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Abstract
Metallic nanostructures possess the ability to support resonances in the visible wave-
length regime which are related to localized surface plasmons. These create highly
enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles
with dipolar resonance also radiate efficiently into the far-field and hence serve as an-
tennas for light. Such optical antennas have been explored during the last two decades,
however, mainly as standalone units illuminated by external laser beams and more re-
cently as electrically driven point sources, yet merely with basic antenna properties.
This work advances the state of the art of locally driven optical antenna systems. As a
first instance, the electric driving scheme including inelastic electron tunneling over a
nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists
of a suitably wired feed antenna, incorporating a tunnel junction, as well as several
nearby parasitic elements whose geometry is optimized using analytical and numeri-
cal methods. Experimental evidence of unprecedented directionality of light emission
from a nanoantenna is provided. Parallels in the performance between radiofrequency
and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected an-
tennas with dissimilar resonances is harnessed as electrodes in an organic light emitting
nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmet-
ric injection barriers for electrons and holes, in conjunction with the electrode reso-
nances, allows switching and controlling the emitted peak wavelength and direction-
ality as the polarity of the applied voltage is inverted. In a final study, the near-field
based transmission-line driving of rod antenna systems is thoroughly explored. Per-
fect impedance matching, corresponding to zero back-reflection, is achieved when the
antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus
collects all guided, surface-plasmon mediated input power and transduces it to other
nonradiative and radiative dissipation channels. The coherent interplay of losses and
interference effects turns out to be of paramount importance for this delicate scenario,
which is systematically obtained for various antenna resonances. By means of the here
developed semi-analytical toolbox, even more complex nanorod chains, supporting
topologically nontrivial localized edge states, are studied. The results presented in this
work facilitate the design of complex locally driven antenna systems for optical wire-
less on-chip communication, subwavelength pixels, and loss-compensated integrated
plasmonic nanocircuitry which extends to the realm of topological plasmonics.



Zusammenfassung
Metallische Nanostrukturen besitzen die Fähigkeit, Resonanzen im sichtbaren Wellen-
längenbereich zu unterstützen, die mit lokalisierten Oberflächenplasmonen in Verbin-
dung stehen. Diese erzeugen hochverstärkte elektrische Felder in der unmittelbaren
Nähe von Metalloberflächen. Nanopartikel mit dipolarer Resonanz strahlen zudem ef-
fizient in das Fernfeld ab und dienen somit als Antennen für Licht. Solche optischen
Antennen wurden in den letzten zwei Jahrzehnten erforscht, allerdings hauptsächlich
als eigenständige Einheiten, welche von externen Laserstrahlen angeregt werden, und
in jüngerer Zeit als elektrisch getriebene Punktquellen, die jedoch lediglich über grund-
legende Antenneneigenschaften verfügen. Diese Arbeit erweitert den aktuellen Stand
von lokal getriebenen optischen Antennensystemen. In einem ersten Fallbeispiel wird
das elektrische Antriebsschema einschließlich inelastischem Elektronentunneln über
einen Nanometer-Spalt mit der Yagi-Uda-Theorie zusammengeführt. Das resultieren-
de Antennensystem besteht aus einer passend verdrahteten, gespeisten Antenne, die
einen Tunnelübergang enthält, sowie mehreren nahe gelegenen parasitären Elemen-
ten, deren Geometrie mit analytischen und numerischen Methoden optimiert wird. Ex-
perimentelle Befunde für eine ungeahnte Direktionalität der Lichtemission von einer
Nanoantenne werden erbracht. Es werden Parallelen im Leistungsverhalten zwischen
Radiofrequenz- und optischen Yagi-Uda-Anordnungen gezogen. Als zweites wird ein
Paar elektrisch kontaktierter Antennen mit unterschiedlichen Resonanzen als Elektro-
den in einem Prototyp einer organischen lichtemittierenden nanoskaligen Diode einge-
setzt. Das organische Material Zinkphthalocyanin, welches asymmetrische Injektions-
barrieren für Elektronen und Löcher aufweist, ermöglicht in Verbindung mit den Elek-
trodenresonanzen die Schaltbarkeit und Kontrolle der emittierten Wellenlänge und der
Direktionalität bei Umkehr der Polarität der angelegten Spannung. In einer abschlie-
ßenden Studie wird der nahfeldbasierte Antrieb von stäbchenförmigen Antennsyste-
men mittels eines Wellenleiters detailliert untersucht. Perfekte Impedanzanpassung,
entsprechend einer verschwindenden Rückreflexion, wird erreicht, wenn die Antenne
bei einer spezifischen Frequenz als verallgemeinerter kohärenter perfekter Absorber
agiert. Hierbei nimmt sie die gesamte wellenleitergeführte Eingangsleistung, vermit-
telt durch ein Oberflächenplasmon, auf, und überträgt sie auf andere nichtstrahlende
und strahlende Dissipationskanäle. Das kohärente Zusammenspiel von Verlusten und
Interferenzeffekten erweist sich für dieses empfindliche Szenario, das systematisch für
verschiedene Antennenmoden erzeugt wird, als äußerst wichtig. Mit Hilfe des hier ent-
wickelten semi-analytischen Werkzeugsets werden auch komplexere Ketten aus Na-
nostäbchen untersucht, bei denen topologisch nichttriviale lokalisierte Randzustände
auftreten. Die in dieser Arbeit vorgestellten Ergebnisse erleichtern die Entwicklung
komplexer lokal angetriebener Antennensysteme für optische drahtlose Kommunikati-
on auf einem Computerchip, Subwellenlängenpixel und verlustkompensierte integrier-
te plasmonische Nanoschaltkreise, welche sich bis auf das Gebiet der topologischen
Plasmonik erstrecken.
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1
Introduction

A ntennas, whether for television broadcasting, mobile phones, or, as investigated
in this thesis, for light emission, convert electric signals to free-space electro-

magnetic radiation and vice versa. Historically, they have played an essential role in
wireless data exchange since the end of the 19th century. After H. Hertz’s pioneering
demonstration of a dipole-like antenna, the first experimental series of long-distance
wireless telegraphy outside the lab was carried out by G. Marconi who received the
Nobel Prize in Physics in 1909, together with F. Braun [1]. Naturally, the prototype
antennas Marconi used had a simplistic design – grounded metal sheets – acting as
monopoles [2]. In the 1940s, antenna theory and engineering evolved more rapidly
and various radio antenna concepts were launched, comprising rods, horns, reflectors,
and apertures [3]. Applying a small aperture was also the key step in optics beyond
the diffraction limit, viz. scanning near-field optical microscopy (SNOM) [4, 5], de-
veloped in the 1980s. Here the main goal is to collect radiation from single fluorescent
molecules on a sample surface using an aperture tip. Since the fluorophore’s electronic
confinement, typically on the order of 1 nm, is considerably smaller than its absorp-
tion and emission wavelengths, the absorption and radiation efficiencies are very low
and the molecule can be interpreted as a dipolar emitter that faces a large impedance
mismatch to the free vacuum [6]. Consequently, it is of interest to better match the
electronic transition to an external light field. At this point, antenna theory provides
an interesting solution [7]. A metal structure of suitable size and shape, featuring high
input impedance at the fluorophore’s position, is needed to boost the coupling to free-
space modes and thereby increase the radiation efficiency. High impedance means
that the ratio of electric field strength to magnetic field strength is large. A metallic
nanorod acting as resonant optical antenna fulfills this prerequisite, with the molecule
being placed at the end of the rod. This example shows that antenna theory not only
stimulates radiofrequency communication, but also near-field optics, where some kind
of nanoscopic structure interacts with visible and near-infrared light. Indeed, optical
antennas have become a multifaceted research area branching out into fundamental
analysis as well as interdisciplinary studies [8–12].

In addition to the antenna effect, small metallic structures support free-electron os-
cillations against their ionic background that couple with evanescent optical fields – a

1



2 Chapter 1. Introduction

quasiparticle known as plasmon [13]. Due to these collective excitations, which are an
integral aspect of this dissertation, fields at the surface of subwavelength sized metal
particles can be resonantly enhanced and squeezed far below the diffraction limit. The
ultrahigh field confinement inside gaps and at sharp features enables record small ef-
fective mode volumes occupied by a photon, approaching the spatial realm where elec-
tronic transitions in active matter take place. Thereby it was possible to demonstrate
strong light-matter interaction between a plasmonic mode and a single emitter at room
temperature [14, 15].

Producing near-field hot spots requires suitable antenna excitation schemes. A
well established method to drive plasmonic nanoantennas is illuminating the speci-
men with a beam from the far-field, providing a versatile platform for scattering ex-
periments with applications in single molecule sensing [16], surface-enhanced Raman
spectroscopy [17, 18], metasurfaces [19], higher harmonic generation [20–23], and
other fields. Nevertheless, optical antennas can also be directly connected to a voltage
source via attaching metal nanowire leads and thus be driven locally, which will be a
focus of this work. The possibility of electrical driving constitutes a clear asset over
purely isolated structures, opening the possibility to record electroluminescence. The
antenna then acts as a true transmitter for light by converting localized electric energy
into free-space photons, in contrast to a mere isolated scatterer.

Said electro-optical interconnects therefore bridge two branches of modern technol-
ogy: nanoelectronics with its tiny circuit elements, e. g. sub-10 nm transistors [24] that
are densely integrated in state-of-the-art computer chip architectures, and photonics,
benefiting from ultrahigh bandwidths, i. e. data processing rates [25, 26]. Moreover,
electrical feeding of optical antennas adds new degrees of freedom in the realm of non-
linear photonics. Zero-frequency waves, corresponding to DC signals, can be injected
or probed which is not possible from the far-field. This is relevant, e. g., in optical
rectification [27] or electric-field-induced second harmonic generation [28].

Supported by numerical simulations and continuously improving nanofabrication
methods, electrical driving of optical antennas has been developed in the last decade.
One challenge is the non-negligible size of electrical leads compared to the antenna
building blocks themselves. The antenna performance is thus prone to suffer from
the nearby wires. Hence, the question of an optimal placement of the latter was ad-
dressed [29]. Afterwards, an electron tunnel junction was created in the gap of a
nanorod dimer, yielding the first electrically driven optical antenna [30]. This mile-
stone triggered the development of related schemes [31]. A twisted dimer yielded
improved directivities of the emitted light [32]. Out of plane antenna systems with
electrical access were reported as well [33–35]. Common to all cited studies is the use
of inelastic electron tunneling across a biased nanometer sized gap, generating a broad-
band light spectrum from tunnel current fluctuations [31]. This is necessary because
conventional function generators suitable for feeding RF antennas are not able to op-
erate at terahertz and optical frequencies [36]. The overall antenna designs, however,
remained rather simple.

Chap. 5 of this thesis demonstrates that local driving of nanoantenna systems via
inelastic electron tunneling can be combined with more sophisticated in-plane an-
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tenna geometries. Parasitic reflector and director elements are placed in the vicinity
of the actively driven feed antenna, in compliance with the Yagi-Uda principle that
has turned out quite successful in radiofrequency (RF) communication by virtue of
its pronounced directional emission/reception [3]. An artistic view is displayed in
Fig. 1.1 a. Under the constraints of fabrication accuracy and the local driving subsys-
tem itself, the optical Yagi-Uda geometry is analytically and numerically optimized
for high forward-to-backward emission ratio, yielding unprecedented values for elec-
trically driven nanoantennas [32]. Numerical simulations further investigate how the
director number influences the forward gain. The impacts of the dielectric environment
and Ohmic dissipation inherent to optical Yagi-Uda antennas are explored.

V

IET V

ER

SPP in

no SPP out

a)    Yagi-Uda b)    OLEA c)    gCPA

~100 nm

Figure 1.1 – Locally driven antenna concepts explored in this dissertation. a) Opti-
cal Yagi-Uda antenna with a DC voltage applied at the feed element. Light generation
by inelastic electron tunneling (IET) across the nanogap is enhanced by the plasmon reso-
nance and the emission is directed by parasitic elements. b) Organic light-emitting antenna
(OLEA) device with a DC voltage applied between resonant antenna electrodes. Exciton
recombination (ER) in the organic thin film (green) prevails near the cathode. c) All-
plasmonic wire-rod nanocircuit where the rod antenna is near-field driven by an incoming
surface plasmon polariton (SPP) on the wire. At the generalized coherent perfect ab-
sorption (gCPA) condition, the outgoing SPP is completely suppressed, corresponding to
perfect impedance matching. The approximate scale bar is valid for all three panels. Panel
b) adapted with permission from [37]. © 2022 American Chemical Society.

While inelastic tunneling bypasses the need of any optically active matter, hybrid
devices of such materials encompassing e. g. single-photon emitting nitrogen vacancy
centers in diamond [38, 39] or monolayers of transition metal dichalcogenides [40, 41],
and optical antennas have been reported. Organic semiconductors represent a partic-
ularly versatile emitter class in this context [42–44], owing to low-cost production,
mechanical flexibility, and great spectral diversity via chemical engineering [45]. For
no lesser reason they are indispensable for novel energy-saving lighting solutions and
state-of-the art organic light-emitting diode (OLED) displays [46]. Nonetheless, the
steeply growing internet of things aims to integrate computational modules, network
access and miniaturized human-computer interfaces into everyday life products, e. g.
smart textiles [47]. This goes in hand with a major demand of advanced display tech-
nology and ultrasmall pixel dimensions. Therefore, future OLED cells require further
downscaling where at the same time nonradiative exciton decay, e. g. quenching or
coupling to waveguide modes near the electrodes, must be avoided. In Chap. 6, a novel
OLED concept based on organo-plasmonic subwavelength diodes, whose plasmonic
subsystem consists of electrically connected nanoantennas, is introduced. Fig. 1.1 b
shows a sketch of the device. Radiative exciton recombination (ER) locally drives



4 Chapter 1. Introduction

the antenna system. Assisted by numerical simulations, we conceive a gold-organic-
gold prototype with antenna-shaped electrodes supporting spectrally dissimilar plas-
mon resonances. Switchable emission of two colors is accomplished by steering the
ER zone via the applied bias. Yet, the light is emanating from the same diffraction-
limited spot of the device. Using a qualitative model, an explanation for the color
selectivity is given. This model is further corroborated by bias-dependent far-field
radiation patterns.

Recalling macroscopic broadcasting systems, power transfer is accomplished via
transmission line cables attached to the antenna at a specific feed point. As men-
tioned above, a key design rule for antenna engineers is the matching of impedance
between feeder and antenna [48]. Detrimental reflections back to the transmission
line that would generate reactive power are then canceled out and all power is trans-
ferred onto the radiator. A nano-optical transmission line consists of a thin metal wire
that supports a propagating surface plasmon polariton (SPP) [49]. Via a small gap,
a nanorod antenna can be attached to form an all-plasmonic nanocircuit, as depicted
in Fig. 1.1 c. Here, the local driving mechanism relies on the coherent power transfer
of the guided SPP into a localized plasmon resonance of the nanorod. The concept
of impedance has been reformulated for optical structures, yielding circuit analogs
for quantum emitters, nanocavities, and nanoantennas [6, 50]. Impedance matching
has been sought after in plasmonic nanocircuitry [51], yet largely addressed with pa-
rameter sweeps using time-consuming numerical simulations. Chap. 7 demonstrates
perfect impedance matching of several simple and complex optical antenna configura-
tions. The idea of impedance matching is embedded into the more abstract framework
of coherent perfect absorbers [52]. Generalizing the perfect absorber idea allows us to
grasp radiation from antennas as a subset of loss channels, enabling the description of
plasmonic nanoresonators. Instead of brute-force simulation efforts, a semi-analytical
toolbox is established and validated against full numerical results. This speeds up the
entire analysis and the tracking of perfect absorption conditions in the antenna systems.
Such conditions are found for several superradiant and subradiant resonances, so that
the eventual dissipation mechanism can be chosen. Even chains of coupled plasmonic
nanoresonators are studied, where topological edge modes can be detected. Notably,
losses are regarded mostly as an undesirable property in plasmonics. More and more
efforts are recently undertaken to explore their beneficial sides in various technolog-
ical fields [53]. Here, the naturally occurring loss is leveraged to accomplish perfect
impedance matching of optical antenna systems in an all-plasmonic nanocircuit.

The dissertation is structured as follows: Chap. 2 outlines the central aspects of
electromagnetic theory necessary for understanding the physics of plasmons and the
numerical simulation algorithm. Chap. 3 proceeds with the optical properties of no-
ble metals and the concomitant emergence of plasmons at planar metal-dielectric in-
terfaces as well as closed metallic nanoparticles. The numerical simulation method
applied in this thesis is introduced in Chap. 4. Afterwards, the results are manifested
in the three aforementioned project chapters 5, 6, and 7. Each of these is completed
by a summary and outlook section. Finally, Chap. 8 conveys generic conclusion and
outlook notes concerning locally driven complex optical antenna structures.



2
Electromagnetic theory: An overview

T he science of light is based on classical electromagnetism, a fundamental pillar
in today’s physics besides mechanics, quantum mechanics, and statistics. While

Newton’s axioms had manifested a closed picture of classical mechanics in the late 17th

century [54], key discoveries in electrostatics started 100 years later by groundbreaking
works of Cavendish and Coulomb. They initiated a rapid development which peaked
in J. C. Maxwell’s dynamical theory of the electromagnetic field in 1865 [55]. This
consistent formulation in a set of partial differential equations was crucial for under-
standing the interplay between electricity, magnetism, and optics. In 1888, H. Hertz’s
experimental observation of electromagnetic waves propagating at the speed of light
corroborated Maxwell’s theory [56]. As opposed to Newtonian mechanics, Maxwell’s
equations show covariant behavior under Lorentz transformations, assuring validity in
any inertial system. Triggered by this invariance, A. Einstein developed the special
relativity theory which revolutionized the scientific conception of space and time [57].
Nowadays classical electromagnetism still plays an important role in research as well
as in engineering.

This chapter gives an overview of classical electromagnetic theory to an extent nec-
essary for the understanding of the following chapters. Beginning with Maxwell’s
equations in vacuum and some derivations, we arrive at electromagnetic fields in mat-
ter and the vectorial Helmholtz equation. For a more profound reading about the entire
theory, various textbooks are available [56, 58, 59], as is the case for particular treatise
on nano-optical aspects [13, 60].

2.1 Maxwell’s equations in vacuum

Maxwell’s equations are a set of partial differential equations connecting the tempo-
ral dynamics of the electric field ~E, magnetic field ~H, electric displacement ~D, and
magnetic induction ~B with the associated external charge density ρ and current density

5



6 Chapter 2. Electromagnetic theory: An overview

~j [56]. In differential form they read1:

~∇ ·~D(~r, t) = ρ(~r, t), (2.1a)

~∇×~E(~r, t) =−∂~B(~r, t)
∂ t

, (2.1b)

~∇× ~H(~r, t) =
∂~D(~r, t)

∂ t
+~j(~r, t), (2.1c)

~∇ ·~B(~r, t) = 0. (2.1d)

Using vector calculus, an equivalent integral form can be found [61]. This equation
system has axiomatic character. Qualitatively, Eq. (2.1a) establishes the charge density
as the source of electric fields (Coulomb’s law), Eq. (2.1b) relates temporal changes
of the magnetic induction with electric vortex fields (Faraday’s law of induction). In
Eq. (2.1c), magnetic vortex fields are generated by electric displacement fields vary-
ing in time (i. e. Maxwell’s displacement current) and external currents (Ampère’s
law). The magnetic induction is source-free according to Eq. (2.1d), i. e. magnetic
monopoles do not exist.

An important property of Maxwell’s equations is their linearity. This allows de-
composing a solution to this equation system into an (infinite) sum, in particular it is
possible to apply a Fourier transform to all the quantities,

~E(~r, t) =
+∞∫
−∞

~E(~r,ω)e−iωtdω, (2.2)

here shown for the electric field, yielding single-frequency contributions ~E(~r,ω) in
the integrand. The inverse Fourier series of the time-dependent quantity yields the
respective quantity in the spectral domain, e. g.

~E(~r,ω) =
1

2π

+∞∫
−∞

~E(~r, t)eiωtdt. (2.3)

The partial time derivatives in Eqs. (2.1) can thus be resolved:

~∇ ·~D(~r,ω) = ρ(~r,ω), (2.4a)
~∇×~E(~r,ω) = iω~B(~r,ω), (2.4b)
~∇× ~H(~r,ω) =−iω~D(~r,ω)+~j(~r,ω), (2.4c)
~∇ ·~B(~r,ω) = 0. (2.4d)

1SI units are used throughout this thesis.
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2.2 Poynting vector and conservation laws
In this section we note down some laws concerning the conservation of energy and
electric charge. Assuming fields with harmonic time dependence e−iωt such that

~E(~r, t) = ℜ

[
~E(~r)e−iωt

]
≡ 1

2

[
~E(~r)e−iωt +~E∗(~r)eiωt

]
, (2.5)

the energy flux density is given by the complex Poynting vector ~S, defined as [56]

~S = ~E× ~H∗. (2.6)

The electromagnetic energy density can be expressed by

Wem =
1
2
(~E ·~D∗−~B · ~H∗). (2.7)

Its averaged time-variation depends on the rate of work done by the fields and the
Poynting vector [56]:

−
〈

∂Wem

∂ t

〉
=

1
2

ℜ(~j∗ ·~E)+~∇ · 〈~S〉. (2.8)

Eq. (2.8) is called Poynting’s theorem and ensures energy conservation. Considering
a closed surface A with outward pointing unit normal vector ~n surrounding a radia-
tion source, one obtains the time-averaged power flow 〈P〉 by integrating the Poynting
vector over the surface:

〈P〉= 1
2

∮
A

ℜ(~S) ·~n dA (2.9)

A relation similar to Eq. (2.8) can be deduced directly by the time derivative of Eq. (2.1a)
and the divergence of Eq. (2.1c),

−∂ρ(~r, t)
∂ t

= ~∇ ·~j(~r, t), (2.10)

which expresses conservation of electrical charge. It is referred to as continuity equa-
tion.

2.3 Electromagnetic fields in matter
All physical objects consist of atoms. These in turn are assembled of neutrons and
protons in the nucleus, and electrons in orbitals surrounding the nucleus. Although, on
the macroscopic scale, a body is electrically neutral, an applied electric field displaces
electron clouds from the nuclei. Due to the displacement an effective dipole moment is
created in each atom, which leads to a macroscopic polarization throughout the body.
Likewise, a magnetic field can give rise to the magnetization of a substance. These
perturbations act back on the electromagnetic field distribution inside the material. A
complete description of the fields on the microscopic level is practically impossible as
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electrons and even entire atoms exhibit motion all the time, thereby altering the local
field dramatically. Moreover, such a field description would possess a singularity at
each particle position. Therefore, a macroscopic model dealing with average fields
over a region much larger than the atom diameter is the appropriate way to describe
the influence of matter on electromagnetic fields. The macroscopic polarization ~P and
magnetization ~M are defined by the following relations [56]:

~D(~r,ω) = ε0~E(~r,ω)+~P(~r,ω), (2.11a)
~B(~r,ω) = µ0~H(~r,ω)+µ0 ~M(~r,ω). (2.11b)

~P connects the electric and ~M the magnetic field quantities. Both ~P and ~M vanish in free
space. ε0 and µ0 are the electric permittivity and magnetic permeability of vacuum,
which have a direct connection to the speed of light in vacuum via c = 1/

√
ε0µ0. In

general, the macroscopic response of matter can be a function of the intensity of the
incident field and the crystallographic direction. In this thesis, however, a simpler
description, valid for linear and isotropic materials, such as noble metals and glass, is
sufficient2. The connections between ~P (~M) and ~E (~H) read in this case [59]:

~P(~r,ω) = ε0χe(~r,ω)~E(~r,ω) (2.12a)
~M(~r,ω) = χm(~r,ω)~H(~r,ω). (2.12b)

χe and χm denote the electric and magnetic susceptibility, respectively. Their depen-
dence on the angular frequency ω indicates that they show dispersive behavior, i. e.
the strength and phase shift of the material response to an incident electromagnetic
field varies with its frequency. Inserting Eqs. (2.12) into Eqs. (2.11) and reformulating
ε = 1+χe and µ = 1+χm yields the so-called constitutive relations [59],

~D(~r,ω) = ε0ε(~r,ω)~E(~r,ω), (2.13a)
~B(~r,ω) = µ0µ(~r,ω)~H(~r,ω), (2.13b)

where ε and µ are called relative permittivity and permeability. They inherit the disper-
sive properties from the susceptibilities. While for the media investigated in this work
magnetizations can be neglected (~M =~0, µ = 1), the dispersion of the relative permit-
tivity of metals in the visible wavelength regime has a crucial impact on nano-optical
effects and is one of the central aspects of the entire research field. The permittivity
ε(~r,ω), including the frequency dependence, is referred to as dielectric function in
the following chapters. For gold and silver the dielectric functions along with impli-
cations are thoroughly investigated in Chap. 3. Besides bound electron clouds, free
electrons are also influenced by electromagnetic fields in metals. With the conductiv-
ity σ , Ohm’s law expresses the connection between electric field and current density,
reading

~j(~r,ω) = σ(~r,ω)~E(~r,ω). (2.14)
2In Chap. 6 the organic semiconductor zinc phthalocyanine is used as active material which exhibits

anisotropic dielectric behavior, requiring a tensor for highly accurate modeling. In this work we simplify
it to a frequency-dependent isotropic dielectric function. In spite of a resulting systematic deviation the
isotropic model is sufficient for design optimization via numerical simulations.
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All these relations complement the Maxwell equations (2.4) so that a consistent solu-
tion can be found, e. g. by the finite-difference time-domain algorithm introduced in
Chap. 4.

If more than one material is involved, the physical conditions change abruptly across
the interface. Since Maxwell’s equations are valid in the entire space, certain boundary
conditions are imposed on the fields to retain a meaningful solution. The situation
can be treated elegantly by dividing space into subdomains and formulating separate
solutions for the subdomains. Let us assume two material domains Di and D j with the
interface ∂Di j. On ∂Di j a surface current density ~js and a surface charge density ρs
can emerge. The global solution requires the subsolutions to be connected consistently,
i. e. obeying Maxwell’s equations. It can be shown that the tangential field components
fulfill [13]

~n× (~Ei−~E j) =~0 at ∂Di j, (2.15a)

~n× (~Hi− ~H j) = ~js at ∂Di j, (2.15b)

where ~n denotes the unit normal vector on the boundary. Hence, while the tangential
electric field components are continuous at the boundary those of the magnetic field
jump by an amount determined by surface currents. Analogously, the normal field
components satisfy

~n · (~Di−~D j) = ρs at ∂Di j, (2.16a)

~n · (~Bi−~B j) = 0 at ∂Di j, (2.16b)

which means that the normal component of the magnetic field is conserved, whereas
the displacement fields exhibit a jump defined by the surface charge density. In the
case of source-free domains ~js and ρs vanish.

2.4 Vector Helmholtz equation and plane waves
In this section a simple solution of Maxwell’s equations is discussed. For the case of
a source-free dielectric (µ = 1, σ = 0, ρ = 0, ~j =~0), combining Eqs. (2.4) with the
constitutive relations (2.13) yields the equation system

~∇ · [ε0ε(~r,ω)~E(~r,ω)] = 0, (2.17a)
~∇×~E(~r,ω) = iωµ0~H(~r,ω), (2.17b)
~∇× ~H(~r,ω) =−iωε0ε(~r,ω)~E(~r,ω), (2.17c)

~∇ · [µ0~H(~r,ω)] = 0. (2.17d)

An equation for the electric field can be found by the curl of Eq. (2.17b) substituted
into Eq. (2.17c),

~∇2~E +
ω2

c2 ε~E = ~∇(~∇ ·~E), (2.18)
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where the vector calculus identity ~∇×~∇× = −~∇2 +~∇~∇· is employed. Eq. (2.17a)
can be written as

~∇ ·~E =−~E ·~∇ ln(ε) (2.19)

and put into Eq. (2.18) to obtain the wave equation

~∇2~E +
ω2

c2 ε~E =−~∇[~E ·~∇ ln(ε)]. (2.20)

Using Eqs. (2.17b) - (2.17d) the wave equation for the magnetic field reads

~∇2~H +
ω2

c2 ε~H = ~∇× ~H×~∇ ln(ε). (2.21)

In the case of a homogeneous, isotropic dielectric environment (ε(~r) = ε = const.) the
wave equations simplify to the Helmholtz equations

(~∇2 +~k2)~E =~0, (2.22a)

(~∇2 +~k2)~H =~0, (2.22b)

with |~k| = k = ω

c
√

ε being the wave number. A solution to Eqs. (2.22) is provided by
propagating plane waves defined as

~E(~r, t) = ~E0 ei(~k·~r−ωt), (2.23a)

~H(~r, t) = ~H0 ei(~k·~r−ωt), (2.23b)

where the wave vector~k points into the direction of propagation. From Eqs. (2.17a),
(2.17d) it follows that~k ⊥ ~E and~k ⊥ ~H, i. e. the waves are transversal. In addition,
the curl equations (2.17b), (2.17c) imply ~E ⊥ ~H such that for a source-free dielectric
or vacuum the vector orientations are given by

~k ⊥ ~E ⊥ ~H. (2.24)

The dispersion relation connects the wave number k to the angular frequency ω . Con-
sidering electromagnetic plane waves in vacuum, the relation reads

ω = c · k = 2πc
λ

(2.25)

with λ the vacuum wavelength. Ideal plane waves do not exist in nature because they
would carry an infinite amount of energy. Nevertheless, they allow for a good approx-
imation to real waves in the far-field. Due to the linearity of Maxwell’s equations any
linear combination of plane waves provides a solution as well.

When focusing a light beam through e. g. a microscope objective, the minimum
focal size s is governed by the diffraction limit,

s' λ

2
, (2.26)

a fundamental law discovered by E. Abbe [62] which dictates the minimal “volume”
of light with conventional focusing methods like lenses. In the following chapter, a
way to considerably reduce the volume occupied by an electromagnetic mode, down
to the deep subwavelength regime, is introduced.



3
Principles of plasmonics

S queezing of light down to subwavelength dimensions happens when metallic nano
objects interact with incident electromagnetic radiation. This astonishing effect

is caused firstly by the object’s geometry and is well established in waveguiding de-
signs as well as subdiffraction sized cavities [63, 64]. Secondly, the optical properties
of metals are key as they offer a large number of quasi-free electrons which form a
charge density wave, known as plasmon, creating evanescent optical fields at the ob-
ject’s surface. Particular interest lies in noble metals, mainly gold, being chemically
inert and having favorable optical properties on the red side of the optical spectrum.
Moreover, the possibility to chemically synthesize monocrystalline gold platelets al-
lows to fabricate high-quality gold nanostructures for sophisticated nano-optical exper-
iments [65–67]. The physics of plasmons is crucial for the effects shown in this work.
In the present chapter, beginning with an analysis of the dielectric function of noble
metals, the conditions and properties of surface plasmons at basic planar geometries
and particles are investigated.

3.1 Optical properties of noble metals
As stated in Sec. 2.3, electromagnetic fields in matter are dramatically influenced by
the electronic and atomic configuration, i. e. for a solid the electronic band structure
largely determines the optical response, quantified by the complex-valued frequency-
dependent dielectric function ε(ω) = ε ′(ω)+ iε ′′(ω). When a metal is illuminated
by an electromagnetic wave the conduction electrons collectively oscillate 180° out
of phase, giving rise to the well observable high reflectivity. Consequently, ε ′(ω) is
negative for the spectral regime of interest. Indeed, this condition turns out to be a
requirement for the occurrence of plasmons, cf. Sec. 3.2.1 below. While at radio fre-
quencies noble metals can be treated as perfect conductors this simple picture breaks
down at optical frequencies. The excitation field now changes so rapidly in time that
the finite effective electron mass m∗ cannot be neglected anymore. It prevents the
charge density from an instantaneous response to the source field. Thus, the shielding
becomes imperfect and some portion of the field penetrates into the bulk. The (posi-

11
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tive) imaginary part ε ′′(ω) accounts for the damping of electron motion, e. g. due to
scattering at phonons or impurities.

The simplest approach to model the dielectric function of noble metals is known
as Drude-Sommerfeld theory. It accounts for the polarization of the free electron gas,
obeying the equation of motion for the electron displacement vector~r [13]

me
∂ 2~r
∂ t2 +meΓ

∂~r
∂ t

= e~E0e−iωt , (3.1)

where a time-harmonic driving field with angular frequency ω and amplitude ~E0 is
assumed. me and e are the effective electron mass and elementary charge. The velocity-
dependent damping term contains Γ = vF/l with vF being the Fermi velocity and l the
electron mean free path between scattering events. Since only unbound electrons are
treated, Eq. (3.1) lacks a restoring force term. The ansatz~r(t) =~r0 e−iωt leads to the
Drude dielectric function,

εD(ω) = 1−
ω2

p

ω2 + iΓω
. (3.2)

The expression ωp =
√

ne2/(meε0) is known as plasma frequency. n denotes the den-
sity of free electrons.

Fig. 3.1 a shows the measured dielectric function of single-crystalline gold [68]
together with a fit of Eq. (3.2). The fit parameters are h̄ωp = 8.95eV and h̄Γ =
47meV. As is clearly seen, Drude-Sommerfeld theory only approximates the long
wavelength part reasonably and becomes inaccurate below 800nm, especially in the
imaginary part. For shorter wavelengths, the response of bound electrons needs to be
included [13, 69]. In gold, valence electrons from the d-band exhibit interband tran-
sitions into the sp conduction band if excited by a photon with sufficient energy. This
absorption process manifests as a drastic increase of ε ′′ below 550nm. Classically the
bound electron response can be approximated by a driven, damped harmonic oscillator
whose equation of motion reads

m
∂ 2~r
∂ t2 +mγ

∂~r
∂ t

+α~r = e~E0e−iωt , (3.3)

where m is the effective mass of bound electrons, γ is their damping rate, and α plays
the role of a spring constant in the restoring atomic potential. With the above ansatz an
interband transition adds a Lorentzian term

εInterband(ω) = 1+
ω̃2

p

(ω2
0 −ω2)− iγω

(3.4)

to the dielectric function such that the Drude-Lorentz model reads

εDL(ω) = εD(ω)+ εInterband(ω). (3.5)

The shorthand expression ω̃p =
√

ñe2/(mε0) is defined analogously to the plasma
frequency in Eq. (3.2), however, with a different physical meaning. ñ is the den-
sity of bound electrons and ω0 =

√
α/m is the interband transition frequency. In
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Figure 3.1 – Dielectric function of gold in the visible and near infrared (NIR). The
real part ε ′ is plotted in red, the imaginary part ε ′′ in black. Measured values (dots) are
single crystal data taken from Olmon et al. [68]. The solid lines show different model fits.
a) Drude model. b) Drude-Lorentz model. c) Multi-coefficient material (MCM) model.
The fit parameters are given in the text. Note the different scale of positive and negative
ordinates.

order to account for further interband transitions a cumulative offset ε∞ can be em-
ployed. Fig. 3.1 b displays a Drude-Lorentz fit to the experimental dielectric func-
tion. The solid lines show that including one interband transition improves the model
significantly, down to λ = 500nm. As fit parameters, h̄ω̃p = 2.83eV, h̄γ = 0.59eV,
ω0 = 2πc/λ0 with λ0 = 450nm, and ε∞ = 5 are used. Adding more Lorentz-oscillators
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allows modeling the dielectric function with arbitrary precision, however, this adds a
large number of unphysical parameters. A more physical path to the problem is a so-
called critical point analysis which uses modified Lorentz oscillators to better repro-
duce asymmetric lineshapes. Resulting fits have a small set of physically meaningful
parameters and comply very well with the experimental dielectric function [70–72].

In finite-difference time-domain (FDTD) simulations, explained in more detail in
Chap. 4, it is essential to accurately model each material’s dielectric function in the
spectral region of interest. The FDTD software package contains a proprietary multi-
coefficient material (MCM) fit which calculates a polynomial fit for ε ′(ω) and ε ′′(ω)
obeying the Kramers-Kronig relations [73]. In Fig. 3.1 c the MCM fit is applied to the
experimental data, yielding an excellent fit over the entire bandwidth. It is worth men-
tioning that the MCM method is not developed from a physically meaningful picture,
such as a critical point analysis, but rather offers a computationally efficient calculation
of the optical properties of noble metals.

The majority of metallic structures discussed in this thesis are made of gold. Some
structures are also simulated with silver as material. The dielectric function of template
stripped polycrystalline silver [74], together with MCM fit is presented in Fig. 3.2. It
can be inferred from the monotonous behavior of ε ′ and ε ′′ that silver behaves as a pure
Drude metal in the visible and near infrared (NIR). Indeed, the first interband transition
occurs around λ = 300nm. Simultaneously, the imaginary part is smaller than that
of gold, in particular for the green and blue spectral region, which makes silver an
interesting candidate for nano-optics at shorter wavelengths [75–77]. The chemical
reactivity of silver, however, is higher than of gold, making it more challenging to
handle under ambient conditions.

3  2.5 2  1.5

0

0.5

1

1.5

400 500 600 700 800 900 1000
-50

-40

-30

-20

-10

data
fit

Energy (eV)  

Wavelength (nm)

D
ie

le
ct

ric
 F

un
ct

io
n

Multi-coefficient

Figure 3.2 – Dielectric function of silver in the visible and NIR. The real part ε ′ is
plotted in red, the imaginary part ε ′′ in black. Measured values (dots) are template stripped
polycrystalline data taken from Yang et al. [74]. The solid lines show a MCM model fit.
Note the different scale of positive and negative ordinates.
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3.2 Surface plasmon polaritons
In the last section the dielectric function of noble metals is shown to have a nega-
tive real part and a positive imaginary part at optical wavelengths. In contrast, a di-
electric material is characterized by a real-valued positive dielectric constant. At a
metal-dielectric interface, solutions of the homogeneous Helmholtz equation (2.22)
are composed of electromagnetic fields propagating in-plane, while the out-of-plane
field is evanescent. The fields are coherently coupled to surface charge density waves
at the metallic surface, resulting in a surface plasmon polariton (SPP). Such coupled
excitations are described as quasiparticles in condensed matter physics so that an SPP
can be regarded as a coupled light-plasma quantum. In the following, the condition for
the existence of SPPs and their basic properties are discussed.

3.2.1 Single interface
The simplest model system is a single interface in a Cartesian coordinate system, lo-
cated at z = 0 without loss of generality. The lower halfspace z < 0 is occupied by
the noble metal with ε1(ω) = ε ′1(ω)+ iε ′′1 (ω) and the upper halfspace z > 0 is filled
with a dielectric, see Fig. 3.3 a, where a gold-air boundary (ε2 = 1) is assumed. Only a
p-polarized eigensolution exists for the SPP because the electric field vector has to pos-
sess a component parallel to the plasmon’s dipole moment, i. e. in x-direction, which is
exactly zero in the case of s-polarization. Thus the electric field vector can be written
as [13]

~E j =

E j,x
0

E j,z

eikxx−iωteik j,zz, j = 1,2. (3.6)

The two halfspaces are labeled by j, the SPP wave number by kx, and the out-of-plane
wave number for the halfspaces by k j,z. Due to its polarization (Ex 6= 0, Ez 6= 0, Hy 6= 0)
Eq. (3.6) is also known as transverse magnetic (TM) mode.

Exploiting the conservation of the parallel wave vector kx and the boundary con-
ditions (2.15a) and (2.16a) (with σs = 0), a dispersion relation connecting the wave
vector with the angular frequency can be formulated,

kx(ω) =

√
ε1(ω)ε2

ε1(ω)+ ε2

ω

c
(3.7a)

k j,z(ω) =

√
ε2

j

ε1(ω)+ ε2

ω

c
, j = 1,2 (3.7b)

for parallel and normal wave vector components. Contrary to free-space light (Eq. (2.25))
the SPP dispersion relation is nonlinear. From ε1(ω) ∈ C it follows that kx,k j,z ∈ C.
The mostly imaginary k j,z (compare the values of ε1(ω) of Fig. 3.1 with ε2 = 1) give
rise to the evanescent nature of the SPP in z-direction, as plotted in Fig. 3.3 b for an
exemplary wavelength of 830 nm. It can be seen that the penetration depth into the
gold is much smaller than into the air halfspace. For kx both its real and imaginary part
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Figure 3.3 – Surface plasmon polariton at a gold-air interface. a) Sketch of the in-
terface at z = 0 with illustrated charge density wave and coupled field (curved arrows).
The bound SPP propagates in forward x-direction, indicated by~kx. The definition of the
effective wavelength λeff is also visible. b) Electric field as a function of z-coordinate at
vacuum wavelength λ0 = 830nm, showing the exponential decay away from the interface.
Figure design inspired from [78].

play an important role. Thus it is common to represent the complex SPP wave number
as

kx(ω) = β (ω)+ iα(ω), (3.8)

where β ≡ℜ(kx) is the propagation constant and α ≡ ℑ(kx) the field attenuation con-
stant of the SPP due to Ohmic losses. From Eqs. (3.7a) and (3.7b) one is able to find
necessary conditions for the existence of a bound interface mode. First, imaginary
perpendicular components of k occur if the dielectric functions forming the interface
fulfill ℜ [ε1(ω)+ ε2]< 0. Second, the parallel component kx needs to have a real part,
i. e. nonzero β which is realized if ℜ [ε1(ω) · ε2]< 0. Recalling the dielectric functions
of gold and silver, Figs. 3.1 and 3.2, it is evident that both metals, interfacing a dielec-
tric such as air (εair = 1) or glass (εglass ≈ 2.3) meet these conditions and therefore are
able to support bound SPPs.

The dispersion relation of an SPP at a gold-air interface is shown in Fig. 3.4 a for
the optical regime. The MCM fit to the measured dielectric function of gold [68] is
used for ε1(ω), as displayed in Fig. 3.1 c. Indeed, two connected branches are visible
in the dispersion relation. The higher-frequency branch below λ = 510nm describes
propagation inside the metal (Brewster mode) [13] and is not of interest here. The low
frequency branch describes the bound SPP mode. For increasing frequency it bends
further away from the light line and assumes increasing wave numbers. As there is no
intersection point between the lines, SPPs on ideal smooth surfaces do not decay into
far-field radiation. Likewise, excitation is impossible by far-field illumination from air.
To overcome this momentum mismatch one can apply the Otto [79] or Kretschmann
configuration [80] where the light beam is guided through a glass prism coupler. With
the light line in glass lying below that of air (not shown) the required momentum can be
delivered to excite SPPs on a metal film. Figure 3.4 b depicts the attenuation constant
α as a function of frequency and vacuum wavelength, revealing a drastic increase as
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Figure 3.4 – Dispersive properties of SPPs. a) Dispersion of propagation constant β of a
gold-air interface (red solid line) plotted against frequency ν = ω/2π , along with the light
line in air (black dashed line). Dielectric properties are modeled after Fig. 3.1 c. b) Dis-
persion of attenuation constant α . On the right axis, vacuum wavelengths corresponding
to the frequencies are added. c) Effective wavelength λeff of the SPP (red solid line) as a
function of frequency, in comparison to the well established relation λ = c/ν in air (black
dashed line). d) Decay length ldecay of the SPP as a function of frequency. The blue dashed
lines mark the vacuum wavelength of 830 nm.

the propagation constant β moves away from the light line. In other words, the SPP is
governed by the damped surface charge oscillations in this spectral regime. At lower
frequencies where β lies close to the light line the SPP behavior rather resembles a
plane wave oscillation found in free-space radiation. Correspondingly, the damping
constant is very small. In plasmonics the general trade-off is found that increased light
localization comes at the price of higher dissipation.

To provide a more intuitive picture of the SPP properties, length quantities are de-
rived from β and α . The effective wavelength of a SPP mode is defined as

λeff =
2π

β
. (3.9)

It turns out to be always shorter than the free-space wavelength at the respective fre-
quency. From the attenuation constant the decay length ldecay is deduced after which
1/e of the initial SPP intensity upon propagation is left:

ldecay =
1

2α
. (3.10)
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λeff and ldecay are plotted in Fig. 3.4 c and d, respectively. In agreement to the above
observations, large decay lengths are identified in the region where the effective wave-
length nearly coincides with the vacuum wavelength. A more reduced effective wave-
length is accompanied by short decay lengths.

3.2.2 Double interface

According to the previous section each metal-dielectric interface is able to support a
bound SPP mode under the considered circumstances. A metallic film is thus expected
to host two such modes, one at each interface [81, 82]. Here we study a symmet-
ric insulator-metal-insulator (IMI) system, air-gold-air, with varying gold film thick-
ness t (Fig. 3.5 a). For films much thicker than the SPP penetration depth the two
SPPs behave like individual states. Reducing the thickness below that length scale
gives rise to a mutual Coulomb coupling between the SPPs at the double interface
which creates new hybrid states comparable to strongly interacting electron orbitals in
molecules [83].

x
y

z

gold 𝜀1(𝜔)

air 𝜀2

𝑘𝑥

a)

air 𝜀2

t

+ + +
− − −

+ + +
+ + +

Symmetricb) Antisymmetric

Figure 3.5 – SPP hybrid modes at an air-gold-air interface. a) Sketch of the IMI struc-
ture. b) Electric field components Ex (dashed lines) and Ez (solid lines) for the symmetric
(red) and antisymmetric (blue) mode as a function of z at a vacuum wavelength of 830 nm.
The film thickness is t = 200nm. Corresponding charge distributions are indicated. Note
the scaling of Ex for better visibility. Figure design inspired from [78].

The dispersion relation for a double layer system yields a transcendental equation
between kx and ω and can therefore not be solved algebraically [84]. Instead, we
numerically determine the modal properties for the air-gold-air structure by means
of a finite-difference frequency domain solver (cf. Sec. 4.3). The hybrid states are
classified according to the symmetry of surface charge distributions on the metal sur-
face. Fig. 3.5 b displays the electric field components for a 200 nm thick gold film sur-
rounded by air. The symmetric mode (quasi TM mode) is characterized by a symmetric
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Ex field w. r. t. the z-axis whereas Ez changes its sign. Surface charges at the metal sur-
faces are arranged symmetrically. In the antisymmetric case (quasi transverse-electric
(TE) mode) Ex passes through zero at z = 0, with charges of opposite sign gathering at
the surfaces, while Ez is symmetrically distributed.

a) b)

Thickness t (nm) Thickness t (nm)

Figure 3.6 – Dispersive properties of hybrid modes at the air-gold-air double inter-
face. a) Propagation constant β of the symmetric (red) and antisymmetric (blue) mode for
varying film thickness t. b) Attenuation constant α of the symmetric (red) and antisym-
metric (blue) mode. All values are taken for a vacuum wavelength of 830 nm.

Figure 3.6 compares the propagation and attenuation constants of symmetric and an-
tisymmetric mode at 830 nm. Large film thicknesses yield degenerate modes. Below
t = 150nm a splitting is observed for both β and α . The symmetric mode experiences
a strong increase in both constants for decreasing t. Physically, the mode assumes large
wave numbers, i. e. it is highly confined, in conjunction with high losses. The anti-
symmetric mode shows rather opposite behavior. Its propagation constant approaches
a value of 7.6µm−1. This coincides surprisingly well with the free-space value of β

at λ = 830nm (see the intersection point of the blue dashed line and the light line in
Fig. 3.4 a), meaning that the antisymmetric mode resembles a plane wave propagating
along the thin gold film. At the same time the mode’s damping becomes small, as ob-
served in α , which agrees with the aforementioned trade-off in plasmonics. Due to the
long decay lengths of this class of SPPs, they are termed long-range SPPs [85–87] and
qualify for applications in plasmonic circuitry [88, 89]. IMI structures with dissimi-
lar dielectric layers bear more complex hybrid solutions [90] which are not discussed
here. The inverse design, a metal-insulator-metal stack, also supports (anti)symmetric
hybrid modes for small insulating gaps [91–93].

3.3 Plasmon resonances of nanoparticles
In the previous section propagating plasmons at smooth interfaces, largely determined
by the involved dielectric functions, were explored. We now draw our attention to the
interaction of light with small metallic particles. These are able to sustain resonant
surface plasmons with the potential of high localization (i. e. small mode volume) and
strong resonant enhancement of electromagnetic fields which also boost the interaction
cross sections. Hence, besides the material properties the particle’s geometry and size
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are of utmost importance in plasmonics. To understand why a resonance builds up in
closed particles we illustrate an analogy to classical mechanics in Fig. 3.7. Upon exci-
tation by an external electric field the electron plasma in the gold nanosphere oscillates
against the positively charged lattice background. Electrons are pushed towards the
boundaries and the motion is counteracted by the restoring Coulomb force from the
ionic background. The mechanical analog contains a mass with a spring attached. The
mass resembles the electron gas as both are subject to inertia. The spring delivers a
backdriving force linear to the displacement, representing Coulomb interaction. This
driven (damped) oscillator picture captures the resonant behavior of the plasma oscil-
lation amplitude and the related phase shift around the resonance frequency. Another
access to the resonant nature of plasmons on closed particles is provided by consid-
ering the particle as a Fabry-Pérot cavity. Several particle shapes are studied in the
following subsections with regard to their plasmon resonances, starting with the case
of highest symmetry.

m
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Figure 3.7 – Plasmon resonance and mass-spring model. Left: Sketch of nanosphere
with momentary charge distribution, electric field lines and current density ~j upon excita-
tion with ~Ein. Inspired from [13]. Right: Mass attached to a spring with spring constant D,
exhibiting a harmonic oscillation similar to the charge density on the sphere. The resonant
behavior gives rise to a Lorentz-shaped peak amplitude in conjunction with a phase jump
at resonance.

3.3.1 Single sphere
Mathematically, the basic task is to solve the vector Helmholtz equation (2.22) for a
multiple domain setup under the correct boundary conditions. The most symmetric
situation, a sphere embedded in a homogeneous environment, where a plane wave is
impinging, can be solved analytically and is widely known as Mie theory [60, 94].
G. Mie wrote incoming and scattered electromagnetic fields as an infinite series of
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vector spherical harmonics, a special class of mathematical functions obeying orthog-
onality [58, 60]. Each scattered mode is weighed by a Mie coefficient. The most
fundamental modes are denoted as electric dipole mode and electric quadrupole mode.
The former is illustrated in Fig. 3.7. As can be seen from the charge distribution it is
associated with a dipole moment.
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Figure 3.8 – Absorption and scattering efficiencies of gold nanospheres. a) Absorption
(blue) and scattering (red) of a sphere with 10 nm radius in air. The quasi-static approx-
imation (dots) reproduces full Mie calculations (solid lines) remarkably well. Note the
distinct scaling of scattering curves for better visibility. b) Same as in a) for a sphere ra-
dius of 60 nm. With increasing particle size deviations between quasi-static approximation
and Mie theory become evident. Figure design inspired from [95].

A well-established simplification is the quasi-static approximation, valid for parti-
cle radii a much smaller than the wavelength of the applied field (ka� 1). One can
then assume that the entire particle is exposed to a uniform excitation phase. It has
been demonstrated that the resulting field around a sphere is identical to the electro-
magnetic field of a static point dipole residing at the center of the sphere [60]. From
this correspondence, the induced dipole moment is proportional to the field, similar to
Eq. (2.12a),

~p = ε0ε2ξ~Ein, (3.11)

with the polarizability ξ 1,

ξ = 4πa3 ε1− ε2

ε1 +2ε2
. (3.12)

Here, ε1 and ε2 are the dielectric functions of the sphere and the surrounding, respec-
tively. A vanishing denominator implies a resonance condition for ℜ(ε1) = −2ε2 oc-
curring at green wavelengths for a gold nanosphere in air (cf. Fig. 3.8). The particle’s
response to an applied field is referred to as its interaction cross section where different
mechanisms are considered. The absorption cross section Cabs accounts for the light
absorbed by the particle and transferred to nonradiative channels such as heat, phonons
etc. (Re-)scattered fields, i. e. radiative channels are included in the scattering cross

1In the literature, the polarizability is usually denoted as α . To avoid confusion with the field atten-
uation constant α defined in Sec. 3.2.1, in this work we denote the polarizability as ξ .
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section Cscat. The sum of both is called extinction cross section Cext = Cabs +Cscat.
In the framework of the quasi-static approximation, the polarizability (3.12) allows to
express the cross sections in a simple closed form [60]:

Cabs = k ·ℑ(ξ ) ∝ a3 (3.13a)

Cscat =
k4|ξ |2

6π
∝ a6 (3.13b)

A strong dependence on the particle size is obtained. While particles with small vol-
ume mostly absorb incoming light the response of larger particles is governed by scat-
tering. Figure 3.8 illustrates a comparison between full Mie theory and quasi-static
approximation as well as the limitation of the latter. Panel a) depicts scattering and
absorption efficiency (interaction cross section divided by geometric cross section) for
a gold nanosphere of radius 10 nm in air. As expected, the scattering efficiency is weak
compared to absorption. Resonance features for the former and latter are obtained at
518 nm and 505 nm wavelength. Both calculation methods agree very well. A differ-
ent situation is found for a larger gold sphere with radius 60 nm in Fig. 3.8 b. Here
both cross sections have a similar efficiency. Strikingly, the approximative method
blue-shifts the resonances w. r. t. full Mie calculations which demonstrates the limited
applicability for bigger particles. In such a case retardation effects, e. g. non-uniform
excitation phase and polarization vectors across the particle dimension have to be taken
into account [96]. This is the point where fully vectorial numerical simulations enter
and become the method of choice when modeling the optical response of such non
quasi-static objects. Chap. 4 is dedicated to the finite-difference time-domain algo-
rithm, one of the most popular numerical approaches.

To conclude this section, we take a brief look at the case of ellipsoidal particles
within the quasi-static approximation. We assume two minor semiaxes a,b and one
major semiaxis c > a,b (prolate ellipsoid). The geometric generalization of the spher-
ical shape manifests itself as a generalization of the polarizability expression into a
tensor whose long axis component ξc reads as [60]

ξc = 4πabc
ε1− ε2

3ε2 +3Lc (ε1− ε2)
, (3.14)

where Lc is the geometrical factor for polarization along the major axis. Lc depends
on the eccentricity and thus on the aspect ratio of the ellipsoid [60, 97–99]. For a
sphere Lc = 1/3 holds, which reduces Eq. (3.14) to the aforementioned polarizability
Eq. (3.12).

3.3.2 Single rod
In the previous section gold nanospheres embedded in air turned out to have a (dipolar)
plasmon resonance at 510 nm that weakly depends on particle size. However, a myriad
of applications involving plasmonics, e. g. strong light-matter interaction [14, 15, 100–
102], metasurfaces [19], surface-enhanced Raman scattering (SERS) [103, 104] even
down to the single-molecule level [105, 106], photodetection via hot electrons [107]
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and biosensing [108, 109], to name a few, calls for resonances at well-defined fre-
quencies across the entire visible and NIR spectrum. Various particle shapes, reach-
ing from shells, triangles, slits and more have been harnessed in these cited works to
achieve spectral tunability of plasmonic resonances. Likewise, the ellipsoid’s polar-
izability Eq. (3.14) already hints towards the most intuitive way towards resonance
tuning, namely by using elongated nanoparticles.

Rods are among the simplest elongated particle designs, consisting of a cylindrical
wire section terminated by two hemispherical end caps. As nanorods are a fundamen-
tal building block for several structures throughout this work, it is highly instructive
to understand their resonant behavior within a “lightweight” model. Here we treat the
rod as a Fabry-Pérot resonator [11, 75, 110, 111] in which a guided SPP exists on the
cylindrical section, similar to an IMI structure discussed in Sec. 3.2.2. One can imag-
ine that by rotating the IMI layer around its longitudinal symmetry axis, it becomes a
cylindrical metal wire and that their modal properties are thus related. Moreover, in the
limit of infinite cylinder radius the SPP solution of a single interface (cf. Sec. 3.2.1) is
attained [112], corroborating the strong connection between propagating and particle
plasmons. On the continuous piece of wire waveguide the SPP propagates back and
forth. According to the mass-spring model (cf. Fig. 3.7) the plasmon feels a restor-
ing force at the end caps, resulting in a reflection. Another point of view is conveyed
by impedance matching [6, 50, 51]. The abrupt structural change from the uniform
waveguide across the end cap towards vacuum induces discontinuities in the guided
mode’s impedance which is accompanied by high reflectivities. Not only the ampli-
tude is affected by each reflection at the end cap, also the phase of the SPP experiences
a shift which depends on the exact termination geometry and must be taken into ac-
count [110, 111].

Figure 3.9 a illustrates the rod as Fabry-Pérot resonator with net length, total length,
and phase jumps associated with the end caps. Altogether a standing wave is able to
build up on the rod by constructive interference if the phase accumulated upon an entire
round-trip equals an integer multiple of 2π . Thus a Fabry-Pérot resonance emerges if
the net rod length Lnet fulfills the condition

βLnet +φe = nπ, n ∈ N (3.15)

with β the propagation constant of the guided SPP and φe the reflection phase at the
end cap adjacent to vacuum. Note that to compute the propagation phase one must use
the net length of the uniform cylindrical section Lnet instead of the total rod length L
because the guided mode is not an eigenmode on the end caps. Together with Eq. 3.9 a
linear relation is established between effective wavelength and net rod length at which a
resonance arises. In addition, a linear effective wavelength scaling with vacuum wave-
length has been derived for metallic rods at optical frequencies as long as the material
behaves like a Drude metal [113, 114]. If the dispersion relation of the guided mode
and the reflection phase are known, resonance wavelengths of nanorods of lengths L
can be calculated by Eq. (3.15). Results for the first three resonance orders on gold
nanorods are visualized in Fig. 3.9 b. The rod diameter is fixed to 30 nm. As ex-
pected, the resonance wavelength scales almost linearly with the rod length since the
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Figure 3.9 – Fabry-Pérot resonances of nanorods. a) Schematics of the Fabry-Pérot
model. A guided wire mode propagates along the cylindrical part (Lnet) of the rod. At the
hemispherical end caps and open vacuum ends, the mode is subject to a reflection phase
shift φe. The entire rod length is denoted L. b) Calculated resonance wavelengths for
rod length L at a fixed rod diameter of 30 nm. The lowest three Fabry-Pérot resonances are
shown in red, blue, and violet. The black dashed line marks 830 nm resonance wavelength.
c) Near-field intensity (|E|2) enhancement maps for first, second, and third resonance order
at 830 nm simulated by the FDTD method (cf. Chap. 4). Rod lengths are 157 nm, 346 nm,
and 548 nm, respectively. Momentary charge distributions are indicated on the rods. Note
the different color scale for each mode. Figure design inspired from [95].

free electron gas in gold mainly contributes to the plasmonic response between 670 nm
and 1000 nm (cf. Sec. 3.1). This scaling represents a useful design rule for resonance
tuning of rods. It is worth mentioning that the dispersion relation and reflection phase
have been obtained numerically as a function of vacuum wavelength such that the over-
all calculation is semi-analytical. In Secs. 4.3 and 4.4.2, the numerical methodology
is explained in detail. Later, the Fabry-Pérot model is revisited in Sec. 7.3.1 where
plasmonic nanorod resonances are investigated under the viewpoint of generalized co-
herent perfect absorption (gCPA).

At vacuum wavelength 830 nm we obtain the resonance rod lengths L = 156nm,
351 nm, 546 nm for first, second, and third Fabry-Pérot orders. Each resonance is as-
sociated with highly enhanced and confined near-fields at the rod terminations, render-
ing these structures an attractive building block for various applications as mentioned
above. Fig. 3.9 c presents simulated near-field intensity (|E|2) enhancement maps for
each resonance. Albeit with slightly deviating rod lengths the Fabry-Pérot condition
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is still well fulfilled. The fundamental resonance is of dipolar nature, as indicated
by the asymmetric momentary charge distribution. Subsequent higher orders of de-
gree n are characterized by n charge nodes along the rod. The third resonance order
again possesses a net dipole moment that can couple to far-field radiation. Hence, first
and third order are superradiant modes. In contrast, the second order has vanishing
net dipole moment due to its symmetric charge distribution. This mode only weakly
couples to the far-field and is therefore termed subradiant. Its damping over time is
dominated by Ohmic losses. According to the reciprocity theorem [13] it cannot be
excited with an impinging plane wave at normal incidence. A symmetry break must be
introduced into the system [115]. Here the nanorod is illuminated by a Gaussian beam
at an angle of 45° w. r. t. the normal direction. Also the enhancement factors differ
for the three modes. Maximum intensity enhancement is observed for the fundamental
dipolar resonance. With increasing rod length the Ohmic dissipation upon propagation
becomes more and more pronounced and diminishes the enhancement factor for higher
orders. One more aspect determining the enhancement shown here is the difference in
excitation efficiency between the modes. Superradiant modes are ideally far-field ex-
cited with a normal incidence beam. However, the subradiant second order resonance
is driven less efficiently by the grazing incidence. Therefore its enhancement factor
cannot be compared directly with those of the superradiant modes.

Besides longitudinal resonances, also transverse resonances exist on a nanorod
where charges oscillate perpendicular to the long axis [116, 117]. Transverse reso-
nances are only weakly tunable by changing the rod diameter. Compared to the lon-
gitudinal counterparts their near-field intensity enhancement factors remain relatively
weak.

3.3.3 Double rod

Combining two nanorods in close proximity to a rod dimer opens a new class of
plasmonic resonances which is of particular interest because of even higher field en-
hancement and confinement in hotspot regions. Here we discuss end-to-end aligned
nanorods separated by a narrow gap. Coulomb interactions couple the individual plas-
mon oscillations across the gap, giving rise to hybrid modes of a rod dimer, similar as
observed for SPPs in thin IMI stacks (cf. Sec. 3.2.2). Drawing the analog to classical
mechanics, two mass-spring systems coupled by a third spring intuitively explain the
modal symmetries [118–121].

In the so-called antibonding mode, Fig. 3.10 a, the two masses oscillate out of phase,
i. e. undergo a symmetric motion w. r. t. the center of the structure. The same is true
for the charge oscillations on the gold nanorod dimer. This implies that charges of
equal sign appear at the gap and create a field minimum at the center. At the far ends,
however, enhanced near-fields close to the metal are visible. Quite the opposite hap-
pens for the mode where the masses move in-phase so that the coupling spring is at
constant length all the time (cf. Fig. 3.10 b). Also the charges on the plasmonic parti-
cles oscillate with the same phase which leads to an antisymmetric charge distribution.
Attractive Coulomb interactions across the gap accumulate an increasing number of
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Figure 3.10 – Hybrid modes and energy splitting in rod dimers. a) Mechanical mass-
spring model and plasmonic double rod structure showing out of phase oscillations (an-
tibonding mode). The near-field intensity map is simulated for rod diameter 30 nm, rod
length 166 nm, and gap width 4 nm at λ = 818nm. b) Same as in a) but for the bonding
mode. The simulated rod length is 120 nm. c) Energy splitting of rod dimer modes for two
different gap sizes, in comparison to a single rod. Reprinted and adapted with permission
from [115]. © 2010 American Chemical Society.

charges in this so-called bonding mode. Therefore the electric near-field is consider-
ably enhanced and localized to the gap region. A similar symmetry argument as for the
longitudinal modes of a single nanorod holds here regarding excitation mechanisms.
The bonding mode can be excited from the far-field by a plane wave propagating per-
pendicular to the dimer axis. In order to drive the antibonding mode an asymmetric
excitation is needed, e. g. an offset Gaussian beam or a point dipole source near the rod
ends. The latter scheme is used to obtain the near-field intensity map in Fig. 3.10 a.

The formation of the hybrid modes is accompanied by an energy splitting as de-
picted in Fig. 3.10 c. One may well imagine that the out of phase motion happens at
a higher frequency than the plasmon oscillation on an isolated rod since the coupling
spring adds to the total restoring force. The energy of the antibonding mode is thus
increased. In the classical picture the resonance frequency of the in-phase coupled
masses is equal to a single mass-spring system [122]. Considering the electromagnetic
nature of plasmons, however, the attractive Coulomb interaction lowers the energy so
that the bonding plasmon mode appears energetically below the single rod resonance.
The total energy splitting and the maximum field enhancement depend critically on the
gap width between the particles, with narrow gaps causing larger resonance shifts and
higher enhancement factors.
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Aligning two nanorods side by side, longitudinal and transverse modes on single
rods hybridize and offer a variety of coupled modes with different symmetries, res-
onance shifts and line widths [123]. Using a bottom-up self-assembly approach of
chemically synthesized gold nanorods ultra-narrow gaps can be produced, giving rise
to resonant near-fields confined down to atomic length scales [124].

3.4 Dipole coupled to plasmonic nanoantenna
Upon illumination by a light beam metallic nanospheres and nanorods exhibit highly
confined and resonantly enhanced near-fields, as demonstrated in the last sections.
With this feature they serve as an interconnect between free-space light and localized
electromagnetic energy and are therefore termed optical antennas [8–12]. They are of-
ten combined with various optically active nano-objects, e. g. semiconductor quantum
dots, atoms, dye molecules, nitrogen-vacancy centers in diamond, defects in transition-
metal dichalcogenides (TMDCs), or, alternatively, tunnel currents (cf. Chap. 5). The
antenna’s task is to couple these nano-objects efficiently to the far-field and enhance
both transmitting and receiving processes.

It is therefore interesting to study the characteristics of such a quantum emitter
in close proximity to a plasmonic nanostructure. Originally, the increase of molecular
quantum efficiency (QE) upon changes of the local environment, e. g. by adding nearby
silver islands, was discovered by Wokaun et al. [125]. Here we consider a two-level
emitter with ground state |g〉, excited state |e〉, and transition frequency ω weakly
coupled to an antenna. In the perturbation limit the emitter can be described as a
classical dipole [9]. According to the multipole expansion of the current density ~j at
the origin ~r0, the lowest order term of the Taylor series is proportional to the dipole
moment ~p [13]:

~j(~r) =−iω~pδ (~r−~r0). (3.16)

The Dirac delta function is denoted by δ . The above equation states that a current
density can be approximately modeled by an electric dipole, an important step for
modeling tunneling currents (see Chap. 5). Inserting Eq. (3.16) into Poynting’s theo-
rem Eq. (2.8) and integrating over a closed surface according to Eq. (2.9) the radiated
power P from the emitter reads

P =
ω

2
ℑ[~p∗ ·~E(~r0)]. (3.17)

The dot product requires the dipole moment to be aligned with the local electric field
in order for the emitter to be influenced by the antenna. As the field value at~r0 enters
Eq. (3.17) the outgoing power is determined by the interaction of the emitter with its
own back-scattered field. Splitting ~E at the origin into primary and scattered field
contributions,

~E(~r0) = ~E0(~r0)+~Es(~r0), (3.18)

the normalized rate of energy dissipation can be written as [13]

P
P0

= 1+
6πε0ε

|~p|2k3 ℑ[~p∗ ·~Es(~r0)] (3.19)
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with P0 the power dissipated in a homogeneous vacuum environment. The scattered
field ~Es solely stems from inhomogeneities which thus are responsible for changes in
the radiation rate.

Excited quantum emitters embedded in free space are subject to spontaneous emis-
sion after a lifetime τ , a process triggered by fluctuations of a quantized vacuum field.
A quantitative description has been developed in the framework of quantum electro-
dynamics (QED) using Fermi’s golden rule. The rate of spontaneous decay γ is given
by [9]

γ =
1
τ
=

πω

3h̄ε0

∣∣∣〈g
∣∣∣~̂p ∣∣∣e〉∣∣∣2ρp(~r0,ω), (3.20)

where
〈

g
∣∣∣~̂p ∣∣∣e〉 is the matrix element for a dipole transition between |e〉 and |g〉 with

dipole operator ~̂p and ρp the partial photonic local density of states (LDOS), a measure
for the number of optical modes available per unit volume and unit frequency. The pho-
tonic LDOS can be expressed by the dyadic Green function of the system the quantum
emitter is embedded in. The LDOS is therefore highly dependent on the environment,
first discovered by Purcell in 1946 for atoms in a resonant electric circuit [126]. Impor-
tantly, an analogy between classical and quantum mechanical pictures can be drawn.
It is found that the normalized decay rate of a quantum emitter equals the normalized
dissipated power of a classical dipole [13]:

γ

γ0
=

P
P0

. (3.21)

This relation implies that changes in the decay rate of a quantum emitter can be safely
predicted by putting a classical point dipole in the same environment and observing its
emitted power analytically or in numerical simulations (cf. Chap. 4).

Analytical solutions to calculate dipolar decay rates close to small spherical par-
ticles have been reported decades ago [128]. As an optical antenna in form of a
double rod (cf. Sec. 3.3.3) provides highly enhanced fields in the gap it also pro-
vides significant LDOS enhancement and reduces quantum emitter lifetimes drasti-
cally. We illustrate the influence of an antenna by simulating the decay rate of a
quantum emitter2 placed in the gap of a gold rod dimer with the numerical bound-
ary element method (BEM) [127] (see also Sec. 5.2.2). First we assume the internal
quantum efficiency (IQE) of the emitter to be 1, i. e. all deexcitation processes result
in a photon and no internal loss is present. However, since the emitter is coupled to
a metallic nanostructure the total decay γ is determined by radiative decay γrad and
nonradiative decay γnrad. The latter contains Ohmic losses in the metal and coupling to
higher-order dark modes. Hence, the external quantum efficiency (EQE) can be written

EQE =
γrad

γrad + γnrad
. (3.22)

Simulated values for γrad and γnrad are plotted in Fig. 3.11 a. The inset shows the dou-
ble rod structure with the x-polarized emitter placed centrally in the gap. Each rod

2We restrict ourselves to the weak excitation limit where the emitter resides mostly in the ground
state |g〉 and no saturation effects are present.
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Figure 3.11 – Dipole in a gap antenna. a) Normalized radiative and nonradiative de-
cay rates as a function of antenna gap size, simulated by the boundary element method
(BEM) [127]. The inset visualizes the simulated structure. b) (External) quantum effi-
ciency of the dipole-antenna system for an emitter with internal quantum efficiency IQE=1
as the gap size varies. c) External quantum efficiency (EQE) as a function of IQE for se-
lected gap sizes. Within the gray shaded area radiative enhancement is achieved. Figure
design inspired from [95].

has a length of 120 nm and diameter 30 nm. We use the bonding plasmon resonance
with field hotspot in the gap (field aligned with dipole moment) to show the strong
dependency of the gap width on the LDOS enhancement. According to Sec. 3.3.3 a
varying gap size is associated with a shift of resonance wavelength. Thus the decay
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rates for different gap sizes are evaluated at the corresponding resonance wavelengths
between λ = 740nm (gap 40 nm) and λ = 820nm (gap 3 nm). Both decay rates are
highly enhanced for decreasing gaps. In each case the radiative decay exceeds the
nonradiative decay. From these numbers the EQE is evaluated via Eq. (3.22) and vi-
sualized in Fig. 3.11 b. It assumes stable values around 0.6 for a broad range of gap
widths. Shrinking the gap below 3 nm a breakdown of the EQE is indicated. If a
dipolar emitter resides very close to a metallic surface it is largely coupled to highly
confined nonradiative modes and a strong image dipole inside the gold generates heat,
giving rise to fluorescence quenching [129]. An EQE of 0.6 indeed means that the
radiation efficiency of the quantum emitter is reduced by the presence of the antenna.
An intrinsically 100 % efficient emitter simply cannot be improved in efficiency. The
lossy nature of the gold antenna decreases the overall QE.

The situation changes drastically if an intrinsically inefficient emitter is put in the
gap of the rod dimer. Now IQE = γ0

rad/(γ
0
rad + γ0

nrad) with the free-space decay rates
γ0

rad and γ0
nrad. Eq. (3.22) is then generalized to

EQE =
γrad/γ0

rad

γrad/γ0
rad + γnrad/γ0

rad +(1− IQE)/IQE
. (3.23)

Small values of IQE can be enhanced by several orders of magnitude as illustrated
in Fig. 3.11 c. The gray shaded area left of the dashed black line shows the region of
radiative enhancement of the EQE. The smaller the antenna gap the higher the enhance-
ment factor can be. This is an important finding because a variety of quantum emitters
available on the nanoscale is intrinsically quite inefficient such as photon generation
from inelastic tunneling (cf. Chap. 5) or radiative recombination of charge carriers in
zinc phthalocyanine (cf. Chap. 6).



4
Numerical simulations

U ltimately, physics is an experimental science. New knowledge is generated by
real-world observations under repeatable, reproducible, and in the best case con-

trollable environmental conditions. Observations must coincide with a theoretical
model to be properly interpreted. Theoretical foundations also have the task to predict
novel, unexplored effects that in turn reinforce efforts in experimental design and mea-
surement techniques. This way a mutual triggering of milestones between experiment
and theory is established which may e. g. also lead to previous models being proven
false and replaced by a corrected framework. In the field of nanophotonics, theoretical
modeling and numerical simulations play a paramount role for several reasons. First,
closed analytical solutions to Maxwell’s equations exist only for simplistic particle ge-
ometries (spheres) embedded in homogeneous surroundings [94]. More sophisticated
shapes and environments require thorough numerical modeling. Second, state-of-the-
art nanofabrication techniques such as top-down electron beam lithography (EBL) and
focused ion beam (FIB) milling are cost drivers. Consequently, launching brute-force
fabrication series to obtain complex antenna designs with desired resonances and other
functionalities by trial and error goes beyond any financial scope and timeline. Third,
the experimental observation of a certain physical effect can be overshadowed by en-
vironmental influences or imperfections of the sample under study. Thus the relation
between specimen properties, external influences and measured results remains elusive
and it would be of interest to consider a “neat” specimen under “ideal” circumstances.
In view of all these aspects, numerical simulations represent an essential and versatile
tool in nowadays’ nanoscience with their ability to not only forecast optical resonances,
near- and far-field distributions, among other physical quantities. Moreover, they allow
studies on idealized materials and “clean” systems, where the effect of interest can be
better explored and understood, in close relation to theoretical models. The possibility
to employ increasing computational resources allows comprehensive design optimiza-
tion.

Two major classes of algorithms to numerically solve Maxwell’s equations are in
use, viz. differential and integral methods. Depending on the problem at hand, a
certain algorithm may be better suited to find accurate solutions than the other ap-
proaches [130]. Among differential methods the finite-difference time-domain (FDTD)

31
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and the finite element (FE) are widespread because they are able to tackle a large va-
riety of nanophotonic problems. It is necessary to discretize the entire space, either
with a Cartesian grid or tetrahedrons, and to solve for electromagnetic fields in each
cell. Integral methods solve Maxwell’s equations in integral formulation via Green
function techniques in the frequency-domain. The dyadic Green tensor describes the
full vectorial fields originating from a source dipole with arbitrary orientation. Here it
is sufficient to subdivide the scatterer’s volume into small cells each of which carries a
dipole polarizability, as in the discrete dipole approximation (DDA) method. A second
popular implementation is the boundary element method (BEM) where only surfaces
between piecewise homogeneous objects are discretized, reducing the calculation of
desired fields to a surface integral expression [127, 131]. To the majority of numerical
problems addressed in this thesis the FDTD method is applied. Hence, this chapter
introduces the most important aspects of the underlying algorithm, methodology, and
postprocessing steps necessary for data evaluation. For in-depth information about the
FDTD technique the reader is referred to the comprehensive textbook of Taflove and
Hagness [132]. A brief description of the closely related finite-difference frequency-
domain (FDFD) method for waveguide eigenmode calculation is given, too.

4.1 The finite-difference time-domain algorithm
The main goal of the FDTD technique is to obtain electromagnetic fields on a dis-
cretized spatial lattice with iterative stepping through discrete time intervals. To better
illustrate how an elaborate discretization strategy leads to robust numerical operations
we rewrite Maxwell’s curl equations (2.1b), (2.1c) in components, assuming time-
independent ε , µ , and σ :

∂Ei

∂ t
=

1
ε

(
∂Hk

∂ j
−

∂H j

∂k
−σEi

)
, (4.1a)

∂Hi

∂ t
=

1
µ

(
∂E j

∂k
− ∂Ek

∂ j

)
. (4.1b)

Using Cartesian coordinates, {i, j,k} denote {x,y,z} and its cyclic permutations so that
Eqs. (4.1) establish a system of six coupled partial differential equations. We declare
the notation of a field component F at a grid point as

F(u∆x,v∆y,w∆z,n∆t) = Fn(u,v,w). (4.2)

The indices (u,v,w) mark the discrete position in (x,y,z)-direction in the Cartesian grid
and n is the discrete time step.

In 1966 Kane Yee introduced a discretization scheme which is nowadays known
as Yee cell [133]. One of its key ideas is that both electric and magnetic fields are
explicitly calculated instead of merely one field quantity, making the algorithm more
robust and versatile in computational electrodynamics [132]. Temporal updates of
the field components are arranged in a way such that electric and magnetic fields are
calculated alternately in increments of ∆t/2. Following this leapfrog scheme visible in
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Figure 4.1 – Temporal and spatial discretization methods in the FDTD algorithm
according to Yee’s proposal. a) Leapfrog stepping with alternating ~E and ~H computations
in increments of ∆t/2. b) Cubic Yee cell embedded in Cartesian coordinate system with
vertices labeld by (u,v,w) indices. Electric field components (red) are centered at the cube
edges. Magnetic field components (blue) are calculated at the face centers of the Yee cube.
Inspired from [133].

Fig. 4.1 a, e. g. previously stored ~E data together with the magnetic curl of the past half
time step are used to construct new ~E data. Partial time derivatives are approximated
with central-difference terms

∂Fn(u,v,w)
∂ t

=
Fn+1/2(u,v,w)−Fn−1/2(u,v,w)

∆t
+O(∆t2), (4.3)

being second-order accurate.
Another important feature of the Yee algorithm is the spatial distribution of field

components, as sketched in Fig. 4.1 b. Internally it uses an interleaved double lattice on
whose edge centers the components of ~E and ~H are allocated. The two grids are offset
by half a lattice constant in each dimension. Thus, the curl operations in Eqs. (4.1)
are naturally implemented because each ~E component is enclosed by four circulating
~H components and vice versa. Spatial distributions of ε,µ and σ are fed into the Yee
lattice so that physical structures are properly placed in the simulation volume. The
central-difference terms originating from the partial derivatives in x-direction read

∂Fn(u,v,w)
∂x

=
Fn(u+1/2,v,w)−Fn(u−1/2,v,w)

∆x
+O(∆x2), (4.4)

and equivalently for derivatives in y- and z-direction by lowering/raising v,w on the
r. h. s., respectively. These approximations are again second-order accurate. More-
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over, the chosen arrangement of ~E and ~H components in conjunction with the central-
difference formulas implicitly enforce the remaining two Maxwell equations (2.1a),
(2.1d) [132].

As a ramification of the discretized spacetime, errors are introduced in numerical
wave properties such as speed of light c̃ and wave number k̃. Discrepancies vanish
if the step sizes tend to zero, as illustrated in the numerical dispersion relation [132]
becoming "analytical" in the aforementioned limit:[

1
c̃∆t

sin
(

ω∆t
2

)]2

= ∑
i={x,y,z}

[
1
∆i

sin
(

k̃i∆i
2

)]2

(4.5a)

∆t→0, ∆i→0−−−−−−−→
(

ω

c

)2
= ∑

i={x,y,z}
k2

i . (4.5b)

Numerical stability in the temporal evolution imposes an upper limit on the time step
∆t for given ∆i, which is known as Courant criterion [132],

∆t ≤ 1

vmax

√
1

(∆x)2 +
1

(∆y)2 +
1

(∆z)2

, (4.6)

where vmax denotes the maximum possible phase velocity in the simulation region.

4.2 Simulation software and setup
In this thesis FDTD simulations are carried out with the commercial software pack-
age Lumerical Solutions (Lumerical Inc., Vancouver, CA; since April 2020 ANSYS
Lumerical Software ULC, Vancouver, CA), versions 8.15 to 8.24.2502. A detailed
documentation is available online [134]. Based on a graphical user interface, physi-
cal structures can be intuitively composed from fundamental building blocks (spheres,
cylinders, polygons etc.) or via computer-aided design. As an example we consider an
electrically connected side-by-side aligned nanorod dimer with dissimilar rod lengths
in Fig. 4.2 a.

All elements are embedded inside the simulation volume where a solution of elec-
tromagnetic fields is sought. Since the entire space has to be discretized in the FDTD
algorithm, only a finite simulation volume can be considered (cf. Fig. 4.2 a). Boundary
conditions assure that solutions take on a form compatible with the laws of electromag-
netism. A special way of mimicking an infinite domain is to only allow outgoing waves
in the far field (Sommerfeld radiation condition). This can be realized by employing
perfectly matched layers (PML) at the boundaries. Initialized by Berenger’s semi-
nal work on a split-field PML concept [135], several modifications and improvements
have been published. Prominent extensions are stretched-coordinate PML [136, 137]
relying on complex frequency shifts to achieve absorption and uniaxial anisotropic
PML [138] that use a physical anisotropic perfectly matched medium. Here we mostly
use the stretched-coordinate PML as boundary condition spanning a thickness of 8 to
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Figure 4.2 – Setup of an FDTD Simulation a) Artistic sketch of the setup with the most
important elements labeled. The physical structure under study, taken from Chap. 6, is
an electrically connected gold nanorod dimer (distinct rod lengths) embedded in a zinc
phthalocyanine (ZnPc) layer on a glass substrate. The polarization and propagation di-
rection of the Gaussian source is also labeled. b) Top view of the rod dimer with mesh
drawn in orange. Mesh refinement regions incorporate rods and connector wires. Here,
antisymmetric boundary conditions are enforced as indicated by the green area. c) Electric
near-field intensity at λ = 920nm retrieved from the 2D (frequency-domain) field monitor
depicted in a). Near-fields around the longer nanorod are resonantly enhanced. The scale
bar from b) applies here as well.

64 Yee cells. As a rule of thumb, the distance between PML and scattering objects
is kept at least at one multiple of the longest wavelength of the source, preventing
evanescent field components from being artificially absorbed. A substrate, in turn, can
be extended through the PML to simulate e. g. a glass halfspace. If a nanowire carry-
ing SPPs penetrates PML in normal direction, it does not experience any back-reflected
SPPs. This is particularly useful when modeling semi-infinite waveguides or electrical
connector leads (cf. Fig. 4.2 a).

As discussed in Sec 4.1, Yee cells have to be created by applying a 3D Cartesian
mesh throughout the simulation volume. While Fig. 4.1 b shows a cubic cell, it is
convenient to divide space in a nonuniform manner. One the one hand small mesh sizes
are necessary near metallic objects. Little features which might influence plasmonic
resonances as well as curved surfaces are then properly resolved. Small mesh steps
reduce the formation of sharp corners and edges. These stair-casing elements would
give rise to spurious charge accumulations and field hotspots mediated by the lightning
rod effect. Likewise, electromagnetic fields require a high spatial resolution. Around
metallic objects, in particular, strong field gradients emerge (cf. Sec. 3.2, Sec. 3.3) and
only a fine meshgrid is able to accurately resolve rapidly varying fields. On the other
hand, for vacuum or glass substrate regions it is sufficient to choose bigger mesh sizes
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(λ/40 ∼ λ/20) which are still capable of correctly modeling wave propagation on
the grid. Therefore mesh refinement regions are deliberately placed around plasmonic
structures and gaps between such structures, which allows fine discretization of the
corresponding subvolumes (cf. Fig. 4.2 b). Refined cell dimensions from 0.5× 0.5×
0.5 nm3 to 1× 1× 1 nm3 are used for isolated antenna structures and gaps. Around
unperturbed sections of nanowires which support SPPs the cell size is enlarged in the
direction parallel to the wire axis to 4 nm.

The FDTD software offers a variety of built-in materials, characterized by tabulated
complex dielectric constants, for use in simulations. Also, several analytical mod-
els are available to create custom materials with non-dispersive dielectric constants or
frequency-dependent dielectric functions. Here we implement the sampled material
data from Olmon et al. [68] and Yang et al. [74] for gold and silver, respectively. How-
ever, since FDTD is a time-domain solver, the material response evolving over time
needs to be treated explicitly. Therefore we convert the constitutive relation Eq. (2.13a)
to the time domain,

~D(~r, t) = ε0ε(~r, t)∗~E(~r, t) = ε0

t∫
0

ε(~r, t− t ′)~E(~r, t ′)dt ′, (4.7)

where the multiplication becomes a convolution over the past time. The dielectric
function is converted via Fourier transform,

ε(~r, t) =
+∞∫
−∞

ε(~r,ω)e−iωtdω. (4.8)

Causality places constraints on ε(~r, t), e. g., the criterion that the displacement field
at presence may only depend on electric field values in the past but not in the future
must be met. Consequently, in light of the Kramers-Kronig relations, ℜ(ε) and ℑ(ε)
are not independent from each other. The built-in multi-coefficient material (MCM)
fitting procedure obeys these constraints when calculating a fit to sampled material
data [73]. As presented in Sec. 3.1, the fit results are remarkably good for both noble
metals over the entire wavelength range of interest. In this work we assume glass to be
a nondispersive dielectric with refractive index n = 1.52 (ε = 2.3104).

In order to inject electromagnetic energy into the simulation domain, several sources
are available. Plane waves are the most intuitive way to excite a structure from the
far-field. An advanced version, the total-field scattered-field (TFSF) source, separates
scattered fields from incident field components in far-field regions of the simulation
domain to only record the scattered fraction. Gaussian beams offer another possibility
of far-field excitation. By superimposing a set of plane waves, a vectorial beam with
Gaussian profile is generated, as if a focused beam originating from a microscope ob-
jective with specified numerical aperture was illuminating the structure of interest (cf.
Fig. 4.2 a). Polarization and propagation direction are defined by the user. Electromag-
netic energy can also be injected locally by a point dipole source whose orientation is
adjustable. In contrast to a global illumination, a point dipole allows a highly asymmet-
ric, localized excitation of a structure. This is beneficial e. g. for selectively accessing
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subradiant modes which radiate only weakly into the far-field due to symmetry rea-
sons. Waveguides can be driven locally by a third type of sources, the mode source.
First, the guided eigenmodes of interest need to be determined by applying a 2D FDFD
solver (cf. Sec. 4.3) to a cross-section of the waveguide. The resulting near-field distri-
bution is then declared as excitation field and propagates in the chosen direction along
the waveguide starting at the aforementioned cross-section. Mode sources are used, for
instance, to feed plasmonic nanocircuits. If physical structures and source fields ful-
fill certain symmetry properties, symmetric or antisymmetric boundary conditions can
be invoked. Fig. 4.2 b illustrates such a condition with the green colored area. These
conditions enable the algorithm to simulate only a fraction of the entire domain which
reduces the computational burden (simulation time, memory) significantly. All source
fields are injected as a short pulse s(t) with durations of a few fs, thereby carrying
a broad spectrum of frequencies in the visible and NIR. This is indeed an important
advantage of time-domain simulations: A single run yields the system’s response to a
whole range of frequencies.

Each time iteration requires the computation of the ~E (or ~H) field in Yee cells across
the whole simulation volume (cf. Sec. 4.1). Thus, huge amounts of data accumulate
and it is impractical to store them entirely. Depending on the problem at hand, one
may only be interested in near-fields at specific locations. The recording of field quan-
tities is subject to monitors which occupy user-defined sub-regions (points, lines, areas
or cubes) of the simulation domain (cf. Fig. 4.2 a). Time-domain monitors directly
record electromagnetic fields as a function of time. Such results can be used to cre-
ate movies of the temporal evolution of fields. Frequency-domain monitors act with a
Fourier transform on the time-domain signals and store field information as a function
of frequency (cf. Fig. 4.2 c),

~E(~r,ω) =
1

2π

t f∫
0

~E(~r, t)eiωtdt. (4.9)

Here, in contrast to Eq. (2.3), the integration runs from t = 0 up to a final time t = t f
which needs to be chosen long enough (hundreds of fs) until the electromagnetic en-
ergy within the simulation volume has decayed below a certain threshold value. We
apply fractions of the injected energy between 10−6 and 10−5 as thresholds in most
simulations. Special care in interpreting field distributions must be taken when dipole
sources are used. Since dipolar fields bear a singularity at the oscillator’s position,
the recorded fields in the surrounding assume very large magnitudes and would over-
shadow physically meaningful fields of e. g. nearby metallic structures. It is thus nec-
essary to eliminate the source fields to obtain accurate plasmonic field distributions.
The FDTD software provides an apodization technique, i. e. a smooth time-domain
window function which multiplied with (~E, ~H)(~r, t) suppresses excitation fields to an
acceptable extent. As such, ~E(~r,ω) from Eq. (4.9) also depends on the input pulse
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s(t). By applying the so-called continuous wave (CW) norm,

~Eimp(~r,ω) = 2π
~E(~r,ω)

t f∫
0

s(t)eiωtdt

, (4.10)

the dependency is lifted and for each frequency one obtains the system’s response as if
the input was a CW source (impulse response).

4.3 Finite-difference frequency-domain simulations
Plasmonic waveguides are a central tool in optical nanocircuitry. Supporting propagat-
ing SPPs, they serve as link e. g. between plasmonic incoupling and outcoupling enti-
ties [139] or as direct near-field source for driving optical antennas (cf. Chap. 7). Only
a few simple waveguide designs can be addressed analytically (cf. Sec. 3.2.1). Many
realistic shapes require numerical approaches to be modeled accurately. The finite-
difference frequency-domain solver, available within Lumerical’s portfolio (MODE
Solutions, ANSYS Lumerical Software ULC, Vancouver, CA), is used throughout this
thesis to compute eigenmodes of plasmonic waveguides. Just as in the FDTD algo-
rithm, Sec. 4.1, 2D Yee cells discretize the cross section of the waveguide under study.
To avoid stair-casing effects due to curved interfaces the algorithm incorporates a re-
fractive index averaging technique for Yee cells across material boundaries [140]. It is
assumed that the solution propagates in the dimension perpendicular to the cross sec-
tion (x-direction), i. e. the wave equation (2.20) is set up for the transverse fields [140],

(~∇2
t +

ω2

c2 ε)~Et +~∇t [~Et ·~∇t ln ε] = k2~Et , (4.11)

with the generally complex propagation constant k, and ~∇t acting in y- and z-direction.
Again, using central-difference approximations for the spatial derivatives and some
algebra, one obtains an eigenvalue equation for the transverse field components,

←→
P
[

Ey
Ez

]
= k2

[
Ey
Ez

]
, (4.12)

with eigenvalues k2. The entries of the 2× 2-matrix
←→
P depend on discretization,

material, and wavelength. Similar steps can be carried out for the magnetic fields.
Diagonalization yields the transverse fields of the eigenmode, which in turn allow the
calculation of the longitudinal components. Repeating the procedure for each wave-
length of interest, the full modal information (dispersion relation and field distribution)
is obtained.

FDFD simulation setups have some aspects in common with the FDTD simulations
discussed in Sec. 4.2. The transverse domain size must be sufficiently large to resolve
the entire evanescent modal fields. For instance, a 30 nm diameter nanowire is embed-
ded in a simulation window of 1µm× 1µm, ensuring that no fields are truncated by
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PML boundaries. Also the aforementioned mesh refinement settings around metallic
structures are adopted in FDFD simulations which guarantees a proper resolution of
physical structures, interfaces, and field gradients.

4.4 Post-processing steps and data evaluation
While frequency-domain results from FDTD simulations are directly returned from
frequency-domain field monitors via an inherent Fourier transform, some quantities of
interest in this work have to be determined by explicit post-processing computation of
simulation data. We summarize the most important procedures in this section.

4.4.1 Near- to far-field projections
Owing to the limited size of the FDTD simulation domain, only near field profiles
around nano-objects are directly accessible from field monitors. The far-field radiation
behavior of an optical antenna, however, is a fundamental property as it determines
the antenna’s directionality performance. Under certain circumstances it is possible to
retrieve far-field radiation patterns from a projection of 2D near-field monitor data. The
latter are decomposed into a series of plane waves propagating at different angles [13],

~E(x,y,z) =
∫ +∞∫
−∞

~E(kx,ky;0)ei(kxx+kyy±kzz)dkxdky. (4.13)

The angular representation ~E(kx,ky;0) is multiplied with a propagator, mapping the
fields onto a hemisphere of 1 m radius around the nanostructure, through the medium
present at the location of the near-field monitor. As a prerequisite, the monitor must
be embedded in a single homogeneous material and record both ~E and ~H fields. A
closed box of monitors in a homogeneous surrounding is another option for far-field
projection.

In most cases we are interested in radiation patterns obtained through a glass sub-
strate because this is also accessible in experiments through back-focal plane imaging.
We therefore place a 2D field monitor inside the glass halfspace parallel to the interface
and apply far-field projection as a post-processing step. Fig. 4.3 depicts a double rod
antenna lying on a glass substrate whose far-field is studied in the lower hemispherical
region. After expanding the fields on the hemisphere the emission pattern is further
projected onto a planar surface which equals a top view onto the hemisphere. It should
be mentioned that in this technique higher elevation angles θ are plotted more densely.
Since the antenna dimer supports a dipolar resonance the radiation pattern here shows
the typical double lobe distribution of a dipole source oriented parallel to the under-
lying glass halfspace. Intensity maxima appear in the direction perpendicular to the
antenna axis around the critical angle of the air-glass interface,

θc = arcsin
(

nair

nglass

)
= arcsin

(
1

1.52

)
≈ 41°. (4.14)
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Figure 4.3 – Far-field radiation pattern of a dipole antenna. Near-fields of a dipole an-
tenna consisting of a plasmonic rod dimer are recorded in a plane inside the glass substrate,
decomposed into plane waves at various angles and propagated onto a hemisphere (az-
imuth angle ϕ and elevation angle θ ) in the far-field. Some elevation angles are indicated.
The intensity distribution on the hemisphere is projected onto a planar surface, yielding
a 2D representation of the radiation pattern. Typical dipolar radiation characteristics are
obtained for the dipole antenna. The far-field intensities in specific solid angle regions
in forward (IF) and backward direction (IB) can be integrated to calculate a forward-to-
backward ratio.

Indeed, only a small fraction is emitted into the air halfspace. One can integrate the
far-field intensity of a radiation pattern throughout specific solid angle intervals and
subsequently calculate forward-to-backward (FB) ratios of the form FB = IF/IB to
quantify directionality. The dipolar antenna mode has FB = 0dB.

The quality of emission patterns critically depends on the lateral size of the near-
field monitor since the projection algorithm assumes zero field strength beyond its
borders. Too small monitor dimensions introduce nonphysical artifacts into far-field
patterns, such as smeared out emission lobes or fringes which are also slightly visible
in Fig. 4.3. Depending on the size of the structure, at least 10µm×10µm monitor span
(and simulation domain span) is recommended for acceptable accuracy, in conjunction
with heavier computational burden.
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4.4.2 Eigenmode expansion
After determining eigenmodes on a nanowire waveguide cross section with the method
discussed in Sec. 4.3, it is interesting to study how the fields behave upon encountering
an open end or a discontinuity along the nanowire. Within such perturbations the
modes are not eigenmodes of the original system. This can also lead to conversion
among eigenmodes [141, 142]. Eigenmode expansion allows quantifying how exactly
the modes are converted and where their energy is flowing. If a complete, orthogonal
set of eigenmodes ψm = (~Em, ~Hm) is known it can be used as basis to express any input
field profile by a superposition [143]:

~Ein = ∑
m

(
am~E f

m +bm~Eb
m

)
, (4.15a)

~Hin = ∑
m

(
am~H f

m +bm~Hb
m

)
. (4.15b)

Here am and bm are the complex expansion coefficients for mode m, bearing ampli-
tude and phase information which add to the total field. The superscripts f ,b refer to
forward and backward propagating waves. These are also related by symmetry [144]:

~Eb
m = ~E f

t,m−E f
x,m~ex, (4.16a)

~Hb
m =−~H f

t,m +H f
x,m~ex. (4.16b)

Similar to Sec. 4.3 the total fields have been decomposed in transverse (subscript t)
and longitudinal components with x being the propagation direction. Hence the input
fields in Eqs. (4.15) can be formulated solely in terms of forward-propagating modes.
We define a power orthogonality relation as

〈ψm |ψn〉 ≡
1
2

∫
(~Em× ~H∗n ) ·d~S = Nmδmn, (4.17)

where ~S and δmn are the cross section normal vector and the Kronecker symbol. Nm
serves as a normalization factor describing the power carried by mode m. The ex-
pansion coefficients are then obtained by overlap integrals of the input field with each
eigenmode:

1
2

∫
(~Ein× ~H∗m) ·d~S = (am +bm)Nm, (4.18a)

1
2

∫
(~E∗m× ~Hin) ·d~S = (am−bm)N∗m. (4.18b)

Solving Eqs. (4.18) for am,bm one finds

am =
1
4

(∫
(~Ein× ~H∗m) ·d~S

Nm
+

∫
(~E∗m× ~Hin) ·d~S

N∗m

)
, (4.19a)

bm =
1
4

(∫
(~Ein× ~H∗m) ·d~S

Nm
−
∫
(~E∗m× ~Hin) ·d~S

N∗m

)
. (4.19b)
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At waveguide terminations or obstacles the expansion coefficients can be used to char-
acterize the reflection and transmission behavior of eigenmodes, which will be a central
topic in Chap. 7.



5
Electrically-driven Yagi-Uda antennas for light

Y agi-Uda antennas, named from their Japanese inventors Hidetsugu Yagi and Shin-
taro Uda [145, 146], have a long-standing tradition as directional transmitters

and, owing to reciprocity, receivers in radio and television broadcasting. As such, they
set a milestone for long-distance wireless communication, first deployed in military
radar and later commercialized. An actively driven dipolar feed antenna induces os-
cillating currents in parasitic reflector and director elements. While the reflector is
designed to be longer as the feed the directors possess shorter lengths (cf. Fig. 5.1)
which leads to resonance frequency detunings to the red and blue, respectively, impos-
ing phase lags on re-radiated electromagnetic waves. Moreover, the parasitic elements
are assembled at specific locations w. r. t. the feed, adding to the phase lags. Inter-
ference between all re-radiated waves generates a narrow phase-coherent beam in the
forward direction, i. e. along the directors, whereas in backward direction destructive
interference suppresses radiation.

Miniaturizing the Yagi-Uda concept from the radio-frequency (RF) to the optical
regime promises two key benefits: the bandwidth dramatically grows due to sub-
stantially higher frequencies and at the same time the footprint shrinks down to the
nanometer scale. The resulting devices represent an efficient link between electron-
based integrated computer chips and photon-based fiber networks and in particular
enable on-chip wireless optical data communication because antennas outperform sub-
wavelength waveguides for longer distances [147, 148], allow for multiple beam cross-
ings, have an adaptable footprint and are not restricted by Joule heating [149, 150].
Realizing optical Yagi-Uda antennas encompasses two key challenges: precise fab-
rication of an arrangement of nanostructures and the selective driving of only one
of these elements. Even though quite some effort has already been devoted to opti-
cal Yagi-Uda antennas [151] – best possible design parameters have been found for
both vertical [152] as well as in-plane emitting antennas [153–155] and different kinds
of antennas have been realized [156–161] – the main drawback of the hitherto ap-
proaches is that the light is not generated locally but bulky lab-scale setups are needed
as excitation sources. Generating light locally at the nanoscale is possible by different
means, for example via scanning tunneling microscopes (STMs) [162, 163], carbon

43
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Reflector Feed Directors

Figure 5.1 – Yagi-Uda antenna for television broadcasting. Around the feed antenna
(folded dipole, red frame) a double reflector (green frame) and an array of directors (blue
frame) are arranged with spacings around 0.25λ . The orange arrow indicates the direction
of main transmission/reception.

nanotubes [164–167], quantum dots [168] and optical antennas [30, 33, 35]. However,
obtaining directed electrically driven emission is only possible by utilizing scanning
tunneling microscopes (STMs) [169, 170] which again involves large-scale setups, or
by twisting the arms of electrically driven dipole antennas in order to break the point
symmetry [32]. The latter show a limited geometrical definition and directionality
only, are by design not scalable to significantly higher values and, hence, not suitable
for, e. g., cross-talk free on-chip data communication. Therefore, key breakthroughs in
antenna design, quality and fabrication are still needed to achieve on the nanoscale the
same performance, versatility and usability as for classical radio-wave antennas.

In this chapter we demonstrate the feasibility of a complex electro-optical nanosys-
tem that consists of multiple antenna elements with precisely adjusted positions and
resonances as well as a sophisticated electrical subsystem for local excitation of the
central feed antenna, giving rise to highly directed light emission via inelastic tun-
neling. As an example, we realize electrically driven in-plane Yagi-Uda transmitters
for light that require single-crystalline connector wires [29, 65], advanced focused-ion
beam milling (FIB) as well as novel fabrication methods such as feedback-controlled
single-particle dielectrophoresis (DEP). We experimentally show that the resulting
optical antennas consisting of one reflector and three directors have unprecedented
forward-to-backward (FB) ratios of up to 9.1 dB and are scalable up to 15 elements
where even higher FB ratios have been simulated. Numerical simulations further sug-
gest that switching to hybrid systems consisting of antennas embedded in high-index
films can even outperform the characteristics of conventional Yagi-Uda antennas in the
RF regime. This work opens the road to high bandwidth on-chip data communication
that is not restricted by Joule heating but also for light-emitting devices.
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5.1 General antenna design and fabrication

The electrically connected Yagi-Uda antenna systems consist of gold structures placed
directly on a glass substrate. We choose the array to consist of one reflector, one feed,
and three directors, in order to keep the complexity within bounds. A scanning elec-
tron microscopy (SEM) image is given in Fig. 5.2 a. Following the Yagi-Uda principle,
it is important to position the elements accurately to each other. The correct dimen-
sions of the constituents also play a crucial role in order for the feed resonance to
lie within the “spectral window” defined by the peaks of reflector and director spec-
tra, which are visualized in the inset of Fig. 5.2 a. This requires a precise fabrication
method. Thus, the antenna constituents are obtained by FIB milling (Helios Nanolab
600) of chemically grown single-crystalline gold microplatelets [65–67]. The task of
the feed element, shown in close-up view in Fig. 5.2 b, is to drive the parasitic el-
ements, so it is electrically connected via FDTD-optimized kinked single-crystalline
wires (cf. Sec. 5.2.1) to evaporated electrode structures that are accessed via microma-
nipulators from a sourcemeter (Keithley 2636B, Tektronix Inc., Beaverton, USA). This
arrangement establishes a low-resistance electrical connection to the tunnel gap region
without disturbing the optical fields [29]. Provided that all elements are aligned and
resonating at the correct wavelength, interference effects lead to directional emission,
as supported by an analytically calculated radiation pattern in Fig. 5.2 c. The forward-
to-backward (FB) ratio, here the figure of merit, compares the intensities obtained in
forward and backward direction as given by the formula in the plot. Specific FB values
are stated further below.

For generating light in the center of the feed, we employ inelastic electron tunnel-
ing (IET), which was first discovered in planar MIM tunnel junctions [172] in 1976
and later on studied in STM experiments [173]. When electrons traverse a nanoscale
barrier, inelastic processes can occur in which the electrons lose energy by generating
light. This mechanism is illustrated in Fig. 5.2 d. The efficiency of IET can be strongly
enhanced by a high local density of optical states (LDOS; cf. Sec. 3.4) [30, 33, 35]. IET
offers distinct advantages such as the absence of any active materials resulting in a large
bandwidth, accompanied by femtosecond switching timescales [174]. In order to cre-
ate a nanometer sized tunnel junction, we introduce dielectrophoresis (DEP) [175, 176]
into the fabrication process and improve it for controlled single-particle deposition by
implementing a feedback mechanism.

To perform DEP, a water droplet containing gold nanospheres is placed on top of the
antenna structures and the glass substrate facilitates optical access from below via an
immersion oil microscope objective (Nikon Plan-Apochromat, 100×, NA = 1.45) as
schematically sketched in Fig. 5.3 a. One of the two electrodes is grounded while an al-
ternating electric field is applied to the other electrode in order to polarize the particles
in solution. Depending on the voltage and frequency, nanospheres are then attracted
to regions of the highest field gradient, i. e. the feed gap. To ensure that exactly one
particle is placed into the antenna gap, we continuously monitor the white-light (WL)
scattering spectrum of the antenna at 10Hz repetition rate. When a particle enters the
feed gap, the spectrum strongly red-shifts and the shift becomes stronger if many parti-
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Figure 5.2 – Concepts of an optical Yagi-Uda antenna and inelastic electron tunnel-
ing. a) SEM micrograph of a Yagi-Uda antenna containing reflector, feed element with
kinked connectors and three directors on a glass substrate. The inset schematically visu-
alizes spectra for the functional elements. According to the Yagi-Uda working principle,
the feed resonance lies within the “spectral window” imposed by the passive elements.
b) Zoom into the feed element highlighting the asymmetrically positioned spherical par-
ticle creating a tunnel gap toward the top antenna arm. c) Emission characteristics of a
Yagi-Uda antenna in the xz-plane for a homogeneous surrounding, calculated with a dipole
interaction model (cf. Sec. 5.2.2). The reflector and director elements lead to a highly uni-
directional emission by interference, in analogy to their RF counterparts. The intensities
in forward and backward direction are used to define a forward-to-backward (FB) ratio
and the antenna gain, see inset. d) Schematics of the inelastic electron tunneling (IET)
process. Adapted from [171].

cles are attracted (see Figs. 5.3 b-e). We thus optimized the basic parameters (voltage,
frequency, concentration) and achieved a success rate of single-particle deposition of
49.8 %; for more information about DEP the reader is referred to [171].

5.2 Design optimization
Our Yagi-Uda antenna consists of a single reflector, a feed element and directors. To
achieve a high FB ratio of the emitted light the geometric parameters of the antenna
structures need to be optimized. First we describe an electrical connection scheme
which conserves the resonant properties of the feed element and simultaneously con-
tributes to a positive FB ratio, making use of FDTD simulations. Under the constraints
of a favorable connector geometry we then optimize the dimensions of passive ele-
ments, first using an analytical model for a quick overview analysis and afterwards
via numerical simulations (boundary element method, BEM) which are able to handle
more realistic structures.
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Figure 5.3 – Feedback-driven dielectrophoresis at optical antennas. a) Schematics
of the DEP setup: while WL dark-field scattering spectra are continuously acquired, a
high-frequency AC voltage is applied. As soon as a particle is deposited in the gap the
spectrum visibly red-shifts as plotted in b) from the black to the red curve and the voltage is
subsequently switched off. Larger particle numbers result in even stronger red-shifts (blue
curve). c)-e) Associated SEM images for various DEP frequencies showing an optimum
of single-particle attraction at 8.5MHz. The study here is carried out with conventional
dipole antennas but works equally for feed elements of Yagi-Uda antennas. Scale bars,
50 nm. Adapted from [171].

Previous publications about directional optical antennas have reported FB ratios,
however, this quantity was obtained in different ways. The first is the “pixel” method
used by Curto et al. [157] where the most intense pixel in forward direction is selected
and compared to the diametrically opposite pixel of the angular emission pattern. For
both pixels the background (CCD offset) is subtracted and then the forward pixel value
is divided by the backward one to obtain the ratio. This method provides straight-
forward results and is well established in literature, however, is also very prone to errors
in experiments as noise in backward direction can lead to high FB-ratio fluctuations. It
is reduced for high signal-to-noise ratios and for our experimental data we estimate the
error to be ±1.4dB. In numerical simulations this value remains stable and reliable.
The second way is the “areal” method introduced by Gurunarayanan et al. [32]. By
integrating the emission pattern over a solid angle section in forward and backward
direction, as exemplarily depicted in Fig. 4.3, the fluctuations are greatly reduced.
However, since the intensity drops when moving away from the forward maximum
the value is not fixed and decreases with increasing (∆θ ,∆ϕ). Hence, it is inherently
smaller than the one of the “pixel” method and based on the uncertainty of the emission
pattern size in experiments we estimate the error to be ±0.2dB.

5.2.1 Electrical connectors
To drive Yagi-Uda antennas electrically, metallic contact wires are necessary to con-
nect the feed element to an external DC voltage source. Due to the significant size of
wires in the nanoworld, the connector attachment position as well as their routing must
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be optimized in order to not disturb the operation of the feed and the passive elements.
Additionally, it must be possible to fabricate the structure using the FIB milling tech-
nique. FDTD simulations have been performed to find the optimal attachment position
and routing. Dipole antennas are modeled with refined mesh and a Gaussian source,
polarized parallel to the antenna long axis, is chosen to excite the structure through
the glass substrate at normal incidence. As seen in Fig. 5.4 the dipole antennas are
then contacted at different positions: at the end of each arm pointing straight away
from the antenna and near the middle of each arm similar to ref. [29] but mounted on
the same side and featuring a kink in order to accommodate parasitic elements in the
surrounding.

|E|²

100 nm

Figure 5.4 – Influence of the connectors on the near-field. Left: Simulated near-field
intensities inside the antenna gap for different connector configurations. If the leads are
attached from the top and bottom (red) the near-field intensity is strongly decreased while
the one-sided configuration (green) conserves resonance position and amplitude of the
antenna as compared to the case without connectors (black). Right: Near-field intensity
map for the chosen one-sided configuration. Taken from [171].

Analogous to ref. [29], the near-field intensity spectra in Fig. 5.4 reveal that wires
attached at positions of high field intensity, i. e. the ends of the antenna arms (red),
strongly decrease the near-field intensity inside the antenna gap as compared to an
antenna without any leads (black). However, by attaching the wires from the side at
positions of low field intensities (green), the performance of the antenna is nearly un-
altered. The associated near-field intensity map of this configuration (right panel of
Fig. 5.4) shows high confinement of electrical fields in the antenna gap and no signif-
icant near-fields along the connectors, i. e. the energy leakage is minimal. For these
reasons we are able to ignore the connector wires when optimizing the dimensions of
parasitic elements using BEM simulations (see Sec. 5.2.2.

It is worth mentioning that the kinked connectors also positively contribute to a
directed emission. Fig. 5.5 displays SEM images and experimental/simulated emission
patterns of a conventionally connected dipole antenna (cf. also Fig. 4.3) as well as a
dipole antenna connected from the left-hand side. Measured and simulated radiation
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Figure 5.5 – Influence of the connectors on the far-field. Left: SEM micrographs of the
corresponding antenna structures. Measured (middle) and simulated (right) electrolumi-
nescence (EL) radiation patterns showing dipolar emission for the conventional structure
(cf. also Fig. 4.3) and directed emission when one-sided kinked leads are employed. FB
ratios (areal method) are given for each pattern. The solid angle sections used for inte-
gration in each case (∆θ = 15°,∆ϕ = 20°) are drawn in the upper right radiation pattern
(black dashed lines). Adapted from [171].

characteristics are in very good agreement. The regular dipole antenna shows basically
no directionality which is expected due to symmetry consideration. However, for the
antenna with kinked wiring, FB ratios (areal method, (∆θ = 15°,∆ϕ = 20°)) exceeding
2 dB can be observed. Hence, we obtain already a remarkable directionality caused
by the parts of the connector that run parallel to the dimer. They act as reflecting
elements in the chosen configuration and the parasitic reflector will later be placed on
the same side of this system that we utilize as feed element. The directed emission to
the right can in principle be further optimized by tuning the distance between antenna
and the kink in the connecting wires. However, in our Yagi-Uda antennas we are on the
one hand restricted by the fabrication resolution and on the other hand aim at placing
the reflector in the proximate surrounding. Therefore we set the connector spacing
to 100 nm. Nevertheless, this effect aids in improving the performance of Yagi-Uda
antennas in the nanoworld, especially for low director numbers.

5.2.2 Parasitic elements
As stated above, proper functionality of a Yagi-Uda antenna requires a reflector whose
resonance is red-shifted w r. t. the feed resonance and directors with blue detuned
resonances. It would be impractical to produce hundreds of Yagi-Uda nanoantennas
including tunnel gaps with the protocol described in Sec. 5.1 and vary the plethora
of free parameters step by step. We therefore conduct calculations and simulations to
optimize the dimensions and positions of the parasitic elements with the FB ratio as
figure of merit. Before that we briefly introduce the analytical dipole interaction model
(DIM) and the numerical boundary element method (BEM) in this section. Thereafter,
with the DIM a quick and coarse overview over an appropriate Yagi-Uda geometry
is obtained first. Based on this starting point, more accurate BEM simulations yield
reliable parameter values which are readily transferred to the fabrication protocol.
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Dipole interaction model

To quickly estimate resonance frequencies and spacings of the passive antenna ele-
ments a dipole interaction model is employed [153]. We consider the individual par-
ticles to be much smaller than the wavelength such that the field can be assumed to
be homogeneous across each particle. In this quasi-static approximation all antenna
elements are treated as coupled dipoles as pictured in Fig. 5.6.
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𝜔0 + 𝛿ref 𝜔0 + 𝛿dir 𝜔0 + 𝛿dir 𝜔0 + 𝛿dir

Reflector
Directors

Reflector

spacing

Director

spacing

Director

spacing

Director

spacing

𝑧
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Figure 5.6 – Analytic dipole interaction model. All antenna elements are treated as
dipoles in the quasi-static approximation and interact with each other. The driving fre-
quency ω0 of the feed is fixed while reflector and directors are detuned by δref and δdir,
respectively. The directors are equally spaced along the array. Adapted from [171].

The local electric field at a dipole Eloc is given by the emitted fields of the feed
element (Efeed) and of the other dipoles E j:

Eloc,i = Efeed +∑
j 6=i

E j. (5.1)

Since on the dipole chain axis (x-axis in Fig. 5.6) the only nonzero field component
is Ey we here omit vector notation. The quasi-static polarizability ξ (ω) of metallic
nanoparticles is modeled in terms of the radiation reaction field [153], as a function
of the effective particle volume Veff, dielectric function εNP(ω), and the depolarization
factor N which depends on the particle shape and aspect ratio [60, 156],

ξ (ω) =
Veff

1
εNP(ω)

εsurr
−1

+N− i(Veffω
3/6πc3)

, (5.2)

with εsurr the dielectric constant of the surrounding and ω the light frequency. Analyti-
cal, albeit transcendental, relations exist between aspect ratio and depolarization factor
of ellipsoids [60, 99]. Eq. (5.2) constitutes a generalization of Eq. (3.14) extended by
an imaginary radiation damping term in the denominator. The total electric field due
to an induced dipole can then be written as

E j =
k3

i
ξ jEloc, j

eikr j

(kr j)3

[
i(kr j)

2− kr j− i
]
= A j

eikr j

(kr j)3

[
i(kr j)

2− kr j− i
]
, (5.3)
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where we introduce the complex dipole amplitude A j = −ik3ξ jEloc, j. k = ω/c is the
wave number and r j denotes the distance between j-th dipole position and observer on
the x-axis. We express the amplitude of the j-th dipole by the shorthand notation [153]

A j =
Eloc, j

1+ γ j + iδ j
. (5.4)

Here, γ j and δ j describe absorption losses and effective resonance detuning from the
feed as ratios of the corresponding fields to the radiation damping field of the dipole.
From Eq. (5.2) their expressions read:

γ =
6πc3

Veffω
3

ℑ

(
εNP

εsurr

)
∣∣∣∣ εNP

εsurr
−1
∣∣∣∣2
, (5.5a)

δ =
6πc3

Veffω
3

N +

ℜ

(
εNP

εsurr
−1
)

∣∣∣∣ εNP

εsurr
−1
∣∣∣∣2
 . (5.5b)

As indicated in Eq. (5.5b) the detuning can be adjusted via the depolarization factor
N, i. e. the geometry of the particle. Capacitive (blue) detuning of a dipole resonance
gives rise to δ > 0, inductive (red) detuning results in δ < 0. Writing out Eq. (5.1) we
obtain an equation system for the dipole amplitudes whose solution is found in a self-
consistent way for all antenna elements. This leads to the far-field emission pattern in
the plane perpendicular to the dipole axes [153] (xz-plane in Fig. 5.6):

I(θ)
/

Ifeed =

∣∣∣∣∣1+∑
i

Ai

Afeed
eikri cos(θ)

∣∣∣∣∣
2

. (5.6)

The radiated intensity is normalized to the emission intensity of the feed Ifeed with the
oscillation amplitude Afeed. θ is the angle between antenna axis and the considered
direction in the xz-plane and ri is the distance between feed and i-th dipole (labeled
as reflector/director spacings in Fig. 5.6). An example emission pattern for the values
γref = γdir = 0.4, δref = −0.4, δdir = 2, reflector spacing 0.22λ0, and director spac-
ing 0.32λ0, which are typical for gold nanorods in terms of absorption losses [153],
is depicted in Fig. 5.2 c and FB = 13.4dB is obtained. For a driving wavelength of
λ0 = 800nm and εsurr = 1.52 those detuning values correspond to a dipolar reflector
resonance at 815nm and director resonance at 740nm in the case of gold nanoparticles.
For spheroidal particles the FB-ratio I(0)/I(π) can now be optimized by adjusting the
effective detuning (by varying the aspect ratio) of the parasitic antenna elements and
their inter-particle distances.

Although this method provides a quick and simple assessment that helps under-
standing the physics of Yagi-Uda antennas, it is limited by the quasi-static approxima-
tion, which is only valid for small particles and not too narrow inter-particle spacings,
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and the homogeneous dielectric surrounding. Hence, additional full numerical models
are necessary to better match the experimental conditions.

Boundary Element Method

As mentioned in Chap. 4 the boundary element method (BEM) is a frequency-domain
algorithm to solve partial differential equations. By reducing the problem to the sur-
face boundary of materials, computational power and time can be saved compared to
volume methods. Here we employ the open-source MNPBEM toolbox which was
developed to solve Maxwell’s equations (2.1) for metal nanoparticles in dielectric en-
vironments [127, 177–179].

Air

Glass

Figure 5.7 – BEM geometry of a two-arm nanoantenna. The antenna surface towards
air and glass (not visible) is discretized into triangles and quadrilaterals. Surface charges
and currents are chosen such that the boundary conditions of Maxwell’s equations are
satisfied. Adapted from [171].

Antenna elements are modeled using rounded polygons that are extruded via custom-
made edge profiles (cf. Fig. 5.7). The dielectric function of gold according to Olmon
et al. [68] can be directly plugged in without fitting procedure. We define the lower
halfspace to consist of glass to include a substrate. Retardation effects beyond the
quasi-static approximation are deliberately included into the calculation. The BEM
model is used for optimizing the dimensions of Yagi-Uda antennas, but also to study
the influence of a gold sphere in antenna gaps to predict and verify spectral shifts ob-
served in DEP experiments [180]. In the latter case the gold nanoparticle is placed into
the gap of the two-arm antenna and scattering spectra are simulated upon plane wave
illumination. As BEM produces unstable numerical results if too elongated/complex
shapes such as the kinked connectors of the feed element are involved we later return
to the FDTD algorithm to simulate the final electrically connected Yagi-Uda antenna.

Optimal geometry

In this section we perform optimization sweeps to obtain well-suited dimensions for
the parasitic elements exploiting the DIM and also the BEM algorithm in the final step.
Since the feed resonance shifts upon placing a particle into the gap by means of DEP,
the “spectral window” between reflector and director resonances, see inset of Fig. 5.2 a,
has to be sufficiently broad to reproducibly fabricate stable forward emitting antennas.
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Translated into the language of the DIM we face a constraint of sufficiently large de-
tuning values for the passive elements. Indeed we would reach a “global” optimum
for moderate detunings, however, the directionality is then more sensitive to structural
imperfections and experimental realization of these designs is still a challenge on the
nanoscale. On the other hand, previous studies demonstrate that too strong director
detunings to the blue side still yield good FB-ratios while too weak blue-shifts do
not [153]. Hence, the constraint of larger detunings is quite acceptable within the opti-
mization procedure. Using feed driving wavelengths between 800 nm and 880 nm (cf.
Fig. 5.11 e-f) in measurements we find that stable forward emitting Yagi-Uda arrays are
possible with a reflector resonance at 890 nm and director resonance at 680 nm and fix
these parameters, corresponding for instance at λ0 = 850nm to detunings δref =−0.86
and δdir = 9.50.

a) b)

Figure 5.8 – Fit of quasi-static polarizability to WL scattering spectra. a) Reflector
spectrum acquired under WL illumination (black) and corresponding fit (red). b) Director
spectrum measured under WL illumination (black) and corresponding fit (red). The fitting
outcomes are used to calculate loss parameters. More details are given in the text.

In order to calculate the absorption parameters γref,γdir required for the DIM, exper-
imental WL scattering spectra of isolated parasitic elements (cf. Fig. 5.11 e) are fitted
using Eqs. (3.13b) and (5.2). To mimic the effect of a glass substrate as well as possi-
ble within the DIM, an effective homogeneous background medium with εsurr = 1.52
is assumed. Fig. 5.8 displays the original spectra together with the fit. Because of
off-resonant background light the curves show good agreement primarily in the peak
region. The side peak around 560 nm stems from the short axis mode of the nanorods,
which is partially collected with the NA = 1.45 microscope objective. Inserting the re-
sulting effective volumes Veff into Eq. (5.5a) yields γref = 0.370 and γdir = 0.531 which
is in good agreement with results reported in ref. [156] for similar gold nanorods.

Now we are able to run a parameter sweep regarding the reflector with the analytic
model. Varying the distance between feed and reflector in a two-particle system, we
plot the FB-ratio in Fig. 5.9 and find a pronounced maximum around xref = 160nm.
However, since the kinked connectors (cf. Sec. 5.2.1) run between feed and passive
reflector a sufficiently large reflector spacing is required to avoid near-field coupling
between the latter and the electric leads. Under this constraint we place the reflector
at xref = 200nm. We also visualize the radiation pattern of the two-particle system
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Figure 5.9 – Optimization of reflector spacing. FB-ratio (red) as a function of reflector
spacing for a feed-reflector entity (λ0 = 850nm,λref = 890nm) within the DIM. The blue
inset shows the radiation pattern in the plane perpendicular to the dipole axes, calculated
at xref = 200nm (blue circle).

at this configuration in the inset of Fig. 5.9. As is clearly seen, despite a decent FB-
ratio the opening angle of the forward beam is quite large. Indeed, narrower beam
angles are achieved by adding directors as demonstrated in Fig. 5.2 c. Another factor
contributing to a beam narrowing is introducing a refractive index contrast via e. g. a
glass substrate. Then the main emission concentrates close to the critical angle of total
internal reflection, even for a mere connected feed element (cf. Fig. 5.5).

We proceed with adding three directors to the system and optimizing their spacing
by also varying the driving wavelength of the feed. A subsequent map of the FB-ratio
obtained from the DIM is depicted in Fig. 5.10 a. The FB-ratio reaches a maximum for
a wavelength of ∼ 860nm and spacings of xdir = 330nm,200nm and below 100 nm.
The latter distance, however, is less reliable as the dipole approximation breaks down
if the nanoparticles come too close to each other.

For similar but more realistic FB maps with the BEM model, a connector-less Yagi-
Uda antenna is assumed with the same reflector/director resonance wavelengths and
reflector spacing as mentioned above. A dipole source oriented parallel to the long
axis of the feed is placed centrally inside the gap 15 nm above the substrate. The driv-
ing wavelength of the source dipole is swept while the geometry of the feed element
itself is kept constant. The results are plotted in Fig. 5.10 b where one can see that the
optimum driving wavelength blue-shifts slightly to ∼ 850nm and, more importantly,
the director spacings to values of ∼ 240nm and ∼ 130nm. Furthermore, the FB-ratio
decreases noticeably – an overall effect we observe with asymmetric dielectric environ-
ments such as the air-glass interface. Nonetheless, director spacings around 240 nm,
easier to implement into the fabrication protocol than 130 nm, and driving wavelengths
around 850 nm constitute good values for experimental realization.

Table 5.1 lists an overview of all the obtained parameters from the calculations
and experiments. Little differences in the reflector/director spacings are attributed to
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Figure 5.10 – Optimization of director spacing. a) Optimization map visualizing the FB-
ratio for a Yagi-Uda antenna with one reflector, feed element, and three directors within the
DIM where director spacing and feed driving wavelength are swept. b) Same optimization
procedure carried out with the BEM algorithm. Taken from [171].

Parameter DIM BEM FDTD Experiment
Connector Width – – 30 30

Spacing – – 100 100
Reflector Length – 180 166 166

Height – 40 40 40
Width – 60 60 60

Spacing 200 200 200 200
Feed Length – 145 145 115

Height – 40 40 40
Width – 80 80 80
Gap – 30 30 25-30

Director Length – 111 108 108
Height – 40 40 40
Width – 60 60 60

Spacing 200/330 240 240 240
Particle Diameter – – – 30

Table 5.1 – Synopsis of optimum geometric parameters and dimensions of fabricated
antennas. All values are in units of nm. Adapted from [171].

slightly dissimilar particle shapes in BEM and FDTD models due to custom-made edge
profiles. Here the important quantity is the resonance wavelength of 890 nm/680 nm,
respectively, out of which the length follows. Length differences of the feed element
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between experiment and simulations stem from the fact that the final driving wave-
length is determined experimentally by the two-arm antenna including the spherical
particle in the gap that causes a significant red-shift (cf. Fig. 5.3 b). This resonance
shift is compensated in simulations, where the 30 nm interstice is left empty for the
sake of much lower computational burden, via increasing the arm length of the feed
constituents.

5.3 Optical and optoelectronic characterization
In order to fabricate optimized Yagi-Uda antennas we first study the individual ele-
ments separately. In Figs. 5.11 a-e, SEM images and associated scattering spectra of
the final elements as well as a fully assembled antenna are shown. As intended, the res-
onance position of the reflector and directors occur at 890 nm and 680 nm, respectively,
while the feed element and the whole Yagi-Uda antenna are resonant around 810 nm. It
is worth mentioning that the resonance of the empty feed lies around 660 nm and red-
shifts upon deposition of the spherical particle inside the gap towards 810 nm which is
demonstrated by subtracting the contribution of passive elements from the scattering
spectrum of the entire Yagi-Uda antenna. The outcome is visualized as red dotted line
in Fig. 5.11 e.
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Figure 5.11 – Characterization of the Yagi-Uda antennas. a)-d) SEM images and e) as-
sociated spectra of a reflector (green), an unloaded feed element (red), the directors (blue)
as well as a completely assembled Yagi-Uda antenna (black). The dotted line in e) is the
delta of complete antenna minus parasitic elements and corresponds to the feed element
now loaded and red-shifted due to the particle inside the gap. f) Scattering spectrum vs
energy of the Yagi-Uda antenna (same as in e) and resulting EL spectra for various DC
voltages. With growing voltages, the EL peak blue-shifts and becomes stronger as indi-
cated by the yellow arrow (cf. ref. [30]). Note the voltage drop-off is close to zero. Scale
bars, 50 nm. Taken from [171].

Electroluminescence (EL) is measured by applying a DC voltage Vb of up to 1.8 V
and collecting the emitted light via a high-NA objective. The corresponding results
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in Fig. 5.11 f exhibit an emission peak which blue-shifts and increases in amplitude
with increasing voltage. Previous experiments showed that the high LDOS in the an-
tenna gap is responsible for an enhanced inelastic tunneling rate – i. e. the emission
peak – and that the blue-shift as well as the amplitude increase can be explained by
a quantum-shot noise model [30, 181]. Due to the discrete nature of single electrons
and their charges the tunneling current bears fluctuations whose power spectrum de-
pends on the junction resistance and frequency and is nonzero up to the cutoff fre-
quency ωmax = eVb/h̄. Multiplication of the power spectrum of current fluctuations
and the antenna’s scattering resonance yields very good agreement with the observed
EL peak [30]. In order to prevent destruction of the antenna, we limit the applied
voltage to 1.8 V, which results in an emission maximum around 870 nm that is close
to ideal for driving the Yagi-Uda antenna. Furthermore, the voltage drop-off between
applied voltage and maximum emitted photon energy in eV is close to zero indicating
only a single tunneling barrier. External quantum efficiencies, viz. number of detected
photons per tunneling electron, on the orders of 10−5-10−4 are obtained for the present
structures, in compliance with previously published values of electrically driven dipole
antennas [30].
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Figure 5.12 – Far-field comparison of dipole and Yagi-Uda antennas. a)-e) SEM mi-
crographs of one dipole as well as three Yagi-Uda antennas and a sketch of the FDTD
model. f)-j) Corresponding radiation patterns. While the dipole antenna has a balanced
emission, the Yagi-Uda antennas show a high directionality to the right (forward direc-
tion) and nearly no emission to the left (backward direction). The adjacent numbers give
the resulting FB-ratios determined by the areal (pixel) method. The solid angle segments
(∆θ = 15°,∆ϕ = 20°) used for integration are indicated in i). Adapted from [171].
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In order to experimentally estimate the FB-ratio, we record the emission pattern of
the EL by back-focal plane imaging for various antennas and evaluate them with the
common “pixel” method and the more accurate “areal” method (cf. Sec. 5.2). First,
as a reference, we investigate a dipole antenna (Figs. 5.12 a, f; same as in Fig. 5.5 top
row) and observe a FB-ratio of (1.5±1.4) dB and (0.1±0.2) dB with pixel and areal
method, respectively, which is close to the theoretically expected 0 dB. Fig. 5.12 also
depicts the results for three experimental Yagi-Uda antennas. The first Yagi-Uda an-
tenna is the one discussed in Fig. 5.11 and shows a directionality of 6.6 dB or 5.3 dB,
respectively. This is a larger value than the maximum of 6 dB (pixel method) measured
by Curto et al. for optically driven Yagi-Uda antennas [157] as well as the maximal
5 dB (areal method) obtained by Gurunarayanan et al. with their twisted dipolar an-
tenna approach [32]. We fabricate several antennas with similar or better performance
and the two remaining antennas in Fig. 5.12 show FB-ratios of up to 9.1/6.5 dB. These
results exceed the values of hitherto published optical antennas and, hence, highlight
the potential of electrically driven Yagi-Uda antennas for light. Variations between the
individual antennas can be traced back to slight deviations in antenna geometry and
particle placement. Furthermore, the results are qualitatively and quantitatively very
close to the numerical results from FDTD simulations shown in Fig. 5.12 e, j, indicat-
ing a limit of this design around 10 dB. Moreover, compared to the radiation pattern of
the feed (cf. Fig. 5.5), the Yagi-Uda antennas in Fig. 5.12 exhibit a narrowed forward
beam angle as a result of the interference among the parasitic elements.

5.4 Limits of Yagi-Uda antennas in the optical regime
Analogous to the RF regime, higher directivities can be reached by simply adding
more directors to a Yagi-Uda array [182, 183]. However, care needs to be taken when
nanostructures are addressed, as explained in the following. In terms of fabrication,
single-particle deposition is still possible with Yagi-Uda antennas featuring e. g. 13
directors and thereafter, light emission is observed upon bias application. Surprisingly,
the FB-ratios are lower than the lowest ones found for three-director arrays. Overall,
we find the tendency that with increasing number of directors the FB-ratio decreases.

The reason for this counterintuitive behavior is the asymmetric air-glass dielectric
surrounding and the subsequent refraction of light into the higher-index substrate. A
more detailed picture is conveyed by Fig. 5.13, where FDTD-simulated near-field in-
tensity maps for 15-director Yagi-Uda antennas on an air-glass interface as well as in
an index-matched oil-glass environment (n = 1.52) are presented. The antennas are
excited via a dipole source situated inside the feed gap. For the air-glass interface in
Fig. 5.13 a the directors further away from the feed show little intensity because most
of the light is refracted into the glass. Hence, directors further away do not contribute
to the antenna performance, i. e. they do not increase the antenna directionality. In
addition, the extra path length the light needs to travel from the source via the more
distant directors to the detector sitting below the substrate results in a phase lag and,
therefore, a slight destructive interference at the detector, i. e. reduced signal. With ev-
ery additional director, this destructive interference increases. Another general effect



Chapter 5. Electrically-driven Yagi-Uda antennas for light 59

in experiments which might come into play with increasing antenna length is a limited
coherence along the array. As the directors are not well coupled among each other due
to the weak near-fields in the case of the air-glass interface, the re-radiated waves are
less correlated.

|E|²

Air-Glass

Oil-Glass

500 nm

a)

b)

Figure 5.13 – FDTD simulated near-field intensity distribution of a 15-director Yagi-
Uda antenna. a) Antenna placed on an air-glass interface. b) Antenna embedded in a
homogeneous refractive environment. Taken from [171].

Invoking a dielectric environment with constant refractive index (cf. Fig. 5.13 b)
changes the situation substantially: In contrast to the experimental setting with air-
glass interface, no light is refracted out of the antenna plane such that all directors
exhibit significant field intensity and, thus, can contribute to a more directed emission.
This is analogous to the RF regime where Yagi-Uda antennas are situated in free space
if the mechanical support is neglected. In practice, a droplet of immersion oil on top
of the nanostructures would easily create such a configuration but it also prevents a
straightforward acquisition of the radiation pattern with the main lobe being pushed
beyond the acceptance angle of even high-NA microscope objectives. Such experi-
ments demand advanced detection schemes and are therefore beyond the scope of the
current project.

Fig. 5.14 a combines an SEM micrograph of a fabricated Yagi-Uda antenna with 13
directors and the acquired xz-plane angular radiation profile where the emission max-
ima occur near the critical angle of total internal reflection, analogous to the previous
back-focal plane images, yielding FB = 2.1/3.1dB with the “areal”/“pixel” method,
respectively. The emission behavior in a symmetric surrounding can be simulated
and compared to conventional RF Yagi-Uda antennas to judge their performance. We
therefore simulate an antenna embedded in a homogeneous n = 1.52 surrounding, as if
the antenna on glass were exposed to a droplet of immersion oil, adjust the geometry
to match the new dielectric environment and plot the resulting xz emission pattern in
Fig. 5.14 b. As expected, contrary to the experimental setting with air-glass interface
the shape of the pattern is now symmetric and features a much higher FB-ratio of up to
13.2 dB at 870 nm. This corresponds to an antenna forward gain of 11.7 dBi, a quantity
which we use now for comparison with macroscopic antennas. The gain is defined by



60 Chapter 5. Electrically-driven Yagi-Uda antennas for light

30°0°-30°
60°

-60°

Air

Glass

a)

b) F
o

rw
a
rd

 G
a
in

 (
d

B
i)

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0 3 6 9 12 15

Number of Directors

0 3 6 9 12 15

Steel, RF 500 MHz
Gold embedded
Silver
Gold

c)

z

x

y

Figure 5.14 – Limits of an optical Yagi-Uda antenna. a) SEM image of the experi-
mental Yagi-Uda array with 13 directors and superimposed measured xz radiation char-
acteristics. The bending towards the bottom is caused by the air-glass interface, as in the
measurements of 3-director Yagi-Uda antennas on glass. Scale bar, 200 nm. b) Perspective
sketch of the optical antenna with 13 directors in an assumed homogeneous surrounding
(n = 1.52), visualized by an immersion oil droplet, and the simulated xz emission charac-
teristics superimposed, yielding a forward gain of 11.7 dBi. c) Simulated forward gain of
a conventional stainless-steel Yagi-Uda antenna in the RF regime (500 MHz) for a varying
number of directors (black crosses). Its counterparts in the optical regime (870 nm) for
gold and silver antennas (golden and silver circles) in the homogeneous environment as
well as a hybrid system consisting of a gold antenna embedded in a 300 nm Al2O3 layer
surrounded by a homogeneous n = 1.52 medium (red circles). The case of three directors
is highlighted (gray area). Adapted from [171].

IF/Iisotropic where IF is the antenna’s forward intensity and Iisotropic the intensity of a
hypothetical isotropic emitter1.

In Fig. 5.14 c, this forward gain is plotted as a function of the number of directors
for an optical antenna (emission wavelength 870 nm) and also for a conventional RF
Yagi-Uda (500 MHz, stainless steel). In order to simulate gains of RF antennas we use
the publicly available NEC-2 code that is based on the method of moments to solve
the integral electromagnetic equations [184, 185]. The RF model consists of a λ/2
feed element (length 0.3 m) driven by a voltage source, one reflector (length 0.302 m,
spacing 0.1 m) and the directors (length 0.209 m, spacing 0.189 m). All cylindrically
shaped antenna elements have a diameter of 8 mm and are discretized into 19 segments.
The finite conductivity of stainless steel is taken into account.

Forward gain values from FDTD simulations are evaluated by first calculating the
logarithm of the ratio of the intensity emitted in forward direction by a Yagi-Uda an-
tenna and the forward intensity emitted by the bare feed-element without connector
wires. This ratio in dBd (decibels-dipole) represents the forward gain over a dipolar
emitter because the isolated feed element already shows a dipolar far-field emission.
To obtain the gain over an isotropic emitter in dBi (decibels-isotropic) the inherent di-

1The antenna forward gain is the figure of merit in RF antenna technology; however, it is not easily
accessible in nano-optical experiments in contrast to the FB-ratio because a reference antenna with
exactly the same performance would be required.
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rectivity of a short dipolar antenna of 10 · log10(1.5)≈ 1.76dBi [3] has to be added to
the dBd values from the FDTD simulations.

For both optical and RF antennas in Fig. 5.14 c, the forward gain starts at relatively
moderate values for a small number of directors, initially increases strongly with in-
creasing number of directors, subsequently flattens out and reaches a plateau around
12.0 dBi and 15.1 dBi, respectively. This means that the directionality characteristic of
this optical Yagi-Uda antenna is similar to the radio antenna. By substituting gold with
the less lossy silver, the RF values can even be reached. This proves that optical Yagi-
Uda antennas perform analogous to their RF counterparts and, therefore, concepts of
RF antenna theory should be easily transferable to optical Yagi-Uda designs to further
improve or adapt their performance.

We also note that optical Yagi-Uda antennas are even outperforming RF antennas
for small numbers of directors. The reason is that in the RF case, the connecting wires
are considered to be infinitesimally small and, hence, negligible. In the optical case, the
connectors inevitably have a finite size and therefore act as additional passive elements
(cf. Sec. 5.2.1). Therefore, we include them in the gain simulations, which becomes
especially apparent for small numbers of directors.

Additionally, for optical fields, it is possible to mold the flow of light by designing
a dielectric index landscape. For radio waves, this ability is very restricted due to the
lack of suitable materials. Here, we consider embedding the Yagi-Uda antenna in a thin
film with high refractive index in order to confine the emitted light to a 2D waveguide
mode. By embedding antennas into a 300 nm thick Al2O3 layer (n = 1.67 [186]),
surrounded by a n = 1.52 medium, and adapting again the geometry, we are able to
increase the forward gain drastically by up to 3.6 dBi. This means that for nearly any
number of directors, a waveguide-coupled optical Yagi-Uda antenna outperforms the
RF stainless steel and pure optical silver antennas – see red circles in Fig. 5.14 c. The
increase in performance is most apparent for low numbers of directors (e. g. to 12.1 dBi
for three directors) and also particularly interesting because it opens the road toward
highly directive optical antennas with very small footprint.

Finally, alongside the gain increase another intriguing figure is the beam angle of
the forward emission lobe. With growing director number the main emission lobe is
expected to narrow in forward direction, which is confirmed in Fig. 5.15. Here the
in-plane FWHM angle is plotted for the same four antenna systems as in Fig. 5.14 c.
Qualitatively, all Yagi-Uda arrays share the same behavior, namely that the beam angle
is reduced when adding more directors. Silver antennas with sufficient directors show
values very similar to the RF antenna made of stainless steel. We observe a rather lin-
ear decrease for the gold antenna embedded in the Al2O3 film while the other curves
are nonlinear. It is worth mentioning that the radiation pattern of the former differs
fundamentally from the other patterns. The high-index film determines the out-of-
plane beam angle (perpendicular to the angle defined in the inset of Fig. 5.15), which
assumes a constant value of ∼ 14° regardless of director number. In contrast, the out-
of-plane angle of the Yagi-Uda arrays in homogeneous surrounding again depends on
how many directors are used. From this study we conclude that it is possible to reduce
cross-talk with neighboring antennas, which would disturb optical data communica-
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Figure 5.15 – In-plane beam angle of Yagi-Uda antennas. The FWHM angle is given
for the antenna systems shown in Fig. 5.14 c as a function of director number. The inset
illustrates the definition of the FWHM angle and depicts the exemplary case for a 13-
director gold antenna, whose beam angle is 32.6°.

tion, via adding directors. By virtue of the narrowing of the main emission lobe it is
possible to arrange Yagi-Uda antennas on a common chip with higher lateral packing
density.

5.5 Concluding and prospective remarks
In summary, we have shown that inelastic electron tunneling across a nanometer sized
interstice between gold particles can be applied as local driving mechanism to com-
plex plasmonic antenna designs that possess light-shaping functionalities beyond the
pure dipole antenna. We conceived an optical Yagi-Uda antenna consisting of a feed
element with nanowires attached to apply a bias. The tunnel gap was created by plac-
ing a spherical nanoparticle in the prefabricated feed gap via DEP. Furthermore, the
active element was surrounded by various parasitic elements on a common glass sub-
strate. Numerical simulations were deployed to optimize the structure, assisted by an
analytical coupled dipole model, and to develop an electrical subsystem, in order to
eventually reach high FB-ratios. As a result, measurements and simulations yielded
unprecedented directionalities of the emitted light. Further numerical studies suggest
that gain and beam angle of optical Yagi-Uda antennas can be improved by enlarg-
ing the director array, in accordance with their RF counterparts. Ohmic losses inside
the (plasmonic) material turn out to be the main limiting factor of the presented ap-
proach. At optical frequencies it is also possible to guide the emitted photons by a
suited combination of high-index dielectric films, e. g. Al2O3 encapsulating the an-
tenna and polymethyl methacrylate (PMMA) on top. This strategy not only boosts the
forward gain but also restricts the light emission to the substrate plane, as required for
on-chip data exchange between different entities.
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Highly directive low-footprint optical Yagi-Uda antennas are therefore specifically
promising for on-chip data communication applications where they can act both as
sender and receiver of data with an ultrahigh bandwidth. The modulation speed is not
limited to exciton lifetimes characteristic for LEDs but rather to the RC time constant
of electric leads and tunnel junction [31], regarded as plate capacitor, yielding a cut-
off frequency in the terahertz regime [30]. Furthermore, the resulting communication
schemes would also allow transistors from one computer chip to be directly linked
via optical networks to transistors on other chips, which reduces latencies and allows
novel computational concepts. Hence, optical Yagi-Uda antennas may play a role in
future computational devices. However, a major obstacle still to overcome is the in-
herently low efficiency of the IET process of about 10−6 [30, 33, 187], although values
up to 2 % have been observed in geometrically sharp junctions between silver antenna
arms with facets of well defined single-crystal lattices [35]. Very recently, resonant
IET has been experimentally demonstrated by harnessing resonant electronic states in
a “higher order” tunnel junction, a metallic quantum well heterostructure embedded
between two electrodes. Quantum efficiencies reaching 30 % are reported [188]. One
has to keep in mind that the bandwidth of the current power spectrum is naturally nar-
rowed in resonant IET compared to IET and that the devices under study have a large
planar extension with a silver nanorod placed on top of the tunnel area. Therefore, the
concept of metallic quantum wells is not straightforwardly transferable to the overall
nanoscopic gap dimensions in Yagi-Uda antennas. Nonetheless, resonant IET marks
one step further towards technological viability.

Besides a Yagi-Uda transmitter a receiving unit is necessary to demonstrate truly
optical communication on a chip. Hot electron assisted rectification of NIR radiation
with gold nanoantennas was pioneered in 2011 [107]. At optical frequencies, mul-
tiwalled carbon nanotubes were proposed to engineer rectifying MIM tunnel diodes
with antenna effects [189]. Even a wireless optical interconnect between directional
antenna and a biased tunnel junction based rectenna was recently built [27]. This
rectenna design did not support a plasmon resonance which makes the transduction
yield low. By virtue of reciprocity, a Yagi-Uda design qualifies for a directional, res-
onant rectenna structure. Yet, the investigation of nanoscale resonant rectennas is still
in its infancy [190].

Another intriguing aspect is the plasmonic coherence in electrically driven nanode-
vices in view of the fact that tunneling is a quantum mechanical, statistical process.
The experimental realization of highly directive 3-director Yagi-Uda antennas and the
agreement with fully coherent FDTD simulations has evidenced coherent electrically
excited plasmons that propagate among several parastic elements separated in such a
way that no near-field interaction takes place. On the other hand, the more directors
are added the more it might become important to consider dephasing phenomena. Pre-
sumably, the dielectric index landscape also has an impact on the coherence behavior
because it controls the coupling between the elements as shown in Fig. 5.13. If the co-
herence is lost by random phase jumps, the working principle of the parasitic elements
breaks down, giving rise to less directional far-field radiation. Therefore, it would be
interesting to reveal the coherence behavior of larger director arrays, e. g. by plac-
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ing scattering particles around an in-plane emitting Yagi-Uda antenna with a specific
director number and probe the scattering particles to reconstruct the radiation char-
acteristics. This could be performed with the scanning near-field optical microscopy
(SNOM) technique [4, 5]. Comparison with FDTD simulations would yield a hint
whether the coherence is maintained. An alternative but equally challenging route
would possibly be a phase-resolved near-field investigation of the electrically-driven
Yagi-Uda antenna with cathodoluminescence [191, 192].

Finally, the modeling and simulation framework presented in this chapter can also
be utilized to study and optimize the directionality of other complex nanoantenna sys-
tems consisting of multiple particles. An analytical quasi-static model for estimating
the most important parameters benefits from the low computational load and fast calcu-
lation times. This yields a reasonable set of initial values for more sophisticated numer-
ical simulations that take into account several experimental aspects such as substrate,
refined particle shapes, material properties, manufacturing constraints, excitation con-
ditions, as well as the fully vectorial structure of Maxwell’s equations (2.1). When
these additional conditions, satisfying the ever-increasing demand for higher accuracy
in nanostructures, are included in the optimization procedure, highly performing an-
tenna systems can be conceived, but also their limitations can be elucidated. The pre-
sented manufacturing toolbox provides a powerful platform to reliably produce those
refined particle geometries and integrate them with nanometer gap junctions, paving
the way towards implementing more elaborate electrically driven antenna configura-
tions such as log-periodic antennas [193] or antennas with a parabolic reflector as well
as novel devices, e. g. electrically driven plasmonic waveguides [139].
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A rtificial light sources have always been an essential tool in the history of mankind
as they decouple human activity from the natural rhythm of solar irradiation.

Hundreds of millennia ago, flames of burning wood helped illuminate the immediate
environment of our ancestors after sunset. Light generation via combustion became
a more controlled process in oil lamps, having remained an indispensable equipment
for thousands of years. An important benchmark was the invention of electrical light
sources, pioneered by the light bulb in the 19th century and followed by gas discharge
lamps [194]. Due to the laws of black-body radiation and the electronic configuration
of the gases, considerable part of the emitted photons from the aforementioned sources,
however, lies energetically above or below the visible spectral window, which keeps
the light generation efficiency inherently low. The latter can be improved by a more
narrowband emission centered in the visible regime. The material class of semicon-
ductors offers such emission properties from recombining charge carriers, which led to
the invention of light-emitting diodes (LEDs), assisted by the emergence of transistors
in the mid 20th century [194]. Owing to the bandstructure of a specific semiconducting
material, the wavelength can be selected.

Semiconducting properties were also discovered in organic compounds, accompa-
nied by the observation of electroluminescence (EL) from molecular crystals [195,
196] in the 1960s. A decade later conjugated polymers with systematic doping were
studied and a new class of organic semiconducting materials began to develop [197–
199]. However, these early devices suffered from very high applied biases and un-
stable carrier injection from metal contacts [45], which hindered a broad deployment.
In the late 1980s, Tang et al. reported on the first high-performance organic light-
emitting diodes (OLEDs) based on vapor deposited thin films [200, 201], soon fol-
lowed by Burroughes et al. who presented electroluminescent structures that involved
conjugated polymers [202]. Nowadays, the high-tech based society’s ever-growing
demand for multifunctional, efficient, and color rendering light sources led to tremen-
dous research efforts addressing organic semiconductors. They promise large area
integrated light sources on flexible substrates using low cost printing of commonly

65
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available composites [45], which may revolutionize once more the market of future
illumination solutions. Meanwhile, OLEDs have been utilized in commercial display
applications [46, 203].

OLEDs typically consist of stacked multilayers including transparent conductive
oxide (TCO) and metallic opaque electrodes, charge injection, and transport layers as
well as exciton recombination layers. Radiative recombination of excitons can thus
be spatially separated from the metallic electrodes to avoid exciton quenching which
leads to heat or to surface modes at the metal interface (see Fig. 6.1 a). On the other
hand, the thickness of functional layers must be kept small due to the low mobilities for
electrons and holes in most organic semiconductors in order to facilitate fast switching
and to avoid losses. Furthermore, the stacked device architecture offers only limited
possibilities to engineer the emission characteristics of OLEDs. Plasmonic effects have
been studied in the context of organic LEDs, inorganic LEDs, and quantum dot LEDs
to increase their brightness via increased local density of states [42, 204–207] and
partial scattering of guided modes into the far-field [43, 44, 208, 209]. Even though
antenna effects are mentioned in some of these publications [205], the dominant effect
is always coupling to guided, i. e., nonradiative modes.
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Figure 6.1 – Comparison between a traditional stacked OLED device and the lateral
OLEA design. a) Typical OLEDs use a stacked design which suffers from internal losses
due to total internal reflection (TIR). Blocking layers (not shown) are needed to avoid re-
combination of charge carriers at the electrode interfaces which would lead to nonradiative
losses such as surface modes and quenching. The emission spectrum is solely governed
by the active organic material (ZnPc). b) The OLEA design uses lateral electrodes that act
as optical nanoantennas. This results in an ultracompact lateral device design. Charge re-
combination at interfaces is desired since it leads to efficient coupling to radiative antenna
modes. The properties of these antenna modes largely influence the characteristics of the
emitted light, such as polarization, spectrum, and directionality. The freedom of choice
of the antenna design as well as the overall simplicity of the approach can lead to novel
degrees of freedom in the performance of such devices, such as the wavelength and direc-
tional switching presented in this chapter. Reprinted with permission from [37]. © 2022
American Chemical Society.

In this chapter, we introduce a new device concept for OLEDs. As sketched in
Fig. 6.1 b, we propose a laterally structured design in which the electrodes at the same
time deliver charge carriers to the OLED’s active region and serve as highly efficient
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nanoantennas. Such organic light-emitting devices based on plasmonic nanoantennas,
short organic light-emitting antennas (OLEAs), bear several advantages: (i) The ab-
sence of guided modes and the radiative character of the antenna resonance ensure
highly efficient outcoupling of power to the far-field. (ii) The overall device footprint,
i. e., the pixel size, reaches into the subwavelength regime avoiding parasitic effects of
large scale emission volumes in OLEDs. (iii) By means of antenna engineering, the
emission wavelength and the radiation pattern of the OLEA can be controlled, and (iv)
the antenna’s enhanced density of states strongly reduces excited state lifetimes of the
organic molecules [210], thereby removing a bottleneck for the generation of photons
as well as for the outcoupling of photons into far-field radiation. Finally, (v) the OLEA
design is compatible with large scale integration.

Prior to discussing OLEA devices, a brief overview over the physics of organic
semiconductors is given and the organic compound used here, zinc phthalocyanine
(ZnPc), is precharacterized. Afterwards, the structure design is outlined and electro-
optic measurements on OLEA devices are shown, using local electrical excitation via
the antenna electrode subsystem similar to Chap. 5. Instead of generating light via
inelastic electron tunneling across a nanometer gap we make use of the radiative re-
combination of excitons inherent to the active organic material. FDTD simulations are
carried out to study the far-field radiation characteristics of the OLEA device, as well
as spectral and near-field properties of the antenna electrodes embedded in ZnPc. Here,
special care must be taken with the simplified optical response of the organic as ex-
plained below. Subsequently, based on the astonishing observations in electro-optical
measurements, we establish a qualitative model of the charge carrier recombination be-
havior in OLEA structures and demonstrate controlled color switching upon inverting
the bias polarity, accompanied by a change in directionality of the emission. Finally,
we investigate experimentally and numerically how the angular radiation pattern can
be further influenced by an additional passive element.

6.1 Introduction to organic semiconductors
While inorganic semiconductors are characterized by continuous energy bands of elec-
tronic states, their organic counterparts feature a distinct electronic configuration. As
carbon atoms in molecular bonds undergo hybridization involving 2s and 2p orbitals
they form σ -bonds and π-bonds with adjacent C and H atoms, depending on the degree
of H-saturation. While the σ -bonds formed by the sp2 hybrid orbitals are relatively
strong and thus lowered in energy, the π-bonds emerge from unhybridized pz orbitals
and have weaker binding energy [45]. As the simplest example, Fig. 6.2 a depicts the
formation of the π-bond in an ethene molecule via mixing of the basic atomic pz or-
bitals. In the energetic ground state, the highest occupied molecular orbital (HOMO) is
the bonding π-orbital, as illustrated in Fig. 6.2 b. Due to the aforementioned low bind-
ing energy, the lowest unoccupied molecular orbital (LUMO) is π∗, which is populated
by one electron in the first excited state of ethene. The π-π∗ energy gap usually lies
in the visible spectral range, which renders these transitions desirable in light-emitting
devices.
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Figure 6.2 – Molecular orbitals and energy diagram of ethene molecule. a) Left: Basic
pz atomic orbitals which do not participate in the sp2 hybridization. The • symbol denotes
a nodal plane. Right: Delocalized bonding π and antibonding π∗ molecular orbitals. The
C–C σ -bond is illustrated by a line. b) Energy diagram of ethene in its ground state (empty
π∗-orbital) and first excited state (one electron in π∗-orbital). Reprinted and adapted with
permission from [211]. © 2008 Springer Nature.

Organic semiconducting materials typically feature a conjugated π-electron sys-
tem consisting of staggered single (σ ) and double (σ + π) bonds. This gives rise to
delocalized π-electrons over the length of the conjugated system with a pronounced
intramolecular mobility. The HOMO-LUMO gap also depends on the size of the con-
jugated π-system, offering a broad tunability of optoelectronic properties within the
organic material class [45]. Moreover, halogenation can be used to shift the energy
level offset w. r. t. the vacuum level while retaining the energy gap itself [212, 213].
Such chemical modifications allow specific designs and enable vast possibilities in
engineering organic semiconductors, e. g. electron donor and acceptor compounds.

Contrary to covalent bonds in inorganic solids, the intermolecular coupling in an or-
ganic crystal consists of significantly weaker van-der-Waals bonds which brings along
several implications on the optoelectronic properties. Excited states remain more lo-
calized and appear as coupled electron-hole pairs, called excitons. They can be spread
across one (Frenkel exciton) or several adjacent molecules. For instance, charge trans-
fer (CT) excitons are formed by charge carriers sitting on neighboring molecular sites.
In organic materials, the Coulomb interaction between hole and electron can assume
relatively high values up to 1 eV, and optical gap and free-carrier gap differ by this
value [45]. One has to distinguish between spin singlet states Si and triplet states Ti as
indicated in Fig. 6.3. This Jablonski diagram summarizes the most important electronic
transitions in an organic semiconductor, including the vibrational sublevels. Typically,
the ground state is given by a filled S0 state and photon absorption promotes an elec-
tron to the HOMO with the resulting exciton occupying a singlet state. Between the
vibrational modes that also can include different electronic levels, radiationless inter-
nal conversion takes place on very short time scales (τIC ∼ 10−13 s) so that fluorescence
(τFl ∼ 10−9 s) usually occurs from the lowest sublevel [211], and in particular, from the
lowest excited state of the corresponding spin multiplicity (Kasha’s rule [214]). Due to
selection rules of electron transitions in atoms, processes such as intersystem crossing,
triplet deexcitation (phosphorescence) and photon absorption into triplet states would
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be dipole-forbidden because of the involved spin flip. However, as organic compounds
are molecular and sometimes even include a metal atom with high atomic number,
spin-orbit coupling weakens the selection rule and enables these processes, albeit on
longer time scales [211, 215]. On the other hand, the weak nature of the phosphores-
cence mechanism imposes a fundamental limit to the external quantum yield of OLED
devices [45] because the spin multiplicity of S1 and T1 dictates that only 25 % of in-
jected charge carriers enter the S1 state and decay fast via fluorescence. The spin triplet
states are accompanied by an antisymmetric spatial wavefunction of the electrons and
lie therefore energetically lower than the corresponding singlet states.

According to the Franck-Condon principle, absorption and fluorescence processes
from the lowest vibronic sublevel of an initial electronic state to higher vibronic sub-
levels of the final electronic state may have higher probability, viz. intensity, because of
a stronger overlap of the involved vibrational wavefunctions. Since the electron tran-
sitions happen very fast the nuclear positions are assumed constant during the transi-
tion (Born-Oppenheimer approximation). Upon electronic (de)excitation, however, the
equilibrium nuclear distance in molecular compounds might change which determines
the overlap of vibrational wavefunctions [215]. The fact that the outgoing photons
possess a longer wavelength (lower energy) than the absorbed ones is known as Stokes
shift and depends on the population of the vibrational states as well as geometrical
relaxation effects [215].
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Figure 6.3 – Jablonski diagram of a typical organic molecule. The singlet states Si, in-
cluding the molecule’s ground state, exhibit an antisymmetric spin wavefunction whereas
the triplet states Ti have a symmetric one. Vibronic sublevels are depicted with thin lines.
Allowed, fast transitions involving a photon are drawn with solid arrows. Weak radiative
processes are shown with dashed vertical arrows. Transitions such as intersystem crossing
(horizontal arrows) and internal conversion (wavy arrows) are radiationless. Reprinted and
adapted with permission from [215]. © 2006 Springer Nature.
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Besides optical properties, the charge carrier transport is also affected by the weak
van-der-Waals binding in organic molecular crystals. When a surplus or defect electron
resides on a molecular entity it forms an ionic state within the crystal lattice. The
ionic state is energetically stabilized within the condensate as compared to an isolated
molecule, i. e. the HOMO (LUMO) is raised (lowered) by polarization energies which
stem from screening effects of surrounding molecules. Moreover, typical organic thin
films exhibit spatial disorder with varying polarization energies so that the HOMO
and LUMO are spectrally broadened, following a Gaussian distribution [45]. Hence,
the transport behavior in organics lies between the limiting cases of coherent band
transport and incoherent hopping transport. The former is predominantly observed in
highly purified single-crystalline samples, featuring decent mobilities which, however,
are still well below the values of crystalline Si or Ge. In poly-crystalline organic thin
film samples, such as used in this work, hopping processes prevail, giving rise to orders
of magnitude lower mobility values for charge carriers. Here the mobilities also depend
on the applied electric field which may partially mitigate the spatial disorder effect by
overcoming local energy barriers.

Compared to inorganic semiconductors, organics possess a low intrinsic carrier den-
sity. Thus in applications like OLED devices it is important to provide charge carriers
via external metal contacts. In general, a Schottky barrier has to be overcome by the
charge carrier upon injection, or the contact is Ohmic, depending on the metal work
function and the HOMO/LUMO energies. If a Schottky barrier is present (see also
Fig. 6.13), two injection mechanisms at metal-organic interfaces play an important
role. One contribution stems from the thermally induced surpassing of the barrier
and is called thermionic emission. This phenomenon is modeled by the Richardson-
Schottky equation and dominates at high temperatures [216]. The other contribution,
known as Fowler-Nordheim (FN) tunneling, can be understood as field assisted quan-
tum mechanical electron tunneling across the barrier [216, 217]. This temperature
independent process dominates at intense electric fields and changes drastically with
barrier height and width. Both effects can be influenced by a space charge within the
organic close to the contacts which weakens the local electric field [218, 219]. In the
FN representation of current-voltage curves, the two contributions can be identified by
their different signs of slope, as is shown below in Sec. 6.5.

6.2 Characterization of ZnPc thin films

6.2.1 Molecular and electronic structure
Zinc phthalocyanine (ZnPc) is a member of the metal phthalocyanine family which
is widely used in organic photovoltaics [220] and constitutes an ideal model system
for the present study because of the solid background knowledge about its growth and
photophysical properties, its support of ambipolar transport as well as the possibility
to inject charges by symmetric gold contacts, and finally, because it emits in a near-
infrared spectral range that matches the plasmonic excitations of the gold nanoantennas
introduced later. Fig. 6.4 a depicts the chemical structure of ZnPc with the central Zn
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atom surrounded by the phthalocyanine ligand system [213]. The orbitals relevant for
the photophysical properties are listed in Fig. 6.4 b, together with the electronic con-
figurations of ground state and first excited state (Q-band, π − π∗). ZnPc features a
fully occupied 3d orbital which discriminates it from other MPcs such as CuPc, NiPc,
and FePc [220]. Hence, the formation of ligand-metal exchange coupled states and
subsequent fluorescence quenching is excluded, resulting in a higher intrinsic quan-
tum yield than other MPcs. Owing to the D4h symmetry at ground state, ZnPc has
degenerate HOMO and LUMO levels [221]. Two separate absorption peaks are visible
in the Q-band spectrum and there is an ongoing dispute within the community about
which effect to ascribe to this observation. Upon excitation, a symmetry break in the
molecule may occur which lifts the degeneracy and causes a splitting of the Q-band
absorption (Jahn-Teller splitting) [222]. Recent theoretical studies attribute the finding
to a mixture of coexisting bright Frenkel exciton and CT exciton. They also predict
the intensity ratio between the mixed states, i. e. their oscillator strengths [223, 224].
It is worth mentioning that crystalline ZnPc exhibits polymorphism. The metastable
α-phase features a triclinic unit cell with the molecules stacked in a uniform brickstone
orientation. Thin films are observed to preferably grow in the α-phase at room tem-
perature. The thermodynamically stable β -phase is characterized by a monoclinic unit
cell with molecules oriented in a herringbone pattern [220, 224]. A transition from the
α to the β form can be induced by high temperature annealing [225–227] or solvent
exposure [228], accompanied by changes in the photoluminescence (PL) spectrum.

a) b)

Figure 6.4 – ZnPc molecule. a) Chemical structure of ZnPc. Reprinted with permission
from [213]. © 2011 John Wiley & Sons. b) Electronic configuration of ZnPc in its ground
state and first excited state, showing 3d orbitals of Zn and the ligand π-orbitals. Reprinted
with permission from [220]. © 2010 Elsevier.

6.2.2 Dielectric function
Regarding OLEA devices, the presence of a ZnPc film with a certain dielectic con-
stant surrounding the plasmonic structure is expected to drastically alter the antenna
resonance. Such resonance shifts must be accounted for when designing the antenna
electrodes via simulations. It is therefore of interest to model the complex dielectric
function of the active organic material and implement the outcome into the FDTD al-
gorithm (cf. Chap. 4). The low symmetry of the triclinic crystal structure manifests
itself as an anisotropic optical response. Additionally, the crystallographic axes do not
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coincide with the optical axes. As a result, we would obtain individual dielectric ten-
sors for real and imaginary part with frequency dependent orientation of the principal
axes [229] and the Kramers-Kronig relations, which are based on the holomorphism
of the dielectric function and causality, do not hold anymore. This would prevent a
successful fit with Lumerical’s MCM fitting procedure (cf. Sec. 4.2). To overcome
this hurdle we adopt a simplified analytical model to describe the complex dielectric
function of ZnPc:

ε(ω) = ε∞ +
2

∑
k=1

fk
ω2

k

ω2
k −ω2− iγkω

. (6.1)

Here, fk, ωk, and γk denote the oscillator strength, transition frequency, and damping of
the k-th transition, respectively, in accordance with the quantities defined in Eq. (3.4).
Summing over two Lorentz oscillators accounts for the split Q-band. As a starting
point for the determination of the model parameters we use the dielectric function re-
ported by Wojdyła et. al. [230] and, in particular, we fit Eq. (6.1) to its imaginary part.
The real part then follows according to the Kramers-Kronig relations and the resulting
dielectric function is isotropic. We find ε∞ = 2.7, f1 = 0.09, h̄ω1 = 1.69eV, h̄γ1 =
0.22eV, f2 = 0.14, h̄ω2 = 1.99eV and h̄γ2 = 0.32eV as fitting parameters.
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Figure 6.5 – Dielectric function of ααα-ZnPc. a) Real part ε1 of the measured data [230]
as red dots and Kramers-Kronig consistent fit of Eq. (6.1) as blue solid line. Fit parameters
are given in the text. b) Imaginary part ε2 of measured dielectric function with correspond-
ing fit.



Chapter 6. Color-switchable subwavelength organic light emitting antennas 73

Fig. 6.5 displays the reported data together with the simplified model. One observes
that the imaginary part ε2 (panel b) is reproduced rather accurately throughout the spec-
tral range of interest, whereas the real part (panel a) shows a clear deviation between fit
result and measured data around the Q-band transitions. The situation improves when
approaching the NIR regime where the dielectric function flattens out. It is worth
mentioning that the exact value of ε(ω) also depends on the preparation method and
growth conditions. In our fabrication, commercially obtained ZnPc is purified twice by
gradient sublimation and evaporated on a Si wafer for reference measurements as well
as on the pre-structured antenna substrates in a high-vacuum multi-chamber system
operating at a base pressure of 10−8 mbar. The deposition proceeds at an evaporation
rate of 10-15 Å per minute controlled by quartz crystal balance until a film thickness of
30 nm, in most experiments, is reached. To avoid parasitic leakage currents, a shadow
mask is used to deposit the organic material only on the relevant areas of the sample.
Wojdyła et al. also prepare thin films via vapor deposition of α-phase ZnPc, however,
with increased thickness (220 nm) [230]. While their values are a good approximation
we note that generalized ellipsometry [229] of ZnPc would be needed to obtain the
full tensorial dielectric function which has not been reported yet in literature. FDTD
simulations of plasmonic nanoantennas embedded in a ZnPc film using the isotropic
2-Lorentz-model are shown and discussed in Sec. 6.3, in view of the deviations in the
real part of ε(ω).

6.2.3 Morphology

A high quality of the Au/ZnPc interface is crucial to avoid parasitic currents and short
circuits in OLEA devices. Fig. 6.6 a displays an optical micrograph of a test sample
showing an unstructured single-crystalline hexagonal gold platelet on top of a gold
electrode structure to provide electrical contact. Towards the right side, a 30 nm thick
α-ZnPc film (greenish appearance) is evaporated through a rectangular shadow mask
such that it partially overlaps with the gold platelet as well as with the glass substrate.
This allows us to study the growth behavior of ZnPc on both materials. Atomic force
microscopy (AFM; AIST-NT CombiScope-1000 SPM) is employed to measure the
film thickness and surface morphology. Fig. 6.6 c displays topographic scans on glass
and on top of the gold flake, parallel to the gold platelet’s edge, covering the transition
region of areas with and without ZnPc (see AFM topography image, Fig. 6.6 b). Both
line profiles confirm the nominal ZnPc film thickness of 30 nm. The AFM image
(Fig. 6.6 b) of the interface region (white square in Fig. 6.6 a) shows the well-defined
edge of the gold flake and the onset of the ZnPc film as a slight increase in the height
values towards the right. The red and the green line indicate the respective linecut
positions.

In addition to these topographic overview images, we also investigate the surface
morphology of the ZnPc thin films in more detail. Fig. 6.6 d shows the clean surface of
the gold platelet which is very flat with a root-mean-square (RMS) roughness as small
as 317 pm. The AFM topography of a ZnPc film (Fig. 6.6 e) of the same plot range
reveals a granular morphology, evidencing the α-phase of ZnPc [227], with domains
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Figure 6.6 – ZnPc thin film characterization. a) Optical image of a single-crystalline
gold platelet on a gold electrode structure. On top, a 30 nm α-ZnPc film (green) is de-
posited. b) Atomic force microscopy (AFM) image of the region indicated by the white
square in a), where glass substrate, gold platelet and organic film interface each other.
c) Height profiles at the glass-gold-ZnPc interface region, along the lines depicted in b)
(the line scans exceed the plot range of the AFM image). On both glass substrate (green)
and gold flake (red), the nominal ZnPc thickness of 30 nm is confirmed. d) AFM image of
the pristine surface of a gold platelet (RMS roughness 317 pm). e AFM image of region
with 30 nm ZnPc film on the same gold platelet (RMS roughness 765 pm). f) AFM image
of an OLEA antenna system covered with ZnPc. Across the gap, on average, only one
ZnPc domain is found. Reprinted with permission from [37]. © 2022 American Chemical
Society.

of ∼ 50nm in diameter, yet still with a low RMS roughness of 765 pm, which ensures
a high interface quality. As the gap width of OLEA antenna structures approximately
equals the domain size, we find the gaps to be filled with only few or even a single
ZnPc domain (see Fig. 6.6 f).

6.2.4 Photoluminescence
The optical response of the organic material is a key property for the operation of light-
emitting devices. Here we present photoluminescence (PL) measurements on α-phase
ZnPc films in Fig. 6.7. A 30 nm film grown on a Si wafer with thermal oxide layer
is used for a neat characterization of the PL in the wavelength range of interest above
700 nm (black). We also acquire a spectrum on a completed OLEA structure where the
film is supported by a glass substrate. In the latter case a different experimental setup
with lower quantum efficiency in the detection of high wavelengths is used. The right
shoulder of the spectrum (red) is superimposed by slight etaloning oscillations. Apart
from that, both spectra agree very well, featuring a broad maximum around 910 nm,
which is a clear signature of the excimer state of the ZnPc α-phase [227].
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Figure 6.7 – Photoluminescence of ααα-ZnPc. Spectra are taken at room temperature on
30 nm thick ZnPc films on glass (red) and on a Si wafer with thermal oxide layer (black).
Reprinted with permission from [37]. © 2022 American Chemical Society.

6.2.5 Electroluminescence of ZnPc with nonresonant gold electrodes:
stacked plasmonic OLEDs

The simplest possible plasmonic OLED is a symmetric stack with two electrodes sur-
rounding one active organic film (cf. Fig. 6.8 a). To obtain electroluminescence spectra
of the Au/ZnPc/Au-system we fabricate Au/ZnPc/Au stacks with organic layer thick-
ness of 10 nm. The single-crystalline gold microstripes are assembled as shown in
Fig. 6.8 b to yield an array of OLED pads which are formed at the positions where two
electrode stripes overlap (Fig. 6.8 a). This opens the possibility to apply a voltage to
each pad separately.

Applying a voltage of 2.3 V to an exemplary stacked OLED (white rectangle in
Fig. 6.8 b) results in electroluminescence (EL) which is distributed over the pad sur-
face and the edges of the gold contacts (cf. Fig. 6.8 c). Clean and flat interfaces (see
Sec. 6.2.3) prevent short circuits even for ultrathin devices featuring only 10 nm ZnPc
layer thickness. The EL spectrum of the brightest area in Fig. 6.8 c, marked by a red
arrow, shows a maximum around 930 nm, as presented in Fig. 6.8 d, hinting at the
excimer state of α-ZnPc (see Sec. 6.2.4) as a source. Hence, in the absence of a plas-
monic resonance, the emitted electroluminescence spectrum is solely determined by
the properties of the organic material.

6.3 OLEA structure design
The device concept is depicted in Fig. 6.9 a. We make use of the well-established con-
cept of single-crystal electrically connected antennas [29, 30, 171] which we fabricate
by focused ion beam milling from single-crystal gold platelets [65–67] on glass. Two
parallel gold bars of different lengths serve as nanoantennas for light. Their resonances
around 800 and 920 nm are chosen such that both of them overlap with the photolu-
minescence spectrum of the organic semiconductor ZnPc (cf. Sec. 6.2.4) but remain
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Figure 6.8 – Stacked plasmonic OLEDs with planar electrodes. a) Schematic sketch
of OLED stack with overlapping gold stripes. b) Optical microscope image of stacked
Au/ZnPc/Au structure with Au bottom and top contacts in dark green and a 10 nm ZnPc
film in between. c) Electroluminescence in the region indicated by the white rectangle in
b) imaged by an EMCCD camera. A bias of 2.3 V is applied between the Au electrodes.
d) Electroluminescence spectrum recorded at the bright spot marked by the red arrow in c).
Reprinted and adapted with permission from [37]. © 2022 American Chemical Society.

sufficiently well separated to provide a distinct spectral signature for each antenna (cf.
Fig. 6.9 c). Width and height of the gold bars are fixed to ∼ 50nm.

In order to obtain optimized antenna geometries for the desired resonance wave-
lengths, we perform FDTD simulations of gold nanorods embedded in an organic film.
Using the simplified 2-Lorentz-model for the dielectric function of ZnPc as described
in Sec. 6.2.2, the plasmon resonances experience a red-shift compared to the bare an-
tennas on glass substrate. We find a systematic difference between the experimentally
obtained red-shift in white-light (WL) scattering measurements and simulated spectra.
In simulations spectra of embedded antennas are shifted about 80 nm further towards
the red than experimental spectra. The main factor leading to the mismatch is the ex-
act value of ℜ(ε(ω)), which is unknown for our specific film growth and substrate
conditions. As an alternative route, to compensate the systematic deviation caused by
the simplified dielectric function, we optimize antenna dimensions for resonances red-
shifted by additional 80 nm in simulated spectra and find that rod lengths around 110
and 150 nm (cf. SEM micrograph in Fig. 6.9 b) should produce plasmon resonances at
800 and 920 nm in experiments, respectively.

Conversely, to demonstrate the device functionality at the experimentally obtained
resonances, it is possible to blue-shift simulated resonances, e. g. by reducing the
antenna lengths while keeping the cross-section constant. Thus to achieve simulated
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Figure 6.9 – Device layout and scattering spectra. a) Sketch of the setup. b) Left:
Zoomed SEM micrograph of the electrically connected gold antenna dimer. Right:
Overview SEM image showing antennas, connector wires, and electrical contact pads.
After evaporation of a ZnPc thin film (30 nm), a DC voltage is applied between the two
antennas, as sketched in the left panel. c) Upper panel: Acquired WL scattering spectrum
of OLEA device (WL setup components see Fig. 5.3 a). The lengths of the plasmonic
nanoantennas are approx. 110 and 150 nm. Lower panel: Simulated scattering spectrum
of OLEA structure with antenna lengths of 96 and 126 nm, respectively. The lengths have
been shortened to compensate the systematic red-shift observed in FDTD simulations. Ap-
plying this systematic correction, the resonance positions agree very well. A slight Q-band
peak of ZnPc around 680 nm is observed in both experiment and simulation. Reprinted and
adapted with permission from [37]. © 2022 American Chemical Society.

resonances around 800 and 920 nm, we used rod lengths of 96 and 126 nm, as com-
pared to fabricated antenna lengths of 110 and 150 nm, respectively. Fig. 6.9 c com-
pares an experimental scattering spectrum of the antenna dimer with these dimensions
to a simulated dimer with optimized, shortened lengths. Both spectra show compa-
rable resonance wavelengths. The fact that experimental linewidths are broader than
the simulated ones can be attributed to an uncertainty in ℑ(ε(ω)) of ZnPc film and
to systematic deviations between the idealized antenna geometry used in simulations
and the real antenna geometry obtained in experiments, in particular considering the
varying curvature radii of the nanorod ends. It is worth mentioning that the Q-band
feature [231, 232] around 680 nm is reproduced in FDTD simulations with ZnPc film,
albeit slightly red-shifted. Thus, while the systematic red-shift of simulated antenna
spectra has to be accounted for, the FDTD simulations can still be used to design an-
tenna systems embedded in ZnPc quite precisely.

We have varied the distance between the two antennas to make sure that at the cho-
sen distance of 50-60 nm both resonances do not hybridize, i. e., they exhibit negligible
resonance shifts. Yet, they still exhibit sufficient coupling to produce directionality ef-
fects. ZnPc has been deposited on top of the gold structures as described in Sec. 6.2.2,
showing a homogeneous greenish color in optical micrographs (see Sec. 6.2.3). The
presence of the metastable crystalline α-phase of ZnPc can be inferred by its distinct
excimer dominated PL spectrum (cf. Sec. 6.2.4) as well as its characteristic circular
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grain morphology (cf. Sec. 6.2.3) [227]. Each horizontal antenna bar is contacted by
a thin wire to provide an electrical connection. The thin wires in turn are attached to
larger gold pads (cf. Fig. 6.9 b, right panel) that are contacted via micromanipulator
needles. The connector wire is attached to the center of the antenna rod to avoid any
disturbance of the plasmon modes [29].

6.4 Antenna-selective electroluminescence
When applying a DC voltage between the rods, we observe emission of light as a
diffraction-limited spot (cf. Eq. (2.26)) localized at the position of the nanorod pair
as demonstrated in Fig. 6.10 a, compatible with an electrically driven subwavelength
point source. This holds true regardless of the applied polarity. Astonishingly, we find
that instead of a broadband emission representing the sum of the resonances of both
antenna rods, the spectrum depends strongly on the polarity of the applied voltage (cf.
Fig. 6.10 b). Following the bias definition in Fig. 6.9 a, for negative (positive) voltages,
the emission spectrum peaks at 830 nm (910 nm). All spectra have been corrected by
the detection efficiency of the experimental setup, whose transfer function includes
contributions of all individual components (microscope objective, mirrors, confocal
lens, spectrometer mirrors, grating, EMCCD camera) [30].

In the following we study the emission polarization of the device. We fabricate
stacked test devices with single-rod antenna as bottom electrode and a planar gold top
contact as grounded counter electrode. The ZnPc film in between has again 30 nm
thickness. Then the recombination zone is expected to reside between the plasmonic
antenna and the non-resonant planar top contact. Applying both +2 V and−2 V results
in localized light emission from a subdiffraction volume of the antenna region as evi-
denced by the emission spot images with underlying SEM micrographs in Figs. 6.11 a,
c. The second antenna, displaced 1.5 µm towards the upper region in the images, does
not affect these experiments. As the measurement in Fig. 6.11 a has been performed af-
ter those in Figs. 6.11 b-d, degradation of the device commences which explains the re-
duced counts in panel a. Hence, absolute intensities cannot be compared. Figs. 6.11 b,
d depict polarization resolved WL scattering spectra and EL spectra, acquired with a
Wollaston prism, for the two voltage polarities. The longitudinal plasmon resonance
with its peak around 790 nm scatters mainly x-polarized photons (light green solid
lines) which also determines the emission behavior obtained in EL measurements. At
negative bias the degree of x-polarization is very pronounced (dark green dots vs red
dots in Fig. 6.11 b). For the positive bias case the polarization selectivity is less pro-
nounced, yet still clearly observable (dark green dots vs red dots in Fig. 6.11 d). In
both cases the peak of the EL spectrum carries an influence of the α-ZnPc excimer
signature but largely follows the antenna’s plasmon resonance, confirming the impor-
tant role of resonant gold electrodes in OLEA devices. A detailed explanation for this
observation is conveyed in the following section.

As hot-electron-induced gold luminescence [233, 234] has been shown to possess
fairly low external quantum yields of ∼ 10−11, this process together with an average
antenna enhancement factor around 10 [30] and typical currents of 50 nA (current den-
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Figure 6.10 – Electroluminescence of OLEA device. a) SEM micrographs with an over-
lay of emission spots imaged by an EMCCD camera. For both polarities, light is gener-
ated from a subdiffraction volume where the antennas are located. b) The EL spectra (red
line for positive voltage, blue for negative voltage) of the device are related to the peaks
observed in WL scattering of the antenna structure (black line, same as in Fig. 6.9 c). De-
pending on the voltage polarity, the emitted light is governed by the plasmon resonance
of either antenna. Reprinted and adapted with permission from [37]. © 2022 American
Chemical Society.

sity ∼ 100A/cm2) would result in much fewer counts than observed in Fig 6.10 b.
Therefore, gold luminescence can be ruled out as the dominating emission process.

6.5 Model for color selectivity

Single-band excimer emission inherent to α-ZnPc cannot lead to the observed phe-
nomena, either. We suggest that the polarity-dependent spectral shift is caused by the
fact that ZnPc in connection with gold electrodes behaves as a preferential hole con-
ductor [235]. This behavior can result from either a higher charge carrier mobility for
holes than for electrons or by different charge carrier injection barriers for both charge
carrier types. For the first case, no comprehensive or reliable data sets, in particular on
the electron mobility, are available in the literature.

In Figs. 6.12 a, b (red dots) we plot the current density of OLEA devices as a func-
tion of applied external voltage. In general, the obtained current densities exceed those
in stacked macroscopic OLEDs with ZnPc as active material by several orders of mag-
nitude. For a rough estimation of the mobility, we model j-V-curves of OLEA devices
by assuming trap-free space charge limited currents (SCLC), a Poole-Frenkel-type
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Figure 6.11 – EL from stacked device with planar top electrode and emission polar-
ization. a) SEM micrograph of single-rod bottom electrode, prior to organic evaporation
and top contact transfer, with overlay of emission spot image. The applied bias is −2 V.
b) WL scattering spectra of rod antenna acquired for polarization along the long axis (x-
pol, green solid line) and short axis (y-pol, orange solid line), accompanied by EL spectra
for the given polarizations (dark green and red dots, respectively). The inset illustrates the
antenna orientation together with polarization directions. c), d) Same as a) and b) but with
+2 V applied. Reprinted with permission from [37]. © 2022 American Chemical Society.

field-dependent mobility, and zero built-in voltage (due to identical electrode work
functions) [236]. The current density can then be expressed as

jSCLC =
9
8
·µ · ε0εr ·

V 2

d3 · e
γ
√

V/d (6.2)

with µ the zero-field mobility, ε0 the vacuum permittivity, εr = 3.25 the dielectric
constant of ZnPc (at ∼ 900nm wavelength, cf. Fig. 6.5 a), d = 50nm the gap width
between the antenna electrodes, and V the applied voltage. γ is a field activation pa-
rameter, which we use as second fit parameter besides µ .

Fitting the j-V-curves (blue solid lines in Figs. 6.12 a, b) results in zero-field mobil-
ities on the order of 10−6 to 10−5 cm2/Vs, in agreement with a previous study where
CuPc, a metal phthalocyanine compound showing identical crystal structure, poly-
morphs as well as absorption characteristics, has been used as active layer [236]. We
therefore assume similar charge carrier mobilities for ZnPc as for CuPc. For the lat-
ter material, the mobility for electrons has proven similar or even higher than that for
holes [236]. Again it should be emphasized that this is a coarse estimation. In another
OLEA structure a zero-field mobility of almost 10−4 cm2/Vs was found, which repro-
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Figure 6.12 – Current-voltage characteristics. a) Current density as a function of volt-
age for positive applied bias. Measured data are depicted by red dots. A fit according
to Eq. (6.2) is included as blue solid line and the obtained zero-field mobility µ is given.
b) Current density vs voltage for negative applied bias. c), d) FN representation of the mea-
sured data in a) and b), respectively. Reprinted and adapted with permission from [37].
© 2022 American Chemical Society.

ducibly demonstrates low mobility values, characteristic for incoherent hopping trans-
port [45]. Figs. 6.12 c, d display FN representations of the acquired j-V-curves. For
both bias polarities two branches of opposing slope are observed. The steep branches
mark the regime of FN tunneling. Since we mostly observe reasonable light emission
at these elevated voltages we conclude that the charge carrier injection into the ZnPc
film is mainly established by field emission. The two branches meet at transition volt-
ages of about 1 V. Below the transition voltage, the charge carriers undergo thermionic
emission from the electrodes.

Concerning the observed emission color selectivity, we therefore exclude mobility
and propose charge carrier selective injection barriers to be the main reason. This
scenario is supported by the respective energy levels of the gold metal work function
and the ZnPc HOMO and LUMO energies in Fig. 6.13, that shows the energetics at the
junction under zero bias. As the nanoantennas are structured from single-crystal Au
platelets exhibiting a (111) surface, the work function of the low-index (111) facet is
expected to be the prominent one. For this facet, a work function of 5.33 eV is reported
in the literature [237] which together with an interface dipole of 0.76 eV observed by
Gao and Kahn at the Au(111)/ZnPc boundary [238] yields a hole injection barrier
of about 0.71 eV and an electron injection barrier of about 1.23 eV. For the ZnPc
layer, an ionization energy of 5.28 eV and an electronic band gap of about 1.94 eV are
assumed [238].

Under nonzero bias, this means that after passing their injection barrier at the an-
ode, holes can propagate across the entire ZnPc layer without radiative charge carrier
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Figure 6.13 – Energy diagram of a Au/ZnPc/Au junction under zero bias. Various
energy levels are labeled and taken from the literature as described in the text. Inspired
from [37]. © 2022 American Chemical Society.

recombination processes until they reach the proximity of the opposite electrode as vi-
sualized in Fig. 6.14 a. At the cathode, electrons are injected at a much lower efficiency
across the higher Schottky barrier either by field-induced FN tunneling, supported by
the additional local field component generated by the piled-up holes, or thermionic
emission. As a general observation, the value of the applied voltage exceeds the en-
ergy of emitted photons. We attribute this drop-off to the Schottky barriers and inter-
face dipoles, in conjunction with a formation of local space charges near the contact
interfaces owing to the low carrier mobilities. We do not observe systematic spectral
shifts with varying the bias between |2V| and |10V|. Since the electrode material is
identical for both electrodes, the only effect induced by a reversed voltage is the shift of
the exciton recombination zone toward the opposing antenna and thus the coupling to
the respective plasmonic resonance. Fig. 6.14 b depicts the schematic band diagrams
for the nonzero bias scenarios. Excitons are only formed close to the cathode after
injection. Due to the proximity of the plasmonic antenna, the excitonic decay is en-
hanced within the bandwidth of the corresponding resonance leading to the excitation
of antenna plasmons that efficiently decay into photons.

In order to analyze a possible quenching behavior of radiative recombinations near
the antenna surface, FDTD simulations with dipole sources (IQE = 1) in varying dis-
tances to the antenna are performed, as sketched in Fig. 6.15 a. Asymmetric placement
of the source w. r. t. the geometry is necessary to excite the fundamental modes (see
also Sec. 6.7.2). Closed transmission boxes around dipole source and antenna rods
record the total radiated power Prad and absorbed power Pabs according to Eq. (2.9).
Fig. 6.15 b shows the resulting quantum efficiency Prad/(Prad+Pabs) (see also Eq. (3.22))
for dipole moments oriented along the x- and y-direction.

At very small separations from the gold antenna surface the quantum efficiency
reduces to ∼ 75% as an effect of increased nonradiative coupling (“quenching”), in-
dicating that the radiative decay channel still dominates over nonradiative dissipation
for both dipole orientations. At separations of 6 nm the quantum efficiency approaches
100 %. This suggests that even molecular layers closely located to the antenna rods
contribute to the observed EL. The corresponding emission spectrum should therefore
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Figure 6.14 – Model of polarity-dependent recombination zones. a) Illustration of site-
selective charge carrier recombination and corresponding antenna-enhanced light emis-
sion for positive (left panel) and negative (right panel) applied voltage to the upper an-
tenna. Here, as ZnPc behaves as a preferential hole conductor, the recombination oc-
curs at the cathode, i. e., the negatively charged antenna, which dictates the EL spectrum.
b) Schematic simplified energy diagram of the Au/ZnPc/Au junction under applied bias
V illustrating the hole conduction. A1 and A2 represent the upper and lower antenna, re-
spectively. Reprinted and adapted with permission from [37]. © 2022 American Chemical
Society.

Separation
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Figure 6.15 – Quantum efficiency of a source dipole near the antenna. a) Sketch of the
simulated geometry. The x- (red) and y-polarized (blue) source dipoles are placed near the
end of the shorter nanorod with varying separation distance. b) Quantum efficiency vs sep-
aration for the two dipole orientations. Reprinted and adapted with permission from [37].
© 2022 American Chemical Society.

be the product of the scattering resonance of the cathode antenna and the neat ZnPc
emission spectrum.

To support this hypothesis and deepen the understanding of exciton-plasmon cou-
pling, we analyze the experimentally obtained WL scattering spectrum of the antenna
pair covered with ZnPc by fitting two independent Gaussians–the resonances of the
two antennas. This reveals antenna resonances at around 800 and 920 nm as sketched
in Fig. 6.16 b and as predicted by FDTD simulations with systematic corrections (cf.
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Figure 6.16 – Model of polarity-dependent emission color. a) Simulated near-field in-
tensity distributions for the antenna resonances around 920 and 800 nm. Spatially selective
field hotspots on the top antenna (A1) and the bottom antenna (A2) depending on the wave-
length are observed. b) WL scattering spectrum of the device (black; same as in Fig. 6.9 c).
A fit function (magenta dashed curve) composed of two Gauss oscillators (red and blue
dashed curves) is used to fit the scattering spectrum from 689 to 1000 nm. c) PL spectrum
of a 30 nm α-ZnPc film evaporated on a Si wafer with a thermal oxide layer measured at
room temperature (same as in Fig. 6.7). d) The multiplication of the ZnPc PL spectrum
in c) with the Gaussian peaks in b) gives rise to the EL 1 and EL 2 spectra, representing
the expected electroluminescence. They agree well with the measured spectra shown in
Fig. 6.10 b, indicating the coupling of excitonic recombinations to the fundamental plas-
mon resonance of the antennas. Reprinted and adapted with permission from [37]. © 2022
American Chemical Society.

Sec. 6.3). The leftmost peak of the white-light scattering spectrum at 680 nm is related
to the ZnPc Q-band and, due to its mismatch with the nanoantenna resonances, is ex-
cluded from the fitting procedure [231, 232]. The corresponding near-field intensity
distributions of the two antenna resonances are displayed in Fig. 6.16 a and illustrate
that for 800 nm (920 nm) the mode is clearly localized on the upper (lower) antenna,
only. In Secs. 6.2.4 and 6.2.5 it was demonstrated that PL and EL of neat α-phase
ZnPc show a very similar spectral fingerprint. Because of the higher data quality we
use the PL data (cf. Fig. 6.16 c) for the current model. This spectrum is then multiplied
with the two Gaussian distributions representing the resonances of the antennas. The
resulting EL model spectra are presented in Fig. 6.16 d and match the experimentally
obtained spectra in Fig. 6.10 b very well, supporting the idea of controlling the position
of the charge carrier recombination zone within the device.
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6.6 Color switching and external quantum efficiency

Now it is possible to deliberately control the emission color via the sign of the applied
bias. Indeed, we observe that switching the polarity leads to a reproducible switching
of the emission spectrum, as seen in Fig. 6.17 a, perfectly in line with the color selec-
tivity model. It must be mentioned that the current density and emission intensity are
subject to some fluctuations over time during the acquisition of a single spectrum. All
in all, we observe currents ranging from about 5 nA to about 140 nA. Typical fluctua-
tions within a single spectrum are on the order of 10-20 nA. There are also systematic
variations in the current density and we visualize the current vs time exemplarily for the
4th to the 12th switching cycle in Fig. 6.17 b. Some of the remaining j-t-curves were
cutoff by the current limit imposed by the sourcemeter, so they are less meaningful
and not shown here. Directly after switching to negative bias we observe a low current
density which first grows moderately over time and then more abruptly after 10-20 s,
whereas the j-t-curves at positive bias show a less deterministic and more noisy behav-
ior. The underlying physical process of the current evolution at negative bias could be
an activation of the charge carrier transport process within the organic after polarity
reversal, in conjunction with a depletion of filled trap states. Yet, the spectral position
of the emitted light turns out to be more reliable, especially in the first 12 switching cy-
cles. It is worth emphasizing that the devices studied here have prototype character and
lack an encapsulation as well as other engineering steps to promote stability. Some im-
provements are added to the fabrication and setup, such as He-ion beam milling of the
antenna electrodes and a continuous nitrogen stream during electro-optical measure-
ments to avoid oxidation of the sample. The spectra in Fig. 6.17 a are integrated over
60 s (spectra 13 and 14 over 10 s) and normalized to highlight the switching behavior.

Notably, the switching effect diminishes with an increasing number of cycles, here
found after 12 measurements. A possible explanation is provided by degradation of
the Au/ZnPc contact interfaces upon heat generation due to high current densities of
about 10-100 A/cm2 in the OLEA devices under operation. These current densities
are more than 3 orders of magnitude higher compared to the corresponding large-area
OLEDs based on ZnPc [227]. The pronounced contact resistances then likely lead to a
significant temperature rise in these regions (as high as 250 °C [227]) and, as a result,
to thermally induced changes in the morphology of the organic ZnPc layer as well as
of the nanoantenna contact interface, supported by the occurrence of β -ZnPc emission
at 780 nm in spectra 14 and 15 of Fig. 6.17 a, i. e., prior to irreversible failure of the
device. Before and after the switching measurements, the WL scattering spectra of the
device resemble each other very well (cf. Fig. 6.17 a black curves), indicating that the
antenna electrodes are still intact.

For each switching cycle we evaluate the maximum external quantum efficiency as
described in [30]. The detection efficiency-corrected EL spectrum with highest inten-
sity is integrated to yield the number of photons/s. The simultaneously recorded exter-
nal current is used to reconstruct the number of input electrons/s. The obtained ratios
are provided in Fig. 6.17 c. Red and blue dots indicate the sign of the applied voltage
as positive and negative, respectively. Most cycles show EQEs on the order of 10−6.
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Figure 6.17 – Switching between colors, temporal evolution of electrical current, and
external quantum efficiency of OLEA device. a) Multiple switching of the emission
(red for positive and blue for negative applied voltages) with chronological order from top
to bottom, scattering spectra before (black, top) and after (black, bottom) EL as well as
the PL spectrum of the ZnPc layer (green top, same as in Fig. 6.16 c). b) Absolute value
of current vs time for cycles 4-12. An incremental offset is added to enhance visibility.
c) External quantum efficiency (EQE) for each cycle with red dots corresponding to posi-
tive and blue dots corresponding to negative applied voltage, respectively. The horizontal
dashed line indicates the expected EQE for stacked macroscopic OLEDs with ZnPc as
active material. Panel a) and c) reprinted and adapted with permission from [37]. © 2022
American Chemical Society.

As the excimeric nature of the excited state in an α-ZnPc aggregate renders it prone
to nonradiative decay due to a change in the intermolecular geometry, the fluores-
cence yield is low compared to other organic compounds [239, 240]. Thus, commonly
stacked OLEDs based on α-ZnPc thin films are expected to show very low quantum
yields on the order of 10−12 as estimated from previously published data [227]. Com-
plying with the simulations in Sec. 3.4, the EQEs observed in our devices corroborate
the important role of the increased local density of photonic states and the resulting
emission enhancement caused by the resonant plasmonic nanoantennas and eventually
the potential of the demonstrated OLEA concept.

6.7 Far-field characteristics of OLEA devices
A further important effect of the relocation of the recombination zone by polarity
switching are changes in the angular emission pattern. While the antenna electrode
resonances do not hybridize, their distance is short enough for the antenna electrode
directly driven by exciton recombination to also drive the opposing passive antenna
electrode. According to the analysis performed in Chap. 5 the coherent superposition
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of both antenna emissions will typically lead to a directed radiation pattern similar to
that of a Yagi-Uda antenna [171], with the additional feature that active and passive
elements can be interchanged by changing the polarity. Although the underlying an-
tenna system of the OLEA devices is not optimized to maximize these effects, changes
in the light directionality can be expected as the applied polarity is switched. In this
section it is also investigated how an additional passive element, a gold top reflector,
modifies the far-field angular characteristics.

6.7.1 Measured radiation patterns

In experiments, the angular radiation pattern can be obtained by back-focal plane imag-
ing of the emitted electroluminescence [30]. Fig. 6.18 a provides an exemplary top
view of an array of OLEA devices prior to ZnPc deposition, here with single antennas
spaced 2 µm, with their lateral arrangement. The antenna electrodes appear as small red
dots in the optical reflection image. A schematic sketch of this conventional geometry
is given in Fig. 6.18 b. When measuring the emission patterns of 50 nm spaced double-
antenna devices (same sample as in Figs. 6.9, 6.10), effects of parasitic light sources
from the setup’s environment are observed as plotted in Figs. 6.18 c, d. Therefore, we
apply the following background correction to the raw data.

After acquiring the angular emission patterns for both polarities we set the applied
voltage to zero and measure the radiation pattern again, with the same exposure time of
the EMCCD camera. The obtained parasitic contribution is depicted in Fig. 6.18 e. All
the background light is found below the critical angle of the air-glass interface of the
sample, which is indicated by the inner white dashed circle in the emission patterns.
The OLEA emission, instead, is restricted to high angles up to the limit set by the
numerical aperture of the microscope objective (NA = 1.45, i. e. θmax = 72.5°, outer
white dashed circle, cf. also Fig. 4.3). This allows subtracting the background light
without perturbing the OLEA emission characteristics and the following discussion.

The corrected radiation patterns are plotted in Figs. 6.18 f, g. Light emission mostly
beyond the critical angle of total internal reflection is observed, as expected for lat-
erally arranged active and passive antenna elements (cf. also Fig. 5.12) [30, 171]. A
pronounced directionality change is perceived upon changing the polarity compatible
with the model of switching the roles of active and passive elements in the device. The
reflector-feed system established when applying a negative bias (cf. also Fig. 6.14 a)
outperforms the feed-director system formed by a positive bias (cf. ibid.) in terms
of directional emission. The latter appears to be a less optimized Yagi-Uda archetype
regarding antenna dimensions and interparticle spacing. This could be mitigated by ge-
ometric variations of the antenna system which would, however, also change other key
figures, e. g., the spectral overlap between α-ZnPc excimer and antenna resonances, or
simply by adding further isolated passive elements.

The second OLEA design considered here includes a monocrystalline gold stripe
used as reflector. Via a mechanical dry transfer process the stripe is pressed from
a polydimethylsiloxane (PDMS) film onto the OLEA structure and the PDMS is re-
moved. An exemplary top-view image of the resulting stack is given in Fig. 6.18 h.
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Figure 6.18 – Radiation patterns of the device and reflector. a) Six exemplary 2-µm-
distance single-antenna OLEA structures that are visible as pairs of small sred dots (re-
flection image, 100×). b) Sketch of a conventional OLEA with 30 nm ZnPc and raw
experimental radiation pattern for c) negative and d) positive applied voltages (exposure
time 60 s). The radiation patterns show a clear dependency on the bias. Some parasitic
background light at elevation angles below the critical angle of the air-glass interface (in-
ner white dashed circle) is also visible. The outer white dashed circle denotes the maxi-
mum collection angle of the microscope objective (NA = 1.45). e) Parasitic light recorded
separately under zero bias and otherwise equal conditions. f), g) Subtraction yields the
background-corrected radiations patterns. h) Stacked geometry realized by placing a thin
monocrystalline gold stripe (“reflector”) on top of the OLEA structures. i) Schematic side
view of the configuration and experimental radiation pattern for j) negative and k) posi-
tive applied voltages (exposure time 5 s). The two patterns are more similar in this case,
showing emission close to and below the critical angle of the air-glass interface, and are an
order of magnitude higher in intensity. Reprinted and adapted with permission from [37].
© 2022 American Chemical Society.

The ZnPc film is again recognized by its green color. The entire stack is schematically
shown in a side view in Fig. 6.18 i. With such a top reflector it is possible to redirect
the emission toward the substrate direction (cf. Figs. 6.18 j, k). The gold layer effec-
tively adds additional out-of-plane passive elements due to image dipole effects. Now
a significant portion of the emitted photons leave the device below the critical angle.
Yet, the directionality change with switching the polarity becomes hardly visible for
this configuration. Only a single forward lobe with broad beam angle is obtained in
both polarity settings. No parasitic light is present in these radiation patterns such that
a correction is not needed here.
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6.7.2 Simulated radiation patterns

FDTD simulations are carried out to evaluate the angular distribution of the emitted
light in the two geometries introduced in Figs. 6.18 b, i. An electric dipole source
placed in regions of electric field hotspots mimics radiatively recombining excitons
close to the plasmonic nanoantennas. The source polarization is parallel to the direc-
tion of charge carrier transport, i. e. perpendicular to the antenna axis. A field monitor
inside the glass substrate parallel to the substrate allows computing the emission an-
gles into the glass halfspace according to Sec. 4.4.1. For these simulations we neglect
the connector wires because they do not influence the plasmonic modes on the antenna
rods.

In Fig. 6.16 a it can be seen that electric field hotspots are distributed at the ends of
the nanoantennas rather than in the central region. Thus, to excite the OLEA structure,
it is necessary to place the dipole source in an asymmetric position w. r. t. the physical
geometry, as sketched in Figs. 6.19 a-d on the left side. Such a simulation setup gives
rise to asymmetric emission patterns, i. e. the main lobes are rotated azimuthally. In
all measurements, however, quite symmetric far-field emissions are recorded, indicat-
ing that radiative recombinations take place at both antenna ends equally. In order to
reproduce the experimental case, we mirror the simulated emission pattern along the
vertical axis, as if a second simulation with dipole source on the opposing antenna end
had been run, and average over the two patterns.

The results without top reflector are displayed on the right side of Figs. 6.19 a, b.
Symmetric far-field distributions with a forward directionality into high aperture an-
gles are obtained for exciting both the shorter and the longer antenna selectively. In
case a, the longer antenna is the passive element, acting as a reflector, if the Yagi-
Uda language from Chap. 5 is applied. The unidirectional emission for negative bias
(Fig. 6.18 f) is in excellent agreement with the FDTD simulation. In case b, the shorter
antenna is passive and forward-directs the light. In this case the directionality is less
pronounced. Hence, the less directive case for positive bias (Fig. 6.18 g) is also qualita-
tively reproduced by simulation despite small quantitative differences in the direction-
ality. Possible effects causing the deviations may stem from the intrinsic anisotropy of
the evaporated ZnPc film which is not accounted for in the FDTD model. Nonetheless,
this further corroborates our model of a relocation of the recombination zone.

Next, FDTD simulations of OLEA devices covered with a top reflector are dis-
cussed. The additional metallic layer produces image dipoles above the antenna struc-
tures, leading to a substantial change in the emission direction. Now the photons are
sent mainly along low aperture angles, i. e. more into the substrate direction than in the
absence of the top reflector. Contrary to the gold film encountered in experiments the
top reflector is approximated by a perfect metal boundary condition in the simulations
in order to keep the problem manageable in terms of memory and computation time.
Owing to the perfectly conducting boundary the electromagnetic fields do not pene-
trate the material, i. e., the image dipoles do not experience a phase shift as opposed to
those in a gold film and no surface plasmon polariton (SPP) modes form at the bound-
ary, which alters the total radiation characteristics. Therefore, in Figs. 6.19 c, d the
emission maximum is located at a lower elevation angle than in experimental radiation
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Figure 6.19 – Simulated radiation patterns of OLEA devices. a) Left: Simulated geom-
etry of standard OLEA with nanorods embedded in ZnPc (not shown) on glass substrate
including the dipole source at a field hotspot close to the upper antenna. To obtain a sym-
metric emission pattern for asymmetric simulation setups, the simulated data is mirrored
by the vertical axis and averaged to mimic the superposition of both hotspot contributions.
Connector wires are neglected. Right: Resulting radiation pattern. The two white dashed
circles have the same meaning as in Fig. 6.18. b) Left: Same as in a), but with the source
residing at field hotspots near the lower antenna. c) Same as in a), but including the gold
top reflector (implemented as metal boundary condition). d) Same as in b), but including
the gold top reflector. Reprinted and adapted with permission from [37]. © 2022 Ameri-
can Chemical Society.

patterns (Figs. 6.18 j, k). Compared to the neat planar OLEA device discussed above,
here the polarity has less impact on the directivity of the light emission and manifests
a similar emission direction for exciting both shorter and longer antenna, in agreement
with measurements.

Finally, it can be seen that the asymmetry caused by the dipole position is less pro-
nounced in the case of covered OLEA structures. Therefore, non-symmetrized radia-
tion patterns are presented in Figs. 6.20 a, b for exciting the upper and lower antenna,
respectively. Interestingly, a very similar azimuthal offset is found in experiments
(Figs. 6.18 j, k). The underlying asymmetry may be caused by different recombination
rates at left and right ends of the nanoantennas and this disequilibrium is transferred to
the radiation characteristics of the OLEA device.
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a)

b)

Figure 6.20 – Simulated radiation patterns of covered OLEA devices with asymmet-
ric dipole source. a) Left: Simulated geometry including the dipole source at a field
hotspot close to the upper antenna. Right: Resulting radiation pattern. b) Same as in a),
but with the source residing at a field hotspot near the lower antenna. Reprinted with per-
mission from [37]. © 2022 American Chemical Society.

6.8 Concluding and prospective remarks

In summary, a new concept of nanoscale OLEDs was introduced. Their main com-
ponent are resonant plasmonic electrodes that act as antennas and control the device
emission properties. The resulting OLEA devices are assembled in a lateral geom-
etry on a highly transparent substrate as opposed to conventional stacked multilayer
OLEDs. Because of their subdiffraction size, the structures presented here act as op-
tical point sources. By switching the sign of the applied voltage, the recombination
zone can be shifted toward a specific antenna due to a difference in charge carrier in-
jection efficiency into the ZnPc film. This allows to spectrally shape and switch the
emitted light according to the resonance of the respective antenna in the vicinity of the
recombination zone. Moreover, the close proximity of several nanoantennas gives rise
to directional light emission whose angular distribution can therefore also be switched.
Coupling of the exciton recombination to the antenna electrodes in the devices is there-
fore evident because of the observed spectral shaping, the increased external quantum
efficiency, and the observed directional emission of the OLEA devices.

The electrically connected plasmonic antenna system presented here can also be
used to study the coherence between spatially separate excitonic recombinations. Con-
sidering the near-field distributions displayed in Fig. 6.16 a, each antenna electrode
with its longitudinal resonance features two distinct regions of enhanced near-fields,
namely at the rod ends, separated by a zero-field region around the rod center. In or-
der to overcome the asymmetry when placing a dipole source in a field hotspot for
far-field simulations, intensities must be added up without phase information as illus-
trated in Fig. 6.19. This procedure yielded azimuthally symmetric radiation patterns
complying with the experimental findings. Thus one can conclude that the excitons
in OLEA devices recombine and couple incoherently at both antenna ends. On the
other hand, FDTD simulations offer the possibility to include two dipole sources with
fixed phase relation at the opposing ends of one nanorod. This scenario corresponds to
a coherent radiative recombination of excitons. Preliminary simulations suggest, that
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the resulting angular emission pattern critically depends on the phase shift between
the source dipoles: The main lobe moves in the azimuthal direction as an effect of the
phase-dependent interference behavior. Also the wavelength plays a role here. This
means that the information of a fixed phase relation between recombination events can
be encoded in the angular radiation pattern. Hence, the antenna system employed in
OLEA devices may serve as an interesting platform for coherence studies.

As another prospect, the stability of charge carrier paths and subsequent light emis-
sion could be increased by reducing the gap between the antenna electrodes. This is
not a straightforward task because significant near-field coupling between the plasmon
resonances would occur when the rods are approached towards each other. Then the
near-field of a hybridized mode is not restricted to a single particle anymore, ham-
pering the switching ability. One idea to advance the design is the implementation of
extrusions at one end of each nanorod and placing the rods asymmetrically as sketched
in the inset of Fig. 6.21 a. Then the shortest path for the charge carriers is oriented
along the diagonal gap and the recombination of excitons is expected close to either
extrusion, depending on the sign of the applied bias. We plot the simulated scatter-
ing spectrum of an antenna dimer with a diagonal gap of 20 nm and extrusion depth
15 nm in Fig. 6.21 a. The system is embedded in a ZnPc layer. In general, the extru-
sion causes a red-shift of the particle resonance compared to the bare rod geometry.
Two distinct scattering peaks are observed in the spectrum. It appears that a Fano-like
interaction takes place and forms the dip at 1000 nm wavelength. Fig. 6.21 b visual-
izes near-field intensity distributions at the two resonance wavelengths, demonstrating
near-field maxima predominantly localized on either antenna, which suggests the pos-
sibility to switch the light emission wavelength in such a design. One must keep in
mind, however, that the ultra-precise fabrication of such extrusions requires a helium-
ion microscope and a sophisticated milling recipe.

b)a)

15 nm
20 nm

110 nm

132 nm

940 nm 1040 nm

Figure 6.21 – Simulation of an antenna dimer with extrusions. a) Scattering spectrum
of the dimer. The arrangement of the particles is sketched in the inset and the rods are
labeled with the lengths. Width and height are fixed to 50 nm. The dimensions of gap and
extrusions are also indicated. b) Near-field intensity distributions at the peak wavelengths
940 and 1040 nm. An embedding ZnPc layer is taken into account.

In the future, organic materials covering the blue and green visible wavelength
regime, encompassing phosphorescent emitters [241, 242] and thermally activated de-
layed fluorescence (TADF) molecules [243–245] are appealing candidates with high
internal quantum yields to be employed in OLEA devices. The former rely on a tran-
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sition metal complex, often Pt or Ir [246], to enhance intersystem crossing and light
emission from triplet states via strong spin-orbit coupling. The latter incorporate a
small energetic difference between singlet and triplet levels. This is accomplished by
spatially separating donor and acceptor units onto different molecular moieties with
sterically twisted planes, giving the S1 state a CT character [244]. Hence, the thermal
energy of the surrounding can be exploited for reverse intersystem crossing at room
temperature. These molecular species can be combined with silver nanoantennas to
obtain resonances at shorter wavelengths with increased efficiency.

Again, the numerical simulation framework enables accurate modeling of the op-
tical behavior of such devices if experimental details like particle shape and material
properties are known. In particular, the optical properties of organic compounds play
a delicate role and need to be implemented carefully. Generalized ellipsometry pro-
vides a means to evaluate the complex dielectric function of crystal samples with low
symmetry [229]. Alternatively, as carried out in this chapter, a suitable simplification
of the rich optical response may be attained within a certain spectral range, whose
ramifications on the simulation results, however, must be explored and compared to
experimental data.

Stability and external quantum efficiency of OLEA devices will benefit from suited
engineering as was demonstrated for common state-of-the-art OLED pixels [46]. In
particular, device encapsulation will suppress exposure to oxygen and humidity of the
organic and thus, prolong the active material’s lifetime to technologically relevant time
spans. Likewise, suitable doping or preparation of self-assembled monolayers at the
interface will lead to reduced Schottky barriers between the metal workfunction and
the transport levels of the organic compound [238, 247], opening the possibility to
lower the current densities in the antenna gap, in conjunction with decreased local heat
generation. Thereby, this proof-of-concept work opens new perspectives for the de-
sign of ultracompact reconfigurable organic light emitting devices, e. g., for advanced
display applications with highest pixel densities.
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7
Local driving of plasmonic nanoantenna

systems using generalized coherent perfect
absorption (gCPA)

P lasmonic nanoantennas, after their local excitation by radiative recombination of
excitons, have been employed as light outcouplers in the context of OLEA struc-

tures in the last chapter. As an alternative route, plasmonic waveguides can couple light
out of quantum well LEDs [205]. Their cross section mimics the shape of an antenna
and thus mediates the electroluminescence of the device in terms of polarization and
emission direction. Via engineering of the cross section Huang et al. addressed several
antenna modes [205]. Using a pure waveguide architecture, however, hampers effi-
cient far-field coupling due to the high reflectivity at its termination and concomitant
propagation losses further damp the plasmon mode.

In order to facilitate a broad deployment of lossy SPPs in nanocircuitry it is desirable
to couple them efficiently to other forms of energy such as heat (e. g. for heat induced
recording, local thermal therapy, nano-chemistry and other applications [53, 248]) or
radiation. A key step would be the controlled feeding of an SPP into a plasmonic
nanoresonator, constituting a purely near-field mediated local driving mechanism of a
nanoantenna. Inspired from classical transmission line theory, a necessary condition
for efficient feeding is perfect impedance matching between feed line and the actual
antenna that acts as a load within the circuit [48]. With a perfectly matched load
all energy is transmitted there, whereas the reflection back into the transmission line is
turned to zero. Impedance concepts have been examined for optical antennas and quan-
tum emitters alike, and a Green tensor approach has been formulated [6, 50, 249, 250].
Nevertheless, decent impedance matching in the realm of plasmonic nanocircuitry is
an ongoing challenge because of the mismatch between the wavelength of guided plas-
mons and free-space waves [114]. It has been studied mainly by means of extensive
numerical simulation efforts [51]. Gratifyingly, the concept of coherent perfect ab-
sorbers offers a way to rethink impedance matching in a more formal and more analytic
framework. A generalization of coherent perfect absorption (CPA), here denoted as
gCPA, allows an elegant semi-analytical approach towards perfect impedance match-
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ing of nanoantennas that exhibit both radiative and nonradiative dissipation channels
and thereby towards optimized antenna driving. Eventually, gCPA enables strong far-
field radiation or local heat generation, depending on the chosen nanorod resonance,
under perfect impedance matching from the initial condition of guiding a surface plas-
mon on a nanowire.

Perfect absorption of selected frequencies of coherent light is a special condition
that can occur in systems that scatter light and possess lossy resonances. Such CPA is
based on complete destructive interference of all outgoing modes and corresponds to
the time-reversed process of lasing at threshold [52, 251–255]. At the CPA condition
incoming modes are completely absorbed by the system and completely converted to
other forms of energy, usually heat. Naturally, CPA occurs at Fabry-Pérot resonances
of the lossy resonator. This is because the multiple reflections which accompany such
resonances can lead to perfect destructive interference between the first reflected wave
and all subsequent outgoing waves. This requires matching both total phase and ampli-
tude. Technically, a CPA condition corresponds to a zero eigenvalue of the scattering
matrix (S-matrix) associated with phase singularities located on the emitted mode’s
dispersion characteristic in the complex wave vector plane, as shown below.

Being lossy is a rather natural property of plasmonic systems, which are therefore
well suited to exhibit CPA. Indeed, CPA has previously been proposed or observed in
systems combining localized plasmonic resonators with photonic modes in dielectrics
or free space [256–264]. Compared to dielectric Fabry-Pérot-type resonators origi-
nally used for CPA, plasmonic resonators, i. e., optical antennas, exhibit much more
flexibility because they offer resonances whose properties can be tailored to exhibit
e. g. superradiant or subradiant characteristics (cf. Sec. 3.3.2). In any case, radiative
losses cannot be ignored and even for subradiant modes they contribute significantly
to the overall losses of such an antenna w. r. t. the driving guided modes. Yet, in the
original concept of CPA, radiation losses are usually neglected.

In this chapter we show that the concept of CPA, which requires at least one eigen-
value of the complete scattering matrix to vanish, can be generalized to situations
where this applies only to a submatrix. As a simple, yet insightful example, we con-
sider a semi-infinite single-mode gold plasmonic nanowire which is coupled to a single
gold nanorod antenna via a gap. Here, at least one zero eigenvalue of the scattering
matrix is required only for the guided wire mode, while the infinite number of radia-
tive modes of the nanorod is treated as losses. By doing so, we sacrifice the instructive,
but practically not very relevant correspondence of CPA to the time-reversed version
of lasing at threshold. On the other hand, gCPA can now be applied to any resonant
absorber with both radiative and nonradiative loss channels, possibly including the
absorption of light by quantum emitters.

Recently, Sweeney and Stone reported a generalized theory of reflectionless scatter-
ing modes (RSM) [254, 255], which allows for reaching zero reflection of the selected
input modes by evaluating the eigenvalue of the corresponding subset of the scattering
matrix. The reradiation from the system can be considered as one of the complemen-
tary output channels. While the RSM theory may also be applied to address resonators
with radiative loss, the gCPA presented in this chapter is developed independently to
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address the coupling of a guided subwavelength surface plasmon mode to an optical
nanoantenna via transfer matrices. To further corroborate the outcome of the transfer
matrix approach we complement it by showing that a power series ansatz, related to
the roundtrips in the Fabry-Pérot cavity, yields a mathematically equivalent expres-
sion for the total reflectivity of the wire-rod system. After a detailed analysis of the
gCPA mechanism, we demonstrate the possibility of background-free sensing using a
disturbed gCPA condition and coherent control of the radiation from a nanorod.

Later in the chapter, we invoke more complex antenna designs such as a rod dimer
and nanorod chains to be driven locally under gCPA. The chains exhibit a rich vari-
ety of extremal reflectivity features found in the complex wave vector plane that can
be attributed to collective modes supported by the chain. Choosing alternating gap
sizes between adjacent nanorods, the chains represent a classical optical analog of the
well known tight-binding Su-Schrieffer-Heeger (SSH) model of the electronic states
in a trans-polyacetylene chain [265], where topologically nontrivial edge states are
predicted to exist at the open boundaries for a particular choice of nearest neighbor
hopping strengths. Similar to the tight-binding system, specific plasmonic SSH chains
are shown to support localized edge states by analyzing the reflectivity with the gCPA
methodology and by simulating optical near-field maps. All in all, our findings estab-
lish gCPA as a tool in plasmonic nanocircuitry and nanoantenna design and technology.
They additionally pave the road towards conceiving nanoscale analogs of topological
matter operating at optical frequencies.

7.1 Concept of generalized coherent perfect absorption

As stated above, far-field radiation has not been considered in dielectric waveguide
structures combined with lossy resonators. Under such assumptions, a scattering ma-
trix
←→
S consisting of the coupling coefficients between the incoming and outgoing

guided modes Eguided fully captures the modal conversion and energy exchange within
and between the resonator and waveguides. However, the situation is different when
it comes to plasmonic nanoantennas, where the oscillating surface plasmon leads to
radiative decay in addition to the nonradiative loss into heat. In this case, the concept
of gCPA would allow us to concentrate on the perfect absorption of the input mode of
interest without fulfilling the requirements of CPA for the complete system. As an ex-
ample, we illustrate the concept of gCPA at the case of a plasmonic nanoantenna driven
by two semi-infinite single-mode plasmonic nanowires in Fig. 7.1. The resonator ex-
hibits both Ohmic damping and far-field radiation. The latter can be expressed as a
superposition of suitable free-space modes Erad, e. g., plane waves propagating in dif-
ferent directions.
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Figure 7.1 – Input and output channels of a symmetric wire-rod-wire system. In gen-
eral, guided surface plasmons Eguided (red, black) as well as radiative modes Erad (green)
have to be used as incoming and outgoing modes. Within the generalized CPA formalism
in this thesis, only the subset of guided surface plasmons is considered as incoming modes.
Adapted from [266].

The total scattering matrix
←→
S global of the wire-rod-wire system is defined by

Eguided,out,l
Eguided,out,r
Erad,out,1
Erad,out,2

...

=
←→
S global


Eguided,in,l
Eguided,in,r
Erad,in,1
Erad,in,2

...

 , (7.1)

connecting all incoming with all outgoing modes. The four coefficients describing
the coupling between the guided modes Eguided occupy the upper left corner of the
scattering matrix as a two-by-two matrix,

←→
S global =



[
r t
t r

]
cl1 cl2 · · ·
cr1 cr2 · · ·

c1l c2l
c1r c2r
...

...

d11 d12 · · ·
d21 d22 · · ·

...
... . . .

 . (7.2)

Here, r and t are the reflection and transmission coefficients of guided surface plasmons
at the gap-rod-gap unit, the ci j are coefficients describing the modal coupling between
surface plasmons and radiative modes, and the di j establish the coupling among radia-
tive modes. In this generalized framework, the “complete” CPA would require to find
a condition for which an eigenvalue of the entire scattering matrix

←→
S global becomes

zero. This means all outgoing channels, guided modes and radiation, would turn to
zero simultaneously. Achieving such complete CPA can be experimentally challeng-
ing or even impossible for resonators with radiative loss, such as nanoantennas.

In this thesis, the input and output modes of interest are the left-propagating and
right-propagating fundamental guided modes Eguided on a plasmonic nanowire. All
other modes are treated as loss channels, including the radiation of the nanoantenna.
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The input field vector that is multiplied with the scattering matrix therefore only con-
tains finite values for the top two components in Eq. (7.1). All the other components
are set to zero. Now, gCPA requires only finding and zeroing the eigenvalue of the
subset of the resulting upper left two-by-two matrix, as marked by the square brackets
in Eq. (7.2), which describes the coupling between the guided modes only. Since the
major part of the scattering matrix which connects the radiative modes is not consid-
ered in the required diagonalization the coupling to radiative modes will in general not
be zero, meaning that complete CPA of the whole system is in general not achieved.
As we will show in the following, by choosing the nanoantenna to be subradiant or
superradiant, the amount of radiation losses can be controlled to a large degree. Gen-
eralized CPA, i. e., a vanishing eigenvalue of a submatrix, occurs if the energy from
a few incoming guided wire plasmons is entirely converted to other forms of energy,
no matter radiative or nonradiative, featuring the zero reflection of the input modes.
This provides a practical route to find the condition for perfect impedance matching
between plasmonic waveguides and plasmonic nanoantennas in nanocircuitry.

7.2 Electric fields in a wire-rod system

An even simpler nanocircuit with the ability to exhibit gCPA than the one depicted in
Fig. 7.1 is a wire-rod system where the rod antenna is fed only from one side with
guided plasmons Eguided. The wire-rod system is used as a showcase in the first part
of the current chapter. Despite its conceptual simplicity, such a circuit incorporates
rich physics which will be unveiled by a gCPA analysis in the complex wave vector
plane. Prior to analyzing the wire-rod system with mathematical methods we describe
the phenomenological behavior of the EM fields in this archetypical nanocircuit.

We consider a semi-infinite gold nanowire with a circular cross section (30 nm di-
ameter) in the vacuum in the near infrared regime (310-440 THz, corresponding to
vacuum wavelength 681-967 nm). The wire is terminated by a hemispherical end cap.
A gold nanorod with the same diameter and end caps is coupled to the nanowire via
a variable gap in the range of a few nm, as sketched in Fig. 7.2 a. Throughout this
chapter, the minimum gap width studied is 3 nm. Since these gaps are sufficiently
large we neglect quantum effects [267, 268]. Owing to the relatively small wire diam-
eter compared to the vacuum wavelength, the nanowire supports only the fundamental
plasmonic TM0 eigenmode [269, 270], which resembles the highly confined hybrid
symmetric SPP in a thin metal film discussed in Sec. 3.2.2. Its transverse mode profile
is displayed in the inset of Fig 7.2 a, and in the xz-plane Ez constitutes the dominant
field component.

The complex wave number according to Eq. (3.8) is found using the finite-difference
frequency-domain (FDFD) method (cf. Sec. 4.3) [140] and further studied in Sec. 7.3.3.
As mentioned in Sec. 3.1, the dielectric function of gold is modeled using single-crystal
data [68]. The obtained eigenmode is used as a source in three-dimensional FDTD sim-
ulations (cf. Sec. 4.2). Taking plasmon reflection at the wire termination into account,
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Figure 7.2 – Electric field distribution in wire and wire-rod systems. a) Reflection of
the right propagating guided plasmonic mode (black arrow) at the termination of a gold
nanowire. The total reflection at the wire termination (red dashed rectangle) is determined
by the interference between the directly reflected mode at the gap (green arrow) and a se-
ries of coherent transmissions from the mode oscillating on the nanorod (dark red arrows).
See Sec. 7.3.1 for details. Inset: modal profile of the guided wire mode. b) Simulated
standing wave patterns |Ez|2 of the guided wire mode at ν = 362THz (828 nm) for a ter-
mination open to vacuum (left panel, black) and facing a 346 nm nanorod (right panel,
blue) via a 5 nm gap. The red dashed lines show the fits of Eq. (7.3) to these standing wave
patterns using the complex reflectivity Γ as the only fit parameter. Adapted from [266].

the electric near-field intensity distribution along the semi-infinite wire is [51, 271]

|Ez(x)|2 = |Ez,0[eikx + eik(x0−x)
Γeikx0]|2, (7.3)

where Ez,0 is the initial amplitude of the mode, x is the spatial coordinate in the prop-
agation direction, x0 is the distance between the mode source injection point at x = 0
and the end of the cylindrical part of the wire at x = 2985nm, and Γ is the com-
plex reflection coefficient obtained by fitting the simulated standing wave pattern of
the electric near-field intensity 5 nm away from the wire surface with Eq. (7.3). This
yields Γ as the only fit parameter. Since the mode reflection is very sensitive to the
exact condition of the wire termination [272, 273], the nanorod coupled via the nano-
sized gap can alter the reflection coefficient and the standing wave pattern drastically.
Fig. 7.2 b shows two distinctively different exemplary near-field standing wave pat-
terns corresponding to the absence of a nanorod (left panel) and a specifically chosen
rod length (right panel) to be discussed below. In absence of an adjacent nanorod
a pronounced standing wave pattern is observed, corresponding to a high reflectivity
(|Γ|= 95%). For a nanorod length of 346 nm, nearly zero reflectivity is observed, ac-
companied by strong energy localization on the nanorod. The absence of the reflection
corresponds to perfect impedance matching between the nanowire (transmission line)
and the gap-nanorod termination (load) and suggests an effective scheme to locally
drive the nanorod antenna via a single-wire transmission line. In optical nanocircuitry,
the characteristic impedance is determined by the electromagnetic fields of the guided
mode on the nanowire. The degree of impedance matching, described by the complex
reflectivity Γ, can be evaluated by characterizing the standing waves of the optical near-
field around the nanowire waveguide termination. Once the characteristic impedance
of the guided mode and the reflectivity at a given termination are known (not shown
here), the impedance of the load, i. e., the nanoantenna, can be calculated using the
complex reflectivity Γ [51].
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7.3 Semi-analytical models for the wire-rod reflectivity
In this section we model the wire plasmon reflectivity at a single nanrod attached to
a semi-infinite wire via a small gap in two equivalent notations. Both are based on a
semi-analytical approach: It is demonstrated that the reflectivity of an attached nanorod
can be obtained by only considering reflections at the open end of an infinite wire,
propagation along the wire, as well as the reflection and transmission at a gap in an
infinite wire. First we present the more intuitive power series ansatz and then move on
to a transfer matrix algorithm which is particularly able to treat more complex termi-
nations of the wire in an abstract way. Finally, we compare these model calculations
with full FDTD simulations and demonstrate excellent agreement.

7.3.1 Power series ansatz
This ansatz explicitly considers the interference effects of the direct reflection at the
nanogap and the fields which are fed back to the wire across the gap after having
undergone an infinite number of Fabry-Pérot oscillations on the nanorod [11, 75, 110,
111] as visualized in Fig. 7.3 a. In principle, this builds upon the model introduced
in Sec. 3.3.2, where resonances of isolated nanorods were determined. The coherent
superposition of the aforementioned contributions result in the total reflection Γ,

Γ = Rg +
T 2

g

Rg
·

n

∑
k=1

[Re Rg e2(−α+iβ )Lnet]k. (7.4)

Here, Rg and Tg are reflectivity at and transmission across the gap in an infinitely long
wire, respectively. Re denotes the reflectivity at the end of a semi-infinite wire open to
vacuum. All these fundamental coefficients also include radiation losses which is es-
sential to find generalized CPA conditions. Rg, Tg, and Re are determined numerically
by FDTD simulations with a mode source and the application of rigorous eigenmode
expansion calculations in compliance with Sec. 4.4.2. Simulation domain boundaries
are chosen such that the nanowire extends through the PML to mimic a semi-infinite
geometry (cf. Sec. 4.2). The required electromagnetic field profiles are recorded at the
end of each cylindrical section in the plane perpendicular to the wire axis (see vertical
dashed lines in Fig. 7.3 b). This means that the hemispherical end caps are considered
part of the gap in the modeling approaches. Nevertheless, we denote a gap size by the
width of the air interstice (cf. Fig. 7.3 a).

As mentioned above, the guided TM0 eigenmode is characterized by its propagation
constant β and attenuation constant α . Exemplary values of all these fundamental
coefficients are plotted in Sec. 7.3.3. Lnet is defined as in Sec. 3.3.2, i. e., the net
length of the cylindrical part of the nanorod without the hemispherical end caps and
n represents the number of oscillation roundtrips on the nanorod. In order to capture
all possible roundtrips, we consider the case n→ ∞ and simplify the sum in Eq. (7.4),
using the limit of the geometric series [274]:

Γ = Rg +
T 2

g

Rg
·
[

1
1−Re Rg e2(−α+iβ )Lnet

−1
]
. (7.5)
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𝑻: gap matrix

ി𝑃: propagation matrix

ി𝑇end: open end matrix
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ി𝑇end

a)

c)

b)

Figure 7.3 – Synopsis of definitions in the power series ansatz and the transfer ma-
trix algorithm. a) Schematic illustration of the interference between the direct reflec-
tion and the power series of the fed back modes from the nanorod. b) Definition of in-
put and output quantities for the transfer matrices

←→
T (reflection/transmission at gap),

←→
P

(propagation along cylindrical section), and
←→
T end (reflection/transmission at open end).

c) Schematic illustrations of the gap matrix, propagation matrix, and open end matrix.
Adapted from [266].

7.3.2 Transfer matrix algorithm
The second approach summarizes the properties of gap, open end, and regular cylindri-
cal propagation section in transfer matrices [52], connecting the modes left and right of
the corresponding object as illustrated in Fig. 7.3 b. As explained above, we choose the
subset of incoming and outgoing wire plasmons as basis while radiation into free space
is treated as loss mechanism. Then the defining equations of the transfer matrices for
a gap (

←→
T ), propagation (

←→
P ), and open end (

←→
T end) read(

Etrans
Ē2

)
=
←→
T
(

E1
Erefl

)
, (7.6a)(

E2
Ē2

)
=
←→
P
(

E1
Ē1

)
, (7.6b)(

Etrans
Ē2

)
=
←→
T end

(
E1

Erefl

)
. (7.6c)
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The elements of the input and output vectors are defined in Fig. 7.3 b. The transfer
matrices are written out in terms of the fundamental coefficients in Fig. 7.3 c. In

←→
T end,

the transmission at the open end, Te, is not well defined since the guided mode does
not exist in free space. It turns out that in the total reflectivity Γ this quantity cancels
out. The entire gap-rod termination is characterized by the total transfer matrix

←→
M =

←→
T end

←→
P
←→
T , (7.7)

which connects incoming and reflected fields E1, Erefl on the left side with transmitted
fields Etrans on the right side of the termination,(

Etrans
Ē2

)
=

(
M11 M12
M21 M22

) (
E1

Erefl

)
. (7.8)

Since we consider a single-channel input from the left side, we have Ē2 ≡ 0. Solving
this system of equations yields the complex-valued total reflection

Γ =
Erefl

E1
=−M21

M22
= Rg +

T 2
g

Rg
·
[

1
1−Re Rg e2(−α+iβ )Lnet

−1
]
, (7.9)

which is equivalent to the result obtained via the power series ansatz (Eq. (7.5)) dis-
cussed above. Note, that the overall reflectivity also corresponds to the scattering “sub-
matrix” of the system for the subset of guided modes which is a scalar (Γ corresponds
to the entry r from Eq. (7.2)) for the 1D single-mode case considered here.

7.3.3 Fundamental coefficients and comparison to full FDTD sim-
ulations

In order to give an overview over some numbers that enter the power series and
transfer matrix formula, we plot the numerically obtained fundamental coefficients
in Figs. 7.4 a-d. Panel a and b depict the real and imaginary part of the complex wave
number of the guided TM0 wire mode. These are equivalent to the propagation con-
stant β and attenuation constant α , respectively, and plotted as a function of frequency.
β increases almost linearly with frequency1, whereas α grows faster than linearly. The
significant increase in damping is caused by the optical properties of gold where the
interband transition near the green spectral range (cf. Sec. 3.1) is approached and by
the fact that the modal fields become stronger localized inside the metal, accompanied
by higher losses (cf. Sec. 3.2).

For each frequency point, an (α,β )-pair represents the dispersive characteristic of
the mode. By eliminating the explicit frequency dependence, we alter the representa-
tion and span the complex wave vector plane with α and β as the two axes. On this
plane, the modal relation α(β ) describes a line as imaged in Fig. 7.4 c, with the fre-
quency as a parameter. It should be mentioned that the complex wave vector plane is a

1The vacuum light line lies beyond the frequency range plotted in Fig. 7.4 a. For the β -range under
consideration, the light line takes on frequency values between 586 THz and 1128 THz.
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a) b) c)

d) e)

Figure 7.4 – Fundamental coefficients of the semi-analytical models and comparison
of calculated and simulated reflectivity. The complex dispersion relation of the TM0
mode is given by a) the propagation constant β and b) the attenuation constant α as a
function of frequency, where k = β + iα . c) Parametric plot of the TM0 mode within the
complex wave vector plane spanned by β and α . Along the modal line (red), the frequency
changes implicitly. d) Fundamental reflection and transmission coefficients for a fixed gap
width of 10 nm as a function of frequency/vacuum wavelength. Upper and lower panel
display magnitude and phase, respectively. Open end reflection data is drawn in red, gap
reflection and transmission in light and dark green. The sum of reflected and transmitted
intensity at the gap is plotted in black. e) Reflection amplitude |Γ| (upper panel) and phase
(lower panel) of the wire-rod system with 10 nm gap at 361 THz (830 nm), for varying
rod length. Black data points represent results from full FDTD simulations. Transfer
matrix/power series calculations are plotted as red solid line. The pronounced features in
Γ are fully captured by the semi-analytic approaches. Panels a), b), c), and e) are adapted
from [266].

useful theoretical construct, in which the scattering matrix of a resonating system can
be neatly visualized.

The fundamental reflection/transmission coefficients Rg, Tg, and Re, describing a
gap and an open end, respectively, are plotted in Fig. 7.4 d. These quantities depend
on the frequency and on the gap size. Here, a 10 nm gap is assumed. It is clearly
seen that the open end reflection amplitude exceeds the gap reflection, which is in-
tuitive because the near-fields can only couple back and form a counter-propagating
wave. The gap reflection in turn exceeds the transmission across the gap. All magni-
tudes are almost constant over a large bandwidth and start to decrease slightly around
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440 THz. As mentioned above, in our description the two hemispherical end caps be-
long to the gap. The increasing Ohmic dissipation inside those causes the magnitudes
to decrease. Besides Ohmic losses, also radiative losses to the far-field occur at gaps
and open ends because these represent discontinuities in the otherwise unperturbed
waveguide geometry. This leads to a further reduction of the amplitudes. Note, that
along the unperturbed cylindrical sections of nanowire and nanorod, however, the only
dissipation mechanism is Ohmic damping, characterized by α . Since the β values of
the TM0 mode lie well below the light line of vacuum, the mode is fully guided and
does not have leaky characteristics [275]. Additionally, we show the sum of reflected
and transmitted intensity at the gap in Fig. 7.4 d, which should always be smaller than
unity in a physically meaningful setting, as a consequence of the two loss channels.
The lower panel of Fig. 7.4 d displays the phase values of the fundamental coefficients.
In general, we encounter reflection phases close to π/3 and slightly negative values
in transmission. It should be noted that for subnanometer gaps, more sophisticated
methods might be needed to obtain Rg, Tg, and Re under the influence of quantum ef-
fects [267, 268]. As along as these fundamental coefficients could be obtained, the
formalism presented here would work in the same way.

When inserting the coefficients into Eq. (7.9), the total reflection amplitude and
phase of a wire-rod system with arbitrary rod length and gap size at an arbitrary fre-
quency can be computed analytically. In Fig. 7.4 e, we compare a calculation at fixed
frequency 361 THz (wavelength 830 nm) and fixed 10 nm gap with varying rod length
(red solid line) with full FDTD simulations in the same length range (black dots).
Both approaches show excellent agreement in phase and amplitude. Little discrepan-
cies in the amplitude may be attributed to numerical uncertainties in the fundamental
coefficients, which stem from a finite thickness of mode expansion monitors in con-
junction with the 0.5 nm mesh size. Moreover, very short rod lengths could be prone
to mutual interactions between signals at the gap region and at the open end, which
is not accounted for in the analytical models. Notably, we identify three subsequent
Fabry-Pérot resonances, in the form of minima of |Γ| and steep phase jumps, at the
rod lengths 154, 349, and 544 nm, corresponding well with the three lowest resonance
orders of an isolated nanorod that are found in Fig. 3.9 b. This connection is further
discussed in Sec. 7.4 below. The excellent agreement also suggests, that the radiation
losses are well included in the simulated coefficients which enter the power series and
transfer matrices. Nevertheless, the lowest reflectivity observed here, at the first-order
minimum, has a finite amplitude of about 5 %. Also the associated phase jump is
quite steep, but still continuous. Thus, gCPA is not yet reached in the chosen wire-rod
geometry.

7.4 Analysis of gCPA in the wire-rod system
So far, an algorithm that describes the reflectivity of a wire-rod system has been devel-
oped and validated. In this section we apply it to find gCPA conditions and characterize
such a perfectly impedance-matched system. Perfect destructive interference, i. e., van-
ishing reflectivity, requires the directly reflected mode (green arrow in Fig. 7.3 a) and
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the transmitted mode, consisting of the infinite sum of transmitted waves over the gap
(dark red arrows in Fig. 7.3 a), to have opposite phases and equal amplitudes. To ac-
complish this, the nanorod must provide just the right amount of loss and the gap must
be chosen correctly to transmit a just sufficient portion of the mode for each round trip.
In this regard, the length-dependent Ohmic losses of the plasmonic waveguide indeed
become important and beneficial to enable unidirectional nanoscale gCPA.

Fig. 7.5 a shows the calculated reflectance (squared reflection amplitude, |Γ|2) as
a function of nanorod length at various frequencies for a fixed gap of 4 nm. Multi-
ple local minima are obtained at different orders of nanorod resonances. Indeed, the
second-order minimum reaches zero reflection, i. e., gCPA as we prove below. Inter-
estingly, all the rod lengths for which reflection minima occur coincide with those of
solitary nanorods showing a scattering resonance at that wavelength (cf. Sec. 3.3.2)
as if the proximity of the nanowire did not perturb the resonance of the nanorod. To
elucidate this effect, in Figs. 7.5 b, c we investigate the electric field at the rod termi-
nation for two gCPA scenarios based on the first and second order antenna resonances
on the nano-rod. In both cases, the phase differences of the electric field across the gap
are close to π/2, as opposed to the bonding and antibonding resonances of a two-wire
antenna (cf. Sec. 3.3.3), where the phase jumps of the transverse field over the gap
amount to π and zero, respectively. The π/2 phase shift ensures zero charge accumu-
lation on the wire while the charge density is maximum at the rod ends, resulting in
the absence of coupling between rod and feeding wire, i. e., a “nonbonding” condition.
In other words, from the perspective of the guided mode on the semi-infinite wire, the
wire appears to be infinite throughout. This nonbonding condition is fulfilled for all
reflection minima observed in Fig. 7.5 a, including the one where gCPA occurs. The
nonbonding condition with appropriate loss offers the necessary phase and amplitude
for perfectly destructive interference of the reflected fields.

The small deviation of ideal gap width between calculations and full FDTD simu-
lations (4 nm vs 5 nm), concerning the gCPA state based on the second-order antenna
resonance, likely stem from little uncertainties in the numerically determined funda-
mental coefficients, such as errors introduced by the discretization, detrimental influ-
ence from reflections at the PML, or slow decay of energy in the simulation domain in
connection with the threshold-based final time of Fourier integrals (cf. Sec. 4.2).

Another interesting feature is that gCPA is not associated with specific resonance
orders. For instance, at 440 THz (681 nm) where the attenuation constant α is high,
the smallest reflection occurs at the first-order resonance of the nanorod. At 360 THz
(833 nm, white dashed line in Fig. 7.5 a), the nanorod’s second-order resonance leads
to the lowest reflection intensity. This suggests the flexibility to accomplish gCPA
with even and odd resonance orders and thus the possibility to select the dissipation
channels, as will be discussed in Sec. 7.5.

To distinguish good absorption (local reflection minima) from gCPA, we investi-
gate the continuity of the reflection phase. Fig. 7.5 d displays the reflectance and the
reflection phase at 360 THz as a function of the nanorod length. The first reflectance
dip, observed at nanorod length 153 nm, exhibits a narrow Lorentz-like line shape.
The corresponding phase transition is steep but still continuous. The second reflection
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Phase discontinuity
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a)

d)

b)

c)

Figure 7.5 – Reflectivity spectra and phase of electric field at the termination. a) Cal-
culated reflectance (|Γ|2) as a function of the nanorod length and frequency. The gap is
fixed at 4 nm. b) Phase of Ez (red dots), recorded 5 nm away from the wire surface for
the dipolar resonance on a 157 nm long nanorod separated by a 9 nm gap at 354.5 THz
(846 nm). The blue solid line depicts the total field intensity. The symmetry of charges
is indicated on the structure outline. c) Same as b), but for the second-order antenna
resonance on a 346 nm long nanorod separated by a 5 nm gap at 362.2 THz (828 nm).
The phase jump across the gap is close to π/2 in both b) and c). d) Reflectance (upper
panel) and reflection phase (lower panel) as a function of the nanorod length at 360 THz
(833 nm), marked by the white dashed line in a). The red and green horizontal lines mark
the reflectance and phase of a termination open to vacuum and a gap in an infinitely long
wire, respectively. The CPA state at the second-order reflectance minimum and the phase
discontinuity at the corresponding rod length 346 nm are labeled. Adapted from [266].

minimum at a rod length of 346 nm (see also Fig. 7.2 b, right panel) approaches zero,
i. e., truly perfect absorption. The corresponding phase changes discontinuously. It
is worth emphasizing that this phase jump does not originate from an irrelevant 2π

jump. Furthermore, it turns out that the reflectance dips observed here mark a special
case of Fano resonances, where the narrow nanorod resonance coherently interferes
with the broadband background wave given by the guided TM0 mode on the wire. By
deliberately picking fundamental coefficient values that deviate from the natural set,
arbitrary Fano line profiles can be created, yet accompanied by physically meaningless
reflectance curves. This is discussed in appendix A.

To prove that we indeed observe a generalized version of CPA and to clarify the
aforementioned connection between phase singularity position and guided mode dis-
persion line, in Fig. 7.6 a we plot the reflectance and reflection phase over the com-
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plex wave vector plane [52, 276], which is introduced in Sec. 7.3.3. A similar CPA
description using a complex frequency plane has been established in previous re-
ports [252, 277, 278]. For the selected range of frequencies, the reflectivity displays a
zero and a pole of its amplitude accompanied by phase singularities in the positive and
negative α range, respectively. Along a closed path around a singularity, a total phase
of 2π is collected. Now it becomes evident that the phase discontinuity in Fig. 7.5 d
is caused by the vortex-like phase singularity which accompanies the zero reflectance
of the gCPA state. Further poles and zeros exist for each order of Fabry-Pérot reso-
nances of the nanorod (not visible in Fig. 7.6 a). The plasmonic TM0 mode dispersion
relation is parametrically plotted as a white solid curve (SP mode) into the same com-
plex wave vector plane (see also Fig. 7.4 c). The frequency varies implicitly along this
curve. To accomplish vanishing reflection, the phase singularity corresponding to zero
reflectivity must reside on this curve describing allowed α and β combinations of the
mode [277], such as the case displayed in Fig. 7.6 a. The difference between a local
minimum and a truly zero reflection because of gCPA is that true gCPA happens when
the phase singularity hits the dispersion curve of the guided mode in the complex wave
vector plane. If the phase singularity is close but does not exactly reside on the disper-
sion curve of the guided mode, the reflectance would merely be a local minimum with
a smooth transition of phase. In numerical simulations, a finite reflectance is inevitable
due to limited finite mesh size and frequency stepping. In reality, the resolution is
limited by the diameter of an atom (the smallest spatial step) and the frequency band-
width of the source. The narrow bandwidth of the gCPA dip implies that ultrashort
pulsed excitation with broad bandwidth is not compatible with gCPA. Upon inject-
ing a source field with broad bandwidth, one would observe a substantial intensity in
reflection around the gCPA frequency, i. e. a non-negligible background signal.

By changing the geometry of the termination, such as the gap size and nanorod
length, the position of the phase singularities can be moved freely within the complex
wave vector plane. Fig. 7.6 b shows the trajectories of the phase singularities of the
first-order and second-order resonances of the nanorod upon increasing the gap size
and the rod length. While increasing the nanorod length shifts the phase singularities
towards lower propagation constant, increasing the gap size mainly moves the singu-
larity towards smaller attenuation constants. Importantly, geometrical changes offer
the possibility for a reflection zero and its associated phase singularity to cross the dis-
persion line of the guided mode, thereby traversing a gCPA state when residing exactly
on this line.

The effect of rod length changes can be intuitively understood as a change in the
effective Fabry-Pérot resonance wavelength of the rod and thus as a control knob of
the phase in the interference pattern of the back-transmitted waves onto the wire. The
essential role of the gap, however, has been overlooked so far. During preliminary
studies, length scans with fixed gap were performed, yielding low, but nonzero reflec-
tion amplitudes and continuous reflection phase profiles (cf. Fig. 7.4 e), thus no gCPA.
One crucial and astonishing discovery in this thesis is that the gap width fulfills a task
that complements the task of the rod length. The rod length determines the interfering
phases, the gap controls the amplitudes of the interfering waves and thereby serves as a
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Figure 7.6 – Reflectivity and its dynamics in the complex wave vector plane. a) The
reflectance (upper panel) and reflection phase (lower panel) plotted over the complex wave
vector plane for a specific terminal condition (rod length 346 nm, gap 4 nm), at which one
of the phase singularities hits the dispersion curve of the guided mode (white solid curve,
same as red line in Fig. 7.4 c), leading to zero reflection for one specific value of β . β and
α are the real and imaginary parts of the wave vector. Negative α represents gain. b) Upper
panel: trajectories of the reflection phase singularities of the first-order and second-order
nanorod resonances upon sweeping the gap size (increment 0.5 nm per dot) and nanorod
length (increment 1 nm per dot). Dark blue and dark green dots mark the trajectories of the
phase singularity of the first-order resonance upon increasing the rod length (126-187 nm)
and gap size (4-19 nm), respectively. Light blue and light green dots mark the trajectories
of the phase singularity of the second-order resonance upon sweeping the rod length (290-
431 nm) and gap size (3-20 nm), respectively. The red solid curve depicts the dispersion
of the guided mode. Lower panel: enlarged plot corresponding to the area marked by the
dashed rectangle in the upper panel. Taken from [266].
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control knob for the loss. Large gaps exhibit strong reflection and weak transmission,
whereas small gaps give rise to the opposite effect. This is why the phase singularity
mainly moves along the α-axis in the complex wave vector plane when the gap size is
varied. Establishing a gCPA state at a well-defined frequency is only possible if both
rod length and gap are carefully tuned and an appropriate guided mode dispersion is
available. In this regard, gCPA is a highly sensitive feature, analogous to the triple
point of water, at which its three thermodynamic phases coexist in thermal equilib-
rium, manifested by a unique point in the phase diagram spanned by temperature and
pressure [279]. Here in the optical case, an “equilibrium” between loss and feeding is
reached. Since gCPA is a single-frequency phenomenon, continuous wave (CW) driv-
ing at the gCPA frequency induces an infinite lifetime of the gCPA state. Consequently,
perfect balancing between input power on one side, and absorption and radiative losses
on the other side is achieved.

Within the experimentally accessible range of geometrical parameters, multiple sin-
gularities corresponding to different Fabry-Pérot resonance orders of the nanorod are
available. This allows us to rationally design a wire-rod system to accomplish gCPA
using super radiant or subradiant nanorod resonances (cf. Sec. 3.3.2), offering the
opportunity to choose the dissipation mechanism for the absorbed energy. Thus, the
gCPA analysis on the complex wave vector plane serves as a theoretical design tool
for perfect impedance matching. The transfer matrix calculations yield fast results and
avoid time-consuming numerical parameter sweeps. Another important feature seen in
Fig. 7.6 a is the phase singularity point in the lower half of the complex plane, where
the attenuation constant α is negative. This phase singularity is associated with a re-
flectivity pole. For α < 0 the guided mode is amplified, suggesting the possibility of
surface plasmon amplification by stimulated emission [76, 258, 280].

7.5 Exemplary applications of single-port gCPA
The gCPA approach developed in this thesis offers a broad range of applications. In
principle, it can be applied to study the coupling of any guided mode into lossy cavities
where the total loss may include radiative channels. In particular, structures consisting
of discrete elements are straightforward to treat as they are composed of elementary
reflection and transmission events. In the following, we will discuss two applications of
gCPA in plasmonic nanocircuitry, (i) driving super- or subradiant nanoantenna modes
with perfectly matched impedance and (ii) background-free nanoscale sensing.

Fig. 7.7 a shows the efficiency of radiative and nonradiative losses of a unidirec-
tional gCPA-driven single nanorod in the first and second-order resonance. The same
quantities of the open end of a semi-infinite nanowire are also plotted for reference.
The data are obtained in FDTD simulations where the Poynting vector is integrated
over a transmission box according to Eq. (2.9). The simulation setup is sketched in
the inset of Fig. 7.7 a. After subtracting the power flow passing through the red re-
gion where the input near-field of the guided mode enters the box, the scattered power
is normalized to that input power. According to the symmetry of the currents on the
nanorod, the first-order and second-order resonances are superradiant and subradiant,
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respectively. Therefore, gCPA based on the first-order resonance (rod length 157 nm
and gap 9 nm) results in 50 % far-field radiation efficiency, whereas gCPA achieved
with the second-order resonance (rod length 346 nm, gap 5 nm) leads to 85 % nonra-
diative energy dissipation into heat. The freedom to select multiple resonance orders
offers the opportunity to control the branching ratio of the absorbed power to either
far-field radiation or local absorption at the rod termination.

‒

‒ ‒

+

+

a) b)

source

Figure 7.7 – Selective driving of antenna modes and background-free sensing as ap-
plications of gCPA in a wire-rod system. a) Radiative (solid lines) and nonradiative
(dashed lines) dissipation efficiency of a gCPA-driven nanorod at the first-order (blue) and
second-order resonances (red). The radiative and nonradiative dissipation efficiencies of
the open end of a semi-infinite wire are also plotted for reference (black). The vertical dot-
ted lines indicate the gCPA frequencies for first and second order resonances. The legends
in the top left corner include the charge distribution on the nanorods for first-order and
second-order resonances. The inset in the top right corner schematically depicts the simu-
lation setup with a transmission box around the termination. b) Comparison of the reflec-
tion amplitude to a local perturbation (approaching dielectric sphere, diameter 20 nm) of a
simple wire sensor (black) compared to a gCPA wire-rod sensor (red: calculation via trans-
fer matrix algorithm; blue: full FDTD simulation). For the latter, a pronounced change in
reflection amplitude is observed for separations below 10-20 nm. Adapted from [266].

For sensing applications, we use the subradiant nanorod resonance (rod length
346 nm, gap 5 nm) to achieve gCPA. Tiny perturbations of the nanorod’s terminal con-
ditions will shift the phase singularity in the complex k-plane and lead to the destruc-
tion of gCPA. As a result, a finite reflection against a completely dark background can
be detected with high signal-to-background contrast, similar to the case of dark-field
scattering or single-molecule fluorescence detection [281]. Assuming that the major
source of noise in an experiment is shot noise, which is proportional to the square root
of the signal intensity, the signal-to-noise (S/N) ratio is proportional to the amplitude
of the reflection. It should be noted, though, that the amplitude cannot be increased ar-
bitrarily by increasing the input intensity due to local heating of the nanorod. Fig. 7.7 b
compares the change of the reflection amplitude upon local perturbations of a wire-rod
system with that of a bare single wire probe. A perturbation is introduced by approach-
ing a tiny dielectric glass nanosphere (diameter = 20nm, n = 1.52) to the termination
(see inset of Fig. 7.7 b).
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In order to calculate the total wire-rod reflectivity Γ including the glass sphere,
a new set of fundamental coefficients involving the modified open end of a semi-
infinite wire, Re, has to be numerically simulated first, with the technique presented
in Secs. 4.4.2 and 7.3. As a matter of fact, this fundamental coefficient exactly de-
scribes the performance of a simple wire probe under the presence of the scatterer.
Therefore, these data are plotted in black in Fig. 7.7 b and reveal that the reflection am-
plitude changes hardly, even if the glass nanosphere is moved extremely close to the
wire’s end cap along the wire axis. Subsequent transfer matrix calculations modeling
the wire-rod sensor, plotted in red, indicate a rapid increase of the reflection ampli-
tude as the glass nanosphere approaches the nanorod to a distance less than 20 nm. A
pronounced nonlinear increase in the reflection amplitude is obtained when the sepa-
ration is below 10 nm, showing ultimate sensitivity to perturbations in close vicinity
of the probe. The analytically predicted reflectivity increase of the wire-rod sensor is
perfectly reproduced by full FDTD simulations, plotted in blue. We conceive that even
attachment or detachment of single proteins should be detectable as a notable increase
in reflectivity [282–284].

7.6 Two-port gCPA: coherent control of nanoantenna
radiation

Two-port CPA using photonic modes with dielectric or plasmonic resonators has been
used to demonstrate coherent control of light with light without using nonlinear ef-
fects [251, 256, 262, 263]. Guided plasmons on two plasmonic nanowires sandwiching
one nanorod resonator can also be used to realize two-port gCPA [285]. Such a system
with two identical gaps, sketched in Fig. 7.8 a, leads to the total transfer matrix

←→
M =

←→
T
←→
P
←→
T . (7.10)

Generalizing the concept of two-port CPA according to Sec. 7.1, the subset of incoming
and outgoing guided plasmons is investigated. Contrary to the single-port structure,
here the scattering matrix is not a scalar anymore. While the transfer matrix is defined
via waves left and right of an obstacle as basis vectors (cf. Eqs. (7.6)), the scattering
matrix rigorously connects incoming and outgoing waves. Thus the definition of the
scattering submatrix connecting the guided plasmon modes in Fig. 7.8 a reads(

Eout,l
Eout,r

)
=
←→
S
(

Ein,l
Ein,r

)
. (7.11)

After applying some algebraic steps,
←→
S can be calculated from the entries of the total

transfer matrix in Eq. (7.10) via the basis transformation

←→
S =

(
S11 S12
S21 S22

)
=

(
−M21/M22 1/M22

M11−M12 M21/M22 M12/M22

)
. (7.12)
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For a two-port excitation of equal intensities and tunable relative phase φin, the input
vector reads (

Ein,l
Ein,r

)
=

(
1

eiφin

)
. (7.13)

The output intensity obtained from Eqs. (7.10)-(7.13) is defined as

Iout =
|Eout,l|2 + |Eout,r|2

|Ein,l|2 + |Ein,r|2
=
|Eout,l|2 + |Eout,r|2

2
. (7.14)

Zero eigenvalues of
←→
S , i. e. zero output intensity is found for specific sets of rod

length, gap width, and frequency, either for symmetric input (φin = 0; eigenvector
(1,1)) or antisymmetric input (φin = π; eigenvector (1,−1)).

Ein,l Ein,r

Eout,l Eout,r

-4 -3 -2 -1 0

a) b)

c) d)

log10 |𝐸|2

Figure 7.8 – Two-port gCPA in a wire-rod-wire system. a) Sketch of the symmetric
wire-rod-wire system where two-port gCPA is realized, i. e., Eout vanishes on both sides.
Insets show field distributions of the guided TM0 mode used for excitation. b) Simulated
intensity of the main electric field component (Ez) along the structure, 5 nm above the
surface of the wire. The black line shows the case of symmetric input (φin = 0) with con-
structive interference of input and output waves. The antisymmetric input case (φin = π) is
plotted as a blue line. The latter yields gCPA on the nanorod and destructive interference
along the wires (rod length 154 nm, gap width 23 nm, frequency 361 THz, wavelength
830 nm). c) Corresponding maps of the total field intensity in logarithmic color scale.
d) Calculated normalized output intensities versus relative input phase φin on the left side
(green), right side (red) and the sum of both (blue) under coherent input. The simulated
radiation efficiency of the nanorod as a function of input phase is plotted with blue plus
signs (scale to the right). With an input phase of π , gCPA with output intensities on the
wires as low as 10−4 is obtained, accompanied by strong far-field radiation from the dipo-
lar mode on the nanorod. The horizontal black dashed line depicts the incoherent sum of
the squared transmission amplitudes on left and right side. Taken from [266].

In Fig. 7.8 b, simulated electric field patterns 5 nm above a wire-rod-wire system
with rod length 154 nm, gap size 23 nm on both sides at a frequency of 361 THz (wave-
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length 830 nm) are presented. The z-component field intensity is displayed for sym-
metric and antisymmetric input. Fig. 7.8 c provides maps of the total electric field
intensity in the vicinity of the nanorod. With symmetric input (φin = 0), the outgoing
waves interfere constructively, leading to a pronounced standing wave along the two
wires (“superscattering”). Simultaneously, the fields around the nanorod are highly
suppressed. Therefore, the energy can hardly enter the nanorod and the antenna is
“off”. In contrast, with antisymmetric input (φin = π), the interference of the transmis-
sion and reflection is perfectly destructive, leading to perfect absorption of the input
power by the nanorod and highly enhanced field intensity on the nanorod. In this case,
the dipole antenna is “turned on” and perfectly driven by the two wires.

The relative input phase φin constitutes an additional degree of freedom within the
two-port scheme, compared to the wire-rod system. It is an external parameter that
can be adjusted e. g. by interferometric pathways, thereby enabling coherent control
of light by light without using any nonlinear effect. Generalized CPA, superscatter-
ing, and any absorption state in between these extreme cases can be reached by tuning
φin. At gCPA, the output intensity of the wire plasmons defined in Eq. (7.14) can be
suppressed by four orders of magnitude, as plotted in Fig. 7.8 d (blue line). Taking
merely the incoherent sum of the right and left outgoing signals while disregarding
their phases results in a normalized intensity of about 0.45 for the present geometry
(black dashed line). In the all-plasmonic system studied here, a further aspect comes
into play. Making use of a radiative dipolar antenna mode, the control of the input
phase φin allows to coherently control the radiation of the plasmonic nanorod, i. e. to
control the emission of a locally plasmon-driven transmitting optical nanoantenna by
surface plasmons. Fig. 7.8 d shows the radiation efficiency of the nanorod with vary-
ing relative phases. At φin = 0, the rod is in an “off” state because no radiation is
observed. When φin approaches π , the radiation increases up to 30 % of the overall
injected power. As a benefit of coherence in the absorption process, a nonlinear mech-
anism is not required for such switching and deep modulation.

7.7 Rod dimer antenna driven under gCPA
This section straightforwardly builds on the single-port gCPA analysis developed in
Sec. 7.4 by aligning a second nanorod next to the first via a second gap. This system
is sketched in Fig. 7.9 a. As the guided wire mode is identical on all particles, the total
reflectivity can be directly calculated using the fundamental coefficients and the total
transfer matrix

←→
M =

←→
T end

←→
P 2
←→
T 2
←→
P 1
←→
T 1, (7.15)

with the indices denoting the respective rod/gap.
Thereby, the reflectance |Γ|2 is computed over the complex wave vector plane, re-

vealing two pole-zero pairs appearing at different β . As in the prior sections, the zeros
are found for α > 0 while the poles reside in the gain region where α < 0. The two
pairs are expected because the double rod structure hosts two resonances that have been
introduced in Sec. 3.3.3. Indeed, the rod dimer geometries used in Fig. 3.10 have first



Chapter 7. Local driving of plasmonic nanoantenna systems using generalized
coherent perfect absorption (gCPA) 115

been determined with a gCPA analysis and later been simulated as isolated dimers in
FDTD. This method of analytically determining antenna geometries hosting a certain
resonance order at a certain wavelength works much faster than lengthy brute-force
parameter sweeps in FDTD simulations, demonstrating the power of the here devel-
oped approach. A necessary criterion for employing the analytical framework is that
the fundamental coefficients are known.
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Figure 7.9 – Wire-rod-rod system and its gCPA states. a) Sketch of the structure with
two equally long nanorods and generally distinct gaps. b) Reflectance |Γ|2 in the complex
wave vector plane, where the reflection minimum residing on the dispersion curve of the
guided mode (white solid line) corresponds to the bonding resonance of the rod dimer. This
gCPA state arises at 366 THz (818 nm). The calculated geometry (rod lengths, gap sizes)
is given. c) Same as in b), but with the reflectance zero on the guided mode dispersion
corresponding to the antibonding resonance of the rod dimer. d) Near-field intensity map
of the bonding mode driven under gCPA. e) Near-field intensity map of the antibonding
mode driven under gCPA. Panels d) and e) share the same logarithmic color scale.

Fig. 7.9 b displays the bonding mode of the double rod structure driven under gCPA.
Therefore the associated reflectance zero coincides with the guided mode dispersion
at 366 THz (818 nm). The reflectance minimum emerging at a higher frequency corre-
sponds to the antibonding mode of the rod dimer. Since it is displaced from the guided
mode dispersion line, it does not show gCPA at any frequency. This is a general ob-
servation with gCPA being a single-frequency effect. By enlarging the rod length and
decreasing the width of the gap between wire and first rod, we move the antibonding
mode onto the dispersion curve at 366 THz where it shows gCPA in Fig. 7.9 c. During
the geometry change the pole-zero pair of the bonding resonance nearly moved outside
of the plot range of the complex k-plane. It is worth mentioning that the gap between
wire and first rod (“gap1”) controls the loss, i. e. the α value under which the ex-
trema appear, analogous to the gap in the single rod case (cf. Sec. 7.4). The gap width
between the nanorods (“gap2”), in turn, controls the distance between the pole-zero
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pairs along the β -axis in the complex wave vector plane, which is in agreement with
the gap dependent splitting strength between bonding and antibonding mode shown in
Fig. 3.10.

Near-field intensity maps of these hybrid modes are presented in Figs. 7.9 d, e,
confirming the expected field distributions. While the antibonding mode exhibits its
highest field intensities at the dimer ends and moderate near-field in the gap region,
the bonding mode features an electric field hotspot in the gap and considerable parts
of the near-field also penetrate the gold end caps in this region. The hotspot could be
harnessed as a platform for enhanced light-matter interaction when a single emitter is
placed in the gap of the rod dimer. Moreover, these results once again show that also
subradiant antenna modes can be directly addressed by this local near-field driving
mechanism via surface plasmons on a nanowire.

7.8 Nanorod chains driven under gCPA: towards topo-
logical plasmonic Su-Schrieffer-Heeger chains

Beyond dimer antennas, the gCPA toolbox developed in this thesis allows modeling
even more complex plasmonic antenna systems featuring rich modal structures. Here
we consider one-dimensional chains whose building blocks are gold nanorods. A con-
figuration with two alternating gap sizes along the chain is of particular interest be-
cause it resembles the backbone of trans-polyacetylene, the simplest conjugated poly-
mer, with its staggered single and double bonds between adjacent carbon atoms. Both
systems are imaged in Fig. 7.10 a. One can identify a unit cell containing two carbon
atoms (two gold nanorods) as basis, giving rise to A and B sublattices. The double and
single bonds are characterized by the hopping amplitudes t1 and t2, where |t1| > |t2|.
These properties are transferred onto the plasmonic chain by choosing a small and a
large gap size, resulting in stronger and weaker Coulomb interaction between neigh-
boring nanorods, respectively.

In their seminal work in 1979, Su, Schrieffer, and Heeger predicted the existence
of topological solitons on such dimerized polymers, located on the separate A and B
sublattices [265]. The tight-binding Su-Schrieffer-Heeger (SSH) model is therefore the
simplest showcase where topologically nontrivial modes are expected. Since the latter
do not necessitate the non-commutative laws governing quantum mechanics, topology
has reached out into various branches of classical physics, such as mechanics [286,
287], acoustic systems [288], photonic metamaterials [289, 290], microwave cavities
and networks [291, 292], and electric circuitry [293–296]. Many of these examples rely
on equal footing, namely a periodic sample with a boundary or interface across which
a topological invariant of the band structure, e. g. the Berry phase [297, 298], changes.
Consequently, energy bands cannot be smoothly connected. The band gap closes and
reopens during a topological phase transition, in conjunction with the formation of
topologically nontrivial edge or interface states which lie energetically in the middle
of the band gap. It is worth mentioning that also the SPPs at metal/dielectric interfaces
(cf. Sec. 3.2) can be thought of as a special case of topological edge states [299].
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Figure 7.10 – Su-Schrieffer-Heeger (SSH) chains and the emergence of midgap states.
a) Molecular structure of the backbone of trans-polyacetylene, on which the SSH model
is based, and its plasmonic counterpart, a chain of identical gold nanorods separated by
alternating gaps. These lead to strong (dark red spots) and weak (light red spots) Coulomb
coupling of neighboring particles, mimicking the chemical double and single bonds. Unit
cell, lattice constant a, sublattices A and B, as well as the hopping terms t1 and t2 are
indicated. b) Approximate band structure of SSH chains with different terminations. Left:
24-site chain ending in two intact unit cells, i. e. two double bonds. Two symmetric bulk
bands separated by a band gap around zero are obtained. Middle: By removing the leftmost
C-atom, the left edge features a broken unit cell and an edge state forms. Energetically, it
lies in the middle of the band gap. Right: 24-site chain ending in two single-bonded C-
atoms. Two midgap edge states belonging to left and right edge arise. For the calculations,
t1 = 1.3 and t2 = 1 is used.

SSH chains exhibit topological midgap edge states depending on the terminal con-
ditions. The Hamiltonian of this system with open boundary conditions can be written
as

Ĥ =
(

c†
1,A, c†

1,B, c†
2,A, c†

2,B, · · ·
) ←→t


c1,A
c1,B
c2,A
c2,B

...

 , (7.16)

with cn,A/B,c
†
n,A/B the particle annihilation and creation operators for A/B sublattices in

the n-th unit cell, and←→t the hopping matrix which conveys the nearest neighbor hop-
ping interactions. We first consider the case of topologically trivial chain boundaries
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as seen in the left panel of Fig. 7.10 b. The hopping matrix then reads

←→t =


0 t1 0 0 · · ·
t1 0 t2 0 · · ·
0 t2 0 t1 · · ·
0 0 t1 0 · · ·
...

...
...

... . . .

 . (7.17)

By numerically diagonalizing the hopping matrix we obtain the approximate band
structure2, exhibiting a band gap around zero energy and symmetric upper and lower
bulk band. Next, we eliminate the leftmost C-atom so that the chain ends in a single
bond on the left side, as drawn in the middle panel of Fig. 7.10 b. As a result, an eigen-
state appears in the middle of the band gap. This is associated with a state localized at
the left edge of the chain. Finally, by interchanging the hopping amplitudes t1 and t2
from the original setting, we conceive a chain with two single bond boundaries (right
panel of Fig. 7.10 b), and accordingly with two nearly degenerate midgap states which
can be attributed to the two topologically nontrivial edges. Due to the finite size of the
chain, the degeneracy of the zero energy midgap states is lifted. Nevertheless, we infer
that the regimes of trivial and nontrivial topology are distinguished by the presence of
midgap states and expect a similar behavior for gold nanorod chains under appropriate
geometrical parameters.

Plasmonic waveguide arrays assembled in SSH configurations with topological de-
fect centers or trivial/nontrivial interfaces were theoretically and experimentally inves-
tigated and found to host defect/interface localized states residing in photonic band
gaps [300–303]. Chains of closed plasmonic nanoparticles have been theoretically
studied, mainly with ab initio approaches to define Hamiltonians and topological in-
variants, including retardation and loss (non-Hermitian) mechanisms [304–307]. An
experimental study of edge states in zigzag arranged plasmonic nanodisk chains was
carried out as well, where SNOM measurements were employed to map spatial near-
field distributions [308]. However, the plasmon resonances of disk-shaped particles are
hardly tunable and less pronounced than the longitudinal mode of elongated rods and
the dipole-dipole coupling behavior between adjacent disks depends on the excitation
polarization, which might overshadow the topological origin of the observed near-field
profiles.

The nanorod chain proposed here offers a more appealing design in this regard. Be-
sides using a neat single-mode plasmonic system based on the longitudinal first-order
resonance of the nanorods, two degrees of freedom guarantee great flexibility and tun-
ability in generating topologically nontrivial edge states. The rod length determines
the frequency around which photonic band gap and edge states emerge, while the gap
width serves as a control knob for the Coulomb interaction between nearest neighbors.

2The exact bulk band structure is only obtained if periodic boundary conditions are invoked, but
edge states would not exist in this setting. Conversely, the hopping matrix (7.17) which contains open
boundary conditions, i. e. physical edges, can only be diagonalized approximately. In this context it is
assumed that for long, but finite chains the exact boundary conditions have negligible impact on the bulk
band structure.
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This also constitutes a clear advantage over the original trans-polyacetylene chain be-
cause the nanorod coupling can be adjusted over a very wide range, as opposed to the
fixed energies of chemical single and double bonds in conjugated polymers. In com-
parison to topolectric circuits, ultra-high frequency topological plasmonics necessitate
the full treatment of Maxwell’s equations beyond Kirchhoff’s circuit laws and enable
a new paradigm of light localization at the nanoscale.

7.8.1 gCPA based analysis of SSH chains

In view of the electrical network analyzing approach adopted in topolectrical circuitry,
where band structures are read out via impedance measurements [294–296], we deem
gCPA analysis a promising route to find edge states in situ, based on the reflectivity re-
sponse of nanorod chains, as an alternative to first principle calculations. This is based
on the following idea: Nanorod chains are fed by a semi-infinite nanowire that supports
the fundamental guided TM0 surface plasmon mode. The wire is subsequently used
to obtain the reflectivity of the chain as a function of frequency, rod length, and gap
sizes. Three exemplary systems with 12 nanorods, assembled in topologically trivial,
homogeneous (constant gap width), and nontrivial phases, are sketched in Fig. 7.11 a.
A band gap would imply that for a certain range of frequencies no power can be fed
into the chain, giving rise to a maximum in reflection amplitude. The energy is then
mostly retained on the feeding wire. This behavior is expected in the trivial phase.
Conversely, the topological phase features localized edge states, which should be able
to absorb the power from the feeding wire attached to the left end of the SSH chain.
If the driven edge state shows the sought-after midgap resonance, a decrease in the
reflection amplitude is expected in the frequency range where the band gap was found
with the trivial conformation. We therefore establish the reflectivity as network ana-
lyzing quantity in plasmonic SSH chains and apply the gCPA analysis to elucidate the
occurrence of edge states.

So far, gCPA analysis has been carried out using cylindrically symmetric structures
placed in vacuum. Since a more realistic experimental setting would involve a sub-
strate, we here include a glass halfspace (n = 1.52) in the calculations and simulations
and adapt wire and rod shapes to be sharply cut at the air-glass interface and rounded
at the top. Width and height are set to 50 nm. Updating the physical structure also
requires a recalculation of all fundamental coefficients (cf. Sec. 7.3.3), including the
complex dispersion relation of the guided mode, via full FDTD and FDFD simula-
tions. The resulting field profile of the TM0 mode is imaged in Fig. 7.11 b. Near-field
maxima occur near the air-glass interface and inside the higher index medium. From
the updated dispersion relation of the propagation constant β depicted in Fig. 7.11 c
it can be seen that the mode lies below the light lines in both air and glass for the
considered frequency interval. Therefore, the mode is again neatly guided and free of
leakage losses. At any rate, the gCPA analysis using the transfer matrix algorithm can
be applied in the same way.

Fig. 7.11 d provides results of semi-analytical transfer matrix calculations and full
FDTD simulations, comparing reflection amplitude spectra for the three chain config-
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Figure 7.11 – 12-particle plasmonic SSH chains and reflectivity spectra. a) Top view
sketch of topologically trivial, homogeneous, and nontrivial chain geometries, achieved
by interchanging gap width configurations. The chains are fed by a guided surface plas-
mon on a semi-infinite feeding wire. b) Cross-sectional near-field intensity profile of the
guided TM0 mode. The wire is placed on an air/glass interface where the fields are seen
to be concentrated. c) Dispersion of β of the guided mode compared to light lines in air
(black) and glass (blue). d) Reflection amplitude spectra for the three chain configurations
obtained from transfer matrix calculations (upper panel) and full FDTD simulations (lower
panel). All nanorods have 120 nm length. The homogeneous chain consists of 14 nm gaps
throughout. Small/big gaps in the topologically (non)trivial phase are 8 nm/20 nm. Both
methods show very good agreement for all configurations. A plasmonic band gap as well
as a deep reflection dip, indicating coupling to a midgap edge state at about 415 THz
(722 nm), is clearly visible.

urations. All nanorods share a length of 120 nm to operate at visible to near-infrared
wavelengths. The dimerization is achieved by gap sizes of 8 nm/20 nm in the topologi-
cally (non)trivial chains, while the homogeneous layout features a constant 14 nm gap.
The latter shows reflectivities around 50 %. As expected, a broad reflection maximum
is observed in the trivial phase, covering 380 THz (789 nm) to 430 THz (697 nm). In
the center of this band gap region, a pronounced reflection dip close to zero amplitude
occurs when the topologically nontrivial phase is considered. Physically, this means
that at 415 THz, the vast majority of the input power from the guided plasmon mode
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is transferred onto the chain and dissipated there. Since the power is fed from the edge
itself, we attribute this midgap reflectivity minimum to the presence of a topological
edge state, in accordance with the tight-binding calculations in Fig. 7.10 b. These re-
sults also suggest that edge states can be driven under gCPA, i. e. completely vanishing
reflection. All in all, transfer matrix and FDTD results show very good agreement for
all chain configurations. Only some minor differences of the curves and a little spectral
deviation of the reflection minima and maxima exist, probably due to higher-order ef-
fects such as next nearest neighbor interaction which is not accounted for in the transfer
matrix formulas.

To gain deeper insight into the modal structure supported by the nanorod chains,
we analyze the reflectivity on the complex wave vector plane. Similar to the behavior
in Figs. 7.9 b-c, a homogeneous chain produces pole-zero pairs appearing along the
β -axis and depending on the number of nanorods, which corresponds to a gapless
spectrum where the topological transition between trivial and nontrivial regime takes
place. Indeed, when the gaps in a homogeneous chain are increased substantially, the
pairs move close towards each other, confirming the reduction of Coulomb coupling.
The limiting case of infinite gaps corresponds to the “atomic limit” where all pairs
collapse into one at the single rod resonance frequency. The reflectance of a trivial SSH
chain is plotted in Fig. 7.12 a. For the chosen gap configuration of 7.5 nm/20.5 nm, a
band gap opens, in agreement to the spectra shown in Fig. 7.11 d. Pole-zero pairs are
absent in this region. All pairs reside in the gain region where α < 0. We conclude
that these extremal points belong to the bulk modes of the chain. These can only be
addressed when gain is added to the system.

When shrinking the big gaps and growing the narrow gaps we traverse the homo-
geneous chain and end up in the topologically nontrivial regime imaged in Fig. 7.12 b.
Here we fix the width of the gap between wire and first nanorod, which is not part of
the SSH system and solely acts as feed gap, to 10 nm. The poles and zeros at the band
edges undergo intriguing dynamics until one reflectance zero is pushed towards the
loss region (α > 0) and eventually traverses the dispersion line of the guided plasmon
mode, so that a gCPA condition is satisfied. This happens in the middle of the band
gap. The midgap state is therefore driven under gCPA and the reflected intensity on the
feeding wire cancels out. Simultaneously, the corresponding reflectance pole is pushed
towards more negative α .

Moreover, another pole and zero meet in the band gap and eventually annihilate in
the gain region. This is particularly evident in the reflection phase plot of Fig. 7.12 c.
The double phase singularity becomes infinitely small in the complex wave vector
plane while its immediate neighborhood is governed by a constant phase value. Pre-
sumably, this second pole-zero pair can be associated with the right chain termination
which is also in the nontrivial regime but on the far side of the feeding wire. Annihila-
tion is only observed for phase singularities of opposite winding. This is supported by
the fact that each zero and pole in the complex wave vector plane can be interpreted
as a topological defect [254]. Then a topological charge of +1 (−1) can be attributed
to counterclockwise (clockwise) winded phase singularities or intensity zeros (poles),
respectively. When two oppositely charged defects coincide, they are able to coalesce
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Figure 7.12 – Reflectivity of 12-particle SSH chains in the complex wave vector plane.
a) Reflectance of an SSH chain in its topologically trivial phase, with 7.5 nm/20.5 nm gaps
and 120 nm rod length. An energy gap without pole-zero pairs is visible. b) Reflectance
of the SSH chain in its topologically nontrivial phase with interchanged gap sizes. The
feed gap between wire and first rod is held at 10 nm for both phases. A reflection zero
resides on the dispersion line of the guided mode in the middle of the band gap, indicating
that a midgap state is driven under gCPA. In the gain region (α < 0), a pole and a zero
move towards each other and annihilate eventually. c) Reflection phase of the nontrivial
configuration where the annihilation between pole and zero can be visualized better.

into zero topological charge. In a Hermitian system, this exotic phenomenon has been
termed bound state in the continuum (BIC) if the coalescence happens on the real fre-
quency axis (α = 0). As a result, one would obtain a radiationless state with diverging
quality factor [277].

While the transfer matrix algorithm has been shown to uncover edge states in plas-
monic SSH chains by evaluating their reflectivity, it remains elusive whether topologi-
cal invariants such as the Berry phase can be deduced from this formalism. One could
then clearly distinguish the topological regimes via distinct values for the invariants.
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7.8.2 Near-field distributions of SSH chains

With the help of a semi-infinite wire it is possible to identify midgap edge states by
analyizing the reflectivity spectrum of a plasmonic SSH chain. Here we propose the vi-
sualization of these states upon a purely optical excitation of the chains, which provides
an independent access besides the network analyzing approach. In FDTD simulations,
we illuminate the system from the air side with a normal incidence plane wave source
polarized along the chain axis. A side view of this setup is sketched in Fig. 7.13 a,
where a near-field monitor 5 nm above the gold structure is used to map the electric
near-field intensity.
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Figure 7.13 – Near-fields of SSH chains under optical excitation. a) Side view of the
simulated geometry with gold nanorod chain on glass substrate, plane wave illumination
from the air halfspace, and near-field monitor 5 nm above the chain. b) Electric near-field
intensity maps in the xy-plane (top view) of a trivial SSH chain for different frequencies.
Note that although the field monitor does not intersect the nanorods, their shape is outlined
in white. Rod length and gap sizes are 120 nm, 8 nm, and 20 nm, respectively. c) Same as
in b), but for a topologically nontrivial chain. The edge states are accompanied by highly
enhanced fields at the corresponding frequency. d) Same as in c), but with the leftmost
nanorod removed, so that this 11-particle chain features a trivial termination on the left
and a nontrivial termination on the right. Only on the right side a localized edge state with
enhanced near-fields is observed.
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An SSH chain with topologically trivial configuration produces rather weak near-
fields at the frequency window around 420 THz (714 nm), as imaged in Fig. 7.13 b,
hinting once more towards a spectrally forbidden region. The picture changes dras-
tically in Fig. 7.13 c, where a chain with topologically nontrivial ends is considered.
Here, near-field hotspots arise above the terminal rods at the midgap frequency. The
edge states are thus highly localized by a collective Coulomb coupling mechanism
along the entire chain. The dominating field component at the monitor position is Ez,
i. e., pointing out of plane. In order to demonstrate once more the topological origin of
the localized edge state we conceive a plasmonic SSH chain with only one “defect” by
removing the leftmost nanorod. Then the gap periodicity is such that a topologically
trivial end appears on the left side while on the right side the nontrivial end is retained.
The resulting near-field distributions are depicted in Fig. 7.13 d. As expected, highly
enhanced near-fields are still encountered above the rightmost nanorod, albeit slightly
blue-shifted, whereas no edge state is visible on the left end of the chain. From this
near-field study we conclude that the topologically nontrivial chain geometries identi-
fied through the gCPA-based reflectivity analysis from Sec. 7.8.1 indeed support local-
ized midgap edge states with enhanced optical near-fields. It implies that the quick and
semi-analytical transfer matrix algorithm allows detecting the presence of edge states.

7.9 Concluding and prospective remarks
In summary, at the example of a semi-infinite plasmonic nanowire terminated by a gold
nanorod, we present a new type of nanoscale, near-field energy transfer and perfect ab-
sorption based on a generalized CPA concept. Using gCPA is necessary for systems in
which radiative losses may occur, e. g., plasmonic nanoresonators and quantum emit-
ters. The generalization causes a breakdown of the equivalence between time-reversed
lasing at threshold and CPA, although a SPASER condition (reflectivity pole) is still
predicted if the loss on the nanorod is turned into gain. The reflectivity of the wire-rod
system, the key figure that vanishes when a gCPA condition is met, is calculated in
a semi-analytical way by mathematically lightweight, yet rigorous power series and
transfer matrix formalisms accounting for a series of Fabry-Pérot oscillations on the
nanorod. These models are supplied with numerically obtained fundamental coeffi-
cients of reflected and transmitted guided plasmon waves as a function of frequency
and gap width. Not only spectra, but also 2D datasets over the complex wave vector
plane are calculated on short computation time scales. With this we demonstrate that
tuning the geometry of the nanorod can be used to deterministically move the reflec-
tivity phase singularity in the complex wave vector plane. This allows us to find zero
eigenvalue conditions for the selected subset of guided plasmonic modes of the scat-
tering matrix. The respective zero eigenvalue must then reside on the dispersion curve
of the guided input plasmon.

Since for gCPA no reflection occurs, the condition also corresponds to perfect
impedance matching of the guided surface plasmon w. r. t. the nanorod antenna. The
gCPA condition completely cloaks the wire termination and virtually decouples the
nanorod from the feeding structure, i. e., a nonbonding condition. Thus gCPA allows
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injecting power to an optical nanoantenna to compensate the loss so that the antenna
resonates continuously without damping, offering infinite quality factor at the resonant
frequency. Distinct antenna resonance orders, incorporating superradiant and subra-
diant behavior, can be driven under gCPA and therefore perfect impedance matching.
We further demonstrate that the gCPA condition is very sensitive to changes in the lo-
cal environment and thus useful for background-free ultrasensing. We also achieve the
coherent control of nanoantenna radiation using two-port gCPA.

More complex antenna systems can be treated equally well with the gCPA toolbox
developed in this chapter. A straightforward extension is a rod dimer system whose
modal structure is given by a bonding and an antibonding resonance. Both resonances
are shown to be driven under gCPA with the associated reflectance minimum located on
the dispersion line of the guided mode. Since the bonding mode offers highly enhanced
near-fields and ultrasmall mode volumes in the dimer gap such a plasmonic cavity is
a promising candidate for enhanced light-matter interaction studies. For the matter
part, a single quantum emitter can be modeled as a two-level system whose population
dynamics are described by semi-classical Maxwell-Bloch equations [309]. Placing
such a quantum emitter model using certain parameter sets (dephasing rate, transition
frequency, dipole moment) inside a Yee cell in the dimer gap within an FDTD simu-
lation [310], one obtains the temporal evolution of a coupled light-matter system from
which the reflection can also be calculated.

Fig. 7.14 displays reflectance spectra of a cylindrically shaped wire-rod-rod system
embedded in vacuum with quantum emitter in the dimer gap. These data were obtained
by Yiming Lai3. It turns out that the reflection dip splits and two dressed states emerge
at room temperature, stemming from the mixing of bonding plasmon and emitter res-
onance via strong coupling. With gCPA being a single frequency phenomenon, one
dressed state at a time can be neatly driven with a CW input at the gCPA frequency,
causing vanishing reflection and thus upholding the “plexcitonic” light-matter state
for infinite time spans by perfectly compensating its radiative and nonradiative losses.
The remaining dressed state at finite reflectance manifests itself as a saddle point in the
spectrum. Around 450 THz another dip is visible, which corresponds to the antibond-
ing mode of the plasmonic dimer resonator and does not participate in the coupling
scheme. We infer that gCPA establishes a new paradigm of macroscopically preparing
and sustaining strongly coupled light-matter quantum states. In this way it enables a
new type of “quantum endurance”.

On the plasmonics side, the reflection/transmission coefficient space entering the
transfer matrices can be expanded by using more versatile types of wire/rod endings.
For instance, completely flat or tip-shaped end caps with altered transfer properties
can be considered. With these, also the near-field landscape in gaps can be adjusted
for improved coupling experiments. Likewise, instead of entirely cut-through gaps, the
usage of V-shaped grooves allows access to obstacles with increased transmission and
reduced reflection of a guided wire mode. Technically, the fundamental coefficients of
such discontinuities can be computed numerically in analogy to the method presented
in this thesis. With the groove bearing several parameters (depth, width, cutting angle),

3Trinity College Dublin, University of Dublin, Dublin 2, Ireland
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Figure 7.14 – Wire-rod-rod system with quantum emitter. Reflectance spectra with
gCPA conditions of the lower dressed state (red, rod length 121 nm) and upper dressed
state (blue, rod length 107 nm) are plotted. The gCPA dips are indicated by the arrows,
while the non-gCPA dressed states appear as saddle points. The reflectance dips near
450 THz correspond to the antibonding plasmon mode of the rod dimer. The inset illus-
trates the simulated structure. Both gaps have 3 nm width. The quantum emitter is approx-
imated as two-level system with transition frequency 366 THz (818 nm), dipole moment
20 D, and dephasing rate 6.3 THz (26 meV). These data were obtained by Yiming Lai.

a vast playground opens and new gCPA geometries can be discovered by combining
multiple obstacle designs within a chain or circuit network.

Regarding plasmonic nanocircuitry, we demonstrated that a perfectly impedance
matched far-field transmitter can be realized by selecting the superradiant first-order
resonance on a single nanorod and that a thermal nanoradiator can be conceived with
its subradiant second-order resonance at gCPA. Similarly, other functionalities are
observed in specific wire-rod compounds. For example, the wire-rod-wire structure
drawn in Fig. 7.1 with single-port guided mode feeding exhibits largely suppressed
reflection and high transmissivity at a specific frequency if the rod length and gaps are
optimized. Therefore, it acts as a plasmonic notch filter in reflection and narrow band-
pass filter in transmission. This offers a platform for elaborating functional elements
of advanced plasmonic nanocircuitry.

Subsequently, we adopted the gCPA toolbox to more sophisticated nanoantenna
systems. Attaching a feeding nanowire to a collinear rod dimer enables locally driving
both bonding and antibonding resonances in a perfectly impedance matched fashion.
Additionally, we extended our analysis on chains of nanorods separated by alternat-
ing gaps. The chains possess multiple modes seen as reflectivity extremal points in
the complex wave vector plane, accompanied by phase singularities. Upon geome-
try changes these extrema undergo intriguing trajectories and can even annihilate each
other. Astonishingly, the chains under study represent a classical version of 1D Su-
Schrieffer-Heeger chains which support two distinct topological regimes and localized
midgap states at topologically nontrivial endings. In the nanoplasmonic SSH analog,
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hopping amplitudes and resonance behavior are easily tunable by varying the gap and
particle geometries. Midgap states are detected by a reflectance zero crossing the dis-
persion line of the guided plasmon mode, i. e., they create a gCPA condition inside
the band gap, and their edge localization is corroborated by FDTD simulated optical
near-field distributions.

The SSH chains on glass substrate discussed here are readily producible by the
aforementioned focused ion-beam milling technique from monocrystalline gold flakes.
A suitable microscopy scheme, such as SNOM [4, 5] or photoemission electron mi-
croscopy (PEEM) [311–313], allows recording optical signals from which topography
and near-field distributions can be deduced. The results from different topological
regimes can then be compared against each other. A nanocircuitry experiment with
the goal of measuring reflectivities is an alternative route towards revealing edge states
and performing experimental gCPA in general. Here, enhanced optical spin-orbit inter-
action in metallic nanostructures [314–316] may facilitate launching a unidirectional
plasmon on a nanowire and retrieving the reflected signal that propagates in the oppo-
site direction. Both experimental approaches are currently under investigation.
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8
Conclusion and outlook

W hile in their infancy, optical antennas were used as standalone structures and
excited solely by optical instruments from bulky setups. A tremendous devel-

opment in nanofabrication as well as theoretical studies have put antennas in the fo-
cus of integrated plasmonic nanocircuitry which allows driving the resonators locally,
e. g. via nanoelectrodes [209]. This strategy bridges the gap between nanoelectron-
ics, the fundament of modern hardware technology for more than five decades, and
photonics with its enormous data bandwidth. Due to the noticeable size of wiring el-
ements within metallic nanostructures, it is in general challenging to build functional
plasmonic devices whose optical performance remains unaffected by the presence of
wires. Distorted spectral signatures, broadening, and reduced radiation efficiency may
become observable effects in wired resonators compared to solitary resonators. Three
systems of locally driven nanoantennas were presented in the last chapters, consist-
ing of wire-rod composites. Proper designs, aided by numerical simulations, allowed
compiling complex antenna systems with advanced emission properties that remained
unaltered by the presence of nanowires.

Thereby, the first in-plane electrically driven optical Yagi-Uda antenna was real-
ized in Chap. 5. Several key aspects were addressed for a successful demonstration.
First, the nanoscale light generation relies on inelastic tunneling of electrons across
a 1 nm gap that was created by moving a passivated spherical gold particle into a
larger prefabricated interstice using dielectrophoresis. Second, the connection wires
have to ensure electrical access of the feed element while leaving its resonance un-
perturbed and allowing the placement of nearby parasitic elements, i. e. reflector and
directors. Kinked connectors are found to satisfy these demands and even contribute
to a forward directional emission, which is the central figure of merit of Yagi-Uda
antennas. Third, the Yagi-Uda working principle has to be implemented by optimiz-
ing the resonance and positioning of the parasitic elements. This ensures a narrow
phase-coherent emission beam in forward direction caused by constructive interfer-
ence. An analytic dipole interaction model offers a quick optimization procedure, but
it also contains inevitable simplifications. More detailed numerical optimizations ac-
count for particle shapes found in experiments, a glass substrate, and fully retarded
treatment of Maxwell’s equations. Based on the optimal geometry parameters, Yagi-
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Uda antennas emitting around 870 nm could be reproducibly fabricated. The devices
showed highly directional electroluminescence with forward-to-backward ratios up to
6.5 dB, determined within a conservative evaluation technique. This value is superior
to previously published Yagi-Uda approaches in nano-optics [32, 157–159]. Interest-
ingly, some concepts of macroscopic antenna theory can be transferred to the optical
regime. For instance, enlarging the director number in numerical simulations leads
to an increase in forward gain and to a narrowing of the beam angle. A fundamental
limitation is given by the Ohmic dissipation in plasmonic nanostructures, which low-
ers the gain compared to radiofrequency Yagi-Uda arrays. Nevertheless, employing
plasmonic materials with reduced losses, e. g. silver, holds promise for similar perfor-
mance. Furthermore, dielectric layer structures with suitable refractive index profiles
provide a platform for even higher gains because the emitted light beam is subsequently
narrowed and confined to the antenna plane. In order to measure this emission behav-
ior, near-field optical techniques such as SNOM might be used for acquiring in-plane
radiation patterns. Owing to their high forward-to-backward emission ratio, Yagi-Uda
antennas are possible candidates for electro-optic interconnects in future microproces-
sor architectures, featuring high data transfer rates and fast modulation speeds. Narrow
beam angles minimize cross-talk between adjacent transmitters and receivers on a com-
mon chip, allowing for a high integration density. Current challenges to overcome for
a broad deployment comprise the efficiency of the inelastic tunneling process as well
as the rectifying capabilities of nanoantenna systems, as discussed in Sec. 5.5. Also,
novel fabrication means suitable for mass-production on a common substrate need to
be explored.

A second area where electrically driven optical antennas can unfold their poten-
tial are subwavelength-sized diodes. Chap. 6 introduced a color-switchable proof-of-
concept device which combines a pair of connected nanoantennas with a single organic
semiconductor thin film. These so-called organic light-emitting antennas, OLEA, are
placed on a common glass substrate such that a lateral gold-organic-gold junction
forms. The antennas fulfill multiple tasks in this architecture. First, via the electri-
cal leads they supply the charge carriers to be injected into the organic material zinc
phthalocyanine (ZnPc). Second, they enhance the recombination rate of nearby ex-
citons by providing near-field hotspots. The two rod antennas, separated by a 50 nm
gap, differ in length, giving rise to independent resonances (800 nm and 920 nm) at the
two electrodes. In contrast to conventional stacked OLEDs equipped with planar elec-
trodes, here excitons couple to superradiant plasmon modes, which is a desired effect.
Third, the antenna electrodes couple the light efficiently into the far-field. They are
also responsible for directional emission because the distinct resonances imply a Yagi-
Uda like interference pattern. The most striking observation is that the electrolumines-
cence spectrum does not consist of a superposition of the two electrode resonances,
but resembles that of the cathode and therefore depends on the polarity of the applied
voltage. The observed behavior is attributed to a higher injection barrier for electrons
than for holes, leading to a recombination zone localized at the cathode antenna. The
switching effect upon voltage polarity inversions also manifests itself as changes in the
directionality of the angular far-field distribution, which is reproduced in numerical
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simulations. By depositing a planar gold reflector on top of the OLEA structure, the
radiation pattern can be further optimized for emission towards the substrate direction.
External quantum efficiencies of 10−7 to 10−6 indicate an emission enhancement by
orders of magnitude compared to conventional stacked OLEDs made of ZnPc. All in
all, the proof-of-principle study establishes an electrically driven switchable two-color
point source, bearing the potential to be extended to RGB nanopixels when more so-
phisticated material compounds and advanced OLED engineering steps are taken into
consideration. This is described in more detail in Sec. 6.8. In the future, such nanopix-
els may accompany the ongoing digitalization and become an ingredient in ultrasmall
digital devices.

Optical antennas can also be locally driven by an impinging near-field, e. g. from a
guided surface plasmon on a nanowire transmission line which is attached via a gap.
Chap. 7 thoroughly investigated how perfect impedance matching is accomplished in
such plasmonic wire-rod nanocircuits. The matching implies that no power is reflected
back onto the feeding wire, but fully absorbed by the antenna. The rod is thus vir-
tually decoupled from the wire. Borrowed from a generalized concept of coherent
perfect absorption (gCPA), two semi-analytical approaches for computing the reflec-
tivity of the input surface plasmon are stated and employed to identify configurations
with vanishing reflection, benefiting from low computational effort. It turns out that the
gCPA scenario relies on an intricate coexistence of radiative losses, nonradiative dis-
sipation, and phase-sensitive interference effects between partially reflected and trans-
mitted near-fields. Decisive parameters encompass the operating frequency, rod length
and gap width, which all have to be exactly chosen at a time to achieve gCPA. This
scheme is developed into a versatile analysis toolbox which allows to precisely track
the modal structure of the antenna system under study. Besides coherent control of
the radiation efficiency of a nanoantenna, further possible applications are explored
through calculations and numerical simulations. Both superradiant and subradiant res-
onances can be driven under gCPA on a single rod. A gCPA-operated wire-rod sensor
shows a steep increase in reflection upon disturbance of the gCPA condition from an
otherwise dark background. More future directions are outlined in Sec. 7.9. In a final
excursion, the gCPA toolbox is used to shed light on the modal structure of nanorod
chains with alternating gap separations. These represent an optical version of the Su-
Schrieffer-Heeger model known from quantum mechanics. The geometry dependent
existence of topologically nontrivial edge-localized states, which appear in the middle
of an energy band gap, is evidenced in the zero surface plasmon reflectivity as well
as near-field distributions. Therefore, gCPA can streamline the design of topological
photonic systems. This suggests a promising future for complex plasmonic antenna
systems because topological matter constitutes, besides superconductors, the most ex-
citing and appealing material class of the 21st century.
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A
The wire-rod system and Fano resonances

The reflectance dips of wire-rod structures for specific choices of rod length, gap size,
and frequency can be regarded as a special case of Fano resonances. These emerge
when a narrowband resonance (on the nanorod) interferes with a broadband back-
ground (the guided TM0 mode on the nanowire) in a coherent way. Depending on
the phase difference between the two signals, the resulting spectrum assumes different
line shapes, from dips via asymmetric profiles to peaks [13, 317]. In this section we
demonstrate that the same observations can in principle be made in the reflectance of
the wire-rod system. Fig. A.1 a depicts the reflectance |Γ|2 of the system already en-
countered in Fig. 7.5 d with varying rod length, where the second dip fulfills the gCPA
condition. All values entering this calculation are derived from the fundamental coef-
ficients in Sec. 7.3.3 so that the dip structure is reproduced. In principle, we are able
to tune these coefficients freely and thereby deliberately abandon the values dictated
by particle shapes and material properties. Here we manipulate the transmission phase
over the gap while preserving all remaining fundamental coefficients. The resulting re-
flectance plots are displayed in Figs. A.1 b-d, with phase values π/8, 2π/5, and 2π/3,
respectively. With increasing phase, the reflectance dips evolve into asymmetric line
profiles, symmetric peaks, and again asymmetric features with opposite orientation.
Hence, the characteristics of Fano resonances with varying Fano line shape parameter
are observed.

In this regard, the reflectance dips arising for the natural choice of the transmission
phase constitute a special case of all possible Fano line profiles that the system can po-
tentially adopt. It must be emphasized, however, that only with the phase value dictated
by nature a physically meaningful picture results from the calculation. As soon as the
transmission phase is chosen artificially, we obtain |Γ|2 > 1 for some rod lengths, im-
plying that plasmon amplification is hypothetically achieved without applying a gain
material, which is physically forbidden in a lossy system. With the modified transmis-
sion phase, a hypothetical constructive interference generates the reflectances exceed-
ing unity, which becomes particularly apparent in the peak spectrum of Fig. A.1 c. It
is interesting to see that even with artificial coefficients gCPA conditions can be satis-
fied, e. g. at a rod length of 130 nm in Fig. A.1 b. In the complex wave vector plane,
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Figure A.1 – Reflectance of wire-rod system with different gap transmission phases.
a) Calculated reflectance |Γ|2 as a function of rod length of a wire-rod system at 833 nm
with a 4 nm gap (same system as in Fig. 7.5 d), with the natural value of the transmission
phase over a gap, indicated with arg(Tg). b)-d) Calculated reflectance with distinct, fixed
values chosen for the transmission phase. Depending on its value, different Fano-like line
shapes are obtained.

such asymmetric reflectance zeros with corresponding phase singularities would look
different from those in Chap. 7. Instead of a circular shape, they would presumably
manifest themselves as elongated, elliptic appearances.
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