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Abstract 
In this paper, convex approximation methods, suclt as CONLIN, the method of 
moving asymptotes (MMA) and a stabilized version of MMA (Sequential Convex 
Programming), are discussed with respect to their convergence behaviour. 
In an extensive numerical study they are :finally compared with other well-known 
optimiza.tion methods a.t 72 examples of sizing problems. 

1 Introduction 

hi the last ·few ye&rs the concept of convex approximations caused. more and more interest 
in structural optimization. A structural optimization problem written in the form 

mm 1(0) (z E lRn) 

I!t-.t. hA;,) ~ 0 , j == I..M 

zEX 

(PI) 

(where X := {as I ~i :5 Zi :5 Zi , i = l..n}) is replaced by a sequence of easier to solve, 
convex, separable subproblems which approximate the original problem. The fundions f 
and hj (j = L.M) are assumed to be continuously differentiable and the feasible region 
is assumed to be non-empty. 
The most general of these methods, the Method of Moving Asymptotes (MMA), is nOwa­
days implemented in many software systems. But from a mathematical point of view 
it has one major drawback: It is not possible to show a global convergence theorem. 
Furthermore, there are simple examples showing that cycling of the method is possible: 
This was the reason for further investigations resulting in the paper of Zillober (1993). 
By adding a line search subject to a. function measuring the global convergence, the. be­
haviour of the method could be stabili~edwithout loosing the known ad vantages. 
In the following section we will describe the optimization methods CONLIN and MMA 
and outline some of their main features. In. section 3 we will explain the stabilized method 
and state the most important result concerning global convergence. The numerical be­
haviour of these so-~a.lled convez approzimation m.ethods is illustrated by a study of ten 
optimization methods at 72 examples of sizing problems in the final section. 
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2 CONLIN and MMA 

Ba.sed On the idea of using reciprocal variables Fleury and Braibant (1986) developed the 
optimization method CONLIN (£Qllvex lineanzation). An approxima.tion of a function is 
defined by separate linearization for each component depending on the sign of the partial 
derivative at the expansion point. If the sign is positive then the linearization is performed 
with respect to the original variable, if the sign is negative then it is subject to the inverse 
variable, leading. to a convex approximation of the original runction. 
The Method of Moving Asymptotes (MMA), however, is a generalization of CONLIN. 
Svanberg (1987) proposed alinearization with respect to substituted variables 

1 
and 

1 
U. -:Ci 

respectively, where Ui and Lj are some chosen parameters. 

Definition 2.1 Let 9 be a continuously differentiable function on X. A MMA approxi­
mation 9 of 9 is defined by 

where ~ (~) means summation over all components i where the partial derivative 

8
89 at the expansion point zO is non-negative (negative). 

:nj 

9 is defined on D jj := {~l max(Li,~j) < Zi < min(Ui, zi),i = l..n}. 

It is easy to verify that g is a first order approximation of 9 that means 

and that 9 is convex and separable, where 9 stands for objective or constraint function, 
respectively. 

Remarks: 

• The CONLIN method is obtained by letting L. := 0 and Uj -t 00 (i = l..n) 

• L j and Uj are asymptotes for 9 

• A very efficient dualap;proach for solving the subproblem is a.pplicable, cf. Svanberg 
(1987). ... . 

The alg~rithm proposed by Svanberg (1987) can be outlined as follows: 
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Step 0 : Choose a starting point ~o, let k :== 0 
Step 1 : Compute I( rDk), hi { zk), V I( 'iDk), \7 h j ( ill), j = 1..M 
Step 2 : Define a subproblem,.replacing I, hj by j, h;, j = I..M , according to (2.1) 
Step 3 : Solve this subproblem. a.nd let it's solution be denoted by zA:+1. Let k := k + 1 

and goto step 1 

We neglect here more details, for example the choice of the asymptotes which are ill 
general updated in ea.ch iteration. Some stra.tegies ca.n be found in Svanberg (1987) or 
Zillober (1993). For simplifying the notation we shall use the following abbreviation: 
By SP(zk) (.§.ubproblem) we state the optimization problem resulting from step 2 of the 
propo·sed algorithm. 
For the CONLIN method Nguy .... n et a1. (1987) gave a convergence proof but only for 
the case that (Pt) consists of concave functions which is of less practical interest. They 
indicated furthermore by some examples tha.t a genera.lization to non-conca.ve functions 
is not possible. This was the motivation to look for another way to prove convergence of 
CONLIN and MMA without ioosing the good behaviour of the original method. These 
results are reported in the next section. 

3 Theory of Sequential Convex Programming 

It is well known that by adding a line i:ear~ with respect to a function measudng the 
global convergence of an algorithm the behaviour of an optimization method is improved. 
Generally such a line search needs a.dditional evaluations of the original functions of (P1). 
Therefore most people reject this idea to globalize MMA since its numerical performance 
is excellent even without a stabilization. In this section we proof tha.t MMA together with 
a line search subject to an augmented Lagrange function leads to a globally convergent 
optimization method. But first we rewrite (Pl) in order to get a simpli:fied notation in 
this section: 

minf(te) s.t. hj(z)~O,j=1..m (P2) 

where m = M + 2n, that means we write the box-constraints in the form 11.,(2) < 0, too. 
Now we introduce the augmented Lagrange function. 

Definition 3.1 The augmented Lagrange function ~r : R n +m ~ 1R associated to (P2j is 
for a fized parameter r > 0 defined by: 

(
:IS) m { 'Ujhj(z) + ~hj(z) , if - :: :5 hj(z) 

~r = !('iD) + E u~ 
U ;=1 _-L, otherwise 

21' . 

By Jwe denote the set of constraints {i 11 :5 j ~ m: -7 < h.j ( rD ) } 

This function is also used in the general purpose optimization method SQP (Sequential 
Quadratic Programming) by Schittkowski (1981) as a. merit function and is known to 
work well for stabilizing the method. 
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Now we formulate the algorithm, which we call SOP (Sequential Convex Programming) 
in order to show.the similarity to the SQP-method. 

Step 0 : Choose at° E X, U O ~ 0, 0 < c < 1 (e.g. 0.001), 0 < .,p < 1 (e.g. 0.5), 
r> 0 (e.g. 1), let le := 0 

Step 1 : Compute f(rlJk), VJ(rlJk), hj{zk), Vhi(ask),) = I..m 

Step 2 : Compute L~ and ut (i == l..n) by some scheme; define j(z), hiCz), j == lo.m 
(cf.(2.1)) 

Step 3 : Solve SP(",k); let (~::) be the solution, where uH1 denotes the corresponding 
vector of Lagrange multipliers 

Step 4 : If yk+l = ",10 stop; (::) is the solution 

Step 5 : Let sk := (:::~!~), 51e :=11 yHl_ mk /I, 

le • { • {2 (~k - Zf)2} . {2 (zf - Lf)2 }} 
1] ;= mm ~tn li(Uk Lk)3 ,,~tn f(Uk· L k)3 1_1 .. n i - i 1_1 •• n j - i 

(> 0) 

Step 6: Compute 4?r{::),. Vi,. (::) , V()r(::)TSk 
" T 1]k(5k )2 

Step 7 : If V()r (:~) sic < 4 let l' :== 101' and gato step 6; otherwise compute the 

smallest j E lNo, such that II' ((:~) - t/isk) < {[if' (::) - c:rpiVil1,. (::) T Sk 

( Armijo ) i let ale :=.,pi 
Step 8 : Let (:::~) := (::) - tTkSk, le := le + 1, goto step 1 

The major difficulties in proving global convergence for the new method were to show 
that the search direction defined in step 5 of the algorithm is a descent direction for C},. 

and that the resulting sequence of penalty parameters is bounded. These theorems can 
be found in Zillober (1993) . 

. The main result of this chapter is the following: 

Theorem 3.2 Let the 6equence (mA: tuk)h:(),t,2, ... be produced hy SOP, all subproblems be 
uniquely solvable, gradients of active comtraints at the optimal points of SP(at"') be linear 
independent and assume a continuous choice 0/ asymptotes. For 6"= f: 0 we define: a k := 
lIuk - v·H1II l . . 

(51 )2 • Let the sequence fulfill the following two conditions: 

a) i E J if and only if hj (yk+1) = 0 (i= l..m) (that meansJ subproblems and original 
problem identify the same set of active constraints) 

~)there is a ex Em. indepe.ndent of le, such that ,it < et < 00 

Then the sequence either terminates at. a stationary point, or it has at least 'one accumu-
. lation point and each accumulation point is. a stationary point for (P2). . 
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Proof: Zillober (1993) 

A detailed description of the mathematical description of global convergence of the SCP­
method can be found in Zillober (1993). 

4 Numerical study 

In our test we had 72 examples of sizing problems at our disposal, which have been- a 
standard set used for testing in the Finite-Elements system LAGRANGE (Kneppe et 
al. (1987». About 50% are pure test examples, the remaining examples are real life ap­
plications. The largest used dimensons are 385 nodes, 520 structural variILbles, 108 design 
variables and 522 constraints besides box-constraints. In 49 examples only displacement­
dependent constraints were apparent, in 40 examples only stress-constraints appeared, 
which is important for the following discussion of the different methods. For all the ex­
a.mples we knew a. best point from numerous previous runs. We compa.red the methods by 
the number offunction evalua.tions, the number of gradient evaluations and the CPU-time 
they needed to fulfill 

l(z) < 1(0·)(1 + e) and 

.max{hi(0)} :5 E, 
l=l •. m 

where lie- denotes the best known point. We chose E = 0.01, that means, we allowed a. dif­
ference of 1% in the objective function to the best known point, simultaneously allowing 
a maximum viola.tion of 0.01 of the constraints (notice, that the constraints a.re scaled in 
LAGRANGE, such that values of different examples are comparable). All the methods 
were run on all examples. The ta.bles below show the number of different rankings which 
the methods attained to fulfill the above conditions. Rank 1 means, this method needed 
the least number of function evaluations (gradient evaluations, CPU-time) to fuHill the 
above conditions. "F" denotes failure . 
. The following optimization methods were used: 

1. IBF: Inverse Barrier Function method, cf. Fiacco and McCormick (1968) 
2. MOM: Method of Multipliers, cf. Bertsekas (1982) 
3. SLP: Sequential Linear Programming, cf. Haftka and Kamat (1985) 
4. SRM: Stress Ratio Method, cf. Ha.{tka and Kamat(1985) 
5. SQP: Sequential QuadrILiic Programming, cf. Schittkowski (1981) 
6. GRG: Generalized Reduced Gradients, cf. Bremicker (1986) 
7. CON: CONLIN 
8. QPR: Quadratic Programming with Reduced Line Search Technique, 

- cf. Bremicker (1986) 
9. SCP 
10.MMA 
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Rankings of number of function evaluations: 

I Rank I 1 I 2 ! 3 1 4 ! 5 I 6 I 7 I 8 I 9 110 I F I , 

IDF 2 - - 2 1 1 1 4 3 2 56 
MOM 2 1 4 2 2 3 8 13 12 - 2a. 

SLP 18 3 10 14 -8 2 1 1 - - 15 
SRM 5 4 3 4 1 4 - - - - 51 
SQP 8 5 - 17 12 12 4 2 2 - - 10 
GRG 4 2 5 2 5 11 10 10 1 - 22 
CON 25 6 2 3 7 - - - - - 29 
QPR 9 5 4 5 13 10 12 - - - 14 
scp 20 14 5 4 2 7 2 3 - - 15 

MMA 20 21 5 6 - 2 1 - - - 17 

Rankings of number of gradient evaluations: 

I Rank I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 I F I 
IBF 2 - - 2 - 1 1 5 3 2 56 

MOM 2 - 4 1 1 4 9 15 11 - 25 
SLP 4 10 8 6 11 9 7 2 - - 15 
SRM 21 - - - - - - - - - 51 
SQP 4 4 9 10 12 14 7 2 - - 10 
GRG 15 16 10 3 2 2 - 2 - - 22 
CON 8 8 11 5 1 7 2 1 - - 29 
QPR 30 17 5 3 3 - - - - - 14 
scp 12 4 9 10 8 5 1 7 1 - 15 

MMA 11 5 11 11 10 5 2 - - - 17 

Rankings of CPU-time: 

I Rank I 1 I 2 I 3 I 4 I 5 I (i I 7 I 8 I 9 110 I F I 
IBF - - - 4 1 1 1 4 3 2 56 

MOM - 1 4 2 1 6 8 16 9 - 25 
SLP 12 6 11 7 11 3 5 - 2 - 15 
SRM 18 2 1 - - - - - - - 51 
SQP 2 2 7 5 9 12 15 8 2 - 10 
GRG 4 4 6 4 8 12 7 5 - - 22 
CON 10 11 13 5 2 1 - 1 - - 29 
QPR 12 11 2 12 12 6 3 - - - 14 scp 7 12 8 10 7 7 3 1 2 - 15 
MMA 11 13 10 8 7 5 1 - - - 17 
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First of all, we have to mention that the SRM-method is only applicable for problems 
with stress-constraints that means it is not permitted for 32 examples which are contained 
in the "F"-column. The IBF-method needs a feasible initial point. This is true for 42 
examples. The others are contained in the "F"-column, too. 
Let's now {ocuse on the robustness of the different methods. 5LP, SQP, QPR, SOP and 
MMA have about the same rates of failure. GRG fails more often, but it. is still rather 
robust. The CONLIN-method has a notable larger number of non-succeeding runs, which" 
confirms the theoretical results. MOM is not very robust, even if we need more accurate 
results. It is a typical phase I-method which m~ns it is applicable in a first rough 
approximation of the solution. The SRM-method fails in about the half of its possible 
applications. As for MOM the same conclusions can be drawn, i.e. its robustness decreases 
considerably with the desired accuracy. The IBF-method is not very robust, independent 
of the desired accuracy. 
Considering the efficiency of the methods we conclude as follows. The SRM-method is 
very,efficient. It doesn't need any gradient evaluation that means if it converges, it needs 
only function evaluations saving a lot of computation time. The convex approximation 
methods, SLP and QPR are comparably efficient. SQP and GRG are a bit worse. IBF 
and MOM have no chance from this point of view. 
If we need more accurate results, then the SQP-method ~ets better and better. Although 
it is very robust, the excellent beha.viour of the quadratic model of the original problem 
is a typical local property. Besides QPR which is a combination of SQP and GRG and 
therefore uses quadratic models itself, all other methods perform in this case worse as 
shown in the tables. 
Finally, we, want to. focuse on the global convergence behaviour of SCP and MMA. In 
the tables, there is no considerably difference to observe. One might ask therefore, why 
there was a need to add the line-search as shown in ch. 3. But the rate of failure of 
MMA increases when using initial poin~1 which are more far away from the solution as 
the initial guesses of the shown examples (which a.te guesses of experienced designers). 
SCP, however, doesn't seem to be as dependent as MMA on the quality oiinitial guesses. 
The same conclusion can be drawn applying the methods to examples from other fields 
than sizing problems of structural optimization. With other words, SCP can be viewed 
as a general purpose method in contrast to MMA which is a typical method for structural 
optimization. 

5 Conclusion 

As most important result from our tests, we learned that there is no method which ful­
fills all possible requests of users. Even if we foeuse on a more special purpose, e.g. on 
robustness for lower accuracies, it is not possible to predict which m.ethod is the best. 
Therefore it will always be a little hit a gamble to decide which method should be used 
for an optimization. But we can give some recommendations. If the solution doesn't ha.s 
to be very accurate we could use SRM (if applicable) or CONLIN, if we take the risk of 
fa.ilure. These methods are very efficient in phase 1. H it is more importa.nt to get a result 
than to get it very fast, then it would be better to use SLP, SQP, QPR, SOP or MMA. 
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If we need more accurate results, then CONLIN is still very efficient. The efficiency of 
SRM decreases with the desired accuracy. But in this case too, the methods which are 
more robust in phase 1 don't" loose this property.in phase 2. Additionally, the efficiency 
of SQP ar.d QPR increases, the more a.ccUrate the solution has to be. 
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