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Abstract
In this paper, convex approximation methods, such as CONLIN, the method of
moving asymptotes (MMA) and a stabilized version of MMA. (Sequential Convex
Programming), are discussed with respect to their convergence behaviour.
In an extensive numerical study they are finally compared with other well-known
optimization methods at 72 examples of sizing problems. '

1 Introduction

In the last few years the concept of convex approximations caused more and more interest
in structural optimization. A structural optimization problem written in the form

min f(e) (= €R")
‘st h(e)<0,5=1.M : (P1)
eeX

(where X := {& | z; < 2; £F;, i = L.n}) is replaced by a sequence of easier to solve,
convex, separable subproblems which approximate the original problem. The functions f
and k; (j = 1..M) are assumed to be continuously differentiable and the feasible region
- is assumed to be non-empty.

The most general of these methods, the Method of Moving Asymptotes (MMA), is nowa-
days xmplemented in many softwa.re systems. But from a mathematical point of view
it has one major drawback: It is not possible to show a global convergence theorem.
Furthermore, there are simple examples showing that cycling of the method is possible:
This was the reason for further investigations resulting in the paper of Zillober (1993).
By adding a line search subject to a function measuring the global convergence, the be-
haviour of the method could be stabilized without loosing the known advantages.

In the following section we will describe the optimization methods CONLIN and MMA
and outline some of their main features. In section 3 we will explain the stabilized method
and state the most important result concerning global convergence. The numerical be-
haviour of these so—called convez approzimation methods is illustrated by a study of ten
optnmzatlon methods at 72 examples of sizing problems in the final sectlon



2 CONLIN and MMA

Based on the idea of using reciprocal variables Fleury and Braibant (1986) developed the
optimization method CONLIN (convex linearization). An approximation of a function is
defined by separate linearization for each component depending on the sign of the partial
derivative at the expansion point. If the sign is positive then the linearization is performed
with respect to the original variable, if the sign is negative then it is subject to the inverse
variable, leading to a convex approximation of the original function.

The Method of Moving Asymptotes (MMA), however, is a gencralization of CONLIN.
Svanberg (1987) proposed a linearization with respect to substituted variables

1 1
Ug - Iy and Ty — L.‘

respectively, where U; and L; are some chosen parameters.
Definition 2.1 Let g be e continuously differentiable function on X. A MMA approz:-

mation § af g 1s defined by
— L;)?
(22 )

a0 ((EU—:)'“ ) Zaz.

where Y (E) means summation over all componenits i where the partial derivative
F \=

§(=) = 0)+Z 322,

24 4t the ezpansion point =° is non-negative (negalive).

6.‘3,‘
g is defined on Dy := {@ | max(L;,2;) < ; < min(U;, %), = 1..n}.

It is easy to verify that § is a first order approximation of g that means
§(=°) = g(=") and Vj(=’) = Vg(=°),

and that g is cohvex a.nd separable, where g stands for objective or constraint function,
respcctxvely. '

Remarks: '
» The CONLIN method is obtained by letting L; = 0 and U — oo (i = L.n)
o L; and U; are a,symptotes for g

s A very cﬁic:ent dual. a.pproach for solvmg the subproblem is applicable, cf. Svanberg
(1987).

The algonthm proposed by Sva.nberg ( 1987) can be outlmed as follows
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Step 0 : Choose a starting point 2°, let k :=0

Step 1 : Compute f(z*), h;(z*), Vf(as"'), Vhy(*), § =1.M

Step 2 : Define a subproblem, replacing f, h; by f, k;, j = 1..M , according to (2.1)

Step 3 : Solve this subproblem and let it’s solutxon be denoted by a*+!, Let h:=k+1
and goto step 1

We neglect here more details, for example the choice of the asymptotes which are in
general updated in each iteration. Some strategies can be found in Svanberg (1987) or
Zillober (1993). For simplifying the notation we shall use the following abbreviation:
By SP(x*) (subproblem) we state the optimization problem resulting from step 2 of the
proposed algorithm.

For the CONLIN method Nguy.,n et al. (1987) gave a convergence proof but only for
the case that (P1) consists of concave functions which is of less practical interest. They
indicated furthermore by some examples that a generalization to non-concave functions
is not possible. This was the motivation to look for another way to prove convergence of
CONLIN and MMA without loosing the good behaviour of the original method. These
results are reported in the next section.

3 Theory of Sequential Convex Programming

It is well known that by adding a line cearch with respect to a function measuting the
global convergence of an algorithm the behaviour of an optimization method is improved.
Generally such a line search needs additional evaluations of the original functions of (P1).
Therefore most people reject this idea to globalize MMA since its numerical performance
is excellent even without a stabilization. In this section we proof that MMA together with
a line search subject to an augmented Lagrange function leads to a globally convergent
optimization method. But first we rewrite (P1) in order to get a simplified notation in
this section:

min f(2) s.t. ki(e)<0,j=1Lm (P2)

where m = M + 2n, that means we write the box-constraints in the form h;(2) < 0, too.
Now we introduce the augmented Lagrange function.

Definition 3.1 The acugmented Lagrange function 3, : R"*™ — R associated to (P2) is
for a fized parameter » > 0 defined by:

m [ wihi(m) + Thi(®) , if — = < hy(=)
(”) =)+ 2 2 ro
i=1 —*2-;'-: ; otherwise

By J we denote the set of consirainis {J l1<jij<m: %< hj(w)}

This function is also used in the general purpose optimization method SQP (Sequential
Quadratic Programming) by Schittkowski (1981) as a ment function and is known to
work well for stabilizing the method.
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Now we formulate the algorithm, which we call SCP (Sequential Convex Programming)
in order to show the similarity to the SQP-method.

Step 0 : Choose % € X, u° >0, 0 <c <1 (eg. 0.001), 0 <9 <1 (eg. 0.5),
r>0(eg. 1),letk:=0

Step 1 : Compute f(2*), Vf(=*), h;i(=*), Vh;(e*), j =1.m
Step 2 : Compute L* and U (i = 1..n) by some scheme; define f(e), kj(=), 7 =1..m

(ef.(2.1))

Step 3 : Solve SP(a*); let (g:::) be the solution, where v**! denotes the corresponding
vector of Lagrange multipliers

Step 4 : K y*t! = &F stop; (::) is the solution
Step 5 : Let s* ;= (ﬁ::ﬁ:ﬁ) &* =°-|| K+l gk [,

Step 6 : Compute @,,(u,,),, v, (u,,), Ve, (::) sk

Step 7 : If V&, (::),Tsk < 27_'.‘.(5"_)1
~ smallest j € INy, such that &, ((::) -—'qus'“) <@, (::) — VP, (::)Ts“’
(Armijo); let o* =97 .

ak+l

Step 8 : Let (um) = (::) —o*sk, ki=k +1, goto step 1

let » := 107 and goto step 6; otherwise compute the

The major difficulties in proving global convergence for the new method were to show
that the search direction defined in step 5 of the algorithm is a descent direction for ®,
and that the resulting sequence of penalty parameters 1s bounded These theorems can
be found in Zillober {1993).

~ The main zesult of this chapter is the following:

Theorem 8.2 Let the sequence (z* ,u")hum be produced by SCP, all subproblems be
umquely solvable, gradients of active consiraints at the optimal points of SP(a*) be linear

independent and assume a continuous choice of asymptotes. For & # 0 we deﬁne of =

= vEa)2

() Lét the sequence fulfilI the followmg two conditions:

a) jeJifand only 1fh (y”l) =0(j=1 m) (that means, subproblems and ongmal ,
prob[em zdentxfy the same aet of active constmmts)
b) thereisaa e R mdepcndent of | k such that a“ Sa<oo

Then the sequence either terminates at a statmnary poznt or it has at least one accumu-
5 lation point and each accu.mulat:on pomt is. L statzonary point for (P?)
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Proof: Zillober (1993)

A detailed description of the mathematical description of global convergence of the SCP~
method can be found in Zillober (1993).

4 Numerical study

In our test we had 72 examples of sizing problems at our disposal, which have been-a
standard set used for testing in the Finite-Elements system LAGRANGE (Kneppe et
al. (1987)). About 50% are pure test examples, the remaining examples are real life ap-
plications. The largest used dimensons are 385 nodes, 520 structural variables, 108 design
variables and 522 constraints besides box-constraints. In 49 examples only displacement-
dependent constraints were apparent, in 40 examples only stress—constraints appeared,
which is important for the following discussion of the different methods. For all the ex-
amples we knew a best point from numerous previous runs. We compared the methods by
the number of function evaluations, the number of gradient evaluations and the CPU-time

they needed to fulfill
f(=) < f(*)(1+¢) and
max{hi(2)} < ¢

where @* denotes the best known point. We chose ¢ = 0.01, that means, we allowed a dif-
ference of 1% in the objective function to the best known point, simultaneously allowing
a maximum violation of 0.01 of the constraints (notice, that the constraints are scaled in
LAGRANGE, such that values of different examples are comparable). All the methods
were run on all examples. The tables below show the number of different rankings which
the methods attained to fulfill the above conditions. Rank 1 means, this method needed
the least number of function evaluations (gradient evaluations, CPU-time) to fulfill the
above conditions. "F” denotes failure.

The following optimization methods were used:

IBF: Inverse Barrier Function method, cf. Fiacco and McCormick (1968)
MOM: Method of Multipliers, cf. Bertsekas (1982)

SLP: Sequential Linear Programming, cf. Haftka and Xamat (1985)
SRM: Stress Ratio Method, cf. Haftka and Kamat (1985)

SQP: Sequential Quadratic Programming, cf, Schittkowski (1981)
GRG: Generalized Reduced Gradients, cf. Bremicker (1986)

CON: CONLIN

QPR: Quadratic Programming with Reduced Line Search Technique,
- . cf. Bremicker (1986)

9. SCP

-10. MMA

*

PND R
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Rankings of number of function evaluations:

Rank |1 ]2 ]3] 45]6]7][8]9[I0[F|]
IBF |2 [-[-J2[1J1J1[4]3]2]|56
MOM|[2 142|238 [18]12] - |28
SLP (183 f1ofi4]8 ]2 [1]1]-]-]15
SRM (5 [4 (3[4 |1 (4]-T-]-]-1]8
SQP [8 |5 {17{12{12[ 422 |-[-]10
GRG |42 |52 |5 [11]1of10[1 ] - |22
coN[2s({6 23 [7[-1-1-1-1-129
QPR [0 |5 (4[5 [13f0f12]-]-]-]14
SCP [20]14] 5[4 272 - -]15
MMA20 (2156 -|2]1 - [ =117

Rankings of number of gradient evaluations:

|Rank [1[2[3]4]5]6[7][8]09]10|F|
IBF {2 | -|-|2{-11}1|[5]3|2]56
MOMj2 -4 (|1 |4(9]15|11} - {25
SLP |4 (10| 8|6 [11[9|7}2|-|—-1{15
SRM j21 |~ - -] -]-]-|-|-|—-|[51
SQP [ 4 |4 9 [10}12{147f 2] -[-[10
GRG (15(16)10] 3 {2 |2 |-]2| -]~ ]22
CON | 8|8 i11|5 (L | 7|21 (-1]-1]29
QPR |30 (17|65 |3 |3 |- [-|-|-]-]14

1 8CP 1121419108 |8 |17 ]1|-|15
MMA 11 )5 J11]11|10) 5 (2] - | -] - |17

Rankings of CPU-time:

| Raok [ 1 ]2 34|56 ] 7[8J9[10]F |
IBF |~ | -] -]4J1]1]1T473 56
MOM| -1 |42 1]6]8[16[0]-[25
SLP j1246 J11j7 ]3] |-|2]-1]15
SRM |18/ 2 |1 |-~ - == [-=Ts1
SQP |2 27|59 f12[15]8 2]~ [10
GRG |4 146|488 [12]7|5]-1<122
CON |10 1113|521 ~[11-1-[29
QPR 121111 2 J12(12] 6 [ 8 [ - |-[ - |14
SCP |7 12 810|777 81121 - (15
MMAJU B0} 8|75 1|-1-]=-117
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First of all, we have to mentjon that the SRM-method is only applicable for problems
with stress—constraints that means it is not permitted for 32 examples which are contained
in the "F"-column. The IBF-method needs a feasible initial point. This is true for 42
examples. The others are contained in the ?F"—column, too.

Let’s now focuse on the robustness of the different methods. SLP, SQP, QPR, SCP and
MMA have about the same rates of failure. GRG fails more often, but it.is still rather
robust. The CONLIN-method has a notable larger number of non-succeeding runs, which
confirms the theoretical results. MOM is not very robust, even if we need more accurate
results. It is a typical phase 1-method which me-ens it is applicable in a first rough
approximation of the solution. The SRM-method fails in about the half of its possible
applications. Asfor MOM the same conclusions can be drawn, i.e. its rtobustness decreases
considerably with the desired accuracy. The IBF-method is not very robust, independent
of the desired accuracy.

Considering the efficiency of the methods we conclude as follows. The SRM-method is
very eflicient. It doesn’t need any gradient evaluation that means if it converges, it needs
only function evaluations saving a lot of computation time. The convex approximation
methods, SLP and QPR are comparably efficient. SQP and GRG are a bit worse. IBF
and MOM have no chance from this point of view.

If we need more accurate results, then the SQP-method gets better and better. Although
it is very robust, the excellent behaviour of the quadratic model of the original problem
is a typical local property. Besides QPR which is a combination of SQP and GRG and
therefore uses quadratic models itself, all other methods perform in this case worse as
shown in the tables.

Finally, we want to. focuse on the global convergence behaviour of SCP and MMA. In
the tables, there is no considerably difference to observe. One might ask therefore, why
there was a need to add the line-search as shown in ch. 3. But the rate of failure of
MMA increases when using initial points which are more far away from the solution as
the initial guesses of the shown examples (which are guesses of experienced designers).
SCP, however, doesn’t seem to be as dependent as MMA on the quality of initial guesses.
The same conclusion can be drawn applying the methods to examples from other fields
than sizing problems of structural optimization. With other words, SCP can be viewed
as a general purpose method in contrast to MMA which is a typical method for structural
optimization. ' ' ’

5 Conclusion

As most important result from our tests, we learned that there is no method which ful-
fills all possible requests of users. Even if we focuse on a more special purpose, e.g. on
robustness for lower accuracies, it is not possible to predict which method is the best.
Therefore it will always be a little bit a gamble to decide which method should be used
for an optimization. But we can give some recommendations. If the solution doesn’t has
to be very accurate we could use SRM (if applicable) or CONLIN, if we take the risk of
failure. These methods are very efficient in phase 1. If it is more important to get a result
than to get it very fast, then it would be better to use SLP, SQP, QPR, SCP or MMA.

85
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If we need more accurate results, then CONLIN is still very efficient. The efficiency of
SRM decreases with the desired accuracy. But in this case too, the methods which are
more robust in phase 1 don’t loose this property in phase 2, Additionally, the efficiency
of SQP ard QPR increases, the more accurate the solution has to be,
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