatory and inhibitory effects were combined as a sum of two separate functions
(21). At this point, this is taken one step further by combining all effects within a single generic function
i.e.

du1

dt
= f(u1, u2, v1)− u1,

du2

dt
= f(u2, u1, v2)− u2,

dv1
dt

= g(u1, u2, v1)− v1,

dv2
dt

= g(u2, u1, v2)− v2.

(54)
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In f , the first argument relates to the auto-activation, the second one the intercellular inhibition and
the third one the intracellular inhibition. Similarly, in g, the first argument relates to the intracellular
inhibition, the second one intercellular activation and the third one the auto-activation. The effect of the
interactions can be summarized by their partial derivatives

f1 > 0, f2 < 0, f3 < 0

g1 < 0, g2 > 0, g3 > 0.
(55)

Here, the shorthand notation fi :=
∂
∂i
f is used to denote the derivative with respect to the i-th argument.

In order to increase readability, a homogeneous steady state will already be assumed at this point, i.e.
u1 = u2 and v1 = v2. Therefore the function arguments will be neglected in our further notation such
that, e.g. f1 = f1(u1, u1, v1).

u1 v1

u2 v2

Inhibition

Activation

Figure 13: Schematic representation of the GRN for the fully generalized ODE system (54). Two cells
in contact to each other communicate via intercellular activation and inhibition. Inside each cell, u and
v mutually inhibit each other while activating themselves. From one cell to the other, u is activating v
while simultaneously inhibiting u.

The stability analysis requires again the linearization of ODE system (54), which further leads to the
problem of calculating the determinant of

LODE − λI4 =


f1 − 1− λ f2 f3 0

f2 f1 − 1− λ 0 f3
g1 g2 g3 − 1− λ 0
g2 g1 0 g3 − 1− λ

 =:

(
A B
C D

)
(56)

Again, the commutativity CD = DC can be used to calculate the determinant

χ(λ) = det(LODE − λI4) = det(AD −BC), (57)

= det

(
(g3 − 1− λ)

(
f1 − 1− λ f2

f2 f1 − 1− λ

)
− f3

(
g1 g2
g2 g1

))
(58)

= det

((
(g3 − 1− λ)(f1 − 1− λ)− f3g1 (g3 − 1− λ)f2 − f3g2

(g3 − 1− λ)f2 − f3g2 (g3 − 1− λ)(f1 − 1− λ)− f3g1

))
(59)

= [(g3 − 1− λ)(f1 − 1− λ)− f3g1]
2 − [(g3 − 1− λ)f2 − f3g2]

2
(60)

Setting χ(λ) = 0 and taking the square root of the equation yields

(g3 − 1− λ)(f1 − 1− λ)− f3g1 ± [(g3 − 1− λ)f2 − f3g2] = 0. (61)

After rearranging all the terms, a somewhat complicated quadratic function is found

λ2 + (2− f1 − g3 ±∗ f2)λ+ [(g3 − 1)(f1 − 1)− f3g1 ±∗ (g3f2 − f3g2 − f2)]. (62)

The use of ±∗ is supposed to show that both plus minus signs are connected such that their sign is always
the same. Thus, there are two different quadratic equations, one for ”+” and one for ”−”, resulting in
four different eigenvalues given through the quadratic formula

λ1,2,3,4 =− 2− f1 − g3 ±∗ f2
2

(63)

±

√(
2− f1 − g3 ± f2

2

)2

− [(g3 − 1)(f1 − 1)− f3g1 ±∗ (g3f2 − f3g2 − f2)]. (64)
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As a small remark, it can be seen that equation (63) reduces to (29) by choosing

f1 → 0, f2 → 0, f3 → f ′, (65)

g1 → g′, g2 → h′, g3 → 0. (66)

There are two different cases to be considered. First, the one where the radical in (63) is less than zero.
Second, the case where the radical is greater than zero.

Radical less than zero For radicals less than zero, the square root becomes imaginary, leading to the
real part

Re(λ) = −2− f1 − g3 ± f2
2

!
> 0. (67)

Using f2 < 0, it is sufficient to look at one of the two cases

− 2− f1 − g3 − f2
2

> 0. (68)

The terms can be rearranged to
f1 + f2 + g3 < −1 (69)

In the previous cases, without intercellular inhibition, i.e. f2 = 0, this condition could not be fulfilled
due to f1 > 0 and g3 > 0. The radical in (63) being less than zero provides an additional condition that
needs to be fulfilled

(g3 − 1)(f1 − 1)− f3g1 ± (g3f2 − f3g2 − f2) >

(
2− f1 − g3 ± f2

2

)2

> 0. (70)

For the second inequality, the instability condition Re(λ) > 0 was used. In total, this yields two inequal-
ities which form the first instability condition when combined

f1 + f2 + g3 < −1
(g3 − 1)(f1 − 1)− f3g1 ± (g3f2 − f3g2 − f2) > 0.

(71)

Radical greater than zero For a generic quadratic equation, x2 + px+ q = 0, the solutions are given
by

x = −p

2
±

√(p
2

)2

− q. (72)

If
(
p
2

)2 − q > 0, then the solutions x are positive if and only if

−p

2
±

√(p
2

)2

− q > 0 (73)

±
√(p

2

)2

− q >
p

2
(74)(p

2

)2

− q >
(p
2

)2

(75)

−q > 0. (76)

Applied to (63) this yields the second instability condition for the homogeneous steady state

(g3 − 1)(f1 − 1)− f3g1 ± (g3f2 − f3g2 − f2) < 0 (77)

This inequality represents the exact opposite of the second inequality in (71). Thus, this is the first
condition that needs to be checked, in order to prove instability of the homogeneous steady state.

In conclusion, it was proven that for the fully generalized ODE system (54) a stability/instability
condition could be derived. From this point on however, it was decided that the results, as beautiful as
they may be, do not justify the effort that must be made to handle any possible modifications of this
system. Such modifications might include the jump from two to n cells, or from one to higher dimensions.
Furthermore, cell-cell communication was so far limited to a single cell. While this provides enough space
for further research, the objective of this thesis was shifted more in the direction of applications. Therefore,
the remaining focus in this section will be spent on concrete examples of transcriptional regulation.
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3.1.2 Phenomenological models

Currently, the most widespread element of modeling transcriptional regulation is the Hill function. Var-
ious examples of their use can be found for the regulation of NANOG and GATA6 in the mouse embryo
[27, 28, 30, 31], but also in other system like the Delta-Notch signaling pathway in Drosophila [26].
Initially used to describe the dissociation curves of aggregates of hemoglobin molecules [36], the Hill
equation has found its way into enzyme kinetics through the modeling of metabolic pathways [57]. In
the context of transcriptional regulation, the rates of transcription are modified by the use of activatory
and inhibitory Hill equations

Activation:
auu

k

1 + auuk
, (78)

Inhibition:
1

1 + auuk
. (79)

Here, u is the normalized concentration of the activator/inhibitor. The constant k ∈ N is called Hill
coefficient and describes the cooperativity u. For k = 1, this resembles the expressions from the Michaelis-
Menten kinetics [58]. Another constant au describes the strength of the interaction. A simple ODE, in
which the regulation of u is inhibited by another transcription factor v, can then be described as

du

dt
= ru

1

1 + avvk
− γuu, (80)

where ru describes the basal transcription rate and γu the decay rate of u. For more complicated
GRNs, equation (80) would have to include a combination of all the activations and inhibitions on the
transcription of u. In literature, these are combined either additively or multiplicatively. Based on the
qualitative reasoning mentioned in [27], the GRN (Fig. 10) yields

du

dt
= ru

(
auu

k

1 + auuk
+

1

1 + assk

)
1

1 + avvk
− γuu,

dv

dt
= rv

(
avv

k

1 + avvk
+

ass
k

1 + assn

)
1

1 + auuk
− γvv.

(M1)

Although presentation slightly differs, ODE system (M1) is an exact replication of the first two equations
of the ODE system found in [27, 28]. This system in particular has already been thoroughly investigated
and is therefore only used as a reference system to compare the other systems.

3.1.3 Thermodynamic models

The main goal of this section is to establish a dynamical system describing the gene regulation in cells
using methods from statistical thermodynamics. The basic concept of the model underlies only two
assumptions:

1. Transcription determines the production of new protein.

2. Decay describes the lifetime of the protein.

These assumptions are translated into an ordinary differential equation (ODE) describing the concentra-
tion of protein u over time:

du

dt
= rpu − γu. (81)

The second term is the exponential decay with decay rate γ. The first term describes the rate of tran-
scription of the corresponding gene. Here, pu denotes the probability that RNA polymerase (RNAP) is
bound to the promoter of u. The production rate r describes how much protein can be produced while
RNAP is bound.

RNAP binding probability In the absence of activating/inhibiting transcription factors, the binding
probability of RNAP to the promoter can be determined using statistical mechanics as in [37, 39]. To
this end, the DNA is divided into Ω fixed lattice sites, plus one site for the promoter of u. Considering
X distinct RNAP enzymes, the number of possibilities that they are bound or unbound are

Number of unbound states:
Ω!

X!(Ω−X)!
(82)

Number of bound states:
Ω!

(X − 1)!(Ω−X + 1)!
(83)
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For different state energies εunbound and εbound, the Boltzmann distributions

e−βεunbound

and e−βεbound

(84)

describe the probability of adopting that state. The constant β is the inverse product of the Boltzmann
constant and temperature 1

kBT . The state energies can be split into the sum of the state energies of the
single RNAP enzymes

εunbound = Xεunboundx (85)

εbound = (X − 1)εunboundx + εboundx . (86)

The partition function is used to describe the statistical properties of the given ensemble. It is defined
as the sum of the Boltzmann distributions over all possible microstates

Ztotal =
∑

microstates

e−βεmicrostate

, (87)

=
Ω!

X!(Ω−X)!
e−βεunbound

+
Ω!

(X − 1)!(Ω−X + 1)!
e−βεbound

, (88)

= Zunbound + Zbound. (89)

The binding probability pu of X binding to the promoter of u is then given by the ratio of bound states
and all states

pu =
Zbound

Zunbound + Zbound
. (90)

It is safe to assume that the number of lattice sites on the DNA far exceeds the amount RNAP, i.e.
Ω≫ X. Therefore, Ω!

(Ω−X)! ≈ ΩX is a valid approximation for the combinatorial terms. The probability

then becomes

pu =
Zbound/Zunbound

1 + Zbound/Zunbound
=

X
Ω e−β(εbound

x −εunbound
x )

1 + X
Ω e−β(εbound

x −εunbound
x )

. (91)

In the terms corresponding to the bound state, only the difference of energies remains. Therefore they
are replaced by ∆εx = β(εboundx − εunboundx ). Although, ∆ε does not have the physical unit of energy, it
will still be referred to as energy difference. The ratio x := X

Ω describes the volume fraction of RNAP in
the system. Together, this yields

pu =
e−∆εxx

1 + e−∆εxx
. (92)

For shorthand notation, the Boltzmann coefficients are replaced by an energy coefficient ηx := e−∆εx to
reveal

pu =
ηxx

1 + ηxx
=: p0. (93)

This is equivalent to the rate of product formation in the case of the Michaelis-Menten kinetics. In this
context, p0 describes the basal probability of RNAP binding.

First order interactions If a single interacting agent A influences the chance of binding X to the
promoter by means of activation or inhibition, additional binding events have to be considered. This
changes the corresponding number of different states as well as the state energies. From table 1, it can
be seen that these are determined straightforward with the exception of the event where both X and A
are bound. In this case, an additional energy term ∆εxa was introduced to describe the effect A has on
the binding of X.

Binding Event Number of States Coefficient

X unbound
A unbound

Ω!
X!A!(Ω!−X−A)! 1

X bound
A unbound

Ω!
(X−1)!A!(Ω!−X−A+1)! e−∆εx

X unbound
A bound

Ω!
X!(A−1)!(Ω!−X−A+1)! e−∆εa

X bound
A bound

Ω!
(X−1)!(A−1)!(Ω!−X−A+2)! e−∆εx−∆εa−∆εxa

Table 1: List of different binding events and the corresponding number of possible states and coefficients
for a single interactor.
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After defining again the energy coefficients ηξ := e−∆εξ with ξ ∈ {x, a, xa}, the same procedure as
before ultimately leads to the binding probability of RNAP at the promoter of u under the influence of
an interactor a

pu =
ηxx(1 + ηxaηaa)

1 + ηxx(1 + ηxaηaa) + ηaa
. (94)

At first glance, (94) looks intimidating. However, there lies some beauty in the interpretation of this
equation. Any term in this equation describes a different binding event. The numerator collects all
events in which RNAP x is bound, whereas the denominator is the collection of all possibilities. The
coefficients ηx and ηa describe the strength of binding without any type of interaction. In contrast to that,
ηxa describes only the effect of the interaction between x and a. To see the effect of these interactions,
we rewrite equation (94) by dividing both numerator and denominator by (1 + ηaηaxa) to obtain

pu =
ηxx

fu + ηxx
with fu :=

1 + ηaa

1 + ηaηxaa
. (95)

The regulatory term fu enables us to characterize an inhibition or activation by checking its value in
comparison to 1. This is directly influenced by the interaction coefficient ηxa:

ηxa < 1 =⇒ fu > 1 =⇒ pu < p0 =⇒ Inhibition

ηxa > 1 =⇒ fu < 1 =⇒ pu > p0 =⇒ Activation

ηxa = 1 =⇒ fu = 1 =⇒ pu = p0 =⇒ No Interaction

(96)

A special case of inhibition is found for ηxa = 0. In this case −∆εxa = ∞, i.e. it is impossible for both
X and A to bind together. Throughout this study, this case is referred to as blocking inhibition.

Higher order interactions Higher order interactions describe the cooperativity of two or more inter-
actors participating in the binding of the RNAP. By adding a single interactor b, the realm of possibilities
then increases by the additional single binding events, the additional interactions with the RNAP but
also the interactions between the constituents themselves. The regulatory term fu is updated using the
following terms:

1. B bound ⇒ ηbb

2. A and B bound ⇒ ηaηbηabab

3. X and B bound ⇒ ηxηbηxbxb

4. X, A and B bound ⇒ ηxηaηbηxaηxbηabηxabxab

Combining the previously found terms with these yields

fu =
1 + ηaa+ ηbb+ ηaηbηabab

1 + ηaηxaa+ ηbηbxb+ ηaηbηxaηxbηabηxabab
. (97)

The amount of coefficients becomes staggering at some point. For N interactors, this would amount to
2N terms in both numerator and denominator. Each of these but one introducing its own coefficient,
leading to a total of 2N+1 − 2 coefficients.

Independence Although the number of coefficients increases with each new interactor, there are usu-
ally some kinds of interactions we might be able to exclude from the start. Binding sites on the DNA
which are neither shared nor tampered with by interactors are independent of each other, i.e. ηab = 1. If
we assume in addition to that, that there is no interaction between RNAP and the combined interactors,
i.e. ηxab = 1, the regulatory term becomes

fu =
(1 + ηaa)(1 + ηbb)

(1 + ηaηaxa)(1 + ηbηbxb)
. (98)

In general, we can summarize N independent interactors ai with i = 1, ..., N by using the product of
their individual regulatory terms

fu =

N∏
i=1

1 + ηai
ai

1 + ηaiηaixai
(99)
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Application to NANOG/GATA6 The problem of NANOG and GATA6 regulation is modeled ac-
cording to the proposed GRN (Fig. 10). Each of its interactions has to be translated into corresponding
regulatory terms that make up the binding probability. First, u acts as an activator on its own promoter.
This regulatory effect is expressed via

f (1)
u =

1 + ηuu

1 + ηuηxuu
. (100)

Both u and s serve as an inhibitor on the promoter of u. For the sake of simplicity, we assume that the
binding of RNAP gets completely blocked, which means the interaction coefficient is zero, leading to

f (2)
u =

1 + ηvv

1
, f (3)

u =
1 + ηss

1
. (101)

In total, this yields a regulatory term

fu = f (1)
u · f (2)

u · f (3)
u =

(1 + ηuu)(1 + ηvv)(1 + ηss)

1 + ηuηxuu
. (102)

It is assumed that the binding of u, v and s is equally likely in the vicinity of both promoters. This way,
the coefficients ηu, ηv and ηs can be directly transferred to the promoter of v. Since, v is also able to
auto-regulate and is inhibited by u, the first two regulatory effects are

f (1)
v =

1 + ηvv

1 + ηvηxvv
, f (2)

v =
1 + ηuu

1
. (103)

The additional activation from the signal s yields

f (3)
v =

1 + ηss

1 + ηsηxss
. (104)

The complete regulatory term then reads

fv = f (1)
v · f (2)

v · f (3)
v =

(1 + ηuu)(1 + ηvv)(1 + ηss)

(1 + ηvηxvv)(1 + ηsηxss)
. (105)

Expressions (102) and (105) allow us to describe the temporal evolution of u and v inside a single cell via

du

dt
= ru

ηxx

fu + ηxx
− γuu with fu =

(1 + ηuu)(1 + ηvv)(1 + ηss)

1 + ηuηxuu
,

dv

dt
= rv

ηxx

fv + ηxx
− γvv with fv =

(1 + ηuu)(1 + ηvv)(1 + ηss)

(1 + ηvηxvv)(1 + ηsηxss)
.

(M2)

How the signal influences the steady states Mathematically, the results of inhibition and activation
in (M2) manifest in the steady states of the ODE system deviating from the basal expression levels. This
means that the regulatory terms fu and fv are either less or greater than one in steady state. Based
on these regulatory terms, the aim is to show that the signal s determines the emergence of steady
states, where u is high and v is low, i.e fu < 1 and fv > 1, or vice-versa. This can be accomplished by
finding a parameter combination that allows basal expression values for both u and v to be generated
for a given signal value despite the interactions. Thus, increasing the signal value will increase fv while
simultaneously decreasing fu. The basal expression levels for u and v are the steady state solutions for
fu = 1 = fv

u0 =
ru
γu

ηxx

1 + ηxx
, v0 =

rv
γv

ηxx

1 + ηxx
. (106)

The goal is to control parameter values ηs and ηxs in such a way that for a given signal s0 the system
will end up at u0 and v0. Given that fu(u, v) and fv(u, v) control the deviation from the basal activity,
it is sufficient to find parameter relations fulfilling

fu (u0, v0, s0) = 1, (107)

fv (u0, v0, s0) = 1. (108)

This yields two equations that are rearranged to

(1 + ηuu0)(1 + ηvv0)(1 + ηss0) = 1 + ηuηxuu0, (109)

(1 + ηuu0)(1 + ηvv0)(1 + ηss0) = (1 + ηvηvxv0)(1 + ηsηsxs0). (110)
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This nonlinear equation system can be solved in two steps. First (109) is solved for ηs to reveal

ηs =
1

s0

(
1 + ηuηxuu0

(1 + ηuu0)(1 + ηvv0)
− 1

)
. (111)

In the second step, (110) is solved for the second coefficient

ηxs =
1

ηss0

(
(1 + ηvv0)(1 + ηuu0)(1 + ηss0)

1 + ηuηxvv0
− 1

)
=: η∗xs. (112)

This enables the characterization of different behaviors regarding ODE system (M2) by varying a few
key parameters (Fig. 14). Increases in ηxx also increase the basal expression values. Together with the
basal expressions, the overall values for both u and v at given signal values also increase, as indicated
by the curve of steady states being shifted towards the upper right corner. The areas that characterize
the cell fate are determined by the basal expression values u0 and v0 which only depend on ηxx. Hence,
the increase of ηxx increases the area for the u−v− fate, whereas the area for the u+v+ fate decreases.
The regions deciding the cell fates u+v− and u−v+ do not change in their areas but in their respective
boundaries. The increase of the signal s displaces the steady states from the u−v+ towards the u+v−

region. For ηxs = η∗xs these pass right through the point where the basal expressions meet, as expected
by condition (107). This effectively generates a system, where only the two states are possible. When
deviating from ηxs the steady states first need to pass through one of the other two regions. A decrease
of ηxs allows cells to be in u−v− state, whereas an increase enables the possibility of u+v+ cells.

3.1.4 Auto-activation dominant model

Model (M2) was derived purely from physical principles fulfilling the goal of replacing the phenomeno-
logical model (M1). However, at the analytical level, both models are difficult to handle in terms of
stability. In this section, an additional model for the transcriptional regulation of u and v is introduced.
For this model, the generality of (M2) is traded for an analytical description of the steady states of
the system. This is realized by the assumption that the auto-activations of both u and v are dominant
compared to the basal activity of RNAP. Hence, the initiation of transcription will only be associated
with the binding of u or v to their respective promoters. Under this assumption, the interactions at the
promoter are no longer described at the RNAP level, but only for the initiators of the transcription, e.g.
if v inhibits u the interaction is described via ηuv < 1 or even ηuv = 0. This way, all the interactions
from GRN 10 are

ηuv = 0, ηvu = 0, (113)

ηus = 0, ηvs > 1. (114)

Higher order interactions are again neglected, e.g. ηuvs = 0. As before, states with a single binding event
result in the addition of the terms ηαα with α ∈ {u, v, s}. It remains a single state where v and s are
bound cooperatively, yielding the term ηvηsηvsvs. The binding probability of u is described by the ratio
of events where u is bound and all possible events

pu =
ηuu

1 + ηvv(1 + ηsηvss) + ηuu+ ηss
. (115)

Likewise, the binding probability of v is

pv =
ηvv(1 + ηsηvss)

1 + ηvv(1 + ηsηvss) + ηuu+ ηss
. (116)

For n different cells, the transcriptional regulation is then described by the ODE system:

dui

dt
= ru

ηuui

1 + ηvvi(1 + ηsηvssi) + ηuui + ηssi
− γuui

dvi
dt

= rv
ηvvi(1 + ηsηvssi)

1 + ηvvi(1 + ηsηvssi) + ηuui + ηssi
− γvvi, i = 1, ..., n.

(M3)

As before, the absorbed signals si are considered to be as general as possible. Thus, it will be described
as a function

s : Rn × Rn → Rn : (u,v) 7→ s(u, v) (117)

In the following, a thorough analysis of this model reveals several advantages over the other models
considered throughout this study.
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Figure 14: Steady states of the thermodynamic equations for transcriptional regulation (M2) under
variation of ηxx and ηxs. From left to right ηxx increases. From bottom to top ηxs increases. Dashed
lines indicate the basal expressions u0 and v0, separating regions of high expressions from regions of low
expressions. Regions where both u and v are expressed either high are low are shaded in gray. Regions
where u is high and v is low are shown in cyan, for the opposite case in magenta. Any dot represents
the steady state of the system for one of 50 logarithmically spaced signal values s ∈ [10−3, 1]. A black
arrow indicates in which direction the steady states move upon increasing s. The remaining model
parameters were chosen as γu = γv = 10, ru = rv = 1, −∆εu = −∆εv = 5, −∆εxu = 4, −∆εvx = 1,
s0 = 0.05. Equations (111) and (112) yield ηs ≈ 53.40 and ηxs ≈ 5.17 which translates to −∆εs ≈ 3.98
and −∆εxs ≈ 1.64.
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Steady states The steady states of system (M3) can explicitly be calculated by setting dui

dt = 0 = dvi

dt .
This yields

ηuui

1 + ηuvi(1 + ηsηvssi) + ηuui + ηssi
=

γu
ru

ui, (118)

ηvvi(1 + ηsηvssi)

1 + ηvvi(1 + ηsηvssi) + ηuui + ηssi
=

γv
rv

vi. (119)

Rearranging (118) and (119), reveals two possible solutions for ui and vi, respectively

ui =

{
0
ru
γu
− 1+ηvvi(1+ηsηvssi)+ηssi

ηu

, vi =

{
0
rv
γv
− 1+ηuui+ηssi

ηv(1+ηsηvssi)

(120)

Combining the different solutions from (120) leads to a total of four different steady states. Three of
these show either no expression of u and v, i.e. u−v−, or high expression in one of the transcription
factors and none in the other, i.e. u+v− or u−v+

ui = 0, vi = 0 (121)

ui =
ru
γu
− 1 + ηssi

ηu
, vi = 0 (122)

ui = 0, vi =
rv
γv
− 1 + ηssi

ηv(1 + ηsηvssi)
(123)

When combining the non-zero solutions for ui and vi in (120), a fourth steady state is found. However, it
turns out that ui and vi cancel each other out leading to an over-determined system when the following
condition is met

ηv(1 + ηsηvssi) = ηu
ruγv
rvγu

. (124)

This enables infinitely many solutions for the steady states of (M3). Hence, the exact values for ui and
vi cannot be further identified. Inserting condition (124) in the steady state solution vi ̸= 0 from (120)
reveals that the combination of ui and vi is subject to a restriction that resembles the right hand side of
the steady state (122):

ui +
ruγv
rvγu

vi =
ru
γu
− 1 + ηssi

ηu
. (125)

Interestingly, this restriction can also be rewritten using (124) to resemble the right hand side of (123):

rvγu
ruγv

ui + vi =
rv
γv
− 1 + ηssi

ηv(1 + ηsηvssi)
. (126)

This means that expression levels of ui and vi in this state must be lower or equal to the expressions in
(122) and (123). Thus, this is an intermediate state that lies between the desired cell fates u+v− and
u−v+. It is particularly interesting to see what role the signal si plays in this. Therefore, si is isolated
in equation (124), leading to a critical signal value s∗

s∗ =
ruγvηu − rvγuηv
rvγuηvηsηvs

. (127)

For si = s∗, this intermediate steady state will always occur. Hence, this critical signal value allows the
description of the switching behavior in the ODE system (Fig. 15). For values si < s∗, a cell ends up in
states (122) (u+v−), whereas si > s∗ leads to the opposite state (123) (u−v+). At exactly s = s∗, both
expression levels u and v approach the straight line defined by (125). Thereby, no unique steady state is
attained. Altogether, the steady states (121)-(123) of ODE system (M3) were successfully derived and
the signal was identified triggering cell differentiation in this model.

Stability analysis In contrast to the generalized phenomenological models, ODE system (M3) allows a
linear stability analysis on the level of single cells as well as complete tissues for a generic description of the
signaling mechanism. The goal here is to determine parameter restrictions that lead to stability/instability
of the system. Specifically, parameters that allow the formation of a tissue that is inhomogeneous with
respect to cell fates. For this reason, the linearization matrix is set up:

LODE =

(
ruAuu − γuIn ruAuv

rvAuv rvAvv − γuIn

)
, (128)
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(a) si = 0 (b) si = s∗ (c) si = 2s∗

Figure 15: Streamline phase portraits of ODE system (M3) for a single cell and three different values
for si. Arrows show the path from the initial condition towards the respective steady states (122), (125)
and (123).

Here, In again described the n-dimensional identity matrix. The block matrices Axy, x, y ∈ {u, v} arising
in LODE are defined by the total derivatives of pu and pv with respect to ui and vi. Interpreting the
signal as a function of u and v, the chain rule leads to

Auu =
∂pu
∂u

+
∂pu
∂s

∂s

∂u
, Auv =

∂pu
∂v

+
∂pu
∂s

∂s

∂v
, (129)

Avu =
∂pv
∂u

+
∂pv
∂s

∂s

∂u
, Avv =

∂pv
∂v

+
∂pv
∂s

∂s

∂v
. (130)

Here, the derivative ∂pu

∂u :=
(

∂pu

∂uj ,
(ui, vi, si)

)
i,j=1,...,n

denotes a matrix whose entries are comprised of the

respective combinations of partial derivatives. Other block matrices are defined analogously. The partial
derivatives regarding the the binding probabilities are

∂

∂uj
pu(ui, vi, si) =

{
ηu(1+ηvvi(1+ηsηvssi)+ηss)

(1+ηvvi(1+ηsηvssi)+ηuui+ηssi)2
, if i = j

0, if i ̸= j
(131)

∂

∂vj
pu(ui, vi, si) =

{
− ηvηuui(1+ηsηvssi)

(1+ηvvi(1+ηsηvssi)+ηuui+ηssi)2
, if i = j

0, if i ̸= j
(132)

∂

∂uj
pv(ui, vi, si) =

{
− ηvηuvi(1+ηsηvssi)

(1+ηvvi(1+ηsηvssi)+ηuui+ηssi)2
, if i = j

0, if i ̸= j
(133)

∂

∂vj
pv(ui, vi, si) =

{
ηv(1+ηsηvssi)(1+ηuui+ηssi)

(1+ηvvi(1+ηsηvssi)+ηuui+ηssi)2
, if i = j

0, if i ̸= j
(134)

∂

∂si
pu(ui, vi, si) = −

ηuηsui(1 + ηvηvsvi)

(1 + ηvvi(1 + ηsηvssi) + ηuui + ηssi)2
(135)

∂

∂si
pv(ui, vi, si) =

ηvηsvi(ηvs + ηuηvsui − 1)

(1 + ηvvi(1 + ηsηvssi) + ηuui + ηssi)2
(136)

Stability again requires the eigenvalues of LODE to have only negative real parts. The eigenvalues are
the roots of the characteristic polynomial, which is in general described by

χ(λ) = det(LODE − λI2n). (137)

Again, I2n denotes the identity matrix in 2n dimensions. For the generalized setting, the eigenvalues
cannot be accurately determined. However, the characteristic polynomial becomes highly simplified when
it is restricted to one of the steady states (121)-(123). This allows each state to be analyzed individually.

Steady state (121) The first steady state (121) is characterized by the absence of any expressions.
Therefore, it resembles the u−v− fate of a cell. The system is supposed to differentiate between two cell
fates where the expressions of one protein is high and the other is low and vice-versa. Therefore, it is
necessary to find ways to exclude the emergence of the u−v− fate for any single cell. Without loss of
generality, it is assumed that un+1 = 0 = vn+1. Focusing on row n+ 1 of LODE, the relevant derivatives
are (132) - (136) with (131) being the only one left out. Fortunately, all derivatives yield 0 with the
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exception of ∂
∂v1

pv(u1, v1, s1). This remaining entry results in

rv
∂

∂v1
pv(0, 0, s1)− γv − λ = rvηv

1 + ηsηvss1
1 + ηss1

− γv − λ. (138)

The Laplace expansion allows the determinant of a matrix A ∈ Rn×n to be calculated as

det(A) =

n−1∑
j=1

(−1)i+jaij det(Aij), i = 1, . . . , n, (139)

where aij denote the matrix entries and Aij ∈ R(n−1)×(n−1) the submatrices that arise, when row i and
column j are removed from A. This expansion is valid for any row i, especially in the case of LODE for
row n+ 1, where only a single summand is not equal to 0

det(LODE) =

(
rvηv

1 + ηsηvss1
1 + ηss1

− γv − λ

)
det(LODE

ij ), i = 1, . . . , n, (140)

The first factor in this equation is sufficient to provide a single eigenvalue by setting

rvηv
1 + ηsηvss1
1 + ηss1

− γv − λ
!
= 0. (141)

For the eigenvalue λ, this can be rearranged to

λ = rvηv
1 + ηsηvss1
1 + ηss1

− γv. (142)

This state becomes unstable for λ > 0. In this case, the parameters follow the relation

ηv >
γv
rv

1 + ηss1
1 + ηsηvss1

. (143)

For a physically realistic signal, si ≥ 0, and considering the signal to be activating, i.e. ηvs > 1, a
sufficient condition for instability is

ηv >
γv
rv

. (144)

For the sake of readability, the notation using energy coefficients η is preferred over the energy differences
−∆ε. However, when using actual values for said parameters, it is preferable to describe them as energy
differences. Therefore, (144) is also translated to

−∆εv > ln

(
γv
rv

)
. (145)

This provides the necessary condition for instability of steady state (121) and consequently u−v− cell
fates. With the exclusion of this steady state, the focus will shift towards steady states (122) and (123),
such that only the two cell fates u+v− and u−v+ are made relevant.

Homogeneous steady state (122) Now that only two cell fates remain, it is desirable to achieve an
inhomogeneous mixture of u+v− and u−v+ cells in the tissue, in order to generate organoids that consist
of both, PrE and Epi precursor cells. Hence, two additional stability analyses are performed to identify
parameter regions in which homogeneous states become unstable. If the system is unstable in both
homogeneous steady state (122) and (123), then the system will inevitably assume an inhomogeneous
state, i.e. a mixture of two different cell types. First, steady state (122) is assumed for every cell, i.e.
ui =

ru
γu
− 1+ηssi

ηu
and vi = 0 for all i. Inserting these expressions into the derivatives (131)-(136) results

in a simplification of LODE. Expressions (133) and (136) yield 0 for every i, j. Hence, the off-diagonal
block matrix Avu = 0. The full determinant can therefore be determined by the product of the block
matrix determinants on the diagonal of LODE. It suffices to focus on the lower right block matrix, which
contains the matrix Avv. Since (136) amounts to 0, Avv becomes diagonal with diagonal entries

(Avv)i =
ηv(1 + ηsηvssi)

1 + ηuui + ηssi
, i = 1, ..., n (146)

Inserting ui yields

(Avv)i =
γu
ru

ηv
ηu

(1 + ηsηvssi), i = 1, ..., n. (147)
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Making use of this allows to determine n factors of the characteristic polynomial

χ(λ) = det (ruAuu − (γu + λ)In) det (rvAvv − (γv + λ)In) (148)

= det (ruAuu − (γu + λ)In)

[
n∏

i=1

γu
rvηv
ruηu

(1 + ηsηvssi)− γv − λ

]
(149)

Hence, n eigenvalues are given by the second factor in (149). If a single one of these is greater than zero,
the inhomogeneous state is unstable. This means it suffices to show

γu
rvηv
ruηu

(1 + ηsηvssi) > γv (150)

for one i = 1, . . . n. Instead of any i = 1, . . . n, a necessary condition is given by the maximum of all
signal values. After rearranging the equation, a parameter restriction for ηu is found

ηu < ηv
rvγu
ruγv

(1 + ηsηvs max
i

si). (151)

At this point, restriction (151) describes the case of a generalized system which cannot be further simpli-
fied. Depending on the exact type of cell-cell communication, one might find a more precise expression.
A different formulation is again obtained by looking at the energy differences, which leads to

−∆εu < −∆εv + ln
(
1 + e−∆εs−∆εvs max

i
si

)
+ ln

(
rvγv
ruγv

)
. (152)

As this result only relies on n of a total of 2n eigenvalues, it remains possible that there is an even tighter
restriction on the parameters. However, throughout this whole study, no evidence emerged suggesting
that this is the case.

Homogeneous steady state (123) Analogous to the previous analysis, the analysis of homogeneous
steady state (123) starts by setting ui = 0 and vi =

rv
γv
− 1+ηssi

ηv(1+ηsηvssi)
. This time, (132) and (135) become

zero for all i, j and thus Auv = 0. The block matrix Auu is diagonal with diagonal entries

(Auu)i =
ηu

1 + ηvvi(1 + ηsηvssi) + ηssi
, i = 1, ..., n. (153)

Inserting vi yields

(Auu)i =
γv
rv

ηu
ηv

1

1 + ηsηvssi
, i = 1, ..., n. (154)

Again, only n factors of the characteristic polynomial are determined

χ(λ) = det (ruAuu − (γu + λ)In) det (rvAvv − (γv + λ)In) (155)

=

[
n∏

i=1

γv
ru
rv

ηu
ηv

1

1 + ηsηvssi
− γu − λ

]
det (rvAvv − (γv + λ)In) . (156)

Exploiting the instability condition that one eigenvalue must be positive yields again to a restriction
which must be fulfilled for a single i = 1, . . . , n

ηu >
rvγu
ruγv

ηv(1 + ηsηvssi). (157)

This time this transforms into a necessary condition if the values of si assumes its minimum

ηu >
rvγu
ruγv

ηv(1 + ηsηvs min
i

si). (158)

In terms of energy differences, this reads

−∆εu > −∆εv + ln
(
1 + e−∆εs−∆εvs min

i
si

)
+ ln

(
rvγu
ruγv

)
. (159)
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u+v− u−v+

(145)

−
∆
ε v
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−∆εu

Figure 16: Illustration of the different steady states at the single cell level (left) and the tissue level
(right). The states we are aiming for are highlighted with higher opacity. Nodes and their corresponding
number on the axes reference the relevant equation for the transition from one state to another.

Inhomogeneous steady state The previous analyses revealed two conditions for the instability of
homogeneous steady states. Consequently, condition (152) and (159) combined define a stability interval
for the inhomogeneous steady states depending on −∆εu. This interval is given by

∆εmin < −∆εu < ∆εmax (160)

with

∆εmin := −∆εv + ln
(
1 + e−∆εs−∆εvs min

i
si

)
+ ln

(
rvγu
ruγv

)
(161)

∆εmax := −∆εv + ln
(
1 + e−∆εs−∆εvs max

i
si

)
+ ln

(
rvγu
ruγv

)
(162)

The reproduction rates ru, rv and decay rates γu, γv shift this interval by ln
(

ruγv

rvγu

)
. The length of the

interval is determined by the minimum and maximum signal values combined with the associated energy
differences −∆εs and −∆εvs. The complete stability analysis can be summarized by figure 16. At the
single cell level, the formation of u−v− cells was successfully excluded by inequality (145). Therefore, a
distinction of three different steady states takes place at the tissue level. Two states where all cells are
either u+v− or u−v+ and the state in between, where an inhomogeneous mixture of the two cell types is
found.

3.1.5 Transcriptional regulation summary

The question if a mathematical model is able to describe cell fate decisions is difficult to answer and far
surpasses the scope of this thesis. However, when the cell fates are associated with the steady states of
a dynamical system, it becomes possible to construct fitting ODEs that are able to generate states that
resemble certain properties of given cell fates to some extent, such as protein expression levels. The idea
behind the transcriptional regulation models presented in this section, is to provide models that lead
to the emergence of two different types of cells, one with high expression in u and low expression in v
(u+v−) and vice-versa (u−v+).

For a model to generate differences in expression levels, it must be able to adopt heterogeneous states,
which is made possible by the instability of homogeneous states. In a first step, the well known instability
condition provided in [26] was first extended by the addition of mutual inhibition. Thus a condition for
the derivatives of the inhibitory and activatory functions in the ODE system guarantees the emergence of
heterogeneous states. Furthermore it was shown, that the instability condition for two cells is sufficient
to prove instability of the homogeneous state in a ring of n cells. In the second step, auto-activation as
well as an adjacency based inhibition were included in order to reflect the GRN 10 that was proposed to
describe the transcriptional regulation of NANOG and GATA6. It was possible to derive two conditions
that lead to the instability of the homogeneous state. Thus, heterogeneity of a two cell system can be
guaranteed. Extensions to higher dimensions and different types of cell-cell communication were consid-
ered to exceed the goal of this thesis, yet offer opportunities for further research.

Phenomenological models based on the Hill equation are already widely used to describe the tem-
poral evolution of markers for cell differentiation [27, 28, 30, 31, 26]. Although the Hill equation was
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never explicitly formulated for cell differentiation [36], its use in describing cooperative binding events
is surprisingly similar to the thermodynamic approach considered in this study. However, it lacks some
of the detail by basically assuming only a state where k constituents are bound simultaneously. In the
case of oxygen-hemoglobin binding, improved approximations for the dissociation curves were established
through the Adair equation [59] and later on the Monod-Wyman-Changeux (MWC) model [60]. These
models differ in that they also consider states in which fewer than four of the four total oxygen binding
sites of hemoglobin may be occupied. A further generalization of these models was presented by the
thermodynamic models in [39] on which the thermodynamic models in this work are also based.

Another drawback of the phenomenological approach is that the combination of several activatory
and inhibitory Hill functions via addition or multiplication is not trivial. The decision in [27] and thus in
(M1) to introduce the mutual inhibition as multiplicative terms was described as ”qualitative reasoning”.
It aims to prevent high expressions of one transcription factor in the presence of the other. In doing so,
this decision was resolved on a phenomenological level rather than emerging from an intrinsic mechanism
of the GRN. In the scope of this study, the phenomenological model (M1) serves only as a reference
system that will be compared to the others in a simple computational example.

Contrary to phenomenological models, mechanistic models aim to describe a phenomenon using phys-
ical, chemical or biological principles. The thermodynamic model introduced in this study was motivated
by [37, 38, 39]. It uses well known methods from statistical thermodynamics to describe the probability of
RNAP binding to a desired promoter. Although more complicated in its derivation than phenomenolog-
ical models, it goes beyond their capabilities by incorporating different orders of interaction. It requires
energy differences that describe how advantageous a state is compared to the base state by being greater
or less than one. This approach spawns multiple different possibilities for GRN 10. In this study, a model
incorporating only first order and mostly independent interactions was derived and further investigated.
An analysis of several model parameters revealed that the model is capable of describing cells in either
two (u+v− and u−v+) or three (additionally u−v− or u+v+) different states based on the received signal.
Furthermore, it provides its own definition of the basal activity of a given promoter. In doing so, a
mathematical definition of activations and inhibitions arises that is characterized through the deviation
from the basal expression values. An experimental verification of this system would require a gene reg-
ulatory system with exactly one promoter, activator and inhibitor, in which the cells could be deprived
of the interactors. It is beyond the aim of this thesis to judge whether this would actually be realizable.
However, the insight gained by providing an exact definition of different cell states (u+v+, u+v−, u−v+,
u−v−) is invaluable and will hopefully pave the way for numerous subsequent studies.

Under the assumption that auto-activation and transcription can be used synonymously with tran-
scription, a different ODE system (M3) could be derived. Although the assumption already invalidates
the mechanistic nature of the model, the remaining derivation is based on the mechanistic description of
transcription factor bindings. It might therefore be best described as a mix between a phenomenological
and mechanistic model. Surprisingly, it was shown that this model can be described in much greater
detail at the analytical level. The steady states of the ODE system were determined explicitly leading to
three relevant states u−v−, u+v− and u−v+. In a stability analysis, a parameter restriction was identified
that allowed the exclusion of the u−v− fate, leaving only a binary choice for the cell fate. Furthermore,
a stability interval was derived enabling the formation of an inhomogeneous mixture of cell types. On a
practical level, the model sets itself far apart from the others, since the parameters for inhomogeneous
states can easily be determined in advance. Moreover, the transition from the homogeneous u+v− state
to the homogeneous u−v+ state suggests that there is a monotonic increase in u−v+ cells in between.
This confers unexpectedly strong control over the cell type proportion in simulations of cell fate decisions
at the tissue level.

3.2 Cell-cell communication

Cell-cell communication is made possible by the secretion and absorption of chemical signals. How exactly
these signals disperse throughout a tissue or organoid depends on a wide variety of factors. Some of these
might be physical properties, like diffusivity or the viscosity of interstitial fluid. Others might directly be
related to the production, uptake and decay of the signaling molecules themselves. In the mouse embryo,
the FGFr/Erk signaling pathway describes one possible cell-cell communication mechanism involved in
the expressions of NANOG and GATA6. Thereby, FGF4 binds to the receptor FGFr2, leading to an
activation of GATA6, while simultaneously inhibiting NANOG [15, 16]. The synthesis of Fgf4 is activated
by NANOG [17]. In this section, a set of different signals will be introduced as simple mathematical
functions of u = (u1, . . . un)

T .
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3.2.1 Averaged nearest neighbor signaling

Slow diffusion, rapid decay and fast signal uptake are three reasons that can cause a paracrine signal
to reach only adjacent cells. When this happens, the absorbed signal si only depends on the adjacent
cells NG(i). Assuming additionally that the signal is distributed evenly among the neighboring cells, the
absorbed signal of cell i can be written as

si =
1

|NG(i)|
∑

j∈NG(i)

uj . (163)

In this averaged nearest neighbor (NN) signal, a linear dependence of the secreted signal on uj was
assumed as the most simple way to describe the signal. This way, the signal s is given by a linear
function s(u) = Au with the adjacency matrix

A = (Ai,j)i,j=1,...,M , Ai,j =

{
1

|NG(i)| if j ∈ NG(i)

0 if j /∈ NG(i)
. (164)

3.2.2 Distance-based global signaling

One of the main parts of this thesis is the investigation of a possible long range cell-cell communication
mechanism and its effects on the pattern formation in tissues. This communication would be made
possible by a paracrine signal that reaches cells beyond the nearest neighbors. Considering a larger
diffusivity, longer lifetime or slow uptake of the signal, it is reasonable to describe the absorbed signal si
as the collective effect of all cells throughout the organoid. As the signal disperses in all directions, its
intensity decreases with the distance traveled. Hence, the signal will be defined as the weighted sum of
secreted signals over the remaining cells

si =

∑
j ̸=i

ujq
dij−1

/max
k

∑
j ̸=k

qdkj−1

 , q ∈ [0, 1]. (165)

The distance dij is the previously defined graph distance. At first glance, the Euclidean distance seems
to be the better choice to describe the radial propagation of a signal. However, the graph distance allows
to imitate the absorption of the signal by each cell it passes by. The normalization in the denominator
of (165) ensures that the signals will be equally strong, independent of a cells location or neighbors. The
weights qdij−1 were chosen purely as a mathematical construct to define the fractions of the signal that
gets transported from cell to cell. For q = 0.1, the second nearest neighbors of a cell receive only 10%
of the total signal of the direct neighbors. In comparison, q = 0.5 leads to a halving of the signal every
time it reaches cells one graph distance further away (Fig. 17). Thus, the dispersion parameter q can be
used to describe a transition from a direct neighbor signal to an equally dispersed signal. This can be
demonstrated by setting q = 0. The weights then become

qdij−1 = 0dij−1 =

{
1, for dij = 1

0, for dij > 1,
, (166)

i.e. the weights for all cells j that are not adjacent to cell i are 0. Hence, the signal becomes a NN signal
similar to (163) without averaging over the number of neighbors. At the other end, q = 1 yields

qdij−1 = 1dij−1 = 1. (167)

In this case, every cell has the same impact on other cells, independent of the distance between them. In
conclusion, the signal parameter q, which resembles a measure for the signal dispersion, can be used to
describe a continuous transition from an NN signal at q = 0, through a distance-based global signal for
q ∈ (0, 1) to an evenly distributed signal at q = 1. As for (163), the signal is again a linear function Au
with the dispersion weight matrix

A = (Ai,j)i,j=1,...,M , Ai,j =

{
aqdij−1 if i ̸= j

0 if i = j
, (168)

and the normalization factor

a =

max
k

∑
l ̸=k

qdkl−1

−1

. (169)
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u v

s

q signal influence

0.1 90% 9% 1% 0% 0% 0%

0.5 51% 25% 13% 6% 3% 2%

0.9 21% 19% 17% 16% 15% 13%

Figure 17: Illustration of the effects of the signal from cells of different distances for an exemplary one-
dimensional cell line. The cell on the left resembles the previously established GRN, where u and v
mutually inhibit each other. In addition to that, s activates v while inhibiting u. Curved arrows indicate
that the first cell in the cell line receives a signal from the remaining six cells. The table highlights
the respective contributions of each cell to the received signal for different dispersions q ∈ {0.1, 0.5, 0.9}.
Percentages are rounded to the nearest integer.

3.2.3 Estimation of the stability interval of model (M3)

For the two concrete examples of signaling, the stability interval (160) can be estimated by specifying
the lower and upper bounds for the expression values ui. Given the steady states (122) and (123), this
yields

0 ≤ ui ≤
ru
γu
− 1 + ηssi

ηu
<

ru
γu

(170)

Using this inequality to replace every uj with either 0 or ru
γu

in the NN signal (163), leads to

si ≥
1

NG(i)

∑
j∈NG(i)

0 = 0, (171)

si <
1

NG(i)

∑
j∈NG(i)

ru
γu

=
ru
γu

. (172)

Likewise, for the distance-based signal (165), the same estimate is found

si ≥

∑
j ̸=i

0qdij−1

/max
k

∑
j ̸=k

qdkj−1

 = 0, (173)

si <

∑
j ̸=i

ru
γu

qdij−1

/max
k

∑
j ̸=k

qdkj−1

 <
ru
γu

. (174)

In both cases, this means that si ∈ [0, ru/γu). Using the bounds of this interval in the stability interval
(160), leads to a simplified parameter restriction for −∆εu

−∆εv + ln

(
rvγu
ruγv

)
< −∆εu < −∆εv + ln

(
1 + e−∆εs−∆εvs

ru
γu

)
+ ln

(
rvγu
ruγv

)
. (175)

For specific parameter combinations, (175) becomes an almost accurate representation of the true stability
interval. Such a case is given, if the steady state values of ui are close to its upper bound, i.e.

ui =
ru
γu
− 1 + ηssi

ηu
≈ ru

γu
. (176)

Hence, given parameter combinations, such that

ru
γu
≫

1 + ηs
ru
γu

ηu
(177)

is fulfilled, the approximated stability interval (175) can be used to accurately determine the remaining
parameters such that a heterogeneous mixture of cells is guaranteed.
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3.3 Organoid growth

Having already introduced transcriptional regulation, as well as cell-cell communication, the final step is
to provide the cells on which to run the trancsriptional regulation models. The goal of this section is to
introduce several methods that in combination form an organoid growth model. This is roughly divided
into the following aspects:

• Growth of single cells

• Division of cells and organoid growth

• Adhesion and repulsion of cells in contact

The section concludes by an additional analysis of the models to identify key parameters needed for the
simulations.

3.3.1 Cell growth

One part of the growth of an organoid is the growth of individual cells. Interestingly, the best fitting
mathematical description for cell growth is still controversial [61]. There are hints of linear [62] as well
as exponential [63] growth in cells. In addition, there are indications of a cell size control, limiting the
maximum cell size [64]. More recently, the growth rates of cells have been shown to vary between different
stages of the cell cycle [65]. These include phases of constant, but also decreasing as well as increasing
growth rates. Because of the complexity of cell growth in general, only a simplified case is considered
here. By absorbing nutrients from the surrounding medium, cells are able to increase in size. Thereby,
the larger a cell becomes, the more nutrients it will be able to absorb, suggesting an exponential growth
of the cell. However, the acquired nutrients are also necessary to sustain the metabolism of the cell at its
current size. Under this assumption, there must be a limitation to the growth of the cells. One prominent
model that captures this behavior is the logistic growth model, which is here applied to the cell’s radius,
i.e.

dr

dt
= λr(r∗ − r) (178)

with constant growth rate λ and maximum radius r∗. For low values of r (178) approximately describes
exponential growth. Likewise, for values of r close to r∗ it closely resembles a bounded growth, i.e.
dr
dt = r+ − r. The analytical solution to equation (178) is

r(t) =
r∗

1 +
(

r∗−r0
r0

)
e−λr∗(t−t0)

, (179)

with initial radius and time r0 and t0. Depending on the ratio of initial radius to maximum radius, the
cell initially enters an exponential growth or starts directly in the bounded growth state (Fig. 18).
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Figure 18: Visualization of the time evolution of a cell’s radius given different initial conditions r0. The
spacing between the values of r0 increases quadratically. The growth rate chosen in this example was
λ = 0.5 and the maximum radius r∗ = 1.
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3.3.2 Radius dependent cell division

Cell division is usually described as a function of either the elapsed time [66] or the size of a cell [43]. In
the latter, cell division was already used for the in silico generation of mouse ICM organoids. The division
itself was described as a stochastic process of a cell’s radius. Likewise, a similar strategy is chosen in this
thesis, by defining a cell division probability based on a cell’s radius. In order to realize this, a cumulative
distribution function (CDF) P (R ≤ r) = FR(r) is needed. For a random variable R, the CDF describes
the probability that a cell will have divided upon reaching a radius r. We assume that the cell division
radii will be normally distributed. However, the maximum radius r∗ already prohibits the model to use
the right tail of the distribution. Therefore, the CDF chosen in this model is from a truncated normal
distribution on an interval [rmin, rmax] with rmax ≤ r∗, i.e.

FR(r) =
erf(ρ)− erf(ρmin)

erf(ρmax)− erf(ρmin)
, r ∈ [rmin, rmax],

ρ =
r − µdiv√

2σdiv

, ρmin =
rmin − µdiv√

2σdiv

, ρmax =
rmax − µdiv√

2σdiv

.

(180)

Values µdiv and σdiv are the respective mean and standard deviation of this distribution if µdiv = 1
2 (rmin+

rmax), allowing us to preserve the symmetry of the distribution despite truncation. The function erf is
the error function defined as

erf(x) =
2

π

∫ x

0

e−x2

dx. (181)

Outside of [rmin, rmax] we define

FR(r) = 0, r < rmin, (182)

FR(r) = 1, r > rmax. (183)

This way, there will be no chance of cells dividing up to a radius rmin, whereas cells with a radius above
rmax always divide (Fig. 19).
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Figure 19: Cumulative distribution function for a truncated normal distribution on the interval [0.9, 1].
The mean lies in the center of the interval µdiv = 0.95.

Radius after cell division For the cell division, cells are assumed to have homogeneous density.
Conservation of mass states that the total volume of the two daughter cells with radii r1 and r2 must
equal the volume of the mother cell with radius r

4

3
πr3 =

4

3
πr31 +

4

3
πr32. (184)

For a symmetric cell division, i.e. r1 = r2 =: r0, this results in the cell radius after division

r0 =
r

2
1
3

. (185)

This definition of the cell division radius applies for 3D. Since a 2D model is also considered in this study,
a generalized expression will be used, such that

r0 = κr, with κ = 2−
1

dim . (186)

Here, dim describes the dimension of the system, i.e. in this study either 2 or 3.
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Time discrete cell division When combining cell growth and division probability, FR(r) implicitly
provides the probability that a cell has divided up to some point in time. The elapsed time is exactly the
time needed for a cell to grow to a radius r. For the logistic growth of the cell radii (178), an analytical
solution is available, thus posing no problem in this regard. However, the upcoming cell motion can only
be solved numerically, so the concept is already taken up at this point. This means that parts of the full
organoid growth model will have to be solved numerically at discrete points in time. Hence, instead of the
CDF, time discrete probabilities are needed. To this end, we take a look at the probabilities 1−FR(r

(i))
that a cell does not divide up to time step i with radius (r(i). This equals the product of all probabilities
pi, that cells do not divide in that exact time step.

i = 1 : q(1) = 1− FR(r
(1))

i = 2 : q(1)q(2) = 1− FR(r
(2)) =⇒ q2 =

1− FR(r
(2))

q(1)
=

1− F (r(2))

1− FR(r(1))

i = 3 : q(1)q(2)q(3) = 1− FR(r
(3)) =⇒ q(3) =

1− FR(r
(3))

q(1)q(2)
=

1− FR(r
(3))

1− FR(r(2))

...
...

i = N :

N∏
i=1

q(N) = 1− FR(r
(N)) =⇒ qN =

1− FR(r
(N))∏N−1

i=1 q(i)
=

1− FR(r
(N))

1− FR(r(N−1))

The probability p(N) of dividing in time step N is therefore given by:

p(N) = 1− q(N) = 1− 1− FR(r
(N))

1− FR(r(N−1))
=

FR(r
(N))− FR(r

(N−1))

1− FR(r(N−1))
. (187)

Estimation of organoid growth rate The ICM organoids developed in [23] were seeded with 200
cells. After 24 h or 48 h, the number of cells was measured, leading to the respective means and standard
deviations

n0 ± σ0 = 200± 0, (188)

n24 ± σ24 = 441.74± 148.98, (189)

n48 ± σ48 = 1041± 306.82. (190)

On average, this corresponds to slightly more than one cell division in 24 hours. In a parameter study
of 500 simulations with randomly selected growth rates k ∈ [0.05, 0.1], an approximate growth rate of
k = 0.083 was identified to fit to an average of 441.74 cells after 24 hours (Fig. 20 (a)). The initial cell
radii were chosen to be uniformly distributed between the lowest possible radius after cell division αrmin

and the largest possible radius before division rmax. A linear model was used to fit a curve to the data.
The organoid growth follows an exponential growth

n(t) = eΛtn(0) (191)

An exact relation between cell growth rate λ and organoid growth rate Λ has yet to be found. Com-
putationally, this cell growth rate can be fit to the exponential model (191). Since the radius reduction
during cell division differs for 2D and 3D, different growth rates Λ2D = 0.0245 and Λ3D = 0.0296 are
found in the respective simulations (Fig. 20 (b)). The idea behind the 2D organoids is not to simulate
the cross-section of a 3D organoid, but simply to create a model system, which can be visualized vividly.
As such, the 2D growth rate only serves to create 2D organoids that roughly have a similar diameter to
the 3D organoids. Given the organoid growth rates, the respective number of cell divisions after 24 hours
are

24Λ2D

ln(2)
= 0.85,

24Λ3D

ln(2)
= 1.03. (192)

3.3.3 Cell motion

The growth of a cell inevitably causes the displacement of itself and all adjacent cells. In this section, the
equations of motion that describe this displacement will be derived step by step using the Lagrangian
approach. The Lagrangian for a single cell is given as the difference of the kinetic and potential energy

L =
1

2
m

(
dx

dt

)2

− V (x), (193)
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Figure 20: Simulations of 500 organoids with varying cell growth rates λ ∈ [0.05, 0.1] and fixed evolution
time t = 24 (a). The red line shows the fit of a linear model to the data. Dashed black lines indicate
the average cell number of the experimental data after the first 24 hours and the estimated cell growth
rate based on that value. Additional 500 organoids for each 2D and 3D respectively (b). Evolution times
vary with t ∈ [0, 270]. Cell growth rate is fixed to λ = 0.083. Colored lines show the different fits to the
exponential model.

where m describes the mass of the cell, x the location of its centroid in two or three dimensions and V
a generic potential for the time being. Cells moving in a fluid are subject to friction. Therefore, a linear
damping force is assumed, which is described by the Rayleigh dissipation function

G = − b

2

(
dx

dt

)2

. (194)

The viscous damping coefficient b describes the magnitude of the friction. The Lagrange equation

d

dt

∂L

∂ẋ
− ∂L

∂x
− ∂G

∂ẋ
= 0 (195)

describes the equations of motion. For simplicity, the shorthand notation ẋ = dx
dt is used. With (193)

and (194), this yields

m
d2x

dt2
+

dm

dt

dx

dt
+ b

dx

dt
−∇V (x) = 0. (196)

The unusual part about (196) is the term including dm
dt . In most physics textbook examples, the mass of

an object does not change over time. However, due to (178), a cell’s radius and therefore its size and mass
change over time. For the purpose of this study however, this will not be of concern as we only consider
the overdamped approximation of (196). This can be justified by looking at the nondimensionalization of
(196). For this, variables x, t and m are replaced by dimensionless variables times some reference value

t→ T · t, x→ 2r∗ · x, m→M ·m. (197)

In doing so, the relevant time and space derivatives also change according to

d

dt
→ 1

T

d

dt
,

d2

dt
→ 1

T 2

d

dt
, ∇ → 1

2r∗
∇. (198)

The nondimensionalized equation yields

2Mr∗

T 2
m
d2x

dt2
+

2Mr∗

T 2

dm

dt

dx

dt
+

2br∗

T

dx

dt
− 1

2r∗
∇V (2r∗x) = 0. (199)

The reference time is T = 3600 s. The reference length was chosen as twice the maximum cell radius 2r∗.
The radius in turn was chosen to be half the maximum cutoff distance for the Delaunay triangulation used
in [23], i.e. r∗ = 1.5 ·10−5 m. Since cells are primarily composed of water, 60-80% [67], their densities are
typically given relative to water. Based on the abundance of proteins and water, the typical cell densities
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are found between 1 and 1.3 times the density of water. The reference density used for the ICM cells will
therefore be given by the density of water. For a spherical cell this leads to the single cell mass of

M =
4

3
π(r∗)3 · 103 kg ·m−3 ≈ 1.41 · 10−11 kg. (200)

The coefficient for the inertial and the mass variation terms then yields

2Mr∗

T 2
≈ 3.27 · 10−23 N. (201)

The viscous damping coefficient according to Stoke’s law is given by b = 6πµr∗, where µ is the dynamic
viscosity of the fluid in which the cell is located. A simple example is again just water, with µ =
8.9 · 10−4Pa · s. The coefficient of the damping force then becomes

2br∗

T
≈ 2.10 · 10−15 N. (202)

With eight orders of magnitude separating the damping force from the inertia, the system is largely
overdamped, which allows the inertia to be completely neglected. This overdamped equation of motion
can be written as

dx

dt
=

T

2br∗
E0

r∗
∇V (x). (203)

In this equation, the potential was also replaced by a dimensionless one V → E0V with reference energy
E0. All coefficients together can be combined to a scaling force coefficient

F0 :=
T

2br∗
E0

r∗
. (204)

For two cells interacting with each other, the potential depends on the distance of the two cells V (|xj−xi|).
Using the chain rule for the gradient yields the force terms

∇xj
V (|xj − xi|) = V ′(|xj − xi|)

xj − xi

|xj − xi|
, (205)

where the first factor describes the magnitude of the force, and the second one its direction. For n cells,
the equations of motion become

dxi

dt
= F0

n∑
j=1
j ̸=i

V ′(|xj − xi|)
xj − xi

|xj − xi|
, for i = 1, ..., n. (206)

Morse potential The Morse potential has been initially used to describe an exact solution of the
Schroedinger equations representing the motion of nuclei in a diatomic molecule [42]. However, it has
also found its way into biology. Here, it is used to describe the adhesion and repulsion of cells in contact
with each other [40, 41]. Following this, the Morse potential is given as a function of the distance between
two cells i and j

V (|xj − xi|) =

{
e−2α(|xj−xi|−σ(rj+ri)) − 2e−α(|xj−xi|−σ(rj+ri)) for |xj − xi| ≤ rj + ri,

e−2α(ri+rj−σ(ri+rj)) − 2e−α(rj+ri−σ(rj+ri)) for |xj − xi| > rj + ri.
(207)

The parameter α describes the stiffness of the cells, whereas σ ∈ (0, 1] defines the optimal distance
between two cells in contact as a fraction of the sum of their radii. The resulting norm of the force is
then just given by its weak derivative

V ′(|xj − xi|) =

{
2α

(
e−α(|xj−xi|−σ(rj+ri)) − e−2α(|xj−xi|−σ(rj+ri))

)
for |xj − xi| ≤ rj + ri,

0 for |xj − xi| > rj + ri.
(208)

The effects of the potential now depends on the relative positive of two cells. If the cells are too close,
they will repel 21 (a)), whereas the will adhere to each other if they are too far from each other but still
in contact 21 (c)). In between, an optimal state will be found 21 (b)). If the distance between the cells
exceeds the sum of their radii, there can be no physical interaction 21 (d)). This desired behavior can
be observed with the Morse potential and its resulting force. The potential starts by decreasing up to
its energetic minimum (Fig. 21 (e)). This decrease leads to a negative force causing cells to repel each
other (Fig. 21 (f)). The energetic minimum is reached when the distance between two cells |xi − xj |
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equals the sum of their radii ri + rj times the optimality factor σ ∈ (0, 1]. In this case, no forces act on
the cells. As the distance increases again, the potential starts to increase, leading to an attractive force
on the cells. Once the distance of the cell centroids exceeds the sum of their radii, the potential will not
change anymore. Therefore, there are no longer any forces acting on the cells. Increasing the cell stiffness
α leads to an overall increase of the potential. This mostly increases the norm of the force. However, it
also moves the maximum of the force closer to the location of the potential minimum. The subsequent
decrease in the adhesive force fits nicely with the idea, that less cell to cell contact leads to less force.

(a) Repulsion (b) Optimum (c) Adhesion (d) No interaction

1.2 1.4 1.6 1.8 2.0 2.2
x

1.0

0.5

0.0

0.5

1.0

1.5

V(
x)

repulsion adhesion
no

 interaction

= 1.0
= 1.25
= 1.5
= 1.75
= 2.0

= 2.25
= 2.5
= 2.75
= 3.0
= 3.25

(e) Potential

1.2 1.4 1.6 1.8 2.0 2.2
x

5

4

3

2

1

0

1

2

V
′ (x

)

repulsion adhesion
no

 interaction

= 1.0
= 1.25
= 1.5
= 1.75
= 2.0

= 2.25
= 2.5
= 2.75
= 3.0
= 3.25

(f) Force

Figure 21: Illustration of the four different cases of interaction. Black dots represent the centroid of
the cells. Black lines indicate their cell membranes. For the repulsion (a) and adhesion (c), red arrows
show the direction of the respective forces acting on each cell. For the optimal distance (b) as well
as disconnected cells (d), no forces are present. In (e) and (f), the potential and its resulting force
are depicted respectively for ten different values of the cell stiffness α. The additional parameters are
ri + rj = 2 and σ = 0.7.

Distance after cell division The two daughter cells emerging after cell division are subject to the
same mechanical interactions and their resulting forces as all other cells in the organoid. However,
immediately after cell division, their distance towards each other is so small that interactions from other
cells become negligible in comparison. Considering only these two cells, their distance after a time ∆t is
described by

d|x1 − x2|
dt

=
d(x1 − x2)

dt
· x1 − x2

|x1 − x2|
(209)

=

(
dx1

dt
− dx2

dt

)
· x1 − x2

|x1 − x2|
(210)

= F0V
′(|x2 − x1|)

(
x2 − x1

|x2 − x1|
− x1 − x2

|x1 − x2|

)
· x1 − x2

|x1 − x2|
(211)

= −2F0V
′(|x2 − x1|)

(x1 − x2) · (x1 − x2)

|x1 − x2|2
(212)

= −2F0V
′(|x2 − x1|). (213)

In this computation, · is used to denote the inner product of two vectors. Defining h := |x2 − x1|,
the distance between daughter cells for a short time scale following cell division follows the initial value
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problem (IVP)

dh

dt
= −2F0V

′(h), t ∈ (0,∆t),

h(0) = 0.
(214)

This IVP is solved by separation of variables and subsequent integration∫ ∆t

0

dt = −
∫ h

0

1

2F0V ′(h′)
dh′. (215)

It is possible to solve both integrals. The trivial one on the left hand side yields∫ ∆t

0

dt = ∆t. (216)

The remaining integral first requires us to find a primitive function for 1/V ′(h). This is done in several
steps starting with a simplified function

f(x) =
1

e−x − e−2x
=

e2x

ex + 1
. (217)

When integrating this function, we can substitute y = ex and dy = ex dx, which leads to∫
f(x) dx =

∫
e2x

ex − 1
dx =

∫
y

y − 1
dy (218)

=

∫
1

y − 1
− 1 dy (219)

=

∫
1

y − 1
dy −

∫
1 dy (220)

= ln (y − 1) + y (221)

= ln (ex − 1) + ex (222)

For x < 0 the logarithm becomes complex. However, due to

ln (z) = ln (−z) + iπ for z ∈ R, z < 0 (223)

we know that ln (1− ex) + ex also becomes a valid primitive function of the integral of f , i.e.∫
e2x

ex − 1
dx =

{
ln (ex − 1) + ex, for x > 0,

ln (1− ex) + ex, for x < 0
(224)

After cell division, both daughter cells will have the same radius, i.e. r1 = r2 =: r. Therefore, their sum
can be replaced by 2r. In the next step, x is substituted by x = α(h′ − 2σr). For the definite integral
on the right hand side of (215), the lower integral limit is 0. At the same time, the steady state of (214)
is reached at h = 2σr. Thus the values of h are restricted to the interval [0, 2σr]. For the evaluation of
the integral, this means that only the case of x < 0 is relevant. Following procedure (218)-(222) again
for 1/(2F0V

′(h′)) yields∫
1

2F0V ′(h′)
dh′ =

1

2αF0

(
ln

(
1− eα(h

′−2σr)
)
− e−2ασr

)
. (225)

Using the limits of integration, i.e. h′ = 0 and h′ = h, and reorganizing the invididual terms, the solution
of the initial value problem (214) is given by the solution of the nonlinear equation

2αF0∆t+ eα(h−2σr) + ln
(
1− eα(h−2σr)

)
− e−2ασr − ln

(
1− e−2ασr

)
= 0. (226)

In the following, equation (226) is solved numerically using Newton’s method. As expected, the cell
division distance h increases with increasing time steps ∆t (Fig. 22). The cell stiffness α increases the
repulsive force, leading to larger distances for shorter time steps. At a distance of 2σr, the potential V (h)
reaches its minimum, i.e. (214) reaches its steady state and no further forces are applied.
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Figure 22: Numerical results for the distance after cell division h depending on the elapsed time step
∆t. Along the color gradient the distance h for ten different increasing values for α are visualized. The
dashed line at the top is placed at the potential minimum which is also the steady state solution of (214).
Used parameters were F0 = 0.1, σ = 0.7 and r = 0.95 · 2−1/3 ≈ 0.754.

Cell division direction The direction of cell division is chosen randomly. In 2D a single angle φ
randomly chosen to be in [0, 2π] suffices to describe any direction. In 3D an additional angle θ ∈ [0, π] is
needed. For a cell at position x, two daughter cells emerge at x± δx. The displacement vector δx is

2D: δx =
h

2

(
cos(φ)
sin(φ)

)
,

3D: δx =
h

2

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 .

(227)

3.3.4 Implementation

Organoid growth standalone In the first step, the organoid growth model is implemented without
the inclusion of transcriptional regulation. In order to reduce the computational load, the first task in the
simulation is to select a fixed cell division distance based on (226) for any cell. Therefore, the radius is

set to the mean division radius µdiv times the cell division factor κ = 2−
1

dim , i.e. r = κµdiv. Afterwards,
the growth of the radius is directly implemented through equation (179). In every time step and for
every cell i, a random number is chosen from a uniform distribution between 0 and 1, i.e. U(0, 1). If this
number is smaller than (187), the cell divides. The cell is replaced by two cells with new radius according
to (186). While the distance of cell division is given by the previously fixed value, the direction of the
division is chosen randomly according to (227) (Alg. 1). After the division steps, the distances |xj − xi|
between all cells are calculated. These are used in combination with an explicit Euler scheme to update
the cell positions via (203) (Alg. 2).

Algorithm 1 Cell division pseudocode

Input: R = {r1, ..., rn}, X = {x1, ...,xn}, δx
for i = 1, ..., n do

p← (187) ▷ compute division probability
Choose random number ξ ∼ U(0, 1)
if ξ ≤ p then ▷ cell division criterion

ri,1, ri,2 ← (186) ▷ cell radii after division
R← (R \ {ri}) ∪ {ri,1} ∪ {ri,2}
X ← (X \ {xi}) ∪ {xi + δx} ∪ {xi − δx}

end if
end for
Output: R, X

Organoid growth with transcriptional regulation When coupling the organoid growth model
together with the transcriptional regulation model, the general procedure does not change. The tran-
scriptional regulation relies on the cell graph for the cell-cell signaling. Therefore, in each time step,
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Algorithm 2 Organoid growth pseudocode

δx← (227) with r = κµdiv ▷ fixed cell division distance
Input: R = {r1, ..., rn}, X = {x1, ...,xn}
for i = 1, ..., N do ▷ loop over time

R← (179) ▷ radius growth
R,X ← Alg. 1 with (R,X, δx) ▷ cell division
X ← (203) ▷ cell displacement

end for
Output: R,X

before transcription is initialized, a new cell graph first needs to be generated. Afterwards, the signal
value can be determined from the graph, as well as the values of ui from the previous time step. In each
time step a single step of the explicit Euler method is used to solve the underlying ODE system, e.q.
(M3). For cell division, symmetric division is assumed, i.e. both transcription factors u and v will be
distributed evenly among the daughter cell (Alg. 3). Combined with the rest, the routine follows the
given steps:

• Update radius

• Check cell division criterion

• Cell division

• Cell displacement

• Compute cell graph

• Compute signal

• Transcriptional regulation

These steps are repeated in every time step to yield the overall method used to generate in silico orgnaoids
(Alg. 4). A full list of model parameters is found in table 2. The transcriptional regulation model chosen
in this table is represented by M3. Both (M1) and (M2) together with the choice for the parameters of
M3 will be discussed in detail in a later section.

Algorithm 3 Cell division with transcriptional regulation pseudocode

Input: R = {r1, ..., rn}, X = {x1, ...,xn}, δx, U = {u1, ..., un}, V = {v1, ..., vn}
for i = 1, ..., n do

p← (187) ▷ compute division probability
Choose random number ξ ∼ U(0, 1)
if ξ ≤ p then ▷ cell division criterion

ri,1, ri,2 ← (186) ▷ cell radii after division
R← (R \ {ri}) ∪ {ri,1} ∪ {ri,2}
X ← (X \ {xi}) ∪ {xi + δx} ∪ {xi − δx}
U ← (U \ {ui}) ∪

{
ui

2

}
∪
{

ui

2

}
V ← (V \ {vi}) ∪

{
vi
2

}
∪
{

vi
2

}
end if

end for
Output: R, X, U , V

3.3.5 Summary

The question of how organoids grow triggered a cascade of various other questions to be answered.
Starting on the single cell level, the growth of a cell was described by a logistic growth model. After some
time has passed and the cell reaches a certain size, it starts to divide. For the purpose of this model, the
stochasticity in the cell division was described by a truncated normal distribution. For the time discrete
case, the cell division system was corrected by looking at the division probabilities in every single time
step. By using the experimental values as benchmarks, the single cell growth rate and organoid growth
rates could be determined. On the organoid level, intercellular mechanical interactions were described by
rigorously derived equations of motion together with the use of the Morse potential for adhesion/repulsion
similar to [41]. This was extended by addressing the time step dependent distance of cells after division.
Overall, the combined model allows the creation of 2D and 3D organoids in the form of cell radii and
positions.

51



Algorithm 4 Organoid growth with transcriptional regulation pseudocode

δx← (227) with r = κµdiv ▷ fixed cell division distance
Input: R = {r1, ..., rn}, X = {x1, ...,xn}, U = {u1, ..., un}, V = {v1, ..., vn}
for i = 1, ..., N do ▷ loop over time

R← (179) ▷ radius growth
R,X ← Alg. 3 with (R,X, δx, U, V ) ▷ cell division
X ← (203) ▷ cell displacement
Compute cell graph G
s← (163) or (165) ▷ Calculate signal
U, V ← (M1), (M2) or (M3) ▷ transcriptional regulation

end for
Output: R,X,U, V

Model parameter Fixed value Description

T 234.74 Evolution time

N 5000 Number of time steps

r∗ 1 Maximum radius

λ 0.083 Cell growth rate

F0 0.01 Displacement force scaling factor

α 3 Cell stiffness

σ 0.7 Cell-cell distance optimality factor

−∆εu 6-7.87 Energy difference w.r.t. binding of u

−∆εv 6 Energy difference w.r.t. binding of v

−∆εs 2 Energy difference w.r.t. binding of s

−∆εu 2 Energy difference w.r.t. combined binding of v and s

ru 1 Transcription rate of u

ru 1 Transcription rate of v

rv 10 Decay rate of u

rv 10 Decay rate of v

Table 2: List of model parameters and their description. Fixed values are used throughout the remainder
of this thesis unless stated otherwise. Parameters downwards of −∆εu are representative for the tran-
scriptional regulation model M3.

52



4 Computational Results

4.1 Analysis of experimental data

Quantifying and understanding experimental data is vital to any scientific investigation. An initial data
analysis for the ICM organoids already provided quantitative results on the different cell populations
N+G–, N–G+, DN and DP [23]. There, it was found that the proportions of N+G– cells of 24 h- and
48 h-organoids are comparable to that of the mid (64-90 cells) and late (90-120 cells) stage embryos
provided by [48]. Additionally, the relative increase in proportions of N–G+ cells between 24 h- and 48 h-
organoids could be compared to the increase between mid and late stage blastocysts. In a neighborhood
analysis, it was found that cells of one type tend to have an increased amount of equal cell neighbors
when compared to a random distribution. This suggests a local clustering of the different cell types.

In this section, the investigation of the ICM organoid data is continued by applying the chosen
quantification methods (PCF and Moran’s I). Moran’s I allows the effect of local clustering in ICM
organoids to be quantified on an individual level. The PCFs, on the other hand, are designed to tell
us how the different cell types are distributed spatially in each organoid. Combined this will lay the
foundation for the quantitative comparison of in vitro and in silico data.

4.1.1 24 h-organoids show no clear distribution of cell types

The goal of this section is to identify a common spatial pattern among the 24 h-organoids. The PCF
envelopes of the 24 h-organoids were qualitatively observed and classified (Fig. 23). Out of 34 organoids,
13 of those (green frames) have PCFs that are mostly close to 1 for all distances. This is an indication
for a random distribution of the two cell types. However, a small number of five organoids (blue frames)
exhibit a pattern where N+G– and N–G+ cells get radially separated close to the maximum distance.
Surprisingly, the N+G– cells are the ones found at long distance, even though it was already shown that
at later stages, the average GATA6 expression levels are the ones that are greater at distances further
away from the mouse blastocyst centroid [18]. What these have in common however, is the relatively low
amount of cells ranging from 295 to 444. On the other hand, an organoid like, e.g. ID = 5 shows signs
of a radial separation that is the exact opposite. At the same time, it already went through several cell
divisions ending up with 679 cells.

The width of the PCF envelopes is influenced by two different factors. The first one, is the amount
of undetermined cells in the data, i.e. DN or DP cells. The more of these cells were found pairing up
at some distance, the wider the range of sampled PCFs will be. The second factor are the cell type
proportions. If there are only few N+G– cells present compared to N–G+, then the PCF corresponding
to N+G– varies stronger within the sampling process. This can be seen, e.g. for IDs 15 and 17 or in the
extreme cases with only one cell type 10 and 11 (red frames). In summary, an overall matching pattern
could not be accurately determined. The largest overlap was found for patterns that either resemble a
random distribution of cells or could simply not be determined accurately enough using the PCFs.

4.1.2 48 h-organoids exhibit radially distributed cell types

Applying the same procedure as before to generate PCF envelopes for the 48 h-organoids leads to drasti-
cally different results (Fig. 24). A total of 34 out of 42 organoids exhibit a strong similarity to each other.
The pattern they represent is characterized by a small drop at the beginning and a sharp rise towards
the maximum pair distances for N–G+. For N+G– there is a monotonous decrease to be found. These
are signs for an engulfing pattern, where N+G– cells in the center of the organoid are surrounded by
N–G+ cells at its boundary. This proves on a quantitative level that the organoids from [23] are indeed
in some kind of sorted state after 48 h. The question on how this state is ultimately achieved, cannot be
answered at this point. The values of the PCFs at distance 1 that are slighty above 1 already hint an
increased cluster formation that is further quantified in the following section.

4.1.3 Experimental data reveals cluster formation

In [23], it was shown that on average cells of equal type exhibit more neighbors of the equal type, relative
to the prevalent proportions. This can be further quantifier using Moran’s I which was already established
as a way of describing the spatial auto-correlation of the two cell types. Here, we investigate its changes
with respect to the elapsed time since the organoids were seeded and the cell number n (Fig. 25). At
24 h, the organoids consistently reveal that I > 0. This indicates that even at this point, the distribution
of the cells is not completely random. On average, I increases even further when reaching the 48 h mark.
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Figure 23: PCF envelopes for the data of the 24 h-organoids. For each envelope, 1000 samples are used.
Green borders highlight the organoids that show the most common pattern. In contrast to this, red
borders highlight organoids, where cell type proportions are extremely skewed up to the point of no cells
of one type. In blue, organoids with a similar pattern, that is not random, are highlighted.
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Figure 24: PCF envelopes for the ICM organoid data that developed for 48 h. For each envelope, 1000
samples are used. Green borders highlight the organoids that show the most common pattern. This
assignment was done by qualitative observation. Two or more outliers, or envelopes that are too wide,
were not specifically highlighted.
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Figure 25: Visualization of minimum and maximum values of Moran’s I with respect to n. Each bar
shows the resulting range of I for 1000 samples of randomly chosen fates for DN and DP cells.

Assuming symmetric division, i.e. each cell division leads to an equal distribution of NANOG and GATA6
between the daughter cells, this is not surprising. But even in asymmetric divisions, e.g. an N+G– cell
exhibits low expressions of GATA6 such that both daughter cells cannot have high expressions of GATA6.
Under these conditions, one would expect an increased clustering with increasing cell numbers. However,
the correlations between the number of cells and I paint a different picture (Tab. 3). There is no
correlation found in the 24 h-organoids alone, whereas at 48 h, there is slightly negative correlation. The
correlations of 24 h and 48 h combined are still slightly positive.

rn,X 24 h 48 h 24 h & 48 h

X = Imin −0.02 −0.41 0.43
X = Imean −0.08 −0.44 0.38
X = Imax −0.14 −0.49 0.28

Table 3: Pearson correlation coefficients rn,X between the number of cells n and values X. From the
top to the bottom row, X was chosen to represent the minimum, arithmetic mean and maximum values
of I found for the sampled organoids. The columns denote which part of the dataset was used. Either
only the organoids labeled as 24 h, 48 h or both.

4.1.4 Conclusion

The analysis of the experimental data from [23] shows that there is a clear distinction between the patterns
for 24 h organoids and 48 h organoids. At 24 h no clear pattern could be determined. At 48 h however,
the PCFs show a clear trend towards a radial separation of the two cell types at long distances. A similar
observation was already made in the ICM of the mouse embryo, where the expression levels of GATA6
increase with the distance to the ICM centroid, whereas NANOG expressions decrease [18]. With the use
of Moran’s I it could be determined that the clustering of cell types in any of the organoids is enough for
it to not be considered random. It was also found that there is an increase of I with increasing number
of cells up to some point. One hypothesis why it does not increase further is that the amount of cluster
formation by cell division is overshadowed by the sorting mechanism. For this to be feasible, this would
need to be a mechanism that gets increasingly more dominant, else it would not be able to compete with
the exponential growth of the organoid. A different hypothesis might be a position biased differentiation,
i.e. cells are able to rapidly switch their cell fates based on their position. Possible mechanism that
could influence this could be of mechanical nature, like the internal pressure of the organoid, or based
on cell-cell communication. In this thesis, the focus lies only on cell-cell communication. Since the 24 h
organoids are not classifiable, a special emphasis will be on the 48 h organoids.

4.2 Transcriptional regulation model comparison

4.2.1 Comparison setup

So far, three models were introduced with the same purpose of describing the temporal evolution of
transcription factors corresponding to GRN 10. In this section, some of the advantages and disadvantages
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of each model will be highlighted. Furthermore, the major question of whether the models are capable to
generate two cell types in terms of their expression levels, will be answered. In terms of attractiveness, the
auto activation dominant model (M3) outshines the other models by far due to the successful derivation
of the stability interval (160). This makes it the most comfortable candidate for any further simulations.
At this point however, it is unclear if this model fulfills the same purpose as the phenomenological model
(M1) or (M2). Therefore, all three models are put to the test. For a single cell, each model should be
able to assume two different equilibrium states, which are supposed to represent the u+v− and u−v+

state. For low values of s, this means that the model parameters have to be chosen, such that u is high
and v is low. For large values of s, it should be the exact opposite. Therefore, arbitrary values are defined
as

s = 10−3 =⇒

{
u ≈ 0

v ≈ 0.1
, s = 1 =⇒

{
u ≈ 0.1

v ≈ 0
. (228)

These values are of no biological relevance and serve only as reference values for high and low signal or
expression values. By changing the relevant coefficients ηu and ηs, or au and as, these values could be
arbitrarily scaled. For model (M3), the model parameters can be chosen directly. The nonzero steady
states in (122) and (123) are given by

u =
ru
γu
− 1 + ηss

ηu
, v =

rv
γv
− 1 + ηss

ηv(1 + ηsηvss)
. (229)

Choosing ru = rv = 1 and γu = γv = 10 yields ru/γu = rv/γv = 0.1. The remaining parameters now
need to be chosen, such that the second term becomes significantly smaller than the first one. The full
list of parameters is given in table 4

ru, rv γu, γv −∆εu −∆εv −∆εs −∆εvs
1 10 7 6 2 2

Table 4: Model parameters used for the simulations of the auto activation dominant model (M3).

Using these parameters in (122) and (123), yields{
u(10−3) = 0.0991

v(10−3) = 0
,

{
u(1) = 0

v(1) = 0.0996
. (230)

For comparison, most of the parameters of models (M1) and (M2) were fitted to match the same ex-
pression values for both states respectively. To this end, the quadratic error was minimized with regard
to the model parameters, i.e.

min
parameters

(
u(10−3)− 0.0991

)2
+
(
(v(10−3)− 0

)2
+ (u(1)− 0)

2
+ (v(1)− 0.0996)

2
. (231)

This was realized using SciPy ’s curve fit function. Functions u and v were provided as the steady
state solutions of (M1) and (M2), i.e. du

dt = 0 = dv
dt , calculated via Newton’s method. The resulting

parameters for both models are found in table 5. This first result proves that each model is capable to
generate states of different expression. Furthermore, it was shown that the models could be fit to rather
arbitrary steady state values. In future research, this would allow the models to be adjusted according
to possible experimental measurements of NANOG and GATA6 concentrations under activation and
inhibition through an external signal. It remains to show the complete picture of the steady states
achieved by the models as well as the temporal evolution towards these.

ru, rv γu, γv ln(au) ln(av) ln(as) k
1 10.72 1.95 2.03 6.85 2

ru, rv γu, γv ηxx −∆εu −∆εv −∆εxu −∆εxv −∆εs (111) −∆εxs (112) s0 (127)
2.25 9.99 0.07 5.8 6.12 2.73 0.08 3.13 2.43 0.03

Table 5: Fitted model parameters for the phenomenological model (M1) (above) and the thermodynamic
model (M2) (below). The Hill coefficient was predefined as k = 2 to remain consistent with literature
[27, 28]. The thermodynamic quantities −∆εs and −∆εxs are the result of (111) and (112). The value
s0 resembles the critical signal value (127) from the auto activation dominant model (M3)
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Figure 26: Expression values u and v in steady state with respect to different signal values s ∈ [10−3, 1].
All lines represent the simulations performed for a single cell. Different line styles correspond to the three
models compared in this study (solid: (M3), dashed: (M2), dotted: (M1)).

4.2.2 Comparison of expression values

In each model, the steady states change with respect to s (Fig. 26). While (M3) exhibits a discontinuous
transition at s = 0.03, models (M1) and (M2) show a smooth transition towards the extreme states. On
the other hand, (M3) and (M1) are nearly point symmetric at the point of transition, whereas (M2) is
not symmetric. In the time evolution of u and v, each model ends up in nearly the same steady state over
the time T = 2 (Fig. (27)). The differentiation times of (M3) and (M1) are almost perfectly matching.
The same holds true for the actual trend of u and v. Model (M2) exhibits an initial decrease in both
expressions before one is finally overtaking the other. This suggests a comparable development of u and v
up to a value close to that of equal expressions found in figure 26, i.e. where both lines intersect. A more
detailed visualization of these phenomena is found in the phase portraits of the respective models (Fig.
28). Each model shows a unique reaction towards changes of s. With increasing s, the steady state of
(M1) moves from u+v− to u−v+ in what is almost a straight line (Fig. 28 (a)). Likewise, its stream lines
also seem to navigate towards the steady state in a straight line. Contrary to this, (M2)’s steady state
exhibits a hyperbolic like trajectory passing through regions of comparatively low expressions of both u
and v (Fig. 28 (b)). Its streamlines also first point towards lower expressions of u and v before finally
navigating towards the steady state. The phase portraits in figure 28 (c) have already been discussed in
section 3.1.4 and were only included here for direct visual comparison.

4.2.3 Conclusion

The comparison of the three models (M1), (M2) and (M3) showed that all three models are capable of
generating cells that are either in u+v− or u−v+ state. The mechanistic thermodynamic model (M2) is
believed to be the one that most accurately captures the dynamics of transcriptional regulation. Hence,
one could argue that any deviation in expression characteristics leads to a neglection of any intermediate
states before the state of maximum/minimum expressions. The temporal evolution of u and v however,
shows only slight deviations that mainly arise due to the lowered basal expression values in (M2). The
overall trend remains the same. This leads to the conclusion that all three models are equally well suited
to decide between the two cell fates. However, it should not be neglected that the model parameters were
chosen specifically for this purpose. For different needs, (M3) or possibly even (M1) might lack some
necessary information about the transcriptional regulation that is included in (M2). Further research
and data, e.g. highly time resolved expression levels of NANOG and GATA6, would be required to
determine which of these models best reflects biology. For the research pursued in this thesis, the focus
lies mostly on the steady states of the systems such that the evolution towards the steady states is less
important in comparison. Hence, for the remainder of this thesis, it is sufficient to use the auto activation
dominant model (M3) for further computational investigations. Unless stated otherwise, the associated
model parameters are the ones found in table 4.
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Figure 27: Temporal evolution of u and v for a single cell with s = 10−3 (left) and s = 1 (right). Different
line styles correspond to the three models compared in this study (solid: (M3), dashed: (M2), dotted:
(M1)).
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Figure 28: Phase portrait comparison of the three different transcriptional regulation models with different
values of s. Arrows show the path from any position towards the respective steady state marked as a red
dot.
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4.3 Nearest neighbor signaling leads to checkerboard patterns

4.3.1 Color coding

In the following sections, cells will usually be in u+v− or u−v+ state. However, sometimes cells might
not be in steady state at the end of the simulation, therefore the cells will be visualized using their
current expression levels of v as well as a color range from cyan (u+v−) to magenta (u−v+) (Fig. 29).
This colorbar will only appear here in this instance but the coloring carries the same meaning for any of
the simulated organoids. This choice was based on personal preference and the attempt to improve the
”signal to noise ratio” of the upcoming visualizations according to [68].

0.00 0.02 0.04 0.06 0.08 0.10

Figure 29: Colorbar used throughout this thesis to visualize the expression values of v. The values range
from the lowest possible value 0 to the upper bound given by rv/γv = 0.1.

4.3.2 Checkerboard pattern

Models of cell differentiation described as lateral inhibition, which are characterized by an adjacency-
based activation, tend to form patterns of alternating cell types [26]. One goal of this section is to show
that the additional introduction of interactions in the proposed transcriptional regulation model leads
to the same type of pattern. Furthermore, the resulting patterns will be classified with the use of PCFs
and Moran’s I. For the simulations in this section, organoid growth and transcriptional regulation were
implemented sequentially, i.e. the organoid was grown a set amount of time, before transcriptional reg-
ulation was activated. Upon activation, growth is deactivated, such that the transcriptional regulation
takes place on a static geometry. The growth time T = 273.74 resembles the time needed for a single
cell to yield a 3D organoid with roughly the same amount of cells as the 48h ICM organoids in [23]. In
3D, this would be around 1041 cells. In 2D, the same time is used to generate an organoid with 302
cells (Fig. 30). For −∆εu = 6.1, the organoid mostly consists of u−v+ cells with u+v− spread evenly
throughout the organoid, never touching any cell of its own type (Fig. 30 (a)). The number of u+v−

cells increases for −∆εu = 7.3 (Fig. 30 (b)). Hence, the cells cannot fully avoid being neighbored to
cells of their own type. Instead, the cells manage to avoid being adjacent to too many cells of equal
type. Finally, −∆εu = 7.8 leads to the same type of pattern as (a), with the roles of u+v− and u+v−
reversed (Fig. 30 (c)). For quantification of the arising patterns, the interval (6, 7.87) was divided into
ten different values, excluding the interval boundaries. These values were used as −∆εu to generate
a variety of different cell type proportions. The corresponding PCFs ρu and ρv can be interpreted at
several key distances. At distance k = 1, low proportions of u+v− cells, i.e. −∆εu close to 6, lead to
ρu(1) close to 0. This means that there are no or only few pairs of equal cells found directly adjacent to
each other. In other words, u+v− avoid being adjacent to themselves. As proportions increase, cells are
no longer able to avoid adjacency to the same type. Hence, the PCF values move closer to 1. Conversely,
ρv exhibits the same behavior for u−v+ cell pairs. For distances k = 2, an increased amount of equal cell
pairs is found. Since the cells avoid being adjacent to cells of equal type, this means that the optimal
way to arrange the cells in space is to spread them evenly throughout the tissue. Apparently, as seen
by the PCF, this means higher occurrences of equal cell types at distance k = 2. The increase of u+v−

proportions leads again to the peak moving closer to 1. Also in both PCFs, the medium ranges from
k = 3 to k = 17 show almost no deviations from 1 independent of the cell type proportions. This is
perfectly characteristic for a checkerboard pattern, i.e. the previously mentioned pattern of alternating
u+v− and u−v+ cells. At long distances above k = 18, the PCFs exhibit no clear trend. The low
amount of cell pairs found in this region are able to drastically change PCF values based on the a few sin-
gle cell fates. However, this was to be expected since the cell signaling only incorporates communication
between neighbors. As such, they are incapable of influencing the cell fates of cells far beyond their reach.

Moran’s I shows clear signs of a low spatial auto-correlation of the two cell types (Fig. 32). Values
are found roughly between −0.4 and −0.3 in 2D, or −0.25 and −0.15 in 3D. A values of −1 is cannot
be achieved. A simple explanation for this is that if one cell type is completely isolated from cells of
the same type, the other cell type must have neighbors of equal type. Thus, there will always be an
auto-correlation between neighboring cells. This can only be eliminated using an ideal grid like e.g. in
figure 5. Therefore, the values of I can never attain −1 if cells have more than four neighbors, leading
to values of I larger than −1. Furthermore, 3D cells have even larger values of I. Following the same
reasoning, this is attributed to the increased number of neighbors when comparing 2D and 3D.
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By increasing −∆εu, the amount of u+v− cells increases which is covered in more detail in the fol-
lowing section. This increase in proportions also influences I. In 3D, I decreases until the minimum is
reached where cell type proportions are equal. Afterwards, I increases again. In 2D, this behavior cannot
be observed, which is likely connected to large jumps in cell type proportions with respect to −∆εu that
is observed in the next section.

In conclusion, the PCFs hint towards a low spatial auto-correlation which is additionally confirmed
by the overall low values found for Moran’s I. Furthermore, PCF values with distances above 1 hint
towards an even distribution of the given cell types. These observations were performed for various cell
type proportions, which will be carefully examined in the next step.

(a)
−∆εu = 6.1

|Tu| : |T v| = 82 : 220
(b)

−∆εu = 7.3

|Tu| : |T v| = 139 : 163
(c)

−∆εu = 7.8

|Tu| : |T v| = 220 : 82

Figure 30: Simulated patterns on a 2D organoid with 302 cells for three different values of −∆εu. The
colors of the cells emerge from a color gradient ranging from the minimum (cyan) to the maximum
(magenta) expression values of v. This translates to u+v− cells being colored in cyan and u−v+ cells in
magenta.
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(a) PCFs for u+v− cells

5 10 15 20
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v

76:226
78:224
84:218
91:211
99:203

107:195
132:170
170:132
181:121
210:92

(b) PCFs for u−v+ cells

Figure 31: PCFs ρu and ρv for the simulated organoids using averaged NN signaling. Different ratios of
cell types |Tu| : |T v| (cf. (6), (7)) are depicted in the legend. These arise as the result of ten equidistantly
increasing choices for −∆εu. The horizontal and dashed black line at 1 resembles the PCF values of an
ideal uniform distribution of two different cell types. Values above 1 mean that more pairs are found at
the respective distance, values below mean less.

4.3.3 Cell type proportions

In the mouse embryo, Epi and PrE cells appear in robust proportions, on average which are assumed to
be a crucial part of development [48, 30]. The data provided by the former yields an average composition
in the ICM of 50.94% ± 13.42% Epi cells and 29.63% ± 18.06% PrE cells for late stage embryos (≥ 90
cells). Therefore, the capability of model (M3) to generate different cell type proportions, needs to
be explored. The stability interval (160) determines the range of all inhomogeneous steady states and
implicitly provides all the possible cell type proportions, the model is able to generate. Therefore, the
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Figure 32: Combined violin plots for Moran’s I in 2D and 3D. A total of 18 different values of ∆εu were
considered. Each violin plot consists of 100 organoids simulated to T = 235. Respective median values
are depicted as horizontal black lines.

exact stability interval first needs to be calculated using the NN signal (163). As demonstrated in (230),
the steady state values for u are either 0 or approximately ru/γu. Hence, the NN signal (163) yields

si =
ru
γu

K

|NG(i)|
, K ∈ N,K ≤ |NG(i)|. (232)

This means the only decisive factor is the proportion of u+v− cells adjacent to cell i. The theoretical
minimum and maximum are therefore given by

min
i∈{1,...,n}

si = 0, max
i∈{1,...,n}

si ≈
ru
γu

. (233)

Furthermore, the stability interval (160) can be replaced by the approximation (175). With ru = rv and
γu = γv, two of the logarithmic terms vanish, leaving only

−∆εv < −∆εu < −∆εv + ln

(
1 + e−∆εv−∆εvs

ru
γu

)
. (234)

For the concrete parameters used in the simulations (Tab. 4), this leads to the intervals

−∆εu ∈ (6, 7.87) ⇐⇒ ηu ∈ (403.43, 2606.08). (235)

For simulations, this interval was divided into 20 equidistant values for ∆εu. For each of these values 100
organoids were grown in the simulation for a time of T = 235, resulting in 315 ± 45 cells per organoid.
From this point on, organoid growth was deactivated and the transcriptional regulation initiated. This
results in a series of different organoids which show the transition from homogeneous u−v+ to homoge-
neous u+v− states (Fig. 33). A nearly monotonous decrease of the mean of u−v+ cell proportions is
observed over the increase of −∆εu. In contrast to this, the proportions of u−v+ increase. At the left
and right boundaries homogeneity is achieved. The standard deviation in cell type proportions for each
value of −∆εu was so low, that for the visualization of the error bars 10 times the standard deviation
was used. The maximum of these standard deviations was found to be around 0.95%. The overall trend
is therefore nearly identical in all organoids.

In 2D, the regions close to the boundaries of (235) suggest that proportions with about 73% of one cell
type and 27% of the other are the maximum and minimum cell proportions achievable before reaching
homogeneity. Likewise, a similar yet smaller jump is seen for 3D with 17% at the left and 20% at the
right end. Analytically, this can be explained by the combination of neighbor proportion dependent signal
(232) and the tipping point of the cell fates described via the critical signal value s∗ (127). For s < s∗ a
cell adopts the u+v− fate. Likewise, values s > s∗ lead to the u−v+ fate. Replacing s∗ in equation (127),
by the discrete expression (232) yields

ru
γu

K

|NG(i)|
=

ruγvηu − rvγuηv
rvγuηvηsηvs

. (236)
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This equation allows the identification of the maximum number Kmax of u+v− cells that can be supported
in the neighborhood of a cell

Kmax :=

⌊
|NG(i)|

γv
rv

ηu − ηv
ηvηsηvs

⌋
. (237)

Here, ⌊x⌋ describes the floor function, i.e. the nearest lower integer of a number x. For values of −∆εu
slightly above −∆εv, K

max will still be 0. This means that u+v− cells are not allowed to have a single
u+v− neighbor. On an ideal 2D hexagonal grid which is periodically connected on all ends, 1/3 of all
cells could have u+v− fate and be arranged such that they are only neighboring u−v+ cells. Cells in the
simulated organoids vary in the number of their neighbors (Tab. 6), such that the exact height of the
jump cannot exactly be determined beforehand.

2D 3D

Neighbors
min
mean
max

1
5.65
10

1
12.80
23

Table 6: Minimum, mean and maximum number of neighbors appearing in the 2000 2D and 2000 3D
organoids simulated for figure 33.

In conclusion, the spatial arrangement of the cells places a restriction on the possibly achievable cell
type proportions.
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Figure 33: Range of cell type proportions for 2D (a) and 3D (b) simulations by varying −∆εu over the
stability interval (6, 7.87). For each bar, the mean proportions of 100 different organoid simulations were
used. Error bars indicate 10 times the standard deviation of the corresponding proportions. For 2D and
3D, the same evolution time of T = 235 was used to generate organoids with 315 ± 45 cells in 2D and
1021± 148 cells in 3D.

4.3.4 Conclusion

Nearest neighbor signals are widely used in simulations to include the effects of cell-cell communication
in models about cell fate specifications [26, 27, 28]. For a signal that traverses mainly from one cell to its
neighbors, this is a reasonable assumption that leads to interesting results. In the model presented here,
the signal is synonymous to the main catalyst that drives pattern formation in the organoids. It was
shown, that a signal that only influences nearest neighbor cells ultimately leads to a pattern which is best
explained by cells of one type trying to avoid adjacency to cells of the same type. On a grid consisting of
equal squares, this alternating appearance of cells resembles the patterning of a checkerboard/chessboard.
Hence, the term ”checkerboard pattern” is used to describe patterns of this type even on irregular grids
like the 2D and 3D simulations of the organoids presented in this study. In total, the checkerboard pat-
terns replicated in this section, resemble the findings of different studies using NN signaling [26, 27, 31].
The quantification of the patterns revealed large PCF values for direct neighbors as well as low values
for Moran’s I. Both are a sign for a strong negative auto correlation. The remaining distances in the
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PCF highlight that there is no relation to cells of distances beyond 1, as desired from a model that only
includes NN signaling. Moran’s I shows a clear difference between an ideal 8× 8 pattern, simulated 2D
organoids and 3D organoids. This implies, the lower bound of I is shifted upwards depending on the
number of neighbors. This has to be taken into consideration for the remainder of this study.

The correct cell type proportions of PrE and Epi cells have been described as a crucial part in develop-
ment of the mouse embryo with respective proportions of 50.94%±13.42% Epi cells and 29.63%±18.06%
PrE cells [48, 30]. Luckily, the embryo is reliably able to generate the necessary cell type proportions. The
proportions have been analyzed before during different stages in development [23]. Uncertainties in the
experimental data, such as the N+G+ as well as N–G– cells that cannot be further classified, require the
model to be flexibly changed to a different ratio of the two required cell types. This is where the extensive
stability analysis of (M3) paid off. Varying only a single parameter of the system, enables a full range
of different proportions of u+v− and u−v+ cells. The proportions of u+v− increase monotonously with
parameter −∆εu. At the same time, the proportions vary only little for organoids of slightly different
shapes and sizes. The 2D and 3D simulations revealed that some proportions are impossible to attain
for this model, such that the proportions of one cell type exhibit a jump of 27% at both ends of the
parameter range in 2D and 17% to 20% in 3D. The subsequent analytical investigation revealed that this
model dictates an exact number of u+v− cells that are allowed to be adjacent to another u+v− cell. This
leads to the question of whether something similar can be demonstrated experimentally by surrounding
single cells with cells in different proportions of respective precursor cells.

In summary, the model in this form provides an advantageous alternative to existing models, which
is characterized by the fact that the proportions of the model are easily controlled by a single parameter.

4.4 Distance-based global signaling enables a transition from checkerboard
to engulfing patterns

4.4.1 From checkerboard to engulfing patterns

Aside from checkerboard patterns, engulfing patterns are also prominent in biological systems. These
are mostly believed to arise through cell sorting due to differential adhesion [69, 70]. In this section,
it will be demonstrated that for the distance-based signal (165), the choice of the signal dispersion q
decides between checkerboard and engulfing pattern. A systematic variation of simulations with different
proportions, i.e. −∆εu, and signal dispersions q was performed (Fig. 34). For a visual comparison, the
same 2D organoid as in section 4.3.2 is used here as well. For q = 0.1, the patterns mostly resemble the
checkerboard patterns from the NN signaling with slighty more u+v− cells found at the boundary of the
organoid. This occurs due to the change in normalization. In the NN case, the signal was averaged over
the number of neighbors (cf. (163)). This was replaced by a normalization that is equal for every cell
(cf. (165)). Cells at the boundary will usually have less direct neighbors, leading to possible less received
signal values. This in turn increases the likelihood for cells to adopt the u+v− fate. For q = 0.5, u+v−

cells increasingly arise near the boundary. At the same time, smaller clusters of u−v+ cells appear in
the bulk area. For q = 0.9, the signal disperses strongly enough to lead to a signal accumulation in the
center of the organoid. Therefore, the organoids become completely engulfed by u+v− cells with only
a few of them appearing in the center. The increase of −∆εu tilts the cell type proportions in favor of
u+v− cells, yet the global pattern remains the same for every q. For a more specific interpretation of the
patterns, ten different 2D organoids with q ∈ 0, 0.1, . . . , 0.9 were constructed specifically to have a cell
ratio of 1 : 1. This was realized by using a bisection on the stability interval (∆εmin,∆εmax) = (6, 7.87).
This routine starts with a single simulation for

−∆εu =
∆εmin +∆εmax

2
. (238)

If this yields a cell type ratio of 1, the bisection terminates. For a ratio |Tu|/|T v| < 1, the lower bound
∆εmin is replaced by −∆εu and (238) repeats. Likewise, if |Tu|/|T v| > 1, the upper bound ∆εmax is
replaced by −∆εu. The resulting PCFs allow the quantification of the patterns without possible inter-
ference due to varying cell type proportions (Fig. 35). PCF ρu can be divided into three different parts.
In the low distance region, low values of q show similarities to the PCFs of the NN signaling, i.e. low
values for ρu(1) and slightly increased values for ρu(2). This was already identified as a typical behav-
ior of a checkerboard pattern. As q increases ρu(1) increases due to the formation of several layers of
u+v− cells at the boundary of the organoid. Thus, adjacency can no longer be avoided. At intermediate
distances, the increase of q leads to lower occurrences of u+v−. This shows that there is some kind of
radial separation of the two cell types. At large cell distances, this separation of cells becomes very clear
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as ρu tremendously increase with q. This means that the organoid consists of a few layers completely
consisting of u+v− cells surrounding the remaining cells. In contrast to the averaged NN case, the PCFs
even for lower values of q consistently show signs of u+v− accumulating at the boundary. Thus, even for
the low number of cell pairs found for long distances, the results are robust with respect to changes in q.
The drops observed at distance 19 for q ranging from 0.1 and 0.6, indicate that the model did not form
a full second layer of u+v− cells.

The PCFs ρv show the transition towards the engulfment from the perspective of u−v+ cells. The
low distance regions exhibit an increase of ρv, while q increases, which is indicative for the formation of
a larger cluster of u−v+ cells. At the same time, ρv decreases at largeer distances with q which again
describes the radial separation of u+v− and u−v+ cells, with u−v+ residing in the center of the organoid.

Moran’s I was used to compare the spatial auto-correlations for different q. For q = 0.1, values close
to those of the NN signaling can be found in 2D and 3D. The increase of q leads to an overall increase in
I. At q = 0.5, I adopts values close to 0 in 2D, which would resemble that of randomly distributed cells.
In 3D, cell type proportions of u+v− have a greater influence on I than in 2D, such that an increase is
observed up to a maximum of around 0.4, before it decreases again. The same behavior can be seen for
q = 0.9 with larger values than for q = 0.5, in both 2D and 3D. The increase of I can be attributed to the
radial separation of u+v− and u−v+ cells. The better the separation, the less contact cells of different
types will have. At the same time, increasing the proportions of u+v− decreases the radius of the ring
that separates the two cell types, thus leading to a reduced number of contacts.

−∆εu

q

0.1

0.5

0.9

6.7 7 7.3

Figure 34: Simulated patterns on a 2D organoid with 302 cells. Colors depict the values of vi in steady
state between 0 and 0.1. Large values of vi correspond to low values in ui and vice-versa. Thus, cyan and
magenta represent u+v− and u−v+ cells, respectively. From left to right, −∆εu increases. From bottom
to top, the dispersion q increases.
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Figure 35: PCFs for u+v cells (left) and uv+

cells (right) for dispersion parameter values q ranging from
0 to 0.9. Any PCF represents the same organoid geometry with a fixed cell type ratio |Tu|/|T v| = 1.
The horizontal and dashed black line at 1 resembles the PCF values of an ideal uniform distribution of
two different cell types. Values above 1 mean that more pairs are found at the respective distance, values
below mean less.
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Figure 36: Combined violin plots for Moran’s I. A total of 18 different values of ∆εu were considered
with q ∈ {0.1, 0.5, 0.9}. Each violin plot consists of 100 organoids simulated to T = 235 in both 2D and
3D. Respective median values are depicted as horizontal black lines.
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4.4.2 Cell type proportions

The ability of model (M3) to generate a range of different cell type proportions was already demonstrated
for the NN signaling. In the case of distance-based signaling, the proportions exhibit a smoother transition
from one homogeneous state to the other (Fig. 37). For q = 0.1, individual jumps in proportions can
still be observed, especially in 2D. At the same time, the largest standard deviations are observed in this
case, which are nevertheless still relatively small with a maximum of 2.35%. As q increases, the standard
deviations decrease and the proportions approach a curve 1− fu. The procedure, in which this function
arises, is similar to the investigation of the critical signal s∗ for the NN signal. In steady state, expressions
of uj are either 0 or ru/γu. Hence, the absorbed signal (165) is only influenced by the cells in Tu

si =

 ∑
j∈Tu

qdij−1 ru
γu

/max
k

∑
j ̸=k

qdkj−1

 . (239)

Therefore, equation (127) leads to

γu
ru

si =

 ∑
j∈Tu

qdij−1

/max
k

∑
j ̸=k

qdkj−1

 !
=

γv
rv

ηu − ηv
ηvηsηvs

=: f̂u(ηu), for i = 1, . . . , n. (240)

The collection of all u+v− cells Tu emerges from the fact, that only these cells play a role in the formation
of the received signal. Although it could not be proven in this study, it is hypothesized, that cells Tu

will always arrange in such a way, that (240) will approximately be fulfilled. Under this assumption, fu
describes the proportions of u+v− if the signal throughout the organoid was able to occupy a continuous
region, rather than individual cells. For larger signal dispersions, more cells are relevant for the cell fate
decision of a single cell. Hence, more cells are involved in trying to match si = f̂u. The function fu used
in figure 37 is then defined as f̂u(ηu) = fu(−∆εu).

4.4.3 Patterns match experimental data at long distances

In figure 35, it was already shown that u+v− cells are the ones engulfing u−v+ cells. However, the model
itself was designed to resemble the NANOG expression levels via u and GATA6 expression levels via v.
Thus, the cell fates in simulation and experiment are reversed. If the GRN is to be assumed a valid
representation of the underlying mechanisms regarding the regulation of NANOG and GATA6, then the
initial hypothesis that a global signal might be responsible for the sorting in the ICM organoid has been
disproven. Nevertheless, the model is still capable of generating radially distributed patterns of two cell
types. Hence, it is possible to match the patterns of the experiments with those of the simulations. For
this purpose, simulations were performed on the geometry of the experimental data. A bisection was used
on the stability interval (175) to find −∆εu such that the cell type ratio of u+v− and u−v+ reflects the
ratio of N–G+ and G+N– from the experimental data, up to a tolerance of 10%. For this comparison,
six different organoids have been chosen to represent a variety of different cases. Organoids with ID 2, 32
and 36 represent three cases of partly successful matches between simulation and experiment (Fig. 38).
For ρu, large values like q = 0.9 provides the best match at low distances, regardless of the organoid. At
long distances however, organoid 2 is best matched by lower values q ∈ (0.2, 0.4) while organoid 32 best
fits with intermediate values q ∈ (0.4, 0.6). Finally, large values q = 0.8 provide a surprisingly good fit for
organoid 36 on both ends. Simultaneously, the same values of q lead to ρv that best describe the trends
of N+G– cells. For this organoid, there is no distinction to be made between low and long distances. One
reason why the characterization of these three organoids works so well, are the cell type proportions of
N+G– and N–G+ cells. They were chosen specifically, because the ratio of these cells lies between 0.5 and
2. Furthermore, the proportions of DN and DP combined were below 25%. If these restriction become
severely disturbed, the quantification becomes unreliable (Fig. 39). Organoid 1 exhibits a tremendous
amount of DN or DP cells. Therefore, the PCF envelope is extending both below and above 1. Extreme
case scenarios such as an engulfing pattern, are highly unlikely to be represented with just 1000 samples.
Therefore, neither ρu nor ρv seem to fit for any q. A different scenario is reached in organoid 12, where
there are nine times more N+G– cells than N–G+ cells. Small changes in cell fates of certain distances
have a tremendous impact on the PCFs for N–G+. This leads to a massive overestimation by the model
and therefore ρu which is designed to lead to an engulfing pattern. Lastly, organoid 39 is another example
of an organoid that is hard to match with the computational model. This time, proportions are not as
exaggerated as in the previous two examples. For q = 0.2, a reasonable match was found, yet the PCF
envelopes extending both below and above 1 make accepting this match a decision that was abstained
from. The same organoids were used to calculate the range of possible values for Moran’s I. These values
are compared to the simulated organoids with different q (Fig. 40). This reveals that in two of the three
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Figure 37: Cell type proportions for 2D (left) and 3D (right) simulations given the distance-based signal-
ing. In each graph, −∆εu varies over the stability interval [6, 7.87]. Bars represent the mean proportions
of 100 different organoids with T = 235. Error bars indicate 10 times the standard deviation of the
corresponding proportions. From bottom to top, q increases from 0.1 over 0.5 to 0.9.
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positive examples, there is a major mismatch between the values of q that best fit the PCFs and the ones
that best fit for I. The experimental values tend to be greater, suggesting that the model is incapable of
providing this amount of spatial auto-correlation.
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Figure 38: Three positive examples of the connection between simulation and experimental data. In each
row, we observe the data of a single ICM organoid from [23]. From left to right, the PCFs ρu and ρv and
the cell type proportions are visualized. The PCF plots include PCFs for different dispersion parameters
q as well as the PCF envelope generated by 1000 different samples of randomly choosing cell fates for DN
and DP cells. Corresponding organoid IDs from top to bottom are 2, 32 and 36.

4.4.4 Conclusion

One possibility of global cell-cell communication is realized by using a signal that disperses throughout the
tissue based on the distance traveled. This enabled a range of different patterns which is best described
by a transition from a checkerboard to an engulfing pattern. This transition was found by increasing the
signal dispersion parameter q in the interval [0, 1). The PCFs made it possible to capture this transition
quantitatively showing large increases and decreases for ρu and ρv respectively in regions of low and
high distances. In addition to that, Moran’s I shows that for the distance based-signaling, the spatial
auto-correlation of the cells changes with respect to the cell type proportions for larger values of q. This
is yet another sign, that the global patterns, generated with the use of the distance-based signal, cannot
easily be characterized by their local cell neighborhood.

It could be shown that the use of a signal that incorporates more than just the neighboring cells,
yields an improved coverage of all possible cell type proportions. This coverage is further improved by
the increase of q. Hints were found, that for increasing q, cell type proportions approach the theoretic
cell type proportions of what is hypothesized to be the result of a continuous distribution of u and v.
While not relevant for the remainder of this study, this hypothesis is still an open question and provides
space for further research.

The comparison with the experimental data has revealed, that the initial hypothesis of this thesis
must be false. Differently dispersing signals are not responsible for the formation of engulfing patterns
in mouse ICM organoids. However, the model has still proven to generate patterns of this type, with the
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Figure 39: Three negative examples of the connection between simulation and experimental data. In
each row, we observe the data of a single ICM organoid from [23]. From left to right, the PCFs ρu and
ρv and the cell type proportions are visualized. The PCF plots include PCFs for different dispersion
parameters q as well as the PCF envelope generated by 1000 different samples of randomly choosing cell
fates for DN and DP cells. Corresponding organoid IDs from top to bottom are 1, 12 and 39.
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Figure 40: Moran’s I resulting from the simulations compared to the range of experimental values gained
by 1000 samples of randomly choosing cell fates for DN and DP cells. The three examples on the left
represent the positive examples, where the PCF looked promising, whereas the three on the right are the
negative ones. Markers with higher opacity highlight the values of q that were the best matches for the
PCFs.
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cell fates being reversed. As such it could be shown, that a single value for q is not able to describe all
of the patterns in the data. If q is taken as a measure for the radial distribution of the cells, this means
that some organoids show signs of a near perfect engulfing, while others tend more towards checkerboard
with large amount of N–G+ cells at the boundary. Moreover, the PCFs for distances 1 as well as Moran’s
I have shown, that the computational model underestimates the experimental findings. The presence of
clusters of one cell type would increase I, leading to the conclusion, that the model lacks the capability
of cluster formation. This gives rise to a new hypothesis that cell division is needed to generate accurate
representations of such patterns.

In total, the results show that the formation of checkerboard and engulfing pattern could be unified
under the notion of a differently dispersing signal. At the same time, nearly any cell type proportions can
be realized with the use of this signal. While the original hypothesis was proven to be false, the model
was found to be lacking the ability to form clusters. This motivates extending the model by incorporating
cell division.

4.5 Cell division leads to clustering of equal cell types

The PCF values ρu(1) as well as ρv(1) of the static systems are much lower than those observed in
the experimental data. This suggests that in reality, cells of equal type are much more likely to cluster
together. Cell division has been demonstrated to lead to a clustering of this type [43]. Therefore, it is
only natural to examine all model parts combined together in parallel. This means that the organoid will
no longer be simulated separately from the transcriptional regulation. In the model, this is realized by
symmetric division. This means that after cell division, u and v of the mother cell are split evenly among
the daughter cells. This section first addresses handling the proper connection of the two timescales
(transcriptional regulation model and organoid growth model) involved in our system. This is followed
by a direct comparison of the static and dynamic system, before quantifying the effects of cell division.

4.5.1 Differentiation time has little influence on the resulting pattern

So far, the time needed for differentiation has been chosen separately from the organoid growth time.
Now that the two parts of the model are combined into one overall model that is running in parallel, the
time scale of one model must be adjusted to that of the other. The organoid growth model was already
fitted to the cell numbers found in the experimental data from [23]. Therefore, it suffices to adjust the
time scale of the transcriptional regulation model accordingly. To this end, the production and decay
parameters will simply be multiplied by a factor τ

ru → τru γu → τγu, (241)

rv → τrv γv → τγv. (242)

This way, τ is used to change the time it takes for the transcriptional regulation model to reach a certain
point, while the organoid growth remains the same. More precisely, for τ > 1, the model gets faster,
whereas for τ < 1, it gets slower. Simulation results using NN signaling (Fig. 41) reveal that for extremely
low values τ = 0.01, no mixture of two cell types is achieved. The reason for this is that the cells divide
faster than they are able to differentiate. Every cell division leads to the amount of u and v being split in
half, while not being able to grow fast enough to actually show any signs of differential expression. For
τ = 0.05, a mixture of different cell types u+v− and u−v+ is found, where a few of the cells are not yet
fully committed to a specific cell fate. As τ increases further, the number of undecided cells decreases.
Qualitatively, the patterns resemble the checkerboard pattern, with some clusters of identical cells. A
quantitative analysis including the comparison to the static case will be discussed in the following chapter.
For the distance-based signaling (165), a similar trend is observed (Fig. 42). A signal dispersion value
q = 0.5 was chosen as a representative value for distance-based simulations, with other values differing in
principle only in the nature of the pattern. For τ = 0.01, large amounts of cells are not committed to a
specific cell fate. This time however, there are signs of v decreasing as the distance towards the center of
the organoid increases. The increase of τ again leads to the decrease of not yet fully committed cells up
to τ = 1, where almost every cell adopts a specific fate. The resulting patterns show a radial separation
of u+v− and u−v+ cells, which from our qualitative observation differ again in the amount of cluster
formation from the static case. In the cases of both NN and distance-based signaling, there is no evidence
that the patterns differ in their respective nature with regards to τ , as long as signs of differentiation can
be observed. Hence, a value of τ = 1 was perceived as a justified choice for further simulations.
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(a) τ = 0.01 (b) τ = 0.05

(c) τ = 0.1 (d) τ = 1

Figure 41: Temporal evolution of four simulated organoids using NN signaling. From (a) to (d), the
values of τ increase. Individual images show snapshots of the organoids at eight different points in time,
that are equidistantly distributed until the final time T = 235 is reached. The proportions are the result
of −∆εu = 7. Color gradient from cyan to magenta is fixed to values between 0 and 0.1, where cyan
represents low values of v, whereas magenta represents large values of v.
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Figure 42: Temporal evolution of four simulated organoids using distance-based signaling. From (a) to
(d), the values of τ increase. Individual images show snapshots of the organoids at eight different points
in time, that are equidistantly distributed until the final time T = 235 is reached. The proportions are
the result of −∆εu = 7. Color gradient from cyan to magenta is fixed to values between 0 and 0.1, where
cyan represents low values of v, whereas magenta represents large values of v.
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4.5.2 Dynamic vs. static – Cell division leads to increased cluster formation

In this section, the patterns formed via dynamic and static differentiation are quantitatively compared.
Four exemplary organoids were simulated dynamically for different types of signaling. In addition, the
positions and radii from the final time step were used to run static simulations for cell differentiation (Fig.
43). At first glance, it is apparent that the dynamic and static differentiation patterns can be visually
distinguished from each other. The averaged NN signal results again in its characteristic checkerboard
pattern in the static case. In the dynamic case, instead of single u+v− avoiding adjacency to cells of
the same type, smaller clusters of u+v− cells become more prominent throughout the organoid. This is
reflected by ρu(1) values much closer to 1. Likewise, ρu(2) is decreased in the dynamic case. For long
distances, ρu and ρv are mostly close to 1 with some outliers at extreme distances. In total, this means
that the perfect checkerboard pattern gets lost in the dynamic case, resulting in a more clustered or
random looking pattern. Similar behaviors are found for the dispersive signals. Values ρu(1) consistently
increase for q ∈ {0.1, 0.5, 0.9}. For q = 0.1 and q = 0.5, they even switch from below 1 to above 1 hinting
at increased cluster formation. For ρv(1) however, there is no consistency to be found making it difficult
to quantify the extent of the clustering using the PCFs alone. The overall pattern of radially distributed
cells is conserved to some extent. The PCFs ρu and ρv still adopt large and low values respectively at
long distances. However, by visual observation, it becomes obvious, that an ideal radial segregation of
u+v− and u−v+ cells is no longer guaranteed.

At the level of cluster formation, the exact difference between static and dynamic simulations is quan-
tified using Moran’s I (Fig. 44). In 2D, each dynamically simulated organoid exhibits a value of I that is
close to or above 0. What initially could be classified as checkerboard, i.e. NN or q = 0.1, is now resem-
bling something that is closer to a random distribution of cells. This trend continues for q = 0.5, meaning
that I increases even further. Only for q = 0.9 there is a point for the energy difference −∆εu, where the
static case shows larger values of I compared to the dynamic one. For the radially segregated pattern,
increasing −∆εu increases the amounts of u+v− layers surrounding the u−v+ cluster in the center. I
adopts the largest values for two clusters of different cell types with as few as possible points of contact.
Therefore, the static case has an advantage over the dynamic one, where the stochastic nature of cell
division is able to separate large clusters into two or more smaller clusters. Still the values of I are found
to be very large, meaning that cluster formation is working as expected. Compared to the static simula-
tion, the variability of I has also increased. This again is attributed to the stochasticity of the cell division.

In total, the formation of clusters is observed at every level. Qualitative observations show that
dynamic simulations form larger clusters of equal cell types compared to the static simulations. The
quantitative analysis of Moran’s I confirms this observation. The PCFs show that globally, the pat-
terns remain mostly similar. However, the perfect formation of a checkerboard or engulfing is no longer
guaranteed.

4.5.3 Number of cell divisions increase cluster sizes

The experimental data were obtained from organoids grown from 200 cells [23]. Assuming these cells to
be identical in their potential to differentiate, it makes sense to investigate the cluster formation based
on varying initial cell numbers. Therefore, transcriptional regulation is first initiated at specific points in
time to resemble a certain number of cell divisions. The estimated number of cells follow equation (191)

n(t) = eΛtn(0), Λ ∈ {Λ2D,Λ3D} (243)

i.e. the time it takes to double the number of cells and thus the approximate time for one cell division is

tdiv =
ln (2)

Λ
. (244)

The different times chosen for the transcription to start are T − kdivtdiv with T = 235. This way, kdiv
denotes the average number of cell divisions after the onset of transcription. For visual comparison,
four different organoids were simulated using NN signaling and kdiv ∈ {1, 2, 3, 4} (Fig. 45). Each of the
respective organoids ends up exhibiting a checkerboard pattern with several smaller clusters of u+v− cells
distributed evenly. Visually, differences between the patterns are impossible to discern. Although one
would expect kdiv to lead to increased clustering in the organoid, this cannot be observed in this tiny
sample of four organoids. This is also seen by Moran’s I showing no unique characteristics.

Repeating the same procedure using a distance-based signal with q = 0.5, the difference between
patterns of increasing kdiv is again difficult to observe visually (Fig. 46). All four organoids show the
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(a) Nearest neighbor signal (b) Distance-based signal q = 0.1
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Figure 43: Comparison of pattern formation between the dynamic and static simulations. Four exemplary
2D organoids with different signaling were simulated dynamically until T = 235. Their final geometries
were used for the static simulations. In each sub-figure, the left organoid represents the dynamic case,
whereas the right one is the static one. Below the organoids, the corresponding PCFs are depicted.
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6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75
u

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
or

an
's 

I

static
division

(c) Distance-based signal q = 0.5
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Figure 44: Violin plots showing the influence of cell division during differentiation on Moran’s I compared
to cell differentiation on a static organoid. Each violin represents 100 different 2D organoids, developed
over a time of T = 235. Respective median values are given by black bars. Individual plots depict the
different types of signaling.
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engulfing of u−v+ cells by u+v− cells. In addition to that, clusters of u+v− cells are found distributed
throughout the organoid. For kdiv = 8 and kdiv = 6, these clusters look more clumped together compared
to kdiv = 4 and kdiv = 2. Quantitatively, this exact behavior is captured by the decrease of I with
decreasing kdiv.

In order to confirm the assumption that the number of cell divisions after the onset of transcription
kdiv influences I, a broader analysis was performed. A total of 1600 organoids in 2D and 4000 organoids
in 3D, evenly distributed to different kdiv and signaling types (NN or q ∈ {0.1, 0.5, 0.9}), were simulated.
For the averaged NN as well as distance-based signaling with q = 0.1, an increase of I is observed with
increasing kdiv. Its slope decreases as kdiv increases, suggesting that there will be some kind of maximum
value for the respective type of signaling. For q = 0.5, a difference between 2D and 3D is observed. In 2D,
the trend is similar to the low dispersion signals, with an increase of I with respect to kdiv. In 3D, there
are only slight changes in I suggesting that the number of cell divisions after the onset of transcription
has a comparatively low impact on the size of the clusters. For q = 0.9, both 2D and 3D follow the
opposite trend of a decrease in I with kdiv. This likely occurs due to the aforementioned disruption of the
near perfect engulfing pattern. It can only be assumed that I in this case also approaches some bounding
value, which in this case would be a minimum. Comparing the range of I for 2D and 3D, it is seen that
the low dispersion signals admit to larger values of I in 3D. At the same time, the large dispersion signals
in 3D admit to lower values. Overall, this means that the total range of values covered by I is smaller in
3D compared to 2D. This is likely due to the difference in the average number of adjacent cells.

(a)
kdiv = 8

I = −0.08
(b)

kdiv = 6

I = −0.12
(c)

kdiv = 4

I = −0.08
(d)

kdiv = 2

I = −0.16

Figure 45: Evolution of four different organoids with NN signaling. From left to right, the starting time
of differentiation increases with kdiv. From top to bottom, development of the respective organoids is
depicted over time. The time passed from one stage to the following stage below is 2tdiv, which represents
an estimated number of two cell divisions. Blank organoids represent organoids where the transcriptional
regulation has not yet been started. Corresponding values of Moran’s I are given in the subcaptions.

4.5.4 Conclusion

By executing organoid growth and transcriptional regulation in parallel, a whole series of investigations
was motivated and performed throughout this section. These include the study of the different time
scales provided by the transcriptional regulation and organoid growth models, the systematic study of
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(a)
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I = 0.29
(b)

kdiv = 6

I = 0.28
(c)

kdiv = 4

I = 0.19
(d)

kdiv = 2

I = 0.12

Figure 46: Evolution of four different organoids with distance-based signaling and q = 0.5. From left to
right, the starting time of differentiation increases with kdiv. From top to bottom, development of the
respective organoids is depicted over time. The time passed from one stage to the following stage below
is 2tdiv, which represents an estimated number of two cell divisions. Blank organoids represent organoids
where the transcriptional regulation has not yet been started. Corresponding values of Moran’s I are
given in the subcaptions.
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Figure 47: Change of Moran’s I with respect to the estimated number of divisions the 2D (left) and
3D (right) organoids went through after transcription was started. For each number of divisions, 100
organoids were simulated with randomly chosen −∆εu between 6.5 and 7.5. Resulting organoids were
afterwards filtered for ratios of cell types between 0.5 and 2 in order to reduce the variation in values
of I. In 2D, this resulted in 37-51% of the organoids being discarded. In 3D, the numbers were similar
with 45-53%. Solid lines mark their respective mean values for I and shaded regions the corresponding
standard deviations.
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the effect of cell division on the clustering, and the matching of in vitro and in silico data.

Both the transcriptional regulation model as well as the organoid growth model were derived indepen-
dent of each other. Thus, the time it takes for a cell to reach steady state might be completely different
than the time it takes for an organoid to grow up to hundreds of cells. Therefore, the different time scales
of both models had to be matched such that towards the end of the development, the organoids have
values u and v close to the their steady states. It has been shown that as long as cells are still able to
differentiate before division, the patterns generated by the model are qualitatively similar. Hence, fast
differentiation times could be used to generate patterns of mostly differentiated cells without possibly
influencing the pattern formation.

It has been shown that cell divisions can lead to the formation of clusters of equal cell types in
organoids consisting of cells with predefined fates [43]. In this section, a detailed comparison of static
and dynamic differentiation was performed. With this, it could be demonstrated that cell division in
combination with cell differentiation also leads to an increased formation of clusters. Furthermore, it
was shown that the cluster formation is independent of the type of cell-cell communication. Even better,
the general trends provided by differently dispersing signals is still preserved to some extent. However,
there is no longer a guarantee, that ideal patterns like checkerboard or engulfing will emerge from the
simulation. Seeing that the experimental data matches neither of those patterns perfectly, this might be
the solution to generate patterns that resemble the experimental data more accurately.

The quantification of the number of divisions has provided more insight in how cluster formation
is affected by consecutive cell divisions. For NN and low values of q, clusters tend to grow with each
division. For large values of q, the exact opposite was found. The cell division disrupts the perfectly
engulfing pattern of u+v− and u−v+ cells, leading to a less effective segregation of these cell types and
in turn a decrease of I with respect to the number of cell divisions after transcription is initiated. For
intermediate values of q, a change in the trend from increasing to decreasing is therefore suggested by
the results. In 2D and 3D, the value of q at which the change occurs differs.

In conclusion, it was proven that cell division indeed promotes cluster formation depending on the
type of cell-cell communication. However, it remains unclear which dispersion parameter q is able to
generate patterns like the experimental data. Provided the low values of I generated by an averaged NN
signal or low q, it can be narrowed down to intermediate or large values of q.

4.6 Matching simulations with experimental data

If cell division is activated, then the geometry of the resulting organoids will never exactly match that
of the experimental data due to the stochastic nature of the organoid growth model. Therefore, a direct
quantitative comparison is no longer possible. Instead, the assignment of a realistic range of q that best
matches the values of Moran’s I was pursued. To this end, the conditions of the experimental data
were replicated by simulating 3D organoids up to 200 cells before transcription is initiated. This was
performed for T = 24 and T = 48 (Fig. 48). The simulation results again demonstrate the increase of
I with both the increase of q and the increase of the cell type ratio of u+v− and u−v+ cells, which is
directly influenced by −∆εu. In contrast to this, the 24 h-organoids exhibit only slight variations with
respect to the cell type ratio with no clear trend. For low ratios, the simulation results are so close
together that most organoids in this region match several values of q at once, making it difficult to only
find a single value. As the ratio increases, the region covered by the values of I widens, making it easier
to find good matches between experiment and simulation. A large amount of organoids fit into a range
of q between 0.1 and 0.3. The 48 h-organoids already exhibit an increasing trend with respect to the cell
type ratio, similar to the increase observed in the simulations. This time, the best matches are found for
values of q between 0.3 and 0.4 with larger values 0.5 found frequently for ratios below 1. In total, this
provides a rough classification of the cell type patterns found in the experimental data via the distance
based signaling used in the computational model and the corresponding dispersion parameter q.

79



10 1 100 101

cell type ratio

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
or

an
's 

I

q = 0.1
q = 0.2
q = 0.3
q = 0.4
q = 0.5

q = 0.6
q = 0.7
q = 0.8
q = 0.9
24h-organoids

10 1 100 101

cell type ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
or

an
's 

I

q = 0.1
q = 0.2
q = 0.3
q = 0.4
q = 0.5

q = 0.6
q = 0.7
q = 0.8
q = 0.9
48h-organoids

Figure 48: Moran’s I with respect to the cell type ratio. Ratios are given as number of u+v− cells
divided by the number of u−v+ cells for the simulation data, i.e. |Tu|/|T v|. For the experimental data,
this corresponds to the number of N–G+ cells divided by the number of N+G– cells. For each q a total
of 100 simulations were performed with −∆εu chosen randomly between (6, 7.86). In each simulation,
the organoid was grown without transcription until 200 cells were reached. Afterwards, for T = 24 (top)
or T = 48 (bottom) the organoid further developed with transcriptional regulation activated. Organoid
ratios were filtered to ratios between 0.1 and 10. After the filtering step 63-79% of the organoids remained.
Ranges of the experimental data were again obtained by 1000 samples with randomly chosen cell fates
for DN and DP cells.

80



5 Discussion and Outlook

This thesis answers the question of how different cell differentiation patterns in ICM organoids can be
simulated. This was achieved by the combination of a transcriptional regulation model and an organoid
growth model. Furthermore, it was demonstrated how two cell types can organize themselves on a global
scale using a signal that reaches beyond their nearest neighbors. Finally, the fully combined model was
able to characterize the cell differentiation pattern in the ICM organoids.

5.1 Analytical results for the stability of heterogeneous steady states could
be extended

The well known stability condition for heterogeneity of the Delta-Notch system in Drosophila [26] was fur-
ther extended and generalized in this thesis. This generalization includes the addition of auto-activation,
mutual inhibition and adjacency-based inhibition. The results is valid for a system of two cells in contact
with each other. However, it remains an open question whether the stability condition can be can be
further generalized for 2D or 3D tissues with n cells. For a simpler GRN, the stability condition for
the two cell system has been shown to be sufficient for stability of a one-dimensional n cell system. In
total, the resulting stability conditions are rather complicated in nature, making it quite difficult to han-
dle. Luckily, none of these were needed as a different condition could be derived later on. Still it was
proven, these types of analytical investigations still have room for improvement, to which the first step
was initiated in this thesis.

5.2 Comparison of transcriptional regulation models results in one model
overshadowing the rest.

Models that are subject to consecutive applications of the Hill equation are widely used in the modeling
community of embryo development [27, 28, 31]. They provide a phenomenological explanation of the
transcriptional regulation of NANOG and GATA6. Contrary to this, the thermodynamic model derived
in this thesis aims to explains the transcriptional regulation mechanistically. This was based on the
theory of transcription factor binding probabilities derived from statistical thermodynamics [37, 38, 39].
It provides a completely new perspective on the notion of inhibition and activation by the deviation from
the basal activity of the respective promoter. To the best of our knowledge, this concept has not been
investigated so far and was thus neither proven true or false. Yet, it opens the possibility for exciting
new research. The model that was mainly chosen for the cell fate specifications in this thesis is based
on a special case of the thermodynamic model. If the auto-activation is assumed to be strong enough
such that the binding of the TFs NANOG and GATA6 to their own promoter becomes synonymous with
transcription itself, a new model arises.

In terms of the cell differentiation itself, it was shown that the transcription factors u and v in each
of the three models are directly influenced by the amount of the absorbed signal. This reflects the com-
bined findings of [13, 14] that low amounts of FGF4 promote NANOG expression of NANOG whereas
large amounts promote GATA6 expression. The inclusion of the FGF/ERK pathway as separate equa-
tions in [27, 28] leads to the existence of a third steady state, given the correct parameter values. This
steady state is supposed to reflect a state of co-expression of NANOG and GATA6. In [22] however, it
was demonstrated that after NANOG and GATA6 were co-expressed, cells would eventually transition
towards one of the mutually exclusive states N+G– and N–G+. This reduces the problem of steady
states to a binary decision. The auto-activation dominant model was shown to be a model with only two
relevant steady states, which is therefore sufficient as a model to represent the cell differentiation in the
mouse ICM organoid.

The auto-activation dominant model has shown that the stability conditions of the fully generalized
model was not needed, as it was possible to derive a different stability condition directly for the two-
and three-dimensional case. This revealed the possibility to control the heterogeneity of the steady state
by adjusting the single parameter −∆εu. This was found to be a huge advantage over any other model,
since large parameter sweeps and additional bifurcation analyses were not necessary to generate different
cell types in an organoid. There is a trade-off in that the expression values of the steady states are only
slightly affected by the signal, except for the point at which the cell fate switches. Thus, it can be argued
that the auto-activation dominant model loses some of the information that would be included in the
full thermodynamic and perhaps even in the phenomenological model. Nevertheless, this trade-off was
decided to be more than justified in exchange for the control over pattern formation.
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In conclusion, a novel model was introduced by using methods from statistical thermodynamics and
the simplification by the assumption of auto-activation dominance. The model retains its ability to
generate two different steady states that reflect the N+G– and N–G+ states found in the ICM organoid
[23]. Furthermore, its corresponding stability analysis has resulted in an a priori statement about the
heterogeneity of the cell differentiation pattern. Therefore, the auto-activation dominant model has
proven to be the best choice to conduct further research throughout this thesis.

5.3 The effect of cell-cell communication on the resulting differentiation pat-
terns has been largely identified

Cell-cell communication via NN signaling was demonstrated to accurately describe the formation of
checkerboard patterns. In contrast to similar studies with comparable results [26, 27, 31] the simula-
tions presented in this thesis were carried out on an off-lattice organoid that is described by a graph.
Thus, the checkerboard pattern was first formally characterized in this thesis with the use of PCFs as
well as Moran’s I for geometries that deviated from regular grids. Distance-based signaling has shown
its capability to describe both checkerboard and engulfing pattern by simply increasing the dispersion
parameter q. The resulting patterns closely resemble the patterns in the ICM organoids with one cell
type engulfing the other. Contrary to the initial hypothesis however, the patterns were found to be
reversed. That means that the cells in the computational model that were supposed to represent the
N+G– cells of the ICM organoids are found to be the engulfing ones. In the ICM organoids, it was
indicated that the N–G+ are the engulfing ones [23], which could be confirmed on a quantitative level
in this thesis by using the PCFs. Unless further research emerges that somehow justifies this reversal,
long ranging cell-cell communication cannot be considered an appropriate candidate for the formation
of the sorted patterns in ICM organoids. This also aligns with the recent findings of [32]. Compar-
ing aggregates of FGF4-mutant mouse ESCs with aggregates of wild type mouse ESCs, they were able
to demonstrate that after 40 h of development there was no significant difference in the cluster sizes of
the two. This suggests cell-cell communication is not driving the spatial organization of the two cell types.

Despite the sobering result that the cell-cell communication via distance-based signaling is not re-
sponsible for the spatial segregation of N+G– and N–G+ cells, the patterns created by the model closely
resemble the ICM organoid data with the cell fates being interchanged. Motivated by this, the different
resulting patterns could be classified based on the respective dispersion parameter q used for the simula-
tion. The PCFs already revealed some matches concerning the engulfing nature of the models. However,
from the low values of Moran’s I it could be seen that the model lacks the capability to sufficiently form
clusters that match the experimental data.

In conclusion, similar to [31] it was shown conceptually, that long range cell-cell communication is
capable of influencing global cell differentiation pattern. In this thesis, the distance-based signaling
obeys a simple mathematical description depending on the number of cells it passes in order to reach its
destination. In reality, the absorbed signal is subject to signal emission and absorption rates as well as
signal transport. In [27, 28, 31], the question of emission and absorption was already answered based
on an extended GRN that includes the signal as a separate quantity. One way to tie into this would
be to again replace the Hill equations with the thermodynamic description of binding events that were
used throughout this thesis and introduced in [37, 38]. Apart from this, the model could benefit from a
more detailed description of the signal transport mechanism, providing room for further research. One
example could be a simple diffusion leading to a system similar to the well known Turing mechanism
[71]. Considering the ICM organoid to be a porous medium could even open a completely new way of
approaching the paracrine signaling involved [72]. Besides diffusion, the growing organoid could lead
to a rise of internal pressure leading to an advection of the interstitial fluid similar to the problem of
large interstitial fluid pressure found in tumors [73]. This in turn could make the signal dependent on
the overall fluid dynamics within the organoid, providing a field of research that is both challenging and
exciting.

5.4 Cell division provides the necessary clustering to describe the patterns
in ICM organoids

The lacking amount of clustering in the static model was compensated via cell division. Cell division was
already demonstrated to promote cluster formation [43] in organoids with fixed cell fates. A different
approach to combine transcriptional regulation and cell division was attempted in [31]. However, one
could argue that through the grid based arrangement of the cells, as well as the synchronous cell divisions,
this approach lacks the capability to represent reality. In this thesis, the multi-scale model combined of
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transcriptional regulation and an off-lattice organoid growth demonstrate the first attempts of truly repli-
cating the mechanisms inside the mouse embryo, or rather the ICM organoid. In this combined model,
cluster formation was indeed observed and was shown to be dependent on the number of cell divisions
after the onset of transcriptional regulation. Through the simulations, it was possible to generate in silico
organoids that closely resemble the in vitro ICM organoids from [23]. An extensive parameter study
regarding the energy coefficient −∆εu that dictates the cell type proportions, as well as the dispersion
parameter q was performed. This enabled the cell differentiation pattern of the ICM organoids to be
classified like that of in silico organoids generated using a medium range of signal dispersion, i.e. q about
0.3-0.5.

In total, the analysis of the ICM organoids conducted in [23] could be extended by classifying the
cell differentiation patterns more accurately. However, the exact mechanism that leads to the formation
of these patterns is still missing and needs further research. Most prominently, the differential adhesion
hypothesis is often mentioned as a potential cause for the cell sorting. Indeed, it could be shown in
general that given large adhesive forces between cells of type A, intermediate forces between the cell
types A and B and weaker forces between cells of type B, the energetically most favorable state is the one
where type B cells are engulfing type A cells [70]. Simulations for the mouse embryo regarding differential
adhesion have already shown the capability of cell sorting for fixed cell types [29]. However, it is unclear
if the sorting mechanism alone suffices to yield a spatial segregation on the scale to the ICM organoid.
This could motivate further research, by extending the model presented in this thesis with differential
adhesion. One way this could be realized is by modification of the Morse potential based on the the
respective cell types that are in contact with each other.

5.5 Outlook - From ICM organoid towards the embryo

During the course of this work, it became clear that a computational model for describing the pattern
formation of ICM organoids already requires a great effort by combining the mathematical descriptions of
transcriptional regulation and tissue growth. This effort increases even further for the mouse embryo. Al-
though ICM organoids have much more cells than mid to late stage mouse blastocysts, they also present a
simpler geometry. In the mouse embryo, the ICM cells are additionally surrounded by the trophectoderm
and the blastocoel cavity is formed. In [23] it was already hypothesized that the trophectoderm provides a
mechanical constraint, such that the N–G+ cells cannot fully engulf the N+G– cells but rather only form
the layer separating the N+G– cells from the blastocoel cavity. It remains to be shown, how exactly this
layer is realized. Differential adhesion has already shown promising results [29, 19] but still remains to
be implemented in a model that additionally runs transcriptional regulation and tissue growth in parallel.

In a different study, it was shown that disturbance of the blastocoel expansion leads to a disruption of
PrE cell maturation, hinting towards mechanical cues influencing the cell differentiation [74]. However,
they also hypothesize that by expansion of the blastocoel, the accumulated FGF4 concentration inside
the blastocoel increases, guiding the cell differentiation of ICM cells. This suggests again a signal based
differentiation and spatial segregation of the Epi and PrE cells.

Both the mechanical effects and the chemical effects could be promising in answering the question of
how the embryo is composed. For this purpose, it is advised to use a model like the one presented in
this study. Although already mentioned several times throughout this thesis, its advantages should again
be listed enumerated. The transcriptional regulation model allows the a priori control over the cell type
proportions. The tissue growth model is off-lattice, so it is versatile for any tissue geometry. Both parts
of the fully combined model run in parallel, reflecting a realistic biological scenario. If the work of [23] is
considered to be the foundation of the research presented in this thesis, then it is hoped that this work
will in turn provide the basic building block for potential extensions that will enable a transition from
ICM organoids towards the embryo.
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