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1 Introduction & aim of the thesis 

1.1 Motivation 

With the events of 2020 and 2021, the climate change and the necessary countermeasures, 

to prevent the further rise of the mean global temperature, are more present in the public 

consciousness than ever before. Thanks to technical advances, the question isn’t any more 

if sourcing energy from 100% renewable sources is possible [1], but when it will be 

achieved. One energy sector that makes up for a big share of global greenhouse gas 

emissions is transport and mobility. With almost every car manufacturer having a battery 

electric vehicle (BEV) program announced or in execution, lithium-ion batteries are at the 

moment the best energy storage solution at hand. Even though the technology has 

advanced rapidly in the past three decades since the introduction to the global market by 

Sony in 1991, lithium-ion batteries remain inherently un-save and require continuous 

monitoring to ensure compliance with a very narrow operating range. Otherwise, they are 

prone to premature unexpected failure, a shortened lifespan, or might pose a safety hazard 

to the environment or the user of the battery-powered product [2]. Today’s battery 

management systems, that handle the task of monitoring the battery cell condition, rely on 

terminal voltage, current, and temperature measurements. The hereby provided estimate is 

known to inaccurately describe the state of the battery cells, as the electrically measurable 

features are partially unable to represent the battery’s internal conditions, especially when 

the progressed aging plays a significant role. The omitting of the mechanical behavior, 

physical properties, and their change during regular battery operation and changes resulting 

from aging, in design considerations had detrimental effects on the public perception of the 

safety of lithium-ion batteries and caused enormous economic damage, e.g., in the case of 

the Samsung Galaxy Note 7 [3,4]. Since the physical properties of the battery cells correlate 

with the battery state, the integration of the sensing and the designing for those property 

changes does not only provide the opportunity to avoid future catastrophe but also offers 

an improvement of the state estimation accuracy [2]. Thereby two of the most critical 

inhibitors in public opinion for the switch from internal combustion engine-powered mobility 

to sustainable mobility provided by BEVs can be combatted: safety concerns and even more 

important, the fear of too short and unreliable driving range – the so-called range anxiety or 

German “Reichweitenangst”. Ultrasound is one of the most promising candidates to sense 

those physical properties, as sensors can be attached on the surface, without interfering 

with battery operation, but are still able to access the properties of the bulk volume of the 

battery cell. Ultrasonic non-destructive evaluation (NDE) or structural health monitoring 
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(SHM) usually involves expensive measurement equipment and is therefore often limited to 

the monitoring of expensive structures or testing that involves the reversible attachment of 

ultrasonic probes to the device under test (DUT). This thesis aims to achieve improved state 

estimation capabilities by utilizing low-cost off-the-shelf piezo elements that are fitted to the 

surface of the battery cells, whose state is to be estimated, acting as ultrasonic probes of 

the physical properties. 

1.2 Scope of the thesis 

This thesis is supposed to serve two purposes. First, it is meant as an introduction to the 

complex fields of state estimation for lithium-ion batteries (LIBs), and ultrasonic 

nondestructive evaluation of LIBs for current and future activities. Both were untapped 

topics at Fraunhofer ISC at the beginning of this work in 2016. Second, this thesis aims to 

demonstrate the feasibility of state of charge (SoC) estimation with a data-driven machine 

learning approach, based on ultrasonic data. 

To establish the described two topics, the theory section gives an overview of the relevant 

technologies and theoretical frameworks. This includes information on today’s most relevant 

battery technology regarding production, the principle of operation, and state estimation. 

Furthermore, the generation, reception, and propagation of ultrasound in solids and fluid-

saturated porous media are covered. The latter is the class that LIBs can be counted to. To 

establish the base for the analysis of the results, the fundamentals of digital signal 

processing and impedance spectroscopy are introduced as well. The experimental methods 

and instrumentation are described in the third chapter. The results and discussion chapter 

demonstrates the implementation of a data-based SoC estimation, correlating ultrasonic 

signal features with the SoC by employing modern concepts of signal processing and 

machine learning. Finally, a conclusion is drawn and the quality of SoC estimation is 

compared with the state of the art and a prospect on the future of the application of 

ultrasound to lithium-ion batteries is given. 
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2 State of the art & theoretical background 

2.1 The object of investigation: the lithium-ion battery 

This section gives a brief overview of lithium-ion batteries (LIBs) and aims to state all 

information relevant for understanding the interaction of ultrasound with the structure of 

LIBs. This includes the working principle and associated reversible changes to their 

mechanical properties, a description of the components, the manufacturing process, and 

the aging phenomena. Finally, methods for the state estimation of LIB are reviewed. 

2.1.1 Working principle of lithium-ion batteries and reversible changes 

A lithium-ion battery (LIB) cell usually consists of several galvanic cells, connected in 

parallel. A galvanic cell contains two composite electrodes and a separator in between. The 

structure of the three is wetted with an electrolyte that acts as the medium for lithium-ion 

transport. The structure and the basic working principle are depicted in Figure 2.1. During 

charging of the battery, lithium in the positive electrode is oxidized and deintercalated. The 

lithium-ion is then solvated when passing to the electrolyte and migrates to the negative 

electrode. On the electronic conduction path, electrons reach the negative electrode, where 

they reduce lithium-ions to neutral lithium atoms which are desolvated and intercalated into 

the host structure. What makes lithium-ion batteries unique is the high reversibility of this 

process during discharge [5]. 

Because the (de-)intercalation reaction takes place on the interface of active material and 

electrolyte, a concentration gradient within the active material particles exists which is 

subsequently slowly reduced by diffusion processes. The change of lithium concentration 

within the particles is accompanied by a change in crystal lattice structure, which in turn 

causes changes in Young’s modulus and volume. Lattice parameters can be measured in-

situ by neutron or X-ray diffraction [6–10] and Young’s moduli can be calculated lithium 

concentration-dependent by density functional theory (DFunT) [11–13]. Table 2.1 lists a 

selection of common active materials in the delithiated and lithiated phase, as well as the 

volume change at lithiation and the change in Young’s modulus. 

While some materials undergo drastic changes, e.g., graphite and silicon, others such as 

lithium titanate (LTO) do not show that strong dependence of their mechanical behavior on 

lithium concentration and are therefore considered zero strain materials. 



2 State of the art & theoretical background 

4 

 

Figure 2.1: Components and working principle of a lithium-ion battery. For this example, a 

graphite negative electrode and a lithium nickel manganese cobalt oxide positive electrode were 

chosen. Both electrodes are prepared as a porous layer on the current collector foil and are 

separated by a porous separator. The pores of the three are soaked with electrolyte. The rocking 

chair mechanism, employed by lithium-ion batteries utilizes the (de-)intercalation of lithium-ions in 

the host structure of the active materials. During battery charging, lithium-ions are deintercalated 

from the positive electrode and intercalated into the negative electrode. During discharge, the 

process is reversed. Graph after [14]. 

For most active materials, DFunT calculations are only available at two distinct phases, 

either fully lithiated or delithiated. In electrochemical applications, for, e.g., lithium cobalt 

oxide (LCO) the full range of lithium content from 𝑥 = 0 to 𝑥 = 1 in LixCoO2 is not utilized. 

Therefore, a more realistic estimation can be established by interpolating between the two 

available data points in [11], yielding a Young’s modulus increase of approximately 34% 

from 197 GPa to 264 GPa in the utilized range of lithium concentration. Another source 

using instrumented nano-indentation to estimate the elastic modulus [15] states different 

values for LCO from 89 GPa (Li0.5CoO2) to 178 GPa (LiCoO2). From neutron and X-ray 
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diffraction data, the volume change in this range can be estimated to be around 1% to 2% 

[6–10,16]. When considering a state-of-the-art lithium-ion battery, it can be concluded that 

the change in volume (up to 10%) and Young’s moduli (up to 275%) of the carbonaceous 

negative active material outweigh the changes of the lithium transition metal oxide positive 

active material. 

Table 2.1: Selected active materials, their composition of fully lithiated and delithiated phase, 

volume change, and Young’s modulus. The arrow represents the change in Young’s modulus from 

delithiated to lithiated phase. Where available, practically utilized compositions are stated. According 

to [12] and [17]. 

Delithiated 

phase 

Lithiated phase ΔV Young’s Modulus / 

GPa 

Ref. 

Typical positive electrodes    

CoO2 LiCoO2 2% 59.8 → 264 

(calculated) 

[12,16] 

Li0.5CoO2 Li0.9CoO2 n.a. 89 → 85 [15,17] 

 Li0.95CoO2 n.a. 96 [15,17] 

 LiCoO2 n.a. 178 (nano-

indentation) 

[15,17] 

Mn2O4 LiMn2O4 6.8% 190 → 194 [12] 

FePO4 LiFePO4 5% 125 → 124 [18–20] 

Li0.45(NiMnCo)O2 Li(NiMnCo)O2 1% n.a. [9,21] 

Typical negative electrodes    

C (graphite) 1/18 LiC18 (dilute stage 

2L) 

5.8% 32 → 29 11 

 1/18 LiC18 (stage 3) 3.6% 29 [11] 

 1/12 LiC12 (stage 2) 4.6% 58 [11] 

 1/6 LiC6 (stage 1) 10% 109 [11] 

Li4Ti5O12 Li7Ti5O12 0.3% 181 → 209 [20,22,23] 

Si Li3.75Si 263% 96 → 41 [13] 

Recently, it was shown that even though active material particles account for up to 97% of 

the solid electrode, the electrode’s mechanical behavior is dominated by the properties of 

the binder and by being soaked with electrolyte [24]. Therefore, the magnitude of change 

of the mechanical properties of lithium-ion batteries during operation, as a result of (de-

)intercalation, is still under discussion. Methods of ultrasonic non-destructive evaluation 

were already applied to address this question [25]. The herein calculated effective elastic 
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modulus of the studied battery cell increases about 10% during a cycle from fully discharged 

(5.09 GPa) to fully charged state (5.54 GPa) [25]. 

2.1.2 Components of lithium-ion batteries  

Both, negative and positive electrodes are porous structures, made up of active material 

particles, a binder, and a conductive additive. The negative electrode, or anode, is typically 

composed of a carbonaceous active material coated onto a copper current collector foil. 

The positive electrode, or cathode, usually contains lithium transition metal oxides or 

phosphates as active material coated onto an aluminum current collector foil. Cobalt, 

manganese, and nickel oxides are most commonly found and are used either in pure form, 

e.g., LiCoO2 (LCO), or in combination in varying compositions, e.g., lithium nickel 

manganese cobalt oxide (NMC). Besides those two very common positive active materials, 

aluminum-doped nickel cobalt oxide (NCA) is also often found in applications with a demand 

for high energy density [26,27]. Even though the specific energy density of the 

carbonaceous negative electrode is higher than the energy density of available positive 

active materials, its ability to store energy can be further improved by adding silicon. With 

the introduction of silicon to the lithium-ion battery, the cycling stability is reduced, mostly 

by detrimental mechanical effects caused by the comparably large volume change of Si 

during lithiation of up to 310% [28]. Therefore, only a small percentage, e.g., up to 10% [29], 

of the negative active material in modern-day batteries is made up of silicon. Where energy 

density is not a top priority but high charging and discharging rates are important, lithium 

titanate (LTO) is used as a negative active material, and lithium iron phosphate (LFP) is 

used as a positive active material. Typically, the separator is a porous polymer film, often 

made from a polyolefin such as polypropylene or polyethylene, with a composition varying 

depending on application and safety concerns. To increase battery safety by inhibiting 

thermal runaway through increased thermal stability the separator is often coated with a 

ceramic layer, such as Al2O3 [30]. The aforementioned electrolyte consists of a mixture of 

polar and non-polar organic solvents such as organic carbonates, a conducting salt such 

as LiPF6, and additives [31]. 

Lithium-ion batteries are, besides active materials, further distinguished by the housing that 

seals the stack of galvanic cells off from the surrounding and provides electrical contact. 

There are three types of battery cell designs today: pouch, cylindrical and prismatic [32]. 

For pouch cells, the housing is constructed of a weld-able barrier film, made from a 

multilayer polymer-metal foil compound. Cylindrical cells are similar in design to primary 

alkaline batteries, having a rather rigid tubular housing made from stainless steel. Prismatic 
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cells have an often even stronger housing, constructed from steel or aluminum. With the 

accompanying ability to withstand high internal cell pressure and external loads, prismatic 

cells are today preferred by some manufacturers for automotive applications [32]. 

2.1.3 Battery assembly, filling, and formation 

Battery cell production is a complex and cost-competitive process that can be divided into 

three major sections: electrode manufacturing, cell assembly, and cell finishing as depicted 

in Figure 2.2. The following description follows the overview of the production process in 

[33]. Italic font marks the most significant process steps. 

 

Figure 2.2: Li-ion battery cell production process, divided into three major sections. Solid line 

frames mark active processes, while the passive process wetting is marked with a dashed line frame. 

Electrode manufacturing includes the slurry preparation by mixing the components, which 

is followed by the coating of the slurry on current collector foils. The wet film is then dried 

and solvents are removed. During the subsequent calendering the layers are compressed 

by rotating rollers. Thereby the porosity of the electrodes is defined which influences cell 

performance and wettability of the electrodes in a later step. Subsequently, the electrode 

foils are slit, cleaned and vacuum dried to remove residues from preceding steps and 

humidity [33].  

Cell assembly is usually performed in a dry room atmosphere, with the separation of 

electrode rolls into single sheets being the first step. After punching out single sheets, those 

are again cleaned and fed into the stacking process, which combines electrode sheets and 

separator into one assembly. Depending on cell design, the stacking process can either be 

single-sheet stacking, Z-folding or winding. Subsequently, tabs are welded onto the blank 
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parts of the current collector foils. During packaging, the stack is inserted into a preformed 

housing and partially sealed. Now, the electrolyte is filled into the battery housing. As soon 

as the electrolyte makes contact with the porous structure of the electrodes and separator, 

the capillary force starts to suck it into the pores and the wetting begins. The penetration 

into the porous network is affected by the polarity of the electrolyte and the binder/electrode 

composition as well as the pore structure. Thus, the wetting process can take a long time 

and is often aided by additional steps. The number of dosing steps, electrolyte temperature, 

atmospheric pressure in the filling chamber, and timings may vary depending on the design 

and size of the battery cell. The latter is then sealed and the filling chamber is flooded with 

air, concluding the cell assembly [33]. 

Cell finishing can be divided into several steps. Roll pressing is the first but optional step to 

improve electrolyte distribution by rolling over the sealed pouch cell. Before the formation 

can start, all pores and cavities within the battery cell should ideally be saturated with 

electrolyte. This slowly advancing process is called wetting. “To date, there are no industrial 

established measuring methods to determine the wetting state of the cell.” [34] (A3249) 

Therefore, the estimate of the waiting time to proceed is a result of experience and cell tests 

[34]. The linked need for available storage space, temperature control, process time, and 

safety monitoring make the wetting/waiting step costly and poses a big chance for 

improvement. During the subsequent formation process, the battery cells are initially 

charged and discharged according to precisely defined procedures that usually remain 

under the discretion of the manufacturers. Hereby, the solid electrolyte interface (SEI) is 

formed. The composition, the stability and the homogenous distribution of the SEI on the 

surface of the negative electrode are important quality criteria that strongly effect cycle 

stability and performance. Pouch cells require an additional step, called degassing, where 

gas that evolved during the formation process is removed from the cell body and the cell is 

finally sealed. Aging is the final step of cell production and acts as a quality assurance 

during which the cell characteristics and the cell performance are monitored. When no 

significant change in the cell properties occur, the cells passed the check [33]. 

2.1.4 Battery aging: irreversible changes 

The term battery aging describes the process of degradation of available capacity and 

available power of a lithium-ion battery during operation (cycle aging) and during storage or 

non-operating conditions (calendar aging) [35]. Analogically to the state of charge (SoC), 

the state of health (SoH) can be defined as: 
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 𝑺𝒐𝑯 =
𝑪𝒎𝒂𝒙

𝑪𝒏
∙ 𝟏𝟎𝟎%, (1) 

with 𝐶𝑚𝑎𝑥 being the maximum available capacity at a given cycle and 𝐶𝑛 being the nominal 

capacity of the battery at its beginning of life (BoL) [36]. The end of life (EoL) of a lithium-

ion battery is commonly defined by the point at which the SoH reaches 80% [36] but is also 

associated with the doubling of the internal impedance of the battery cell [37–39] since at 

that point the available battery power is cut in half. In-depth reviews of aging mechanisms 

can be found for example in [40–44]. 

2.1.5 Lithium-ion battery state estimation methods 

Lithium-ion battery cells do not inhibit an inherent over-charge or over-discharge safety 

mechanism. The electrolyte is thermodynamically not stable at the potentials, at which the 

negative electrode operates in non-abusive conditions, and at the potentials, at which the 

positive electrode may operate in highly delithiated states. Besides electrolyte 

decomposition, there are several other abusive scenarios, e.g., lithium plating and short 

circuits through dendrites or thermal runaway, which have to be prevented and, therefore, 

require permanent monitoring of the cell and the battery. Monitoring, state estimation, and 

charging/discharging are the main tasks of the battery management system (BMS) [45] that 

ensure a safe and reliable operation. 

The SoH, defined in Equation (1), the SoC, and the internal temperature of a battery cell 

cannot be measured directly and have to be estimated [45]. The 𝑆𝑜𝐶(𝑡) at a given time 𝑡 is 

defined by: 

 𝑺𝒐𝑪(𝒕) =
𝑪𝑫𝑪(𝒕)

𝑪𝒏
∙ 𝟏𝟎𝟎%, (2) 

with 𝐶𝐷𝐶(𝑡) being the available discharge capacity of the battery at given time 𝑡. Especially 

in mobile applications, where LIBs act as power sources, the state of energy (SoE) is of 

equal importance as it states the remaining available energy until the end of discharge 

voltage (also known as cut-off voltage) is reached. The course of SoC and SoE 

development during battery operation depend highly on operation conditions such as 

ambient temperature and applied/extracted current or power, as the cell voltage and the 

internal temperature depend on those factors and act as ultimate cut-off criteria. 
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Figure 2.3: Classification of SoC estimation methods. Methods marked by * are detailed in the 

text. The listed methods are divided into four groups that differ fundamentally in the principle of 

operation. Abbreviations are defined as follows. AF: Adaptive filters, ANFIS: Adaptive neuro-fuzzy 

inference system, BFA: Bacterial foraging algorithm, CC: Coulomb counting, ECC: Enhanced 

coulomb counting, EMF: Electromotive force, FL: Fuzzy logic, GA: Genetic algorithm, H∞F: H infinity 

filter, IR: Internal resistance, IS: Impedance spectroscopy, KF: Kalman filter, MARS: Multivariate 

adaptive regression splines, LO: Luenberger-based observer, NLO: Non-linear observer, NN: Neural 

network, OBE: Observer-based estimation, OCV: Open circuit voltage, PF: Particle filter, PIO: 

Proportional integral observer, PSO: Particle swarm optimization, RLS: Recursive least square filter, 

SVM: Support vector machine, SMO: Sliding mode observer. Graph according to [46]. 

SoC estimation methods were reviewed extensively in the past [2,39,45–52]. Those 

methods can be classified into four categories [46], as shown in Figure 2.3. Those groups 

differ fundamentally in the principle of operation. Book-keeping methods basically keep 

track of the battery state by counting the charge transported in and out of the battery cell 

through charging and discharging currents. Direct measurement-based methods rely on the 

measurement of a quantity that correlates with the state of the battery cell and often involve 

lookup tables, serving as a reference to estimate the SoC from said quantity. Model-based 

methods deploy methods to abstract the working principle of the battery to a certain extent 

and thereby link the measurable quantities, e.g., cell voltage, to the not directly measurable 

SoC. The last group, the data-driven methods rely on the correlation of measurable 

quantities and SoC. They employ a data-basis containing the two to train a machine learning 

model to fit this correlation. The resulting model can then, at a way lower computational cost 

than the training, be employed to estimate the SoC. SoC estimation methods are generally 

judged according to estimation accuracy, computational efficiency, and how well they fit the 

requirements of a certain application [53]. 
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2.1.5.1 Book-keeping methods 

The methods requiring the smallest computational power are book-keeping methods. The 

simplest and most widespread method is the Coulomb counting (CC) or Ampere-hour 

counting technique which calculates the SoC based on the integration of the current flowing 

in and out of the battery [49]. With a known initial 𝑆𝑜𝐶(𝑡1), the 𝑆𝑜𝐶(𝑡2) at any time 𝑡2 can be 

estimated based on the formula [45,53] 

 𝑺𝒐𝑪(𝒕𝟐) = 𝑺𝒐𝑪(𝒕𝟏) + 𝟏/𝑪𝒏 ∫ 𝜼𝒃𝒂𝒕𝒕𝑰(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏
, (3) 

where 𝐶𝑛 is the nominal capacity and 𝜂𝑏𝑎𝑡𝑡 is the efficiency of the charging and discharging 

process, accounting for loss reactions. 𝐼(𝑡) is the instantaneous, electrical current, having 

a positive sign for charging and a negative sign for discharging. The accuracy of this method 

depends highly on accurate knowledge of the initial SoC and on the measuring accuracy of 

the current. Besides the accumulation of errors from inaccuracy in the technical 

implementation of current measurement and integration, the coulombic efficiency of the 

system contributes to the inaccuracy [45,48] and is, therefore, obtained from the average 

value of several tested batteries [53]. The accuracy of the basic Coulomb counting method 

can be enhanced (enhanced Coulomb counting, ECC) by several measures: The initial SoC 

can be estimated based on open-circuit voltage (OCV) or from the cell voltage under load, 

requiring a look-up table. Instead of the nominal capacity, the maximum achievable 

discharge capacity can be used, which has to be obtained by dynamic recalibration, 

simultaneously evaluating the SoH of the battery [53]. 

2.1.5.2 Direct measurement-based methods 

The second group of direct estimation methods rely on direct measurement-based methods, 

including the OCV, the electromotive force (EMF), the internal resistance (IR), and the 

impedance spectroscopy (IS) approaches. They are all based on the relationship between 

a measurable quantity and the SoC. As these quantities are also a function of temperature 

but also depend on battery health, these effects have to be considered as well. The cell 

voltage in absence of a current is called open-circuit voltage. After sufficient resting time, 

following a current interrupt, the battery reaches equilibrium and the OCV equals the EMF 

which describes the capability of an electrochemical system to deliver energy. SoC and 

EMF are closely related. Therefore, the OCV of a battery can be used to estimate the SoC 

after sufficient resting time [46,49]. The load profiles commonly found in mobile applications 
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make the OCV method unsuitable for online estimation but allow for a precise initialization 

of the SoC [48] – 𝑆𝑜𝐶(𝑡1) in Equation (3). Models, including equivalent circuits, can be used 

to estimate the EMF under load using the load current and the terminal voltage [54] or using 

the terminal voltage alone after the current interrupt [55]. The calculated EMF allows then 

for an estimate of the SoC. The internal resistance (IR) method also uses the battery current 

and a change in terminal voltage, estimating the direct current (DC) resistance. The terminal 

voltage delta, measured at a high sampling frequency, with a change in current is used to 

calculate the IR [46], which is related to the SoC. Since the value of the resistance is very 

small, therefore challenging to measure [56,57], and is also a function of multiple other 

parameters besides the SoC, this method is not preferred. For the impedance spectroscopy 

method, the voltage response to a small signal current excitation of a broad frequency 

spectrum is analyzed to calculate the internal impedance and estimate the SoC. The current 

excitation requires external instrumentation, making the IS method difficult to implement in 

a BMS and thus less relevant for online estimation [57]. Still, the impedance and 

derivable/deducible parameters of a battery may be online measured at selected 

frequencies and under laboratory conditions to initialize battery models. 

2.1.5.3 Model-based methods 

Although the approaches described above already rely on modeling to some extent, model-

based estimation methods present a distinct third group. Before detailing specific 

approaches, it is useful to establish an overview of various battery models. Models that are 

used in BMS today, can be categorized as the battery-electric model, the battery thermal 

model, and the battery coupled model [45]. Future BMS systems may also include modeling 

of mechanical behavior and mechanical properties of the battery [39]. 

The battery-electric models include electrochemical models, reduced-order models, 

equivalent circuit models, and data-driven models. The electrochemical models (EChM) 

describe the battery dynamics with partial differential equations (PDE) [49], accounting for 

electrode potentials, ion concentration, and Butler-Volmer kinetics [45]. These full-order 

battery models provide a high accuracy but also require a large set of parameters and high 

computational power. With suitable assumptions, reduced-order models can be established 

that have lower requirements and thus are more practical for real-life applications. In 

equivalent circuit models (ECM), the battery dynamics are described by a series of 

resistances, capacities or constant phase elements (CPE) and voltage sources [45,49,57], 

as illustrated in Figure 2.4. 
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Figure 2.4: Equivalent circuit model of a battery. Electrical and ionic conduction, as well as 

different electrochemical processes, are represented by circuit elements. The complexity of 

employed models may vary with the number of circuit elements but is generally kept as simple as 

possible to avoid an over-parametrization of the system. This circuit diagram adapted from [45] 

Depending on available computing power and demanded accuracy, the number of resistor-

capacitor (RC) networks may differ. Commonly used are first and second-order models, 

with one or two RC networks, respectively [49]. Due to their simplicity and good accuracy, 

especially for SoC estimation and power prediction, ECMs are widely adopted in 

applications [37,49].  

The battery thermal model has to account for heat generation and heat transfer. Entropic 

heat, as of electrochemical reactions, or Joule’s heat, as a result of ohmic losses, contribute 

to heat generation within a battery. Very often, heat generation is assessed by the power 

loss due to the internal resistance, the power loss caused by over-potentials, and by the 

entropy change during chemical reactions [58–61]. Heat transfer models describe heat 

dissipation by heat conduction, heat convection, and heat radiation. Full-scale models with 

three-dimensional geometry allow for the highest accuracy, but also require the highest 

computing power. Therefore, reduced-order models and data-driven models are also 

applied to thermal modeling and battery thermal management [45]. Heat conduction, being 

the dominant heat transfer mechanism, allows establishing a reduced-order thermal model 

- the popular two-stage model, which assumes that the temperature within the battery is 

uniformly distributed [45].  

The battery coupled model combines electric and thermal models to account for the strong 

interplay of thermal and electric behavior of a battery [45]. Especially transport properties 

within the electrolyte and the active materials are highly temperature-dependent. Therefore, 
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coupled models also play an important role in developing charging strategies [62], 

estimating available power [37], and state of safety considerations.  

The aforementioned models are required for model-based estimation methods. Especially, 

ECM and EChM are used for adaptive filters, like the Kalman filter (KF) or the extended 

Kalman filter (EKF), and for observer-based estimation (OBE), like the sliding mode 

observer (SMO) [45,46]. All model-based estimation methods are based on the objective to 

estimate an inner state 𝑥𝑆(𝑡) by measured quantities 𝑢𝑆(𝑡) and 𝑦𝑆(𝑡). Assuming linearity, 

such a system can be expressed by 

𝒙�̇�(𝒕) = 𝑨𝑺𝒙𝑺(𝒕) + 𝑩𝑺𝒖𝑺(𝒕), (4) 

𝒚𝑺(𝒕) = 𝑪𝑺𝒙𝑺(𝒕), (5) 

with 𝐴𝑆, 𝐵𝑆 and 𝐶𝑆 being matrices, expressing the relation of the measured quantities and 

the state variable [63]. 

The most prominent model-based estimation method is the Kalman filter [52] (working 

principle depicted in Figure 2.5) which, in general, can be used to achieve an estimate 𝑥𝑆 

of the inner state 𝑥𝑆 of any dynamic system. The history of the Kalman filter dates back to 

the age of the space race when it was applied to circumlunar navigation problems for the 

Apollo Project as early as 1961 [64]. Regarding the application to LIBs, the basic idea is to 

model the battery as a system including an unknown quantity, like the SoC, in the filter’s 

state description [53]. The estimation and correction workflow of such a filter is depicted in 

Figure 2.5. Here its working principle is described for the example of SoC estimation. A 

common BMS often measures the electrical current, voltage, and temperature of a battery. 

The KF uses current and temperature as input variables 𝑢𝑆(𝐼, 𝑇) to the battery model and 

estimates the battery voltage �̂�𝑆(𝑡) as response to this input with the aid of a SoC dependent 

function for the battery voltage. The output error or discrepancy between the modelled 

voltage and the measured battery voltage �̂�𝑒𝑟𝑟(𝑡) is then used as a feedback to reiterate 

the process with a corrected value for the SoC, aiming to reduce the discrepancy until a 

certain threshold is reached. Thereby the KF observes the not accessible state variables of 

the system, in this case the SoC. The correction of the state variable is tuned by a gain 

vector 𝐾𝐺 that enable tuning of the dynamic and performance of the filter [53]. An important 

feature of the KF is the ability to filter disturbances (noise), uncertainties, and high variations 

of measurements by weighted averaging of measured and predicted values and therefore 

to estimate the inner state of the system accurately [46]. The diverse variations of the KF, 

like the extended KF (EKF) and the adaptive extended Kalman filter (AEKF), improve the 
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estimation result by considering nonlinearities of the system, e.g., in the EMF over SoC 

curve. With the KF approach, combinations with other estimation methods like the OCV 

[65–67] and Coulomb counting (CC) [68,69] method are feasible and several battery models 

can be used [65,66,70]. 

 

Figure 2.5: Kalman filter (KF) working principle. A KF feeds the input variables 𝑢𝑆 of the system, 

whoms state is to be estimated, to a model. This model describes an output variable �̂�𝑆 as a function 

of a state variable. The model output is iteratively compared to the output of the actual system. If a 

deviation of model and system �̂�𝑒𝑟𝑟 exists, the estimate of the state variable �̂�𝑆 is tuned by a gain 

vector 𝐾𝐺  to achieve a smaller deviation. Thereby the KF observes the not accessible state variable 

𝑥𝑆 of the system indirectly. Graph adapted from [53]. 

The sliding mode observer (SMO) is one example of observer-based estimation (OBE) 

methods. The concept was first published by Utkin [71] in 1981. The main difference 

between an SMO and KF is that instead of feeding back the output error linearly, modified 

by the gain vector 𝐾𝐺, the output error is fed back via a discontinuous switched signal [63]. 

Through this switched-mode and sliding observation, SMOs become resilient to noise and 

can reduce estimation error to next-to-zero in a finite time period [63].  

2.1.5.4 Data-driven methods 

Data-driven estimation approaches are not capturing the dynamic of the battery in a 

physicochemical model, they are built on empirical observations [49] and represent battery 

behavior as a relation of input and output signals of a battery. Therefore, in contrast to 

model-based approaches, the model parameters are determined by self-learning algorithms 

[72]. Data-driven approaches very often rely on the use of machine learning (ML) concepts 

to obtain parameters and relations of the model [49]. Because the model employed by these 

methods is generated from real training data, it is very flexible, and matches non-linearity 

well, and exhibits strong adaptability. Establishing a generic model based on data makes 
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the approach also very dependent on the quality of the data [45]. Therefore, a careful 

selection of a sufficiently large dataset and eventual pre-processing is necessary. 

Depending on the optimization method, to which the resulting model is very sensitive, over-

fitting of the data may occur and thus an application of the model to other datasets than the 

training data may lead to high inaccuracy [39,45].  

Artificial neural networks (NN) are inspired by biological neural networks in the human brain 

[46]. The basic structure of a three-layer NN for SoC estimation is sketched in Figure 2.6. 

The input layer is formed by the vector of instantaneous voltage, current, and temperature 

values, and the output layer is the instantaneous SoC value [49,57]. The hidden layer 

contains a non-linear map that can capture the relationship of input and output without prior 

knowledge of the battery’s internal structure or processes [49]. The hidden layer is 

constructed from a suitable number of neurons and an activation function [49]. By feeding 

training data in the form of input-output pairs and tuning the weighing factors 𝑤𝑗, the model 

of the NN is optimized. Following the universal approximation theorem, NNs are capable of 

approximating any continuous function [73], e.g., 𝑆𝑜𝐶(𝑉, 𝐼, 𝑇), which can be exploited to 

accurately estimate the SoC [74–77]. Neural networks with more than two hidden layers are 

often considered “deep” and are therefore counted among the deep learning (DL) 

algorithms.  
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Figure 2.6: Structure of a three-layer neural network for SoC estimation, consisting of input, 

output, and hidden layer. The hidden layer captures the relationship between input and output in a 

map. This map is constructed from a number of neutrons and trained with input-output pairs to tune 

the weighing factors 𝑤𝑗 . Graph according to [74]. 

The support vector machine (SVM) is a machine learning technique (ML), often employed 

to solve classification and regression tasks [49,57]. SVMs were first conceptually presented 

by Vladimir Vapnik and his colleagues in 1992 [78]. The working principle of SVMs can be 

explained for a two-dimensional case with the aid of Figure 2.7. Here, data points of two 

different classes also called training instances with two observables, 𝑥𝑜𝑏𝑠 , and 𝑦𝑜𝑏𝑠, are 

plotted in a two-dimensional space. In this simple example, the data points are linearly 

separable. Several lines are plotted as grey lines, representing possible decision 

boundaries, separating the data points into two groups. The grey spur around these lines 

represents the margin 𝜉, marking the maximum distance to the closest data point, called a 

support vector. Support vectors are identified by the effect of their removal or repositioning 

on the position of the decision boundary – removing a support vector moves the decision 

boundary. Thus, the support vectors are considered critical elements of the dataset. 
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Figure 2.7: Example for a classification problem in two dimensions, solved with a support 

vector machine. Four lines, representing possible decision boundaries, are plotted along with 

respective margins. The margin describes the distance of the decision boundary to the closest point 

of both datasets. The SVM solves an optimization problem by maximizing these margins, resulting 

in the decision boundary, represented by the solid black line with the dashed lines marking the 

corresponding margin. Data points that limit the expansion of the margin are called support vectors, 

here marked with a black circle. This graph was created according to [79] with an adaptation of the 

python code available under MIT license at [80]. 

The SVM is used to optimally choose a decision boundary that maximizes the margin. In 

this two-dimensional example, the solid black line and the dashed lines represent the 

decision boundary and the margin, respectively. In any case, involving more than two 

observables and thus more than two dimensions, the decision boundary becomes a 

hyperplane. Support vectors are used to represent this hyperplane [81]. Even if the data 

points are not separable linearly in two dimensions by a line, classification is possible with 

an SVM by employing kernel tricks [79]. To achieve such classification, the data is projected 

into higher dimensional space, referred to as kernel space, where separation by a 

hyperplane and thus linear classification becomes feasible again. An analogous procedure 

is possible in higher-dimensional cases, making SVMs incredible useful and efficient, 

especially for cases in which the number of observables exceeds the number of samples. 

SVMs are special in the way that they solve a convex optimization problem, resulting in a 

unique solution – a set of hyperplane parameters – and thus do not rely heavily on the 

initialization and termination criteria in contrast to genetic algorithms [81]. 
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Figure 2.8: Example for a one-dimensional linear support vector regression (SVR). The SVR 

represents an advanced way of linear regression, applicable to more than two dimensions. Here the 

two-dimensional case is shown. The fitting process relies largely on the selection of potential support 

vectors that lie outside of an 휀-tube around the estimated function. 휀 describes the acceptable error 

of the fit. The hereby generated fit is iteratively optimized to reduce the value of a loss function while 

maintaining the simplicity of the estimated function. The points outside the 휀-tube are penalized 

according to their distance 𝜉𝑖 to the tube by said loss function. The tradeoff between complexity and 

values the loss function is allowed to take is regulated by the regularization parameter 𝐶. Graph 

according to [81].  

Support vector machines can be generalized to make them applicable to regression 

problems. The so-called support vector regression (SVR) is an effective tool in real-value 

function estimation [81]. Instead of looking for an optimal solution with a minimum number 

of mismatches lying within the margin, the SVR’s output is a continuous-valued, multivariate 

function surrounded by an 휀-tube to contain most of the data points, as pictured in Figure 

2.8. The SVR is flexible in the way that one can select the extent of maximum acceptable 

error 휀. The quality of regression is judged from a symmetrical loss function, penalizing 

mismatches outside of the 휀-tube, below or above the estimated function, deviating from 

that margin 휀 by 𝜉𝑖. As in SVM, the support vectors in SVR are the data points that affect 

the shape of the tube the most, e.g., lie outside of the 휀-region and, thus contribute to the 

value of the loss function [81]. Given a certain margin and a weighing factor 𝛾 to penalize 

values outside of that margin, the SVR aims to minimize the complexity of the output 

function while maintaining an as low as possible value of the loss function, being the result 

of a convex optimization problem with a unique solution [82]. The tradeoff between 
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complexity and the number of penalized values, retuned by the loss function, is regulated 

by the regularization parameter 𝐶, where regularization is inversely proportional to 𝐶. This 

means that high 𝐶 leads to a low regularization and thus might lead to an over 

parametrization or overfitting of the training data. Support vector regression (SVR) can be 

employed for SoC estimation in a multidimensional space spanned by voltage, current, and 

temperature [83,84]. The non-linear relationship of SoC with the input measures is 

transferred to a high dimensional space by the SVM [49], thus enabling estimation of the 

SoC based on the input values. Similar to other data-driven approaches for SoC estimation, 

SVM requires large computational power [46], when compared to other solutions like the 

Kalman filter, and achieves an accuracy comparable to that of NN approaches. 

Besides being proposed to be the SoC estimation of choice for the future [46], data-driven 

approaches have paved the way for the utilization of measured signals other than voltage, 

current, and temperature to estimate SoC and SoH. ML allows for state estimation of a 

system, even if this system is not fully understood and a model is not readily available. 

Since ultrasonic interrogation of LIBs is a new field of research, such models, especially 

with comparably small complexity such as ECMs, are not yet developed. Therefore, 

published studies utilizing ultrasound to estimate the state of a battery are relying on ML 

concepts. The feasibility of ultrasonic-based state estimation was first demonstrated in 2015 

by Hsieh, Bhadra, et al. [85,86]. The authors showed that acoustic time of flight (ToF) 

experiments can measure SoC and SoH of a battery because the distribution of density 

within a battery and the bulk modulus of the battery’s electrodes change during cycling. 

Ultrasound propagation is sensitive to changes in both properties, which can be measured 

through the ToF. Their pulse1-echo and through-transmission experiments at 2.25 MHz 

unveiled that, besides ToF, attenuation also changes depending on the battery’s state. In 

2017, Ladpli et al. [87,88] showed that the application of guided waves at frequencies 

between 100 kHz and 200 kHz also allows for the exploitation of the mechano-

electrochemical coupling in battery cells for SoC and SoH estimation. Gold, Bach et al. [89] 

demonstrated that with an excitation at a frequency of 200 kHz acoustic interrogation of 

 

 

1 The word „pulse“ is used in this work in the context of digital signal processing. Therefore, it refers 
to the change of a signal’s amplitude from baseline to a higher value, followed by the return to 
baseline. Common pulse shapes include the rectangular pulse, the raised cosine, the Morlet 
wavelet, and the Gaussian pulse. It is not synonymous with the word „impulse“, which refers to the 
impulse function, a short input signal, e.g., the Dirac delta function.  
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batteries for SoC estimation is possible with low-cost off-the-shelf piezo buzzers as 

transducers. SoH monitoring [25,90,91] and detection of abusive conditions [92] based on 

ultrasound were demonstrated. Several patents [93] and publications [17,94] claim the 

enhanced SoC and SoH estimation capability of ultrasound in combination with machine 

learning. In [17], supervised ML in the form of support vector regression was applied. 

Incorporating ToF and amplitude data improved the SoC estimation accuracy to 1% 

compared to 3% resulting from using the voltage signal as input alone. For SoH estimation, 

the complete waveform was used and an estimation accuracy of 1% could be achieved. In 

this first attempt, three identical batteries were cycled at the same conditions, training data 

from two battery cells was used and the resulting model was tested on the remaining, 

independent cell. In [94], guided waves were used to probe the LIB’s state. The received 

signals were decomposed into “atoms” by the matching pursuit technique. The descriptive 

parameters of these atoms were mapped as a function of SoC and SoH. These maps were 

then fed to a generalized additive model (GMA) for state prediction. The authors 

demonstrated that prediction based on voltage data alone could be augmented with the 

atom’s parameters to achieve a two-fold better SoC and twenty-fold better SoH estimation. 

2.1.5.5 Mechanical methods for state estimation 

Popp et al. have reviewed the various state estimation methods based on the mechanical 

property changes of lithium-ion batteries in [20]. Those methods can be roughly divided into 

four groups: expansion-based methods, experimental modal analysis (EMA), ultrasonic 

probing, and acoustic emission (AE). The expansion-based methods have mostly been 

used to study the active materials in regard to their volume change upon lithiation and 

delithiation [95–97]. The involved studies focused mostly on the effect of different C-rates 

along with temperature dependence [98–100], which are closely linked, and the spatial 

distribution of the expansion of a battery cell [101,102]. Dilatometry can also be used to 

detect the reversible and irreversible expansion, associated with lithium plating [96,102–

104], beyond the swelling common to a cycle at non-plating conditions. When the battery 

cell under test is geometrically constrained, the volume expansion due to (de-)intercalation 

leads to the build-up of force against the constraining structure. For any battery cell type, 

the casing acts as some sort of constrain, which experiences strain as a consequence of 

the expansion. This link of expansion, force, and strain in turn can be used to estimate the 

state of the battery cell [105–108]. The pressure build-up during the lifetime is often 

associated with the SEI evolution and thus a good indicator for the SoH of a battery cell, 

operated under constraint conditions [109]. Battery cells can be instrumented with resistive 
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foil strain gauges (RFSG) or with fiber Bragg grating (FBG) to measure their surface strain, 

which correlates with the SoC and SoH [20,110–112]. It is possible to even insert FBG into 

battery cells, between layers, or integrate them into the electrode coating [113], as they can 

be made from inert materials [20,114]. It was even shown that by employing an integrated 

FBG for SoC estimation an error of less than 2.5% can be achieved [115,116].  

Especially in automotive applications, the response of battery cells to mechanical loads 

such as vibrations and shocks is of interest. The experimental modal analysis (EMA) allows 

studying physical properties such as the natural frequencies and the level of dampening 

[20]. Natural frequencies are the frequencies at which the frequency response function 

peaks. The latter is defined as the response of a battery cell to a point force, which acts as 

mechanical excitation [20]. Research applying EMA to LIBs shows varying results. In most 

of them, a shift of natural frequencies with SoC [117–119] and SoH [117,119,120] could be 

demonstrated, which would in principle allow an application of this measurement technique 

for state estimation. Other studies couldn’t find a correlation between battery state and 

natural frequencies [120,121]. It was described that the influence of temperature on 

mechanical properties, sensed by EMA, outweighs the changes to those properties, 

introduced by SoC and SoH [117,121]. The experimental conditions needed for EMA, e.g., 

the decoupling of the battery from its surrounding by attaching it to strings or placing it on a 

low-density foam, make an application in online state estimation very unlikely. Nevertheless, 

EMA might be a valid choice for the analysis of battery cells, returned from first life 

application, regarding suitability for second life applications or recycling.  

Acoustic emission (AE) is a completely different technique. It does not rely on the active 

excitation of the battery cell under test but relies on the passive detection of acoustic events 

[20,122]. Those acoustic events originate from the release of mechanical stress, usually a 

result of degradation mechanisms in the active materials of lithium-ion batteries. It is in the 

nature of AE that these events solely occur during operation and thus the method is purely 

in-operando, which allows estimating the level of stress the active materials experience 

under certain cycling conditions [123–125]. Even though the working principle seems to 

predestine the method for the monitoring of battery cells, it was shown in [126] that an 

estimation of the SoH and remaining useful life (RUL) is feasible with the aid of advanced 

signal processing and machine learning tools. 

Ultrasonic probing techniques utilize that the propagation of sound depends on the 

mechanical properties of the medium it passes through. As those properties change with 

the state of the battery cell, ultrasound allows indirect access of its state. Several signal 
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properties are affected by mechanical property changes, but most studies in this field focus 

on the time of flight and amplitude of the transmitted or reflected signal. The time of flight is 

a measure of the time between the sending and reception of the signal, and allows the 

calculation of propagation speed [20]. The amplitude of the transmitted signal can be taken 

as a measure of the attenuation of the sound wave passing through the medium [20]. 

Different placements of transmitter and receiver are possible. Depending on geometry the 

propagation through the battery cell [17,85,127,128] or along its surface [94,129,130] can 

be measured [20]. Several publications demonstrate the suitability of ultrasonic probing for 

SoC and SoH estimation. In a first attempt, Ladpli et al. showed the correlation of the signal 

amplitude and ToF of surface waves (guided waves) with SoC and estimated with means 

of statistical analysis that the achievable SoC and SoH estimation might be below 1% [129]. 

In a subsequent publication [94], the authors decomposed the surface waves into atoms, 

resulting in a number of features, that if combined with the cell voltage enable an even better 

estimation accuracy of 0.36% and 0.05% for SoC and SoH, respectively. In this publication, 

the tested cells were cycled at 0.82 C at 45 °C and a five-peak Gaussian-windowed tone 

burst (a modulated sine wave function) with center frequencies between 100 kHz and 

200 kHz was used to excite the surface-mounted piezo disc transducers. An iterative multi-

stage algorithm was used to identify the atoms within a transmitted signal, serving as 

reference, and to subsequently track the changes in the signal as SoC and SoH evolve. 

The atoms of a signal at a certain state are estimated based on the preceding state [94]. 

Therefore, the potential parameter space for the atom extraction is reduced and the 

extracted information at a certain state translates information from the preceding states. 

Thus, even if the subsequent statistical analysis solely perceives instantaneous 

measurements and does not take cycling history into account, the accuracy of the model 

benefits from the reduced parameter space. 

In [17], Davies et al. placed commercial 2.25 MHz transducers as transmitters and receivers 

on opposing sides of battery cells with different chemistries and used the amplitude, ToF, 

and cell voltage to train an SVR for SoC estimation. For cells with graphite and LCO 

electrodes, they were able to reduce the mean estimation error in 0.05 C cycles from about 

3% (voltage alone) to 1% (voltage, ToF, and amplitude). For cells with graphite and LFP 

electrodes that exhibit a very flat voltage curve, being very challenging for accurate state 

estimation, the estimation error in 0.5 C cycles could be reduced from about 6% to 1% when 

including information extracted from the ultrasonic signals [17]. The described model was 

even applicable to SoH estimation and was robust to a damaging event like an external 

short-circuit with a mean estimation error of about 1% when training the SVR with the 
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complete waveform. Davies et al. [17] claim that high-frequency transducers, realized as 

MEMS piezoelectric transducers, could allow a small packaging and thus a real-world 

application of the presented technique. It remains a question of cost if an ultrasound-based 

state estimation will be realized in a future BMS, especially if the employed technique 

requires high sampling rates and linked high-frequency electronics. In [131], Popp et al. 

demonstrated that this can be overcome by utilizing frequencies in the range of 25 kHz to 

40 kHz and achieved a mean estimation error of 16.85% SoC under challenging conditions, 

which is a rather poor accuracy compared with other state of the art methods, that achieve 

around 5% accuracy [50]. Therefore, designing a cost-efficient and accurate SoC estimation 

that achieves increased accuracy based on ultrasonic measurements or other mechanical 

property sensing techniques remains an open task. 

2.2 Ultrasonic non-destructive evaluation (US-NDE) 

Using sound for the detection of flaws, e.g., in metal parts, is as old as the craft of 

blacksmithing. Craftsmen could tell from their experience and the ringing resulting from 

hammering an object if the latter was flawless. It then took until the discovery of the 

piezoelectric effect and the reverse piezoelectric effect by Pierre and Paul Jaques Currie in 

1880 and 1881 [132] to pave the way for the development of ultrasonic non-destructive 

evaluation in the early 20th century. Ultrasound is defined as sound above the audible 

frequency range of 16 Hz to 20 kHz and extends up to the GHz range [133] (p 130). The 

first applications emerged in the 1930s, marked by the patent of Mülhauser in 1931, already 

utilizing two ultrasonic transducers to detect flaws in solids [134]. Ultrasonic non-destructive 

evaluation (US-NDE) benefited from the technological demands of World War II and was 

subsequently developed for medical diagnostic purposes aside from flaw detection [135]. 

The 1970s are generally recognized as a leap forward within NDE as new technologies 

made the detection of smaller flaws and details possible [136]. Since then, several new 

approaches such as the concept of guided waves have emerged. Even though its long 

history and ultrasound seeming to be an old field of research, not all equations are yet 

written nor all effects are understood as new applications require increasingly challenging 

monitoring solutions and, therefore, open new subfields of ultrasound research [137]. 

Even though many experiments have been conducted to gain insight on the dominant 

ultrasonic propagation in the setup, used within this work, the verification could not be 

provided yet. Therefore, the possible propagation modes in question are reviewed on the 

following pages. 
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This section is designed as an introduction to the field of ultrasonic non-destructive 

evaluation. To serve this purpose, it begins with the description of how a distortion of a 

system or a displacement in a lattice can propagate through matter as a sound wave. For 

simplicity, the case of isotropic media is treated first. Succeeding the representation of 

sound waves in the time domain, the interpretation of sound waves in the frequency domain 

is discussed. Then, boundaries are introduced to the medium and the therefrom-arising 

modes of propagation are discussed. Subsequently, the wave propagation in anisotropic 

media is treated, leading to theoretical considerations about fluid-saturated layered media, 

such as a lithium-ion battery. Finally, the more technical aspects such as generation and 

reception of sound and the characterization of ultrasonic probes according to their resonant 

behavior are discussed. 

2.2.1 Representation of sound waves and propagation in isotropic media 

 
Figure 2.9: Chain of elastically coupled masses, a) and a snapshot of wave propagation along 

such a chain. b) Shows transversal propagation mode, where mass points are displaced 

transversal, c) shows longitudinal propagation mode, where particles oscillate in propagation 

direction such that fluctuations in density occur as illustrated by vertical lines. The distance between 

two points of equal phase is called wavelength λ and equals the distance covered in a period T at 

phase velocity vp. According to [133]. 

Sound propagation on the micro-scale can be described as the displacement of particles 

from their resting position. This motion is transferred to adjacent particles through elastic 

coupling with a delay in time. Consequently, the motion propagates as a wave through the 

media, assembled from those particles, with a characteristic velocity 𝑣. A solid medium can 

be depicted as a chain of elastically coupled masses in the simplest, one-dimensional case, 

as shown in Figure 2.9 a). The wave modes can be categorized into longitudinal or pressure 

waves and transversal or shear waves [133]. In longitudinal waves, particles are oscillating 

in the direction of wave propagation, therefore density fluctuations occur along the path of 
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the wave, as shown in Figure 2.9 c). On the contrary, in transversal waves, particles are 

oscillating vertically to the direction of propagation, as shown in Figure 2.9 b). To 

communicate the vertical displacement of adjacent particles and, therefore, allow 

transversal wave propagation, a coupling is required. Hence, transversal waves can only 

be found in solid media and do not propagate in gas or fluid [133].  

For longitudinal waves, the occurring density fluctuations result in local stress and strain 

forces. The phase velocity 𝑐𝑙 of propagating equally compressed or decompressed areas 

can be related to the stiffness or constrained modulus 𝑀 and the density 𝜌 of the material 

by 

 𝒄𝒍 = √
𝑴

𝝆
. (6) 

𝑀 is also known as P-wave modulus and can be related to Young’s modulus 𝐸 via the 

Poisson’s ratio 𝜈 by [138,139] 

 𝑴 =
𝑬(𝟏−𝝂)

(𝟏+𝝂)(𝟏−𝟐𝝂)
. (7) 

The Poisson’s ratio is characteristic for a certain material and describes the ratio of relative 

thickness to relative length change at stress or strain [140] 

 𝝂 = −

𝜟𝒅𝒎
𝒅𝒎
𝜟𝒍𝒎
𝒍𝒎

 (8) 

For solids, 𝜈 takes values between zero and 0.5. Similarly, the phase velocity 𝑐𝑡, at which a 

transversal wave propagates through a material, communicated by shear forces, can be 

related to the shear modulus 𝐺 of the material by 

 𝒄𝒕 = √
𝑮

𝝆
= √

𝑬

𝝆

𝟏

𝟐(𝟏+𝝂)
 . (9) 

Therefore, the sound velocities of longitudinal and transversal waves can be set in relation 

by 

 𝒄𝒕 = 𝒄𝒍√
𝟏−𝟐𝝂

𝟐(𝟏+𝝂)
 . (10) 

For commonly probed solids, the transversal wave velocity is approximately half of the 

longitudinal wave velocity. 



2 State of the art & theoretical background 

27 

In general, the propagation of ultrasonic waves in media is influenced by absorption, 

scattering, and reflection at interfaces. The absorption depends highly on the frequency and 

the materials constituting the medium. Scattering occurs on inhomogeneities and spatial 

structures in the range of 0.1𝜆 to 5𝜆, with wavelength 𝜆, while reflection occurs on interfaces 

between materials of different acoustic impedance 𝑍𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 [141], which is defined as 

 𝒁𝒂𝒄𝒐𝒖𝒔𝒕𝒊𝒄 = 𝝆 ∙ 𝒄𝟎,  (11) 

with the density of the material 𝜌 and the velocity of sound 𝑐0 in a given material. The 

reflectance 𝑅 can be defined analogously as in optics for two refractive indices 𝑛1 and 

𝑛2 [141]: 

 𝑹 =
𝑰𝒓

𝑰𝒊
= (

𝒁𝟏−𝒁𝟐

𝒁𝟏+𝒁𝟐
)

𝟐

, (12) 

with 𝐼𝑟 and 𝐼𝑖 are the refracted and incident intensities of the sound wave, respectively, and 

𝑍1 and 𝑍2 are the acoustic impedances of the adjacent layers [141].  

As described above, the interaction of sound waves with media depends on their 

wavelength and, therefore, on their frequency. This effect, called dispersion, is a property 

of waves in general and is present in measured quantities such as wave velocity, acoustic 

impedance, and derived quantities. The relation of wavelength 𝜆 and phase velocity 𝑣𝑝 at 

which a certain phase propagates during a period 𝑇 of oscillation and frequency 𝑓 = 1/𝑇 

can be written as [136] 

 𝝀 = 𝒗𝒑/𝒇. (13) 

With the definition of the wavenumber �̅� = 2𝜋/𝜆 and the circular frequency 𝜔 = 2𝜋𝑓, 

Equation (13) can be rewritten as 𝑣𝑝(𝜔) = 𝜔/�̅�, being referred to as the dispersion relation. 

For monochromatic harmonic waves, exhibiting a single wavelength, dispersion is solely 

influencing phase velocity [141]. 

Additional complexity is introduced by superimposing two or more waves of similar 

frequency, resulting in a group of waves as depicted in Figure 2.10. 
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Figure 2.10: Snapshot in time of b) two harmonic waves traveling at phase velocities vp1 and 

vp2, differing 10% in frequencies and a) group of waves or wave packages, resulting from the 

superposition of these two waves. The modulation envelope highlights the shape of the wave 

packages. This package travels with the group velocity 𝑣𝑔. According to [136]. 

This group of waves moves with a group velocity 𝑣𝑔, which smaller than the velocity of the 

individual waves 𝑣𝑝 [136]. The simplest analytical approach considers the summed 

displacement 𝑢(𝑥, 𝑡) of a representative volume from rest position within a system, resulting 

from the superposition of two harmonic waves 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡), being described by 

circular frequencies 𝜔1 and 𝜔2 and wavenumber 𝑘1 = 𝜔1/𝑐𝑝1 and 𝑘2 = 𝜔2/𝑐𝑝2, respectively 

𝒖(𝒙, 𝒕) = 𝑨 ⋅ 𝐜𝐨𝐬(𝒌𝟏𝒙 − 𝝎𝟏𝒕) + 𝑨 ⋅ 𝐜𝐨𝐬(𝒌𝟐𝒙 − 𝝎𝟐𝒕). (14) 

It can be shown that this equals to  

𝒖(𝒙, 𝒕) = 𝟐𝑨 ⋅ 𝐜𝐨𝐬 (
𝟏

𝟐
𝜟�̅�𝒙 −

𝟏

𝟐
𝜟𝝎) ∙ 𝐜𝐨𝐬(𝒌𝒎𝒙 − 𝝎𝒎𝒕). (15) 

While the leading low-frequency term describes the envelope of the wave package, 

traveling at a velocity 𝑣𝑔 = 𝛥𝜔/𝛥�̅� = (𝜔2 − 𝜔1)/(𝑘2 − 𝑘1), the high-frequency term, 

describes a single-phase, traveling at 𝑣𝑝 = 𝜔𝑚/𝑘𝑚, with 𝜔𝑚 and 𝑘𝑚 being the mean values 

of 𝜔1 and 𝜔2, and 𝑘1and 𝑘2, respectively. In general, for wave packages, being composed 

of more than two harmonics, the group velocity is defined through the derivative of circular 

frequency by wavenumber [141] by 

𝒗𝒈 =
𝒅𝝎

𝒅𝒌
. (16) 

A very elegant way to look at wave packages, displacement in a lattice or any distortion 

propagating in a system, is Fourier analysis. The underlying Fourier theorem states that any 
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distortion of a system can be described by a superposition of an infinite number of harmonic 

oscillations. This is a unique feature of waves and serves as a basis for all modern forms of 

communications. Fourier analysis allows representing wave forms or signals in 

approximation by decomposing them into their frequency components and allows creating 

arbitrary waveforms from a finite number of oscillations. The essential tool here is the 

Fourier transform. To be applicable to a function 𝑓(𝑡), the integral  

 ∫ |𝐟(𝐭)|𝟐+𝐭𝟏

−𝐭𝟏
𝐝𝐭 (17) 

has to converge in the limit 𝑡1 → ∞ [142]. Then the Fourier transform F(ω) can be calculated 

by [143] 

 𝐅(𝛚) =
𝟏

√𝟐𝛑
∫ 𝐟(𝐭) ∙ 𝐞−î 𝛚𝐭+∞

−∞
𝐝𝐭. (18) 

with î as the imaginary number. Thereby the function 𝑓(𝑡) is transferred from the time 

domain to the frequency domain. Very often, for example, after processing in the frequency 

domain, it might be useful to obtain 𝑓(𝑡) from the inverse Fourier transform  

𝐟(𝐭) =
𝟏

√𝟐𝛑
∫ 𝐅(𝛚) ∙ 𝐞+î 𝛚𝐭

+∞

−∞

𝐝𝛚. (19) 

The two functions 𝑓(𝑡) and 𝐹(𝜔) make a Fourier couple. In the representation of physical 

processes, e.g., wave propagation, the real-valued variables 𝑡 and 𝜔 are interpreted as time 

and (circular) frequency. Since their product has to be dimensionless, their units are 

reciprocal [142]. Fourier couples have several interesting properties. First, functions that 

show a very narrow distribution in the time domain, e.g., a Dirac delta-shaped pulse, exhibit 

a very broad frequency distribution. Therefore, these functions contain many different 

frequency components. On the other hand, a function with a single frequency component 

is represented by an infinitely extending harmonic oscillation, e.g., a sine wave. One 

important consequence of this fact is that a wave package will broaden while it propagates. 

A typical sound pulse used for non-destructive evaluation has a finite length and therefore 

contains several frequency components. Due to the dispersion of the speed of sound, 

different frequency components of a wave package will propagate at different phase 

velocities. Therefore, with increasing travel distance, the components will separate more 

and more and the wave package will become wider. Consequently, its group velocity 

characterizes a wave package. In experiments, the velocity at which a wave package of a 
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certain frequency propagates is always the group velocity which can be calculated from 

phase velocity [139]. 

For an excellent explanation of the phenomenon of wave package broadening due to 

dispersion, the reader may refer to [144] (85 ff.), which covers this topic on electron wave 

packages in an easily accessible way that is also transferable to acoustic wave packages. 

2.2.2 Propagation of sound waves in half-space geometry 

 

Figure 2.11: a) Half space geometry, b) polarized transversal waves with respect to an 

interface. The depicted isotropic solid is meant to be infinitely extending in y and z-direction and 

bordered by an interface in the y-z-plane at 𝑥 = 0. SV and SH stand for vertically and horizontally 

polarized shear (transversal) waves, respectively. SV and SH waves meet the surface at an incident 

angle of 𝛽. 

2.2.2.1 Surface waves: Rayleigh waves 

In 1885, Lord Rayleigh published the theoretical description of wave propagation upon the 

plane free surface of an infinite homogenous elastic solid. He stated that this case can be 

analogically considered to that of deep water waves, while the potential energy of 

displacement does not arise from gravity but the elastic coupling of particles within the 

medium. The so-called Rayleigh waves propagate close to the surface, their depth of 

penetration can be approximated to be one fold to twofold of the wavelength [145]. 

The modes of propagation in this geometry can be deduced from the general wave equation 

 𝜟�⃗⃗⃗� =
𝟏

𝒄𝟐

𝝏𝟐�⃗⃗⃗�

𝝏𝒕𝟐 , (20) 

with �⃗⃗� being an arbitrary (longitudinal and/or transversal) displacement and 𝑐 being the 

propagation velocity of the respective displacement [146]. When introducing the boundary 

at 𝑥 = 0 (see Figure 2.11) and anticipating a propagation in the y-direction, the solution to 
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Equation (20) in y-direction can be written as 𝑢(𝑦, 𝑡) = 𝑓(𝑥, 𝑦) exp[𝑖(𝜔𝑡 − 𝑘𝑦𝑦)], implying a 

plane wave geometry with a depth depending term 𝑓(𝑥, 𝑦). Inserting this solution into 

Equation (20) yields a differential equation for the function 𝑓(𝑥, 𝑦): 

 𝝏²𝒇(𝒙, 𝒚)/𝝏𝒚² − (𝒌𝒚
𝟐 −

𝝎𝟐

𝒄𝟐 ) 𝒇(𝒙, 𝒚) = 𝟎. (21) 

Here, we can discuss two cases. First, 𝜔2/𝑐² > 𝑘𝑦
2 leads to a sine-shaped plane wave 

(either longitudinal or transversal) [146]. The solution, specific to this geometry, arises from 

the second case, where 𝜔2/𝑐² < 𝑘𝑦
2. It is described by an exponential function with the 

exponent ±𝑥√𝑘𝑦
2 − 𝜔2/𝑐². The solution with the negative sign would mean an infinitely 

increasing intensity towards the body of the solid (𝑥 < 0) and has no physical relevance 

[146]. The remainder is the real solution to the wave equation, Equation (20): 

 𝒖(𝒚, 𝒕) = 𝒇𝟎 ⋅ 𝒆𝒙𝒑(−𝑪𝒙𝒙) ⋅ 𝒆𝒙𝒑[î(𝝎𝒕 − 𝒌𝒚𝒚)], (22) 

With 𝑓0 being a constant, independent of time and location, and 𝐶𝑥 = √(𝑘𝑦
2 − 𝜔2/𝑐²). This 

solution matches a wave, propagating in the y-direction and being dampened along the x-

direction with increasing depth [146].  

As stated earlier, the general solution �⃗⃗� contains transversal and longitudinal components. 

While in the solid body both components can propagate independently of each other, the 

surface wave does always contain both components [146]. Similar to water waves, the 

particles within the wave are oscillating elliptically, contrary to the circular oscillation of sine-

like wave propagation in the infinite solid [139]. The components of the elliptical movement 

depend on the ratio of the velocities 𝑐𝑙/𝑐𝑡 and, therefore, on the Poisson’s ratio 𝜈. The 

propagation velocity of the Rayleigh waves 𝑐𝑅 also depends on this ratio and is independent 

of frequency [146]. For solids, with 𝜈 lying between 0 and 0.5, 𝑐𝑅 can be calculated to take 

values between 0.862𝑐𝑡 and 0.955𝑐𝑡, being slightly slower than the pure transversal wave 

in the solid body [147].  

2.2.2.2 Plate waves, Lamb waves, Love waves 

When a second boundary surface is introduced to the solid, we have to consider now the 

geometry of a plate in which a surface wave can only exist as long as its wavelength is 

small compared to the thickness of the plate [139].  
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To initiate waves in plates, transversal waves of two kinds have to be considered. Those 

are depicted in Figure 2.11b. Depending on their polarization with respect to the boundary 

surface either horizontally polarized shear waves (SH) or vertically polarized shear waves 

(SV) can propagate in a plate. To form a plate wave the criteria for constructive interference 

has to be met [148]: 

 𝒏𝝀𝒕 = 𝟐𝒅𝒑𝒍𝒂𝒕𝒆 𝐬𝐢𝐧(𝜷𝒊), (23) 

with thickness 𝑑𝑝𝑙𝑎𝑡𝑒 of the plate, angle of incident 𝛽𝑖, 𝑛 being a natural number and  𝜆𝑡 the 

wavelength of the transversal wave. 

SH plate waves exhibit no component perpendicular to the surface and therefore won’t 

interact with adjacent fluids since transversal waves cannot propagate in fluids and also no 

mode conversion can occur on the interface. This makes them especially useful in the 

testing of parts immersed in a fluid [140]. An example of such an SH plate wave is shown 

in Figure 2.12 a).  

SV waves can also initiate plate waves that are referred to as Lamb waves and always have 

a displacement component perpendicular to the surface. Those can be split up into two 

groups with symmetrical and asymmetrical displacement on the boundary surfaces - see 

Figure 2.12 b) and Figure 2.12 c). As pointed out by Schoch [149], Lamb waves can be 

interpreted as a superposition of two plain longitudinal or transversal waves, being reflected 

between the two boundary surfaces. 

For the case of a thin, solid layer on another solid, so to say a layer on a half-space, special 

types of waves can propagate in such a layer. Within those, the Love waves represent 

transversal waves with a displacement parallel to the boundary surface. Similar to Rayleigh 

waves, Love waves show little dampening due to being confined to a layer close to the 

surface of the solid and therefore are able to travel long distances and thus being valuable 

for the application in structural health monitoring of large structures [146]. Contrary to 

Rayleigh waves, they show dispersive behavior and are purely transversal. 
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Figure 2.12: Modes of propagation of sound waves in a plate. a) Transversal wave with 

displacement parallel to the surface, b) and c) Lamb waves, symmetrical and asymmetrical 

base mode. The graph was reproduced according to [139]. 

2.2.2.3 Guided waves 

When waves travel along a certain structure, close to the surface of a solid (Rayleigh waves) 

or confined to a layer (Lamb and Love waves), this structure is very often referred to as a 

waveguide and the waves involved are referred to as guided waves. Technology revolving 

around the use of guided waves emerged in the 1990s [150] and has developed a lot since. 

Most structures can act as waveguides and include plates (aircraft skin, car body), rods 

(rails, cylinders), hollow cylinders (pipes, tubing), and multilayer structures as long as the 



2 State of the art & theoretical background 

34 

wavelengths are large enough with respect to the dimensions in the waveguide [150]. 

Guided wave experiments pose huge benefits due to their simplicity in setup and long sonic 

travel distances that allow the monitoring of large structures. 

2.2.3 Propagation of sound waves in anisotropic media 

Here, we discuss the basic idea of sound propagation in anisotropic media. For an in-depth 

discussion of the topic, the reader is referred to [136] and [151]. 

In the general case of the propagation of small amplitude elastic waves in initially un-

deformed, infinite, anisotropic media, the governing equation can be formulated based on 

three relations [136]. 

(1) Dynamic equilibrium (Newton’s second law), using indicial notation 

 
𝝏𝝈𝒊𝒋

𝝏𝒙𝒋
= 𝝆

𝝏𝟐𝒖𝒊

𝝏𝒕𝟐  , (24) 

with the Cauchy stress tensor 𝜎𝑖𝑗 (a second-order tensor), the density 𝜌, and the second 

derivative after time of the displacement 𝜕2𝑢𝑖/𝜕𝑡2. 𝑖, 𝑗 ∈ {1,2,3} are indicating the directions 

in a Cartesian coordinate system. 

(2) The infinitesimal (linear) strain-displacement relation,  

 𝜺𝒌𝒍 =
𝟏

𝟐
(

𝝏𝒖𝒌

𝝏𝒙𝒍
+

𝝏𝒖𝒍

𝝏𝒙𝒌
) = 𝜺𝒍𝒌, (25) 

with the strain tensor 휀𝑘𝑙 (a second-order tensor).  

(3) A linear stress-strain relation – the generalized Hooke’s law  

 𝝈𝒊𝒋 = 𝑪𝒊𝒋𝒌𝒍𝜺𝒌𝒍, (26) 

with the stiffness tensor 𝐶𝑖𝑗𝑘𝑙 (a fourth-order tensor, 34 = 81 components), mapping stress 

and strain. Eliminating the stress and strain from these equations, leads to the governing 

equation describing the propagation of a displacement in a linearly elastic, inhomogeneous 

body [136]: 
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𝝏𝑪𝒊𝒋𝒌𝒍

𝝏𝒙𝒋

𝝏𝒖𝒌

𝝏𝒙𝒍
+ 𝑪𝒊𝒋𝒌𝒍

𝝏𝟐𝒖𝒌

𝝏𝒙𝒋𝝏𝒙𝒍
= 𝝆 

𝝏𝟐𝒖𝒊

𝝏𝒕𝟐
 (27) 

If the body is homogeneous, the elastic constants are independent of their position within 

the body and the according derivatives vanish. Therefore, the equation simplifies to 

 𝑪𝒊𝒋𝒌𝒍
𝝏𝟐𝒖𝒌

𝝏𝒙𝒋𝝏𝒙𝒍
= 𝝆 

𝝏𝟐𝒖𝒊

𝝏𝒕𝟐  (28) 

One of the many possible solutions of this governing equation is the equation describing 

plane waves 

 𝒖𝒊 = 𝑨𝒊𝐞𝐱𝐩[î(𝒌𝒊 ∙ 𝒙𝒊 − 𝝎𝒕)], (29) 

where 𝐴𝑖 denotes the amplitude of the plane wave travelling in direction of index 𝑖, with 

wavenumber 𝑘𝑖, imaginary number î and location vector 𝑥𝑖 (in indicial notation) [136]. 

In non-polar media 𝜎𝑖𝑗 is symmetric, e.g., 𝜎𝑖𝑗 = 𝜎𝑗𝑖. By definition, 휀𝑘𝑙 is symmetric as well, 

e.g., 휀𝑙𝑘 = 휀𝑘𝑙. Therefore, a symmetry for the elements of the stiffness tensor 𝐶𝑖𝑗𝑘𝑙 can 

always be assumed, e.g., 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘. Given a positive definite strain energy 

function, there are at most 21 independent elements in 𝐶𝑖𝑗𝑘𝑙. Systems are categorized 

according to the count of symmetry planes with respect to the direction of propagation. For 

different symmetry classes the number of independent constants is reduced further. For the 

symmetry class with the least symmetry, the triclinic system, 𝐶𝑖𝑗𝑘𝑙 has 21 independent 

elements, for the orthorhombic (or orthotropic) there are nine independent elements, for the 

hexagonal (or transversely isotropic) system there are five independent elements and for 

the isotropic system there are two independent elements [136]. It has to be noted that these 

symmetries, strictly speaking, only apply for single crystals, where the point to point validity 

of the governing equations is given. Many materials, and especially composites, don’t fulfill 

this requirement and vary from point to point. Composites, by nature, are composed by 

more than one material, exhibiting different elastic properties. Nevertheless, the sound 

propagation within many composite materials is described using one of the symmetries 

[136]. 

All layered media, like batteries or other composite materials, exhibit at least monoclinic 

symmetry. Here, the stiffness tensor is constituted by 13 independent components. 

Orthotropic systems, include one more symmetry plane, which is perpendicular to the first 

plane and therefore lies in the same plane as the vector of propagation. All unidirectional 
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layers in a composite exhibit orthotropic symmetry. In a battery this applies to the electrode 

sheets, at least in the plane parallel to the current collector, but should also apply in the 

plane perpendicular to the coating direction. With the symmetry in mind, the complexity of 

the tensor is further reduced to nine independent components. One could even argue that 

for a layered composite, like a lithium-ion battery, the transversely isotropic symmetry could 

be applied. Therefore, one had to assume the structure within a layer perpendicular to the 

stacking axis (and propagation direction) to be isotropic, reducing the number of 

independent elements in 𝐶𝑖𝑗𝑘𝑙 to five. 

It can be shown, that the constants in 𝐶𝑖𝑗𝑘𝑙 represent the square wave speed of a plane 

wave in some directions [152]. For the isotropic case, with two independent constants, it 

becomes clear, that from the symmetry of the system the number of plane wave modes can 

be concluded. In isotropic media, those are longitudinal and transversal waves, with their 

propagation velocities stated in Equation (6) and Equation (9). 

2.2.4 Propagation of sound waves in layered, fluid-saturated, porous media 

– sound propagation in the Lithium-ion battery 

Depending on the wavelength of applied ultrasonic waves, different effects within the 

medium “battery” and different properties have to be considered. As described in 

Chapter 2.1, a Lithium-ion battery is constituted of several layers of the subset “separator-

anode-separator-cathode” and a multilayer pouch housing, with the internal, porous 

structure being (ideally) saturated by a fluid – the electrolyte. Within this subchapter, we will 

have a look at the interaction of sound waves with such a medium on certain scales. 

2.2.4.1 Theoretical considerations on the interaction of ultrasound with the 

layered structure and particles in lithium-ion battery cells 

For the interaction of sound waves with a medium, the following can be stated in general: 

Even though many materials, e.g., the battery’s active material particles, are intrinsically 

anisotropic, “[the] random orientation [of their constituents] gives rise to a material which 

behaves isotopically when the dominant wavelength of the wave field is long compared to 

the crystal [or particle] dimensions” [153] (p 245). The underlying principle can also be 

applied to the periodically layered structure of the sample. When the wavelength 𝜆0 can be 

considered large compared to the spatial period of layering 𝑑𝑙, the medium can be replaced 

by an equivalent transversely isotropic (TIE) medium, also called effective medium. The 
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properties of the TIE medium are described by the thickness weighted averaged properties 

of the constituting layers, e.g., density and elastic modulus [153]. 

Carcione et al. [153] showed that this long-wave approximation holds true for the ratio 𝑅𝑙𝑤 =

𝜆0/𝑑𝑙. By comparison of experimental data and numerical simulations for layered samples 

composed of two sorts of porous rock at a ratio of 1:1, they showed that 𝑅 should be at least 

5 or 6 in this case. They concluded further, that 𝑅𝑙𝑤 is highest in this composition ratio and 

that 𝑅𝑙𝑤 depends highly on the angle of incidence, especially for shear waves. Experiments 

on periodically layered samples composed of materials with a higher difference in acoustic 

impedance of adjacent materials suggest values of 𝑅𝑙𝑤 between 10 and 100 [154].  

Besides the layered structure of the battery, its particular nature has also to be accounted 

for. As already stated in Chapter 2.2.1, interaction with spatial structures and inhomogeneity 

in the form of scattering occurs in the range of 0.1𝜆 to 5𝜆. So for sound waves to interact 

with singular particles or layers, the wavelength of such waves would have to be in the 

range of 0.5 µm to 400 µm. At a speed of sound in battery composite material of about 

1000 m/s to 1600 m/s [25], this implies the usage of frequencies in the range of 2.5 MHz to 

3.2 GHz to achieve interaction.  

As this study uses frequencies in the range of 20 kHz to 250 kHz, the medium can be 

treated as an effective medium, in which little interaction with the particles of the electrode 

layers and the periodic structure of the battery cells’ layers is expected. 

2.2.4.2 Biot’s theory 

In the frequency range, in which the medium “battery” appears as an effective medium and 

wavelengths are large compared to the periodicity of layers, particles, and pores, Biot’s 

“Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid” [155,156] is 

applicable. Lithium-ion batteries with their porous electrolyte filled layers, represent a 

medium described by Biot’s theory. While established in the 1950s, this theory remains still 

valid for many applications, today [157–163]. Even though the theory is not able to 

accurately predict attenuation in certain porous media [164], it was continuously used to 

study the wave propagation in natural occurring porous layers, e.g., found in sediment rock 

formations or sand oil deposits, and therefore was extremely valuable to the field of petro-

physics, but was also applied in medical applications such as the monitoring of human 

bones. A fluid-saturated porous medium is special in the way that solid particle and liquid 
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movements are coupled through inertia at high-frequency and viscous forces at low 

frequency [165]. 

Therefore, Biot split his theory up into two parts, a high frequency, and a low-frequency part, 

separated by a critical frequency. This so-called transition frequency 𝑓𝑡 marks the point at 

which Poiseuille flow (laminar flow) within the pores breaks down and the behavior is no 

longer viscosity dominated but is described by inertia-dominated flow [155,165]: 

 𝒇𝒕 = 𝝅𝝂𝒌/𝟒𝒅𝒑
𝟐. (30) 

Here, the kinematic viscosity 𝜈𝑘 can be related to the dynamic viscosity 𝜇𝑑 via 𝜈𝑘 = 𝜇𝑑/𝜌𝑓, 

with 𝜌𝑓 being the density of the fluid [155]. Following the initial definition of the transition 

frequency, other definitions were established [165,166] that account for the influence of the 

solid’s inertia, compressibility, and frequency-dependent momentum exchange [166] which 

can only be neglected in cases of low porosity or gas-filled pores. Therefore, Biot’s initial 

Equation (30) often underestimates the transition frequency and can here only serve as the 

lower limit. 

For a typical Lithium-ion battery electrolyte – one molar LiPF6 solution in a mixture of EC 

and DMC, literature states a dynamic viscosity 𝜇𝑑 = 4.44 mPa·s and a 

density 𝜌𝑓 =  1.27 g/cm³ at room temperature [167], leading to a kinematic viscosity of 

3.50·106 µm²/s. The median pore diameter in electrodes with a median particle diameter of 

4.8 µm can be estimated to be 1.3 µm [168]. For particles with a diameter distribution of 

around 10 µm, the biggest pores have a diameter of approximately 4 µm [89,169]. These 

two particle size distributions represent two extreme points of electrode geometry well – 

high power and high energy electrodes. The resulting transition frequency according to 

Biot’s original formula can be calculated to be 1.63 MHz and 0.17 MHz, respectively.  

Before we focus on the fluid-saturated case, let us assume a porous, dry solid, described 

by the density of the solid 𝜌𝑠 (here the grain density) and the porosity 𝛽. Here the velocity 

of the pressure and shear wave is given by 
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 𝒄𝑷,𝒅𝒓𝒚 = √𝑲𝒑/(𝟏 − 𝜷)𝝆𝒔, (31) 

 𝒄𝑺,𝒅𝒓𝒚 = √𝑵𝑺/(𝟏 − 𝜷)𝝆𝒔, (32) 

With shear modulus 𝑁𝑆, constrained modulus 𝐾𝑝 = 𝐾𝑏 + 4𝑁𝑆/3 and bulk modulus of the dry 

porous matrix 𝐾𝑏 [165]. 

2.2.4.3 Low-frequency range 

This section will cover Biot’s theory for the frequency range 𝑓 < 𝑓𝑡, where the assumption 

of Poiseuille flow (laminar flow) within the pores is valid. According to Biot, three wave-

modes exist in the discussed medium, two pressure waves and one shear wave [155]. The 

two pressure waves are titled fast wave (P1) and slow wave (P2) and differ in the amplitude 

of the displacement of solid and fluid. For the P1 wave, the amplitudes of displacement are 

of the same sign/phase; for the P2 wave, the amplitudes of displacement are of opposite 

sign/phase [155] (p 174). Though, it was shown by numerical calculations by [161] that the 

second pressure wave can only be observed when the difference in acoustic impedance of 

the fluid and the containing porous frame is large enough. 

In the following text, the shear wave is abbreviated as (S). For the calculation of the 

velocities of these waves, we are following the report of Jocker and Smeulders [165]. The 

basic idea to derive the governing equations for wave propagation and to find a solution to 

those is sketched as follows. Within a unit cell of the fluid-saturated porous medium, the 

local displacement is defined separately in the solid and in the fluid. Thereby a simultaneous 

propagation in both is permitted. In each unit cell, the forces on the solid frame of the porous 

structure, in the form of stress, and on the fluid, in the form of pressure, are present and 

communicate the propagation of the displacement through the medium. The wave 

equations are built on the general idea of sound propagation in anisotropic media, as 

discussed before. The hereby derived equations account for both forces and contain both 

displacements, the one on the solid and the one in the fluid, which are coupled. 

The solution to these equations can be derived by applying decoupling techniques, yielding 

the dispersion relations [155] of the three propagation modes. Here, only the result of these 

techniques is presented. The dispersion relation for the pressure waves is quadratic and 

therefore it has two roots, one solution being the fast wave and one being the slow wave 

[165]. The velocities can be represented as a function of the material constants: 
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 𝒄𝑷𝟏, 𝑷𝟐 =
𝜟±√𝜟𝟐−𝟒(𝝆𝟏𝟏𝝆𝟐𝟐−𝝆𝟏𝟐

𝟐 )(𝑷𝑮𝑬𝑷𝑹𝑮𝑬𝑷−𝑸𝑮𝑬𝑷
𝟐 )

𝟐(𝑷𝑮𝑬𝑷𝑹𝑮𝑬𝑷−𝑸𝑮𝑬𝑷
𝟐 )

, (33) 

 𝒄𝑺 = √
𝑵𝑺𝝆𝟐𝟐

𝝆𝟏𝟏𝝆𝟐𝟐−𝝆𝟏𝟐
𝟐 . (34) 

Here, we have Δ = 𝑃𝐺𝐸𝑃𝜌22 + 𝑅𝐺𝐸𝑃𝜌11 − 2𝑄𝐺𝐸𝑃𝜌12 and 𝑁𝑆 is the shear modulus. The mass 

coefficients 𝜌11 and 𝜌22 as well as the fluid-solid mass coupling coefficient 𝜌12 can be 

defined as a function of the tortuosity 𝛼, the porosity 𝛽, the density of the solid 𝜌𝑠 and the 

density of the fluid 𝜌𝑓, the effective densities are then given by [165] 

 𝝆𝟏𝟐 = −(𝜶 − 𝟏)𝜷𝝆𝒇, (35) 

 𝝆𝟏𝟏 = (𝟏 − 𝜷)𝝆𝒔 − 𝝆𝟏𝟐, (36) 

 𝝆𝟐𝟐 = 𝜷𝝆𝒇 − 𝝆𝟏𝟐 = 𝜶𝜷𝝆𝒇. (37) 

The generalized elastic parameters (GEP) 𝐴𝐺𝐸𝑃 , 𝑃𝐺𝐸𝑃 , 𝑅𝐺𝐸𝑃, and 𝑄𝐺𝐸𝑃 can be derived from 

Gedanken experiments [170] and related to porosity, bulk modulus of the solid 𝐾𝑠, bulk 

modulus of the fluid 𝐾𝑓, bulk modulus of the porous drained matrix 𝐾𝑏 and shear modulus 

𝑁𝑆 of both the drained matrix and the composite [165] 

 𝑨𝑮𝑬𝑷 = 𝑲𝒃 − 𝟐𝑵𝑺/𝟑 + 𝑲𝒇(𝟏 − 𝜷 − 𝑲𝒃/𝑲𝒔)²/𝜷𝒆𝒇𝒇, (38) 

 𝑷𝑮𝑬𝑷 = 𝑨𝑮𝑬𝑷 + 𝟐𝑵𝑺, (39) 

 𝑸𝑮𝑬𝑷 = 𝜷𝑲𝒇(𝟏 − 𝜷 − 𝑲𝒃/𝑲𝒔)/𝜷𝒆𝒇𝒇, (40) 

 𝑹𝑮𝑬𝑷 = 𝜷𝟐𝑲𝒇/𝜷𝒆𝒇𝒇, (41) 

where 𝛽𝑒𝑓𝑓 = 𝛽 + 𝐾𝑓/𝐾𝑠(1 − 𝛽 − 𝐾𝑏/𝐾𝑠). It is important to note that each wave (P1, P2, S) 

propagates simultaneously in the pore fluid and the frame. 

2.2.4.4 High-frequency range 

The high-frequency range is defined by 𝑓 > 𝑓𝑡 was described by Biot in 1956 [156]. Here, 

the breakdown of Poisseuille flow (laminar flow) within the pores is assumed. The presented 

theory has an upper bond for its validity, which is the frequency at which the wavelength is 

in the order of the pore size. As in the low-frequency range, two pressure and one shear 

wave exist in the high-frequency range. The second kind of pressure (P2) wave is extremely 

attenuated and may not be observable in most cases. 
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Since in this work, materials with considerably small pore size will be studied at 

comparatively low frequencies, i.e., below the transition frequency 𝑓𝑡, where the pressure 

wave of the second kind (P2) is still observable, the high-frequency range of Biot’s theory 

will not be covered here in detail. The interested reader may refer to the original work, 

published by Biot in 1956 [156]. 

2.2.5 Attenuation and scattering of sound waves 

When waves propagate through any media, energy is removed from the waves by inelastic 

mechanisms. Attenuation can arise from internal friction or energy absorption in material 

and may be, as well as propagation velocity, a function of frequency. Thus in dispersive 

media, magnitude reduction and pulse spreading are observed [136]. Magnitude reduction 

does significantly originate from scattering. The associated process is considered as a 

sound wave being reflected from an inhomogeneity within the medium, often called a 

reflector. Basic scattering theory is built around Huygens’s principle that states that a plane 

wave front can be approximated as an infinite number of spherical waves originating from 

sources, arranged in a straight line [136] (p 338). Following this idea, scattering on a finitely 

sized object, often called scatterer, can be approximated by placing an infinite number of 

point sources on its surface and considering the resulting wave field as a superposition of 

the incident wave front and the waves originating from the object. The resulting deviation 

from the incident beam means that some of the energy, originally contained in the beam, is 

redirected and potentially dissipated in destructive interference. 

Besides the before discussed case of a homogenous medium with a single scatterer, much 

more complex cases of interaction of sound with the medium occur. The attenuation of 

sound waves has to be considered on different scales, depending on the used frequencies 

and subsequent wavelengths of the sound waves in relation to the size of structural 

inhomogeneity and periodicity of the transversed medium.  

Let’s once again consider the case of a Biot medium. Here, the attenuation mechanism 

depends highly on pore size, fluid viscosity, and wavelength, therefore frequency. For low 

frequencies, P1- and S-wave are barely attenuated because both phases (liquid and solid) 

are coupled [166] (455). “The P2-wave represents a typical relative mode of motion and is 

completely diffusive [and therefore highly attenuated at] low frequencies due to viscous 

effects’ [166] (455). Another loss mechanism is the squirt flow. Unlike the Biot mechanism, 

“losses due to squirt flow [...] result from the local flow of viscous fluid into and out of micro 

cracks during the passage of an acoustic wave” [171]. Dvorkin and Nur [172] studied the 
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dependency of attenuation on viscosity and frequency in a fluid-saturated, porous medium. 

In their calculations, the frequencies at which the attenuation due to these two loss 

mechanisms peaks showed the opposite behavior. It can therefore be concluded that in a 

given medium and at a certain frequency only one of the two mechanisms is dominant or 

even in a relevant order of magnitude. Which of the mechanisms is adequate to describe 

the dispersion of velocity and attenuation depends on the nature of the medium. It was 

reported that the Biot model is most suitable for porous media with high permeability, while 

the squirt flow is best for media with a low permeability [171]. Here, permeability refers to 

the property of a porous medium, allowing gases or liquid to pass through it. At higher 

frequencies, the attenuation is then dominated by the inertia of the system that couples the 

movement of solid particles and liquid [165]. 

2.2.6 Generation and reception of Ultrasound 

For the use of sound in non-destructive evaluation, it is necessary to excite and detect 

sound waves in the specimen. This task is usually performed by a transducer, acting either 

as an actuator or sensor. Sound waves can be generated in various ways that can be 

grouped into mechanical, electromechanical (piezoelectric), magnetostrictive [173], and 

optically induced methods. In today’s application, the following are playing an important 

role:  

• Piezoelectric transducer 

• Electromagnetic acoustic transducer, e.g., [174] 

• Laser ultrasonic, e.g., [175] 
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2.2.6.1 Piezoelectricity 

 

Figure 2.13: On piezoelectricity in Quartz crystal. a) no external load – no charge induced, b) 

compression due to an external force applied – charge induced, c) expansion due to an 

electric field. Graph after [176].  

The most commonly used among these methods of ultrasound generation is the 

piezoelectric effect. Piezoelectricity can be translated as “pressure electricity” and describes 

the occurring charge induced on opposite faces of a crystal, with an asymmetry in its lattice 

structure, under mechanical pressure. It was originally discovered by J. and P. Curie in 1880 

in Quartz crystals [176]. 

For sound generation, the inverse piezoelectric effect is used: When a piezoelectric material 

is placed as the dielectric between the two plates of a capacitor, thickness expansion or 

compression can be observed, depending on the direction of the applied electric field. For 

the static case, the relation of applied electric field and resulting deformation and vice versa 

can be expressed by 

 𝑺𝑫 = 𝒅𝑷𝑬𝑬𝑭, (42) 

 𝑫𝑭 = 𝒅𝑷𝑬𝑻𝑴, (43) 

where 𝑆𝐷 is the deformation, 𝐸𝐹 is the electric field strength, 𝐷𝐹 is the electric displacement 

field, 𝑇𝑀 is the mechanical tension, and 𝑑𝑃𝐸 is the piezoelectric proportionality constant 

[176]. The dimensional change in thickness is usually accompanied by contraction or 

expansion in the plane perpendicular to the axis in which the electric field is applied [176]. 

When an alternating field is applied to a circular piezoelectric plate, thickness and radial 

oscillations are the results. By bringing the plate in contact with a sample, the oscillation is 

transferred to the sample and travels as ultrasonic waves through the material [136]. Radial 
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and thickness oscillation components excite different wave modes and therefore transducer 

design is usually adjusted to favor the preferred component and frequency. The resonance 

frequency, at which a piezoelectric element oscillates along a certain axis, depends on the 

frequency constant and the dimensions 𝑑𝑥𝑑𝑟 along this axis (the subscript “xdr” stands for 

"transducer”). The frequency constant correlates directly with the speed of sound 𝑐0 in the 

piezoelectric material. To achieve resonance at the desired frequency 𝑓0, the dimension 

𝑑𝑥𝑑𝑟 is chosen to fit half a wavelength and is calculated according to 𝑑𝑥𝑑𝑟 = 𝜆/2 = 𝑐0/(2𝑓0). 

Therefore, the frequency constant can be estimated to be half the speed of sound (along 

the given crystal axis of the piezoelectric crystal). 

2.2.6.2 Piezoelectric transducers 

  

Figure 2.14: (a) Interference of a sound field emitted by an ideal piezoelectric plate between 

rigid walls according to Huygens’ Principle. For this idealized example, the piezoelectric plate is 

oscillating in thickness only and therefore moves similarly to a piston. From the interference 

pattern, the near field length can be obtained. Graph after [139] (p 58). (b) Profile of the sound 

pressure at varying distances from the source transducer in the near-field (green) and far-

field (blue). The dotted, orange line shows the pressure at the axis of the transducer as a function 

of distance. Graph according to [177]. 

The field emitted by a piezoelectric plate in thickness oscillation mode under continuous 

excitation can be constructed by applying Huygens’ Principle to an ideal piston oscillator 

[139]. An exemplary sketch with a ratio of plate diameter 𝐷𝑥𝑑𝑟 to wavelength 𝜆 of 𝐷𝑥𝑑𝑟/𝜆 =

6 is displayed in Figure 2.14 a). The distance 𝑁𝐹 at which the field of sound is not any more 

dominated by the interference effects can be calculated to be [136] 
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 𝑵𝑭 =
𝑫𝒙𝒅𝒓

𝟐 −𝝀²

𝟒𝝀
 (44) 

and does coincide with the last main maximum of the interference field (not shown). The 

part of the field that is dominated by this effect is called the near-field, while the interference-

free adjacent field is called the far-field. 𝑁𝐹 is very often called near field length and can be 

approximated as [136,150]  

 𝐥𝐢𝐦
𝝀≪𝑫𝒙𝒅𝒓 

𝑵𝑭 =
𝑫𝒙𝒅𝒓

𝟐

𝟒𝝀
 (45) 

provided that the wavelength is small compared to the diameter of the piezoelectric plate. 

For our chosen example in Figure 2.14 a), 𝑁𝐹 ≈ 9𝜆. This value represents a rough 

approximation and does not represent a sharp border [139]. 

Depending on the distance to the plate, the sound pressure profile can vary significantly. In 

the near field, some pressure profiles show a minimum and other a maximum on the axis 

of transduction (green lines in Figure 2.14 b). While in the far-field, the profile is of bell shape 

with a maximum on the axis (blue lines). Also, as shown in Figure 2.14 b), the pressure on 

the axis (orange dashed line) periodically varies in the near field as a function of radial 

distance from the transducer, and then homogeneously falls off in the far-field [139]. The 

measured sound pressure in the nearfield range does strongly depend on the lateral and 

radial distance from the source. Therefore, in most NDT applications, either a section of 

homogeneous material, a so-called forward member, delay line or wedge, is placed 

between transducer and sample, or the experiment is designed in such a way that the region 

of interest (ROI) lies in the far-field range. 

To form a transducer, one or more piezo plates are combined with a mounting, eventually 

braced with an acoustic impedance matching and a backside dampening material in a 

casing [176]. In NDT, such a transducer is brought in contact with the sample of interest. 

Very often, it is sufficient to use light pressure to maintain good contact of transducer and 

sample, but, e.g., surface roughness may require the aid of a coupling agent or couplant 

[139]. Such might be oil, gel, water, or glue, e.g., an epoxy resin, if a permanent coupling is 

desired. In manual testing scenarios, a removable coupling agent and, therefore, reversible 

coupling is preferred. For automated testing, a water or oil bath, in which transducer(s) and 

the sample are submerged [165], is frequently used. In the case of structural health 

monitoring (SHM), it is common to permanently mount transducers on the structure of 

interest or to integrate them [140].  
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To match the requirements of the desired application, the excitation of the transducer to 

emit ultrasound may vary [150]. On the one hand, there is single-pulse excitation such as 

spike pulse, square wave pulse, or step pulse [150] and on the other hand, there are more 

arbitrary waveforms such as bipolar tone burst, raised cosine, continuous mono-frequency, 

or frequency sweeping sinusoidal, often called chirp [178]. To match the needs of the 

application and to allow for fine-tuning of the frequency spectrum, waveforms are also 

filtered through the application of windowing functions. 

To detect ultrasound, in most cases the piezoelectric effect is used. Piezoelectric 

transducers can be used multipurpose in most applications, acting as actuators and 

sensors. If the pressure distribution at the surface of a sample is of interest, laser vibrometry 

can be used to detect the oscillation of a surface at the incident of an ultrasonic wave [175]. 

To do so, the interferometer principle is used to detect the distance of the detector to a point 

on a sample surface and the movement thereof. 

2.2.6.3 Estimation of bandwidth 

The ability of a transducer to both, generate and detect ultrasound, is described by its 

frequency spectrum. The spectrum allows estimating the resonance frequency and the 

sensitivity frequency range of the transducer. This range is quantified by the bandwidth. In 

the time of flight (ToF) estimation, the bandwidth is a limiting factor to the time resolution. 

Narrow bandwidth transducers emit wide pulses and thus introduce a larger inaccuracy in 

ToF estimation. In contrast, wideband transducers allow for narrow pulses and high ToF 

estimation accuracy [139]. 

The frequency spectrum in question can be calculated by Fourier transformation from a field 

or energy quantity of a signal, e.g., the pulse-echo or transmission signal through a known 

sample. In the here discussed case, the voltage present at the electrical connections of a 

transducer is a result of the pressure applied by the sound wave to the piezoelectric 

material. Pressure and voltage are considered field quantities. The energy and power 

transported by the signal are proportional to the square of the amplitude. The energy is 

calculated by integrating the power of the signal over its duration. Depending on application, 

it might be beneficial to study the spectra of field or energy/power quantities. Very often, the 

power spectral density (PSD) of a signal is of special interest. Since spectra are plotted in 

logarithmic “dB” scale, the squaring of the amplitude to calculate energy and power 

introduces a factor of two, if the scales of the two quantity types are compared. Generally, 
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as depicted in Figure 2.15, the -3 dB criteria is taken to estimate the bandwidth [179]. The 

points within the spectrum where this amplitude criteria is met are denoted frequencies 𝑓a 

and 𝑓𝑏. Depending on whether it is a spectrum of field quantity or energy / power quantity, 

frequencies 𝑓2 and 𝑓3 or 𝑓1 and 𝑓4 have to be considered, respectively.  

 

 

Figure 2.15: A typically bell-shaped spectrum of an ultrasonic transducer. The bandwidth is 

usually estimated based on the -3 dB criteria. From the spectrum, the peak frequency 𝑓𝑝 and the 

distance of the two intersections with the -3 dB line are taken. When the spectrum is plotted as field 

quantity (voltage or pressure), this equals 1/√2 = 0.7071 (𝑓2 and 𝑓3) and in the case of energy or 

power spectrum, the full width at half the maximum (𝑓1 and 𝑓4) is taken. 

The center frequency 𝑓𝑐 is then calculated by arithmetic mean 

 𝒇𝒄 =
𝒇𝒂+𝒇𝒃

𝟐
, (46) 

as well as the absolute bandwidth [139] 

 𝑩𝒂𝒃𝒔 = 𝒇𝒂 − 𝒇𝒃, (47) 

and the relative bandwidth 

 𝑩𝒓𝒆𝒍 =
𝒇𝒂−𝒇𝒃

𝒇𝒄
𝟏𝟎𝟎%. (48) 

The dampening of the piezo element within the transducer affects the bandwidth and the 

shape of the resonance peak. At comparably low dampening, the piezo element’s oscillation 

decays slowly and a narrow resonance peak with comparably high amplitude is observed 

[139]. The bandwidth is symmetrical around the peak frequency [139]. Therefore, 

narrowband transducers are best suited for high-sensitivity applications. At comparably high 

dampening, the opposite effect is observed, e.g., the oscillation decays quickly and a broad 
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resonance peak is measured. Additionally, the bandwidth tends to become asymmetrical at 

high dampening, which is described by the skewness 

 𝒇𝒔𝒌 =
𝒇𝒑−𝒇𝒂

𝒇𝒃−𝒇𝒑
. (49) 

2.3 Digital signal processing (DSP) 

Digital signal processing (DSP) allows a scalable and very flexible approach for the 

processing of measured data in a digitalized environment. With linear time-invariant 

systems, DSP also offers a representation and, thereby, a unique angle of access to 

physical measurement processes. This section aims to give a detailed insight on the basics 

of digital signal processing, necessary to understand the operations performed on the 

sampled data in this work. Therefore, the sampling theorem, the concept of frequency 

representation, and linear time-invariant systems are introduced. The latter is required to 

obtain the time of flight (ToF) from an ultrasonic signal, which is the time an ultrasonic wave 

takes to propagate through a sample. The ToF in turn can be used to characterize the state 

of a sample, as the speed of sound in a given medium can be calculated from it, which 

depends on the mechanical properties of the sample. 

2.3.1 Notation convention used in this chapter 

In computer science, it is common to note sampled, discrete signals and quantities with 

square brackets, as in 𝑥[𝑛]. For convenience, signals are handled as one-dimensional 

vectors, where 𝑛 denotes the index of the sampling point. Commonly, 𝑛 takes values from 

the interval [0, 𝑁 − 1], where 𝑁 is the number of sampling points or the length of the signal 

in units of the sampling interval. 

2.3.2 Sampling theorem 

While the world around us is described by continuum physics, its measured representation 

is mostly discrete. In theory, continuum could be approached, but never reached, with an 

infinite number of samples. In practice and as a consequence of limited computational and 

storage capabilities, signals in the time domain are represented by a finite number of 

sampling points N. This conversion of an analog signal to a finite-length sequence of values 

is performed by an analog to digital converter (ADC). According to sampling theory, the 

number of points 𝑁 within a signal of length 𝑇0, thereby the interval 𝑇 = 𝑇0/𝑁 between two 

points and the sampling frequency 𝑓𝑠 = 1/𝑇 have to be chosen in a way that any signal 

ambiguity in the frequency domain is avoided. More precisely, the Nyquist-Shannon 
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theorem states that a signal containing no frequencies higher than 𝑓𝐵 can be completely 

determined by sampling at 𝑓𝑠 ≥ 2𝑓𝐵 [180,181]. The frequency 𝑓𝐵 is often called folding 

frequency. If a signal has a frequency content higher than the folding frequency, oscillations 

with those frequencies may appear in the sampled signal as oscillations with lower 

frequency. This effect is called aliasing and is a consequence of the ambiguity of sampled 

signals in the frequency domain [180]. The signal ambiguity inherent to a sampled signal is 

illustrated in Figure 2.16. The depicted signal contains seven samples which could either 

be interpreted to originate from a 1 Hz or 7 Hz sine wave. 

 

Figure 2.16: Ambiguity of a sampled signal, consisting of seven sampling points. By choosing 

a sampling rate (6 Hz) lower than the frequency of the sinus in the original signal (7 Hz, orange line), 

the sampled signal appears with a different frequency (1 Hz, blue line). Graph according to [180]. 

2.3.3 The discrete Fourier transform 

In the case of sampled signals, here represented by squared brackets [ ], the frequency 

domain representation obtained by the continuous Fourier transform (Equation (18) or (50))  

 𝐗(𝛚) =
𝟏

√𝟐𝛑
∫ 𝐱(𝐭) 𝐞−î 𝛚𝐭+∞

−∞
𝐝𝐭, (50) 

with a signal 𝑥(𝑡) and its Fourier transform 𝑋(𝜔) can be rewritten as a sum of a finite number 

of oscillations N, the discrete Fourier transform (DFT) [182] 

 𝑿[𝒌] = ∑ 𝒙[𝒏]𝒆−
𝒊𝟐𝝅𝒌𝒏

𝑵𝑵−𝟏
𝒏=𝟎 , 𝒌 = 𝟎, 𝟏, … , 𝑵 − 𝟏, (51) 

with 𝑥[𝑛] being the amplitude of the signal 𝑥(𝑡) at a given sampling point within the discrete 

time sequence at index n, whereas k is the frequency index, corresponding to N computed 

DFT coefficients [182] 
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 𝒄𝒌 =
𝟏

𝑵
∑ 𝒙[𝒏]𝒆−

𝒊𝟐𝝅𝒌𝒏

𝑵𝑵−𝟏
𝒏=𝟎 , 𝒌 = 𝟎, 𝟏, … , 𝑵 − 𝟏. (52) 

In the frequency domain, the resulting sampling interval becomes Δ𝑓 = 𝑓𝑠/𝑁 implying that 

a higher resolution can be obtained with a longer, sampled signal. Analogically to the 

continuous case, an inverse discrete Fourier transform can be defined as [182] 

 𝒙[𝒏] =
𝟏

𝑵
∑ 𝑿[𝒌]𝒆

𝒊𝟐𝝅𝒌𝒏

𝑵
𝑵−𝟏
𝒌=𝟎 , 𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏. (53) 

Besides the amplitude spectrum 𝑋[𝑘], the power spectrum 𝑃[𝑘] = |𝑋[𝑘]|2/𝑁² is of technical 

relevance and often used [182]. The DFT can be efficiently computed by the fast Fourier 

transform (FFT) algorithm but requires the sampled signal to have a length equal to a power 

of 2 [182]. To achieve this, signals are very often cropped or zero-padded. Zero paddings 

involve adding zeros to the digital signal representation, thereby enlarging the number of 

sampling points and reducing sampling size Δ𝑓. While this equals an interpolation between 

frequency bins and makes the identification of inherent frequencies of an oscillation easier, 

it does not involve additional spectral information [182]. For a detailed discussion on the 

effect of zero paddings, the reader may be redirected to [183]. The application of FFT is 

based on the validity of the following assumptions for a given signal: 

1. The input signal is periodic to itself (repeats itself) 
2. The input signal is continuous in itself 
3. The input signal does not contain frequencies higher than the folding frequency, 

equal to half of the sampling frequency 

Especially the criterion of continuity is very often violated in non-preprocessed data and 

results in spectral leakage. The effect of spectral leakage shall be illustrated in Figure 2.17 

with an example of the cosine of a frequency 𝑓0 = 2 Hz, sampled at 𝑓𝑠 = 50 Hz. While we 

expect the FFT to solely contain the single frequency component 𝑓0, the DFT peaks at the 

frequency bin of 2 Hz but does also contain other frequency components. 
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Figure 2.17: Cosine at 2 Hz (left), cosine sampled at 50 Hz (middle), and discrete Fourier 

transform of a non-continuous section of the cosine (right). The chosen section of the original 

signal exhibits a discontinuity when connecting the start and end point of the signal, leading to the 

frequency leakage, displayed on the right. Recreated following an example, published at [184]. 

This observation can be traced back to the discontinuity of the selected section, exhibiting 

a big jump from -0.78 to +1.0 under the application of the first assumption that the input 

signal represents a single period of a periodic signal, and fusing end to start. The resulting 

step contains a wide distribution of frequencies, similar to a rectangular step function. 

Therefore, the bigger the discontinuity, the bigger the spectral leakage becomes. 

Discontinuities in the input signal can be avoided either by choosing a section of the signal 

equal to a whole period, as shown in Figure 2.18, where the DFT peaks solely at ±2 Hz, as 

expected. Another option is windowing the input signal in such a way that the first and the 

last point of the signal can be joint together continuously. Usually, this is performed by a 

function that smoothly tapers off to zero at both ends [182]. A common example for the 

application of the DFT is the calculation of the power spectral density of a signal. Here, the 

squared amplitude of a signal is Fourier transformed to estimate the different frequency 

components of the signal. 

 

Figure 2.18: Continuous section of a cosine at 2 Hz, sampled at 50 Hz (left) and discrete 

Fourier transform of this section (right). As expected from a function, containing a single 

frequency component, the DFT does only peak at 2 Hz. Recreated following an example, published 

at [184]. 
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2.3.4 Linear time-invariant systems (LTI) 

 

Figure 2.19: Sketch of a simple system interacting with a signal. Passing an input 𝑥[𝑛] of 𝑛 

samples results in an output 𝑦[𝑛]. 

Linear time-invariant systems (LTI systems), also called linear systems with shift-invariance, 

play a very important role in our digital world. They provide the framework for most digital 

signal processing (DSP) operations and systems since those rely both on the assumption 

of linearity and time invariance. Time or shift-invariance refers to a system's property to 

react in the same way to a disturbance or input at any given time and thus is invariant 

towards a shift in time. Linearity is a bit more difficult to describe. It has several requirements 

[181] such as homogeneity and additivity. Homogeneity means here that a change in the 

input signal’s amplitude yields a corresponding change of the output signal’s amplitude 

[181]. A system inherits additivity if two added signals pass through the system without 

interaction. When considering such a system and two arbitrary signals 𝑥1[𝑛] and 𝑥2[𝑛] 

resulting in 𝑦1[𝑛] and 𝑦2[𝑛], respectively, passing 𝑥1[𝑛] + 𝑥2[𝑛] through the system results 

in 𝑦1[𝑛] + 𝑦2[𝑛] [181]. 

Linearity results in properties, which come in very handy for DSP applications. Some of 

these properties are commutativity (the order in which a signal is processed by several 

linear systems is interchangeable and still leads to the same result), linearity on 

multiplication (depending on the multiplier, multiplication by a constant is linear, 

multiplication by another signal is not) and superposition. The latter can be seen as the 

basis for DSP, as the concept of superposition implies that a signal can be composed of a 

sum of other, potentially less-complex signals. So the interaction of a system with a complex 

signal can be broken down into multiple interactions with simpler signals and thus allowing 

to understand the system more easily [181].  

Examples for linearity are wave propagation, electrical circuits (consisting of R (resistance), 

C (capacitance), L (inductance) elements), electronic circuits, e.g., amplifiers and filters, 

signal changes such as echoes, resonance or blurring, convolution, and small perturbations 

in otherwise non-linear systems [181]. Battery cells can also be understood, depending on 

magnitude of the perturbation of the system as both, as linear and non-linear systems. The 

application of a small perturbation to this system is the basis for electrochemical impedance 

spectroscopy (EIS), where the response of the system can be modeled as the response of 
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an electrical circuit, consisting of R, C, and L elements. Choosing a too-large perturbation 

of the system, e.g., during EIS, leads to a non-linear response, thus making the modeling 

of the system by an electrical circuit inadequate. But also changing the system’s state by a 

too large quantity of charge, yields a non-linear response, often exhibiting hysteresis, e.g., 

in cell voltage and mechanical properties such as cell thickness. Further examples of non-

linearity are hysteresis and saturation [181]. 

The combination of signals by scaling and addition is called synthesis. The inverse 

operation is called decomposition. In DSP two main ways of decomposition exist: impulse1 

decomposition and Fourier decomposition. The topic of Fourier decomposition was already 

touched in a previous chapter. Impulse decomposition breaks a signal consisting of 

𝑁 samples into 𝑁 signals, each consisting of a single impulse. Each of these consists of a 

single non-zero value, and 𝑁 − 1 zero values. This allows to study the interaction of a 

system with a signal one sample at a time, paving the way for the concept of convolution 

[181], which will be discussed next. 

2.3.5 Convolution and deconvolution 

Mathematically, convolution combines two signals [181] and can be described as a “shift-

and-multiply” operation. As represented by Equation (54), one signal 𝑥1(𝑡) is multiplied 

point-by-point with a shifted version of the second signal 𝑥2(𝑡) and integrated over the 

signal’s length. For convolution the shift variable 𝜏 is the integration or summation variable 

and 𝑡 the index variable. 

 

 

1 The word „impulse“ is used in this work in the context of digital signal processing. Therefore, it 
refers to the impulse function, a brief input signal, e.g., the Dirac delta function. It is explicitly 
distinguished from the change of momentum of an object in mechanics. It is not synonymous with 
the “pulse” in digital signal processing, which is defined as the change of a signals amplitude from 
baseline to a higher value, followed by the return to baseline. 



2 State of the art & theoretical background 

54 

𝒄∗(𝒕) = (𝒙𝟏 ∗ 𝒙𝟐)(𝒕) = ∫ 𝒙𝟏(𝝉)
∞

−∞

𝒙𝟐(𝒕 − 𝝉)𝒅𝝉 
(54) 

= ∫ 𝒙𝟏(𝒕 − 𝝉)
∞

−∞
𝒙𝟐(𝝉)𝒅𝝉. 

In the discrete case, this process is then repeated for different shifts [185]. Each point of the 

convoluted signal is calculated this way [181,186]: 

𝒄∗[𝒏] = (𝒙𝟏 ∗ 𝒙𝟐)[𝒏] = ∑ 𝒙𝟏[𝒎] 𝒙𝟐[𝒏 − 𝒎]
∞

𝒎=−∞
 

(55) 

= ∑ 𝒙𝟏[𝒏 − 𝒎] 𝒙𝟐[𝒎]∞
𝒎=−∞ . 

Here, 𝑚 denotes the shift in units of sampling points, and 𝑛 the index variable. The star ∗ is 

used as a symbol for the convolution operator. There are two options to calculate the 

discrete convolution – point-by-point multiplication and summation in the time domain, as 

stated above, or point-by-point multiplication in the Fourier space [185]. Equation (56) 

expresses the operation that has to be carried out for all 𝑁 elements with index 𝑘. The 

calculation in the Fourier space is beneficial regarding computational effort for signals with 

a large sample size. 

 𝑪∗[𝒌] = 𝑿𝟏[𝒌] ∙ 𝑿𝟐[𝒌] for all 𝒌 ∈ [𝟎, 𝑵 − 𝟏], (56) 

with k being the frequency index, corresponding to N computed DFT coefficients. 

2.3.5.1 Representation of measurement processes by convolution 

The convolution is such a useful tool, because it describes effects well that occur in scientific 

measurements [185]. Examples of those effects include the effect of a detector on a 

measured spectrum in optics or ultrasonics and the interaction of a soundwave with a 

medium it is passing through. Before detailing how measurement processes are described 

in this formalism, the concept of impulse decomposition is important to mention first. 

Impulse decomposition refers to the process of splitting a 𝑁-sampled signal into 𝑁 impulses. 

Those are characterized by 𝑁 − 1 zero values and a single non-zero value. The delta 

function, often symbolized by the Greek letter 𝛿[𝑛], is a prominent case of an impulse, as 

its first sample has a value of one and all other samples are zero. Therefore, it is also often 

called the unit impulse. To determine the behavior of a system completely, it is sufficient to 

know its response to the unit impulse [181]. Therefore, the system is characterized by the 



2 State of the art & theoretical background 

55 

impulse response ℎ[𝑛], which is the signal that results from passing the unit impulse through 

the system. This operation is sketched in Figure 2.20. 

 

Figure 2.20: Definition of the delta function and the impulse response of a linear system to 

such an impulse. Graph after [181]. 

Having the aforementioned properties homogeneity and shift-invariance of an LTI system 

in mind, one can deduct that the response 𝑦[𝑛] of a system to any sampled signal 𝑥[𝑛], 

decomposed into impulses, can be obtained from ℎ[𝑛] as any impulse can be seen as a 

scaled and shifted delta function [181]. This process is performed by executing the 

convolution of the input signal 𝑥[𝑛] and the impulse response ℎ[𝑛] as depicted in Figure 

2.21. Convolution is performed either in the time domain or in the Fourier space as 

represented in Equations (57) and (58). 

 

Figure 2.21: Usage of convolution in DSP to represent a measurement process. The output 

signal is equal to the input signal convolved with the impulse response of the system. This 

mathematical operation can be performed either by sample-wise multiplication and summation in the 

time domain or by element-wise multiplication in the Fourier space, as implied by the equations 

below. Graph after [181].  

 𝒙[𝒏] ∗ 𝒉[𝒏] = 𝒚[𝒏] (57) 

 𝑿[𝒌] ∙ 𝑯[𝒌] = 𝒀[𝒌] (58) 

Here, the capital-letter variables refer to the Fourier transforms of the input signal, impulse 

response, and output signal, while 𝑘 is the frequency index, corresponding to 𝑁 computed 

DFT coefficients [182]. Depending on the application, several synonyms for the impulse 

response exist – kernel, filter kernel 𝑓[𝑛], convolution kernel or point spread function (in 

image processing) [181]. 
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Figure 2.22: Representation of a real measurement process by convolution, including the 

superposition of additive noise.  

In real applications, however, the physical measurement process always involves the 

superposition of the desired signal with additive noise 𝜂[𝑛]. The general case is depicted in 

Figure 2.22 and expressed in the following equations for the time and frequency domain 

[187–190]: 

 𝒙[𝒏] ∗ 𝒉[𝒏] + 𝜼[𝒏] = 𝒚[𝒏] (59) 

 𝑿[𝒌] ∙ 𝑯[𝒌] + 𝚴[𝒌] = 𝒀[𝒌] (60) 

Convolution can also be used to describe the propagation of sound through a sample. An 

exemplary case is sketched in Figure 2.23. Any sample has geometric boundaries, at which 

discontinuities of the acoustic impedance occur. Additional discontinuities may be present 

within the sample, e.g., at interfaces between layers or sites of manufacturing imperfections. 

At each discontinuity, the incident wave is partially transmitted and partially reflected, as 

described by Equation (12). In the ideal case, where the speed of sound is frequency 

independent and uniform throughout the whole sample, the occurrence of reflection in the 

transmitted or reflected signal can be directly correlated with the position of discontinuities 

within the sample [191]. Then it is convenient to define a reflectivity 𝑟[𝑛]. This reflectivity 

consists of delta peaks at positions coinciding with the sites of those discontinuities and the 

time of flight of respective echoes [191] (see Figure 2.23). The measured signal results from 

the convolution of the reflectivity with the impulse response and subsequent superposition 

with noise, as sketched in the bottom half of Figure 2.23. This representation can serve as 

a basic model to simulate acoustic interrogation measurements or as a model for 

deconvolution, which aims to converse the measurement process and receive an estimate 

of the reflectivity. In ultrasonic interrogation use cases, the “system” is the whole 

measurement chain of sending transducer, sample, receiving transducer, and exciting / 

recording electronic (compare next subchapter). This system generates an impulse 

response to an input signal, e.g., a needle pulse – mimicking the ideal Dirac delta pulse. 

The impulse response of the system – the exact waveform – is very often not known and 

therefore, has first to be estimated from the measured, noisy signal. Then, in a second step, 

reflectivity can be obtained. This process is called blind deconvolution [192]. 



2 State of the art & theoretical background 

57 

 

Figure 2.23: Convolution model for acoustic measurement. The top half of the graph shows 

schematically the transmission of sound waves emitted by the transmitter, traveling through the 

homogenous sample and detected by the receiver. As discontinuities in acoustic impedance occur 

at the sample’s boundaries, the sound wave is reflected at each boundary. Therefore, one directly 

transmitted pulse T1 and subsequent multiple times reflected pulse R1 can be observed in the 

transmission signal. The bottom half of the graph shows a sketch of the involved measurement 

process. It is represented by the convolution of the reflectivity with the impulse response, here being 

the wave package sent out by the transmitter, and the superposition of noise. Graph after [191]. 

2.3.5.2 Deconvolution - a method to obtain the input signal of an LTI 

In general, deconvolution is the inverse of convolution, as division is the inverse of 

multiplication [185]. Deconvolution is therefore calculated by point-by-point division of the 

Fourier transforms of the involved signals and then inverse transforming the result [185], 

while conserving the phase information. In most applications, it is desired to estimate the 

input signal or reflectivity, e.g., to increase the accuracy of time of flight measurement. The 

straightforward approach would be to deconvolve the measured signal 𝑌[𝑘] by naïve 

division of the Fourier transforms [190,192]: 

𝑿′[𝒌] =
𝒀[𝒌]

𝑯[𝒌]
= 𝑿[𝒌] +

𝚴[𝒌]

𝑯[𝒌]
. (61) 

This approach relies on the correct representation of the physical convolution by the 

mathematical convolution model and a good estimate of the impulse response 𝐻[𝑘]. Noise 

may be present before and after the physical convolution, while the latter is more 

detrimental to the result [185]. Referring to the use case of ultrasonic NDT, noise can occur 
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after the conversion of the acoustic wave package to an electrical signal within the 

piezoelectric material of the receiving transducer - in the pathway of the signal until its 

analog-to-digital conversion. In the estimation of the input signal 𝑋′[𝑘] by naïve division, the 

noise Ν[𝑘] is greatly amplified, as sketched in Figure 2.24. 

Detectors or receivers in real physical measurements are band-limited – they do not 

possess a uniform frequency distribution like a Dirac delta – and therefore the 

corresponding impulse response functions are band-limited, e.g., have next-to-zero or zero-

valued entries at low and high frequencies. Thus, the division of 𝑌[𝑘] by 𝐻[𝑘] leads to an 

over-amplification of the noise [192], present in the frequency range outside of the 

bandwidth (compare sections of the spectra in Figure 2.24, marked with red ellipses). The 

calculation may even fail if some components of the impulse response contain zeros 

because the zero-point division is not permitted [185]. One has to understand that the exact 

frequency distribution of Ν[𝑘] is unknown for a specific measurement and has to be 

estimated based on assumptions. Nevertheless, its expectation (in a statistical sense) can 

be determined by measurement and analyzing the statistical distribution, e.g., to verify the 

assumptions that the noise is (Gaussian) white and independent of the input signal, which 

is usually the underlying assumption. “White” in this context refers to a uniform value at all 

freuqencies. 

 

Figure 2.24: Sketch of deconvolution by naïve division, as expressed in Equation (61). The 

signals from Figure 2.23 are represented in the Fourier domain. In this example, 𝑋[𝑘] is a Delta 

function and has uniform value at all frequencies (is “white”), 𝑌[𝑘] consist of a Gaussian-like shaped 

peak and an added noise component. The noise Ν[𝑘] is assumed white and is therefore uniformly 

distributed over all frequencies. The impulse response 𝐻[𝑘] is also bell shaped and has next-to-zero 

or zero valued entries outside of the frequencies, contained in the wave package, as marked by the 

red circles. Therefore, the point-by-point division of 𝑌[𝑘] by 𝐻[𝑘] leads to artefacts in the estimate 

𝑋′[𝑘] caused by an over-amplification of the noise component at indices 𝑘, corresponding to high 

and low frequency, or will lead to failure because zero point division is not permitted [185]. 
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The amplification of noise can be reduced by several measures, a first step usually includes 

adding a small positive non-zero constant to the impulse response [185]. This eradicates 

zero or next-to-zero values, especially at higher frequencies, without changing the entries 

of the impulse response for lower frequencies at large [193]. Smoothing or bandpass 

filtering can further reduce the amplitude of frequencies that are amplified the most [185]. 

Another way is to introduce a regularization parameter in the inverse filter, performing the 

deconvolution of the signal [188]. The most prominent example of such a filter is the Wiener 

filter [192,194]. It was named after Norbert Wiener and is not to be confused with the Wien 

filter (a velocity filter for charged particles using perpendicular electric and magnetic fields) 

or the Wien bridge (a type of bridge circuit, used to measure the capacitance and resistance 

of a component by comparison to known components). Besides improving the signal-to-

noise ratio (SNR), the Wiener filter is used in time of flight estimation application to increase 

time resolution and is especially useful if echoes in the measured signal are closely spaced. 

The commonly accepted definition of the filter is [187,190,195]: 

 𝑿′[𝒌] = 𝒀[𝒌]
𝑯∗[𝒌]

|𝑯[𝒌]|𝟐+𝑸𝑾𝒊𝒆𝒏𝒆𝒓
𝟐 . (62) 

Here, 𝐻∗[𝑘] denotes the complex conjugate of 𝐻[𝑘] and 𝑄𝑊𝑖𝑒𝑛𝑒𝑟
2  denotes the regularization 

parameter, which is sometimes called the “noise desensitizing factor” [195] and is supposed 

to stabilize the solution [187]. Note that the complex conjugate of a complex number is that 

number with the sign of the imaginary part reversed. Originally, the 𝑄𝑊𝑖𝑒𝑛𝑒𝑟
2  parameter is the 

inverse of the signal-to-noise ratio 1/𝑆𝑁𝑅[𝑘] = 𝑆Ν[𝑘]/𝑆𝑋[𝑘]. Here, 𝑆𝑋[𝑘] and 𝑆Ν[𝑘] are the 

power spectral densities of respectively the input signal 𝑥[𝑛] and the noise Ν[𝑘]. Because 

estimating this parameter in practice is rarely possible, it is commonly replaced by a 

frequency-independent constant 10−2 ∙ |𝐻[𝑘]|𝑚𝑎𝑥
2  [195]. Even though the Wiener filter is 

said to be an optimal filter, the quality of the estimated input signal depends on the 

bandwidth of the impulse response, or in our example, the estimation of the reflectivity 

(sharpness/width of the peaks) depends on the bandwidth of the acoustic pulse [187]. The 

wider the bandwidth in the Fourier domain is, the sharper the pulse can be in the time 

domain. Frequency content outside of the bandwidth is usually cut and therefore the 

contained information is lost and cannot be recovered with the Wiener filter [187], which 

leads to a finite obtainable time resolution. 

There are several options to improve the Wiener filter result by integrating a priori 

information, e.g., on the reflectivity or estimates from the measured signal. A priori 

information can detail the impulse response function of the LTI or the input signal. In the 
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case of acoustic interrogation, this can include an estimate of the acoustic pulse or a model 

for the reflectivity. Reflectivity is often modeled as a sparse spike train in a Bernoulli-

Gaussian process [187,196–199], where the count, height, and position of the spikes in the 

reflectivity are varied to find an optimized deconvolution result. Since using an impulse 

response that represents the physical convolution operation well yields the best 

deconvolution result, the acoustic pulse is often estimated from the measured data. This 

can include the use of higher-order spectral analysis [192] or autoregressive spectral 

estimation (ASE) [195,200]. The latter builds on the assumption that a part of the measured 

signal’s spectrum, having a high SNR, can be modeled as an autoregressive process. The 

spectrum is then extrapolated based on this region extending into regions where the SNR 

is low [195] and used as an estimate for the acoustic pulse’s spectrum, effectively increasing 

the bandwidth of the impulse response. Thereby, even a so-called “blind deconvolution” 

without a priori knowledge of the impulse response / the acoustic pulse, only using the 

measured signal, is possible [194,200].  

The before mentioned methods, but especially the ones that pick the pulse from the 

measured signal, rely on the assumption that this pulse represents the pulse used in the 

physical convolution well. This means in particular, that the pulse remains virtually 

unchanged in shape and frequency content when passing through the material – being 

independent in those parameters with respect to propagation distance. This assumption 

requires the attenuation in the interrogated material to be independent of frequency 𝑓, which 

is especially not true for plastics, composite materials [201] and materials made up from 

particles, e.g., particle rich suspension (content > 10%) [202] or particle networks. In [201], 

the authors account for frequency-dependent attenuation and dispersion to achieve a good 

estimate of the reflectivity in a plastic sample. They describe the whole measurement 

process as a chain from electrical excitation 𝑈(𝑓) of the sending transducer up to the 

conversion of the acoustic signal to an electrical signal (excluding noise) by 

 𝒀(𝒇, �⃗⃗�) = 𝑼(𝒇)𝑯𝒆𝒂(𝒇)𝑯𝒓(𝒇, �⃗⃗�)𝑯𝒂𝒆(𝒇). (63) 

Here, 𝑓 denotes the frequency, 𝐻𝑒𝑎(𝑓) and 𝐻𝑎𝑒(𝑓) are respectively the electric-acoustical 

and acoustic-electrical transfer functions and can be summed up as the electrical transfer 

function 𝐻𝑒(𝑓) = 𝑈(𝑓)𝐻𝑒𝑎(𝑓)𝐻𝑎𝑒(𝑓). Then, 𝐻𝑟(𝑓, 𝑧) represents the transfer function of the 

propagation path 𝑧 and accounts for both, frequency-dependent attenuation 𝛼(𝑓) and 

dispersion 𝜖(𝑓), leading to the expression [201] 



2 State of the art & theoretical background 

61 

 𝒀(𝒇, �⃗⃗�) = 𝒃(|�⃗⃗�|)𝑯𝒆(𝒇)𝒆−𝜶(𝒇)|�⃗⃗�|𝒆−î𝝐(𝒇)|�⃗⃗�|𝒆−î𝟐𝝅𝒇|�⃗⃗�|/𝒄𝟎 . (64) 

Here, 𝑏(|𝑧|) is a propagation length |𝑧| dependent constant, modulating the amplitude of 

the received signal 𝑌(𝑓, 𝑧), and the exponential functions with 𝛼(𝑓) and 𝜖(𝑓) in the exponent 

accounting for attenuation and dispersion. The last exponential function represents the 

phase of the acoustic wave with 𝑐0 as the speed of sound [201]. As batteries are in some 

sense media of alternating layers of particle-rich fluid suspension (electrodes) and solid 

layers (current collectors), methods that incorporate frequency-dependent attenuation and 

dispersion are of particular importance. 

2.3.6 Time of flight estimation 

The time of flight (ToF) is one of the most prominent signal features and allows calculating 

the speed of sound in the interrogated sample, provided the travel distance of the respective 

wave package is known. Indirectly, the ToF is linked to the mechanical and therefore 

electrochemical state of the lithium-ion battery, which this thesis aims to estimate with a 

higher precision than algorithms relying solely on voltage and current measurement. 

As seen in the preceding section, deconvolution can be used to estimate the travel time of 

ultrasonic pulses or echoes. This travel time is often referred to as the time of flight, time of 

arrival (ToA) [203], or transit time. Its accurate and reproducible estimation is an important 

task for DSP in ultrasonic NDT and this work. The ToF is used to calculate the velocity and 

from this quantity, other quantities like the elastic modulus and the acoustic impedance of a 

material are determined. Ideally, the ToF clock starts when the acoustic pulse exits the 

sending transducer and stops when the acoustic pulse reaches the receiving transducer. 

Because delays within the electronics and the piezoelectric material of the transducer are 

negligibly small, the time of excitation is often used as zero-point. In ultrasonic NDT, this 

point is well known since the excitation is triggered. A variety of methods exist to estimate 

the ToF from a measured signal. Different methods use different reference points of the 

signal to determine the time at which a pulse is received [204]. To name a few, there is the 

zero-crossing method, the first detectable deviation from zero (first motion), the threshold 

method, and the cross-correlation technique. In homogenous media with no absorption 

present, these techniques yield equivalent results [204]. In contrast, due to pulse 

broadening in absorptive media different techniques yield different values for the ToF. Pulse-

broadening effects are a consequence of frequency-dependent absorption and dispersion, 

as was discussed in Chapter 2.2.1. Both are linked by the Kramers-Kronig relation and thus 

always coincide [204]. 
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Within this subchapter, a brief description of the most common ToF estimation methods with 

respect to their relevance for media with frequency-dependent attenuation, like battery 

materials, will be given. Comparison of different ToF estimation methods can be found in 

[204,205]. Some of the well-established ToF estimation methods are sketched in Figure 

2.25 for comparison. 

 

Figure 2.25: Conceptual comparison of several time of flight estimation (ToF) methods, as 

suggested by the legend. An ultrasonic signal (amplitude vs. time) with a single wave package is 

sketched (in black). The amplitude is normalized to its maximum. Hilbert transform and envelope are 

calculated from the signal as described in Subchapter 2.3.6.2. The ToF, as estimated by several 

different methods, is drawn as colored dots. 

2.3.6.1 The first motion, zero-crossing, threshold, and sliding-window 

method 

The first motion technique uses the first detectable deviation from zero in the measured 

signal as a reference point for the ToF [204] (compare the purple dot in Figure 2.25). 

Unfortunately, noisy signals make this method prone to errors and false positives may yield 

unreasonably small values for the ToF. These unwanted effects can partially be combated 

by smoothing or filtering the signal. Zero crossing tracks the first or second intercept of the 

ultrasonic signal with the time axis [204] (see Figure 2.25). With the threshold method, the 

first point of the signal at which, usually, the absolute amplitude is equal or greater than a 

certain threshold value 𝜏𝑡ℎ serves as a reference point [205,206] (see Figure 2.25). The 

optimum threshold value is often estimated empirically. It can be chosen relative to the 

maximum of the measured signal, e.g., 5%. Ideally, the maximum of the measured signal 

lies within one of the transmitted acoustic wave packages. Otherwise more elaborate 

threshold value picking criteria may be required. Another option is to choose the threshold 

based on the noise since it should lie above the noise level to avoid false positives. In [207], 

the threshold was chosen to be eight times the standard deviation of the noise but is usually 

set to three to five times the background noise level [205]. The background noise level can 
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either be estimated from a section of the signal containing no acoustic information – before 

the first arrival, or from collecting statistical noise with the open detector while no pulse is 

sent. The sliding-window method represents a modification of the threshold method, aiming 

to improve noise robustness. Here, a window of a set length 𝑁𝑡ℎ is slid through the 

measured signal and the number of points exceeding the threshold 𝜏𝑡ℎ is counted. If this 

number exceeds a second threshold 𝑚𝑡ℎ the ToF criteria is met [205], which is why the 

method is also called double-thresholding and makes it robust towards noise peaks. 

Another advantage is the comparably low standard deviation of the method. The 

performance of the method heavily relies on the tuning of 𝜏𝑡ℎ, 𝑁𝑡ℎ and 𝑚𝑡ℎ. According to 

[205], both threshold methods are limited by the rise time of the received pulse, which is 

especially long with narrow-bandwidth transducers. The general problem with the methods 

above is that the reference point’s position within the wave package introduces a delay that 

is never constant (e.g., due to dispersion) and cannot be accounted for by a known offset 

[206]. To reduce the occurrence of false positives, the simple threshold method is combined 

with other methods. Curve fitting and the envelope of the signal can help to uncover the first 

points of a wave package, potentially buried under noise, thereby reducing or removing the 

mentioned offset [205,206], as will be explained later. 

2.3.6.2 The envelope function and method 

The envelope is the base for two other ToF estimation methods. For a real-time signal 𝑦(𝑡), 

the envelope 𝐸(𝑡) is expressed as the absolute of the analytical signal 𝜓(𝑡) by 

 𝑬(𝒕) = √𝝍(𝒕)𝝍∗(𝒕) = √𝒚𝟐(𝒕) + �̂�²(𝒕), (65) 

with 𝜓∗(𝑡) being the complex conjugate of 𝜓(𝑡) [204]. The analytical signal is calculated 

from the signal according to 

 𝝍(𝒕) = 𝒚(𝒕) + î�̂�(𝒕),  (66) 

which in turn is derived from the Hilbert transform [204,208]  

 �̂�(𝒕) =
𝟏

𝝅𝒕
∗ 𝒚(𝒕), (67) 

with the convolution operator ∗. In DSP practice, the analytical signal 𝜓(𝑡) is calculated by 

inverse Fourier transforming  
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 𝚿(𝒇) = 𝟐𝒀(𝒇)𝚯(𝒇), (68) 

with 𝑌(𝑓) being the Fourier transform of 𝑦(𝑡) and Θ(𝑓) denoting the Heaviside or Theta step 

function, which is 0 for 𝑓 < 0 and 1 for 𝑓 ≥ 0 [204]. As depicted in Figure 2.25, the Hilbert 

transform (grey curve) corresponds to a phase shift of −𝜋/2 and thus the energy spectra of 

𝑦(𝑡) and �̂�(𝑡) are the same. The peak of the envelope (blue dot) lies between the peaks of 

signal an Hilbert transform and represent the maximum energy of the analytical signal [204]. 

As described in [204], the envelope method yields a comparably small estimation error for 

absorptive and dispersive media, but as we will see later on, the envelope method is best 

suited for well-separated wave packages, as the neighborhood of wave packages 

influences the shape of the envelope and thus the position of its maximum. Note that for an 

accurate estimate the time difference to the maximum of the envelope of the send acoustic 

pulse has to be available. Studies have shown, that the envelope can be combined, e.g., 

with the deconvolution by Wiener filter and ASE to further improve ToF estimation and to 

ease automated peak picking [200]. 

Besides picking the envelope’s maximum, the before mentioned curve fitting method can 

be performed based on the envelope. A parabolic curve of the form 𝑎0(𝑡 − 𝑡0)² fitted to the 

envelope is according to [206,209,210] a suitable approximation for the rising edge of typical 

acoustic pulses (compare the course of the blue line in Figure 2.25). An iterative fit can be 

initialized with values from simple thresholding for 𝑎0 and 𝑡0. The best fit of 𝑡0 is then finally 

taken as an estimate for the ToF, being free of the above mentioned delay usually 

associated with the threshold method [205]. 

2.3.6.3 The cross-correlation function and method 

When the signal exhibits a low SNR, cross-correlation has proven to be a powerful method 

for ToF estimation [178] due to its noise reduction property [206]. If used in conjunction with 

frequency-modulated signals, like a chirp, cross-correlation is often referred to as pulse 

compression [206]. Provided cross-correlation is applied to a single-frequency tone-burst 

(a modulated sine wave function), another synonym is matched filtering [206]. The cross-

correlation operation, symbolized by the five pointed star ⋆ operator, is performed on 

continuous signals 𝑥1(𝑡) and 𝑥2(𝑡), by calculating [208] 
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𝒄⋆(𝝉) = (𝒙𝟏 ⋆ 𝒙𝟐)(𝝉) = ∫ 𝒙𝟏
∗ (𝒕)

∞

−∞

𝒙𝟐(𝒕 + 𝝉) 𝒅𝒕 
(69) 

= ∫ 𝒙𝟏(𝒕 − 𝝉)
∞

−∞
𝒙𝟐

∗ (𝒕) 𝒅𝒕. 

Here 𝑐⋆(𝜏) denotes the cross-correlation as a function of delay 𝜏. The asterisk * in the 

exponent denotes the complex conjugate of a variable. The cross-correlation operation is 

performed on sampled, discrete signals by calculating [17,208] 

𝒄⋆[𝒎] = (𝒙𝟏 ⋆ 𝒙𝟐)[𝒎] = ∑ 𝒙𝟏
∗ [𝒏] 𝒙𝟐[𝒏 + 𝒎]

∞

𝒏=−∞

 
(70) 

= ∑ 𝒙𝟏[𝒏 − 𝒎] 𝒙𝟐
∗ [𝒏]∞

𝒏=−∞ . 

Comparing Equation (70) and (55) unveils the differences between convolution and cross-

correlation. They differ in the sign of the shift and the choice of the integration or summation 

variable. In convolution, the summation is performed over the shift variable (𝑚 or 𝜏), while 

in cross-correlation, the summation is performed over the index variable (𝑛 or 𝑡). Therefore, 

the cross-correlation is a function of the shift variable and convolution is a function of the 

index variable. Therefore, commutativity is not valid for cross-correlation, in detail 𝑥1[𝑛] ⋆

𝑥2[𝑛] ≠ 𝑥2[𝑛] ⋆ 𝑥1[𝑛]. In practice, cross-correlation is often performed in the Fourier domain 

by multiplication of 𝑋2[𝑘] with the complex conjugate of 𝑋1[𝑘], 𝑋1
∗[𝑘], and subsequent 

inverse Fourier transforming [206,208]. The Cross-correlation in the Fourier domain can be 

calculated by 

 𝑪⋆[𝒌] = 𝑿𝟏
∗ [𝒌] ∙ 𝑿𝟐[𝒌]. (71) 

The cross-correlation peaks at the delay 𝑚 where the two signals match best [207]. ToF 

estimation with cross-correlation is based on the property that a delayed signal’s cross-

correlation is the auto-correlation (correlation of a signal with itself) of the signal shifted by 

the delay [208]. This delay corresponds to the ToF of the pulse [202]. To achieve maximum 

cross-correlation amplitude, the pulse has to be unaltered in shape [205]. Why cross-

correlation is also often described as pulse compression can be seen in Figure 2.26. Used 

on a broadband pulse, like a chirp (frequency modulated sine wave), the cross-correlation 

allows localizing the reference point for ToF estimation in a narrower peak [206]. The width 

of this peak is proportional to the inverse of the bandwidth of the sent pulse [206]. The height 

of the cross-correlation peak increases with the length of the sent pulse for the same 

bandwidth [211]. 
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Figure 2.26: Cross-correlation of chirp signals. In the top, two chirp signals are plotted, one 

starting a 𝑡 = 0 and one shifted by a delay 𝜏 = 𝑡0. The cross-correlation, plotted in the bottom row, 

peaks at exactly this delay 𝜏, where the two signals match best. The width and height of the peak 

depend on the bandwidth and length of the chirp. Graph after [206] 

The ability of the cross-correlation method to enhance the resolution of ToF estimation 

depends largely on the bandwidth of the utilized transducers and pulses. Therefore, when 

applied to narrowband pulses, accuracy errors can occur [206]. Especially if the pulses are 

closely spaced or even overlap, the achieved pulse compression may still be insufficient to 

separate these pulses. Cross-correlation has one inherent advantage over most other 

methods, which is that the estimated delay 𝑡0 already equals the ToF (see Figure 2.26). On 

the contrary, if using, e.g., the envelope for short distance ToF estimation, the position of 

the envelope’s peak (see Figure 2.25) within the sent pulse has to be subtracted from the 

ToF to avoid a systematic error.  

2.4 Impedance spectroscopy 

Impedance spectroscopy has many applications in electric circuit design and 

electrochemistry. In the context of lithium-ion batteries, it has been used to study the 

degradation phenomena [212,213] and the wetting process of lithium-ion batteries [34], and 

among others, for the state of health estimation [214–216]. Impedance spectroscopy is also 

applied to ultrasonic transducers and piezo elements to characterize their properties [217] 

and interaction (coupling) with the surrounding medium [218–220] or to detect defects [221]. 

Impedance spectroscopy involves the excitement of the battery cell with a small alternating 

voltage (potentiostatic) or current (galvanostatic). The amplitude of the excitation has to be 

small to keep the response in a range, where the assumption of a linear system applies 

[222]. The impedance Z of the cell is the quotient of complex voltage Û(𝑡) and complex 

current Î(𝑡), as defined by [34,222,223]  
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𝒁 =
Û(𝒕)

Î(𝒕)
=

Û𝟎⋅𝐬𝐢𝐧(𝝎𝒕+𝝓𝟏)

Î𝟎⋅𝐬𝐢𝐧(𝝎𝒕+𝝓𝟐)
= 𝒁𝟎 ⋅

𝐬𝐢𝐧(𝝎𝒕+𝝓𝟏)

𝐬𝐢𝐧(𝝎𝒕+𝝓𝟐)
. (72) 

Here, 𝜔 describes the radial frequency and 𝜙𝑘 the phase angel. It is common to rewrite this 

formula to describe the impedance as a complex resistance and split the impedance into 

the real and imaginary parts, as in the Euler representation [34,223,224]  

𝒁 = 𝒁𝟎(𝐜𝐨𝐬(𝚫𝝓) + î ⋅ 𝐬𝐢𝐧(𝚫𝝓)), (73) 

with the phase shift Δ𝜙 = 𝜙2 − 𝜙1, the absolute value of the impedance |𝑍| =

√Re(𝑍)2 + Im(𝑍)2 and complex number î. The real part of the impedance Re(𝑍) describes 

the ability of the system under investigation to resist the flow of electrical current while the 

imaginary part of the impedance Im(𝑍) describes the ability to store energy [34], e.g., in an 

electric or magnetic field. The interaction of the system with the alternating voltage or current 

can be modeled by equivalent circuits, composed of resistors, capacitors, inductors and 

constant phase elements [34,223]. 

When studying an electrochemical cell, the complex impedance allows to qualitatively 

identify and describe processes [34,224,225]. These processes involve different time 

scales. Therefore, the frequencies at which there are the most prominent differences in the 

electrochemical impedance spectra differ [34,226]. At low SoC, the impedance spectrum of 

a lithium-ion battery cell can be schematically represented as in Figure 2.27. The spectrum 

can be divided into three sections. The first section, with the highest frequency, accounts 

for the fastest processes such as ionic conduction in the electrolyte. The impedance in this 

section is shifted by the inductance, associated with the porous and tortuous structure of 

the electrodes, the wiring and other metallic components of the battery cell, along the 

imaginary axis [34]. The intersection of the curve with the real axis is referred to as the high-

frequency resistance (HFR) and is contributed to by the ohmic resistance of the electrically 

conductive materials inside the cell and the ionic resistance of the electrolyte [34,227]. The 

second section is composed of two semi-circles. One of which is assigned to ion migration 

through layers covering the surface of the active material particles of the electrodes, such 

as the SEI [34,228]. The other is assigned to the charge transfer between the electrodes 

and the electrolyte, and the associated double layer capacity [34,229]. The third section 

spans the lowest frequencies and thus represents the slowest process in the battery cell, 

which is the diffusion of lithium in the active material of the electrodes [34,230]. 
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Figure 2.27: Schematic representation of the impedance spectrum of a lithium-ion battery cell. 

The Nyquist plot is divided into three sections. The first section with the highest frequency accounts 

for the fastest processes such as ion diffusion in the electrolyte. The second section spans the 

frequency range in which migration processes through the SEI and the charge transfer are situated. 

The third section is characterized by the lowest frequencies and represents the diffusion of lithium 

ions in the active materials. The Graph after [34]. 

Ultrasonic transducers, consisting of piezo elements, can also be studied by impedance 

spectroscopy. Commonly their geometry includes two plates with a piezoelectric as the 

dielectric in between, basically a capacitor. Therefore, equivalent circuit models 

representing piezo elements, include at least one capacitance, usually in parallel with a 

resistor and an inductance and sometimes in series with a ZARC element [217,219,220]. 

The name ZARC element was established by Macdonald and denotes the combination of 

a constant phase element (CPE) and a resistor in parallel [231]. Resistors and inductances 

are included to account for the dielectric, elastic and piezoelectric losses [220] and the 

mechanical inertia of the system, introduced by its mechano-electrical coupled mass. It was 

shown that impedance spectroscopy can be instrumented to test piezo elements for defects 

[221] and to characterize the coupling of the oscillation with the surrounding medium [218], 

and thus the quality of bonding of the piezo element to the object of interest. It is possible 

to estimate the resonance frequency of a piezo element from an impedance spectrum [218]. 

Plotting the real part of the impedance versus frequency allows identifying resonant 

behavior because the piezo elements dissipate energy by mechanical oscillation at the 

characteristic frequencies and thus show a higher impedance at resonance. The Nyquist 

plot (imaginary part vs. real part of the impedance) allows, as described in [221], to 

qualitatively estimate the symmetry of the oscillation of a piezo element. The more 

symmetric the shape of a piezo disc, the more spherical appears the circle, made up from 

the measurement points around one of the resonant frequencies. 
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3 Experimental methods & instrumentation 

This chapter describes the experimental methods employed in this work to enable the 

reproduction and confirmation of the presented results. 

3.1 Battery cells under investigation 

A battery cell type with graphite and lithium cobalt oxide as active materials and designed 

for high energy density and high power density was selected. This ensures the relevance 

and transferability of the results of this work. A battery cell of the selected type “Conrad 

energy Rechargeable Polymer Li-Ion Battery 3.7 V, 1200 mAh” (Conrad Electronic 

International GmbH) is depicted in the state “as delivered” in Figure 3.1. A detailed safety 

data sheet [232] and technical data sheet [233] inform on the components and 

specifications of the battery cell. Their content is summarized in Table 3.1 and Table 3.2. 

 

Figure 3.1: Studied cell as delivered by the supplier Conrad. The outer blue and dark polymer 

film can be removed to access the surface of the pouch foil directly. 

Table 3.1: Selected specification of the studied battery cell "Conrad energy Rechargeable 

Polymer Li-Ion Battery 3.7 V, 1200 mAh, Item no.: 517990" – according to [232,233]. 

Parameter Value Parameter Value 

Nominal capacity 1.2 Ah End of discharge voltage 3.0 V 

Nominal voltage 3.7 V Width 36 mm 

Max. charging current 2.4 A Length 67 mm 

Max. discharging current 24 A Thickness 7 mm 

End of charge voltage 4.2 V Weight 33.3 g 
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Table 3.2: Components of the studied battery cell "Conrad energy Rechargeable Polymer Li-

Ion Battery 3.7 V, 1200 mAh, Item no.: 517990" according to safety datasheet [232]. Horizontal 

lines group the components into constituents of the positive electrode, negative electrode, 

electrolyte, and contact material.  

 Common chemical name Concentration / % 

P
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e
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Lithium Cobalt Oxide (LiCoO2) 35.5 

Aluminum Foil (Al) 9 

Poly(vinylidene fluoride) (PVDF) 1 

N
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Graphite (C) 18 

Copper Foil (Cu) 15 

Styrene-butadiene polymer (SBR) 1.5 

E
le

c
tr

o
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te
 Lithium hexafluorophosphate (LiPF6) 2.8 

Ethylene carbonate (EC) 5 

Dimethyl carbonate (DMC) 5 

Ethyl methyl carbonate (EMC) 5 

C
o

n
ta
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m
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ri

a
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Nickel (Ni) 2.2 

3.2 Electrochemical tests & post-mortem analysis 

All electrochemical tests were conducted within a controlled environment at a constant 

temperature of 25 °C. Depending on space requirements and duration of the experiment, a 

Vötsch VT3 4018-S, a Vötsch VT 4021-S, a Weiss WKL 34/70, or a Memmert IPP 260PLUS 

were used to control ambient conditions. A Maccor Series 4000 galvanostat was used to 

perform cycling tests. For electrochemical impedance spectroscopy, a BioLogic VMP-300 

potentiostat was employed.  

Post-Mortem experiments, involving cell opening and lab cell construction were carried out 

under argon atmosphere. A glove box (MB200MOD, M. Braun Inertgas-Systeme GmbH) 

ensured a low content of water and oxygen below 1 ppm. 

Three-electrode electrochemical tests were carried out in ECC-PAT-Core test cells, supplied 

by EL-CELL GmbH. From a battery cell opened at discharged state, the electrodes were 

harvested. To achieve electrical contact from the backside, the coating was removed from 

one of the sides of the electrode sheets, and discs were punched out. Besides the 

electrodes, a lithium reference electrode, integrated into a glass fiber 260 µm separator, a 
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200 µm plunger, and 150 µl of the electrolyte LP57 (1M LiPF6 in EMC/EC solution, with a 

weight ratio of 7:3, supplied by BASF) was used to build a test cell. Thereby, the individual 

electrodes’ potentials became accessible for investigation. 

From the negative and positive electrodes, two samples at each SoC with a weight of about 

1 g were cut and individually dissolved in 30 ml of aqua regia - a mixture of nitric acid and 

hydrochloric acid. The resulting solutions were analyzed by inductively coupled plasma-

optical emission spectrometry (ICP-OES). The measurements were carried out using a 

Vista-PRO radial, supplied by Varian Inc.  

3.3 Geometric measurements 

A dial indicator of type Sylvac S_Dial Nano with a resolution of 0.1 µm was employed to 

measure the thickness of the individual battery cell components and to monitor the 

thickness change of battery cells during the electrochemical cycling. During cycling at a 

constant 25 °C, the tip of the dial indicator was placed centrally on the surface of the battery 

cell, which was strapped down onto the granite base plate of the dial indicator. The 

geometric dimensions of the components and the battery cell were estimated with a 

precision ruler. 

3.4 Ultrasonic tests 

Ultrasonic measurements in the frequency range of 20 kHz to 0.5 MHz were carried out 

with a multi-channel sensor bus system for ultrasonic non-destructive testing and structural 

health monitoring, named US-SBX. The measurement system and the software US-SBX 

Control used to configure and schedule measurements were developed by Fraunhofer IKTS 

in Dresden. To ensure electromagnetic compatibility and to reduce the irradiation of 

electrical noise from the surrounding, the US-SBX was enclosed in a grounded network 

cabinet and the channels were fed pairwise onto the sockets of a CAT6a Ethernet patch 

field (Intellinet Network Solutions GmbH). The ground of said patch field was connected to 

the functional ground of the US-SBX, ensuring a star-wise pathing of the ground until the 

transducers. Ethernet cables, designed for high-frequency signals and shielded from 

electromagnetic radiation, were used as measuring leads connecting the transmitting and 

receiving channels of the US-SBX with the respective piezo elements, mounted to the 

surface of the battery cells.  

A procedure to reproducibly create and mount a sensor stack to battery cells was developed 

within this work and is described in the following. A sensor stack was constructed from a 
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piezo element on a brass base and a copper envelope, serving as electromagnetic 

shielding, made from 20 µm thick copper foil. To attach the piezo element on the copper foil 

and, in a subsequent step, the hereby-created sensor stack to the battery cell, a two-

component epoxy resin UHU Plus Endfest 300 was used. After assembly, this stack was 

lifted by a vacuum-grabbing device and placed on a pre-applied resin pad on the battery 

cell. The resin was hardened at room temperature for 24 hours, before further handling. The 

disc-shaped piezo elements of type PSNK2030 are supplied by EVE GmbH. Their 

specifications are listed in Table 3.3.  

The complete procedure can be split into the following steps: 

1) Assembling the sensor stack 
a) Mixing of two-component epoxy resin (UHU Plus Endfest 300) in a 1:1 ratio 
b) Applying a mask, made from 20 µm thick spring steel with a circular hole, to 20 µm 

copper foil 
c) Creating a pad of epoxy resin film on the copper foil with a defined thickness and 

shape (negative of the mask) by doctor blading 
d) Grabbing the pristine piezo element disc without contact or wiring with the vacuum 

grabbing device parallel to a supporting surface 
e) Placing the piezo element in parallel to the surface on the resin pad and applying a 

defined force by weight 
f) 24 h hardening of the resin at room temperature 

2) Attaching the sensor stack to the battery cell 
a) Marking appropriate locations for sensor placement, symmetrically on opposing 

sides of a battery cell 
b) Cutting the copper foil into a stripe with the piezo element at one side, in 

preparation for the envelope  
c) Applying a resin pad on the battery surface by masking and doctor blading 
d) Grabbing the sensor stack with the loose stripe of copper foil with the vacuum 

grabbing device 
e) Placing the piezo element in parallel to the surface on the resin pad and applying a 

defined force by weight  
f) 24 h hardening of the resin at room temperature 

3) Contacting piezo element and shielding 
a) Contacting the piezo element’s top (silver contact layer) and bottom (brass carrier 

disc) with a wire by soldering 
b) Applying an insulating layer on the piezo element to inhibit short circuit between 

the piezo element and shielding layer 
c) Folding the copper envelope around the piezo element 
d) Contacting shielding envelope by soldering a wire to the foil 

4) Fixing a plug to the three wires (the two red and black measuring leads are twisted to 
reduce crosstalk) 

The cell pictured in Figure 3.2 was equipped with two sensor stacks on opposing sides, 

following the described procedure. Besides the blue perpendicular lines, marking the center 

of the stack within the battery cell, placement marks for the vacuum grabbing device (blue 

rectangles) were drawn onto the pouch foil. The default electrical contacts of the battery cell 
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have been replaced with a 1.5 mm² lead for applying current and a 0.5 mm² lead for voltage 

sensing, one for each of the two contacts, as shown in the left of Figure 3.2.  

Table 3.3: Selected specification of piezo elements PSNK2030, according to the datasheet 

[234]. 

Parameter Value Parameter Value 

Resonant frequency (3.8 ± 0.5) kHz Diameter of base (20.0 ± 0.1) mm 

Resonant impedance 200 Ohm Diameter of active disc (15.0 ± 0.3) mm 

Capacitance at 100 Hz (25.0 ± 7.5) nF Thickness of active disc (0.15 ± 0.05) mm 

Input voltage 30 V Thickness of the element (0.28 ± 0.05) mm 

Base material Brass Active material unknown 

 

Figure 3.2: A battery cell, LDA019, with an electromagnetically shielded piezo element fitted 

to its surface. A blue lead contacts the electromagnetic shield, made from copper foil. The twisted 

red and black leads contact the encapsulated piezo element. The original two-lead electrical 

connectors were replaced by two individual leads each, for four-point measurement. Blue lines and 

rectangles were drawn onto the pouch foil to assist the central placement of the sensor stack on 

opposing sides of the battery cell. 
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3.5 Analysis of the measurement data 

The data presented in this work was analyzed and plotted with the aid of Python 3.8.5 [235], 

as packaged to a distribution with 300+ packages by Anaconda Inc. [236]. The most 

important packages, used within this work, and where to find them is listed below: 

• NumPy [237] - https://numpy.org/  

• pandas [238] - https://pandas.pydata.org/  

• SciPy [239] - https://scipy.org/  

• Matplotlib [240] - https://matplotlib.org/ 

• scikit-learn [241] - https://scikit-learn.org 

• IPython [242] - https://ipython.org/  

• uncertainties [243] - http://pythonhosted.org/uncertainties/ 

• npTDMS [244] - https://github.com/adamreeve/npTDMS 

 

https://numpy.org/
https://pandas.pydata.org/
https://scipy.org/
https://matplotlib.org/
https://scikit-learn.org/
https://ipython.org/
http://pythonhosted.org/uncertainties/
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4 Results & discussion 

The results and discussion chapter covers the whole development process of the presented 

method. Each section/subchapter contains a summary of the respective key messages. In 

Section 4.1, the lithium-ion battery pouch cells, studied in this work, are interrogated by 

means of electrochemical and post-mortem methods. This yields an overview of the 

characteristics and composition of the battery cells. Thereby, a later comparison of 

variations in mechanical and electrochemical behavior with ultrasonic measurements is 

enabled. In Section 4.2, the development of the measurement setup, including the 

manufacturing of sensor stacks from piezo elements and their attachment to the surface of 

the battery cells is described. Validation of the sensors and their electromagnetic shielding 

is performed to assure reproducibility of the following experiments. In Section 4.3, the 

excitation of the piezo elements is displayed and the influence of their resonant behavior on 

the resulting waveform is discussed. The raw signals, transmitted through the battery cells 

as a result of this excitation, are displayed as a function of excitation frequency and state of 

charge. This allows gaining an overview of the dependence on those variables. Section 4.4 

describes the processing of transmitted signals, with a focus on the time of flight estimation 

and a comparison of eligible methods for the extraction of this and other features (signal 

properties). After three signal properties and methods for their extraction were picked, their 

suitability for the state of charge estimation is evaluated in Section 4.5. Here, the cycle-to-

cycle variation and the influence of C-rate along with the effects of hysteresis are studied. 

Plotting the chosen signal properties as a function of excitation frequency and evaluating 

their correlation with the state of charge allows estimating roughly which excitation 

frequency is preferable for state estimation. Finally, in Section 4.7, a case study, employing 

a support vector regression in a data-driven machine learning approach to state estimation, 

is conducted with the selected features on seven different battery cells. Hereby, a proof of 

concept is provided and an estimate of the potentially achievable accuracy is established. 

4.1 Electrochemical and post-mortem analysis of samples 

Electrochemical and post-mortem analysis of the sample allows to characterize individual 

samples and estimate the mean properties of the studied batch. A variety of chemical and 

physical measurement methods are applied to study the chemical composition, balancing, 

occurrence of electrochemical processes, and thickness changes of the battery cells. This 

will, later on, enable relate the effects seen in ultrasonic signals to the electrochemical and 

mechanical behavior of the battery cells. 
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Disclosure: Youjin Shin performed some of the measurements, which are analyzed and 

presented within this section, as a part of her master thesis at Fraunhofer ISC. This master 

thesis was supervised by the author. 

4.1.1 Capacity and impedance test 

Before further processing, a check-up was performed. First, an initial CC-CV capacity test 

at 0.1 C was done. Cells were cycled between 3.0 V and 4.2 V with a constant current. For 

the constant voltage charging step, a cut-off current of 0.01 C was chosen. The voltage 

course during such cycles is plotted exemplarily for cell LDA019 in Figure 4.1. Here, 

charging and discharging half cycles are split and plotted versus (vs.) charging/discharging 

capacity. 

 

Figure 4.1: Cell voltage of cell LDA019 during the first three cycles of the initial capacity test 

during a check-up. Charging and discharging half cycles are split. During charging, the voltage rises 

from about 3.1 V after discharge and rest to 4.2 V. During charging the process is reversed with a 

cut-off voltage of 3.0 V. Within the plotted accuracy, the three cycles overlap undistinguishably. 

The discharge capacity in the third consecutive cycle is taken as a measure of the 

experimental cell capacity and yields a mean of (1398 ± 22) mAh for 25 cells from the tested 

batch and a mean of (1411 ± 21) mAh for the seven cells studied in this work. Since the 

battery cells are designed for high current applications that lead to a reduced discharge 

capacity, a deviation of about 16.5% from the nominal capacity of 1200 mAh at this 

comparably small rate is within the expected range. 
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Additionally, the internal resistance of the battery cells was measured by electrochemical 

impedance spectroscopy (EIS). A 20 mV single sine frequency sweep from 200 kHz to 

100 mHz with 12 points per decade was applied at 50% SoC. Three repetitions were 

averaged. As depicted in Figure 4.2, the imaginary part was plotted against the real part of 

the impedance and the intersection with the x-axis was taken as the internal high-frequency 

resistance (HFR) of the battery cell. The studied cells exhibit an HFR of 

(3.09 ± 0.22) mOhm. The part of the spectrum below the – Im(𝑍) = 0 is associated with the 

inductance of the wires to the battery cell, its metallic components [34] and the tortuous 

porous, electrolyte filled structure – compare Chapter 2.4. The diameter of the half-circle 

varies from cell to cell, much more than the HFR does. It is assigned to the migration 

processes of lithium-ions through the SEI [34,228], the charge transfer resistance (CTR) 

[34,229], and the double layer capacitance (DLC).  

 

Figure 4.2: Nyquist plot of a selection of battery cells, studied by electrochemical impedance 

spectroscopy at 50% SoC with an amplitude of 20 mV in the frequency range from 200 kHz to 

100 mHz. The solid line is meant as a guide for the eye. The intersection of the plotted lines with the 

x-axis marks the high-frequency resistance. Deviations in the diameter of the half-circle hint at 

differences in charge transfer resistance of the battery cells.  

Regarding the half-circle, cell LDA020 is an outlier within the group of the seven chosen 

cells. This part of the frequency spectrum depends highly on SoC, SoH, and temperature 

[34,222]. Thus, this part of the spectrum might be most affected by a small variation in the 

battery’s state or the experimental conditions. 
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4.1.2 Results of cell opening 

Cells, prepared in charged and discharged state, were opened at 4.17 V and 3.33 V, 

respectively. Those states were prepared by constant current charging or discharging at 

0.1 C until the respective cut-off voltage was reached and then held at constant voltage until 

the charging current decayed to 0.01 C. The stated cell voltages represent the relaxed 

open-circuit voltage. Cutting through and removing the pouch foil unveiled that the cell stack 

was assembled by z-folding. The stack, with the first layer of separator folded to the side, is 

shown in Figure 4.3 a). The outer electrode sheets are double-sided coated negative 

electrodes. As the outwards facing active material has no counterpart, it remains inactive 

during battery operation. A positive electrode at the lithiated state, coated onto aluminum, 

is shown in Figure 4.3 b). In Figure 4.3 c) and d), negative electrodes at delithiated and 

lithiated states are shown, respectively. The blueish black and reddish-gold color are typical 

for lithiated graphite at different lithiation degrees [245]. Looking at the uniformity of the 

colored area, a homogenous lithiation of the electrodes could be ensured, which is 

important for a reliable subsequent estimation of the lithium content by ICP-OES. The 

positive electrodes showed a dark black color, independently of lithiation. The number of 

layers was counted, the thickness and the geometric area of the individual components 

were measured. The results are listed in Table 4.1. The anode is designed to overlap the 

cathode by 0.5 mm in length and width, which is a best practice to account for limited 

stacking accuracy and to avoid lithium plating. 

Table 4.1: Geometric dimensions and derived areal capacity of the cell components 

 Anode Cathode Separator 

Number of layers 34 33 68 

Sheet thickness / µm 68.16 ± 0.66 66.99 ± 0.36 11.61 ± 0.26 

Current collector thickness / µm 8.73 ± 0.18 16.02 ± 0.46 / 

Coating thickness (one side) / µm 29.71 ± 0.34 25.49 ± 0.29 / 

Coated area (one side) / cm2 17.02 ± 0.31 16.61 ± 0.31 / 

Total coated area (used) / cm2 561 ± 10 548 ± 10 / 

Nominal areal capacity / mAh·cm-2 2.139 ± 0.038 2.190 ± 0.040 / 

Experimental areal capacity /  

mAh·cm-2 

2.492 ± 0.059 2.551 ± 0.061 / 
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The experimental areal capacity of about 2.5 mAh/cm2 can be considered comparably high 

and puts the battery cells in between the categories of high energy (3 mAh/cm2 to 

4 mAh/cm2) and high power density (1  mAh/cm2 to 2 mAh/cm2) [20,26,246]. 

 

Figure 4.3: Pictures of battery cell components, harvested from cells PM1060-17 and PM1087-

17. (a) Z-folded stack, with the first enveloping layer of separator, removed. (b) Positive 

electrodes at lithiated state. (c) A negative electrode at delithiated state. (d) A negative 

electrode at lithiated state, exhibiting reddish-golden color, which is typical for the stage 1 to 

stage 2 transition of lithiated graphite. Images used with kind permission of Youjin Shin. 

4.1.3 Results of post-mortem interrogation 

ICP-OES allows the analysis of the atomic contents of a solution, prepared from defined 

pieces of electrode sheets, as described in Chapter 3.2. The element-specific amount of 

substance is compared at charged and discharged states, as depicted in Table 4.2. Hereby, 

the range of lithiation degree, at which the electrodes are utilized during operation, can be 

estimated. Due to washing of the electrodes and thereby removing electrolyte residues, all 

lithium and all cobalt in the positive electrode solution can be assigned to the active material 
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LiCoO2. It can be assumed that before formation, the active material was fully lithiated with 

𝑥 = 1 in LixCoO2. Subsequently, one can conclude that about 7% of the initial lithium 

remains in the negative electrode with the battery cell being fully discharged. For the 

negative electrode, not all lithium and all carbon detected in the solution can be assigned 

to the active material. During formation, a consumption of up to 10% of the initially in the 

positive electrode available lithium by the SEI buildup and by other irreversible processes 

during the first lithiation of graphite is expected [247–250]. Depending on electrode slurry 

composition, some of the carbon detected in the solution has to be assigned to styrene-

butadiene rubber (SBR) binder and a conductive agent. In the safety data sheet, the mass 

share of each chemical is stated. The SBR is at 1.5% and the graphite at 18% of the total 

battery mass [232]. Assuming a carbon-based conductive additive content of about a tenth 

to a third of the binder content, the correction of the lithium content of the negative electrode 

can be estimated, as stated in the table below. Note that this correction does not account 

for potentially unconnected active material particles, which are inactive in the 

electrochemical processes but still contribute to the mass in the chemical analysis [8]. 

Table 4.2: Amount of substance ratios within electrodes as estimated by ICP-OES 

 Battery cell state at cell opening 

Negative electrode discharged charged 

Amount of substance ratio Li:C 0.1307 ± 0.00023 0.1446 ± 0.0018 

x in LixC6 0.0784 ± 0.0014 0.868 ± 0.011 

x in LixC6 (corrected by SBR content) 0.0856 ± 0.0011 0.956 ± 0.011 

Positive electrode discharged charged 

Amount of substance ration Li:Co 0.9300 ± 0.0034 0.41258 ± 0.00014 

x in LixCoO2 0.9300 ± 0.0034 0.41258 ± 0.00014 

Three electrode lab cells were constructed from the harvested battery materials as 

described in Chapter 3.2. A formation procedure with five cycles at 0.1 C was performed 

prior to the cycle, depicted in the following three figures. The results from one of three cells 

are shown exemplarily. To achieve a good resolution in the incremental capacity analysis 

the depicted cycles were performed at 0.03 C between the voltage bounds, specified by the 

parenting battery cell’s specification. Figure 4.4 depicts the cell voltage and the individual 

electrode potentials vs. Li/Li+ reference during a full cycle plotted as a function of SoC. The 

cell voltage of the lab cell exhibits the same course as the cell voltage of the parenting cells 

– see Figure 4.1. The features in the cell voltage’s course can be traced back to the features 

in the individual electrode potentials, as it is calculated from the difference of the two. 
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Figure 4.4: (top) Cell voltage, (center) negative electrode potential (NEP), and (bottom) 

positive electrode potential (PEP) of a three-electrode laboratory cell as a function of the state 

of charge (SoC). The lab cell was constructed from electrodes that were harvested from a pouch 

cell (PM1060-17) of the type studied in this work. Charge and Discharge refer to the respective 

process in the full cell. Subsequently, the positive electrode is depleted during charge and the 

negative electrode during discharge. 

The negative electrode potential (NEP, center plot in Figure 4.4) exhibits two distinct steps 

that can be assigned to the transition between the three stages of the highest lithiation of 

graphite. In the 0% to 20% SoC range, one additional shoulder is present. As suggested by 

the ICP-OES measurements on the charged battery cell, the graphite electrode is utilized 

almost completely, visible in the NEP approaching the lithium plating potential at 100% SoC. 

The positive electrode potential (PEP, bottom plot in Figure 4.4) is characterized by a long 

plateau around 3.7 V with a transition into a steeper slope which incorporates a small 

shoulder around 90% SoC. Around 0% SoC, the PEP drops down to about 3.2 V, which is 

expected for a high degree of lithiation as indicated by the ICP-OES measurements on the 

discharged battery cell. The observations are in good agreement with the potential courses 

found in the literature for the active materials graphite [10,251–253] and lithium cobalt oxide 

[8,254], stated as main components in the battery cell’s safety data sheet [232]. 

The derivatives of the cell voltage and individual electrode potentials are shown in Figure 

4.5. This incremental capacity analysis exhibits peaks at voltages where the plot of voltage 

vs. SoC in Figure 4.4 exhibits a plateau. The position of those peaks allows one to identify 
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the phase transitions occurring in the utilized range of lithiation degree of the active 

materials. Also, by comparing the individual electrode potential derivatives an assignment 

of peaks in the cell voltage derivative to one of the electrodes becomes feasible. This was 

done in Figure 4.5. The peaks in the electrode potentials are named from left to right, with 

a leading letter indicating positive or negative electrodes. While considering the distance of 

peaks, the overlap of N2 and P1 peaks in the derivative of the cell voltage can be estimated 

by the method of elimination. 

 

Figure 4.5: Incremental capacity analysis of cell voltage and individual electrode potentials 

plotted vs. cell voltage or electrode potential, respectively. The peaks in the derivative of the cell 

voltage are assigned to the peaks in the derivative of the individual electrode potentials. The lab cell 

was constructed from electrodes that were harvested from a pouch cell (PM1060-17) of the type, 

studied in this work. Charge and discharge refer to the respective process in the full cell. 

Subsequently, the positive electrode is depleted during charge and the negative electrode during 

discharge. 

Additional to the plot of the derivatives vs. potential (in Figure 4.5), the plot of the derivative 

vs. SoC, as shown in Figure 4.6, allows one to identify which phase transitions occur within 

a certain SoC range in the individual electrodes [8]. Note that due to opposite correlations 

of the individual electrode potentials with cell SoC, the derivative of the potentials for 

charging and discharging have opposite signs, e.g., don’t appear in the same quadrant of 

the plot. In the top row, it can be seen that the most dominant peak in the derivative of the 

cell voltage is a result of a superposition of the N2 and P1 peaks. The bottom row shows 

the individual electrode potential derivative. Taking the results of ICP-OES measurements 

into account, the lithium content of the active materials between 0% and 100% SoC can be 
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estimated. In LCO, x in LixCoO2 ranges between 0.93 and 0.41. In graphite, x in LixC6 

ranges between 0.08 and 0.96. For, e.g., 50% SoC, x takes values of 0.67 and 0.52 in LCO 

and in graphite, respectively. The negative electrode shows the utilization of the N1 peak 

for SoC > 48% (𝑥 ≥ 0.50) and the utilization of the N2 and N3 peak for SoC < 45%. For the 

positive electrode, the P1 peak is present below 40% SoC (𝑥 = 0.72) and the P2 and P3 

peaks occur around 82% SoC (𝑥 = 0.51) and 95% SoC (𝑥 = 0.44), which correspond to the 

lithium depleted state of LiCoO2. 

 

Figure 4.6: Incremental capacity analysis of cell voltage and individual electrode potentials 

plotted vs. state of charge (SoC). The peaks of the individual electrodes are annotated with the 

same names as in Figure 4.5 to ease comparison. The lab cell was constructed from electrodes that 

were harvested from a pouch cell (PM1060-17) of the type studied in this work. Charge and 

Discharge refer to the respective process in the full cell. Subsequently, the positive electrode is 

depleted during charge and the negative electrode during discharge. 

The procedure, shown in the last three figures, was performed for three individual lab cells. 

The hereby estimated peak positions were averaged individually for charge and discharge 

and are displayed with the standard deviation specified as uncertainty in Table 4.3. The 

phase transitions associated with the peaks in the incremental capacity analysis are 

assigned to phase transitions, exhibited by the active materials as specified in the cited 

literature – compare the reference column, and the description in Chapter 2.1.1.  
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Table 4.3: Peak positions in incremental capacity analysis. Mean values with standard deviation 

stated as uncertainty are estimated from three individual laboratory three-electrode cells, constructed 

from an unaged battery cell. 

Peak  Charge Discharge Transition Reference 

Negative electrode 

N1 (82.10 ± 0.52) mV (92.17 ± 0.15) mV Stage 2 → 

Stage 1 

[251,253,255,256] 

N2 (118.10 ± 0.50) mV (131.87 ± 0.45) mV Stage 2L 

→ Stage 2 

[11,251,253,255,256] 

N3 (149.60 ± 0.96) mV (167.03 ± 0.51) mV Stage 4 → 

Stage 2L 

[251,253,255] 

Positive electrode 

P1 (3908.43 ± 0.32) mV (3906.77 ± 0.47) mV I → II 

(hex.)  

[8,254,257,258] 

P2 (4067.17 ± 0.42) mV (4064.53 ± 0.21) mV Hex. → 

Mono. 

[8] 

P3 (4175.1 ± 1.1) mV (4167.07 ± 0.55) mV Mono. → 

Hex. 

[8] 

The negative electrode’s potential derivative exhibits three peaks. Those can be associated 

with the first-order phase transitions between stages of the lithium intercalation in graphite. 

Dahn et al. [256] showed that in a graphite electrode more than two phases coexist if the 

system is not at equilibrium. Therefore, a strict assignment of lithium content ranges to 

stages or phase transitions is solely meaningful at ideal conditions. In practical scenarios, 

the boundaries might thus not be as sharp as suggested by the cited literature. Peak N1 is 

ascribed to the transition between stage 2 and stage 1 [251], where 0.5 ≤ 𝑥 ≤ 0.95 in LixC6 

[251]. Peak N2 is assigned to the transition between the dilute stage 2L and stage 2 [251], 

where 0.33 ≤ 𝑥 ≤ 0.50 in LixC6 [11]. Instead of the potentially expected stage 3, a liquid-like 

dilute stage 2L is present in electrochemically intercalated lithium, since stage 3 is an 

ordered phase, solely occurring at low temperatures [11]. Peak N3 is subsequently 

associated with the transition between stage 4 and stage 2L [251], where ~0.24 ≤ 𝑥 ≤ 0.33 

in LixC6 [251,259,260]. Within the lithium content range 0.085 ≤ 𝑥 ≤ 0.956, estimated by the 

ICP-OES measurements, two other transitions are expected – from stage 5 to stage 4 for 

0.17 ≤ 𝑥 ≤ 0.24 [259] and from stage 8 to stage 4 for 0.08 ≤ 𝑥 ≤ 0.17 and at 210 mV vs. 

Li/Li+ [251]. But no matching peak was uncovered in the displayed data. Peaks N1 through 

N3 match very well with the peak positions estimated during lithiation and delithiation by the 
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intermittent current technique as studied in [251]. The study by Reynier et al. [253], which 

uses a similar technique and an electrolyte solution comparable to the one used in this work, 

also confirms the position of the peaks associated with the described phase transitions. 

The main peak P1 of the positive electrode is assigned to the first-order phase transition 

between hexagonal phases I and II occurring at 3.93 V vs. Li/Li+ for LCO according to 

[8,254,257,258]. This is the transition between the metallic and the semiconducting phases 

in hexagonal symmetry [8,257] of LixCoO2 with 0.75 ≤ 𝑥 ≤ 0.93 and is associated with a 

significant expansion of the c-lattice parameter in the hexagonal unit cell [8,258]. The two 

distinct peaks P2 and P3 above 4.0 V vs. Li/Li+ are ascribed to a transition between ordered 

and disordered lithium-ions within the lattice and a transition between hexagonal and 

monoclinic symmetry [8]. The lithium content x is estimated to be slightly above and below 

0.5 at 0.45 and 0.55 for those two peaks [8]. Reimers and Dahn measured the peaks’ 

positions to 4.07 V and 4.19 V, respectively [8]. Deviations in the experimentally determined 

position of the peaks from the values stated in literature can be associated with differences 

in the experimental parameters, especially regarding electrolyte – a 1M LiClO4 in PC:EC 

solution, and the study of the first cycle after cell assembly [8] in contrary to the sixth cycle 

shown within this work. The voltage drop associated with a finite current along with the 

internal resistance of the lab cell also contributes to deviations [8]. 

Combining the results of ICP-OES and incremental capacity analysis allows one to 

conclude that the LCO positive electrode is utilized in the lithiation range 0.413 ≤ 𝑥 ≤ 0.930 

and thus is the capacity limiting electrode. The graphite negative electrode is not fully 

utilized with x being in the range 0.085 ≤ 𝑥 ≤ 0.956, which was probably a design choice to 

avoid lithium plating during fast charging – the cell is specified up to 2.0 C charging.  

4.1.4 Dilatometer experiments to evaluate volume change during cycling 

The thickness change of pouch cell was measured by a mechanical dial indicator during 

several cycles at different C-rates to estimate the relative and absolute volume and 

thickness change of the studied battery cells due to (de-)intercalation of lithium in the host 

structure of the active materials. The cell thickness change of one of the studied battery 

cells during the second cycle at a given C-rate, ranging from 0.1 C to 1.0 C is depicted in 

Figure 4.7. 
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Figure 4.7: Cell thickness change of one of the studied pouch cells (PM1082-17) during 

cycling at different C-rates. The second cycle at a given C-rate is displayed in the figure. The 

course of the plot can roughly be divided into three sections of different slopes. Those can be 

associated with different phase transitions that are shown in Figure 4.6. 

In general, the depicted curves can be split into three sections of different slopes with the 

first section reaching about 30% SoC, the second until about 60% SoC and the third making 

up for the remaining up to 40% SoC. The absolute thickness increase, as well as the charge 

capacity (not shown in the plot), varies slightly with C-rate, which is visible at 100% SoC 

through a decreasing position of the maximum with C-rate. The values of maximum charge 

capacity and associated thickness increase along with the mean thickness increase per 

capacity are listed in Table 4.4. The latter yields values from 0.091 µm/mAh to 

0.094 µm/mAh. An increase with C-rate is expected due to the diffusion-limited equilibration 

of lithiation gradients within the active material particles. The outer shell of the particles is 

lithiated first and thus reaches a higher degree of lithiation than the core of the particles 

[20,104,261]. The diffusion of lithium-ions into the core of the particle and the thereby 

created displacement of the border between stages of lithiation is a slow process, particular 

slower than the lithiation at high C-rates. Since higher stages are associated with a larger 

volume increase, the mean volume increase is larger if the equilibrium has not yet been 

reached and thus a larger volume share of the particles is in a higher stage of lithiation, 

even so, the mean lithium content of the particles would be associated with a lower stage. 

On the other hand, different studies discussed that the differences in volume expansion 

might be a result of thermal expansion associated with the substantial heating at high 
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currents [20,99,100]. One could conclude that during relaxation, after the application of a 

current both, thermal expansion and expansion due to lithium gradients, undergo relaxation. 

Oh et al. showed that in their case the thermal expansion provides the dominant share 

[20,98]. In this work, no excess cell thickness increase due to thermal expansion could be 

witnessed. Table 4.4 even shows that at 1.0 C the total thickness increase of the battery 

cell was smaller than at lower C-rates. But still, small differences between cycles at different 

C-rates exist in the shape of the curves. The general trend observed here is that the 

difference in slope of the described sections reduces with C-rate. 

By comparing Figure 4.7 with Figure 4.6, it is possible to roughly assign the sections of 

different slopes to phase transitions in the active materials. The first section’s slope can be 

attributed to the P1, N3, and N2 peaks. In the associated voltage range, both negative and 

positive electrodes, exhibit phase transitions causing changes to crystallographic unit cell 

volume and mechanical properties of the active materials. Differences in charge and 

discharge half-cycle are visible in both figures – compare the SoC range in which the N2 

peak is present in Figure 4.6 with the position of the kink after the first section in Figure 4.7. 

The second section with the lowest slope seems to be affected by the decaying P1 peak 

and N1 peak increasing in intensity. The final section with a slope comparable to the first 

section’s slope is expected to be affected from the N1 peak in conjunction with the P2 and 

P3 peak, associated with the monoclinic/hexagonal symmetry transition in the LCO. 

Table 4.4: Maximum values of thickness increase and charge capacity in the second cycle at 

a given C-rate for an exemplary battery cell (PM1082-17) of the type studied in this work. 

C-Rate 0.1 C 0.5 C 1.0 C 

Charge capacity / mAh 1371 1336 1302 

Thickness increase at 100% SoC / µm 125.1 124.4 122.0 

Mean thickness increase per capacity / µm·mAh-1 0.091 0.093 0.094 

4.1.5 Summary of this subchapter 

This subchapter employed electrochemical techniques and destructive post-mortem 

methods to interrogate the structure of the battery cells, studied in this work. Initial tests 

revealed a standard deviation of about 1.5% from the mean capacity of (1411 ± 21) mAh 

and a spread of 7.1% in high-frequency resistance. Cell opening and measuring the active 

electrode area yielded an experimental areal capacity of about 2.5 mAh/cm2, which places 

the battery cells in between the categories of high energy (3 mAh/cm2 to 4 mAh/cm2) and 

high power density (1 mAh/cm2 to 2 mAh/cm2) [20,26,246]. Thus the studied cells can be 
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considered hybrid and the results from this work should be transferable to other battery cells 

of either category. A chemical analysis employing ICP-OES confirmed the active materials 

to be graphite within the negative electrode and lithium cobalt oxide in the positive electrode. 

The behavior exhibited by this material system can be taken as a representative of up-to-

date battery cell chemistries, still involving a dominant share of graphite on the negative 

electrode and a positive active material such as NCM, with a similar crystal structure as 

LCO. ICP-OES also unveiled the lithiation range in which the active materials are utilized, 

which in combination with an incremental capacity analysis allowed assigning 

electrochemical processes such as phase transitions and staging processes to certain 

sections of the full SoC range. Finally, dilatometry was performed to quantify the cell 

thickness change of the battery cells during cycling. A reversible total thickness increase of 

1.8% during charging was observed which did not vary significantly with C-rate – only about 

2% when cycling with 1.0 C compared to cycles at 0.1 C. Therefore, the relevance and order 

of magnitude of the thickness change for changes in the time of flight of ultrasonic pulses 

through the studied battery cells are established. 

4.2 Development of the measurement setup 

Having a potential mobile or automotive application in mind, disc-shaped piezo elements, 

acting as the transducer, were mounted to battery cells. For reproducible and reliable 

measurements, a distinct development of the measurement setup was needed. The 

shielding of the piezo elements and the wiring plays an important role when it comes to 

signal quality. In addition, the coupling of the piezoelement to the battery cell will be 

discussed in the following section. The exact procedure to achieve this setup is described 

in Chapter 3.4. 

4.2.1 Verification of shielded piezo elements mounted on battery cells 

To unveil the influence of electromagnetic shielding the piezo elements and the interplay 

with the multilayer pouch foil, a test with dummy cells - samples of typical battery cell 

dimensions made from poly-oxy-methylene (POM - chosen due to similarity in mechanical 

properties – an elastic modulus of about 2.8 GPa - and density of about 1.4 g/cm3 [262]) 

was performed. One of the test bodies was packed in a pouch bag, sealed at 50 mbar, 

which is also the residual pressure in a pouch type lithium-ion battery cell. To both test 

bodies, one centrally placed shielded piezo element was attached on each side. Another 

non-shielded piezo element was placed at one-quarter of the length of the test body on both 

sides. The resulting configuration can be seen in Figure 4.8. Epoxy resin was chosen as an 
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agent to couple the piezo elements based on its good electrical insulation properties and 

hardness which ensures a good mechanical coupling between the piezo element and the 

battery cell [263]. 

 

Figure 4.8: Pictures of plastic dummy samples to test the effect of shielding the piezo 

elements and to test the influence of pouch foil. (Left) unmodified dummy, (right) pouched dummy 

of the same size. On the back of both samples, piezo elements were placed in the same configuration 

as in the front. “S1” marks the unmodified piezo elements glued to the surface of the sample, the 

other piezo elements were shielded by an envelope made from copper foil glued to the piezo 

elements and the sample. 

Raised cosine (RCn) pulses with n oscillations at frequencies between 50 kHz and 250 kHz 

were used for excitation on each of the piezo elements, the resulting transmitted signals at 

the other piezo elements attached to the test body were recorded. The exciting waveform 

and the resulting through transmission (recorded by the directly opposite piezo element) 

through a battery cell (top right), and the afore-described test bodies (bottom row) are 

shown in Figure 4.9. 
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Figure 4.9: Exciting waveform and resulting transmission signals under variation of sample 

preparation and type. (Top left) Raised cosine waveform at 200 kHz used to excite ultrasonic 

pulses, and (top right.) transmission signal through a battery following such pulse with shielded piezo 

elements. (Bottom left) Transmission signals through the bare plastic dummy, and (bottom right) 

through the pouched plastic dummy as in Figure 4.8. 

In Figure 4.9 at 200 kHz, one distinct wave package is observable in the transmission signal 

through a LIB (compare top right plot) with a shoulder, presumable originating from a second 

wave package overlying at around 50 µs. The transmission signals through the bare plastic 

dummy (compare bottom left plot in Figure 4.9) show very similar signals in the case of the 

unmodified (orange line) and shielded piezo elements (blue line). Three distinct wave 

packages are observable. Differences in the time of flight/arrival time of those wave 

packages may originate from differences in positioning of the piezo elements (centered vs. 

closer to the edge). Several options for the propagation of ultrasound in battery cell 

materials and geometry were discussed in Chapter 2.2. The transmission signals through 

the pouched plastic dummy (blue line in the bottom right plot in Figure 4.9) show two distinct 

wave packages in the case of the shielded piezo elements. The unmodified piezo elements 

(orange line) show a superposition of some slowly fading oscillation after the arrival of the 

first wave package and thus make the distinction of wave packages impossible. Therefore, 

shielding of the piezo elements, at least on the receiving side is necessary. An explanation 

of how the distortion, leading to the slowly fading overlay in the signal, propagates from the 

actuator to the sensor is given in Figure 4.10. In the upper row, batteries with mounted piezo 

elements are depicted. One of the two piezo elements on each battery is connected to the 

signal generator, the other one is connected to the input of the measurement device, which 
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is implemented as a differential amplifier feeding an analog to digital converter (ADC). The 

left column shows the case of an unmodified piezo element glued to the pouch foil of the 

battery cell, whereas the right column shows the shielded element. A piezo element is 

basically a capacitor with a piezoelectric material as the dielectric. Thus, by applying a 

voltage between its two plates, an electrical field is established and charge carriers flow 

onto the plates. The pouch foil is a multilayer compound with an aluminum layer in the 

middle. On to this, a mirror charge can be induced by the charge on the plates of the piezo 

element. Therefore, the pouch foil exhibits an electric potential. By forming a continuously 

connected enclosure around the pouched body – at least if one side is folded and the others 

are welded, the pouch foil serves as a medium to transport this electromagnetic interference 

from one side to the other and thus from the sending to the receiving piezo element. 

 

Figure 4.10: Schematic of batteries with piezo elements glued onto the pouch foil to act as 

ultrasonic transducers and schematic on capacitive crosstalk/coupling and 

countermeasures. (Left column) Piezo elements unmodified, (right column) piezo elements 

shielded by a copper envelope. If the piezo element is shielded, the mirror charge induced by the 

charge on its capacitor-like plates is grounded and therefore does not induce any potential on the 

pouch foil, which would be sensed by the receiving piezo and would superimpose the acoustic signal. 

This problem occurs at high frequencies, densely packed spaces, and high voltages in 

commonly found applications, mostly communication electronic devices (mobile phones, 

laptops, etc.), where sensitive electrical components are shielded with thin metal plates 

from external and internal sources of interference. The disclosed setup, shown in the right 

column of Figure 4.10, uses the same working principle. In between piezo element and 
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pouch foil, a copper foil is introduced, insulated by a layer of epoxy resin each against the 

bottom plate of the piezo element and the pouch foil. By grounding the copper envelope, 

folded around the piezo element, charge carriers, induced by internal and external sources 

are led away. Thereby, preventing a superposition of the acoustic signal and 

electromagnetic interferences. 

4.2.2 Impedance spectroscopy of piezo elements 

The before described manual procedure introduces an additional source for unwanted 

variation in the experiment. Therefore, the impedance spectra of all piezo elements are 

measured and checked for abnormal features after mounting them to the sample. 1000 

points in a frequency range of 1 kHz to 1 MHz were scanned at an amplitude of 20 mV. The 

data presented in Figure 4.11 is collected from the piezo elements of the type specified in 

Chapter 3.4, mounted on six different battery cells using the previously described 

procedure. The geometric dimensions of the piezo element are stated in the data sheet – 

see Table 3.3. From the thickness and diameter of the piezoelectric disc, the resonant 

frequencies in air can be estimated based on an assumption of the longitudinal (4000 m/s) 

and transversal (2000 m/s) sound velocities in the unknown, most likely ceramic, 

piezoelectric material. The radial resonance frequency can be calculated to be 

(133.3 ± 2.7) kHz and (66.7 ± 1.3) kHz, for longitudinal and transversal propagation, 

respectively. The resonance frequency for the thickness oscillation can be estimated to be 

(13.3 ± 4.4) MHz and (6.7 ± 2.2) MHz, for longitudinal and transversal propagation, 

respectively. These calculations have to be corrected for the mass coupling of the piezo 

element to its brass base, which inhibits a slower speed of sound and introduces additional 

uncertainty. By coupling the piezo element to the mass of the sample by attaching it to its 

surface, the resonant behavior of the piezo element is expected to change [218]. 

In Figure 4.11 the results of impedance spectroscopy on 15 piezo elements are compared. 

14 out of the 15 compared frequency spectra show similar behavior. Shown in the inset, 

one peak can be identified in the region between 130 kHz and 150 kHz with a variation in 

height and width. Furthermore, the real part of the impedance asymptotically rises 

approaching 1 kHz. Besides the main peaks, higher-order harmonics, e.g., at three or five 

times the main resonance frequency can be seen in a detailed view (not shown here). One 

of the spectra, plotted as a blue line and annotated by an arrow, differs from this behavior 

in peak shape, and overall shape, showing distinct discontinuities and steps in its course. 



4 Results & discussion 

93 

 

Figure 4.11: Resonant behavior of individual piezo elements attached to LIB pouch cells 

(LDA002 through LDA025, as listed in Figure 4.2), estimated by impedance spectroscopy. The 

inset shows the main resonant peak at 143 kHz for the piezo elements firmly attached to the batter 

cells. The dark blue line, annotated with an arrow, shows the spectrum of a piezo element that had 

detached during the manufacturing process, which was identified by the impedance spectroscopy 

through differing resonant peak shapes, a resonance frequency of 135 kHz, and a large jump in the 

spectrum. This resonance frequency complies with the longitudinal resonance frequency of the piezo 

element, oscillating radially in air. 

Standing out by this abnormal spectrum, the sensor stack in question was visually inspected 

and was found to have peeled off from the battery cell. This, freely oscillating piezo element, 

exhibits a resonance frequency of 132.8 kHz, complying well with the radial resonance 

frequency calculated for the longitudinal propagation in a ceramic piezoelectric disc with the 

dimensions of the employed type. The same data is presented in the Nyquist plot on the 

right side of Figure 4.12 along with a descriptive statistic excluding the peeled-off piezo 

element, on the left. 
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Figure 4.12: Descriptive statistic on resonant behavior of piezo elements and Nyquist plot of 

the impedance spectra in Figure 4.11. (Left) Peak frequency, and peak amplitude, with the 

standard deviation of the main resonant peaks in Figure 4.11. (Inset). In the Nyquist plot, the mostly 

capacitive behavior of the piezo elements becomes visible, except for the characteristic circular 

course at resonant frequencies. The inset shows the frequency range around the main resonant 

peak at 143 kHz. From the circular shape, it can be judged how symmetrical the oscillation of a piezo 

element is. An arrow annotates the spectrum of the detached piezo element, which is excluded from 

the statistic.  

The Nyquist plot allows identifying how symmetrical a piezo element oscillates, as shown 

in the inset. Since the piezo elements used in this work are not specifically designed for the 

purpose which they are here used for, inhomogeneity in thickness and diameter can be 

expected. Furthermore, manually contacting the piezo element with a soldering point on the 

top introduced an additional mass, potentially off-center, affecting the resonant behavior. 

This could explain the variations in the shape, position, and height of the peaks depicted in 

Figure 4.11, as summarized in the descriptive statistic (Figure 4.12, left side). The averaged 

quantities are estimated to (142.8 ± 6.3) kHz for the resonant frequency and 

(16.8 ± 3.0) Ohm for the peak height. 

4.2.3 Summary of this subchapter 

In this subchapter, the process to manufacture sensor stacks from piezo elements and to 

attach them as ultrasonic transducers to the faces of battery cells was presented. This 

manual process involves the screen-printing of adhesive layers and the electromagnetically 

shielding of the piezo elements. The developed process ensures a reproducible mechanical 
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coupling of the transducers, which are acting as transmitters and receivers on opposing 

sides of the battery cell. Impedance spectroscopy (IS) was employed to verify the 

attachment of the piezo elements and to characterize their resonant behavior. The manually 

crafted and attached sensor stacks showed a spread of about 4.4% in resonance frequency 

and a spread of about 18% in amplitude at the resonance frequency. IS also proofed useful 

to discover the detachment of piezo elements from the battery cell’s surface. Experiments 

comparing the signals of shielded and bare piezo elements proofed the necessity of 

electromagnetic shielding to avoid the superposition of the acoustic signals with capacitive 

crosstalk. Further, the effect of the shielding on the transmitted waveform and its time of 

flight could be qualified to be small compared to the effects of crosstalk-induced distortions. 

4.3 Excitation of piezo elements and through transmission signals 

This section aims to give an overview of the excitation of the piezo elements, acting as 

transducers for the ultrasonic interrogation of the battery cells, and the therefrom arising 

transmission signals as a function of excitation frequency and state of charge. Thereby, 

general trends in the raw data are explored and listed for future reference when testing 

signal processing and feature extraction. To keep this section reasonably short, the 

excitation and transmission signals for a single battery cell, LDA019, serving as an example 

for the interrogated battery cells is chosen. Where not otherwise stated, the signals 

transmitted through this battery cell in the eleventh full cycle at 0.1 C are shown. 

4.3.1 Excitation of the piezo elements 

Piezo elements were attached to lithium-ion batteries via epoxy resin, ensuring mechanical 

coupling. As described above, transmission geometry was chosen. Therefore, two piezo 

elements, placed along an axis on opposite sides of a battery cell act as sending and 

receiving transducers. Raised cosine (RCn) waveforms, with n describing the number of 

oscillations contained in the exciting waveform, are commonly used in non-destructive 

evaluation [264]. Here 𝑛 = 5 was chosen to achieve sufficiently-short wave package length 

while maintaining a narrow frequency distribution. 

To demonstrate and to examine the excitation of the piezo elements with the RCn waveform, 

two examples at 50 kHz and 250 kHz (the lowest and highest frequency in the dataset which 

is stepped through at 5 kHz intervals) are depicted in Figure 4.13, each in a separate 

column. The first row shows the output signal under load (blue dots), e.g., with a piezo 

element connected to the output channel, and the corresponding RCn function (orange line) 

which is passed to the digital to analog converter (DAC). Here the dependence of period 
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and thus wave package length on selected frequency becomes clear with the 50 kHz 

waveform exhibiting almost five times the length of the 250 kHz waveform. The second row 

contains power spectral density (PSD) plots of RCn function and output signal. For 50 kHz, 

only small deviations from the function’s waveform and PSD are present. For 250 kHz, 

much more prominent deviations are visible in the waveform, especially within the first 

(2 to 4) µs. In addition, the PSD shows deviations in the frequency distribution. The peak 

appears slightly thinner than the function’s distribution and exhibits a second peak around 

8 kHz. The bottom row shows a ten-fold zoom on the PSD in the row above, annotations 

mark the positions of prominent peaks.  

 

Figure 4.13: Raised cosine (RCn) pulses with five oscillations at excitation frequencies of 

50 kHz and 250 kHz and their calculated power spectral density. The top row shows the 

mathematical function passed to the DAC (orange) and the output signal under capacitive load (blue 

dots) is shown. The middle row shows the PSD, calculated by FFT from the shown signals. The 

bottom row shows a ten-fold zoom on the PSD in the row above, annotations mark the positions of 

prominent peaks. 

For both frequencies, a peak at 8 kHz is visible in the PSD of the output signal under load. 

For 50 kHz, in the PSD of signal and function, a second peak is visible around 26 kHz. This 

peak and a shoulder around 14 kHz are most likely caused by spectral leakage in the FFT 
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used to calculate the PSD. For 250 kHz, a second peak at 136.8 kHz is visible. Since a 

corresponding peak in the function’s PSD is missing, this is most likely a peak caused by 

the resonance of the piezo element at this frequency. The same assumption seems valid 

for the peak at 8 kHz. These findings coincide well with the resonant frequencies that are 

stated in the datasheet of the piezo elements and that are estimated by impedance 

spectroscopy. 

4.3.2 Display of unprocessed transmitted signals 

The following figures, depicting transmitted signals through the battery cell LDA019 of the 

selected type, are chosen as a single reference for through-transmission signals with the 

experimental setup described in Chapter 3, based on attached piezo discs. Signals at 

different SoCs were obtained during three cycles of 0.1 C cycling, more precisely from the 

charging process of the second cycle to avoid bias from relaxation during previous storage. 

Through transmission signals, resulting from excitation frequencies between 50 kHz and 

250 kHz in steps of 5 kHz were recorded approximately every 0.6% SoC. To account for 

high signal amplitude and thus low dampening in the frequency range of 50 kHz to 75 kHz, 

an amplitude of 3% of the maximum output amplitude was chosen. For 80 kHz and above, 

3.5% of the maximum amplitude was chosen for excitation. To enable a convenient 

presentation, the signals were normalized to the maximum amplitude and are displayed in 

normalized units (n.u. or NU). For most frequencies, the second wave package makes up 

for the portion of the signal with the maximum amplitude. Therefore, the description of the 

transmitted signals is chosen to always refer to the relative amplitudes.  
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From the available dataset, frequencies throughout the whole range of 50 kHz to 250 kHz 

were chosen, to highlight the gradual changes in through-transmitted signals, occurring with 

a variation of the RCn excitation frequency. In the following section, transmitted signals in 

sets of four and with frequency steps of 5 kHz are illustrated. Figure 4.14 shows the 

transmitted signals for 50 kHz to 65 kHz in steps of 5 kHz, each displayed in a separate 

subfigure. For each frequency, the signals at three different states of charge (SoC) of the 

battery cell are plotted. 

 

Figure 4.14: Transmission signals through battery LDA019 at SoC 0%, 50%, and 100% with 

RCn excitation frequencies of 50 kHz to 65 kHz. Two main wave packages are distinguishable. 

The first one shows almost no change in position with change in SoC, while the second one is 

received earlier with rising SoC. Oscillatory patterns following these wave packages are highly 

distorted and may be a result of the superposition of received wave packages and a fading out 

oscillation of the receiver. 

The signals at these frequencies share that the first wave package shows a declining 

tendency in amplitude with rising SoC, while the position and shape of this wave package 

remain mostly unchanged. Further, the second wave package is received earlier with rising 

SoC. Especially for the signals of frequencies 50 kHz and 55 kHz, the waveform within the 

packages and in the junction points between those first two are distorted and show 

discontinuities. Those discontinuities become less prominent with rising RCn frequency. The 

oscillatory pattern following the second wave package shows a high number of irregularities 

and discontinuities and is therefore not easily interpreted. They may result from a 

superposition of following wave packages and fading out oscillation of the receiver.  
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Figure 4.15 displays the transmitted signals at 70 kHz, 75 kHz, 80 kHz, and 90 kHz. They 

share that the first wave package shows a declining tendency in amplitude, while the second 

wave package arrives earlier with rising SoC.  

 

Figure 4.15: Transmission signals through battery LDA019 at SoC 0%, 50%, and 100% with 

RCn excitation frequencies between 70 kHz to 90 kHz. The signals have in common that the first 

wave package shows a declining tendency in amplitude, while the second wave package arrives 

earlier with rising SoC. The second wave package appears mainly undistorted, but exhibits a 

discontinuity in the fifth oscillations, increasing with frequency. Gradually, from 70 kHz to 90 kHz, the 

second wave package at 0% SoC becomes more distant from the wave packages at 50% and 

100% SoC, with a distinct discontinuity at about 70 µs. 

The second wave package appears mainly undistorted, but exhibits a discontinuity in the 

fifth oscillations, increasing in intensity with frequency. Gradually from, 70 kHz to 90 kHz, 

the second wave package at 0% SoC becomes more distant to the wave packages at 50% 

and 100% SoC, with a distinct discontinuity at about 70 µs. 
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Figure 4.16 then shows the transmitted signals for 110 kHz to 170 kHz in steps of 20 kHz, 

each displayed in a separate subfigure. The displayed signals have in common that the first 

wave package shows a declining tendency in amplitude with rising SoC. Furthermore, 

through the earlier arrival of the second wave package, the first one is affected by 

superposition. Hence appearing shorter and exhibiting less than the commonly expected 

five oscillations. Even though the second wave package appears distorted in shape, the 

general trend of earlier reception with higher SoC remains visible though out all depicted 

frequencies. 

 

Figure 4.16: Transmission signals through battery LDA019 at SoC 0%, 50%, and 100% with 

RCn excitation frequencies between 110 kHz to 170 kHz. The displayed signals have in common 

that the first wave package shows a declining tendency in amplitude with rising SoC. Even though 

the second wave package appears distorted in shape, the general trend of earlier reception with 

higher SoC remains visible though out all depicted frequencies. 
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Figure 4.17 displays the transmitted signals for frequencies of 190 kHz through 250 kHz in 

steps of 20 kHz. At these frequencies, the amplitude of the first wave package is maximum 

at 50% SoC. Furthermore, the first wave package exhibits the overall maximum amplitude 

within the signal starting at 210 kHz and 50% SoC. The trend of a huge discontinuity at 0% 

SoC continues at the depicted frequencies. Thus, making the second wave package at this 

SoC appear a lot later than at 50% and 100% SoC. Additionally, through the superposition 

of several patterns, the second wave package is not easily distinguishable from fading out 

oscillations and also shows an increasingly pronounced asymmetry. Therefore, no higher 

frequencies were investigated with the described measurement setup.  

 

Figure 4.17: Transmission signals through battery LDA019 at SoC 0%, 50%, and 100% with 

RCn excitation frequencies between 190 kHz to 250 kHz. At these frequencies, the amplitude of 

the first wave package is maximum at 50% SoC. Furthermore, the first wave package exhibits the 

overall maximum amplitude within the signal, starting at 210 kHz and 50% SoC. Through a huge 

discontinuity, the second wave package appears a lot later at 0% SoC, compared with 50% and 

100% SoC. Furthermore, caused by the superposition of several signal constituents, the second 

wave package appears distorted in shape, especially for the signals at 230 kHz and 250 kHz. 
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The following two wide-format pages display two figures, Figure 4.18 and Figure 4.19, each 

consisting of nine heat map plots, converted from the data partially shown in previous 

graphs. On their vertical axis, the transmission time is plotted which was before plotted on 

the horizontal axis of Figure 4.14 through Figure 4.17. The color scale displays the absolute 

signal amplitude in non-normalized units. Therefore, brighter or red-colored pixels 

correspond to signal portions of high amplitude, darker or blue-colored pixels correspond to 

signal portions of low amplitude.  

In Figure 4.18, the RCn frequency is plotted on the horizontal axis. The figure is divided into 

three columns, each displaying another SoC. The first row shows the signals in the range 

of zero µs to 200 µs, the second row zooms in on the first wave package and the third row 

zooms in on the second wave package. Overall, an earlier reception of both wave packages 

with increasing RCn frequency can be observed. The first arrives around 20 µs to 60 µs, the 

second around 60 µs to 120 µs, depending on RCn frequency. For the second wave 

package, a decrease in arrival time and an increase in amplitude from 0% to 100% SoC 

can be seen. Furthermore, the second wave package appears to be split in the frequency 

range 70 kHz to 80 kHz at 50% SoC, as can also be seen in Figure 4.15, where the main 

peak of the second wave package and a subsequent peak, resulting from superposition, 

almost exhibit the same amplitude. Both wave packages seem to asymptotically approach 

a minimum transmission time as RCn frequency is increased. While this limit appears to be 

a function of the SoC of the battery cell for the second wave package, it appears to remain 

unchanged for the first wave package. Therefore, the second wave package’s time of flight 

is favorable for the estimation of the SoC. 
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Figure 4.18: Heat map of absolute transmission signals through LDA019 as a function of transmission time (y-axis), plotted vs. RCn excitation 

frequency (x-axis) at three selected SoCs (columns). The first row shows a 200 µs long portion of the signals. The second and third-row show regions of 

the signals, focused on the first and second wave package, respectively. For both wave packages, a declining trend with RCn frequency is observed. 
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In Figure 4.19, the transmission time is plotted again on the vertical axis, and the SoC of 

the battery cell under investigation is plotted on the horizontal axis. As stated by the subplot 

title, nine RCn frequencies between 50 kHz and 250 kHz in steps of 25 kHz were selected. 

The scale of the absolute amplitude remains unchanged with respect to Figure 4.18. In this 

figure, the SoC dependence of several signal features can be well seen. Among the 

displayed frequencies, at 100 kHz the amplitude of the first and second wave package 

appear the highest overall. For the displayed frequencies, the first wave package appears 

mostly unaltered in amplitude and transmission time in the complete SoC range. For all 

frequencies, an increase in amplitude with SoC, especially for the second wave package is 

observed. Furthermore, the decrease in transmission time of the second wave package 

appears to be almost linear for the lower frequencies 50 kHz to 100 kHz, regarding phase 

and group velocity. The latter is judged according to the maximum amplitude within the wave 

package. For higher frequencies, the position of the maximum amplitude seems to shift 

towards lower transmission times. Therefore, a non-linear course is expected in further 

detailed signal analysis. 

4.3.3 Summary of this subchapter 

In this subchapter, the excitation of the piezo elements with a raised cosine (RCn) pulse, a 

common waveform in ultrasonic NDE and SHM, was shown. The power spectral density 

of the waveform under capacitive load was analyzed and peaks other than the center 

frequency of the exciting waveform were assigned to resonant frequencies of the piezo 

elements, used as ultrasonic transducers. Then, the raw signals resulting from the 

transmission of the excited waveform through the battery cells were shown, for an 

exemplary battery cell. The selection of several RCn frequencies and three states, namely 

0%, 50%, and 100% SoC allowed identifying rough trends. The plot of the raw signals 

over the whole frequency and SoC range as heat maps enabled the identification of 

trends – a decrease in time of flight of the wave packages with SoC and RCn frequency – 

within the signals, which are rather easily spotted with the human eye but are difficult to 

quantify and extract automatically by means of algorithms. The here-listed trends will 

serve as a reference for the feature extraction showcased in a later chapter. 
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Figure 4.19: Heat map of the absolute amplitude of transmission signals through battery LDA019as a function of transmission time (y-axis), plotted 

vs. SoC (x-axis) at nine selected RCn excitation frequencies (subplot titles). For all depicted frequencies, an almost steady course for the first wave 

package and a declining trend with SoC for the second wave package is observable.
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4.4 Automated estimation of signal properties through algorithms 

To feed SoC estimation algorithms with ultrasonic signal data and thereby increase 

estimation accuracy is the distinct aim of this work. To enable such a signal analysis, it is 

necessary to design it fully implementable on microprocessors, independent of human 

input, and robust against parameter variation. The first portion of this section treats signal 

properties such as maximum amplitude (position) and transmitted energy content. The 

second and larger portion of this section is dedicated to the time of flight estimation and 

the here for necessary signal processing in the time and frequency domain. 

4.4.1 Properties other than the time of flight 

Especially in Figure 4.19, a good correlation between maximum amplitude and SoC became 

apparent. As the signal data is available as a one-dimensional array, picking the entry with 

the maximum amplitude and estimating its position is an easy task. The results are 

displayed in the following figures. In Figure 4.20, the maximum amplitude is plotted against 

RCn frequency for three different SoCs. For 0% and 100% SoC, the curves show a bell 

shape-like course with a maximum of around 120 kHz and 95 kHz, respectively. Due to the 

measurement tool’s input being partially in saturation, the maximum amplitude of the signal 

remains constant for the frequency range of 80 kHz to 120 kHz. 

In this range, a compromise between a well-resolved waveform (reasonable amplitude) and 

resolving all peaks in the transmitted signal had to be made. Thus, the highest peak of the 

second wave package in this frequency range is cut. Therefore, the frequency at which the 

amplitude is maximum at 100% SoC cannot be estimated from this dataset. One prominent 

point can be found at 140 kHz, where the maximum amplitude at 0% and 50% SoC is almost 

identical. Going towards higher frequencies, the maximum amplitude at 50% SoC becomes 

the smallest out of the selected three SoCs, until about 220 kHz after which the order is 

entirely reversed and the maximum signal amplitude is the highest at 0% SoC. 
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Figure 4.20: Maximum amplitude of signals, transmitted through battery cell LDA019, for 

different SoCs and RCn excitation frequencies. Remark: In the frequency range between 80 kHz 

and 120 kHz and at an SoC of 100%, the ADC of the measurement device is in saturation due to too 

high signal amplitude. Therefore, a 17% lower excitation amplitude was chosen for 75 kHz and 

below, which causes the step seen in this frequency range. 

In Figure 4.21, the position of the maximum amplitude is plotted against RCn frequency for 

three different SoCs. For the displayed SoCs, the course of the plots is non-monotonously 

but are broken at different frequencies. In a large portion of the frequency range, e.g., from 

95 kHz to 200 kHz, the maximum amplitude at 0% SoC is recorded at noticeable later 

transmission times, compared to 100% and 50% SoC. With respect to the change in 

transmission time from 100% to 50% SoC, this huge jump does not represent the physical 

change in transmission time or velocity of the ultrasonic wave packages involved. 

Therefore, it is suspected to be a result of the superposition of several wave packages in a 

way that leads to a low amplitude in the junction between two subsequent wave packages, 

which can be seen while comparing the signals at 90 kHz and 110 kHz in Figure 4.15 and 

Figure 4.16 with attention on discontinuities. The section between 50 kHz and 90 kHz, and 

the section between 230 kHz and 250 kHz, with data points aligned closely together, are 

much more likely to well represent physical changes to the system battery cell. On the other 

hand, abrupt changes in the frequency-dependent behavior (at all three SoCs), such as the 

jumps occurring at 60 kHz and between 200 kHz and 230 kHz are most likely an artifact 
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resulting from the limitations of this simple analytical procedure, since these observations 

are not corresponding to the continuous behavior visible to the bare eye in Figure 4.19. 

 

Figure 4.21: Position of the maximum amplitude within the acquired signal, transmitted 

through LDA019, for different SoCs and RCn excitation frequencies. For most frequencies, the 

position of the maximum amplitude is the highest for 0% SoC and the lowest for 100% SoC. Starting 

at 205 kHz, this order is changed. Until 225 kHz, the position of the maximum amplitude is the lowest 

at 50% SoC. Followed by a frequency range where the order is completely inverted. The origin of the 

described behavior can be traced back to the signal amplitudes at different SoCs in section 4.3.2. 

Figure 4.22 depicts the maximum amplitude as a continuous plot vs. SoC. The color of the 

lines indicates the RCn frequency, spaced by 5 kHz, as referred to by the color bar on the 

right. Three main trends are observable. First, for the larger portion of the SoC range, the 

maximum amplitude increases with SoC. Second, the minimum and maximum within the 

maximum amplitude of the signal rise with RCn frequency until 100 kHz and then fall off until 

250 kHz. For all frequencies, a local maximum exists at 0% SoC. Depending on the 

frequency, the local minimum is reached within a few % SoC or up to 20% SoC. Another 

noticeable feature is the capping of the amplitude at 33000 a.u. at frequencies between 

80 kHz and 120 kHz, which can be traced back to the saturation of the input channel of the 

measurement tool that was described before. 
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Figure 4.22: Maximum amplitude of signals, transmitted through LDA019, for various RCn 

excitation frequencies plotted vs. SoC. Continuous plot over the full SoC range, showcasing the 

trends with SoC and RCn frequency. The plots of the depicted frequencies have in common that they 

show a sign-change in slope at low SoC. Remark: In the frequency range between 80 kHz and 

120 kHz and at an SoC of 100%, the ADC of the measurement device is in saturation due to too high 

signal amplitude. Therefore, a 17% lower excitation amplitude was chosen for 75 kHz and below. 

Between the lines of 75 kHz and 80 kHz (the sixth and seventh blue lines from the bottom), 

a gap is visible. This gap may partially result from differing excitation amplitudes – 3% and 

3.5% of the maximum output amplitude, respectively. Even though the displayed amplitudes 

were corrected by the resulting factor, this effect remains visible and thus suggests a high 

sensitivity of the setup towards amplitude variations. Overall, an amplitude decrease with 

frequency can be observed beyond 100 kHz. As a consequence of this and the fact that the 

variation of the amplitude depends on several other factors, the analysis of the amplitude 

variation with SoC is deprioritized in this work. 

The following figure, Figure 4.23, displays the position of the maximum amplitude within the 

transmitted signals as a function of SoC for different RCn frequencies. As before, the color 

bar on the right assigns a color to a frequency. For frequencies up to 90 kHz (ninth blue 

line, counted from the top), a continuously decreasing slope is observed for all lines but the 

50 kHz line. In general, the spacing between the lines decreases with increasing frequency, 

until the sudden drop towards the last five frequencies in the displayed spectrum. These 

findings align well with the results plotted in Figure 4.21. The sudden jumps in the position 

of maximum amplitude, which can be identified by vertical lines in the plot, were already 

anticipated in Figure 4.21. Once again, these are a result of the superposition, occurring in 
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the transmitted signals at some frequencies and SoCs, which lead to a wave package 

pattern being inadequately interpreted by the here employed simple algorithm. 

Nevertheless, these findings reveal which frequencies result in easily interpretable signals, 

e.g., frequencies up to 90 kHz. Discontinuities, present at some frequencies caused by a 

switch in the wave package carrying the maximum amplitude – e.g., at a certain SoC the 

maximum amplitude of the signal is placed within the first wave package, then with 

increasing SoC the amplitude of the second wave package increases and becomes the 

overall maximum amplitude within the signal. 

 

Figure 4.23: Position of the maximum amplitude within signals, transmitted through LDA019, 

plotted vs SoC for various RCn frequencies. Plot over the full SoC range shows discontinuities 

that are associated with either the first or the second wave package being the one with the maximum 

amplitude and the switch between them. 

Another, easy to obtain signal quantity is the transmitted energy content 𝐸𝑡𝑡. To estimate it, 

the squared signal amplitude 𝑥 is integrated over its duration (𝑡1 − 𝑡0). For a sampled and 

therefore discrete signal the integral is substituted with a sum over 𝑁 data points [265]: 

 𝑬𝒕𝒕 = ∫ |𝒙(𝒕)|²𝒅𝒕
𝒕𝟏

𝒕𝟎
≈ ∑ |𝒙(𝒏)|𝟐𝑵−𝟏

𝒏=𝟎 , 𝒏 = 𝟎, 𝟏, … , 𝑵 − 𝟏. (74) 

Figure 4.24 shows the transmitted energy content (EC, 𝐸𝑡𝑡) as a function of SoC for several 

RCn excitation frequencies. In general, the features present in this plot are similar to those 

in Figure 4.22 with the difference that the saturation of the input does not affect the energy 

content in such a dramatic way. Since the energy transferred within the maximum amplitude, 

which is cut for some frequencies in the range of 80 kHz to 120 kHz above 50% SoC, has 
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a small contribution to the overall transferred energy, no asymptotic behavior is shown. 

Again, a gap between the lines of 75 kHz and 80 kHz (sixth and seventh blue line, counted 

from the bottom) is present due to a change in excitation amplitude, described earlier. 

Nevertheless, the spacing between lines is increasing from 50 kHz to 80 kHz, subsequently 

decreases until 100 kHz, and then increases again until about 150 kHz to afterwards 

decrease until 250 kHz. With 100 kHz being the line with the overall highest amplitude or 

energy content in Figure 4.22 and Figure 4.24, it can be assumed that the 100% SoC scatter 

plot in Figure 4.20 would also exhibit a maximum at this frequency.  

 

Figure 4.24: Transmitted energy content, estimated by integration of the squared signal 

amplitude, for several RCn excitation frequencies plotted vs. SoC. The data shown here 

represents the signals transmitted through battery cell LDA019. In principle, similar trends as in 

Figure 4.22 are observed. With rising SoC, a higher amount of energy is transmitted within the signal. 

At 100 kHz the overall maximum energy is transmitted in the ultrasonic signal. And all frequencies 

show a sign-change in the slope of the plot at low SoC. Remark: Here the saturation of the ADC, for 

some frequencies and SoCs, is expected to alter the course of affected frequencies.  

For frequencies below 100 kHz, a monotonously increasing slope is observed except for 

the local minimum around 0% SoC. Above 100 kHz, the local minimum around 0% and up 

to 15% SoC is more and more pronounced. In addition, the decreasing slope is 

accompanied by a plateau between 60% and 80% SoC. 
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4.4.2 Adaptation of time of flight estimation methods in the literature 

The before described signals are analyzed by algorithms to find a stable and accurate 

estimate for the time of flight of the contained wave packages. The small spacing and partial 

overlap of the wave packages make some of the estimation methods, described in 

Chapter 2.3.6, suitable for the first wave package alone. Therefore, the results from several 

methods will be compared here. 

4.4.2.1 Comparison of frequency spectra of sent pulse and received signal 

As described in Chapter 2.3.6, the bandwidth and the shape of the sent ultrasonic pulse 

play a key role in the accuracy of ToF estimation methods. Therefore, the sent pulses (at 

different RCn frequencies) are analyzed regarding their bandwidth, according to the 

procedure described in Chapter 2.2.6.3. By comparing the frequency spectrum of the 

transducers with the frequency spectrum of the received wave packages, the suitability of 

ToF estimation methods that rely on the validity of the assumption of unchanged pulse 

shape can be assessed. 

Figure 4.25 compares the power spectral densities of the sent pulse under load (blue) and 

of the received signal at three different SoC and four different RCn frequencies. The plots 

show two main trends that can also be seen for all frequencies in Figure 4.27. Firstly, at 

lower RCn frequencies, up to about 125 kHz (not shown here, see the Appendix), the 

maxima/peaks of the PSD of the received signal lie within the bell of the frequency 

distribution of the sent pulse. Beyond the RCn frequency of 125 kHz, these peaks shift to 

lower frequencies, implying that the spectrum of the sent pulse is representing the spectrum 

of the received signal badly. Secondly, the peaks within the PSD of the received signal shift 

towards higher frequencies with rising SoC.  
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Figure 4.25: Power spectral density (PSD) of the sent pulse and the received signal at three 

selected SoCs for four selected RCn frequencies. Signals transmitted through LDA019 are 

exemplarily shown here. With rising frequency, the received signal’s PSD differs increasingly from 

the sent pulse’s PSD. The distribution contains an increasing number of peaks and shifts towards 

lower frequencies compared to the single bell-shaped peak in the pulse’s PSD. Further, the peaks in 

the distribution shift towards higher frequencies with rising SoC. For an extended selection PSD of 

transmitted signals at other RCn frequencies refer to the appendix. 

Figure 4.26 describes the bandwidth of the original waveform as handed to the DAC, and 

of the resulting pulse under load, with three distinct points in the frequency spectrum. For 

reference to sample signals and spectra, refer to Figure 4.13. The peak frequency 𝑓𝑝, and 

the two frequencies that meet the -3 dB criteria 𝑓𝑎 and 𝑓𝑏 are taken from the frequency 

spectra. The relative bandwidth is calculated according to Equation (48). Figure 4.26 

depicts the absolute bandwidth of pulse and waveform as the transparent blue and green 

spurs, respectively. The center line marks the peak frequency 𝑓𝑝, while the borders of that 

spur mark the frequencies 𝑓𝑎 and 𝑓𝑏. For the RCn waveform, the relative bandwidth remains 

constant at 28.82%, while for the pulse, the relative bandwidth lies lower and decreases 

with RCn frequency, as depicted on the right-hand axis. 
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Figure 4.26: Analysis result of frequency spectra (PSD) of the RCn waveform handed to the 

DAC and the resulting pulse under load. The peak frequency 𝑓𝑝 is plotted along with the 

frequencies 𝑓𝑎 and 𝑓𝑏 at -3 dB in the form of a partially transparent spur (representing the absolute 

bandwidth). On the secondary axis, the relative bandwidth is plotted. 

In Figure 4.27, nine heat maps at SoCs from 0% to 100% in steps of approximately 12.5% 

(compare subplot titles) are shown. These heatmaps plot the power spectral density (color 

value) vs. frequency component (y-axis) for all measured RCn frequencies (x-axis). Each 

heatmap is overlaid with plots of the frequencies 𝑓𝑎, 𝑓𝑏 and 𝑓𝑐 as introduced in Figure 4.26. 

This allows comparing the sent pulse’s PSD with the PSD of the received signal and to 

estimate where deviations of the peak frequency (dark red color in the heatmap vs. the 

center white line) and the frequencies at -3 dB (bright green color in the heatmap vs. outer 

white lines) occur. Several general trends can be observed. For RCn frequencies up to 

about 100 kHz, most of the PSD lies within the boundaries of 𝑓𝑎 and 𝑓𝑏 (outer white lines). 

From about 100 kHz on, increasingly more content of the PSD lies without these 

boundaries. Horizontal lines of red color indicate peaks in the PSD at certain frequencies 

that are populated as soon as the spectrum of the sent pulse contains those frequencies. 

Or put in other words, some of the sent frequencies are hugely attenuated and therefore 

not contained in the received frequency spectrum while other frequency bands are favored. 

These bands exist around 50 kHz, 75 kHz, 105 kHz, 125 kHz and 175 kHz. Going towards 

higher SoC, these bands seem to shift to higher frequencies. The band around 175 kHz is 

fading out towards 100% SoC as less of the spectrum lies above 125 kHz and the band 

around 125 kHz becomes wider with increasing SoC. 
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Figure 4.27: Heat map of power spectral density (PSD) of signals, transmitted through LDA019, as a function of frequency (y-axis), plotted vs. RCn 

excitation frequency (x-axis) at nine selected SoCs (subplot titles). The absolute bandwidth and peak frequency of the sent pulse, as displayed in Figure 

4.26 are overlaid as white lines. This shows that the position of the signal’s peak frequency shifts out of the bandwidth of the sent pulse with rising RCn 

frequency. 
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Since the appearance of the PSD of the received signals is not single bell-like (see Figure 

4.25), the quantitative description by a center frequency and bandwidth are not as 

meaningful as for the sent pulse’s PSD. For a symmetrically shaped distribution, the center 

frequency and the center of mass (CoM), also called centroid, coincide. Borrowing the 

concept of the expected value of a normalized distribution of a random variable, the center 

of mass 𝜇 of the power spectral density 𝜌𝑃𝑆 can be calculated according to Equation (75).  

 𝝁 = ∑ 𝒇𝒌𝒑𝒌
𝑵−𝟏
𝒌=𝟎  (75) 

 𝒑𝒌 = 𝝆𝑷𝑺(𝒇𝒌)/ ∑ 𝝆𝑷𝑺(𝒇𝒌)𝑵−𝟏
𝒌=𝟎  (76) 

Here, 𝑓𝑘 is the frequency at index 𝑘, corresponding to N computed DFT coefficients. The 

weighting factor 𝑝𝑘 for each frequency, the component is normalized as in Equation (76). 

The direct result of processing each received signal’s PSD according to these equations is 

displayed in the appendix, see Figure 8.5. Figure 4.28 shows the deviation of the expected 

value of the PSD from the excitation frequency. This relative deviation is plotted as a color 

value in percentage for different SoCs (y-axis) and RCn frequencies (x-axis). This 

presentation shows that the CoM deviates significantly from the exciting RCn frequency with 

increasing RCn frequency. Above 100 kHz, the deviation lies well above 5% for all SoC. 

Further, for high RCn frequencies, the CoM shifts towards lower frequencies with increasing 

SoC, being well in accordance with the trends observed in Figure 2.19. 
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Figure 4.28: Relative deviation of the expected value of the power spectral density of the 

signals, transmitted through battery cell LDA019 as described in Figure 4.27, from the exciting 

RCn frequency. The expected value describes the center of mass of the PSD and is calculated 

according to Equations (75) and (76).  

This subchapter established, that ToF estimation methods, which rely on the matching of 

the PSDs of sent pulse and received signal, would not be suitable for the displayed data 

above a certain frequency. This frequency lies between 100 kHz and 125 kHz. Furthermore, 

the PSD of the received signals showed bands of high amplitude, shifting with SoC.  

This changing frequency filtering behavior of the battery cell could be related to the 

changing structure and mechanical properties within/of the battery cells. As stated in 

Chapter 2.1.1, the changes in the geometry of the battery cell mainly originate from the 

anode, where the volume of graphite particles and following the thickness of the anode 

layers is changing with lithiation. Thus, a change in periodicity of the layered structure can 

be deducted. Along with lithiation comes an increase in elastic modulus and decrease in 

density, therefore an increase in the speed of sound, resulting in a larger wavelength at the 

same frequency. Altogether, the battery’s structure may act as some sort of bandpass filter 

to the ultrasonic waves that dampens predominantly frequencies at which the wavelength 

is in the order of magnitude of the layered structure or the particle size. Subsequently, the 

shift of the cut-off frequency towards higher frequencies with rising SoC becomes 

reasonable.  



4 Results & discussion 

118 

4.4.2.2 Threshold and sliding-window (double threshold) method 

As established in Chapter 2.3.6.1, ToF estimation based on a threshold is suitable for the 

first wave package in the received signal. Following the example in [205], the threshold is 

chosen based on the standard deviation 𝜎 of the noise of the signal. Therefore, a portion of 

the signal that only contains noise is chosen and analyzed. As can be seen in Figure 4.18, 

no wave package is contained in the portion of the signal before 25 µs or 9 µs for RCn 

frequencies of 50 kHz and 250 kHz, respectively. For simplicity, the slope between those 

RCn frequencies is fitted with an empirical estimated exponential decay function, and 

thereby a section to estimate the noise’s standard deviation (STD) is selected. The 

estimated STD 𝜎 lies between 0.1% and 0.6% of the maximum amplitude and can be taken 

as a measure for the uncertainty of the amplitude. In accordance with [205], choosing the 

threshold 𝜏𝑡ℎ = 5𝜎, leads to a threshold level in the described range at about 0.5% to 3.1% 

of the peak of the signal, depending on SoC and RCn frequency.  

For the sliding-window ToF estimation method, two thresholds (𝜏𝑡ℎ and 𝑚𝑡ℎ) are set. As for 

the regular threshold method, the threshold level 𝜏𝑡ℎ is set to five times the STD of the noise. 

The second threshold 𝑚𝑡ℎ is set similar as in [205], to a number of samples equal to 25% 

of the length of the sliding-window, while the window length 𝑁𝑡ℎ is set to be about 1% of the 

approximated length of a wave package – see Figure 4.18. 

Figure 4.29 compares the result of basic thresholding (TH) and the sliding-window (SW) 

method. For the sliding-window, several points within the window can be chosen to mark 

the ToF. Here, the first point (FP), the window’s center point (WC), and the (𝑁𝑡ℎ − 𝑚𝑡ℎ)th 

point are selected. ToF(TH) and ToF(SW, N-m) are very similar, and also often coincide, if 

the following 𝑚𝑡ℎ points after the first point also exceed the threshold 𝜏𝑡ℎ. ToF(SW, WC) and 

ToF(SW, FP) represent earlier points within the same window and might therefore be able 

to reduce the offset towards the “real ToF” or even set the arrival too early, depending largely 

on the set window length.  
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Figure 4.29: Comparison of the threshold and the sliding-window method, applied to a signal, 

transmitted through LDA019, at an RCn frequency of 50 kHz and 100% SoC. In this signal, the 

noise was estimated from the first 25 µs. Along with a zoom-in on the signal and the envelope, the 

threshold, a multiple of the standard deviation of the noise of the signal, 𝜏𝑡ℎ = 5𝜎 is plotted as 

horizontal line and the ToF estimated by variants of the two methods is plotted as vertical lines. These 

include basic thresholding (TH), the sliding-window method at the first point of the window (SW, FP), 

at the window’s center (SW, WC), and at the (𝑁𝑡ℎ − 𝑚𝑡ℎ)th point of the window (SW, N-m). The inset 

shows the signal and the envelope at full length, for comparison. 

As pointed out in [205], the variants (SW, FP) and (SW, CW) yield the smallest offset. Since 

this work aims to utilize the differences in ToF between different battery states, the 

robustness of the estimation method is the primary priority and the accuracy is secondary. 

Therefore, the parameters were adapted from [205] and are not further optimized. 

The ToF, estimated by the threshold-based methods, is plotted vs. SoC for a charging half 

cycle in Figure 4.30. As the three variants of the sliding-window methods differ only in the 

position of the reference point within the window, they share the same standard deviation, 

which is hence only depicted for the (SW, FP) variant. In general, a slight decrease in ToF 

with SoC can be observed for the first arrival, as estimated by the threshold-based methods. 
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The simple threshold method shows a comparable standard deviation but with larger 

outliers than the sliding-window variants. 

 

Figure 4.30: ToF estimates by thresholding (TH) and sliding-window (SW) method variants. 

The opaque lines represent a 13-point rolling mean of the unfiltered estimates (partially transparent 

lines), corresponding to a smoothing window of about 5% SoC. The results of all three SW variants 

show the same standard deviation but exhibit smaller spikes than the TH method’s result. A slight 

declining trend in the ToF with rising SoC is observed. The plot shows the data derived from the 

signals transmitted through battery cell LDA019. 

4.4.2.3 Envelope method 

The envelope method relies on the Hilbert transform which is implemented with the fast 

Fourier transform (FFT) algorithm, as described in Chapter 2.3.6.2. The FFT is based on 

the assumption of the signal being cyclic. To ensure this, the signals are tapered with a 

window function, such as the Tukey window. The tapered section of the signal is chosen to 

include the noise alone and an equally long section at the end of the signal, which only 

hosts a decaying oscillation of the excited receiving piezo element. In that way, the 

information contained in the signal remains virtually unaltered.  

Figure 4.31 depicts the resulting sent pulse and transmitted signal, after performing such a 

tapering with a Tukey window. Along with the amplitude, the envelope is displayed and the 

most prominent peaks of the envelope are marked. In part visible in the envelope of the 

pulse, but more distinctly in the envelope of the transmitted signal, the envelope does not 
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show the smooth bell shape, as expected from an RCn pulse, but follows the enveloped 

oscillations too closely. The resulting shape of the envelope makes the automated 

identification of the wave packages by peak-picking unpractical. Parameters to select 

certain peaks have to be hand-tuned regarding minimum height, prominence, and distance 

to neighboring peaks to achieve the peak picking as seen in Figure 4.31 on the right. Hand 

tuning those parameters makes the process deceptive to instability and brings an arbitrary 

component to the analysis. The following pages demonstrate which properties of the signal 

cause the distorted shape of the envelope and how the signal can be processed to avoid 

these and therefore make the envelope-based method a stable one.  

 

Figure 4.31: Example of envelope-based ToF estimation. (Left) envelope of the sent waveform 

– RC5 pulse under capacitive load. (Right) envelope of the received signal with the most 

prominent peak in the first and second wave package marked by colored dots. Both subplots 

show an envelope with a distorted shape that makes reliable peak picking difficult to achieve. The 

depicted data originates from the excitation of the piezo elements mounted on battery cell LDA019 

and the resulting signal transmitted through the latter. 

A non-zero offset, as in Figure 4.32 (middle), lead to a change of the envelope. This can be 

deducted from the calculation of the envelope via the Hilbert transform. As described in 

Equations (65) to (68), the envelope is calculated from the absolute of the analytical signal. 

If the signal contains an offset, e.g., 𝑦′(𝑡) = 𝑦(𝑡) + 𝑐, the analytical signal becomes 𝜓′(𝑡) =

𝑦(𝑡) + 𝑐 + 𝑖�̂�(𝑡), since the Hilbert transform of a constant is zero. The envelope calculated 

as in 𝐸′(𝑡) = √𝜓′2(𝑡) = √(𝑦(𝑡) + 𝑐)2 + �̂�2(𝑡)  then contains the mixed term 2𝑐𝑦(𝑡) and is 
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weighted more towards the real component of the analytical signal, thus enhancing the peak 

shape as in Figure 4.32 (middle). This effect increased with the magnitude of the constant 

– compare the shape of the envelope with increasing offset (trend) from left to right in Figure 

4.32 (right). Adding a trend to the signal leads to a non-zero difference between the 

beginning and end of the sampled signal. Therefore, the cyclic Fourier transform, as 

performed during the Hilbert transform, leads to frequency leakage and unwanted 

components at the site of this discontinuity (beginning and end of the signal), as can be 

seen in Figure 4.32 (right). Both described effects are also visible in the envelope of the 

transmitted signal – see Figure 4.31 – even though the signal was preprocessed with a 

linear “detrending” method, which applies a linear fit to the data and subtracts the hereby-

estimated trend from the signal. It can be concluded that the underlying offset in the signal 

is not solely of a linear nature. “Detrending” with other fit functions such as an exponential 

function to simulate a capacitance-charging effect of the piezo elements could not improve 

the result further. Therefore, the offset is probably of another origin. A guess on the cause 

could be a parasitic harmonic oscillator-like disturbance that propagates along the signal 

path, excited by the RCn pulse. Such a process is highly complex, may change with 

frequency and from measurement to measurement, and is difficult to model in such a way 

that the “detrending” operation can remove the resulting trend completely.  
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Figure 4.32: Demonstration of the effect of and additive offset on the shape of the envelope. 

(Left) ideal RCn pulse at 50 kHz, (middle) pulse with an added constant of 0.1, and (right) added 

linear trend that increases during the duration of signal from 0 to 0.1. The FFT-based Hilbert 

transform used to construct the envelope makes the signal cyclic and therefore the difference 

between start and endpoint becomes a discontinuity that affects the shape of the envelope.  

Even after detrending, the envelope may still be following the individual peaks of the signal 

too closely, as can be seen in Figure 4.33. The peak picking of the maximum envelope 

amplitude may therefore be unstable. As seen from the comparison of two signals, acquired 

just 0.2% SoC apart from each other, small amplitude fluctuations of the signal can lead to 

a change in the position of the envelope’s maximum, which results in the peak picking 

algorithm choosing a neighboring peak over another. Therefore, the estimated ToF shows 

a large step of about eight µs, not correlating well with the rather small SoC change of 0.2%. 
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Figure 4.33: Comparison of the envelope of the signals, transmitted through battery cell 

LDA019, (cut to the second wave package) at an RCn frequency of 50 kHz during the charging, 

0.2% SoC apart from each other. Here it can be seen that even a small change in SoC can cause 

a significant difference in the position of the picked peak, which is not representative of the change 

in the physical properties of the battery in this SoC range. 

To improve the reliability of the envelope method further, a finite impulse response (FIR) 

filter was designed in such a way that frequency components, which most likely do not 

represent an acoustic process, are removed without significantly altering the frequency 

spectrum around the exciting RCn frequency. Designing an appropriate FIR filter, as 

depicted in Figure 4.34, is a complex task and involves tuning several parameters to fit the 

desired behavior while maintaining an acceptable computational effort. By studying the 

frequency spectra in Figure 4.27, one can estimate the passband of the filter for each RCn 

frequency. Empirically tested, the lower cut-off frequency of the passband was estimated to 

be 20 kHz, linearly increasing to 45 kHz with RCn frequency (from 50 kHz to 250 kHz). The 

upper cut-off frequency of the passband was found to yield the best result at 175% of the 

RCn frequency. The stopband attenuation was selected to 40 dB, corresponding to an 

amplitude reduction of 99%, resulting in acceptable ripple boundaries in the passband. 

Rather small ripples are important to reduce the alteration of the frequency spectrum in the 

passband, introduced by the filter. Since the number of filter coefficients, also called taps, 

scales, among others, with the steepness of the transition region between stopband and 

passband, the width of the transition region, also called the roll-off region, is set to 10 kHz. 

Due to the cut-off frequencies being much smaller than the Nyquist frequency at 5 MHz, a 
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large number of taps (2235) is required to meet the filter demands. To reduce the 

computational cost of the filtering process the input signal can be cut in length to the region 

of interest, which has been estimated to be about 250 µs long for all RCn frequencies, 

containing the first three wave packages. 

 

Figure 4.34: Frequency response of the designed FIR filter. Cut-off frequencies: 20 kHz and 

87.5 kHz (175% of the RCn frequency), roll-off width: 10 kHz, stopband attenuation: 40 dB, 

ripple delta < 0.2 dB. The window used in the FIR filter: Kaiser. The inset of the figure shows the 

central frequency range in which the amplitude of the processed signal is not to be altered 

significantly. In the zoomed-out view, the typical side lobes beyond the cut-off frequencies and the 

roll-off region can be identified by the colored dashed lines. 

The filtering process involves the convolution of the input signal with the filter (coefficients). 

Depending on the length of the two and therefore which method is faster, either the point-

by-point multiplication and shifting of the input signal and filter is performed or the 

convolution is performed in the Fourier space by point-by-point multiplication. The input and 

output of the filter operation are displayed for a sample signal at 50 kHz and 100% SoC in 

Figure 4.35. The top row shows the signal and its envelope. The signal, displayed on the 

left, was preprocessed by detrending as described before. On the right, a Tukey window 

was applied and the filtering operation was performed. As seen here, filtering removes most 

of the discontinuities in the signal and yields a smooth envelope that does not follow the 

single oscillations too closely. The bottom left plot highlights the filter coefficients of the filter, 

designed in Figure 4.34 and applied here. The bottom right depicts the power spectral 

density of the filter and allows comparing the PSD of the signal pre and post-filtering. As 
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seen here, the filter reduces the amplitude of frequencies outside the center of gravity 

without altering the distribution around the excitation frequency significantly. As established 

in Chapter 4.4.2.1, the CoM of the transmitted frequency spectrum deviates significantly 

from the exciting RCn frequency, especially above about 100 kHz. Therefore, the described 

filter is the best fit for the frequency range in which sent pulse and received signal PSD 

match well.

 

Figure 4.35: Pre-processing (Detrending + Tukey window tapering) and FIR filtering of the 

signal, transmitted through LDA019, to enhance the envelope-based ToF estimation method. 

(Top left) preprocessed signal and resulting envelope at 50 kHz and 100% SoC, (top right) 

filtered signal and resulting envelope, (bottom left) FIR filter coefficients, and (bottom right) 

PSD of the preprocessed signal, FIR filter, and filtered signal. Here, the influence of the 

filtering process on the frequency content of the signal can be estimated – the attenuation is 

very little within the band pass and as desired beyond the cut-off frequencies. 

The envelope of the filtered signal is then passed to a peak picking algorithm that tracks the 

peak with the maximum amplitude and the first peak, exceeding 20% of the maximum 

amplitude. These refer to the first two, by eye well distinguishable, wave packages. To 

calculate the resulting time of flight (ToF), the position of the maximum peak within the 

envelope of the sent pulse is subtracted from the peak position. Figure 4.36 shows the 

tracking of the two peaks during a charging half-cycle and an RCn frequency of 50 kHz. As 

seen here, the first peak shows an almost linearly falling trend with SoC, while the maximum 

peak shows a monotonously decrease with SoC, incorporating sections of different slopes. 

An advantage of the ToF estimation methods presented before is the high stability of the 

algorithm, leading to a low standard deviation. Further, by peak picking the envelope, the 
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ToF of two or more wave packages can be extracted. As seen already in the study of the 

raw transmitted signals, the shape of the wave packages is distorted above 100 kHz, 

making the envelope-based method applicable in the range from 50 kHz to 100 kHz. In the 

appendix, additional frequencies are covered.  

 

Figure 4.36: Time of flight (ToF), estimated by peak picking the envelope of the filtered signals 

at 50 kHz, transmitted through LDA019. The opaque lines represent a 13-point rolling mean of the 

unfiltered estimates (partially transparent lines). Here, it can be seen that the first and second wave 

packages show a declining trend with SoC. Since the slope of the two lines, representing the ToF of 

the wave packages, have a different slope, the ToF difference between the two is reduced with SoC. 

Each ToF estimation method inherits a different reference point. The methods, described in 

this chapter above, take the trigger point, at which the pulse is sent, as “0 µs”. While this 

introduces a negligible offset for narrow pulses or waveforms, the offset has to be accounted 

for in this case. The frequency-dependent offset (position of the reference point within the 

signal vs. trigger point) for each method is depicted in Figure 4.37. Since the standard 

deviation of the noise cannot be estimated in the sent pulse, lacking a “silent” signal section, 

the threshold is set to 3% of the absolute amplitude’s maximum. The length of the raised 

cosine pulse depends on the RCn frequency – the period length of the envelope and the 

contained oscillations decrease with frequency. Therefore, the position of the reference 

points shifts with frequency, approximately proportional to 1/𝑓 =  𝑇, but with different 

scaling factors. The position of the maximum of the envelope, containing five oscillations, is 

at the center of the RCn pulse and thus is affected the most. The reference points of the 

threshold methods shift with the period length of the first oscillations. To be able to 
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accurately compare up to now presented ToF estimation methods with the cross-correlation 

technique, the estimated ToF has to be corrected by the position of the reference point 

within the sent signal, depicted in Figure 4.37. 

 
Figure 4.37: Position of the reference point within the signal that fulfills the respective ToF 

criterion. A decrease proportionally to 1/𝑓 = 𝑇 is expected, since the position depends on the period 

length of the RCn pulse and the contained oscillations. 

4.4.2.4 Cross-correlation method 

As described in Chapter 2.3.6.3, cross-correlation is used to estimate the delay between 

two signals. If applied to a sent pulse and a transmitted signal, the wave packages in the 

signal should resemble the sent pulse. The cross-correlation peaks at the delay at which 

the resemblance is the largest. This delay can be taken as the time of flight of the respective 

wave package. By default, the correlation is influenced by the similarity of pulse and signal 

and the amplitude. Therefore, the wave package yielding the highest correlation is not 

necessarily the wave package with the best resemblance or the highest amplitude. If in 

doubt, a comparison with the ToF, yielded from the envelope method (in the chosen 50 kHz, 

100% SoC example about 120 µs) and corrected by the position of the reference point 

within the sent pulse (53 µs), will allow to assign delays (67 µs) to wave packages. Figure 

4.38 depicts the preprocessed (detrended and Tukey windowed) and filtered sent pulse and 

transmitted signal, as well as the cross-correlation for both inputs. Even though the 

preprocessed and filtered signals differ significantly, the cross-correlation is almost identical. 
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Here, the underlying process of multiplication of the frequency spectra of the inputs in the 

Fourier domain becomes apparent. Similar to applying a filter by multiplying the input with 

the filter coefficients, the cross-correlation is performed by point-by-point multiplication and 

shifting of the inputs with an additional integrating step. In this process, the input with the 

narrower frequency spectrum dominates the frequency spectrum of the cross-correlation 

output. Since the applied filter is specifically tuned to not alter the sent pulse’s frequency 

spectrum significantly, the result is almost identical. The cross-correlation can be interpreted 

as a measure of the similarity of the two input signals. 

 
Figure 4.38: Cross-correlation (bottom) of the sent pulse (top) and transmitted signal (middle) 

at 50 kHz and 100% SoC. The sent pulse under load and the transmitted signal are recorded from 

battery cell LDA019. The pulse and signal were preprocessed and filtered prior to cross-correlation. 

In the bottom plot, an orange dot marks the absolute maximum of the cross-correlation. The 

corresponding delay is used to shift the pulse and overlay it with the signal in the plot in the middle, 

demonstrating that cross-correlation can be used to estimate the time of flight. 

The cross-correlation in Figure 4.38 exhibits positive and negative correlation values. In this 

example, the negative peak at around 67 µs, marked by an orange dot, can be understood 

by shifting the sent pulse by about 67 µs and multiplying it with -1, leading to a maximum 
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overlap of the two. Without the multiplication, the two would be opposite, hence the negative 

correlation. 

The envelope provided a good basis for the estimation of wave packages by peak picking 

if applied to the filtered signals. For the cross-correlation method, it would be desirable to 

use the envelope to pick the section of the cross-correlation in which to look for the local 

maximum and thereby estimate the time of flight of respective wave packages. Due to the 

proximity of the wave packages, the envelope of the cross-correlation does not provide 

distinct peaks for the first two wave packages at all frequencies over the whole SoC range, 

as shown in Figure 4.39. As exemplarily shown for 50 kHz and 100 kHz, the height of the 

peak changes with the strength of the correlation, as the distance and amplitude of 

neighboring wave packages change with SoC. Therefore, the position of the first peak 

shows huge jumps, e.g., from about 0 µs to about 70 µs for 50 kHz, as indicated by the 

colored dots. Without the local minimum between two peaks, the cross-correlation cannot 

be split up into sections, to search. Therefore, only the absolute maximum of the cross-

correlation and its envelope can be utilized. 

 

Figure 4.39: Cross-correlation of sent pulse and transmitted signal, analog to Figure 4.38, for 

50 kHz and 100 kHz at 0% SoC and 100% SoC. The blue and orange curves represent the cross-

correlation and its envelope, respectively. Colored dots mark the first three peaks in the envelope 

selected by peak picking. The distance and height of the peaks in cross-correlation change with SoC, 

leading to a change in the shape of the envelope. The disappearing of a distinct peak into a shoulder 

renders the envelope unfit for the estimation of a section, representing a wave package. Thus, only 

the absolute maximum of the cross-correlation and its envelope are used for ToF estimation. 



4 Results & discussion 

131 

4.4.2.5 Comparison of time of flight estimation techniques 

As explained beforehand, the ToF estimation methods introduce an offset to the ToF, but 

the cross-correlation technique. Therefore, the ToF is corrected by the offset introduced by 

different reference points which are depicted in Figure 4.37. The resulting corrected ToF is 

compared with the delay, estimated by cross-correlation, in Figure 4.40 and Figure 4.41, for 

50 kHz and 55 kHz, respectively. Analogous plots for more RCn frequency can be found in 

Appendix, see Figure 8.8 and Figure 8.9. 

 

Figure 4.40: Comparison of ToF estimation techniques for signals, transmitted through 

LDA019, at 50 kHz in an SoC range of 0% to 100%. The opaque lines represent a 13-point rolling 

mean of the unfiltered estimates (not shown). After the correction of the ToF, estimated by different 

techniques, the offset introduced by those methods can be compared. For 50 kHz, ToF(SW, FP) and 

ToF(1st env) yield very similar results. The basic threshold method shows a comparably large offset 

and appears unstable. ToF(max. env.) and ToF(CC, abs.) coincide for a portion of the SoC range, 

while ToF(CC, env.) lies between the two. The discontinuity of ToF(CC, abs.) is not representative of 

the gradually changing mechanical properties of the battery cell with SoC and hence renders the ToF 

estimation method at least for some RCn frequencies unsuited.  

At 50 kHz, the ToF estimated by the first peak of the envelope – ToF(1st env.) – and the ToF 

estimated by the sliding-window method – ToF(SW, FP) – coincide, but show a small 

discrepancy in slope. As discussed before, the offset of the sliding-window depends on the 

choice of reference point within the sliding-window. Therefore, the displacement between 

the two is not necessarily a piece of evidence for a reliable ToF estimation result. As can be 

seen exemplary in Figure 4.41, depending on RCn frequency, the displacement between 
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the two may vary. Judging from Figure 4.40, the course of the threshold-based ToF estimate 

is similar and almost parallel to the sliding-window estimate, but shows more unevenness 

and abrupt changes in slope. Based on the stability, the envelope is selected as the 

preferred method for the first wave package. 

For the wave package with the maximum envelope at frequencies between 50 kHz and 

100 kHz in the SoC range from 0% to 100%, three methods are evaluated. Besides the 

position of the maximum of the envelope – ToF(max. env.), the position of the absolute 

maximum cross-correlation – ToF(CC, abs.) – and of the maximum of the envelope of the 

latter – ToF(CC, env.) – are presented. While at 55 kHz (see Figure 4.41) the three methods 

yield very similar results, the offset and the monotony of the plots differ significantly for the 

three methods at 50 kHz (see Figure 4.40). The absolute maximum of the cross-correlation 

even shows a transition region with a big step around 50% SoC, coinciding with the 

maximum of the envelope afterward. 

 

Figure 4.41: Comparison of ToF estimation techniques for signals, transmitted through 

LDA019, at 55 kHz in an SoC range of 0% to 100%. The opaque lines represent a 13-point rolling 

mean of the unfiltered estimates (not shown). At 55 kHz the results differ qualitatively from what is 

shown in Figure 4.40 – ToF(1st env.) and ToF(SW, FP) don’t coincide. The cross-correlation-based 

techniques and ToF(max. env.) yield different results over the whole SoC range and therefore differ 

in slope and offset. 

As seen in Figure 4.25, the frequency content of the transmitted signal changes with varying 

SoC, which is also present in the shape of the signal. The herein also present pulse-
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broadening effect is visualized in the middle of Figure 4.38 by a comparison of sent pulse 

and received wave package. Le stated that the cross-correlation technique should not be 

used if the effect of pulse-broadening is significant [204] since it will yield inaccurate ToF 

estimates, which is supported by the findings of this study. 

4.4.3 Summary of this subchapter 

The first section of this subchapter treated the signal properties other than the ToF, namely 

the maximum signal amplitude, its position within the signal, and the transmitted energy 

content. This easy to extract properties already allowed estimating some basic trends with 

the SoC. In the frequency range of 50 kHz to 125 kHz, the maximum amplitude increases 

with SoC, and its position decreases with SoC. The RCn frequency at which the absolute 

maximum within a dataset is reached shifts with SoC along the frequency axis and lies in 

the range of 70 kHz to 120 kHz. These trends were confirmed by the calculation of the 

transmitted energy content. Here, the overall amplitude maximum is achieved at 100 kHz 

while the energy content increases from 50 kHz to 100 kHz to subsequently fall off. From 

these three properties - amplitude maximum, its position within the signal, and the 

transmitted energy content – the RCn frequency range in which the correlation of the latter 

and the SoC is best suited for state estimation could already be narrowed down to about 

50 kHz to 125 kHz. 

The second section of this subchapter opened with an analysis of the frequency spectra of 

sent pulses and received signals which were compared to lay the base for the subsequent 

signal processing and time of flight estimation. The frequency analysis, as a function of RCn 

frequency and SoC, unveiled that the transmission through the battery cells dampens 

frequencies above a certain cutoff frequency – about 125 kHz significantly. Depending on 

SoC, bands at higher frequencies around 175 kHz are populated if the exciting RCn 

waveform contains these frequencies. Then simple ToF estimation methods, based on 

thresholding, were tested for the detection of the first arrival in the transmission signals. To 

preprocess the signals for more complex ToF estimation methods, an FIR filter was 

designed to attenuate frequencies not contained in the exciting waveform. Subsequently, 

the envelope and cross-correlation techniques were tested to estimate the time of flight of 

the first and second wave packages in the transmission signals. All employed methods were 

finally compared regarding their robustness, reliability, and the offset they introduce to the 

ToF. As discussed by Le in 1998 [204], the different ToF estimation methods are expected 

to yield different results due to the pulse broadening effect in absorptive media. Judging 

from the presented data, the envelope-based ToF estimation method is best suited for 
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dispersive, absorptive media, as was stated by Le [204]. As showcased for the battery, 

being such a medium with SoC-dependent properties, the envelope method yields a 

consistent and stable ToF estimation and was therefore selected as the ToF estimation 

method of choice. In section 4.4.2.3, it was shown that due to the nature of the transmitted 

signals, a preprocessing is necessary to achieve this stable ToF estimate. 

4.5 Assessing the suitability of different signal properties for SoC 

estimation 

Best suited for SoC estimation would be signal properties whose course, plotted vs. SoC, 

is strictly monotone and unambiguous for charging and discharging. In the following, the 

signal properties will be assed regarding this requirement. In the beginning, the impact of 

cycle-to-cycle and C-rate variations on the signal properties’ behavior is studied. Then the 

so-called dispersion – the frequency dependency of the signal properties – and the 

correlation of those signal properties with SoC are explored to study relevant trends in the 

data in a condensed fashion. As the display of the signal and the test of the estimation 

methods were performed exemplary on signals with an RCn frequency of 50 kHz, the 

following section will also treat the datasets at this frequency. 

4.5.1 Cycle-to-cycle variation and hysteresis of signal properties 

As battery cells consist of several layers with a particle coating, they are considered many-

particle systems, exhibit inertia through limited transport and exchange processes in the 

electrolyte and active materials, and are therefore known to exhibit hysteresis in their 

mechanical and electrochemical properties. In a system, which is modeled by a dependent 

state variable and an independent variable, hysteresis describes the effect that the state 

variable’s values depend not only on the independent variable but also on the prior value of 

the state variable thus its history. Within battery cells, prominent examples are cell volume 

and cell voltage. Within this chapter, the hysteresis of the signal properties, as estimated by 

the algorithms introduced in Chapter 4.4, will be described. 

Figure 4.42 shows the corrected ToF of the first and second wave package, estimated by 

the first peak and the maximum of the envelope, during the first two cycles after the rest of 

a battery cell, cycled at 0.1 C. The start of the first cycle at 0% SoC is marked by a hollow 

dot, and the end of the second cycle at 0% SoC is marked by a filled dot. Both, the ToF of 

the first and the second wave package show a declining trend with SoC. The discharging 

half-cycle lies above the charging half cycle. While exhibiting a high coherence at high 

SoCs, the drift between cycles is especially visible at low SoCs. When comparing these two 
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cycles, the effect of relaxation on the signal properties becomes apparent. The first cycle is 

affected by the prior rest, as its start lies much lower than the start of the second cycle 

(turning point between the two dots at 0% SoC). This effect is much more pronounced for 

the second wave package, as will be shown for subsequent cycles later in this section. 

Another distinguishing feature is the presence/absence of a crossing point of charging and 

discharging half cycle. Even though the second wave package’s plot doesn’t show a 

crossing point, both wave packages exhibit a change of slope around 80% SoC that can be 

linked to the P2 peak, visible in the incremental capacity analysis of the studies battery cells, 

as shown in section 4.1.3, and might be a result of drastically changing mechanical 

properties of the positive active material at the respective SoC. 

 

Figure 4.42: Corrected time of flight, estimated by the envelope method, for battery cell 

LDA019 cycled at 0.1 C during the first two cycles after rest. The beginning of the first cycle is 

marked by a hollow circle and the end of the second cycle is marked by a filled circle. In both, the 

ToF of the first and second wave package, the effect of the relaxation during a rest period prior to the 

first cycle is visible. The course of both ToF shows a change of slope around 80% SoC that leads to 

a crossing of charge and discharges half cycle for the first wave package. This behavior can be 

correlated with the position of the P2 peak in the incremental capacity analysis of the studied battery 

cells. 

The area between the curves of charging and discharging half cycle can be taken as a 

measure for the hysteresis of this signal property while comparing the slope and the delta 

of the curve with the resolution can give a hint on the potential accuracy of an SoC estimate. 

Another influence on the SoC estimation accuracy is the reproducibility from cycle to cycle. 

The course of the ToF, estimated by the first peak and the maximum of the envelope, during 

Charge 
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the first four cycles after rest are plotted in Figure 4.43 and Figure 4.44, respectively. For 

the ToF estimated by the first peak, the course shows a mild hysteresis between charging 

and discharging half-cycles and the overall trend remains the same overall depicted cycles. 

While cycle four lies in between the other cycles for the linear section until about 75% SoC, 

the plateau from about 75% to 100% SoC is shifted to higher ToF. This plateau might be 

linked to the mechanical property changes of the active materials in this SoC range, as 

estimated by the peaks P2 and N1 in the incremental capacity analysis, see Figure 4.6. Due 

to the sampling of the transmitted signal into discrete steps of 0.1 µs, the resolution of the 

ToF estimate is limited to the same step size. Due to the small delta between 0% and 

100% SoC, minor fluctuations in the estimated ToF, by only a single bin, become very 

visible. While the mostly linear course of the ToF of the first arrival is very well suited for 

SoC estimation, the relatively large fluctuations compared to the total delta and the shallow 

section above 80% SoC are unfavorable for a precise SoC estimation. Especially, the 

ambiguity of the shallow section might lead to an increased inaccuracy in this SoC range if 

this signal property is used alone. A combination with another signal property such as the 

ToF of the second wave package or the transmitted energy content might be able to 

compensate for this. 

 

Figure 4.43: Corrected time of flight of the first arrival in the signals, transmitted through 

LDA019 at an RCn frequency of 50 kHz during four cycles at 0.1 C after rest, estimated by peak 

picking of the envelope of the filtered signal. Until about 80% SoC, the slope of the course is 

monotonously decreasing, merging into a plateau that extends up to 100% SoC. The incremental 

capacity analysis in section 4.1.3 suggests that this plateau might result from opposing mechanical 

property changes of the positive and negative active material in this SoC range. 
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Due to the higher delta in ToF, estimated by the maximum envelope, the course is more 

fine-grained, and more detailed features are distinguishable. The cycles in the data are cut 

to start after the rest of the prior with the first charging and to include the rest after the 

discharge. The discharge half cycle can be identified by the vertical line at 0% SoC, 

representing the relaxation during rest. In all four cycles, a common trend is observed - the 

course of ToF vs. SoC can be divided into three sections of about 33% SoC with differing 

slopes, which is reminiscent of the plot of cell thickness increase plotted vs. SoC in Figure 

4.7. The middle section is the shallowest. The section between 0% and 30% SoC is the 

steepest and shows a homogenous slope. The Section from 65% to 100% SoC is declining 

for the most part but shows a plateau from about 85% SoC during charging and an inverted 

parabolic shape during discharging. Within the data an underlying drift is present - in cycles 

one to three, the discharging half-cycle lies above the charging half cycle and the spacing 

between charging and discharging reduces step by step, until the discharging curve 

intersects with the charging curve at around 55% SoC in cycle four. This described shift 

might be associated with a break-in period in the first up to 12 cycles of a battery cell after 

formation. This break-in period was described by Knehr et al. in 2018 [25] as a few cycles 

post-formation needed to reach a steady-state. In these few initial cycles, the mechanical 

behavior of battery cells is expected to differ from steady-state, as the repeated breathing 

of the electrodes and the cracking of active material particles allows to access until then 

electrochemically inactive surfaces through the wetting with electrolyte [109].  
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Figure 4.44: Corrected time of flight at the maximum envelope of the filtered signals, 

transmitted through LDA019 at an RCn frequency of 50 kHz during four cycles at 0.1 C after 

rest. The course of ToF vs. SoC can be divided into three approximately equally sized sections of a 

differing slope. The last of the three, close to 100% SoC exhibits a plateau during charging and an 

inverted square-root-like shaped section during discharge, leading to a significantly larger area 

between charging and discharging half cycle, compared to other sections of the curve. Overall, an 

underlying drift in the data leads to a reduced area between the charging and discharging curves 

from cycle one to three and leads to an intersection of the curves in cycle four.  

The described break-in period can also be seen in the datasets of this study. Since the end 

of charge point – the turning point of the plots in Figure 4.44 – is a well-defined state in each 

cycle. As the state is prepared through CC-CV charging, with the CV step being the same 

at each C-rate, it serves as a reference point for the vertical shift in the cycle. As depicted 

in Figure 4.45, the development of the minimum of the corrected time of flight in each cycle 

illustrates the break-in process. During the first four experiments, 0.1 C and higher C-rate 

(0.5 C and 0.25 C) cycles were alternated. During those 16 cycles, the value of the minimum 

appears to reach a steady-state after about 13 cycles. This state seems to not be altered 

by the subsequent high C-rate cycles (0.75 C and 1.0 C). The alongside depicted maximum 

of each full cycle shows a much higher and also non-unidirectional variation during the 

different experiments. Nevertheless, the maximum at a certain C-rate is shifted relative to 

the minimum by a fixed amount, specific to a certain C-rate. The effect of C-rate variation 

on charging and discharging half cycle will be discussed in the next subchapter.  
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Figure 4.45: Plot of the minimum (hollow circles) and maximum (filled circles) in each cycle 

of the corrected ToF, estimated by the maximum envelope. The data points represent a cycle 

each, and are plotted in the order the experiments were performed on a single cell, LDA019. During 

the first 11 cycles, the minimum still varies significantly, while reaching a steady state in the following 

cycles. Cycle seven, at 0.50 C, has been masked as an outlier caused by a faulty signal at 41% SoC.  

In other signal properties, such as the transmitted energy content – the integrated squared 

amplitude of the signal, the first cycle after rest does also differ significantly from the 

subsequent cycles at the same C-rate, as depicted in Figure 4.46. As energy content (EC) 

and SoC are positively correlated, the upper half cycle represents the charging branch. 

Relaxation, taking place during the rest periods at 0% and 100% SoC is visible as a rising 

vertical line. In the range of 0% to 5% SoC, the slope of the curve changes from negative 

to positive. This change of slope might originate from mechanical property changes in the 

active material associated with the N3 peak and the decline of the P1 peak in the 

incremental capacity analysis within this SoC range. Therefore, the energy content to SoC 

relation is ambiguous for the range of 0% to 20% SoC. Taking only instantaneous values 

into account, this would render transmitted energy content unsuitable as an input for SoC 

estimation. When including historical data (e.g., values of transmitted energy content and 

electrical current) the feature of slope sign change could act as an alarm that the last 

5% SoC is reached during discharge. The influence of the break-in period is not present in 

the same distinct way for this signal property, as can be seen in Figure 4.47. The delta 

between minimum and maximum in a full cycle seemingly depends on C-rate, which will in 

detail be studied in the following subchapter.  
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Figure 4.46: Transmitted energy content vs. SoC during four 0.1 C cycles, measured at an RCn 

frequency of 50 kHz. Here the data of cell LDA019 is displayed. As energy content and SoC show 

a positive correlation, the charging half cycle’s curve is the upper one. For a purely instantaneous 

value-based SoC estimation, the change of slope between 5% and 0% SoC is difficult to coop with 

but could act as an alarm during discharge to mark low SoC if historical data is taken into account. 

The change of slope in this range might originate from the N3 peak in the incremental capacity 

analysis associated with this SoC range.  
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Figure 4.47: Plot of the minimum (hollow circles) and maximum (filled circles) in each cycle 

of the transmitted energy content. The data points represent a cycle each, and are plotted in the 

order the experiments were performed on a single cell, LDA019. Minimum and maximum of the 

transmitted energy content don’t exhibit the same break-in characteristic as their counterparts in ToF 

but show a similar C-rate dependency.  

4.5.2 C-rate dependency of signal properties 

Here, the effect of the C-rate on the extent of the hysteresis is studied exemplarily on cells 

at an RCn frequency of 50 kHz. The dataset contains five different C-rates. The cell was 

cycled four to five times at each C-rate. Due to the effect of the prior rest period, as 

demonstrated in Figure 4.42, the first cycle at each C-rate is disregarded and the second 

cycle is displayed here.  

Figure 4.48 depicts the corrected time of flight, estimated by picking the first peak of the 

envelope of the filtered, transmitted signal. The datasets at different C-rates were shifted to 

align at their minimum around 85% SoC. The most prominent trend here is an increase of 

the area between charge and discharge curve with C-rate, in the linearly decreasing section 

below 85% SoC as well as in the section above 85% SoC with an opposite slope. In the 

delta of the ToF, no trend with C-rate is visible.  

0.10 C 0.50 C 0.10 C 0.25 C 0.75 C 1.00 C 
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Figure 4.48: Plot of corrected ToF, estimated by the first peak of the envelope of the filtered 

signal, transmitted through LDA019. The second cycle of an experiment at each C-rate is plotted. 

Cycles from different C-rates have been shifted vertically to align at their minimum. With increasing 

C-rate, the area between charging (lower curve of each color) and discharging (upper) half cycle, 

which is a measure for the hysteresis, increases. 

In Figure 4.49 the corrected time of flight (ToF), estimated by the maximum of the envelope 

of the filtered, transmitted signal at 50 kHz is plotted vs. SoC. The second out of four to five 

cycles at a given C-rate is displayed. The datasets at different C-rates were vertically shifted 

to align at 100% SoC, which corresponds to the minimum ToF. During charging (the lower 

curve of a color), the curve exhibits an increasing number of plateaus with an increasing C-

rate. While for the 0.1 C curve a single plateau in the mid-SoC range is visible, two additional 

inflections at about 70% and 80% SoC are incorporated at higher C-rates, forming a second 

plateau. Alongside this effect, the shallow section between 40% and 60% SoC decreases 

in slope with increasing C-rate, and the prior section from 0% to 30% SoC increases in 

steepness. During the rest period following the CC-CV charging step, the relaxation is 

equally small for all C-rates. As described before, the CV step, equal for all C-rates, seems 

to be the dominant element at this point. For the discharging half cycle, the effect of C-rate 

variation is even more pronounced. Starting from 100% SoC, the initial climb increases in 

steepness with C-rate, stacking the curves in order of C-rate on top of each other. 

Subsequently, the area between the charging/discharging curves increases with C-rate. The 

extent of the relaxation at the end of each cycle is similarly affected and increases with C-

rate. 

Charge 

Discharge 



4 Results & discussion 

143 

 

Figure 4.49: The second cycle after rest, cycles from different C-rates have been vertically 

shifted to align at 100% SoC to make a comparison of charging/discharging specific features 

easier. Here, the data of cell LDA019 is displayed. During charging (lower curve of a color/C-rate), 

the steepness of the first third increased with C-rate and the middle part flattened, while the last third 

exhibits a pronounced “S”-shape. During discharging similar trends continue as the steepness of the 

climbing curve increases with C-rate, leading to a more pronounced relaxation after discharge. 

To explain this, the model of macroscopic and microscopic lithiation can be employed. The 

instantaneous cell voltage during charging/discharging reflects the microscopic lithiation at 

the interface between active material particles and the electrolyte. It includes several 

overpotentials and the voltage drop on the internal resistance of the battery cell. But even 

for a substantial amount of time in a subsequent rest period, the cell voltage does not 

represent the electromotive force of the system at that macroscopic lithiation or the state of 

charge. Due to diffusion limitation, the surface and shell of an active material particle are 

higher (charging) or lower (discharging) lithiated than the core of the said particle, compare 

to the two-phase core-shell model for single-crystal graphite proposed in [11]. This gradient 

is reduced during rest periods by relaxation, finally leading to an equilibrium state at which 

the cell voltage corresponds to the electromotive force at the macroscopic lithiation of the 

battery cell. With high C-rates, the (de-)lithiation process at the surface of an active material 

particle is much faster than the diffusion process. Therefore, the gradient increases with C-

rate. As described in Chapter 2.1.1, the mechanical properties of the active materials 

change with lithiation and are not a linear function of the degree of lithiation. The overall 

change is dominated by the change within the negative active material. In the case of 

graphite, this process happens in stages [11,266], with the stage of highest lithiation degree 
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exhibiting the highest volume increase compared to the unlithiated stage – up to 10% – and 

the highest gain in elastic modulus – up to 280%. As a consequence, a battery cycled at 

higher C-rates contains a higher volume fraction of active material at the state introduced 

by the charging/discharging process than a battery cycled at a lower C-rate. Applying this 

to the discharging process means that at a higher C-rate the battery cell contains a higher 

volume fraction at a smaller elastic modulus and volume, leading to a reduced speed of 

sound and an increased ToF. For the charging half-cycle, the described process is not as 

pronounced, as the state at the end of the charging process is prepared by constant voltage 

charging at the end of charge voltage, independently of the applied C-rate. 

For the transmitted energy content (EC), shown in Figure 4.50, a similar C-rate dependency 

can be observed. The second out of four to five cycles at a given C-rate is displayed. The 

datasets at different C-rates were vertically shifted to align at 100% SoC, which corresponds 

to the maximum transmitted energy content. A positive correlation between SoC and 

transmitted energy content is observed. Therefore, the upper half cycle of a C-rate, 

respective color, is the charging half cycle. Starting at 0% SoC, an initial decay in parabolic 

shape is observed, which depth is proportional to C-rate, stacking the curves on top of each 

other, with 0.1 C being at the top and 1.0 C at the bottom. This order remains intact up to 

100% SoC with 0.25 C and 0.5 C overlapping for the most part. During discharge, the 

splitting of the set of curves is analogical. Again, the curve at 1.0 C is the outermost and the 

relaxation at 0% SoC is the largest within the set of curves. The transmitted energy provides 

information on the dampening of the signal. This dampening has several components, e.g., 

the scattering of the sound waves within the sample, the transformation efficiency from an 

electrical signal to ultrasound and vice versa, and the coupling efficiency of ultrasonic 

transducers to the battery cells, and thus might be affected by several parameters. It is 

known, that the speed of sound and the rate of dampening is positively affected by the 

stiffness of the interrogated sample. For now, the increase in E-modulus and stiffness 

thereby can serve as an explanation for an increase in signal amplitude and transmitted 

energy content with increasing SoC, as speed of sound 𝑐 is proportional to √𝐸/𝜌, with 

density 𝜌 and E-modulus 𝐸. Since the nature of the sound propagation within the battery 

cells at the frequencies, used in this study, is not entirely elucidated, the effect of C-rate on 

the transmitted energy content cannot be settled, yet.  
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Figure 4.50: The second cycle after rest, cycles from different C-rates have been vertically 

shifted to align at 100% SoC to make a comparison of charging/discharging specific features 

easier. The steepness of the curves, during charging and discharging, increases with C-rate, leading 

to a splitting of the set of curves in order of decreasing the C-rate. Here, the data of cell LDA019 is 

displayed. 

Overall, the influence of C-rate on the relation of signal properties and SoC might result in 

an increased estimation inaccuracy. This might apply to a machine learning model that was 

trained with datasets of uniform C-rate and is tested with datasets of non-uniform C-rate 

throughout the cycle(s), as is the case in this study. To research this, the correlation between 

single signal properties and SoC will be assessed in a separate subchapter.  

4.5.3 Dispersion of signal properties 

In the prior subchapters, the datasets were analyzed at 50 kHz, serving as an example for 

the analysis at all RCn frequencies, contained in the datasets. In this subchapter, the 

analysis of the datasets will be displayed in a summarized fashion. The values of the chosen 

signal properties are picked at three distinct points and averaged over all completed full 

cycles at a certain C-rate. The hereby obtained standard deviation is represented by a 

vertical error bar in the plots. The mean values are connected by lines whose style 

corresponds to an SoC – 0% (dotted line), 50% (dashed line), and 100% SoC (solid line). 

In Figure 4.51, the ToF as estimated by the first peak of the envelope of the filtered, 

transmitted signal is plotted versus RCn frequency for three SoC. As can be followed from 

Discharge 

Charge 



4 Results & discussion 

146 

the dotted lines (0% SoC) lying in between the dashed (50% SoC) and the solid lines 

(100% SoC), the slope of the ToF vs. SoC curve changes sign at least once between 0% 

and 100% SoC, forming a parabola-like curve. Otherwise, the line corresponding to different 

SoCs would appear in ascending (positive slope) or descending order (negative slope). An 

example of this behavior can be found in Figure 4.48. 

 

Figure 4.51: Plot of corrected ToF, estimated by the first peak of the envelope of the filtered, 

transmitted signal vs. RCn frequency. The solid line represents the value at 100%, the dashed line 

at 50%, and the dotted line at 0% SoC. Available full cycles from the dataset of cell LDA019 were 

averaged, and the standard deviation is displayed as an error bar, as indicated by the colored legend. 

Due to their small magnitude, the error bars in the plot are barely visible. 

Analogically, the ToF estimated by the maximum of the envelope of the filtered, transmitted 

signal is depicted in Figure 4.52. Above 205 kHz the second wave package could not be 

identified at all C-rates in all cycles. Here, the first peak of the envelope and the envelope 

maximum coincided, leading to a ToF result that is discarded due to laying outside the 

bounds defined by the regular continuous evolution of the ToF. Subsequently, the plotted 

data points in this frequency range are made up of single points, thus not having an error 

bar, or are cut from the plot for being outliers. Judging from the descending order (0% to 

100% SoC) in which the lines, corresponding to different SoCs, are drawn in the plot, the 

ToF decreases with increasing SoC for most RCn frequencies in the range of 50 kHz to 

200 kHz. Above 205 kHz the lines of 0% and 100% SoC partially overlap, making a low 

correlation or positive correlation between ToF and SoC at these RCn frequencies likely. 

The trends, observed in the dispersion of the first and second wave package’s ToF, are for 
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parts of the frequency range opposite to each other, suggesting that the two wave packages 

originate from different modes of sound propagation. Several propagation modes are 

potential candidates - plate waves, where the symmetrical and asymmetrical modes could 

each make up one of the wave packages; bulk pressure and shear waves, as described by 

Biot; surface waves traveling along the hull of the battery cells. At the moment none of those 

can be ruled out completely and future research should focus on understanding which 

propagation mode or combination of propagation modes is most dominant at which 

frequency. 

 

Figure 4.52: Plot of corrected ToF, estimated by the maximum envelope of the filtered, 

transmitted signal vs. RCn frequency. The solid line represents the value at 100%, the dashed line 

at 50%, and the dotted line at 0% SoC. Available full cycles from the dataset of cell LDA019 were 

averaged, and the standard deviation is displayed as an error bar, as indicated by the colored legend. 

The y-scale was adjusted to cut where no second wave package could be identified (above 240 kHz) 

and envelope maximum and first peak fall together.  

Finally, the transmitted energy content of the transmitted (unfiltered) signal is depicted in 

Figure 4.53. The prominent step in the data between 75 kHz and 80 kHz was previously 

explained in Chapter 4.4.1 – it is a consequence of adjusted excitation amplitude in the 

frequency range below 80 kHz, which is chosen to avoid saturation of the ADC at the 

receiver side. When considering the lines of a selected C-rate, almost equidistant spacing 

of the lines corresponding to 0%, 50%, and 100% SoC is visible, which is in good agreement 

with the almost linear course of energy content vs. SoC, seen in Figure 4.50. Especially at 

100% SoC, which serves as a reference point independent of the C-rate in all cycles, the 
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line of 0.25 C, 0.75 C, and 1.0 C overlap at almost all frequencies, once again reinforcing 

that the break-in period of that particular cell had been completed during the cycles at 0.1 C 

and 0.5 C. Overall, the transmitted energy content peaks at different RCn frequencies. 

Depending on C-rate, the completion of the break-in period, and the SoC, the maximum lies 

between 100 kHz and 110 kHz, which was also identified as the turning point in Figure 4.24.  

 

Figure 4.53: Plot of transmitted energy content, estimated by the integration of the squared 

amplitude of the unfiltered, transmitted signal vs. RCn frequency. The solid line represents the 

value at 100%, the dashed line at 50%, and the dotted line at 0% SoC. Available full cycles from the 

dataset of cell LDA019 were averaged, and the standard deviation is displayed as an error bar, as 

indicated by the colored legend. The step in the data between 75 kHz and 80 kHz is caused by an 

adjusted excitation amplitude below 80 kHz, which was chosen to avoid oversaturation of the 

receiver ADC.  

4.5.4 Correlation of signal properties and SoC 

With the aid of the Pearson correlation coefficient, the linear correlation between two sets 

of data can be measured. Since estimating the SoC from our data is the goal, a good 

correlation between signal properties of interest and SoC is favorable. The correlation 

coefficient can take values between -1 and 1 with negative values describing an opposite 

trend in the correlated data and positive values describing a trend in both datasets with a 

common direction. Low absolute values, close to 0, state that there is little (linear) 

correlation between the datasets. High absolute values, close to -1 or +1, indicate a good 

correlation between the compared datasets [267,268]. The three signal properties, 

assessed in this chapter were tested against SoC. The correlation of SoC and the time of 
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flight, estimated by the first peak in the envelope of the filtered, transmitted signal – ToF(1st 

env.), is displayed in Figure 4.54. Here, the ToF during all cycles, available in the dataset at 

a certain C-rate, usually four to five, were averaged. The error bar states the standard 

deviation. In the frequency range of 50 kHz to 110 kHz, SoC and ToF(1st env.) exhibit a 

changing correlation with negative and positive values. As seen exemplary in Figure 4.48, 

the ToF vs. SoC plot shows a section with the opposite slope. This means that the value of 

ToF at 50% SoC potentially lies below the values at 0% and 100% SoC, as seen in Figure 

4.51. Since the correlation takes all points into account sections of opposite slope partially 

compensate for each other as negative and positive correlation, leading to an overall 

reduced correlation. In cases where the slope of a linear fit to the ToF vs. SoC plot would 

be almost horizontal, e.g., the ToF is scattered around a constant value, the correlation 

coefficient is also zero or close to zero. Therefore, the frequencies at which the correlation 

in Figure 4.54 takes values around zero, can be correlated with the frequencies at which 

the ToF at 0%, 50%, and 100% SoC coincide in Figure 4.51. When now comparing the 

frequency range from about 120 kHz to 250 kHz in the two graphs, the transition from a 

negative correlation (ToF at 100% below ToF at 50% and 0% SoC), as low as -0.97, to a 

positive correlation (ToF at 100% above ToF at 50% and 0% SoC), as high as 0.94, 

becomes plausible. The behavior in the frequency range of 50 kHz to 120 kHz can be 

explained analogically. Here, the order in which the ToF values at 0%, 50%, and 100% SoC 

appear, changes several times, as can be seen in Figure 4.51. 

The variation between the datasets of different C-rates – especially for the 0.1 C dataset – 

was described already in Chapter 4.5.1, see Figure 4.45 and Figure 4.47, and attributed to 

the break-in period. Therefore, it is unclear if the variation in the correlation between the 

different C-rates is similarly related to this effect. In any case, this shows that an SoC 

estimation based on the ToF, estimated by the first peak of the envelope, will lead to largely 

different estimation accuracy if applied to cycles with non-uniform C-rate.  
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Figure 4.54: Correlation of SoC and corrected ToF, estimated by the first peak of the envelope 

of the filtered, transmitted signal. The error bars in this graph depict the standard deviation of the 

mean of four to five cycles. The full cycles in the available datasets of battery cell LDA019 - see 

Figure 4.45 - were averaged at each C-rate. Sections of different behavior, e.g., the stable negative 

correlation between 120 kHz and 180 kHz and the transition to a positive correlation up to 250 kHz, 

can be derived from the course of ToF vs. SoC, summarized in Figure 4.51 and exemplarily shown 

in Figure 4.44 and Figure 4.48. 

Figure 4.55 depicts the correlation of SoC and the ToF, estimated by the maximum envelope 

of the filtered, transmitted signal. Following the same procedure as before, the course of 

the correlation coefficient vs. RCn frequency can be explained by looking at the values of 

ToF at 0%, 50%, and 100% SoC in Figure 4.52. Due to the impact of the relaxation period 

at the end of discharge – a fixed amount of data points in each cycle that shows no linear 

correlation of SoC and ToF, but form a vertical line – an overall lower correlation coefficient 

(absolute value) is expected for the higher C-rate datasets. Since the deviation from a linear 

correlation is more pronounced at high C-rates due to a larger vertical line, this expectation 

is met well for a large portion of the plotted RCn frequency. For the frequency range of 

50 kHz to 205 kHz, the correlation coefficient evaluates to -0.83 to -0.97 with the exception 

of 55 kHz, where the course of ToF vs. SoC is largely different from the rest. Here, lines of 

the value at 0% and 100% SoC also show a kink in Figure 4.52. Furthermore, the correlation 

at 0.1 C is behaving differently than at other C-rates throughout this frequency range, which 

might be again attributed to the break-in period, taking place mostly during the cycles of the 

0.1 C and 0.5 C cycles. Above 210 kHz, the transition from a negative to a positive 

correlation is observed as the ToF at 0% and 50% SoC starts to overlay in Figure 4.52. 
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Figure 4.55: Correlation of SoC and corrected ToF, estimated by the maximum envelope of the 

filtered, transmitted signal. The error bars in this graph depict the standard deviation of the mean 

of four to five cycles. The full cycles in the available datasets of battery cell LDA019, see the legend 

of Figure 4.45, were averaged at each C-rate. The trends in correlation can be linked to the trends 

in ToF vs. SoC, as summarized in Figure 4.52. 

Combining the information summarized in the plots of ToF vs. RCn frequency and correlation 

coefficient vs. RCn frequency, it seems that during frequency sweeping a transition, 

regarding which wave propagation mode is the dominant one, occurs. For a wave 

propagation mode, the relation between ToF or velocity and mechanical properties, which 

are linked to the SoC, is assumed to not change. At all frequencies and SoCs, an overlay 

of wave packages was observed, making the tracking of the ToF of particular wave 

packages while sweeping RCn frequency and changing SoC difficult. The finding above 

suggests, that the wave packages tracked by the first peak and the maximum of the 

envelope consisted of several overlying components whose ratios changed depending on 

SoC and RCn frequency. These components could originate from different resonant 

frequencies, which are excited along with the selected RCn frequency, as was observed in 

the frequency spectrum of the excitation signal under load, compare Chapter 4.3.1, Figure 

4.13, and Chapter 4.4.2.1. 

Finally, the correlation between SoC and energy content of the unfiltered signal is studied 

in Figure 4.56. Due to the relation between SoC and energy content, the correlation 

coefficient evaluates to positive values at all frequencies – see the ascending order in which 

the lines, corresponding to 0%, 50%, and 100% SoC, appear in Figure 4.53. The effect of 
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relaxation during rest periods plays an important role in the correlation of SoC and energy 

content. As seen for an RCn frequency of 50 kHz in Figure 4.50, the regain of energy content 

around 0% SoC and the relaxation at 0% SoC increases with C-rate, creating a large 

section of SoC in which the energy content to SoC relation is ambiguous. This trend 

increases further with an increase in RCn frequency, which can be validated on the plot at 

250 kHz, shown in Figure 8.12 in the appendix. Along with the deviation from a linear 

relation, this effect influences the overall correlation of a cycle at a certain C-rate and RCn 

frequency. Especially in the range of 50 kHz to 125 kHz, the relatively high correlation of up 

to 0.993 between 75 kHz and 85 kHz make the utilization for SoC estimation favorable.  

 

Figure 4.56: Correlation of SoC and energy content of the transmitted (unfiltered) signal. The 

error bars in this graph depict the standard deviation of the mean of four to five cycles. The full cycles 

in the available datasets of battery cell LDA019, see the legend of Figure 4.45, were averaged at 

each C-rate. The trends in correlation can be linked to the trends in ToF vs. SoC, as summarized in 

Figure 4.53. 

4.5.5 Summary of this subchapter 

In this subchapter, the evolution of several ultrasonic signal properties with state of charge 

was characterized regarding the cycle-to-cycle variation, the hysteresis, the effect of varied 

C-rate, and the dependence on RCn frequency. From the available dataset, the time of flight 

of the first and second transmitted wave package and the transmitted energy content of the 

signal was chosen for further investigation. From the relation of those signal properties with 

frequency alone, the dominant mode of ultrasound propagation could not be concluded 
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unequivocally. To do so, further experiments with additional battery cells, posing a variation 

in dimension and available sensor geometry, would be required. Those signal properties 

generally exhibit a trend with SoC – a decrease in ToF and a reduced attenuation. The 

relation between the signal properties and SoC is not a strictly linear one. Sections of 

different slopes can be linked to the transitions between phases in the positive active 

material or the staging in the negative active material, as unveiled by the incremental 

capacity analysis in chapter 4.1. The study of cycle-to-cycle variation revealed a significant 

effect of relaxation during rest steps. Therefore, the first and subsequent cycles after rest 

differ, which may reduce achievable SoC estimation accuracy. Besides relaxation, a second 

effect was found to cause a difference between cycles – a kind of break-in period, following 

the formation process, that leads to a change in mechanical parameters of lithium-ion 

battery cells until a steady state is reached [25]. The charging and discharging half-cycles 

showed differences in their course that are an exhibit of the hysteresis that is common to 

multi-particle systems such as LIBs. The hysteresis of the system can be quantified by the 

area between the charging and the discharging half-cycle’s curve of a certain signal property 

vs. SoC. A variation of C-rate pronounced the difference between charging and discharging 

half-cycle, increasing the hysteresis with C-rate. This can be attributed to a cell operation 

that is far from equilibrium, as is the case at higher C-rates, followed by a relaxation to 

equilibrium. 

The studied datasets contain transmission signals, resulting from the excitation of piezo 

elements with RCn pulses in the frequency range of 50 kHz to 250 kHz. Therefore, a 

description of the signal properties in dependence on the RCn frequency is possible. This 

dispersion relation allowed viewing the dataset as a whole, estimating trends with SoC and 

RCn frequency, thereby providing a forecast of which frequency subsets from the dataset 

might be best suited for SoC estimation. The correlation of signal properties with SoC was 

then tested to extend the generalized description of the datasets. The implications of 

correlation on the SoC estimation accuracy are to be validated in the following chapter with 

the aid of machine learning such as support vector regression. 
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4.6 Case study: application of a support vector regression to test SoC 

estimation via ultrasonic sensing 

In this last chapter, the ultrasonic signal properties are used alongside cell voltage and 

current as feature vectors in training and test datasets, fed to a support vector machine. 

With this machine learning approach, a case study is performed, providing a proof of 

concept of ultrasound-based state estimation for lithium-ion batteries, and an estimate for 

the achievable accuracy is established. 

4.6.1 Overview of features, SVR parameters, and scaling techniques 

In the following, a support vector regression (SVR) with a radial basis function (RBF) kernel 

is used to explore the benefit of using an ultrasonic signal or their analytical excerpt along 

with electrical data on a cell to estimate its state of charge. The parameters of the SVR are 

held constant at epsilon 휀 = 0.1, gamma 𝛾 = 0.1 and regularization parameter 𝐶 = 100 

throughout this case study. Epsilon describes the radius of the epsilon tube. Points lying 

within this tube are not associated with a penalty. Gamma is a parameter that controls how 

much the distance between points or to the epsilon tube is penalized. At high values of 

gamma, the shape of the epsilon tube relies strongly on individual data points. Finally, the 

regularization parameter C controls the weighing between loss function and complexity of 

the model – at high C, overfitting of the data is more likely, but an overall smaller value of 

the loss function is achieved. The values chosen here, present an overall moderate choice 

and are common start parameters for testing an SVR. Generally, a parameter variation is 

performed on a representative dataset to evaluate the score (accuracy, mean square error, 

or else) of a trained model and to fix these parameters to test different datasets against 

each other. Since this is a complex task and beyond the scope of this work, the parameters 

will remain fixed for the following analysis, as described before. To achieve reasonable 

results within the computing accuracy available to modern computers, and to ensure an 

equal weighing of the input features, it is necessary to scale training and testing data to a 

certain range. There are two common ways to do so: the standard scaler, shifting the data 

by its mean value and scaling it by division by its standard deviation; and the min-max-

scaler, scaling the data to values between 0 and 1, normalized to the difference between 

minimum and maximum of the data. As outliers have been removed from the datasets by 

hand already, the min-max-scaler is applicable here, even though it is very sensitive to 

outliers. The scaler is applied to each feature of the training and testing data separately. To 

avoid information leakage between training and test data, the scaler is fit to the training 

data, resulting in a scale, which is then applied to the test data. Feature, in this context, 
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means a measured quantity, e.g., SoC, cell voltage, current, ToF, or transmitted energy 

content (EC). In an industrial application of SoC estimation, a similar procedure would be 

applied to scale measured quantities to a certain range, allowing to use of a smaller bit 

count to store and process associated values. In this case, the scaling factor would have to 

be estimated based on a norm cycle or a priori tests of comparable cell-actor-sensor 

configurations. 

The features of the datasets tested in this study are 

• SoC 

• Voltage 

• Current 

• ToF(1st env.) 

• ToF(max. env.) 

• Transmitted energy content (EC) 

The features can be assigned to two groups – electrical features and ultrasonic features, 

as indicated by color. These features make up the components of a multidimensional 

feature vector, with each feature being represented by one dimension. The SoC is the state 

variable that the SVR is trained to predict. 

The test datasets include several samples and different C-rates. Abbreviations prepended 

in brackets are chosen to shorten the legend entries in the following graphs. The grey font 

color indicates the exclusion of the respective datasets in the averaging in subsequent 

subchapters. 

• (1.10)     LDA002 – 0.10 C 

• (2.10)     LDA007 – 0.10 C 

• (3.10a)   LDA019 – 0.10 C, run a 

• (3.10ba) LDA019 – 0.10 C, run b, sensor and actor switched 

• (3.10bb) LDA019 – 0.10 C, run b  

• (3.25)     LDA019 – 0.25 C 

• (3.50)     LDA019 – 0.50 C 

• (3.75)   LDA019 – 0.75 C 

• (3.00)   LDA019 – 1.00 C 

• (4.10)   LDA020 – 0.10 C 

• (5.10)   LDA021 – 0.10 C 

• (6.10a) LDA022 – 0.10 C, run a 

• (6.10b) LDA022 – 0.10 C, run b 

• (7.10)   LDA025 – 0.10 C  

4.6.2 Test procedure 

To test the accuracy of the SoC estimation with the support vector regression, the datasets 

above are tested in two ways. To estimate the accuracy of a trained model, the R² score is 

used. During the first test, the model is trained with a portion (90%) and tested with a second 

non-overlapping portion (10%) of the feature vectors in a dataset. This portion is randomly 
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selected and the process of training and accuracy estimation is repeated ten times. The 

average of these ten iterations was taken as the accuracy. During the second test, the data 

feature vectors of one dataset are used as training data and the feature vectors of another 

dataset are used as test data. In both test cases, the datasets are filtered to contain feature 

vectors of only a single RCn frequency, which is the implementation that is the most feasible. 

The best accuracy of an individual test is displayed in the following heat maps, in which the 

row entries mark the training datasets and the column entries mark the test datasets. 

Therefore, the diagonal line in the heat map represents the first test case where a dataset 

is tested against itself (self-test). The tests where training and test data don’t originate from 

the same dataset will be referred to as cross-test. 

Out of the tested feature selections, the test matrix for electrical and ultrasonic features 

combined is depicted in Figure 4.57. Here, the best R² score is plotted as the color value. 

The RCn frequency at which the corresponding R² score was achieved along with the 

corresponding root mean square error (RMSE) can be found in the appendix, see Figure 

8.13 and Figure 8.14. As seen in the diagonal entries, self-tests consistently evaluate to 

comparably high values around 0.96 to 0.98. For the cross-tests in the upper left-hand 

corner (5 times 5 tiles), similar results are achieved. This allows the conclusion, that the 

features in the corresponding datasets of cells LDA002, LDA007, and LDA019 achieve 

similarity regarding the correlation of SoC and the tested features. Especially the rows and 

columns belonging to LDA020 (4.10) and LDA021 (5.10) show much lower R² scores, 

hinting that the correlation of SoC and the tested features doesn’t match the behavior of 

other tested cells. 

For an application to SoC estimation, e.g., in a vehicle, this would imply that cells would 

either have to be categorized into groups of matching behavior or the sensor actor 

configuration and parameters affecting the ultrasonic propagation through the battery cells 

and along their surface would have to be revisited. Another sensor actor configuration, e.g., 

placement of both on the same side of a battery cell, which was not possible due to space 

limitation within this study, could result in a smaller cell-to-cell variation in ultrasonic 

propagation and should be considered in the future research. 
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Figure 4.57: Model accuracy of a support vector regression, estimated by the R² score. The 

datasets used for training and testing are listed as row labels and column labels, respectively. 

The diagonal entries represent the average of 10 self-tests of a dataset, where 10% of the data acts 

as test data and 90% as training data. These tests evaluate to an accuracy of up to 0.98. The overall 

accuracy is consistently higher compared to the model trained with electrical or ultrasonic features 

alone, as shown in the appendix, Figure 8.14. 

4.6.3 Assessing the effect of additional features on the estimation accuracy 

of an SVR 

As described before, the RCn frequency at which the best accuracy is achieved varies 

depending on the datasets evaluated, but also on the features selected. Here, the benefit 

of taking additional features or varying the combination of features is evaluated. Especially 

the potential benefit of combining the electrical features, cell voltage, and current, with 

ultrasonic features is of interest to test whether the sensing of physical properties can 

improve state estimation. In Figure 4.58, the R² score, the RMSE, and the RCn frequency 

at which the best accuracy is achieved are plotted as a function of features included in the 

training and test datasets. 



4 Results & discussion 

158 

As described before, ten runs of the self-test are performed. Again, the 0.1 C cycling of 

LDA019 is chosen to be presented here to be able to retrace trends to before described 

phenomena. When taking the correlation of the displayed features with SoC into account, 

as shown in Figure 4.54, Figure 4.55, and Figure 4.56, the observed trends can be 

explained. The RCn frequencies at which the best R² scores and at which frequencies are 

achieved, match the RCn frequencies at which the correlation of the respective features 

with SoC is particularly high (close to +1 or -1). For energy content, this is the case around 

85 kHz for ToF(1st env.) at 50 kHz and for ToF(max. env.) at 105 kHz. For other 

combinations of these features, the best R² score is achieved at RCn frequencies at which 

the correlation of the selected features with SoC is rather high for both features, e.g., at 

50 kHz for both ToF features or at 125 kHz for all ultrasonic and electrical features 

combined. Therefore, the Pearson correlation coefficient can act as guidance for the 

selection of features to achieve a high estimation accuracy and low RMSE. It can also be 

concluded that the addition of a measured variable to the set of features aids the estimation 

accuracy of an SVR if the measured variable exhibits a strong correlation to the state 

variable. Nevertheless, additional features can negatively contribute to the best achievable 

estimation accuracy, as seen in the R² scores of “Electrical + Ultrasonic” compared with 

“Electrical + both ToF”. 
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Figure 4.58: Model accuracy (R² score), RMSE, and RCn frequency at which the best accuracy 

is achieved plotted versus utilized features for the self-test of the dataset (3.10a) LDA019 – 

0.1 C, run a. As seen from the first two entries, the accuracy of a model trained and tested with 

electrical features alone is rather poor, yielding an RMSE of about 8% SoC and an R² score of about 

0.92. With the addition of ultrasonic features, the RMSE can be reduced to about 4% SoC and the 

R² score increased to about 0.98. Trends of the R² score and RMSE with features and RCn frequency 

can be predicted based on the Pearson correlation of selected features with SoC, which is depicted 

in Figure 4.54, Figure 4.55, and Figure 4.56. At RCn frequencies where a feature achieves a high 

correlation, a high R² score and a low RMSE can be expected for an SVR utilizing this feature.  

The above-described test was repeated for all seven available battery cells on one selected 

dataset per sell, at 0.1 C each. The averaged results with standard deviation as error bars 

are depicted in Figure 4.59. The general trends are similar to what can be observed for 

dataset 3.10a, as depicted in Figure 4.60. The model fit to the electrical features alone has 

again the worst performance with an R² score of about 0.92 and an RMSE of about 8% SoC. 

Adding a single ultrasonic feature improves the R² score to about 0.97 and the RMSE to 

about 5% SoC. Judging from the mean values and specified standard deviation, adding 

additional features does not improve the result further. The RCn frequency, at which the best 

result is achieved, varies within a large range. Most of the tested features result in a mean 

RCn frequency around 100 kHz to 150 kHz, which is the center of the studied frequency 

range. For the test of ultrasonic features alone, the RCn frequency of the best result lies 
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within 50 kHz to 100 kHz, which is the range in which, at least for most frequencies, a well-

defined correlation between SoC and the ultrasonic features exists. In this range, the ToF 

estimation algorithms yield reasonable results, as the frequency distribution of the PSD of 

the transmitted signal is centered on the excited RCn frequency of the sent waveform – see 

Figure 4.28. 

 

Figure 4.59: Model accuracy (R² score), RMSE, and RCn frequency at which the best accuracy 

is achieved plotted versus utilized features for the self-test of seven selected datasets – 

compare the list at the beginning of this chapter.  

4.6.4 Assessing deviation of prediction from test data 

When assessing the suitability of an SoC estimation method, the maximum estimation error 

and the SoC the which the deviation of prediction from the true value occurs are important 

quality criteria, besides, mean estimation error. The latter is correlated with the R² score but 

is explicitly depicted in the appendix, Figure 8.14. Here, an overall RMSE of about 4% SoC 

is achievable for almost all self-tests on electrical and ultrasonic features combined, 

depicted in the tiles along the diagonal line, as confirmed for the dataset (3.10a) – see 

Figure 4.58. A comparison of prediction and true SoC is displayed in Figure 4.60 for the RCn 

frequency of 50 kHz, which corresponds to the dataset discussed in the previous 
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subchapters 4.5.1 and 4.5.2. Here a prediction for every vector in the training data is shown, 

while the model generating this output was trained with a portion of the training data as in 

the before described self-tests. To comply with the previous presentation where cell voltage 

and signal properties were plotted as a function of SoC, the same presentation was chosen 

in the following graphs. Mind that the prediction is a function of the feature displayed on the 

y-axes. Therefore, the deviation of prediction from true SoC is visible through a horizontal 

shift of prediction against training data. The most prominent is the under-estimation (shift to 

the left) at low and high SoC values, especially well visible for the plot of voltage vs. SoC. 

Over-estimation is pronounced between 20% and 40% SoC, which is especially well 

observable in the plot of energy content vs. SoC. 

 

Figure 4.60: Comparison of training data and model prediction. The predicted value SoC is 

plotted on the x-axis and the features are plotted on the y-axis. Therefore, the deviation of the 

prediction from the training data can be estimated as the horizontal shift of the blue points against 

the orange points. As the behavior at an RCn frequency of 50 kHz has been described extensively in 

the previous chapters, the same frequency is chosen here, which yields an R² score of 0.918 and an 

RMSE of 8.7% SoC. 
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The deviation of the prediction from the training data, involving all available features, is 

plotted as a function of SoC in Figure 4.61. By comparing the number of points above or 

below the 0% line, the over or under-estimation in a certain SoC range can be judged. Here, 

two cases are tested to evaluate the effect of the deviating behavior of the first cycle 

following a long rest period. In the first case, all five cycles are included in the training and 

test dataset. In the second case, all cycles but the first cycle after rest are included. It can 

be observed, that in the low SoC range up to about 15% the deviation of prediction from 

training data is more negative for the data containing all cycles. This can be traced to the 

features’ differing behavior in that range for the first cycle – compare Chapter 4.5.1. In both 

cases, an overall trend is seen, which aligns well with the observations in Figure 4.60. In 

the section up to 40% SoC, the deviation is mostly positive. Between 40% and 70% SoC, 

the deviation is almost equally spread around zero. Above 70% SoC, the deviation is mostly 

negative, which can be confirmed by the absence of prediction points (blue dots) in the 

section above 90% SoC in Figure 4.60. For comparison, the result for the RCn frequency 

achieving the best R² score is shown in the appendix, see Figure 8.10 and Figure 8.11. 

 

Figure 4.61: Deviation of the predicted value from the training data, plotted vs. the (true) SoC 

of the training data. Regions of over and under-estimation can be attributed to a misfit of the 

trained model, as seen in Figure 4.60. 

The separation into two branches around 60% to 100% SoC suggests that the deviation 

differs in magnitude and sign depending on whether the feature vector, being used for 

prediction, is assigned to charging or discharging half cycle. This would imply that the SVR 



4 Results & discussion 

163 

does not differentiate between the two and fits the model to both, charging and discharging 

half-cycles at once. In that case, implementing a mechanism that discriminates between 

charging and discharging could improve the estimation accuracy significantly. A possible 

solution could be the first derivative of the electric current. 

4.6.5 Assessing the transferability of the training results in unknown 

cycling conditions 

For any real-world application, the state estimation model’s ability to predict the state at a 

condition that was not included in the training data is essential. To assess the transferability 

of the training results to unknown cycling conditions, the datasets of battery cell LDA019 at 

different C-rates are studied. In the following, out of the five available C-rate datasets (at 

0.10 C, 0.25 C, 0.50 C, 0.75 C, and 1.00 C), one serves as the test dataset and the other 

four combined serve as the training dataset. To exclude the influence of the first cycle after 

rest, the datasets are set to begin with the second complete cycle. As before, the training 

data and the test data are scaled separately to avoid information leakage between the two. 

The training data is scaled to its minimum and maximum. The hereby estimated parameters 

for scaling are then applied to the test data. This procedure emulates the scaling of 

instantaneous measured values according to the boundaries of a known dataset, which 

would be the case in a real-world application, where the knowledge about the minimum and 

maximum of the test dataset is unavailable or can only be estimated. 

Since the acquisition rate for ultrasonic signals is limited to a rate of about once per RCn 

frequency every 50 seconds, the number of ultrasonic data points per cycle is limited. For 

higher C-rates, e.g., 1.0 C, at which a cycle takes about 70 minutes to complete, the number 

of data points is substantially lower than at low C-rates, e.g., 0.1 C, at which a cycle takes 

about 1450 minutes to complete. The number of cycles and the number of data points per 

cycle is listed C-rate specifically in Table 4.5. 

Table 4.5: Number of data points in each subset of the combined dataset, depending on C-

rate  

C-rate / C Number of full 

cycles 

Avg. data points per 

cycle 

Total number of data 

points 

0.10 3 483 1449 

0.25 4 296 1184 

0.50 4 156 624 

0.75 4 109 436 

1.00 4 86 344 
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Even though the number of points in a cycle differs from dataset to dataset, depending on 

the C-rate, only those feature vectors that are selected as support vectors influence the 

shape of the epsilon tube. Therefore, a higher number of feature vectors in a subset does 

not necessarily lead to a higher weighing of that particular subset in the combined dataset. 

In Figure 4.62, the result of the described assessment is shown. A general trend can be 

observed here. If the C-rate of a test dataset lies outside of the C-rates, included in the 

training data, the R² score is lower and the RMSE is higher compared to cases where the 

C-rate of the test dataset lies within the range of C-rates included in the training data. In 

that case, some of the feature vectors of the test data are not contained in the range of the 

model, fitted by the SVR. Especially in the lower SoC range, where the value of the signal 

quantity (e.g., ToF) strongly depends on the C-rate, this contributes to a higher estimation 

error. The difference in ToF(max. env.) at 0% SoC at 1.0 C and smaller C-rates, as seen in 

Figure 4.49, may illustrate this. An epsilon tube fitted to the data of 0.1 C to 0.75 C would 

select the support vectors in a way that minimizes the distance to the feature vectors and 

thus contain some of the “outer” values of the training data. Therefore, a deviation from the 

trained value range and slope, as is very likely for some of the data points at 1.0 C would 

lead to an under-estimation or over-estimation and thus to a higher estimation error. Due to 

the smaller deviation of the 0.1 C data compared to the C-rates above the described effect 

is smaller than at 1.0 C. Since almost all feature vectors of the 0.5 C data are expected to 

lie within the range of the training data, the 0.5 C test case is expected to yield the best 

result, as is confirmed in Figure 4.62. With the additional data points and a potentially larger 

range of the epsilon tube, the 0.5 C test case can even achieve better accuracy than the 

0.1 C self-test – see Figure 4.58. 

From the results presented here, one can conclude that in an application utilizing a data-

driven approach for SoC estimation, the best result can be obtained by a) including as 

diversified training data as possible and b) training the model with a range of conditions that 

include all the conditions to be tested or faced during application. 



4 Results & discussion 

165 

 

Figure 4.62: Assessment of the SoC estimation accuracy according to R² score and RMSE for 

unknown cycling conditions. In this test case, four subsets at different C-rates are combined to 

form a training dataset, while the remaining fifth out of the available five subsets acts as test data. 

Thereby the estimation accuracy of a model applied to a dataset recorded at a C-rate unknown to 

that model can be assessed. The C-rate of the test data is listed on the x-axis. 

4.6.6 Assessing the transferability of training results to a battery cell, 

unknown to the trained model 

A last important test case is to assess how well a model, trained with a selection of battery 

cells, can estimate the SoC of battery cells not included in this selection. For any application, 

the training of a model with every single cell produced before deployment is not desirable. 

Therefore, the following procedure is chosen to assess the transferability of training results 

to a battery cell, which is not known to the trained model. As depicted in Figure 4.63, the 

data of seven battery cells, cycled at 0.1 C were chosen, while the dataset named in the x-

axis label acts as test data and the remaining datasets act as training data. Prior to scaling, 

the training data is appended together from the individual subsets. As before, the training 

and test data are scaled separately to avoid information leakage between the two. 

Analogously to Chapter 4.6.5, the minimum, the maximum, and the standard deviation of 

the training data are used to scale the data. This procedure also emulates the case where 

the instantaneous measured values (feature vectors) are recorded independently and 

scaled without prior knowledge of the minimum and maximum within that dataset. To comply 

with the before demonstrated test cases, the electrical and ultrasonic features were used 
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for testing. The test cases, depicted in Figure 4.63, achieve R² between 0.915 and 0.960 

except for the test case 5.10 at 0.541. RMSE varies between 5.85% SoC and 8.52% SoC 

except for the test case 5.10 at 19.85% SoC. The RCn frequency, at which the best R² score 

is reached, varies from 50 kHz to 195 kHz. At almost 20% SoC RSME, the model trained 

for the 5.10 test case is not suitable for SoC estimation and has to be treated as an outlier. 

This bad performance with dataset 5.1 being the test case seems reasonable when looking 

at Figure 4.57, where dataset 5.1 yields the overall lowest mean R2 score of 9.30. Further 

research would be required to link the differing behavior of this cell to the low SoC estimation 

accuracy, achieved by the SVR. Disregarding this outlier, the overall result averages to an 

R² score of (0.941 ± 0.015) and an RSME of (7.03 ± 0.89)% SoC, which is comparable to 

the range which is achieved during the feature selection test (compare Chapter 4.6.3), but 

still poses an improvement compared to the test case with solely electrical features for 

single-cell self-test. 

 

Figure 4.63: Assessment of the SoC estimation accuracy according to R² score and RMSE for 

an unknown battery cell. In this test case, six subsets of different battery cells, cycled at 0.1 C, are 

combined to form a training dataset, while the remaining subset, out of seven selected sets, acts as 

the test data. Thereby the estimation accuracy of a model trained with a variety of battery cells of the 

same type and applied to an unknown cell can be assessed. The label of the test data is listed on 

the x-axis. 
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4.6.7 Summary of this subchapter 

In this subchapter, datasets from seven individual battery cells of the same type and a 

dataset with five different C-rates were used as training data for an SVR. The parameters 

of this SVR were held constant, while the number and selection of features and tested 

datasets were varied to assess different use cases. The features used to train and 

subsequently predict the state variable SoC were electrical features such as cell voltage 

and current, and ultrasonic features such as ToF of the first and second wave package and 

the energy content transmitted within the signal. 

First, a self-test and cross-test of the 0.1 C datasets were performed. Self-tests, where 

different portions of a dataset are used for training and testing, yielded R² scores of 0.975 

to 0.983 and MSRE of 3.9% to 4.8% SoC. Cross-tests, involving the training with one 

dataset and a test with another, yielded R² scores of 0.884 to 0.981 and MRSE of 3.6% to 

10.0% SoC, with the exception of one outlier. This gives a rough estimate of the achievable 

accuracy but also states that the studied cells differ in SoC-dependent mechanical behavior, 

as far as ultrasonic signal properties allow to draw a conclusion. 

Then the effect of additional features was studied on a number of datasets. While rather 

large standard deviations of the resulting mean accuracy and R² scores don’t allow a final 

assessment, trends can be stated. A combination of electrical features and ultrasonic 

features consistently yields better accuracy than those features alone, but a maximum 

number of features does not necessarily provide the best result. Here, mean accuracies of 

4% to 5% SoC were achieved.  

The datasets of the seven cells were also used to test which accuracy is achievable if six 

datasets are used for training and the seventh for testing. The resulting accuracy was 

between 6% to 9% SoC. One outlier, dataset 5.10, suggests that the behavior of cell 

LDA020 significantly differs from those of the other battery cells. 

Then the battery cell and associated datasets, used in the exemplary in-depth study 

throughout the results chapter, were employed for further tests. It could be shown that the 

deviations of the prediction from the training data vary with SoC. At low SoC, overestimation 

is especially present and at high SoC, an underestimation is pronounced. As the study of 

the signal properties at the showcased RCn frequency showed, these are the regions where 

the effect of hysteresis is especially present and where the relaxation during rest periods 

plays a significant role. 
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Finally, the transferability of the training results to a dataset, recorded at a C-rate, not 

included in the training dataset, was assessed. Here, accuracies between 3.1% and 

4.6% SoC were achieved, with the best result at a C-rate between the C-rates included in 

the training dataset. This suggests that a model can be trained with C-rates representing 

the limits of the use-cases and still achieve good accuracy for test cases that were not 

explicitly trained, which is well achievable in a laboratory environment before deployment 

of the SoC estimation in the field. 
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5 Summary & Conclusion 

5.1 Retrospect on the content of this work 

This work introduced the reader to all relevant fields to tap into an ultrasound-based state 

of charge estimation and provides a blueprint for the procedure to achieve and test the 

fundamentals of such an approach. It spanned from an in-depth electrochemical 

characterization of the studied battery cells over establishing the measurement technique, 

digital processing of ultrasonic transmission signals, and characterization of the SoC 

dependent property changes of those signals to a proof of concept of an ultrasound-based 

state of charge estimation. 

The State of the art & theoretical background chapter focused on the battery section on the 

mechanical property changes of lithium-ion batteries during operation. The components and 

the processes involved to manufacture a battery cell were described to establish the 

fundamentals for later interrogation. A comprehensive summary of methods for state 

estimation was given and an emphasis was laid on mechanical methods, including a critical 

review of the most recent research on ultrasound-based state estimation. Afterward, the 

fundamentals of ultrasonic non-destructive evaluation were introduced, starting with the 

sound propagation modes in isotropic boundary-free media, followed by the introduction of 

boundaries and non-isotropic structure to finally approach the class of fluid-saturated 

porous media, which batteries can be counted to. As the processing of the ultrasonic signals 

transmitted through lithium-ion battery cells with the aim of feature extraction was one of 

the main goals of this work, the fundamentals of digital signal processing and methods for 

the time of flight estimation were reviewed and compared in a separate section. 

All available information on the interrogated battery cell and the instrumentation was 

collected in the Experimental methods & instrumentation chapter, including a detailed step-

by-step manual of the process developed in this work to create and attach a sensor stack 

for ultrasonic interrogation based on low-cost off-the-shelf piezo elements. 

The Results & discussion chapter opened with an in-depth electrochemical and post-

mortem interrogation to reverse engineer the battery cell design and its internal structure. 

The combination of inductively coupled plasma-optical emission spectrometry and 

incremental capacity analysis applied to three-electrode lab cells, constructed from the 

studied battery cell’s materials, allowed to identify the SoC ranges in which phase transitions 

and staging occur and thereby directly links changes in the ultrasonic signal properties with 
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the state of the active materials, which makes this work stand out among other studies on 

ultrasound-based state estimation. Additional dilatometer experiments were able to prove 

that the measured effect in ultrasonic time of flight cannot originate from the thickness 

increase of the battery cells alone, as this thickness increase is smaller and in opposite 

direction to the change in time of flight. Therefore, changes in elastic modulus and density 

have to be responsible for the observed effect. 

The construction of the sensor stack from off-the-shelf piezo elements, its electromagnetic 

shielding, and attachment to both sides of the battery cells was treated in a subsequent 

section. Experiments verified the necessity of shielding and its negligible influence on the 

ultrasonic signals. A hypothesis describing the metal layer in the pouch foil to be the 

transport medium of an electrical coupling/distortion between sending and receiving sensor 

was formulated and tested. Impedance spectroscopy was shown to be a useful tool to 

characterize the resonant behavior of piezo elements and ensure the mechanical coupling 

of such to the surface of the battery cells. The excitation of the piezo elements by a raised 

cosine (RCn) waveform with varied center frequency in the range of 50 kHz to 250 kHz was 

studied in the frequency domain and the influence of the resonant behavior, as identified 

prior by impedance spectroscopy, on waveform and frequency content was evaluated to be 

uncritical. Therefore, the forced oscillation produced by this excitation was assumed to be 

mechanically coupled as ultrasonic waves into the battery cells. 

The ultrasonic waves transmitted through the battery cell were recorded by piezo elements 

on the opposing side. A first inspection of the raw, unprocessed signals identified the 

transmission of two main wave packages and allowed the identification of two major trends: 

the time of flight of ultrasonic wave packages decreases with the center frequency of the 

RCn waveform, and with state of charge. These trends were to be assessed further in the 

subsequent sections. Therefore, methods for the extraction of features (properties) from the 

ultrasonic signals were established, compared, and tested in a dedicated section. Several 

simple and advanced thresholding methods were compared with envelope-based and 

cross-correlation methods to estimate the time of flight (ToF). It was demonstrated that the 

envelope-based method yields the most robust estimate for the first and second wave 

package. This finding is in accordance with the literature stating that an envelope-based 

method is best suited for dispersive, absorptive media [204], to which lithium-ion batteries 

are counted. Respective trends were already suggested by the heatmap plots of the raw 

signals vs. RCn frequency and SoC. To enable such a robust estimate, an FIR filter had to 

be designed to preprocess the transmitted signals and thereby attenuate frequency 

components that verifiably lead to a distorted shape of the envelope. 
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With a robust ToF estimation method selected, the characterization of the signal properties 

ToF and transmitted energy content (EC) was performed in-depth. A study of cycle-to-cycle 

variations unveiled that the signal properties are affected by a long rest period and the 

associated relaxation of the multi-particle system “battery cell” to equilibrium. In detail, 

during cycling, the signal properties don’t reach the same value at a given SoC in two 

subsequent cycles if the first of the two cycles follows a long rest period. In accordance with 

the literature, a break-in period, making up for more than ten cycles post-formation, was 

observed. During this break-in period, the mechanical properties of the system are said to 

change until a steady state is reached [25]. Experiments at different C-rate showed that 

ultrasonic signal properties can sense the non-equilibrium state of a battery cell, 

characterized by an increasing area between charge and discharge curve of the respective 

signal property vs. SoC plot. This non-equilibrium state relaxes in the rest period following 

the discharge after the cut-off voltage is reached. The relaxation in the rest period following 

the charge is much smaller and shows little C-rate dependency as the state is prepared by 

constant voltage charging at the end of charge voltage. For a purely statistical SoC 

estimation approach, as employed in this work, where only instantaneous measurements 

are taken into account and the historic course of the measurement is not utilized as a source 

of information, the presence of hysteresis and relaxation leads to a reduced estimation 

accuracy. Future research should address this issue or even utilize the relaxation to improve 

the estimation accuracy, by incorporating historic information, e.g., by using the derivative 

of a signal property as an additional feature. The signal properties were then tested for their 

correlation with SoC as a function of RCn frequency. This allowed identifying trends in the 

behavior of the signal properties as a function of RCn frequency and C-rate in a condensed 

fashion and thereby enabled to predict the frequency range, about 50 kHz to 125 kHz, in 

which the course of the signal properties is best suited for SoC estimation. 

The final section provided a proof of concept of the ultrasound-based SoC estimation, by 

applying a support vector regression (SVR) to before thoroughly studied ultrasonic signal 

properties, as well as current and battery cell voltage. The included case study was split 

into different parts that assessed the ability of an SVR to estimate the SoC in a variety of 

scenarios. Seven battery cells, prepared with sensor stacks attached to both faces, were 

used to generate 14 datasets. First, a comparison of self-tests, where a portion of a dataset 

is used for training and another for testing, and cross-tests, which use the dataset of one 

cell for training and the dataset of another for testing, was performed. A root mean square 

error (RMSE) of 3.9% to 4.8% SoC and 3.6% to 10.0% SoC was achieved, respectively. In 

general, it was observed that the SVR is prone to overestimation at low SoCs and 
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underestimation at high SoCs, which was attributed to the pronounced hysteresis and 

relaxation of the ultrasonic signal properties in this SoC ranges. The fact that higher 

accuracy is achieved, if the exact cell is known to the model, indicates that a variation 

between cells exists. This variation between cells can originate from differences in 

mechanical properties as a result of production variations or from differences in manual 

sensor placement, mechanical coupling, or resonant behavior of the ultrasonic sensors. To 

mitigate the effect of the cell-to-cell variations, a test was performed, where the datasets of 

six out of the seven cells were combined as training data, and the dataset of the seventh 

cell was used for testing. This reduced the spread of the RMSE from (3.6 - 10.0)% SoC to 

(5.9 – 8.5)% SoC, respectively, once again stating that a databased approach for state 

estimation becomes more reliable with a large data basis. Utilizing self-tests on seven 

datasets, the effect of additional features on the state estimation result was tested. The 

involvement of an additional feature did not necessarily improve the estimation accuracy, 

but it was shown that a combination of ultrasonic and electrical features is superior to the 

training with these features alone. To test the ability of the model to estimate the SoC in 

unknown cycling conditions, a test was performed where the C-rate of the test dataset was 

not included in the training data. The result suggests that for practical applications it might 

be sufficient to perform training with the boundary of the use cases in a controlled laboratory 

environment to handle the estimation in a broad spectrum of use cases. 

In comparison with literature, this study stands out by utilizing and modifying off-the-shelf 

piezo elements to equip state-of-the-art lithium-ion battery cells with ultrasonic sensors, 

employing a range of center frequencies for the waveform, transmitted through the battery 

cell, instead of a fixed frequency and by allowing the SVR to choose the frequency that 

yields the best result. The characterization of the ultrasonic signal properties as a function 

of RCn frequency and SoC and the assignment of characteristic changes in the signal 

properties to electrochemical processes, such as phase transitions and staging, makes this 

work unique. By studying a range of use cases, it was demonstrated that an improved SoC 

estimation accuracy can be achieved with the aid of ultrasonic measurements – thanks to 

the correlation of the mechanical properties of the battery cells with the SoC. 

5.2 Outlook on future applications of ultrasound to lithium-ion batteries 

The application of ultrasound to probe the state of lithium-ion batteries is still a considerably 

young field of research. Therefore, many more potential research questions are to be 

answered. Of particular interest is which of the presented propagation modes is the most 

dominant in the chosen setup. Here, laser vibrometer studies on the oscillation of the battery 
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cell’s surface and finite element models of the wave propagation could enable further 

insight. With more datasets available in the future, the parameters of the SVR should be 

optimized to find a generalized model. Additional features, such as properties of the 

frequency spectrum of the ultrasonic signals, or even whole sections of ultrasonic signals 

might be used to further increase estimation accuracy in the future, but might require the 

use of neural networks for feature recognition. Thus many options for the improvement of 

the state estimation exist. 

The reach of this work is already extended by several freshly started projects at Fraunhofer 

ISC, involving the study of degradation and aging phenomena (MADAM4Life), and the 

integration of ultrasonic transducers with other mechanical and temperature sensors 

(SPARTACUS) on the surface of large-capacity high-energy battery cells in automotive 

conditions, e.g., mechanical clamping of the battery cells. 

This work also sparked the idea to use ultrasound to monitor the wetting process of lithium-

ion batteries during production, which is developed within the project Cell-Fill. The aim is to 

shorten the time attributed to wetting and thereby reduce cost, by being able to precisely 

measure the point in time at which the wetting is sufficient to begin the next production step, 

formation. 



5 Summary & Conclusion 

174 

  



 

175 

6 Zusammenfassung & Ausblick 

6.1 Rückblick auf den Inhalt dieser Arbeit 

Diese Arbeit bot dem Leser eine Einführung in alle Bereiche an, die relevant sind um eine 

ultraschallbasierte Ladungszustandsbestimmung (Ladezustand – engl.: state of charge, 

SoC) umzusetzen, und zeigt einen Weg auf, wie ein solcher Ansatz in seinen Grundlagen 

geprüft und umgesetzt werden kann. Hierzu wurde ein Bogen gespannt von einer 

eingehenden elektrochemischen Charakterisierung der untersuchten Batteriezellen über 

die Etablierung der Messtechnik, die digitale Verarbeitung von 

Ultraschalltransmissionssignalen und die Charakterisierung der Ladezustands-abhängigen 

Eigenschaftsänderungen dieser Signale bis hin zu einem Proof-of-Concept für eine 

ultraschallbasierte Ladezustandsbestimmung. 

Das Kapitel „State of the art & theoretical background“ konzentrierte sich in einem Abschnitt 

über Batterien auf die Veränderungen der physikalischen Eigenschaften von Lithium-Ionen-

Batterien während des Betriebs und der Alterung. Um die Grundlage für die spätere 

Untersuchung zu schaffen, wurden die Komponenten und die Prozesse zur Herstellung 

einer Batteriezelle beschrieben. Anschließend wurde ein umfassender Überblick über die 

Methoden zur Zustandsschätzung gegeben, wobei der Schwerpunkt auf den mechanischen 

Methoden lag, einschließlich einer kritischen Zusammenstellung der neuesten 

Forschungsergebnisse zur ultraschallbasierten Zustandsbestimmung. Danach wurden die 

Grundlagen der zerstörungsfreien Bewertung mit Ultraschall vorgestellt, beginnend mit den 

Schallausbreitungsmoden in isotropen, unbegrenzten Medien, gefolgt von der Einführung 

von Grenzen und nicht-isotropen Strukturen, um sich schließlich der Klasse der 

flüssigkeitsgesättigten porösen Medien zu nähern, zu denen Batterien gezählt werden 

können. Da die Verarbeitung der durch die Lithium-Ionen-Batteriezellen übertragenen 

Ultraschallsignale mit dem Ziel der Merkmalsextraktion eines der Hauptziele dieser Arbeit 

war, wurden die Grundlagen der digitalen Signalverarbeitung und Methoden zur 

Laufzeitschätzung in einem eigenen Abschnitt behandelt und verglichen. 

Alle verfügbaren Informationen über die abgefragte Batteriezelle und die verwendeten 

Messgeräte wurden im Kapitel „Experimental methods & instrumentation“ 

zusammengestellt, einschließlich einer detaillierten Schritt-für-Schritt-Anleitung des in 

dieser Arbeit entwickelten Verfahrens zur Erstellung und Anbringung einer 

Sensoranordnung für die Ultraschallprüfung auf der Grundlage kostengünstiger, 

handelsüblicher Piezoelemente. 
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Das Kapitel „Results & discussion“ begann mit einer eingehenden elektrochemischen und 

Post-Mortem-Untersuchung, um das Design der Batteriezelle und ihre interne Struktur zu 

untersuchen. Durch die Kombination von induktiv gekoppelter Plasma-optischer 

Emissionsspektrometrie und inkrementeller Kapazitätsanalyse an Drei-Elektroden-

Laborzellen, die aus den Materialien der untersuchten Batteriezelle konstruiert wurden, 

konnten die SoC-Bereiche identifiziert werden, in denen Phasenübergänge auftreten, 

wodurch Änderungen der Ultraschallsignaleigenschaften direkt mit dem Zustand der 

Aktivmaterialien verknüpft werden, was diese Arbeit unter anderen Studien zur 

ultraschallbasierten Zustandsschätzung hervorhebt. Durch zusätzliche Dilatometer-

experimente konnte nachgewiesen werden, dass der gemessene Effekt in der 

Ultraschalllaufzeit nicht allein von der Volumenänderung der Batteriezellen herrühren kann, 

da diese Volumenänderung kleiner ist und in die Gegenrichtung zur Änderung der Laufzeit 

verläuft. Entsprechend müssen Änderungen in E-Modul und Dichte der Aktivmaterialien für 

den beobachteten Effekt verantwortlich sein. 

Der Aufbau der Sensoranordnung aus handelsüblichen Piezoelementen, seine 

elektromagnetische Abschirmung und die Befestigung an beiden Seiten der Batteriezellen 

wurden in einem späteren Abschnitt behandelt. Experimente bestätigten die Notwendigkeit 

dieser Abschirmung und ihren vernachlässigbaren Einfluss auf die Ultraschallsignale. Es 

wurde eine Hypothese formuliert, die die Metallschicht in der Pouch-Folie als 

Transportmedium einer elektrischen Kopplung/Übersprechens zwischen Sende- und 

Empfangssensor beschreibt. Die Impedanzspektroskopie erwies sich als nützliches 

Werkzeug zur Charakterisierung des Resonanzverhaltens der Piezoelemente und zur 

Sicherstellung der mechanischen Kopplung dieser Elemente mit der Oberfläche der 

Batteriezellen. Die Anregung der Piezoelemente durch eine Raised-Cosine-Wellenform 

(RCn) mit variierter Mittenfrequenz im Bereich von 50 kHz bis 250 kHz wurde mittels Fourier-

Transformation im Frequenzraum untersucht. Der Einfluss des Resonanzverhaltens, 

welches zuvor durch die Impedanzspektroskopie ermittelt wurde, auf die Wellenform und 

den Frequenzinhalt wurde als unkritisch bewertet. Daher wurde angenommen, dass die 

durch die RCn Anregung erzeugte erzwungene Schwingung mechanisch als 

Ultraschallwellen in die Batteriezellen eingekoppelt wird. 

Die durch die Batteriezelle transmittierten Ultraschallwellen wurden von Piezoelementen 

auf der gegenüberliegenden Seite aufgezeichnet. Eine erste Prüfung der rohen, 

unverarbeiteten Signale ergab die Übertragung von zwei Hauptwellenpaketen und 

ermöglichte die Identifizierung von zwei Haupttrends: Die Laufzeit der 

Ultraschallwellenpakete nimmt mit der Mittenfrequenz, der RCn-Wellenform und mit dem 
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Ladezustand ab. Diese Trends sollten in den folgenden Abschnitten weiter bewertet 

werden. Daher wurden in einem eigenen Abschnitt Methoden zur Extraktion von Merkmalen 

(Eigenschaften) aus den Ultraschallsignalen implementiert, verglichen und getestet. 

Mehrere einfache und fortgeschrittene Schwellenwertverfahren wurden mit 

hüllkurvenbasierten und Kreuzkorrelationsverfahren zur Schätzung der Laufzeit (engl.: 

„time of flight“, ToF) verglichen. Es wurde gezeigt, dass die hüllkurvenbasierte Methode die 

stabilste Schätzung für das erste und zweite Wellenpaket liefert. Dieses Ergebnis steht im 

Einklang mit der Literatur, die beschreibt, dass eine hüllkurvenbasierte Methode am besten 

für dispersive, absorbierende Medien [234], wie z. B. Lithium-Ionen-Batterien, geeignet ist, 

was bereits durch die Heatmap-Diagramme der Rohsignale aufgetragen gegen RCn-

Frequenz und SoC suggeriert wurde. Um eine solche robuste Laufzeit-Schätzung zu 

ermöglichen, musste ein FIR-Filter implementiert werden, der die übertragenen Signale 

vorverarbeitet und dabei Frequenzkomponenten abschwächt, die nachweislich zu einer 

verzerrten Form der Hüllkurve führen. 

Nach der Auswahl einer robusten Methode zur ToF-Schätzung die Signaleigenschaften ToF 

und übertragener Energiegehalt (engl.: energy content, EC) eingehend charakterisiert. Eine 

Untersuchung der Zyklus-zu-Zyklus-Schwankungen ergab, dass die Signaleigenschaften 

durch eine lange Ruhephase und die damit verbundene Relaxation des Vielteilchensystems 

"Batteriezelle" bis zur Erreichung des Gleichgewichtzustands beeinflusst werden. Die 

Signaleigenschaften erreichten während des Zyklus nicht den gleichen Wert bei einem 

bestimmten SoC in zwei aufeinanderfolgenden Zyklen, wenn der erste der beiden Zyklen 

auf eine lange Ruhephase folgte. In Übereinstimmung mit der Literatur wurde eine 

Einlaufphase (engl.: „break-in period“) beobachtet, die mehr als zehn Zyklen nach der 

Formierung umfasst. Während dieser Einlaufphase ändern sich die mechanischen 

Eigenschaften des Systems, bis ein stabiler Zustand erreicht ist [25]. Experimente bei 

unterschiedlichen C-Raten zeigten, dass die Ultraschallsignaleigenschaften sensitiv für den 

Nicht-Gleichgewichtszustand einer Batteriezelle sind, der durch eine zunehmende Fläche 

zwischen der Lade- und Entladekurve der jeweiligen Signaleigenschaft in der Auftragung 

über SoC gekennzeichnet ist. Dieser Nicht-Gleichgewichtszustand entspannt sich in der 

Ruhephase nach der Entladung, nachdem die Abschaltspannung erreicht ist. Die 

Relaxation in der Ruhephase nach dem Laden ist wesentlich geringer und zeigt kaum eine 

Abhängigkeit von der C-Rate, da der Zustand durch Laden mit konstanter Spannung nach 

Erreichen der Ladeschlussspannung präpariert wird. Bei einem rein statistischen SoC-

Bestimmungsansatz, wie er in dieser Arbeit verwendet wird, bei dem nur instantane 

Messwerte berücksichtigt werden und die historischen Messwerte nicht als 
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Informationsquelle genutzt wird, führt das Vorhandensein von Hysterese und Relaxation zu 

einer geringeren Schätzgenauigkeit. Zukünftige Forschungsarbeiten sollten sich mit diesem 

Problem befassen oder sogar die Relaxation zur Verbesserung der 

Bestimmungsgenauigkeit nutzen, indem historische Informationen einbezogen werden, z. 

B. durch Verwendung der Ableitung einer Signaleigenschaft als zusätzliches Merkmal. Die 

Signaleigenschaften wurden dann auf ihre Korrelation mit SoC als Funktion der RCn-

Frequenz getestet. Dies ermöglichte es, Trends innerhalb der Daten in verdichteter Form 

zu identifizieren und dadurch den Frequenzbereich (etwa 50 kHz bis 125 kHz) 

vorherzusagen, in dem der Verlauf der Signaleigenschaften am besten für die SoC-

Bestimmung geeignet ist. 

Im letzten Abschnitt wurde ein Proof-of-Concept für die ultraschallbasierte SoC-Schätzung 

erbracht, indem eine Support-Vektor-Regression (SVR) auf die zuvor eingehend 

untersuchten Ultraschallsignaleigenschaften sowie auf Strom und Zellspannung der 

Batterie angewendet wurde. Die enthaltene Fallstudie war in verschiedene Teile aufgeteilt, 

die die Fähigkeit einer SVR zur Bestimmung des SoC in einer Vielzahl von Szenarien 

bewerteten. Sieben Batteriezellen, die mit jeweils zwei Sensoranordnungen auf 

gegenüberliebenden Seiten präpariert wurden, dienten zur Erzeugung von 14 Datensätzen. 

Zunächst wurde ein Vergleich zwischen Selbsttests, bei denen ein Teil eines Datensatzes 

zum Training und ein anderer zum Testen verwendet wird, und Kreuztests, bei denen der 

Datensatz einer Zelle zum Training und der einer anderen zum Testen verwendet wird, 

durchgeführt. Dabei wurde ein mittlerer Fehler von 3,9% bis 4,8% SoC bzw. 3,6% bis 10,0% 

SoC erreicht. Im Allgemeinen wurde festgestellt, dass die SVR bei niedrigen SoCs zu einer 

Überschätzung und bei hohen SoCs zu einer Unterschätzung neigt, was auf die 

ausgeprägte Hysterese und Relaxation der Ultraschallsignaleigenschaften in diesen SoC-

Bereichen zurückgeführt wurde. Die Tatsache, dass eine höhere Genauigkeit erreicht wird, 

wenn die genaue Zelle dem Regressionsmodell bekannt ist, deutet darauf hin, dass eine 

Variation zwischen den Zellen besteht. Diese Variation zwischen den Zellen kann auf 

Unterschiede in den mechanischen Eigenschaften infolge von Produktionsschwankungen 

oder auf Unterschiede in der manuellen Sensorplatzierung, der mechanischen Kopplung 

oder dem Resonanzverhalten der Ultraschallsensoren zurückzuführen sein. Um die 

Auswirkungen der Schwankungen zwischen den Zellen auf die Schätzgenauigkeit 

abzuschwächen, wurde ein Test durchgeführt, bei dem die Datensätze von sechs der 

sieben Zellen als Trainingsdaten kombiniert wurden und der Datensatz der siebten Zelle für 

den Test verwendet wurde. Dadurch verringerte sich die Streuung des mittleren Fehlers von 

(3,6 - 10,0)% SoC auf (5,9 - 8,5)% SoC, was einmal mehr zeigt, dass ein datenbasierter 
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Ansatz zur Zustandsbestimmung durch eine großen Datenbasis zuverlässiger wird. Anhand 

von Selbsttests mit sieben Datensätzen wurde die Auswirkung zusätzlicher Merkmale auf 

das Ergebnis der Zustandsbestimmung getestet. Die Einbeziehung eines zusätzlichen 

Merkmals verbesserte nicht unbedingt die Schätzgenauigkeit, aber es wurde gezeigt, dass 

eine Kombination von Ultraschall- und elektrischen Merkmalen dem Training mit diesen 

Merkmalen allein überlegen ist. Um die Fähigkeit des Modells zur Bestimmung des 

Ladezustands unter unbekannten Zyklusbedingungen zu testen, wurde ein Test 

durchgeführt, bei dem die C-Rate des Testdatensatzes nicht in den Trainingsdaten 

enthalten war. Das Ergebnis deutet darauf hin, dass es für praktische Anwendungen 

ausreichend sein könnte, das Training mit Datensätzen unter den Grenzbedingungen der 

Anwendungsfälle in einer kontrollierten Laborumgebung durchzuführen, um die Schätzung 

in einem breiten Spektrum von Anwendungsfällen zu bewältigen. 

Im Vergleich zur Literatur hebt sich diese Studie dadurch ab, dass handelsübliche 

Piezoelemente verwendet und modifiziert wurden, um moderne Lithium-Ionen-

Batteriezellen mit Ultraschallsensoren auszustatten, wobei eine Reihe von 

Mittenfrequenzen für die durch die Batteriezelle übertragene Wellenform anstelle einer 

festen Frequenz verwendet wird und der SVR die Frequenz wählen kann, die das beste 

Ergebnis liefert. Die Charakterisierung der Ultraschallsignaleigenschaften als Funktion der 

RCn-Frequenz und des SoC sowie die Zuordnung charakteristischer Veränderungen der 

Signaleigenschaften zu elektrochemischen Prozessen wie den Phasenübergängen in den 

Aktivmaterialien machen diese Arbeit einzigartig. Durch die Untersuchung einer Reihe von 

Anwendungsfällen konnte gezeigt werden, dass mit Hilfe von Ultraschallmessungen eine 

verbesserte SoC-Abschätzungsgenauigkeit erreicht werden kann - dank der Korrelation der 

mechanischen Eigenschaften der Batteriezellen mit dem SoC. 

6.2 Ausblick auf zukünftige Anwendungen von Ultraschall auf Lithium-

Ionen-Batterien 

Die Anwendung von Ultraschall zur Untersuchung und Bestimmung des Zustands von 

Lithium-Ionen-Batterien ist noch ein recht junges Forschungsgebiet. Daher sind noch viele 

Fragen in diesem Feld zu beantworten und neue Ideen umzusetzen. Von besonderem 

Interesse ist, welche der vorgestellten Ausbreitungsmoden in dem gewählten Aufbau am 

dominantesten ist. Hier könnten Laservibrometer-Untersuchungen der Schwingung der 

Oberfläche der Batteriezelle und Finite-Elemente-Modelle der Wellenausbreitung weitere 

Erkenntnisse liefern. In der Zukunft werden durch verschiedene Projekte deutlich mehr 

Datensätze mit mechanischen Messgrößen während der Zyklisierung von Batterien zur 
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Verfügung stehen, sodass es dann möglich sein wird die Parameter der SVR für den hier 

beschriebenen Anwendungsfall zu optimieren, um ein verallgemeinertes Modell zu 

erzeugen. Zusätzliche Merkmale, wie z. B. die Eigenschaften des Frequenzspektrums der 

Ultraschallsignale oder sogar ganze Abschnitte von Ultraschallsignalen, könnten in Zukunft 

verwendet werden, um die Bestimmungsgenauigkeit weiter zu erhöhen, erfordern aber 

möglicherweise den Einsatz von neuronalen Netzen zur Merkmalserkennung. Es gibt also 

viele Optionen für die Verbesserung der Zustandsbestimmung. 

Die Reichweite dieser Arbeit wird bereits durch mehrere vor kurzem gestartete Projekte am 

Fraunhofer ISC erweitert, welche die Untersuchung von Degradations- und 

Alterungsphänomenen (MADAM4Life) und die Integration von Ultraschallwandlern mit 

anderen mechanischen Sensoren und Temperatursensoren (SPARTACUS) auf der 

Oberfläche von Hochenergie-Batteriezellen mit großer Kapazität unter automobilen 

Bedingungen, insbesondere unter mechanischer Verspannung der Batteriezellen 

beinhalten. 

Aus dieser Arbeit entstand auch die Idee, Ultraschall zur Überwachung des 

Benetzungsprozesses von Lithium-Ionen-Batterien während der Produktion einzusetzen, 

die im Rahmen des Projekts Cell-Fill entwickelt wird. Ziel ist es, die Benetzungszeit zu 

verkürzen und damit die Kosten zu senken, indem der Zeitpunkt, an dem die Benetzung 

ausreichend fortgeschritten ist, um mit dem nächsten Produktionsschritt, der Formation, zu 

beginnen, genau bestimmt werden kann. 
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8 Annex A: additional content 

8.1 Additional spectra as in Figure 4.25 from the signals displayed in 

Figure 4.14 to Figure 4.17 

 

Figure 8.1: PSD of signals displayed in Figure 4.14. 

 

Figure 8.2: PSD of signals displayed in Figure 4.15. 



8 Annex A: additional content 

202 

 

Figure 8.3: PSD of signals displayed in Figure 4.16. 

 

Figure 8.4: PSD of signals displayed in Figure 4.17. 
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Figure 8.5 shows the result of processing each received signal’s PSD according to these 

equations (Equation (75) and (76)). Here, the expected value or the center of mass of the 

PSD is plotted as a color value in kHz for different SoCs (y-axis) and RCn frequencies (x-

axis). This presentation shows that the CoM shifts towards higher frequencies with 

increasing RCn frequency but remains below 150 kHz. For high RCn frequencies especially, 

the CoM shifts towards lower frequencies with increasing SoC, being well in accordance 

with the trends observed in Figure 2.19. Above 100 kHz, the center does not match the 

exciting RCn frequency. 

 

Figure 8.5: Expected value of the power spectral density (PSD) of the transmitted signals, 

described in Figure 4.27. The expected value describes the center of mass of the PSD and is 

calculated according to Equations (75) and (76). 
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Figure 8.6: Standard deviation of the power spectral density of the transmitted signals 

described in Figure 4.27. 

 

Figure 8.7: Peak frequency of the power spectral density of the transmitted signals described 

in Figure 4.27. 
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8.2 Comparison of ToF estimation methods 

 

Figure 8.8: Comparison of ToF estimation techniques for signals, transmitted through 

LDA019, at 60 kHz in an SoC range of 0% to 100%. 

 

Figure 8.9: Comparison of ToF estimation techniques for signals, transmitted through 

LDA019, at 100 kHz in an SoC range of 0% to 100%. 
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8.3 Deviations of prediction and training data 

 

Figure 8.10: Comparison of training data and model prediction. The predicted value SoC is 

plotted on the x-axis and the features are plotted on the y-axis. Therefore, the deviation of the 

prediction from the training data can be estimated as the horizontal shift of the blue points against 

the orange points. Here the training data and prediction of the dataset achieving the best accuracy 

among the available datasets with different RCn frequencies is shown. It achieved an R² score of 

0.978 and an RMSE of 4.4% SoC. 
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Figure 8.11: Deviation of the predicted value from the training data, plotted vs. the (true) SoC 

of the training data. Regions of over and under-estimation can be attributed to a misfit of the 

trained model, as seen in Figure 8.10. 

8.4 C-rate dependency of signal properties 

 

Figure 8.12: Energy content of the signals transmitted in the second cycle out of datasets, 

recorded at five different C-rates. Especially the curves at low C-rate show distinctive plateaus in 

their course, which are “smoothed out” at higher C-rates. Here, the data of cell LDA019 is displayed. 
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8.5 Additional test matrix scores 

 

Figure 8.13: RCn frequency of the dataset achieving the highest accuracy of a support vector 

regression, estimated by the R² score. The datasets used for training and testing are listed as 

row labels and column labels, respectively. The diagonal entries represent the average of 10 self-

tests of a dataset, where 10% of the data acts as test data and 90% as training data. The best result 

of the self-tests is achieved by the datasets with RCn frequencies between 50 kHz and 155 kHz with 

the exception of one outlier. 
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Figure 8.14: Model accuracy of a support vector regression, estimated by the RMSE. The 

datasets used for training and testing are listed as row labels and column labels, respectively. 

The diagonal entries represent the average of 10 self-tests of a dataset, where 10% of the data acts 

as test data and 90% as training data. These tests evaluate to an RMSE as low as 3.4% SoC. The 

overall accuracy is consistently higher compared to the model trained with electrical or ultrasonic 

features alone. 
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Figure 8.15: Model accuracy of a support vector regression, estimated by the R² score. The 

datasets used for training and testing are listed as row labels and column labels, respectively. The 

diagonal entries represent the average of 10 self-tests of a dataset, where 10% of the data acts as 

test data and 90% as training data. Here the electrical quantities cell voltage and current act as 

features. Overall, an accuracy above 0.93 is achieved. Except for one dataset, the self-test results 

in an accuracy of 0.94 and above. 
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Figure 8.16: Model accuracy of a support vector regression, estimated by the R² score. The 

datasets used for training and testing are listed as row labels and column labels, respectively. The 

diagonal entries represent the average of 10 self-tests of a dataset, where 10% of the data acts as 

test data and 90% as training data. Here the time of flight of the wave packages, estimated by the 

first peak and the maximum of the envelope of the signal, as well as the transmitted energy content 

are selected as features. The best accuracy varies between 0.67 and 0.98. For the self-test (diagonal 

entries) an overall high accuracy between 0.96 and 0.98 can be achieved. 
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