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Abstract: Aggression and deficient cognitive control problems are widespread in psychiatric dis-
orders, including major depressive disorder (MDD). These abnormalities are known to contribute
significantly to the accompanying functional impairment and the global burden of disease. Progress
in the development of targeted treatments of excessive aggression and accompanying symptoms
has been limited, and there exists a major unmet need to develop more efficacious treatments for
depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of
precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless,
the aetiology and pathophysiology of MDD has been the subject of extensive research and there
is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we
overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor
signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify
these processes, as many of these pathways are integrated for the neurobiology of MDD. We also
describe the current translational approaches in modelling depression, including the recent advances
in stress models of MDD, and emerging novel therapies, including novel approaches to management
of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.

Keywords: major depressive disorder (MDD); aggression; neuroinflammation; oxidative stress;
insulin receptor; myelination

1. Major Depressive Disorder and Excessive Aggression

Major depressive disorder (MDD) is one of the most widespread and debilitating
mental disorders, but its molecular aetiology remains poorly understood. Currently, the
diagnosis of MDD, according to the Diagnostic and Statistical Manual of Mental Disorders
(5th edition), is determined by two or more weeks of depressed mood and/or loss of interest
and pleasure (anhedonia), along with such symptoms as changes in sleep, weight and
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various accompanying emotional abnormalities, including anxiety, agitation, psychomotor
inhibition and aggression [1]. Over the last decade, a significant increase of almost 20% has
been reported in the incidence of MDD [2], with depressive disorders now considered as
severe and disabling diseases that affect more than 300 million people worldwide, along
with a proportional increase in patients prone to aggression and violence [3,4]. Aside from
mental health issues, depression is known to be a serious life quality aggravation factor in
patients, diminishing not only emotional state but also somatic health [5].

The modern term “depression” is associated with a prevalent feeling of sadness
together with the inability to experience pleasure and deficits in daily functioning [1].
Depression covers a wide range of psychopathological manifestations of mood disorders
that vary in typological structure, severity and duration. Our main focus in this review is
agitated depressive disorder, which is characterized by an inner psychotic agitation coupled
with deficient impulse control and aggressive behaviour. Generally, when aggression in
adults is not a response to a clear threat, it is considered a sign of mental disorder [6].
The comorbidity between aggression and MDD, among other mental illnesses where
psychiatric disorders may be associated with violence, has been demonstrated in numerous
studies [4,7–10]. Anxiety- or aggression-driven depression has even been proposed as a
subtype of MDD, in which aggression dysregulation is not only a symptom but also a
pacemaker of disorder progression [11].

Importantly, while a century ago MDD was typically characterized by psychomotor
inhibition and retardation, in the last two decades approximately one-third of depressed
patients demonstrated excessive aggression and anger attacks [12], with almost 40% of patients
now registered [4]. As such, the proportion of depressed patients with the agitated form
of the disease and symptoms of aggression and violence is rapidly increasing. Meanwhile,
the generally accepted therapy for MDD is not fully oriented to meet the modern clinical
features of this disease and the frequent incidence of symptoms of aggression and agitation
does require new therapies that go beyond standard antidepressant treatment. As treatment
with antidepressants is often indicated, ~50% of patients do not achieve remission with first-
line treatment [13]. Moreover, commonly used antidepressants were shown to exacerbate
symptoms of aggression and suicidality, which is considered to be a form of self-aggression
that is particularly frequent in adolescent patients with depression [14–16]. This indicates
the need for the development of more effective and safe treatments based on an in-depth
understanding of MDD’s pathophysiology when accompanied by agitation and aggression.

Extensive studies at different molecular levels point to a high complexity of numer-
ous interrelated pathways as the underpinnings of MDD and its highly heterogeneous
symptomatology, including agitated depression with manifestations of excessive aggres-
sion [17,18]. Major systems under consideration include monoamines, the hormonal axis of
stress response, neurotrophins, excitatory and inhibitory neurotransmission, mitochondrial
dysfunction, epigenetics, inflammation, the opioid system, myelination and the gut–brain
axis, among others [17,19]. Currently, a vast body of the latest literature points to new
mechanisms for MDD and its associated symptoms, such as impulsivity and aggression.
Here we overview these key mechanisms, which include neuroinflammation, oxidative
stress, insulin receptor (IR) signalling and abnormal myelination, and discuss the hypothe-
ses that integrate these processes as the neurobiological basis of MDD. We also discuss
management of excessive aggression using novel emerging therapies such as antioxidant
and herbal composition treatments and anti-diabetic drugs.

2. Animal Models of Excessive Aggression

The use of animal models is the key to investigating the mechanistic aspects of MDD.
Maladaptive aggressive behaviour, manifesting as aggressive behaviour that exceeds
species-typical levels or patterns, is defined in rodents by a short latency to initiate the
attack, long duration of and high intensity of attacks potentially leading to an injury, lack
of species-normative behavioural structure and insensitivity to behavioural signals of sub-
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mission [20]. Various genetic and environmental factors, such as stress and social threat,
can be used to induce experimental aggression in the available animal models (see Table 1).

The role of genetic factors in excessive aggression can be investigated with the use
of transgenic animal models. Reduced scores of aggression have been found in male
knockout mice lacking the long form of the dopamine D2 receptor [21,22], the α-isoform
of the oestrogen receptor [23,24], the arginine vasopressin V1b receptor [25] or dopamine
β-hydroxylase [22,26]. Elevated aggression was shown in mice lacking tryptophan hydrox-
ylase 2 (Tph2) [27,28], serotonin (5-HT) 1B receptor [29], dopamine transporter (DAT) [30],
nitric oxide synthase (NOS) [31] and monoamine oxidase A (MAOA) [32].

One common approach for excessive aggression is the selective breeding of mouse and
rat strains for high aggression scores. A commonly used model is the mouse line bred for
short attack latency (SAL); such mice display elevated aggression correlating with low brain
5-HT levels and reduced reuptake transporter activity [33,34]. Excessive and abnormal forms
of aggression are also demonstrated in Turku Aggressive mice [35] and North Carolina 900
and North Carolina 100 mice [36]. Selectively bred Wistar rats with low anxiety-like behaviour
(LAB), initially used as controls for rats with high anxiety-like behaviour (HAB), also display
high and abnormal forms of aggression [37,38]. The prairie vole (Microtus ochrogaster) has
been proposed as an animal model for investigating the neurobiology of escalated aggression
and violence, since ethological mating of these mice is accompanied by aggressive behaviour
directed toward both male and female conspecifics [39].

Stress, a well-known factor for MDD, may elicit aggression and accompanying be-
havioural abnormalities in rodents. Various stressful conditions are generally used to
provoke elevation in aggressive behaviour in conventional mouse lines [40]. One of the
most-used manipulations to provoke excessive aggressive behaviour in male mice is social
isolation [41]. Socially isolated mice can demonstrate aggressive behaviour in the resident–
intruder test [42,43], which was found to be accompanied by alterations in the function of
the hypothalamic-pituitary-adrenal (HPA) axis, suggesting the stressful nature of isolation
in some mouse strains [44]. Maternal separation stress, a commonly accepted risk factor
for MDD, was shown to have both a short- and a long-term effect on aggression. In rats,
maternal separation during the first two weeks of life significantly increased intermale
aggression at 14–16 weeks of age and lowered maternal aggression [45]. Interestingly, in
mice, this experimental procedure of maternal separation stress was shown to reveal gender
differences in intermale and maternal aggression; maternally separated females tended
to be more aggressive towards male intruders than control females, whereas in males,
maternal separation decreased intermale aggression [46]. Post-weaning social isolation
or subjugation also caused elevated intermale aggression in mice and rats, as well as in
hamsters and guinea pigs [47].

Table 1. Animal models of aggression associated with depressive syndrome. This summary provides
a neurobiological classification of animal models of aggression associated with depressive syndrome
starting with an impact of a single gene out to varieties of environmental factors. Core character-
istics highlight the important role of monoamines, pro-inflammatory shifts and oxidative stress in
the development of a valid animal model that recapitulates behavioural phenotypes of increased
aggressiveness associated with pro-depressant changes. Abbreviations are: BDNF—brain-derived
neurotrophic factor; GSK3-β—glycogen synthase kinase-3 beta; GABA—gamma-aminobutyric acid;
IRS-1—insulin receptor substrate-1; IRS-2—insulin receptor substrate-2; 5-HT—5-hydroxytryptamine
(serotonin); ERα—α-isoform of the oestrogen receptor; D2Rß dopamine D2 receptor; V1bR—vasopressin
1b receptor.

Animal Model Strains Core Characteristics References

Genetic Models

Knock-out dopamine D2 receptor D2R−/− mice
Elevated aggression in males, reduced

hypothalamic orexin precursor expression,
increased serum prolactin levels

[21,48]
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Table 1. Cont.

Animal Model Strains Core Characteristics References

Knock-out α-isoform of the
oestrogen receptor ERα−/− mice

Elevated aggression in males,
compromised neuroplasticity [23,24]

Knock-out arginine
vasopressin V1b receptor V1bR−/− mice

Elevated aggression in males, compromised
neuroplasticity, decreased neurogenesis [49]

Knock-out dopamine β-hydroxylase DBH−/− mice

Elevated aggression in males, compromised
neuroplasticity, decreased insulin receptor

substrate-1 (IRS-1) and insulin receptor
substrate-2 (IRS-2) signalling

[26,48]

Knock-out tryptophan hydroxylase 2 Tph2−/− male mice
Elevated aggression in males, decreased 5-HT

level, compromised neuroplasticity [27,28]

Knock-out 5-HT1B receptor 5-HT1B−/− mice
Elevated aggression in males,

deficient neuroplasticity [29]

Knock-out dopamine transporter DAT−/− mice
Elevated aggression in males,
deficient synaptic plasticity [30]

Knock-out nitric oxide synthase NOS−/− mice
Elevated aggression in males, compromised

neuroplasticity, antioxidant system disbalance [31]

Knock-out MAOA MAOA−/− mice
Elevated aggression in males, deficient synaptic

plasticity and pruning, disbalance of brain
monoamine levels

[32]

Bred for short attack latency (SAL) SAL mice Elevated aggression, low brain 5-HT level,
reduced 5-HT reuptake transporter activity [33,34]

Turku Aggressive mice Turku Aggressive mice Elevated aggression in males [35]

North Carolina 900 mice NC900 mice Elevated aggression in males, reduced
GABA-ergic neurotransmission [36]

North Carolina 100 mice NC100 mice Elevated aggression in males, lower
dopamine concentrations [36]

Wistar rats with low anxiety-like
behaviour (LAB) LAB rats Elevated aggression in males,

compromised neuroplasticity [37,38]

Environment Stress Models

Social isolation CD1, C57BL/6J mice Excessive aggressive behaviour in males,
alterations in the function of the HPA axis [41–44]

Maternal separation C57BL/6J mice

Rats: increased intermale aggression at 14–16
weeks of age, lowered maternal aggression.

Mice: females are more aggressive towards male
intruders; males are less aggressive towards

male intruders

[45,46]

Chronic mild stress BALB/C, CD1,
C57BL/6J mice

Increased offensive and aggressive behaviours in
males; GSK3-β overexpression; microglial

activation, reduced neuroplasticity
[18,50–55]

Rat exposure C57BL/6 mice
Increased aggressive behaviour in males,

aberrant neurogenesis, reduced neuroplasticity;
oxidative stress

[52,56]

Social defeat C57BL/6 mice

Excessive aggression in dominant males,
microglial activation, reduced neuroplasticity
and synaptic pruning, deficient neurogenesis,

GSK3-β overexpression, oxidative stress

[57–61]

Ultrasound stress

BALB/C, CD1,
C57BL/6J mice;

Wistar,
Sprague-Dawley rats

Increased aggressive behaviours in males;
microglial activation, reduced neuroplasticity,

GSK3-β overexpression, oxidative stress
[62–67]
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Table 1. Cont.

Animal Model Strains Core Characteristics References

Maternal Models

Stimuli from pups

BALB/C, CD1,
C57BL/6J mice; Wistar,
Sprague-Dawley rats;

Syrian hamsters;

Increased aggressive behaviours in females,
deficient neuroplasticity

and reduced neurogenesis
[68–71]

Gene × Environment Interaction Models

Deficiency of tryptophane
hydroxylase and 5-day

predation stress

Tph2+/− male mice

Increased aggressive behaviours in males;
reduced brain serotonin content, reduced

expression of 5-HT6 receptor,
GSK3-β overexpression

[72]

Tph2+/− female mice

Increased aggressive behaviours in females;
reduced brain serotonin content, GSK3-β and

myelin basic protein overexpression;
deficient neuroplasticity,

downregulation of synaptophysin

[73]

Another stress paradigm that is used to elicit aggression in experimental rodents
is chronic mild stress [18,74]. Chronic unpredictable stress was found to provoke in-
creased aggression in male BALB/C, CD1 and C57BL/6J mice, as shown in the resident-
intruder test [51–55]. C57BL/6J mice exposed to a chronic mild stress paradigm showed
increased offensive and aggressive behaviours in the resident-intruder test and the so-
cial dominance tube test [75]. Rat exposure, which is an ethologically valid stressor be-
cause rats are natural predators of mice, caused an elevation of aggressive behaviour in
male C57BL/6 mice [52,56]. The social defeat paradigm has also been shown to induce
excessive aggression in dominant males 2 [61]. Among the chronic stress paradigms, the ul-
trasound stress procedure has attracted growing attention from researchers as the model of
“emotional” stress in rodents [65–67]. In humans, this corresponds to emotional neglect, loss
of a parent or child abuse, and may contribute to various psychiatric disorders, including
the development of MDD, violence and abnormal aggression [76,77]. “Emotional stress” is
generally seen as a form of stress evoked by processing a negative mental experience rather
than an organic or physical disturbance [78] and is commonly regarded as a human-specific
trait that is challenging to model in other species. However, recent studies demonstrated
that a 3-week-long exposure to ultrasound of unpredictable alternating frequencies within
the ranges of 20–25 and 25–45 kHz can induce depression-like characteristics in laboratory
mice and rats, which are accompanied by increased aggressive behaviour sensitive to
pharmacotherapies [64–66].

Indeed, “emotional stress”, which is referred to as a state that is primarily triggered by
the perception and cognitive evaluation of adverse events rather than disturbance of a phys-
ical nature, appears to be the type of stress that frequently results in overt aggressiveness
in many studies [79,80]. Specifically, a recently established model of emotional stress with
“emotionally negative” and “neutral” randomly alternating frequencies of ultrasound in the
range 20–45 kHz [64,81] for three weeks resulted in increased aggressive, depressive-like
and anxiety-like behaviours in stressed mice, accompanied by elevated oxidative stress,
neuroinflammation and disrupted neuroplasticity [62,63,66,67]. The comorbid nature of
depressive-like changes and increased aggressive behaviour in the ultrasound stress model
has been proven using several mouse and rat strains [62,64,66,67,82].

Excessive aggression can also be modelled in rats by the administration of glucocorti-
coids, which mimics the hormonal component of stress exposure [83,84]. Apart from stress
models, escalated aggression can be induced in animal models of experimental alcohol
addiction during withdrawal from prolonged exposure to repeated high alcohol doses,
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which is modelled in mice, rats and monkeys, or by acute alcohol exposure [85]. This
model is of particular relevance, as in humans, aggression is heavily associated with use of
alcohol [86] which also can further aggravate depression [87,88]. According to the World
Health Organization, alcohol consumption is more strongly associated with aggressive
behaviour than the use of any other psychotropic substance [89], with alcoholics being
2–3 times more likely to experience depressive symptoms than the average population [88].
Absence of an expected dietary reward can also induce a state of hyper-aggression [90].

There is a significant body of evidence indicating a combined contribution of genetic
background and aversive life experiences during childhood, adolescence and adulthood to
the development of MDD associated with elevated aggression and antisocial behaviour [91].
Family studies of aggressive behaviour suggest that, in both males and females, 50%
of the variance in aggressive behaviour parameters can be explained by environmental
factors 1 [92]. Such aversive experiences include emotional stress, evoked by processing
a negative mental experience, which is a state primarily triggered by the perception and
cognitive evaluation of adverse events [78]. This clinical situation requires the use of
appropriate animal models mimicking gene × environment (G × E) interactions in rodents.
As such, the use of animal models of “emotional stress” can be of particular interest in the
context of modelling such conditions. Recently, increased aggressiveness was reported
in mice with a partial deficiency of the gene encoding tryptophane hydroxylase 2, a key
enzyme for 5-HT synthesis (Tph2+/− mice), after their exposure to a 5-day predation [72,93].
Predation stress used in such mutants that do not display any behavioural alterations under
normal conditions was used as an analogue of “emotional” stress in mice because it did
not imply any physical challenges to an animal except the visual and olfactory cues of
a rat. Brain tissue concentrations of serotonin, its precursor 5-HT and its metabolite
5-hydroxyindoleacetic acid were significantly altered for all groups in the prefrontal cortex
(PFC), striatum, amygdala, hippocampus and dorsal raphe after stress of male mutants [72].
Compared to non-stressed animals, the concentration of 5-HT was elevated in the amygdala
but decreased in the other brain structures. Overexpression of the AMPA receptor subunit,
GluA2, and downregulation of the 5-HT6 receptor, as well as overexpression of c-Fos
and glycogen-synthase-kinase-3β (GSK3-β), were found in most structures of the stressed
Tph2+/− mice [72].

Thus, models utilizing emotional stress and gene × environment interaction might
provide high aetiological validity for modelling aggression associated with stress, an
etiological factor of MDD, and neuropsychiatric pathologies in general. This is due to the
fact that emotional or psychological stress is the most frequent form of stress in humans;
therefore, these models may be a promising way to investigate the neurobiology of excessive
aggression associated with a depressive-like state and possible further treatments.

Finally, several types of animal models of female aggression, which is a special domain
in the field of neuropsychiatric translational research, were also proposed. Historically,
rodent models of maternal aggression (i.e., defensive behaviour against a potentially dan-
gerous intruder that is intended to protect the offspring) were proposed first. In mice and
rats, such aggression is triggered by stimuli from the pups (i.e., suckling stimulus) and
the presence of an intruder [68,69]. However, rodent maternal aggression is less applica-
ble for modelling human psychiatric pathology. Furthermore, social aggression, such as
intermale territorial aggression, is much less common in female mice [94]. Recently, the
prairie vole (Microtus ochrogaster) has emerged as a new animal model for investigating the
neurobiology of escalated aggression and violence because, ethologically, their mating is ac-
companied by aggressive behaviour directed toward both male and female conspecifics [39].
Another highly recognized model of female territorial aggression is the Syrian hamster
(Mesocricetus auratus), because in this species both males and females are highly territorial
and females tend to be aggressive and dominant over male intruders [70,71]. However,
although there are rodent models of female aggression that mimic ethologically relevant
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behaviours, little research is directed towards modelling female aggression in pathology,
including MDD.

Recently, Tph2+/− mice exposed to predator stress were shown to display excessive
aggression, increased anxiety-like behaviours, and altered sociability and compromised
brain metabolism of dopamine and noradrenaline [95,96]. The predation stress procedure
elicited behavioural and molecular changes in Tph2+/− mice that were the opposite of
those observed in control mice [73,95]. As such, environmentally challenged Tph2+/− mice
may represent a valid model of aggression that recapitulates the role G × E interaction in
the mechanisms of stress-related aggression.

Thus, while a large variety of animal models of aggression are currently available,
it can be suggested that those utilizing the “emotional stress” paradigm and modelling
G × E interaction are likely to be the most promising experimental approaches to modelling
excessive aggression associated with depressive symptoms.

3. Neuroanatomical Basis of Aggression in Humans and Rodents in the Context
of Depressive Disorder

Despite the fact that there is still no clear understanding of specific neuroanatomical
connections that underlie both depression and excessive aggression, many brain regions
were shown to be implicated in these abnormalities [97,98]. Aggression comprises a suite of
agonistic behavioural interactions; thus, various species-specific relevant signals, including
danger and emotional stressors, are transduced by sensory afferents to the central nervous
system (CNS) where this information is processed by the limbic neurocircuitry [99,100].
Data from animal and human studies suggested several key brain regions, primarily in the
limbic system, associated with aggression and depressive syndromes [101].

The amygdala is generally regarded as a key brain structure regulating aggressive
behaviour [101–103]. It mediates fear and defensive responses [104] and is important
in the processing of emotionally adverse events [105]. In early studies, patients with
damage to the amygdala demonstrated impairment in the recognition of fearful facial
expressions [106]. Children with conduct disorders and prominent aggressive behaviour
generally have smaller prefrontal cortex, amygdala and hippocampus volume [107]. In
mice, inter-male aggression-related behaviours were inhibited following medial amygdala
lesioning [108]. Neurons of medial amygdala are active during social behaviours such as
fighting and mating [109].

The dorsolateral prefrontal cortex and orbitofrontal cortex receive inputs from the
amygdala and other medial temporal areas that may integrate sensory information with
affective signals [110]. The available literature proposes a pivotal role for the amygdala in
the network between these structures that underlies the processing of emotional and goal
directed behaviour, and the dysfunction of any of these structures results in problems with
the regulation of emotion. This can manifest as difficulties with the inhibition of aggressive
behaviour [111,112], with violent patients often having reduced prefrontal–amygdala and
prefrontal–striatal connectivity [113]. Thus, an imbalance between the regulatory influence
of the prefrontal cortex and the responsivity of the amygdala is chiefly implicated in
excessive aggression [114].

Studies with early gene c-Fos in animal models of environmental stress and fMRI
in humans confirmed important roles for the prefrontal cortex and hippocampus, the
medial preoptic area, anterior, lateral and ventromedial hypothalamus, medial and central
amygdala, the locus coeruleus, bed nucleus of the stria terminalis, dorsal raphe and
the periaqueductal grey matter [99]. There is a large overlap among the brain areas
involved in different types of aggression, but some peculiar differences also exist, such as
maternal aggressive behaviour and male escalated aggressive behaviour [111]. In particular,
variable levels of escalated aggression were shown to be associated with the changes in the
activity in the brain structures, which may be either elevated or decreased. Specifically, the
periaqueductal grey matter in the midbrain was found to be hyperactivated because this
region is normally activated during inter-conspecific aggression. However, the degree of its
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activation decreases in animals genetically selected to display higher aggressive behaviour
at the baseline levels [99]. By using c-Fos staining as a marker of neuronal activation, it
was shown that agonistic encounters result in different activation patterns in LAL and
SAL mice [99]

Studies with lesions or optogenetic manipulations have confirmed the involvement
in aggressive behaviour of the aforementioned brain regions, together with other brain
structures, such as the cerebellum [22,115]. Optogenetic bidirectional manipulation with
neuronal activity has helped to elucidate the role of increased glutamate signalling and
decreased GABA neurotransmission in the midbrain and cortical structures, along with the
role of increased activity of vermis Purkinje cells in the cerebellum, in the mechanisms of
escalated aggressive behaviour [115,116]. In addition, cortical or injuries lesions of these
CNS structures were shown to result in disinhibited aggressive behaviour [117]. Prefrontal
grey matter is suggested to be implicated in the mechanisms of impulse control and
behaviour, as individuals with antisocial personality disorder display volume reductions
in this area of the brain [118,119]. Furthermore, clinical studies have demonstrated that
patients with impulsive aggression were shown to have lower metabolic activity in the
prefrontal cortex [120].

As mentioned above, neural circuits that modulate aggressive behaviour also include
the hippocampus and hypothalamus [121–125]. Specifically, atypical hippocampal anatom-
ical asymmetries that disrupt prefrontal–hippocampal circuitry may result in emotion
dysregulation with increased aggressiveness because hippocampal neurons have robust
projections that originate from hippocampal CA1 and terminate in the orbital and medial
frontal cortices [126]. In mouse studies, stress-induced attacking behaviour was shown to
be associated with neuronal activation of the ventral hippocampus [126]. Stimulation of
pyramidal neurons in the CA2 region of the hippocampus, which are important for social
memory, promotes social aggression in mice [123].

Electrical stimulation of the ventromedial nucleus and lateral hypothalamus can
elicit aggressive behaviour in animals [127,128]. In these studies, electrical stimulation
induces an extreme aggression that can be directed against both genders and even dead
animals, highlighting the pathological nature of a hypothalamus-mediated aggressive
behaviour [129,130]. The ventromedial nucleus receives inputs from the lateral hypotha-
lamus as well as the cortical and basolateral amygdala, which modulate the expression
and duration of aggressive behaviours [131]. The central, lateral and basal nuclei of the
amygdala facilitate aggressive attacks [132,133] and their effects are associated with the
overexpression of glutamatergic GluR1 receptors, which is the opposite for the prefrontal
cortex [22]. Human studies also suggest that the hypothalamus is related to the control of
aggressive behaviour [134,135]. Neuroimaging fMRI studies showed the hyperactivity of
the hypothalamus in aggressive individuals and in domestic violence offenders [136].

Thus, the neuroanatomical substrate of aggression associated with depressive syn-
drome itself represents a complex network that can vary greatly, depending on the type of
aggressive behaviour, features of depression in an individual patient, age and gender.

4. Neuroinflammatory Mechanisms of Depression and Excessive Aggression

Traditionally, the monoamine hypothesis is implicated in the vast majority of be-
havioural abnormalities associated with pro-depressant behavioural changes [137], and
early models of aggression associated with depressive syndrome are largely focused on the
role of monoamine neurochemical deficits [138]. In support of this hypothesis, it has to be
stated that monoamine inhibitors (MAOI) are effective as antidepressants that also lower
the aggressiveness level by increasing serotonergic and noradrenergic signalling [138].
Later, the monoamine hypothesis has emphasized the role of deficits in dopaminergic sig-
nalling for triggering both anhedonia and impulsive aggression [139]. However, important
limitations of the monoamine hypothesis and other neurochemical deficit models were
also apparent: not all drugs that modulate monoaminergic signalling are effective modu-
lators of aggression or antidepressants [137]. Furthermore, some selective 5-HT reuptake
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inhibitors (SSRIs) were reported to induce aggression in depressed patients [14]. Generally,
aggression and depression are widely understood to be heterogeneous phenomena with a
weak correspondence to any single biological substrate [140].

Nowadays, the implication of the immune system in the pathophysiology of aggres-
sion associated with depressive syndrome is being recognized [102,141,142]. The diverse
collection of immune cells and non-cellular factors profoundly influences most aspects of
the stress response and the pathophysiology of depressive syndromes and their comor-
bidities, including agitation and aggressiveness. Patients experiencing emotional stress
display long-term changes of brain glial cells: activated microglial cells with less ramified
and shortened processes [143,144]. These changes are hallmarks of both female and male
pathophysiology of MDD and have been replicated in animal models of depression [145].
Activated microglia and reactive astrocytes have been shown to produce pro-inflammatory
cytokines and to stimulate other immune cells to produce cytokines and inflammasomes
as their response to neuronal activation triggered by emotional stress [145]. Notably, both
an aggressive experience and the expectation of an aggressive event are associated with
increases in inflammatory cytokines, which can be the result of sympathetic activation
and HPA axis activation [146,147]. Aside from stress which contributes to glial activation,
neuroinflammation may be caused by such factors as viral or bacterial diseases of the
CNS [148–150], as well as systemic inflammation caused both by infection [151] or aseptic
condition, as in case of type 1 and 2 diabetes [152]. Alimentary factors, e.g., “Western
diet” [153,154], as well as environmental toxicity, e.g., metal toxicity, may also contribute to
neuroinflammation [155].

Human studies show that individuals with excessive aggression display elevated
inflammatory cytokine levels and dysregulated immune responses in the CNS and in blood,
and comorbidity of depression and aggression is correlated with stronger immune dys-
regulation [141]. Elevated aggressive traits were associated with increased serum tumour
necrosis factor (TNF) [156] and the inflammatory marker C-reactive protein (CRP) [157].
CRP has been suggested as a predictor of the risk of aggressive behaviour among psy-
chiatric inpatients [158]. It has been reported that immunotherapy to treat patients with
hepatitis C by chronic administration of interferon alpha (IFN-α) increases irritability and
anger/hostility in some patients [159]. Furthermore, pro-inflammatory cytokines IL-2 and
TNF, along with anti-inflammatory factors IL-4, IL-5 and IL-10, were significantly elevated
in patients with excessive aggression and post-traumatic stress disorder who underwent
early life trauma [160]. Married couples show increases in plasma IL-6 and TNF after
conflict interactions, and these increases in cytokines were larger in couples who showed
more hostile behaviour during their conflict interactions [161]. IL-6 levels were also higher
in subjects with intermittent explosive disorder [162].

Pre-clinical translational studies are keeping up with these clinical observations. Wild
type C57BL/6 mice bred for high aggression had increased cytokine levels, with knockout
of both TNF receptors R1 and R2 resulting in the absence of aggressive behaviour [163].
Deletion of TNF receptors R1 and R2 reduced the duration of aggressive behaviours in the
resident–intruder test in male mice, which is in line with findings from human studies in
which serum TNF is increased in highly aggressive individuals [163]. Glycogen synthase
kinase-3 (GSK-3), which is closely related to pro-inflammatory cytokine regulation, has
been demonstrated to promote inflammation, as well as aggressive and depression-like
behaviours in rodents, whereas reduced expression of either GSK-3 isoform results in
decreased aggressive behaviours in mice [66,67,164].

Thus, both clinical and animal studies cumulatively suggest the prominent role
of inflammation and immune dysregulation in the pathophysiology of aggression in
depressed patients.

5. Oxidative Stress Markers, Insulin Receptor Signalling and Excessive Aggression

Inflammation is closely related to the increased excessive formation of free radicals in
mitochondria, known as oxidative stress [165,166], which can play a key role in the patho-
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physiology of emotional stress, depression and accompanying behavioural abnormalities,
including excessive aggression [167,168]. Oxidative stress markers have been found to
be elevated in alcohol-induced aggressive, impulsive and suicidal behaviour [169]. More
specifically, human studies suggest a positive relationship between plasma markers of ox-
idative stress–8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-isoprostane–and aggression
in human subjects [170]. These markers were elevated in adult subjects with personality
disorder who displayed aggressive traits [171]. At the same time, the meta-analysis re-
vealed that 8-OHdG and F2-isoprostanes, mirroring oxidative DNA and lipid damage,
respectively, were increased in depressed patients [172]. A significantly elevated level of
serum malondialdehyde was found in those patients with major depression displaying
aggression compared to healthy controls [173].

In animal studies, measures of oxygen radicals in Long-Evans rats were shown to
correlate with their aggression scores [174], and the intracellular redox status of peripheral
blood granulocytes correlated significantly with the aggressive behaviour levels of adult
male mice [175]. Impaired antioxidant defence can also have a direct effect on aggressive
behaviour. Mice deficient in copper–zinc superoxide dismutase (SOD1) that express 50%
of this antioxidant enzyme are more aggressive than wild-type males [176]. A depressive-
like state in mice induced by repeated restraint stress was associated with upregulation
of NADPH oxidase and the resulting metabolic oxidative stress, whereas inhibition of
NADPH oxidase provides beneficial antidepression effects [177]. Acute restraint stress is
also known to induce depressive-like and aggressive behaviour in rodents and is reported
to cause neuronal oxidative damage in mice, reducing catalase and superoxide dismutase
activity in the brain. Depressive-like behaviour in mice caused by repeated glucocorticoid
administration caused a decline in the antioxidant defence system, as shown by the re-
duced glutathione levels [178]. In the ultrasound model of “emotional stress”, BALB/c
mice demonstrated aggressive behaviour accompanied by increased concentrations of
protein carbonyl and total glutathione [66], as well as of malondialdehyde [62]—markers
of oxidative stress—in the prefrontal cortex and hippocampus.

In summary, oxidative stress appears to be an important pathophysiological mecha-
nism underlying both the depressive-like state and excessive aggression. It is believed that
mitochondrial dysregulation and microglia activation associated with oxidative stress can
lead to neuronal dysfunction, compromised brain plasticity [179,180] and also demyelina-
tion [181], which underlies deficits in brain connectivity and impulse control. Consequently,
this deficient impulse control can lead to increased aggressiveness. Indeed, increased
concentrations of oxidative stress markers are suggested to result in damage to the periven-
tricular white matter, with a paucity of mature oligodendrocytes and hypomyelination [182].
Increased oxygen species may impair oligodendrocyte precursor cell proliferation and dif-
ferentiation, resulting in disrupted myelination [183]. Increased activation of oxidative
stress pathways was found to slow down endogenous white matter repair by disrupting
the renewal processes [184].

Furthermore, elevated oxidative stress was shown to interfere with IR functioning, the
signalling of which is a well-established mechanism implicated in the pathophysiology of
depression, and can regulate inflammation and myelination [185,186]. For example, reactive
oxygen species such as H2O2 have been established as a triggering events of IR-mediated
signalling associated with development, neuroprotection, metabolism and plasticity in the
brain and the resulting behavioural changes, including depressive disorder [187].

Compounds stimulating IR functions were shown to decrease the manifestations of
stress-induced depressive and aggressive behaviours [188,189]. A new class of compounds
called “insulin receptor sensitizers” were investigated for their preclinical and clinical
efficacy in depressed patients. For example, recent clinical and translational studies have
revealed antidepressant-like effects, increased mitochondrial biogenesis in neurons and
decreased neuronal damage and anti-inflammatory effects for the thiazolidinediones rosigli-
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tazone and pioglitazone, which can potentiate the binding of insulin to the IR [182]. Thus,
further clinical studies of IR sensitizers can be promising in normalizing IR functions and
associated behavioural changes, including excessive aggression.

6. Role of Disrupted Myelination and Connectivity in Excessive Aggression
and Impulsivity Associated with Depressive Syndrome

The recent literature suggests that neuroinflammation and oxidative stress may under-
lie many pathological processes in the nervous system that can be partially mediated via
the affected CNS myelination [190–192]. Myelination is one of the major postnatal CNS
developmental milestones that ensures efficient neuronal circuit connectivity [191]. Myelin
sheaths are electrically insulating structures consisting of a lipid-rich substance wrapped
around axons in both the CNS and the peripheral nervous system [193]. For a long time, it
was thought that the main functions of myelination are to increase maximum conduction
velocity and decrease axonal energy consumption.

However, a growing body of evidence suggests that myelinating oligodendrocytes
are involved in other processes, such as supporting axonal energy metabolism via myelin
sheaths [192,194,195]. In contrast to what was thought earlier, it is now established that
myelination is not a single developmental event but rather a constant process of de novo
formation of myelin in the nervous system [196]. Remodelling of the myelin sheaths, which
was shown to be dependent on neural activity, is now thought to be involved in learning and
long-term neuroplasticity [197] and the stress response [93,96]. For example, it was shown
that in mice, fear learning induces oligodendrocyte precursor cell (OPC) proliferation and
differentiation into myelinating oligodendrocytes in the medial PFC, whereas in transgenic
mice with conditional deletion of Myrf transcription factor in OPCs, which prevents OPC
maturation and expression of myelin structural genes while preserving existing myelin
sheaths, long-term fear memory retrieval is impaired [198].

Deficits in myelination are observed in neurodevelopmental conditions such as autism
spectrum and attentiondeficit/hyperactivity disorders [199–201] and schizophrenia [202].
In addition, in clinical studies, prenatal SSRI exposure or social isolation, which are detri-
mental for CNS development and function, were shown to be associated with abnormalities
in myelination [203] Post-mortem pathological assessments of patients with depression
have revealed the reduction in myelination in regions of the limbic system of the brain,
such as the prefrontal cortex [204], hippocampus [205] and striatum [206].

Social isolation in juvenile mice, which is known to cause depressive-like and pro-
aggressive behavioural changes, led to hypomyelination in the medial prefrontal cortex
and lowered activation of this brain structure during exposure to a stranger counter-partner
mouse, while re-socialization reverted the hypomyelination [207]. Psychological stress
(e.g., chronic social defeat stress) was also shown to affect myelination in a strain-specific
and region-specific manner. Stress-susceptible B6 mice showed thinner myelin sheaths in
the ventral prefrontal cortex and downregulation of myelination genes in the medial PFC,
whereas stress-resilient mice had thicker myelination in the medial prefrontal cortex [208].

Studies with other rodent models, such as chronic social defeat stress [209] and un-
predictable chronic mild stress [210,211], showed impairment of oligodendrocyte differ-
entiation and also myelination in the brain. With myelination being crucial for brain
connectivity and signal propagation, dysmyelination may cause impairment of connections
between structures involved in the regulation of aggression. For example, such changes can
contribute to aggressive and impulsive behaviours via disruption of cortical–subcortical
connectivity—so-called “top-down” behavioural control. Increased aggression accompa-
nies impairments in medial prefrontal cortex, such as amygdalar dysconnectivity, which
can be hypothesized to arise from insufficient estimation of the possible consequences of
engagement in impulsive aggression [212].

Recently, in a model of stress-induced aggression in Tph2+/− mice, we have found al-
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terations in Plp1 and myelin basic protein (Mbp) mRNA expression in the medial PFC [73].
In this study, stressed Tph2+/− mice with increased aggressive behaviour revealed de-
creased expression of these genes [73]. In another model of stress (stress of “systemic
inflammation” or “inflammatory stress”), in which elevated aggression in mice deficient
for major brain gangliosides was observed, we also found decreased mRNA and protein
expression of Plp1 in the medial prefrontal cortex of both male and female mice. These
changes in myelin markers were associated with increased aggressive and dominant be-
haviour, although no alterations in Plp1 expression were found in naïve non-stressed
mutant mice [213].

Notably, there are recent data suggesting that myelination is dependent not only on
oxidative stress but also, as mentioned above, on IR-mediated signalling. It was shown
that oligodendrocytes in the mouse brain express both IR and insulin-like growth factor 1
receptor (IGF-1R) [214]. Although the functional significance of IRs in oligodendrocytes
has not yet been studied, it was shown in the peripheral nervous system that the insulin
resistance of Schwann cells (induced by Schwann cell-specific deletion of both IR and
IGF-1R) leads to thinner myelin sheaths during development and adulthood [215]. The
authors speculate that this effect stems from impairment of lipid metabolism via the
phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/mammalian target of rapamycin
(mTOR) pathway [215]. Moreover, in an experiment with IR substrate-1 (IRS1) knockout
mice, it was shown that overexpression of IGF-1 leads to increased mouse brain weight in
IRS1 knockout and wild-type mice, although to a greater extent in wild type mice [216].
In a co-culture of glial cells and neurons, it was shown that overexpression of IGF-1 leads
to an increase in Mbp and Plp1 content [216]. Together, these findings further suggest a
crucial role for insulin signalling in the regulation of myelination and its potential role in
the pathophysiology of MDD and associated aggression.

7. Challenges in the Management of Excessive Aggression

Due to the fact that nowadays MDD is increasingly more frequently accompanied
by pathological aggression, violence, self-harm, and suicide [4,16], this medical problem
requires particular attention of physicians and researchers. To date, various classes of
compounds are used in the pharmacotherapy of excessive aggression (Table 2). First of
all, excessive aggression is usually not treated specifically but in conjunction with other
psychiatric disorders such as MDD [217,218]. As has been discussed, the use of classic
antidepressants is very common in patients suffering from excessive aggression associated
with depressive symptoms. SSRIs are widely used clinically for the treatment of aggression,
with fluoxetine probably one of the most used and studied drugs for this purpose [219–221].
Randomized clinical trials have shown that the non-selective beta-adrenoceptor and partial
5-HT1A receptor antagonists, propranolol and pindolol are effective for the management
of aggression and agitation in patients with traumatic brain injury [222]. However, only
large doses of these compounds were effective, with major side effects observed, such as
bradycardia. Furthermore, the use of SSRIs in depressed patients can have an opposite
effect on aggression, increasing these symptoms [14].

Table 2. Pharmacotherapy of aggression associated with depressive syndrome. Effects of classical an-
tidepressants and drugs with antidepressant-like effects are systematized by drug classes, abbreviations
are: BDNF—brain-derived neurotrophic factor; GSK3-β—glycogen synthase kinase-3 beta; MAOI—mo-
noamine oxidase inhibitor; NMDA—N-methyl-D-aspartate; SNRI—serotonin norepinephrine reuptake
inhibitor; SSRI—selective serotonin reuptake inhibitor; TCA—tricyclic antidepressant.

Drug Class Drug Examples Strains Core Targets References

Benzodiazepine Adinazolam
Diazepam Sprague-Dawley rats

Facilitating GABAergic
transmission, decreasing

neuronal excitability
[223,224]
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Table 2. Cont.

Drug Class Drug Examples Strains Core Targets References

TCA
Amitriptyline
Desipramine
Imipramine

Sprague-Dawley rats,
Wistar rats,

C57BL/6J mice

Blocking of serotonin transporter
SERT and norepinephrine

transporter NET, inhibition of
sodium channels,

reversed lipid peroxidation

[225–228]

SSRI
Citalopram

Escitalopram
Fluoxetine

Sprague-Dawley rats,
Wistar rats

Inhibition of serotonin reuptake,
increased norepinephrine

transmission, upregulation of
BDNF, anti-inflammatory effects

[229,230]

MAOI Moclobemide Sprague-Dawley rats
Inhibition of monoamine oxidase
activity, deamination of serotonin

and norepinephrine
[231]

NMDA antagonist Ketamine
MK-801 Wistar rats

Inhibition of ionotropic
NMDA receptors,

anti-inflammatory effects
[232–234]

SNRI Duloxetine Sprague-Dawley rats
Inhibition of serotonin and
norepinephrine reuptake,

antioxidant activity
[235]

Typical antipsychotic Haloperidol Wistar rats Blocking of dopamine
receptor type 2 [236,237]

Essential vitamins
and their

synthetic derivates

Thiamine
Benfotiamine

Dibenzoylthiamine
Vitamin E

BALB/C, CD1,
C57BL/6J mice

Antioxidant activity, increased
neuroplasticity, overexpression of
BDNF, anti-inflammatory effects,

downregulation of GSK3-β,
increased glutathione content

[56,62,66,238–240]

Insulin receptor
sensitizers

Rosiglitazone
Pioglitazone

BALB/C, CD1,
C57BL/6J mice

Decreased neuronal damage,
anti-inflammatory effects,

increased mitochondrial biogenesis
[187,241,242]

There are data showing a specific anti-aggressive effect of low doses of second-
generation antipsychotic medications [243]. Risperidone, an atypical antipsychotic drug
that blocks dopamine and 5-HT receptor systems, was shown to be effective for severe
aggression in adolescents with disruptive behavioural disorders [244]. Most commonly,
benzodiazepines (e.g., lorazepam) and antipsychotic medication are used to treat excessive
aggression, either alone or in combination [245,246], but there is also evidence that in rare
cases their administration may lead to increases in aggressive behaviour [247]. Further-
more, the use of benzodiazepines can aggravate the course of MDD. Hence, medications
used in the treatment of excessive aggression often do not have sufficient therapeutic
effect or specific effects on aggression and the currently available pharmacotherapy used
in MDD patients (e.g., anticonvulsants) may have general sedative effects [248–251] and
other side effects [252]. Drugs such as phenytoin [253] and valproate [254] were suggested
for their effectiveness in the treatment of pathological aggression but may aggravate the
symptoms of depression. The efficacy of antihypertensive drugs and psychostimulants
was demonstrated in some cases of excessive aggression, but only marginal benefits were
observed [255].

Based on the literature reviewed here, increased aggression is also associated with
oxidative stress and neuroinflammation, which can be a potential target of pharmacother-
apy for MDD patients suffering from uncontrollable aggressive behaviour. As such, the
potential of antioxidant treatment in the management of aggression has been proposed
in several studies [62,63,66,67,238]. Decreased levels of endogenous antioxidants, such as
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glutathione and superoxide dismutase, lead to an increase in oxidative stress, which in turn
produces anxiogenic behaviour and aggression in mice [256]. Oxidative stress decreases
expression of the MAOA gene, whose low activity has been implicated in violence and
aggression [257]. The reactive oxygen species level was elevated in the brains of mice sub-
jected to repeated forced swimming., but this increase was reversed using clomipramine,
a tricyclic antidepressant [258]. Antioxidant and anti-inflammatory treatments are antici-
pated to be free from typical side effects of traditional anti-anxiety drugs and SSRIs [259].
Taking into account the above-reviewed data, it can be hypothesized that the use of com-
pounds with anti-inflammatory and antioxidant properties may be a beneficial strategy for
the depressive-like symptoms associated with excessive aggression and the accompanying
molecular alterations.

8. New Strategies in Pharmacological Management of Pathological Aggression

As is indicated above, the recent literature reports the efficacy of various antioxidant
and anti-inflammatory remedies in established rodent models of MDD and comorbid neu-
ropsychiatric disorders with symptoms of anxiety, irritability and aggression [260] (Table 3).
For example, ascorbic acid, beta carotene and vitamin E showed dose-dependent effects
that significantly reduced the tail rattling, attacking and biting responses in an L-DOPA-
induced aggression model [261]. In mice, treatment with lithium inhibited GSK-3 therefore
has anti-inflammatory effects. This is associated with significantly reduced aggression,
impulsivity and depression traits [262]. Moreover, the recent meta-analysis suggests the
usefulness of antioxidant therapy, e.g., vitamin B and vitamin D in the management of
depression, anxiety and accompanying symptoms [263–265]. It is suggested that these
interventions should be considered as integral parts of MDD treatment, particularly in cases
of its co-morbidity with substance use and alcohol dependence [169]. Another established
therapy was proposed by clinical studies that revealed positive effects of the omega-3
fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), antioxidant and
anti-inflammatory agents, in patients with depression and impulsivity [266,267]. Depri-
vation of dietary n-3 polyunsaturated fatty acid, a known antioxidant, has been found to
increase both depression and aggressive behaviour in rats [268]. The observations with
DHA and EPA were recently supported by combined clinical and pre-clinical study on
adolescent depression.

Table 3. Preclinical studies addressing the use of new treatments of excessive aggression.

Treatment Model Effects on
Aggression Other Effects References

Ascorbic acid
Beta carotene

Vitamin E
N-acetyl cysteine

Isolation, or L-DOPA, male
Swiss albino mice ↓ Increased levels of GSH,

SOD, CAT in brain [261]

Lithium chloride

Shock-induced,
Sprague-Dawley rats;

shock induced plus d-AMP
or scopolamine,

Walter Reed rats;
isolation, AB mice;

resident-intruder, TO mice

↓ — [269]

Shock-induced, CD-1,
C57BL/6J and FVB/N mice ↓ Increased brain

norepinephrine turnover [270]

Thiamine
Benfothiamine

Dibenzoylthiamine

Ultrasound-induced,
BALB/c mice ↓

Anxiolytic, anti-depressant,
reduced inflammation and

oxidative stress
[56,66,238,240,271]
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Table 3. Cont.

Treatment Model Effects on
Aggression Other Effects References

Dicholine succinate

C57BL/6N mice;
Western diet,

C57BL/6 mice;
chronic stress, CD-1 mice;

defeat stress,
C57BL/6J mice

↓
(pilot data)

Anxiolytic, anti-depressant,
prevention of Tlr4

upregulation in brain
[188,272,273]

Rosiglitazone Chronic social defeat,
C57BL/6J mice Not assessed Anxiolytic, anti-depressant [274]

Chlorogenic acid extract
from Prunus domestica or

Beta vulgaris

Swiss albino mice, alone or
with restraint stress Not assessed

Anxiolytic, anti-depressant,
reduced ROS production by

immune cells in vitro,
increased GSH level and

decreased MDA
in brain tissue

[275,276]

Ulva sp. extract Wistar rats Not assessed Anti-depressant [277]

Extract of blackberry
chamomile, garlic, cloves,

and elderberry

Resiquimod- or
LPS-induced inflammation,

CD-1 mice
Not assessed

Anxiolytic, anti-depressant.
Reduced expression of SAA2,

ACE2, CXCL1, CXCL10,
Il-1β, Il-6 in spleen and

liver. Normalized
counts of neutrophiles,

monocytes, eosinophiles.

[278]

Standardized herbal
cocktail (see

[63] for composition)

Ultrasound stress, BALB/c
and C57BL/6 mice

↓
(pilot data)

Anti-depressant. Decreased
brain MDA and

protein-carbonyl, decreased
brain expression of IL-1β

and IL-6

[63]

Standardized herbal
cocktail (see [62]
for composition)

Ultrasound stress,
BALB/c mice ↓

Anti-depressant. Decreased
brain expression of Il-1β, Il-6,

TNF, GSK-3β. Increased
expression of Ki67, decreased

brain MDA

[62]

Abbreviations: GSH—glutathione, SOD—superoxide dismutase, CAT—catalase, Tlr4—tall-like receptor 4,
ROS—reactive oxygen species, MDA—malondialdehyde. SAA-2—serum amyloid A, ACE-2—angiotensin-
converting enzyme 2, CXCL1—chemokine ligand 1, CXCL10—C-X-C motif chemokine ligand 10,
GSK-3β—glycogen synthase kinase 3 beta; ↓—a decrease.

An example of advantageous, well-tolerated, and risk-free antioxidant treatment
of depressed patients and agitation is thiamine (vitamin B1) and its derivatives, whose
administration was shown to exert beneficial effects on depressed patients [240,264,279].
Remarkably, chronic thiamine deficiency in a rat was found to induce muricide behaviour
that was used to model aggression experimentally [280] and was supported by other
studies [281]. By contrast, a treatment with thiamine compounds, such as thiamine, benfo-
tiamine and dibenzoylthiamine, was shown to counteract stress-induced aggression and
depressive-like manifestations [56,66,238,240,271].

The use of “insulin receptor sensitizers”, as it is mentioned above, appears to be an
attractive solution, helping to reduce symptoms of depression [187]. Such effects were re-
ported, e.g., for the rosiglitazone and pioglitazone, and other thiazolidinediones [282–287].
The latest translational studies have revealed possible mechanisms mediating these
antidepressant-like effects, and demonstrated positive effects of anti-diabetic drugs on
signs of depressive-like behaviour and pathological aggression [188,189,274,288–290].

Apart from the mentioned medical problems resulting from side effects of commonly
used pharmacotherapy of agitated depression and aggression, the devastating economic
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situation in many societies can hamper the use of costly antidepressants and sedatives,
particularly in countries with limited medical care. These factors necessitate the further
development of inexpensive and effective alternatives to current therapies and prevention
approaches [291,292]. Herbal medicine appears as a reasonable treatment of neuropsychi-
atric disorders which is more affordable and with fewer side effects than classic pharmaca.

Herbal medicine is known to normalize behavioural correlates of depressive-like state
and stress-associated changes experimentally induced in small rodents. Herbal treatments
with stress-reducing properties diminish inflammation and the production of free radicals,
one of the mechanisms of distress [293,294] and aggression [295]. This was shown in
mice receiving chlorogenic acid extract from Prunus domestica [296] or Beta vulgaris during
restraint stress [297] and in rats treated with an extract from Ulva sp. [277]. However, with
an increase in self-medication with herbal remedies, there is a need for better understanding
of their mechanisms of action to prevent potential adverse effects and better control over a
standardization of herbal compositions used for medicinal purposes [298].

A number of studies using standardized herbal cocktails reported the efficacy of chronic
treatment with herbs that exerted antioxidant and anti-inflammatory effects [278,295]. For
example, standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pome-
granate, nettle and other plants that was designed as an antioxidant treatment, was re-
ported to reduce signs of increased depressive and aggressive behaviour in mice subjected
to a model of ultrasound “emotional” stress, and in the paradigm of enhanced learning
of adversities/PTSD [63]. This was accompanied by a normalization of brain oxidative
markers and ameliorative effects of chronic administration of SHC on other stress-induced
molecular read-outs [63]. Similarly, chronic administration of a standardized herbal com-
position containing seaweed, ginger, lemon, orange elderberries and other elements has
normalized excessive aggression in BALB/c mice in the ultrasound stress model [62]. These
effects were suggested to be due to the amelioration of hippocampal functions, such as
malondialdehyde content, GSK3β, expression of pro-inflammatory cytokines Il-1β and
Il-6, and the number of Ki67-positive cells, as well as the internalization of AMPA receptor
subunits GluA1-A3 [62].

Finally, as medicinal herbs exert fewer side effects than conventional drugs and are
affordable for low-income societies, the use of these kinds of remedies appears partic-
ularly beneficial for the improvement of mental health, including MDD and associated
pathological aggression, under the conditions of the ongoing economic crisis. We sug-
gest that standardized herbal compositions, vitamin B1 compounds and natural omega-3
consumption through the diet should be promoted.

9. Conclusions

During the last decade, the classic monoamine theory of depression and associated
symptoms of MDD has been adjusted and extended considerably. An increasing body of
evidence points to brain alterations occurring not only in classic neurotransmitters but also
in neuronal connectivity that could be caused by disrupted myelination and triggered by
an increase in oxidative stress and neuroinflammation. These alterations were observed
both in clinical and animal studies of depressive disorder accompanied by pathological
aggression. A recently hypothesized “triad” of inter-related molecular mechanisms of
neuroinflammation, myelination and IR signalling might underlie the deficiency in brain
connectivity contributing to the pathophysiology of MDD and impulsivity control in
depressed patients (Figure 1). Consequently, this view suggests that compounds targeting
oxidative stress, neuroinflammation and the activity of oligodendroglia may be considered
as new approaches to offer more specific and effective treatment of the depressive symptoms
associated with excessive aggression.
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Figure 1. Pathological molecular pathways of neuroinflammation, myelination and insulin receptor
signalling resulting in impaired cognitive control and excessive aggression in patients with depression.
Major depression disorder and elevated stress response can be accompanied by neuroinflammation
and oxidative stress, which affect brain insulin receptor (IR) signalling and myelination. The au-
tophosphorylation of IR was shown to be highly sensitive to H2O2 signalling enhanced by oxidative
stress [187]. It may alter IGF-1 signalling, where IGF-1 has neuroprotective and anti-inflammatory
effects [299]. IGF-1 also promotes myelination via IRs on oligodendrocytes [214,216]. Impaired
myelination might further trigger neuroinflammation as myelin debris, products of neuron elim-
ination, and dysregulation of activity-dependent astrocytes are known to activate microglia and
macrophages [300]. In turn, pro-inflammatory cytokines and dysregulation of glia by inflammation
negatively affect myelination [301]. Aberrant signal propagation, axon degradation and neuronal
death due to a lack of metabolic support from myelin sheaths can impair t brain connectivity, re-
sulting in deficient cognitive control, e.g., disruption of cortical-subcortical connections, and thus
contributing to excessive aggression.
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