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Summary 

Empathy, the act of sharing another person’s affective state, is a ubiquitous driver for 

helping others and feeling close to them. These experiences are integral parts of human 

behavior and society. The studies presented in this dissertation aimed to investigate the 

sustainability and stability of social closeness and prosocial decision-making driven by 

empathy as well as other social motives. In this vein, four studies were conducted in which 

behavioral and neural indicators of empathy sustainability were identified using model-

based functional magnetic resonance imaging (fMRI). 

Applying reinforcement learning (RL), drift-diffusion modelling (DDM), and fMRI, the first 

two studies were designed to mathematically understand the temporal evolution of 

empathy-related social behavior. That is, we investigated the formation and sustainability of 

empathy-related social closeness (study 1) and examined how sustainably empathy led to 

prosocial behavior (study 2). Additionally, empathy-related social behavior was compared to 

social closeness and prosocial decision-making related to reciprocity, i.e., the social norm to 

return a favor. Using DDM and fMRI, the last two studies investigated how empathy 

combined with reciprocity on the one hand and empathy combined with the egoistic motive 

of outcome maximization on the other hand altered the behavioral and neural social 

decision process. 

The results of studies 1 and 2 showed that empathy-related social closeness and prosocial 

decision tendencies persisted even if empathy was only weakly reinforced. The sustainability 

of empathy-associated effects was related to a recalibration of the empathy-related social 

closeness learning signal (study 1) and the maintenance of a prosocial decision bias (study 2). 

The findings of study 3 showed that empathy influenced the processing of reciprocity-based 

social decisions, but not vice versa. Study 4 revealed that empathy-related decisions were 

modulated by the motive of outcome maximization, depending on individual differences in 

state empathy. 

Together, the results in this dissertation provide valuable insights into the mechanisms 

underlying empathy-related social closeness and decision-making. The studies strongly 

support the concept of empathy as a sustainable driver of social closeness and prosocial 

behavior, that is stronger than another important social motive, can enhance prosocial 

behavior based on other motives, and is resilient to potentially undermining motives.  
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Zusammenfassung 

Empathie, d.h. das Teilen des Affekts einer anderen Person ist eine allgegenwärtige 

Motivation, anderen Menschen zu helfen und sich ihnen nahe zu fühlen. Diese Erfahrungen 

sind wesentliche Bestandteile menschlichen Verhaltens und zentral für das Fortbestehen 

unserer Gesellschaft. Die Arbeiten der hier vorgestellten Dissertation setzten sich zum Ziel, 

die Nachhaltigkeit und Stabilität von sozialer Nähe sowie prosozialem 

Entscheidungsverhalten basierend auf Empathie und anderen sozialen Motiven zu 

beleuchten. Hierfür wurden vier Studien durchgeführt, in denen Verhaltensmaße und 

neuronale Indikatoren für die Nachhaltigkeit von Empathie unter Einsatz von 

modellbasierter funktioneller Magnetresonanztomographie (fMRT) erhoben wurden. 

Unter Verwendung von Verstärkungslernmodellen, Drift-Diffusionsmodellen (DDM) und 

fMRT wurden die ersten zwei Studien entwickelt, um die Entwicklung von 

empathiebasiertem sozialen Verhalten mathematisch zu verstehen. Wir untersuchten somit 

den Aufbau und die Nachhaltigkeit von empathiebasierter sozialer Nähe so wie 

empathiebasiertem prosozialen Verhalten. Des Weiteren wurde empathiebasiertes 

Verhalten mit sozialer Nähe und prosozialem Entscheidungsverhalten basierend auf 

Reziprozität verglichen, der sozialen Norm, Gefallen zurückzuzahlen. Mit Hilfe von DDM und 

fMRT wurde in den letzten beiden Studien untersucht, wie Empathie in Kombination mit 

Reziprozität einerseits und Empathie in Kombination mit dem egoistischen Motiv der 

Gewinnmaximierung andererseits den verhaltensbezogenen und neuronalen sozialen 

Entscheidungsprozess verändert. 

Die Ergebnisse der Studien 1 und 2 zeigten, dass empathiebasierte soziale Nähe und 

empathiebasierte prosoziale Entscheidungstendenzen selbst dann fortbestanden wenn 

Empathie nur noch selten verstärkt wurde. Die Nachhaltigkeit dieser Effekte hing mit der 

Rekalibrierung des empathiebasierten Lernsignals für soziale Nähe (Studie 1) und dem 

Aufrechterhalten eines prosozialen Entscheidungsbias zusammen (Studie 2). Die Ergebnisse 

von Studie 3 zeigten, dass Empathie die Verarbeitung von reziprozitätsbasierten sozialen 

Entscheidungen beeinflusst, aber nicht umgekehrt. Studie 4 zeigte, dass empathiebasierte 

soziale Entscheidungen durch das Motiv der Gewinnmaximierung moduliert werden 

abhängig von individuellen Unterschieden im Empathiezustand. 
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Zusammengefasst liefern die Ergebnisse der vorliegenden Dissertation wertvolle Einblicke in 

die Mechanismen, die empathiebasierter sozialer Nähe und sozialen Entscheidungen zu 

Grunde liegen. Die Studien unterstützen nachdrücklich das Konzept von Empathie als 

nachhaltige Triebkraft für soziale Nähe sowie prosoziales Entscheidungsverhalten, die 

stärker ist als ein anderes wichtiges soziales Motiv, prosoziales Verhalten basierend auf 

anderen Motiven zusätzlich verstärken kann und widerstandfähig gegenüber potentiell 

unterminierenden Motiven ist.  
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1 Introduction 

Social closeness and prosocial behavior are two key ingredients for cooperation on an 

individual as well as societal level. The studies in this dissertation aimed at shedding light on 

the computational and neural processes underlying social closeness and prosocial behavior 

as induced by empathy, one principal driver of social closeness and prosocial behavior 

(Batson, 2010; Batson et al., 1991; FeldmanHall, Dalgleish, Evans, & Mobbs, 2015; Grynberg 

& Konrath, 2020; Hein, Morishima, Leiberg, Sul, & Fehr, 2016; Majdandžić, Amashaufer, 

Hummer, Windischberger, & Lamm, 2016; Morelli, Rameson, & Lieberman, 2014; Singer & 

Hein, 2012). Specifically, we investigated the formation and sustainability of empathy-

related social closeness as well as the sustainability, benefits, and resilience of prosocial 

decision behavior related to empathy and other social motives. 

The first section introduces the reader to the definition of empathy and the other social 

motives as well as to how motives were experimentally activated in the studies presented in 

this dissertation. In the following sections, the tasks and methods used to assess motive-

driven behavior and the two computational modelling methods applied for data analysis (the 

Rescorla-Wagner (RW) learning model and the drift-diffusion model, DDM) are described. 

The final sections of the introduction focus on the method to measure neural activation in 

the studies presented (functional magnetic resonance imaging, fMRI) and outlines the 

results of previous studies relevant to the research questions addressed in this dissertation. 

1.1 Social motives 

Social behavior, such as helping a friend move houses, carrying an elderly lady’s groceries, or 

sharing study notes, is ubiquitous in our daily lives. It is also key to a peaceful human 

coexistence and societal stability. Whether a person decides to be prosocial is decisively 

determined by the person’s current motivation to act prosocially towards a specific other 

person. One key motive that drives prosocial behavior is the empathy motive (Batson, 

Ahmad, & Stocks, 2011; Cialdini et al., 1987; Decety, Bartal, Uzefovsky, & Knafo-Noam, 2016; 

Preston, 2007), that is the motive of sharing another person’s affective state that elicits the 

goal to increase the well-being of that other person (Batson, 2010). 
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While motives can sometimes be understood in terms of traits, i.e., stable person 

characteristics (McClelland, 1985, 2014), they can also be defined as transient drivers of 

behavior that can be more or less active in a given situation (Kruglanski et al., 2018; Lewin, 

1951). In this work, motives are understood in terms of the latter definition. This allowed us 

to experimentally activate empathy and other motives in order to investigate participants’ 

motive-related social closeness and social decision-making behavior. The formation and 

sustainability of empathy-related social closeness and prosocial behavior is the focus of this 

dissertation. However, motives rarely act in isolation. Thus, another important social motive 

was investigated in this dissertation: the reciprocity motive, i.e., the social norm to return a 

previously given favor (Gouldner, 1960). Additionally, the combination of empathy with the 

egoistic motive of outcome maximization, another frequent driver of prosocial behavior 

(Batson & Shaw, 1991; Cutler & Campbell-Meiklejohn, 2019; Tabibnia & Lieberman, 2007), 

was investigated. In the following sections, these three motives are introduced in more 

detail. 

Empathy 

Empathy is a multi-dimensional construct, and researchers differ widely in how they define 

their working concepts of empathy. While some stress the difference between cognitive and 

emotional empathy (Harari, Shamay-Tsoory, Ravid, & Levkovitz, 2010; Perry & Shamay-

Tsoory, 2013), others highlight its distinctiveness from compassion (Bloom, 2017; Singer & 

Klimecki, 2014) and theory of mind (Böckler, Kanske, Trautwein, & Singer, 2014; Kanske, 

Böckler, Trautwein, Lesemann, & Singer, 2016). However, what most of them agree on is the 

notion that certain facets of empathy can drive prosocial behavior. Batson most prominently 

coined this so called empathy-altruism hypothesis (Batson, 2010; Batson, Ahmad, & Tsang, 

2004; Batson et al., 1991) making a strong case for empathy as a key driver for behaving 

prosocially. Since then a lot of works, particularly those that operationalised empathy for 

pain, have demonstrated that explicit activation of the empathy motive towards another 

person increased participants’ self-reported empathy and subsequent prosocial decision 

behavior towards that person (Gu & Han, 2007; Hein, Engelmann, Vollberg, & Tobler, 2016; 

Hein, Morishima, et al., 2016; Klimecki, Mayer, Jusyte, Scheeff, & Schönenberg, 2016; Singer 

& Lamm, 2009). In the studies presented in this dissertation, we have built on these works 

and explicitly activated participants’ empathy motive towards an interaction partner. This is 

commonly accomplished by participants observing that an interaction partner repeatedly 
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receives painful stimulation (e.g., Hein, Morishima, et al., 2016). To behaviorally assess 

participants’ empathic response, they typically report their emotional reaction on an 

analogue scale, i.e., a self-report measure of how they feel after observing the other’s 

stimulation. The worse participants feel in response to the other’s painful stimulation, the 

higher the empathic response (Böckler et al., 2014; Hein, Morishima, et al., 2016; Lamm, 

Batson, & Decety, 2007). To facilitate affect sharing, participants themselves experienced the 

same painful stimulation beforehand. 

Reciprocity 

The reciprocity motive is based on the social norm to reciprocate previously received helping 

behavior (Falk & Fischbacher, 2006; Fehr & Gächter, 2000; Gouldner, 1960) and is essential 

in building and maintaining cooperation across society in general (Axelrod & Hamilton, 

1981). As such, the reciprocity motive is one principal driver for prosocial behavior and 

fosters feelings of social closeness (Adams & Miller, 2022; Fehr, Fischbacher, & Gächter, 

2002; Hein, Morishima, et al., 2016). In general one can distinguish between positive and 

negative reciprocity, as well as direct and indirect reciprocity (Fehr & Gächter, 2000; Nowak, 

2006; Perugini, Gallucci, Presaghi, & Ercolani, 2003). Positive reciprocity describes the norm 

of reciprocating acts of kindness with kind behavior, whereas negative reciprocity describes 

the norm of reciprocating unkind behavior with unkind behavior in return (Chernyak, 

Leimgruber, Dunham, Hu, & Blake, 2019; Kaltwasser, Hildebrandt, Wilhelm, & Sommer, 

2016). Moreover, reciprocity can be direct, meaning that a favor is directly returned to the 

person who has paid the favor in the past. Indirect reciprocity, however, describes acts of 

reciprocity whereby a previously paid favor is indirectly repaid to a different person. Indirect 

reciprocity strongly builds on the assumption of a shared social norm of reciprocity and 

cooperation in society at large (Hilbe, Schmid, Tkadlec, Chatterjee, & Nowak, 2018; Simpson 

& Willer, 2008). In the works of this dissertation, we focussed on reciprocity as driver for 

prosocial behavior towards a specific previous interaction partner, i.e., positive direct 

reciprocity. Previous works have shown that activating the reciprocity motive by paying 

someone a favor, e.g., by cooperating in an economic game (McCabe, Rigdon, & Smith, 

2003) or forgoing a monetary reward to spare someone from pain (Hein, Morishima, et al., 

2016), increases this person’s likelihood of making prosocial decisions in subsequent 

interaction tasks. Based on such previous works, we activated the reciprocity motive 

towards an interaction partner by having participants observe that this interaction partner 
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repeatedly forwent a monetary reward in order to save the participant from a painful 

stimulation. Analogously to the empathy motive, the reciprocity response was assessed 

using a self-report scale asking participants how the feel in response to the other’s decision 

to forgo a monetary reward to save the participant from pain. Previous research showed 

that the better participants feel in response to the other person’s decision to help, the 

stronger the reciprocity motive (Hein, Morishima, et al., 2016). 

Egoism 

In contrast to empathy and reciprocity, egoism may not be primarily perceived as a motive 

that elicits prosocial behavior. However, egoistic motives as incited by monetary rewards can 

lead to prosocial behavior and can be considered a social motive (Batson et al., 2011; Besley 

& Ghatak, 2018; Cialdini et al., 1987). When driven by egoism, the goal of the prosocial 

behavior is not to improve the well-being of the other person (as is the case for empathy) 

but to improve one’s own well-being. Egoism can hence incite prosocial behavior in 

situations in which the action that improves one’s own well-being aligns with the behavior 

that improves the well-being of the other person. Inspired by previous work, we activated 

the egoism motive by offering participants a monetary bonus that was additionally paid out 

if they behaved prosocially (Balliet, Mulder, & Van Lange, 2011; Besley & Ghatak, 2018). 

Previous studies have demonstrated that reputation is an important confounding factor for 

effects of monetary incentives (Engelmann & Fischbacher, 2009; Exley, 2018; Izuma, Saito, & 

Sadato, 2008). Hence, to reduce potential influences of reputation and carve out the effect 

of the monetary incentive alone, we offered the monetary bonus to the participant in 

private. 

1.2 Measuring the effects of motive activation 

The studies outlined in this dissertation made use of two principal measures for motive-

related behavior: ratings of social closeness and social decision-making behavior (see Figure 

1.2.1 for visualization). The first measure yielded continuous trial-by-trial indications of 

social closeness. The second measure aimed at assessing participants’ likelihood for 

prosocial behavior driven by empathy, reciprocity and/or egoism and yielded binary trial-by-

trial results (prosocial decision vs. egoistic decision). Both measures and the underlying 

assumptions are discussed in the following two sections. 
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Social decision-making and the dictator game 

In everyday life, humans face multiple situations in which they have to make social decisions, 

e.g., whether to hold the door for someone or not, whether to share the last piece of 

chocolate with a sibling or eat it all alone, or whether to share one’s apartment with a 

refugee family or not. All these scenarios are examples for social decision-making (for 

reviews, see e.g., Rilling & Sanfey, 2011; Van Dijk & De Dreu, 2021). In behavioral economics, 

various tasks, termed economic games, have been developed to assess and quantify 

people’s (social) decision preferences in different scenarios. Based on the idea of the homo 

oeconomicus (Mill, 1836), behavioral economists assumed that in each game, participants 

should only make rational decisions such that their own utility is maximized, i.e., make 

decisions that result in the most money for themselves (von Neumann & Morgenstern, 

1944). However, what economists actually observed was that participants did not strictly 

adhere to this assumption but oftentimes decided prosocially instead (Camerer, 2003; Eckel 

& Grossman, 1996; Forsythe, Horowitz, Savin, & Sefton, 1994). Decisively, the more 

pronounced an individual’s motivation for prosocial behavior, the more frequent and 

pronounced were prosocial decisions (Ben-Ner & Kramer, 2011; Edele, Dziobek, & Keller, 

2013; Hein, Morishima, et al., 2016; Klimecki et al., 2016; Schier, Ockenfels, & Hofmann, 

2016). Economic games hence provide a quantitative measure for prosocial behavior that is 

sensitive to a participant’s motivational state. 

For the studies in this dissertation, we used an adopted version of one specific economic 

game, the dictator game, to assess participants’ changes in motive-driven prosocial 

behavior. In the original version of the dictator game (Forsythe et al., 1994), an allocator  the 

dictator  divides a given amount of money between herself and another person. In the 

binary version of the dictator game used in this dissertation, participants can repeatedly 

choose between two predefined distribution options, one of which yield a relatively more 

prosocial whereas the other yields a relatively more egoistic distribution (e.g., Chen & 

Krajbich, 2018; Hein, Morishima, et al., 2016; Hutcherson, Bushong, & Rangel, 2015). It has 

been shown that the specific distribution options influence participants’ decision 

preferences (Bolton & Ockenfels, 2000; Charness & Rabin, 2002; Fehr & Schmidt, 1999). 

Specifically, the higher the potential gain for the self associated with a particular distribution 

option, the more likely it is that a participant will choose this option. Likewise, the larger a 

potential gain for the other associated with a particular distribution option, the more likely is 
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a participant to choose this option. Specifically, participants are more likely to choose the 

relatively more egoistic option in situations of so-called disadvantageous inequality (smaller 

initial pay-off for the allocator in both distribution options, e.g., Morishima, Schunk, Bruhin, 

Ruff, & Fehr, 2012). Advantageous inequality, however, describes the situation in which for 

both distribution options in each trial, the allocator would receive more than the receiver, 

i.e., the initial pay-off is always higher for the allocator. Nonetheless, one option is more 

prosocial than the other option in that it maximizes the gain for the receiver relative to the 

less prosocial option. In the works of this dissertation, we aimed at investigating the decision 

process underlying prosocial decisions. Hence, to maximize participants’ likelihood to make a 

prosocial decision, participants in the studies of this dissertation performed the dictator 

game with distribution options yielding advantageous inequality. Using this optimized 

variant of the binary dictator game, we investigated the sustainability of the prosocial 

decision process driven by the empathy motive in comparison to and combination with the 

reciprocity motive and the egoistic motive of outcome maximization. 

1.3 Computational models 

The directly observable information that can be obtained based on the two measures 

outlined above provide helpful indicators of how close someone feels to a given point in 

time or how likely and how fast decides prosocially after different motive activation 

procedures. However, they do not offer mechanisms that may subserve the respective 

behavior. Thus, to gain a better understanding of the potential mechanisms underlying 

empathy-related sustainability in the studies of this dissertation, we used the method of 

computational modelling. 

Computational modelling is a technique by which a certain phenomenon or behavior can be 

mechanistically described by means of mathematical formulations. Computational models in 

cognitive neuroscience synthesize the information provided by different outcome measures 

(e.g., ratings or choices made and reaction times) and this way provide valuable insights into 

the mechanisms shaping the respective behavior under investigation. In recent years, 

computational modelling approaches have increasingly been applied in the field of social 

neuroscience (Charpentier & O’Doherty, 2018; Decety, Jackson, Sommerville, Caminade, & 

Meltzoff, 2004; Forstmann, Ratcliff, & Wagenmakers, 2016; Hein, Engelmann, et al., 2016; 

Hutcherson et al., 2015; Lockwood, Apps, Valton, Viding, & Roiser, 2016) and have furthered 
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the understanding of the neural social decision-making process (e.g., Hutcherson et al., 

2015) and instances of social learning (e.g., Hein, Engelmann, et al., 2016). In the studies 

outlined in this dissertation, two different modelling techniques were applied. Each of these 

techniques allowed for closer investigation of the potential mechanisms underlying 

participants’ empathy-driven social closeness (Rescorla-Wagner learning model, study 1) and 

empathy-driven social decision process (drift-diffusion model, studies 24). In the following 

two sections, each modelling technique will be introduced in detail. 

The Rescorla-Wagner learning model 

Associative learning, that is, forming an association between two concepts by continuously 

updating their coinciding, is common in daily life. One frequently used model to 

mathematically describe such a process of learning specific stimulus-outcome associations 

(e.g., learning to associate a certain stimulus with a rewarding outcome such as a monetary 

gain or with a punishing outcome such as a monetary loss) is the Rescorla-Wagner learning 

model (Rescorla & Wagner, 1972). 

In the basic Rescorla-Wagner model, the estimated association strength V at trial t is 

updated with prediction error δ and free parameter α only. Specifically, the prediction error 

is calculated as difference between the actual outcome and the expectation, i.e., the 

association strength from the previous trial: 

 𝛿𝑡 = 𝑅𝑡 − 𝑉𝑡−1 (1) 

In equation 1, Rt refers to the actual outcome: for example, Rt can be set to 1 for reinforced 

trials (i.e., reward or gain) and to 0 for non-reinforced trials (i.e., punishment or loss) at trial 

t. The prediction error δ from the current trial t is then used to update the value V for this 

trial weighted by the learning rate α:  

 𝑉𝑡 = 𝑉𝑡−1 + 𝑎 × 𝛿𝑡 (2) 

The learning rate α is a free parameter bounded between 0 and 1 and reflects to what 

extent more recent feedback influences the learning process. The larger this parameter, the 

more the most recent feedback dominates over previously received feedback. 

Based on this basic model, extensions can be developed serving the research question at 

hand. Garrett & Daw (2020) for example observed that in a foraging learning task, a 

differential model that assumes separate updating of positive and negative prediction errors 

can more accurately describe participants’ behavior than assuming only one learning rate. In 

their model, the prediction error was calculated as in equation (1), but learning rates 
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depended on whether the present trial resulted in a negative or a positive prediction error. 

That is, a positive δ is multiplied by learning rate α+, and a negative δ is multiplied by 

learning rate α- to update V: 

 𝑉𝑡 = {
𝑉𝑡−1 + 𝛼+ × 𝛿𝑡 𝑖𝑓 𝛿 > 0
𝑉𝑡−1 + 𝛼− × 𝛿𝑡 𝑖𝑓 𝛿 < 0

 (3) 

This distinction revealed that participants weighted trials of rewards (i.e., experiences 

resulting in a positive prediction error) more strongly than trials of losses (i.e., experiences 

resulting in a negative prediction error). 

Another extension of the basic model was applied by Palminteri and colleagues (2015). They 

assumed that the outcome values of the respective feedback (i.e., R = 1 for reinforcer 

feedback and R = 0 for non-reinforcer feedback) may be recalibrated depending on the 

context in which they are learnt. In this model, the proposed outcome value is recalibrated 

by subtracting an additional free parameter ω ϵ [0,1] (see equation 4). 

 δt = |Rt − ω𝑡| − Vt−1 (4) 

Hence, according to this model, an individual’s actual outcome value for reinforced trials 

corresponds to 1 minus the individual recalibration value ωt, and the actual outcome value 

of a non-reinforced trial corresponds to ωt. Thus, the larger the value of ωt, the smaller the 

prediction error associated with reinforced trials and the larger the prediction error 

associated with non-reinforced trials. The study showed that this relative model (equation 4) 

which accounts for the context (here the reward associated with the option the participant 

did not choose) better described participants’ behavior than the simple learning model 

without recalibration (equation 2). 

More recently, the Rescorla-Wagner learning rule was successfully used to describes 

processes of social learning, such as imitation learning (Najar, Bonnet, Bahrami, & 

Palminteri, 2020), learning about whether another person searches social contact (R. M. 

Jones et al., 2011), learning about other people’s personalities (Frolichs, Rosenblau, & Korn, 

2021), or learning to empathize with outgroup members (Hein, Engelmann, et al., 2016). 

In this dissertation, we built on this idea and tested which out of the three variants (simple 

learning model, differential model, and recalibration model) can best explain the temporal 

evolution of empathy-related social closeness. 
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The drift-diffusion model 

The drift-diffusion model (DDM) is one of the most prominent representative of so-called 

sequential sampling models (Forstmann et al., 2016). DDMs formalize the choice process as 

noisy accumulation of evidence towards two different choice option boundaries (Ratcliff & 

McKoon, 2008). That is, when faced with two choice options, participants start to 

accumulate evidence towards these options. Once they have accumulated sufficient 

evidence for one of these options, this option is chosen. This process can be parametrized in 

terms of three principal components: the speed at which evidence is accumulated (v-

parameter), the bias towards one of the options before entering the choice process (z-

parameter), and the amount of relative evidence required in order to reach a decision 

(decision threshold, a-parameter). In addition to these principal parameters, the choice 

process can be characterized in terms of the so-called non-decision time t0 as well as the 

trial-by-trial variability of the aforementioned components (sv, sz, sa, st). In order to 

estimate these parameters, the various estimation approaches (Vandekerckhove & 

Tuerlinckx, 2008; Voss & Voss, 2007; Wiecki, Sofer, & Frank, 2013) synthesize the 

information obtained from participants’ trial-by-trial choices (in this dissertation: 

participants’ prosocial vs. egoistic decisions) and reaction times. 

The v-parameter describes the speed at which information is accumulated towards the 

different choice options. Hence, this parameter provides an indicator for the efficiency of the 

choice process itself. Previous studies demonstrated that the v-parameter is sensitive to 

basic task affordances. The more difficult the task is , e.g., a perceptual discrimination task, 

the smaller is the v-parameter (Voss, Rothermund, & Voss, 2004). In the realm of social 

decision-making, the v-parameter was modulated by various factors such as information 

about other’s choice behavior (Yu, Siegel, Clithero, & Crockett, 2021), the degree of self-

relevance of the choice options at hand (Bottemanne & Dreher, 2019; Falbén et al., 2020), 

and social motivation (Leong, Hughes, Wang, & Zaki, 2019). Assuming a similar modulation 

of the v-parameter after activation of the empathy motive , an empathy-related increase of 

the v-parameter in the studies of this dissertation would imply that empathy increases the 

efficiency of the prosocial decision process itself. 

The z-parameter reflects the initial choice bias, i.e., the degree to which an individual prefers 

one of the choice options prior to making the choice. Thus, in contrast to the v-parameter, 

which models the choice process itself, the z-parameter models the individual bias with 
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which a person enters the choice process. Generally, changes in this parameter have been 

associated with manipulation of the reward structure (Mulder, Wagenmakers, Ratcliff, 

Boekel, & Forstmann, 2012; Voss et al., 2004). That is, choices are biased toward the option 

associated with the higher reward. In studies investigating social decision-making, peer 

behavior (Germar, Albrecht, Voss, & Mojzisch, 2016; Toelch, Panizza, & Heekeren, 2018), 

personal preferences (Chen & Krajbich, 2018), and situational factors such as the 

relationship between the decider and the other people involved (Son, Bhandari, & 

FeldmanHall, 2019) modified the z-parameter. Toelch et al. (2018) for example observed 

that participants’ choices were biased towards the option chosen by the majority. Other 

work showed that when faced with the binary choice to allocate points in a prosocial 

(relatively more points for the other person, prosocial choice option) or an egoistic way 

(relatively more points for the participant herself, egoistic choice option), prosocial 

individuals exhibited a bias towards the prosocial choice options whereas more egoistic 

individuals exhibited a bias towards the egoistic choice options (Chen & Krajbich, 2018). In 

the context of the studies presented here, for a person with a strong initial bias towards 

making prosocial choices (reflected by a large value of the z-parameter), the starting point of 

the choice computation is located closer to the prosocial choice boundary, and as a result 

this person is more likely to choose the prosocial option. Hence, if activation of empathy 

increased the z-parameter, this would imply that empathy increases an individual’s initial 

bias towards making a choice prior to the choice process itself. 

The third component, the a-parameter or decision threshold, quantifies the amount of 

relative evidence that is required to choose one of the options, and hence provides a 

measure of response caution. That said, it reflects a participant’s speed-accuracy trade-off, 

with larger a-parameters indicating a stronger emphasis on accuracy over speed (Voss et al., 

2004). This parameter is generally influenced by instruction manipulations such as telling 

participants that it is important that they respond correctly (e.g., Katsimpokis, Hawkins, & 

van Maanen, 2020; Zhang & Rowe, 2014). In social decision-making, the a-parameter was 

thus far not prominently linked to specific factors (see Son et al., 2019, for an exception). 

However, the z-parameter and the a-parameter are closely associated and both influence 

similar properties of the reaction time distribution (Ratcliff, Smith, Brown, & McKoon, 2016). 

If activation of empathy increased the a-parameter, this would imply that empathy increases 

an individual’s response caution while making the decision to act prosocially or egoistically. 
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The two modelling approaches applied in the studies of this dissertation can be used in order 

to better understand the neuro-computational mechanisms associated with social learning 

and social decision-making by relating functional brain activation to specific modelling 

parameters (Forstmann et al., 2016; Lockwood & Klein-Flügge, 2021). A short introduction to 

functional magnetic resonance imaging (fMRI) and its application in the studies conducted as 

part of this dissertation is provided in following section. 

1.4 Neural correlates of motive-driven behavior 

Functional magnetic resonance imaging (fMRI) 

In the studies presented in this dissertation, neural activation was assessed using functional 

magnetic resonance imaging (fMRI). This neuroimaging technique relies on the blood 

oxygenated level-dependent response (BOLD response) for localizing neural regions of 

increased activation (Haacke et al., 1997; Logothetis, 2002; Ogawa, Lee, Kay, & Tank, 1990). 

The BOLD response is based on the cerebral blood flow, the co-dependent local cerebral 

blood volume, and the cerebral metabolic rate of oxygen consumption in regions of 

increased neuronal activity (but see e.g., Blockley, Griffeth, Simon, & Buxton, 2013, for 

additional determinants of the BOLD response). This change in oxygen level and blood flow 

in turn alters the nuclear spin of the hydrogen molecules in the blood. Cerebral blood in 

regions of recent neural activation thus contains hydrogen molecules with different nuclear 

spin properties than in regions of comparably less neural activation. Magnetic resonance 

signals depend on spin echoes and thus differ between those regions. This allows for the 

imaging of the contrast between regions of high neural activation and regions of low neural 

activation, for example, in response to a certain stimulus. Such event-related fMRI 

measurements (Buckner, 1998; Friston et al., 1998) have enabled a wealth of neuroscientific 

research linking cognitive processes to neural activation on a trial-by-trial basis. In the works 

of this dissertation, we took advantage of this technique by studying the neural activation 

linked to the emotional reaction during the development of empathy-related social 

closeness as well as neural activation when making motive-based social decisions. 

Neural correlates of empathy for pain and empathy-related behavior 

Generally, the extent of an individual’s empathy for another’s pain has frequently been 

associated with neural activation in specific brain regions. Most prominently, increased 

activation in the AI, the inferior frontal gyrus (IFG), and the ACC have been linked to a 
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person’s response to another individual’s painful experience (Hein, Engelmann, et al., 2016; 

Hein, Morishima, et al., 2016; Lamm et al., 2007; Lamm, Decety, & Singer, 2011; Y. Li et al., 

2021; Naor et al., 2020; Singer & Lamm, 2009; Völlm et al., 2006). The larger an individual’s 

emotional reaction to another’s pain was, the larger was the neural activation in the AI, IFG, 

and the ACC. Neural activation in these regions while witnessing another person in pain was 

also predictive of future prosocial behavior (Masten, Morelli, & Eisenberger, 2011; Morelli et 

al., 2014). Additionally, together with the supplementary motor area, the AI and the ACC 

were identified as the core regions of empathy (Fan, Duncan, de Greck, & Northoff, 2011). 

Moreover, neural regions comprising the mentalizing network, i.e., dmPFC, TPJ, STS, 

posterior cingulate cortex, precuneus, and temporal poles, have been associated with 

empathic reactions to another’s painful experience (Bruneau, Pluta, & Saxe, 2012; Dvash & 

Shamay-Tsoory, 2014; Lamm et al., 2007; Lieberman, 2007; Shamay-Tsoory, 2011; Singer et 

al., 2004). 

Research more specifically related to empathy-based social learning has observed that, AI 

activation was associated with an empathy-related learning prediction error when learning 

to empathize with an outgroup member (Hein, Engelmann, et al., 2016) and stronger IFG 

activation was linked to stronger reappraisal of an empathic reaction (Naor et al., 2020). In 

addition to signalling the increase in empathy or the adaptation of the empathics response, 

neural activation in these two regions may hence also be linked to the sustainability of 

empathy-related social closeness as assessed in study 1 of this dissertation. 

In the work that served as a basis for the studies of this dissertation and investigated motive-

related social decision-making, neural activation in the AI, the ACC, and the ventral striatum 

(VS) was increased when participants made prosocial choices in favor of a person who had 

previously received painful stimulation as compared to making prosocial choices in favor of a 

person towards whom empathy was not explicitly activated (Hein, Morishima, et al., 2016). 

These results indicate that these regions are more strongly involved when prosocial behavior 

is driven by the empathy motive as compared to when prosocial behavior is solely based on 

‘home-grown’ motivation to act prosocially. Neural activation in these regions may hence 

also be indicative of the sustainability of the empathy-related social decision-making 

process, as assessed in studies 2-4 in this dissertation. 
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Neural correlates of decision behavior related to reciprocity and the egoistic motive of 

outcome maximization 

Compared to empathy-based behavior, the neural bases of reciprocal behavior is less clearly 

defined since different neural and behavioral models exist to explain acts of reciprocity 

(Rilling & Sanfey, 2011). One approach implies the human reward system with the vmPFC as 

one key neural region (Hare, Schultz, Camerer, O’Doherty, & Rangel, 2011; Kable & Glimcher, 

2007; Strait, Sleezer, & Hayden, 2015). In this model, reciprocity increases the value an 

individual associates with long-term mutual cooperation, which is reflected by increased 

neural activation in vmPFC (Wood, Rilling, Sanfey, Bhagwagar, & Rogers, 2006). According to 

this view, the act of reciprocating is inherently rewarding for people who strongly act 

according to this motive. Moreover, strategic prosocial decisions which may be driven by 

reciprocity have been associated with increased neural activation in the striatum and 

especially the anterior vmPFC (Cutler & Campbell-Meiklejohn, 2019). Interestingly, neural 

activation linked to maximizing one’s outcome, i.e., neural responses to stimuli yielding 

larger outcome value for the participant have implicated a similar network of neural regions. 

That is, stimuli that are associated with a large outcome value yield increased neural 

responses in the striatum and vmPFC as compared to stimuli with small outcome values (U. 

Basten, Biele, Heekeren, & Fiebach, 2010; Hare, Camerer, Knoepfle, & Rangel, 2010; Strait et 

al., 2015). Additionally, neural activation in the dlPFC has been associated with the 

accounting for non-immediate reward during decision-making (Hare, Hakimi, & Rangel, 

2014). Work directly related to the question addressed in study 4, i.e., the question of 

whether empathy-based prosocial behavior can be undermined by the egoistic motive of 

outcome maximization, have linked the striatum and dlPFC to changes in social behavior due 

to financial incentives. Specifically, the undermining effect of financial incentives on 

prosocial behavior was associated with decreased neural activation in the striatum and the 

dlPFC (Murayama, Matsumoto, Izuma, & Matsumoto, 2010). These two regions are generally 

implicated in valuation of stimulus outcomes (Daw, Gershman, Seymour, Dayan, & Dolan, 

2011; Knutson, Taylor, Kaufman, Peterson, & Glover, 2005) and self-control (Hare, Camerer, 

& Rangel, 2009; Schmidt et al., 2018). 

Another explanatory mechanism for reciprocity interestingly also suggests the involvement 

of self-control (Rilling & Sanfey, 2011). According to this view, acts of reciprocity are driven 

by obviating the guilt associated with acting against the social norm of reciprocating kind 
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behavior. Hence, neural structures that reflect feelings of guilt, as they may be implicated 

when breaking a promise, may be associated with reciprocal behavior. Studies investigating 

such behavior have observed that increased neural activation in the ACC and the dlPFC was 

related to breaking a previously given promise to cooperate (e.g., Baumgartner, Fischbacher, 

Feierabend, Lutz, & Fehr, 2009).The ACC and the dlPFC, as discussed above, have been 

implicated in processes of conflict monitoring and self-control, respectively, with increased 

activation reflecting the increased need for conflict-monitoring or self-control (Botvinick, 

2007; Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 2006). 

Yet other studies have explicitly activated the reciprocity motive before participants 

performed a social decision-making paradigm (Hein, Morishima, et al., 2016) or focussed on 

neural activation associated with the act of reciprocating in the trust game (van den Bos, van 

Dijk, Westenberg, Rombouts, & Crone, 2009). In the study by Hein and colleagues (2016), 

participants frequently observed that another person decided to forgo a monetary reward in 

order to save the participant from a painful stimulation. Hence, this other person paid the 

participant a favor that she may want to repay, which is the essence of the reciprocity 

motive as driver for cooperative behavior (Nowak, 2006). In the task following the motive 

activation, participants repeatedly chose between an egoistic and a prosocial option to 

divide points between themselves and that other person (i.e., the reciprocity partner). Hein 

and colleagues (2016) observed that neural activation during the decision to choose the 

prosocial option towards the reciprocity partner was increased in the ACC, the AI, and the VS 

compared to prosocial choices for a baseline partner towards whom the reciprocity motive 

was not activated. Hence, this work suggests that reciprocity and empathy increases neural 

activation during the prosocial decision-making process in overlapping neural systems. 

Taken together decision behavior based on reciprocity as well as based on the egoistic 

motive of outcome maximization have frequently been associated with neural activation in 

neural regions linked to value computations (striatum and vmPFC) as well as regions linked 

to conflict monitoring and self-control (ACC and dlPFC). 

1.5 Objectives 

In the studies conducted for this dissertation we aimed at investigating the sustainability of 

empathy with respect to empathy-based social closeness and the stability and resilience of 

empathy-based prosocial behavior alone and in combination with other drivers of social 
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behavior. More specifically, we investigated how sustainably empathy leads to social 

closeness and prosocial behavior (in contrast to social closeness and prosocial behavior 

based on reciprocity) and whether empathy-based prosocial behavior is enhanced or 

undermined when combined with reciprocity or the egoistic motive of outcome 

maximization. 

In their study, Hein and colleagues (2016) used a between-subject paradigm, in which 

participants performed a social decision task either following an induction of the empathy 

motive or following an induction of the reciprocity motive. In the first part of this 

dissertation encompassing studies 1 and 2, we combined the design developed by (Hein, 

Morishima, et al., 2016) with RL paradigms (Dunsmoor et al., 2018; Shiban, Wittmann, 

Weißinger, & Mühlberger, 2015) and optimized the induction phase in correspondence with 

RL paradigms. That is, we controlled how strongly participants’ empathy motive or 

reciprocity motive was induced in each block, varying the frequency of motive reinforcing 

events (i.e., empathy: the frequency of observing the interaction partner receive painful 

stimulation; reciprocity: the frequency with which the interaction partner forgoes a 

monetary reward to save the participant from a painful stimulation). This enabled us to 

model the temporal evolution of empathy-based and reciprocity-based social closeness in 

situations of frequent and rare motive reinforcement along with their neural correlates using 

RL models (study 1). Additionally, we aimed to assess which components of the social 

decision process change after frequent compared to after subsequent rare reinforcement of 

the underlying social motive (study 2). This approach allows us to gain an understanding of 

how empathy-related social closeness is formed, how sustainable it is (also in comparison to 

reciprocity-related social closeness), and to what extent motive activation strength affects 

prosocial decision behavior. The results may provide valuable information about how 

sustainable empathy-related social closeness and prosocial behavior are, and to what extent 

empathy-related prosocial behavior is sensitive to the respective underlying motive strength. 

In part 2 of this dissertation, we addressed effects of motive combination on the prosocial 

decision process and developed a within-subject design paradigm (study 3) in which 

participants performed the social decision task following an induction of the empathy 

motive (empathy partner), the reciprocity motive (reciprocity partner), both motives (multi-

motive partner), and no motive induction (baseline partner). In our analyses, we modelled 

participants’ decision behavior towards the different interaction partners using DDM and 
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identified which choice components were affected by motive combination, including their 

neural correlates. Based on these results, we could provide first insights into the neuro-

computational mechanisms underlying the combination and possible interaction of different 

social motives as well as the influence of empathy on the prosocial decision process relative 

to reciprocity. 

Testing how the combination of empathy and the motive of outcome maximization 

influences the social decision process, we performed a final experiment (study 4), in which 

participants performed the social decision task following an induction of the empathy 

motive (empathy condition) and following the induction of both, the empathy motive and 

the motive of outcome maximization, i.e., offering a monetary bonus for making prosocial 

decisions in the clear majority of the trials (empathy-bonus condition). In the analyses, we 

again modelled participants’ decision behavior in the two conditions using DDM and 

identified which choice components of the empathy-driven social decision process and 

concurrent neural activation were affected by offering a financial incentive. Based on these 

results, we were able to test whether empathy-driven prosocial decision behavior is resilient 

to the additional activation of the motive of outcome maximization. 



 
 

2 Manuscripts and publications 

In accordance with the goals formulated above, four studies were conducted investigating 

different aspects of empathy sustainability with respect to social closeness as well as 

prosocial decision-making. The content of the two studies that are published (studies 3 and 

4) corresponds to the published version in the respective journal but has been edited to fit 

the formatting of this dissertation. 

After each manuscript, the implications of the results obtained as well as the open question 

relevant for the subsequent manuscript is shortly discussed. 

 

Study 1: Saulin, A., Ting, C.-C., Engelmann, J.B., & Hein, G. Empathy induces sustained social 

closeness. 

Materials: https://github.com/AnneSaulin/empathy_sustainability 

 

Study 2: Saulin, A. & Hein, G. Empathy incites a sustainable prosocial decision bias. 

Materials: https://github.com/AnneSaulin/empathy_sustainability 

 

Study 3: Saulin, A., Horn, U., Lotze, m., Kaiser, J., & Hein, G. (2022). The neural computation 

of prosocial decisions in complex motivational states. NeuroImage, 247, 118827. 

https://doi.org/10.1016/j.neuroimage.2021.118827 
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Abstract 

Empathy generates the feeling of social closeness which is key for connecting humans on the 

individual and the societal level. However, despite its importance for everyday life, it is 

unclear how empathy-related social closeness is formed and how sustainable it is. Here we 

applied an acquisition-extinction paradigm, combined with computational modelling and 

fMRI to investigate the formation and sustainability of empathy-related social closeness. 

Participants observed painful stimulation of another person with high probability 

(acquisition phase), low probability (extinction phase) and at chance level (control blocks) 

and rated their closeness to the other person. The results of two independent studies 

showed an increase in social closeness in the acquisition phase that persisted in the 

extinction phase. Providing insights into the underlying mechanisms, reinforcement learning 

modelling revealed a recalibration of the observed feedback value allowing for an increase in 

social closeness based on observing another’s pain as well as non-pain. The results of a 

control study in which we induced a different social motive showed that the observed 

effects and learning mechanisms were specific for empathy-related social closeness. On the 

neural level, the recalibration of the feedback signal was associated with neural responses in 

anterior insula and adjacent inferior frontal gyrus and the bilateral superior temporal 

sulcus/temporo-parietal junction (TPJ), modulated by individual differences in trait empathic 

concern and mentalizing, respectively. Taken together, our studies demonstrate that 

empathy-related social closeness persists even if the other person is no longer suffering and 

provides insights into the computational and neural mechanisms that drive the longevity of 

empathy-related effects. These finding are important, because they show that once empathy 

is activated, empathy-related responses are a robust driver of social closeness. 

 

keywords: 

empathy, social closeness, Rescorla-Wagner model, fMRI, STS/TPJ, IFG 
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Introduction 

Empathy enables us to share another’s emotions and thereby provides an important way to 

connect with other people. For example, there is abundant evidence that observing 

another’s pain results in an empathic reaction (Lamm et al., 2011), increases the perceived 

closeness to others (Beeney et al., 2011), and predicts prosocial behaviour towards the 

suffering person (Batson, 2010; Hein, Morishima, et al., 2016; Saulin, Horn, Lotze, Kaiser, & 

Hein, 2022). However, it remains unknown how long these relationship-enhancing effects of 

empathy last. In other words, does empathy-induced closeness prevail after the other 

person’s suffering is relieved or does it decay? 

Empathy itself is a multidimensional construct (Timmers et al., 2018). Commonly, 

researchers distinguish between so called cognitive empathy or theory of mind (ToM) and 

emotional empathy – a distinction that is even mirrored on a neural level (Cox et al., 2012; 

Cutler & Campbell-Meiklejohn, 2019; Dvash & Shamay-Tsoory, 2014; Kanske, Böckler, 

Trautwein, & Singer, 2015; Preckel, Kanske, & Singer, 2018; Shamay-Tsoory, Aharon-Peretz, 

& Perry, 2009). Cognitive empathy has often been associated with neural activation of the 

medial prefrontal cortex (mPFC), the superior temporal sulcus (STS), the temporal poles (TP), 

and the temporo-parietal junction (TPJ; Cutler & Campbell-Meiklejohn, 2019; Dvash & 

Shamay-Tsoory, 2014; Preckel et al., 2018; Schurz et al., 2021; Stietz et al., 2019), while 

affective empathy is often associated with the anterior insula (AI), the anterior cingulate 

cortex (ACC), and inferior frontal gyrus (IFG) (Cutler & Campbell-Meiklejohn, 2019; Dvash & 

Shamay-Tsoory, 2014; Fan et al., 2011; Preckel et al., 2018; Schurz et al., 2021; Stietz et al., 

2019; Walter, 2012). 

Most previous studies investigated empathic responses in a given moment, for example 

when observing pain in another person (Hein, Morishima, et al., 2016; Morelli, Lieberman, & 

Zaki, 2015; Singer & Lamm, 2009). Recent studies have shown that the dynamic formation of 

empathic responses in the realm of affective (Churamani, Barros, Strahl, & Wermter, 2018; 

Hein, Engelmann, et al., 2016; Olsson & Spring, 2018; Singer, Critchley, & Preuschoff, 2009) 

as well as cognitive empathy (Bagheri, Roesler, Cao, & Vanderborght, 2021) can be captured 

by reinforcement learning models. Reinforcement learning models mathematically describe 

the process of learning specific stimulus-outcome (i.e., reward vs. punishment) associations 

(e.g., Rescorla & Wagner, 1972), which can be extended to associations between persons 
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and outcomes. The Rescorla-Wagner model assumes that the associative strength, e.g., 

between a person and an action, in a given trial can be described by the associative strength 

in the previous trial and a prediction error that quantifies the difference between the 

feedback that is actually observed in the present trial and the experience based on the 

previous trial. This prediction error is weighted by the learning rate which indicates how 

strongly the most recent experiences influence the change in associative strength. Originally, 

reinforcement learning models have been used to investigate various instances of reward 

and punishment learning (e.g., Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Klein, 

Ullsperger, & Jocham, 2017; Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, & Palminteri, 

2017; Palminteri et al., 2015). 

More recent works demonstrated that mechanisms underlying social preferences in general 

(FeldmanHall, Montez, Phelps, Davachi, & Murty, 2021; Lockwood & Klein-Flügge, 2021; 

Olsson, Knapska, & Lindström, 2020) and empathy-related behavior in particular (Hein, 

Engelmann, et al., 2016; Lockwood et al., 2016; Shamay-Tsoory & Hertz, 2022) may also be 

understood within the framework of reinforcement learning. Specifically, processes such as 

learning to react in an empathic fashion (Shamay-Tsoory & Hertz, 2022), obtaining rewards 

for another person (Lockwood et al., 2016), or empathizing with outgroup members (Hein, 

Engelmann, et al., 2016) can be captured by reinforcement learning models.  

These studies have started to shed light on how empathy is formed. However, it remains 

unclear whether empathy-related closeness persists in the absence of empathy-inducing 

events. Answering this question is important to understand the longevity of empathy-

induced effects such as social closeness.  

Here, we conducted two studies to investigate the longevity of empathy-related social 

closeness and the underlying neural circuitries using an adapted reinforcement learning 

acquisition-extinction paradigm (Dunsmoor et al., 2018; Palminteri et al., 2015; Shiban et al., 

2015), reinforcement learning modelling and functional magnetic resonance imaging (fMRI). 

In a third study, we tested whether the mechanisms underlying empathy-related closeness 

generalized to the formation and sustainability of another source, namely, the social norm of 

reciprocity. 

To test the longevity of empathy-related social closeness, participants observed painful 

stimulation of another person, known to elicit empathy for pain (Beeney et al., 2011; 
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Grynberg & Konrath, 2020; Hein, Engelmann, et al., 2016; Lamm et al., 2007; Marsh, 2018) in 

a treatment condition and a control condition. In the first block of the treatment condition, 

participants observed painful stimulation of the other person (treatment partner) with high 

probability (80%), corresponding to the acquisition phase. In a second block, they observed 

the empathy partner receiving painful stimulation only with low probability (20%), 

corresponding to the extinction phase. In the control condition, participants observed 

painful stimulation in another person (control partner) at chance level in both blocks (50%; 

Figure 2.1.1A). In each trial, after observing the stimulation of the other person, participants 

rated their emotional reaction to the stimulation, and subsequently indicated how close they 

felt to the respective partner. To do so, they moved a mannequin (representing themselves) 

towards or away from a mannequin representing the other person (Figure 2.1.1B). 

This set up allowed us to investigate the formation of empathy-related closeness in the 

acquisition phase, and the sustainability of empathy-related closeness in the extinction 

phase. Inspired by previous work demonstrating that watching other’s receive painful 

stimulation elicits empathy (Beeney et al., 2011; Grynberg & Konrath, 2020; Hein, 

Engelmann, et al., 2016; Lamm et al., 2007; Marsh, 2018), we hypothesized that watching 

another person receiving painful stimulation constitutes feedback that is relevant to the 

process of learning empathy-related social closeness. Thus, the prediction error in our 

studies quantifies the difference between a hypothetical social closeness linked to observing 

the other person receive painful stimulation (i.e., the feedback), and the social closeness 

from before watching the other person receive pain (i.e., social closeness in the previous 

trial). In more detail, we hypothesized an increase in empathy-related social closeness in the 

acquisition phase. In the extinction phase, when the other person only rarely received 

empathy-inducing painful stimulation, we hypothesized a decay of empathy-related social 

closeness. However, if empathy-related closeness is sustainable, empathy-related social 

closeness should not decay in the extinction phase. On a neural level, learning-related 

changes and the extent to which empathy-related social closeness resists extinction should 

be associated with changes in activation in brain regions related to cognitive empathy such 

as the TPJ, the STS, the mPFC and the temporal poles, and to regions related to affective 

empathy such as the AI and the adjacent IFG, and the anterior and mid ACC. 
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closeness (one fMRI and one behavioural replication study), and one behavioural control 

study investigating the formation and sustainability of social closeness driven by a social 

norm that is distinct from empathy, namely reciprocity. We trained two female students that 

served as confederates in all three studies. 

We chose female participants as well as female confederates to control for gender and avoid 

cross-gender effects. The confederates were students who had been trained to act as naïve 

participants. We ensured that participants did not know either of the confederates prior to 

the experiment by asking confederates beforehand. Before the experiment began, written 

informed consent was obtained from all the participants. The study was approved by the 

local ethics committee (268/18). Participants received monetary compensation (26.80 ± 3.30 

Euros (mean ± sd)). 

We had to exclude seven data sets (five from the fMRI study and one each from the 

behavioural replication and the control study), because the estimation of learning models 

was not possible due to a lack of variance in ratings (four participants), sleepiness (two 

participants), or technical problems (one participant). We thus analysed 46 data sets for the 

fMRI study, 27 data sets for the behavioural replication study and 27 data sets for the 

control studies. The mean age was comparable between studies (F(2, 106) = .987, P = .376, 

see Table S2.1.1 for overview of sample characteristics). A post-hoc sensitivity analysis using 

G*Power 3.1 indicated that given α = 5% and considering 3 predictors in the regression 

model, the sample size in the fMRI study had 80% power to detect a true effect with an 

effect size of f ≥.18 (F = 2.68), and an effect size of f ≥.23 (F = 2.73) in the behavioral 

replication and the control study. 

 fMRI study and behavioural replication study  

 Procedure 

Prior to the tasks, the individual thresholds for pain stimulation (see section pain stimulation 

for details) were determined for the participants and the confederates. Thus, participants 

had a first-hand experience of the pain stimulation they would observe in others.  

Next, the participants and confederates were assigned their different roles in a manipulated 

lottery of drawing matches. Participants always drew the last match in order to ensure she 

was assigned her designated role (observer). The confederates were assigned the role of 

pain recipients and served as treatment or control partner counterbalanced across 
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participants. In the fMRI study, the respective confederate (treatment partner in the 

treatment condition and control partner in the control condition) was seated on a chair to 

the left of the participant with her hand visible by the participant. In the behavioural 

replication study, the respective confederate was seated next to the participant in a 

soundproof cabin facing the opposite direction such that no one could see the other’s 

screen. 

The fMRI experiment consisted of the treatment condition, in which the participants 

observed painful stimulation of one of the confederates (treatment partner) with high 

probability (acquisition phase) or low probability (extinction phase), and the control 

condition in which participants observed painful stimulation of the other confederate 

(control partner) with chance probability in both blocks (Figure 2.2.1). Each block consisted 

of 25 trials. In between blocks, participants performed an additional task which was part of 

another experiment. In the acquisition phase, participants observed that the partner 

received ostensibly painful stimulation in 80% of the trials. In the extinction phase, they 

observed painful stimulation of the same confederate in 20% of the trials. In the control 

condition, participants observed painful stimulation of the second confederate in 50% of the 

trials of both blocks. Participants observed painful stimulation of different individuals in the 

treatment and the control condition to avoid spill-over effects and to keep the ostensible 

pain stimulation of the other person in a reasonable range. The order of treatment and 

control condition were counter-balanced across participants. 

Participants spent approximately 60 minutes in the scanner and the entire procedure took 

about 2.5 hours. The behavioural replication study lasted approximately 2 hours. To avoid 

possible reputation effects (e.g., Engelmann & Fischbacher, 2009; Gächter & Falk, 2002), 

which could influence participants’ behavior, participants were informed at the beginning 

that they would not meet the others after the experiment. In more detail, at the end of the 

fMRI study, the second confederate left and the participant remained in the scanner for 

anatomical image acquisition. At the end of the behavioural replication study, the 

confederate left and participants remained in the cabin to complete the same 

questionnaires as in the fMRI study, (outlined in detail below). 
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 Task 

Each trial started with a fixation cross displayed for 4000-6000 ms, followed by a continuous 

slider scale (internally ranging from 0-100) that asked the participant to indicate how close 

they felt to the other person at this moment (“How close do you feel to the other person?” 

in German). Participants were asked to respond within 10 seconds (6 seconds in the 

laboratory study). After a second fixation cross (1000-2000 ms), participants were either 

shown a fully filled flash in the partner’s color (symbolizing a painful stimulation of the 

partner, i.e., a reinforced trial) or a partly filled flash in the partner’s color (symbolizing a 

non-painful stimulation of the partner, i.e., a non-reinforced trial) for 2000 ms. The 

respective flash was followed by a fixation cross (1000-2000 ms). At the end of each trial, 

participants indicated how they felt (“How do you feel?” in German) after having observed 

the partner’s stimulation on a visually displayed continuous slider scale (internally ranging 

from 0-100), and again had to respond within 10 seconds (6 seconds in the laboratory study).  

 Behavioral control study 

 Procedure 

The procedure was identical to the behavioural replication study, except that now the 

participants were assigned as pain recipients and the confederates could decide to give up 

money to save them from pain, a procedure that has been shown to induce positive 

reciprocity (Hein, Morishima, et al., 2016; Saulin et al., 2022).  

Each block of the reciprocity learning task consisted of 25 trials. In the treatment condition 

(corresponding to two interaction blocks with one confederate), participants observed that 

the partner ostensibly decided to help them in 80% of the trials in block 1 and in 20% of the 

trials in block 2. In the control condition (corresponding to the two interaction blocks with 

the other confederate), participants observed that the partner ostensibly helped them in 

50% of the trials in block 1 as well as block 2. Again, the order of treatment and control 

condition were counter-balanced across participants. To avoid possible reputation effects 

(e.g., Engelmann & Fischbacher, 2009; Gächter & Falk, 2002), which could influence 

participants’ behavior, participants were informed at the beginning that they would not 

meet the ostensible other participants after the experiment. At the end of study, the 
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confederate left and participants remained in the cabin to complete the same 

questionnaires as in the other two studies. 

 Task 

The trial structure was comparable to the fMRI study and the behavioural replication study 

described above. Each trial started with the display of a jittered fixation cross (4000-6000 

ms). Then participants were asked to indicate how close they felt to the other person at that 

moment (“How close do you feel to the other person?” in German) on a continuous slider 

scale (internally ranging from 0-100) and were asked to respond within 6 seconds. After a 

fixation cross (1000-2000 ms), participants saw the deliberation screen of the interaction 

partner, in which the two possible options were visualized side-by-side using a fully filled 

flash in the color of the participant (symbolizing the option to take the monetary reward and 

not help the participant) and a crossed out fully filled flash in the color of the participant 

(symbolizing the option to forego the monetary reward and help). This screen was shown for 

a jittered length of 2000-4000 ms, followed by the display of the ostensible decision of the 

interaction partner. If the decision was to help (reinforced trial), the crossed-out flash was 

highlighted by a box in the color of the interaction partner. If the decision was not to help 

(non-reinforced trial), the fully filled flash was shown highlighted by a box in the color of the 

interaction partner. After another fixation cross (1000-2000 ms), the emotion rating scale 

was shown asking the participant how they felt after observing the partner’s decision (“How 

do you feel?” in German). Again, participants were asked to respond within 6 seconds. Then, 

the next trial started. 

 Questionnaires 

At the end of the respective main experiments, participants filled out questionnaires 

capturing trait empathic concern and perspective taking/cognitive empathy (empathic 

concern and perspective taking subscales of the Interpersonal Reactivity Index (IRI, Davis 

(1980)). Conceptually, scores on the empathic concern subscale have been related to 

emotional empathy, and scores on the perspective taking subscale to cognitive empathy 

(Davis, 1980, 1983). Moreover, they completed questionnaires measuring individual 

differences in trait reciprocity (Personal Norm of Reciprocity, PNR; Perugini, Gallucci, 

Presaghi, & Ercolani, 2003) as well as participants’ impressions of the other individuals 
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(confederates) (Hein, Engelmann, et al., 2016; Hein, Silani, Preuschoff, Batson, & Singer, 

2010) modified from Batson et al. (1988). 

 Pain stimulation 

In the fMRI study, painful stimulation was applied using a Digitimer DS7A constant current 

stimulator (Hertfordshire, United Kingdom) and an MRI compatible surface electrode 

attached to the left lower inner arm. Shock segments consisted of a single 1 ms square-wave 

pulses. For pain stimulation in the laboratory, we used a mechano-tactile stimulus generated 

by a small plastic cylinder (612 g). The projectile was shot against the cuticle of the left index 

finger using air pressure (Impact Stimulator, Labortechnik Franken, Release 1.0.0.34). 

In all studies, the criterion for painful stimulation was a subjective value of 8 on a pain scale 

ranging from 1 (no pain at all, but a participant could feel a slight tingling) to 10 (extreme, 

hardly bearable pain). The participants were told that a value of 8 corresponded to a painful, 

but bearable stimulus, and a non-painful stimulus corresponded to a value of 1 on the same 

subjective pain scale. These subjective pain thresholds were determined using a stepwise 

increase in shock strength (air pressure in the laboratory) starting with the lowest value of 

0.00 mA (0.25 mg/s in laboratory) in steps of 0.05 mA (0.25 mg/s in laboratory) until it 

reached the individual’s value of 8 (range fMRI= 0.25-1.50 mA; range behavioral replication 

study and control study= 2.00–6.00 mg/s). Hence in all studies participants experienced the 

same threshold procedure and a painful stimulation corresponding to strong but bearable 

pain. 

 Regression analyses 

In all linear mixed effects regression models, we conducted, we included participant as 

random intercept in order to account for shared error variance across multiple data points, 

i.e., the within-subjects variables. Random slopes were included for continuous variables if 

these variables were also included as a fixed effect. As our categorical variables only yielded 

two levels, we did not include random slopes for categorical variables. 

As manipulation check, we first checked whether emotion ratings significantly differed for 

observed pain vs. no-pain. To test this, we ran linear mixed models analyses with the fixed 

effects of trial type (reinforced vs. non-reinforced), block (block 1 vs. block 2) and condition 
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(treatment vs. control), participant as random intercept and the dependent variable emotion 

rating. 

In order to test whether we successfully reinforced empathy, we conducted a linear mixed 

models analysis with trait empathy (fMRI study and behavioral replication study: empathic 

concern subscale of the IRI (Davis, 2006)), trial type, study, and their interaction as fixed 

effects, participant and trial number as random intercept, and emotion ratings as dependent 

variable. In the behavioral control study, the analogous analysis was conducted but using 

positive reciprocity as trait measure of reciprocity (positive reciprocity) subscale of the PNR 

(Perugini et al., 2003). 

In order to test the influence of condition, block, and trial number on social closeness, we 

conducted linear mixed models with condition, block (block 1 vs. block 2), and trial number 

(1-25) as fixed effects, participant as random intercept, trial number as random intercept for 

participant and trial-by-trial closeness ratings as dependent variable. In order to test 

whether the resulting effects were comparable across the fMRI and the behavioral 

replication study, we reran this analysis using the pooled data of these two studies and 

adding a predictor variable for Study. 

Linear mixed model analyses were conducted in R (R version 4.0.4, R Core-Team, 2018) using 

the packages lme4 (Bates et al., 2014) and car (Fox et al., 2018). For mixed models, we 

report the chi-square values derived from Wald chisquare tests using type 3 sum of squares 

from the Anova() function (car package). For predefined contrasts we report the t-values 

derived from the summary() function. Simple slopes extracted from the linear mixed models 

are reported with 95% confidence intervals using the emtrends function (emmeans package; 

Lenth, Singman, Love, Buerkner, & Herve, 2019). 

 Computational modelling 

To identify the computational mechanisms of the formation and maintenance of empathy-

related social closeness, we tested three different learning models against each other 

(Figure 2.1.2). Specifically, our baseline model, which implemented only the standard 

Rescorla-Wagner learning rule (model 1, Figure 2.1.2A), was compared to two recent 

adaptations (models 2 and 3) that allowed us to test the role of specific processes, namely 

differential learning rates for positive and negative feedback (e.g., Garrett & Daw, 2020) and 

context-dependent recalibration of the prediction error (e.g., Bavard, Lebreton, Khamassi, 
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Coricelli, & Palminteri, 2018). The first adaptation (model 2, Figure 2.1.2B) assumes different 

learning rates for positive prediction errors and negative prediction errors, i.e., for the 

learning and the unlearning of an association. If, for example recent experiences more 

strongly influence surprisingly positive than surprisingly negative feedback, the learning rate 

for positive prediction errors will be larger than the learning rate for negative prediction 

errors. In the context of empathy-related and reciprocity-based social closeness such a 

finding would entail that social closeness more rapidly increases in the acquisition phase 

than it decreases in the extinction phase. 

In the second adaptation (model 3, Figure 2.1.2C), we hypothesized that the assumed 

outcome values of the respective feedback (i.e., R = 1 for reinforcer feedback and R = 0 for 

non-reinforcer feedback) may vary depending on the respective context (e.g., empathy 

motive vs. reciprocity motive). Thus, the prediction error is directly recomputed which 

means that the learning signal itself is recalibrated. The larger this recalibration, the smaller 

the learning signal associated with a reinforced trial and the larger the learning signal 

associated with a non-reinforced trial, and vice versa. Context-dependent recalibration 

therefore allows social closeness to continue to increase in the extinction block despite a 

high probability for non-reinforced trials. 

Based on these models, we aimed to test whether empathy sustainability can be understood 

(i) in terms of asymmetrical updating of the learning signal (i.e., different learning rates for 

reinforced and non-reinforced trials) or (ii) in terms of recalibration of the value associated 

with the feedback in each trial (i.e., a value different from 1 in reinforced trials and different 

from 0 in non-reinforced trials). We hence tested which out of three models in our model 

space best describes participants’ behavior. 

In the simplest model (basic model), the estimated motive-driven closeness V at trial t is 

updated with prediction error δ and free parameter 𝛼 only. Specifically, the prediction error 

is calculated as difference between the actual outcome and the prediction: 

 𝛿𝑡 = 𝑅𝑡 − 𝑉𝑡−1 (1) 

In equation (1), Rt refers to the actual outcome: 1 for reinforced feedback (painful 

stimulation of the partner in the fMRI and behavioral replication study, decision of the 

partner to help in the behavioral control study ) and 0 for non-reinforced feedback (non-
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 𝑉𝑡+1 = {
𝑉𝑡 + 𝛼+ × 𝛿𝑡 𝑖𝑓 𝛿 > 0
𝑉𝑡 + 𝛼− × 𝛿𝑡  𝑖𝑓 𝛿 < 0

 (3) 

Hence, the learning of empathy-related closeness may be characterized by a stronger weight 

of the prediction error for reinforced compared to non-reinforced trials, thus leading to less 

decline in empathy-related closeness when reinforcer rates are low (as in the second block 

of the treatment condition in the fMRI and the behavioral replication studies). 

Third, based on previous work (Palminteri et al., 2015), the assumed outcome values of the 

respective feedback (i.e., R = 1 for reinforcer feedback and R = 0 for non-reinforcer feedback) 

may actually be recalibrated depending on the respective context (empathy motive vs. 

reciprocity motive). To test whether the learning of motive-driven closeness can be 

understood in these terms, we added a third model (individual calibration model), in which 

the proposed outcome value is recalibrated by subtracting an additional free parameter ω 

(see equation 4). 

 δt = |Rt − ω| − Vt−1 (4) 

Hence, according to this model, an individual’s actual outcome value for reinforced trials 

corresponds to 1 minus the individual recalibration value ω, and the actual outcome value of 

a non-reinforced trial corresponds to ω. Thus, the larger the value of ω, the more likely a 

positive prediction error and subsequent increase of social closeness after non-reinforced 

trials. Hence, the larger the value of ω, the less decline of empathy-driven closeness can be 

expected for the extinction phase (i.e., when non-reinforced trials are most frequent). 

 Model optimization and comparison 

The parameters 𝜃_𝑀 in each model M were optimized using the procedure of minimizing the 

negative logarithm of the posterior probability (nLPP): the combination of the likelihood for 

choosing a particular closeness value and the prior distribution of the parameters. 

 𝑛𝐿𝑃𝑃 =  −𝑙𝑜𝑔 (𝑃(𝜃_𝑀│𝐷, 𝑀)) ∝  −𝑙𝑜𝑔 (𝑃(𝐷│𝑀, 𝜃_𝑀 )) − 𝑙𝑜𝑔 (𝑃(𝜃_𝑀│𝑀)) (5) 

𝑃(𝐷│𝑀, 𝜃_𝑀 ) refers to the likelihood of choice value 𝐷 (i.e., the actual rating) given the 

current model M and its parameters 𝜃_𝑀. Here, we assumed that the rating was selected 

from the normal distribution with the estimated rating as mean (given M and 𝜃_𝑀) and 

standard deviation of 0.4. Therefore, if the rating is correctly estimated and close to the 

actual rating 𝐷, the likelihood will be high. It is worth to note that this method deviates from 
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the typical approach to estimate Q-learning models, in which the probability of a binomial 

decision is estimated with temperature parameter β. The temperature parameter β explains 

whether a decision is made based on the differences between two options, however, this is 

not appropriate in the context of our task that includes only one choice option on a 

continuous scale. 

𝑃(𝜃_𝑀│𝑀) is the likelihood of getting an estimate for 𝜃_𝑀 within the prior probability 

distribution of the parameters. All parameters were selected from a beta distribution (α = β 

= 1.1) (Daw et al., 2011), so that the estimated value will always be located between 0 and 1. 

We then applied the model to fit the data. 

A lower LPP value indicates that a model can explain the data better, however, the nLPP 

does not take a model’s complexity into consideration. To address this issue, we then 

applied the Laplace approximation to the model evidence (LAME) to penalize goodness-of-fit 

(i.e., the measure of nLPP for each subject) with model complexity (i.e., number of 

parameters). The LAME for each model was computed according to equation 6. 

 𝐿𝐴𝑀𝐸 ≡  −𝐿𝑃𝑃 + 𝑑𝑓/2  𝑙𝑜𝑔 (2𝜋) − 1/2 𝑙𝑜𝑔|𝐻| (6) 

In this calculation, df is determined as the number of free parameters and |𝐻| is the 

determination of the Hessian. Again, these values were computed at individual level. 

To test which model out of the model space is most likely to have generated a certain data 

set, we fed the LAME (from each subject in each model) to group-level random-effects 

analysis in the mbb-vb-toolbox (http://mbb-team.github.io/VBA-toolbox/; Daunizeau, Adam, 

& Rigoux, 2014). This toolbox performs Bayesian model selection and estimates two 

indicators of model performance: the exceedance probability (EP) and the expected model 

frequencies (EF) for each model. Specifically, the exceedance probability of a model 

quantifies the probability for a given model to have generated the data relative to the other 

models in the model space. Commonly, an EP of higher than 95% is an indicator of 

convincing evidence for a model to be most likely to have generated the data compared to 

other models. The expected frequency EF of a model quantifies the probability that the 

model generated the data for any randomly selected subject. Note that the EF should be 

higher than chance level given the number of models in the model space (in our case higher 

than 1/3). 
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The modelling was conducted using Matlab 2018b. The estimated rating (V) was initialized as 

the actual rating in the first trial in each block. All the parameters were optimized using 

Matlab’s fmincon function with random starting points, ranging from 0 to 1. 

 fMRI data acquisition 

Imaging data was collected at a 3T MRI-scanner (Skyra syngo, Siemens, Erlangen, Germany) 

with a 32-channel head coil. Functional imaging was performed with a multiband EPI 

sequence of 42 transversal slices oriented along the subjects’ AC-PC plane and distance 

factor of 50% (multi-band acceleration factor of 2). The in plane resolution was 2 x 2 mm² 

and the slice thickness was 2 mm. The field of view was 216 x 216 mm², corresponding to an 

acquisition matrix of 108 x 108. The repetition time was 1340 ms, the echo time was 25 ms, 

and the flip angle was 60°. Structural imaging was conducted using a sagittal T1-weighted 3D 

MPRAGE with 240 slices, and a spatial resolution of 1 x 1 x 1 mm³. The field of view was 256 

x 256 mm², corresponding to an acquisition matrix of 256 x 256. The repetition time was 

2,300 ms, the echo time was 2.96 ms, the total acquisition time was 3:50 min, and the flip 

angle was 9°. We obtained, on average, 1,215 (SE = 5.07 volumes) EPI-volumes in the control 

condition and 1,208 (SE = 4.26 volumes) EPI columes in the treatment condition for each 

participant. We used a rubber foam head restraint to avoid head movements. 

 fMRI Preprocessing 

Preprocessing and statistical parametric mapping were performed with SPM12 (Wellcome 

Department of Neuroscience, London, UK) and Matlab version 9.2 (MathWorks Inc; Natick, 

MA). Spatial preprocessing included realignment to the first scan, and unwarping and 

coregistration to the T1 anatomical volume images. Unwarping of geometrically distorted 

EPIs was performed using the FieldMap Toolbox. T1-weighted images were segmented to 

localize grey and white matter, and cerebro-spinal fluid. This segmentation was the basis for 

the creation of a DARTEL Template and spatial normalization to Montreal Neurological 

Institute (MNI) space, including smoothing with a 6 mm (full width at half maximum) 

Gaussian Kernel filter to improve the signal-to-noise-ratio. To correct for low-frequency 

components, a high-pass filter with a cut-off of 128 s was used. 
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 fMRI statistical analysis 

 First-level analyses 

First-level analyses were performed with two general linear models (GLMs), using a 

canonical hemodynamic response function (HRF). Regressor lengths were defined from 

stimulus onset until the individual response was made by pressing a button (resulting in a 

time window of 1,000 ms + individual response time) for stimuli that required a response 

(emotion rating phase, closeness rating phase) and from stimulus onset to stimulus offset for 

stimuli that were just observed by participants (feedback phase, i.e., observing the partner’s 

pain vs. no pain). The model included three regressors of interest the closeness phase (scale 

onset until button press), the feedback phase (stimulus onset until stimulus offset), and the 

emotion rating phase (scale onset until button press). Parametric modulators coded the trial 

type (PM trial type), i.e., whether the current trial was reinforced (value = 1) or non-

reinforced (value = 0), separately for the closeness phase, the feedback phase, and the 

emotion rating phase. An additional task of no interest was modelled as additional regressor. 

The residual effects of head motions were corrected by including the six estimated motion 

parameters for each participant and each session as regressors of no interest. To allow for 

modelling all the conditions in one GLM, an additional regressor of no interest was included, 

which modelled the potential effects of session. 

 Second-level analyses 

Based on the first-level model, we performed one-sample t-tests on the respective 

parametric modulator separately for each phase of interest (feedback, emotion-rating, 

closeness) across all blocks and conditions. In a next step, we computed second-level 

regressions with the same simple contrasts and individual ω values as covariate across all 

blocks and conditions separately for each phase. Next, we re-ran these second-level 

regressions using the difference in neural activation between conditions, i.e., PM trial type 

(treatment) > PM trial type (control) and individual ω values as covariate. The main 

manuscript focusses on the result from the emotion rating phase as this is the phase clearly 

linked to empathic reaction. The results for the other task phases are reported in the 

supplement (see supplementary results). As recommended, a cluster-forming threshold of P 

<.001 uncorrected (Eklund, Nichols, & Knutsson, 2016; Woo, Krishnan, & Wager, 2014; 



Empathy induces sustained social closeness 

37 

Yeung, 2018) was used and where not stated otherwise whole-brain level FWE cluster-

corrected statistics are reported at an  level < .05. 

To test the relationship of neural activation related to individual recalibration with closeness 

ratings, emotion ratings and trait empathy, beta values during acquisition and extinction in 

the emotion rating phase were extracted from the resulting bilateral clusters in temporo-

parietal junction/superior temporal sulcus and left inferior frontal gyrus/anterior insula using 

MarsBar (Matthew Brett, Anton, Valabregue, & Poline, 2002). Extracted beta values were 

added as predictors in two separate linear mixed models together with block (acquisition vs. 

extinction) and empathy subscale (empathic concern vs. perspective-taking subscale of the 

IRI (Davis, 2006)), trait score, and their interaction as fixed effects, participant and trial 

number as random intercepts, and social closeness as dependent variable. 

Results 

 Results of the fMRI and the behavioural replication study 

 Manipulation Check 

The analysis of emotion ratings in the fMRI study showed a main effect of trial type (pain vs. 

no-pain) (χ2= 59.44, P < .001, β = .85, SE = .110). This effect was not modulated by condition 

(trial type X condition interaction: χ2 = 1.95, P = .16, β = .22, SE = .16) or block (trial type X 

block interaction: χ2 = .04, P = .84, β = .03, SE = .16), indicating that participants emotionally 

distinguished between those trials in which the partner received painful stimulation vs. non-

painful stimulation and did so equally strongly in the treatment and control conditions and 

across the two blocks. 

This effect was replicated for the laboratory replication study (χ2= 52.27, P < .001, β = 1.22, 

SE = .168; trial type X condition interaction: χ2 = .78, P = 377, β = .21, SE = .24; trial type X 

block interaction: χ2 = .34, P = .56, β = .14, SE = .24) and was comparable across studies (fMRI 

vs behavioural replication study: trial type X condition X block X study interaction: χ2= 1.82, P 

= .18, β = .19, SE = .14). 

To test whether the emotion ratings were associated with trait empathy, we conducted a 

linear regression with the empathic concern subscale of the IRI (Davis, 2006) as predictor 

and study (fMRI vs. replication study) and trial type (observed pain vs. observed no-pain) as 

control variables. Results showed that trait empathic concern (EC) was generally associated 
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with larger emotional reactions to the others stimulation on a marginal level (main effect of 

trait empathic concern: χ2= 3.31, P = .07, β = -.31, SE = .17). This relationship, however, was 

stronger for observed pain in contrast to observed no-pain (trial type X trait EC interaction: 

χ2= 8.07, P = .005, β = .53, SE = .19). Hence, for trials of observed pain, trait EC was more 

predictive of the emotional reaction than in trials of observed no-pain. This effect was more 

pronounced in the replication study than in the fMRI study (trial type X trait EC X study 

interaction: χ2= 4.52, P = .03, β = -.49, SE = .23). Conducting the analogous models with trait 

perspective-taking (PT) showed no main effect of PT on emotional reactions but revealed a 

significant interaction of PT and trial type (trial type X trait PT interaction: χ2= 12.10, P < .001, 

β = -.31, SE = .18). That is, emotional reactions to observed non-pain were relatively more 

positively linked to trait PT than emotional reactions to observed pain. Again, this effect was 

more pronounced in the replication study than in the fMRI study (trial type X trait PT X study 

interaction: χ2= 4.58, P = .03, β = -.39, SE = .17) 

 Behavioral Results: Empathy motive activation leads to sustained social closeness 

The main goal of the current studies was to understand how social closeness developed over 

time in the two blocks and conditions. To this end, a linear mixed model was conducted with 

trial number (1 to 25), block (block 1 vs block 2), and condition (control vs. treatment) as 

fixed effects and participant as random intercepts and trial number as random slope for 

participant. This analysis revealed that empathy-related closeness increased with trial 

number in all blocks and conditions (main effect of trial number: χ2 = 15.62, P <.001, β = .10, 

SE = .02, see Table 2.1.1 for full results and Figure 2.1.3A for visualization). Average 

closeness was larger in block 2 than block 1 (main effect of block: χ2 = 47.41, P < .001, β = 

.14, SE = .02) and larger in the treatment than in the control condition (main effect of 

condition: χ2 = 18.50, P < .001, β = .09, SE = .02). Further, results showed a significant 

interaction between condition and block (χ2 = 26.87, P < .001, β = -.15, SE = .03), reflecting 

that in block 1, ratings in the treatment condition tended to be comparable to ratings in the 

control condition, whereas they were higher in the control condition in block 2. In contrast 

to a hypothesized decay in social closeness in block 2, post-hoc t-tests comparing the means 

of the last five trials in block 1 and the mean of the last five trials in block 2, revealed no 

significant difference in closeness (T(45) = -.96, P = .34), indicating sustained empathy 

towards another who is only rarely receiving painful stimulation. The corresponding analysis 
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in the behavioral replication study replicated these results with the addition of a stronger 

effect of trial number in block 1 than block 2 (trial number × block interaction χ2 = 4.28, P = 

.039, β = -.06, SE = .03, see Table 2.1.1 for full results and Figure 2.1.3C for visualization). 

Again, post-hoc t-tests comparing the means of the last five trials in block 1 and the mean of 

the last five trials in block 2, revealed no significant difference in social closeness (T(26) = 

1.29, P = .208). 

Combined analysis of both studies showed a larger main effect of block in the behavioral 

replication study and more pronounced interaction between condition and block number 

(block × study: χ2 = 4.67, P = .031, β = -.07, SE = .03; block × condition × study: χ2 = 7.66, P = 

.006, β = .13, SE = .05; Figures 3A and 3C). 

 

 

Figure 2.1.3 Mean empathy-related social closeness and results of Bayesian model 

comparison in the fMRI study (top) and the behavioral replication study (bottom). A Mean 

social closeness in the fMRI study with model free trend line and pointwise 95% confidence 

interval (loess function) by block, condition, and trial number. Social closeness increased in 

block 1 and plateaus/slightly increased in block 2 in both conditions, demonstrating 

sustainability of empathy-related social closeness. B Bayesian model comparison of three 

models (see Figure 2.1.2 for model space) revealed that individual recalibration of the 

learning signal associated with observing another’s pain vs. no-pain was most likely to 

explain participants’ social closeness rating behavior. C Replication of the behavioral pattern 

and D of the modelling comparison results in the laboratory replication study. 

A B

C D
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Table 2.1.1 Results of the linear mixed models analysis with condition (treatment vs. 

control), trial number (1-25), block (block 1 vs. block 2) as fixed effects, participant as 

random intercept and trialnumber as random slope for participant. The dependent variable 

are participants’ closeness ratings in the fMRI study (N = 46, 4600 observations, maximal VIF 

= 3.12) and the behavioral replication study (N = 27, 2700 observations, maximal VIF = 3.10). 

χ2 and P(χ2) are the type 3 Wald χ2 test statistics. VIF = variance inflation factor. 

Factor beta SE t-value χ2 P(χ2) 

fMRI study      

(Intercept) -.076 .129 -.60 .35 .55 

Condition .087 .021 4.15 18.50 <.001 

trial number .096 .015 6.47 15.50 <.001 

Block .140 .021 6.64 47.41 <.001 

condition*trial number .028 .021 1.31 1.85 .174 

condition*block -.149 .030 -5.00 26.87 <.001 

trial number*block -.013 .021 -.62 .42 .519 

condition*trial number*block -.047 .030 -1.57 2.67 .101 

Behavioral replication study      

(Intercept) -.112 .165 -.68 .46 .496 

Condition .152 .029 5.19 26.27 <.001 

trial number .117 .021 5.65 10.78 .001 

Block .214 .029 7.30 57.98 <.001 

condition*trial number .022 .029 .76 .62 .430 

condition*block -.283 .041 -6.83 50.68 <.001 

trial number*block -.058 .029 -1.99 4.29 .039 

condition*trial number*block -.035 .041 -.843 .77 .399 

 

 Computational modelling of empathy-related social closeness 

In a next step, we tested which of the three variants of the Rescorla-Wagner model best 

described the development of empathy-related social closeness (see Figure 2.1.2 for 

visualization of the model space). As outlined in detail above, the first model (basic model) 

consisted of the basic Rescorla-Wagner model with one learning rate; the second model 
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(differential model) allowed for a different learning rate in reinforced trials and non-

reinforced trials; the third model included a recalibration parameter ω that directed the 

computation of the prediction error (individual calibration model). 

Bayesian model comparison (see methods for details) revealed that in the fMRI study (Figure 

2.1.3B), the individual calibration model is the winning model with an exceedance 

probability of over 99 % (probability that this model is more likely than all other models in 

the model space) and an estimated model frequency of 97 % (probability that this model 

generated the data of any randomly selected participant). This result was replicated in the 

behavioral replication study (Figure 2.1.3D). 

 The recalibration parameter ω 

For empathy-related social closeness, the respective winning model included the 

recalibration parameter ω. The larger this parameter, the more likely are non-reinforced 

trials to elicit a positive prediction error and hence a positive updating of closeness. A large 

ω should thus entail less decay of social closeness in the extinction phase than a small ω. 

The recalibration parameter ω was initially estimated across all blocks and conditions as one 

variable characterizing each individual. To test, whether strong recalibration was specific to 

the extinction block, we tested additional RL models in which ω was free to vary by block as 

well as condition, resulting in block-specific estimates of individual recalibration for both 

conditions (see supplementary online results for details). These analyses showed that on 

average, participants more strongly recalibrated in the extinction block than in the 

acquisition block (fMRI study: T(45) = 2.753, P = .009, CI = [.345, .054]); replication study 

(T(26) = 2.0, P = .056, CI = [-.005, .384]), but recalibration values did not differ between block 

1 and block 2 for the control condition(fMRI study: T(45) = -.579, P = .568, CI = [-.139, .077]; 

replication study: T(26) = -1.027, P = .314, CI = [-.176, .059]; for visualization of the median 

and spread of the extracted parameters, see supplementary Figure S2.1.6). 

 Behavioral control study: Reciprocity does not induce sustained social closeness 

So far, our results revealed the sustained nature of empathy-related closeness, because of 

the recalibration of the outcome value, associated negative emotion ratings (empathy for 

pain) in the acquisition phase and positive emotion ratings (empathic joy) in the extinction 

phase. To test if the observed recalibration of social closeness is a general phenomenon or 
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specifically related to empathy, we conducted a behavioural control study using the identical 

experimental design to test the formation and sustainability of reciprocity-based closeness. 

Reciprocity, commonly defined as returning a previously given or an anticipated favor 

(Gouldner, 1960; Hein, Morishima, et al., 2016; McCabe et al., 2003), is one of the most 

important social norms worldwide (Axelrod & Hamilton, 1981; Falk & Fischbacher, 2006; 

Nowak, 2006; Perugini et al., 2003). Similarly to empathy, reciprocity can increase closeness 

(Adams & Miller, 2022; Neyer, Wrzus, Wagner, & Lang, 2011), and is a strong motivator of 

prosocial behaviour (Fehr et al., 2002). However, whereas empathy-related closeness and 

prosocialty is elicited by sharing the emotions of the other, reciprocity-based processes are 

conditional on the other’s behaviour, i.e., reflect a “tit-for-tat” principle rather than shared 

emotions (Dufwenberg & Kirchsteiger, 2004; Eccles, Hughes, Kramár, Wheelwright, & Leibo, 

2020; Rand, Ohtsuki, & Nowak, 2009; Zaki, 2014). Hence, to reinforce reciprocity in the 

present paradigm, the participant received help from the other person, i.e., the other person 

gave up a monetary reward to save the participant from pain, a procedure that has been-

established for enforcing direct positive reciprocity towards the helper (Hein et al., 2010; 

Saulin et al., 2022). The trial structure was identical to the trial structure in the two empathy 

studies outlined above (for visualization of an exemplary trial, see supplementary Figure 

S2.2.2B). 

 Manipulation Check 

Analogously to the empathy studies above, we first analysed participants’ emotion ratings. 

Results of a linear mixed model revealed a main effect of trial type (χ2= 62.89, P < .001, β = -

1.06, SE = .134) independent of condition (main effect of condition: χ2 = .15, P = .701, β = -

.05, SE = .134, trial type X condition interaction: χ2 = .004, P = .953, β = -.01, SE = .190) for the 

reciprocity motive. Thus, participants emotionally distinguished between those trials in 

which the partner had decided to help them vs. decided not to help them. They did so 

equally strongly in both conditions (treatment vs. control). We further tested whether trait 

positive reciprocity was associated with participants’ emotion ratings and conducted a linear 

mixed models analysis with positive trait reciprocity scores (positive reciprocity subscale of 

the PNR questionnaire (Perugini et al., 2003) and trial type (reinforced vs. non-reinforced) 

and their interaction as fixed effects, participant as random intercept, and emotion ratings 

as dependent variable. This analysis showed that positive trait reciprocity was marginally 
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linked to emotional reactions (main effect of trait positive reciprocity: χ2 = 3.30, P = .07, β = 

.19, SE = .11). However, when controlling for block number (block 1 vs. block 2) and 

condition (control vs. treatment) this effect was significant (main effect of trait positive 

reciprocity: χ2 = 4.34, P = .037, β = .26, SE = .12), demonstrating that our paradigm 

successfully reinforced positive reciprocity. 

 Behavioral results 

Next, we conducted a linear mixed model with trial number, block, and condition as fixed 

effects, participant as random intercept and trial number as random slope for participant to 

analyse the development of reciprocity-related social closeness over time. This analysis 

revealed a significant three-way interaction of condition, trial number, and block (χ2 = 

120.69, P < .001, β = -.53, SE = 05), which shows that the development of social closeness 

over time differentially depended on the block as well as the condition (see Figure 2.1.4A for 

visualization and Table 2.1.2 for full results). Thus, in contrast to empathy-related social 

closeness, reciprocity-related social closeness was affected significantly by reinforcement 

frequency: in the treatment condition (Figure 2.1.4A, dark lines) social closeness increased 

when strongly reinforced during the acquisition block and decaying when weakly reinforced 

during the extinction block, while in the control condition (Figure 2.1.4A, light lines) where 

reinforcement remained at chance level in blocks 1 and block 2 little change in social 

closeness ratings was observed. 

 Computational modelling of reciprocity-related social closeness 

Bayesian model comparison conducted analogously to the fMRI and the behavioral 

replication study revealed that in the control study, the basic model is quite likely to have 

generated the data as well as the individual calibration model. (Figure 2.1.4B, see 

supplementary Table S2.1.2 for overview of model comparison metrics and Figure S2.1.3C 

for visualization of absolute model fit). Hence, in contrast to empathy-related social 

closeness formation and sustainability, reciprocity-related social closeness can be well 

captured by a simple learning rule, which is in line with the decrease in social closeness 

when the frequency of helping declined during block 2 of the treatment condition. 
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Figure 2.1.4 Behavioral pattern and Bayesian model comparison results of the behavioral 

control study. A Mean social closeness with model free trend line and pointwise 95% 

confidence interval (loess function) by block, condition, and trial number. Social closeness 

increased in block 1 of the treatment condition (acquisition phase) and starkly decreased in 

block 2 (extinction phase), demonstrating no sustainability of reciprocity-related social 

closeness. B Bayesian model comparison of three models (see Figure 2.1.2 for model space) 

revealed that the basic model assuming simple updating directly based on the learning signal 

and individual recalibration of the learning signal associated with observing another’s help 

vs. no help are equally likely to explain participants’ reciprocity-related social closeness 

rating behavior. 

 

Table 2.1.2 Results of the linear mixed models analysis with condition (treatment vs. 

control), trial number (1-25), block (block 1 vs. block 2) as fixed effects, participant as 

random intercept and trial number as random slope for participant. The dependent variable 

was participants’ reciprocity-related closeness ratings in the behavioral control study (N = 

27, 2700 observations, maximal VIF = 3.40). χ2 and P(χ2) are the type 3 Wald χ2 test 

statistics. 

Factor beta SE t-value χ2 P(χ2) 

(Intercept) .034 .126 .27 .07 .789 

Condition .53 .034 15.28 236.85 <.001 

trial number -.082 .024 -3.35 8.25 .004 

Block -.029 .034 -.83 .70 .403 

condition*trial number .229 .035 6.66 45.07 <.001 

condition*block -1.13 .049 -23.24 546.42 <.001 

trial number*block .030 .034 .87 .77 .381 

condition*trial number*block -.530 .049 -10.91 120.70 <.001 

 

A B
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 Imaging results 

 Whole-brain results 

The behavioural results revealed that empathy-related social closeness, in contrast to 

reciprocity-related social closeness, is robust against extinction, as individuals recalibrate the 

outcome value associated with observing the other person receive painful vs. non-painful 

stimulation. Moreover, results from computational modelling indicate that the outcome 

value of no-pain trials (non-reinforced trials) can lead to positive prediction errors, enabling 

an increase in empathy-related social closeness based on non-reinforced trials. 

In a next step, we investigated the neural mechanisms underlying the observed sustainability 

of empathy-related closeness. As a manipulation check, first, we analysed the neural 

activation related to participants’ emotion ratings after observing painful or non-painful 

stimulation in the treatment and the control partner. A parametric regressor contrasting trial 

type (painful/ non painful) revealed an increased activation for the processing of observed 

painful stimulation in regions that have been associated with empathy-for-pain (e.g., Beeney 

et al., 2011; Lamm et al., 2007; Naor et al., 2020; Shamay-Tsoory, 2011; Singer et al., 2004), 

including the anterior insula/ inferior frontal gyrus (peak coordinates: x = 38, y = 28, z = -4, 

P(whole-brain FWE-cluster-corrected) = .033, k = 143) and the bilateral temporo-parietal 

junction (TPJ, left hemisphere peak coordinates: x = -52, y = -52, z = 20, T(44) = 6.21, P <.001, 

k = 898; right hemisphere peak coordinates: x = 62, y = -48, z = 22, T(44) = 4.74, P <.001, k = 

532, see Figure S2.1.4 for visualization). Moreover, significant activation was observed in the 

right occipital pole (peak coordinates: x = 16, y = -92, z = 8, P = .005, k = 214). Contrasting the 

results of the parametric regression between the empathy and the control condition 

revealed no significant results, which is expected given that on average participants 

observed the same number of pain trials in both conditions. 

However, in contrast to the control condition, the neural activation in the treatment 

condition should be modulated by the recalibration parameter, i.e., the parameter that 

prevented a decline of empathy-related closeness in the extinction phase. To test this, we 

inspected whether the response to pain vs. no pain trials is differentially modulated by ω in 

treatment compared to control conditions. 

The results revealed significant neural activation in the bilateral superior temporal sulcus 

(STS)/temporo-parietal junction (TPJ) (left hemisphere peak coordinates: x = -66, y = -26, z = 
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0, T(44) = 5.62, P <.001, k = 517; right hemisphere peak coordinates: x = 60, y = -16, z = 10, 

T(44) = 6.56, P <.001, k = 471) and in the left inferior frontal gyrus extending into anterior 

insula (IFG/AI; peak coordinates: x = -32, y = 16, z = 18, T(44) = 4.73, P = 001, k = 269). 

According to these results, the recalibration of emotion ratings when observing painful or 

non-painful stimulation in others is associated with changes in activation strength in bilateral 

STS/TPJ and IFG/AI (see Figure 2.1.5A for visualization). 

 Connection between closeness ratings and neural activation during emotional 

reaction 

According to previous results, activation in the STS/TPJ has been linked to cognitive empathy 

and activation in AI/IFG has been linked to affective empathy (Böckler et al., 2014; Dvash & 

Shamay-Tsoory, 2014; Walter, 2012). The effect of the recalibrated feedback signal on neural 

responses in the acquisition and extinction phase in STS/TPJ may hence be more strongly 

modulated by individual differences in trait perspective-taking, while the recalibration effect 

in AI/IFG may be more strongly modulated by individual differences in empathic concern. In 

this vein, we extracted the beta estimates from the left IFG/AI and bilateral STS/TPJ, i.e., the 

regions associated with the recalibration of the feedback signal, and entered them as 

predictors in linear mixed models. In a first model, we included block averaged beta 

estimates extracted from IFG/AI and the factors block (acquisition vs. extinction), empathy 

subscale (empathic concern vs. perspective-taking subscale of the IRI), trait score, and their 

interaction as fixed effects, participant and trial number as random intercept and social 

closeness as dependent variable. 

Results revealed that the relationship between neural sensitivity to observed pain vs. no 

pain and social closeness was modulated by block, empathy subscale, and trait score (beta 

estimates from IFG/AI × block × empathy subscale × trait score interaction: χ2 = 3.95, P = 

.047, β = -.21, SE = .10). 

Inspection of the visualized estimates showed that for individuals with high trait scores in 

empathic concern (M+1SD), weaker neural activation in response to observed pain (vs non-

pain) was associated with increased social closeness in block 1 (simple slopes: β = -.28, SE = 

.09, 95%CI = [-.45, -.10]) but the reversed trend in block 2 (β = .16, SE = .09, 95%CI = [-.03, 

.34]). Individuals with low trait empathic concern (M–1SD), however, did not show this 

pattern (block 1: β = -.10, SE = .08, 95%CI = [-.26, .07]; block 2: β = -.10, SE = .07, 95%CI = [-
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.24, .04]). Trait scores in perspective-taking did not differentially modulate the relationship 

between neural sensitivity to observed pain vs. no pain and social closeness in acquisition 

(block 1) and extinction (block 2) periods. That is, in both blocks, individuals with low scores 

in perspective-taking showed increased social closeness with decreased neural activation in 

response to observed pain than non-pain (block 1: β = -.22, SE = .08, 95%CI = [-.37, -.07]; 

block 2: β = -.08, SE = .07, 95%CI = [-.22, .07]) relative to individuals with high trait scores in 

perspective-taking (block 1: β = -.11, SE = .07, 95%CI = [-.26, .03]; block 2: β = .05, SE = .09, 

95%CI = [-.12, .23]). 

The analogous analysis with beta estimates from STS/TPJ revealed a main effect of neural 

sensitivity to observed pain vs. no pain in STS/TPJ and social closeness (beta estimates from 

STS/TPJ:  χ2 = 6.49, P = .011, β = -.06, SE = .03). Thus, decreased neural activation to 

observed pain than observed non-pain was generally linked to increased social closeness, 

independently of block number and subscales of trait empathy) Independently of neural 

activation, results showed an interaction between block number, empathy subscale, and 

trait score (block × empathy subscale × trait score interaction: χ2 = 5.37, P = .021, β = -.07, SE 

= .03). 

Discussion 

Here we present the results of two independent behavioral studies, and one fMRI study, 

showing that empathy-related social closeness is preserved under conditions when empathy 

for pain is only rarely reinforced (Figure 2.1.3A and C). In contrast, social closeness incited by 

a social norm such as reciprocity decreased significantly in an equivalent condition in which 

reciprocity-inducing experiences occurred less frequently (Figure 2.1.4A). Uncovering the 

mechanism, computational modelling showed that the preservation of empathy-related 

closeness was best captured by a model assuming recalibration of the feedback signal. 

Again, this finding was replicated with an independent sample (Figure 2.1.3B and D). 
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extinction, a relationship not significantly modulated by trait empathic concern or H trait 

perspective-taking. For visualization purposes, maps were thresholded at P < .001 

uncorrected with cluster size k ≥ 50.STS = superior temporal sulcus, TPJ = temporo-parietal 

junction, IFG = inferior frontal gyrus, AI = anterior insula, EC = empathic concern, PT = 

perspective-taking. 

 

Follow-up modelling analyses (see supplementary computational results) showed that the 

formation of empathy-related social closeness was mainly driven by a learning signal that 

resulted from observing others in pain, whereas the maintenance of empathy-related 

closeness was driven by a learning signal resulting from observing no pain. Our 

computational results therefore suggest that initial social closeness is learned by frequently 

observing another in pain, while the maintenance of social closeness is accomplished via the 

positive associations of observing the relief of pain in others. In other words, social closeness 

based on empathy for pain may have been followed by social closeness based on empathic 

joy (Andreychik & Migliaccio, 2015; Batson et al., 1991), i.e., the joy of seeing less frequent 

pain in the other. This individual recalibration of the feedback was specific for empathy-

related closeness as reciprocity-related social closeness did not show this pattern and 

declined if reciprocity was no longer reinforced – such behavioral pattern is best captured by 

a simple reinforcement model without a recalibration parameter (Figure 2.1.4B). 

The recalibration of the learning feedback signal observed in our study is in line with 

previous studies that showed that the feedback value is susceptible to different learning 

contexts and can be individually adjusted (e.g., Bavard et al., 2018; Hunter & Daw, 2021; 

Pischedda, Palminteri, & Coricelli, 2020). For example, Hunter & Daw (2021) reported 

evidence that the uncertainty of reward in a given environment shapes the learning process. 

Extending such previous studies into the domain of social learning, our results show that 

these feedback recalibration mechanisms can preserve empathy-related closeness even if 

the other person is no longer suffering. 

On the neural level, the recalibration of the feedback that resulted in the longevity of 

empathy-related social closeness was related to changes in activation in the anterior insula 

and adjacent inferior frontal gyrus, as well as the superior temporal sulcus, extending into 

the temporo-parietal junction. According to previous findings focusing on the processing of 

empathy-inducing events, both regions respond to the observation of another’s pain (Lamm 

et al., 2007; Singer et al., 2004; Timmers et al., 2018). In more detail, the IFG/AI is part of a 
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network that has been related to the processing of emotional empathy and the STS/TPJ is 

part of the network involved in the processing of cognitive empathy (Böckler et al., 2014; 

Naor et al., 2020; Shamay-Tsoory et al., 2009; Walter, 2012). In accordance with this 

previous evidence, our results show that closeness adaptation based on the recalibration of 

the closeness-preserving feedback signal in the IFG/AI was more strongly modulated by 

individual differences in trait empathic concern than trait perspective-taking. Specifically, 

high individual scores on empathic concern were related to increased social closeness based 

on stronger neural calibration in IFG/AI, indicated by stronger neural responses to observed 

lack of the other’ s pain in the acquisition block (i.e., the block that is characterized by a high 

frequency of pain stimuli for the other). In the extinction block (i.e., the block that is 

characterized by a low frequency of pain stimuli for the other), stronger neural response to 

the other’s pain were linked to increased social closeness. These regions hence appear to 

reflect a reversal in participants’ learning signal from acquisition to extinction in individuals 

scoring high in empathic concern that is used to update social closeness. Interestingly, 

another recent study linked neural activation in the IFG to reappraisal of empathy for pain 

(Naor et al., 2020), with higher IFG activation being associated with stronger reappraisal. 

Together with these results, our findings indicate that the IFG and AI are implicated in the 

flexible adaptation of empathic responses and empathy-related learning. 

In contrast, adaptation of social closeness based on the recalibration of the feedback signal 

in STS/TPJ was independent of empathic concern and perspective-taking. That is increased 

STS/TPJ activation in response to another’s non-pain was generally linked to increased social 

closeness across acquisition and extinction (Figure 2.1.5G and H). This suggests that 

individual differences in empathic concern rather than perspective-taking are associated 

with a neural reversal that is linked to the recalibration mechanism supporting the 

persistence of empathy-related social closeness. 

Together, the neural results add a novel aspect to existing findings, as they show that IFG/AI 

and STS/TPJ form a neural basis for a sustained effect of empathy on social behavior, here 

demonstrated with regard to social closeness. 

Given evidence for gender differences in empathy (Christov-Moore et al., 2014), reciprocity 

(Dittrich, 2015), and prosocial behavior (Chowdhury, Jeon, & Saha, 2017), we recruited 

participants from the same gender (female) that were paired with same sex partners 
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(confederates). Using a same-sex sample allowed us to control for potential unspecific 

gender effects. That said, we acknowledge that our results are based on a female sample 

which limits their generalizability. Future studies are required to replicate our results in male 

participants. Moreover, future study may test the longevity of empathy-related social 

closeness over longer periods of time and in every-day life settings. 

Taken together, our studies demonstrate that empathy-related social closeness persists even 

when the other person is no longer suffering. Revealing the computational mechanism, we 

show that the longevity of empathy relies on a recalibration of the feedback value (i.e., the 

value associated with the information of whether a partner receives painful or non-painful 

stimulation), linked to neural responses in IFG/AI and STS/TPJ. These finding are important, 

because they show that once empathy is activated, empathy-related responses are a robust 

driver of social closeness. 
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Implications for study 2 

In study 1, we observed that empathy induces sustainable social closeness and explored the 

behavioral and neural mechanism underlying empathy-related social closeness 

sustainability. Results showed that when empathy is only rarely reinforced, social closeness 

still increases which can be explained by individual recalibration of what constitutes a 

reinforcing or a non-reinforcing stimulus. The extent of this individual recalibration was 

linked to increased neural sensitivity to observing painful vs. non-painful stimulation of the 

interaction partner in the temporo-parietal junction/superior temporal sulcus and inferior 

frontal gyrus/anterior insula. Moreover, results of the behavioral control study 

demonstrated that empathy induces social closeness more sustainably than the social 

motive reciprocity. 

Whereas in study 1, we investigated empathy sustainability in terms of empathy-related 

social closeness, in study 2, we aimed to investigate how sustainably empathy leads to 

prosocial behavior. Using the confederate design in study 1, we tested how the process of 

making a prosocial as opposed to an egoistic decision is influenced by how strongly empathy 

is activated and whether the same neural regions are sensitive to this difference in empathy 

activation strength as were in the maintaining of social closeness. The prosocial decision 

process was characterized using drift-diffusion modelling and functional magnetic-resonance 

imaging. 
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Abstract 

Empathy is a ubiquitous driver for prosocial behavior in daily life, especially towards those 

who are suffering. However, it is unclear whether empathy-related prosocial behaviour 

persists if the other person does not suffer anymore. Here we conducted two independent 

studies to investigate the longevity of empathy-related prosocial decisions and the 

underlying neural circuitries, and a third study to test the specificity of these effects. While 

undergoing functional magnetic resonance imaging (fMRI), participants performed a social 

decision task after observing pain in another person with high probability (high empathy 

block) and low probability (low empathy block). In a control condition, they performed the 

same task after observing others receiving pain stimulation at chance level. Drift-diffusion 

modelling results of two independent studies revealed an increased initial bias for making a 

prosocial decision after random and high empathy activation compared to baseline. 

Importantly, this bias was still evident in the low empathy block, i.e., after observing that the 

other person received pain with low frequency. A control study showed that the longevity of 

the prosocial decision bias was specific for empathy-based decisions and not evident when 

prosocial decisions were driven by a social norm like reciprocity. On the neural level, 

increased neural activation in the dorso-medial prefrontal cortex and temporo-parietal 

junction was predominantly linked to high trait empathic concern after frequent pain 

observation and to a larger individual general prosocial decision bias after rare pain 

observation. These results indicate that empathy leads to sustainable prosocial behavior, as 

indicated by a sustained prosocial decision bias and linked to differential neural responses in 

dmPFC and TPJ. 
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Introduction 

Empathy, i.e., sharing another person’s affective state, is a principal driver for prosocial 

behavior (Batson et al., 2011, 1991; Hein, Morishima, et al., 2016). Especially empathy for 

the pain of another person has been consistently linked to an increase in prosocial decisions 

(e.g., Decety, Bartal, Uzefovsky, & Knafo-Noam, 2016; Hein, Morishima, et al., 2016; Hein, 

Silani, Preuschoff, Batson, & Singer, 2010). 

On the neural level, the sharing of emotions (affective empathy) has been associated with 

neural responses in the anterior insula (AI), and the anterior and mid cingulate cortex 

(ACC/MCC; Cutler & Campbell-Meiklejohn, 2019; Dvash & Shamay-Tsoory, 2014; Fan, 

Duncan, de Greck, & Northoff, 2011; Preckel, Kanske, & Singer, 2018; Schurz et al., 2021; 

Stietz, Jauk, Krach, & Kanske, 2019). The sharing of other’s intentions and thoughts 

(cognitive empathy) has been related to neural activation in the temporo-parietal junction 

(TPJ), the superior temporal sulcus (STS), the medial prefrontal cortex (mPFC), and the 

temporal poles (TP) (Cutler & Campbell-Meiklejohn, 2019; Dvash & Shamay-Tsoory, 2014; 

Preckel et al., 2018; Schurz et al., 2021; Stietz et al., 2019). 

The neural activation in regions associated with affective empathy (e.g., AI, ACC) and 

cognitive empathy (e.g., TPJ, mPFC), as well as decision circuitries (e.g., striatum) were linked 

to empathy-based social decision-making in contrast to social decision-making without 

explicit activation of empathy for pain (Hein, Morishima, et al., 2016; Krajbich, Hare, Bartling, 

Morishima, & Fehr, 2015; A. Tusche, Bockler, Kanske, Trautwein, & Singer, 2016). 

Together, these previous studies show that empathy for pain increases the individual 

tendency to decide prosocially and characterized the underlying neural circuitries. However, 

it remains unclear whether the prosocial decision bias induced by empathy is stable, i.e., still 

evident if the other person is no longer suffering. Answering this question is important, 

because it addresses the longevity of response tendencies elicited by empathy, i.e., the 

motive that has been characterized as one of the strongest motivators of prosocial decisions. 

To address this question, we conducted an fMRI study and an independent behavioural 

study in which we modelled and compared the prosocial decision-making process after the 

activation of high and subsequent low empathy and investigated the related changes in 

neural social decision circuitries. To induce empathy, we applied a well-established empathy 

for pain paradigm in which the participant observed how another person (confederate of the 
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experimenter) received painful stimulation and rated how they felt when seeing the other in 

pain (e.g., Hein, Morishima, Leiberg, Sul, & Fehr, 2016; Saulin, Horn, Lotze, Kaiser, & Hein, 

2022, see methods for details). In the treatment condition, to induce high empathy, 

participants observed pain in another person (confederate) with high probability (in 80% of 

all trials), to induce low empathy they observed pain in the other person with low probability 

(20% of all trials). After each of the empathy activation phases, participants performed a 

binary social decision task in which they could divide points in favour of themselves (egoistic 

choice) or in favour of another person (prosocial choice; Figure 2.2.1A). To investigate 

whether the prosocial response bias decays if empathy is reduced, the social decision task 

was divided in three comparable blocks. In a first block at the beginning of the study, 

participants performed the social decisions task before empathy activation (baseline block). 

In a second and a third block, they performed the same task after the activation of high and 

low empathy, respectively (Figure 2.2.1B). To compare potential changes in prosocial bias 

after high and subsequent low empathy activation, participants performed an analogous 

control condition, in which empathy was always activated at chance level (in 50% of the 

trials). To test whether our effects are specific for empathy-based prosocial decisions or also 

induced by other motivational states, in a third behavioural study, we used the identical 

design and social decision task, but induced a social norm (reciprocity) instead of empathy. 

To assess the prosocial decision bias that was induced in the high and low empathy blocks, 

we used drift-diffusion modelling (DDM). In DDM, the decision process is conceptualized by 

continuous accumulation of evidence towards the different decision options which is 

characterized by three principal parameters (Figure 2.2.1C; Ratcliff, Smith, Brown, & 

McKoon, 2016; Voss, Rothermund, & Voss, 2004). Firstly, the drift rate or v-parameter, that 

indicates the speed of evidence accumulation. The v-parameter is hence a measure for the 

efficiency of the decision process. Secondly, the initial decision bias or z-parameter that 

captures potential decision biases prior to the evidence accumulation itself, and thirdly, the 

decision threshold or a-parameter that quantifies the relative amount of evidence needed in 

order to come to a decision and is an indicator of response caution (higher decision 

threshold indicates increased response caution). Previous works investigating different 

motivational propensities for making prosocial decisions suggest that the initial decision bias 

in particular may be sensitive to the strength of motive activation (Chen & Krajbich, 2018; 



Empathy incites a sustainable prosocial decisions bias 

57 

Saulin et al., 2022; Toelch et al., 2018). Moreover, changes in this parameter characterizing 

the motive-related increases in decision bias were associated with increased neural 

activation in striatum (Gluth, Rieskamp, & Büchel, 2012; Saulin et al., 2022) and anterior 

insula (Gluth et al., 2012). 

Given that the z-parameter indicates an individual’s response biases, we hypothesized that 

the activation of empathy increases the initial bias towards a prosocial decision compared to 

the baseline condition. With regard to the empathy activation, we assumed that observing 

pain in others with high frequency induces a stronger empathic reaction than observing pain 

in others with low frequency. In this case, empathy ratings in the low empathy block should 

decrease compared to the previous high empathy block. If the prosocial response bias 

decreases with decreasing empathy, the z-parameter capturing this bias should follow this 

pattern and should be smaller in the low empathy block than in the high empathy block. 

Alternatively, empathy may induce a sustainable prosocial decision bias that is still evident if 

the other person is no longer suffering. In this case, we should observe comparable z-

parameters in the high and the low empathy block. In the control condition, we expected no 

analogous changes in prosocial bias. Hence, if empathy induces a sustainable prosocial 

decision bias, the results in the treatment and the control condition should be comparable. 

On the neural level, an empathy-related increase in the initial response bias towards 

prosocial decisions may be associated with activational changes in neural regions related to 

affective empathy (AI, ACC), cognitive empathy (TPJ, dmPFC), and decision-making more 

generally (striatum, mPFC). 

Material and methods 

 Participants 

fMRI Study. Fifty-one right-handed female participants (mean age = 24.06, SD = 4.52) were 

recruited via online platforms and flyers on the university campus in Würzburg and two 

female confederates took part in the fMRI study. We chose female participants as well as 

female confederates in order to control for gender and avoid cross-gender effects. The 

confederates were students who had been trained to act as naïve participants. Participants 

did not know either of the confederates prior to the experiment. Before the experiment 

began, written informed consent was obtained from all the participants. The study was 
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approved by the local ethics committee (268/18). Participants received monetary 

compensation. 

We had to exclude 8 participants due to extreme behavior (these individuals always chose 

the egoistic choice option and hence did not react to the experimental empathy block 3), 

sleepiness (two participants), or technical problems (one participant). We thus analysed 43 

data sets for the fMRI study. Post-hoc sensitivity analysis using GPower 3.1 with a = 0.05 and 

power (1-b) = 0.80 showed that using this sample sizes allowed for the detection of a true 

effect with an effect size of f² = .16 (F = 2.26). 

Replication and control study. For the laboratory replication and the laboratory control 

study, fifty-six right-handed female participants (mean age = 22.98 years, SD = 3.39) were 

recruited via online platforms and flyers on the university campus in Würzburg and the same 

two female confederates as in the fMRI study took part in the laboratory studies. 

Participants were randomly assigned to the replication study or the control study. One 

participant in each study had to be excluded due to extreme and invariant behavior (these 

individuals always chose the egoistic choice option and hence did not react to the 

experimental empathy/reciprocity block 3). We thus analysed 54 data sets – 27 for each 

study. Post-hoc sensitivity analysis with a = 0.05 and power (1-b) = 0.80 showed that using 

these sample sizes allowed for the detection of a true effect with an effect size of f² = .20 (F = 

2.29). 

 Procedure 

 fMRI study and laboratory replication study 

Prior to the tasks, the individual thresholds for pain stimulation were determined for the 

participants and the confederates (for details, see section Pain stimulation). Next, the 

participants and confederates were assigned their different roles in a manipulated lottery of 

drawing matches. The participant always drew the last match in order to ensure she was 

assigned her designated role as the pain observer. The confederates were assigned the roles 

of pain recipients. In accordance with these roles, there were two parts of the experiment 

(corresponding to the two conditions treatment vs. control, see Figure 2.2.1B for an 

overview of the design). 
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In part 1, participants performed the interaction blocks with the first confederate while the 

other confederate ostensibly filled out questionnaires. In part 2, participants performed the 

interaction blocks with the second confederate and the first confederate ostensibly filled out 

questionnaires and then left. To ease identification during the interaction, the confederates 

were matched with a specific color (counterbalanced across participants). 

Each interaction part comprised three blocks of the social decision task (baseline, high 

empathy block, low empathy block). In accordance with the condition specific activation 

strengths, participants underwent an empathy activation phase after the baseline block, as 

well as after the high empathy block of the social decision task (for visualization of this 

motive activation task and an overview of participants’ behavior, see supplementary online 

Figure S2.2.1). The order of conditions was counter-balanced across participants. In the 

treatment condition, empathy was strongly activated after the baseline block (80% of the 

trials), and only weakly activated after the high empathy block (20% of the trials). In the 

control condition, empathy was activated at chance level after the baseline as well as after 

block 2 (50%, respectively). Importantly, on average, participants observed the empathy 

activating stimulus equally often in both conditions controlling for overall observations of 

painful stimulations. 

In the fMRI study, the respective confederate was seated on a chair to the left of the 

participant with her hand visible by the participant. After both conditions were performed, 

the second confederate left and the participant remained in the scanner for anatomical 

image acquisition. Finally, participants filled out questionnaires measuring trait facets of 

empathy (IRI, Davis, 1983; Jordan et al., 2016) and reciprocity (Perugini et al., 2003) as well 

as how the ostensible other participants were perceived. Participants spent approximately 

60 minutes in the scanner and the entire procedure took about 2.5 hours. 

In the laboratory replication study, the respective confederate was seated next to the 

participant in a soundproof cabin facing the opposite direction such that no one could see 

the other’s screen. After both conditions were completed, the confederate left and 

participants remained in the cabin to complete the same questionnaires as in the fMRI study 

assessing trait empathy and reciprocity and the participant’s impression of the ostensible 

other participants. The whole procedure lasted approximately 2 hours. 
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To avoid possible reputation effects (e.g., Engelmann & Fischbacher, 2009; Gächter & Falk, 

2002), which could influence participants’ behavior, participants were informed that they 

would not meet the confederates after the experiment. 

 Laboratory control study (reciprocity motive) 

Analogously to the fMRI study and the laboratory replication study, the individual thresholds 

for pain stimulation were first determined for the participants and the confederates (for 

details, see section Pain stimulation). Next, the participants and confederates were assigned 

different roles for the subsequent interaction tasks using a manipulated lottery of drawing 

matches. The participant always drew the last match in order to ensure she was assigned her 

designated role as the decider in the social decision task (in order to ensure that the 

participant is the one making the decisions) and pain recipient during the motive activation 

phase (in order to ensure that the participant is the one who can receive help from the 

interaction partner or not). The confederates were assigned the roles of potential helper 

during the motive activation phase who can decide to reduce the number of painful 

stimulation for the participant. In accordance with these roles, there were the same two 

parts as in studies 1 and 2 (corresponding to the two conditions treatment vs. control). In 

part 1, participants performed the interaction blocks with the first confederate while the 

other confederate ostensibly filled out questionnaires. In part 2, participants performed the 

interaction blocks with the second confederate and the first confederate ostensibly filled out 

questionnaires and then left. To ease identification during the interaction blocks, the 

confederates were matched with a specific color (counterbalanced across participants). Each 

interaction part comprised three blocks of the social decision task (baseline, high reciprocity 

block, low reciprocity block). In accordance with the condition specific activation strengths, 

participants performed a reciprocity activation after the baseline block, as well as after the 

high reciprocity block of the social decision task (for visualization of this motive task and an 

overview of participants’ behavior, see supplementary Figure S2.2.2). The order of 

conditions was counter-balanced across participants. In the treatment condition, reciprocity 

was strongly activated after the baseline block (80% of the trials, i.e., in 80% of the trials the 

interaction partner decided to forgo a monetary reward in order to reduce the number of 

painful stimulations for the participant), and only weakly activated after block 2 (20% of the 

trials). In the control condition, reciprocity was activated at chance level after the baseline 
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block as well as after block 2 (50%, respectively). Centrally, on average, participants 

observed the reciprocity activating stimulus equally often in both conditions. 

 Social decision task 

The social decision task was a two-alternative-forced-choice adaptation of the commonly 

used Dictator Game (Forsythe et al., 1994), which has been successfully used in previous 

studies (e.g., Chen and Krajbich, 2018; Hein et al., 2016; Krajbich et al., 2015). In each trial of 

this decision task, participants allocated money to themselves and to the respective partner 

(Figure 2.2.1A) and could choose between maximizing the relative outcome of the other 

person by reducing their own relative outcome (prosocial decision) and maximizing their 

own relative outcome at a cost to the partner (egoistic decision). The outcome was relative 

to the outcome that the participant would have gained when choosing the other option. The 

initial number of points was always higher for the participant compared to the partners. This 

measure was inspired by previous behavioral economics research, showing that prosocial 

behaviors depend on the initial payoff allocation between the participant and the 

participant's partner (Bolton and Ockenfels, 2000; Charness and Rabin, 2002; Fehr and 

Schmidt, 1999). In particular, if subjects have a lower initial payoff than their partner 

(“disadvantageous initial inequality”), they are much less willing to behave altruistically 

toward the partner compared to a situation with advantageous initial inequality (i.e., when 

the participant has a higher initial payoff than the partner). The decision options used in the 

present study created advantageous inequality to optimize the number of prosocial 

decisions, which was the main focus of our study. 

Participants sequentially performed two conditions (treatment condition and control 

condition). In the treatment condition, participants performed the task with a first 

interaction partner and in the control condition with a second interaction partner (both 

interaction partners were confederates of the experimenter). Importantly, the decision task 

blocks were identical in both conditions. 

Each decision-trial started with a fixation cross shown for 1,000 ms, indicating the next 

interaction partner. After this cue, participants saw the two possible distributions of points 

in different colors, indicating the potential gain for the participant and for the current 

partner. Color designation of the partner was counterbalanced across participants. 

Participants had to choose one of the distributions within 4,000 ms. A green box appeared 
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around the distribution that was selected by the participant at 4,000 ms after distribution 

onset. The box was shown for 1,000 ms. The length of the inter-trial interval, as indicated by 

a fixation cross, was jittered between 4,000 and 6,000 ms. At the end of the experiment, two 

of the distributions chosen by the participant were randomly selected for payment (100 

points = 50 cents). We analyzed 25 (34 in the laboratory studies) decision trials in each 

condition, i.e., 150 (204 in the laboratory studies) trials in total per participant. For each 

condition and participant, the same distributions were used and presented in random order. 

 Pain stimulation 

In the fMRI study, painful stimulation was applied using Digitimer DS7A constant current 

stimulator (Hertfordshire, United Kingdom) and a surface electrode attached to the left 

lower inner arm. Shock segments consisted of a single 1 ms square-wave pulses. 

The criterion for painful stimulation was a subjective value of 8 on a pain scale ranging from 

1 (no pain at all, but a participant could feel a slight tingling) to 10 (extreme, hardly bearable 

pain). The participants were told that a value of 8 corresponded to a painful, but bearable 

stimulus, and a non-painful stimulus corresponded to a value of 1 on the same subjective 

pain scale. These subjective pain thresholds were determined using a stepwise increase in 

current (stepsize of 0.05 mA), starting with a current of 0.00 mA, and increasing in stimulus 

intensity until it reached a level that corresponded to the individual’s value of 8 (range = 

0.25-1.50 mA). 

For pain stimulation in the laboratory replication and the laboratory comparison studies, we 

used a mechano-tactile stimulus generated by a small plastic cylinder (612 g). The projectile 

was shot against the cuticle of the left index finger using air pressure (Impact Stimulator, 

Labortechnik Franken, Release 1.0.0.34). The same threshold procedure was used as in study 

1, applying a stepwise increase of air pressure (stepsize of 0.25 mg/s), starting with the 

lowest possible pressure (0.25 mg/s), which caused the projectile to barely touch the cuticle, 

and increasing in stimulus intensity until it reached a level that corresponded to the 

individual’s value of 8 (range = 2.00–6.00 mg/s). 

 Regression analyses 

To test whether emotion ratings during the empathy activation phase and trait empathy 

influenced participants’ frequencies of prosocial decisions, we first conducted a regression 
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analysis with the predictors emotion ratings in the previous empathy activation phase, self-

reported trait empathy as assessed with the empathic concern subscale of the IRI (Davis, 

1983), and their interaction and the frequency of prosocial decisions as dependent variable. 

As control variables we included block (high empathy block/block 2 vs. low empathy 

block/block 3), condition (control vs. treatment), and study (scanner vs. laboratory). The 

analogous analysis was conducted for the laboratory control study using participants trait 

positive reciprocity (subscale of the PNR (Perugini et al., 2003)) instead of trait empathy. 

In all studies, to test the influence of condition and block on participants’ decision behavior, 

we conducted logistic mixed models with condition (treatment vs. control), block (baseline, 

initial response, sustained response), and their interaction as fixed effects, participant as 

random intercept and trial-by-trial binary decisions as dependent variable. 

To test whether prosocial behavior was influenced by trial-by-trial point information, 

condition and their interaction, a logistic mixed model regression was conducted with the 

possible gain for the partner (i.e. difference in points between the two options for the 

partner, |partner's gain option 1 – partner's gain option 2|cf. Saulin et al. (2022), condition, 

block, and their interaction as fixed effects, participant as random intercept, and trial-by-trial 

binary decisions as dependent variable. Additionally, we estimated psychometric functions 

using the R-package “quickpsy” (Linares & López-Moliner, 2016) to model the relationship 

between the trial-by-trial possible gain for the partner and participants social decision 

behavior in each study. 

With the extracted betas (see section Second-level analyses for details) from bilateral 

temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC), we conducted follow-

up analyses to test the link between a sustained and initial neural empathy effect and trait 

and state characteristics of the participants in the fMRI study. 

First, in an initial model, we included the predictors effect in prosocial decision bias (increase 

in z-parameter after the second empathy activation phase vs. increase in z after the second 

empathy activation phase), effect value (individual z-parameter beta weights of the DDM 

regression corresponding to the respective effect), neural region (TPJ vs. mPFC), and their 

interactions as predictors, and extracted neural betas as dependent variable. In an additional 

exploratory model, the same analysis was conducted but adding the general prosocial 
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decision bias (i.e., the intercept of the z-parameter DDM regression) as additional level to 

the factor “effect in prosocial decision bias”. 

Based on these results we conducted the main regression analysis with measure (affective 

empathy vs. general prosocial decision bias), measurement value (empathy trait score of the 

empathic concern subscale of the IRI (Davis, 1980) vs. z-intercept values resulting from the 

DDM), and neural region (TPJ vs. mPFC), and their interactions as predictors, and extracted 

neural betas as dependent variable. The analogous analysis was conducted for the 

perspective-taking subscale of the IRI instead of empathic concern. Please note that we 

conducted separate models for EC and PT due to high collinearity (spearman correlation: 

ρEC,PT = .46, S = 7219, P = .002, N = 43). 

Linear mixed model analyses were conducted in R (R version 4.0.4, R Core-Team, 2018) using 

the packages lme4 (Bates et al., 2014) and car (Fox et al., 2018). For mixed models, we 

report the chi-square values derived from Wald chisquare tests using type 3 sum of squares 

from the ‘Anova()’ function (car package). We report the t-values derived from the 

summary() function and where of interest simple slopes as provided by the ‘emtrends’ 

function (emmeans package (Lenth et al., 2019)). 

 Drift-diffusion modelling 

We used hierarchical regression drift-diffusion modeling (HDDM) (Vandekerckhove, 

Tuerlinckx, & Lee, 2011; Wiecki et al., 2013), which is a version of the classical drift-diffusion 

model that exploits between-subject and within-subject variability using Bayesian parameter 

estimation methods, because it is ideal for use with relatively small sample sizes and trial 

numbers. The analyses were conducted using the python implementation of HDDM 

regression version 0.8.0 (Wiecki et al., 2013). 

Based on binary decisions, the HDDM approach provides detailed insights into the 

computation of egoistic and prosocial decisions, because it uses all the raw data that is 

available (trial-by-trial response times and decision outcome information of all decisions, 

irrespective of point distributions) to estimate sub-components of the underlying decision 

process. The v, z and a-parameters for each participant capture how each person maneuvers 

between the egoistic and the prosocial decision options, and finally approaches a decision 

boundary (i.e., the boundary for an egoistic or a prosocial decision, see e.g., Chen & Krajbich, 

2018; Gallotti & Grujić, 2019, for comparable approach). 
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In the drift-diffusion modelling analyses, we initially compared how well five different 

models (see Table 2.2.1 for overview of the model space) described participant’s behavior. 

Since the partner’s possible gain (other possible gain) significantly influenced individual v-

parameters, this regressor was included as trial-by-trial influence on the v-parameter in all 

models (except the null model). 

 

Table 2.2.1 Overview of the model space of the models tested to describe the empathy-

based and reciprocity-based social decision process. The null model assumed no influences 

of manipulated factors on the decision process at all (M0) and V1 assumed that the trial-by-

trial point information influences the v-parameter (V1). Three additional models assumed 

that the z-parameter is influenced by either condition (VZ1), condition and block (VZ2), or 

condition and block as well as their interaction (VZ3). 

 model label specification 

null model M0 - 

test influence of point information on v V1 v ~ other possible gain 

influence on v-parameter and 

z-parameter models 

VZ1 v ~ other possible gain  

z ~ condition 

VZ2 v ~ other possible gain  

z ~ condition + block 

 
VZ3 v ~ other possible gain  

z ~ condition*block 

 

Apart from the parameter of interest for our research question (z), additional parameters 

are included in the estimation procedure. We also estimated the non-decision time t and 

allowed for trial-by-trial variations of the initial bias (sz), the drift rate (sv) and the non-

decision time (st). These parameters were not estimated to vary by condition or block. They 

were however included based on results by Lerche & Voss (2016), who showed that in most 

cases, it is beneficial to include these parameters in order to improve model fit. In the 

estimation procedures we used the default settings for the priors and hyperpriors provided 

by the HDDM package. Specifically, the “informative group mean priors are created to 
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roughly match parameter values reported in the literature and collected by (Matzke & 

Wagenmakers, 2009)” cited from Wiecki et al. (2013), Supplementary Material, page 1. 

Model convergence was checked by visual inspection of the estimation chain of the 

posteriors, as well as computing the Gelman-Rubin Geweke statistic for convergence (all 

values < 1.01) (Gelman & Rubin, 1992). To assess model fit, we conducted posterior 

predictive checks by comparing the observed data with 500 datasets simulated by our model 

(Wiecki et al., 2013). This approach allows for the computation of intervals within which the 

parameter falls with 95% probability. If the observed data falls within the 95% credibility 

interval of the simulated data, it can be assumed that the model can describe the data well 

enough. 

To relate individual changes in the z-parameter to additional variables, we extracted each 

participant’s regression weights for all effect included in the winning model. Please note that 

the HDDM regression procedure estimates regression weight for all effects included and an 

intercept, but not explicit parameter estimates for each factor level separately. 

 fMRI data acquisition 

Imaging data was collected at a 3T MRI-scanner (Skyra syngo, Siemens, Erlangen, Germany) 

with a 32-channel head coil. Functional imaging was performed with a multiband EPI 

sequence of 42 transversal slices oriented along the subjects’ AC-PC plane and distance 

factor of 50% (multi-band acceleration factor of 2). The in plane resolution was 2 x 2 mm² 

and the slice thickness was 2 mm. The field of view was 216 x 216 mm², corresponding to an 

acquisition matrix of 108 x 108. The repetition time was 1340 ms, the echo time was 25 ms, 

and the flip angle was 60°. Structural imaging was conducted using a sagittal T1-weighted 3D 

MPRAGE with 240 slices, and a spatial resolution of 1 x 1 x 1 mm³. The field of view was 256 

x 256 mm², corresponding to an acquisition matrix of 256 x 256. The repetition time was 

2,300 ms, the echo time was 2.96 ms, the total acquisition time was 3:50 min, and the flip 

angle was 9°. We obtained, on average, 1,215 (SE = 5.07 volumes) EPI-volumes in the control 

condition and 1,208 (SE = 4.26 volumes) EPI volumes in the treatment condition for each 

participant. We used a rubber foam head restraint to avoid head movements. 
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 fMRI Preprocessing 

Preprocessing and statistical parametric mapping were performed with SPM12 (Wellcome 

Department of Neuroscience, London, UK) and Matlab version 9.2 (MathWorks Inc; Natick, 

MA). Spatial preprocessing included realignment to the first scan and unwarping and 

coregistration to the T1 anatomical volume images. Unwarping of geometrically distorted 

EPIs was performed using the FieldMap Toolbox. T1-weighted images were segmented to 

localize grey and white matter, and cerebro-spinal fluid. This segmentation was the basis for 

the creation of a DARTEL Template and spatial normalization to Montreal Neurological 

Institute (MNI) space, including smoothing with a 6 mm (full width at half maximum) 

Gaussian Kernel filter to improve the signal-to-noise-ratio. To correct for low-frequency 

components, a high-pass filter with a cut-off of 128s was used. 

 fMRI statistical analysis 

 First-level analyses 

First-level analyses were performed with a general linear model (GLM), using a canonical 

hemodynamic response function (HRF). Regressors were defined from stimulus onset until 

the individual response was made by pressing a button (resulting in a time window of 1,000 

ms + individual response time). The first-level model included as regressors of interest the 

decision phase (distribution onset until button press) and the possible gain for the partner as 

parametric modulator (see section Regression analyses for details). Participants also 

performed another task within the same scanning session. This task was modelled with three 

additional regressors of no interest, accounting for neural activation in this task. 

Additionally, invalid trials (i.e., trials in which the participant did not respond during the 

social decision task) were modelled as a separate regressor. The residual effects of head 

motions were corrected for by including the six estimated motion parameters for each 

participant and each session as regressors of no interest. To allow for modelling all the 

conditions in one GLM, an additional regressor of no interest was included, which modelled 

the potential effects of session. 

 Second-level analyses 

Based on the first-level model, we computed a second level factorial model with the factors 

condition and block and computed the main effect contrasts of block. Specifically, in a first 



Empathy incites a sustainable prosocial decisions bias 

69 

step, we tested the main effect of block, i.e., increase in neural activation from each block to 

the next. Second, we tested, in which regions neural activation more strongly decreased 

after the second empathy activation phase compared to after the first empathy activation 

phase. 

We then tested in how far the initial and the sustained neural empathy effect in regions 

associated with stronger increases after the second empathy activation phase were 

specifically linked to (i) the individual prosocial decision bias and (ii) emotional and cognitive 

trait empathy (empathic concern subscale and perspective-taking subscale of the IRI (Davis, 

1980)). Specifically, we extracted the beta values from the contrast treatment high empathy 

block > treatment baseline block (initial empathy effect) and from the contrast treatment 

low empathy block > treatment high empathy block (sustained empathy effect) in bilateral 

temporo-parietal junction and medial prefrontal cortex (Tzourio-Mazoyer et al., 2002) using 

marsbar (Matthew Brett et al., 2002). We then entered them as dependent variable in 

regression models with the predictors effect (initial vs. sustained) and indicators of prosocial 

decision bias and trait empathy (see section Regression analyses for details). 

Results 

 Behavioral results - fMRI study and laboratory replication study 

 Empathy-based prosocial decision behavior 

In order to test whether, empathic reactions during the empathy activation phase and trait 

empathy (as assessed using the empathic concern subscale of the IRI (Davis, 1983)) 

influenced participants’ behavior, we conducted a regression analysis with emotional 

reaction during empathy activation and trait empathy and their interaction as predictors, 

study, block, and condition as control variable, and participants’s probability for making a 

prosocial decision as dependent variable. Results showed that the higher participants’ self-

reported trait, empathy, the more strongly participants emotional reaction to observing that 

the interaction partner received painful stimulation was associated with higher frequencies 

in prosocial decisions after empathy activation (emotion rating × trait empathy interaction: 

β = .12, SE = .06, T(38) = 2.00, P = .048). 

Mixed-models analysis of prosocial decision frequency revealed that the frequency of 

prosocial decisions was comparable across samples (main effect of study: χ² = 1.87, P = .17, β 
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= -.06, SE = .05, T(66) = -1.37) as well as between blocks and conditions (all main effects and 

interaction χ²   2.72, Ps >.25, see Figure 2.2.2A for visualization and Table 2.2.2 for full 

results). Hence, prosocial decision frequencies did not decay after only weak empathy 

activation, i.e., from block 2 to block 3, indicating sustainability of empathy-related prosocial 

decision-making. 

 Response times 

To test whether response times were influenced by block and condition, we conducted the 

analogous mixed model analysis with the predictors block and condition, and sample as 

control variable with the dependent variable response time. This analysis revealed that 

response times were significantly influenced by block (main effect of block: χ² = 8.88, P = .01, 

βinitial response = -.06, SE = .03, T(66) = -2.31, βsustained response = -.07, SE = .03, , T(66) = -2.79) and 

condition (main effect of condition: χ² = 10.18, P = .001, β = 0.08, SE = .03, T(66) = 3.19). That 

is participants were faster in the high empathy block (block 2) and the low empathy block 

(block 3) as compared to the baseline block and faster in the control condition as compared 

to the treatment condition. Response times were comparable across studies (main effect of 

study: χ² = .97, P = .79, β = 0.04, SE = .15, T(66) = 0.27; see Figure 2.2.2B for visualization). 

 

Table 2.2.2 Results of the linear mixed models analysis with block, condition, and their 

interaction as fixed effects, study as control variable, participant as random intercept and 

the frequency of empathy-based prosocial decisions in the fMRI study and the laboratory 

replication study as dependent variable (N = 70, maximal VIF = 7.98, 11759 observations). 

Factor Coefficicent Β SE T(63) χ² P(χ²) 

 Intercept .62 .04 16.62 276  

Block Block 2 -.009 .01 -.65 1.12 .58 

 Block 3 .006 .01 .40   

Condition treatment condition .006 .01 .45 .20 .65 

Study replication study -.06 .05 -1.37 1.87 .17 

condition:block Block 2:treatment condition .018 .02 .90 2.72 .27 

 Block 3:treatment condition -.015 .02 -.75   
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Figure 2.2.2 Mean relative frequencies and SEMs of empathy-based prosocial decisions, 

response times, and changes in initial prosocial decision bias across the fMRI study and the 

laboratory replication study. A Observable frequencies of empathy-based prosocial decisions 

were comparable across blocks and conditions. B Response times were faster in the control 

condition than in the treatment condition and faster in the high empathy block (block 2) and 

the low empathy block (block 3) as compared to the baseline block (block 1). C As indicated 

by the corresponding regression weights of the winning DDM (VZ3), the initial bias towards 

making a prosocial decision (z-parameter of the drift diffusion model) was increased from 

the baseline block (block 1) to the high empathy block/block 2 (probability = 94.9 %) D as 

well as comparing the baseline block (block 1) and the low empathy block/block 3 

(probability = 98.8%) across both conditions. 

 

 Influence of point information 

To test whether trial-by-trial point information influenced participants’ behavior, we 

conducted the same analysis as above and added the trial-by-trial possible gain (see 

methods for computation of this variable) and its interactions as predictors. Results revealed 

a main effect of possible gain on the frequency of prosocial decisions (main effect of point 

information: χ² = 166.12, P < .001, β = .17, SE = .01, T(55) = 12.89), an effect that was 

tendentially larger in the laboratory replication study (point information × study interaction: 

χ² = 3.00, P = .08, β = .03, SE = .02, T(55) = 1.73). Thus, the more the other person could 

A B

C D
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potentially gain from the participant choosing the prosocial distribution option, the more 

likely participants were to choose the prosocial option. 

We further fitted psychometric functions to the data to model the relationship between 

trial-by-trial point information and the probability to make a prosocial decision. Results of 

this estimation showed that the values for the points of subjective equality based on the 

psychometric functions estimated were comparable across blocks and conditions (all Ps >.32, 

see supplementary Figure S2.2.3 for visualization). 

 Drift diffusion modelling 

Although, observable prosocial decision frequencies were not influenced by block or 

condition, the underlying decision process as characterized by drift-diffusion model 

components may be sensitive to empathy activation strength and may elucidate the 

mechanisms underlying the sustainability of empathy-based prosocial decision behavior. 

In the drift-diffusion modelling analyses, we initially compared how well seven different 

models (see Table 2.2.1 for overview of the model space) described participant’s behavior. 

In all models (except for the null model), the partner’s possible gain (other possible gain) was 

included as trial-by-trial influence on the v-parameter (cf. Saulin, Horn, Lotze, Kaiser, & Hein, 

2022). Models varied with respect to whether condition, block, and their interaction 

influenced the v-parameter or the z-parameter. 

The winning model for empathy-based decisions as indicated by the lowest DIC value was 

the most complex model (VZ3) (see supplementary Table S2.2.1 for all DIC values). Thus, the 

model assuming an interaction effect between condition and block on the z-parameter best 

described the data compared to the other models included in the model space. Inspection of 

the posterior distribution of the effects’ regression weights showed that the initial bias 

towards making a prosocial decision (z-parameter) was larger for the high empathy block 

(block 2) as compared to the baseline block (probability = 94.9%) and larger for the low 

empathy block (block 3) than the baseline block (98.8%). Hence, despite the comparable 

frequency of prosocial decisions across all blocks, the initial bias towards making this 

decision was increased in both conditions with respect to baseline (see Figure 2.2.2B and C 

for visualization).The probability for a larger initial prosocial decision bias in the low empathy 

block (block 3) than in the high empathy block (block 2) was 85.6 %, i.e., close to the 

threshold of 90% credibility. Overall, the probability for an increase of initial prosocial 
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decision bias over the course of the three blocks is hence 90.3%. across treatment and 

control condition. 

Further, the probability for an overall larger initial prosocial bias in the treatment condition 

as compared to the control condition was 87.7%, i.e., just below the threshold of 90% 

credibility. Regarding interaction effects, inspection of the posterior distribution for a larger 

increase from the baseline block to the high empathy block (block 2) in the treatment than in 

the control condition yielded a probability of 58.9%. Hence, the initial increase after baseline 

was comparable in the two conditions. Moreover, the probability for a larger increase in 

initial prosocial decision bias from the high empathy block (block 2) to the low empathy 

block (block 3) in the control condition than in the treatment condition was 86.8 %, again 

close to the threshold of 90% credibility. However, results showed that the increase from the 

baseline block to the low empathy block (block 3) was larger in the treatment condition 

compared to the control condition (90.4 %). This suggests that although empathy was only 

weakly activated in the second empathy activation phase (treatment condition), the overall 

increase with respect to baseline is at least as large as after two phases of empathy 

activation at chance level (control condition). Additionally, the trial-by-trial point information 

about the partner’s possible gain influenced the v-parameter (100%). 

 Behavioral results - laboratory control study 

 Reciprocity-based prosocial decision behavior 

In a separate control study conducted in the laboratory, we tested whether the effect of 

sustainable motive-based prosocial decision-making generalized to other social motives. 

Specifically, we conducted the same experiment as in the laboratory replication study, but 

activated the reciprocity motive, that is the norm to return a previously received favor. 

In a first step, we again tested whether emotional reactions during the reciprocity activation 

phase and trait positive reciprocity (as assessed using the positive reciprocity subscale of the 

PNR (Perugini et al., 2003)) influenced participants’ behavior. We hence conducted a 

regression analysis with emotional reaction during reciprocity activation and trait positive 

reciprocity and their interaction as predictors, study, block, and condition as control variable, 

and participants’s probability for making a prosocial decision as dependent variable. Results 

showed that in this model, none of the predictors of interest was associated with prosocial 

behavior. However, running separate models for emotional reactions and trait reciprocity 
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revealed that, the better participants felt in response to the partner’s decision during 

reciprocity activation, the more frequently they made a prosocial decision in the social 

decision task (β = .16, SE = .07, T(19) = 2.23, P = .028). Likewise, the higher an individual’s 

self-reported trait positive reciprocity, the more frequently they made a prosocial decision in 

the social decision task (β = .14, SE = .05, T(19) = 3.01, P = .003). 

Linear mixed models analyses with the predictors block, condition, and their interaction 

revealed a main effect of block (χ² = 10.96, P = .004, βblock 2= -.05, SE = .02, T(24) = -2.24, 

βblock 3= -.07, SE = .02, T(24) = -3.23) and a block X condition interaction (χ² = 23.76, P < .001, 

βblock 2 :treatment condition= 0.13, SE = .03, T(24) = 4.25, βblock 3:treatment condition= .002, 

SE = .03, T(24) = .07, for visualization, see Figure 2.2.3A). Hence, the changes of prosocial 

behavior across the three blocks depended on the condition. In the control condition, 

prosocial decisions continuously decreased from each block to the next, whereas in the 

treatment condition, the frequency of prosocial decisions increased after strong reciprocity 

activation and decreased after subsequent weak reciprocity activation. 

 Response times 

Conducting the analogous mixed model with individual response times as dependent 

variable showed that response times of reciprocity-based social decisions were affected by 

block (χ² = 38.24, P < .001, βblock 2= -.15, SE = .04, T(24) = -4.06, βblock 3= -.22, SE = .04, T(24) = -

6.07; Figure 2.2.3B). Thus, response times were faster in the high reciprocity block and the 

low reciprocity block as compared to the baseline block. Other main effects or interactions 

did not reach significance (all Ps >.39). 

 Influence of point information 

To further test whether trial-by-trial point information influenced participants’ reciprocity-

based behavior, we conducted the same analysis as above and added the trial-by-trial 

possible gain (see methods for computation of this variable) and its interactions as 

predictors. Results revealed a main effect of possible gain on the frequency of prosocial 

decisions (main effect of point information: χ² = 118.85, P < .001, β = .15, SE = .01, T(20) = 

10.90), independently of block or condition (for interaction effects, all Ps > .42). 

To model the relationship between trial-by-trial point information and the probability to 

make a prosocial decision, we again fitted psychometric functions to the data. Results of this 

estimation showed that the values for the points of subjective equality based on the 
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psychometric functions estimated were comparable across blocks and conditions (all Ps >.27, 

see supplementary Figure S2.2.4 for visualization). 

 

 

Figure 2.2.3 Mean relative frequencies with SEMs, mean response times with SEMs of 

reciprocity-based prosocial behavior, and changes in initial prosocial decision bias. A 

Observable frequencies of empathy-based prosocial decisions in the treatment condition 

(dark red) increased from before to after weak reciprocity activation and decreased after 

weak reciprocity activation. In the control condition (light red), the frequency of prosocial 

decisions gradually decreased from each block to the next. B Response times decreased 

from the baseline block (block 1) to the high reciprocity block (block 2) and the low 

reciprocity block (block 3) independently of condition. C The initial bias towards making a 

prosocial decision (z-parameter of the drift diffusion model) more strongly increased in the 

treatment condition than in the control condition from the baseline block (block 1) to the 

high reciprocity block (block2; probability = 100 %). D The initial bias towards making a 

prosocial decision (z-parameter of the drift diffusion model) more strongly decreased in the 

treatment condition than in the control condition from the high reciprocity block (block 2) to 

the low reciprocity block (block 3; probability = 99.4%). 

 

A B

C D
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 Drift-diffusion modelling 

Comparing the same seven models as for the empathy motive, the winning model as 

indicated by the lowest DIC value was the most complex model (VZ3) for empathy-based 

decisions (see supplementary Table S2.2.1 for all DIC values). The trial-by-trial point 

information about the partner’s possible gain influenced the v-parameter with over 95% 

probability (probability = 100%). For reciprocity-driven decisions, the initial bias towards 

making the prosocial decision was more strongly increasing from the baseline block to the 

high reciprocity (block 2) block in the treatment condition than in the control condition, 

(interaction effect condition × block effect: probability = 100%,). After the second phase of 

reciprocity activation, however, the initial bias decreased more strongly in the treatment 

condition as compared to the control condition (99.4%, Figure 2.2.3C). These findings mirror 

the pattern of observed prosocial decisions with an increase and a subsequent decrease in 

prosocial decisions in the treatment condition and a slight decrease over all blocks in the 

control condition. 

 fMRI results 

 Neural effects of block-wise increases in neural activation during the social decision 

process 

DDM results of the empathy-related social decision process had revealed block-wise 

increases in prosocial decision bias across conditions. Based on these results, we next tested 

whether this block-dependent increase across the two conditions was also mirrored in 

changes of neural activation. Specifically, we tested in which regions neural activation 

increased after the first empathy activation phase and again after the second empathy 

activation phase, i.e., in which regions neural activation increased from each block to the 

next (baseline < block 2 & block 2 < block 3). Applying cluster-level whole-brain correction, 

this analysis revealed block-dependent increases in activation in bilateral striatum (left peak: 

x = -20, y = 10, z = -10, P < .001, k = 814; right peak: x = 18, y = 8 z = 6, P < .001, k = 487),and 

inferior frontal gyrus/anterior insula (left peak: x = -46,  y = 8, z = 22, P = .022,k =174, right 

peak = x = 46, y = 6, z = 34, P = .043, k = 147), as well as left temporo-parietal junction (TPJ, 

peak: x = -38, y = 36, z = 18, P < .001), amongst other regions (see supplementary Table 

S2.2.2, for overview of full results at p .001 uncorrected and k≥100). Hence, neural 
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activation in these regions generally increased from each block to the next in both 

conditions. 

Next, we aimed at more specifically testing whether increases in neural activation differed 

depending on whether this increase was in response to the first empathy activation phase 

compared to in response to the second empathy activation phase. In this vein, we 

contrasted the respective increases in neural activation ([baseline < block 2] vs. [block 2 < 

block 3]). The results revealed significant effects in the bilateral dorso-medial prefrontal 

cortex (dmPFC) and the right TPJ (dmPFC, left peak: x = -10, y = 50, z = 18, P (whole-brain 

cluster-corrected) = .001, k = 297, right peak: x = 18, y = 50, z = -28, P = .142, k = 103(TPJ, 

peak: x = 46, y = -60, z = 16, P = .022, k = 173, Figure 2.2.4A and C). On a lower, uncorrected 

threshold we also observed neural activation in the left temporal pole (Table 2.2.3). The 

reverse contrast revealed no significant effects (all Ps>.98 and ks <9). This indicates that 

neural activation in these regions increased more strongly after the second empathy 

activation phase than after the first empathy activation phase, making them potential 

candidate regions linked to a sustained effect of empathy. 

 

Table 2.2.3 Results of the second-level analysis showing the regions with a larger increase in 

neural activation during the decision process after the second empathy activation phase as 

compared to after the first empathy activation phase. P<.001 uncorrected, k > 100. 

Region Hemisphere T FWE-P-value 

(cluster-level) 

K coordinates 

temporo-parietal 

junction 

Right 4.69 .022 173 46 -60 16 

dorso-medial 

prefrontal cortex 

Left 4.30 .001 297 -10 50 18 

Right 4.12 .142 103 18 50 28 

temporal pole Left 4.14 .124 108 -36 16 -28 
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 Relationship between neural responses after strong and weak empathy activation is 

selectively modulated by empathic concern and general prosocial decision bias 

Behavioral results had shown that block-wise increases in prosocial decision bias were 

comparable across conditions. Hence, in the previous section, we first tested for analogous 

effects on a neural level and observed that neural activation in regions previously linked to 

empathy (IFG, AI, TPJ) and motivation (striatum) increased from each block to the next. 

Moreover, neural activation in dmPFC and TPJ yielded larger increases in response to the 

second empathy activation phase than in response to the first empathy activation phase. In 

line with our research question, we next aimed at understanding the modulators of a 

sustained effect of empathy activation in contrast to an initial effect of empathy activation in 

the treatment condition, i.e., after strong and subsequent weak empathy activation. To test 

this, we extracted the contrast beta estimates from anatomically defined temporo-parietal 

junction (TPJ) and medial prefrontal cortex (mPFC) corresponding to the initial effect of 

empathy in the treatment condition (treatment high empathy block > treatment baseline 

block) and the sustained effect of empathy in the treatment condition (treatment low 

empathy block > treatment high empathy block), to test whether these increases in neural 

activation were linked to participants’ prosocial decision bias. 

Participants’ block-specific increases in prosocial decision bias, i.e., the regression weights 

indicating the block-specific increases of the z-parameter, were not related to a sustained 

neural empathy effect (simple slopes: TPJ: β = .05, SE = .11, 95% CI = [-.16, .26]; mPFC: β = 

.04, SE = .11,95% CI = [-.17, .25], see supplement for full results). This makes sense as the 

prosocial decision bias did not strongly increase after weak empathy activation. An 

additional exploratory analysis showed that the general prosocial decision bias (intercept of 

the z-parameter), which is an indicator of general state prosocial decision bias, was linked to 

a sustained neural empathy effect (simple slopes: TPJ: β = .24, SE = .11, 95% CI = [.02, .46]; 

mPFC: β = .26, SE = .11,95% CI = [.04, .48], see supplement for full results). 

Hence, to test whether the sustained vs. initial neural empathy effect were differentially 

linked to this general prosocial decision bias in concert with affective and cognitive trait 

empathy (empathic concern and perspective-taking subscales of the IRI (Davis, 2006)), we 

conducted two final linear models. 
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The predictors in the first model were measurement (self-reported trait empathic concern 

vs. prosocial decision bias), measurement value (the respective normalized score/decision 

bias), region (TPJ vs. mPFC), effect type (initial vs. sustained), and their interactions as 

predictors and neural betas as dependent variable. Results showed a significant 

measurement × measurement value × effect type interaction (β = .60, SE = .22, t = 2.67, P = 

.008, see Figure 2.2.4B and D for visualization). Simple slope inspection revealed that in both 

regions, self-reported trait empathic concern was tendentially positively related to the 

neural increase in response to the initial empathy effect (TPJ: β = .20, SE = .112, 95% CI = [-

.02, .42]; mPFC: β = .17, SE = .112,95% CI = [-.06, .38]), whereas the general prosocial 

decision bias was positively related to the neural increase in response to the sustained 

empathy effect (TPJ:β = .24, SE = .112, 95% CI = [.02, .46]; mPFC: β = .25, SE = .112,95% CI = 

[.03, .47]). This shows that, in TPJ as well as mPFC, neural activation increased the more after 

strong empathy activation, the more trait empathic concern an individual reported, hence 

reflecting a link between empathic concern and a neural response to an initial empathy 

effect. After subsequent weak empathy activation, however, neural increases during the 

social decision process were linked to a person’s overall prosocial decision bias in the 

experiment, demonstrating a link between the prosocial decision bias and neural responses 

to a sustained empathy effect. 

The second model was conducted analogously including trait perspective-taking as predictor 

instead of empathic concern. This model showed a similar pattern of results as the model 

testing the role of empathic concern, however only on a marginal level (measurement × 

measurement value × effect type interaction β = .49, SE = .22, t = 1.74, P = .08). No other 

effects reached statistical significance (all Ps > .07, Ts < 1.78). 

Discussion 

In the studies presented here, we investigated the sustainability of the empathy-based social 

decision process and its neural underpinnings. The directly observable frequency of 

empathy-based prosocial decisions was sustainable and remained on a high level throughout 

all three blocks. Drift-diffusion modelling analyses showed that an individual’s initial bias 

towards making a prosocial decision was increased after strong and random activation. 

Decisively, it did not decrease after subsequent weak activation. Additionally, we compared 

the sustainability of the empathy-based social decision process with the same decision 
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process based on reciprocity. Reciprocity-based prosocial decisions also became more 

frequent after strong activation. However, prosocial decisions starkly decreased after weak 

activation of reciprocity. This pattern was again reflected in an initial increase and 

subsequent decrease of the initial prosocial decision bias, showing that empathy more 

sustainably leads to a prosocial decision bias than reciprocity. 

On a neural level, the increase of prosocial decision bias over the course of all three blocks 

was reflected in increases in neural activation from each block to the next in striatum, 

inferior frontal gyrus/anterior insula, as well as temporo-parietal junction (TPJ). Additionally, 

neural activation in dorso-medial prefrontal cortex and TPJ specifically more strongly 

increased from after the second empathy activation phase as compared to after the first 

empathy activation phase across both conditions. Moreover, the sustained increase in 

neural activation after weak activation of the empathy motive was positively associated with 

a person’s overall bias towards making a prosocial decision, whereas the initial neural 

response was associated with individual trait empathy, especially empathic concern. 

The present results are in accordance with previous works that showed that experimental 

manipulations (Saulin et al., 2022), peer influences (Yu et al., 2021), as well as trait 

propensities for making prosocial decisions (Chen & Krajbich, 2018) increased initial 

prosocial decision biases. A study from our group, for example showed that the initial bias 

towards making a prosocial decision (z-parameter of the drift-diffusion model) was larger 

after the combined activation of empathy and reciprocity compared to after activation of 

reciprocity only (Saulin et al., 2022). Hence, this parameter appears to be sensitive to 

prosocial motive activation strength. More generally, changes in the initial decision bias have 

also been linked to changes in motivational strength (Gluth et al., 2012; Leong et al., 2019; 

Mulder et al., 2012). The findings observed here thus extend this general notion by showing 

that the initial prosocial bias increases after activation of a prosocial motive, indicating an 

increase in prosocial motivation based on empathy or reciprocity. The persistently high 

prosocial decision bias after only weak empathy activation further suggests that not only the 

prosocial decision bias was increased, but that this bias may be an indicator of the 

underlying empathy motive strength itself, hinting towards empathy as a sustainable social 

motive. 
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Neural activation during the social decision process increased over the course of the three 

blocks in both conditions in the inferior frontal gyrus/anterior insula (TPJ/AI), the temporo-

parietal junction (TPJ), and the striatum. Whereas IFG, TPJ, and AI have frequently been 

associated with empathy and mentalizing and can be understood as part of the empathy-

mentalizing network (Bellucci, Camilleri, Eickhoff, & Krueger, 2020; Schurz et al., 2021), 

striatal activation during the (social) decision process is linked to (Balleine, Delgado, & 

Hikosaka, 2007; Izuma et al., 2008) increased motivation towards a specific goal (Liljeholm & 

O ’Doherty, 2012; Reeve & Lee, 2012). 

IFG/AI activation, in particular is increased upon observing others in pain (Beeney et al., 

2011; Y. Li et al., 2021; Saarela et al., 2007), during empathy-based social decision behavior 

(Hein, Morishima, et al., 2016), as well as in individuals with higher trait empathy (Banissy, 

Kanai, Walsh, & Rees, 2012; Y. Li et al., 2020). Activation in the TPJ has frequently been 

associated with theory of mind or mentalizing (Böckler et al., 2014; Saxe & Kanwisher, 2003; 

Schurz, Tholen, Perner, Mars, & Sallet, 2017). While previous work has highlighted specific 

activation of IFG/AI linked to affective empathy and activation of the TPJ linked to cognitive 

empathy (Böckler et al., 2014), co-activation of these regions during social decision-making is 

in line with more recent approaches acknowledging that during social tasks with real world 

relevance, affective as well as cognitive facets of empathy are relevant for performing the 

task (Schurz et al., 2021). 

Block-wise increase of neural activation in the regions observed hence further supports the 

interpretation of an increasing empathic motivation after each empathy activation block. 

Moreover, neural activation in the TPJ and dmPFC was more strongly increased after weak 

empathy activation than after previous strong empathy activation. Hence these regions of 

the brain were more strongly activated in the block measuring a response to a sustained 

empathy effect, suggesting an especially important role for empathy sustainability for these 

two regions. This hypothesis was corroborated by follow-up analyses that demonstrated that 

the larger an individual’s increase in neural activation in mPFC and TPJ after strong empathy 

activation, capturing an initial effect of empathy on social decision-making, the higher this 

individual scored on trait empathic concern. However, an individual’s increase in neural 

activation in mPFC and TPJ after weak empathy activation, capturing a sustained effect of 

empathy on social decision-making, was related to an individual’s general prosocial decision 
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bias. As participants already knew before the first empathy activation phase that the 

interaction partner will receive painful stimulation, this general prosocial decision bias may 

reflect participants increased prosocial tendency based on this expectation of future 

observed pain. This suggests that already anticipated empathy can be associated with a 

sustained neural empathy effect, a hypothesis that needs to be empirically tested in future 

studies. 

The dmPFC and TPJ are part of the social brain network and have frequently been associated 

with mentalizing processes (Adolphs, 1999; Eres, Decety, Louis, & Molenberghs, 2015; Frith 

& Frith, 2006; Park et al., 2017; Powers, Chavez, & Heatherton, 2015; Rilling, Sanfey, 

Aronson, Nystrom, & Cohen, 2004; Saxe & Kanwisher, 2003). That is, increased activation of 

these regions in a certain task was related to higher demands for mentalizing processes 

afforded by the task (e.g., Rilling et al., 2004; Schurz et al., 2017). The present results hence 

suggest that during the social decision process after strong empathy activation, making the 

decision in favor of the other or in favor of the self is closely linked to the empathic 

experience of observing the other receive painful stimulation which is amplified by high trait 

empathic concern and tendentially perspective-taking. In the later decision block, however, 

i.e., after weak empathy activation, the general prosocial decision bias as experienced in the 

experiment becomes relatively more important. 

In the third study, we tested whether motive sustainability extends to other prosocial 

motives such as reciprocity, i.e., the norm to return a previously received favor. Results 

showed that for the reciprocity motive the initial prosocial bias after only weak activation of 

the reciprocity motive as well as the frequency of prosocial decisions decreased. These 

findings indicate that reciprocity-based prosocial behavior is not sustainable within the 

present framework and may hence be itself not a sustainable motive once it’s only weakly 

activated. 

Taken together, using fMRI and drift-diffusion modelling, the studies presented here 

demonstrate that activation of the empathy motive incites a sustainable prosocial decisions 

bias. Specifically, strong and random activation increased the initial bias towards making a 

prosocial decision and subsequent weak activation did not entail a decrease in prosocial 

bias. Repeatedly activating empathy was associated with increasing activation in the ‘social 

brain’ (anterior insula, TPJ, IFG) and striatum during the empathy-based social decision 
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process. Sustained empathic neural responses, i.e., stronger increase after weak activation 

than after previous strong activation, were observed in the dmPFC and TPJ. The initial 

empathic neural response in these regions was linked to trait empathic concern whereas the 

sustained empathic neural response was associated with individual prosocial decision biases. 
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Implications for study 3 

Studies 1 and 2 explored how sustainably empathy induces social closeness and prosocial 

behavior and how this is linked to the social brain. Results showed that when empathy was 

only rarely reinforced, social closeness still increased and empathy-related prosocial 

behavior and prosocial decision bias persisted even after only weak empathy activation. 

Neurally, empathy sustainability with regard to prosocial decision-making was linked to 

increased neural activation in the TPJ, dmPFC, IFG, AI, and striatum. Studies 1 and 2 further 

advocate for empathy being more sustainable than the social motive of reciprocity as 

reciprocity-related social closeness diminished after rare reinforcement and prosocial 

behavior based on reciprocity also declined after only weak activation. These studies 

investigated social behavior related to each motive separately. However, human behavior is 

often driven by more than one motive. 

In the next study, we thus addressed the question of whether empathy in combination with 

reciprocity may be able to boost the prosocial decision process and related neural activation 

that is only based on reciprocity or only based on empathy. In this vein, we compared the 

prosocial decision process and its neural underpinnings after activation of both empathy as 

well as reciprocity with that based on reciprocity alone and empathy alone. 
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Abstract 

Motives motivate human behavior. Most behaviors are driven by more than one motive, yet 

it is unclear how different motives interact and how such motive combinations affect the 

neural computation of the behaviors they drive. To answer this question, we induced two 

prosocial motives simultaneously (multi-motive condition) and separately (single motive 

conditions). After the different motive inductions, participants performed the same choice 

task in which they allocated points in favor of the other person (prosocial choice) or in favor 

of themselves (egoistic choice). We used fMRI to assess prosocial choice-related brain 

responses and drift-diffusion modelling to specify how motive combinations affect individual 

components of the choice process. Our results showed that the combination of the two 

motives in the multi-motive condition increased participants’ choice biases prior to the 

behavior itself. On the neural level, these changes in initial prosocial bias were associated 

with neural responses in the bilateral dorsal striatum. In contrast, the efficiency of the 

prosocial decision process was comparable between the multi-motive and the single-motive 

conditions. These findings provide insights into the computation of prosocial choices in 

complex motivational states, the motivational setting that drives most human behaviors. 

 

keywords: 

motivation, social decision-making, hierarchical drift-diffusion modeling, fMRI, social 

neuroscience 
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Introduction 

All choice behaviors are incited by motives, which can be complex. Documenting this 

motivational complexity, many animal (Jennings et al., 2013; Kennedy & Shapiro, 2009) and 

most human behaviors are driven by multiple motives that are active at the same time, and 

affect each other (Engel & Zhurakhovska, 2016; Hughes & Zaki, 2015; Jagers, Linde, 

Martinsson, & Matti, 2017; Kruglanski et al., 2018; Lewin, Cartwright, & Price, 1951; 

Takeuchi, Bolino, & Lin, 2015; Terlecki & Buckner, 2015). For example, the decision to help 

an elderly relative is often driven by empathy with her needs, and at the same time, by the 

wish to reciprocate help received by this person in the past, i.e, the social norm of 

reciprocity. Consequently, most choice behaviors are driven by combinations of different 

motives and cannot be explained by one “motivational force” alone. However, the 

combination of motives is not directly observable. Thus, to understand and predict choice 

behaviors, it is crucial to elucidate the neuro-computational mechanisms through which 

multiple simultaneously activated motives affect behavioral choice processes. 

The processing of single-motive states and its impact on behavioral choices in animals (e.g., 

place preferences) (Jennings et al., 2013) have been linked to dopaminergic neurons in the 

striatum (Kim & Im, 2018; Robinson, Sotak, During, & Palmiter, 2006; Salamone & Correa, 

2012). In line with these results, human neuroscience studies have shown that the striatum 

is involved in the processing of different individual motives, as well as motivated choice 

behaviors, both in the social (Báez-Mendoza & Schultz, 2013; Bhanji & Delgado, 2014) and 

non-social domain (Salamone et al., 2016; Shohamy, 2011). In more detail, the ventral 

striatum has been linked to the learning and encoding of values and the predictions of future 

rewards (Kable & Glimcher, 2007; Liljeholm & O ’Doherty, 2012; O’Doherty et al., 2004; 

Strait et al., 2015), whereas the dorsal striatum has been linked to initiating and optimizing 

choices based on these encoded values (Balleine et al., 2007; Liljeholm & O ’Doherty, 2012; 

O’Doherty et al., 2004; Palmiter, 2008; Robinson et al., 2006).Together, this previous work 

has provided insights into the neural underpinnings of individual motivational processes. 

However, the neural computation of behaviors that are driven by different motives remains 

unclear. 

To address this issue, we developed a paradigm in which participants made the same choices 

(prosocial vs. egoistic) based on different, simultaneously activated motives (multi-motive 
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condition), or based on each of these motives separately (single-motive conditions). 

Specifically, we studied the effect of simultaneously activated social motives in a social 

choice paradigm in which participants repeatedly had the choice between a prosocial and an 

egoistic option (Figure 2.3.1A). Inspired by an influential model of prosocial motivations 

(Batson et al., 2011), we induced two key motives that both incite prosocial behavior - the 

empathy motive, defined as the affective response to another person’s misfortune (Batson, 

Turk, Shaw, & Klein, 1995; Hein, Morishima, et al., 2016; Lamm et al., 2011), and the 

reciprocity motive, defined as the desire to reciprocate perceived kindness with a kind 

behavior (Gouldner, 1960; Hein, Morishima, et al., 2016; McCabe et al., 2003). 

In combination with fMRI and hierarchical drift-diffusion modeling (hierarchical DDM) 

(Forstmann et al., 2016; Ratcliff et al., 2016; Vandekerckhove et al., 2011; Wiecki et al., 

2013), this paradigm allowed us to specify how the combination of different motives affects 

individual components of neural goal-directed (i.e., prosocial) choice computation, 

compared to computation of the same choice in a simple motivational state (i.e., driven by 

only one of the two motives). 

Drift-diffusion models (DDMs) characterize how noisy information is accumulated to select a 

choice option (Figure 2.3.1B) based on three different parameters (the v, z and a 

parameters) (Forstmann et al., 2016; Ratcliff et al., 2016). The v-parameter describes the 

speed at which information is accumulated in order to choose one of the options, i.e., the 

efficiency of the choice process itself. The z-parameter reflects the initial choice bias, i.e., the 

degree to which an individual prefers one of the choice options prior to making the choice. 

Thus, in contrast to the v-parameter, which models the choice process itself, the z-

parameter models the individual bias with which a person enters the choice process. For 

example, if a person has a strong initial bias towards prosocial choices (reflected by a large 

value of the parameter z), the starting point of the choice computation is located closer to 

the prosocial choice boundary, and thus, this person is more likely to choose the prosocial 

option. The third component, parameter a, quantifies the amount of relative evidence that is 

required to choose one of the options. 

Previous neuroscience studies have identified brain regions that are associated with changes 

of these choice parameters. For example, it has been shown that reward-related 

improvement of perceptual discrimination is driven by changes in the z-parameter, related 
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to changes of frontoparietal activation (Mulder et al., 2012). Another study using a task from 

the perceptual domain has shown that increased evidence accumulation under time 

pressure is linked to increased activation in premotor regions (preSMA) and the dorsal 

striatum (Forstmann et al., 2008). Other studies have used similar modelling approaches to 

investigate value-based decisions (Gluth et al., 2012; Hare et al., 2011), for example using a 

buying task in which participants could decide to accept or reject a stock after receiving 

probabilistic information about the stock from different rating companies (Gluth et al., 

2012). As a main result, Gluth and colleagues showed that the amount of relative evidence 

that participants required for making a choice was related to the neural response in the 

anterior insula (AI) and the dorsal striatum. The finding in dorsal striatum resembled 

evidence from DDM studies obtained with perception paradigms (Forstmann et al., 2008) 

and indicates that,the striatum is a plausible neural candidate for tracking changes in choice 

components in different motivational settings (e.g., induced by time pressure, Forstmann et 

al., 2008, or by others’ information, Gluth et al., 2012).  

In our study, we modeled the three relevant choice parameters (v, z, and a) for choices that 

were driven by the combination of the two motives and for the same choices that were 

driven by each of the motives separately. It is important to note that the choice process may 

also be influenced by other motives than empathy and reciprocity, i.e., the motives that 

were experimentally induced. That said, our paradigm can provide insights into the multi-

motive choice process even if other motives are potentially activated, because multi-motive 

choices are contrasted with the same choices that are driven by the respective single 

motives. 

According to one hypothesis, the simultaneous activation of multiple motives may facilitate 

the computation of the choice option that is favored by the motives. In the present 

paradigm this means that computation of the prosocial choice option should be facilitated 

since empathy and reciprocity both drive prosocial behavior. In this case, we should observe 

an increase in prosocial behavior in the multi-motive condition (empathy and reciprocity 

motive active) compared to the single-motive conditions (only empathy or only reciprocity 

active) that cannot be explained by the difference between the single-motive conditions. 

Specifying the mechanism underlying such a facilitation, the DDM proposes that a facilitation 

of prosocial choices in the multi-motive condition may originate A) from an increased speed 
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of information accumulation (v-parameter; Figure 2.3.1C, left panel (Flagan, Mumford, & 

Beer, 2017; Janczyk & Lerche, 2019; Krajbich et al., 2015)), B) from an enhancement of 

participants’ initial bias to choose the prosocial option (z-parameter; Figure 2.3.1C, middle 

panel; (Chen & Krajbich, 2018; Mulder et al., 2012; Toelch et al., 2018), or C) from an 

enhancement of the v- as well as the z-parameter in the multi-motive condition, compared 

to the single-motive condition. 

Alternatively, we may observe fewer prosocial decisions in the multi-motive condition 

compared to the single motive conditions, reflected by a decreased speed of information 

accumulation (lower DDM v-parameter) and/or decreased initial bias to choose the prosocial 

option (lower DDM z-parameter). Moreover, in the multi-motive condition, participants are 

required to process two motives simultaneously, in addition to the trial-by-trial choice 

option information (which was constant across all conditions because participants 

performed the identical choice task). This additional motive-related information may cause 

participants to make more careful responses in the multi-motive condition and thus increase 

the a-parameter in the multi-motive condition compared to the single-motive conditions 

(Figure 2.3.1C, right panel). 

Regarding the underlying neural mechanisms, we hypothesized that changes in DDM choice 

parameters in the multi-motive compared to the single-motive conditions might be related 

to changes of activation in the ventral striatum, i.e., a region that is involved in the 

integration of different choice values (here the value of empathy-based and the value of 

reciprocity-based choices; (Kable & Glimcher, 2007; Liljeholm & O ’Doherty, 2012; O’Doherty 

et al., 2004; Strait et al., 2015), and/ or activation of the dorsal striatum, i.e., a region that is 

related to integration of choice preferences that derive from these different choice values 

(Balleine et al., 2007; Liljeholm & O ’Doherty, 2012; O’Doherty et al., 2004; Palmiter, 2008; 

Robinson et al., 2006). 
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Material and methods 

 Participant details 

Forty-two right-handed healthy female participants (mean age = 23.1 years, SD = 2.8 years) 

and four female confederates took part in the experiment. We chose female participants as 

well as female confederates in order to control for gender and avoid cross-gender effects. 

The confederates were students who had been trained to serve in all the different 

conditions counterbalanced across participants. Prior to the experiment, written informed 

consent was obtained from all the participants. The study was approved by the local ethics 

committee (BB 023/17). Participants received monetary compensation. Three participants 

had to be excluded due to technical problems and dropout. Another subject had to be 

excluded due to excessive head movements (more than 5% of the scans contained rapid 

head motion with more than 0.5 mm displacement per TR). Five participants had to be 

excluded as outlier based on their choices (less than ten prosocial choices across all 

condition; three standard deviations above the mean in central measures). Thus, we 

analyzed 33 data sets using a within-subjects design. We aimed for 34 data sets, which 

corresponds to the median sample size of neuroimaging studies determined in a recent 

review (N = 33; Yeung, 2018). We tested 40 participants to meet this target, accounting for a 

drop-out rate of about 15% which, based on our experience, is common in fMRI studies. Our 

final analyses includes 33 data sets, in accordance with the median sample reported by 

Yeung (2018). Given that it is difficult to collect large data sets with expensive and time-

consuming methods like fMRI, the importance of stringent statistical thresholds is 

highlighted (C. S. Carter, Lesh, & Barch, 2016; Roiser et al., 2016; Woo et al., 2014; Yeung, 

2018). To analyse the results of the second level regression we thus used cluster-level family 

wise error correction at the whole brain level after applying a threshold of P < .001 on an 

uncorrected level. Neural activations that are thresholded at this level are seen as valid and 

reliable (Eklund et al., 2016; Woo et al., 2014; Yeung, 2018). 

 Procedure 

Prior to the motive induction and choice task, the individual thresholds for pain stimulation 

were determined for the participants and all the confederates (see section Pain stimulation 

for details). Next, the participants and confederates were assigned their different roles by a 
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manipulated lottery (drawing matches). In order to ensure that each participant was always 

assigned her designated role as a participant (pain recipient during motive induction; decider 

during the decision task), the drawing of the matches was organized in such a way that she 

always drew the last match. The confederates were assigned the roles of the empathy 

partner, the reciprocity partner, the multi-motive partner or the baseline partner, and these 

roles were counterbalanced across participants. In accordance with these roles, two of the 

confederates first went to an ostensible other experiment and the other two waited to be 

seated in the scanner room. Each confederate was matched with a specific color and seating 

position (to the left vs. to the right of the fMRI scanner), and their color designation and 

seating positions were counter-balanced across participants. 

Next, the first two confederates (the empathy partner, reciprocity partner, multi-motive 

partner, or baseline partner) were seated to the left and the right of the participant who was 

lying inside the fMRI scanner and the first motive induction took place (for overview of an 

example procedure, see 

 

 

Figure 2.3.2). After the motive induction, image acquisition for the choice task was started, 

during which the participant allocated points to her respective partners. This way the 

participant only had to remember interactions with two partners at any one time. After the 

choice task, the first confederates were replaced by the other two confederates and the 

second part commenced. Part 2 had the same structure as part 1: first, the participant 

underwent motive induction 2 followed again by the choice task. The order of motive 

inductions and the type of partner the confederates represented were counterbalanced 

across participants. 
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At the end of the experiment, all the confederates left and the participant remained in the 

scanner until anatomical image acquisition was completed. Finally, participants were asked 

to complete a questionnaire measuring trait aspects of empathy (IRI, Davis, 1983; Jordan et 

al., 2016) and reciprocity (Perugini et al., 2003). Participants spent approximately 60 min in 

the scanner and the entire procedure lasted approximately 2.5 hours. To avoid possible 

reputation effects, which could influence participants’ behavior, participants were informed 

that they would not meet the confederates after the experiment. 

 

 
 

Figure 2.3.2. Overview of an example experimental procedure. The study consisted of two 

parts. In this example, in part 1, the empathy motive was activated towards one confederate 

(the empathy partner) and the reciprocity motive was activated towards the other 

confederate (the reciprocity partner). In the following choice task, participants allocated 

points to the empathy partner (i.e., driven by the empathy motive) or the reciprocity partner 

(i.e., driven by the reciprocity motive). Next, the confederates were replaced by two new 

individuals that served as partners for part 2. In part 2, the empathy and the reciprocity 

motive were activated simultaneously towards one confederate (multi-motive partner) and 

no motive was induced towards the other confederate (baseline partner). In the following 

choice task, participants allocated points towards the multi-motive partner (i.e., driven by 

two motives simultaneously) and towards the baseline partner (i.e., independently of any 

motive induction). The order of motive induction (empathy, reciprocity, multi-motive, 

baseline) was counterbalanced across participants and the four confederates. The respective 

partner was indicated by a cue in one of four counterbalanced colors. 
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 Motive inductions 

 Empathy induction 

During the study, participants were paired with four partners (confederates of the 

experimenter). Participants saw the hand of the respective partners with the attached pain 

electrode. In the empathy condition, the participants repeatedly observed one of the 

confederates (the empathy partner) receiving painful shocks in a number of trials, a situation 

known to elicit an empathic response (Batson et al., 1995; Hein, Morishima, et al., 2016; 

Lamm et al., 2011). Each empathy-induction trial started with a colored arrow shown for 

1,000 ms, which indicated the empathy partner. After this cue and a jittered (1,000–2,000 

ms) fixation cross, the same colored flash was displayed for 1,500 ms. Participants were 

informed that a dark-colored flash indicated that the corresponding partner received a 

painful stimulus at that moment; a light-colored flash indicated a non-painful stimulus. 

During (ostensible) stimulation of the respective partner, participants either saw a dark 

colored flash (painful stimulation) or a light colored flash (non-painful stimulation). Since all 

partners were confederates of the experimenter, they did not actually receive painful 

stimulations. Thus, the trials in which participants saw the dark colored flash were 

“ostensibly painful” for the partner. To assess the success of the empathy induction, a rating 

scale was shown for a maximum of 6 s. Participants reported how they felt after observing 

the partner receive painful or non-painful stimuli (“How do you feel?” in German). The scale 

ranged from -4 (labeled “very bad”) to +4 (labeled “very good”) with intervals of one and 

was visually displayed. Before analysis, the induction ratings were recoded such that high 

positive values reflect strong responses to the induction procedure (strong empathy motive). 

Participants had to respond within 6 s. The inter-trial interval was 1,500 ms. Empathy 

induction consisted of 12 trials: nine of which were ostensibly painful for their partner (i.e., 

the confederate). 

 Reciprocity induction 

The reciprocity motive is defined as the desire to reciprocate perceived kindness with kind 

behavior (Gouldner, 1960; Hein, Morishima, et al., 2016; McCabe et al., 2003). Therefore, in 

the reciprocity condition, we induced the reciprocity motive by instructing one of the 

confederates (the reciprocity partner) to give up money in several trials to save the 

participant from painful shocks (Hein, Morishima, et al., 2016). Each reciprocity-induction 
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trial also started with an arrow colored in the reciprocity partner’s color, which pointed 

toward the seating position of the reciprocity partner (left or right) and was shown for 1,000 

ms. Next, the participants were shown a flash displayed to the right and a crossed-out flash 

displayed to the left of a centered fixation cross. Participants were told that this was the 

decision screen, which the reciprocity partner also saw while making her decision to either 

save or not save the participant from painful stimulation. After a jittered interval of 2,000 to 

4,000 ms, a box appeared around one of the flashes, indicating the ostensible choice of the 

reciprocity partner. Depending on where the box was displayed, the reciprocity partner had 

either decided to forego a monetary award of 2 € in order to save the participant from 

painful stimulation (a box around the crossed-out flash) or decided to take the money and 

not save the participant (a box around the flash that was not crossed-out). After 1000ms 

participants rated how they felt about the decision of the partner (“How do you feel?” in 

German). The ratings were recoded such that high positive values reflect a strong positive 

response to the decision of the partner, indicating a strong reciprocity motive. 

After a jittered (1,000 to 2,000 ms) fixation cross, the participant saw an information on the 

screen, indicating whether the decision of the reciprocity partner would be implemented 

(“decision accepted”) or not (“decision declined”), displayed for 1000 ms. This additional 

stage was included in order to ensure the same number of painful stimulations were 

administered across all conditions (50 %), while at the same time allowing for the high rate 

(75 %; 9 out of 12 trials) of the reciprocity partner’s decisions to help. While instructing the 

participants, it was highlighted that the choice of the reciprocity partner reflected her 

willingness (or unwillingness) to help, while a computer algorithm decided about the 

implementation of the decision.  

Thus, four types of reciprocity trials were possible. When the partner decided to save the 

participant from painful stimulation and this decision was accepted, the participant did not 

receive a painful stimulus, which was visually represented by a crossed-out flash (1,500 ms). 

However, when the reciprocity partner’s decision to save the participant was declined, 

participants received a painful stimulus, which was accompanied by the display of a flash 

(1,500 ms). Similarly, when the partner decided not to save the participant and this decision 

was accepted, the participant received a painful stimulus accompanied by the display of a 

flash. Finally, when the partner decided to not save the participant and this decision was 
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declined, the participant did not receive painful stimulation, which was visually represented 

by a crossed-out flash. The inter trial fixation cross was displayed for 1,500 ms before the 

next trial started. 

 Multi-motive induction 

In the multi-motive condition, the participants repeatedly observed how one of the 

confederates (the multi-motive partner) received painful shocks and also gave up money to 

spare the participant from painful shocks. The multi-motive induction procedure combined 

the empathy- and reciprocity-induction procedures. As in the empathy-induction condition, 

it included 12 empathy induction trials, nine of which were ostensibly painful for the 

partner. As in the reciprocity-induction condition, it included 12 reciprocity trials, of which 

participants received help in nine out of 12 trials. The stimulation and trial structure were 

identical to the empathy- and reciprocity-induction trials described above, except that the 

relevant colors were replaced by the colors matched to the multi-motive partner (i.e., the 

color of the pain flash in the empathy trials and the color of the box highlighting the decision 

of the partner in the reciprocity trials). 

 Additional control trials for empathy and reciprocity induction 

In order to equalize the number and types of trials (i.e., the length and structure of the 

interaction with each motive partner) across conditions, the empathy-induction procedure 

also included trials that were identical to the reciprocity trials, except that the computer 

decided whether the participant would be saved from a painful stimulus and not the 

empathy partner. This computer’s decision was visually represented by a white-colored box 

appearing either around the crossed-out flash (saving the participant) or the normal flash 

(not saving the participant). It was clearly explained to each participant that the color white 

was not matched with any of the partners but indicated the computer’s choice. The 

empathy-induction procedure consisted of 12 control trials, in addition to the 12 empathy 

trials described above, resulting in 24 trials, i.e., the identical number of trials as the multi-

motive induction procedure.  

Similarly, the reciprocity-induction procedure included trials that were identical to the 

empathy-induction trials, except that the reciprocity partner only received non-painful 

stimulation on these trials, as visually represented by a light-colored flash. In total, the 
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reciprocity-induction procedure consisted of 12 of these control trials and 12 reciprocity 

trials (see above), i.e., 24 trials (identical to the other conditions). 

 Baseline induction 

The baseline procedure consisted of 24 trials in total, 12 trials in which the baseline partner 

only received non-painful stimulation and 12 trials in which the computer decided whether 

the participant would be saved from a painful stimulus or not. This computer’s decision was 

visually represented by a white-colored box either appearing around the crossed-out flash 

(saving the participant) or the normal flash (not saving the participant). It was clearly 

explained to the participant that the white box did not represent the decision of a person 

but indicated the computer’s choice. 

 Choice task 

After the motive inductions, participants performed a social choice task inside the fMRI 

scanner. The choice task was a two-alternative-forced-choice adaptation of the commonly 

used Dictator Game (Forsythe et al., 1994), which has been successfully used in previous 

studies (e.g., Chen & Krajbich, 2018; Hein, Morishima, et al., 2016; Krajbich et al., 2015). In 

each trial of this choice task, participants allocated money to themselves and one of the 

partners (Figure 2.3.1A) and could choose between maximizing the relative outcome of the 

other person by reducing their own relative outcome (prosocial choice) and maximizing their 

own relative outcome at a cost to the partner (egoistic choice). The outcome was relative to 

the outcome that the participant would have gained when choosing the other option. The 

initial number of points was always higher for the participant compared to the partners. This 

measure was inspired by previous behavioral economics research, showing that prosocial 

behaviors depend on the initial payoff allocation between the participant and the 

participant's partner (Bolton & Ockenfels, 2000; Charness & Rabin, 2002; Fehr & Schmidt, 

1999). In particular, if subjects have a lower initial payoff than their partner 

(“disadvantageous initial inequality”), they are much less willing to behave altruistically 

toward the partner compared to a situation with advantageous initial inequality (i.e., when 

the participant has a higher initial payoff than the partner). The choice options used in the 

present study created advantageous inequality to optimize the number of prosocial choices, 
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which was the main focus of our study. The exact point distributions are provided in 

supplementary Table A1. 

Depending on the type of partner the participants faced in the choice task, there were four 

conditions – the empathy condition, the reciprocity condition, the multi-motive condition, 

and the baseline condition. Importantly, the choice task was identical in all the conditions. 

In more detail, participants were asked repeatedly to choose between two different 

distributions of points that each represented different amounts of monetary pay-offs for 

themselves and one of the partners (see Figure 2.3.1A). Each choice-trial started with a 

colored arrow shown for 1,000 ms, indicating the next interaction partner. After this cue, 

participants saw the two possible distributions of points in different colors, indicating the 

potential gain for the participant or for the current partner. Colors were counterbalanced 

across participants. Participants had to choose one of the distributions within 4,000 ms. A 

green box appeared around the distribution that was selected by the participant at 4,000 ms 

after distribution onset. The box was shown for 1,000 ms. The length of the inter-trial 

interval, as indicated by a fixation cross, was jittered between 4,000 and 6,000 ms. At the 

end of the experiment, two of the distributions chosen by the participant were randomly 

selected for payment (100 points = 50 cents). We analyzed 38 choice trials in each motive-

induction condition, i.e., 152 trials in total. In addition to the 38 trials, each condition 

contained four trials in which the same choice option maximized the outcome of the 

participant and the partner (non-competitive trials). These trials were included to increase 

the variability of choices and thus to keep the participants engaged. They were excluded 

from the analyses because they could not be classified as prosocial or egoistic choice trial. 

For each condition and participant, the same distributions were used and presented in 

random order. 

 Pain stimulation 

For pain stimulation, we used a mechano-tactile stimulus generated by a small plastic 

cylinder (513 g). The projectile was shot against the cuticle of the left index finger using air 

pressure (Impact Stimulator, Labortechnik Franken, Release 1.0.0.34). The criterion for 

painful stimulation was a subjective value of 8 on a pain scale ranging from 1 (no pain at all, 

but a participant could feel a slight touch of the projectile) to 10 (extreme, hardly bearable 

pain). The participants were told that a value of 8 corresponded to a painful, but bearable 
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stimulus, and a non-painful stimulus corresponded to a value of 1 on the same subjective 

pain scale. These subjective pain thresholds were determined using a stepwise increase of 

air pressure (stepsize of 0.25 mg/s), starting with the lowest possible pressure (0.25 mg/s), 

which caused the projectile to barely touch the cuticle, and increasing in stimulus intensity 

until it reached a level that corresponded to the individual’s value of 8 (range = 2.75–3.5 

mg/s). 

 Experimental design and statistical analyses 

 Regression analyses 

Regression analyses were conducted using the R-packages “lme4 and “car” (R Core-Team, 

2018). For mixed models, we report the chi-square values derived from Wald chisquare tests 

using the “Anova” (car package) function. For predefined contrasts we report the t-values 

derived from the summary() function. When more than one predictor was included in the 

model, the function emmeans was used in order to compute contrasts between factor 

levels. 

To test the differences in induction ratings and the relationship between induction ratings 

and frequencies of prosocial choice, the mean induction ratings and frequencies of prosocial 

choices were calculated for each participant for each condition (empathy, reciprocity, multi-

motive, and baseline) and entered as a dependent variable into mixed models with 

conditions (empathy, reciprocity, multi-motive, and baseline) and induction ratings as fixed 

effects and participants as random effects. Additionally, in order to probe the specificity of 

the induction procedure, we tested whether trait empathy (empathic concern subscale of 

the IRI, Davis (1983)) and trait reciprocity (PNR, (Perugini et al., 2003)) differentially 

influenced choice behavior in the three motive conditions (empathy, reciprocity, multi-

motive). Specifically, we conducted a linear mixed model regression with the frequency of 

prosocial choices as dependent variable, trait measure type (empathy/reciprocity), individual 

trait measure scores (empathy/reciprocity), motive induction condition (empathy, 

reciprocity, multi-motive), and their interactions as fixed effects, and participant as random 

intercept. 

To test whether prosocial behavior was influenced by trial-by-trial point information, 

condition and their interaction, a logistic mixed model regression was conducted with the 

possible gain for the partner (i.e. difference in points between the two options for the 
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partner, |partner’s gain option 1 – partner’s gain option 2|), the possible loss for the 

participant (i.e., the difference in points between the two options for the participant, 

|participant’s gain option 1 – participant’s gain option 2|) and condition as predictor 

variables. The binary choice outcome (prosocial vs. egoistic choice) was used as dependent 

variable. To investigate the differences in prosocial behavior between the social motives 

(multi-motive > reciprocity and multi-motive > empathy) more closely, contrasts were 

calculated using the emmeans function. 

To specifically test whether prosocial behavior was differentially influenced by inequity 

aversion, a logistic mixed model regression was conducted with the predictor variables 

condition and the difference in point equality of the participant’s and the partner’s outcome 

between the two choice options. To compute this variable, we first calculated calculating the 

difference between the gains for each option (i.e., |partner’s gain option 1 – participant’s 

gain option 1| for each choice option). Second, these differences were subtracted from each 

other in order to obtain a measure of point equality for each choice trial. Again, the binary 

choice outcome (prosocial vs. egoistic choice) was used as dependent variable. 

To test whether the frequency of prosocial choices and reaction times were equally 

distributed across conditions, we conducted pairwise Kolmogorov-Smirnov tests. 

Additionally, we investigated whether the relationship between the possible gain for the 

partner and participants’ probability to make a prosocial choice can be described in terms of 

a psychometric function. For the estimation of the psychometric functions we used the R-

package “quickpsy” which implements a Maximum-Likelihood-Estimation procedure to fit 

the cumulative normal distribution. To test whether the points of subjective equality (PSEs) 

differed between conditions, we conducted a linear mixed model with the condition as fixed 

effect, participant as random effect and PSE as dependent variable. 

To test whether the relative difference between empathy and reciprocity in the z-parameter 

and a-parameter could explain the percent changes of these parameters in the multi-motive 

condition compared to the reciprocity condition, the percent change values 

(Δzmulti-motive/reciprocity and Δamulti-motive/reciprocity) were entered as dependent variables in a linear 

regression model. The respective relative differences (Δzempathy/reciprocity and Δaempathy/reciprocity) 

and one regressor modeling the parameter type (z-parameter, a-parameter) were included 

as predictors.  
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 Drift-diffusion modeling 

We used hierarchical drift-diffusion modeling (HDDM) (Vandekerckhove et al., 2011; Wiecki 

et al., 2013), which is a version of the classical drift-diffusion model that exploits between-

subject and within-subject variability using Bayesian parameter estimation methods, 

because it is ideal for use with relatively small sample sizes. The analyses were conducted 

using the python implementation of HDDM version 0.8.0 (Wiecki et al., 2013). 

Based on binary choices, the HDDM approach provides detailed insights into the 

computation of egoistic and prosocial choices, because it uses all the raw data that is 

available (trial-by-trial reaction times and choice outcome information of all choices, 

irrespective of point distributions) to estimate sub-components of the underlying decision 

process. The v, z and a-parameters for each participant capture how each person 

manoeuvers between the egoistic and the prosocial choice options, and finally approaches a 

decision boundary (i.e., the boundary for an egoistic or a prosocial choice). In line with 

previous studies that have used a similar procedure in the realm of social decision making 

(e.g., Chen and Krajbich, 2018; Gallotti and Grujić, 2019), we believe that the HDDM results 

provide a sensitive and fine-grained proxy for individual differences in prosociality. 

Since we did not have prior hypotheses about which and how many of the three central 

DDM parameters may reflect motive complexity, we estimated 11 possible variants of the 

DDM model, ranging from the most simple model (no parameter is modulated by condition) 

to the full model with v, z, and a possibly being modulated by our four conditions (baseline, 

empathy, reciprocity, and multi-motive). Since the point information varied between trials, 

which may influence drift-rate, we allowed the drift rate to vary by the trial-by-trial possible 

gain for the partner (see section Regression analyses for computation of this value). We 

performed model comparison based on the deviance information criterion (DIC) and 

extracted the parameters of the winning model (lowest DIC value). Apart from the three 

parameters of interest for our research question (v, z, a), additional parameters are included 

in the estimation procedure. We also estimated the non-decision time t and allowed for 

trial-by-trial variations of the initial bias (sz), he drift rate (sv) and the non-decision time (st). 

These parameters were not estimated to vary by condition. They were nonetheless included 

based on the results by Lerche and Voss (2016), who showed that in most cases, it is 

beneficial to include these parameters in order to improve model fit. In the estimation 
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procedures we used the default values for the priors and hyperpriors provided by the HDDM 

package. In more detail, the “informative group mean priors are created to roughly match 

parameter values reported in the literature and collected by Matzke and Wagenmakers 

(2009).” cited from (Wiecki et al., 2013, Supplementary Material, page 1). Model 

convergence was checked by visual inspection of the estimation chain of the posteriors, as 

well as computing the Gelman-Rubin Geweke statistic for convergence (all values < 1.01) 

(Gelman & Rubin, 1992). To assess model fit, we conducted posterior predictive checks by 

comparing the observed data with 500 datasets simulated by our model (Wiecki et al., 

2013). This approach allows for the computation of intervals within which the parameter 

falls with 95 % probability. If the observed data falls within the 95 % credibility interval of the 

simulated data, the model can describe the data well. The present results revealed a good 

match between the observed data and the modelled data. Parameters of interest from the 

winning model were extracted for further analysis. Specifically, for each participant, the 

condition-specific v-parameters, z-parameters, and a-parameters were extracted (resulting 

in 12 parameters per participant). In HDDM, the z-parameter is always relative to a. The 

reported values of z thus range between 0 and 1 and correspond to the absolute value of z 

divided by the a-parameter (z/a) 

For closer investigation of processing differences in complex vs. more simple motivational 

states, we compared the posterior distributions of the conditions for each parameter by 

computing the probabilities for the multi-motive parameter being larger than the single 

motive parameters. This was done by calculating the densities of the differences 

distributions that are larger than zero (Wiecki et al., 2013). Additionally, we used the 

plausible value approach to estimate the corresponding t-value. This approach consists of 

repeatedly sampling participants’ individual parameters from the winning model’s posterior 

distribution. Extracting these parameters and comparing between the different conditions 

using frequentist statistics results in distributions of t-values whose means are a plausible 

proxy for the actual underlying t-value (Ly et al., 2017; Marsman, Maris, Bechger, & Glas, 

2016).  

 fMRI data acquisition 

Imaging data was collected at a 3T MRI-scanner (Verio, Siemens, Erlangen, Germany) with a 

32-channel head coil. Functional imaging was performed with a multiband EPI sequence of 
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72 transversal slices oriented along the subjects’ AC-PC plane (multi-band acceleration factor 

of 6). The in plane resolution was 2.5 x 2.5 mm² and the slice thickness was 2.5 mm. The field 

of view was 210 x 210 mm², corresponding to an acquisition matrix of 84 x 84. The repetition 

time was 1 s, the echo time was 33.6 ms, and the flip angle was 54°. Structural imaging was 

conducted using a sagittal T1-weighted 3D MPRAGE with 176 slices, and a spatial resolution 

of 1 x 1 x 1 mm³. The field of view was 250 x 250 mm², corresponding to an acquisition 

matrix of 256 x 256. The repetition time was 1,690 ms, the echo time was 2.52 ms, the total 

acquisition time was 3:50 min, and the flip angle was 9°. For the T1-weighted images, 

GRAPPA with a PAT factor of 2 was used. We obtained, on average, 1,911 (SD = 5.6 volumes) 

EPI-volumes during the choice task of each participant. We used a rubber foam head 

restraint to avoid head movements. 

 fMRI Preprocessing 

Preprocessing and statistical parametric mapping were performed with SPM12 (Wellcome 

Department of Neuroscience, London, UK) and Matlab version 9.2 (MathWorks Inc; Natick, 

MA). Spatial preprocessing included realignment to the first scan, and unwarping and 

coregistration to the T1 anatomical volume images. Unwarping of geometrically distorted 

EPIs was performed using the FieldMap Toolbox. T1-weighted images were segmented to 

localize grey and white matter, and cerebro-spinal fluid. This segmentation was the basis for 

the creation of a DARTEL Template and spatial normalization to Montreal Neurological 

Institute (MNI) space, including smoothing with a 6 mm (full width at half maximum) 

Gaussian Kernel filter to improve the signal-to-noise-ratio. To correct for low-frequency 

components, a high-pass filter with a cut-off of 128 s was used. 

 fMRI statistical analysis 

Our participants made prosocial choices in the majority of the trials (Mean = 74 %, SD = 19 

%) with more than half of the participants making prosocial choices in 80 % or more of the 

trials in at least one of the four conditions (see Table A2). Given the lack of egoistic choices 

and given that our study focused on the computation of prosocial choices, egoistic choices 

trials were not included in the imaging analyses and we also refrained from computing direct 

contrasts between prosocial and egoistic choices. 
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First-level analyses were performed with the general linear model (GLM), using a canonical 

hemodynamic response function (HRF) and its first derivative (time derivative). Regressors 

were defined from cue onset until the individual response was made by pressing a button 

(resulting in a time window of 1,000 ms + individual response time). For each of the four 

conditions (the three motive conditions and baseline condition), the respective regressors of 

prosocial choice trials were included as regressors of interest. The respective regressors of 

all the other trials (e.g., egoistic choice trials and trials with missed button presses) were 

included as regressors of no interest. Given that more than half of our participants (64 %) 

made fewer than five egoistic decisions in at least one of the conditions, we refrained from 

computing direct contrasts between prosocial and egoistic choices and included egoistic 

choices in this regressor of no interest (see Table A2 for the number of trials per participant 

and condition). The residual effects of head motions were corrected for by including the six 

estimated motion parameters for each participant and each session as regressors of no 

interest. To allow for modeling all the conditions in one GLM, an additional regressor of no 

interest was included, which modeled the potential effects of session. 

For the second-level analyses, contrast images for comparisons of interest (empathy > 

reciprocity, multi-motive > empathy, reciprocity > empathy, and multi-motive > reciprocity) 

were initially computed on a single-subject level. In the next step, the individual images of 

the main contrast of interest (multi-motive > reciprocity) were regressed against the percent 

change in the z-parameter (Δzmulti-motive/reciprocity) and a-parameter (Δamulti-motive/reciprocity) in the 

multi-motive condition, relative to the reciprocity condition, using second-level regressions. 

Second-level results were corrected for multiple comparisons, using cluster-level family wise 

error (FWE) correction on a whole brain level. We also report results at a threshold of 

Puncorrected < 0.001 and a cluster threshold of k > 10 in the supplementary online material. 

To test if the neural response in the dorsal striatum was related to the relative difference in z 

between empathy and reciprocity (Δzempathy/reciprocity), the (multi-motive > reciprocity) 

contrast was regressed against the empathy vs reciprocity z-differences (Δzempathy/reciprocity) 

and the multi-motive z-enhancement (Δzmulti-motive/reciprocity) in the same model. Additionally, 

the individual beta-estimates of the neural multi-motive condition > reciprocity and empathy 

> reciprocity contrasts were extracted from an independent anatomical ROI of bilateral 

putamen based on the aal nomenclature (Tzourio-Mazoyer et al., 2002), using MarsBaR (M 
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Brett, Anton, Valabregue, & Poline, 2002) and the WFU PickAtlas Tool (Maldjian, Laurienti, 

Kraft, & Burdette, 2003). 

In order to clarify the commonly shared influence of the partner’s possible gain on the 

neural prosocial choice process, we added the partner’s gain as trial-by-trial parametric 

modulator of the decision phase to a first level GLM in which all conditions are collapsed into 

one single regressor. On the second level, we conducted a one sample t-test on this 

parametric modulator corrected for multiple comparisons, using cluster-level family wise 

error (FWE) correction on a whole brain level. 

The reported anatomical regions were identified using the SPM anatomy toolbox (Eickhoff et 

al., 2005). 

 Data and code availability 

Behavioral data and scripts are available at github.com 

(https://github.com/AnneSaulin/complex motivations). 

Imaging data are available at neurovault.org 

(https://www.neurovault.org/collections/5879/). 

Results 

 Motive induction 

During the empathy induction, participants indicated how they felt after observing the 

person in pain. During the reciprocity induction, they indicated how they felt after receiving 

a favor from the other person. In the multi-motive condition, participants provided both of 

these ratings. Strong empathy is indicated by negative feelings when seeing the partner in 

pain, indicated by negative ratings. Strong reciprocity is indicated by positive feelings when 

observing the decision of the partner, indicated by positive ratings. To allow the comparison 

of the ratings in all conditions, empathy ratings were recoded such that positive ratings now 

reflect strong empathy, i.e., multiplied by -1. The results of linear mixed models (lmms) 

showed that the induction ratings in the motive conditions were significantly higher than 

those in the baseline condition (2 = 515.15, P < .000001, β = 1.61, SE = 0.071, ratingbaseline= -

1.02 ± 1.00, ratingempathy= 1.57 ± 0.77, ratingreciprocity= 1.50 ± 0.89, ratingmulti-motive = 1.54 ± 

0.91, (M ± SEM)). There were no significant differences in the induction ratings between the 

motive conditions (2 = 0.14, P = .93, βreciprocity = -0.07, SE = 0.20, βmulti-motive = -0.02, SE = 
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0.17). The induction ratings in the motive conditions were significantly associated with the 

frequency of prosocial choices (2 = 6.38, P = .01). This effect held to a comparable extent 

across all three motive conditions (motive condition  rating interaction, 2 = 3.61, P = .16, 

see Table A3 for full results). Specifically, the two single-motive conditions yielded similar 

induction ratings (2 = 0.23, P = .64, βreciprocity = -0.07, SE = 0.15) and had a comparable effect 

on the frequency of prosocial choices (2 = 4.77, P = .03, condition  rating interaction, 2 = 

2.06, P = .15, see Table A4 for full results). These results show that the strength of motive 

induction and the link to prosocial choices was comparable for the empathy and the 

reciprocity motives (Figure A1). Further, supporting that the induction procedure specifically 

influenced empathy and reciprocity motivations, trait empathy and trait reciprocity 

differentially influenced the frequency of prosocial behavior in the three motive conditions 

(trait measure type  trait measure value  motive condition interaction, χ2 = 6.08, P = .047, 

see Table A5 for full results). 

 Frequency of prosocial choices 

Pairwise Kolmogorov-Smirnov tests revealed that the frequency of prosocial decisions was 

comparably distributed across conditions (all Ds < 0.24, all Ps > 0.29, for detailed statistics, 

please see Table A6) as were the reaction times (all Ds < 0.27, all Ps > .17, Figure 2.3.3C). 

The frequency of prosocial choice was significantly influenced by condition (2 = 56.99, P < 

.0001, see Figure 2.3.3A and Figure A2, prosocbaseline= 67.7 ± 20.6 %, prosocempathy= 77.0 ± 

16.8, prosocreciprocity= 73.1 ± 18.4, prosocmulti-motive= 77.4 ± 18.0 (M ± SEM), see Table A7 for 

full results), indicating that the motive inductions had a differential effect on later prosocial 

choices. Moreover, prosocial choices were influenced by the possible gain for the partner (2 

= 668.64, P < .0001). However, model comparison revealed that neither including the 

possible gain for the participant (2 = .23, P = .63), nor its interaction with condition 

significantly improved the model fit (2 = .86, P = .84). Thus, for the analyses reported below 

condition and possible gain for the partner were used as additional predictors.  

The frequency of empathy-based prosocial choices was increased compared to reciprocity-

based choices (z ratio = 2.94, P = .02), whereas the frequency of prosocial choices between 

the multi-motive condition and the empathy condition was comparable (z-ratio = .56, P = 
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.94). However, the multi-motive condition yielded significantly more prosocial choices 

compared to the reciprocity condition (z-ratio = 3.49, P = .003). 

To clarify this effect, we calculated the percent change in prosocial choices in the multi-

motive condition relative to each single motive condition 

∆prosocmulti motive/reciprocity=
prosocmulti motive  prosocreciprocity

prosocreciprocity
 ×100 

∆prosocmulti motive/empathy=
prosocmulti motive  prosocempathy

prosocempathy

 ×100 

where prosocmulti-motive equals the frequency of the prosocial choices in the multi-motive 

condition, prosocreciprocity equals the frequency of prosocial choices in the reciprocity 

condition, and prosocempathy equals the frequency of prosocial choices in the empathy 

condition.  

The percent change of the multi-motive condition relative to reciprocity was significantly 

positive (T(32) = 2.07, P = .047, ∆prosocmulti-motive/reciprocity = 8.61 ± 4.17 (M ± SEM)), 

demonstrating that prosocial choices were enhanced when reciprocity was combined with 

empathy, relative to reciprocity alone. The percent change in the multi-motive condition 

relative to the empathy condition was not significantly different from zero (T(32) = 0.42, P = 

.674, ∆prosocmulti-motive/empathy= 1.05 ± 2.47 (M ± SEM)), indicating that the simultaneous 

activation of the reciprocity motive did not enhance the empathy motive. 

 Reaction times 

Reaction times were significantly influenced by conditions (2 = 27.89, P < .0001, see Table 

A8 for full results). That is, participants were faster in the motive conditions compared to the 

baseline condition (baseline vs. empathy: T(32) = 5.03, P < .0001, baseline vs. reciprocity: 

T(32) = 3.62, P = .002, baseline vs. multi-motive: T(32) = 3.70, P = .001). There were no 

differences in reaction times for prosocial choices between the motive conditions (all Ps > 

.49) (Figure 2.3.3B), and the reaction time distributions were comparable (Figure 2.3.3C). 
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Figure 2.3.3. Descriptive statistics, distributions and psychometric function of the choice and 

reaction time data. A Mean proportion of prosocial choices per condition. Error bars denote 

standard errors of means. B Mean reaction times per condition. Error bars denote standard 

errors of means. C Distribution of reaction times across participants per condition. D 

Psychometric functions for the different conditions of the probability to make a prosocial 

choice depending on the amount of points the participants’ partner could possibly gain in 

each trial, that is, the point value for the partner in case of a prosocial choice minus the 

point value for the partner in case of an egoistic choice. Vertical dashed lines indicate the 

points of subjective equality in the different conditions (for exact values and spread, see 

Table A9). Please note that the probability of making a prosocial decision never reached 0 

because of the high frequency of prosocial choices in our data (participants made prosocial 

choices even if the gain for the other person was low). Thus, our results do not yield data 

points much lower than the respective points of subjective equality (PSEs). 

 

 Point equality and prosocial behavior 

In a next step, we tested whether considerations of equity differentially influenced 

participants’ prosocial behavior in the different conditions. 

We considered the difference in point equality of the participant’s and the partner’s 

outcome between the two choice options to test whether inequity aversion differentially 

influenced participants’ prosocial choice behavior. The results showed a main effect of 
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difference in point equality (2 = 65.87, P < .0001) and a main effect of condition (2 = 46.91, 

P < .0001). However, no interaction effect was observed (2 = 0.19, P = .98, see Table A10 for 

full results). Based on these results we conclude that inequity aversion does not 

differentially affect the different motive conditions and thus cannot explain behavioral 

differences in the different conditions. 

In line with these results, the relationship between the frequency of prosocial choices and 

the partner’s possible gain was comparable between the different motive conditions, as 

reflected by comparable values for the points of subjective equality based on the 

psychometric functions estimated for the different conditions (2 = 2.89, P = .41, Figure 

2.3.3D and Table A9). 

Since we were most interested in the underlying prosocial decision processes in more 

complex as compared to simpler motivational states, we used hierarchical drift-diffusion 

modeling (HDDM) (Vandekerckhove et al., 2011; Wiecki et al., 2013) to understand prosocial 

choice behavior in the multi-motive condition relative to the reciprocity condition and 

relative to the empathy condition.  

 Hierarchical drift-diffusion modeling 

We estimated the three aforementioned DDM parameters (v, z, a) for every condition and 

participant. We also estimated the non-decision time t (0.94 ± 0.04 (M ± SEM)). However, 

this parameter was not estimated to vary by condition and was thus not further analyzed. 

Comparing the observed data with 500 datasets simulated by our model (Wiecki et al., 2013) 

showed that the winning model fit the data with 95% credibility (see Table A11 for overview 

of all models and DIC values, and see Table A12 for quantile comparison and 95% 

credibility). Based on the hypotheses depicted in Figure 2.3.1C, we tested whether the 

observed percent change in the multi-motive condition can be explained by an increase in 

the speed of information accumulation (v-parameter, Figure 2.3.1C, left panel), and/or an 

increase in initial prosocial bias (z-parameter, Figure 2.3.1C, middle panel). Additionally, we 

tested whether the induction of both motives enhanced the amount of relative evidence 

that participants required during the choice process, relative to the two single-motive 

conditions (a-parameter, Figure 2.3.1C, right panel).  

Testing the first hypothesis (Figure 2.3.1C, left panel), we observed no significant differences 

between the motive conditions (p(vmulti-motive>vempathy) = 46.38 %, plausible T(32) = -.31, P = 
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.76; p(vmulti-motive>vreciprocity) = 72.25 %, plausible T(32) = 1.03, P = .31, see Figure A4 for 

distribution of t-values). Further, there was a slight percent change in v-parameters in the 

multi-motive condition relative to the reciprocity condition (∆vmulti-motive/reciprocity = 

vmulti-motive-vreciprocity

vreciprocity
 ×100 = -1.54 ± 0.92 % (M ± SEM), T(32) = -1.71, P = .09) and no percent 

change relative to the empathy condition (∆vmulti-motive/empathy = 
vmulti-motive-vempathy

vempathy
 ×100 = -0.13 

± 0.83 % (M ± SEM), T(32) = -0.16, P = .88). This result showed that the speed of information 

accumulation, i.e., the efficiency of the choice process itself, was mainly unaffected by the 

combination of the two motives, relative to the single-motive conditions. 

Testing the second hypothesis (Figure 2.3.1C, middle panel), we observed an increase in 

initial prosocial bias (z-parameter) in the multi-motive condition compared to the reciprocity 

condition (p(zmulti-motive>zreciprocity) = 93.55 %, plausible T(32) = 3.66, P < .001) (Figure 2.3.4A), 

but not compared to the empathy condition (p(zmulti-motive>zempathy) = 70.33 %, plausible T(32) 

= 1.67, P = .10). The percent change in the z- parameter of the multi-motive condition was 

significantly positive relative to the reciprocity condition (zmulti-motive/reciprocity = 

zmulit-motive-zreciprocity

zreciprocity
 ×100 = 6.40 ± 1.21 % (M ± SEM), (T(32) = 5.36, P < .001) and marginally 

larger than zero relative to the empathy condition (∆zmulti-motive/empathy = 

zmulti-motive-zempathy

zempathy
 ×100 = 2.54 ± 1.39 % (M ± SEM), (T(32) = 1.85, P = .07). 

In addition, we had hypothesized that the combination of the two motives may increase the 

amount of relative evidence that participants required in order to reach a decision (captured 

by the a-parameter; Figure 2.3.1C, right panel). The a-parameter was not significantly higher 

in the multi-motive condition compared to the reciprocity condition (p(amulti-motive>areciprocity) = 

84.70 %, plausible T(32) = 1.73, P = .09) and the empathy condition (p(amulti-motive>aempathy) = 

82.35 %, plausible T(32) = 1.43, P = .16). However, there was a significantly positive relative 

percent change in a-parameters in the multi-motive condition relative to the reciprocity 

condition (∆𝑎multi-motive/reciprocity = 
amulti-motive-areciprocity

areciprocity
 ×100 = 9.77 ± 4.36 % (M ± SEM), T(32) = 

2.28, P = .03) and also relative to the empathy condition (∆𝑎multi-motive/empathy = 

𝑎multi-motive-𝑎empathy

𝑎empathy
 ×100 = 9.57± 4.63 % (M ± SEM), T(32) = 2.10, P = .04). 

Taken together, the DDM results showed that the combination of the two motives enhanced 

participants’ bias for choosing the prosocial option, relative to the initial prosocial choice 
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bias biases induced by the reciprocity motive (captured by the percent change in the z-

parameter). The combination of empathy and reciprocity also led to a relative increase in the 

amount of relative evidence that people required to make a choice relative to the reciprocity 

motive, and also relative to empathy (captured by the percent change in the a-parameter). 

In contrast, the speed of information accumulation, i.e., the efficiency of the choice process 

itself, was comparable between multi-motive and single-motive conditions (no change in v-

parameter). 

 

 

Figure 2.3.4. Increase in initial prosocial bias in the multi-motive condition relative to the 

reciprocity condition and related neural activity. A Initial prosocial bias (z-parameter) were 

significantly stronger in the multi-motive compared to the reciprocity condition (plausible 

T(32) = 3.66, P < .001). Individual values are depicted for the multi-motive condition (red) 

and the reciprocity condition (blue). Means and standard errors of the mean are depicted in 

black. B The individual changes of initial prosocial choice biases in the multi-motive condition 

relative to the reciprocity condition were tracked by an increase in neural responses in the 

bilateral dorsal striatum (P(whole-brain FWEcluster-corrected) = .001; MNI peak coordinates; right 

hemisphere: x = 30, y = 2, z = -2, left hemisphere: x = -28, y = -9, z = 1; visualized at P < .001 

uncorrected; Table A14 and Figure A6). 

 

These results may indicate that the observed percent changes in the multi-motive condition 

relative to the reciprocity condition (in the z- and the a-parameters) originate from the 

simultaneous activation of the two motives in the multi-motive condition. Alternatively, as 

we observed no significant difference between the multi-motive condition and the empathy-

condition, it is also conceivable that the empathy motive replaced the reciprocity motive 

when the two motives were activated simultaneously. In this case, the observed percent 



The neural computation of prosocial decisions  
in complex motivational states 

114 

changes in the multi-motive condition would reflect the dominance of empathy over 

reciprocity, instead of a multi-motive effect. If in fact empathy replaced the co-activated 

reciprocity motive, the relative difference in the z-parameters and a-parameters between 

the empathy and the reciprocity conditions should predict the individual extent of the 

percent changes in the multi-motive condition relative to the reciprocity condition. To test 

this explanation, we calculated the relative differences in the z-parameters and a-

parameters between empathy and reciprocity (∆𝑧empathy/reciprocity = 
zempathy-𝑧reciprocity

𝑧reciprocity
 ×100 and 

∆𝑎empathy/reciprocity = 
aempathy-areciprocity

areciprocity
 ×100), entered them as predictors in a regression 

analysis, and tested their effects on the observed percent changes in the multi-motive 

condition (Δzmulti-motive/reciprocity; Δamulti-motive/reciprocity). This analysis revealed no significant 

effects (β = -0.20, SE = 0.255, P = .42; interaction with parameter type (z vs a): β = .002, SE = 

0.38, P = 1.00, main effect of empathy dominance: β = 0.08, SE = 0.136, P = .59). These 

results demonstrate that the difference between the two single motives cannot account for 

the changes in choice parameters in the multi-motive condition relative to the reciprocity 

condition, bolstering the claim that the observed effects are driven by the simultaneous 

activation of the two motives. The three DDM parameters of interest for each condition and 

the relative differences between the baseline condition and the motive conditions are 

provided in Figure A3 and Table A13. 

 Imaging results 

Next, we investigated the neural underpinnings of the prosocial decision process comparing 

the multi-motive and the single motive conditions. The main contrasts of mean neural 

activation during the prosocial decision phase did not show significant neural activations 

(neither whole-brain nor small-volume corrected). 

We investigated how the simultaneous activation of the two motives, and the resulting 

changes in initial prosocial bias and amount of required relative evidence affected the neural 

computation of prosocial choices. To do so, we regressed participants’ individual percent 

change in initial prosocial biases (Δzmulti-motive/reciprocity) and the amount of relative evidence 

(Δamulti-motive/reciprocity) on the neural contrast in prosocial choices between the multi-motive 

condition and the reciprocity condition, using second-level regressions. As a main result, the 

first analysis revealed activations in the bilateral dorsal striatum that were related to the 
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individual change in prosocial bias (right hemisphere: P(FWEcluster-corrected) = 0.001; center co-

ordinates: x = 30, y = 2, z = -2; k = 143 voxels, T(31) = 5.49; left hemisphere: P(FWEcluster-

corrected) = 0.003; center co-ordinates: x = -28, y = -9, z = 1; k = 121 voxels, T(31) = 5.36; Figure 

2.3.4B, Figure A6, Table A14). The stronger the percent increase in initial prosocial bias in 

the multi-motive condition relative the reciprocity condition, the stronger the neural 

response in bilateral dorsal striatum. 

To test the alternative hypothesis that the increase in dorso-striatal activity may reflect the 

dominance of empathy (captured by the relative difference in z-parameters between 

empathy and reciprocity, Δzempathy/ reciprocity), instead of a multi-motive effect, we also 

compared the relationship between Δzmulti-motive/reciprocity and Δzempathy/reciprocity on extracted 

beta values of the multi-motive vs reciprocity contrast using an independent anatomical 

mask of bilateral putamen based on the aal nomenclature (Tzourio-Mazoyer et al., 2002). 

The results showed that neural activation in dorsal striatum is associated with Δzmulti-

motive/reciprocity, but not with Δzempathy/reciprocity (significant interaction between index type and 

neural activation: β = 0.69, SE = 0.225, P = .003, no main effect of beta values: β = -0.11, SE = 

0.159, P = .52, marginal main effect of index type: β = -0.41, SE = 0.223, P = .07, Figure A5B). 

Thus, empathy dominance is not likely to explain the results.  

To test whether the increase in striatal activation in the multi-motive compared to the 

reciprocity condition is driven by outliers, we extracted the individual beta-estimates of the 

multi-motive vs reciprocity contrast from bilateral dorsal striatum and plotted its 

relationship with the percent change in the z-parameter in the multi-motive condition 

relative to the reciprocity condition (Figure A5A). The inspection of the plot shows that the 

relationship between the percent signal change in the z-parameter in the multi-motive 

condition relative to the reciprocity condition was not driven by outliers. 

The respective second-level regression with the percent change in the a-parameter revealed 

neural activity in bilateral anterior insula on a lower, uncorrected threshold (Puncorrected < 

0.001; center co-ordinates right hemisphere: x = 33, y = 32, z = 1, P(FWEcluster-corrected) = .970, k 

= 9 voxels; center co-ordinates left hemisphere: x = -30, y = 27, z = -2, P(FWEcluster-corrected) = 

.902, k = 13 voxels). 

Additionally, we tested whether trial-by-trial changes in the partner’s gain modulate neural 

activation during the prosocial choice process. In line with the behavioral results, the 
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partner’s gain did not differentially influence neural activation in the different conditions. 

However, neural activation during the prosocial choice process in bilateral insula was 

significantly associated with trial-by-trial changes in the partner’s gain across all four 

conditions (right insula peak-coordinates: x = 43, y = -6, z = 18, k = 108 voxels, P(FWE whole-

brain cluster corrected) = .009; left insula peak-coordinates: x = -38, y= -9, z = 16, k = 517 

voxels, P(FWE whole-brain cluster corrected) < .001; see Table A15 for all clusters k > 10). 

The same analysis including prosocial as well as egoistic choice trials replicated this result 

(right insula peak-coordinates: x = 43, y = -6, z = 16, k = 109 voxels, P(FWE whole-brain 

cluster corrected) = .009; left insula peak-coordinates: x = -38, y= -9, z = 18, k = 294 voxels, 

P(FWE whole-brain cluster corrected) < .001). Hence, the insular activation appears to track 

trial-by-trial changes of the partner’s gain across all conditions. 

Discussion 

Many behaviors derive from complex motivational states that are characterized by different, 

simultaneously activated motives (Engel & Zhurakhovska, 2016; Hughes & Zaki, 2015; Jagers 

et al., 2017; Takeuchi et al., 2015; Terlecki & Buckner, 2015). However, the mechanisms 

through which combinations of motives affect behaviors, e.g., the computation of prosocial 

choices, are poorly understood. 

Our results showed that the simultaneous activation of two motives changes participants’ 

choices compared to activation of a single motive condition. In more detail, a combination of 

two prosocial motives (the empathy and the reciprocity motive) elicited more prosocial 

choices than the reciprocity motive alone (Figure 2.3.3A). This multi-motive increase 

occurred although the two single motives were activated with comparable strength 

(indicated by the induction ratings, Figure A1). Moreover, the different motive conditions 

had no effect on reaction times (Figure 2.3.3B and C), inequality aversion, or the subjective 

value assigned to the partner’s gains (Figure 2.3.3D). Furthermore, the partner’s gain was 

associated with neural activation in bilateral insula across all conditions, which adds to the 

observation that insular activation is also sensitive to other-regarding experiences such as 

vicarious reward (Morelli, Sacchet, & Zaki, 2015), avoiding risk for others (Shenhav & 

Greene, 2010), and making fair (Dawes et al., 2012) or altruistic decisions (Cutler & 

Campbell-Meiklejohn, 2019). 
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Specifying the change in prosocial choice behavior in the multi-motive condition, the drift-

diffusion-modeling analyses showed that the combination of the two motives enhanced 

participants’ initial bias for making a prosocial choice, compared to the reciprocity condition 

(reflected by the increase in z-parameter; Figure 2.3.4A) and with a similar trend, relative to 

the empathy condition. Moreover, the combinations of the two motives increased the 

relative amount of relative evidence that participants required during the choice process 

(reflected by the relative increase of the a-parameter). This indicates that participants 

assessed their choices more carefully if they made them based on two different motives. In 

contrast, the speed of information accumulation, i.e., the efficiency of the decision process 

itself (reflected by the v-parameter), remained unchanged. The observed change in initial 

prosocial bias (the z-parameter) is in line with previous findings that reported a shift of 

choice biases due to the prior likelihood of one of the choice options or a higher reward 

value associated with one option (Mulder et al., 2012), personal predispositions (Chen & 

Krajbich, 2018), or prior information about how other people decided (Toelch et al., 2018). 

Extending these results, our findings reveal that initial choice biases are altered by 

simultaneously activated motives, and thus characterize how complex motivational states 

change the choice process compared to single-motive states.  

We hypothesized that changes in DDM choice parameters in the multi-motive compared to 

the single-motive conditions might be related to changes in activation in the ventral or 

dorsal striatum, inspired by evidence associating the ventral striatum with the processing of 

choice values (Kable & Glimcher, 2007; Liljeholm & O ’Doherty, 2012; O’Doherty et al., 2004; 

Strait et al., 2015), and/or the dorsal striatum with encoding of choice preferences (Balleine 

et al., 2007; Liljeholm & O ’Doherty, 2012; O’Doherty et al., 2004; Palmiter, 2008; Robinson 

et al., 2006).Our results show that the combination of different motives is associated with an 

increase in activation in bilateral dorsal striatum, reflecting an enhancement of individual 

prosocial choice biases in the multi-motive condition relative to the reciprocity condition 

(Figure 2.3.4), and, based on extracted beta-values from an independent anatomical region, 

also relative to the empathy condition (Figure A5). The increase in activation in dorsal 

striatum is in line with previous neuroscience studies showing that motivation-related 

changes in decision parameters are captured by dorsal striatal responses (Forstmann et al., 

2008; Gluth et al., 2012). Extending this previous evidence, we show that the dorsal striatum 
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integrates choice biases that are elicited by multiple motivational forces, and thus provides a 

plausible neural candidate for the generation of complex motivational states. 

We found that the simultaneous activation of the empathy motive and the reciprocity 

motive in the multi-motive condition enhanced the participants’ initial prosocial biases 

relative to the reciprocity condition. This indicates that the empathy motive enhanced the 

reciprocity motive, but not vice versa. Given this result, we argued that the observed 

changes in the multi-motive condition may reflect the dominance of one motive over the 

other motive (i.e., a dominance of empathy over reciprocity). If this were true, the multi-

motive induced changes in the choice process would reflect a motivation that is similar to 

the state induced by the dominant motive, instead of a more complex motivational state 

that was incited by the combination of different motives. Our results show that the multi-

motive induced changes in the choice process (i.e., DDM and neural choice parameters) are 

in fact related to differences between the multi-motive condition and the reciprocity 

condition and cannot be explained by mere dominance of the empathy motive over the 

reciprocity motive. This finding supports the conclusion that the simultaneous activation of 

two motives alters the prosocial choice process compared to single motive states. 

Because we were mainly interested in participants’ choices under the different motive 

conditions, our paradigm was designed to optimize the number of trials in the allocation 

task. The motive induction procedures only included the minimal number of trials required 

for inducing the different motives (twelve trials per motive induction). Due to the small 

number of trials, an analysis of neural responses during the multi-motive and single-motive 

induction procedures would not be meaningful.  

Participants made prosocial choices also in the baseline condition which indicates that 

participants are motivated to behave prosocially without experimental activation of 

empathy and reciprocity. It is thus important to note that prosocial choices can be driven by 

other motives in addition to empathy and reciprocity. However, these additional motives 

should be the same across conditions since participants perform the same social choice task. 

Hence, contrasting behavior between the different conditions should carve out the effects 

that were experimentally manipulated, i.e., how the combination of empathy and reciprocity 

influences the prosocial choice process relative to empathy or reciprocity alone. 
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Likewise, because the “basic” social choice tasks were identical in all experimental 

conditions, task-specific effects should average out if the different conditions are contrasted. 

This means that the observed effects are driven by the different motive inductions and 

should be independent of the social choice task that was used in the present study. In other 

words, our behavioural and neural findings should generalize to other behaviours that are 

elicited by the combination of the empathy and the reciprocity motives. However, in how far 

the present effects are scaled depending on the exact task affordances (e.g., relative 

importance of the single motives for the respective task, how much time participants have 

to deliberate their decision) is a question for future research. Likewise, future studies need 

to test if the observed increase in striatal activation due to a multi-motive alteration of initial 

choice bias also applies to other (e.g., non-social) motivational states. Food choices, for 

example, are often driven by more than one motive such as the motive to eat healthy and 

the motive to eat sweet food, maximizing calorie intake. The dorsal striatum has previously 

been associated with food choice preferences in healthy (Small, Jones-Gotman, & Dagher, 

2003; Wallace et al., 2014) as well as pathological participants (Foerde, Steinglass, Shohamy, 

& Walsh, 2015). It is thus possible that the interplay between the non-social motives during 

food choices is associated with neural activation in the dorsal striatum. 

To avoid cross-gender effects, which are likely to occur if female participants are paired with 

male confederates and vice versa, we only tested females. Future studies are required to 

show if our results generalize to male participants. 

Conclusions 

Based on our current findings we conclude that the simultaneous activation of two different 

prosocial motives changes the computation of prosocial choices. According to our results, 

choices that are made in a more complex motivational state, i.e., driven by multiple motives, 

are characterized by a change in initial choice bias, which is associated with an increased 

neural response in dorsal striatum. Moreover, choices were made more carefully relative to 

simple motivational states. Together, these findings show how the human brain combines 

different prosocial motives, and how this motive combination affects the computation of 

prosocial choices.  
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Implications for study 4 

In study 3, we investigated how the combination of empathy with another social motive that 

incites prosocial behavior shapes the prosocial decision process compared to the prosocial 

decision process only based on empathy and only based on that other prosocial motive, 

namely reciprocity. Behavioral results showed that the combination of empathy and 

reciprocity increased participants’ probability to make prosocial decisions as well the initial 

decision bias towards making a prosocial decision. Additionally, the larger an individual’s 

increase in initial prosocial decision bias, the larger the increase in neural activation in 

bilateral dorsal striatum. This behavioral and neural increase, however, was only observable 

relative to the reciprocity-related prosocial decision process but not relative to the empathy-

related prosocial decision process. Thus, empathy can boost prosocial behavior based on a 

social norm that has been shown to motivate prosocial behavior. 

In study 4, we tested whether empathy is also sustainable with respect to being resilient to 

the combination with the motive of outcome maximization. Previous works have shown that 

paying people to act prosocially does not necessarily boost prosocial behavior but may also 

undermine other social motives motives to do so and hence impede prosocial behavior. In 

study 4, we tested empathy sustainability in this regard by activating empathy for pain as 

well as paying participants a bonus for making prosocial decisions, hence offering a financial 

incentive to act prosocially (empathy-bonus condition). We compare the prosocial decision 

process based on this combined motivation with the prosocial decision process based on 

empathy alone (empathy alone condition). If empathy is resilient to an undermining effect of 

financial incentives, prosocial decision-making in the empathy-bonus condition should be 

comparable to or even increase compared to the empathy alone condition. 
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Abstract 

Financial incentives are commonly used to motivate behaviors. However, there is also 

evidence that incentives can impede the behavior they are supposed to foster, for example, 

documented by a decrease in blood donations if a financial incentive is offered. Based on 

these findings, previous studies assumed that prosocial motivation is shaped by incentives. 

However, so far, there is no direct evidence showing an interaction between financial 

incentives and a specific prosocial motive. Combining drift-diffusion modeling and fMRI, we 

investigated the effect of financial incentives on empathy, i.e., one of the key motives driving 

prosocial decisions. In the empathy-alone condition, participants made prosocial decisions 

based on empathy. In the empathy-bonus condition, they were offered a financial bonus for 

prosocial decisions, in addition to empathy induction. On average, the bonus enhanced the 

information accumulation in empathy-based decisions. On the neural level, this 

enhancement was related to the anterior insula, the same region that also correlated with 

empathy ratings. Moreover, the effect of the financial incentive on anterior insula activation 

was stronger the lower a person scored on empathy. These findings show that financial 

incentives enhance prosocial motivation in the absence of empathy. 

 

keywords: 

empathy, prosocial behavior, incentives, drift-diffusion modelling, fMRI 

  



Financial incentives facilitate the neural computation of prosocial decisions stronger in lower 
empathic adult females 

124 

Introduction 

Financial incentives are frequently used to motivate people. Such measures are based on 

empirical evidence showing that financial incentives increase the frequency of the rewarded 

behavior (Garbers & Konradt, 2014; Wei & Yazdanifard, 2014), including cooperative and 

prosocial behaviors (Balliet et al., 2011; Stoop, van Soest, & Vyrastekova, 2018). For 

example, in a meta-analysis, Balliet and colleagues found that reward positively affects 

cooperation (Balliet et al., 2011). Consequently, financial incentives may increase the 

motivation to behave prosocially (Ariely, Bracha, & Meier, 2009). However, there is other 

evidence that incentives may undermine the very behavior they are meant to strengthen 

(Bénabou & Tirole, 2006; Besley & Ghatak, 2018; Deci, Koestner, & Ryan, 1999; Murayama et 

al., 2010; Niza, Tung, & Marteau, 2013; Rode, Gómez-Baggethun, & Krause, 2015; Titmuss, 

1970). The most classic example in the realm of prosocial behaviors is the observation that 

people donate less blood if they are paid to do so, compared to the amount of blood that 

they donate without payment, i.e., only motivated by wanting to help others (Niza et al., 

2013; Titmuss, 1970). In line with these observations, other studies have shown that adding 

financial incentives can reduce prosocial behaviors (Ariely et al., 2009; Bowles, 2008; 

Holmås, Kjerstad, Lurås, & Straume, 2010). In sum, the evidence regarding the effects of 

incentives on prosocial decisions is inconsistent and mainly based on behavioral 

observations that do not provide insights into the underlying motivational processes. As a 

result, it remained unclear whether and how financial incentives interact with a specific 

prosocial motive.  

In social psychology models of prosocial behavior, financial incentives play a role because 

they can motivate prosocial behaviors based on an egoistic motive (Batson & Shaw, 1991). 

Incentivized prosocial behavior that is driven by an egoistic motive can benefit the other, but 

the benefit for others is only a byproduct and the ultimate goal is the increase of the 

decider’s welfare. In contrast, in case of an empathic motivation, the decider ultimately 

strives to increase the wellbeing of the other, irrespective of a potential reward (Batson, 

1994; Batson et al., 2011, 2004). Within this (Batson, 1994; Batson et al., 2011, 2004) and in 

other recent motivation models (Engel & Zhurakhovska, 2016; Hughes & Zaki, 2015; Saulin et 

al., 2022), it is proposed that different motives influence each other and that most behaviors 

are driven by an interaction between these different motives. Previous social psychology 
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work has investigated how empathy is shaped by selfish motives, such as the motive to 

withdraw from a stress-inducing situation (Batson, Duncan, Ackerman, Buckley, & Birch, 

1981). However, to the best of our knowledge, there are no previous studies that tested how 

financial incentives affect the components of empathy-based prosocial decisions. 

Empathy itself is a multidimensional construct (Timmers et al., 2018). Commonly, 

researchers distinguish between so called cognitive empathy or theory of mind (ToM) and 

emotional empathy – a distinction that is even mirrored on a neural level (Cox et al., 2012; 

Cutler & Campbell-Meiklejohn, 2019; Decety et al., 2016; Dvash & Shamay-Tsoory, 2014; Fan 

et al., 2011; Kanske et al., 2015; Preckel et al., 2018; Shamay-Tsoory et al., 2009; Stietz et al., 

2019; Zaki & Ochsner, 2012). Cognitive empathy has often been associated with neural 

activation of the medial prefrontal cortex (mPFC), the superior temporal sulcus (STS), the 

temporal poles (TP), and the temporo-parietal junction (TPJ; Cutler & Campbell-Meiklejohn, 

2019; Dvash & Shamay-Tsoory, 2014; Preckel et al., 2018; Schurz et al., 2021; Stietz et al., 

2019), while emotional empathy is often associated with the anterior insula (AI), and the 

anterior and mid cingulate cortex (ACC/MCC; Cutler & Campbell-Meiklejohn, 2019; Dvash & 

Shamay-Tsoory, 2014; Fan et al., 2011; Preckel et al., 2018; Schurz et al., 2020; Stietz et al., 

2019). That said, there is recent evidence pointing to an involvement of the AI and the ACC 

in tasks requiring cognitive and emotional empathy, in addition to task requiring emotional 

empathy only (Cutler & Campbell-Meiklejohn, 2019; Schurz et al., 2021). 

Previous work has established a reliable link between the individual strength of the empathy 

motive and the propensity to act prosocially, e.g., decisions that maximize the outcome of 

another person at costs to oneself (Batson et al., 1995; Decety et al., 2016). The stronger the 

empathy motive, the stronger the propensity to decide in favor of the other person. It is 

assumed that many prosocial decisions are driven by both, cognitive and emotional empathy 

(Kanske et al., 2015; Stietz et al., 2019; Zaki & Ochsner, 2012). 

In the present study, we induced empathy using a well-established empathy for pain 

paradigm in which participants observed two interaction partners receiving painful shocks 

(Hein, Engelmann, et al., 2016; Hein, Morishima, et al., 2016; Lamm et al., 2011). This 

procedure has been shown to induce empathy as a motive that incites prosocial behavior 

based on the affective response to another person's misfortune (Batson et al., 1995; Decety 

et al., 2016; Hein, Morishima, et al., 2016; Lamm et al., 2011; Marsh, 2018). Nevertheless, in 
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the light of previous evidence that emotional and cognitive empathy also work in concert 

(Kanske et al., 2015; Preckel et al., 2018; Stietz et al., 2019; Zaki & Ochsner, 2012), cognitive 

empathy may also play a role in the prosocial decision process. 

To investigate the effect of financial incentives on empathy-based prosocial decisions, 

participants allocated points to the partners at a cost to themselves (Figure 2.4.1B). The 

allocation of points towards the one partner (empathy partner) should be based on the 

previously activated empathy motive (empathy-alone condition). The allocation of points 

towards the other partner (empathy-bonus partner) was also based on the previously 

activated empathy motive. However, in this condition, participants were additionally 

informed that they would receive a bonus for choosing the prosocial option in the majority 

of trials in the subsequent allocation task (empathy-bonus condition). Importantly, achieving 

the bonus criterion in the empathy bonus condition did not result in a financial loss for 

participants. To control for other motivations that might play a role besides empathy (self-

image concerns; reciprocity), the incentive was offered in private, the decisions were kept 

anonymous, and the participants knew that they would not meet the other players after the 

study. This measure is important because it minimizes participants' motivation to maintain a 

positive public image, i.e., a different motive that may affect participants' prosocial decisions 

besides empathy (Ariely et al., 2009; Bénabou & Tirole, 2006; Besley & Ghatak, 2018; Exley, 

2018). 

To specify how incentives modulate empathy-related decisions, we used drift-diffusion 

modeling (DDM). DDMs assume that during binary decisions, noisy information is 

accumulated to select a decision option mainly based on three different parameters (the v-, 

z- and a-parameters; Figure 2.4.1C) (Forstmann et al., 2016; Ratcliff et al., 2016). The v-

parameter describes the speed of the evidence accumulation, i.e., the efficiency of the 

decision process itself. Thus, in our task, a larger v-parameter indicates faster information 

accumulation regarding the prosocial option. The individual decision bias is reflected by the 

z-parameter. In contrast to the v-parameter, the z-parameter models the individual 

preferences with which a person starts the decision process. For example, if a person has a 

strong prior preference for prosocial decisions, the starting point of the decision process is 

closer to the prosocial decision boundary, and therefore less evidence has to be 

accumulated regarding the prosocial option. 
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combination of the empathy motive and the financial incentive, based on the raw data from 

the entire data set (i.e., including trial-by-trial information of all decisions). Additionally, the 

non-decision time (t0) was estimated across conditions (see Drift-Diffusion Modeling for 

details).  

Extending the classical DDM approach, a recent model has proposed that the evidence in 

favor of one or another choice alternative might be shaped by affective and motivational 

states (Roberts & Hutcherson, 2019). Supporting this assumption, affective states have been 

found to change central parameter of the choice process, such as the drift rate (v-

parameter) (Aylward, Hales, Robinson, & Robinson, 2019; Lerche, Neubauer, & Voss, 2018; 

Thompson & Steinbeis, 2021) and the starting point (z-parameter) (White, Liebman, & Stone, 

2018). Inspired by these results, we assumed that the evidence in favor of a prosocial choice 

might be different in different motivational states (i.e., induced by empathy and its potential 

interaction with the incentive), reflected by changes in the drift rate and/ or the starting 

point. 

Influential social psychology models propose that incentive-induced egoism and empathy 

can incite prosocial behavior (Batson, 1994; Batson et al., 2011, 2004) and that different 

motives interact with each other (Engel & Zhurakhovska, 2016; Hughes & Zaki, 2015). One 

assumption is that financial incentives may enhance empathy-related prosocial decisions, 

inspired by findings of reward-related increases of prosociality (Garbers & Konradt, 2014; 

Wei & Yazdanifard, 2014). If this was true, the frequency and efficiency of prosocial decisions 

should be higher in the empathy-bonus compared to the empathy-alone condition. 

Specifying the potential effect of the incentive on the prosocial choice process, the DDM 

proposes that incentive-related facilitation of prosocial choices may originate A) from an 

increased speed of information accumulation, i.e., an increased drift rate (v-parameter, 

Figure 2.4.2A) (Aylward et al., 2019; Lerche et al., 2018; Roberts & Hutcherson, 2019; 

Thompson & Steinbeis, 2021), B) an enhancement of participants' initial preference to 

choose the prosocial option, i.e., a shift of the starting point towards the prosocial decision 

boundary (z-parameter, Figure 2.4.2C) (White et al., 2018), or C) from an enhancement of 

the v- as well as the z-parameter in the empathy-bonus compared to the empathy-alone 

condition (Figure 2.4.2E). 
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Alternatively, it is possible that financial incentives undermine empathy-related prosocial 

decisions, in line with previous findings that showed an incentive-related decrease in 

prosocial behavior (Bénabou & Tirole, 2006; Murayama et al., 2010; Rode et al., 2015; 

Titmuss, 1970). In this case, prosocial decisions should be more frequent in the empathy-

alone compared to the empathy-bonus condition. According to the DDM, such an 

undermining effect may be reflected A) by a reduced speed of information accumulation (v-

parameter; Figure 2.4.2B), B) a shift of the starting point away from the prosocial decision 

boundary (z-parameter; Figure 2.4.2D), or C) a reduction in both parameters in the empathy-

bonus compared to the empathy-alone condition (Figure 2.4.2F). 

Finally, it is possible that the effect of financial incentives depends on the strength of the 

empathy motive, i.e., might be influenced by how highly empathic individuals are. If this is 

true, the individual difference between the empathy-bonus vs. empathy-alone condition and 

changes in the drift rate and/or the starting point should be related to the individual 

empathy ratings, i.e., the measure that captures the strength of the empathy motive during 

the first part of the study. 

In line with the notion that DDM-based analyses provide an elegant approach to relate 

individual differences in cognitive processes to neural activity (White, Curl, & Sloane, 2016), 

previous studies have started to link changes in DDM parameters to changes in neural 

processing (Ulrike Basten, Biele, Heekeren, & Fiebach, 2010; De Hollander, Forstmann, & 

Brown, 2016; de Lange, Rahnev, Donner, & Lau, 2013; Domenech, Redouté, Koechlin, & 

Dreher, 2018; Forstmann & Wagenmakers, 2015; Gluth et al., 2012; Mulder et al., 2012; 

Pedersen, Endestad, & Biele, 2015; Peters & D’Esposito, 2020; White et al., 2016). For 

example, an increase in the z-parameter has been linked to an increase in frontoparietal 

activation (specifically superior frontal gyrus, right middle frontal gyrus, left inferior frontal 

gyrus, left intraparietal sulcus, medial frontal gyrus, anterior cingulate gyrus;(Mulder et al., 

2012) and motor cortex (de Lange et al., 2013). 

An increase in drift rate (v-parameter) has been associated with increased activity in 

presupplementary motor area, caudate nucleus, and anterior insula (Gluth et al., 2012) and 

the dorsomedial prefrontal cortex, right inferior frontal gyrus, and bilateral insula (Pedersen 

et al., 2015; for reviews, see De Hollander et al., 2016; Forstmann & Wagenmakers, 2015). 
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individual differences in empathy, such as the anterior insula (AI) cortex and the anterior and 

mid cingulate cortex (ACC/MCC) (Hein, Morishima, et al., 2016; Hein et al., 2010; Marsh, 

2018; Masten, Morelli, et al., 2011). Moreover, prosocial decisions were found to involve 

medial prefrontal regions and temporo-parietal regions that have been associated with 

cognitive empathy (Dvash & Shamay-Tsoory, 2014; Preckel et al., 2018; Schurz et al., 2021; 

Stietz et al., 2019), as well as reward-related regions such as the striatum (Preckel et al., 

2018). Based on this previous evidence, the processing of an incentive-related increase in 

the v- and/or z-parameter (reflecting facilitation of empathy-related decisions) between the 

empathy-bonus and the empathy-alone condition may increase the neural activation in a 

network consisting of the AI, the ACC/MCC, medial prefrontal, temporo-parietal and striatal 

regions. In contrast, an incentive-related decrease in the v- and/or z-parameter (reflecting a 

potential undermining effect) may be related to a decrease of activity in this network. 

Methods 

 Materials and Methods 

 Participant details 

33 healthy women (mean age M = 25.05 years, SEM = 0.74, min = 18, max = 35) participated 

in the study. Females were invited to participate irrespective of race and ethnicity, but the 

final sample was 100% Caucasian. All of them had the German “Abitur” (the diploma 

required for admission to college studies). Participants were recruited via flyers distributed 

at the Frankfurt University. They were required to master German on a C1 level in order to 

ensure understanding of the instructions, to have normal or corrected-to normal vision, to 

be right-handed, and to have no history of mental disorders and regular drug consumption. 

The sample size was estimated based on a meta-analysis, which showed that rewards have a 

positive effect on cooperation of d = 0.51 (Balliet et al., 2011). A post hoc sensitivity analysis 

was conducted using G*Power version 3.1.9.2 (Erdfelder, FAul, Buchner, & Lang, 2009). 

According to the estimation, a minimal sample size of N = 33 is required to detect effects of 

incentive on prosocial decisions, comparing two dependent means with α = .05 and power 

(1-β) = .80. The power of .80 was chosen based on the recommendations from Ellis (2012, p. 

53). We chose a female instead of a gender-mixed subject group because it allowed us to 

choose female confederates and thus to avoid the potential complications of gender-mixed 
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pairing of participants and confederates. The confederates were two female students 

trained to play their roles in counterbalanced order. The data from two participants had to 

be discarded as outlier (frequency of prosocial decisions, 3.42 SDs below the mean (Mempathy-

alone = 44.35, SD empathy-alone = 12.97). Thus, we analyzed 31 data sets. We obtained ethics 

approval (EK 458122014) for conducting the study and written informed consent from our 

participants. The experiment was conducted following the Helsinki guidelines. Participants 

received monetary compensation (show up fee plus payout from two randomly chosen trials 

of the allocation task). 

 Procedure 

 Overall procedure 

The study consisted of two parts (Figure 2.4.3). In part 1, the empathy motive was activated 

towards one partner (a confederate). In the following allocation task, participants allocated 

points to the respective partner (here driven by empathy; empathy-alone condition). Next, 

the confederate was replaced by a new individual that served as a partner for part 2. In part 

2, the empathy motive was activated again. However, before starting the decision task, the 

participant was told that she would receive a bonus if she decided prosocially in the clear 

majority of the decision trials. In the following allocation task, participants again allocated 

points to the respective partner (here driven by empathy and the financial incentive; 

empathy-bonus condition). The order of the two conditions (empathy-alone and empathy-

bonus) was counterbalanced across participants and the two confederates.  
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Figure 2.4.3. Overview of an exemplary experimental procedure. The study consisted of two 

parts. In this example, in part 1, the empathy motive was activated towards one confederate 

(the empathy-alone partner). In the following allocation task, participants allocated points to 

the empathy partner (i.e., driven by the empathy motive). Next, the confederate was 

replaced by a new individual that served as partner for part 2. Again, the empathy motive 

was activated towards this second confederate. After the empathy motive induction, 

additionally, a bonus for choosing the prosocial option in the majority of trials in the 

subsequent allocation task was offered (empathy-bonus partner). Thus, in the following 

allocation task, participants allocated points towards the empathy-bonus partner (i.e., driven 

by the empathy motive and the additionally offered bonus). The order of motive induction 

(empathy-alone, empathy-bonus) was counterbalanced across participants and both 

confederates. The respective partner was indicated by a cue in one of two counterbalanced 

colors. 

 

Outside the fMRI scanner, we attached pain electrodes to the back of the participants' and 

the confederates' hands and determined the individual thresholds for painful and painless 

stimulation using a standard procedure (Hein, Engelmann, et al., 2016; Hein, Morishima, et 

al., 2016). Next, the participant and the confederates played a manipulated lottery (drawing 

matches) that ostensibly determined the amount of pain the person would receive in the 

following task. Because the empathy induction required saliently more pain for the 

Part 1 Part 2

Motive induction Motive induction

Allocation task Allocation task

Empathy motive
(empathy-alone partner)

Empathy motive + financial incentive
(empathy-bonus partner)

Empathy-alone partner Empathy-bonus partner
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confederates, the drawing of the matches was organized in such a way that the participant 

always drew the last match and thus was assigned to receive only a few painful stimuli. 

The participant was placed inside the fMRI scanner, and one of the confederates was placed 

on a chair next to the participant in the scanner room. The confederate's hand with the pain 

electrode was placed on a tilted table over the participants' knee. Through a mirror in the 

head coil, participants could see the hand of the other, together with the visual stimulation 

on a screen that was positioned at the end of the fMRI bed. During the empathy induction, 

participants either saw a dark-colored flash (painful stimulation) or a light-colored flash 

(non-painful stimulation), indicating the intensity of the stimulation of the confederate. In a 

small portion of trials (five from fifteen), they received pain stimulation themselves, 

indicated by a dark-colored flash of a different color. During the decision task, participants 

were presented two options to allocate points between themselves and the other person. 

Colors were counterbalanced across participants. 

The study started with the empathy induction, followed by the allocation task towards the 

first confederate. After replacing this confederate, the same procedure (empathy induction 

followed by the allocation task) was repeated with the second confederate (Figure 2.4.3). In 

the empathy-alone condition, the allocation task started immediately after the empathy 

induction. In the empathy-bonus condition, after the empathy induction, participants were 

told that they would receive a bonus (additional 5 Euro payment) if they chose the prosocial 

option in the majority of trials. We deliberately refrained from specifying the percentage of 

prosocial decisions that were required to win the bonus to avoid strategy effects. The bonus 

was equal to the maximally possible outcome in the allocation task (i.e., the outcome that a 

participant would gain if she always chose the selfish option). To minimize reputation 

effects, participants received the bonus information in private without the partner's 

knowledge. 

Apart from the bonus in the empathy-bonus condition, the experimental procedure was 

identical in both conditions. The order of the conditions and the assignment of the 

confederates was counterbalanced across participants. At the end of the experiment, both 

confederates left, and the participants stayed in the scanner until anatomical image 

acquisition was completed. Finally, participants were asked to complete the Interpersonal 

Reactivity Index (IRI) (Davis, 1980) and a scale that assessed their impression of both 
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confederates (Hein, Engelmann, et al., 2016). The impression ratings were comparable 

between confederates (lmm χ²(1) = 0.36, p = .55, B = -0.10, SEM = 0.16). 

Participants spent approximately 60 min inside the scanner, and the entire procedure lasted 

about 2 hours. In addition to the show-up fee, participants received the payout from two 

randomly chosen allocation trials and the bonus of five Euros if they made prosocial 

decisions in 75% of the trials in the empathy-bonus condition. 

All ratings during the induction phase and all decisions in the allocation task were kept 

anonymous. Particular care was taken to ensure that this was clear to participants by 

pointing out the following: Inside the scanner room, the partner had a separate visual 

display, such that the participant viewed stimuli via back-projection from a mirror onto a 

screen, while the confederates beside the scanner viewed stimuli via cardboards/video 

glasses with a built-in display (Hein, Engelmann, et al., 2016). Thus, all ratings and decisions 

were private and could not be observed by the other participants (Hein, Engelmann, et al., 

2016). Moreover, participants knew that they would not meet after the experiment because 

the scanned participant needed to stay longer for an anatomical scan. The experimenter was 

outside the scanner room, and it was pointed out that he could not see the ratings and 

decisions either. 

 Empathy induction 

In each empathy-induction trial, first, we presented a colored arrow indicating the person 

who will receive the following electric stimulation for 1000 ms. After this cue, a fixation cross 

was presented for 1000 ms, followed by a colored lightning bolt shown for 2000 ms. 

Participants were informed that a blinking dark-colored lightning bolt indicates a painful 

stimulus, whereas a blinking light-colored lightning bolt indicates a non-painful stimulus. 

After receiving or observing the electric stimulation, we showed a 9-point rating scale with 

the question "How do you feel?". The scale ranged from -4 (labeled "very bad") to +4 

(labeled "very good"). Participants had to respond within 4000 ms (Figure 2.4.1A). The 

empathy induction consisted of 30 trials: 10 that were ostensibly painful for the partner 

(other-pain trials), 5 that were not painful for the partner (other-no-pain trials), 5 painful 

trials for the participant (self-pain trials), and 10 non-painful trials (self-no-pain trials) for the 

participant. The self-pain trials were added to allow participants to simulate the state (pain) 

of the other person. To test their potential influence on empathy changes, we compared the 
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ratings in other-pain trials that were preceded by a self-pain trial (i.e., empathy ratings under 

the condition of self-pain experience) with the ratings in other-pain trials that were 

preceded by an other-pain trial (i.e., empathy ratings without preceding self-pain 

experience). The results showed no difference between the other-pain ratings after self-pain 

and the other-pain ratings without prior self-pain (T(61) = 0.34, p = .73). Based on these 

results, the self-pain experience had no significant effect on empathy changes during 

empathy induction. 

To further account for the potential effect of self-pain experiences on empathy ratings, 

individual empathy ratings (i.e., ratings for others’ pain) were divided by individual self-pain 

ratings. This quotient reflects the feeling for others pain relative to self-pain and was used as 

a continuous measure of state empathy in all analyses. 

 Allocation task 

The allocation task was identical in both conditions and based on a well-established 

paradigm (Hein, Morishima, et al., 2016). In each trial, participants allocated points to 

themselves and the respective partner (Figure 2.4.1B) and could choose between 

maximizing the relative outcome of the other person by reducing their own relative outcome 

(prosocial choice) and maximizing their own relative outcome at a cost to the partner (selfish 

choice). The outcome was relative to the outcome that the participant would have gained 

when choosing the other option. The initial number of points was always higher for the 

participant compared to the partners. This measure was inspired by previous behavioral 

economics research, showing that participants make more prosocial decisions if their initial 

payoff is higher than the partner's payoff ("advantageous inequality") (Bolton & Ockenfels, 

2000; Charness & Rabin, 2002; Fehr & Schmidt, 1999). The choice options used in the 

present study created advantageous inequality to optimize the number of prosocial choices, 

which was the main focus of our study. 

For the point distributions, we used values between 900 and 1200. The respective value was 

divided into a self:other ratio of 60:40 or of 90:10. Each trial of the allocation task contained 

a prosocial and a selfish option. The prosocial option was always the more egalitarian option, 

with a point distribution of 60% (self) to 40% (other). In contrast, in the selfish option, points 

were allocated with a ratio of 90% (self) to 10% (other). Participants' losses were 

symmetrical to the partner's gains. For example, a total of 1000 points were distributed with 
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self:other ratios of 60:40 (600:400 points), 90:10 (900:100 points). Thus, the participant's 

loss was 900 - 600 = 300 points, which corresponded exactly to the gain of the partner (400 - 

100 = 300 points). We used these fixed and symmetrical ratios to minimize unspecific effects 

of loss aversion. 

Each decision trial started with an inter-trial interval indicated by a fixation cross presented 

for a period jittered between 4000 and 6000 ms (Figure 2.4.1B). Next, participants saw the 

two possible distributions of points in different colors, indicating the potential gain for the 

participant and the potential gain for the current partner. Participants had to choose one of 

two distributions within 4000 ms by pressing the left button on a response box to select the 

distribution on the left side and the right button to select the distribution on the right side. 

The position of the two allocation options was randomized across trials to minimize 

response biases due to motor habituation. A green box appeared around the distribution 

that was selected by the participant at 4000 ms after distribution onset. The box was shown 

for 1000 ms. At the end of the experiment, two of the distributions chosen by the participant 

were randomly selected for payment (100 points = 50 cents). Participants performed 60 

decision trials in each motive-induction condition, i.e., 120 trials in total. Participants were 

not informed about the exact number of trials to avoid confounding effects (e.g., counting 

trials). 

 Pain stimulator 

For pain stimulation, we used electrical stimulation (bipolar, monophasic; output range 5Hz, 

0-10 mA) from a single-current stimulator (Neurometer CPT/C; Neurotron Inc.). After 

attaching the electrodes at the index finger of the right hand and connecting them to the 

single-current stimulator, the respective person was asked to press the button for defining 

the current threshold and deciding when she is feeling the stimulation – the value of this 

threshold was used as painless stimulation. In a second run, the participant was asked to 

press the same button, but now to hold it pressed until the pain was at an unacceptable 

level and then to release – this threshold was used for the painful stimulation. 

 Experimental design and statistical analyses 

The aim of our study was to compare prosocial decisions driven by empathy alone with 

prosocial decisions driven by a combination of empathy and a financial bonus. Therefore, we 
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used a within-subject design in which each participant performed the identical social 

decision task under two different conditions: the empathy-bonus and the empathy-alone 

condition. Behavioral data were analyzed with R-Studio Version 1.1.463, R Version 3.6.0 (R 

Core Team, 2019), and Python (HDDM 0.8.0; Python Version 3.7.6; Jupiter notebook server 

6.0.3 (Van Rossum, 2007; Wiecki et al., 2013). 

 Regression analyses 

All regression analyses were performed with the R-packages "stats" (R Core Team, 2019) 

using "lme4" (Bates, Mächler, Bolker, & Walker, 2015), "car" (Fox & Weisberg, 2019) and 

“MuMIn“ (Barton, 2019). We used linear models within condition, and mixed models with 

participants as random effect between conditions as the data have a hierarchical structure 

that violates the independent assumptions of standard regression models. In the analyses 

with a continuous variable as dependent variable, linear mixed models were applied. For 

significant results, the marginal R²m was calculated using the R-package “MuMin” (Barton, 

2019). For the analysis with a dichotomous dependent variable, a logistic mixed model was 

chosen. 

Empathy ratings showed a right-skewed distribution (Shapiro-Wilk W = .94, P < .01), so the 

data was log-transformed to normal distribution. Pearson correlation was computed 

between the empathy ratings and the empathic concern scale (EC) from the Interpersonal 

Reactivity Index (IRI) as well as between the empathy ratings and the personal distress scale 

(PD) from the (IRI) (Davis, 1980). Results were visualized with the "tidyverse" package 

(Wickham et al., 2019) and the "ggeffects" package (Lüdecke, 2018). All continuous 

predictors in our regressions are z-scored. 

In addition to the collected data, we also used data from the baseline condition (without 

motive induction) of a previous study with a similar paradigm and the same assignment task 

(Hein, Morishima, et al., 2016). 

 Drift-Diffusion Modelling 

We chose the DDM because of its small but trackable number of key parameters and 

because it is relatively easy to reduce other sequential sampling models (SSMs) to the DDM 

given specific parameter constraints (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). We 

used hierarchical drift-diffusion modelling (HDDM) (Vandekerckhove et al., 2011; Wiecki et 

al., 2013), which is a version of the classical drift-diffusion model that exploits between-
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subject and within-subject variability using Bayesian parameter estimation methods and 

thus is ideal for use with relatively small sample sizes. The analyses were conducted using 

the python implementation of HDDM (Wiecki et al., 2013). Based on previous studies 

showing changes in drift rate (Aylward et al., 2019; Lerche et al., 2018; Roberts & 

Hutcherson, 2019; Thompson & Steinbeis, 2021) and the starting point (White et al., 2018), if 

decisions are made in different affective states, we assumed that these two parameters 

might also be affected by motivational states. However, given that the modulation of affect 

and motivation is not the same, effects on the third parameter (the a-parameter) are also 

possible. Therefore, we estimated the full model with v, z, and a possibly being modulated 

by our two conditions. In addition, we estimated two further models in which both 

conditions were modulated by the v- and z-parameters (a-parameter estimated across both 

conditions) or by the v- parameter only (z- and a-parameters estimated across conditions). 

The best model fit was obtained for a model that allowed for modulation of all three 

parameters in both conditions (DIC = 4347), followed by a model that allowed variations of 

the v- and z-parameters (DIC = 4427), and a model that only allowed a variable v-parameter 

(DIC = 4508). Moreover, we estimated the non-decision parameter (t0), which indicates the 

duration of all extradecisional processes like basic encoding or motor processes (Voss et al., 

2004). In paradigms like ours that used an identical experimental setting across conditions, it 

was recommended to estimate the t0-parameter across conditions (Nunez, Vandekerckhove, 

& Srinivasan, 2017; Servant, Montagnini, & Burle, 2014; Wagenmakers, Ratcliff, Gomez, & 

McKoon, 2008). Following this recommendation, we estimated the t0-parameter across the 

empathy-bonus and the empathy-alone conditions (mean t0 = 0.59, SE = 0.02) (see 

supplementary Table S2.4.2 for full HDDM results). 

We conducted the same DDM analyses with two different inputs. In the first analysis, 

parameters were estimated based on the standard HDDM condition-wise inputs (reaction 

time, participants' choices, condition, and participant). In the second analysis, we added the 

trial-by-trial point difference (self-loss or other-gain) as covariate effecting the drift rate to 

estimate a hierarchical random intercept model (see Chen & Krajbich (2018) for a similar 

approach). It should be pointed out that the self-loss and the other-gain were always 

identical, i.e., the points that were gained by the participant corresponded to the loss of the 

partner (see section Allocation task for details). 
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To evaluate the model fit, we conducted posterior predictive checks by comparing the 

observed data with 500 datasets simulated by our model (a method that has also been 

recommended for HDDMs) to obtain quantile comparison and 95% credibility 

(supplementary Table S2.4.1) (Wiecki et al., 2013). Moreover, model convergence was 

checked by visual inspection of the estimation chain of the posteriors, as well as computing 

the Gelman-Rubin Geweke statistic for convergence (all values < 1.01) (Gelman & Rubin, 

1992). Parameters of interest from the model were extracted for further analysis. 

Specifically, for each participant, the condition-specific v-parameters, z-parameters, and a-

parameters were extracted (resulting in 6 parameters per participant). For the parameter 

comparison, we directly analyzed the posteriors, as recommended by Wiecki et al. (2013). 

Specifically, we tested the probability of larger v-, z-, or a-parameters are larger in the 

empathy-bonus compared to the empathy-alone condition. To do so, for each of the three 

DDM parameters considered, we examined the proportion of posteriors in which the 

respective parameter is larger for one condition than for the other (Wiecki et al., 2013). A 

value of 50% corresponds to the chance level, which means that values of over 90% and 95% 

indicate very high probabilities. 

 Image Acquisition and Analyses 

The experiment was conducted on a 3-T Siemens Magnetom Prisma whole-body MR scanner 

(Siemens Healthineers), equipped with a one-channel Siemens head coil. Scanner noise was 

reduced with soft foam earplugs, and head motion was minimized with foam pads. Stimuli 

presented in the induction phase and in the allocation task were projected onto a rear 

projection screen located in the front of the scanner. Behavioral responses were recorded 

with a five-key fiber-optic response box placed on the right hand, and when necessary, vision 

was corrected using MRI-compatible lenses that matched the dioptre of the participant. 

Structural image acquisition consisted of 176 T1-weighted transversal images (voxel size of 1 

mm). Functional imaging data were collected during the allocation task, using T2*-weighted 

echo-planar imaging (32 slices, slice thickness of 3 mm, ascending acquisition; repetition 

time, 2100 ms; echo time, 30 ms; flip angle, 80°; field of view, 240 mm; matrix, 80 × 80). In 

every decision session, 300 images were acquired - a total of 600 Images for both sessions. 
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 Preprocessing and statistical model 

The images were analyzed with SPM12 (Functional Imaging Laboratory, 2019) and Matlab 

version 8.6 (Matlab Inc, 2015). Images were preprocessed following the standard procedure 

recommended in the SPM manual (Functional Imaging Laboratory, 2019), including 

realignment, slice time correction, coregistration, segmentation, normalize, smoothing. 

First-level analyses were performed with the general linear model (GLM), using a canonical 

hemodynamic response function (HRF). For each of the conditions (empathy-alone and 

empathy-bonus condition), the respective regressors of prosocial choice trials were included 

as regressors of interest. The prosocial decisions regressor spanned the period from the 

onset of the decision screen until the participants' reaction (average of 1146.4 ms). 

Regressors of no interest included the period from the participants' reaction to decision 

offset (average of 2853.6 ms) and the immediately following period showing the 

participants' decision (1000 ms). 

Sixteen of our participants made less than five selfish decisions in at least one condition. To 

avoid empty cells in the model, we refrained from computing direct contrasts between 

prosocial and selfish choices, and selfish choices were included as regressor of no interest. 

For the second-level analyses, contrast images for comparisons of interest (empathy-bonus > 

implicit baseline, empathy-alone > implicit baseline, empathy-bonus > empathy-alone, and 

empathy-alone > empathy-bonus) were initially computed on a single-subject level. In the 

next step, the individual images of the main contrast of interest (empathy-bonus > implicit 

baseline) were regressed against the v-parameter. Results were thresholded using 5% family 

wise error (FWE) corrected voxel-based inference. To provide insights into larger networks, 

additionally, we also conducted explorative analyses with p = 0.001 cluster-forming 

threshold using 5% FWE cluster-based inference (Table 2.4.1) and no correction for multiple 

comparisons (Table S2.4.5). Note that peak-coordinates derived from cluster-wise inference 

only provide information about activated brain components, but not the exact brain region 

(Eklund et al., 2016; Yeung, 2018). Beta estimates were extracted from the entire clusters of 

activation in the anterior insula obtained from 5% FWE cluster-based inference with P < .001 

cluster-forming threshold, k = 50, using MarsBaR (Matthew Brett et al., 2002). Moreover, we 

created an independent region of interest based on a recent meta-analysis on empathy for 
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pain experiments (Jauniaux, Khatibi, Rainville, & Jackson, 2019) by creating a 20mm sphere 

around the reported peak coordinates (x = -43; y = 14; z = 7). 

 Code and data availability 

Behavioral data and scripts are available at github.com (https://github.com/Vassil-

Iotzov/empathy_incentives). Imaging data are available at neurovault.org 

(https://identifiers.org/neurovault.collection:7568). 

Results 

 Empathy was induced with comparable strength in both conditions. 

To quantify the strength of the induced empathy, we calculated the participants' trial-by-trial 

ratings while observing the partner in pain relative to their self-pain ratings. Comparing the 

ratings between the empathy-alone and the empathy-bonus condition revealed no 

significant differences between conditions (lmm 2
(1) = 0.0001, P < .99, B = -0.002, s.e. = 

0.22), indicating that empathy was induced with comparable strength in the empathy-alone 

and the empathy-bonus condition. To test if the empathy ratings were related to empathic 

concern, cognitive empathy (perspective taking) or personal distress, we conducted a 

regression analysis with the individual scores of the empathic concern, the perspective 

taking and the personal distress subscales of the Interpersonal Reactivity Index (IRI; Davis, 

1980) as predictors and the empathy ratings (empathy-alone condition) as dependent 

variable. The results revealed a significant effect of empathic concern, (B = 0.47, s.e. = 0.18, P 

= .01, R² = .24), but not of personal distress (B = -0.23, s.e. = 0.18, P = .21) and perspective 

taking (B = 0.30, s.e. = 0.17, P = .10). This finding indicates that the induced motivation, 

captured by the empathy ratings, mainly reflected empathic concern. 

 The financial incentive increased the frequency of prosocial decisions, in particular, if 

empathy was low. 

The frequency of prosocial decisions was significantly higher in the empathy-bonus condition 

(M = 85.65%, s.e. = 0.03%) compared to the empathy-alone condition (M = 73.92%, s.e. = 

0.04%, Figure 2.4.4A, lmm 2
(1) = 14.35, P < .01, B = -0.57, s.e. = 0.15, R²m = .08). 

Next, we tested whether empathy ratings were related to the probability of prosocial 

decisions. A logistic mixed model with the participants decisions (prosocial/selfish) as 
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dependent variable and empathy ratings, condition (empathy-alone / empathy-bonus) and 

empathy ratings × condition as predictors revealed a significant positive effect of empathy 

ratings (lmm 2
(1) = 3.99, P = .05, B = 0.41, s.e. = 0.11), a significant positive effect of 

condition (lmm 2
(1) = 95.10, P < .001, B = 0.88, s.e. = 0.10) and a significant condition x 

empathy rating interaction (lmm 2
(1) = 10.23, P = .001, B = -0.43, s.e. = 0.13; R²m = .05; 

Figure 2.4.4B). These results indicate that the probability of prosocial decisions increases 

with increasing empathy ratings in the empathy-alone condition, but not in the empathy-

bonus condition (Figure 2.4.4B). 

An additional regression analysis with the difference in prosocial decisions (empathy-bonus 

minus empathy-alone) as dependent variable and empathy ratings as predictor revealed a 

significant negative relationship (B = -0.36, s.e. = 0.17, P = .05, R² = .13). The lower an 

individual's empathy ratings, the stronger the increase in the frequency of prosocial 

decisions in the empathy-bonus condition relative to the empathy-alone condition. 

Comparing the reaction times of prosocial decisions in the empathy-bonus and the empathy-

alone condition revealed no significant difference, (lmm 2
(1) = 2.24, P = .13, B = 0.27, s.e. = 

0.18). There was also no difference when only selfish decisions were considered (lmm 2
(1) = 

0.14, P = .71, B = -0.08, s.e. = 0.22) and when all decisions were included (lmm 2
(1) = 1.99, P 

= .16, B = 0.26, s.e. = 0.19). 

Furthermore, a linear mixed model with reaction times of the prosocial decisions as 

dependent variable and empathy ratings, condition (empathy-alone / empathy-bonus) and 

empathy ratings × condition as predictors was conducted. The results revealed a significant 

negative effect of empathy ratings (lmm 2
(1) = 6.61, P = .01, B = -0.36, s.e. = 0.17), which was 

comparable in both conditions, condition (lmm 2
(1) = 2.17, P = .14, B = 0.27, s.e. = 0.18), 

condition x empathy rating interaction (lmm 2
(1) = 0.02, P = .89, B = -0.02, s.e. = 0.18; R²m = 

.15). According to these results, higher empathy ratings predicted faster prosocial decisions.  

As an additional analysis we also compared the number of prosocial decisions in the 

empathy-alone condition with the number of prosocial decisions in a baseline condition 

(without any motive induction) from a previous study of our working group using the same 

allocation task in a similar paradigm (Hein, Morishima, et al., 2016). The results revealed 

significantly more prosocial decisions in the empathy-alone condition compared to the 

baseline condition, empathy-alone (M = 73.92%, s.e. = 0.39), baseline condition (M = 
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We compared the speed of information accumulation (drift rate; v-parameters), the initial 

prosocial decision preferences (starting point; z-parameters), and the amount of integrated 

information (a-parameters) between the empathy-bonus and the empathy-alone condition. 

The comparison of the posteriors (Wiecki et al., 2013) revealed high probability for a larger 

v-parameter in the empathy-bonus condition compared to the empathy-alone condition, v-

empathy-bonus (M = 2.03, s.e. = 0.21), v-empathy-alone (M = 1.25, s.e. = 0.19), (p(v-empathy-

bonus > v-empathy-alone) = .99; Figure 2.4.5A). In contrast, the probability for a differences between 

the other decision parameters was relatively low, z-empathy-bonus (M = 0.47, s.e. = 0.01), z-

empathy-alone (M = 0.47, s.e. = 0.01; p(z-empathy-bonus > z-empathy-alone) = .54), a-empathy-bonus (M 

= 1.94, s.e. = 0.08), a-empathy-alone (M = 1.85, s.e. = 0.09; p(a-empathy-bonus > a-empathy-alone) = .79). 

This indicates that financial incentives enhanced the efficiency of the prosocial decision 

process, while leaving initial prosocial preferences unchanged. 

Inspired by previous studies (Chen & Krajbich, 2018; Hutcherson et al., 2015), in an 

additional analysis, we conducted a model that took the trial-by-trials difference in points for 

self vs other into account. To do so, we added the point difference (point for self vs points 

for other) as additional covariate effecting the drift rate (Chen & Krajbich, 2018). The results 

replicated the observed findings (high probability for a larger v-parameter in the empathy-

bonus condition compared to the empathy-alone condition: v-empathy-bonus (M = 5.54, s.e. 

= 0.20), v-empathy-alone (M = 4.80, s.e. = 0.18), p(v-empathy-bonus > v-empathy-alone) = .99), no 

differences between the other decision parameters z-parameter: z-empathy-bonus (M = 

0.50, s.e. = 0.01), z-empathy-alone (M = 0.49, s.e. = 0.01), p(z-empathy-bonus > z-empathy-alone) = .62; 

a-parameter: a-empathy-bonus (M = 1.83, s.e. = 0.08), a-empathy-alone (M = 1.75, s.e. = 

0.08), p(a-empathy-bonus > a-empathy-alone) = .76).  

 The incentive-related facilitation of prosocial decisions and individual differences in empathy 

are associated with changes in anterior insula activation. 

On the neural level, the main contrasts between the prosocial decision-related activation in 

the empathy-bonus vs the empathy-alone conditions revealed significant activation in the 

right lingual gyrus (BA 18, MNI peak coordinates, x = 12, y = -94, z = -13, k = 37, T = 5.50, z = 

4.54). 

A second-level regression with the neural activation during prosocial decisions in the 

empathy-bonus condition and the respective v-parameters revealed a significant activation 
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in the left anterior insula (BA 45, MNI peak coordinates, x = -27, y = 38, z = 5, k = 107, T = 

6.32, z = 4.97; Figure 2.4.5B), indicating that the speed of information accumulation in the 

empathy-bonus condition is related to a region that has also been associated with individual 

differences in empathy the processing of empathy (Hein et al., 2010; Lamm et al., 2011; 

Marsh, 2018). Moreover, the second-level regression revealed a significant activation in the 

right lingual gyrus (BA 19, MNI peak coordinates, x = 24, y = -67, z = -1, k = 401, T = 6.03, z = 

4.82). To provide insights into larger networks, additionally, we also conducted explorative 

analyses using 5% FWE cluster-based inference (Table 2.4.1) and no correction for multiple 

comparisons (Table S2.4.5). 

To test whether the neural drift rate signal in AI (Figure 2.4.5B) is also affected by empathy, 

and whether there are differential effects between the empathy-bonus and the empathy-

alone condition, we conducted a linear mixed model with the beta estimates of AI activation 

during prosocial decisions in the empathy-bonus and the empathy-alone condition as a 

dependent variable. 

 

Table 2.4.1 Neural results of the second-level regression between prosocial decision-related 

activity in the Empathy-bonus condition and the speed of information accumulation (v-

parameter) in the Empathy-bonus condition with P < .001 uncorrected and k > 50. The 

asterisk indicates activations that are significant at 5% whole-brain FWE voxel-based 

inference. 

Region Hemisphe

re 

x y z Cluster size t-value P(FWEcluster-based) 

Anterior Insula Left -27 38 5 107 6.32 .004* 

 Left -30 14 -13 62 4.87 .040 

Lingual gyrus Right 24 -67 -1 401 6.03 .000* 

Inferior lingual 

gyrus 

Left -51 -58 -19 189 5.17 .000 

Pallidum Left -18 -7 -1 70 4.64 .026 
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effect of the perspective taking subscale, indicating that cognitive empathy had no 

significant effect on neuronal activity in the anterior insula (see supplementary Table S2.4.3 

for full results). 

The same analysis with beta estimates from the right lingual gyrus, i.e., the other region that 

was significantly related to individual differences in the v-parameter (see second-level 

regression results above), revealed no significant results, except a significant main effect the 

v-parameter (lmm 2
(1) = 12.31, P < .01, B = 0.60, s.e. = 0.17) and a significant condition x v-

parameter interaction (lmm 2
(1) = 9.54, P < .01, B = -0.80, s.e. = 0.26), indicating that the 

three-way interaction between condition, empathy ratings, and the v-parameters was 

specific for left AI (for full results see Table S2.4.4). 

To unpack the significant condition x v-parameter x empathy rating interaction in left AI, we 

tested the relationship between the v-parameter and the empathy ratings separately in the 

empathy-alone and the empathy-bonus condition. We found a significant negative empathy 

ratings x v-parameter interaction in the empathy-bonus condition (B = -0.37, s.e. = 0.14, P = 

.01), with significant main effects of v (B = 0.70, s.e. = 0.11, P < .01) and empathy ratings (B = 

0.31, s.e. = 0.13, P = .03, R² = .65; Figure 2.4.6A). The results for the empathy-alone condition 

revealed a marginal significant positive empathy x v-parameter interaction (B = 0.31, s.e. = 

0.16, P = .06) with a significant main effect of the empathy ratings (B = 0.42, s.e. = 0.18 P = 

.03) and no main effect of the v-parameter (B = 0.24, s.e. = 0.18, P = .19; R² = .32, Figure 

2.4.6B). 

To further unpack these two-way interactions, we tested the relationship between the v-

parameter and anterior insula (AI) beta estimates, as well as the relationship between 

empathy ratings and AI beta estimates separately in the empathy-bonus and the empathy-

alone condition. Given that empathy facilitates prosocial decisions (Batson et al., 1995; 

Decety et al., 2016) and correlates with neural responses in AI cortex, we assumed a positive 

relationship between the empathy ratings and the drift rate and between the empathy 

ratings and AI activation, and used one-sided tests to test these assumptions (Pfaffenberger 

& Patterson, 1977; Ruxton & Neuhäuser, 2010). In the empathy-alone condition, the results 

revealed significant positive relationships between empathy ratings and AI beta estimates (B 

= 0.43, s.e. = 0.18, P = .01, Figure 2.4.6D), empathy ratings and drift rate (B = 0.30, s.e. = 

0.18, P = .05), and v-parameter and AI beta estimates (B = 0.38, s.e. = 0.19, P = .03, Figure 
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2.4.6F). In the empathy-bonus condition we observed a significant positive relationship 

between v-parameter and AI beta estimates (B = 0.73, s.e. = 0.12, P < .01, Figure 2.4.6E), 

while the relationships between empathy ratings and AI beta estimates (B = 0.23, s.e. = 0.16, 

P = .08, Figure 2.4.6C) and between empathy ratings and drift rate were not significant (B = 

0.21, s.e. = 0.17, P = .11). 

These subsequent analyses revealed a significant positive relationship between empathy 

ratings and neural responses in AI and between empathy ratings and drift rate in the 

empathy-alone condition. In the presence of a financial incentive in the empathy-bonus 

condition, these effects were no longer significant. Interestingly, the interaction between the 

empathy ratings and the drift rate reduced AI activation in the empathy-bonus condition 

while increasing it in the empathy-alone condition. This indicates that in the empathy-bonus 

condition, the empathy ratings (indicating the strength of the empathy motive before the 

bonus was offered) suppress the positive effect of the v-parameter on the neural response in 

AI. 

To test the robustness of the differential effects in the empathy-bonus and the empathy-

alone conditions, we extracted the beta-estimates of prosocial decision-related activation in 

the empathy-bonus and the empathy-alone condition from an independent region of 

interest in the AI (defined based on the peak coordinates reported in a recent meta-analysis 

on empathy of pain studies (Jauniaux et al., 2019). We conducted a linear mixed model with 

these beta-estimates as dependent variable, and condition (empathy-bonus / empathy – 

alone), empathy ratings, and v-parameters as predictors. The results replicated the 

significant condition x v-parameter x empathy rating interaction reported above (lmm 2
(1) = 

5.97, P = .01, B = 0.62, s.e. = 0.25, R²m = .20), reflecting a negative relationship in the 

empathy-bonus condition and a positive relationship in the empathy-alone condition. 
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that the financial bonus enhanced the frequency of prosocial decisions is in line with 

previous studies showing an incentive-related increase in prosocial behaviors (Balliet et al., 

2011; Stoop et al., 2018). Extending this previous evidence, our results reveal that this effect 

is modulated by individual differences in empathy, i.e., the effect is the stronger, the lower a 

person’s state empathy. Besides providing insights into the interplay between financial 

incentives and empathy, our results specified how financial incentives affect the prosocial 

decision process. The results of drift-diffusion modelling showed that the financial incentive 

enhanced the efficiency (i.e., speed of information accumulation captured by the v-

parameter) of prosocial decisions in the empathy-bonus compared to the empathy-alone 

condition (Figure 2.4.5A). In contrast, the incentive had no significant effect on participants' 

initial prosocial preferences, i.e., the preference of making a selfish or prosocial decision 

with which they entered the decision process (captured by the z-parameter).  

Outside the domain of prosocial decisions, there is evidence that the efficiency of decisions 

(captured by the v-parameter) is affected by individual differences in emotions (Aylward et 

al., 2019; Lerche et al., 2018; Roberts & Hutcherson, 2019; Thompson & Steinbeis, 2021). For 

example, according to the results of Thompson and Steinbeis (2021), individuals with greater 

state anxiety show an increased v-parameter on fearful face trials. Extending these findings, 

our results reveal that the speed of information accumulation is shaped by the motivation 

that drives participants' prosocial decisions, i.e., higher if a prosocial decision is rewarded 

than if it is only based on empathy. 

On the neural level, the incentive-related facilitation of the prosocial decision process was 

strongest related to the participants' neural response in the left anterior insula (AI; Figure 

2.4.5B), in line with previous evidence that associated the individual strength of AI responses 

and individual differences in drift rate (Gluth et al., 2012; Pedersen et al., 2015). Importantly, 

the neural response in the same AI region was also related to individual differences in 

empathy ratings, supporting a link between anterior insula activity and empathy (Hein, 

Engelmann, et al., 2016; Hein, Morishima, et al., 2016; Lamm et al., 2011; Marsh, 2018; 

Masten, Eisenberger, Pfeifer, & Dapretto, 2011) as well as the propensity for prosocial 

decisions (Hein, Engelmann, et al., 2016; Hein, Morishima, et al., 2016; Lamm et al., 2011; 

Marsh, 2018; Masten, Eisenberger, et al., 2011). 
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Adding a novel aspect, our findings reveal how financial incentives alter the effect of 

empathy on the computation of prosocial decisions in the anterior insular cortex. After 

offering a bonus in the empathy-bonus condition, the relationship between empathy ratings 

and drift rate and empathy ratings and AI estimates was no longer significant, indicating that 

in the presence of an incentive, empathy was no longer a significant driver of prosocial 

decisions. Interestingly, the interaction between the empathy ratings and the drift rate 

significantly reduced AI activation in the empathy-bonus condition (Figure 2.4.6A) while 

increasing it in the empathy-alone condition (Figure 2.4.6B). This indicates that in the 

empathy-bonus condition, the strength of the empathy motive (captured by the individual 

strength of the empathy ratings before the bonus was offered) suppressed the positive 

relationship between information accumulation during prosocial decisions and the neural 

response in AI. Together, these findings indicate that the anterior insula integrates self-

regarding (gaining the financial incentive) and other-regarding (empathy with the other 

person) motives that both elicit prosocial decisions and thus forms a plausible neural basis 

for the impact of financial incentives on empathic motivation. They support the assumptions 

of influential motivation theories (Batson, 1994; Batson et al., 2011; Engel & Zhurakhovska, 

2016; Hughes & Zaki, 2015; Saulin et al., 2022) which assume that most complex decisions 

are driven by an interaction between different motives, here an egoistic motive incited by a 

bonus for prosocial decisions, and the empathy motive. Adding to this theoretical 

framework, our results show that the extent of the motive interaction depend on individual 

state empathy and is captured by changes in neural responses in AI cortex. 

Besides the AI, we hypothesized that the incentive-related increase in the v-parameter in the 

empathy-bonus compared to the empathy-alone condition may also increase the neural 

activation in the ACC/MCC, medial prefrontal, temporo-parietal and striatal regions, i.e., 

regions that have been associated with emotional and cognitive empathy and prosocial 

decision-making in general. Exploratory analyses on a lower threshold (puncorrected < 0.001) 

indeed showed that the efficiency of prosocial decisions (captured by individual differences 

in the v-parameter) is also related to changes in activation in medial prefrontal and striatal 

regions (Table S2.4.5). However, none of these regions showed the interaction between the 

v-parameter and empathy ratings observed in the AI. 
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The AI has mainly been linked to emotional aspects of empathy (Dvash & Shamay-Tsoory, 

2014; Fan et al., 2011; Preckel et al., 2018; Schurz et al., 2021; Stietz et al., 2019). However, 

given evidence that many prosocial decisions are driven by both, cognitive and emotional 

empathy (Kanske et al., 2015; Preckel et al., 2018; Stietz et al., 2019; Zaki & Ochsner, 2012), 

it is still possible that cognitive empathy processes also play a role. Supporting this view, on a 

lower threshold, the efficiency of the prosocial decision process was also captured by medial 

prefrontal brain regions that have been associated with cognitive empathy (Dvash & 

Shamay-Tsoory, 2014; Preckel et al., 2018; Schurz et al., 2021; for results see Table S2.4.5). 

However, individual differences in cognitive empathy (measured by the perspective taking 

subscale by the IRI, Davis, 1980) did not modulate participants’ empathy ratings and the 

interaction effects observed in AI (Table S2.4.3). These results indicate that cognitive 

empathy may have influenced the efficiency of the prosocial decision process but did not 

significantly alter the interplay between self-regarding (gaining the financial incentive) and 

other-regarding (empathy with the other person) motives that was observed in AI cortex. 

In our study, empathy was conceptualized as a motive that can drive prosocial decisions. 

And indeed, the empathy ratings of our participants that correlated with empathic concern 

(but not with personal distress and perspective taking) facilitated the prosocial decision 

process in the empathy-alone condition, in line with previous findings (Batson et al., 1995; 

Decety et al., 2016). That said, the effect that financial incentives counteracted the 

facilitating effect of empathy on prosocial decisions the stronger the higher participants’ 

state empathy, might indicate that participants with higher state empathy are less motivated 

to empathize in the presence of an incentive, an assumption that supports the notion that 

empathy itself is a motivated state (Zaki, 2014). 

In the present study, the financial incentive for prosocial decisions was offered in private, 

and self-image concerns were reduced as far as possible, at least with regard to public 

reputation. However, some participants nevertheless showed an incentive-related decline in 

prosocial decisions (Figure 2.4.4A). It is conceivable that participants scoring higher on state 

empathy feel insulted by the bonus because "being paid to be nice" undermined their 

intrinsic empathic motivation that otherwise (i.e., in the empathy-alone condition) drives 

their prosocial decisions. Thus, although on average, our findings show that the incentive 

increased the frequency of prosocial decisions compared to an empathy-alone condition, it is 
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still possible that it undermines prosocial behavior in highly empathic participants. To test 

this assumption, future studies should test the effect of financial incentives on empathy-

based decisions in extreme groups, i.e., groups of extremely high or low empathic 

individuals. Moreover, it would be interesting to use a trial-by-trial bonus manipulation that 

allows for modeling the effect directly as part of the DDM. 

In our study, we motivated prosocial behavior by empathy, known to be one of the strongest 

drivers of prosocial behavior (Batson, 1994; Decety et al., 2016) and, in the other condition, 

additionally offered a bonus for prosocial behavior. As expected, these experimental 

manipulations resulted in a high number of prosocial decisions. This raises the question of 

whether our results may be affected by ceiling effects. Addressing ceiling effects in DDM 

modeling, previous work has shown that the estimation of DDM parameters is robust even if 

participants achieve near-ceiling accuracy (over 90% correct answers) (Ratcliff & McKoon, 

2008). Particularly when accuracy is at ceiling for one but not for all conditions of an 

experiment, the other conditions provide the error responses required for the model to 

estimate the variability in drift rate and starting point over the entire experiment (Ratcliff, 

2014). In light of this evidence, it is unlikely that the estimation of the drift rate is strongly 

affected by ceiling effects. Moreover, the empathy ratings were collected during the 

empathy induction prior to the choice task and thus are also not affected by ceiling. Given 

that our main results are based on the interaction between empathy ratings and the v-

parameter, it is unlikely that these findings reflect ceiling effects. 

Given evidence for different allocation patterns toward a partner from the same as 

compared to the opposite sex (Eckel & Grossman, 1998; Saad & Gill, 2001), and for gender 

differences in empathy (Christov-Moore et al., 2014) and prosocial behavior (Chowdhury et 

al., 2017), we recruited participants in their early twenties from the same gender (female) 

that were paired with a partner from the same gender (confederates). Testing participants 

from the same gender and age group allowed us to control for unspecific gender and age 

effects. The current sample size of 31 participants is large enough to detect effects of 

incentive on prosocial decisions, comparing two dependent means, and, because of the 

complex setup (involving confederates) it was difficult to test a large sample. The imaging 

results obtained with the current sample were thresholded using 5% family wise error (FWE) 

correction, i.e., the method that is recommended for a reliable correction of multiple 
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comparisons in our field (Han & Glenn, 2018). Multilevel models were used to minimize 

multiple comparisons (Gelman, Hill, & Yajima, 2012). However, we acknowledge that our 

results are based on a rather small female sample with specific demographic characteristics 

(e.g., a certain age group with high education) which limits their generalizability. Future 

studies are required to replicate our results in male participants, and larger, more diverse 

samples, i.e., individuals from different age groups and educational backgrounds. 

In summary, our current results indicate that financial incentives offered in private facilitate 

prosocial decisions more the lower participants scored on state empathy. 
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3 General discussion 

3.1 Summary 

The key research question addressed in the studies conducted in the context of this 

dissertation was how sustainably empathy induces social closeness and prosocial behavior in 

of itself as well as in comparison to and combined with other social motives. 

In study 1, we examined the formation and persistence of empathy-related social closeness 

by adopting a reinforcement learning (RL) approach. Specifically, we used an acquisition-

extinction paradigm in which empathy was reinforced by participants observing an 

ostensible other participant (confederate of the experimenter) receive painful stimulation. In 

a first block, empathy was frequently reinforced (acquisition phase) and in a second block 

only rarely reinforced (extinction phase). Results showed that empathy-related social 

closeness increased during acquisition and persisted during extinction. Using the Rescorla-

Wagner reinforcement learning model, we could show that empathy-related social closeness 

formation and sustainability were characterized by a large recalibration of the learning signal 

(the so-called prediction error). From an RL perspective, this indicates that those trials 

serving as non-reinforcer trials were able to elicit positive prediction errors, which in turn 

lead to an increase as opposed to a decrease in social closeness after non-reinforced trial. In 

an independent sample, we replicated these behavioral and computational modelling 

results. On a neural level, the extent of recalibration modulated how sensitive neural 

activation in the superior temporal sulcus (STS), the temporo-parietal junction (TPJ), and the 

inferior frontal gyrus (IFG) extending into anterior insula (AI) was to the observation of 

another’s painful stimulation compared to another’s non-painful stimulation. In the 

acquisition phase, stronger activation in IFG/AI in response to another’s non-pain was 

associated with increased social closeness. In the extinction phase, however, stronger 

activation in response to another’s pain was associated with increased social closeness, 

especially for highly empathic individuals. In contrast to empathy-related social closeness, 

reciprocity-related social closeness was not sustainable but starkly decreased in the 

extinction phase. In line with this pattern, computational modelling showed that a simple 

learning rule can well describe the reciprocity-related behavior for a large portion of the 

participants. 

In study 2, we investigated the sustainability of empathy-driven prosocial behavior. That is, 

we tested how the activation strength of empathy influences specific components of the 
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empathy-driven prosocial decision process and their neural correlates as assessed using 

fMRI. To this end, participants performed two conditions, each comprising three blocks of 

the social decision task with an alleged other participant (confederates of the experimenter). 

In the treatment condition, the first block served as baseline measurement and was followed 

by strong activation of empathy by frequent observation of the partner’s painful stimulation, 

which should lead to an increase in empathy motive strength. After the second social 

decision block (initial response block), empathy was only rarely activated, which in turn 

should lead to a decrease of empathy motive strength and thus a lower frequency of 

prosocial decisions in the final social decision block (sustained response block). In a parallel 

control condition, participants performed the same number of blocks but with activation 

frequency at chance level in the two motive activation phases. Results showed that the 

frequency of prosocial decisions driven by empathy was not significantly modulated by block 

number or by condition across two independent samples. Drift-diffusion modelling (DDM) 

however, revealed that the empathy-driven social decision process was sensitive to the 

different activation strengths. That is, the initial bias towards making a prosocial decision as 

opposed to an egoistic decision was increased after initial strong activation and remained on 

this level after subsequent rare activation. Hence, before participants started considering 

the different point options the faced in each trial of the social decision task, they already 

preferred the prosocial option more strongly after frequent activation as compared to the 

baseline block. On a neural level, we observed increasing neural activation with increasing 

block number in regions associated with social cognition, including the AI, the TPJ, the 

striatum, and IFG. Together, these results support empathy-related sustainability also with 

respect to prosocial behavior. In an additional experiment, we tested whether reciprocity-

driven behavior was equally sustainable. However, we observed that while the frequency of 

reciprocity-driven prosocial decisions and the initial bias towards making prosocial decisions 

significantly increased after frequent activation, both indicators for prosocial behavior 

decreased again after rare activation. Hence, in contrast to empathy, reciprocity did not lead 

to sustainable prosocial decision behavior. 

In study 3, we investigated the relative influence of empathy and reciprocity on the prosocial 

decision process by comparing prosocial decisions driven by the combination of empathy 

and reciprocity with prosocial decisions driven by each motive separately and a baseline 

without any motive induction. Before the decision task, the motives were induced towards 
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different interaction partners (confederates of the experimenter), corresponding to the four 

experimental conditions: the empathy motive condition, the reciprocity motive condition, 

the multi-motive condition (i.e., empathy + reciprocity motive), and the baseline condition 

(i.e., no motive actively induced). Results showed that compared to the baseline condition, 

participants more frequently chose the prosocial decision option when the motives were 

actively induced. Decisively, participants chose the prosocial option more frequently in the 

multi-motive condition compared to the reciprocity condition. Thus, adding the empathy 

motive to the reciprocity motive increased the frequency of prosocial decisions, but not vice 

versa. Using DDM analyses, we observed that the combination of empathy and reciprocity 

increased the initial bias towards making a prosocial decision compared to the activation of 

reciprocity only. Neural second-level regression analyses revealed that neural activation in 

bilateral dorsal striatum increased the more, the more an individual’s initial bias was 

increased in the multi-motive condition compared to the reciprocity condition. Interestingly, 

these findings could not be explained by mere dominance of the empathy motive compared 

to the reciprocity motive. That is, empathy did not simply overrule reciprocity when the 

motives were combined. Instead, differences between the reciprocity-driven and the 

combination-driven prosocial decision process was specific to the prosocial decision process 

driven by a complex motivational state, i.e., that is empathy as well as reciprocity, in 

contrast to a simple motivational state, i.e., only empathy or only reciprocity. Nonetheless, 

the results suggest that empathy is the stronger motive which other motives can benefit 

from with respect to increasing prosocial decision behavior, but not vice versa. 

In study 4, we investigated the combination of empathy with the motive of outcome 

maximization. Results showed that when participants were offered an additional payout for 

making prosocial decisions, i.e., when the motive of outcome maximization was added to the 

empathy-driven social decision process, people made prosocial decisions more frequently. 

Additionally, the prosocial decision process was more efficient as indicated by an increased 

speed of evidence accumulation (DDM drift-rate parameter). The higher a participant’s 

speed of evidence accumulation was when prosocial decisions were based on outcome 

maximization and empathy, the larger the neural activation in AI, a region that was also 

associated with state empathy. This effect was particularly strong for low empathic 

participants. 



Implications 

159 

The four studies conducted as part of this dissertation demonstrated that empathy, the 

sharing of another’s affective state, (i) lead to sustainable social closeness and prosocial 

decision behavior, (ii) was beneficial in combination with other social motives, and (iii) could 

not be easily undermined by the motive of outcome maximization. In the following sections, 

these findings will be discussed in light of existing works and directions for future research 

inspired by these findings will be put forward. 

3.2 Implications

Observable empathy sustainability and stability 

We investigated the question of empathy-related social closeness sustainability within the 

framework of reinforcement learning (study 1). We had hypothesized that the more 

sustainably empathy induces social closeness, the less decrease ratings of social closeness 

should show in the extinction block, i.e., the block with only rare reinforcement of the 

empathy motive. Analogously, we had hypothesized that the more sustainable the empathy-

related prosocial decision behavior, the weaker the decrease in the frequency of prosocial 

decisions after only weak empathy activation (study 2). For both measures we observed 

sustainable empathy-related social behavior in two independent samples, respectively. That 

is, we observed no decrease in social closeness during extinction and no decrease in 

observable prosocial decision-making after weak empathy activation. However, for 

reciprocity, we observed a pattern in line with unsustainable social closeness and prosocial 

behavior, i.e., a decrease in social closeness during extinction and a decrease in the 

frequency of prosocial decisions after weak reciprocity activation. Thus, empathy led to 

more sustainable social behavior than reciprocity. 

These findings may be understood in terms of the behavioral predictions that arise from the 

different goals elicited by empathy and reciprocity, respectively. While prosocial behavior 

based on empathy is linked to increasing the well-being of another person (Batson, 2010), 

prosocial behavior based on reciprocity is linked to repaying a favor (Gouldner, 1960; 

McCabe et al., 2003). Hence, when a previously received favor is fully repaid, prosocial 

behavior based on reciprocity on the one hand should deteriorate, especially when the other 

person stops paying favors (Fehr & Gächter, 2000; Gouldner, 1960; Nowak, 2006). Prosocial 

behavior based on empathy on the other hand may not deteriorate once the other person 

experiences more frequent non-painful stimulation, since this more positive experience does 
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not weigh out the negative prior experience. Instead, observing non-pain after previous 

frequent observed pain may even further boost social closeness and prosocial behavior 

based on positive empathy (Andreychik, 2019; Morelli et al., 2014; Telle & Pfister, 2016). 

Thus, both types of trials observed can potentially promote social closeness and prosocial 

behavior. For reciprocity, however, observing that the other person had decided not to help 

can have the opposite effect and activate negative reciprocity (Chernyak et al., 2019; 

Kaltwasser et al., 2016). Instead of promoting social closeness and prosocial behavior, 

observing non-helping behavior could thus impede these social behaviors, which would 

contribute to the lack of reciprocity-related social behavior sustainability observed in 

study 2. 

These first results shed light on the sustainability of empathy-related social behavior alone 

and in comparison with reciprocity-related social behavior. In the other two studies, we 

approached the question of empathy sustainability from a different angle by combining 

empathy with other social motives. We explicitly tested how the combination of empathy 

with reciprocity and the combination of empathy with the motive of outcome maximization 

shaped the prosocial decision process. We hypothesized that if empathy was a sustainable 

motive with respect to motive combinations, empathy should boost prosocial behavior 

based on other motives and should not be undermined by additional motives. The results 

showed that when prosocial decision were based on both motives, participants made 

prosocial decisions more frequently compared to the situation in which participants decided 

only based on reciprocity, but not compared to the situation in which participants decided 

only based on empathy (study 3). Adding empathy to reciprocity hence boosted prosocial 

behavior but not vice versa. Moreover, empathy-based prosocial behavior was not 

undermined but in fact boosted by the addition of outcome maximization (study 4). 

This latter findings is surprising as it has frequently been suggested that offering monetary 

incentives, which is the operationalization of the motive of outcome maximization, 

undermines intrinsic prosocial motivation (e.g., Frey & Jegen, 2001; Promberger & Marteau, 

2013). Titmuss prominently claimed that paying people for donating blood will decrease 

their likelihood to actually do it by undermining the initial intrinsic prosocial motive to help 

others (Titmuss, 1970). However, a later meta-analysis did not support an undermining 

effect of monetary incentives on blood donation, but rather suggested that paying or not 

paying people for donating blood does not influence their likelihood to do so (Niza et al., 
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2013). In line with other studies (meta-analysis: Balliet et al., 2011; review: Besley & Ghatak, 

2018), the findings observed here also do not support a general undermining effect of an 

egoistic motive on empathy-based prosocial behavior. In fact, participants in our study made 

more prosocial decisions when they were additionally offered a monetary bonus for 

behaving prosocially. Hence, the motive of outcome maximization did not undermine 

observable empathy-based prosocial behavior adding to the notion of empathy being a 

sustainable and stable driver for social closeness and prosocial behavior. 

Taken together, on the level of directly observable behavior as indicated by ratings of social 

closeness and social decision-making, empathy sustainably increased social closeness and 

prosocial decisions. In the following section, the computational mechanisms underlying 

empathy sustainability and stability as assessed in this dissertation are discussed in detail.

Computational mechanisms underlying empathy sustainability 

The sustainability and stability of empathy-based social closeness and prosocial decision-

making can be directly observed, indicated by increased and more stable social behavior, but 

it can also be characterized in terms of the computational mechanisms underlying the 

respective behavior. In this dissertation, I aimed at uncovering these mechanisms using 

reinforcement learning models (Rescorla & Wagner, 1972) to capture the temporal evolution 

of empathy-related social closeness (study 1) and the drift-diffusion model (Ratcliff & 

McKoon, 2008; Vandekerckhove et al., 2011; Wiecki et al., 2013) to better understand the 

empathy-related social decision process (studies 2-4). 

Results of study 1 revealed that the empathy-based development of social closeness over 

time can be described in terms of a reinforcement learning process that allows for individual 

recalibration of the learning signal (cf. Bavard, Lebreton, Khamassi, Coricelli, & Palminteri, 

2018). That is, observing another’s pain was not generally associated with a learning signal 

corresponding to a value of 1 which always led to an increase in social closeness, and 

observing another’s non-pain was not generally associated with a learning signal of 0 which 

always lead to a decrease in social closeness (as assumed in the simple RW learning model). 

Rather, these values were individually adjusted resulting in a value of smaller than 1 for 

reinforced trials, i.e., trial of observed pain, and values of larger than 0 for non-reinforced 

trials, i.e., trials of observed non-pain. This implies that individuals will increase their social 

closeness not only on reinforced trial, but also based on non-reinforced trials as these trials 

can yield a positive learning signal. Interestingly, follow-up analyses showed that the extent 
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of recalibration differed between the block of frequent empathy reinforcement (acquisition) 

and the subsequent block of rare empathy reinforcement (extinction). Specifically, in the 

acquisition block, participants on average did not strongly recalibrate the feedback signal. 

Thus, observing the other person in pain entailed an increase of social closeness. In the 

extinction block, however, participants on average strongly recalibrated the feedback signal. 

Thus, observing that the other person received non-painful stimulation increased social 

closeness to a comparable extent to which observing the other person receive painful 

stimulation increased social closeness (see supplementary materials of study 1 for details). 

This computational account demonstrates that participants can switch the basis on which 

they are learning to feel closer to the other person. In detail, they do so by putting more 

value on seeing that the other person receives no pain once the context changes from 

frequent to rare incidences of painful stimulation. Previous works have shown that positive 

as well as negative empathy can lead to connectedness and prosocial behavior towards the 

other person (Andreychik, 2019; Andreychik & Migliaccio, 2015; Depow, Francis, & Inzlicht, 

2021; Morelli, Lieberman, et al., 2015; Shiota, Papies, Preston, & Sauter, 2021; Telle & 

Pfister, 2016). The results from this dissertation are hence in line with these studies and 

additionally demonstrate that individuals can switch from one type of empathy to the other 

within one experimental session. Generally, in the framework of reinforcement learning, a 

context-dependent adaptation of the learning process is reported more and more frequently 

(Fontanesi, Palminteri, & Lebreton, 2019; Hunter & Daw, 2021; Palminteri et al., 2015; 

Pischedda et al., 2020; Stojić, Schulz, P Analytis, & Speekenbrink, 2020). Hunter & Daw 

(2021) for example highlight that the uncertainty of reward in a given environment shapes 

the learning process. Other works demonstrated that contextual information such as 

offering information about the outcome associated with the option not chosen by the 

participant, termed counter-factual information, influences the learning process (e.g., 

Pischedda et al., 2020). This dissertation could show that this principle of context-sensitive 

learning extends to the learning of motive-driven social closeness. Specifically, we showed 

that this principle holds with respect to who is learning (see section Inter-individual 

differences) as well as which motive the learning process was based on. That is, results 

showed that in contrast to empathy-related social closeness, the temporal evolution of 

reciprocity-related social closeness was similarly likely to be explained by the very basic RW 

learning rule, i.e., without assuming individual recalibration, as by the model variant which 
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included individual recalibration. As in basic reinforcement learning, social closeness 

deteriorated once reciprocity was only rarely reinforced (Bouton, 2004; Shiban et al., 2015). 

The computational account of reciprocity-based social closeness suggests an inflexibility of 

the underlying mechanisms of reciprocity-based social closeness in contrast to empathy-

based social closeness. Here, this inflexibility led to a decrease in social closeness. Although, 

this inflexibility entailed unsustainable social closeness in the present paradigm, unambiguity 

with respect to a social norm may actually facilitate its application in daily life. That is, if the 

outcome value of observed helping behavior corresponds to the value of 1 and the non-

helping behavior to a value of 0 for a large portion of the population observed, there is less 

room for uncertainty. This in turn simplifies the use of reciprocity as a social norm that 

corresponds to a simple heuristic (Rand et al., 2014), facilitating prosocial behavior on a 

societal level (Bartlett & DeSteno, 2006; Gouldner, 1960; Nowak, 2006; Orhun, 2018; 

Penner, Dovidio, Piliavin, & Schroeder, 2005). 

In this dissertation, empathy did not only induce sustainable social closeness but activation 

of empathy also led a sustained prosocial decision bias (study 2) and boosted the reciprocity-

based prosocial decision process (study 3). DDM analysis revealed that strong activation of 

empathy increased participants’ initial bias towards making a prosocial decision compared to 

prior baseline behavior. This result is in line with previous works which observed that 

changes in the motivation to behave prosocially were reflected in changes of the initial bias 

towards the prosocial (in contrast to the egoistic) decision option (Chen & Krajbich, 2018; 

Gallotti & Grujić, 2019; Yu et al., 2021). For empathy-based prosocial behavior, this bias 

remained high even after weak activation of empathy. Although the other person only rarely 

received painful stimulation, the motivation to act prosocially towards that person remained 

high. For reciprocity, however, this bias decreased after weak motive activation, indicating 

decreasing motivation to act prosocially towards that person. These results showed that 

when activated separately, empathy induces a more sustainable prosocial decision bias than 

reciprocity. 

Moreover, combining empathy with reciprocity increased the prosocial decision bias 

compared to when only reciprocity was activated (study 3). Thus, empathy sustainability in 

terms of relative motive effectiveness regarding prosocial decision-making was again 

reflected in the changes of this initial prosocial decision bias. Previous works have suggested 

that the empathy motive may not be necessary once a social norm prescribing a certain 
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behavior is active that can elicit prosocial behavior (Lay, Zagefka, González, Álvarez, & 

Valdenegro, 2020). Another study even showed that empathy may be actively avoided due 

to its high cognitive cost (Cameron et al., 2019). This view suggests a “taking over” of the 

cognitively less costly motive (here, the reciprocity motive) once both motives are active. In 

contrast, the results obtained in this dissertation show that empathy can boost the 

reciprocity-based social decision process whereas reciprocity cannot boost the empathy-

based social decision process. These results are in keeping with other studies, that have 

found stronger effects of empathy compared to reciprocity on hypothetical helping behavior 

(Allsop, Fifield, & Seiter, 2002) or a sustaining effect of empathic reactions on the upholding 

of a (reciprocal) relationship (Rumble, Van Lange, & Parks, 2010). Based on studies in 

primates, Yamamoto & Takimoto (2012) further suggested that reciprocity as a fairness 

norm may stabilize prosocial behavior based on empathy but may not act as a promoter of 

prosocial behavior itself. Together, these studies highlight the interactional nature of 

empathy and reciprocity in maintaining of positive social relationships and support the idea 

of empathy as an active promoter of prosocial behavior. 

In daily life, empathy cannot only interact with the reciprocity motive, but also with other 

motives, such as the motive of outcome maximization (Batson et al., 2004; Cory, 2006). We 

hence tested how the addition of financial incentives for prosocial behavior altered the 

empathy-based social decision process (study 3). DDM results revealed that the efficiency of 

the choice process itself, rather than the initial bias was increased when participants’ social 

decision behavior was based on outcome maximization was well as empathy compared to 

empathy only. Hence, knowing that you are additionally paid a bonus makes your prosocial 

decision process more efficient as compared to when your decision is only based on 

empathy. In keeping with empathy as a sustainable social motive and in contrast to a 

potential undermining effect of financial incentives (Promberger & Marteau, 2013; Takeuchi 

et al., 2015; Titmuss, 1970), the empathy-based prosocial decision process benefited from 

the addition of this motive. However, in contrast to studies 2 and 3, this beneficial effect was 

reflected in the efficiency of the choice process and not the initial prosocial bias. Given that 

different components of the decision process are affected in studies 2 and 3 compared to 

study 4, different mechanism appear to underlie the influence of empathy combined with 

reciprocity compared to empathy combined with a financial incentive on the social decision 

process (Voss et al., 2004). Variability in the speed of evidence accumulation, has primarily 
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been linked to task difficulty and conflict with higher task difficulty and conflict being 

associated with a lower speed of evidence accumulation (Dambacher & Hübner, 2015; 

Schuch & Pütz, 2021; Servant et al., 2014; Voss et al., 2004). During the decisions 

participants face in the dictator game, they have to weigh the self-interest of maximizing 

their own outcome against the other-regarding preference to maximize the other’s outcome 

(Hu et al., 2017). These two interests are in a conflict (Fehr & Camerer, 2007), a conflict that 

may even be exacerbated when one motive is externally enhanced. The findings in study 4 of 

this dissertation hence suggest that participants have a stronger conflict between self-

interest and other-regarding preferences after activation of the empathy motive only as 

compared to the situation in which the empathy motive is activated and a financial incentive 

is offered. In this latter scenario, self- interest and other-regarding preferences should be 

aligned as they both favor the prosocial decision option, hence leading to a decrease in 

conflict. This in turn entails increased efficiency of the prosocial decision process as indicated 

by increases in the speed of evidence accumulation. In sum, combining the motive of 

outcome maximization with empathy appeared to boost prosocial decision-making by 

decreasing the conflict between self-interest and other-regarding preferences, whereas 

combining the motive of reciprocity with empathy appeared to boost prosocial decision-

making by increasing the general motivation to act prosocially. 

In this section, different mechanisms underlying the formation and sustainability of 

empathy-based social closeness and prosocial behavior in contrast to and in combination 

with other motives were discussed. The following section will focus on the neural activation 

related to these different mechanisms as assessed using functional magnetic resonance 

imaging (fMRI). 

Neural underpinnings of empathy sustainability 

In this section, the average effects of experimental manipulations on different aspects of 

empathy sustainability will be discussed. The subsequent section “Inter-individual 

differences” will focus on the central findings with regard to inter-individual differences in 

neuro-computational effects in the studies of this dissertation. 

Results of study 1 showed that during the emotional appraisal of the other person’s painful 

vs. non-painful stimulation, neural activation in the AI and the TPJ was generally increased 

for trials in which the other person received painful stimulation compared to trials in which 

the other person received non-painful stimulation. This finding is in line with previous works 
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that have reliably established a link between empathic responses to another’s pain and 

neural activation in the AI (Hein et al., 2010; Lamm et al., 2011; Y. Li et al., 2020; Marsh, 

2018; Patricia L. Lockwood, 2016; Saarela et al., 2007; Singer & Lamm, 2009). That is, neural 

activation is increased when participants observe another person in a painful situation in 

contrast to a non-painful situation (e.g., Lamm et al., 2011). Additionally, the larger an 

individual’s empathic reaction to another’s pain, the larger neural activation in the AI (e.g., Li 

et al., 2020). Neural activation in the TPJ has been similarly often linked to social cognition, 

particularly to processes of perspective taking and theory of mind (W. Li, Mai, & Liu, 2014; 

Moriguchi et al., 2006; Saxe & Kanwisher, 2003; Schurz, Radua, Aichhorn, Richlan, & Perner, 

2014; Steinbeis, 2016; A. Tusche et al., 2016). Specifically, tasks that afforded putting 

yourself into someone else’s shoes were associated with higher activation of the TPJ as 

compared to corresponding control conditions (Schurz et al., 2014). Previous works have 

emphasized the specificity of insular activation linked to affective empathy, i.e., sharing 

another’s affective state, and neural activation in the TPJ linked to cognitive empathy, i.e., 

mentalizing/theory of mind/perspective-taking, (Böckler et al., 2014). More recently 

however, it has been shown that both regions are often co-activated and that the respective 

activation strength corresponds to relative task affordances of emotional and cognitive 

empathy (Schurz et al., 2021). Within the paradigm of study 1 in this dissertation, it is 

plausible to assume that participants increasingly employed processes of affective empathy 

as well perspective-taking while appraising their emotional reaction to the other person’s 

painful in contrast to non-painful stimulation. These findings are therefore an indicator for 

successful activation of the empathy motive which was associated with well-established 

neural markers of empathic reactions. 

During the subsequent updating of social closeness, previously observed painful stimulation 

was associated with increased neural activation in the dorso-medial prefrontal cortex 

(dmPFC) and the dorsal striatum as compared to previously observed non-painful 

stimulation. Interestingly, activation in the dmPFC was not only associated with sensitivity to 

another’s pain vs. non- pain in study 1 but was also a marker of stronger sustained as 

opposed to initial empathic reactions in study 2. In more detail, neural activation in the 

dmPFC during the empathy-based social decision process increased more strongly after 

weak as compared to after previous strong activation of the empathy motive. In previous 
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studies, the dmPFC has frequently been implied in processes of mentalizing in concert with 

the TPJ (W. Li et al., 2014; Schurz et al., 2014; Van Overwalle, 2009). More generally, the 

dmPFC has been linked to social cognition (Lieberman, Straccia, Meyer, Du, & Tan, 2019) as 

well as social learning (Olsson et al., 2020). The results obtained in this dissertation thus 

extend these previous findings by demonstrating the dmPFC’s implication in empathy-

related updating of social closeness as well as sustained neural response in the context of 

empathy-based social decision-making. 

The second region modulated by trial type during social closeness updating, i.e., the 

partner’s painful vs. non-painful stimulation, was the dorsal striatum. This region, too, was 

implied in the empathy-based and reciprocity-based social decision process as investigated 

in study 3 of this dissertation (see section “Inter-individual differences” for discussion). The 

dorsal striatum has previously been associated with the encoding of decision preferences 

and the implementation of goal-directed behavior (Balleine et al., 2007; Liljeholm & O 

’Doherty, 2012; O’Doherty et al., 2004; Palmiter, 2008; Robinson et al., 2006). Its implication 

in the updating of social closeness in study 1 as well as changes in prosocial decision bias in 

study 3 suggests that changes in empathy-based social closeness may indeed reflect dynamic 

changes in the underlying empathy motive strength. 

Results of study 2 showed that neural activation during the social decision process in the 

ventral striatum as well as the inferior frontal gyrus (IFG) and middle cingulate cortex (MCC) 

was sensitive to empathy activation. In these regions, neural activation generally increased 

after each motive activation phase, independent of reinforcer frequency in the respective 

phase, i.e., independent of whether empathy was frequently or rarely reinforced in the 

previous activation phase. The ventral as opposed to the dorsal striatum is predominantly 

linked to the encoding and processing of choice values in general (Kable & Glimcher, 2007; 

Liljeholm & O ’Doherty, 2012; O’Doherty et al., 2004; Strait et al., 2015) as well as social 

value computation after motive activation in particular (Hein, Morishima, et al., 2016). 

Specifically, Hein and colleagues (2016) observed that neural activation in the ventral 

striatum during the social decision process was increased when interacting with a partner 

towards whom the empathy motive has been explicitly activated as compared to when 

interacting with a person towards whom no motive has been explicitly activated. The 

findings in study 2 replicated these previous observations while additionally showing that 
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the ventral striatum was sensitive not only to one initial, but to repeated but weaker 

instances of empathy motive activation. Neural activation in the inferior frontal gyrus and 

middle cingulate cortex has also been linked to processes of social cognition in general and 

emotional empathic responses in particular (Gu & Han, 2007; Harari et al., 2010; Saarela et 

al., 2007; Walter, 2012). It is thus plausible to conclude that neural activation in those 

regions during social decision-making may also be sensitive to the degree of social motive 

activation experiences prior to these decisions. 

Taken together, neural activation during trial-by-trial empathy for pain as well as during 

empathy-based social decision-making was modulated in regions that have frequently been 

implied in processes of affective (i.e., AI, MCC, IFG) as well as cognitive facets of empathy 

(i.e., TPJ, dmPFC, temporal poles). During the social decision process as well as during the 

evaluation of social closeness based on the empathy motive, value encoding regions such as 

the dorsal and ventral striatum were modulated by motive activation frequencies. 

Beyond these average effects of the experimental manipulations the studies in this 

dissertation revealed results pointing towards meaningful inter-individual differences 

regarding computational mechanisms of empathy sustainability as well as the related neural 

activation. In the next section, these effects of inter-individual differences will be discussed. 

3.3 Inter-individual differences 

Previous studies in the field of social neuroscience have demonstrated that the combination 

of computational modelling and fMRI offers valuable insights into the mechanisms 

underlying social learning and social decision behavior on the level of average manipulation 

effects (Chang & Sanfey, 2013; Hutcherson et al., 2015; R. M. Jones et al., 2011; Lockwood et 

al., 2016; Lockwood & Klein-Flügge, 2021; Anita Tusche & Bas, 2021), but also on the level of 

inter-individual differences such as individual learning rates (e.g., Hein, Engelmann, et al., 

2016). In this dissertation, we adopted this approach and tested whether determinants of 

the computational models capturing participants’ individual behavior modulated concurrent 

neural activation differentially in the experimental manipulations. 

In study 1, model comparison had revealed that a reinforcement learning model accounting 

for individual recalibration of the feedback signal value best described participants’ 

behavior. While appraising the emotional reaction, the larger an individual’s recalibration, 
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the more sensitive the neural activation to the other’s pain vs. non-pain in the treatment 

condition in regions comprising the STS, the IFG, and the AI. While rating social closeness, 

large individual recalibration correlated with stronger neural activation in the precuneus, 

posterior cingulate gyrus, and TPJ after observed pain vs. non-pain, in the treatment 

condition as compared to the control condition. 

Whereas the STS, IFG, AI, and TPJ have frequently been linked to empathy or mentalizing as 

discussed in the previous section (e.g., Böckler et al., 2014; Hein & Singer, 2008; Lamm et al., 

2007; A. Tusche et al., 2016), the precuneus and posterior cingulate gyrus are more 

specifically related to social learning (Lambert, Declerck, Emonds, & Boone, 2017; Petrini, 

Piwek, Crabbe, Pollick, & Garrod, 2014; Stanley, 2016). Stanley (2016) for example observed 

that neural activation in the precuneus and posterior cingulate cortex was more closely 

related to prediction errors when learning about another person’s generosity, i.e., social 

learning, as compared to learning about the likelihood to win in an analogous lottery task, 

i.e., non-social learning. In a different study, neural activation in the precuneus was sensitive 

to whether a biological motion display of two people exhibited a typical, i.e., expected, or 

atypical, i.e., unexpected, motion pattern (Petrini et al., 2014). Precuneus activation was 

larger for the unexpected social stimuli in contrast to the socially expected stimuli, again 

signalling a social prediction error. In study 1 of this dissertation, the extent of recalibration 

directly influenced participants’ prediction error. Hence, based on these previous studies, 

observing that the extent of recalibration modulated the neural sensitivity to the empathy-

reinforcing event (i.e., observed pain) in precuneus suggests that participants increased their 

empathy-based social closeness towards the other person in a reinforcement learning like 

process. 

Exploratory follow-up analyses showed that individual trait empathic concern and trait 

perspective-taking modulated how neural activation was associated with reported social 

closeness in those regions linked to recalibration during the emotional reaction to the 

other’s pain vs. non-pain. The higher an individual’s empathic concern score (empathic 

concern subscale of the IRI, Davis (1980)), the more strongly increased neural responses to 

another’s pain in the IFG/STS were linked to decreased social closeness during acquisition, 

and were linked to decreased social closeness during extinction. In the STS/TPJ, however, the 

lower an individual’s perspective-taking score (perspective-taking subscale of the IRI, Davis, 
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(1980)), the more decreased neural responses to another’s pain were linked to increased 

social closeness during acquisition as well as during extinction. Hence, the link between 

neural sensitivity to the other’s pain vs. non-pain in IFG/AI and reported social closeness is 

more strongly reversed from acquisition to extinction, the more empathic an individual. This 

finding in IFG is particularly interesting as a previous study has found that neural activation 

in the IFG was connected to empathic reappraisal (Naor et al., 2020). In the study by Naor 

and colleagues (2020), participants observed pictures of painful experiences (e.g., 

accidentally cutting yourself with scissors) and were instructed to empathize. Subsequently, 

they were either asked to simply watch the picture or they were instructed to reappraise 

their initial empathic feeling. When participants were instructed to reappraise, neural 

activation in the IFG was higher than when they were instructed to only watch the scene. 

Additionally, IFG was more strongly connected to regions linked to empathy for pain (ACC 

and AI) during reappraisal of painful in contrast to neutral scenes. These findings indicate 

that the IFG may play an important role in adapting one’s empathic emotional reaction in 

response to observed pain. The results of study 1 in this dissertation further strengthen this 

hypothesis by showing that neural activation in the IFG is (i) modulated by individual 

recalibration of the empathy-related feedback value and (ii) differentially linked to social 

closeness depending on the setting of frequent (acquisition) or rare (extinction) empathy 

reinforcement. 

During the prosocial decision process after phases of strong empathy activation vs. weak 

empathy activation neural activation was predominantly shaped by individual differences in 

trait empathic concern and individual general prosocial decision bias. Specifically, activation 

changes in TPJ and dmPFC from baseline to after strong empathy activation were the larger, 

the higher participants self-reported trait empathy (empathic concern and to a lesser extent 

perspective-taking), corresponding to an initial empathic response. In contrast, activation 

changes in the TPJ and the dmPFC from after strong to after weak empathy activation were 

associated with a stronger prosocial decision bias. This effect represents a sustained 

empathic response. This differential modulation is interesting as it suggests that different 

processes may be at play after the initial as opposed to during the sustained influence of 

empathy on the social decision process. At the initial stage, the participants’ affective 

reaction to the other’s pain and the derived preferences of that other person potentially 
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linked to activation in TPJ and dmPFC (R. M. Carter, Bowling, Reeck, & Huettel, 2012; 

Morishima et al., 2012) may predominantly underlie the social decision process. At the 

sustained stage, however, more general tendencies to act prosocially towards someone who 

was suffering may predominantly underlie the social decision process. 

In line with the block-wise increase of striatal activation in study 2, the individual relative 

increase in prosocial decision bias after combined activation of empathy and reciprocity as 

compared to reciprocity only was associated with an increase in neural activation in bilateral 

dorsal striatum (study 3). This latter effect on the level of individual differences may reflect 

an increased motivation for prosocial behavior (Palmiter, 2008), but based on the 

combination of empathy and reciprocity rather than to increasing levels of empathic 

motivation. Together, these findings indicate that increased prosocial motivation may shape 

the social decision process by biasing the encoding of decision preferences and the derived 

goal-directed behavior. In accordance with results in the realm of motivation more generally 

(Gluth et al., 2012; Palmiter, 2008), this effect of increased social motivation is potentially 

implemented in the dorsal striatum (Balleine et al., 2007; Liljeholm & O ’Doherty, 2012; 

O’Doherty et al., 2004; Palmiter, 2008; Robinson et al., 2006). 

In contrast to this account of empathy sustainability via increased motivation to act 

prosocially, results of study 4 suggest that the combination of empathy with the motive of 

outcome maximization increased participants’ efficiency for making prosocial decisions. The 

efficiency of the social decision process was associated with individual neural activation in 

the AI. Specifically, the more efficient an individual’s decision process as indicated by a larger 

drift-rate in the DDM, the higher the insular activation. Follow-up mixed-models analyses 

taking into account participants’ state empathy, individual insular activation during the 

decision process, decision efficiency, and condition (empathy + financial incentive vs. 

empathy only) revealed that individuals with low state empathy particularly benefited from 

the additional offer of a financial incentive. Compared to individuals with high state 

empathy, these individuals showed larger increases in decision efficiency when financial 

incentives were added and individual decision efficiency during the social decision process 

based on empathy as well as outcome maximization was more strongly linked to insular 

activation. Additionally, individuals with high state empathy yielded increased insular 

activation. These results suggest that the increased neural activation in the AI, associated 
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with a combined activation of the outcome maximization and empathy motive, was related 

to increased empathic motivation for high empathic individuals, but to increased efficiency 

for choosing prosocially in low empathic individuals. 

Taken together, individual differences in empathy sustainability as investigated in this 

dissertation were linked to differences in behavioral markers as well as neural activation. In 

the context of empathy-based social closeness (study 1), the extent of individual 

recalibration, an indicator of empathy-based social closeness sustainability, modulated the 

individual neural sensitivity to observed pain vs. non-pain during the emotional reaction in 

regions linked to emotional empathic responses (IFG, AI), mentalizing (STS, TPJ), and social 

learning (precuneus/PCC). In the context of different levels (study 2) and kinds (study 3) of 

empathy-related prosocial motivation, individual differences in empathy sustainability were 

indicated by variations in the initial prosocial decision bias. In study 2, the individual general 

prosocial decision bias modulated the sustained responses to empathy activation in regions 

previously linked to mentalizing (dmPFC, TPJ). Individual increases in initial prosocial bias 

based on empathy and reciprocity (study 3) were related to individual increases of neural 

activation in a region previously linked to the encoding of choice preferences and 

subsequent goal-directed behavior (dorsal striatum). Combining empathy with the motive of 

outcome maximization showed that people low in state empathy in particular benefit from 

the additional offer of a financial bonus, which was linked to individual insular activation 

during the social decision-making process, a region strongly linked to empathic reactions. 

These findings shed light on the ways in which empathy drives and maintains social 

closeness and prosocial behavior and how these mechanisms are shaped by individual 

differences. In the following section, potential real-world applications are highlighted that 

may benefit from the results of this dissertation. 

3.4 The real world 

Since the empathy-altruism hypothesis (Batson et al., 1991) has been coined, there have 

been debates on whether empathy can actually incite prosocial behavior in a reliable fashion 

(Bloom, 2017; Graziano, Habashi, Sheese, & Tobin, 2007; Wilhelm & Bekkers, 2010). By 

demonstrating persistence of empathy-based social closeness and prosocial decision 

behavior in different experimental settings of social interactions, the studies presented in 
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this dissertation strongly support the idea of empathy as a reliable driver of prosocial 

behavior (Batson et al., 1991; Decety et al., 2016). The results obtained may hence 

tentatively inform applications beyond our laboratory by providing mechanisms that could 

inspire interventions aiming at sustainably promoting social closeness and prosocial 

behavior. 

If for example, the goal of a mayor of a town was to devise an intervention to promote 

prosocial behavior and social closeness towards refugees, she may rely on emphasizing the 

painful experiences refugees made on their way and are still making since they have arrived. 

The results of this dissertation suggest that she does not need to keep stressing these painful 

experiences for months. Instead, it may be more helpful to strongly emphasize these 

experiences in the beginning of the planned intervention, but to only rarely emphasize them 

towards the end. Such an approach could also decrease effects of empathy habituation 

(Preis, Kröner-Herwig, Schmidt-Samoa, Dechent, & Barke, 2015). Especially the results from 

study 3 suggest that such an approach could even further boost prosocial behavior of people 

who already show prosocial behavior based on other social motives such as reciprocity. 

Inspired by the results of study 4, offering monetary compensation for helping the refugees 

may additionally promote prosocial behavior. However, in the study conducted, the financial 

incentive was given in private in order to exclude potential undermining effects due to 

reputation considerations (Ferguson, Cameron, & Inzlicht, 2020; Hilbe et al., 2018). Thus, a 

comparable incentive scheme in a public context should be closely monitored. 

Stressing the advantage of motive combinations of empathy with other motives, the 

combinations of empathy and reciprocity or empathy and financial incentives could also 

inspire single-person based interventions. For example, on the scale of small teams in a 

company, an intervention in which empathy towards the other members of the team and 

the general norm to return helping behavior is activated could sustainably promote social 

closeness and prosocial behavior within the team and hence improve the working 

environment. Such an approach may additionally benefit from the mutual strengthening of 

these two motives over time, as already observed by other studies (Cameron, Conway, & 

Scheffer, 2022; Mestre, Carlo, Samper, Malonda, & Mestre, 2019; Simpson & Willer, 2008; 

Von Biebersteinid, Esslid, & Friedrichid, 2021) 
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In yet another context, the results of study 1 could inform developments in the realm of 

artificial intelligence when robots learn to (re)act empathically towards humans (Bagheri et 

al., 2021). This could be accomplished by computationally implementing the learning model 

derived for human participants in study 1 into the software of the artificial intelligence actor. 

Based on the model, robots may learn to react in an empathic fashion as well as to 

sustainably act prosocially towards a human who does not momentarily experience pain but 

has suffered pain in the past. 

Taken together, the results of this dissertation may serve as a starting point to develop and 

test interventions for sustainably promoting social closeness and prosocial behavior in 

diverse target groups, ranging from a large-scale audience to small team-based and single-

person application contexts. 

3.5 Limitations 

Despite providing evidence for empathy as a sustainable driver of social closeness and 

prosocial behavior, the studies conducted in this dissertation face limitations that must be 

considered and may be addressed in future studies. 

First, the participant samples were comprised of females. Previous works have 

demonstrated that gender significantly influences behavioral and neural empathic responses 

(Christov-Moore et al., 2014) as well as social decision behavior (Böckler, Tusche, & Singer, 

2016; Chowdhury et al., 2017; Eckel & Grossman, 1998; Saad & Gill, 2001). Thus, the findings 

obtained may not directly translate to male-only contexts as well as gender-mixed contexts. 

That said, future studies should include participants from all genders. 

Second, particularly in studies 1 and 2, sustainability of social closeness and prosocial 

behavior based on reciprocity was only assessed on a behavioral level. As such, these studies 

do not show whether the neural regions associated with empathy sustainability are specific 

to this motive or may also subserve comparable mechanisms based on other social motives 

such as reciprocity. In order to determine how specific the present neural findings are to 

empathy-based behavior, future studies need to include other motives in an fMRI study. 

Third, the present studies focussed on empathy-based behavior towards strangers, i.e., 

towards people whom participants did not know before. There is ample evidence that 

empathy (Beeney et al., 2011) and prosocial behavior (Maner & Gailliot, 2007; Morelli, 
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Knutson, & Zaki, 2018; Padilla-Walker & Christensen, 2011) are influenced by the 

relationship between the participant and the interaction partner, i.e., whether the other 

person is for example a friend or a stranger. The observed behavior and underlying (neural) 

mechanisms reported in this dissertation may thus not apply one-to-one to social behavior 

towards friends, family, or other people whom you already have a relationship with. Future 

studies should vary the relational status between participant and interaction partner to test 

how this influences the sustainability of empathy-based social behavior. 

Fourth, in the paradigms used, empathy and reciprocity were activated using an analogous 

procedure which postulates that trials in which an interaction partner received non-painful 

stimulation in the empathy context corresponds to trials in which an interaction partner 

decided not to help in the reciprocity context. However rather than not activating positive 

reciprocity in this latter type of trials, these trials may in fact activate negative reciprocity 

instead. Such an account may explain the lack of sustainable social closeness and prosocial 

behavior based on reciprocity in studies 1 and 2. Follow-up analyses showed that negative 

trait reciprocity was marginally linked to changes in social closeness in study 1 of this 

dissertation, but did not differentially influence social closeness during extinction. Future 

studies may more explicitly account for this potential alternative explanation or develop a 

different solution that does not activate negative reciprocity. 

Lastly, for analysis of the presented fMRI data, univariate neuroimaging analyses were 

conducted. Previous findings have implied that multivariate approaches are more sensitive 

(e.g., Haxby, 2012; Huang et al., 2021; Norman, Polyn, Detre, & Haxby, 2006). Multivariate 

approaches such as multivariate pattern analysis which allows for the detection of more 

general patterns potentially existing in the data obtained could also bring to light additional 

neural dynamics linked to the sustainability of empathy-based social behavior as observed in 

the present studies. 

3.6 Future directions 

The previous section addressed some limitations of the studies conducted as part of this 

dissertation, and potential next steps to overcome these limitations in future studies were 

suggested. However, beyond merely overcoming limitations of the studies presented, future 
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work could more clearly elucidate the mechanisms underlying empathy sustainability in 

terms of empathy by itself as well as in combination with other motives. 

Moving in one possible direction, future work may more closely investigate the neural and 

behavioral mechanism underlying empathy sustainability by expanding the paradigm applied 

in study 1. One possible approach could be to focus on the extinction block and 

parametrically vary the frequency of observed pain (which was set to 20% in our study). This 

approach may yield an indicator for how sustainably empathy or other motives can incite 

social closeness and prosocial behavior. 

Moreover, in the present studies, sustainability of empathy-based prosocial behavior was 

quantified using a pre - post design. Analogously to the trial-by-trial ratings of social 

closeness, one may use trial-by-trial ratings of social decision-making during acquisition and 

extinction. This would additionally enable the application of RL-DDMs, for which DDM is 

combined with RL modelling by making the RW updating rule (𝑉𝑡 = 𝑉𝑡−1 + 𝑎 × 𝛿𝑡) the 

choice rule for the drift-diffusion decision process (Fontanesi, Gluth, Spektor, & Rieskamp, 

2019; Peters & D’Esposito, 2020). Thus, in this model, the parameters characterizing the 

decision process are updated trial by trial based on the RW learning rule. Model outputs 

could then be added as trial-by-trial variables in the analysis of the fMRI data. 

Another possible direction could follow-up on the combination of the different motives and 

test more specifically how sustainably empathy in combination multiple other motives 

incites social closeness and/or prosocial behavior. This approach could shed more light on 

how sustainable the empathy motive is in combination with more than one motive relative 

to these other motives alone, as well as relative to combinations of these other motives. 

Yet another possibility could be to specify the role of individual differences in empathy 

sustainability. The studies of this dissertation as well as previous works (e.g., Banissy, Kanai, 

Walsh, & Rees, 2012; Edele et al., 2013; FeldmanHall et al., 2015; Hein & Singer, 2008)) have 

shown that (neural) empathic reactions and empathy-based social behavior are shaped by 

individual differences. Additionally, empathy or the lack thereof has been implicated in 

psychiatric disorders such as autism spectrum disorder (Fletcher-Watson & Bird, 2020; 

Patricia L. Lockwood, 2016), depression (Guhn et al., 2020; O’Connor, Berry, Lewis, Mulherin, 

& Crisostomo, 2007), or psychopathy (Rijnders, Terburg, Bos, Kempes, & van Honk, 2021; 

van Dongen, 2020). Future studies may include more comprehensive personality measures 
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(e.g., based on the big five ; Caprara, Barbaranelli, Borgogni, & Perugini (1993), obtain 

indicators of affectivity (e.g., using the positive and negative affect scale (PANAS); Crawford 

& Henry (2004)), and assess individual scores for autism spectrum disorder, depression, and 

psychopathy (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961; Goldstein & Naglieri, 2009; 

Williams, Nathanson, Paulhus, & others, 2003). Including this additional information could 

shed light on how much the sustainability of empathy-based behavior is actually affected by 

personality traits as well as how it may change in psychiatric disorders. 

3.7 Conclusion 

From the works in this dissertation, we have learnt that empathy for pain can lead to 

sustainable social closeness towards strangers even when the rate of observed pain 

decreases over time (study 1). On a mechanistic level, this sustainability can be explained by 

participants individually adjusting how much the increase in social closeness can also be 

driven by observed non-pain as opposed to observed pain. The more participants adjusted 

this value of observed pain vs. non-pain, the more sensitive the neural activation in regions 

of social cognition and social learning (STS, TPJ, IFG, AI) were to the other’s pain vs. non-pain. 

In terms of prosocial decision-making, the sustainability of the empathy-based initial bias 

towards making a prosocial decision was paralleled by neural activation in the striatum as 

well as in dmPFC and TPJ, which are both part of the mentalizing network (study 2). The 

effect of empathy boosting reciprocity-based decision-making (study 3) by increasing the 

initial prosocial decision bias was associated with increases in neural activation in dorsal 

striatum, a region closely linked to changes in motivational state. Results of the final study 

demonstrated that empathy is resilient to potential undermining effects of additional 

financial incentives as demonstrated by a more efficient prosocial decision process when 

driven by empathy and the motive of outcome maximization, a process linked to stronger 

neural activation in the AI. 

Together, the results of this dissertation demonstrate that empathy can incite sustainable 

prosocial behavior and social closeness drawing on mechanisms that imply neural regions of 

social cognition, reward learning, and motivation. 
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