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Deep learning assistance increases the detection sensitivity
of radiologists for secondary intracranial aneurysms in subarachnoid
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Abstract
Purpose To evaluate whether a deep learning model (DLM) could increase the detection sensitivity of radiologists for intracra-
nial aneurysms on CT angiography (CTA) in aneurysmal subarachnoid hemorrhage (aSAH).
Methods Three different DLMs were trained on CTA datasets of 68 aSAH patients with 79 aneurysms with their outputs being
combined applying ensemble learning (DLM-Ens). The DLM-Ens was evaluated on an independent test set of 104 aSAH
patients with 126 aneuryms (mean volume 129.2 ± 185.4 mm3, 13.0% at the posterior circulation), which were determined by
two radiologists and one neurosurgeon in consensus using CTA and digital subtraction angiography scans. CTA scans of the test
set were then presented to three blinded radiologists (reader 1: 13, reader 2: 4, and reader 3: 3 years of experience in diagnostic
neuroradiology), who assessed them individually for aneurysms. Detection sensitivities for aneurysms of the readers with and
without the assistance of the DLM were compared.
Results In the test set, the detection sensitivity of the DLM-Ens (85.7%) was comparable to the radiologists (reader 1: 91.2%,
reader 2: 86.5%, and reader 3: 86.5%; Fleiss κ of 0.502). DLM-assistance significantly increased the detection sensitivity
(reader 1: 97.6%, reader 2: 97.6%,and reader 3: 96.0%; overall P=.024; Fleiss κ of 0.878), especially for secondary aneurysms
(88.2% of the additional aneurysms provided by the DLM).
Conclusion Deeplearningsignificantly improvedthedetectionsensitivityofradiologists foraneurysmsinaSAH,especiallyforsecondary
aneurysms. It therefore representsavaluableadjunct forphysicians toestablishanaccuratediagnosis inorder tooptimizepatient treatment.
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Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is caused
by spontaneous rupture of an intracranial aneurysm and

accounts for approximately 85% of non-traumatic SAH
[1, 2]. With mortality ranging between 23% and 67%,
aSAH poses a potentially life-threatening condition and
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a worldwide health burden leaving approximately 20%
of long-term survivors permanently disabled [1, 3].

Accurate and reliable detection of a potentially rup-
tured intracranial aneurysm (RIA) is essential for diag-
nosis and the subsequent treatment concept in patients
with non-traumatic SAH [4, 5]. In particular, timely
aneurysm embolization by surgical or endovascular
means is mandatory in order to prevent rebleeding,
which may decisively affect patients’ prognosis.
Generally, CT angiography (CTA) represents the imag-
ing modality of choice to screen for aneurysms and is
performed immediately upon radiological proof of SAH.
The detection sensitivity of CTA for intracranial aneu-
rysms is reported to range between 85% and 98% when
compared to digital subtraction angiography (DSA)
[6–8].

Due to an increasing workload of radiology depart-
ments, physician fatigue and the “satisfaction of search”
phenomenon represent a real concern, aggravating the
risk of missing relevant findings [9, 10]. Given that
aneurysm detection on CTA proves to be challenging
with misdiagnosis of aSAH eventually resulting in a
poor clinical outcome, automated detection of intracra-
nial aneurysms may be of valuable assistance to physi-
cians [11–14]. Over the last decade, deep learning
models (DLMs), in particular convolutional neural net-
works (CNNs), have shown great potent ia l in
performing diagnostic and analyzing tasks on medical
imaging for different subspecialties [15–18, 19].

Previous studies have introduced several approaches for
deep learning-based detection of aneurysms on CTA [18,
20–22] or magnetic resonance angiography (MRA) [23–25],
compared the accuracy of the DLM to human readers, and
investigated the deep learning-augmented diagnostic perfor-
mance of physicians [20, 25]. However, these studies did not
include patients with aSAH and focused on unruptured intra-
cranial aneurysms (UIAs) [20, 25]. Therefore, if deep learning
would enhance the diagnostic sensitivity of human readers of
different experience levels for aneurysms in aSAH remains a
relevant question. In a recent study, a DLM was introduced,
which provided a high detection sensitivity of aneurysms in
aSAH independent of cerebral circulation and bleeding sever-
ity [26].

The objective of the study was to investigate whether this
DLM could increase the detection sensitivity of radiologists
for intracranial aneurysms on CTA in patients with aSAH.

Materials and methods

The institutional review board approved this retrospective,
single-center study (reference number: 19-1329) and waived
the necessity for written informed patient consent.

Patient population and data collection

Two hundred ten consecutive patients with aSAH treated be-
tween January 2013 and December 2017 at our tertiary care
university hospital were reviewed by the authors. Patients
were excluded given the following criteria: (I) unavailable
CTA scans (n = 16), (II) no aneurysm finding on CTA (n =
6), (III) motion artifacts on CTA (n = 2), (IV) insufficient
contrast of CTA (n = 7), (V) preprocessing failure (n = 5),
and (VI) previously treated aneurysms (n = 2).

Included CTA scans of patients treated between 2016 and
2017 served as the training set for the DLM (68 patients/79
aneurysms), whereas patients treated between 2013 and 2015
formed the test set (104 patients/126 aneurysms). These
datasets were previously used for the training of the DLM
and formed a part of the test set in the aforementioned study
[26]. In this study [26], patients between 2010 and 2015 were
used as a test set (in total: 185 patients with 215 aneurysms).

The included 170 scans of the present study were acquired
at a single center on different multidetector CTs (iCT (n =
161), brilliance 64 (n = 3), and brilliance 16 (n = 6); Philips
Healthcare, Best, the Netherlands) using a standardized clin-
ical protocol for head & neck or head imaging with slice
thickness ranging between 0.62 to 1.25 mm. CTA scans of
two patients were acquired at referring institutions. After
anonymization, CTA source images were exported to
IntelliSpace Discovery for segmentation (ISD, v3.0.6,
Philips Healthcare).

Reference standard

In order to establish the aneurysm count and reference stan-
dard, a radiologist with 3 (L.P.), a neurosurgeon with 4 (L.G.),
and a board-certified neuroradiologist with 12 years of expe-
rience (C.K.) in neurovascular imaging performed a double
review of CTA and DSA (available in 153 patients, 89.0%)
scans as well as their reports. Discrepancies were resolved in
consensus.

The aneurysm findings were manually segmented by the
aforementioned neurosurgeon and radiologist on ISD.
Segmentation was performed interactively using a two-step,
semiautomatic approach. First, a rough segmentation of the
aneurysm was obtained by 3D voxel-wise regional
thresholding. Afterwards, the segmentation was further edited
manually using 2D editing tools. Additionally, the
abovementioned readers collectively reviewed non-enhanced
CT scans to determine respective Fisher grade of aSAH in
consensus.

Image preprocessing

In order to enable the DLM-based automatic aneurysm seg-
mentation workflow, a preprocessing pipeline was employed
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[26]: First, a brain extraction algorithm was developed using
Statistical Parametric Mapping software package version 8
(SPM8; Wellcome Trust Centre for Neuroimaging) to com-
pute the brain mask [27]. Second, image standardization was
performed by resampling to an isotropic resolution of 0.5 mm3

and intensity normalized. Third, a multi-scale vessel enhance-
ment filter (consisting of two vessel-enhanced images, one
with scale 0.5–5 voxels and the other with scale 5–15 voxels)
was applied to the brain masked images enabling enhance-
ment of the arteries from the background of the scans to dis-
tinguish between blood vessels and aneurysms [28]. Fourth,
the original CTA image was normalized between 5 and 95%
percentiles, while the vessel enhanced images were Z-score
normalized.

Deep learning model

The specifics of the used DLM and its training are described
elsewhere [26]. In brief, 3D CNNs based on DeepMedic
(Biomedical Image Analysis Group, Department of
Computing, Imperial College London) [29] were used in this
study.

Three separate DLMs (DLM-Orig, DLM-Vess, and DLM-
LDim), which receive different inputs of the CTA datasets,
were trained on the training set applying fivefold cross vali-
dation using an 80–20% training-validation split. By combin-
ing the outputs of the three DLMs, an ensemble model similar
to the work of Kamnitsas et al. was created [30]. We refer to
this combination strategy as DLM-Ens. To this end, the three
trained DLMs were applied to the test set with every trained
DLM consisting of five individual submodels that resulted
from the fivefold cross-validation training approach. Using
simultaneous truth and performance level estimation
(STAPLE), outputs from these five submodels were fused
together. Subsequently, the STAPLE outputs from the three
DLMs were passed to the DLM-Ens to produce the final, fully
automated three-dimensional aneurysm segmentations [31].

The fully automated workflow of image preprocessing and
aneurysm detection is depicted in Fig. 1. The time needed for
the DLM to fully automatically segment the aneurysms is
about 3 min (including image preprocessing and model
ensembling). Figure 2 displays the fully automated aneurysm
segmentation on the IntelliSpace Discovery user interface.

Detection of aneurysms by the radiologists

Anonymized and unlabeled CTA scans of the test set were
presented to three radiologists with different levels of exper-
tise (reader 1: 13 years (J.B.), reader 2: 4 years (U.H.), and
reader 3: 3 years (A.K.) of experience in diagnostic neurora-
diology) in random order for individual assessment of intra-
cranial aneurysms. These readers were not involved in the
definition of the reference standard. In order to simulate an

emergency setting, which is the case during admission of a
patient with aSAH, readers were instructed to perform their
readings in a thorough but timely fashion. All readings were
performed on the same IMPAX EE (Agfa HealthCare N.V.,
Mortsel, Belgium) workstation as used in clinical routine, ap-
plying the Multiplanar-Reconstruction-(MPR) tool if needed.

Readers were instructed that every dataset comprised at
least one aneurysm and advised to report their findings in a
Microsoft Excel (2016, Microsoft Corp., Albuquerque, New
Mexico, USA) datasheet using the following labels: ICA (in-
ternal carotid artery), ACA (anterior cerebral artery including
anterior communicating artery), MCA (middle cerebral ar-
tery), and POSTERIOR (posterior cerebral artery, posterior
communicating artery, and vertebrobasilar territory) with re-
spective vessel side attached. Beyond that, readers were
blinded to patient and clinical data. Additionally, readers were
instructed to record the reading time for each scan in seconds.
After the initial reading, the readers were provided with the
results from the DLM and could amend their readings accord-
ingly in a separate column of the datasheet. The detection
performance of the DLM-Ens and the radiologists were com-
pared to the reference standard.

In order to investigate if the DLM may enhance the detec-
tion rate of the radiologists, results of readers 1, 2, and 3 were
combined with the detections provided by the DLM.

Statistical analysis

Statistical analysis was performed using Microsoft Excel and
SPSS (V22.0, IBM Corp., Armonk, NY, USA), with P < 0.05
considered statistically significant. Categorical variables are
presented as numbers and percentages. Continuous variables
are reported as mean ± standard deviation (SD) and range. The
sensitivity of the radiologists and of the DLM-Ens was calcu-
lated by comparison to the reference standard as provided by
segmentations of aneurysms on ISD. Detection rates were
compared using the Fishers’ exact test or the paired
Student’s t-test, when appropriate. Interrater agreement was
assessed using Fleiss κ with 0 indicating no, 0.01–0.2 slight,
0.21–0.40 fair, 0.41–0.6 moderate, 0.61–0.80 substantial, and
0.81–1.00 almost perfect agreement [32].

Results

Patient and aneurysm characteristics

In the test set, 126 aneurysms of 104 patients (mean age: 55.4
± 14.3 years, 66 females) were segmented on ISD and com-
prised the reference standard. Baseline patient and aneurysm
characteristics are outlined in Table 1. Themajority of patients
presented with a World Federation of Neurosurgical Societies
(WFNS) score of 5 (32.7 %) and a Fisher grade 4 bleeding
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(53.8 %). Eighteen patients (17.3%) had multiple aneurysms.
Manual segmentations yielded a mean aneurysm volume of
129.2 ± 185.4 mm3 (5.0–920.71 mm3). Aneurysms were lo-
cated at the ACA in 39.7%, the MCA in 31.0%, the ICA in
16.7%, and the posterior circulation in 12.7%.

Detection sensitivity of the DLM and of the
radiologists

The DLM-Ens detected 108 of 126 aneurysms (sensitivity:
85.7%) while 87 false-positives findings were noted, corre-
sponding to an average number of 0.84 false positives per
scan. Missed aneurysms were predominantly located at the
anterior circulation (72.2%) and had an average volume of
49.0 ± 43.1 mm3 (based on manual segmentations).

Reader 1, the neuroradiologist with 13 years of experience,
detected 115 aneurysms correctly (sensitivity: 91.1%), reader 2
detected 109 (86.5%), and reader 3 detected 109 (86.5%). The
mean sensitivity of the readers was 88.1%. The mean reading
time of all three readers was 43.0 ± 14.12 s with reader 2
showing the longest reading time (45.8 ± 17.7 s; P = 0.017).
Interrater agreement among the radiologists was moderate
(Fleiss κ of 0.502; 95% confidence interval (CI): 0.416–0.588).

Table 2 provides detailed results regarding the missed an-
eurysms by the readers and the DLM. In particular, there were
three aneurysms that were missed both by the DLM and the
radiologists (Fig. 5): A mycotic aneurysm of the left anterior
cerebral artery was probably missed due to its atypical, pe-
ripheral location. Two further aneurysms at the anterior

communicating artery and the right posterior communicating
artery were missed, probably due to their small size and be-
cause they were overlooked or misinterpreted as infundibula
by the readers. For all readers combined, there were a total of
10 primary aneurysms, which were missed bythe readers (av-
erage volume: 82.0 ± 60.8mm3, Table 2).When excluding the
above-mentioned relatively large mycotic aneurysm of the left
ACA (n=3), these findings showed a volume of 40.9 ± 21.7
mm3 and were located at the anterior (n=3) and posterior
(n=4) communicating arteries.

DLM-augmented detection sensitivity of the
radiologists

After disclosure of the DLM results, reader 1 found 8 addi-
tional aneurysms (thereof 8 secondary aneurysms), reader 2
found 14 (13 secondary aneurysms), and reader 3 found 12 (9
secondary aneurysms) that they missed before. For all readers
combined, 88.2% of additionalaneurysms were secondary
aneurysms. Consequently, detection sensitivity improved to
97.6%, 97.6%, and 96.0% for readers 1, 2, and 3 with a mean
overall sensitivity of 97.1% (P = 0.024). Furthermore,
interrater agreement increased to almost perfect with a Fleiss
κ of 0.878 (95% CI: 0.788–0.969). Table 3 provides detailed
results regarding aneurysm detection by radiologists alone and
in combination with the DLM as well as their reading time.

The DLM significantly enhanced the detection of the radi-
ologists for aneurysms of both small (< 100 mm3) and large (>
100 mm3) volume as outlined in Table 4.

Fig. 1 Automated workflow of image preprocessing (I: brain extraction,
II: image standardization, III: vessel enhancement using two-vessel-
enhanced images with scales of 0.5–5 voxels (superior) and of 5–15
voxels (inferior), and IV: image normalization), inputs to the deep

learning models (DLMs), and model ensembling. In blue, the final 3D
segmentation of an aneurysm of the left internal carotid artery. CTA, CT
angiography
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Exemplary aneurysm findings are provided in Figs. 3, 4,
and 5.

Discussion

In the present study, we aimed to investigate whether a DLM
could increase the detection sensitivity of radiologists for in-
tracranial aneurysms on CTA in patients with aSAH. Deep
learning assistance significantly improved the detection sensi-
tivity of the readers to more than 95% independent of the
experience level, predominantly by increasing the detection
rate for secondary aneurysms. The DLM could assist readers
in the detection of both small and large aneurysms while lead-
ing to an increase of interrater agreement from moderate to
almost perfect.

Previous studies have evaluated DLMs for the detection of
intracranial aneurysms on CTA [18, 20–22] and time-of-flight
(TOF)-MRA [23–25] and investigated whether deep learning
enhancement could increase the diagnostic performance of
human readers [20, 25]. In the study by Park et al., artificial
intelligence assistance increased the detection sensitivity of
radiologists and of a neurosurgeon (2–12 years of experience)
for UIAs on CTA significantly from 83% to 89% [20]. In a
TOF-MRA study by Faron et al., deep learning assistance
boosted the detection sensitivity of radiologists (2 and 12

years of experience) for UIAs, albeit without reaching statis-
tical significance [25].

The present study is the first that investigated the perfor-
mance of deep learning-assisted detection of aneurysms in
patients with SAH by radiologists. The detection sensitivity
of the DLM was 86%, which was comparable to that of
readers in the present study (87%–92%) and to that of physi-
cians for UIAs on CTA (83% for aneurysms > 3 mm [20]) and
slightly lower to that of DLMs for UIAs on TOF-MRA (90%
[24]). Given the accumulation of blood in the subarachnoid
space in patients with aSAH, one might expect that the per-
formance of the DLM may be impaired by the presence of
hyperdense material adjacent to the hyperdense arteries.
However, the DLM of the present study finds a considerably
low number of false positives per scan (less than 1), which is
unaffected by the degree of the hemorrhage [26]. This number
of false-positive findings per scan is in fact lower than in other
studies investigating deep learning-based detection of pre-
dominantly unruptured aneurysms on TOF-MRA (e.g.,
Sichtermann et al.: 6 [24], Ueda et al.: 10 [23]) or CTA
(e.g., Dai et al.: 9 [22], Yang et al.: up to 14 [18]), which
questions their feasibility of automated detection in clinical
routine. The time needed for the DLM to fully automatically
segment the aneurysms is about 3 min and therefore feasible
in an emergency workflow, in which the inference can be
performed after acquisition and integrated with the

Fig. 2 Browser-based fully
automated aneurysm
segmentation on IntelliSpace
Discovery using the deep learning
model
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reconstruction process while transferring the data into the pic-
ture archiving and communication system.

Interestingly, the DLM and the readers missed a compara-
bly large mycotic aneurysm at a peripheral branch of the an-
terior cerebral artery. Regarding the DLM, it might be specu-
lated that a more elaborate training including atypical aneu-
rysm locations would further increase the detection sensitivity.
Based on these considerations, a large-volume, multi-center

registry training study should be performed prior to imple-
mentation of the DLM into clinical practice.

Alongside the aforementioned studies, the DLM boosted
the detection sensitivity of all three radiologists with different
experience levels of neurovascular imaging for small and
large aneurysms, even for reader 1 with 13 years of experience
[20, 25]. In the study by Park et al. (which also included CTA
scans without aneurysms), artificial intelligence significantly
increased the sensitivity of human readers from 83% to 89%
[20], whereas, in the present study, the DLM allowed to in-
crease the sensitivity to a larger extend (from 88% to 97%). In
the TOF-MRA study by Faron et al., deep learning assistance
resulted in a similar detection sensitivity (98% and 97%, re-
spectively). However, the detection sensitivity of human
readers alone was already 94% and 95% [25]; hence, the
DLM did not increase human sensitivity to the same extent
as in the present study.

Given the complexity of intracranial vessels, CTA-based
detection of aneurysms proves to be time-consuming and
challenging, therefore showing a large variability among phy-
sicians, even for experienced readers and especially for small
aneurysms [11, 12, 14]. Consequently, only a moderate
interrater agreement for the three readers was noted with the
highly experienced reader achieving a higher detection rate
than the less experienced ones, as could be expected. After
combining their detections with deep learning-generated find-
ings, an almost perfect interrater agreement was noted with the
DLM providing additional findings, including aneurysms <
100 mm3 (which translates to a maximum diameter of 6
mm). Therefore, augmenting physicians’ performance could
potentially lead to a more precise and consistent interpretation
of imaging data. Of note, the DLM applied in this study had a
higher impact regarding the increase of interrater agreement
compared to the study by Park et al. (0.376 vs. 0.060) [20].

Given the increasing workload of radiology departments,
DLMs and computer-aided detection algorithms represent a
valuable assistance to clinicians to deal with the growing
amount of data that need to be analyzed [16, 33, 34]. With
an overall detection rate of 86%, the DLM itself was inferior
to a trained and experienced neuroradiologist, who had a de-
tection rate of 91%. However, the neuroradiologist missed 11
additional aneurysms, which can be most likely attributed to
the “satisfaction of search” phenomenon. The DLM detected

Table 1 Patient and aneurysm characteristics of the test set in absolute
and relative values

Parameter Value

Number of patients 104

Patient age (years; mean ± SD) 55.4 ± 14.3

Patients with multiple aneurysms 18 (17.3%)

Sex

Female 66 (63.5%)

Male 38 (36.5%)

WFNS score

1 29 (27.9%)

2 10 (9.6%)

3 14 (13.5%)

4 17 (16.3%)

5 34 (32.7%)

Fisher grade

1 0 (0%)

2 5 (4.8%)

3 43 (41.3%)

4 56 (53.8%)

Total number of aneurysms 126

Aneurysm location

Anterior circulation 110 (87.3%)

Internal carotid artery 21 (16.7%)

Anterior cerebral artery 50 (39.7%)

Middle cerebral artery 39 (31.0%)

Posterior circulation 16 (12.7%)

Aneurysm volume (mm3; mean ± SD) 129.2 ± 185.4

< 100 mm3 87 (69.0%)

> 100 mm3 39 (31.0%)

WFNS, World Federation of Neurosurgical Societies; SD, standard
deviation

Table 2 Aneurysms missed by
the readers and the DLM, deep
learning model. SD, standard
deviation

Reader 1 Reader 2 Reader 3 DLM

Missed aneurysms 11 17 17 18

Thereof missed secondary aneurysms, % 10 (90.9) 13 (76.5) 12 (70.6) 3 (16.6)

Volume (mm3; mean ± SD) 83.7 ± 69.4 55.5 ± 64.4 49.7 ± 47.0 49.0 ± 43.1

Anterior circulation, % 7 (63.6) 12 (70.6) 10 (58.8) 13 (72.2)

Posterior circulation, % 4 (36.4) 5 (29.4) 5 (29.4) 5 (27.8)
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8 of these 11 aneurysms. Hence, deep learning-generated de-
tections provide an important adjunct in an emergency setting,
especially for unexperienced and potentially overstrained
readers, for which the DLM detected 14 and 12 additional
aneurysms, respectively. Of note, a total of 10 primary aneu-
rysms were missed by all readers combined, the majority
(n=9) by the unexperienced readers. Despite the knowledge
that every dataset harbored at least one aneurysm, these find-
ings were most likely missed due to their atypical, peripheral
localization and their small size at the anterior and posterior
communicating artery, consequently leading to an oversight
because they were misinterpreted as infundibula.

The “satisfaction of search” phenomenon poses a rel-
evant concern in radiology and medicine in general [9,
10]. In the current study, the radiologists were
instructed that every dataset contained at least one an-
eurysm; consequently, readers were able to detect at
least one aneurysm in most cases. It is likely that these
prerequisites have artificially increased the overall detec-
tion sensitivity of the radiologists. However, in clinical
practice, the radiologist would also expect to detect an
aneurysm after the diagnosis of basal SAH, even in the

comparatively rare case of non-aneurysmal SAH.
Despite this advantage for the radiologists, the DLM
achieved comparable results to the readers and signifi-
cantly increased their detection sensitivity. The effects
might therefore be even stronger in clinical routine.
Furthermore, deep learning assistance especially helped
the radiologists to detect secondary aneurysms, which
are present in about 20% of patients in aSAH (17% in
the present study) [35, 36]. Eighty-eight percent of the
additional aneurysms detected by the DLM were in fact
secondary aneurysms. These results demonstrate that the
DLM provides relevant support to human readers, in
particular to physicians that are impaired by the satis-
faction of search and lack of training or lack concentra-
tion due to fatigue.

Limitations

The following limitations need to be considered: First, the
physiological distress of an emergency setting like an aSAH
situation cannot be fully reproduced in a retrospective study.

Table 3 Sensitivity of the three
radiologists alone and combined
with deep learning-generated de-
tections and their individual read-
ing times

Sensitivity, in % (detected/overall) Reading time

Without DLM With DLM Difference (s; mean ± SD)

Reader 1 91.3 (115/126) 97.6 (123/126) 6.3 (8/126) 40.5 ± 12.8

Reader 2 86.5 (109/126) 97.6 (123/126) 11.1 (14/126) 45.8 ± 17.7

Reader 3 86.5 (109/126) 96.0 (121/126) 9.5 (12/126) 42.7 ± 10.6

Mean 88.1 97.1 9.0

95% CI 81.2–95.0 94.8–99.4 2.9–15.0

P-value 0.024 (vs. without DLM)* 0.017

Reader 1: 13 years, reader 2: 4 years, and reader 3: 3 years of experience in diagnostic neuroradiology.DLM, deep
learning model; CI, confidence interval; SD, standard deviation

*Determined by paired Student’s t-test

Table 4 Sensitivity of the three radiologists alone and combined with deep learning-generated detections for small and large aneurysms

Sensitivity for aneurysms < 100 mm3, in % (detected/overall) Sensitivity for aneurysms > 100 mm3, in % (detected/overall)

Without DLM With DLM Difference Without DLM With DLM Difference

Reader 1 92.0 (80/87) 97.7 (85/87) 5.7 (5/87) 89.7 (35/39) 97.4 (38/39) 7.7 (3/39)

Reader 2 83.9 (73/87) 97.7 (85/87) 13.8 (12/87) 92.3 (36/39) 97.4 (38/39) 5.1 (2/39)

Reader 3 83.9 (73/87) 95.4 (83/87) 11.5 (10/87) 92.3 (36/39) 97.4 (38/39) 5.1 (2/39)

Mean 86.6 96.9 10.3 91.4 97.4 6.0

95% CI 81.3–91.9 95.4–98.4 5.7–14.9 89.7–93.1 97.4–97.4 4.3–7.7

P-value 0.024 (vs. without DLM)* 0.020 (vs. without DLM)*

Reader 1: 13 years, reader 2: 4 years, and reader 3: 3 years of experience in diagnostic neuroradiology. DLM, deep learning model; CI, confidence
interval; SD, standard deviation

*Determined by paired Student’s t-test
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Fig. 3 Axial CT angiography
source images of a 77-year-old
male with aneurysmal subarach-
noid hemorrhage (Fisher 2). All
three readers detected the aneu-
rysm of the anterior communicat-
ing artery (a, arrow) but missed
the aneurysm of the basilar head
(b, arrow). The deep learning
model detected both aneurysms

Fig. 4 Axial CT angiography source images of a 55-year-old male with
aneurysmal subarachnoid hemorrhage (Fisher 4) and aneurysms (arrows)
of the left middle cerebral artery (a), the right middle cerebral artery (b),
and the left internal carotid artery (c). Reader 1 missed the aneurysm of

the right middle cerebral artery while readers 2 and 3 missed the aneu-
rysm of the left internal carotid artery. The deep learning model detected
all aneurysms

Fig. 5 Axial CT angiography source images of the three aneurysms,
which were missed by the readers and the deep learning model. a A
mycotic aneurysm of the left anterior cerebral artery (arrow) in a 69-
year-old male with aneurysmal subarachnoid hemorrhage (Fisher 4). b

Aneurysm of the anterior communicating artery (arrow) in a 41-year-old
female with aneurysmal subarachnoid hemorrhage (Fisher 4). c
Aneurysm of the right posterior communicating artery (arrow) in a 33-
year-old female with aneurysmal subarachnoid hemorrhage (Fisher 3)
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Second, the retrospective collection of the included data will
have led to a relative spectrum bias. Third, the readers were
aware that the patients in the test set harbored at least one
aneurysm. Therefore, the only unknown variable was the
number of patients who had secondary aneurysms. This pre-
requisite of the study design most likely led to an artificially
increased sensitivity of the radiologists. Fourth, given that
CTA scans of patients with non-aneurysmal SAH were not
included, there is no control group of patients without aneu-
rysms, which does not allow for the evaluation of a
specificity. Fifth, the included CTA datasets in this study were
almost exclusively acquired at a single institution with a fixed
scanning protocol and of sufficient image quality, which does
not reflect daily clinical practice and limits the generalizability
of the algorithm. Hence, the findings and the true clinical
impact of this study need to be confirmed in a prospective,
multi-center setting, which allows for external validation and
in which deep learning-generated detections are implemented
directly in the clinical workflow.

Conclusions

In patients with aSAH, the DLM significantly increased the
detection rate of radiologists for intracranial aneurysms to
more than 95%. Additional findings were predominantly sec-
ondary aneurysms. These results indicate that the integration
of deep learning assistance could provide a valuable adjunct to
radiologists for accurate aneurysm detection among aSAH
patients.
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