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Abstract: The ongoing digitization of historical photographs in archives allows investigating the
quality, quantity, and distribution of these images. However, the exact interior and exterior camera
orientations of these photographs are usually lost during the digitization process. The proposed
method uses content-based image retrieval (CBIR) to filter exterior images of single buildings in
combination with metadata information. The retrieved photographs are automatically processed in an
adapted structure-from-motion (SfM) pipeline to determine the camera parameters. In an interactive
georeferencing process, the calculated camera positions are transferred into a global coordinate
system. As all image and camera data are efficiently stored in the proposed 4D database, they can be
conveniently accessed afterward to georeference newly digitized images by using photogrammetric
triangulation and spatial resection. The results show that the CBIR and the subsequent SfM are
robust methods for various kinds of buildings and different quantity of data. The absolute accuracy
of the camera positions after georeferencing lies in the range of a few meters likely introduced by
the inaccurate LOD2 models used for transformation. The proposed photogrammetric method, the
database structure, and the 4D visualization interface enable adding historical urban photographs
and 3D models from other locations.

Keywords: historical images; 4D-GIS; content-based image retrieval; Structure-from-Motion; camera
orientation; feature matching

1. Introduction

With an ever-increasing amount of historical urban photographs being digitized, nu-
merous opportunities exist for using and presenting that data. In combination with three-
dimensional (3D) models, maps, and elevation models, it becomes possible to link all data
in time-dependent four-dimensional (4D) geographic information systems (GIS). Originally
conceptualized as a tool to support scholars in their art and architectural history research in the
project UrbanHistory4D [1], the so-called 4D browser (https://4dbrowser.urbanhistory4d.org,
accessed on 1 February 2023) serves as a front-end and back-end application for representing
different types of 4D data (Figure 1). This includes time-dependent maps, 3D building models,
and photographs, which can be generated on a global scale.

While historical models of several cities and landmarks already exist or are created
in various research projects, it is still difficult to integrate external image data or realize
large-scale applications. That is mainly because working with historical photographs comes
with several challenges, particularly when automatically finding photographs showing
similar buildings or when used in a structure-from-motion (SfM) process, automatically
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generating historical 3D models. This is mostly caused by vast radiometric and geometric
differences in image quality.

Figure 1. Graphical user interface of the 4D browser showing the 3D city model of Dresden, Germany,
and spatially oriented photographs.

Another issue is that data are often processed and used for visualization purposes,
but are mostly not accessible after a project is completed. We tackle that problem by
efficiently storing camera parameters as metadata for every historical image following
the close-range photogrammetry Guide to Good Practice of the Archaeology Data Ser-
vice (https://archaeologydataservice.ac.uk/help-guidance/guides-to-good-practice/data-
collection-and-fieldwork/close-range-photogrammetry/introduction/close-range-digital-
photogrammetry-in-archaeology/, accessed on 15 March 2023). Therefore, the presented
approach shows a bipartite pipeline that includes the initialization of a new dataset and the
subsequent addition of new images as shown in Figure 2.

Initially, historical photographs need to be selected in order to be usable for SfM.
For photogrammetric processing, mainly exterior views are relevant. However, close-up
photographs that show only a small detail of the original building are excluded. Therefore,
all images of one landmark are investigated using content-based image retrieval (CBIR).
As this requires calculating a feature vector for every image when compared to a query,
this feature vector is stored in the database, making it accessible if newly digitized images
are added. In the second step, the top-ranked photographs (with the smallest distances) in
relation to the query are used in a SfM process. Due to the possible variation in historic
image quality, the conventionally used software Agisoft Metashape fails to register a large
number of these types of images. In contrast, learned feature-matching methods are often able
to find tie points between historical images. Hence, it is proposed to use SuperPoint [2] +
SuperGlue [3] for feature-matching and COLMAP [4] for generating a sparse point cloud
and estimating all camera orientation parameters. As SfM generates only a local model, the
initial georeferencing has to be done by hand or by automatically finding similar points in
the GIS and the sparse cloud. For all images that can be registered, the interior and exterior
camera parameters are stored in the database.

https://archaeologydataservice.ac.uk/help-guidance/guides-to-good-practice/data-collection-and-fieldwork/close-range-photogrammetry/introduction/close-range-digital-photogrammetry-in-archaeology/
https://archaeologydataservice.ac.uk/help-guidance/guides-to-good-practice/data-collection-and-fieldwork/close-range-photogrammetry/introduction/close-range-digital-photogrammetry-in-archaeology/
https://archaeologydataservice.ac.uk/help-guidance/guides-to-good-practice/data-collection-and-fieldwork/close-range-photogrammetry/introduction/close-range-digital-photogrammetry-in-archaeology/
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Figure 2. Schematic depiction of the presented bipartite pipeline for estimation of camera orientation
parameters of historical photographs. The left hand shows the initialization of a new dataset,
including the automatic selection of appropriate images using CBIR, subsequent SfM processing, and
interactive georeferencing. The right hand shows the usage of the initialized data for estimating the
camera orientation parameters for newly digitized images. The 4D database serves as a central part
of storing and distributing all relevant information.

This process enables the convenient addition of newly digitized copies to the database.
If a new image for a specific landmark (as indicated by metadata) is uploaded to the
database, the image can be quickly compared via the proposed CBIR to all other pho-
tographs of that landmark since all feature vectors have already been calculated. The cam-
era orientation parameters of the 20 closest images necessary for a successful SfM recon-
struction are retrieved and initialized in COLMAP and feature matches need to only be
calculated for 20 image pairs. As the global orientation of the 20 corresponding images is
known, the new image is directly georeferenced using the triangulation of tie points and
subsequent spatial resection. All estimated parameters of the newly uploaded image can
be stored in the database.

2. Related Research

This section is split into two parts. The first part presents research that deals with the
(geo)processing of historical photographs. The second part shows how other GIS research
platforms deal with various data sources, such as 3D models and images.

2.1. Geoprocessing of Historical Photographs

Historical photographs are used in various types of applications. One major use-
case is repeat photography (re-photography) which is the determination of the correct
geometric alignment of a historical photograph taken at a certain place in comparison to
a contemporary image of the same place. An exhaustive overview of the origins, available
via online portals, and the present challenges are given in [5]. Georeferenced historical
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(aerial) images can be, e.g., used for the change detection of glaciers [6,7] or buildings [8],
landslide investigation [9], or even the detection of unexploded ordnance [10].

In urban environments, terrestrial historical images are able to reveal the building
changes [11], provide scene understanding [12], and can be used for measuring building
heights [13] or virtual reconstruction of building parts [14,15]. In conclusion, historical
photographs provide an extremely valuable tool for transferring knowledge of the past to
shape the development of the future.

2.2. 3D/4D Research Platforms

Through the open availability and the simple accessibility of historical data, more
platforms are emerging, allowing for the representation and visualization of various data
sources. This includes, among others, maps, building models, images, and texts in com-
bined virtual environments [16]. Most tools rely on web-based interfaces that combine
different sources [17,18], enabling advanced searching [19] and user management [20].
Others develop comprehensive frameworks for creating Web3D Cultural Heritage appli-
cations [21]. A comprehensive overview can be found in [16,22]. Most related research
presented in the literature focuses on specific objects or buildings and is geographically
limited. The proposed workflow aims to overcome these limitations by efficiently estimat-
ing and storing camera orientation parameters, thereby retaining all derived information
even after project completion.

3. Materials and Methods

This section provides details on the data used for the experiments, which consisted of
two landmarks in the city of Dresden. The structure of the 4D browser, the connection to
the database, and I/O operations are also explained. The main part of the section focuses
on inputting a new image dataset into the database and initializing all database values.
It explains how the images are filtered for their exterior views, how SfM is performed
for the filtered images, and how all values can be transferred. Additionally, it shows
how an existing initialized dataset can be extended easily by requesting all the existing
data, enabling the quick processing of new photographs. Finally, the section outlines
the limitations of the proposed workflow.

3.1. Data

The research area is focused on the city of Dresden, Germany, as it is possible to connect
to the existing structure and data of the 4D browser developed in the UrbanHistory4D [23]
project. It includes 3D city models of the urban center ranging from level of detail 2 (LOD 2)
to LOD 3, with some of the models being texturized. However, most buildings do not
provide a historically accurate depiction of their state, showing instead the contemporary
state provided by the authorities. In the conducted experiments, the focus is on buildings
that are not texturized, to provide a better depiction of the visual accuracy of the oriented
historical photographs.

The research focuses on the Semperoper, which is a very famous building in Dresden
and has 2172 hits when searching by metadata in the Deutsche Fotothek (https://www.
deutschefotothek.de/, accessed on 30 November 2022). A query image for filtering exterior
views is required for CBIR, so the focus is on the main façade (view from the south-east,
Figure 3). To demonstrate that the approach is also applicable to smaller landmarks or even
side streets, Taschenbergpalais is selected as a second building. It contains 584 hits in the
Deutsche Fotothek (https://www.deutschefotothek.de/, accessed on 30 November 2022),
with many views from far away. The query image shows the only unobstructed view from
the north with only a few relevant hits in the Deutsche Fotothek (Figure 3).

https://www.deutschefotothek.de/
https://www.deutschefotothek.de/
https://www.deutschefotothek.de/
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Figure 3. Query images used for the Semperoper (left) and Taschenbergpalais (right).

3.2. Structure of the 4D Browser and Its Database

The 4D browser was initially conceptualized and developed in the project Urban-
History4D as a tool to support scholars in their art and architectural history research [1].
Images and photographs in particular are essential sources and key objects in this field of
research. Unlike conventional media repositories where images can only be searched by
metadata, the 4D browsers follow a spatial approach. The graphical user interface inte-
grates a 3D viewport where the user is able to browse for spatialized images within a 3D
city model without the necessity of having detailed knowledge about the object of interest
and any metadata of corresponding images (Figure 1). Of course, a metadata search is still
possible, but the user does not need to rely on it exclusively. With the time slider, temporal
constraints can be set separately for the buildings, the images, and the maps. The filtering of
images can also be achieved by interacting with the buildings or the 3D objects. The spatial
approach also opens up new possibilities for gaining new knowledge, including taking
the perspective of the photograph and understanding the photographer’s situation [24],
as well as using special visualizations to answer specific research questions [25].

On the server side, the 4D browser consists of a database and a backend application.
The data are stored in the graph database Neo4j and largely follow the CIDOC conceptual
reference model (CRM) [26], an ontology in the field of cultural heritage. All positional data
are stored in WGS-84 world coordinates, i.e., latitude and longitude in decimal degrees
(double precision), and altitude in meters. In the frontend, these world coordinates are
converted into Cartesian coordinates (i.e., UTM) with a shift of the point of origin towards
the scene contents for a true-to-scale visualization. The orientation is stored as three
Euler angles: pitch angle ω, heading angle φ, and roll angle κ. Additionally, for spatially
oriented images, the interior camera parameters, including the principal distance (ck)
and principal point coordinates, are stored together with additional parameters such as
distortion coefficients.

The backend application provides a RESTful API, serves binary files, and runs routines
such as linking buildings and images by determining if a building is visible in the image. All
resources can be queried and updated via HTTP requests. Some API routes are specifically
used by the pipeline described in this paper. By this pipeline route, images can be queried
by metadata or positions similar to the regular route, but the data are returned in a different
format. Whereas the 4D browser frontend receives exterior and interior camera parameters
as world coordinates and Euler angles, the pipeline routes use Cartesian coordinates and
quaternions. For this purpose, latitude and longitude are converted into UTM coordinates
in an OpenGL coordinate system. The origin of this coordinate system is then shifted to the
position of the first image in the set of the queried images, such that the numbers are in
a feasible numerical range. Together with the altitude, they form tx, ty, and tz. The Euler
angles are converted to quaternions qw, qx, qy, and qz to remove the constraint of the correct
order of the angles. The interior camera parameters are set with respect to the image
dimensions. To not lose the global reference, the set of queried images is returned with
the world coordinates of the point of origin. When the pipeline finally pushes new or
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updated values for the set of images, these origin reference coordinates are used to convert
the Cartesian values back to global WGS-84 coordinates.

3.3. Initialization of a New Dataset

This section describes the main workflow of this contribution for filtering historical im-
ages and the estimation of interior and exterior camera parameters. All relevant parameter
decisions are explained in detail.

3.3.1. Layer Extraction Approach (LEA)

The initialization of a new dataset in the database requires a selection of suitable
photographs. These are especially exterior views of the respective landmark as (a) they can
be processed in a single photogrammetric workflow using SfM and (b) can be depicted
without occlusions in the 4D environment. Thus, an automatic filtering method is required
to robustly select relevant images. This excludes detailed views, other building states,
public events, and paintings retrieved by conventional metadata search.

Thus, in prior research, we developed a content-based image retrieval workflow that
successfully filtered historical images after a metadata search with one keyword. As an
important part of the whole process, the pipeline, called the layer extraction approach
(LEA), is briefly explained (Figure 4). For a more detailed investigation and justification of
the parameterization, refer to [27].

Figure 4. General overview of the workflow in the layer extraction approach (LEA).
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As a starting point, a specific keyword is selected to narrow the search in the image
database and limit the computation time for the CBIR. In the presented research, the
keywords are Semperoper and Taschenbergpalais, as shown in Section 4.

For these landmarks, all found images (reference images) are downloaded in the
resolution provided by the repository with a maximum of 1600 pixels for the longer edge
of the digitized image. Then, a query image has to be selected manually to show the
scene of interest. For all images, including the query image, a representative feature
vector is calculated. The approach is originally based on [28] and uses the pre-trained
VGG16 convolutional neural network (CNN) [29] with modified upper layers for this image
representation. The initial output in the last max-pooling layer is 512 feature maps with
dimensions of 7 × 7, which are then reduced in dimension using spatial pooling with a
kernel size of 7 × 7 and a stride of 0, resulting in the desired vector representation for every
image of size 512 × 1 × 1 = 512.

In order to improve the results of the retrieval, cropping the original images into
subpatches with a separate feature vector leads to superior results [27]. We used the
workflow described in [30] and cropped using the order parameter L = 4. This resulted in
∑L

i=1 i2 = 30 subpatches.
In contrast to prior work, this feature vector is not deleted but serves as a unique rep-

resentation of the respective image in the database. The vector holding the information on
all subpatches is efficiently stored as a pickle file (.pkl) with 16 kilobytes (kB) and can be
posted to (and requested from) the 4D browser database via HTTP. This allows using the vector
representation of existing images when updating the database with new images (Section 3.4).

Generating a rank list for ordering the reference images from the closest to the furthest
with respect to the query image requires the calculation of a single distance value, which
is usually the L2 normalized distance between two feature vectors. Since the images are
divided into 30 subpatches, 30 different image representations exist, which are aggregated
into a final distance number, as in [30]. The resulting rank list can now be used to show a
predefined number of nearest images. It is of high relevance to use a meaningful number as
this often defines whether the following SfM workflow fails or succeeds. In our experiments
and with the given database Deutsche Fotothek, around 10% of images are significant and
show (parts of) the expected query image. This implies using the 217 closest images for
the Semperoper dataset and 58 images of the Taschenbergpalais dataset for the subsequent
SfM procedure.

3.3.2. Estimation of Initial Interior Camera Orientation Parameters

The retrieved images from the previous step mostly depict the requested object from
the query image. However, historical images may still show significant radiometric and
geometric differences [31]. These range from day–night views to construction sites on
relevant building parts.

Due to these reasons, it has already been determined that conventional SfM software
often fails [31]. In particular, the estimation of the initial principal distance (focal length)
and finding distinctive feature matches are seen as the main obstacles.

The proposed method uses vanishing point detection (VPD) for initializing the princi-
pal distance. The approach is based on [32] and refined in [12], where images are filtered
out if they do not provide three significant vanishing points (VPs). Some additional modifi-
cations were made in the following. For initialization, a pinhole camera model is assumed
so that parallel lines in object space are projected to a set of lines in image space. The ad-
vantage of the method on the presented data is that parallel lines often exist in man-made
(urban) structures. In the following, all possible pairs of lines are intersected. With the
assumption that the principal point c(x, y) is in the image center, a polar coordinate system
is spanned using that point as the origin (Figure 5-top). The three angles θ of the VPs can
be easily determined using the polar coordinates in a histogram using a finite number of
bins (Figure 5-bottom). Therefore, the infinite accumulator space from 0 to 2π of the angle
θ is discretized into 720 bins (i.e., two bins for one degree).
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Figure 5. Schematic example of the principal distance estimation using VPs. Top: Example for the
detected line segments with three main directions marked in blue, green, and red. Some selected line
segment intersections are shown as colored dots. Bottom: Determination of the angle θ of three VPs
using the distribution of all line segment intersections. The final angle θ is drawn as a line at the top
of the figure.

The radius ρ for all VPs is determined in an equation system as a function of the
principal distance as described by [32]. As the proposed approach only works if there
are three significant VPs, we enhance the method and always determine four maxima
during histogram analysis. A maximum is only considered significant if it is separated by
120 bins and if its prominence is >50% of the maximum prominence of all peaks. These
values could be determined empirically as three significant VPs should be separated by at
least 60 degrees in architectural scenes. If there are three significant maxima, the process
continues and the principal distance is initially estimated. If there is no detection of
the three significant maxima (i.e. three main directions of lines cannot be determined
in the image), the standard initialization of COLMAP is used, which sets the principal
distance to 1.25 · max(imagewidth, imageheight). The coordinates of the principal point are
always assumed to be in the image center because there exists no metadata for this value.
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Theoretically, the coordinates can be estimated within the bundle adjustment but this is
only recommended after the initial reconstruction as the principal point estimation is an ill-
posed problem [4]. It has been investigated that when considering cx and cy as unknowns
in the bundle adjustment, the simultaneous estimation of the principal distance decreases
in accuracy [33].

3.3.3. Structure-from-Motion for Historical Photographs

After initialization of the interior camera parameters for the historical images, all
possible image pairs are matched using SuperPoint [2] + SuperGlue [3] as it provides the
most robust results for historical terrestrial images [27,34]. SuperPoint uses homographic
adaptation to create multiple representations of a single image and the most significant
features for every representation are accumulated in the original image. This method
works for all kinds of images and also performs well under illumination and viewpoint
changes [2], which are visible in historical photographs [27]. SuperGlue uses a graph
neural network to match the derived features which are now represented in self- and
cross-attentional aggregations [3]. It recently outperforms conventionally used methods,
such as SIFT [35], on all kinds of different datasets [3,27,34,36]. However, the method is not
rotationally invariant, which is fortunately irrelevant for digitized images of urban scenes.

The proposed method extracts a maximum of 4096 SuperPoint features in images,
which are resized to a maximum of 1600 pixels (edge length). This can be done in the hier-
archical localization toolbox (hloc) using the feature extraction method superpoint_max [37].

This toolbox is also used to initialize all values for the determined principal dis-
tances of the cameras and all feature matches in a single COLMAP project. COLMAP
is an open-source SfM software solution allowing, i.e., the import of different feature-
matching methods [4]. In order to generate a sparse point cloud, all exterior and inte-
rior camera parameters are optimized in a single bundle adjustment procedure. It is
recommended to use two-view tracks for historical photographs, which means that the
camera parameters are estimated even if feature matches between one single image pair
(=a feature track between only two images) only exist.

Without reference data, the final reconstruction in the SfM process is in a local coordi-
nate system. To transfer the exterior orientation (i.e., the camera poses) into the 4D browser,
reference data of the 4D browser’s global coordinate system is required. Georeferencing
is usually accomplished using points of superior accuracy, such as ground control points
(GCPs) or terrestrial laser scanning data (TLS). However, TLS data are often not readily
available and do not usually cover entire cities. Thus, to provide a realistic scenario that
is feasible for other cities, georeferencing is done using the LOD 2 and LOD 3 models
provided by the authorities, which may result in lower accuracy.

This last step is still conducted interactively by selecting similar points in the sparse
cloud and the 3D city model. It is important to select enough points with a good distribution
over the model. In the experiments, the results converged when using a minimum of
15 points spread all over the landmark. This enables building a transformation matrix that
maps the points of the sparse cloud (in the local coordinate system) to the points of the
3D model (in the global coordinate system). To calculate the transformation matrix, least
squares estimation is used [38].

Transformation of the exterior camera parameters from COLMAP into the 4D browser
is not a trivial task; the detailed presentation of the necessary steps is shown in the
Appendix A. COLMAP uses the OpenCV camera coordinate system, which exports the
camera poses as projections from the world to the camera coordinate system as quater-
nions defined using the Hamilton convention R(qw, qx, qy, qz) and the translation vector
T(X, Y, Z). These values allow building a rotation matrix for every camera in the OpenCV
camera coordinate system.

The 4D browser uses the OpenGL camera coordinate system, which uses a differ-
ent representation of the rotation matrix. Thus, the OpenCV rotation matrix needs to be
adjusted to match the representation. When both rotation matrices are in OpenGL repre-
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sentation, the exterior orientations of the cameras of COLMAP can be transferred to the 4D
browser. The resulting rotation matrix allows the determination of the camera quaternions
as R(qw, qx, qy, qz).

Finally, this allows storing all determined values in the 4D browser via an HTTP POST
request. This includes the width, height, feature file (pkl), tx, ty, tz, qw, qx, qy, qz, principal
distance (ck), principal point coordinates (c(x, y)), and radial distortion (k) (Figure 6).

Figure 6. Workflow for the estimation of the interior and exterior camera parameters of
historical images.

3.4. Data Extension

The previously described workflow estimates the camera orientation parameters for around
10% of all images (for one landmark) in the database of the SLUB. However, there exists the
possibility that not all images showing the exterior of the landmark are covered and/or that
new images are uploaded to the repository due to digitization. In the following, this new image,
which shall be added to the database of the browser, is referred to as a query image.

With the metadata of the query image, it is possible to determine which building is
shown in the photograph. Using the existing values for cameras in the database now avoids
the need for repetitive georeferencing. Functionality in the 4D browser uses ray casting to
determine whether the building is already depicted in a previously spatialized image. It is
checked whether the landmark is visible in at least 20 images. If this is true, all .pkl files
from images showing that landmark are retrieved from the database. The newly uploaded
image serves as the query image for LEA, and the nearest 20 images are determined as
described in Section 3.3.1. The calculated feature file is stored in the 4D browser database.

These images are used in a subsequent SfM procedure using SuperPoint and Super-
Glue. However, since the camera orientation parameters of the 20 images are already
available, these can be used for faster calculation of the camera parameters of the query
image. The 20 images serve as a reference model and are stored as a COLMAP reconstruc-
tion file using the inverted transformation from OpenGL to OpenCV camera model. For
all possible image pairs between the query image and the other images, the SuperGlue
feature matches are calculated. With known camera orientations, the feature matches
can be triangulated into 3D spaces. The 3D points that are seen by the query image can
be used to determine the camera parameters using the spatial resection provided in hloc.
There is a possibility of performing a subsequent bundle adjustment, optimizing the camera
parameters for all images, which was not necessary when only using one image. Finally,
the exterior and interior camera orientation parameters of the query image are uploaded to
the database and the image can be used to establish the camera orientation of new images.
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3.5. Limitations

Both of the described processes have their limitations, which will be critically discussed
in the following. Section 3.3 states that user input is necessary to define a query image for a
landmark. This requires the user to know the data and specifically the landmark that is
meant to be initialized. An automatic method for the selection of the query images could
be query expansion [39]. All images for one landmark would be initially clustered, and it
would be possible to select one image that has the highest correlation to all other images.

Furthermore, the CBIR yields the nearest 10% of the query image. That implies that if more
than 10% of images in the database (Deutsche Fotothek) of the specific landmark are valid, these
will not be considered for the subsequent SfM workflow. As this is just a minor issue when the
database is known, it becomes a problem if the database and its quality are unknown. In the
proposed workflow, a strict (distance) threshold for “good” images could not be determined
using LEA. This issue could possibly also be solved using clustering for the result list (see above).
Thus, instead of a fixed transfer of 10% of images, the most relevant cluster of images could be
transferred In the opposite case, where less than 10% of the images show the actual landmark,
these are reliably filtered out in the subsequent SfM procedure, by, e.g., increasing the number
of minimum matches between image pairs (Section 4).

Another concurrent issue in the CBIR process is that metadata are initially used for
pre-processing historical images. However, photographs may not correctly be tagged
with metadata and, therefore, would not be retrieved by LEA. Additionally, the initial
metadata search yields photographs from all periods when the building existed, including
construction sites or former buildings in the same location. This can hinder fully automatic
reconstruction via SfM (Section 4.2), but with appropriate parameter settings, most of
these issues can be prevented. Another option would be to omit the metadata search
and browse the entire database via CBIR for similarities. However, this would be highly
computationally intensive and would have to be repeated for newly added images.

The initial georeferencing using LOD 2 or LOD 3 building models is not optimal and
possibly results in a lower transformation accuracy. It is obvious that a LOD 2 model does
not provide the geometric accuracy of a TLS and does not perfectly match the historical
sparse point cloud. TLS data would also allow using automatic georeferencing by trans-
forming the point clouds onto each other using, e.g., the iterative closest point (ICP) algo-
rithm. However, the presented approach fits with the real-world scenario of the application
where usually the authorities of a city provide the 3D city models. Additionally, for the
provided application and the overlay of the historical photograph, visual accuracy is more
important than geometric accuracy. It can be assumed that the absolute accuracy of the
camera position is around a few meters and the accuracy of the rotational values is around
a few degrees [40], which is consistent with the visual results presented in the next section.

4. Results

In this section, all results for the two investigated datasets are shown. This includes the
results of the CBIR, the SfM workflow, and the final visual representation in the 4D browser.
The results can be directly visited via https://4dbrowser.urbanhistory4d.org, accessed on
1 February 2023. The 3D scene of Dresden has to be opened. Via the metadata search,
it is possible to filter for Taschenbergpalais or Semperoper. Images showing the respective
views of the two buildings are oriented using the proposed workflow. Double-clicking
on a single image allows one to jump into the perspective of the photographer and get an
estimate of the visual accuracy. The underlying 3D model can be made visible by using the
Image Opacity slider on the top left of the web page.

4.1. Taschenbergpalais

LEA yields 58 photographs for Taschenbergpalais. Since the absolute number of pho-
tographs is quite limited, a manual check of the results becomes possible. The unobstructed
view from the north is only sparsely available in the database, but the majority of results

https://4dbrowser.urbanhistory4d.org
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show exactly this perspective. The results can be split into relevant photographs, relevant
drawings, and irrelevant data, as shown in Table 1.

Table 1. Distribution of the final results for Taschenbergpalais yielded by LEA.

Relevant Photographs Relevant Drawings Other Photographs Other Drawings

22 8 23 5

As far as all 584 hits in the Deutsche Fotothek were observed, LEA did not omit any
relevant hits that should be included in the SfM process. The majority of the 584 images
(including drawings and plans) show the building’s interior or an extremely destroyed
building state after 1945, which is not relevant for the reconstruction. That means less than
4% of the metadata search hits show the desired perspective, emphasizing the use of CBIR
followed by SfM. For all images, it is desirable to use only the relevant photographs for
the SfM reconstruction. However, SuperPoint + SuperGlue is even capable of matching
geometrically correct drawings to photographs. Thus, it is expected to estimate the camera
parameters of 22 to 30 images/drawings. Of course, in the case of drawings, the camera
cannot be connected to a physical model but can be seen as a virtual camera for which
the parameter errors are minimized during bundle adjustment. The final reconstruction in
COLMAP shows 26 registered images, including 3 drawings (Figure 7).

Figure 7. Final reconstruction in COLMAP showing the estimated camera positions of 26 photographs
and drawings. The sparse point cloud consists of approximately 10,000 points.

An overview of the visual appearance and quality of images is shown in Figure 8. One
image is connected to the scene, but is positioned incorrectly as it shows the building from
a different perspective (Figure 8-bottom left).
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Figure 8. Four images of Taschenbergpalais that are retrieved by LEA. The automatic SfM reconstruc-
tion in COLMAP reveals the correct camera orientation for three images, while the bottom left image
is incorrectly matched and oriented due to the repeating pattern of the building.

Nonetheless, all camera parameters are transferred to the 4D browser after georefer-
encing using the sparse cloud and a LOD 3 model of Taschenbergpalais by selecting 15
corresponding points (Figure 9-left). The accuracy of the transformation between the 3D
model and sparse cloud yields σ0 = 1.12 m with a maximum deviation in XYZ of 3.52 m.
It was not possible to achieve higher accuracy, even when selecting more points or changing
the distribution of similar points.

Double-clicking on an image allows one to jump into its perspective by using the
calculated camera parameters. Using the Image Opacity slider on the top left toolbar
allows visually estimating the accuracy of the approach with the underlying 3D model
(Figure 9-right).

This depiction allows us to assume that the camera parameters are estimated with
sufficient quality for visualization purposes. However, in object space (on the 3D model),
deviations lie in a range of a few to several meters, especially visible on the eaves. This
can be attributed to errors of a few degrees in the camera orientation angles or errors
in the decimeter range for the camera position, which could have occurred during the
transformation process due to the generalized LOD 3 model and the quality of the historical
sparse point cloud.
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Figure 9. (Left): Final reconstruction results as depicted in the 4D browser. The images are visualized
with their thumbnail images in the 3D space. (Right): Reconstructed perspective of one historical
photograph blended with the underlying 3D model of Taschenbergpalais.

Nonetheless, the obtained results are used to estimate the camera orientation param-
eters of an image that has been added to the database. The image shows a similar per-
spective of the Taschenbergpalais taken from a nearby building, and the closest 20 images
are retrieved by LEA using the pre-calculated .pkl files that are stored in the 4D browser.
The feature matching is then performed, the tie points are triangulated, and the camera
parameters of the new image are calculated via spatial resection (Figure 10).

Figure 10. (Left): The overview in the 4D browser of the new image and the visualized tie points
used for spatial resection. (Right): The perspective given by the camera parameters of the newly
estimated image [40].

As expected, the image shows similar inaccuracies on the eaves as these were already
introduced by the existing reconstruction. However, the results show that it is possible to
determine the proper location and orientation of the camera in an automatic way.

4.2. Semperoper

The Semperoper dataset reveals if the workflow is also able to deal with a larger
number of images. LEA yields 217 photographs for the Semperoper. The result list is also
checked for comparison with Taschenbergpalais, as shown in Table 2. However, a check of
all 2172 digitized images is not performed.

Table 2. Table showing the distribution of final results for the Semperoper yielded by LEA. LEA also
yields images of the Hofkirche, which is situated across the Semperoper. These images are also tagged
in the metadata via the Semperoper keyword but are not meant to be used for its reconstruction.

Relevant
Photographs Drawings/Postcards

Other
Photographs
(Hofkirche)

Former Opera
House Stereo Photos

178 8 7 22 2

As for the other dataset, it is expected that all 178 relevant photographs can be oriented
in the automatic SfM workflow using SuperPoint + SuperGlue feature matching. However,
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the first result shows inaccuracies in the reconstruction introduced by a small number
of mismatches between some image pairs (Figure 11). While the images depicting the
Semperoper in its contemporary state are positioned correctly, COLMAP also merges seven
images of the Hofkirche (located across from the Semperoper building) and 15 images
of the former opera house into the reconstruction, likely introducing errors to the other
photographs. Additionally, these buildings are not located in the correct global positions.

Figure 11. Initial COLMAP reconstruction of all Semperoper images retrieved by LEA. The green
area marks the Semperoper at the correct position while images of Hofkirche (as seen from the
Semperoper building) and the former opera house (black areas) introduce errors to the reconstruction.
The orientation of the Hofkirche building is incorrect due to sparse image material accidentally
retrieved by LEA and repetitive structures.

These errors can be prevented by either (a) increasing the matching threshold of Super-
Glue, or (b) increasing the minimum number of matches between image pairs used in the
bundle adjustment of COLMAP. To avoid discarding relevant matches found by SuperGlue,
option (b) was chosen. By increasing the minimum number of matches between image
pairs from the standard value of 15 to 200, the final reconstruction is correct without the
previously created artifacts (Figure 12). Using a similar procedure for Taschenbergpalais re-
moves the previously incorrectly positioned image (shown in Figure 8). Another advantage
is that the former opera house is reconstructed separately by COLMAP. Since this previous
building was destroyed in a fire in 1869, only a few low-quality images exist.
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Figure 12. (Left): Correct COLMAP reconstruction of all Semperoper images retrieved by LEA with
an increased number of minimum matches between image pairs. (Right): Reconstruction of the
former opera house of 1869 automatically created in the bundle adjustment in COLMAP.

The final results of the reconstruction show that SuperPoint + SuperGlue is again able
to match all relevant photographs and drawings retrieved by LEA. Visual control of the
camera poses reveals that the camera orientation parameters seem to be estimated correctly.

Again, the cameras are georeferenced. As the study area is larger, 22 corresponding
points are selected in the LOD 2 model and the sparse point cloud. The transformation
accuracy is comparable to the Taschenbergpalais dataset with a σ0 = 1.84 m and a maximum
deviation in XYZ of 7.25 m. Considering the size of the Semperoper and the distance
between the photographer and the building, this seems to be an acceptable range, though
it becomes clear that georeferencing with a LOD 2 model can often be inaccurate. The re-
sulting camera frustums in the browser and an example are shown in Figure 13.

Figure 13. (Left): Final reconstruction results as depicted in the 4D browser. (Right): Perspective
view of one image using the opacity slider to reveal the underlying 3D model of the Semperoper.

4.3. Discussion

For the presented results, no absolute accuracy is given at the moment. This is
mainly due to the fact that it is almost impossible to generate historical reference data.
Consequently, the evaluation criteria are the mean reprojection error of the COLMAP
reconstruction, the σ0 of the geometric transformation between LOD2 model and sparse
point cloud, and the visual aspects of the 4D application.
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Both experiments have led to several conclusions on the efficiency of the method and
best practices for further datasets. The developed CBIR approach, in combination with an
initial metadata search, serves as an efficient and accurate method for retrieving all exterior
views of landmarks by selecting a suitable query image. Even if several false positives are
retrieved, these are filtered out by the subsequent SfM approach in COLMAP, and usually
all camera parameters can be estimated in a single SfM model. In addition to the mentioned
datasets, the method has been tested on further landmarks in the vicinity of Dresden, and
false positives have been identified and counted (Figure 14).

Figure 14. Metadata search tag and query image for six different landmarks in the vicinity of
Dresden. Below every landmark, two examples and the absolute number of false positives re-
trieved by LEA are given. An especially high number of false positives can be seen for the smaller
Landgericht and Taschenbergpalais datasets. These occur because there are no other relevant hits in
the image repository.

All retrieved images for the respective landmarks are processed in the specified SfM
workflow and the resulting characteristics of the reconstruction can be seen in Table 3.

Table 3. Results of the SfM processing in COLMAP using the SuperGlue feature matching. For all
datasets, almost all relevant photographs can be oriented in a single reconstruction with reasonable
mean reprojection errors. For the Landgericht dataset with only 3 relevant images, reconstruction is
not possible.

Dataset Relevant
Photographs

Reconstructed
Cameras Sparse Points

Mean
Reprojection

Error

Hofkirche 296 235 56,359 1.47

Schloss
Moritzburg 270 227 26,698 1.36

Semperoper 186 186 57,937 1.35

Kronentor 104 104 34,130 1.49

Landgericht
Dresden Sachsen 3 NA NA NA

Taschenbergpalais 30 26 10,709 6.48
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The required computing time depends on the number of processed reference images.
According to empirical studies on the datasets presented above, a minimum of 20 reference
images is needed for generating a reasonable SfM model and accurate camera orientation
parameters. Significant depth information on the landmark is needed to be seen in several
of the historical photographs, especially for successful modeling of the principal distance.

In the following, the operating system used and the computation time of the standard
workflow for processing around 1000 images in the base repository are shown. LEA and the
feature-matching SuperGlue are computed on an HPC system with a single NVidia V100 GPU
with 32 GB VRAM. SfM with COLMAP, database transfer, and orientation of single new images
are run on a local machine with an i7-1165G CPU with a clock speed of 2.80 GHz. For the
Kronentor dataset, which has approximately 1040 images in the original database, the CBIR
LEA initially takes 10 min to retrieve the 104 most relevant images. These images are passed
to SuperGlue, which takes 25 min for feature point calculation and matching. The subsequent
bundle adjustment in COLMAP takes 12 min, resulting in a total processing time of 47 min for
1000 database images. Single newly uploaded images can be processed in a few minutes due
to the existing CBIR feature files and SuperGlue feature matches.

At the moment, the presented approach is mainly tested on specific urban landmarks
for which several historical are provided. As an empirical value, a SfM reconstruction could
almost always be obtained if 20 or more images of the same building view are available.
It is necessary that some of the images provide depth information of the scene to retrieve
reliable reconstructions. Using these existing reconstructions of a landmark (the saved
camera parameters in global coordinates) finally allows adding images of side streets or
non-famous buildings at a larger scale, which has not been done before.

5. Conclusions

The presented methodology allows for the automatic determination of camera parameters
for historical photographs. CBIR allows for the reliable selection of relevant images for the
subsequent SfM workflow by selecting one representative query image of a landmark. Using
SuperPoint + SuperGlue feature-matching enables finding similar points between image pairs
with large radiometric and geometric differences as well as filtering out images that do not
belong to the building. For larger image datasets, it is recommended to increase the minimum
number of matches between single image pairs in order to avoid noisy 3D models generated by
COLMAP. The workflow was tested and evaluated on two buildings with different appearances,
different LODs of the 3D model, and different image numbers in the repository. In contrast
to many other works, all calculated data are stored in the database of the 4D browser. This
allows a quick search of similar images by using the pre-calculated feature vector of the CBIR.
Additionally, as the camera parameters of images in the database are known, newly uploaded
images can be used as a query for the CBIR and its camera parameters can easily be determined
in the global coordinate system using a standard photogrammetric procedure.

The restrictions of the presented pipeline, at the moment, include limited accuracy, which
is probably introduced by using LOD 2 and LOD 3 models for the transformation of the
camera poses. The deviations are especially visible at the edges and eaves of the 3D building
model. While these inaccuracies are of minor relevance in the depicted application, they
might not be acceptable for augmented reality applications. In the next step, these findings
are planned to be verified by using TLS data with superior accuracy for transformation.

Nonetheless, the presented research is an important step toward the automatic gen-
eration and storage of historical city models and camera parameters in urban cultural
heritage scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

3D three-dimensional
4D four-dimensional
GIS geographic information system
SfM Structure-from-Motion
CBIR content-based image retrieval
LOD level of detail
SLUB The Saxon State and University Library Dresden
LEA layer extraction approach
CNN convolutional neural network
pkl pickle file extension
kB kilobytes
VPD vanishing point detection
VP vanishing point
hloc hierarchical localization toolbox
TLS terrestrial laser scanning

Appendix A

The appendix contains information on how to convert the local COLMAP reconstruction
in OpenCV notation into the global coordinate frame of the 4D browser using OpenGL notation.
A COLMAP reconstruction consists of three different files containing information on the images
(images.bin), cameras (cameras.bin), and sparse point cloud (points3D.bin). For the Helmert
transformation of all available data, only the camera file is of relevance. The exterior orientation
of a camera in COLMAP is represented as a projection from the world coordinate system to
the camera coordinate system. The pose of a single camera is determined by the rotation,
using quaternions defined in the Hamilton convention R(qw, qx, qy, qz), and the translation
vector T(X, Y, Z). To derive the projection center, the quaternions have to be normalized and
multiplied with the negative translation vector (Equation (A1)).

projection center(X, Y, Z) = R(q̂w, q̂x, q̂y, q̂z) · −T(X, Y, Z) (A1)

Transformation of the rotational component of a single camera requires the derivation
of the rotation matrix ROpenCV from the original quaternions (Equation (A2)).

ROpenCV =

1 − 2qyqy − 2qzqz 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1 − 2qxqx − 2qzqz 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1 − 2qxqx

 (A2)

The resulting rotation matrix has to be further processed. First, the second and third
rows of the matrix have to be negated to follow the definition of the camera coordinate
system in OpenGL (cf. Figure A1). Secondly, the resulting rotation matrix has to be
transposed to match OpenGL’s order of elements in the rotation matrix (column-major
instead of OpenCV’s row-major definition), as shown in Equation (A3).

https://www.deutschefotothek.de/
https://www.deutschefotothek.de/
https://4dbrowser.urbanhistory4d.org/
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Figure A1. Conversion between coordinate systems: In OpenCV, the camera looks along the positive
z-axis and the y-axis points downward. In OpenGL, the camera looks along the negative z-axis, and
the y-axis points upwards.

ROpenGL = (ROpenCV ·

 1
−1
−1

)T (A3)

The local camera pose is now determined by the homogeneous synthesis of the rotation
and translation component (Equation (A4)).

poselocal =

[
Rlocal Tlocal

0 0 0 1

]
(A4)

The transformation matrix can be derived from point correspondences in both coor-
dinate systems. This geometric transformation in 3D space is called the Helmert trans-
formation, seven-parameter transformation, or similarity transformation. Least-squares
estimation is used to find this transformation matrix between these correspondences [38].

To derive the global camera poses, the local pose is simply multiplied by the transfor-
mation matrix (Equation (A5)).[

Rglobal Tglobal
0 0 0 1

]
=

[
Rtrans f ormation Ttrans f ormation
0 0 0 1

][
Rlocal Tlocal

0 0 0 1

]
(A5)
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