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Alpine bumble bees are the most important pollinators in temperate mountain 
ecosystems. Although they are used to encounter small-scale successions of very 
different climates in the mountains, many species respond sensitively to climatic 
changes, reflected in spatial range shifts and declining populations worldwide. 
Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. 
However, whether they predict the elevational niche of bumble bees or their 
responses to climatic changes remains poorly understood. Here, we  used three 
different approaches to study the role of bumble bees’ CHCs in the context of 
climate adaptation: using a 1,300 m elevational gradient, we first investigated whether 
the overall composition of CHCs, and two potentially climate-associated chemical 
traits (proportion of saturated components, mean chain length) on the cuticle of 
six bumble bee species were linked to the species’ elevational niches. We  then 
analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational 
gradient and tested whether these traits respond to temperature. Finally, we used a 
field translocation experiment to test whether CHCs of Bombus lucorum workers 
change, when translocated from the foothill of a cool and wet mountain region to 
(a) higher elevations, and (b) a warm and dry region. Overall, the six species showed 
distinctive, species-specific CHC profiles. We found inter- and intraspecific variation 
in the composition of CHCs and in chemical traits along the elevational gradient, but 
no link to the elevational distribution of species and individuals. According to our 
expectations, bumble bees translocated to a warm and dry region tended to express 
longer CHC chains than bumble bees translocated to cool and wet foothills, which 
could reflect an acclimatization to regional climate. However, chain lengths did not 
further decrease systematically along the elevational gradient, suggesting that other 
factors than temperature also shape chain lengths in CHC profiles. We conclude that 
in alpine bumble bees, CHC profiles and traits respond at best secondarily to the 
climate conditions tested in this study. While the functional role of species-specific 
CHC profiles in bumble bees remains elusive, limited plasticity in this trait could 
restrict species’ ability to adapt to climatic changes.
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Introduction

Mountains are hotspots of biodiversity with many endemic and 
cold-adapted species (Rahbek et al., 2019; Trew and Maclean, 2021). Yet 
climate change affects biodiversity by changing spatial ranges, phenology 
and species interaction (Bellard et al., 2012; Halsch et al., 2021). Since 
the temperature increase associated with climate change is likely to 
be more pronounced at higher elevations than at lower elevations (Pepin 
et al., 2015), our urgent concern should be to understand the responses 
of these particularly threatened ecosystems, which can also serve as early 
warning system.

Alpine bumble bees (Apidae: Bombus) are the most efficient and 
widespread pollinators in temperate mountains (Bingham and 
Orthner, 1998; Gorenflo et  al., 2017). Within the genus Bombus, 
species differ substantially in their preferred elevational niche 
(Rasmont et al., 2015; Minachilis et al., 2020; Sponsler et al., 2022a), 
with few species being restricted to the cool and exposed conditions 
above the tree line. Within a species, populations and individuals can 
face substantial differences in their climatic environments along 
mountain slopes or during foraging flights under the typically 
fluctuating weather conditions of the mountains (Sponsler et  al., 
2022a), occasionally, when the cloud cover shifts abruptly, within 
minutes. Despite their broad temperature tolerance (Peters et  al., 
2016), many bumble bee species are sensitive to climate change. Many 
species are globally declining (Potts et al., 2010; Arbetman et al., 2017) 
and shift their range to higher elevations or toward the poles to track 
their preferred temperature niche and to avoid heat and desiccation 
stress (Kerr et al., 2015; Pyke et al., 2016; Marshall et al., 2020). The 
magnitude of such shifts varies greatly among species and is likely 
associated with species capacity to withstand new environmental 
conditions (Kerr et al., 2015; Pyke et al., 2016; Marshall et al., 2020; 
Maihoff et al., 2022b). One factor known to influence adaptation to 
climate change is desiccation resistance. Although studies focusing on 
gene expression and heat resistance sugguest that the ability to tolerate 
desiccation, caused by high temperatures and lower percipitation, is 
relevant for determining bumble bees’ response to climate change 
(Jackson et al., 2020; Maebe et al., 2021; Martinet et al., 2021)  and, 
consequently, the maintenance of their pollination service, 
mechanisms that determine desiccation resistance can be versatile. 
Desiccation resistance in insects depend on the ability of insects 
cuticle to prevent water loss (Chown et al., 2011). Thus, differences in 
physiological traits modulating water loss are likely to contribute to 
their uneven ability to cope with environmental conditions along the 
elevational gradient (Williams et al., 2010; Aguirre-Gutiérrez et al., 
2016; Wong et al., 2019; Stemkovski et al., 2020; Maebe et al., 2021). 
However, such traits have not yet been identified in bumble bees.

The cuticular hydrocarbons (CHCs) composition on the insects’ 
cuticle is such a trait. CHCs provide waterproofing, and comprise a 
complex mixture of n-alkanes, methyl-branched alkanes and 
unsaturated hydrocarbons that cover the cuticle (Gibbs et al., 1991; 
Gibbs, 1998; Blomquist and Bagnères, 2010). Two features are 
particularly relevant in the context of waterproofing (Gibbs and 
Pomonis, 1995): the proportion of saturated components and the chain 
length of hydrocarbons. Saturated hydrocarbons (n-alkanes and mono-
methyl-branched alkanes) aggregate more tightly than cis-configurated 
unsaturated hydrocarbons (n-alkenes) due to increased van-der Waals 
forces. Thus, a higher proportion of saturated components in the CHC 
profile enhances waterproofing (Gibbs and Pomonis, 1995). Aggregating 
forces between hydrocarbons also increase with chain length; CHC 

profiles composed of on average longer hydrocarbons thus provide a 
better protection against desiccation than profiles with shorter CHCs 
(Menzel et al., 2017b).

Various studies on insects confirm that the composition of CHC 
profiles can reflect climate adaptation on an inter- and intraspecific level 
(Rajpurohit et  al., 2017; Menzel et  al., 2017a; Michelutti et  al., 2018; 
Sprenger et al., 2019; Mayr et al., 2021). For example ant species from 
habitats with high rainfall produce various alkenes, alkadienes and methyl-
branched alkenes, i.e., substance classes with reduced protection against 
desiccation stress (Menzel et al., 2017a), while Drosophila populations from 
warmer regions produce longer CHC chains than population from colder 
regions (Rajpurohit et al., 2017). Thus, it can be hypothesized that bumble 
bee species that differ in their preferred environmental niche have CHC 
profiles that reflect the degree of desiccation stress. Importantly, in some 
insect species CHC profiles alter plastically in a short-term under changing 
climatic conditions (Menzel et  al., 2018; Sprenger et  al., 2018). This 
intraspecific acclimatization of CHC changes can be elicited even within 
hours (Stinziano et al., 2015) and can effectively reduce heat stress (Menzel 
et al., 2018). Thus, the capacity for a short-term acclimatization response, 
alongside long-term adaptation, may be crucial in determining the climatic 
range along the elevational gradient of a species and for its survival under 
changing climatic conditions.

In addition to the function of water balance regulation, CHCs are 
involved in insect communication. In social insects communication is 
crucial for colony maintenance. CHCs are important for nestmate 
recognition and task signalization, in, e.g., wasps (Polistes) honey bees 
(Apis), stingless bees and ants (Akino et al., 2004; Dani et al., 2005; Nunes 
et al., 2008; Leonhardt et al., 2016; Maihoff et al., 2022a) and also in caste 
recognition and signalizing of health status (Leonhardt et al., 2016; Beani 
et al., 2019). Thus, CHCs that are involved in species communication and 
recognition of nest affiliations should be  under strong pressure to 
be maintained, as any deviations may have negative effects on fitness and 
colony survival. Even though the role of CHCs in inter- and intraspecific 
bumble bee communication remains unclear, the potential dual function 
of methyl-alkanes, alkanes and alkenes in communication and 
waterproofing could potentially limit species capacity to adapt or 
acclimatize to new climatic conditions (Dani et al., 2005; Colazza et al., 
2007; Lacey et al., 2008; Sprenger et al., 2019; Awater-Salendo et al., 
2020). Furthermore, like many other functional traits, CHCs may 
be constrained by phylogeny, which should be considered when analyzing 
their variation within a clade (De Oliveira et al., 2011; Flynn et al., 2011; 
Kellermann et al., 2012; Kather and Martin, 2015; Menzel et al., 2017a). 
In general, less is known about CHC profile variation within the clade of 
bumble bees, but in the context of studies addressing climate change, 
genetic variation at cuticle formation suggests a likely role in climatic 
adaptation (Jackson et al., 2020; Straub et al., 2022).

In this study, we used three different approaches to study the role of 
CHCs in climatic adaptation across and within bumble bee species. 
We  hypothesized that the CHC profiles of bumble bees exposed to 
higher desiccation stress at higher temperatures have longer chains and 
a higher proportion of saturated components. A 1.2 km elevational 
gradient serves as a natural model system that provides variation in 
temperatures and associated relative humidity patterns also expected 
under climate change (up to +5°C by the end of the century; Körner, 
2007; IPCC et al., 2018) as temperature declines linearly with elevation 
(∼0.5°C per 100 m increase in elevation; Körner, 2007). Furthermore, 
the tree line, i.e., the transition from forest to shrub or grassland, 
represents a critical threshold, as outside the protection of the tree 
canopy the various abiotic conditions, to which bumble bees are 
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exposed, become more extreme (Beals, 1969; Slatyer and Noble, 1992). 
We first compared the CHC profiles of six bumble bee species that 
differed in their average elevational distribution and hypothesized that 
CHC composition and assumed to be climate-associated chemical traits 
(i.e., mean chain length and proportion of saturated components) 
correlate with the preferred climate niche of the respective species (Mayr 
et al., 2021). For simplicity, we refer to these traits climate-associated 
chemical traits in the following. We  also consider phylogenetic 
constraints, assuming that traits are more similarly expressed in closely 
related species than in distant ones (Flynn et al., 2011).

In a second approach, we investigated intraspecific variation in the 
CHC profile of Bombus pascuorum (Scopoli, 1763)—a species, which 
was previously restricted to lower elevation and which has expanded its 
range to higher elevation during recent climate change (Marshall et al., 
2020; Maihoff et al., 2022b). Specifically, we hypothesized that variation 
in climate-associated chemical traits on the cuticle correlates 
systematically with environmental change along the elevational gradient 
and becomes most pronounced above the tree line where abiotic 
conditions are more extreme.

The third approach entails a field translocation experiment, to test 
the acclimatization capacity of CHCs in Bombus lucorum (Linnaeus, 
1761), a species known to prefer cold and humid forest habitats (Geue 
and Thomassen, 2020). Field translocation experiments are powerful 
tools to assess the extent of species’ acclimatization and genetic 
determination, as they elucidate the factors that limit species 
distributions and have the potential to predict species range shifts in a 
changing climate (Nooten and Hughes, 2017). We transferred young 
bumble bee colonies derived from queens, that were collected in the 
foothills of a comparably cold and wet mountainous region 
(Berchtesgadener Land, Germany) to (a) higher elevations within the 
mountainous region and (b) a warmer and drier region in Bavaria’s 
lowlands (Würzburg, Germany). We hypothesized that after 4 weeks 
differences in CHC profiles and climate-associated chemical traits are 
indicative for new nesting sites in the way that in the warmer and dryer 
regions CHC profiles are characterized by a high proportion of saturated 
components and on average longer mean chain lengths.

Materials and methods

Study area and bumble bee sampling

Approach 1: CHC differences between species 
occupying different elevational niches

To test whether differences in CHC profiles between species can 
be explained by species’ elevational niche, bumble bee workers (foraging 
at flowers) of six species were collected within the National Park 
Berchtesgaden and its close vicinity (Lat: 47.5477, Lon: 12.9247) for one 
month (29.07.-31.08.) in two years (2019 and 2020). We selected six 
coexisting species in the study region to represent differences in 
elevational distribution. Bombus mucidus Gerstäcker (1869) and Bombus 
monticola Smith (1849) mainly occur above the tree line at the highest 
sites of our study region, Bombus soroeensis Fabricius (1777), and 
Bombus wurflenii Radoszkowski (1859) across the entire studied 
elevational gradient, and B. pascuorum and B. lucorum at lower 
elevations below the tree line on average at an elevation of 1,200 m.a.s.l. 
[monitored in Maihoff et al., 2022b; see Figure 1 and further information 
in Supplementary material S1]. The National Park is located within the 
limestone Alps in southern east Germany—a region characterized by 

coniferous forest, alpine meadows, and mountain pastures (Konnert and 
Siegrist, 2000). The tree line in the study area is at an elevation of about 
1,500 m.a.s.l. (Köstler and Mayer, 1970). We collected individuals from 
sites (60 m × 60 m) representative of the species’ range and also aimed 
for different species at the same sites. Therefore, mainly individuals 
above 1,300 m were collected, except for B. lucorum and B. pascuorum, 
where we included individuals from lower elevations according to their 
distribution. In total we collected 65 individuals [B. soroeensis (n = 9), 
B. mucidus (n = 9), B. lucorum (n = 12), B. monticola (n = 12), B. wurflenii 
(n = 11), and B. pascuorum (n = 12)] from 18 sites covering a gradient 
from 641 to 2,114 m.a.s.l. (Figure 1). Note that the species were selected 
not only according to their preferred distribution, but also according to 
their relatedness, which does not correlate with the distribution (see 
Figure 2A for phylogeny).

Approach 2: Intraspecific CHC variation of Bombus  
pascuorum along an elevational gradient

For analyzing intraspecific variation in CHCs, we  collected 
B. pascuorum workers foraging at flowers (n = 58) from 12 sites (60 m × 
60 m) across an elevational gradient from 641 to 2,032 m.a.s.l. within the 
National Park Berchtesgaden and its close vicinity (Lat: 47.5477, Lon: 
12.9247). We selected B. pascuorum because of its high abundance in the 
study region, and its characteristics as a species expanding its range 
toward higher elevations under recent climate change (Maihoff 
et al., 2022b).

Approach 3: Intraspecific CHC variation in 
translocated workers of Bombus lucorum

To test whether bumble bees can adjust their CHC profile to new 
climatic conditions, we  translocated young self-reared colonies, 
originally from cold and wet climate to a warm and dry climate and to 
distinct elevations. For this, we  collected queens, emerging from 
diapause, of B. lucorum in the alpine study region in spring and reared 
them in the laboratory under constant climatic conditions [30°C, 60% 
humidity following Requier et al. (2020)]. Rearing continued until at 
least 11 workers per queen were hatched. By the end of May (28th of 
May +/− 3 days), we settled 13 young colonies (queens + workers) in 
nest boxes and placed them in two climate regions [warm and dry in the 
Franconian lowlands (264 m.a.s.l.) around Würzburg (n = 5) and the 
cold and rather wet mountain region around Berchtesgaden, where 
queens originated from (n = 8); Figure 1B]. The regions differ strongly 
in their multi-annual mean temperature (Figure 1B) and precipitation 
(Supplementary material S2): The warm and dry region has an average 
annual temperature of 9°C and annual precipitation of about 650 mm, 
while the alpine region of origin has an average annual temperature of 
7°C and > 1,500 mm annual precipitation. Within the warm and dry 
lowlands colonies were placed at one site. Within the alpine region 
colonies were placed at three sites [mountain foothill: 752 m.a.s.l. (n = 3); 
mountain mid: 1,100 m.a.s.l. (n = 3); and mountain high: 1,933 m.a.s.l. 
(n = 2) for temperature differences per site see Figure  1]. Because 
temperature increase and precipitation decrease are changing in the 
same direction within this approach (Supplementary material S2) 
we consider parallel changing conditions between regions. After at least 
4 weeks in the field, we collected 3 individuals per colony (individuals 
leaving and entering the nest entrance). We  cannot prove that the 
collected individuals really hatched in the field, because bumble bee 
workers’ lifespan averages from 22 to 69 days and depends on the species 
and environmental conditions (Goldblatt and Fell, 1987; Smeets and 
Duchateau, 2003; Kelemen et  al., 2019). Thus, we  here speak of 
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individuals exposed to different conditions and not of individuals that 
have developed under different climatic conditions.

Collected individuals were flash frozen on dry ice in the field and 
stored at −20°C for further analyses.

Temperature analyses

In the study region Berchtesgaden, temperature data were 
modeled at the site level from daily temperature data averaged from 

neighboring climate stations (18 in total). The statistical details of 
temperature predictions are provided in Supplementary material S3. 
Temperature data were used to calculate short term acclimatization 
temperature (mean temperature one week before sampling = Tacclim) 
and mean annual temperature (MAT). In the warm and dry study 
region near Würzburg, temperature data originated from the closest 
German Meteorological Service (Deutscher Wetterdienst) climate 
station, which was at the same elevation and 1 km away from the 
colonies. Within the translocation experiment we calculated mean 
exposure temperature (i.e., mean temperature experienced by 

A

B

FIGURE 1

Study design. (A) Study region and sites in Berchtesgaden (Bavaria, Germany). Elevation level is indicated in shades (at 250 m intervals), with darker shades 
signaling increasing elevation. The National Park border is represented with a green line. Points show study sites. Red sites were used for bumble bee 
collection in approach 1 and 2, while yellow, green, and blue sites represent sites which were additionally used for the translocation approach (approach 3). 
(B) Schematic description of the colony translocation (approach 3). Queens collected from the valleys in spring in our study region were reared in the lab 
and then settled with their first offspring in nest boxes. Numbers indicate new colony locations. In the cold and wet region of origin: mountain foothills (1), 
mountain mid (2), mountain high (3) (see also Panel A, where mountain sites are shown in respective colors), and in the warm and dry region (4), where the 
mountain sites are shown according to their color in Panel A. The table lists the temperature regimes to which the colonies were exposed either over the 
course of the translocation (=Texp) or within the week before sampling along the elevational gradient (=Tacclim). Color code in the map refers to multi 
annual means of air temperature conditions. Maps were produced in QGIS. Data was obtained from https://www.lfu.bayern.de/umweltdaten, https://
search.earthdata.nasa.gov, and http://www.dwd.de.
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colonies from the establishment in the field to the collection of the 
workers = Texp) and the short-term acclimatization temperature one 
week before sampling (=Tacclim). Coordinates for all climate stations 
are given in the Supplementary material S3.

Chemical analyses

CHC profiles were extracted from legs and wings of all workers, as 
these body parts were shown to have the highest volume to surface ratio 
and best reflect climate-associated chemical traits in ants (Sprenger et al., 
2021) while being representative for a species and revealing individual 
differences at the same time (Young et al., 2000; Wang et al., 2016; Mayr 
et  al., 2021; Sprenger et  al., 2021). Extraction was performed by 
immersing pooled body parts in n-hexane for 10 min per individual. The 
extracts were concentrated under gentle CO2 stream to approximately 
20 μL and transferred to a micro insert. CHC extracts were analyzed with 
an Agilent 6890 gas chromatograph coupled with an Agilent 5975 Mass 
Selective Detector (GC–MS, Agilent, Waldbronn, Germany): The GC 

(split/splitless injector in splitless mode for 1 min, injected volume 1 μL 
at 300°C) was equipped with a DB-5 Fused Silica capillary column (30 m 
× 0.25 mm ID, df = 0.25 μm; J&W Scientific, Folsom, United  States). 
Helium served as carrier gas at a constant flow of 1 mL/min. The 
following temperature program was used: Start temperature 60°C, 
temperature increase by 5°C per min up to 300°C, isotherm at 300°C for 
10 min. The electron ionization mass spectra (EI-MS) were acquired at 
an ionization voltage of 70 eV (source temperature: 230°C). 
Chromatograms and mass spectra were recorded and quantified via 
integrated peak areas with the software HP Enhanced ChemStation 
G1701AA (version A.03.00; Hewlett Packard). CHC compounds were 
identified by the compound specific retention indices and their detected 
diagnostic ions (Carlson et al., 1998). Alongside CHC samples, we run 
an analytical alkane standard (C8–C20 and C21–C40; Sygma Aldrich) for 
the calculation of the retention index and to check for the sensitivity of 
the GCMS. Double-bond position in alkenes were identified by DMDS-
derivatization following Dunkelblum et al. (1985). The GC settings were 
the same as described before, but oven temperature increased by 5°C per 
min up to 325°C and isotherm at 325°C for 10 min.

A C E

B D F

FIGURE 2

Interspecific differences and phylogenetic signals in climate-associated chemical traits of six bumble bee species. (A) Phylogenetic tree extracted from 
phylogeny of bumble bees estimated from Bayesian analysis of combined sequence data from five gene fragments (16S, opsin, ArgK, EF-1α, and PEPCK) by 
Cameron et al. (2007). (B) Individual-based Cluster dendrogram showing the similarity of the total CHC profiles composition based on Bray-Curtis 
distances. (C) Proportion of saturated components and (D) mean chain lengths within the CHC profiles of six bumble bee species. Letters indicate 
significant differences between species. (E,F) Phylogenetic correlograms for the two traits are presented: (E) proportion of saturated components, (F) mean 
chain length. The solid bold black line shows the Moran’s I index of autocorrelation, and the dashed black lines the lower and upper bounds of the 95% 
confidence interval. The horizontal black line indicates the expected value of Moran’s I under the null hypothesis of no phylogenetic autocorrelation. The 
colored bar shows whether the autocorrelation is significant (based on the confidence interval): red for significant positive autocorrelation, black for 
nonsignificant autocorrelation, and blue for significant negative autocorrelation. The vertical gray lines indicate the predefined intraspecific distance (0.02) 
and the interspecific distance (≥0.5). Thus, the interpretation of modeled Moran’s I index is limited between a phylogenetic distance of 0.02 and 0.5.
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Statistical analyses

All analyses were performed using the software R version 4.1.3. (R 
Core Team, 2021).

Approach 1: Differences in CHC composition and 
climate-associated chemical traits between 
species occupying different elevational niches

In all six bumble bee species, we compared the relative abundances 
of compounds in the CHC profile of workers. Only CHC compounds 
which contributed to at least 0.1% of the total abundance of compounds 
in the CHC profile were analyzed. CHC profiles were assessed by 
non-metric multidimensional scaling (NMDS), a two-dimensional 
ordination method to visualize similarity, and agglomerative hierarchical 
cluster analysis (Figure 2B). We used the “plot_ordination” function 
from the “phyloseq” package and, respectively, the “hclust” function 
from the “vegan” package and “as.dendrogram” function from the 
“dendextend” package. Dissimilarities between worker profiles were 
calculated using Bray-Curtis distances. We  assessed CHC profile 
composition differences between bumble bee species by using 
permutational multivariate analysis of variance (PERMANOVA) in the 
packages vegan (Oksanen et al., 2020) and pairwiseAdonis (Martinez 
Arbizu, 2020). Permutations were set on 10,000 or 999, respectively.

Overall differences in CHC profiles between species, however, do 
not inform per se about the protection capacity of a cuticle against 
desiccation. We therefore calculated more informative climate-associated 
chemical traits, i.e., (a) the proportion of saturated components, and (b) 
the abundance weighted mean chain length. Both values are predicted 
to increase with evaporation protection capacity (Gibbs and Pomonis, 
1995). We used a generalized linear mixed model (function “glmmTMB” 
Brooks et  al., 2017) with mean chain length and the proportion of 
saturated components, respectively, as response variables and species as 
the predictive variable. Since individuals were collected in two different 
years, we  included year as a random effect in the model. We run a 
gaussian-distributed model in each case. Models were determined and 
checked with the DHARMa package. Model selection (null vs. full 
model) was performed using the dredge function from the MuMIN 
package (Barton, 2020) based on Akaike information criterion corrected 
for small sample sizes (AICc) where the lowest AICc relative to other 
models (here null model) indicates the preferred model (ΔAICc > 2 
indicates statistically relevant differences; Burnham and Anderson, 
2004). Post hoc comparison among species were performed with the 
emmeans function with a Tukey adjustment.

We attempted to elucidate the mechanisms that underly CHC 
responses to temperature, by testing and comparing CHC responses to 
two different temperature regimes (MAT vs. Tacclim): We assume that 
CHC traits that are better explained by MAT than by Tacclim, indicate 
species adaptation to the respective temperature niche along the 
elevational gradient. In contrast, we assume that CHC traits that are 
better explained by Tacclim, suggest a rather spontaneous and likely 
reversible response of CHCs to the current temperature conditions. 
We  addressed these different temperature effects with separate 
generalized linear mixed models, as MAT and Tacclim were moderately 
correlated (corr = 0.76; see Supplementary material S4). In linear mixed 
models we included temperature as fixed effect and species nested in 
temperature as random effect (because certain temperatures exist only 
for certain species). We run a gaussian-distributed model in each case.

To address phylogenetic constraints within CHC profile 
compositions we performed a Mantel test, which compares phylogenetic 

distances of species with chemical distances (=calculated Bray-Curtis 
dissimilarities) between averaged species profiles following Buellesbach 
et  al. (2013) and Martin et  al. (2013). We  obtained phylogenetic 
distances from the comprehensive phylogeny provided by Cameron 
et al. (2007). Furthermore, we analyzed phylogenetic signals (Morans’I) 
in the climate-associated chemical traits by phylogenetic correlograms 
(Gittleman and Kot, 1990), which measure the correlation between 
phylogenetic distances and trait distances, using the R package 
phylosignal (Keck et al., 2016). Higher correlation indicates that CHC 
variation is stronger driven by phylogeny. As an initial tree we used 
again the comprehensive phylogeny of Cameron et al. (2007), but this 
time we assigned individuals to species (Figure 2A). Hereby we defined 
the distance between individuals of a given species to 0.02. By doing so, 
we standardized the unknown genetic distances between individuals to 
conduct our analyses at the individual level. Our analysis should 
therefore only be considered as an approximation for the relatedness 
of individuals.

Approach 2: Intraspecific CHC variation of Bombus 
pascuorum along an elevational gradient

To test for intraspecific CHC differences in B. pascuorum along 
the elevational gradient, we first assessed profile similarity by NMDS 
and performed a PERMANOVA to test for an elevational effect on 
CHC profile composition. We then conducted a generalized linear 
mixed model with proportion of saturated components and mean 
chain length as response variables and elevation as predictor variable. 
We included site as random effect, because individuals sampled on 
the same site might per se show a higher CHC similarity than 
individuals sampled on different sites (e.g., due to relatedness or 
response to other, non-considered site factors). We  run a beta-
distributed model for the proportion of saturated components and a 
gaussian-distributed model for the mean chain length, both were 
determined and checked with the DHARMa package. Due to high 
correlation between elevation, MAT and Tacclim 
(Supplementary material S5) we cannot separate the mechanisms 
underlying temperature responses here. We thus analyzed elevational 
patterns, which can be  interpreted as response to temperature 
changes. We used a likelihood ratio test (LRT) to test whether the 
model explains more than a random change. Test was performed with 
the “anova” function from the “stats” package.

Further, we assessed differences in the coefficient of variation (CV) 
of the two climate-associated chemical traits along the elevational 
gradient. The CV, which equals the standard deviation of the respective 
trait divided by the trait mean, is assumed to decrease with increasing 
elevation, as increased environmental filtering processes, especially 
above the tree line may constrain phenotypic variability. We tested for 
an elevational effect on the coefficient of variation for each site with 
generalized additive models (GAMs) allowing the flexible detection of 
linear and non-linear relationships (Wood, 2011). The basis dimension 
of smoothing term was set to five to have enough degrees of freedom to 
represent the underlying pattern well, but small enough to maintain 
reasonable computational efficiency. GAMs were computed with the 
´gam´ function from the mgcv package (Wood, 2006).

Approach 3: CHC differences in workers of 
Bombus lucorum after translocation

To test for a translocation effect on CHC profile composition in 
B. lucorum, we  assessed profile similarity using NMDS and 
PERMANOVA. We further, tested for differences in climate-associated 
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chemical traits in translocated workers with generalized linear mixed 
models. We  included colony identity as a random effect in the 
generalized mixed effect models. See Supplementary material S6 for 
NMDS displaying CHC-profile similarity from individuals out of the 
same colonies. We  run a gaussian-distributed model in each case. 
Models were determined and checked with the DHARMa package. To 
elucidate the prevailing mechanisms behind responses, we again tested 
two different temperature measures against each other: the average 
exposed temperature throughout the study period (=Texp), whose 
explanatory power should be high if workers respond with a change in 
CHC composition to temperature exposure over several weeks vs. 
Tacclim, i.e., mean temperature one week before sampling, which 
suggest a short-time response. Due to high correlation of both Texp and 
Tacclim with colony location (warm and dry region; mountain foothill, 
mountain mid, mountain high; see Supplementary material S6) 
we cannot separate the mechanisms underlying temperature responses 
here and only present the results of the model with colony location as 
fixed factor.

Results

CHC difference between species occupying 
different elevational niches

A high proportion of CHC profile variation was explained by species 
(F = 56.90, df = 5, p < 0.001, R2 = 0.83; Figure  3), resulting in species-
specific CHC profiles (Figure  3; Supplementary material S8, 
PERMANOVA between all species pairs: p = 0.001). The species-specific 
compositions stayed consistent within species when individuals are 
depicted in a cluster dendrogram (Figure 2B) with minor exceptions in 
B. lucorum and B. mucidus. The averaged CHC profile distances between 
species were not correlated with species phylogenetic distance (Mantel: 
R2 = 0.08, p = 0.361). See Supplementary material S9 for mean proportion 
of components for each species.

Interspecific comparison of the mean proportions of saturated 
components in the CHC profiles revealed that B. pascuorum differed 
from the five other species, by having a lower mean proportion of 
saturated components (average: 45% ± 1.7%) than the other species 
(~56%; Figure  2C, glmm: χ2 = 36.246, df = 5, p < 0.001). Moran’s 
I  correlation was significant at the phylogenetic distance of 0.02, 
representing the intraspecific level (indicated in red in Figure 2E). This 
suggest that proportions of saturated components are most similar 
among individuals within a species. The phylogenetic signal of this trait 
did not diverge from random expectations at the inter-species level at 
larger phylogenetic distances. This indicates that the proportion of 
saturated components show no pattern with phylogenetic distance of the 
considered species pool. Across all samples, neither MAT nor Tacclim 
affected the proportion of saturated components (MAT: χ2 = 0.372, 
p = 0.541; Tacclim: χ2 = 0.056, p = 0.815).

Within the CHC profiles, mean chain lengths differed between 
species (glmm: χ2 = 352.320, df = 5, p < 0.001). Bombus soroeensis had the 
longest mean chain length (mean: 27.9 ± 0.13 carbons; Figure  2D). 
Bombus lucorum (mean: 26.9 ± 0.1) and B. mucidus (mean: 27.1 ± 0.14) 
had a longer mean chain length than B. pascuorum (mean: 26.4 ± 0.07; 
Figure 2D). B.monticola and B. wurflenii had the shortest averaged chain 
length (mean: 25.6 ± 0.12 and 25.5 ± 0.12 respectively). Moran’s 
I  correlation was significant at a phylogenetic distance of 0.02 
(intraspecific level, Figure 2F), i.e., mean chain length is similar among 

individuals of the same species. At the interspecific level, Moran’s 
I correlation was negative and increased with phylogenetic distances. 
This indicates that within the here considered species pool, closely 
related species express stronger differences in mean chain length than 
less related ones. Across all samples, neither MAT nor Tacclim affected 
mean chain length (MAT: χ2 = 0.292, p = 0.589; Tacclim: χ2 = 0.187, 
p = 0.674).

Intraspecific CHC variation along an 
elevational gradient in Bombus pascuorum

In B. pascuorum (n = 58) the CHC composition varied along the 
elevational gradient, but the degree of variance explained by elevation 
was very low (PERMANOVA: F = 3.293; p = 0.015, R2 = 0.06; Figure 4A). 
Both climate-associated chemical traits, i.e., the proportion of saturated 
components (Figure 4B) and the mean chain length (Figure 4C), did not 
systematically change with elevation (glmm: χ2 = 1.46; p = 0.226 and 
χ2 = 0.39; p = 0.532). The coefficient of variation (CV) in the proportion 
of saturated components between individuals from the same site 
decreased with elevation (gam: ~elevation: edf = 1.94; DE = 85.6%; 
p < 0.001; Figure 4D)—a pattern driven by the highest sites above the 
tree line. The CV in mean chain length between individuals from the 
same site did not change with elevation (gam: ~ elevation: edf = 1; 
DE = 0.26%; p = 0.87; Figure 4E).

CHC variation in translocated workers

CHC profile composition of translocated B. lucorum workers did 
not change with colony location (PERMANOVA: F = 1.494, R2 = 0.11 
p = 0.143, lowlands: n = 16, mountain foothill: n = 9, mountain mid: n = 9, 
mountain high: n = 6; Figure 5A). Colony location did not affect the 
proportion of saturated components (glmm: df = 3; χ2 = 0.694; p = 0.875; 
Figure 5B) but had a marginal effect on mean chain length (glmm: df = 3; 
χ2 = 7.85; p = 0.049, LRT: χ2 = 6.09; p = 0.10; Figure 5C). The mean chain 
length was significant longer in the warm and dry region (lowlands) 
compared to the foothills of the cool and wet mountain region.

Discussion

CHC profiles are species-specific

In this study, we explored the role of cuticular hydrocarbons in 
mediating bumble bees’ capacity to cope with different climates in 
mountainous regions. Bumble bee species preferring different 
elevational niches revealed distinct and species-specific CHC profiles. 
Similarities between CHC profiles were not explained by similarities in 
species elevational niche preference, indicating that CHCs are at least 
not exclusively shaped by environmental factors correlating with 
elevation (e.g., mean annual temperature which correlates to 98% with 
elevation in this study). Rather, species specificity of the profiles suggests 
a strong genetic component in bumble bee CHCs. Genetic heritability 
of CHC patterns is known from Drosophila (Ferveur and Jallon, 1996; 
Holze et al., 2021; Ward and Moehring, 2021) and social insect species 
like ants and termites (Dronnet et  al., 2006; Guillem et  al., 2016). 
Notwithstanding the apparently strong genetic component in the CHCs, 
the similarity of CHC profiles did not reflect phylogenetic distances 
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among species, suggesting that CHC profiles are under diverging 
selection within the pool of considered species.

Higher proportion of saturated components within CHCs have 
been shown to increase the desiccation resistance in some insects 
(Menzel et al., 2018). In alpine bumble bees, five out of six investigated 
species did not differ in this trait, making it unlikely that the 
proportion of saturated components is of major importance in 
structuring the occurrence of bumble bee species along the elevational 
gradient. Only B. pascuorum, which tends to occur in the warmer 
foothills, expressed a lower proportion of saturated components than 
all other species. This contradicts the expectation that higher 
temperatures select for higher proportion of saturated components as 
improved desiccation barrier. Yet, it is partly in line with findings 
from other studies analyzing insect desiccation capacity along 
elevational gradients, which assume higher desiccation stress in 
higher elevations despite lower mean annual temperatures (Parkash 

et  al., 2008; Mayr et  al., 2021). Assuming that the proportion of 
saturated components really increases desiccation resistance in 
bumble bees, we suggest that low elevations may not select per se for 
a higher desiccation barrier, despite higher mean annual temperatures. 
Instead, less solar radiation, higher oxygen partial pressure, diverse 
microclimates and sufficient water supply (Körner, 2007) may release 
species like B. pascuorum from desiccation stress in the foothills. In 
particular, the canopy cover below the tree line can provide refugia 
(De Frenne et al., 2019), which allow bumble bees to actively seek 
places where desiccation stress is low.

Mean chain lengths differed between bumble bee species. Given that 
each additional carbon atom increases the melting temperature of CHC 
compounds by 1°C–3°C (Gibbs, 2002), differences in desiccation 
resistances between, e.g., B. soroeensis (on average 27.9 ± 0.13 carbons) 
and B. wurflenii (on average 25.5 ± 0.12 carbons) should be striking and 
require further examination—at best, under consideration of the 

A

B

FIGURE 3

Similarity of the CHC profiles of six bumble bee species and distribution of these species along the elevational gradient. (A) Similarity of CHC profiles of 
bumble bees displayed in a two-dimensional graph by non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances. Dots represent CHC 
profiles of individuals, dot colors the respective species. The closer the dots, the more similar the CHC profile. (B) Bumble bee distribution along the 
elevational gradient recorded within an intensive monitoring conducted between June and September 2019 (see Supplementary material S1). The green 
line refers to the tree line in the study region. CHC profiles are clearly determined by species however, species profile similarity does not reflect similarity in 
the elevational distribution.
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absolute abundances of the different substances. Along the considered 
elevational gradient, however, differences in mean chain lengths did not 
predict the preferred elevational niche of bumble bee species. However, 

habitat preferences in a broader geographical context (Europe; Rasmont 
et al., 2015) which established 3.5 Ma ago (Hines, 2008) could explain 
differences in traits mediating desiccation resistance. Interestingly, 

A B D

C E

FIGURE 4

Intraspecific CHC variation of Bombus pascuorum workers along the elevational gradient. (A) Similarity of CHC profiles of individuals displayed in a two-
dimensional graph by non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances. Dots represent CHC profiles of individuals, dot colors 
the respective elevation. The closer the dots, the more similar the CHC profile. NMDS revealed a significant elevational effect on CHC profile composition 
but with a high degree of unexplained variance between samples. (B) The proportion of saturated components along the elevational gradient, dot colors 
represent mean annual temperature (=MAT), which was highly correlated with elevation (Person’s R = 0.99). (D) Coefficient of variation of the proportion of 
saturated components, green line represents the tree line. (C) Mean chain length along the elevational gradient, dot colors represent mean annual 
temperature (=MAT) and respective coefficient of variation (E).

A B C

FIGURE 5

Differences in CHC profiles of Bombus lucorum translocated to four climatic different locations: warm and dry lowland region (orange), and mountain 
foothill (light green), mountain mid (green) and mountain high (blue; see Figure 1) in a cool and wet region. (A) Similarity of CHC profiles of individuals 
displayed in a two-dimensional graph by non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances. Dots represent CHC profiles of 
individuals, dot colors the respective locations. The closer the dots, the more similar the CHC profile. Ellipse lines assuming a multivariate t-distribution, are 
based on the variance observed among each group of samples are presented. Non-metric multidimensional scaling revealed no differences in CHC profile 
compositions. (B) Proportion of saturated components. (C) Mean chain length.

https://doi.org/10.3389/fevo.2023.1082559
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Maihoff et al. 10.3389/fevo.2023.1082559

Frontiers in Ecology and Evolution 10 frontiersin.org

species differences in the mean chain lengths were more pronounced in 
closely related than in less related species (Figure 2F). CHCs and mean 
chain lengths are known to be  involved in the context of chemical 
communication in various insects (Nunes et  al., 2009; Menzel and 
Schmitt, 2012; Leonhardt et al., 2016; Maihoff et al., 2022a). The negative 
correlation between trait similarity and phylogenetic distance suggests 
that mean chain length could play a role in the recognition of 
conspecifics, as a character displacement from closely related species 
might confer an evolutionary advantage in this context of 
communication. However, it should be noted, that the strength of a 
phylogenetic signal always depends on the taxonomic level studied and 
that the power of these analyses depends on the number of considered 
species (Blomberg et al., 2003; Menzel et al., 2017b), which restricts the 
interpretability of the phylogenetic signal in our study.

High intraspecific CHC variation and 
potential environmental filtering at high 
elevations in Bombus pascuorum

The CHC profile of B. pascuorum showed a high intraspecific 
variation along the 1,300 m elevational gradient. Profile variation 
between individuals collected at the same site was comparable to the 
variation between individuals collected at different elevations 
(Figure 4A). We also found no evidence that either of the two climate-
associated chemical traits was shaped by factors linked to elevation. 
We are aware that bumble bee workers of B. pascuorum can perform 
long vertical flights to exploit resources in different elevational belts 
(Knight et al., 2005). Such movements could impede the detection of 
intraspecific acclimatization in the CHCs of this species if the bumble 
bees are exposed to the changing environmental conditions for a 
shorter period of time than a change in CHCs can happen. Although 
the relevant time frame for changes in CHCs in bumble bees is still 
unknown, laboratory studies with flies indicate, that changes even 
within hours are conceivable (Stinziano et al., 2015). An experimental 
approach under controlled climatic conditions, testing short time 
acclimatization within hours, however, could shed light on this. 
Meanwhile, our findings suggest that the chemical composition of 
B. pascuorums’ hydrocarbons does not seem to restrict individuals in 
the performance of such vertical flights in the considered 
elevational range.

Albeit CHC profiles and climate-associated chemical traits did 
not change systematically along the elevational gradient in 
B. pascuorum, we detected a decline in trait variance: Individuals 
collected in high elevations—especially above the tree line—differed 
less in the proportion of saturated components than individuals 
from low- or mid-elevations. A similar reduction of trait variation 
with elevation, and with the tree line as potential threshold, was 
detected in other functional traits, including bumble bee tongue 
length (Sponsler et al., 2022b) and wild bee body size (Classen et al., 
2017). Pronounced environmental filtering at habitats with less 
variable microclimatic conditions (Hoiss et al., 2012) might cause 
such declines. Here, the phenotype that withstands the potential 
filtering process, shows a comparable low proportion of saturated 
components, i.e., on the intraspecific level the desiccation barrier 
seems rather reduced in individuals that occurred in high elevations. 
The environmental filtering suggests that the maintenance of 
phenotypes expressing fewer saturated components leads to an 

adaptive advantage, even though the mechanisms behind remain 
elusive. Genetic bottleneck effects at higher elevations (i.e., fewer 
colonies at high elevation equals less genetic variation) may further 
constrain trait variations in the highlands (Jackson et al., 2018).

CHC variation in translocated workers of 
Bombus lucorum

We found no effect of colony location on the CHC profile 
patterns of translocated B. lucorum workers. The translocation 
experiment showed that a 4-weeks exposure to different climatic 
regions, reflecting a 3-fold difference in annual precipitation 
(Supplementary material S2) and a 25% difference in mean 
temperature (Figure 1B), did not trigger a systematic plasticity in 
the overall CHC composition as a response of warmer and dryer 
nest location. This is surprising, as precipitation/humidity and 
temperature differences can affect CHC composition in insects (e.g., 
ants) earlier—even within weeks—in both field and laboratory 
experiments (Buellesbach et al., 2018; Sprenger et al., 2018).

Colony location influenced chain length in translocated 
workers: workers translocated to warm and dry lowlands tended to 
have longer chains than those from the cool and wet mountainous 
foothills. This can be  interpreted as a response to differences in 
regional climate, as longer chains are needed in warmer/drier 
conditions to prevent water loss through desiccation (Rajpurohit 
et  al., 2017; Menzel et  al., 2017a). Similarly, ants subjected to 
laboratory experiments increased their average chain length in 
warm conditions (Menzel et al., 2018), and so did flies (Rajpurohit 
et al., 2017). However, in our study, mean chain lengths was not 
found to be shorter in even cooler habitats along the elevational 
gradient, suggesting again that other factors than temperature 
predict this trait. Further, chain length increased on average by only 
0.3carbons, challenging the question about the physiological 
relevance of this effect. While chain length can also be influenced 
by age (Jackson and Bartelt, 1986; Nunes et al., 2009) we found this 
to be an unlikely effect here, as the colonies for the translocation 
experiment were reared at the same time, and thus workers were of 
comparable age. Nevertheless, including life history conditions and 
other thermal performance related functional traits, e.g., body size, 
would be informative in future studies as desiccation resistance is a 
complex trait, likely driven by multiple factors (Davis and Moyle, 
2019). Other traits that may influence climate tolerance and hence 
the distribution pattern of bumble bee species along elevational 
gradients (Martinet et al., 2021) are genetic regulatory mechanisms 
like, e.g., the upregulation of heat shock proteins (Jackson et al., 
2018; Pimsler et al., 2020) and pile color (Williams, 2007). Bumble 
bees—unlike ants—are characterized by exhaustive hairiness. The 
dense cover of hair might add insulation that reduces water loss in 
general (Kühsel et  al., 2017). Thus, bumble bees might be less 
susceptible to desiccation stress (Parsons, 2019), which might 
reduce the pressure to alter CHC profile in response to desiccation.

Conclusion

In this study we  highlight the high variability of cuticular 
chemical phenotypes in six species in the genus Bombus. Our results 

https://doi.org/10.3389/fevo.2023.1082559
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Maihoff et al. 10.3389/fevo.2023.1082559

Frontiers in Ecology and Evolution 11 frontiersin.org

suggest that the proportion of saturated components and mean 
chain length are not decisive traits explaining bumble bees’ 
distribution along elevation in our study area. Profiles and chain 
lengths were rather species-specific, indicating that species 
recognition or long-established evolutionary divergence may limit 
trait variation. Yet, differences in profiles and climate-associated 
chemical traits may explain differences in species response to 
climate change whereas plastic adjustments within species seem to 
be unlikely. At present, species range shifts to higher elevations do 
not appear to be  hindered by any particular CHC phenotype—
however, a link to species fitness is urgently needed to clarify this 
claim. With increasing temperatures or under extreme events, the 
differences in CHC composition of species might become relevant 
and determine species’ resistance toward warming. Extending this 
study to more species, including those that already inhabit much 
warmer habitats, and under the consideration of multiple traits and 
related fitness consequences may shed light on bumble bee 
responses to climate change. Our study provides first insights that 
conserved species-specific signals are maintained under different 
environmental conditions. This is an important step toward 
deciphering how potentially conflicting functions in insect CHC 
profiles can be unified.
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