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Abstract
Purpose  While [18F]-fluorodeoxyglucose ([18F]FDG) is the standard for positron emission tomography/computed tomog-
raphy (PET/CT) imaging of oral squamous cell carcinoma (OSCC), diagnostic specificity is hampered by uptake in inflam-
matory cells such as neutrophils or macrophages. Recently, molecular imaging probes targeting fibroblast activation protein 
α (FAP), which is overexpressed in a variety of cancer-associated fibroblasts, have become available and might constitute a 
feasible alternative to FDG PET/CT.
Methods  Ten consecutive, treatment-naïve patients (8 males, 2 females; mean age, 62 ± 9 years) with biopsy-proven OSCC 
underwent both whole-body [18F]FDG and [68Ga]FAPI-04 (FAP-directed) PET/CT for primary staging prior to tumor resec-
tion and cervical lymph node dissection. Detection of the primary tumor, as well as the presence and number of lymph node 
and distant metastases was analysed. Intensity of tracer accumulation was assessed by means of maximum (SUVmax) and 
peak (SUVpeak) standardized uptake values. Histological work-up including immunohistochemical staining for FAP served 
as standard of reference.
Results  [18F]FDG and FAP-directed PET/CT detected all primary tumors with a SUVmax of 25.5 ± 13.2 (FDG) and 20.5 ± 6.4 
(FAP-directed) and a SUVpeak of 16.1 ± 10.3 ([18F]FDG) and 13.8 ± 3.9 (FAP-directed), respectively. Regarding cervical 
lymph node metastases, FAP-directed PET/CT demonstrated comparable sensitivity (81.3% vs. 87.5%; P = 0.32) and speci-
ficity (93.3% vs. 81.3%; P = 0.16) to [18F]FDG PET/CT. FAP expression on the cell surface of cancer-associated fibroblasts 
in both primary lesions as well as lymph nodes metastases was confirmed in all samples.
Conclusion  FAP-directed PET/CT in OSCC seems feasible. Future research to investigate its potential to improve patient 
staging is highly warranted.
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Introduction

Oral squamous cell carcinoma (OSCC) is the sixth most 
common tumor entity worldwide and the ninth most frequent 
cause of death [1, 2]. With an estimated incidence of about 
275,000 cases per year, it accounts for more than 90% of all 
malignancies of the oral cavity [3, 4]. Since the presence 
of cervical lymph node (LN) metastasis is one of the most 
relevant negative prognostic factors [5–8] and detection of 
distant metastases shifts therapy from a curative to a pallia-
tive approach [9], accurate tumor staging is of paramount 
importance for adequate treatment choice and estimation of 
prognosis [10–12].
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The utility of positron emission tomography/computed 
tomography (PET/CT) with [18F]-fluorodeoxyglucose ([18F]
FDG) for staging malignancies of the head and neck is well 
documented [13–18]. However, specificity of [18F]FDG is 
hampered by uptake in inflammatory cells such as neutro-
phils or macrophages [19]. Since inflammatory processes 
are very common in head and neck tumors [20], there is an 
urgent need for a more specific alternative to [18F]FDG to 
further improve preoperative staging and therapy of OSCC.

Cancer-associated fibroblasts (CAF) are located within 
the tumor stroma and modulate the tumor microenvironment 
by secretion of cytokines, chemokines and growth factors. In 
OSCC, tumor invasion is promoted by the communication 
between CAF and tumor cells [21, 22]. A particularity of 
CAF is the overexpression of fibroblast activation protein α 
(FAP) which corresponds to a type II transmembrane gly-
coprotein and acts as a serine protease of the dipeptidyl-
peptidase family [22, 23]. FAP overexpression on CAF of 
the tumor microenvironment has been confirmed in more 
than 90% of epithelial carcinomas, including malignancies 
of the breast, lung, colon and head and neck [22, 24, 25]. In 
contrast, FAP is nearly absent in normal adult tissues [26, 
27], rendering it a rather specific target for tumor imaging. 
Recently, FAP-targeted radioligands that act as FAP inhibi-
tors (FAPI) have become available for PET/CT imaging [28]. 
And whereas its initially anticipated excellent specificity has 
been partially relativized by high tracer uptake in non-malig-
nant inflammatory processes [29–33], FAP-directed PET/CT 
might prove a suitable tool for staging of OSCC.

The aim of this pilot study was to investigate the feasi-
bility of staging newly diagnosed, treatment-naïve OSCC 
patients using [68Ga]FAPI-04 (FAP-directed) PET/CT, and 
to compare its diagnostic performance with that of [18F]FDG 
PET/CT and cervical magnetic resonance imaging (MRI).

Methods

Patients and staging

Between July 2018 and March 2020, ten consecutive patients 
(8 males, 2 females; mean age, 62 ± 9 years) with newly 
diagnosed, biopsy-proven, treatment-naïve OSCC under-
went whole-body [18F]FDG PET/CT and cervical MRI 
for primary staging. In addition, FAP-directed PET/CT 
was performed within a median interval of 4 days (range, 
2 – 16 days). Within two weeks after imaging all patients 
underwent surgery according to institutional standards of 
care. Surgical treatment consisted of resecting the local pri-
mary tumor and performing a selective (levels I–III, levels 
I–III and Va, or levels II, III, and Va) or a complete neck 
dissection of levels I–V according to Robbins’ classification 

[34]. Resected primary tumors and lymph nodes were his-
topathologically assessed for the presence of tumor cells.

68 Ga-FAPI-04 was administered on a compassionate use 
basis, in compliance with §37 of Declaration of Helsinki and 
the German Medicinal Products Act, AMG §13 2b. Writ-
ten, informed consent was obtained from all subjects. Data 
analysis was revealed to the local institutional review board 
of the University of Würzburg that approved of this study 
(2,020,100,201).

PET/CT and MR imaging

Imaging was performed on an integrated PET/CT scanner 
(Siemens Biograph mCT 64, Siemens Healthineers, Knox-
ville, USA). Prior to [18F]FDG PET/CT imaging, patients 
fasted for at least 4  h with blood glucose levels below 
160 mg/dl; for FAP-directed imaging no dedicated prepara-
tion was required. Mean injected activity was 269 ± 43 MBq 
(range, 204 – 317 MBq) for [18F]FDG, and 119 ± 34 MBq 
(range, 66 – 168 MBq) for [68 Ga]FAPI-04, respectively. 
There were no adverse or clinically detectable pharma-
cological effects in any of the 10 subjects. No significant 
changes in vital signs or the results of laboratory studies or 
electrocardiograms were observed. Whole-body (top of the 
skull to knees) PET scans were performed one hour after 
administration of the radiopharmaceutical.

PET emission data were acquired in 3D-mode with a 
200 × 200 matrix with 2 min emission time per bed position 
from the vertex of the skull to the proximal thighs. As part 
of [18F]FDG PET/CT, transmission data were acquired using 
contrast-enhanced spiral CT (dose modulation with a quality 
reference of 180 mAs, 120 kV, a 512 × 512 matrix, 5 mm 
slice thickness, increment of 30 mm/s, rotation time of 0.5 s, 
and pitch index of 1.4). Furthermore, a dedicated acquisition 
of the head and neck with one bed position, 3 min emission 
time, and contrast-enhanced CT was performed (180 mAs, 
120 kV, a 512 × 512 matrix, 3 mm slice thickness, increment 
of 30 mm/s, rotation time of 1.0 s, and pitch index of 0.9). 
For anatomical co-registration of the FAP-directed scan, a 
non-contrast enhanced CT protocol with Care Dose 4D and 
a quality reference of 80 – 120 mAs was used.

All PET data were reconstructed iteratively (3 itera-
tions, 24 subsets, Gaussian filtering of 2.0 mm full width 
at half maximum) with attenuation correction using dedi-
cated standard software (HD. PET, Siemens Esoft, Siemens 
Healthineers, Erlangen, Germany).

MRI scans of the head and neck area were acquired using 
a 1.5 T scanner (Siemens Magnetom Avanto fit, Siemens 
Healthcare, Erlangen, Germany) or a 3.0 T scanner (Siemens 
Magnetom Prisma or Skyra, Siemens Healthcare, Erlangen, 
Germany) with a 64-channel head/neck coil for signal recep-
tion. Various T1, T2 and diffusion weighted sequences were 
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done with and without contrast agent (Dotagraf; Jenapharm 
GmbH & Co. KG, Jena, Germany).

Image analysis

Three experienced nuclear medicine physicians (AD, OK 
and CL) blinded to all clinical data independently rated all 
PET/CT scans in random order and at two time points on 
a syngo.via workstation (Siemens Healthineers, Erlangen, 
Germany). Foci of increased tracer uptake with reference to 
normal tissue and blood pool and/or the presence of mor-
phological alterations on CT images were recorded as being 
positive for tumor involvement. The localization, expansion, 
and infiltration of osseous structures as well as the presence 
and number of nodal metastases were recorded for each cer-
vical lymph node level. Lymph node levels were assessed 
according to the imaging-based nodal classification [12]. 
Furthermore, whole-body scans were evaluated for distant 
nodal and organ metastasis and for secondary malignancies. 
Any initial difference of rating between the three readers was 
resolved by subsequent consensus reading. Maximum and 
peak (defined as average activity concentration within a 1 
cm3 spherical VOI centered on the “hottest” voxel) stand-
ardized uptake values (SUVmax and SUVpeak) of the primary 
tumor, and suspected LN metastases were measured.

MRI scans were evaluated by two experienced board-cer-
tified radiologists (AD and OK) according to previously pub-
lished methods [35, 36]. Lymph node levels were assessed 
according to the imaging-based nodal classification [37, 38].

Histopathological analysis

Specimens were analyzed with regard to tumor size, lymph 
node metastases, lymph vessel- and venous invasion, peri-
neural infiltration, resection status, and tumor grading 
according to the TNM classification of OSCC [12].

Immunohistochemistry (IHC) for FAP (antibody 
ab207178, Abcam, 1:250) was performed on formalin-
fixed paraffin-embedded tissue slides according to standard 
IHC protocols. Immunostaining was scored as previously 
described [39, 40]. In brief, semi-quantitative analysis of 
stromal staining was scored as 0 (no staining), 1 + (1—10%), 
2 + (11—50%), and 3 + (51—100% stromal staining). 
Tumor-free lymph nodes served as negative controls.

Statistical analysis

Statistical analyses were performed using the statistics 
software SPSS (version 24.0; IBM Armonk, US) and R 
(R v3.6.1, http://​www.R-​proje​ct.​org/). Quantitative values 
are displayed as mean ± standard deviation or median and 
range, as appropriate. Spearman’s Rho correlation analysis 
was used to compare uptake of both tracers in corresponding 

tumors/lymph nodes. McNemar’s exact test was used to 
compare sensitivity and specificity of both tracers and MRI. 
P values ≤ 0.05 were considered statistically significant.

Results

Tumor localization and staging

Five patients suffered from a primary tumor of the floor of 
the mouth (two central, three lateral), two subjects from a 
unilateral primary of the tongue. The mandibular mucosa 
was affected in two instances, the maxillary in the remaining 
case. Mean size of the primary lesion was 28.3 ± 12.9 mm 
(range, 11.0 – 46.0 mm), resulting in a T-stage of T2 in 
five patients, T3 in two subjects and T4 in the remaining 
three patients, respectively. A total of 434 lymph nodes 
were resected, of which 3.7% (16/434) harbored metastatic 
disease in seven patients. The mean size of LN metastases 
was 11.4 ± 9.7 mm (median, 9 mm; range, 2.0 – 43.0 mm). 
Neither distant hematologic spread nor second malignancy 
was observed in this cohort. Details are given in Table 1.

[18F]FDG PET/CT

On a per-patient analysis [18F]FDG PET/CT detected 
all primary tumors with a mean SUVmax and SUVpeak of 
25.5 ± 13.2 (range, 9.6 – 48.1) and 16.1 ± 10.3 (range, 5.1 
– 34.0), respectively. 85.7% (6/7) of patients with LN metas-
tases were correctly identified.

On a per-lesion basis [18F]FDG PET/CT revealed 87.5% 
(14/16) of LN metastases with a mean SUVmax and SUVpeak 
of 14.9 ± 12.3 (range, 2.9 – 40.6) and 8.3 ± 6.8 (range, 1.8 
– 25.2), respectively, while the remaining 2/16 (12.5%; 
patients #4 and #8) were false negative. Of note, the LN 
metastases missed by [18F]FDG PET/CT were each only five 
mm or less in size. Three out of 17 LNs that were rated as 
PET-positive turned out to be false positive. Thus, sensitivity 
and specificity for detection of LN metastases were 87.5% 
and 81.3%, respectively. Details are given in Table 2.

FAP‑directed PET/CT

On a per-patient basis FAP-directed PET/CT correctly iden-
tified all primary tumors with a mean SUVmax and SUVpeak 
of 20.8 ± 6.4 (range, 7.0 – 29.1) and 13.8 ± 3.9 (range, 5.5 
– 18.6), respectively, which was comparable to the values 
derived for FDG PET (rs = 0.56, P = 0.09 and rs = 0.84, 
P = 0.002, respectively). Six out of seven patients with LN 
metastases were correctly identified.

On a per-lesion basis FAP-directed PET/CT detected 
81.3% (13/16) of LN metastases with a mean SUVmax and 
a SUVpeak of 10.7 ± 6.9 (range, 3.1 – 25.2) and 6.4 ± 3.3 
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(range, 2.4 – 13.8), respectively. The remaining 3/16 LN 
metastases (18.8%; patients #1, #4 and #8) with a respective 
LN size of 2 mm (patient #1) and 5 mm (patients #4 and #8) 
were missed. One of 14 LNs that were rated to be suspicious 
for metastatic disease turned out to be false positive, result-
ing in a sensitivity and specificity for the detection of LN 
metastases of 81.3% and 93.3%, respectively. Examples of 
FAP-directed imaging results are displayed in Figs. 1 and 2.

MRI

On a per-patient basis MRI correctly identified all primary 
tumors and six out of seven patients with LN metastases. 
Of note, one of the patients with lymph node metastasis 
(patient #4) was rated positive due to a false positive LN, 
while the true metastasis was rated FN.

Table 1   Patients’ characteristics

F, female; LN, lymph node; Mets, metastases; M, male; Pat, patient

Pat # Age Sex Primary Tumor Lymph nodes Distant Mets

Location Side Size [mm] Osseous 
arrosion /
infiltration

T-Stage Resected Mets N-Stage M-Stage

1 64 M alveolar process of the mandible bilateral 15 yes 2 59 4 3b none 0
2 54 M floor of the mouth right 42 yes 3 50 3 3b none 0
3 66 M floor of the mouth bilateral 32 no 2 36 0 0 none 0
4 49 M floor of the mouth right 34 no 2 53 1 1 none 0
5 56 F tongue right 46 no 3 47 1 2a none 0
6 60 M floor of the mouth right 21 no 2 23 0 0 none 0
7 58 M floor of the mouth bilateral 27 yes 4 49 1 2a none 0
8 80 F maxillary mucosa right 42 yes 4 46 4 2b none 0
9 62 M tongue right 13 no 2 14 0 0 none 0
10 72 M alveolar process of the mandible right 11 yes 4 57 2 3b none 0

Table 2   Individual PET results 
and immunohistochemical 
FAP expression of lymph node 
metastases

CAF, cancer-associated fibroblasts; FAP, fibroblast activation protein; IHC, immunohistochemistry; L, left; 
n/d, not detected; R, right; LN, lymph node; Mets, metastases; SUV, standardized uptake value

Pat# LN [Mets/
resected]

Location 
[Side / 
Level]

Size [mm] [18F]FDG PET FAP-directed PET IHC

SUVmax SUVpeak SUVmax SUVpeak FAP CAF

1 4 / 59 R / Ib 11 10 3 8 5 2 + 
R / Ia 5 3 2 3 2 2 + 
L / Ia 2 3 2 n/d n/d 3 + 
L / Ib 6 7 4 5 3 3 + 

2 3 / 50 R / Ib 11 8 5 8 5 2 + 
R / Ib 9 5 3 6 4 2 + 
R / IIa 12 7 5 8 6 3 + 

3 0 / 36
4 1 / 53 R / IIa 5 n/d n/d n/d n/d 2 + 
5 1 / 47 R / IIa 43 21 13 13 8 2 + 
6 0 / 23
7 1 / 49 R / Ib 9 5 5 6 4 3 + 
8 4 / 46 R / Ib 22 34 17 20 11 3 + 

R / Ib 5 n/d n/d n/d n/d 2 + 
R / IIa 8 16 8 8 6 1 + 
R / IIb 8 20 12 8 6 2 + 

9 0 / 14
10 2 / 57 R / Ib 12 41 25 20 14 3 + 

R / IIa 15 29 12 25 9 2 + 
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On a per-lesion basis MRI detected 50.0% (8/16) of LN 
metastases. The remaining 8/16 LN metastases (50.0%; 
patients #1, #4, #7, #8 and #9) with a respective LN size 
between 2 and 12 mm were missed. Five of 13 LNs that 
were rated to be suspicious for metastatic disease turned out 
to be false positive, resulting in a sensitivity and specific-
ity for the detection of LN metastases of 50.0% and 61.5%, 
respectively. However, it must be noted that there were sig-
nificant imaging artefacts in four subjects (#4, #5, #7 and 
#10), particularly due to metal implants (patients #4, #5 and 
#7) and patient movement (patients #4 and #10).

Immunohistochemistry

All primary tumors and all lymph node metastases showed 
a variable target expression with 15/16 cases demonstrat-
ing positive FAP immunostaining in > 10%-50% (score 2 + ; 
56%) and > 50% of surrounding stromal cells (score 3 + ; 
38%). FAP expression was also confirmed in the metastases 
missed by FAP-directed PET/CT (patients #1, #4 and #8). 
Individual IHC results for FAP for both primary lesions and 
LN metastases are given in Table 3.

In addition to the reactivity in CAF, we also observed 
a reactivity of variable quantity and intensity, but mostly 
weaker than in the CAF, in the cytoplasm and / or on the cell 
surface of the tumor cells in a subset of samples.

Discussion

In this pilot study in patients with newly diagnosed, treat-
ment-naïve OSCC, CAF-directed molecular imaging showed 
promise as a feasible diagnostic alternative to standard [18F]
FDG PET/CT.

Due to the high glucose consumption of tumor cells, [18F]
FDG is the reference tool for molecular imaging of squa-
mous cell carcinoma of the head and neck and has proven 
its clinical value in a number of trials with high sensitivity 
and acceptable specificity [13–18, 41]. A recent multi-center 
trial including 23 different imaging sites in the US prospec-
tively evaluated the value of [18F]FDG PET/CT in patients 
with newly diagnosed, first-time, head and neck squamous 
cell carcinoma and confirmed the high negative predictive 
value of this imaging modality [42].

Fig. 1   Example of FAP-directed imaging and respective immunohis-
tochemistry of both primary tumor and cervical lymph node metasta-
sis in a patient with newly diagnosed, treatment-naïve oral squamous 
cell carcinoma. Computed tomography (CT, A), fibroblast activation 
protein (FAP)-directed positron emission tomography (PET, B) as 
well as hybrid PET/CT imaging (C) in a patient with newly diag-

nosed, treatment-naïve squamous cell carcinoma of the alveolar pro-
cess of the mandible (patient #1) depicts both the primary tumor as 
well as an adjacent cervical lymph node metastasis (arrows). Histo-
logical work-up (D-G) including immunohistochemistry for FAP (F, 
G) could confirm presence of FAP-positive disease in both instances 
(primary tumor: D, F; lymph node metastasis: E, G)
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In our cohort, [18F]FDG PET/CT detected all primary 
tumors and most lymph node metastases with a sensitivity 
of 87.5% and a specificity of 81.3%, which is in line with 
the body of literature including a recent meta-analysis [16, 
42, 43]. It is worth mentioning that the lymph node metas-
tases missed by [18F]FDG PET/CT had a size of 5 mm or 
smaller, which is at the limit of the system’s technical image 
resolution.

Molecular imaging with [68 Ga]-FAPI-04 PET/CT dem-
onstrated identical primary tumor detection. Regarding 
metastases a slightly lower sensitivity (81.3%) as well as 
a marginally higher specificity (93.3%) for cervical lymph 
node involvement was observed in comparison to [18F]FDG 
PET/CT. PET signal intensity as assessed by SUVmax varied 
between 7.0 and 29.1 and is in line with recent studies that 
investigated the diagnostic performance of [68 Ga]FAPI-04 
PET/CT in head and neck cancer [44]. Compared to cervi-
cal MRI both PET tracers demonstrated slight diagnostic 
advantages, however, it should be taken into account that 
in almost half of patients (4/10), metal and/or movement 
artefacts severely impacted MRI image quality.

Presence of FAP on the cell surface of CAFs could be 
confirmed by IHC in all tumor specimens while it was absent 

in reactive, tumor-free lymph nodes. The high specificity of 
FAP-directed PET/CT may be particularly helpful in cases 
with extensive inflammatory changes in the oral cavity, in 
which [18F]FDG PET/CT faces challenges distinguishing 
malignant disease from non-specific changes. In this pilot 
study, only one false-positive lymph node was described in 
[68 Ga]FAPI-04 PET/CT, as compared to three in [18F]FDG 
PET/CT and five false-positives in MRI, respectively. Thus, 
by minimizing the number of neck dissections due to false-
positive cervical lymph nodes, the extent of surgery might 
be individually tailored and morbidity significantly reduced 
without jeopardizing oncologic results. However, in view of 
relatively high physiological tracer uptake of [68 Ga]FAPI-04 
in the oral mucosa [45], and increasing evidence for accu-
mulation also in non-malignant inflammatory processes such 
as IgG4-related diseases [32, 46], the preliminary results of 
this pilot study should be taken with caution.

Interestingly, FAP expression in the cytoplasm and / or 
on the cell surface of the tumor cells could be observed in 
a subset of samples. This might be a non-specific reaction, 
e.g. to keratinization products; however, epithelial cancer 
cell expression of FAP has been reported for a variety of 
cancer entities including oral squamous cell cancer [22, 47]. 

Fig. 2   Comparison of [18F]FDG and FAP-directed [68  Ga]FAPI-04 
PET/CT in a patient with newly diagnosed, treatment-naïve oral squa-
mous cell carcinoma and a cervical lymph node metastasis. Maxi-
mum Intensity Projections (MIP, outer columns) as well as axial PET 
(top), fused PET/CT (middle) and CT (bottom) slices of [18F]FDG 
(left) and [68 Ga]FAPI 04 (right) PET scans in a patient with newly 

diagnosed, treatment-naïve squamous cell carcinoma of the alveolar 
process of the mandible (patient #1). Whereas both tracers detect the 
regional lymph node metastasis in cervical level Ib, FAP-directed 
imaging offers higher tracer uptake. Of note, neither tonsils nor other 
lymph nodes are [68 Ga]FAPI-04 PET-positive in this example
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In OSCC, FAP expression could be correlated with tumor 
size, lymph-node metastasis and shorter overall survival 
[22]. Whereas the current sample size of our study precludes 
any firm conclusions, CAF-directed PET/CT imaging might 
not only address CAF but also directly the tumor cell and 
serve as a prognostic non-invasive biomarker.

Several limitations of this pilot study need to be men-
tioned. First, only a small number of patients could be 
included, thus limiting statistical power of our results. In the 
cohort analyzed, no distant metastases or second malignan-
cies were encountered, therefore the value of FAP-directed 
PET/CT in these scenarios could not be investigated. 
Another limitation could result from physiological tracer 
uptake of [68 Ga]FAPI-04 in the oral mucosa, which is com-
parable to that of [18F]FDG [45] and might potentially trans-
late into compromised tumor-to-background contrast. How-
ever, in our small pilot study no difficulties in distinguishing 
primary tumor from surrounding tissue were encountered. 
Last, since no follow-up is available, no conclusion on the 
prognostic power of the new imaging tool can be drawn and 
future studies have to investigate whether the reported nega-
tive prognostic impact of high FAP expression in OSCC can 
be non-invasively detected by FAP-directed PET/CT [22].

In contrast, the homogeneous patient cohort with newly 
diagnosed, treatment-naïve subjects, the direct comparison 
between [18F]FDG, cervical MRI and FAP-directed PET/
CT as well as the stringent pathological work-up (of primary 
tumors and 434 lymph nodes) including IHC are strengths 
of the current work.

Conclusion

Given the improved (although not perfect) specificity of 
FAP-targeted imaging compared with [18F]FDG, [68 Ga]
FAPI-04 (or its successors) may have the potential to prevent 
overtreatment and to reduce patient morbidity by minimizing 
the number of neck dissections due to false-positive cervical 
lymph nodes. However, given the small number of patients 
enrolled in this pilot study, no firm conclusion can be drawn 
at the moment, and further evaluation should be based on 
future large, prospective, multi-center studies.
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