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Abstract: Rapid and accurate yield estimates at both field and regional levels remain the goal
of sustainable agriculture and food security. Hereby, the identification of consistent and reliable
methodologies providing accurate yield predictions is one of the hot topics in agricultural research.
This study investigated the relationship of spatiotemporal fusion modelling using STRAFM on crop
yield prediction for winter wheat (WW) and oil-seed rape (OSR) using a semi-empirical light use
efficiency (LUE) model for the Free State of Bavaria (70,550 km2), Germany, from 2001 to 2019. A
synthetic normalised difference vegetation index (NDVI) time series was generated and validated by
fusing the high spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land Imager
(OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16 days) from 2001 to 2019.
Except for some temporal periods (i.e., 2001, 2002, and 2012), the study obtained an R2 of more than
0.65 and a RMSE of less than 0.11, which proves that the Landsat 8 OLI fused products are of higher
accuracy than the Landsat 5 TM products. Moreover, the accuracies of the NDVI fusion data have
been found to correlate with the total number of available Landsat scenes every year (N), with a
correlation coefficient (R) of +0.83 (between R2 of yearly synthetic NDVIs and N) and −0.84 (between
RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate elements (such
as minimum temperature, maximum temperature, relative humidity, evaporation, transpiration, and
solar radiation) are inputted to the LUE model, resulting in an average R2 of 0.75 (WW) and 0.73
(OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha. The yield prediction results prove the consistency
and stability of the LUE model for yield estimation. Using the LUE model, accurate crop yield
predictions were obtained for WW (R2 = 0.88) and OSR (R2 = 0.74). Lastly, the study observed a
high positive correlation of R = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and
modelled yield accuracy for WW and OSR, respectively.

Keywords: MOD13Q1; precision agriculture; fusion; sustainable agriculture; decision making; winter
wheat; oil-seed rape; crop models
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1. Introduction

Accurate predictions of grain yield at both field and regional scales remain a goal for
sustainable agriculture and food security [1,2]. The delivery of timely crop monitoring
and accurate crop yield estimates is of great value for the formulation of food policies, the
regulation of food prices, and agricultural management and is urgently needed for the
development of sustainable agriculture [3,4]. Among different crop types, oil-seed rape
(OSR) (Brassica napus) and winter wheat (WW) (Triticum aestivum) are major crops with high
economic value for animal feed, biodiesel production, pollination, biodiversity, and human
consumption in the European Union [5,6]. In Germany, WW (total production in 2016 was
24.6 million tons) and OSR (4.9 million tons) are crops of significant importance, generally
cultivated as high input and conventionally managed monocultures [6–9]. The future
climatic changes and increasing climatic variability have diverted the increasing grain
yield trend of these crops towards maintaining yield stability [7]. Therefore, the accurate
yield estimates of WW and OSR could contribute positively to agricultural management
practises and optimise resource use to stabilise yields in the future.

Remote sensing (RS) technology can be used to determine and monitor the features of
the earth’s surface by providing synoptic, timely, and cost-effective information about the
earth’s surface [10,11]. Many studies have implemented RS-based methodologies to esti-
mate the crop production of different crop types at different geographical locations [12–17].
Landsat (L), SPOT, World View, and Sentinal-2 (S) satellite data with a medium spatial
resolution of 10–100 m were utilised to assess and estimate agricultural production at
regional and local scales [1,10]. The availability of historical RS data since 1972 has also
increased the potential of science to invest, design, and implement accurate and reliable
methodologies by validating the methods with old yield data sets [18–20]. Until now,
various studies have implemented different methodologies (such as interpolation [21,22],
extrapolation [23,24], vegetation indices [25,26], linear regression models [27], crop growth
models (CGMs) [17,28], machine learning (ML) [29–31], and deep learning (DL) [32,33]
using the RS data and accurately predicted crop yields in almost every corner of the world.
However, to adequately justify their methods’ reliability, stability, and preciseness, very
few studies have consistently tested their methodologies for yield prediction for more than
five years.

CGMs using the RS data as input parameters successfully attempted to estimate crop
yields by covering vast spatial scales and updating the information temporally [17,34–37].
Many CGMs have been used in crop monitoring for different design purposes, regional
environments, and crop types [35]. Some very famous models driven by various factors
such as radiation, water, or soil are named as AquaCrop [38], soil–water–atmosphere–plant
(SWAP) [39], agricultural production systems simulator (APSIM) [40], simple and universal
crop growth simulator (SUROS) [41], semi-empiric light use efficiency (LUE) model [42],
world food study model (WOFOST) [43], Carnegie–Ames–Stanford Approach (CASA) [44],
and the simple algorithm for yield estimate (SAFY) model [45]. However, most CGMs
are complicated and time-consuming and require many input parameters that could be
difficult to obtain or substitute through RS data. LUE and AquaCrop are proven to be more
precise, accurate, and reliable by the previous literature [17]. However, their performance
stability is not determined, as no study has analysed their performance for more than two
years at the same study site.

Crop yield prediction at regional, national, and global scales has been conducted based
on both climate data and RS data [46]. Temperature, solar radiation, and precipitation,
as well as the normalised difference vegetation index (NDVI) and leaf area index (LAI),
are generally considered the primary climatic and satellite-based input variables used in
CGMs [47,48]. Therefore, the quality of RS input to CGMs might impact the accuracy of
the predicted yield. Even though the RS has broadened the spatial and temporal range
of CGMs, the cloud and shadow gaps in the optical satellite data can hinder or limit
CGMs from producing accurate yield results [49,50]. Many studies have successfully used
multitemporal data fusion, combining the data obtained from two different sensors with
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different spatial and temporal scales, to fill the data gaps [17,51–53]. Due to its public
availability of code and simplicity of usage, the spatial and temporal adaptive reflectance
fusion model (STARFM) [54] is widely used to combine L/S with the moderate resolution
imaging spectroradiometer (MODIS) for the application of crop monitoring [55–58]. In a
previous study, we tested blending different high (L (30 m, 16 days) and S (10 m, 5–6 days))
and coarse (MODIS: MCD43A4, MOD13Q1, MOD09GQ, and MOD09Q1) spatial resolution
products for different land use classes using the STARFM. The study found that both
L-MOD13Q1 (30 m, 16 days) (R2 = 0.62 and RMSE = 0.11) and S-MOD13Q1 (10 m, 16 days)
(R2 = 0.68 and RMSE = 0.13) are suitable for the application of agricultural monitoring, with
the former having the upper hand due to its fast and easy processing with lesser storage
requirements [59].

Thus, the present study uses the L-MOD13Q1 NDVI product and high-resolution
climate parameters (2 km, eight days) as inputs to the LUE model (considered the most
accurate, precise, and reliable [17]) for predicting crop yields of WW and OSR at a regional
scale for Bavaria from 2001 to 2019. This long-term yield prediction of both crop types
would investigate the stability and preciseness of the LUE model by validating the modelled
yield with district level Bayerisches Landesamt für Statistik (LfStat) data of Bavaria with a
95% confidence interval. The specific research objectives include: (i) finding the potential
of STARFM for blending the long-term NDVI time series; (ii) investigating the preciseness
and stability of the LUE model by validating the modelled yield at district level in Bavaria
from 2001 to 2019; and (iii) exploring the impact of the fused NDVI input time series on the
accuracy of the modelled yields.

2. Materials and Methods

The general workflow of the study is shown in Figure 1. The flow diagram is divided
into three parts: (1) data fusion; (2) generation and validation of L-MOD13Q1 NDVI time
series from 2001 to 2019; and (3) comparative analysis between fused (L-MOD13Q1) and
non-fused (L-MOD13Q1) products in crop yield modelling 2019; and then, modelling crop
yields using L-MOD13Q1 NDVI for WW and OSR from 2001 to 2019. The first part was a
testing phase that investigated the suitable synthetic NDVI product (which is L-MOD13Q1)
for the agricultural class of Bavaria for the year 2019 (completed in the preceding work [59]).
The second section is an extension of the first section, and it generates and validates the
NDVI time series of L-MOD13Q1 for eighteen more years (i.e., from 2001 to 2018) using
the same methodology as the previous section (as used for 2019). In the third section,
the output NDVI time series of part 2 and the climate elements are used as inputs to
the LUE model, which estimates the crop yields of WW and OSR from 2001 to 2019 in
Bavaria. The satellite NDVI and the climate data are selected for the respective starts
and ends of the seasons for WW and OSR from 2001 to 2019. Both inputs are masked
for WW and OSR using the InVeKos data that was available from 2005 to 2019 (source:
www.ec.europa.eu/info/index_en, accessed on 21 June 2021).

As crop field information was unavailable from 2001 to 2004, InVeKos field data from
2005 to 2009 was used to classify the WW and OSR fields in their respective years. Finally,
the obtained crop yield is validated using the LfStat data at the regional level in Bavaria (the
regional map is shown in Figure 2). Because the validation data is available at a regional
scale, the field outputs of every region were converted to a single regional value by totalling
the pixel values of every field. The satellite data sets were downloaded and preprocessed
in Google Earth Engine (GEE), and the fusion analysis is performed in R (version 4.0.3)
using R-Studio.

www.ec.europa.eu/info/index_en
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Figure 1. The conceptual framework of the study is divided into three parts: Part 1 states the
data fusion for 2019 to investigate the best synthetic NDVI time series product (this section was
already completed in our previous study [59]); Part 2 generates and validates the synthetic NDVI
time series from 2001 to 2019 for the product L-MOD13Q1; and Part 3 performs the compar-
ative analysis to compare the performance of fused (L-MOD13Q1) and non-fused (MOD13Q1)
NDVI time series in crop yield prediction for 2019 and then estimates and validates the crop
yield for Bavaria by inputting the L-MOD13Q1 time series and climate elements to a semi-empiric
Light Use Efficiency (LUE) model; STARFM = Spatial and Temporal Adaptive Reflectance Fusion
Model; NDVI = Normalised Difference Vegetation Index; L-MOD09GQ = Landsat-MOD09GQ;
L-MOD09Q1 = Landsat-MOD09Q1; L-MCD43A4 = Landsat-MCD43A4; L-MOD13Q1 = Landsat-
MOD13Q1; S-MOD09GQ = Sentinel-2-MOD09GQ; S-MOD09Q1 = Sentinel-2-MOD09Q1;
S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 = Sentinel-2-MOD13Q1; PAR is photosyntheti-
cally active radiation, and FPAR is the fraction of PAR absorbed by the canopy. APAR = Absorbed
Photosynthetically Active Radiation.
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Figure 2. Overview of the study region. The LC map of Bavaria is obtained by combining multiple
inputs of landcover maps, such as the Amtliche Topographisch-Kartographische Informations System,
Integrated Administration Control System (which provides the crop field information), and the
Corine LC, into one map. Agriculture (peach green) dominates mainly in the northwest and southeast of
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Bavaria, while forest and grassland classes (dark green and yellow, respectively) dominate in the
northeast and south. The LC map is overlayed by the district map of Bavaria. The enlargement
(displayed with a dark red box on the top right map) shows the urban area of the city of Würzburg,
with the oil-seed rape (OSR) fields (dark orange) and the winter wheat (WW) fields (dark green) in
2019. A brief description of the regions of Bavaria is shown in Figure A1.

2.1. Study Area

The study area is Bavaria, which is one of the federal states of Germany located
between 47◦N and 50.5◦N and between 9◦E and 14◦E (Figure 2). As the largest state
of Germany, Bavaria covers an area of approx. 70,550 km2, covering almost one-fifth
of Germany. The diverse topography of the region, with higher elevations in the south
(Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains), impacts the climate of
the state. The mean annual temperature ranges from−3.3 ◦C to 11 ◦C, and the mean annual
precipitation sums range from approx. 500 to above 3100 mm. In 2019, about 36.91% of the
area of the state was covered by forest, and 31.67% by agriculture [59]. More than half of the
arable land is used to grow cereals, where WW predominates with 37%, followed by winter
barley (25%), summer barley (12%), and grain maize (8%) [60]. While OSR predominates
in the oil-producing crops in the state. The federal state is divided into 71 Landkreise
(rural districts) and 26 Kreisfreie Städte (city districts). A brief description of the regions of
Bavaria is shown in Figure A1.

2.2. Data

The study collected satellite data (with different spatial and temporal resolutions),
climate data, and vector data for the period of 2001 to 2019. A brief description of the data
used in the present study, with their spatial and temporal resolutions and references, is
shown in Table 1.

Table 1. A summary of the collected datasets for fusion modelling and winter wheat’s (WW) and oil-
seed rape’s (OSR) crop modeling. The satellite data used for fusion and crop modelling are Landsat
5, 7, and 8 and Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1; the climate
parameters are minimum temperature (◦C) (Tmin), maximum temperature (◦C) (Tmax), dewpoint
temperature (◦C) (Tdew), relative humidity (%) (RH), evaporation (mm) (Ep), transpiration (mm)
(Tp), and solar radiation (MJm−2day−1) (Rs); Shuttle Radar Topography Mission (SRTM) elevation
data of Bavaria; InVeKos data provides the fields of WW and OSR for Bavaria from 2005 to 2019; the
Bayerisches Landesamt für Statistik (LfStat) data provides the crop yield information (dt/ha) of WW
and OSR at district level in Bavaria from 2001 to 2019.

Data Product Name Resolution Spatial-Temporal References

Climate data Tmin, Tmax, Tdew,
RH, Ep, Tp, Rs

2000 m, 1 day
2001–2019

https://www.uni-augsburg.de/de/fakultaet/fai/geo/
(accessed on 21 June 2021)

Satellite data
Landsat 30 m, 16 days

2001–2019 www.usgs.gov (accessed on 21 June 2021)

MODIS (MOD13Q1) 250 m, 16 days
2001–2019 www.lpdaac.usgs.gov (accessed on 21 June 2021)

Elevation data SRTM 30 m https://www.usgs.gov/centers/eros
(accessed on 15 December 2022)

Vector data
InVeKos 2005–2019 www.ec.europa.eu/info/index_en

(accessed on 21 June 2021)

LfStat 2001–2019 https://www.statistikdaten.bayern.de/genesis/online/
(accessed on 21 June 2021)

2.2.1. Satellite Data

The present study used L-MOD13Q1 (30 m, 16 days) NDVI time series generated
by [59] as an input to the LUE model for nearly two decades (2001 to 2019). The L-
MOD13Q1 time series needed a pair of high (Landsat: high pair) and coarse (MODIS:
low pair) spatial resolution data for fusing together to generate a cloud and shadow-free

https://www.uni-augsburg.de/de/fakultaet/fai/geo/
www.usgs.gov
www.lpdaac.usgs.gov
https://www.usgs.gov/centers/eros
www.ec.europa.eu/info/index_en
https://www.statistikdaten.bayern.de/genesis/online/
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synthetic time series using the STARFM algorithm. With the aim of generating a continuous
cloud-free and shadow-free time series (that covers the time frame of 2001 to 2019), high-
pair data sets such as Landsat 5 Thematic Mapper (TM) (1984 (launched)-2013 (ended)),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (1999–2003 (stripes in the data after
this date due to scan line corrector failure)), and Landsat 8 Operational Land Imager
(OLI) (2013-present) were used. The Landsat data arrived with different spectral bands,
i.e., coastal/aerosol, blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1,
and SWIR 2. The snow, shadow, and cloud cover were removed from the Landsat data
using the “pixel_qa” quality assessment band generated using the C function of the mask
(CFMask) algorithm. The number of cloud-free scenes (0% cloud cover based on CFMask)
available every year (N) is shown in Table 2. Due to the difference in surface reflectance
and atmospheric conditions, there is a considerable variation between the spectral values
of Landsat sensors, which may have significant influences depending on the Landsat
data application [61]. Therefore, the study performed the inter-sensing harmonisation of
the NDVI bands (calculated using NIR and red bands) of Landsat sensors, applying the
coefficients proposed by [61] and derived using ordinary least squares (OLS) regression.
The pre-processing steps were performed using the platform Google Earth Engine.

Table 2. A summary of the collected cloud-and shadow-free Landsat 5, Landsat 7, and Landsat
8 datasets available every year with their day of the years (DOYs) between the start and end of the
seasons of WW and OSR from 2001 to 2019. N is the total number of Landsat scenes available per
year for WW and OSR.

Year N DOYs Year N DOYs

2001 2 81, 161 2011 7 65, 81, 113, 129, 145, 177, 225
2002 3 33, 145, 161 2012 5 49, 65, 81, 129, 145
2003 4 65, 129, 177, 193 2013 5 65, 129, 161, 193, 209
2004 4 33, 65, 97, 161 2014 6 65, 81, 113, 161, 177, 209
2005 6 17, 65, 81, 97, 177, 241 2015 4 65, 97, 145, 209
2006 6 33, 129, 145, 161, 177, 193 2016 8 17, 65, 81, 113, 129, 161, 177, 193
2007 6 49, 81, 113, 145, 161, 193 2017 4 97, 129, 145, 225
2008 6 65, 81, 129, 145, 177, 193 2018 7 49, 81, 113, 129, 145, 177, 193
2009 6 33, 97, 113, 145, 161, 209 2019 5 49, 81, 145, 177, 193
2010 5 33, 113, 129, 145, 193

The Landsat products were generated using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS), which applies atmospheric correction, geometric
correction, and calibration procedures to the raw data. During the atmospheric correction
step, the impact of atmospheric scattering and absorption is removed from the raw data,
and a surface reflectance product is generated independent of atmospheric effects. The
geometric correction corrected the viewing angles to remove the effects of the satellite’s
position and attitude at the time of image acquisition. This correction ensures that the pixels
are accurately georeferenced and aligned with each other. Lastly, the calibration procedures
applied during the LEDAPS processing correct for spectral band configuration, ensuring
that the reflectance values across different spectral bands are consistent and accurate.

In addition, for the low pair, the study selected the MOD13Q1 V6 product, which
provides an NDVI value per pixel with 250 m spatial and 16-day temporal resolution.
Based on the quality information, pixels with noise (NDVI values <−1 and >+1) were
masked out. Both the day of acquisition and quality information were considered while
generating the NDVI values from the product. For crop modelling, this study input the
eight-day satellite datasets from the stem elongation phases till the flowering stages of
both WW and OSR. The parameters for the growth season of OSR were taken from a
literature review that accurately monitored the growth timing and condition of the crop
based on NDVI and the normalised difference yellowness index (NDYI) (calculated using
the green and blue bands [62]) using the unmanned aerial vehicles (UAVs) in Germany [63].
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The phenological stages for WW were referenced from the literature that detected the
phonological development of the crop using the time series of Sentinel-1 and Sentinel-2 in
Germany [64]. The study compared the phenology results with the BBCH scale (Biologische
Bundesanstalt, Bundessortenamt, and CHemische Industrie), which is a system used
worldwide by research and administration to standardise phenologically similar growth
stages of multiple plant species [64,65]. Therefore, the start (the stem elongation phase)
and end (the flowering stage) of the seasons of OSR and WW were taken as 15 February to
20 April [63] and 15 April to 30 June from 2001 to 2019 [64], respectively.

2.2.2. Climate Data

For this study, the climate data from 2001 to 2019 with one-day temporal resolution
were obtained by dynamically downscaling the ECWMF reanalysis 5th generation (ERA5)
dataset to a horizontal grid resolution of 2000 m using the hydrologically enhanced weather
research and forecasting model [66–68]. The ERA5 data were provided by the European
Centre for medium-range weather forecasts. A detailed analysis of the downscaling ap-
proach is provided by [69,70]. The climate data were used as one of the inputs to the
LUE model, which requires temperature, solar radiation, evapotranspiration, and relative
humidity (Figure 1). Prior to input to the model, all climate elements were synchronised
with the LUE model by aggregating them into eight days of temporal periods. Similar to
the satellite data, the present study considered the eight-day climate data for the same start
and end of the seasons for WW and OSR as described in the Section 2.2.1.

2.2.3. Elevation Data

The study made use of the shuttle radar topography mission (SRTM) digital elevation
data for Bavaria [71]. The data had a spatial resolution of 30 m. For this study, the SRTM was
used to correlate modelled crop yields with the elevation above sea level. The visualisation
of the data is shown in Figure A2.

2.2.4. InVeKos Data

The present study made use of the InVeKos data to obtain the field base information
of WW and OSR from 2005 to 2019 for Bavaria. The InVeKos data were collected through
the integrated administration control system (www.ec.europa.eu/info/index, accessed
on 21 June 2021), which was available for all agricultural plots in European Union (EU)
countries by allowing farmers to graphically indicate their agricultural area.

2.2.5. LfStat Data

The Bayerisches Landesamt für Statistik (LfStat) provided the crop yield information
for 29 crop categories, including WW and OSR, in Bavaria on a district level from 2001 to
2019 (source: www.statistikdaten.bayern.de/genesis/online/, accessed on 21 June 2021,
Statistics Code: 41241). The LfStat data were used to validate the modelled yield informa-
tion of the LUE model. The validation results were used to check the model’s accuracy,
consistency, and stability in generating the yield results in the region. The validation was
limited to the rural regions, and the city districts were excluded (Figure A1).

2.3. Method
2.3.1. STARFM

The STARFM method [54] was used to fuse Landsat and MOD13Q1 to generate the
synthetic NDVI time series with high spatial and temporal resolution from 2001 to 2019. As
this paper is an extension of our previous paper, the detailed methodology of STARFM’s
generation of L-MOD13Q1 time series was explained in [17,59].

2.3.2. LUE Model

The LUE model was based on the light use efficiency principle [72,73], and it was
coupled with the RS data by using a similar methodology as [17,42]. The model was based

www.ec.europa.eu/info/index
www.statistikdaten.bayern.de/genesis/online/
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on a semi-empirical approach and calculated the FPAR [74] and aboveground biomass (at
an eight-day temporal resolution) as follows:

Biomass =
EOS

∑
SOS

(PAR ∗ FPAR)∗ ∈ (1)

FPAR = 1.222 ∗ NDVI + 0.1914 (2)

∈=
EOS

∑
SOS

(
Tminmin

′ ∗ VPD′ ∗ Ks
)
∗ ∈o (3)

where PAR is photosynthetically active radiation (MJ m−2 d−1), FPAR is the fraction of PAR
absorbed by the canopy, SOS and EOS are the start and end of seasons of WW and OSR, and
є is the actual light-use efficiency (g C M J−1). The total aboveground biomass calculated by
the LUE model is equivalent to the net primary productivity (NPP) (kg ha−1 yr−1). A brief
explanation of the model with a flow diagram was described in our previous study [17].
The specific model was not only selected for its performance but also for its high processing
speed and low requirement of input parameters as compared to the other CGMs. The
model was calibrated by using values from the previous literature, as follows: The study
used a minimum lethal temperature value of −2 ◦C for both WW and OSR [75–77]. In the
other studies, the optimal minimum values of temperature for WW and OSR at growth
stages were 10 ◦C and 12 ◦C, respectively [75–77]. For the vapour pressure deficit (VPD),
the present study followed [78], which had analysed the environmental impact on leaf gas
exchange in WW with minimum and maximum values of 1.5 and 4.0 kPa, respectively. The
value for optimal light use efficiency was used as 3 gC/MJ [79].

2.3.3. Sensitivity Analysis

The study performed a sensitivity analysis of the LUE model for both WW and OSR
in Bavaria from 2001 to 2019. During the analysis, the impact of climate stress factors was
nullified, and the biomass was calculated by replacing the actual light use efficiency (ε)
values with the optimal (εo) values (Equation (4)).

Biomass =
EOS

∑
SOS

(PAR ∗ FPAR)∗ ∈o (4)

2.3.4. Statistical Analysis

Both the STARFM NDVI and the LUE-modelled crop yield of WW and OSR were
validated using the observed NDVI and LfStat crop yield (with 95% confidence intervals)
from 2001 to 2019, respectively. The quality (R2) and the precision (root mean square
error (RMSE)) of the obtained results were calculated using the linear regression model
(LRM), which aimed to establish a linear relationship between the referenced NDVI/or
measured yield (an independent variable) and the synthetic NDVI/or modelled yield (a
dependent variable). The correlation plots between the number of Landsat scenes and the
synthetic NDVI accuracy from 2001 to 2019 were generated by calculating the correlation
coefficient (R) (Equation (5)). R values lie between −1 (strong negative correlation between
two variables) and 1 (strong positive correlation between two variables). The statistical
parameters used to validate the accuracy of modelled yield and synthetic NDVI are R2

(Equation (6)), mean error (ME) (Equation (7)), and RMSE (Equation (8)). The Equation (9)
calculates the yield percent difference (%), which was calculated for every region of Bavaria.
The yield percent difference was analysed in six categories: less than −4, −4 to −2, −2 to 0,
0 to 2, 2 to 4, and more than 4.

R =
n(∑ Oi∗Pi)− (∑ Oi)(∑ Pi)√

(
(

n ∑ Oi
2)− (∑ Oi)

2
)
(
(

n ∑ Pi
2)− (∑ Pi)

2
) , (5)
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R2 =
((∑ Pi − P′)

(
Oi −O′

)
)

2(
∑ Pi − P′)

)2(
∑ Oi −O′)

)2 , (6)

ME =
1
n

n

∑
i=1

(Oi − Pi)
2 (7)

RMSE =
√

ME, (8)

Yield Percent Difference = Mean

((
referenced yieldy −modelled yieldy

referenced yieldy

)
∗ 100

)
(9)

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean, O′ is
the observed mean value, and n is the total number of observations, referenced yieldy
is the LfStat yield of every district from 2001 to 2019, and modelled yieldy is the LUE
generated yield of every district from 2001 to 2019. The significance of the obtained results
was obtained by observing the probability value (p-value), which was calculated using
the LRM with a H0 that there is no correlation between the referenced and the modelled
or synthetic values and an H1 that the correlation exists. The test was performed at a
significance level (or alpha (α)) of 0.05. A p-value lower than 0.05 indicated that the model
is significant, and it rejected the H0 that there was no correlation. The correlation was
calculated between the accuracy of synthetic NDVI and crop yield on a yearly basis using
Equation (3). This calculated the relationship of data fusion with crop yield prediction
results by the LUE model.

3. Results
3.1. Validation of Synthetic Remote Sensing Time Series from 2001 to 2019

For nineteen years (i.e., from 2001 to 2019), the STARFM performed significantly
for yearly synthetic output (having a p-value < 0.05); this rejected the H0 of the linear
regression model that there was no correlation between the synthetic and referenced NDVI
(Figure 3a–s). After generating the yearly scatter plots, the synthetic products’ R2 and
RMSE values were analysed. Among all years, the highest accuracy and precision were
obtained for 2016 and 2018, with an average R2 of 0.75 and RMSE of 0.09. For 2005, 2006,
2007, 2009, 2011, 2013, 2014, 2017, and 2019, the R2 values were higher than 0.60 and the
RMSE values were lower than 0.12. In other years, such as 2003, 2004, 2008, and 2010, the
R2 and RMSE values lied within 0.60 to 0.62 and 0.10 to 0.14, respectively. However, the
rest of the temporal period (i.e., 2001, 2002, 2012, and 2015) resulted in lower R2 (<0.60) and
RMSE (>0.13) values.

The results proved that the yearly accuracy assessment of the synthetic products is
impacted by the total number of Landsat scenes (N) available every year (Figure 4a,b). A
high positive (R = +0.83) and negative (R = −0.84) correlation was seen between the yearly
quality (R2) and preciseness (RMSE) of the synthetic NDVI products with N, respectively.
For example, 2011, 2016, and 2018 were the most accurate years (R2 > 0.68 and RMSE = 0.09)
with a total N of more than 7. Similarly, 2001 and 2002 had the least R2 (< 0.50) and highest
RMSE (> 0.15) with the fewest available Landsat scenes (N = 2/3) in both years. The overall
accuracy of L-MOD13Q1 for nineteen years was R2 of 0.62 and RMSE of 0.12, with an
average of 5 N every year.
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Figure 3. The scatter plots (a–s) compare the accuracies of Landsat (referenced NDVI) with L-MOD13Q1 (synthetic NDVI) for 2001 to 2019. The 

values of the statistical parameters such as R2 and RMSE and the total number of Landsat scenes available every year (N) are displayed at the top of 
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Figure 3. The scatter plots (a–s) compare the accuracies of Landsat (referenced NDVI) with L-MOD13Q1 (synthetic NDVI) for 2001 to 2019. The values of the
statistical parameters such as R2 and RMSE and the total number of Landsat scenes available every year (N) are displayed at the top of each plot. Every plot contains
a solid line (1:1 line) that is used to visualise the correlation of pixels between the referenced and synthetic NDVI values. The dashed line represents the regression
line. The colour of scatter plots depicts the density of points (yellow: low, blue: high).
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RMSE = 4.77 dt/ha) for both WW and OSR. Analysing the ME of both products with LUE, 

the L-MOD13Q1 resulted in a lower ME (3.04 dt/ha) than the MOD13Q1 (3.50 dt/ha) (Fig-
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Figure 4. The correlation plots between the total number of Landsat scenes per year (N) and (a) R2

values and (b) RMSE values obtained during the accuracy assessment of referenced and synthetic
NDVI products from 2001 to 2019. The correlation coefficient refers to R (see Equation (5)).

On comparing the yearly fusion results on a DOY basis, the DOYs 113, 129, and
193 had the highest average accuracy with an R2 of more than 0.65 and a RMSE lesser than
0.10 (Figure 5a,b). The DOYs of 33 to 97 and 145 to 177, with low R2 (<0.60) and high RMSE
(>0.11), were obtained.
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Figure 5. The day of the year (DOY)-based comparison of correlation coefficients between (a) R2

values and (b) RMSE values obtained during the accuracy assessment of referenced and synthetic
NDVI products from 2001 to 2019. The correlation coefficient refers to R (see Equation (5)).

3.2. Comparative Analysis between Crop Yield Accuracy of MOD13Q1 and L-MOD13Q1 Using
the Light Use Efficiency Model in 2019

Figure 6a–c displayed the crop yield accuracies between the modelled and referenced
crop yields of WW and OSR obtained with different satellite products using the LUE model
in 2019. The figures show that the fused product (L-MOD13Q1) obtained a higher R2 (0.81)
and a lower RMSE (3.91 dt/ha) than the non-fused product (MOD13Q1: R2 = 0.70 and
RMSE = 4.77 dt/ha) for both WW and OSR. Analysing the ME of both products with LUE,
the L-MOD13Q1 resulted in a lower ME (3.04 dt/ha) than the MOD13Q1 (3.50 dt/ha)
(Figure 6c).
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Figure 6. The dot plots compare the accuracies (a) R2, (b) RMSE, and (c) ME of referenced data (at
95% confidence intervals) and modelled yields obtained from multi-source data: MOD13Q1 and
L-MOD13Q1 in 2019.

3.3. Statistical Analysis between Reference and Modelled Crop Yields of WW and OSR from
2001 to 2019 Using the Light Use Efficiency Model

For both WW and OSR, the LUE model performed significantly for every year
(having a p-value < 0.05); this rejected the H0 of the linear regression model that there
was no correlation between the referenced and modelled crop yield from 2001 to 2019
(Figures A3a–s and A4a–s). After generating the scatter plots, all crop yield products’ R2,
RMSE, and ME values were analysed. For both WW and OSR, the years 2007 through
2018 and 2019 were the most accurate years where the estimated crop yield resulted in
high R2 values (>0.79). However, both 2018 and 2019 for WW resulted in higher RMSE
(4.74 and 4.98 dt/ha) and ME (3.46 and 3.71 dt/ha) values, respectively (Figure A3). The
remaining years for WW showed a similar trend in R2 (>0.65), RMSE (<4.50 dt/ha), and
ME (<3.60 dt/ha) values, with the exceptions of 2001 and 2013, which had RMSE values
more than 5.40 dt/ha and ME values more than 4.30 dt/ha. Similarly, for OSR, the RMSE
values for 2001, 2005, and 2012 resulted in higher RMSE (>3.22 dt/ha) and ME (>2.47 dt/ha)
(Figure A4). A mostly, similar trend in R2 values was observed in the OSR, with values
ranging from 0.63 to 0.80. The overall accuracies of both WW and OSR for 19 years were
recorded as R2 of 0.79 and 0.86 and RMSE of 4.51 dt/ha and 2.47 dt/ha, respectively
(Figure 7a,b). Negative correlations were seen between the regional mean elevations and
the modelled yields of WW (−0.30) and OSR (−0.38), respectively (Figure 8a,b).



Remote Sens. 2023, 15, 1651 15 of 35Remote Sens. 2023, xx, x FOR PEER REVIEW 16 of 37 
 

  

(a) (b) 

Figure 7. The scatter plots compare the accuracies of the modelled and referenced yields (at a 95% 

confidence interval) of (a) WW and (b) OSR for 19 years together (i.e., from 2001 to 2019). The val-

ues of the statistical parameters such as R2, RMSE (dt/ha), ME (dt/ha), and total number of points 

(n) are displayed at the top of each plot. Every plot contains a solid line (1:1 line) that is used to 

visualise the correlation of pixels between the modelled and referenced yield values. The dashed 

line represents the regression line. Different colours of the points display different years. 

  

(a) (b) 

Figure 8. The scatter plots correlating the modelled yield and regional mean elevation for (a) WW 

and (b) OSR. The dashed line represents the regression line. Different colours of the points display 

different crop types (green for WW and orange for OSR). The correlation coefficient refers to R (see 

Equation (5)). 

3.4. Sensitivity Analysis 

The sensitivity analysis compared the model’s performance by excluding the effect 

of climate stress factors from 2001 to 2019 for both WW and OSR in Bavaria. The LUE-
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stress factors were included, and vice versa. The model showed higher R2 and lower 

RMSE values when compared with the yield values obtained during the sensitivity 
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Figure 7. The scatter plots compare the accuracies of the modelled and referenced yields (at a 95%
confidence interval) of (a) WW and (b) OSR for 19 years together (i.e., from 2001 to 2019). The values
of the statistical parameters such as R2, RMSE (dt/ha), ME (dt/ha), and total number of points (n) are
displayed at the top of each plot. Every plot contains a solid line (1:1 line) that is used to visualise the
correlation of pixels between the modelled and referenced yield values. The dashed line represents
the regression line. Different colours of the points display different years.
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Figure 8. The scatter plots correlating the modelled yield and regional mean elevation for (a) WW
and (b) OSR. The dashed line represents the regression line. Different colours of the points display
different crop types (green for WW and orange for OSR). The correlation coefficient refers to R (see
Equation (5)).

3.4. Sensitivity Analysis

The sensitivity analysis compared the model’s performance by excluding the effect
of climate stress factors from 2001 to 2019 for both WW and OSR in Bavaria. The LUE-
modelled yield showed a higher correlation with the referenced yield when the climate
stress factors were included, and vice versa. The model showed higher R2 and lower
RMSE values when compared with the yield values obtained during the sensitivity analysis
(Figure 9a,b). The overall accuracies obtained during the sensitivity analysis of both WW
and OSR for 19 years were recorded as R2 of 0.68 and 0.78 and RMSE of 5.88 dt/ha and
3.41 dt/ha, respectively (Figure 9c,d).
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showed that the model highly overestimated the crop yield values as compared to the ref-

erenced yield (Figures 12a and A5a). The positive yield percent difference (where the 
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Figure 9. The bar plots show the yearly comparison of accuracies (a) R2 values and (b) RMSE
values obtained from the referenced yields (at a 95% confidence interval), with LUE-modelled yields
including climate stress factors (dark blue) and LUE-modelled yields excluding the climate stress
factors (sensitivity analysis) (light blue). The scatter plots compare the accuracies of the modelled and
referenced yields (at a 95% confidence interval) of (c) WW and (d) OSR for 19 years together (i.e., from
2001 to 2019). The values of the statistical parameters such as R2, RMSE (dt/ha), ME (dt/ha), and total
number of points (n) are displayed at the top of each plot. Every plot contains a solid line (1:1 line)
that is used to visualise the correlation of pixels between the modelled and referenced yield values.
The dashed line represents the regression line. Different colours of the points display different years.

3.5. Statistical Analysis between Reference and Modelled Crop Yields of WW and OSR from
2001 to 2019 Using the Light Use Efficiency Model at Regional Level

On comparing the long-term crop yield at the regional level, the yearly spatial change
from the mean referenced and modelled yield was displayed for both WW and OSR
(Figures 10 and 11). For WW, most of the regional yield lied between 65 and 80 dt/ha
(Figure 10). Districts such as, Regen, Freyung-Grafenau, Bad Tölz-Wolfratshausen, and
Garmisch-Partenkirchen, the average percent difference was calculated as −25.10% (LUE:
~75 dt/ha), −18.68% (~60 dt/ha), −8.08% (~62 dt/ha), and −5.58% (~65 dt/ha), which
showed that the model highly overestimated the crop yield values as compared to the
referenced yield (Figures 12a and A5a). The positive yield percent difference (where
the model underestimated the crop yield) between 0 and 4% had an accuracy greater
than 0.80 as compared to the negative yield percent difference between −4 and 0% with
an accuracy less than 0.70 (Figure 13). Similarly, the model underestimated the crop
yield of Oberallgäu, Miltenberg, Deggendorf, and Dachau with 4.65% (~78 dt/ha), 3.91%
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(~68 dt/ha), 3.30% (~75 dt/ha) and 3.15% (~78 dt/ha), respectively. Similarly for OSR,
the model overestimated the yield for Aichach-Friedberg, Deggendorf, Dingolfing-Lindau,
Traunstein, Unterallgäu, Dachau, Rottal-Inn, Miltenberg and Günzberg with 7.13% (LUE:
~38 dt/ha), 5.12% (~39 dt/ha), 4.91% (~37 dt/ha), 4.80% (~35 dt/ha), 4.53% (~36 dt/ha),
4.36% (~38 dt/ha), 4.25% (~35 dt/ha), 4.24% (~37 dt/ha) and 4.06% (~34 dt/ha), respectively
(Figures 12b and A5b). However, unlike WW, both the over- and underestimation of OSR
yield values resulted in a similar increase and decrease in accuracy (Figure 13).
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Figure 10. Spatial distribution of mean referenced yield (2001–2019) and the year-wise predicted
yield for WW from 2001 to 2019 using the LUE model for the state of Bavaria. The white colour
represents no available data. A detailed map of the administrative regions of Bavaria is shown in
Figure A1.

3.6. Correlation Analysis between the Accuracy Assessments of the Input Synthetic Products and
the Crop Yield Modelling

The bar and scatter plots compared and linked the yearly accuracies of the input
synthetic time series with the crop yield modelling for WW and OSR from 2001 to 2019,
respectively (Figures 14 and 15). For WW, the correlation coefficient showed a higher
positive correlation of 0.81 between the R2 of synthetic accuracy and the modelled yield
accuracy (Figure 15a). Except 2015 (yield R2: 0.77, synthetic R2: 0.53) and 2013 (yield
R2: 0.71, synthetic R2: 0.65), where the fusion accuracies were negatively correlated with
crop yield accuracy (Figure 14a). Similarly, for OSR, the correlation coefficient was found to
be 0.77 (Figure 15b). For 2001 and 2002, the fusion accuracy was lower (R2 < 0.50); however,
the crop yield accuracy for the same years resulted in an R2 of more than 0.65 (Figure 14b).
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Figure 11. Spatial distribution of mean referenced yield (2001–2019) and the year-wise predicted
yield for OSR from 2001 to 2019 using the LUE model for the state of Bavaria. The white colour
represents no available data. A detailed map of the administrative regions of Bavaria is shown in
Figure A1.

3.7. Visualisation of the Modelled Crop Biomass and the NDVI of Different Years at a Field Level

The side-by-side spatial visualisation of the input synthetic NDVI product (DOY 169:
18 June) and the WW-modelled biomass for selected years (2005, 2013, and 2019) is shown
in Figure 16, respectively. For every year, the spatial trend of crop biomass and NDVI
in every field was seen differently. Likewise, NDVI values were rising from 2005 to
2019 from 0.4 to 0.8, and crop biomass had been observed rising from less than
550 g/m2 in 2005 to more than 850 g/m2 in 2019. In most of the fields, the crop biomass
was dependent on the higher NDVI values. The NDVI values higher than 0.8 impacted
higher crop biomass of more than 850 g/m2 in almost every year. In 2005, the average field
crop biomass resulted in less than 650 g/m2; however, in 2019, the crop biomass resulted in
more than 650 g/m2.
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Figure 12. The dot plots show the district-wise distribution of modelled yield for (a) WW and (b) OSR,
from 2001 to 2019. The green colour depicts the modelled yield of WW, the orange colour depicts the
modelled yield of OSR, and the grey colour depicts both referenced yields of WW and OSR.
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Figure 13. The line plots compare the accuracies with the mean yield percent difference (as calculated
in Equation (9)) for WW and OSR for 19 years (i.e., from 2001 to 2019). The accuracies of WW and
OSR are analysed in six categories (less than −4, −4 to −2, −2 to 0, 0 to 2, 2 to 4, and more than 4%)
of yield percent difference. The negative range shows the overestimation, and the positive range
shows the underestimation of the modelled yield values by the LUE compared to the referenced yield
values. The green colour depicts WW, and the orange colour depicts OSR.
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4. Discussion
4.1. Quality Assessment of Synthetic Remote Sensing Time Series from 2001 to 2019

The present study investigates the potential of the STARFM over the Bavarian state
of Germany to generate the synthetic NDVI time series from 2001 to 2019 by selecting the
best-performing high (Landsat) and low (MODIS) pair obtained for the agricultural class
from the previous literature. Many studies prefer using ESTARFM (Enhanced STARFM)
for better fusion accuracy [80,81]; however, some studies found STARFM performing
significantly better than ESTARFM [82,83]. Simple in its design, faster to implement, and
capable of fusing the entire state of Bavaria (which covers almost one-fifth of the area
of Germany) for two decades, the study finds STARFM to be more advantageous over
ESTARFM. ESTARM was complex, time-consuming, and computationally expensive for
covering extensive data for extended periods [84,85]. One of the strengths of ESTARFM
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is that it incorporates additional information, such as a land-cover map, to improve the
accuracy of the fusion [80]. The study incorporates Bavaria’s accurate and updated land
cover map into the STARFM to balance its input requirements with the ESTARFM. It
provided homogeneity to the STARFM and increased its fusion accuracy (as discussed
briefly in our previous study [59]).

In our previous study, we found that L-MOD13Q1 (30 m, 16 days) (R2 = 0.62 and
RMSE = 0.11) was suitable for the application of agricultural monitoring due to its fast
and easy processing with lesser storage requirements [59]. Moreover, the present study
focuses on two decades (2001 to 2019); therefore, the paper generates and validates a
Landsat-based synthetic NDVI time series (L-MOD13Q1) due to its continuous availability
since 1982 with a maximum resolution of 30 m. As NDVI is among the most effective and
widely used vegetation indices, many spatiotemporal fusion-based studies have used it
as their primary input [5,30,36,37]. However, many spatiotemporal fusion algorithms are
based on reflectance fusion, which requires more processing time and storage than NDVI
(or one-band blending) fusion [86,87]. Having high computation power with fewer storage
problems for the long-term time series of 2001 to 2019 for complete Bavaria (70,550 km2),
the research uses the strategy “index-then-blend” (IB), which generates the NDVI from
Landsat and MOD13Q1 before they are blended for fusion [88]. The IB strategy is used in
multiple works of the literature with highly accurate and precise fusion outputs [17,59,88].

The analysis found that the accuracies of the fusion products are dependent on the
available number of Landsat scenes per year (N) [59], such that the higher N, the higher
the fusion accuracy of the synthetic NDVI product in a respective year. For instance, the
positive R (+0.75) shows the positive correlation between R2 of yearly synthetic NDVIs
and N (representing the higher quality of the fused product), and the negative R (−0.73)
shows the negative correlation between RMSEs and N (representing the higher precision).
However, as the research made use of Landsat 8 Operational Land Imager (OLI) (from
2013 to 2019) and Landsat 5 Thematic Mapper (TM) (from 2001 to 2013), it was found that
Landsat OLI-based fusion with MOD13Q1 resulted in higher accuracy as compared to
Landsat TM [89]. For example, the years 2001, 2002, 2004, 2005, and 2012 (using Landsat
5 and 7) have a lower R2 (<0.60) and a higher RMSE (>0.12) than the remaining years (using
Landsat 8). The reason could be that Landsat 8 has improved upon the quality of Landsat
5 and 7, offering improved data accuracy. Moreover, the accuracy of the year 2012 is affected
due to the gaps generated by the scan line corrector (SLC) failure in Landsat 7.

On comparing the fusing results on a DOY basis, the study finds that the few cloud-
free DOYs could create large gaps between the available Landsat scenes that might affect
the accuracy of the fusion product [17,59]. For example, the DOYs 33 to 97 (N = ~6) result
in a low R2 (0.54) and a high RMSE (0.16) as compared to the DOYs 113 to 193 (N = ~8),
which have a high R2 (0.64) and a low RMSE (0.10).

4.2. Impact of Synthetic Time Series on Crop Yield Modelling

The objective of the present study is to generate and validate the long-term crop yield
time series using the semi-empiric LUE model, which has proven to be more reliable,
precise, and simple in the previous literature [17,42]. The present study validates the
crop yield results of WW and OSR obtained by inputting the synthetic NDVI and climate
elements to the LUE model at a regional scale in Bavaria from 2001 to 2019. However, before
generating the long-term time series using the synthetic NDVI product, the study finds the
potential of fused (L-MOD13Q1) in crop yield prediction by comparing its accuracies with
the non-fused (MOD13Q1) product in 2019. The study obtains higher crop yield accuracy
with the L-MOD13Q1 (R2 = 0.81 and RMSE = 3.91 dt/ha) than the MOD13Q1 (R2 = 0.70 and
RMSE = 4.77 dt/ha) irrespective of the crop type (Figure 6a,b). It proves the importance of
high-resolution synthetic data for accurate modelling of crop yields.

After generating the long-term crop yield time series, the research finds the significant
yearly performance of the model for both WW and OSR; however, some years obtained
higher accuracy than the others. For example, 2007, 2018, and 2019 are the most accurate
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years, with R2 values of more than 0.79 for both crop types. However, the RMSEs of both
2018 and 2019 are relatively higher (>4.74 dt/ha) than in the other years. Similarly, 2011 and
2016, with a higher number of N (~6), result in lower crop yield accuracy than 2007, 2008,
and 2011 (N = ~8). This might be due to the impact of climate variables inputted into the
LUE model (discussed briefly in Section 4.3).

The study discusses briefly how the quality of the input data fusion product impacts
the accuracy of the CGM. For example, due to the low quality of synthetic NDVI products
in 2001, 2002, and 2012, which might impact the accuracy of the input FPAR products
generated, the yield prediction accuracy of both WW and OSR is low. The analysis tries
to prove that even though synthetic time series would be the preferable solution to input
a CGM for yield prediction when the quality of the combined fusion product is low, it
could negatively affect the crop yield estimation. In relevance to the above point, high
positive correlations have been seen when the accuracies of the synthetic NDVI time series
are plotted with the accuracies of modelled crop yield from 2001 to 2019 for WW (R = 0.81)
and OSR (0.77). For example, the quality of the NDVI time series for the years 2016 and
2018 is higher with R2 (>0.73), and the crop yield accuracies are also higher with R2 of
0.83 (WW)/0.81 (OSR), 0.85/0.83, respectively (Figure 3p,r). Similarly, the striped data
collected from Landsat 7 in 2012 has deteriorated the quality of the synthetic NDVI product
(R2 = 0.51; RMSE = 0.13), which further negatively affected the crop yield estimations for
WW (R2 = 0.62; RMSE = 5.40 dt/ha) and OSR (R2 = 0.49; RMSE = 4.13 dt/ha) (Figure 3l).
Moreover, the Landsat images were available at different times of the year. This has an
impact on the prediction accuracy of both crops. For example, the WW yield results are
more accurate than the OSR because the synthetic data in late spring and early summer
(DOYs 113 to 193) is usually more precise.

The study compares the long-term crop yield time series by calculating the average per-
cent change from the referenced and modelled yields for both crop types. Previous studies
found that the elevation plays a significant role in impacting the regional crop yield [90,91].
Most of the studies found lower crop productivity at higher elevations due to complex
topography, different climates, and management practices [92,93]. Moreover, the cropping
intensity at lower elevations is higher as compared to the higher elevations. The survey
finds negative correlations between the mean regional elevations and the crop yields of WW
(−0.30) and OSR (−0.38). The model is precarious in specific regions, especially the districts
at higher elevations in the south (Bavarian Alps) and east (Bavarian Forest and Fichtel
Mountains) of Bavaria for both WW and OSR. In regions such as Regen, Freyung-Grafenau,
Bad Tölz-Wolfratshausen, and Garmisch-Partenkirchen, the model highly overestimates
the crop yield, and for regions such as Oberallgäu, Miltenberg, Deggendorf, and Dachau, it
underestimates the yield as compared to the referenced yield for WW. This overestimation
of WW yield values has resulted in a decrease in accuracy. The model shows yearly stability
in predicting crop yields of WW between 65 and 80 dt/ha for most of the regions. The
positive yield percent change (where the model underestimated the crop yield) between
0 and 4% had higher accuracy (R2 > 0.80) as compared to the percent change between
−4 and 0% (R2 < 0.70). For 48 of the 71 total districts, the model performs relatively well,
with a percent change between –2% and +2%. However, unlike WW, both the over- and
underestimation-yield values have resulted in a similar increase and decrease in the ac-
curacy of OSR. The positive and negative yield percent change (where the model under-
and over-estimates the crop yield, respectively) between 0 and +/−4% had an accuracy
of more than 0.80. For OSR, the model overestimates the yield for Aichach-Friedberg,
Deggendorf, Dingolfing-Lindau, Traunstein, Unterallgäu, Dachau, Rottal-Inn, Miltenberg,
and Günzberg and underestimates the yield for Roth, Regen, Kronach, Kitzingen, and Bad
Tölz-Wolfratshausen. However, for the 27 districts with OSR, the model performs steadily.
Interestingly, the regions where the model’s performance went unstable were primarily
located in the southern alps, except for Regen, Freyung-Grafenau, Kitzingen, Roth, and
Miltenberg. The reason could be the instability of the model at higher elevations or the bad
quality of the synthetic NDVI products in specific districts. The quality of the synthetic
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NDVI product might vary for these regions as the districts have no horizontal or vertical
overlay of Landsat scenes within the path row, limiting their coverage frequency.

4.3. Sensitivity Analysis

Besides the impact of data fusion, climate variables play an essential role in affecting
the accuracy of crop yield predictions [31,94,95]. To analyse the impact of climate elements,
the study performs sensitivity analysis, where the LUE model calculates the crop yields
of WW and OSR without including the climate stress factors from 2001 to 2019. As the
referenced yield is already influenced by the climate, the results of the study show that the
accuracy of crop yield predictions worsens with the exclusion of climate variables, with
a lower R2 (0.68 (WW)/0.74 (OSR)) and a higher RMSE (5.88/3.41 dt/ha). However, an
increase in R2 (0.79/0.86) and decrease in RMSE (4.51/2.57 dt/ha) have been seen when
the climate effect is included in the model. As the relationship between climate and crop
yield undergoes significant shifts, it might be the reason that some years (2011 and 2016)
with higher N (8) obtained lower crop yield accuracy than years (2007, 2018 and 2019) with
comparably lower N (6). Moreover, our previous study, which made use of the machine
learning approach with the LUE model, identified the impact of every individual climate
element used in crop yield predictions [31].

Furthermore, many studies stated that the availability of coarse climate data nega-
tively affected yield prediction accuracy. In a previous study, the coarse spatial resolution
of climate data (ECMWF: ~80 km) used to estimate the biomass resulted in low R2 and
high RMSE using CGMs by inputting coarse synthetic NDVI products [17,42]. However,
while inputting high spatial resolution NDVI products, the low impact of the high spatial
resolution of climate elements is observed. The present study inputs high spatial resolution
climate data time series (2 km, daily) to the LUE model, resulting in stable yearly accuracies
from 2001 to 2019. Notably, selecting climate thresholds according to the geographical
location and crop types is essential in achieving high crop yield accuracy [96–98]. Differ-
ent climate thresholds are used for WW and OSR, resulting in accurate and stable yield
predictions in Bavaria during the study period.

4.4. Validation at the District Level

The crop yield validation for the more extended time series of 2001 to 2019 is performed
using the LfStat crop yield data (used for validation at a 95% confidence interval) for WW
and OSR provided by the Bavarian State Office of Statistics. As the validation data set
is provided at a regional scale, pixel-based yield information is converted for both crop
types to the regional level. However, transferring the field-based information to the district
level could result in some uncertainties in the validation process. For example, in some
regions of southern Bavaria (Bad Tölz-Wolfratshausen, Garmisch-Partenkirchen, Traunstein,
Unterallgäu, and Oberallgäu), where the model’s performance is volatile, this might be due
to the uncertainty occurring while transferring the pixel-level information to the district
level. The availability of fewer fields of WW and OSR in those regions might be the reason
for the model’s instability, as the validation data recorded high yield values for the same
districts. Therefore, future work should aim to validate crop yield results at the field level,
which could help achieve more precise results. Additionally, the availability of field data
for FPAR, an important input to the LUE model, would help to validate the FPAR product
generated using the NDVI time series.

5. Conclusions

The present study investigates the relationship of spatiotemporal fusion modelling
using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR)
using a semi-empirical light use efficiency (LUE) model for Bavaria, Germany, from 2001 to
2019. The research paper concludes the findings as follows:

(i) To find the potential of STARFM for long-term time series, the paper generates
and validates a synthetic normalised difference vegetation index (NDVI) time series
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blending the high spatial resolution (30 m, 16 days) of Landsat 5 Thematic Mapper
(TM) (2001 to 2012), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and
Landsat 8 Operational Land Imager (OLI) (2013 to 2019) with the coarse resolution of
MOD13Q1 (250 m, 16 days) from 2001 to 2019. Overall, the average accuracy of data
fusion for nineteen years has an R2 of 0.66 and an RMSE of 0.11. The accuracy of data
fusion is found to be dependent on the number of Landsat scenes available per year
(N). The higher the N, the more accurate is the synthetic NDVI time series per year.

(ii) To investigate the stability and precision of the LUE model in crop yield prediction,
the paper inputs the synthetic NDVI time series and climate elements to the crop
model to estimate and validate yearly crop yields for WW and OSR from 2001 to
2019. The validation of crop yield at regional scale results in an average R2 of 0.79
(WW)/0.86 (OSR) and an RMSE of 4.51 dt/ha/2.46 dt/ha, respectively.

(iii) Identifying the impact of the input data fusion product on the accuracy assessment
of the LUE model, high positive correlations are seen when the accuracies of the
synthetic NDVI time series are plotted with the accuracies of modelled crop yield
from 2001 to 2019 for WW (R = 0.81) and OSR (0.77).

The present study recommends validating crop yields at the field scale, as transferring
the pixel-based information to the district level could cause uncertainties in the validation
process. The accurate crop yield predictions from the analysis for WW and OSR could
be further used for the application of biodiversity, where the impact of land use diversity
on crop yields could be estimated. The ease of using spatiotemporal modelling with crop
growth models would not be limited to Bavaria. The study’s methodology could also be
tested by coupling machine/deep learning (ML/DL) approaches with CGMs, which might
help to include more climate elements to achieve more precise results. Lastly, the study’s
two decades of accurate yield estimations could strengthen trust in the decision(/policy)
making to achieve sustainability in agriculture.
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47. Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical modelling of crop
yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260, 300–320.
[CrossRef]

48. Shammi, S.A.; Meng, Q. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic.
2021, 121, 107124. [CrossRef]

49. Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion.
Remote Sens. Environ. 2015, 156, 34–44. [CrossRef]

50. Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative
radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [CrossRef]

51. Benabdelouahab, T.; Lebrini, Y.; Boudhar, A.; Hadria, R.; Htitiou, A.; Lionboui, H. Monitoring spatial variability and trends of
wheat grain yield over the main cereal regions in Morocco: A remote-based tool for planning and adjusting policies. Geocarto Int.
2019, 36, 2303–2322. [CrossRef]

52. Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Tychon, B.; Benabdelouahab, T. The performance
of random forest classification based on phenological metrics derived from Sentinel-2 and Landsat 8 to map crop cover in an
irrigated semi-arid region. Remote Sens. Earth Syst. Sci. 2019, 2, 208–224. [CrossRef]

53. Lebrini, Y.; Boudhar, A.; Htitiou, A.; Hadria, R.; Lionboui, H.; Bounoua, L.; Benabdelouahab, T. Remote monitoring of agricultural
systems using NDVI time series and machine learning methods: A tool for an adaptive agricultural policy. Arab. J. Geosci. 2020,
13, 796. [CrossRef]

54. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat
surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.

55. Cui, J.; Zhang, X.; Luo, M. Combining Linear pixel unmixing and STARFM for spatiotemporal fusion of Gaofen-1 wide field of
view imagery and MODIS imagery. Remote Sens. 2018, 10, 1047. [CrossRef]

56. Lee, M.H.; Cheon, E.J.; Eo, Y.D. Cloud Detection and Restoration of Landsat-8 using STARFM. Korean J. Remote Sens. 2019,
35, 861–871.

57. Xie, D.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, H.; Yuan, Z.; Yun, Y. An improved STARFM with help of an unmixing-based method
to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions. Sensors 2016, 16, 207.
[CrossRef] [PubMed]

58. Zhu, L.; Radeloff, V.C.; Ives, A.R. Improving the mapping of crop types in the Midwestern US by fusing Landsat and MODIS
satellite data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 1–11.

59. Dhillon, M.S.; Dahms, T.; Kübert-Flock, C.; Steffan-Dewenter, I.; Zhang, J.; Ullmann, T. Spatiotemporal Fusion Modelling Using
STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. Remote Sens. 2022, 14, 677. [CrossRef]

60. Miller, J. Agriculture and Forestry in Bavaria: Facts and Figures 2002; Bayerisches Staatsministerium für Landwirtschaft und Forsten:
München, Germany, 2002.

61. Roy, D.P.; Kovalskyy, V.; Zhang, H.; Vermote, E.F.; Yan, L.; Kumar, S.; Egorov, A. CFEDharacterization of Landsat-7 to Landsat-
8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [CrossRef]

62. Sulik, J.J.; Long, D.S. Spectral indices for yellow canola flowers. Int. J. Remote Sens. 2015, 36, 2751–2765. [CrossRef]
63. Zamani-Noor, N.; Feistkorn, D. Monitoring Growth Status of Winter Oilseed Rape by NDVI and NDYI Derived from UAV-Based

Red–Green–Blue Imagery. Agronomy 2022, 12, 2212. [CrossRef]
64. Harfenmeister, K.; Itzerott, S.; Weltzien, C.; Spengler, D. Detecting phenological development of winter wheat and winter barley

using time series of sentinel-1 and sentinel-2. Remote Sens. 2021, 13, 5036. [CrossRef]
65. Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T. The

BBCH system to coding the phenological growth stages of plants–history and publications. J. Kult. 2009, 61, 41–52.
66. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Simmons, A. The ERA5 global reanalysis. Q. J.

R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]
67. Gochis, D.; Barlage, M.; Dugger, A.; FitzGerald, K.; Karsten, L.; McAllister, M.; McCreight, J.; Mills, J.; RafieeiNasab, A.; Read, L.

The WRF-Hydro modeling system technical description, (Version 5.0). NCAR Tech. Note 2018, 107. [CrossRef]

http://doi.org/10.2134/agronj2006.0260
http://doi.org/10.1111/j.1475-2743.1989.tb00755.x
http://doi.org/10.1029/93GB02725
http://doi.org/10.1016/j.envsoft.2007.10.003
http://doi.org/10.1016/j.agrformet.2019.107886
http://doi.org/10.1016/j.agrformet.2018.06.009
http://doi.org/10.1016/j.ecolind.2020.107124
http://doi.org/10.1016/j.rse.2014.09.012
http://doi.org/10.1016/j.rse.2008.03.009
http://doi.org/10.1080/10106049.2019.1695960
http://doi.org/10.1007/s41976-019-00023-9
http://doi.org/10.1007/s12517-020-05789-7
http://doi.org/10.3390/rs10071047
http://doi.org/10.3390/s16020207
http://www.ncbi.nlm.nih.gov/pubmed/26861334
http://doi.org/10.3390/rs14030677
http://doi.org/10.1016/j.rse.2015.12.024
http://doi.org/10.1080/01431161.2015.1047994
http://doi.org/10.3390/agronomy12092212
http://doi.org/10.3390/rs13245036
http://doi.org/10.1002/qj.3803
http://doi.org/10.5065/D6J38RBJ


Remote Sens. 2023, 15, 1651 34 of 35

68. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M. A
Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019;
Volume 145, p. 145.

69. Arnault, J.; Rummler, T.; Baur, F.; Lerch, S.; Wagner, S.; Fersch, B.; Zhang, Z.; Kerandi, N.; Keil, C.; Kunstmann, H. Precipitation
sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: An ensemble analysis for central Europe. J. Hydrometeorol.
2018, 19, 1007–1025. [CrossRef]

70. Rummler, T.; Arnault, J.; Gochis, D.; Kunstmann, H. Role of lateral terrestrial water flow on the regional water cycle in a complex
terrain region: Investigation with a fully coupled model system. J. Geophys. Res. Atmos. 2019, 124, 507–529. [CrossRef]

71. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle
radar topography mission. Rev. Geophys. 2007, 45. [CrossRef]

72. Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [CrossRef]
73. Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 281, 277–294.
74. Asrar, G.; Myneni, R.; Choudhury, B. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosyntheti-

cally active radiation: A modeling study. Remote Sens. Environ. 1992, 41, 85–103. [CrossRef]
75. Single, W.V. Frost injury and the physiology of the wheat plant. J. Aust. Inst. Agric. Sci. 1985, 51, 128–134.
76. Habekotté, B. A model of the phenological development of winter oilseed rape (Brassica napus L.). Field Crops Res. 1997, 54, 127–136.

[CrossRef]
77. Hodgson, A. Repeseed adaptation in Northern New South Wales. II.* Predicting plant development of Brassica campestris L.

and Brassica napus L. and its implications for planting time, designed to avoid water deficit and frost. Aust. J. Agric. Res. 1978,
29, 711–726. [CrossRef]

78. Russell, G.; Wilson, G.W. An Agro-Pedo-Climatological Knowledge-Base of Wheat in Europe; Brussels (Belgium) EC/JRC: Brussels
Belgium, 1994.

79. Djumaniyazova, Y.; Sommer, R.; Ibragimov, N.; Ruzimov, J.; Lamers, J.; Vlek, P. Simulating water use and N response of winter
wheat in the irrigated floodplains of Northwest Uzbekistan. Field Crops Res. 2010, 116, 239–251. [CrossRef]

80. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

81. Tewes, A.; Thonfeld, F.; Schmidt, M.; Oomen, R.J.; Zhu, X.; Dubovyk, O.; Menz, G.; Schellberg, J. Using RapidEye and MODIS
data fusion to monitor vegetation dynamics in semi-arid rangelands in South Africa. Remote Sens. 2015, 7, 6510–6534. [CrossRef]

82. Ghosh, R.; Gupta, P.K.; Tolpekin, V.; Srivastav, S. An enhanced spatiotemporal fusion method–Implications for coal fire monitoring
using satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102056. [CrossRef]

83. Xue, J.; Leung, Y.; Fung, T. A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sens.
2017, 9, 1310. [CrossRef]

84. Chen, B.; Huang, B.; Xu, B. Comparison of spatiotemporal fusion models: A review. Remote Sens. 2015, 7, 1798–1835. [CrossRef]
85. Guo, Y.; Wang, C.; Lei, S.; Yang, J.; Zhao, Y. A framework of spatio-temporal fusion algorithm selection for landsat NDVI time

series construction. ISPRS Int. J. Geo-Inf. 2020, 9, 665. [CrossRef]
86. Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by

assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74.
[CrossRef]

87. Walker, J.J.; De Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland
forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [CrossRef]

88. Chen, X.; Liu, M.; Zhu, X.; Chen, J.; Zhong, Y.; Cao, X. “Blend-then-Index” or “Index-then-Blend”: A theoretical analysis for
generating high-resolution NDVI time series by STARFM. Photogramm. Eng. Remote Sens. 2018, 84, 65–73. [CrossRef]

89. Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover
mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [CrossRef]

90. Thomson, A.M.; Brown, R.A.; Ghan, S.J.; Izaurralde, R.C.; Rosenberg, N.J.; Leung, L.R. Elevation dependence of winter wheat
production in eastern Washington State with climate change: A methodological study. Clim. Chang. 2002, 54, 141–164. [CrossRef]

91. Bhatt, D.; Maskey, S.; Babel, M.S.; Uhlenbrook, S.; Prasad, K.C. Climate trends and impacts on crop production in the Koshi River
basin of Nepal. Reg. Environ. Chang. 2014, 14, 1291–1301. [CrossRef]

92. Semwal, R.; Maikhuri, R. Structure and functioning of traditional hill agroecosystems of Garhwal Himalaya. Biol. Agric. Hortic.
1996, 13, 267–289. [CrossRef]

93. Anderson, M.C.; Hain, C.R.; Jurecka, F.; Trnka, M.; Hlavinka, P.; Dulaney, W.; Otkin, J.A.; Johnson, D.; Gao, F. Relationships
between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic. Clim. Res. 2016,
70, 215–230. [CrossRef]

94. Cabas, J.; Weersink, A.; Olale, E. Crop yield response to economic, site and climatic variables. Clim. Chang. 2010, 101, 599–616.
[CrossRef]

95. Sidhu, B.S.; Mehrabi, Z.; Ramankutty, N.; Kandlikar, M. How can machine learning help in understanding the impact of climate
change on crop yields? Environ. Res. Lett. 2023, 18, 024008. [CrossRef]

96. Grace, J. Temperature as a determinant of plant productivity. Symp. Soc. Exp. Biol. 1988, 42, 91–107.

http://doi.org/10.1175/JHM-D-17-0042.1
http://doi.org/10.1029/2018JD029004
http://doi.org/10.1029/2005RG000183
http://doi.org/10.2307/2401901
http://doi.org/10.1016/0034-4257(92)90070-Z
http://doi.org/10.1016/S0378-4290(97)00043-9
http://doi.org/10.1071/AR9780711
http://doi.org/10.1016/j.fcr.2010.01.001
http://doi.org/10.1016/j.rse.2010.05.032
http://doi.org/10.3390/rs70606510
http://doi.org/10.1016/j.jag.2020.102056
http://doi.org/10.3390/rs9121310
http://doi.org/10.3390/rs70201798
http://doi.org/10.3390/ijgi9110665
http://doi.org/10.1016/j.jag.2016.02.001
http://doi.org/10.1016/j.rse.2011.10.014
http://doi.org/10.14358/PERS.84.2.65
http://doi.org/10.1016/j.jag.2014.09.010
http://doi.org/10.1023/A:1015743411557
http://doi.org/10.1007/s10113-013-0576-6
http://doi.org/10.1080/01448765.1996.9754784
http://doi.org/10.3354/cr01411
http://doi.org/10.1007/s10584-009-9754-4
http://doi.org/10.1088/1748-9326/acb164


Remote Sens. 2023, 15, 1651 35 of 35

97. Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36.
[CrossRef]

98. Porter, J.R.; Moot, D.J. Research beyond the means: Climatic variability and plant growth. In International Symposium on Applied
Agrometeorology and Agroclimatology; Office for Official Publication of the European Commission: Luxembourg, 1998; pp. 13–23.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S1161-0301(98)00047-1

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Satellite Data 
	Climate Data 
	Elevation Data 
	InVeKos Data 
	LfStat Data 

	Method 
	STARFM 
	LUE Model 
	Sensitivity Analysis 
	Statistical Analysis 


	Results 
	Validation of Synthetic Remote Sensing Time Series from 2001 to 2019 
	Comparative Analysis between Crop Yield Accuracy of MOD13Q1 and L-MOD13Q1 Using the Light Use Efficiency Model in 2019 
	Statistical Analysis between Reference and Modelled Crop Yields of WW and OSR from 2001 to 2019 Using the Light Use Efficiency Model 
	Sensitivity Analysis 
	Statistical Analysis between Reference and Modelled Crop Yields of WW and OSR from 2001 to 2019 Using the Light Use Efficiency Model at Regional Level 
	Correlation Analysis between the Accuracy Assessments of the Input Synthetic Products and the Crop Yield Modelling 
	Visualisation of the Modelled Crop Biomass and the NDVI of Different Years at a Field Level 

	Discussion 
	Quality Assessment of Synthetic Remote Sensing Time Series from 2001 to 2019 
	Impact of Synthetic Time Series on Crop Yield Modelling 
	Sensitivity Analysis 
	Validation at the District Level 

	Conclusions 
	Appendix A
	References

