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Abstract

Since the advent of high-throughput sequencing technologies in the mid-2010s, RNA se-

quencing (RNA-seq) has been established as the method of choice for studying gene

expression. In comparison to microarray-based methods, which have mainly been used to

study gene expression before the rise of RNA-seq, RNA-seq is able to profile the entire

transcriptome of an organism without the need to predefine genes of interest. Today,

a wide variety of RNA-seq methods and protocols exist, including dual RNA sequenc-

ing (dual RNA-seq) and multi RNA sequencing (multi RNA-seq). Dual RNA-seq and

multi RNA-seq simultaneously investigate the transcriptomes of two or more species, re-

spectively. Therefore, the total RNA of all interacting species is sequenced together and

only separated in silico. Compared to conventional RNA-seq, which can only investi-

gate one species at a time, dual RNA-seq and multi RNA-seq analyses can connect the

transcriptome changes of the species being investigated and thus give a clearer picture of

the interspecies interactions. Dual RNA-seq and multi RNA-seq have been applied to a

variety of host-pathogen, mutualistic and commensal interaction systems.

We applied dual RNA-seq to a host-pathogen system of human mast cells and Staphylo-

coccus aureus (S. aureus). S. aureus , a commensal gram-positive bacterium, can become

an opportunistic pathogen and infect skin lesions of atopic dermatitis (AD) patients.

Among the first immune cells S. aureus encounters are mast cells, which have previously

been shown to be able to kill the bacteria by discharging antimicrobial products and re-

leasing extracellular traps made of protein and deoxyribonucleic acid (DNA). However,

S. aureus is known to evade the host’s immune response by internalizing within mast

cells. Our dual RNA-seq analysis of different infection settings revealed that mast cells

and S. aureus need physical contact to influence each other’s gene expression. We could

show that S. aureus cells internalizing within mast cells undergo profound transcriptome

changes to adjust their metabolism to survive in the intracellular niche. On the host side,

we found out that infected mast cells elicit a type-I interferon (IFN-I) response in an

autocrine manner and in a paracrine manner to non-infected bystander-cells. Our study

provides the first evidence that mast cells are capable to produce IFN-I upon infection

with a bacterial pathogen.
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In order to facilitate the bioinformatical analysis of dual RNA-seq and multi RNA-seq we

released a major update of the already existing RNA-seq analysis tool READemption. The

new version READemption 2 allows users to analyze dual RNA-seq and multi RNA-seq

data of any number of species in a convenient way, while still being able to analyze conven-

tional RNA-seq projects that investigate only one species. In the course of development,

emphasis was placed on keeping the software quality high by following good practices for

scientific software development.



Zusammenfassung

Seit dem Aufkommen von Hochdurchsatz-Sequenziertechnologien Mitte der 2010er Jahre

hat sich RNA-Sequenzierung (RNA-seq) als Methode der Wahl für die Untersuchung von

Genexpression etabliert. Im Vergleich zu Microarray-basierten Methoden, die vor dem

Aufkommen von RNA-seq hauptsächlich zur Untersuchung der Genexpression verwendet

wurden, kann mit RNA-seq das gesamte Transkriptom eines Organismus charakterisiert

werden, ohne dass die Gene von Interesse vorab definiert werden müssen. Heute gibt es ei-

ne Vielzahl von RNA-seq-Methoden und Protokollen, darunter Dual RNA-seq und Multi

RNA-seq. Dual RNA-seq und Multi RNA-seq untersuchen gleichzeitig die Transkriptome

von zwei bzw. mehreren Arten. Dazu wird die gesamte RNA aller interagierenden Arten

gemeinsam sequenziert und nur in silico aufgetrennt. Im Vergleich zur herkömmlichen

RNA-seq, bei der jeweils nur eine Spezies untersucht wird, können Dual RNA-seq- und

Multi RNA-seq-Analysen die Transkriptomveränderungen der untersuchten Spezies mit-

einander in Verbindung bringen und so ein klareres Bild der Wechselwirkungen zwischen

den Spezies vermitteln. Dual RNA-seq und Multi RNA-seq wurden bereits auf eine Viel-

zahl von Wirt-Pathogen-, mutualistischen und kommensalen Interaktionssystemen ange-

wendet.

Wir haben Dual RNA-seq auf ein Wirt-Pathogen-System aus menschlichen Mastzellen und

S. aureus angewendet. S. aureus , ein kommensales grampositives Bakterium, kann zu ei-

nem opportunistischen Erreger werden und Hautläsionen von Patienten mit atopischer

Dermatitis (AD) infizieren. Zu den ersten Immunzellen, auf die S. aureus trifft, gehören

Mastzellen, die nachweislich in der Lage sind, das Bakterium abzutöten, indem sie antimi-

krobielle Produkte abgeben und extrazelluläre Fallen aus Proteinen und DNA freisetzen.

Es ist jedoch bekannt, dass S. aureus die Immunantwort des Wirts umgehen kann, indem

es in die Mastzellen internalisiert wird. Unsere Dual RNA-seq-Analyse verschiedener In-

fektionssituationen ergab, dass Mastzellen und S. aureus physischen Kontakt benötigen,

um ihre Genexpression gegenseitig zu beeinflussen. Wir konnten zeigen, dass S. aureus

Zellen, die von Mastzellen internalisiert werden, tiefgreifende Transkriptomveränderungen

durchlaufen, um ihren Stoffwechsel für das Überleben in der intrazellulären Nische an-

zupassen. Auf Seite des Wirts fanden wir heraus, dass infizierte Mastzellen eine IFN-I

(Interferon Typ I)-Antwort auf autokrine und auf parakrine Weise auf nicht-infizierte, in

der Nähe befindliche Zellen auslösen. Unsere Studie liefert den ersten Beweis dafür, dass
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Mastzellen bei einer Infektion mit einem bakteriellen Erreger in der Lage sind, IFN-I zu

produzieren.

Um die bioinformatische Analyse von Dual RNA-seq und Multi RNA-seq zu erleichtern,

haben wir ein umfangreiches Update des bereits existierenden RNA-seq-Analysepro-

gramms READemption veröffentlicht. Die neue Version READemption 2 ermöglicht es

den Nutzern, Dual RNA-seq- und Multi RNA-seq-Daten einer beliebigen Anzahl von Spe-

zies auf bequeme Weise zu analysieren, während es weiterhin möglich ist, herkömmliche

RNA-seq-Projekte zu analysieren, die nur eine Spezies untersuchen. Bei der Entwicklung

wurde Wert darauf gelegt, die Qualität der Software durch die Einhaltung bewährter

Verfahren für die Entwicklung wissenschaftlicher Software hoch zu halten.
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1 Introduction

1.1 RNA - How our understanding has changed from

a mere messenger molecule to a universal

regulator

The central dogma of molecular biology describes the genetic information flow within a

cell, which all life forms have in common. It states that information can be passed from

deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) and from RNA to protein and

thus also from DNA to protein. While it is possible to translate the sequence information

held by RNA back to DNA, meaning a DNA sequence can be derived by its transcribed

RNA sequence, a protein sequence of amino acids can never be translated back to its

originating RNA or DNA sequence (Crick, 1958). This can be explained by the fact that

the genetic code is redundant and multiple three-base pair codons with different nucleic

acid sequences result in the same amino acid. Therefore, a protein sequence consisting of

amino acids can not unambigously be translated back to a nucleic acid sequence. Given the

fact that an RNA sequence holds information about its originating DNA sequence and its

resulting protein sequence and hence covers a large spectrum of the protein biosynthesis,

makes RNA a molecule of high interest in biology and medicine. The essential RNA

species taking part in protein biosynthesis are messenger RNA (mRNA), which holds the

genetic information after transcription, and ribosomal RNA (rRNA) and transfer RNA

(tRNA), which both play important roles in translation. These RNA species were first

discovered in the 1950s and became the main focus in the research field of RNA in the

following decades.

In 1965, the first complete nucleotide sequence of a tRNA, the alanine tRNA from yeast

could be determined (Holley et al., 1965). In the late 1960s the discovery of precursors

of mature mRNA and rRNA was the door opener for studies that later revealed the

mechanisms of rRNA processing and splicing (Lewis et al., 1975; Berk, 2016). The first

complete genome sequence of an organism, namely the Bacteriophage MS2 (Emesvirus

zinderi) was published in 1976 (Fiers et al., 1976). Although the RNA genome is only

3,569 nucleotides long, it was considered a landmark in molecular biology. While essential
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discoveries regarding the function, nucleotide sequence and structure of rRNA and tRNA

were made in this period, RNA was mostly considered a mere messenger of the flow of

genetic information from gene to protein (Jarroux et al., 2017). This view gradually

changed in the late 1970s and 1980s with the discovery that RNA can function as a

catalyst for chemical reactions (Kruger et al., 1982; Guerrier-Takada et al., 1983). In

1984, the first gene expression regulating non-coding RNA (ncRNA), micF in E. coli, was

discovered. It was shown that micF repressed the translation of its target mRNA into

a porin, an outer membrane protein, through base pairing with the mRNA. This new

class of regulating, ncRNA in bacteria had been termed small RNA (sRNA) (Inouye and

Delihas, 1988).

A similar concept of regulation by RNAs in eukaryotes was discovered in the early 1990s.

It was found that the lin-4 gene of the nematode Caenorhabditis elegans produces two

sRNAs of the size of 22 and 61 nucleotides. The shorter RNA that is cut from the longer

RNA base pairs with the untranslated region (UTR) of the 3’-end of the lin-14 RNA

and thus silences the gene expression post transcription. This was the first example of a

eukaryotic micro RNA (miRNA) and RNA interference (Lee et al., 1993).

The technological progress of the past 15 years made in detecting and sequencing RNA

and the knowledge gained from it reinforced the point of view that RNA is much more

than a messenger of the flow of genetic information. RNA plays an important role in

regulating gene expression at all levels - ranging from epigenetic chromatin modification

to transcription and translation.

1.2 Eukaryotic and bacterial non-coding RNA

The following section gives a brief overview of the functions and mechanisms of the diverse

classes of ncRNAs of eukaryotes and bacteria that have been discovered in the late 20th

and early 21st century. Because tRNA and rRNA are commonly known, they will not be

described, but it should be noted that they exist in eukaryotes and prokaryotes and also

belong to the class of ncRNAs. The proportions of mass of all RNA classes in eukaryotic

and bacterial cells (Westermann et al., 2012) are shown in Table 1.1.
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1.2.1 Eukaryotic non-coding RNA

MiRNA

Micro RNAs (miRNA) are single-stranded RNA molecules of about 22 nucleotides length

that form RNA-induced silencing complexes (RISC) with proteins of the Argonaute fam-

ily and other proteins. The miRNA guides RISC to a target mRNA and binds it by base

pairing. The translation of the target mRNA is then hindered by mRNA cleavage, inhibi-

tion of translation and initiation of mRNA decay (Bartel, 2009; Macfarlane and Murphy,

2010).

SiRNA

Small interfering RNAs (siRNA) have a similar length compared to miRNAs and also build

RISC complexes to hinder translation of their target mRNA. In contrast to miRNAs, the

complete siRNA sequence is fully complementary to its target mRNA, while miRNAs

only bind with a seed region of up to seven nucleotides to their target mRNA, usually to

its UTR at the 3’-end. Therefore, miRNAs have a general broader specificity compared

to siRNAs (Lam et al., 2015).

PiRNA

P-element-induced wimpy testis (Piwi)-interacting RNA (piRNA) is the largest class of

small ncRNA molecules with a length of 21 to 36 nucleotides. They form RNA-protein

complexes with piwi-subfamily Argonaute proteins and are mainly involved in preserving

genome integrity through silencing of transposable elements (Siomi et al., 2011; Diaman-

topoulos et al., 2018).

SnoRNA and scaRNA

Small nucleolar RNAs (snoRNA) are a class of regulatory small ncRNAs (60 to 250 nu-

cleotides) that guide chemical modifications of rRNA and other RNA molecules. They

can be further distinguished by their sequence motif and secondary structure. C/D box

snoRNAs consist of a sequence motif called C box (RUGAUGA motif, where R is a

purine) and one called D box (CUGA motif). H/ACA box snoRNAs consist of a two-

hairpin structure that is connected by an H box region (ANANNA, N corresponds to

nucleotide). The C/D box snoRNAs are associated with methylation of rRNA and the

H/ACA box snoRNAs with pseudouridylation of rRNA. A third subclass are small Cajal

body-specific RNAs (scaRNA), which possess both C/D and H/ACA boxes and an addi-
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tional CAB box (UGAG motif). They are located in the Cajal body and are involved in

the biogenesis and modification of small nuclear ribonucleoproteins through methylation

and pseudouridylation (Henras et al., 2004; Reichow et al., 2007).

SnRNAs

Small nuclear RNAs (snRNA) exist in the nucleus and play an important role in intron

splicing and RNA processing. They form ribonucleoproteins and, together with other

proteins, build the spliceosome. A particular snRNA (U7) also plays a role in histone

pre-mRNA processing (Valadkhan, 2005; Lesman et al., 2021).

LncRNA

The class of long non-coding RNAs (lncRNA) consists of a large and highly heterogeneous

collection of transcripts, which differ in their biogenesis and genomic origin and carry out

various functions in cells. Members of this class have a length of at least 200 nucleotides.

The various functions of lncRNAs can be categorized into four broad groups: Mediation of

chromatin modifications and methylation of DNA involved in epigenetic regulation; DNA

and protein interactions involved in transcriptional level regulation; post-transcriptional

mRNA processing and regulation of protein translation; and post-translation modification

via interactions with proteins (Statello et al., 2021).

1.2.2 Bacterial non-coding RNA

SRNA

Bacterial sRNAs are 50 to 500 nucleotides long and regulate gene expression in various

ways. Down-regulation of gene expression can happen via the following mechanisms:

Through base pairing with target mRNAs, sRNAs prevent binding of ribosomes to the

mRNAs and thus inhibit translation initiation. Base pairing with mRNAs can also lead

to recruitment of ribonucleases that degrade both the sRNA and the mRNA and hence

stops gene expression after transcription. SRNAs can also change the conformation of

transcripts and thereby generate intrinsic terminators that prevent movement of the RNA

polymerase. This attenuates gene expression by premature termination of transcription.

SRNAs can also up-regulate gene expression with the following mechanisms: They can

bind to mRNAs to protect them from degradation of ribonucleases and consequently in-

crease protein output. Leader sequences of mRNAs can contain secondary structures that

inhibit ribosomes to bind the ribosome binding sites. Some sRNAs have been shown to
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bind to the mRNA, changing its secondary structure and unfolding the ribosome binding

site to allow initiation of translation. Furthermore, sRNAs are able to up-regulate tran-

scription by inhibiting Rho-dependent transcription termination. Another form of gene

expression regulation by sRNAs is sequestration of proteins. The sRNAs form single or

multiple protein binding folds that sequester proteins, so that the proteins are no longer

available to exert their functions on their mRNA targets and thus down-regulating them

(Dutta and Srivastava, 2018; Denham, 2020).

TmRNA

Transfer-messenger RNAs (tmRNA) are RNAs that have properties of both tRNA and

mRNA. During translation, ribosomes stall when the mRNA is missing a stop codon.

TmRNAs help releasing stalled ribosomes and making them available for translation again

as well as causing degradation of the incomplete nascent polypeptide (Keiler and Rama-

doss, 2011)

Table 1.1: Proportion of mass of RNA classes in eukaryotic and bacterial cells

RNA class Eukaryotic cell Bacterial cell

rRNA ∼80% ∼80%
tRNA ∼15% 14-15%
mRNA

∼5%

4-5%
snRNA -
snoRNA -
scaRNA -
miRNA -
siRNA -
piRNA -
lncRNA -
tmRNA - <1%
sRNA - Varies
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1.3 RNA sequencing

1.3.1 Historic development and state-of-the-art technologies

1.3.1.1 Historic development of RNA sequencing

The study of an organism’s RNA is called transcriptomics and investigates the tran-

scriptome, which is the entirety of RNA produced by specific cell types or under certain

circumstances. To this day RNA-seq is the method of choice used for studying transcrip-

tomes. Because of its ability to sequence full transcriptomes, RNA-seq has superseded

microarray-based methods, which could only profile predefined genes and transcripts. The

majority of RNA-seq technologies are closely linked to DNA sequencing (DNA-seq) meth-

ods, because usually the RNA of a sample is reverse transcribed to complementary DNA

(cDNA) and then the cDNA is sequenced. The accomplishments in the field of RNA re-

search made in the past 15 years are mainly based on the advances achieved in RNA-seq

and DNA-seq at that time. Although the Sanger DNA-seq technology was available since

1977 and was predominant until the early 2000s, it was costly and time consuming com-

pared to modern technologies. Sanger sequencing was also used for the human genome

project that had the aim to sequence the first complete human genome in history. It

ended in 2003 after 13 years, had costs of three billion U.S. dollars and yielded the first

complete human genome, though the sequence was a patchwork of several people (Lander

et al., 2001; Human Genome Project Fact Sheet 2022). Five years later, the first human

genome of an individual was published. The sequencing took the researchers only two

months and cost only one million U.S. dollars (Wheeler et al., 2008). This reduction of se-

quencing speed and costs was possible by the use of the first commercial high-throughput

sequencing machine, the 454 System by 454 Live Science Corp launched in 2005 (Mar-

gulies et al., 2005). In the next 15 years other companies developed high-throughput

sequencing machines (also called next-generation sequencing machines) that significantly

reduced the costs and speed of sequencing. While the costs for sequencing one megabase

of DNA in the year 2001 was more than 5,000 U.S. dollars, 20 years later it was only 0.6

cents (National Human Genome Research Institute - Sequencing costs 2022) (Figure 1.1).

This decline in sequencing costs enabled researchers to perform en masse DNA and RNA

sequencing. An indicator of the continuing interest in DNA and RNA sequencing is the

number of bases uploaded in the past decade to the Sequence Read Archive (SRA), the

largest publicly available repository of high-throughput sequencing data. The number of

bases rose steadily since 2012 and amounted to 67 petabases by the end of 2021 (Sequence
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Read Archive - Bases in database,

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/ 2022) (Figure 1.2).
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1.3.1.2 State-of-the-art RNA sequencing technologies

The state-of-the-art technology used nowadays for RNA-seq can be divided into three

main categories: Short read cDNA sequencing, long read cDNA sequencing and long read

direct RNA-seq. Except for the direct sequencing approach, RNA is reverse transcribed

into cDNA and subsequently sequenced.

Short read cDNA sequencing

The Ion Torrent sequencing technology uses a sequencing-by-synthesis approach. A mi-

crowell containing a single-stranded DNA template to be sequenced is flooded successively

with four different deoxyribonucleotide triphosphates (dNTP). When one of the dNTPs

is incorporated by a DNA polymerase into the growing complementary strand, a hydro-

gen ion is released and the resulting pH change can be detected. Different Ion Torrent

machines produce read lengths from 200 up to 600 nucleotides (Rothberg et al., 2011).

Illumina dye sequencing also relies on sequencing-by-synthesis. The process begins with

fragmenting cDNA and adding adapters to the fragments. Then the fragments are loaded

onto a flow cell where they bind with the added adapters to anchoring molecules. The

fragments that were attached to the surface are amplified by bridge polymerase chain reac-

tion (PCR) and clusters of about a thousand copies of each fragment are created. During

the actual sequencing process that follows, fluorescently tagged dNTPs with a reversible

blocking group are added to the flow cell. Once the matching dNTP is incorporated in

the complementary strand, the specific fluorescence signal of this nucleotide is detected

and the blocking group is removed. This cycle is repeated, detecting one nucleotide at a

time. The various Illumina sequencing machines reach maximum read lengths from 150

up to 350 nucleotides (Bentley et al., 2008).

Long read cDNA sequencing

Pacific Biosciences’ (PacBio) single-molecule real-time (SMRT) sequencing technology

produces reads from 250 up to 50,000 nucleotides. The method also works by the

sequencing-by-synthesis principal. Tiny holes called zero-mode waveguides with a diam-

eter of 70 nanometer (nm) and a depth of 100 nm contain a DNA polymerase. Attached

to the polymerase is a single-strand DNA template. Fluorescently tagged dNTPs in the

solution travel into the zero-mode waveguide and leave it again, fast enough to not be

excited by a light in the hole. However, when a matching dNTP is incorporated by the

polymerase, the dNTP is excited and its color signal can be detected by a photodetector

(Eid et al., 2009).
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Nanopore sequencing by Oxford Nanopore Technologies does not rely on sequencing-by-

synthesis, but on detecting the different sizes of nucleotides. A chamber is divided into two

compartments by a lipid membrane that contains transmembrane proteins, called porins.

A voltage is applied across the membrane, causing charged particles in the solution to

travel through the porins and inducing a total charge flow that can be measured. After

unwinding a double-stranded DNA molecule, one strand is pulled through the trans-

membrane protein and depending on various factors, like geometry, size and chemical

composition of the nucleotides inside the pore, the base flow of particles changes. This

change can be translated into the sequence of the DNA molecule. The read lengths that

can be achieved usually range from 10,000 to 30,000 nucleotides (Jain et al., 2018).

Long read direct RNA sequencing

The nanopore technology can also be used to sequence RNA directly. This has the advan-

tage that cDNA synthesis and PCR amplification can be omitted during library prepa-

ration and thus bias is reduced. Another advantage is that epigenetic information about

nucleotide modifications can be retained by this approach (Schatz, 2017; Garalde et al.,

2018).

Compared with short reads, long reads are better suited for analyzing long repetitive

genomic regions, isoform detection and de-novo transcriptome analysis (Wright et al.,

2022). Short-read sequencing technologies have a general higher throughput and lower

error rates. While the Illumina platform can generate 109 to 1010 reads per run, the

Pacific Bio and Oxford Nanopore machines only reach 106 to 107 (Stark et al., 2019).

A higher throughput results in higher read depths, which is defined as the total number

of reads obtained for a sample. High read depths allow detecting genes expressed at

low levels and are indispensable when performing large-scale differential gene expression

(DGE) analysis. Since DGE analysis is the most widely used application of RNA-seq

and Illumina sequencing is well suited for this purpose due to its high throughput, more

than 97% of all RNA-seq datasets in the SRA database have been constructed with the

Illumina technology (Stark et al., 2019).

1.3.2 RNA sequencing analysis workflow

A typical RNA-seq analysis workflow begins with library preparation of extracted RNA,

including enrichment or depletion of certain RNA classes and converting RNA into cDNA.

After library preparation, the cDNA is sequenced by a sequencing machine, which creates
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millions of raw sequencing reads. The raw reads serve as input for the following bioin-

formatical analysis. The following section describes the library preparation for Illumina

sequencing and the bioinformatical analysis is described further below (1.4.2).

Prior to the actual RNA-seq, RNA has to be extracted from cells and except for direct

RNA-seq, appropriate cDNA libraries have to be constructed. Library construction for

Illumina machines consists of three steps: In the first step, specific RNA species can be

enriched or depleted. In the second step, RNA is converted to cDNA because Illumina

technologies can not directly sequence DNA. In the third step, sequencing adapters are

added to the cDNA.

When performing DGE analysis, researchers are usually interested in mRNA and regula-

tory or functional ncRNAs, while the abundant rRNA and tRNA molecules are neglected.

However, rRNA and tRNA account for about 80% and 15% of the total RNA mass in

a cell, respectively. If this large difference is not considered, the majority of sequencing

reads would originate from rRNA and other low expressed non-coding and coding RNAs

would be at risk not being detected by the sequencer. To overcome this disparity, rRNA

can be depleted from a sample with rRNA-specific probes. RNAs of interest can also

be enriched. A common technique is to pull out polyadenlyated RNAs with oligo-dTs

attached to magnetic beads. It is important to note that this technique yields mRNAs

with different fates for eukaryotic and prokaryotic samples. In eukaryotes poly-A tails

serve to stabilize transcripts, while in prokaryotes they serve as markers for degradation

of transcripts.

In the second step, RNA transcripts are fragmented to obtain fragments that have a

similar length as the sequencing reads. The majority of transcripts usually exceeds the

maximum read length of short read sequencing technologies. If transcripts would not be

fragmented, reads would only represent a short sequence (equal to the read length) from

the beginning or the end of a transcript and the middle part of longer transcripts could

not be sequenced. Thus, fragments stretching over different positions of a transcript lead

to a clearer picture of the sequenced transcript. After the fragmentation, the RNA is

reverse transcribed into single-stranded cDNA copies and then the cDNA is converted to

double-stranded DNA.

In the third step, adapters are ligated to the double-stranded cDNA. The adapters are

used to enable attachment of the DNA molecules to predefined positions of the flow cell

inside the sequencing machine. In an optional step, the DNA can now be amplified before
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the actual sequencing begins (Chao et al., 2019; TruSeq DNA Sample Preparation Guide

2022).

1.3.3 Paired-end reads and circular RNAs

In addition to the single-end sequencing protocols, where an RNA fragment is sequenced

from its 5’-end, most sequencing technologies also offer paired-end sequencing protocols,

where an RNA fragment is both sequenced from its 5’-end and its 3’-end, which results

in a read pair. The first read represents the start of the fragment and the second one

its end. Paired-end reads have the advantage over single-end reads that they improve

mapping accuracy, because the reads of a pair are mapped together and thus represent

the complete fragment instead of only one end of a fragment as in single-read protocols.

Short paired-end reads have also been shown to outperform long single-end reads in regard

to gene expression analysis (Freedman et al., 2020). After read alignment, mapped paired-

end reads can be merged to represent the complete fragment, resulting in fragments that

start from the beginning of the first read until the end of the second read. However, this

approach is only suitable for linear RNA, but not for circular RNA (circRNA).

CircRNA is a type of single-stranded RNA found in all domains of life. Their common

characteristic is that their 5’-end is covalently bound to their 3’-end, forming a closed

circle of RNA. CircRNAs mainly modulate gene expression or translation of regulatory

proteins but have also be found to be translated into protein (Yu and Kuo, 2019). When

circRNAs are fragmented during library preparation, linear RNAs can emerge, where the

ordering of their exons is reversed in comparison to the genome (Jeck and Sharpless,

2014). This reversed order will also result in a changed order of the first read and the

second read, so that the second read aligns up-stream of the first read (Figure 1.3). This

special case must be taken care of, when paired-end reads are merged to fragments.
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Figure 1.3: Mechanism of paired-end sequencing of a circRNA resulting in a reversed order
of aligned reads. Three exons (blue, yellow and red) are transcribed into a circRNA (arrows
indicate 5’ to 3’ direction of the genome and the transcript). The circRNA is fragmented dur-
ing RNA-seq library preparation to a linear RNA with reversed exon order. After sequencing,
read 1 and read 2 map in reverse order, where read 2 aligns upstream of read 1.
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1.4 Dual and multi RNA sequencing

Dual RNA-seq is used to investigate the transcriptomes of two interacting species simulta-

neously. If more than two species are investigated, the term multi RNA-seq is used. Both

methods work according to the same principal: The total RNA of samples that contain

two (or more) interacting species is extracted. Then, the mixed RNA undergoes library

preparation and RNA-sequencing, resulting in read files that contain reads from both

(or more) species. Apart from their individual sequence, the reads do not contain any

information about their origin species. The reads are only assigned in silico to their corre-

sponding species and genomic position after sequencing. An overview of a dual RNA-seq

workflow is depicted in Figure 1.4.

1.4.1 Applications and challenges of dual RNA sequencing

Since the first application of dual RNA-seq to a eukaryotic pathogen and host system in

2012 (Tierney et al., 2012), the number of publications performing dual RNA-seq steadily

increased over the years (Figure 2 B in manuscript of chapter 3). The method has been ap-

plied to study a variety of host-pathogen, mutualistic and commensal interaction systems,

however the majority of studies focused on host-pathogen systems involving eukaryotic

hosts and prokaryotic pathogens (Westermann et al., 2017; Wolf et al., 2018).

Compared to conventional RNA-seq, which can only investigate one species at a time,

dual RNA-seq gives a clearer picture of the interspecies interactions. For example, Wester-

mann et al. (2016) performed dual RNA-seq of Salmonella enterica serovar Typhimurium

and human host cells, using time course samples that were generated at different times af-

ter infection. An interspecies correlation analysis of the pathogen and host transcriptome

changes over time identified bacterial and human genes that had similar expression kinet-

ics across the time course of the infection. Thus, it was possible to link bacterial genes

playing an important role during infection to the host’s response. Another advantage of

dual RNA-seq comes from the joint sequencing library preparation for both species. In

contrast to conventional RNA-seq, where library preparation and sequencing has to be

done once for every species being investigated, the joint approach of dual RNA-seq is

cheaper, because costly library preparation and sequencing have to be done only once for

each sample.
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Figure 1.4: Dual RNA-seq experiment workflow. Workflow of a dual RNA-seq experiment with
prokaryotic (green) and eukaryotic (white) cells: Samples are enriched for infected cells via
fluorescence-activated cell sorting (FACS). Afterwards total RNA of all species is extracted,
rRNA is depleted and other RNA-species are enriched. Then, library preparation takes place,
followed by RNA-sequencing of cDNA. The resulting reads are subjected to bioinformatical
analysis.
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However, dual RNA-seq also entails some challenges caused by the different nature and

mass of RNA of the interacting partners. Typical dual RNA-seq experiments investigate

eukaryotic pathogens and mammalian host cells, which have a large difference in the total

amount of RNA. While eukaryotic cells contain 10 to 20 picogram (pg) of RNA, bacterial

cells contain around 0.1 pg. Taking into account that on average each infected eukaryotic

cell is infected by ten bacterial cells, the mass of eukaryotic RNA in an infection experi-

ment is 10 to 20 times higher than the bacterial one (Westermann et al., 2012). In order to

guarantee that there is sufficient prokaryotic RNA to be sequenced, the following measures

can be taken: Prior to RNA extraction from mixed species samples, infected cells can be

separated from non-infected by-stander cells using laser microdissection (Vannucci et al.,

2013) or fluorescence-activated cell sorting (FACS) (Avraham et al., 2015; Westermann

et al., 2016). Prokaryotic RNA can be selectively enriched by depleting poly-A tailed

mRNAs, due to the fact that prokaryotic RNAs, in contrast to eukaryotic RNAs, rarely

possess poly-A tails (Humphrys et al., 2013). Depletion of rRNA of both species also

increases the sequencing sensitivity of other RNA classes. Finally, increasing sequencing

depth overall improves detection of low expressed genes (Westermann et al., 2017).

1.4.2 Bioinformatical analysis of dual and multi RNA

sequencing

The bioinformatical analysis workflow of dual RNA-seq or multi RNA-seq is very similar

to conventional RNA-seq. In the following, a brief overview is given before the steps are

explained in detail. In the first step, raw reads are pre-processed by quality filtering and

adapter trimming. Afterwards, the remaining, processed reads are aligned to reference

sequences of all species that are part of the experiment. The alignment gives information

about the species origin of each read and the genomic positions it aligns to. The following

analysis steps are executed species-wise, meaning every step is done separately for each

species. Standard analyses after alignment include gene quantification, DGE analysis

and generation of nucleotide-wise coverage files. In order to perform DGE analysis, gene

quantification has to be carried out before. Gene quantification sums up the amount of

aligned reads for every genomic feature (e.g. genes, exons, coding DNA sequence (CDS),

etc.) that they overlap with. The calculated counts per gene are the basis for DGE

analysis. Nucleotides-wise coverage files are created by summing up the amount of reads

that overlap with each genomic position. The above described analysis steps are standard

in most experiments aiming to investigate gene expression. When many expressed genes



Chapter 1 Introduction 17

are found, gene set enrichment analysis (GSEA) is considered a common follow-up analysis

step.

1.4.2.1 Pre-processing

The first step of raw read pre-processing before alignment is the removal of adapter

sequences, called adapter trimming. Sequencing-by-synthesis RNA-seq methods add se-

quencing adapters to the ends of actual transcripts that need to be removed before align-

ment. Since the adapter sequences are synthetic and not part of any genome sequence,

they complicate read alignment and can ultimately cause unaligned reads. Various tools

exist to handle adapter trimming, e.g. cutadapt (Martin, 2011), ngShoRT (Chen et al.,

2014), or FastqPuri (Pérez-Rubio et al., 2019). Next, reads can be trimmed by their se-

quencing quality. Sequencing machines are able to report base-calling error probabilities

for each sequenced nucleotide. Nucleotides that fall beneath a certain threshold of base

call accuracy are removed from the ends of the read. After adapter and quality trimming,

reads can be filtered by their length, to avoid very short reads that due to their short

sequence would be aligned to multiple genomic locations. A good minimum read length

is around 20 nucleotides, since the majority of sRNAs exceeds this limit.

1.4.2.2 Read alignment

During read alignment, aligners find the best position for every read inside the genome

reference sequences. One common format used to store every single alignment is the

text-based format sequence alignment/map (SAM), which can be converted to its binary

equivalent binary alignment/map (BAM) (Li et al., 2009). The majority of alignments is

represented as a single line, containing information about each matching or mismatching

base, insertions and deletions and other details of the alignment. Reads that can be aligned

equally well to multiple locations produce an alignment entry for every location. Thus,

reads can be classified as uniquely aligned or multiple aligned, depending on whether

they align to a single location or to multiple locations. Regarding dual RNA-seq or

multi RNA-seq it is important to additionally identify which of the multiple aligned reads

align to different species, to be able to exclude them in the following analysis steps and

to verify that species cross-aligned reads are low in numbers. Furthermore, care must

be taken that splice-aware aligners, like STAR (Dobin et al., 2013), HISAT2 (Kim et

al., 2019) or segemehl (Hoffmann et al., 2014), which can align transcripts over splice

junctions are used in experiments with eukaryotic species. For experiments, which only



Chapter 1 Introduction 18

investigate prokaryotic species aligners that are not splice-aware like Bowtie (Langmead

et al., 2009) or BWA (Li and Durbin, 2009) are also suitable, because splicing rarely

occurs in prokaryotes (Reinhold-Hurek and Shub, 1992).

1.4.2.3 Nucleotide-wise coverage

The genomic location of each read generated during read alignment can be presented as

the number of reads that overlap with every single nucleotide of the genome reference

sequences. The files that store this information are called coverage files and are usually in

WIG (wiggle) file format (ENSEMBL - WIG File Format - https://www.ensembl.org/info

/website/upload/wig.html - 2022-10-07 2022), which is a text-based format that consists

of two columns, where the first column indicates the sorted genomic positions of the

nucleotides of the reference sequence and the second the number of overlapping reads

with the nucleotide of the first column. The read counts can be normalized e.g. by read

depth, which is the total number of aligned reads for a given sequencing library and thus

enable visual semi-quantitative comparison of transcripts of different libraries. Genome

browsers like Integrated Genome Browser (IGB) (Freese et al., 2016) or Integrative Ge-

nomics Viewer (IGV) (Robinson et al., 2011) can be used to view coverage files. Coverage

files are also useful for analyses that require exact transcript profiles, e.g. discovery of

transcription start sites and processing start sites via differential RNA-seq (Sharma et al.,

2010)

1.4.2.4 Gene quantification

Already known genomic locations and functions of annotated genes are stored in publicly

accessible databases e.g. the RefSeq database (Pruitt et al., 2007). A common format

to store annotation is the general feature format (GFF)3 format (ENSEMBL - GFF3

File Format - https://www.ensembl.org/info/website/upload/gff3.html, 2022-10-07 2022),

which contains information about the strand specific location and type of each feature

as well as a custom section that holds additional information of a feature e.g. unique

identifiers for annotation databases. Comparing the genomic positions of every aligned

read received from read alignment and the genomic positions of already annotated fea-

tures, gene quantification sums up the number of reads that overlap with each feature. To

account for differences in gene length and read depth, raw read counts are normalized by

commonly used methods like transcripts per million (TPM) and reads per kilobase million

(RPKM) or fragments per kilobase million (FPKM), when working with paired-end reads.



Chapter 1 Introduction 19

Although these methods have been used to draw conclusions about differentially expressed

genes across different libraries, they are not reliable especially for lowly expressed genes

and instead other methods (described in 1.4.2.5) should be used (Dillies et al., 2013; Zhao

et al., 2021)

1.4.2.5 Differential gene expression analysis

DGE analysis aims to find differentially expressed genes between different biological con-

ditions. Various methods and tools exist, which usually try to fit each expression value

for a given gene into a particular distribution, like Poisson and negative binomial (baySeq,

Hardcastle and Kelly, 2010; DESeq2, Love et al., 2014; edgeR, Robinson et al., 2010). In

contrast to these parametric methods, tools that use non-parametric methods, like SAM-

seq (Li and Tibshirani, 2013) and NOIseq (Tarazona et al., 2015) also exist. The different

methods calculate fold changes, which indicate to which extend a gene is up- or down-

regulated between two different conditions. The fold changes are usually accompanied by

a value for each gene indicating its statistical significance (e.g. p-values). The p-values

can be adjusted for multiple testing to control the false discovery rate of significantly reg-

ulated genes by applying correction methods such as Bonferroni or Benjamini-Hochberg,

which can be further improved by introducing weights (Ignatiadis et al., 2016). To obtain

statistically meaningful results, most tools require biological replicates of the individual

conditions. When conducting RNA-seq experiments with the intention to perform DGE

analysis, a decision has to be made whether the sequencing budget should be used for

increasing sequencing depth or increasing the number of replicates. It was shown that

increasing sequencing depth over certain thresholds gives diminishing returns for power

of detecting differentially expressed genes, whereas increasing the number of replicates

consistently increases detection power. Thus, increasing the number of replicates should

be preferred over increasing sequencing depth when performing DGE analysis (Liu et al.,

2014).

1.4.2.6 Gene set enrichment analysis

DGE analysis often yields long lists of differentially expressed genes that need to be inter-

preted. To avoid an impractically large amount of manual literature research, GSEA can

help do identify differentially expressed sets of genes that share the same characteristics

(Subramanian et al., 2005). These gene sets are defined a priori by known characteristics

stored in databases. For example, Gene Ontology hosts annotations for genes regard-
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ing their biological process, cellular component or molecular function (Ashburner et al.,

2000), the Kyoto Encyclopedia of Genes and Genomes (KEGG) provides KEGG-terms

that can be used to group genes by their biological pathway (Kanehisa et al., 2010) and

Disease Ontology classifies genes by their association with human diseases (Osborne et al.,

2009). In GSEA, genes are sorted by their level of expression changes, meaning the most

up-regulated gene is at the top of the sorted list and the most down-regulated gene at

the bottom of the list. Afterwards an enrichment score is calculated for the gene set that

is investigated. The enrichment score represents the extent to which the genes of the set

are overrepresented at the top or the bottom of the sorted list.
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1.5 Aims of the study

The aims of this thesis were to carry out bioinformatical analysis of a dual RNA-seq

data set generated from a host-pathogen system during infection and the development

of scientific software to analyze dual RNA-seq and multi RNA-seq data. In chapter 1,

dual RNA-seq data of three different infection settings of human mast cells and S. aureus

were analyzed using bioinformatical methods like DGE and GSEA. The analysis was

exploratory and aimed to gain new insides in the transcriptome changes on both the

host’s and the pathogen’s side that take place during infection. In chapter 2, the aim

was to further develop the RNA-seq analysis tool READemption to enable dual RNA-seq

and multi RNA-seq in a convenient and user-friendly way. Additionally, further improve-

ments, like fragment building for paired-end reads, adding TPM normalization to the gene

quantification subcommand, increasing the system and unit test coverage and distributing

the software as a Conda package have been carried out.
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Cytosolic Sensing of Intracellular Staphylococcus aureus by
Mast Cells Elicits a Type I IFN Response That Enhances
Cell-Autonomous Immunity

Oliver Goldmann,*,1 Till Sauerwein,†,‡,1 Gabriella Molinari,§ Manfred Rohde,§

Konrad U. Förstner,†,‡,{ and Eva Medina*

Strategically located at mucosal sites, mast cells are instrumental in sensing invading pathogens and modulating the quality of the
ensuing immune responses depending on the nature of the infecting microbe. It is believed that mast cells produce type I IFN (IFN-I) in
response to viruses, but not to bacterial infections, because of the incapacity of bacterial pathogens to internalize within mast cells,
where signaling cascades leading to IFN-I production are generated. However, we have previously reported that, in contrast with other
bacterial pathogens, Staphylococcus aureus can internalize into mast cells and therefore could trigger a unique response. In this study,
we have investigated the molecular cross-talk between internalized S. aureus and the human mast cells HMC-1 using a dual RNA
sequencing approach. We found that a proportion of internalized S. aureus underwent profound transcriptional reprogramming within
HMC-1 cells to adapt to the nutrients and stress encountered in the intracellular environment and remained viable. HMC-1 cells, in
turn, recognized intracellular S. aureus via cGMP�AMP synthase�STING�TANK-binding kinase 1 signaling pathway, leading to
the production of IFN-I. Bacterial internalization and viability were crucial for IFN-I induction because inhibition of S. aureus
internalization or infection with heat-killed bacteria completely prevented the production of IFN-I by HMC-1 cells. Feeding back
in an autocrine manner in S. aureus�harboring HMC-1 cells and in a paracrine manner in noninfected neighboring HMC-1 cells,
IFN-I promoted a cell-autonomous antimicrobial state by inducing the transcription of IFN-I�stimulated genes. This study
provides unprecedented evidence of the capacity of mast cells to produce IFN-I in response to a bacterial pathogen. The Journal
of Immunology, 2022, 208: 1675�1685.

Mast cells are important effector cells of the innate
immune system and contribute to the early host defense
against pathogens (1�3). They are present in practically

all tissues and are predominantly located at sites that interface with
the external environment, such as mucosal surfaces, as well as in
s.c. tissue in close proximity to blood vessels. Mast cells, therefore,
may be among the first immune cells encountering invading patho-
gens and initiating the ensuing immune response. They are
equipped with a variety of receptors, including TLRs, and several
Fc and complement receptors that recognize specific bacterial com-
ponents and enable them to tailor their response to the pathogen
that they encounter (4, 5). Mast cells have been shown to be essen-
tial for containing pathogens at the sites of infection and prevent
further dissemination (1, 2). They also play a major role in initiat-
ing both innate and adaptive immune responses to many bacterial
pathogens (3).

A prominent feature of mast cells is the presence of abundant
secretory granules in the cytoplasm, which contain large amounts of
preformed mediators, including serotonin, histamine, heparin, TNF-a,
and enzymes such as tryptase and chymase, and are rapidly released
following activation (6). The release of preformed mediators initiates
the recruitment and activation of effector immune cells to the sites of
pathogen invasion (2). Mast cells can also release de novo synthe-
sized mediators, such as proinflammatory leukotrienes, PGs, chemo-
kines, and cytokines fitted to the specific pathogen (7). For example,
although mast cells respond to dengue virus infection with the release
of high amounts of CCL5 and low amounts of IL-1b and IL-6 (8),
they produce large amounts of CCL20, IL-1a, IL-1b, CXCL8, and
GM-CSF in response to Pseudomonas aeruginosa (9, 10). Further-
more, it has also been reported that, although mast cells can produce
type I IFNs (IFN-Is) in response to viral infection, they elicit only
proinflammatory cytokines, but not IFN-I responses, after infection
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with Gram-positive or Gram-negative bacteria (11). The authors
argued that the lack of IFN-I responses was owed to the incapacity
of bacterial pathogens to internalize within mast cells because signal-
ing cascades leading to IFN-I production are triggered by receptors
located in intracellular compartments (11). However, the incapacity
to internalize into mast cells seems not to be a general phenomenon
for all bacteria because we (12, 13) and others (14) have shown that
the Gram-positive bacterium Staphylococcus aureus is capable of
internalizing and surviving within mast cells. Mast cells are com-
monly found at sites of the body used as portals of entry by S.
aureus, including the skin and the respiratory tract, and they will
probably be one of the first cells of the innate immune system that
sense and respond to this pathogen after invasion of the host. In pre-
vious studies, we reported that mast cells respond to S. aureus by
releasing antimicrobial granule compounds, as well as extracellular
trap in an attempt to kill the pathogen in an extracellular manner
(12). However, S. aureus is able to subvert the extracellular antimi-
crobial mechanisms of the mast cells by promoting its internalization
within these cells using a5b1 integrins expressed on the mast cell
surface (12). In humans, mast cells harboring internalized S. aureus
have been observed in nasal polyps isolated from patients with
chronic rhinosinusitis (15). Because S. aureus internalization and
intracellular survival could affect the ensuing response of the infected
mast cells, the objective of this study was to investigate how the
human mast cells HMC-1 and S. aureus respond to each other by
assessing simultaneously gene expression changes taking place in the
infected host cell and in the intracellular bacteria using a dual RNA
sequencing (RNA-seq) approach (16). The results of this study high-
light the plasticity of S. aureus to reprogram its transcriptional
response to adapt to the intracellular environment and survive within
HMC-1 cells. More importantly, we also show that intracellular via-
ble S. aureus triggers the cytosolic DNA-sensing cGMP�AMP syn-
thase (cGAS)�STING pathway within HMC-1 cells and leads to the
production and release of IFN-I. Released IFN-Is act via the surface
receptor, IFN-a/b receptor (IFNAR), in an autocrine fashion on the
infected HMC-1 cells to enhance cell-autonomous host defenses and
in a paracrine fashion to sensitize noninfected neighboring cells and
thereby amplifying the immune response.

Materials and Methods
Cell lines

The human mast cell line HMC-1 was provided by J.H. Butterfield (Mayo
Foundation for Medical Education and Research, Rochester, MN) (17).

Bacterial strains

The following S. aureus bacterial strains were used in this study: S. aureus
strain SH1000 (18), S. aureus strain Newman (NCTC 8178), S. aureus
strain 6850 (19), GFP-expressing S. aureus SH1000 (20), and S. aureus hla-
deficient mutant strain (Dhla) (21). Salmonella enterica subsp. enterica sero-
type Typhimurium (NTCC 12023) was also used in this study. S. aureus
strains were grown to midlog phase in brain-heart infusion medium (Roth)
at 37◦C with shaking (120 rpm), and Salmonella typhimurium was grown in
lysogeny broth (Roth) also at 37◦C with shaking. Bacteria were collected
by centrifugation, washed with sterile PBS, and diluted to the required
concentration.

For heat inactivation, bacteria were heated to 95◦C for 2 h using an
Eppendorf thermomixer.

Lysostaphin/gentamicin protection assay to assess intracellular
viable bacteria

HMC-1 cells were adjusted to 2 × 106 cells/ml in IMDM (Life Technolo-
gies) supplemented with 5% FCS and infected with S. aureus at a multiplic-
ity of infection (MOI) of five bacteria per one HMC-1 cell. After 2 h of
infection, lysostaphin (2.5 mg/ml) (Sigma-Aldrich) was added and HMC-1
cells were incubated for 10 min to remove noninternalized extracellular bac-
teria. HMC-1 cells were then washed twice with sterile PBS and further
incubated in medium containing 100 mg/ml gentamicin. At the indicated

times, infected HMC-1 cells were centrifuged at 1500 × g for 5 min, and
cells in the pellet were lysed by incubating them with 0.1% Triton X-100 in
double-distilled H2O for 5 min. The numbers of viable bacteria were deter-
mined by plating serial dilutions on blood agar plates. The cell culture super-
natants were used for determination of IFN-a by ELISA.

In some experiments, HMC-1 cells were incubated 1 h before infection
with 1 mg/ml of the irreversible STING inhibitor H-151 (InvivoGen) or with
100 nM for the TANK-binding kinase 1 (TBK1)/IKKe inhibitor BX-795
(Cayman Chemicals). Control HMC-1 cells were incubated with a similar
concentration of vehicle DMSO. HMC-1 cells transfected with the retinoic
acid�inducible gene I (RIG-I) ligand 59ppp dsRNA using the transfection
reagent LyoVec according to the manufacturer’s instructions (Invivogen)
were used to confirm that H-151 (1 mg/ml) is specific for STING and does
not affect RIG-I signaling.

For blocking the IFNAR, HMC-1 cells were incubated in the presence of
500 ng/ml anti-IFNAR Ab or isotype-matching IgG Abs as control (Sigma-
Aldrich).

In stimulation experiments, 5 × 103 IU/ml rIFN-a (Abcam) was added to
HMC-1 cells 1 h before infection.

S. typhimurium infection assay

HMC-1 cells were infected with S. typhimurium at an MOI of 5:1 for 2 h.
Gentamicin was then added at a concentration of 100 mg/ml to kill extracel-
lular bacteria, and HMC-1 cells were further incubated at 37◦C and 5%
CO2. After 24 h, HMC-1 cells were harvested, and supernatants were col-
lected for determination of IFN-a.

Infection assay for RNA-seq analysis

HMC-1 cells were adjusted to 2 × 106 cells/ml in IMDM supplemented with
5% FCS and infected with S. aureus strain SH1000-GFP for 2 h at an MOI
of 5:1. After 2 h of infection, 2.5 mg/ml lysostaphin was added, and HMC-1
cells were incubated for 10 min to remove noninternalized extracellular bac-
teria. HMC-1 cells were then washed twice with sterile PBS and further
incubated for 24 h in medium containing 100 mg/ml gentamicin. HMC-1
cells harboring intracellular S. aureus (GFP1) were separated from nonin-
fected bystander HMC-1 cells (GFP−) by FACS using a BD FACSAria III
(Becton Dickinson) and resuspended in RNAlater (Ambion). Sorted HMC-1
cells were centrifuged for 10 min at 1000 × g, washed twice with sterile pre-
warmed PBS, and carefully resuspended in 600 ml per 5 × 106 cells of cell
lysis buffer included in mirVANA miRNA Isolation Kit (Ambion). Cell
lysates were then transferred to FastPrep 24 lysing matrix tubes (mechanical
lysis with FastPrep at 59, 1000 × g), and RNA was isolated following the
recommendations provided in the mirVANA miRNA Isolation Kit
(Ambion).

rRNA depletion

RNA integrity was determined using a 2100 Bioanalyzer and the RNA 6000
Nano kit (Agilent Technologies, Santa Clara, CA). RNA integrity values for
all samples ranged from 8.5 to 10.0. In accordance with the manufacturer’s
instructions, rRNA was depleted using Illumina’s RiboZero Epidemiology
Kit (Illumina). In brief, rRNA-specific biotinylated DNA probes were added
to the total RNA. After hybridization of the probes and the rRNA, magnetic
beads were added that bind to the rRNA�DNA hybrids. By placing the sam-
ples on a magnetic stand, the rRNA�DNA hybrids that are bound to mag-
netic beads were pulled down. The rRNA-depleted RNA was then purified
using RNA Clean & Concentrator 5 kit (Zymo Research) following the man-
ufacturer’s protocol (manual version 2.2.1).

RNA fragmentation and cDNA library preparation

RNA was fragmented using NEB Next Magnesium RNA fragmentation
module (New England Biolabs) following the manufacturer’s protocol. The
following modifications were introduced in the protocol: Mg21 was used to
fragment RNA for 3 min at 94◦C using ABI 9700 PCR System. The frag-
mented RNA was purified with the RNA Clean & Concentrator kit 5 (Zymo
Research), and RNA quality was determined using a 2100 Bioanalyzer and
the RNA 6000 Pico kit (Agilent Technologies). Prior to adapter ligation,
RNA was dephosphorylated at the 39 end and phosphorylated at the 59 end
using 10 U T4-PNK ± 10 mM ATP (New England Biolabs). RNA was then
decapped twice using 5 U RppH (New England Biolabs) following the man-
ufacturer’s protocol for eukaryotic cells and prokaryotic cells, respectively.
RNA was purified with RNA Clean & Concentrator kit 5 (Zymo Research)
after each enzymatic treatment as described earlier. cDNA synthesis was per-
formed using NEBNext Small RNA Library Prep Set for Illumina (Illumina).
In brief, RNA fragments were ligated to the 39 SR and 59 SR adapters predi-
luted 1:4 with nuclease-free water. PCR amplification to add Illumina adap-
tors and indices was performed for 15 cycles with 1:4 prediluted primers.
Prior to sequencing, cDNA libraries were purified using the magnetic
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MagSi-NGSPREP Plus beads (magtivio) at a 1.8:1 ratio of beads to sample
volume and afterward quantified with the Qubit 2.0 Fluorometer using Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific). The libraries’ quality and
size distribution were checked with a 2100 Bioanalyzer using HS DNA
7500 kit.

IFN-a ELISA

The amount of IFN-a was quantified in the culture supernatants using a
human IFN-a Instant ELISA System according to the manufacturer’s
instructions (Invitrogen).

Quantitative RT-PCR

Total RNA was isolated from HMC-1 cells at the indicated time points using
the GeneJET RNA purification kit (Fisher Scientific). RNA samples were
reverse transcribed and amplified using a SensiFAST SYBR No-ROX Kit
(Bioline) following the manufacturer’s recommendations. The primers used
for quantitative RT-PCR were for IFNA1 (IFN-a), forward [for.]: 59-GTG
AGG AAA TAC TTC CAA AGA ATC AC-39, reverse [rev.]: 59-TCT CAT
GAT TTC TGC TCT GAC AA-39; IFNB1 (IFN-b), for.: 59-CGC CGC
ATT GAC CAT CTA-39, rev.: 59-TTA GCC AGG AGG TTC TCA ACA
ATA GTC TCA CTA-39; and for the gene encoding b-actin (ACTB), for.:
59-AAC TCC ATC ATG AAG TGT GAC G-39; rev.: 59-GAT CCA CAT
CTG CTG GAA GG-39. Thermal cycling conditions for IFNA1 and ACTB
mRNA quantification consisted of reverse transcription for 20 min at 45◦C,
initial denaturation for 5 min at 95◦C, followed by 40 cycles of 20 s at 95◦C
(denaturation), 20 s at 58◦C (annealing), and 20 s at 72◦C (elongation). Pri-
mers for RT-PCR quantification of selected IFN-I�induced genes mRNA
and for RT-PCR quantification of TNFA (TNF-a) mRNA were purchased
from OriGene and used following the conditions recommended by the manu-
facturer (OriGene). The following qPCR Primer Pairs were used: RSAD2
(Viperin) (NM_080657; catalog number [CAT#]: HP216708), IFN regulatory
factor (IRF) 7 (NM_004031; CAT#: HP231979, IFI6 (NM_022873; CAT#:
HP225644), IFI27 (NM_005532; CAT#: HP208651), MX2 (NM_002463;
CAT#: HP206143), and TNF-a (TNF) (NM_000594; CAT#: HP200561).
Data were normalized against the housekeeping gene b-actin. Fold change
values were calculated by the Pfaffl equation, in which the expression ratio is
estimated by (Etarget)DCt, target (control − experimental)/(Eref)DCt ref (con-
trol − experimental).

Inhibition of S. aureus internalization within HMC-1 cells

HMC-1 cells (2 × 106 cells/ml) were preincubated for 1 h with 1 mg/ml
anti�b1-integrin blocking Abs (Santa Cruz biotechnology) or for 30 min
with 5 mg/ml cytochalasin D (Sigma-Aldrich). Control cells received medium
alone. HMC-1 cells were washed to remove unbound Abs or cytochalasin D
and infected for 2 h with S. aureus at an MOI of 5:1. Lysostaphin was added
at a concentration of 2.5 mg/ml for 10 min to eliminate noninternalized extra-
cellular bacteria, and HMC-1 cells were washed and used either to determine
the amount of intracellular viable bacteria as described earlier or further incu-
bated for 24 h in medium containing 100 mg/ml gentamicin to determine the
concentration of IFN-a in the culture supernatant.

Infection assay for microscopy

HMC-1 cells in suspension at a density of 1 × 106 cells/ml in IMDM sup-
plemented with 5% FCS were infected with S. aureus at an MOI of 10:1 for
the immunofluorescence (IF) staining and MOI 20:1 for electron microscopy
(EM). At different infection times, parallel samples of infected and unin-
fected HMC-1 cells were fixed for IF or EM. Fixation was performed in the
IF samples by adding the same volume of a 6% paraformaldehyde solution
in PBS and incubating during 20 min at room temperature. Cells were centri-
fuged at 1000 × g for 10 min, and the pellet was used for the IF labeling.
Cells processed for EM were first centrifuged at 1000 × g for 10 min,
washed with PBS and resuspended in PBS, and immediately fixed for field
emission scanning EM or transmission EM.

Confocal microscopy examination of a total of 45 HMC-1 cells was used
to calculate the percentage of HMC-1 cells harboring internalized S. aureus
and the mean number of bacteria per cell.

IF microscopy of HMC-1 cells in suspension

The staining of HMC-1 cells in suspension was performed following a
modified protocol (22). HMC-1 cells were fixed as mentioned earlier and
transferred to microcentrifuge tubes where the labeling was performed.
Generally, after each step, cells were washed with 1200 ml of PBS, centri-
fuged at 1000 × g, and the supernatant was discarded by aspiration. The
different labeling solutions were added to the pellet and after mixing, each
labeling was performed on an Eppendorf thermomixer set at 700 × g with
the temperature control off. Cells were first washed with 900 ml of 10 mM

glycine in PBS and after centrifugation were permeabilized with 0.1% Tri-
ton X-100 in PBS during 5 min and then washed twice with PBS. The pel-
let was resuspended in 100 ml of PBS, transferred to a fresh
microcentrifuge tube, and 800 ml of 10% FBS-PBS was added for blocking
during 45 min. After centrifugation, 120 ml of custom-produced anti�S.
aureus rabbit serum diluted 1:100 was added to the cells and incubated
during 1 h. After washing twice, HMC-1 cells were incubated with 1:500
secondary Ab Alexa Fluor 488�conjugated goat anti-rabbit (Thermo Fisher
Scientific) for 45 min at room temperature. After washing twice, cells were
stained with 10 ml of Alexa Fluor 633 phalloidin (Thermo Fisher Scientific)
in 500 ml of PBS for 45 min and washed three times. ProLong Gold Anti-
fade Mountant with DAPI (Thermo Fisher Scientific) was added to the pel-
let and carefully mixed. A total of 7 ml of sample was applied to the center
of a 22 × 22-mm coverslip, and a microscope slice was placed on top.
Mounted cells were allowed to dry overnight, and the edges of the cover-
slips were sealed before microscopic observation. Imaging was performed
with a confocal laser-scanning upright microscope Leica SP5 equipped
with an HC PL APO 63×/1,40 oil-immersion objective using three lasers,
diode (405), argon (488 nm), and He-Ne (633 nm), and the LAS AF soft-
ware. After the confocal laser-scanning upright microscope measurement,
the image stacks were processed with Fiji-ImageJ.

Field emission scanning EM

HMC-1 cells were fixed with 4% paraformaldehyde, washed with TE
buffer (20 mM Tris, 1 mM EDTA [pH 6.9]) and dehydrated after incuba-
tion with a graded series of ethanol (10, 30, 50, 70, 90, 100%) on ice for
15 min. HMC-1 cells were then critical-point dried with liquid CO2 and
covered with a gold film by sputter coating (SCD 40; Balzers Union).
HMC-1 cells were examined in a field emission scanning electron micro-
scope (Zeiss DSM 982 Gemini) using the Everhart Thornley SE detector
and the inlens detector in a 50:50 ratio at an acceleration voltage of 5 kV.

Transmission EM

HMC-1 cells were fixed with 2% glutaraldehyde and 3% formaldehyde in
cacodylate buffer for 1 h on ice, washed with cacodylate buffer, and osmifi-
cated with 1% aqueous osmium for 1 h at room temperature. HMC-1 cells
were then dehydrated with a graded series of acetone (10, 30, 50, 70, 90,
and 100%) for 30 min at each step. The 70% acetone dehydration step was
performed in 2% uranyl acetate overnight. HMC-1 cells were then infiltrated
with an epoxy resin, and ultrathin 70-nm sections were cut with a diamond
knife. Sections were counterstained with uranyl acetate and lead citrate and
examined in a TEM910 transmission electron microscope (Carl Zeiss) at an
acceleration voltage of 80 kV. Images were taken at calibrated magnifica-
tions using a line replica and recorded digitally with a Slow-Scan CCD-
Camera (ProScan) with ITEM Software (Olympus Soft Imaging Solutions).
Brightness and contrast were adjusted with Adobe Photoshop CS3.

Bioinformatical procedure

Illumina reads were trimmed using cutadapt (version: 1.16) (23). Illumina’s
TruSeq “Read 1” adapter sequence was removed from the 39 end. Nucleoti-
des with a Phred quality score <20 and their following downstream (59�39)
bases were also cut off. Further filtering steps including read mapping and
downstream analysis, such as gene quantification, generation of coverage
files, and differential gene expression analysis, were made by the RNA-seq
tool READemption (version: 0.4.3, doi: 10.5281/zenodo.250598) (24). Addi-
tional reads filtering included clipping of poly(A) sequences and discarding
of reads that had a read length <20 nucleotides after performing the trim-
ming steps. The read mapping was performed using the short read mapper
segemehl (version: 0.2.0) (25), which is integrated into READemption. The
mapping was performed with an accuracy of 95% and segemehl’s aligner
lack (26). The human genome and annotation were obtained from GEN-
CODE (version: 27, NCBI assembly name: GRCh38.p10) and the bacterial
ones from NCBI’s RefSeq database (accession number: NC_007795.1,
https://www.ncbi.nlm.nih.gov/nuccore/88193823; RefSeq assembly acces-
sion number: GCF_000013425.1, https://www.ncbi.nlm.nih.gov/assembly/
GCF_000013425.1). The S. aureus annotation was extended with small
RNAs (sRNAs) predicted by ANNOgesic (27). Transcripts that were not
associated with any of RefSeq’s annotated features were determined as
sRNA candidates based on their predicted folding energy. Candidates that
had homologs in NCBI’s nonredundant protein database (https://www.ncbi.
nlm.nih.gov/refseq/about/nonredundantproteins) were discarded, while can-
didates with homologs in sRNA database BSRD (28) were accepted. The
gene quantification files (i.e., the number of reads overlapping with an
annotated feature) and the coverage files in wiggle format (i.e., the number
of reads overlapping with each base of the genome) were created using
READemption. Afterward both file types were split up by species. The
coverage was normalized by the total number of aligned reads of a given
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replicate and multiplied by 1,000,000. Differential gene expression analysis
was performed with the R package DESeq2 (version: 1.20.0) based on raw
read counting (29). Genes with an adjusted (Benjamini�Hochberg cor-
rected) p < 0.05 were defined as differentially expressed.

Raw read files can be found at the European Nucleotide Archives under
the project ID PRJEB43874 (https://www.ebi.ac.uk/ena/browser/view/
PRJEB43874). The complete bioinformatical workflow is available at the
Repository for Life Sciences (https://repository.publisso.de/resource/frl:
6427216, doi: 10.4126/FRL01-006427216). A shell script can be executed
step by step or in one go to reproduce the analysis. Singularity images are
provided that contain all required programs.

Other data analysis

Heatmaps, hierarchical clustering dendrograms, and principal-component
analysis (PCA) plots were generated using the corresponding function of the
platform MetaboAnalyst v.3.0 (30). Gene lists of all significantly expressed
genes between the different conditions were used as input for the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway (S. aureus) or Reac-
tome (HMC-1) analysis using DAVID (31). Comparisons between groups
were made using a parametric ANOVA test with Tukey’s posttest or a t test.
The p values <0.05 were considered significant.

Results
Transcriptional response of S. aureus and HMC-1 cells under
different infection settings

In contrast with what has been previously reported for other Gram-
positive bacteria (11), S. aureus is capable of internalizing within
HMC-1 cells. The IF and EM photographs depicted in Fig. 1A
show the capacity of S. aureus to adhere to the surface of HMC-1
cells (Fig. 1A, upper panel) and internalize within the HMC-1 cells
(Fig. 1A, lower panel). In our experimental setting, ∼66% of HMC-
1 cells cells were found to harbor internalized S. aureus with a
mean of 5.6 ± 6.5 bacteria per cell. Within HMC-1 cells, S. aureus
could be found within membrane-bound vacuoles (Fig. 1B, lower
panel, red arrows) or free in the cell cytosol (Fig. 1B, lower panel,
insert). Evaluation of intracellular bacterial viability indicated that,
although HMC-1 cells has the capacity to kill a proportion of the
internalized S. aureus, a subpopulation of bacteria was capable of
escaping the intracellular antimicrobial mechanisms of HMC-1 cells
and remained viable after 24 h of infection (Fig. 1C).
A dual RNA-seq approach was then used to investigate the strate-

gies used by S. aureus to survive within HMC-1 cells, as well as
the functional consequences of harboring intracellular S. aureus for
the HMC-1 cells responses. For this purpose, HMC-1 cells cells
were infected with GFP-expressing S. aureus for 2 h, noninternal-
ized bacteria were removed by lysostaphin treatment, and HMC-1
cells were further incubated for 24 h in the presence of antibiotics.
HMC-1 cells harboring intracellular S. aureus (GFP1) were then
separated from noninfected bystander HMC-1 cells (GFP−) cells by
FACS and subjected to dual RNA-seq for parallel gene expression
analysis of HMC-1 cells and intracellular S. aureus. The transcrip-
tional response of uninfected HMC-1 cells and of S. aureus in the
input infection inoculum were used as control for host and intracel-
lular pathogen, respectively. We also determined the transcriptional
response of noninfected bystander HMC-1 cells (GFP−) cells, as
well as of HMC-1 cells cocultured with S. aureus in separated
chambers using a permeable transwell system. The different infec-
tion settings are summarized in the scheme depicted in Fig. 1D.
Total RNA was isolated from the different samples and subjected to
RNA-seq analysis. The distribution of RNA classes from HMC-1
cells indicated that between 40 and 50% of the HMC-1 cell reads
mapped to coding sequences in the different samples (Fig. 1E).
Regarding the RNA classes distribution from S. aureus, tRNAs
were more represented in intracellular S. aureus than in S. aureus in
the infection inoculum (Fig. 1F), probably suggesting a more active
protein synthesis in the intracellular bacteria. The dual RNA-seq

analysis of HMC-1 cells harboring S. aureus showed that ∼95% of
the reads could be mapped to the human genome and 5% to the
bacteria genome in each of the three replicates (Fig. 1G).

Intracellular survival of S. aureus within HMC-1 cells is associated
with metabolic reprogramming and upregulation of stress responses

To gain a better understanding of the strategies used by S.
aureus to survive and persist within HMC-1 cells, we compared
the expression profile of protein coding genes from intracellular
S. aureus with that of S. aureus in the infection inoculum. Hier-
archical clustering (Fig. 2A), PCA (Fig. 2B), and heatmap of gene
expression levels (Fig. 2C) showed a clear separation between the

FIGURE 1. Experimental design and mapping of RNA-seq reads. (A)
Confocal (left panels) and scanning electron microscope (right panels) pho-
tographs showing S. aureus attached to the surface of an HMC-1 cell at 1 h
of infection (upper panels) and internalizing within HMC-1 cells at 2 h of
infection (lower panels). HMC-1 cells were stained with Alexa Fluor 633
phalloidin for actin (magenta) and DAPI for DNA (blue) and S. aureus
labeled with primary rabbit anti�S. aureus Ab followed by secondary Alexa
Fluor 488�conjugated goat anti-rabbit Ab (green). Scale bars: 10 mm. (B)
Transmission EM photographs showing S. aureus located within an HMC-1
cell at 2 h (lower panel) and 4 h (lower panel, insert) of infection. Bacteria
can be found either in membrane-bound vacuoles (lower panel, red arrows)
or free in the HMC-1 cells cytoplasm (lower panel, insert). An uninfected
HMC-1 cell is shown in the upper panel for comparison. (C) Numbers of
viable bacteria within HMC-1 cells at progressing times postinfection with S.
aureus (MOI 5 5). The data are presented as mean ± SD of three
replicates from three independent experiments. *p < 0.05, **p < 0.005,
****p < 0.0001. (D) Experimental design scheme. HMC-1 cells were
infected with GFP-expressing S. aureus for 2 h, the remaining noninter-
nalized bacteria were removed, and HMC-1 cells were further incubated
for 24 h. HMC-1 cells “harboring” intracellular bacteria (GFP1) were sep-
arated from noninfected “bystander” HMC-1 (GFP−) cells by FACS
sorter. HMC-1 cells were also cocultured with S. aureus in separated
chambers in a “transwell” system. “Uninfected” HMC-1 cells and S.
aureus in the infection “inoculum” were used as control for host cells and
pathogen, respectively. Total RNA was isolated from the different sam-
ples and subjected to RNA-seq analysis. (E) Distribution of RNA-seq
reads mapped to the human reference genome in each sample over the
main RNA classes. (F) Distribution of RNA-seq reads mapped to the S.
aureus reference genome over the main RNA classes in intracellular
(right) and inoculum (left) S. aureus. (G) Number of reads mapped either
to the human or to the S. aureus reference genome in RNA-seq libraries
generated from HMC-1 cells harboring intracellular S. aureus. CDS, cod-
ing sequences; ncRNA, noncoding RNA.

1678 S. AUREUS ELICITS A TYPE I IFN RESPONSE IN MAST CELLS

 at U
niv B

iblio W
uerzburg on Septem

ber 15, 2022
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 
Chapter 2 Chapter 1: Cytosolic sensing of intracellular Staphylococcus aureus by mast

cells elicits a type I IFN response that enhances cell-autonomous immunity
27



transcriptome datasets of S. aureus located within HMC-1 cells
(intracellular) and S. aureus in the infection inoculum (inoculum).
This indicated that S. aureus underwent profound remodeling of the
transcriptional response on internalization within HMC-1 cells. We
performed differential gene expression analysis on the RNA-seq
datasets and focused on transcripts with differential expression of
log2 fold change > 2 (upregulated) or log2 fold change < −2
(downregulated) (Benjamini-Hochberg adjusted p < 0.05) for fur-
ther analysis. We found 143 genes upregulated and 126 downregu-
lated by intracellular S. aureus in comparison with the bacteria in
the inoculum, with many of them encoding hypothetical proteins
(Fig. 2D, Supplemental Table I). KEGG pathway enrichment analy-
sis of differentially expressed genes showed “ribosome,” followed
by “galactose metabolism” and “monobactam biosynthesis” as the
most predominant enriched pathway in genes upregulated by intra-
cellular S. aureus (Fig. 2E). Indeed, many genes encoding compo-
nents of the protein translation machine, such as ribosomal proteins
and ribonucleoproteins, were expressed to a significantly higher
extent by intracellular S. aureus than by S. aureus in the input inoc-
ulum (Supplemental Table I). Interestingly, the genes of the lactose
operon lacABCD operon, which are implicated in the catabolism of
lactose and D-galactose, as well as the cotranscribed genes lacFEG,
which encode the proteins for transport, phosphorylation, and cleav-
age of these carbon sources (32), were expressed by intracellular S.

aureus, but not by the bacteria in the infection inoculum
(Supplemental Table I). These genes are inducible by lactose or
galactose (33) and repressed in the presence of glucose (34), indi-
cating that lactose or galactose, but not glucose, are the carbon sour-
ces available to the bacterium in the intracellular compartment.
Furthermore, the gene encoding the ROK family protein, which is
involved in the metabolism of the amino sugar N-acetylglucosamine
and the sialic acid N-acetylneuraminate (35), was also induced by S.
aureus in the intracellular environment (Supplemental Table I). In
addition to these pathways, genes involved in the stress response,
such as the genes encoding components of the classical chaperones
DnaK/DnaJ and GroES/GroEL (dnaK, groES, groEL) (36), as well
as those coding for Clp chaperones (clpB and clpC) (37) and genes
encoding virulence factors, such as superantigen-like protein SSL6
(ssl6), coagulase (coa), fibronectin-binding proteins (fnbA, fnbB), the
extracellular matrix, and plasma binding protein Emp (emp), were
also upregulated by intracellular S. aureus (Supplemental Table I).
KEGG pathway enrichment analysis of genes exhibiting lower

expression in intracellular S. aureus than in S. aureus in the infection
inoculum identified high enrichment of pathways involved in “two-
components system” followed by “cationic antimicrobial peptide
(CAMP) resistance,” “carotenoid biosynthesis,” and “glucolysis/gluco-
neogenesis” (Fig. 2E). The genes dltB, dltD, and dltABCD, which
encode factors involved in cationic antimicrobial peptide resistance

FIGURE 2. Analysis of gene expression in intracellular S. aureus versus S. aureus in the infection inoculum. (A) Hierarchical clustering dendrogram of
intracellular S. aureus and S. aureus in the infection inoculum RNA-seq datasets based on Euclidean distance metric. (B) PCA of the RNA-seq datasets of
intracellular S. aureus and S. aureus in the infection inoculum. Ellipse surrounds the 95% confidence limit of the centroid of the group. Replicates of the
same samples group are indicated by the same color as shown in the legend. (C) Heatmap showing gene expression levels (top 200) in intracellular S. aureus
and S. aureus in the infection inoculum. Color coding shows the z score normalized transcripts per million of each sample. (D) MA plots showing the tran-
scripts abundance (log10 base mean) versus log2 fold change in gene expression between intracellular S. aureus and S. aureus in the infection inoculum.
Genes with adjusted p < 0.05 and log2 fold change > 2 or log2 fold change <−2 are labeled in dark red. (E) KEGG pathways enriched in genes with signifi-
cantly greater expression (over the red line) or with significantly lower expression (under the red line) in intracellular S. aureus versus S. aureus in the infec-
tion inoculum. The color of the dots reflects the p values calculated by DAVID software program using a modification of the Fisher’s exact test, and the size
of the dots reflects the number of genes in the pathway (count).
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(38) as well as vraF, which encodes part of the VraFG ABC trans-
porter that potentially enhances export of cell wall/teichoic acid precur-
sors (39) were also downregulated by intracellular S. aureus.

Transcriptional analysis reveals expression of IFN-I�induced genes
in HMC-1 cells cells harboring intracellular S. aureus, as well as in
noninfected bystander HMC-1 cells

To investigate the consequences of harboring intracellular S. aureus
for the HMC-1 cells responses, we compared the gene expression
profile of HMC-1 cells harboring intracellular bacteria with the gene
expression profile of either noninfected bystander HMC-1 cells,

uninfected HMC-1 cells, or HMC-1 cells cocultured with S. aureus
but separated by a transwell system. Hierarchical clustering of the
transcriptome of HMC-1 cells in the different infection settings
showed that S. aureus�harboring HMC-1 and noninfected bystander
HMC-1 cell samples clustered together but away from uninfected
HMC-1 and transwell HMC-1 cell samples (Fig. 3A). This cluster-
ing was also reflected by the heatmap depicted in Fig. 3B showing
the pattern of gene expression across the samples. The results of
these analyses indicated that the transcriptional response of S. aur-
eus�harboring HMC-1 cells was highly similar to that of nonin-
fected bystander HMC-1 cells but significantly different from the

FIGURE 3. Gene expression analysis of HMC-1 cells under different infection conditions. (A) Hierarchical clustering dendrogram of RNA-seq datasets
from HMC-1 under different infection conditions based on Euclidean distance metric. (B) Heatmap showing gene expression levels (top 500) in HMC-1 cells
under different infection conditions. Color coding shows the z score normalized transcripts per million of each sample. (C) MA plots showing the transcripts
abundance (log10 base mean) versus log2 fold change in gene expression for the indicated transcriptomes comparisons. Genes with adjusted p < 0.05 and
log2 fold change > 2 or log2 fold change < −2 are labeled in dark red. (D) Enriched Reactome pathways in genes with significantly greater expression and
log2 fold change > 2 (over the red line) or with significantly lower expression and log2 fold change < −2 (under the red line) in HMC-1 cells harboring intra-
cellular S. aureus versus uninfected HMC-1 cells. (E) Enriched Reactome pathways in genes with significantly greater expression and log2 fold change > 2
(over the red line) or with significantly lower expression and log2 fold change < −2 (under the red line) in HMC-1 bystander versus uninfected HMC-1 cells.
The color of the dots in (D) and (E) reflects the p values calculated by DAVID software program using a modification of the Fisher’s exact test, and the size
of the dots reflects the number of genes in the pathway (count).
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transcriptional response of uninfected or transwell samples. The fact
that the gene expression profile of HMC-1 cells in a transwell sys-
tem, where they are separated from S. aureus by a permeable mem-
brane, did not differ from that of uninfected HMC-1 cells excluded
a potential effect of soluble factors released by S. aureus on the
transcriptional response of HMC-1 cells.
To get further insights into the transcriptional changes taking place

in HMC-1 cells harboring intracellular S. aureus and in noninfected
bystander HMC-1 cells, we performed differential gene expression
analysis of these samples in comparison with uninfected HMC-1
cells. The results of this analysis showed 59 genes with significantly
higher expression (log2 fold change > 2, adjusted p < 0.05) and 3
genes with significantly lower expression (log2 fold change < −2,
adjusted p < 0.05) in S. aureus�harboring HMC-1 cells with
respect to uninfected HMC-1 cells (Fig. 3C, Supplemental Table II)
and 66 genes with significantly greater expression and 6 genes with
significantly lower expression in noninfected bystander HMC-1
cells in comparison with uninfected HMC-1 cells (Fig. 3C,
Supplemental Table III). No differentially expressed genes with
log2 fold change > 2, adjusted p < 0.05 or log2 fold change < −2,
adjusted p < 0.05 were identified between S. aureus�harboring
HMC-1 cells and noninfected bystander HMC-1 cells (Fig. 3C).
Likewise, no differentially expressed genes with adjusted p < 0.05
were found between transwell HMC-1 cells and uninfected HMC-1
cells (Fig. 3C). Reactome pathway enrichment analysis performed
in differentially expressed genes with greater expression in S. aur-
eus�harboring HMC-1 cells than in uninfected HMC-1 cells indi-
cated a robust transcriptional signature related to genes induced by
IFN-I (Figs. 3D, 4A). A similar overlapping IFN-I�induced tran-
scriptional response was observed in noninfected bystander HMC-1
cells in comparison with uninfected HMC-1 cells (Figs. 3E, 4A).
The induction of IFN-I target genes in S. aureus�infected HMC-1
cells was confirmed by RT-PCR (Fig. 4B).
IFN-Is comprise a family of highly pleiotropic cytokines that

includes IFN-a and IFN-b (40). Because the induction of IFN-I
target genes in S. aureus�harboring HMC-1 and noninfected
bystander HMC-1 cells was observed in the transcriptional analysis
performed after 24 h of infection, we speculated that IFN-I pro-
teins may already be present in the culture supernatant at this time
of infection; consequently, the induction of the genes encoding
IFN-I may take place at earlier times of infection. To investigate
whether this is the case, we first determined the expression levels
of the genes encoding IFN-a and IFN-b in HMC-1 cells at 2 and
4 h postinfection by RT-PCR. The results show that both genes
were induced at 2 h postinfection and their level of expression sub-
stantially increased at 4 h postinfection, although the gene encod-
ing IFN-a was expressed to a significantly greater extent than the
gene encoding IFN-b (Fig. 4C). In addition to IFN-I, NF-kB target
genes, such as TNF-a, were also upregulated by HMC-1 cells in
response to S. aureus infection (Fig. 4D). At the protein level, sig-
nificant amounts of IFN-a were detectable in the supernatant of S.
aureus�infected HMC-1 cells at 24 h of infection, but not in the
supernatant from uninfected HMC-1 cells, HMC-1 cells cocultured
with S. aureus in a transwell system, or HMC-1 cells infected with
Salmonella typhimurium, which have been previously reported to
be incapable of eliciting IFN-I in human mast cells (11) (Fig. 4E).
Bacterial viability was required for the production of IFN-I by
HMC-1 cells because IFN-a was under detection levels in the
supernatant of HMC-1 cells incubated with heat-inactivated S.
aureus (Fig. 4E). We also demonstrated that IFN-I production by
HMC-1 cells was not bacterial strain dependent because they pro-
duced significant amounts of IFN-a not only postinfection with S.
aureus strain SH1000, which is the strain that has been used in all

the earlier-described experiments, but also postinfection with S.
aureus strain Newman and strain 6850 (Fig. 4F).

Production of IFN-a by HMC-1 cells requires S. aureus
internalization and involves the cGAS�STING signaling pathway

We next explored the signaling pathway leading to IFN-I induction
in S. aureus�infected HMC-1 cells. Cytosolic signaling pathways,
such as the cGAS�STING pathway that recognizes DNA (41) and
RIG-I that recognizes RNA (42), have emerged as the major sensing
systems driving IFN-I responses. Because these pathways are largely

FIGURE 4. Production of IFN-I by HMC-1 cells in response to
S. aureus. (A) Heatmap showing expression levels of IFN-I target genes in
HMC-1 cells under different infection conditions. Color coding shows the z
score normalized transcripts per million of each sample. (B) mRNA levels
of selected IFN-I target genes in S. aureus�infected HMC-1 cells at 24 h
postinfection determined by RT-PCR. Values are expressed as log2 fold
change between the mRNA levels in infected versus uninfected HMC-1
cells. (C) Expression levels of the gene encoding IFN-a and of the gene
encoding IFN-b in HMC-1 cells at 2 and 4 h postinfection with S. aureus
determined by RT-PCR. Values are expressed as log2 fold change of gene
expression between infected and uninfected HMC-1 cells. (D) Levels of
TNF-a gene expression in S. aureus�infected HMC-1 cells at 2 and 4 h
postinfection determined by RT-PCR. Values are expressed as log2 fold
change between the mRNA levels in infected versus uninfected HMC-1
cells. (E) Levels of IFN-a in the supernatant of HMC-1 cells either unin-
fected or after 24 h of infection with either viable or heat-killed S. aureus,
cocultured with S. aureus in separated chambers in a transwell system or
infected with S. typhimurium. (F) Levels of IFN-a in the supernatant of
HMC-1 cells either uninfected or after 24 h of infection with S. aureus
strain SH1000, S. aureus strain Newman, or S. aureus strain 6850. The data
are presented as mean ± SD of three replicates from three independent
experiments. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001.

The Journal of Immunology 1681

 at U
niv B

iblio W
uerzburg on Septem

ber 15, 2022
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 
Chapter 2 Chapter 1: Cytosolic sensing of intracellular Staphylococcus aureus by mast

cells elicits a type I IFN response that enhances cell-autonomous immunity
30



triggered by recognition of pathogen-derived nucleic acids in the cell
cytosol, we first determined the requirement of bacterial internaliza-
tion for IFN-I production by HMC-1 cells. Inhibition of S. aureus
internalization using either the actin polymerization inhibitor cytocha-
lasin D or b1-integrin blocking Abs prevented S. aureus internaliza-
tion within HMC-1 cells (Fig. 5A) as previously reported (12, 13)
and resulted in complete abrogation of IFN-a production (Fig. 5B).
Furthermore, HMC-1 cells failed to produce IFN-a postinfection
with a S. aureus mutant strain deficient in the production of a-hemo-
lysin (Dhla), which has been reported to be impaired in its capacity
to internalize and survive within mast cells (13) (Fig. 5C). Because
S. aureus has been reported to activate IFN-I responses in macro-
phages via the cGAS�STING pathway (43), we next explored the
relevance of this pathway in the production of IFN-I by infected
HMC-1 cells. In the cGAS�STING pathway, pathogen-derived
DNA present in the cell cytosol binds to the cGAS, resulting in con-
formational changes that induce enzymatic activity (44). Activation
of cGAS leads to the production of the second messenger
cGMP�AMP, which binds to the endoplasmic reticulum�localized
adaptor protein STING. After activation, STING translocates from
the endoplasmic reticulum to the Golgi, where it recruits kinases
such as TANK-binding kinase 1 (TBK1), which phosphorylates
IRF3 and triggers the expression of IFN-I (41). STING can also
directly bind bacterial c-di-AMP in the host cytosol and induce an
IFN-I response (45, 46). To determine the potential involvement of
the cGAS�STING pathway in the production of IFN-I by S. aur-
eus�infected HMC-1 cells, we blocked this pathway using the
STING-specific inhibitor H-151 (47). As shown in Fig. 5D, treatment
with H-151 almost completely abrogated the production of IFN-a by
S. aureus�infected HMC-1 cells. Treatment with H-151 did not
affect the capacity of HMC-1 cells to produce IFN-a after stimula-
tion of the alternative signaling pathway RIG-I with the agonist
59ppp-dsRNA (Fig. 5E). These results corroborated the specificity of
H-151 for STING inhibition.
Furthermore, we also demonstrated that treatment with BX795, a

potent inhibitor of TBK1 (48), resulted in profound reduction of

IFN-a production by S. aureus�infected HMC-1 cells (Fig. 5F).
These results indicated that the cGAS�STING�TBK1 axis was
involved in the induction of IFN-I in HMC-1 cells by S. aureus.

IFN-Is enhance HMC-1 cell-autonomous immunity

Although the concerted activation of IFN-I�stimulated genes is a
key component of the innate immune response against viruses (49),
it has become increasingly evident that they also play an important
role in the control of intracellular bacterial pathogens (50). IFN-I
molecules bind to a common surface receptor named IFNAR, which
comprises two subunits, IFNAR1 and IFNAR2, forming a ternary
complex that leads to the activation of the Jak tyrosine kinase 2 and
Jak1 (51). After activation, these kinases propagate downstream
signaling leading to the activation of transcription factors such
as STAT1 and STAT2 that after dimerization translocate to the
nucleus, where they assemble with IRFs and mediate the transcrip-
tion of a large number of IFN-I�stimulated genes involved in cell-
autonomous immunity (51).
To determine the relevance of IFN-I�induced response on the

capacity of HMC-1 cells to control intracellular S. aureus, we dis-
rupted IFN-I signaling by blocking IFNAR1 with specific Abs. Dis-
ruption of IFN-I/IFNAR1 signaling did not influence the amount of
S. aureus internalizing within HMC-1 cells cells (Fig. 6A, 0 h), but
reduced considerably the capacity of HMC-1 cells to control intracel-
lular S. aureus because significantly higher numbers of intracellular
S. aureus were detected in HMC-1 after inhibition of IFN-I/IFNAR
signaling in comparison with untreated HMC-1 cells at 2, 4, and 24
h postinfection (Fig. 6A). To discard that the effect of blocking
IFNAR1 on the capacity of HMC-1 cells to reduce intracellular S.
aureus was due to an unspecific effect of the Ab, we determined the
level of expression of a set of IFN-I�induced genes in S. aur-
eus�infected HMC-1 cells treated with either anti-IFNAR1 Abs or
with an isotype-matched (IgG) control Ab. As shown in Fig. 6B,
whereas the expression levels of the genes encoding IFI27, IFR7, and
MX2 in S. aureus�infected HMC-1 cells treated with isotype
control Abs were comparable to those observed in untreated

FIGURE 5. Production of IFN-a by HMC-1 cells requires S.
aureus internalization and involves the cytosolic cGAS�STING
signaling pathway. (A) Quantification of S. aureus bacteria
internalized within untreated HMC-1 cells or treated with
anti�b1-integrin Abs or with cytochalasin D. HMC-1 cells were
infected with S. aureus for 2 h, treated with lysostaphin/genta-
micin to kill extracellular bacteria, washed, and the amount of
internalized viable bacteria was determined 2 h thereafter after
lysis of HMC-1 cells. (B) Levels of IFN-a in the supernatant of
S. aureus�infected HMC-1 cells (24 h postinfection) either
untreated or treated with anti�b1-integrin Abs or with cytocha-
lasin D. (C) Levels of IFN-a in the supernatant of HMC-1 cells
after 24 h of infection with S. aureus wild-type or S. aureus
Dhla mutant strain. (D) Levels of IFN-a in the supernatant of S.
aureus�infected HMC-1 cells (24 h postinfection) treated with
the STING inhibitor H-151 (1 mg/ml) or with vehicle alone. (E)
Levels of IFN-a in the supernatant of HMC-1 cells at 24 h after
transfection with the RIG-1 agonist 59ppp-dsRNA and incubated
in the presence or absence of H-151 (1 mg/ml). (F) Levels of
IFN-a in the supernatant of S. aureus�infected HMC-1 cells
cells (24 h postinfection) treated with the TBK1 inhibitor BX
795 (100 nM) or with vehicle alone. The data are presented as
mean ± SD of three replicates from three independent experi-
ments. ***p < 0.001, ****p < 0.0001.
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S. aureus�infected HMC-1 cells (Fig. 4B), the expression levels of
these genes were significantly lower in S. aureus�infected HMC-1
cells treated with anti-IFNAR1 Abs. These results corroborate the
specific effect of anti-IFNAR1 blocking Abs.
We also investigated the effect of stimulating HMC-1 cells with

rIFN-a prior to infection on their capacity to control intracellular S.
aureus. As shown in Fig. 6C, treatment with rIFN-a enhanced the
capacity of HMC-1 cells to control intracellular S. aureus because
they exhibited significantly lower numbers of intracellular viable
bacteria than untreated HMC-1 cells.
Altogether, these results indicated that IFN-a released by HMC-1

cells harboring intracellular S. aureus signaled back in an autocrine
manner resulting in the induction of IFN-I target genes and
improved cell-autonomous host defenses. The observation that
IFN-I target genes were also upregulated in bystander HMC-1 that
did not harbor intracellular S. aureus indicated that IFN-I released
by S. aureus�harboring HMC-1 cells signaled also in a paracrine
manner to induce an IFN-I signature in these cells.

Discussion
Mast cells are generally located at host sites used by S. aureus for
invasion of the host; therefore, they may be among the first innate
immune cells recognizing and fighting this pathogen. We have pre-
viously reported the capacity of murine and human HMC-1 cells
mast cells to recognize extracellular S. aureus and respond by

releasing extracellular traps and antimicrobial compounds in an
attempt to immobilize and kill the pathogen (52). We have also
reported that S. aureus was able to induce its own internalization
within mast cells to escape the extracellular antimicrobial mecha-
nisms of these cells (12, 13). In this study, we show that HMC-1
cells responded to S. aureus internalization by activating intracellu-
lar antimicrobial defense mechanisms that resulted in a significant
reduction of intracellular bacteria within a few hours after bacterial
internalization. However, a subpopulation of internalized S. aureus
was capable of circumventing these antimicrobial mechanisms and
survived within HMC-1 cells for long periods. Therefore, the inter-
actions between S. aureus and HMC-1 cells during infection involve
a series of events as each part deploys mechanisms of defense and
survival. Because the outcome of these interactions can influence the
ensuing immune response, we investigated in this study how the
human mast cells HMC-1 cells and S. aureus respond to each other
by assessing simultaneously gene expression changes taking place in
the infected HMC-1 cells and in the harbored bacteria using dual
RNA-seq analysis.
The results of the bacterial gene expression analysis indicated

that, to survive within HMC-1 cells, S. aureus undergoes profound
transcriptional reprogramming to readjust its metabolism to the
nutritional changes and to counteract the stress conditions encoun-
tered in the intracellular niche. Thus, the genes encoding enzymes
and transport systems involved in the galactose/lactose and D-taga-
tose-6-phosphate metabolic pathways were upregulated in intracellu-
lar S. aureus in comparison with the bacteria in the infection
inoculum, whereas the genes associated with glycolysis were down-
regulated. This is interesting because S. aureus is one of the few
microorganisms known to exclusively use enzymes of the D-taga-
tose-6-phosphate pathway to metabolize D-galactose, which is
imported into the bacterial cell by a transport system encoded by
genes lacFEG and metabolized by proteins encoded by the lactose
operon, lacABCD (53). The lac operon has been shown to be induc-
ible by the presence of D-galactose or lactose (33), suggesting that
these sugars may be the carbon source available to the bacteria
within the HMC-1 cells. Furthermore, the gene encoding the ROK
family protein, which is involved in the metabolism of the amino
sugar N-acetylglucosamine and the sialic acid N-acetylneuraminate
by S. aureus (35), was also induced in the intracellular environment.
We speculated that peptidoglycans, which are complex macromole-
cules comprising disaccharides, such as N-acetyl-glucosamine and
galactose, and are abundant within mast cells because they play an
important role in the tight packaging of compounds within secretory
granules (54), could provide a source of galactose and amino sugars
for intracellular S. aureus. Increased expression of the genes belong-
ing to the heat shock stimulon, including the DnaK and GroESL
chaperones, was also observed in intracellular S. aureus, most prob-
ably required for the bacteria to deal with the highly stressful condi-
tions encountered within HMC-1 cells.
On the host cell side, we observed that HMC-1 cells produced

IFN-I in response to internalized S. aureus. The production of IFN-I
by HMC-1 in response to S. aureus contrasts with another study
where the authors claimed that only viruses and not bacterial patho-
gens can induce an IFN-I response in mast cells because of the inca-
pacity of bacteria to internalize into these cells (11). In that study,
the authors used the Gram-positive Listeria monocytogenes and
Streptococcus pyogenes and the Gram-negative Salmonella typhimu-
rium in their mast cells infection assays (11). The results of our
study indicate that this is not the case for all bacterial pathogens but
probably only for those that fail to internalize within mast cells.
Indeed, inhibition of S. aureus internalization within HMC-1 cells
after treatment with cytochalasin or b1-integrin blocking Abs or
infection of HMC-1 cells using a mutant S. aureus strain unable to

FIGURE 6. IFN-Is enhance HMC-1 cell-autonomous immunity. (A)
Quantification of viable S. aureus within untreated HMC-1 cells (black
bars) or treated with anti-IFNAR blocking antibodies (white bars). (B) Lev-
els of IFI27, IFR7, and MX2 mRNA in S. aureus�infected HMC-1 cells at
24 h of infection either pretreated with anti-IFNAR blocking antibodies or
with isotype-matching IgG1 control determined by RT-PCR. Values are
expressed as log2 fold change between the mRNA levels in infected versus
uninfected HMC-1 cells. (C) Quantification of viable S. aureus within
HMC-1 cells either untreated (black bars) or treated with rIFN-a (5 × 103

IU/ml) (gray bars). The data are presented as mean ± SD of three replicates
from three independent experiments. *p < 0.05, **p < 0.01.
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internalize within HMC-1 cells (13) completely prevented the pro-
duction of IFN-I. Our study, therefore, provides compelling evi-
dence that mast cells can indeed produce IFN-I in response to
bacterial infection and argues against the concept that mast cells can
elicit IFN-I responses only to viral infections as previously reported
(11). IFN-I produced and released by HMC-1 cells harboring intra-
cellular S. aureus can then bind to the IFNAR either on the same
infected HMC-1 cells cells in an autocrine fashion or on noninfected
bystander neighboring MHC-1 cells in a paracrine way, resulting in
the induction of a large number of IFN-I�stimulated genes. It has
been reported that the product of these IFN-I�stimulated genes con-
tributes to enhanced cell-autonomous host defense against intracellu-
lar pathogens in infected cells (55). In our study, the autocrine
stimulation of IFN-I�stimulated response in infected HMC-1 cells
seems to contribute, at least to some extent, to the proper control of
internalized S. aureus because interfering with IFN-a/IFNAR signal-
ing using blocking Abs significantly reduced the capacity of HMC-1
cells to kill intracellular S. aureus and resulted in much lower
expression of IFN-I�induced genes. The transcriptional analysis also
indicated that IFN-I signaled in a paracrine manner in noninfected
bystander HMC-1 cells and induced IFN-I�stimulated genes, proba-
bly instructing them to enter a state of enhanced resistance toward
S. aureus. Indeed, pretreatment of HMC-1 cells with rIFN-a
increased the capacity of these cells to control intracellular S.
aureus.
We also found that the cGAS�STING�TBK1 signaling pathway

was involved in the recognition of intracellular S. aureus by HMC-1
cells and in the induction of IFN-I. The role of STING in detection
of cytosolic DNA, such as those from viral or bacterial infections, is
well known (56�58). In bacterial infections, STING-dependent
induction of IFN-I has been reported for both intracellular and extra-
cellular pathogens (58). In the particular case of S. aureus,
cGAS�STING signaling activated an IFN-I response in macro-
phages after infection with live but not killed bacteria (43). This is
in line with our data showing that HMC-1 cells incubated with heat-
killed S. aureus failed to produce IFN-a. Activation of STING in
infected HMC-1 cells can ensue either after recognition of bacterial
DNA or most probably through its direct activation by c-di-AMP
produced by S. aureus. In this regard, it has been reported that c-di-
AMP released from S. aureus biofilms can activate STING and
induce an IFN-I response in macrophages (59).
In summary, the results of this study provide a scenario where,

after invasion of the host, mast cells recognize extracellular S. aureus,
most probably via pattern recognition receptors on the cell sur-
face or by sensing bacterial toxins such as d toxin as previously
reported (60), and respond by undergoing degranulation with the
concomitant discharge of prepackaged antimicrobial compounds
or by releasing extracellular traps to kill the extracellular bacteria
(52). S. aureus, in turn, induces its own internalization within
mast cells, most probably to escape their extracellular killing
mechanisms, and establishes a survival niche within these cells.
S. aureus�infected mast cells sense the intracellular bacteria by
cytosolic receptors and produce IFN-Is that act in an autocrine
manner to enhance cell-autonomous host defense in the infected
mast cells and in a paracrine way to sensitize neighboring cells
and amplify the immune response. Our study thus has provided
important information about the strategy used by mast cells to
recognize S. aureus and how they contribute to the induction and
propagation of an antimicrobial immune response.
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3TH Köln - University of Applied Sciences, 50578, Cologne, Germany

3.2 Manuscript

The following manuscript has been published as a pre-print in bioRxiv.

URL: https://www.biorxiv.org/content/10.1101/2022.09.30.510338v1

DOI: https://doi.org/10.1101/2022.09.30.510338

Publication of pre-print on October 03, 2022.

Personal contribution: I designed and developed the changes that were necessary for

READemption 2 to be able to carry out dual RNA-seq and multi RNA sequencing

(multi RNA-seq). The development included creating software system and unit tests

and adding test data sets, as well as updating the documentation and creating software

packages of READemption 2. I wrote the manuscript for READemption 2 and created

all figures presented in the manuscript.

https://www.biorxiv.org/content/10.1101/2022.09.30.510338v1
https://doi.org/10.1101/2022.09.30.510338


READemption 2: Multi-species1

RNA-Seq made easy2

Till Sauerwein1, Thorsten Bischler2, Konrad U. Förstner1,33

*For correspondence:
foerstner@zbmed.de (KUF) 1ZB MED-Information Centre for Life Science, 50931 Cologne, Germany; 2Core Unit4

Systems Medicine, University of Würzburg, 97080 Würzburg; 3TH Köln – University of5

Applied Sciences, 50578, Cologne, Germany6

+7

8

Abstract Dual or Multi RNA-seq simultaneously analyze the transcriptomes of two or more9

interacting species to gain insights about their interplay. The RNA of the interacting species is10

collected and sequenced together and only separated in silico by mapping the reads to the11

corresponding genomes. We developed READemption 2.0, to our knowledge the first tool that12

performs all necessary steps to handle RNA-seq data from any number of species. These steps13

comprise basic quality filtering and adapter trimming of raw reads, aligning the reads to14

reference genomes, generating nucleotide-wise coverage files, creating gene-wise read counts15

and performing differential gene expression analysis. These results can be visualized by16

additional subcommands of the software. READemption 2.0 allows users to produce meaningful17

results with default settings that follow conventional standards. Furthermore, many parameters18

can be adjusted to meet the users’ specific needs, e.g. keeping or discarding species19

cross-mapped reads or normalizing the data.20

21

Introduction22

Dual RNA-sequencing (Dual RNA-seq) is the simultaneous transcriptome profiling of two interact-23

ing species (Westermann et al., 2012). If more than two species are investigated the term Multi24

RNA-sequencing (Multi RNA-seq) is used. The distinctive feature of these methods, compared to25

conventional RNA-seq, is that the RNA of all interacting partners like a pathogen and its host is26

extracted and sequenced without physical separation. Since the RNA of different species is se-27

quenced together, assigning each read to its originating species only happens in silico (Figure 1).28

The simultaneous investigation of two (or more) species allows researchers to correlate the tran-29

scriptome profiles and thus gain new insights of the molecular interplay of the interacting species.30

Since the first application of Dual RNA-seq to an eukaryotic pathogen and host system (Tierney31

et al., 2012), and its theoretically assessment of the general feasibility in pathogen host systems32

in the early 2010s (Westermann et al., 2012), the method has been applied to a variety of host-33

pathogen, mutualistic and commensal interaction systems (Wolf et al., 2018).34

Several recent studies investigated host-pathogen interactions: For example, Aulicino et al.35

(2022) revealed a dynamic adaption of iron metabolism during Salmonella infection of dendritic36

cells for both the human host and the bacterial pathogen. Different Salmonella strains used dif-37

ferent evasive strategies to counteract the iron-driven antimicrobial defense of the host, which in38

turn showed unique responses depending on the infecting strain. Staphylococcus aureus showed39

differential expression of virulence factors during infection of two mice strains. The virulence was40

influenced by the host’s different level of resistance to the bacteria (Thänert et al., 2017). A recent41

study applied Dual RNA-seq to different SARS-CoV-2-infected patient samples and cell lines that42
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revealed co-expressed viral and human genes. A consensus network derived from co-expression43

highlighted a host response characterized by increased chemokine and cytokine activity (Maulding44

et al., 2022).45

Here we present READemption 2.0, an open source command line tool that allows users to46

analyze Dual or Multi RNA-seq data. To our knowledge, READemption 2.0 is the first tool that47

allows researchers to perform multi-species RNA-seq analysis with any number of species.48

Results49

Application andusage of READemption and the need for aDual/Multi RNA-seq anal-50

ysis tool51

Figure 1. General Dual RNA-sequencing workflow

Since READemption’s initial release in 201452

(Förstner et al., 2014) it has been used by nu-53

merous publications for analyzing data from54

different RNA-seq applications. Among these55

applications are conventional RNA-seq (Aguilar56

et al., 2020; Lee et al., 2021), differential RNA-57

seq (Ponath et al., 2021; Ryan et al., 2020),58

Grad-seq (Hör et al., 2020; Smirnov et al.,59

2016), RIP-seq (Kavita et al., 2022; Liao et al.,60

2022), CLIP-seq (Bauriedl et al., 2020; Holmqvist61

et al., 2016), TIER-seq (Hoyos et al., 2020; Chao62

et al., 2017) and metatranscriptomics (Krohn-63

Molt et al., 2017). The essential RNA-seq results64

that can be generated with READemption, like65

alignment files (BAM file format https://samtools.66

github.io/hts-specs/SAMv1.pdf), mapping statis-67

tics, nucleotide-wise coverage files, gene-wise68

quantification counts and differential gene ex-69

pression analysis also serve as input for follow-70

up analysis tools: ANNOgesic (Yu et al., 2018),71

a tool for annotating bacterial and archaeal72

genomes uses coverage files as input e.g. for73

transcript start site and processing site detec-74

tion, sRNA (small RNA) detection and sRNA tar-75

get detection. GRADitude (https://github.com/76

foerstner-lab/GRADitude) uses gene-wise quantification counts and mapping statistics for RNA-RNA77

and RNA-protein prediction of GRAD-seq experiments. ClusterProfiler (Wu et al., 2021) performs78

gene set enrichment analysis (GSEA), which requires tables containing genes and their correspond-79

ing differential gene expression fold changes calculated by e.g. DESeq2 (Love et al., 2014), which80

is integrated into READemption’s subcommand ’deseq’. PEAKachu (https://github.com/tbischler/81

PEAKachu), a peak-calling tool for CLIP-seq data, needs BAM files as input that can be generated82

with READemption’s ’align’ subcommand.83

The number of publications using READemption for RNA-seq analysis has increased over the84

years (Figure 2A, PubMed (2022a)). This increase and the different RNA-seq protocols READemp-85

tion has been applied to, show the need for an RNA-seq analysis tool that covers a broad spectrum86

of RNA-seq applications. As the number of publications applying Dual RNA-seq also increased over87

the years (Figure 2B, PubMed (2022b)) and READemption could not handle Dual or Multi RNA-seq88

data without additional manual manipulation of input and output files, we developed READemp-89

tion 2.0.90
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Figure 2. (A) Number of publications citing READemption 1.0 or earlier versions per year. (B) Number of
publications having "Dual RNA-seq" in their title or abstract per year. (C) Alignment statistics plot of a Dual
RNA-seq experiment with 15 libraries generated with READemption 2.0’s ’viz_align’ subcommand. The plot
shows the number of species exclusive aligned reads for each species, the species cross-mapped reads and
the unaligned reads.
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READemption 2.0’s general workflow91

READemption 2.0 is a major upgrade of the previous READemption RNA-seq analysis tool. The92

new version enables users to analyze projects with more than one interacting species, while keep-93

ing all of READemption 1.0’s core functionalities, including the ability to analyze RNA-seq data of94

a single species. To allow users an easy transition to the new version, the main workflow has95

not been changed and is as follows (see Figure 3): The first step of every new project is creating96

the input folder structure for reads, reference sequences and annotations with the subcommand97

’create’. READemption 2.0 adds the possibility to create annotation and reference sequence input98

folders for each species by providing individual names for each species being part of the current99

RNA-seq analysis project (the two species of the example workflow in Figure 3 are "Human" and100

"Staphylococcus"). Then, the input files can be copied to their corresponding input folders. After101

the input files have been provided, READemption 2.0 automatically manages the input and output102

of all following subcommands. The next step is aligning the reads to the combined reference se-103

quences of all species, using the subcommand ’align’. It has been shown that aligning read pools,104

containing sequences frommultiple species, to combined reference sequences instead of aligning105

the reads subsequently to each species reference genome avoids introducingmapping bias (Espin-106

dula et al., 2020), which makes this combined approach READemption’s method of choice when107

analyzing Dual RNA-seq data. The mapping statistics generated by the ’align’ subcommand were108

updated to includemapping statistics by species. These include counts for reads that align to a sin-109

gle species and reads that cross-align to multiple species (Figure 2C). Another new feature of the110

’align’ subcommand is the possibility to merge the two aligned reads of a read pair and build tem-111

plate fragments when analyzing paired-end data. The derived fragments are stored in a BAM file112

as single-end alignments and can be used for further analysis instead of the BAM files that include113

the un-merged paired-end reads. After running the ’align’ subcommand the user can perform the114

subcommands ’coverage’ or ’gene quanti’ followed by ’deseq’. The subcommand ’coverage’ cre-115

ates strand specific coverage files in wiggle format, containing nucleotide-wise read counts for the116

genomic positions of the reference sequences. The counts are provided with and without normal-117

ization and can be viewed in a genome browser for further inspection. The subcommand ’gene118

quanti’ calculates the number of reads overlapping with each feature listed in the annotation files.119

The feature types to be used for the calculation can be specified by the user. The results are pre-120

sented as raw counts and normalized counts, including transcripts per million (TPM,Wagner et al.121

(2012)), reads per kilobasemillion (RPKM,Mortazavi et al. (2008)) and normalized by the total num-122

ber of aligned reads of the given library (TNOAR). After the gene quantification has been completed123

the subcommand ‘deseq’ can be used to perform differential gene expression analysis using the R124

package DESeq2 (Love et al., 2014), which is integrated into READemption. The subcommand also125

produces PCA (principal component analysis) plots and heatmaps of the library compositions. Fi-126

nally, READemption offers subcommands for further visualization. ’Viz_align’ generates histograms127

of the read length distributions, ’viz_gene_quanti’ bar plots of the feature distribution and scatter128

plots comparing raw gene-wise quantification values for each library pair and ’viz_deseq’ MA and129

Volcano plots.130

Species cross-mapped reads and normalization131

During the alignment the majority of reads can be unambigously assigned to their species. These132

species exclusive reads are then used for down-streamanalysis of the corresponding species. Each133

subcommand that is being called after the initial alignment produces independent results for the134

different species. E.g. in a Dual RNA-seq experiment containing human cells and Staphylococcus135

aureus cells, READemption 2.0 creates coverage files once for the human genome and once for the136

bacterial genome, while only taking reads into account that map to the respective species (Figure137

3: ’Coverage’-box). However, a typical Dual or Multi RNA-seq experiment contains a small fraction138

of reads that map equally well to two or more species. These species cross-mapped reads pose139

a problem, since discarding them causes information loss while keeping them results in potential140
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Figure 3. READemption 2.0 data and workflow overview of a Dual RNA-seq example analysis. Each
subcommand is depicted as one box. The arrows indicate the data flow of the input and output

5 of 9

Chapter 3 Chapter 2: READemption 2: Multi-species RNA-Seq made easy 40



false positives. Although species cross-mapped reads are usually discarded, there is no gold stan-141

dard of how to handle them (Espindula et al., 2020). To give users full control over cross-mapped142

reads and normalization, we added options to include or exclude cross-mapped reads for the143

nucleotide-wise counts of ’coverage’ and the gene-wise counts of ’gene quanti’, as well as including144

or excluding them in the values used for normalization for these subcommands. As cross-mapped145

reads are usually discarded, the default setting of READemption 2.0 is to exclude cross-mapped146

reads for both individual counts and normalization. READemption 2.0 provides three different147

ways for DESeq2’s size factor calculation that is used for normalizing read counts over different li-148

braries. The project-wise approach takes all feature counts of a species of all libraries into account149

when comparing conditions with each other, the species-wise approach uses only the libraries of150

the given species, and the comparison-wise approach only the libraries of the two conditions that151

are currently compared. We chose the species-wise approach as default setting, since the ’deseq’152

subcommand also generates PCA plots based on the libraries used for size factor estimation and153

usually the first quality control step of differential gene expression analysis is confirming via PCA,154

whether the libraries of the same condition cluster together.155

Fragment building156

Some manufacturers, e.g. Illumina or Applied Biosystems offer RNA-seq protocols that generate157

paired-end reads, where each cDNA template fragment is sequenced from both ends, resulting in158

a read pair. After the alignment themapped pairs can be used to derive the genomic start and end159

position of the template they originate from. READemption 2.0 uses the alignment files (BAM files)160

of the initial alignment to generate template fragments from paired-end reads and writes them to161

a new BAM file containing the template fragments represented as single-end reads. Building these162

fragments is the default option, but can also be turned off to use the individual reads of a pair as163

input for the down-stream analysis.164

Discussion165

The growing number of research articles using Dual RNA-seq (PubMed, 2022b) shows the need in166

the scientific community for a tool that can conveniently analyze the data of such experiments. We167

present READemption 2.0, the first tool that can handle RNA-seq data of any number of species168

and any domain of life. Other tools that already exist and are suitable for the analysis of Multi-169

species RNA-seq either provide only basic alignment functionalities or can only handle amaximum170

of two different species. FastQ-screen (https://stevenwingett.github.io/FastQ-Screen/) generates read171

files that contain information about to which species a read could be aligned. These reads can be172

filtered and used as input for other third-party tools. However, FastQ-screen does not provide173

coverage-file creation, gene-wise quantification or differential gene expression analysis. The nf-174

core/dualrnaseq pipeline (https://nf-co.re/dualrnaseq) is able to perform read alignment and gene-175

wise quantification, but lacks the ability to analyze more than two species. Although READemption176

2 has been developed with the intent to analyze Dual or Multi RNA-seq data of interacting species,177

its application in other areas of RNA-seq is conceivable. E.g. metatranscriptome analysis similar to178

Krohn-Molt et al. (2017) could be conveniently analyzed with READemption 2.0. During the devel-179

opment of READemption 2.0 we focused on easy accessibility, to ensure that researchers can run180

analyses with little prior knowledge of bioinformatics. We did this by choosing default parameters181

that are most common for the analysis of either Dual and Multi RNA-seq or conventional RNA-seq182

and by providing comprehensive tutorials, explanations and solutions for convenient installation183

of the tool and all its dependencies. However, parameters can be changed in different ways (e.g.184

different normalization approaches, use of single reads or fragment building for paired-end reads185

etc.) to meet the users’ specific needs. This principal is called "convention of configuration" and186

has been applied to the default settings of all subcommands.187
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Methods and Materials188

READemption 2.0 is written in Python and the source code is freely available under the ISC li-189

cense on GitHub (https://github.com/foerstner-lab/READemption). The short read mapper sege-190

mehl (Hoffmann et al., 2009) and the R package DESeq2 (Love et al., 2014) are integrated into191

READemption 2.0. Software unit and system tests were created to guarantee READemption 2.0192

runs as intended. The tests cover 85 % of the code, including all core functions. READemption193

can be installed via Conda (https://anaconda.org/Till_Sauerwein/reademption), PyPi (https://pypi.org/194

project/READemption/) or using a pre-installed Docker image (https://hub.docker.com/r/tillsauerwein/195

reademption). READemption 2.0’s Documentation website (https://reademption.readthedocs.io/en/196

latest/index.html) hosts detailed descriptions of the subcommands, information about fragment197

building for paired-end reads, installation instructions and tutorials for beginners. The tutorials198

offer step-by-step instructions, input data and executable code to perform single or dual RNA-seq199

example analyses.200
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3.3 Additional results: Fragment building of

paired-end reads

Due to the different fragment lengths of the complementary DNA (cDNA) library, the

insert size between two reads of a pair is not known before the alignment. Therefore,

both reads are mapped independently to the reference sequence. After both reads have

been mapped, the aligner can derive a template length for the sequenced fragment. The

calculated template length is the distance from the leftmost mapping position until the

rightmost mapping position of the alignments of a pair.

Two main layouts can occur when both reads of a pair have been aligned. The reads

can either be in order or in reverse order. Two reads are in order if the position of read

2 is downstream or equal to the position of read 1. To determine the order of a read

pair, it is important to consider the orientation of the mapped reads. The orientation

of a read is defined as the strand it maps to. One strand of the two strands of a DNA

molecule is named template-, forward-, plus- or sense-strand, while the other strand is

named reverse-, minus- or anti-sense-strand. Because the fragment that a single-end read

originates from is always sequenced in 5’ to 3’ direction, the orientation of a read is the

same as the strand it maps to. For paired-end reads the orientation of read 1 is also the

same orientation as the strand it maps to, but read 2 has the opposite orientation of the

strand it maps to. This can be explained by the fact that every fragment is first sequenced

from its 5’-end, which results in read 1 and than from its 3’-end, which results in read

2. Since mapping positions are always indicated in relation to the forward strand of the

genome, a read pair is in order if read 1 maps to the forward strand and the first aligned

base of read 2 is equal or greater than the first aligned base of read 1 (Figure 3.1 A, B

and C). Whereas if instead read 1 maps to the reverse strand, the pair is in order if the

first aligned base of read 1 is equal or greater than the first aligned base of read 2 (Figure

3.2 A, B and C).

If the alignment positions do not apply to the rules described above, the reads are in

reverse order. Three different layout categories can occur for reads in order and two

different ones for reads in reverse order. For reads in order, the reads of a pair can either

overlap (Figure 3.1 B, Figure 3.2 B), are identical (Figure 3.1 C, Figure 3.2 C) or don’t

overlap at all (Figure 3.1 A, Figure 3.2 A). For reads in reverse order, the reads can

overlap (Figure 3.1 D, Figure 3.2 D) or don’t overlap (Figure 3.1 E, Figure 3.2 E), which

can also be described as the reads exceeding each other. The two layouts of pairs in

reverse order represent special cases. The layout where the reads overlap represents an
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alignment, where the read length is greater than the actual fragment length (Figure 3.1

D, Figure 3.2 D). To obtain the boundaries of the fragment, only the part where both

reads overlap is being kept and the exceeding ends are cut off. The layout in reverse order

where two reads overlap and exceed each other (Figure 3.1 E, Figure 3.2 E) can indicate

a circRNA as explained in the introduction 1.3.3.

For all layouts except the one where the fragment length is smaller than the read length,

the fragment length is equal to the template length calculated by the aligner. Furthermore,

the start position of the fragment is the leftmost position of the two start positions of

read 1 and read 2. And the end position of the fragment is the start position of the

fragment plus the template length. Because of this and the fact that each alignment

has the information of the start position of read 1 and read 2 as well as the template

length, the alignment information of only one read of the pair is sufficient to build the

template. The only exception is the layout where the fragment length is smaller than the

read length. To calculate the fragment length, either the start of a read and the end of

its mate or the end of a read and the start of its mate are needed. This information can

only be obtained when the information of both reads is present.

Retrieving the mate of one read of a pair slows down the process of parsing a SAM

file, because first the position of the mate inside the file has to be searched and then

the position of the file has to be changed to the position of the mate. A much faster

alternative, which has been applied to READemption’s fragment building algorithm, is

sorting the SAM file in a way that read 2 is always presented one line after read 1 of

the same pair before parsing the file. This ensures that the SAM file can be parsed from

top to bottom. Instead of looking up the mate of a read somewhere in the file, the two

consecutive lines containing both reads of a pair can be cached and afterwards processed

together.
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Figure 3.1: Layouts of paired-end reads, where the originating fragment maps to the forward
strand. Each layout shows read 1 and read 2, the reference sequence in the middle of both
and the calculated fragment at the bottom. The arrows indicate the direction from 5’-end to
3’-end
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Figure 3.2: Layouts of paired-end reads, where the originating fragment maps to the reverse
strand. Each layout shows read 1 and read 2, the reference sequence in the middle of both
and the calculated fragment at the bottom. The arrows indicate the direction from 5’-end to
3’-end



4 Discussion and Outlook

4.1 Bioinformatical analysis of dual RNA sequencing

of human mast cells and S. aureus

In our study from chapter 1 a dual RNA-seq approach has been conducted to investigate

the cross-talk of human mast cells and Staphylococcus aureus (S. aureus) in an infection

model. S. aureus is a commensal Gram-positive bacteria that can become an opportunis-

tic pathogen, causing community and hospital-associated pathologies, like bacteremia-

sepsis, endocarditis, pneumonia, osteomyelitis, arthritis and skin diseases like atopic der-

matitis (AD) (Dayan et al., 2016). AD is a chronic inflammatory skin disease that causes

acute and chronic skin lesions. In 75% up to 100% of the cases the skin lesions are colo-

nized by S. aureus (Higaki et al., 1999; Breuer et al., 2002; Gong et al., 2006; Lin et al.,

2007). Among the first immune host cells, S. aureus encounters during infection, may be

mast cells. Mast cells are tissue-sentinel cells that are dispersed throughout most tissues

and can be found at interfaces with the host’s environment, like mucosae and skin. (Abra-

ham and St John, 2010). In fact, S. aureus has been found to be internalized by mast

cells in nasal polyps isolated from patients with chronic rhinosinusitis (Hayes et al., 2015).

The defense mechanisms of mast cells against S. aureus involve release of extracellular

traps composed of granule proteins and DNA that immobilize and kill the bacteria, as

well as discharge of antimicrobial products that have a toxic effect on the bacteria (Abel

et al., 2011). However, S. aureus can evade the host’s defense mechanisms by directing

its own uptake into mast cells, where they persist (Abel et al., 2011).

To investigate possible transcriptome changes of S. aureus and the host’s response, dif-

ferent infection settings were subjected to dual RNA-seq. When planning RNA-seq ex-

periments that aim to discover differentially expressed genes by DGE, determining the

correct sequencing depth for libraries is of great importance and subject of an ongoing

debate. A saturation analysis carried out by generating 214 million paired-end reads from

H1 human embryonic stem cells came to the conclusion that 36 million reads are sufficient

to quantify 80% of transcripts that are expressed at an expression level of fragments per

kilobase million (FPKM) greater than 10. However, to quantify low expressed genes with

FPKM values below 10, around 80 million mapped reads were needed (ENCODE Project



Chapter 4 Discussion and Outlook 50

Consortium, 2011). Others have estimated that more than 200 million paired-end reads

are required to detect all transcripts and possible isoforms of the human transcriptome

(Tarazona et al., 2011). On the other hand, a study investigating the effects of sequencing

depth and replicate number comes to the conclusion that exceeding a sequencing depth

of 10 million reads generates diminishing returns for power of detecting differentially ex-

pressed genes in samples from MCF-7 breast cancer cells (Liu et al., 2014). Summing up,

10 to 40 million reads can be enough to generate meaningful DGE results for human cells,

especially with increased numbers of replicates (Liu et al., 2014). For bacteria, findings

suggest that 5 to 10 million rRNA depleted fragments are sufficient to detect the majority

of transcripts. Even when the read number was lowered to 2 million fragments, 96% of

open reading frames (ORFs) were covered by at least 1 fragment and 85% by at least 5

fragments (Haas et al., 2012).

In our study the three replicates of the condition containing human mast cells and in-

tracellular S. aureus had 13 million, 28 million and 26 million mapped human reads and

700,000, 1.6 million and 1.2 million mapped bacterial reads, respectively. Hence, the

total numbers of human mapped reads per library are in the above mentioned range of

10 to 40 million mapped reads, which have proven to be sufficient for DGE of human

cells. Indeed, infected human cells harboring S. aureus and also bystander-cells that were

infected with bacteria, but did not harbor them yielded differentially expressed genes

compared to the uninfected control samples. The Reactome pathway (Gillespie et al.,

2022) enrichment analysis revealed a transcriptional signature related to genes induced

by type-I interferon (IFN-I) for both infection settings. Previous findings suggested that,

though mast cells can elicit an IFN-I response upon viral infection, an infection with

Gram-positive or Gram-negative bacteria does not trigger an IFN-I response, because of

the bacteria’s inability to internalize within mast cells (Dietrich et al., 2010). Our results

show that human mast cells are in fact capable of governing an IFN-I immune response

in an autocrine manner after uptake of S. aureus cells and that they signal non-infected

bystander-cells in a paracrine manner to also trigger an IFN-I response.

The total number of the mapped reads per library of the intracellular bacteria were lower

than the above described minimum of 2 million reads, but nevertheless resulted in robust

transcriptome changes compared to the control condition. This can be explained by the

relatively small genome size of S. aureus of 2.8 megabases compared with the genomes of

Escherichia coli (4.6 megabases), Mycobacterium tuberculosis (4.4 megabases) and Vibrio

cholerae (4.0 megabases), which were used to access sufficient sequencing depth for DGE

as described above, because in general smaller genomes need fewer reads for a sufficient

coverage (Haas et al., 2012). The KEGG pathway enrichment analysis revealed that genes
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associated with enzymes and transport systems of galactose/lactose and D-tagatose-6-

phosphate metabolic pathways were enriched in the up-regulated genes and genes involved

in glycolysis were enriched in the down-regulated set of genes, indicating that D-galactose

or lactose are potential carbon sources for the internalized bacteria. These findings suggest

that S. aureus needs to readjusts its metabolism to the intracellular niche in order to

survive. The DGE analysis of the transwell approach, where mast cells and S. aureus

were separated by a permeable transwell did not yield any differentially expressed genes,

which leads to the conclusion that the two species need physical contact to influence

their gene expression. Taken together, our study has provided new insights about how

human mast cells recognize intracellular S. aureus and how in turn S. aureus adapts its

metabolism to persist inside mast cells to evade the immune response.

Since we did not include ncRNAs in our DGE analysis, follow-up research might focus

on ncRNA to reveal possible regulatory ncRNAs that govern the gene expression changes

observed during infection and internalization. We uploaded the raw reads to the ENA

(Cummins et al., 2021) and made the bioinformatical analysis consisting of executable

scripts, a singularity image containing every used software, and results, including mapped

reads, gene-quantification, coverage-files and sRNA predictions generated with ANNO-

gesic (Yu et al., 2018), publicly available at the Repository for Life Sciences (https://

www.publisso.de/en/publishing/repositories/repository-for-life-sciences/).

Hence, our bioinformatical analysis is completely reproducible and can serve as a starting

point for follow-up analysis of the dual RNA-seq data.

To gain further insights into the molecular interplay of mast cells and S. aureus , a dual

RNA-seq approach based on single-cell RNA sequencing (scRNA-seq) might reveal pos-

sible subpopulations among internalized S. aureus , similar to Avital et al. (2017) where

different subpopulations for infection stages were identified for intracellular Salmonella

typhimurium and its host, namely mouse macrophages.

4.2 Software development for dual and multi RNA

sequencing analysis

To carry out the bioinformatical analysis for the research article of chapter 1, various

existing bioinformatical software tools were combined with Shell-, Python- and R-scripts.

In principal, the workflow that was created can be adapted to other dual RNA-seq exper-

iments with different species. However, adapting the workflow for other species requires

https://www.publisso.de/en/publishing/repositories/repository-for-life-sciences/
https://www.publisso.de/en/publishing/repositories/repository-for-life-sciences/
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bioinformatical knowledge and manually changing the different scripts at specific loca-

tions, mainly to provide the genome sequence reference IDs of the respective species. In

order to facilitate dual RNA-seq and multi RNA-seq analysis, we released a major update

(manuscript in chapter 2) of the existing RNA-seq analysis tool READemption (Förstner

et al., 2014).

The new version READemption 2 retains all features of the previous READemption ver-

sions, while adding the option to analyze multi-species projects of any number of species

chosen by the user. The basic workflow and subcommands have not been changed to

allow users that have already used READemption an easy transition to READemption

2. However, some minor syntax and behavior changes were necessary. For instance, the

first subcommand create, which creates the input folder structure for reference genomes,

annotation files and reads, now requires the names of the species that are part of the

project, in order to create reference genome and annotation input folders for each species.

Furthermore, the deseq subcommand, in addition to the information about the condition

and replicate number for every library, now requires information about which species are

expected in each library.

One goal for READemption 2 was to uphold the principal of ’convention over configu-

ration’ for running analyses, which has already been applied to the earlier versions of

READemption. The aim of the principal is to reduce the number of decisions that have

to be made by a user when executing a software. This aim can be achieved by setting

the default behavior of the software to the most used conventional standards, without the

need for the user to explicitly configure these settings. For example, species cross-aligned

reads are usually discarded when analyzing dual RNA-seq data (Espindula et al., 2020).

therefore, READemption 2 also discards these reads by default when the subcommands

for gene quantificaton or coverage file creation are called. However, to cover specific user

needs, it is possible to include species cross-aligned reads when calling these subcom-

mands by adding a predefined parameter (’count cross aligned reads’). By applying the

principal of ’convention over configuration’, READemption 2 lowers the hurdles for new

users with little bioinformatics knowledge to perform data analysis of dual RNA-seq and

multi RNA-seq data.

Further measurements that have been taken to help new users to get started with READ-

emption 2 are an updated documentation and the provision of software packages. Besides

detailed descriptions about each subcommand and their adjustable parameters, the doc-

umentation provides tutorials for executing example analyses. The two tutorials cover a

conventional RNA-seq analysis with one species and a dual RNA-seq analysis with two
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species. Both tutorials provide step-by-step executable commands and explanations, as

well as the required input data consisting of reads, annotations and reference sequences.

READemption 2 comes with a Conda package, which includes all necessary dependencies

like Python packages, R with DESeq2 and the aligner segemehl. The installation via

Conda is explained in detail at READemption 2 ’s documentation website and is much

more convenient and stable than installing READemption 2 and its dependencies indi-

vidually. Because even the Conda installation can result in conflicts, we also provide a

Docker image with READemption 2 that is in general more reliable than a Conda instal-

lation. The Docker image is also accompanied by a step-by-step tutorial for running an

RNA-seq analysis with READemption 2.

Scientists spend more than 30% of their time to develop scientific software, which usu-

ally can not be outsourced, due to the domain-specific knowledge required and 90% of

the scientists developing software are primarily self-taught (Wilson et al., 2014). To en-

sure appropriate software quality and to guide scientists during software development,

a number of good practices have been worked out (Leprevost et al., 2014). During the

development of READemption 2 and its earlier versions, the following good practices for

scientific software development have been applied. Each released version of READemp-

tion follows semantic versioning, has been assigned a digital object identifier (DOI) and

its source code is stored publicly available on the open research database Zenodo (Euro-

pean Organization For Nuclear Research and OpenAIRE, 2013). A changelog file records

all notable changes that have been made for each version. Storing different versions of

a software and tracking the changes helps users that have older versions embedded in

their bioinformatics workflow to maintain their workflow with a given older version and

to decide when they should update their workflow to a newer version of the software.

As described above, READemption 2 comes with a comprehensive documentation to ex-

plain its features and workflow to new users. For developers it is also important that the

source code itself is documented to get a deep understanding of the internal processes

of the software. For this purpose, plain text explanations, which explain the intended

function of code as well as Python type hints that annotate the arguments and the return

value of functions have been introduced during development. Another recommendation

for scientific software development is testing the software to make sure it runs as intended.

Therefore, software unit tests and system test have been created for READemption 2 ’s

core functionalities. The tests run parts of the software with a pre-defined input and

output and test whether the actual output produced during the test is the same as the

expected pre-defined output. The tests are included in READemption 2 and can also be

run by users to verify that the software’s installation process was successful. Additionally,

software tests are another way to explain to developers how the software is expected to
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behave depending on the input data of tests. In regard to continuous integration (CI),

whenever changes made to the software are published on GitHub, tests run automatically

and indicate whether they failed or succeeded at READemption 2 ’s GitHub repository.

READemption 2 and its earlier versions are open-source to ensure full transparency and to

provide clarity about how the results of its RNA-seq analysis are generated. Open-source

projects also allow others to spot software bugs and to participate in development.

READemption 2 is the first tool that can comprehensively handle RNA-seq data of any

amount of species and of any domain of life. Other existing tools are also suited to analyze

dual RNA-seq or multi RNA-seq data but lack certain functions of READemption 2. The

nf-core (Ewels et al., 2020) dualrnaseq pipeline (https://nf-co.re/dualrnaseq/1.0.0)

is able to generate gene expression values of two interacting species, but lacks the ability

to analyze more than two species and does not perform DGE or nucleotide-wise coverage

calculation. FastQ-Screen (https://stevenwingett.github.io/FastQ-Screen/) can

also be used as an entry point for dual RNA-seq or multi RNA-seq as it aligns reads to

reference genomes of any amount of species and separates the initial files into species-

specific files that only contain reads of one species. The species-specific read files can

then be used to perform RNA-seq analysis for each species. However, FastQ-Screen does

only provide the basic alignment and generation of species-wise alignment statistics but

doesn’t implement gene quantification, nucleotide-wise coverage calculation or DGE.

READemption 2 ’s ability to analyze any number of species could also be used to an-

alyze RNA-seq data of metatrancscriptomics projects that investigate a large number

of different species (Shakya et al., 2019). More closely related species increase the risk

of cross-species mapped reads and require a detailed inspection of cross-mapping be-

tween the species of a project. To find out which pairs of species share large amounts

of cross-mapped reads, the cross-mapped reads for each possible pair of a project must

be calculated. This feature is currently not implemented in READemption 2, instead

only the total species cross-mapped reads for a library are calculated. In principal, the

feature can be implemented in the future to make READemption 2 more suitable for

metatranscriptomics.

Further improvements for READemption 2 that might be implemented in the future are

described in the following. The aligner used by READemption 2, segemehl (Hoffmann et

al., 2014), though having high accuracy in terms of correctly mapped reads compared to

other aligners, has one of the longest run times (Otto et al., 2014; Donato et al., 2021). An

alternative could be STAR (Dobin et al., 2013), a widely used mapper, which needs less

than half of segemehl’s memory consumption and tremendously outperforms it in terms

https://nf-co.re/dualrnaseq/1.0.0
https://stevenwingett.github.io/FastQ-Screen/
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of mapping speed (Otto et al., 2014; Donato et al., 2021). STAR might either replace

segemehl or be added as an alternative. Adding STAR as an alternative has the advan-

tage that users can choose the aligner that best suits their needs, but also comes with

the disadvantage for developers of READemption 2 to maintain both aligners. Although

READemption 2 already covers a wide spectrum of the standard workflow of conventional

RNA-seq, dual RNA-seq and multi RNA-seq that ranges from aligning to DGE, GSEA

is not included in READemption 2. As GSEA is a common method to study gene ex-

pression and needs the results of DGE, which is already implemented in READemption

2, it would be a useful addition to READemption 2 ’s features. GSEA might be added as

an additional subcommand that wraps already existing tools that implement GSEA, e.g.

the Python package GSEApy (https://github.com/zqfang/GSEApy), or the R package

ClusterProfiler (Wu et al., 2021). As described above, READemption 2 features conve-

nient installation via Conda or Docker and the usage is described in detail by tutorials.

However, since READemption 2 has a command-line interface that requires users to have

a basic understanding of working with the command line, some potential users may not be

able to use the tool. A solution might be to implement a graphical user interface (GUI),

e.g. with Gooey (https://github.com/chriskiehl/Gooey), which makes use of the ar-

gument parser argparse (https://docs.python.org/3/library/argparse.html) that

is already used by READemption 2. Another possible solution to make READemption

2 available to users that are not familiar with working in a command line is the Galaxy

platform (Afgan et al., 2018), which enables users to use a large set of bioinformatics tools

via a browser-based GUI. Though, implementing READemption 2 as a Galaxy workflow

would be laborious compared to creating a GUI, since the complete input and output flow

of each subcommand has to be implemented in the Galaxy environment.

https://github.com/zqfang/GSEApy
https://github.com/chriskiehl/Gooey
https://docs.python.org/3/library/argparse.html
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French StatOmique Consortium (2013). “A comprehensive evaluation of normalization

methods for Illumina high-throughput RNA sequencing data analysis”. In: Briefings in

Bioinformatics 14.6, pp. 671–683.

National Human Genome Research Institute - Sequencing costs (2022). DNA Sequencing

Costs: https://www.genome.gov/about-genomics/fact-sheets/

DNA-Sequencing-Costs-Data. en.

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.

Chaisson, and T. R. Gingeras (2013). “STAR: ultrafast universal RNA-seq aligner”.

eng. In: Bioinformatics (Oxford, England) 29.1, pp. 15–21.

Donato, L., C. Scimone, C. Rinaldi, R. D’Angelo, and A. Sidoti (2021). “New evalua-

tion methods of read mapping by 17 aligners on simulated and empirical NGS data:

an updated comparison of DNA- and RNA-Seq data from Illumina and Ion Torrent

technologies”. en. In: Neural Computing and Applications 33.22, pp. 15669–15692.

Dutta, T. and S. Srivastava (2018). “Small RNA-mediated regulation in bacteria: A grow-

ing palette of diverse mechanisms”. eng. In: Gene 656, pp. 60–72.

Eid, J., A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan,

B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark,

R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner,

K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist,

C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy,

R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J.

Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner

(2009). “Real-time DNA sequencing from single polymerase molecules”. eng. In: Science

(New York, N.Y.) 323.5910, pp. 133–138.

ENCODE Project Consortium (2011). “A user’s guide to the encyclopedia of DNA ele-

ments (ENCODE)”. eng. In: PLoS biology 9.4, e1001046.

ENSEMBL - GFF3 File Format - https://www.ensembl.org/info/website/upload/gff3.html,

2022-10-07 (2022).

ENSEMBL - WIG File Format - https://www.ensembl.org/info

/website/upload/wig.html - 2022-10-07 (2022).

Espindula, E., E. R. Sperb, E. Bach, and L. M. P. Passaglia (2020). “The combined

analysis as the best strategy for Dual RNA-Seq mapping”. In: Genetics and Molecular

Biology 42.4, e20190215.

European Organization For Nuclear Research and OpenAIRE (2013). Zenodo. en.



Chapter 5 Bibliography 59

Ewels, P. A., A. Peltzer, S. Fillinger, H. Patel, J. Alneberg, A. Wilm, M. U. Garcia, P.

Di Tommaso, and S. Nahnsen (2020). “The nf-core framework for community-curated

bioinformatics pipelines”. en. In: Nature Biotechnology 38.3, pp. 276–278.

Fiers, W., R. Contreras, F. Duerinck, G. Haegeman, D. Iserentant, J. Merregaert, W.

Min Jou, F. Molemans, A. Raeymaekers, A. Van den Berghe, G. Volckaert, and M.

Ysebaert (1976). “Complete nucleotide sequence of bacteriophage MS2 RNA: primary

and secondary structure of the replicase gene”. en. In: Nature 260.5551. Number: 5551

Publisher: Nature Publishing Group, pp. 500–507.

Förstner, K. U., J. Vogel, and C. M. Sharma (2014). “READemption-a tool for the compu-

tational analysis of deep-sequencing-based transcriptome data”. eng. In: Bioinformatics

(Oxford, England) 30.23, pp. 3421–3423.

Freedman, A. H., J. M. Gaspar, and T. B. Sackton (2020). “Short paired-end reads trump

long single-end reads for expression analysis”. In: BMC Bioinformatics 21.1, p. 149.

Freese, N. H., D. C. Norris, and A. E. Loraine (2016). “Integrated genome browser: vi-

sual analytics platform for genomics”. eng. In: Bioinformatics (Oxford, England) 32.14,

pp. 2089–2095.

Garalde, D. R., E. A. Snell, D. Jachimowicz, B. Sipos, J. H. Lloyd, M. Bruce, N. Pantic,

T. Admassu, P. James, A. Warland, M. Jordan, J. Ciccone, S. Serra, J. Keenan, S.

Martin, L. McNeill, E. J. Wallace, L. Jayasinghe, C. Wright, J. Blasco, S. Young, D.

Brocklebank, S. Juul, J. Clarke, A. J. Heron, and D. J. Turner (2018). “Highly parallel

direct RNA sequencing on an array of nanopores”. en. In: Nature Methods 15.3. Number:

3 Publisher: Nature Publishing Group, pp. 201–206.

Gillespie, M., B. Jassal, R. Stephan, M. Milacic, K. Rothfels, A. Senff-Ribeiro, J. Griss, C.

Sevilla, L. Matthews, C. Gong, C. Deng, T. Varusai, E. Ragueneau, Y. Haider, B. May,

V. Shamovsky, J. Weiser, T. Brunson, N. Sanati, L. Beckman, X. Shao, A. Fabregat, K.

Sidiropoulos, J. Murillo, G. Viteri, J. Cook, S. Shorser, G. Bader, E. Demir, C. Sander,

R. Haw, G. Wu, L. Stein, H. Hermjakob, and P. D’Eustachio (2022). “The reactome

pathway knowledgebase 2022”. In: Nucleic Acids Research 50.D1, pp. D687–D692.

Gong, J. Q., L. Lin, T. Lin, F. Hao, F. Q. Zeng, Z. G. Bi, D. Yi, and B. Zhao (2006).

“Skin colonization by Staphylococcus aureus in patients with eczema and atopic der-

matitis and relevant combined topical therapy: a double-blind multicentre randomized

controlled trial”. eng. In: The British Journal of Dermatology 155.4, pp. 680–687.

Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace, and S. Altman (1983). “The RNA

moiety of ribonuclease P is the catalytic subunit of the enzyme”. English. In: Cell 35.3.

Publisher: Elsevier, pp. 849–857.



Chapter 5 Bibliography 60

Haas, B. J., M. Chin, C. Nusbaum, B. W. Birren, and J. Livny (2012). “How deep is deep

enough for RNA-Seq profiling of bacterial transcriptomes?” In: BMC Genomics 13.1,

p. 734.

Hardcastle, T. J. and K. A. Kelly (2010). “baySeq: Empirical Bayesian methods for iden-

tifying differential expression in sequence count data”. In: BMC Bioinformatics 11.1,

p. 422.

Hayes, S. M., R. Howlin, D. A. Johnston, J. S. Webb, S. C. Clarke, P. Stoodley, P. G.

Harries, S. J. Wilson, S. L. F. Pender, S. N. Faust, L. Hall-Stoodley, and R. J. Salib

(2015). “Intracellular residency of Staphylococcus aureus within mast cells in nasal

polyps: A novel observation”. English. In: Journal of Allergy and Clinical Immunology

135.6. Publisher: Elsevier, 1648–1651.e5.

Henras, A. K., C. Dez, and Y. Henry (2004). “RNA structure and function in C/D and

H/ACA s(no)RNPs”. eng. In: Current Opinion in Structural Biology 14.3, pp. 335–343.

Higaki, S., M. Morohashi, T. Yamagishi, and Y. Hasegawa (1999). “Comparative study of

staphylococci from the skin of atopic dermatitis patients and from healthy subjects”.

eng. In: International Journal of Dermatology 38.4, pp. 265–269.

Hoffmann, S., C. Otto, G. Doose, A. Tanzer, D. Langenberger, S. Christ, M. Kunz, L. M.

Holdt, D. Teupser, J. Hackermüller, and P. F. Stadler (2014). “A multi-split map-

ping algorithm for circular RNA, splicing, trans-splicing and fusion detection”. eng. In:

Genome Biology 15.2, R34.

Holley, R. W., J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R.

Penswick, and A. Zamir (1965). “Structure of a Ribonucleic Acid”. In: Science 147.3664.

Publisher: American Association for the Advancement of Science, pp. 1462–1465.

Human Genome Project Fact Sheet (2022). en.

Humphrys, M. S., T. Creasy, Y. Sun, A. C. Shetty, M. C. Chibucos, E. F. Drabek, C. M.

Fraser, U. Farooq, N. Sengamalay, S. Ott, H. Shou, P. M. Bavoil, A. Mahurkar, and

G. S. A. Myers (2013). “Simultaneous Transcriptional Profiling of Bacteria and Their

Host Cells”. en. In: PLOS ONE 8.12. Publisher: Public Library of Science, e80597.

Ignatiadis, N., B. Klaus, J. B. Zaugg, and W. Huber (2016). “Data-driven hypothesis

weighting increases detection power in genome-scale multiple testing”. en. In: Nature

Methods 13.7. Number: 7 Publisher: Nature Publishing Group, pp. 577–580.

Inouye, M. and N. Delihas (1988). “Small RNAs in the prokaryotes: a growing list of

diverse roles”. eng. In: Cell 53.1, pp. 5–7.

Jain, M., S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson, A. D.

Beggs, A. T. Dilthey, I. T. Fiddes, S. Malla, H. Marriott, T. Nieto, J. O’Grady, H. E.

Olsen, B. S. Pedersen, A. Rhie, H. Richardson, A. R. Quinlan, T. P. Snutch, L. Tee, B.

Paten, A. M. Phillippy, J. T. Simpson, N. J. Loman, and M. Loose (2018). “Nanopore



Chapter 5 Bibliography 61

sequencing and assembly of a human genome with ultra-long reads”. en. In: Nature

Biotechnology 36.4. Number: 4 Publisher: Nature Publishing Group, pp. 338–345.

Jarroux, J., A. Morillon, and M. Pinskaya (2017). “History, Discovery, and Classification

of lncRNAs”. en. In: 1008. Ed. by M. Rao. Series Title: Advances in Experimental

Medicine and Biology, pp. 1–46.

Jeck, W. R. and N. E. Sharpless (2014). “Detecting and characterizing circular RNAs”.

In: Nature biotechnology 32.5, pp. 453–461.

Kanehisa, M., S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa (2010). “KEGG for

representation and analysis of molecular networks involving diseases and drugs”. eng.

In: Nucleic Acids Research 38.Database issue, pp. D355–360.

Keiler, K. C. and N. S. Ramadoss (2011). “Bifunctional transfer-messenger RNA”. In:

Biochimie 93.11, pp. 1993–1997.

Kim, D., J. M. Paggi, C. Park, C. Bennett, and S. L. Salzberg (2019). “Graph-based

genome alignment and genotyping with HISAT2 and HISAT-genotype”. en. In: Nature

Biotechnology 37.8. Number: 8 Publisher: Nature Publishing Group, pp. 907–915.

Kruger, K., P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling, and T. R. Cech

(1982). “Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA in-

tervening sequence of tetrahymena”. English. In: Cell 31.1. Publisher: Elsevier, pp. 147–

157.

Lam, J. K. W., M. Y. T. Chow, Y. Zhang, and S. W. S. Leung (2015). “siRNA Versus

miRNA as Therapeutics for Gene Silencing”. English. In: Molecular Therapy - Nucleic

Acids 4. Publisher: Elsevier.

Lander, E. S. et al. (2001). “Initial sequencing and analysis of the human genome”. en.

In: Nature 409.6822. Number: 6822 Publisher: Nature Publishing Group, pp. 860–921.

Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg (2009). “Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome”. In: Genome Biology

10.3, R25.

Lee, R. C., R. L. Feinbaum, and V. Ambros (1993). “The C. elegans heterochronic gene

lin-4 encodes small RNAs with antisense complementarity to lin-14”. eng. In: Cell 75.5,

pp. 843–854.

Leprevost, F. d. V., V. C. Barbosa, E. L. Francisco, Y. Perez-Riverol, and P. C. Carvalho

(2014). “On best practices in the development of bioinformatics software”. In: Frontiers

in Genetics 5.

Lesman, D., Y. Rodriguez, D. Rajakumar, and N. Wein (2021). “U7 snRNA, a Small

RNA with a Big Impact in Gene Therapy”. eng. In: Human Gene Therapy 32.21-22,

pp. 1317–1329.



Chapter 5 Bibliography 62

Lewis, J. B., J. F. Atkins, C. W. Anderson, P. R. Baum, and R. F. Gesteland (1975).

“Mapping of late adenovirus genes by cell-free translation of RNA selected by hy-

bridization to specific DNA fragments”. eng. In: Proceedings of the National Academy

of Sciences of the United States of America 72.4, pp. 1344–1348.

Li, H. and R. Durbin (2009). “Fast and accurate short read alignment with Burrows-

Wheeler transform”. eng. In: Bioinformatics (Oxford, England) 25.14, pp. 1754–1760.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,

and R. Durbin (2009). “The Sequence Alignment/Map format and SAMtools”. In:

Bioinformatics 25.16, pp. 2078–2079.

Li, J. and R. Tibshirani (2013). “Finding consistent patterns: a nonparametric approach

for identifying differential expression in RNA-Seq data”. eng. In: Statistical Methods in

Medical Research 22.5, pp. 519–536.

Lin, Y.-T., C.-T. Wang, and B.-L. Chiang (2007). “Role of bacterial pathogens in atopic

dermatitis”. eng. In: Clinical Reviews in Allergy & Immunology 33.3, pp. 167–177.

Liu, Y., J. Zhou, and K. P. White (2014). “RNA-seq differential expression studies: more

sequence or more replication?” In: Bioinformatics 30.3, pp. 301–304.

Love, M. I., W. Huber, and S. Anders (2014). “Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2”. In: Genome Biology 15.12, p. 550.

Macfarlane, L.-A. and P. R. Murphy (2010). “MicroRNA: Biogenesis, Function and Role

in Cancer”. eng. In: Current Genomics 11.7, pp. 537–561.

Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka,

M. S. Braverman, Y.-J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes,

B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. I. Alenquer,

T. P. Jarvie, K. B. Jirage, J.-B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M.

Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P.

McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan,

G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro,

A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu,

R. F. Begley, and J. M. Rothberg (2005). “Genome sequencing in microfabricated high-

density picolitre reactors”. en. In: Nature 437.7057. Number: 7057 Publisher: Nature

Publishing Group, pp. 376–380.

Martin, M. (2011). “Cutadapt removes adapter sequences from high-throughput sequenc-

ing reads”. en. In: EMBnet.journal 17.1. Number: 1, pp. 10–12.

Osborne, J. D., J. Flatow, M. Holko, S. M. Lin, W. A. Kibbe, L. J. Zhu, M. I. Danila,

G. Feng, and R. L. Chisholm (2009). “Annotating the human genome with Disease

Ontology”. eng. In: BMC genomics 10 Suppl 1, S6.



Chapter 5 Bibliography 63

Otto, C., P. F. Stadler, and S. Hoffmann (2014). “Lacking alignments? The next-generation

sequencing mapper segemehl revisited”. eng. In: Bioinformatics (Oxford, England)

30.13, pp. 1837–1843.

Pérez-Rubio, P., C. Lottaz, and J. C. Engelmann (2019). “FastqPuri: high-performance

preprocessing of RNA-seq data”. In: BMC Bioinformatics 20.1, p. 226.

Pruitt, K. D., T. Tatusova, and D. R. Maglott (2007). “NCBI reference sequences (Ref-

Seq): a curated non-redundant sequence database of genomes, transcripts and proteins”.

In: Nucleic Acids Research 35.suppl 1, pp. D61–D65.
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S. aureus Staphylococcus aureus

AD atopic dermatitis

BAM binary alignment/map

cDNA complementary DNA

CDS coding DNA sequence

CI continuous integration

circRNA circular RNA

DGE differential gene expression

DNA deoxyribonucleic acid

DNA-seq DNA sequencing

dNTP deoxyribonucleotide triphosphates

DOI digital object identifier

dual RNA-seq dual RNA sequencing

ENA European Nucleotide Archive

FACS fluorescence-activated cell sorting

FPKM fragments per kilobase million

GFF general feature format

GSEA gene set enrichment analysis

GUI graphical user interface

IFN-I type-I interferon

IGB Integrated Genome Browser

IGV Integrative Genomics Viewer

KEGG Kyoto Encyclopedia of Genes and Genomes

lncRNA long non-coding RNA

miRNA micro RNA

mRNA messenger RNA

multi RNA-seq multi RNA sequencing

ncRNA non-coding RNA

nm nanometer

ORFs open reading frames

PCR polymerase chain reaction
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pg picogram

piRNA P-element-induced wimpy testis (Piwi)-interacting RNA

RISC RNA-induced silencing complexes

RNA ribonucleic acid

RNA-seq RNA sequencing

RPKM reads per kilobase million

rRNA ribosomal RNA

SAM sequence alignment/map

scaRNA small Cajal body-specific RNA

scRNA-seq single-cell RNA sequencing

siRNA small interfering RNA

snoRNA small nucleolar RNA

snRNA small nuclear RNA

SRA Sequence Read Archive

sRNA small RNA

tmRNA transfer-messenger RNA

TPM transcripts per million

tRNA transfer RNA

UTR untranslated region
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schreiben und mich auf diesem Weg begleitet und angeleitet hat. Er stand mir immer mit

Rat und Tat zur Seite, gab mir das Vertrauen den Anforderungen gewachsen zu sein und

wertschätzte stets meine erbrachte Arbeit. Außerdem möchte ich mich dafür bedanken,

dass er mir vor ein paar Jahren die wunderbare Welt der Bioinformatik gezeigt hat und

so den Weg zur Erstellung dieser Arbeit geebnet hat.

Außerdem möchte ich mich bei meinen weiteren Betreuern Thomas Dandekar und Alexan-

der Westermann für die konstruktiven und ermutigenden Besprechungen meiner Ergeb-

nisse bedanken.

Weiterhin gilt mein Dank allen Kooperationspartnern, insbesondere Eva Medina und

Oliver Goldmann für die gute Zusammenarbeit in Chapter 1.
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Julia möchte ich dafür danken, dass sie mich vor allem in der letzten Phase der Promotion

in allen Belangen unterstützt hat und die richtigen Worte fand, wenn ich sie benötigte.

Großer Dank geht auch an meine Eltern Ingrid und Gerd und meinem Bruder Kai, die

mich bei allen wichtigen Entscheidungen in meinem Leben unterstützt haben und immer

für mich da sind, wenn ich sie brauche.



Affidavit

I hereby confirm that my thesis entitled “Implementation and application of bioinformat-

ical software for the analysis of dual RNA sequencing data of host and pathogen during

infection” is the result of my own work. I did not receive any help or support from com-

mercial consultants. All sources and / or materials applied are listed and specified in the

thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of another

examination process neither in identical nor in similar form.

Place, Date Signature

Eidesstattliche Erklärung
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