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Abstract: Periodontitis is one of the most prevalent diseases worldwide. The degree of radiographic
bone loss can be used to assess the course of therapy or the severity of the disease. Since automated
bone loss detection has many benefits, our goal was to develop a multi-object detection algorithm
based on artificial intelligence that would be able to detect and quantify radiographic bone loss using
standard two-dimensional radiographic images in the maxillary posterior region. This study was
conducted by combining three recent online databases and validating the results using an external
validation dataset from our organization. There were 1414 images for training and testing and 341
for external validation in the final dataset. We applied a Keypoint RCNN with a ResNet-50-FPN
backbone network for both boundary box and keypoint detection. The intersection over union (IoU)
and the object keypoint similarity (OKS) were used for model evaluation. The evaluation of the
boundary box metrics showed a moderate overlapping with the ground truth, revealing an average
precision of up to 0.758. The average precision and recall over all five folds were 0.694 and 0.611,
respectively. Mean average precision and recall for the keypoint detection were 0.632 and 0.579,
respectively. Despite only using a small and heterogeneous set of images for training, our results
indicate that the algorithm is able to learn the objects of interest, although without sufficient accuracy
due to the limited number of images and a large amount of information available in panoramic
radiographs. Considering the widespread availability of panoramic radiographs as well as the
increasing use of online databases, the presented model can be further improved in the future to
facilitate its implementation in clinics.

Keywords: radiographic bone loss; alveolar bone loss; maxillofacial surgery; deep learning;
classification; artificial intelligence; object detection

1. Introduction

Periodontitis is a chronic, complex, multifactorial, inflammatory disease of the peri-
odontium and is caused by dysbiosis between the microbial biofilm and the host inflam-
matory response [1]. The clinical feature, in addition to the inflammatory changes, is the
regression of the tooth attachment apparatus (attachment loss, clinical attachment loss;
CAL) [2]. Periodontitis is one of the most prevalent diseases in the world [3]. As a result of
alveolar bone loss and tooth loss as well as disorders and limitations of chewing ability, the
health care system is faced with high socioeconomic costs [4,5].

A common method used to assess the progression of the disease is the measurement of
clinical attachment loss (CAL), which is determined by utilizing the pocket depth and the

Appl. Sci. 2023, 13, 1858. https://doi.org/10.3390/app13031858 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031858
https://doi.org/10.3390/app13031858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2697-5143
https://orcid.org/0000-0003-0685-1909
https://orcid.org/0000-0002-9452-9380
https://orcid.org/0000-0003-2298-3696
https://doi.org/10.3390/app13031858
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031858?type=check_update&version=2


Appl. Sci. 2023, 13, 1858 2 of 13

marginal gingival level [2]. There are, however, differences in methodologies, instruments,
applied forces, and techniques that limit the reproducibility of this method [6,7]. Although
the reproducibility of this method can vary between examiners, there are rules that clini-
cians should/must follow to standardize those values as much as possible. There is also
a range of discrepancies established from classic papers in the field of periodontology
considering various parameters such as the diameter, the force used, the angle, the posi-
tioning of the probe, and the current state of inflammation of the tissue examined [7,8]. The
radiological measurement can be a valuable tool for a more objective diagnosis for planning
therapy. Radiological examination of bone loss alterations often include the measurement
of the length from the marginal alveolar bone to the tooth apex or the measurements from
the cementoenamel junction to the tooth apex [9]. These measurements are characterized
by better predictability and a more accurate examination modality in certain cases [2,10].
However, in the early phase of periodontal disease, it is not a reliable method to detect
the first signs or small changes due to the delayed bone reaction and the necessary extent
of demineralization that has occurred [2,10]. Panoramic radiographs are one of the most
commonly used imaging techniques in dentistry. Compared with three-dimensional imag-
ing, it offers many advantages such as widespread availability, low radiation exposure,
and a good overview of the most important structures in the maxilla and mandible [11,12].
The use of two-dimensional radiographic images is a common diagnostic tool in the as-
sessment of periodontitis [13], a disease that results in the loss of periodontal attachment,
and consequently, visible bone loss. The degree of radiographic bone loss can be used to
assess the course of therapy or the severity of the disease [14]. It is necessary to initiate or
adjust treatment if the bone loss exceeds a certain level within a specified period of time.
Various factors can contribute to bone loss around teeth and implants including prosthetic
restorations, infections, or an imbalance of the immune system, leading to proinflammatory
reactions [15,16]. An assessment of severity based on clinical radiograph images requires
both radiological and clinical experience as well as a standardized methodology. Radio-
graphic measurements must be accurate, as even a difference of one to two millimeters
is considered a significant deviation in bone loss measurements [15,17]. Cone beam com-
puter tomography (CBCT) enables a more precise assessment of bone morphology via
three-dimensional imaging [18]. However, two-dimensional imaging remains the most
common imaging modality in clinical practice due to the advantages outlined above. There-
fore, improving the assessment of radiographic bone loss via two-dimensional imaging in
clinics is necessary. Inexperienced clinicians are more likely to make diagnostic errors and
misdiagnoses based on their learning curve. Consequently, a computerized approach with
standardized procedures would be highly beneficial [19].

Artificial intelligence is constantly finding new applications in everyday clinical prac-
tice [20]. Generally, artificial intelligence is the result of algorithms that are designed to
mimic the decision-making processes of humans [21]. Algorithms of this type are often
applied to complex and time-consuming tasks such as risk stratification, diagnostics, and
object detection [15,22]. Artificial intelligence has already been found to be capable of
recognizing and classifying many structures in dentistry, ranging from teeth and bone to
soft tissues [23–25]. Aside from its use in identifying structures and patterns, it is increas-
ingly being used to assess a prognosis, determine risk, and predict complications [24,26,27].
Based on a systematic review by Khanagar et al. (2021), AI has already been incorporated
into many different areas of dentistry [20]. A particular focus was placed on the treatment
of dental diseases and the examination of dental implants [20,28–30]. It has been shown
that computer-aided diagnosis in radiology can assist clinical users in addressing complex
problems by providing a valuable second opinion or objective support [31]. Nevertheless,
studies investigating the use of deep learning in maxillofacial imaging are still lacking [10].
Several studies have already demonstrated radiographic bone loss (RBL) measurements
using dental imaging [32,33]. However, in some studies, only the site of bone loss was
detected, and no automated distance measurements were taken to document the progres-
sion of the loss. A rough direction of disease progression has already been determined
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using percentage data [10]. With the aid of artificial intelligence-based algorithms, it would
be possible to monitor the progression of the disease and to perform faster interventions
following tooth extraction. In fact, such sophisticated algorithms can even be used for com-
paring treatment approaches by examining how bone loss changes over time for pairwise
comparisons. The algorithms are also expected to save a significant amount of time and
effort in the clinical assessment process as well as potentially reduce health care costs in the
long run. The use of artificial intelligence-based assessments of panoramic radiographs
has been shown to be a promising method for monitoring periodontitis in recent stud-
ies [32,34,35]. However, the algorithms employed in these studies were intended to classify
periodontal bone loss cases and stagings, rather than to provide absolute measurements of
bone loss for monitoring over time. As far as we know, no other study has applied AI-based
algorithms to estimate the absolute bone loss or heights for purposes of monitoring.

Since automated bone loss detection has many benefits, our goal was to develop a
multi-object detection algorithm based on artificial intelligence that would be able to detect
and quantify radiographic bone loss using standard two-dimensional radiographic images
in the maxillary posterior region.

2. Materials and Methods
2.1. Study Design

This retrospective cross-sectional study was conducted in accordance with the cur-
rent versions of the Declaration of Helsinki and the Professional Code of Conduct for
Physicians of the Bavarian Medical Association. Prior to the start of this study, the Ethics
Committee of the University of Würzburg approved the study and gave authorization
under authentication number 2022011702.

This study was conducted by combining three recent online databases and validating
the results using an external validation dataset from our organization. These databases con-
sist of the Tufts Dental Database (1000 images) [36], the Panoramic Radiograph Database
(598 images) [37], and the Panoramic Dental Radiograph Database (116 images). The
databases were all published between 2020 and 2022. The metrics were assessed in accor-
dance with the Guidelines for Developing and Reporting Machine Learning Models in
Biomedical Research [38] using a validation dataset from our institute (357 images). From
2010 to 2022, all panoramic radiographs of consecutive patients who underwent tooth
extractions in the posterior region of the upper jaw at the University Hospital Würzburg
were included in the study. The rationale of this inclusion criteria was to extract a validation
dataset that can be compared with the metrics of the online datasets obtained. We focused
on the posterior region of the upper jaw as the measurement of additional areas (e.g.,
mandibular regions) would not be feasible due to the small amount of images and the
extent of information available in panoramic radiographs. Due to the online databases not
being restricted to specific age cohorts, the dataset did not include explicit stratification by
age. However, we restricted the cohort to patients ≥18 years as the detection algorithm
might be affected by tooth germs present in the panoramic radiographs. In the next step,
all images were reviewed by two reviewers for quality assessment. Before the start of
the study, reviewers were briefed on the keypoints to be defined and on the necessary
quality criteria that the radiograph must meet in order to be considered. Both reviewers
assessed the image quality and the keypoint settings in the same setting. A discussion with
a third reviewer solved disagreements. Images that were severely distorted, images that
did not contain maxillary molars (at least the first and second molars) as well as images
that contained artifacts in the region of interest (ROI) (such as implants or other metallic
structures) were excluded from the study.

2.2. Image Processing

We utilized the VIA annotator software [39] to draw polygons around each molar
(first, second, and third). There were no polygons drawn around the third molars unless
they reached the occlusion plane (the occlusal surface of the third molar was approximately
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the same level as the occlusal surface of the second molar) (Figure 1). The blue line in
Figure 1 indicates the approach for a simple measurement of bone heights from the mesial
keypoint (alveolar bone–tooth contact) to the apex in the case a reference line is present.
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Figure 1. Automatic detection of upper molars and keypoints. The blue reference line illustrates the
possibility of automatic distance measurements (e.g., in millimeters) in the case a reference line is
available. Green boxes indicate detection (red text above green box: “Detected”). Red points indicate
“mesial”, “distal”, and “apical” keypoints.

Each tooth was assigned three keypoints (apical, mesial, distal). Apical keypoints were
set at the most apical region of the root that could be identified. Mesial and distal keypoints
were placed at the intersections of the radiographic bone and the teeth. All dataset images
were then resized (224 × 224). Using the Albumentation class in Python, random changes
in brightness (brightness limit: 30%) and contrast (contrast limit: 30%) were applied as data
augmentation techniques. To obtain more precise box drawings for the molars, polygons
were converted to boundary boxes using Python code. Figure 2 illustrates an example of
the analyzed image structure.

2.3. Model

Feature extraction over an entire image was performed using a backbone network.
Our backbone network was based on Mask R-CNN [40]. In particular, as shown in Figure 3,
we employed ResNet50 [41] as well as another more effective backbone network proposed
by Lin et al. [42], the feature pyramid network (FPN). An entire input image was analyzed
by our backbone network, which extracted a set of convolutional features from the image,
and the convolutional features were then used to extract the ROI. Therefore, ResNet-
50-FPN formed our backbone network. We utilized the same ResNet-50-FPN backbone
structure as described previously [43]. As opposed to Mask R-CNN, keypoint RCNN
encodes a keypoint (instead of the entire mask) of the detected object. Figure 3 illustrates
the architecture of the keypoint R-CNN. A box head performed object classification and
bounding box regression using the feature maps provided by the backbone network, and
a mask head performed object segmentation using the feature maps provided by the
backbone network. The model can be used to predict specific keypoints on the objects
detected by the box head by attaching a keypoint detection head and properly training
the network. A previous study showed that this method with a keypoint head could
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be used to estimate human poses by picking some key points of the body such as eyes,
elbows, and knees [44]. We adopted the following architecture in this study, the Mask
R-CNN based on ResNet-FPN with a keypoint detection module. This allowed us to
identify the boundary boxes (upper molars) and the three keypoints within each box. The
hyperparameters were tuned using Ray Tune [40]. In Ray Tune, cutting-edge optimization
algorithms were leveraged at scale to accelerate hyperparameter tuning. As a Ray-based
platform, it was designed to remove friction from scalability and allow for hyperparameter
tuning during the experiments. We tuned the batch size and the learning rate utilizing
5-fold cross-validation. Afterward, we trained our model with 5-fold cross-validation, a
learning rate scheduler, and an optimizer (step size = 1; gamma = 0.3; momentum = 0.9;
weight decay = 0.0005), with the learning rate set at 0.0600. For the training of the model,
we used a batch size of eight for a total of ten epochs. During the evaluation process, the
CrossEntropyLoss was used as the criterion. The weights of the model were then saved
for evaluation purposes. The code in the data availability section describes the specific
characteristics of each model and all of the preprocessing steps.
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Figure 2. Illustration of molar (boxes) and keypoint (mesial, distal, and apical) settings. Boundary
boxes were set according to the polygons drawn by two dentists with more than three years of
experience in dental radiograph examinations. The whole panoramic radiographic image was used
as the image input. The shown figure was limited to the region of interest for better visualization.

2.4. Model Evaluation and Statistical Analysis

An objective metric that measures how closely the model’s bounding box is to the
ground truth bounding box is required in order to evaluate the model’s performance in
detecting teeth. The Jaccard index, also known as the intersection over union (IoU), was
used in order to accomplish this. The IoU was calculated by dividing the overlap between
the ground truth box (A) and the model-predicted box (B) by the total area of the two
boxes’ coverage.

IoU =
A ∩ B
A ∪ B

Model precision (AP) and recall (AR) were determined at different values of the
IoU threshold.
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An object keypoint similarity (OKS) measure was used to assess the model’s perfor-
mance in detecting keypoints [27]. A similar concept to IoU was used here. For each object,
an OKS value was calculated. The OKS value ranged between 0 and 1. In general, OKS
values tend to be closer to 1 as the model’s prediction is closer to the ground truth. As
with IoU, this metric was used for assessing tasks related to object detection. In keypoint
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detection, OKS serves as a threshold to determine precision and recall. In the case of key-
point detection, only those values whose OKS value were higher than the OKS threshold
were considered as true positives. It was possible to obtain AP and AR curves as well as
precision–recall curves by adjusting the OKS thresholds. Additionally, we integrated a
code snippet to indicate a possible automatic measurement (e.g., in mm for documentation
purposes) if a reference line was available on the radiograph image by visualizing the
connection line between the mesial keypoint and the apical keypoint.

AP and AR on the detection of molars were obtained by varying the threshold for
the model’s confidence scores on bounding box regression using different IoU thresholds
(IoU threshold 0.50–0.95, increased by 0.05). AP and AR were also calculated using differ-
ent thresholds for the model’s confidence scores on keypoint detection (OKS threshold of
0.50–0.95, increased by 0.05). In this study, algorithms were constructed and evaluated us-
ing the Python (Python version: 3.10.4 (64-bit)) libraries OpenCV, NumPy, Pillow, Seaborn,
Matplotlib, TensorFlow, Keras, and scikit-learn. Experiments were performed on a com-
puter (Windows 10 OS) with an AMD Ryzen 9 5950X 16-Core Processor CPU, 64 GB RAM,
and an NVIDIA Geforce RTX 3090 GPU.

3. Results
3.1. Testing

There were 1414 images for training and testing and 341 for external validation in the
final dataset. The evaluation of boundary box metrics showed a moderate overlap with
the ground truth, revealing an average precision of up to 0.758. The average precision and
recall over all 5-folds were 0.694 and 0.611, respectively. The mean average precision and
recall for the keypoint detection were 0.632 and 0.579, respectively. Figure 1 illustrates
the detection of the keypoints including the reference line for automatic measurements.
Notably, the evaluation metrics were determined by considering varying IoU thresholds
from 0.50 to 0.95 (Table 1). This means that we considered true positive cases when the
overlap between the prediction and the ground truth was over 50%. Lower thresholds
would lead to higher AP and AR metrics.

The intersection over union (IoU), average precision (AP) per fold, average recall
(AR) per fold, and mean average precision (mAP) and recall (mAR) over all folds of cross-
validation are shown for the box (molar) and keypoint (apical, mesial, distal) detections.
maxDets: a given number of maximum detections. IoU = 0.50:0.95: varying thresholds
within the given range.

Table 1. Evaluation of the training dataset.

Boxes Keypoints

IoU = 0.50:0.95 IoU = 0.50:0.95

Fold 1 AP 0.534 Fold 1 AP 0.639
Fold 2 AP 0.758 Fold 2 AP 0.622
Fold 3 AP 0.717 Fold 3 AP 0.726
Fold 4 AP 0.725 Fold 4 AP 0.643
Fold 5 AP 0.735 Fold 5 AP 0.531

IoU = 0.50:0.95 IoU = 0.50:0.95

Fold 1 AR 0.642 Fold 1 AR 0.616
Fold 2 AR 0.614 Fold 2 AR 0.513
Fold 3 AR 0.664 Fold 3 AR 0.556
Fold 4 AR 0.546 Fold 4 AR 0.633
Fold 5 AR 0.589 Fold 5 AR 0.579

mAP 0.6938 mAP 0.6322
mAR 0.611 mAR 0.5794
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3.2. Validation

The validation of the boundary box metrics with our institutional dataset showed a
similar average precision of up to 0.815. The average precision and recall over all five folds
were 0.677 and 0.643, respectively. The mean average precision and recall for the keypoint
detection were 0.555 and 0.585, respectively (Table 2).

Table 2. Evaluation of the testing dataset.

Boxes Keypoints

IoU = 0.50:0.95 IoU = 0.50:0.95

Fold 1 AP 0.621 Fold 1 AP 0.544
Fold 2 AP 0.465 Fold 2 AP 0.358
Fold 3 AP 0.815 Fold 3 AP 0.671
Fold 4 AP 0.691 Fold 4 AP 0.604
Fold 5 AP 0.795 Fold 5 AP 0.599

IoU = 0.50:0.95 IoU = 0.50:0.95

Fold 1 AR 0.651 Fold 1 AR 0.512
Fold 2 AR 0.784 Fold 2 AR 0.655
Fold 3 AR 0.719 Fold 3 AR 0.498
Fold 4 AR 0.604 Fold 4 AR 0.577
Fold 5 AR 0.455 Fold 5 AR 0.681

mAP 0.6774 mAP 0.5552
mAR 0.6426 mAR 0.5846

Intersection over union (IoU), average precision (AP) per fold, average recall (AR) per
fold, and mean average precision (mAP) and recall (mAR) over all folds of cross-validation
are shown for the box (molar) and keypoint (apical, mesial, distal) detections. maxDets:
a given number of maximum detections. IoU = 0.50:0.95: varying thresholds within the
given range.

4. Discussion

An automated method for assessing and quantifying radiographic bone loss in the
upper molar area was presented in this study. The evaluation of the boundary box metrics
showed a moderate overlap with the ground truth, revealing an average precision of up to
0.758. The average precision and recall over all five folds were 0.694 and 0.611, respectively.
The mean average precision and recall for the keypoint detection were 0.632 and 0.579,
respectively. Despite only using a small and heterogeneous set of images for training,
our results indicate that the algorithm was able to learn the objects of interest, although
without sufficient accuracy due to the limited number of images and a large amount
of information available in the panoramic radiographs. Considering the widespread
availability of panoramic radiographs as well as the increasing use of online databases,
the presented model can be further improved in the future to facilitate its implementation
in clinics.

Panoramic radiographs are the most commonly used dental imaging technique. As
a diagnostic tool, it is used to evaluate dental hard tissues, bones, and soft tissues in
the maxillofacial region. Danks et al. showed that periapical radiographic imaging with
the aid of an AI could detect landmarks well and diagnose periodontal bone loss on the
basis of these [45]. The amount of bone loss in the alveolar region was underestimated
by all radiographic methods. In bitewing radiographs, the underestimation ranged from
11 to 23% [46]. There were some advantages to intraoral and panoramic radiographs over
bitewing radiographs when diagnosing bone loss; however, the differences were minimal
in the premolar and molar regions [46]. Panoramic imaging, bitewing, and periapical
radiographs have fairly similar sensitivities but significant differences in specificities [47].
In comparison with the periapical and bitewing radiographs, panoramic imaging resulted
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in the lowest specificity values. The use of vertical bitewings rather than horizontal
bitewings was recommended in periodontal treatment planning [13]. A major advantage
of panoramic and bitewing radiographs is their precise resolution in the region to be
examined. While this method is effective, it does have the disadvantage of being able
to image only a small area, which may result in lower reproducibility between different
time points. A panoramic radiograph, which is also commonly used as a diagnostic
tool in clinics, provides a more comprehensive view, can also reduce the probability of
missing potentially significant areas. In addition to providing information regarding the
periodontal bone situation, periapical lesions, and continuity breaks in the bone, it is widely
used among clinics [11,12,25]. According to Personn et al., a high degree of agreement
was found between intraoral dental films and panoramic radiographs in determining the
cemento-enamel junction (CEJ) plane distances and periodontal bone loss [46]. In light
of the shorter time required for panoramic radiographs, it can be concluded that it can
serve as a partial substitute for a full-mouth dental film evaluation to assess periodontal
health [46]. It is very time-consuming and resource-intensive to manually determine the
radiological bone loss, which is why automation such as through artificial intelligence is
essential for an accurate and reproducible recording of bone loss progression [46]. When
image features are combined with a deep learning model that detects both objects and
keypoints, examiner-specific differences can be eliminated, and high reproducibility can
be ensured for diagnostics and treatment [33]. Aside from providing objective quality
findings, such algorithms can be used to recognize and number the teeth and the region to
be examined, thereby saving a great deal of time when completing the treatment card [48].

Although two-dimensional imaging has many advantages, it also has certain limi-
tations. In comparison to single-tooth images, the large field of view reduces the reso-
lution of individual teeth [33]. Although a 3-dimensional body can be represented on a
2-dimensional image, there are certain limitations. Bouquet et al., for example, were able
to demonstrate that roots that protruded into the maxillary sinus in a 2D image did not
make contact with it when viewed in 3D. Additionally, teeth may appear to be inclined
when they are not. All of these variations are explained by the fact that a volume is repre-
sented on a flat plane [49]. A second limitation of artificial intelligence is that its complex
algorithms do not represent the decision-making process in an obvious manner, obscuring
information that might be useful to practitioners for making their own choices compared
to a human-based detection approach [33,50].

A well-known bias in studies investigating machine learning is the use of the same
dataset for both validation and training. Therefore, we applied a five-fold cross-validation
and used an independent validation dataset to prevent this error [24,51,52]. Machine
learning has the disadvantage of requiring a large amount of comparable data to implement
its algorithms. In order for artificial intelligence to be able to make a final decision, it is
necessary for it to receive very precise instructions on what it should recognize or classify.
The annotation of an image is required in order to identify and classify specific areas within
it. Artificial intelligence implementation in clinical practice, however, is challenging due to
the time-consuming nature of this step. The resolution of problems by algorithms will be
impacted by unreliable annotations, inhomogeneous, or too homogeneous (e.g., overfitting)
image inputs for the learning process [21]. Our goal has been to generate the most extensive
dataset possible for the training process by using several databases in order to take these
aspects into consideration.

It is worth noting that the training dataset consists of three separate datasets, which
were created using different hardware, software, and hospital standards. The model
metrics may have been adversely affected by these factors. In spite of this, it has also led to
a more generalizable approach compared to a methodology where only one institution is
involved. Insufficiently annotated data may lead to worse results in a new validation set
if the algorithm learns this error within the training dataset [53]. To validate the model’s
performance, we used a separate database that was collected within our institute. It is
necessary to collect further large datasets in order to be able to overcome individual factors
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such as the different imaging characteristics of scanners or different recording standards
and create uniform data. The relationship with clinically implemented scores such as the
PSI as well as other periodontal measurements should also be addressed in further clinical
studies in a prospective design. It has already been demonstrated by Danks et al. that
AI-based algorithms are capable of diagnosing periodontal tissue loss using periapical
radiographs [45]. In comparison to this study, periapical radiographs contain significantly
less image information than panoramic radiographs, so a smaller dataset was required for
the AI learning process. A panoramic radiograph can provide a great deal of additional
information. The same algorithm can be applied to a wide range of clinical research
questions once a sufficiently large dataset has been obtained. By setting new objects
and keypoints, other structures of interest can be detected. In the case of the provided
approach, a major disadvantage is that a large amount of data is required for adequate
object detection, as panoramic radiographs contain a substantial amount of information
that must be learned by the algorithm [54]. The dataset obtained in our clinics and the
databases were further reduced by excluding images of teeth with fillings, implants, and
artifacts. This limits the current applicability further, as these cases are often seen in clinics.
An open-access database and multicenter studies with a larger amount of data including
all cases despite fillings, implants, and artifacts are necessary to retrain the algorithm and
increase its precision when detecting objects of interest.

The clinical decision should, at the end of the day, take all factors that influence the
patient into account in order to establish a causal decision chain. In the end, this decision
needs to be made by a clinically experienced practitioner. With the aid of the provided
methodological approach, this decision chain can be supported with an objective analysis,
resulting in a significant improvement in quality as well as a reduction in the amount
of work required [24]. The implementation of the provided algorithm into a software
platform could facilitate time savings for the practitioner, along with the documentation
of the radiograph images in a sufficient manner in the future. In this instance, it would
be possible to document and visualize the patient’s bone loss at regular intervals to avoid
missing the best possible time to intervene. In addition, implant planning can be initiated
directly in the event of tooth loss. Through the precise documentation of AI, additional
benefits will be possible as a result of increasing digitalization such as interdisciplinary
cooperation between departments and within different locations. As a result, different
doctrinal perspectives could be generalized within a software framework.

5. Conclusions

This study developed an artificial intelligence-based automated method for assessing
and quantifying radiographic bone loss in the upper molar area. Despite the small number
of images used for the training process and the fact that panoramic radiographs contain a
considerable amount of information, our results indicate that the algorithm is capable of
learning the objects of interest for the detection tasks. Through the widespread availability
of panoramic radiographs, collaborative efforts between institutions and online databases,
large amounts of panoramic radiographs can be collected to retrain the provided algorithm
and facilitate its implementation in clinics.
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