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Purpose: To evaluate an iterative learning approach for enhanced performance
of robust artificial-neural-networks for k-space interpolation (RAKI), when only
a limited amount of training data (auto-calibration signals [ACS]) are available
for accelerated standard 2D imaging.
Methods: In a first step, the RAKI model was tailored for the case of lim-
ited training data amount. In the iterative learning approach (termed iterative
RAKI [iRAKI]), the tailored RAKI model is initially trained using original and
augmented ACS obtained from a linear parallel imaging reconstruction. Subse-
quently, the RAKI convolution filters are refined iteratively using original and
augmented ACS extracted from the previous RAKI reconstruction. Evaluation
was carried out on 200 retrospectively undersampled in vivo datasets from the
fastMRI neuro database with different contrast settings.
Results: For limited training data (18 and 22 ACS lines for R = 4 and R = 5,
respectively), iRAKI outperforms standard RAKI by reducing residual arti-
facts and yields better noise suppression when compared to standard parallel
imaging, underlined by quantitative reconstruction quality metrics. Addition-
ally, iRAKI shows better performance than both GRAPPA and standard RAKI
in case of pre-scan calibration with varying contrast between training- and
undersampled data.
Conclusion: RAKI benefits from the iterative learning approach, which pre-
serves the noise suppression feature, but requires less original training data
for the accurate reconstruction of standard 2D images thereby improving net
acceleration.
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1 INTRODUCTION

Since its invention, MRI has become one of the most
widespread clinical diagnostic techniques nowadays. It
offers numerous benefits such as the absence of ionizing
radiation, non-invasiveness, and the capability of showing
soft tissue structures. However, MRI acquisitions can be
time consuming and the total scanning time remains a cru-
cial factor. Almost all MRI applications such as dynamic
MR angiography, perfusion MRI, or imaging of the cardiac
function require accelerated imaging to cover their typi-
cal time scales. Strategies to shorten the scan times based
on hardware modifications have reached engineering as
well as physiological limits (e.g., because of peripheral
nerve stimulations). To further decrease scan time, data
acquisition techniques based on gradient sub-encoding
were considered. Parallel imaging (PI) is nowadays the
most common acceleration strategy in clinical routine.
In PI, the MR signal is acquired simultaneously with
multiple, independent receiver coils (so-called phased
arrays1), whereas the inverse image space (also known
as k-space) is sub-sampled. Dedicated PI reconstruction
methods make use of the inherent spatial encoding capa-
bilities of the phased array to recover the full image con-
tent. They can be classified to operate either in image-
or k-space domain. Image domain methods are essen-
tially based on sensitivity encoding (SENSE)2 and recover
artifact-free images by using explicit spatial coil-sensitivity
information. GRAPPA3 is a widely used method oper-
ating in k-space and estimates missing k-space signals
by a convolution of adjacent multichannel k-space sig-
nals. The convolution filters (also known as GRAPPA ker-
nel) are calibrated by linear least-squares fit using several
fully sampled auto-calibration signals (ACS) that serve as
scan-specific training data. However, the matrix systems
in PI typically suffer from ill-conditioning at high acceler-
ation factors as the coil sensitivity encoding power is lim-
ited. The ill-conditioning produces severe noise enhance-
ment in the reconstructed images, and is therefore a major
limitation of traditional PI.

To improve the noise resilience, GRAPPA has
been generalized recently within the machine learn-
ing framework by the deep learning method robust
artificial-neural-networks for k-space interpolation
(RAKI).4 In contrast to GRAPPA, where only one con-
volution filter layer is applied for k-space interpolation,
RAKI exploits multi-layer feature extraction. In RAKI,
non-linearity is introduced by applying a non-linear acti-
vation function element-wise to the convolution-layers.
The combination of multiple convolution layers with
non-linear activation functions are essential elements
of a convolutional neural network (CNN). Similar to
GRAPPA, the neural network parameters in RAKI (i.e., the

convolution filter weights within the CNN) are calibrated
using scan-specific ACS as training data. In previous
studies, RAKI has demonstrated better performance in
comparison to GRAPPA.4–6

However, RAKI requires more training data because of
its increased parameter space, which limits its applicability
in standard 2D imaging, because the effective acceleration
is significantly decreased. For small matrix sizes and high
acceleration factors, the acquisition of the training data
may take as long as the acquisition of the undersampled
imaging data.

In the field of machine learning, a common way to deal
with limited training data includes augmentation strate-
gies.7,8 For example, images can be rotated, flipped, or
resized to generate additional training samples. However,
applying these augmentation strategies in a straightfor-
ward manner does not work for multi-channel k-space
interpolation methods such as RAKI (this is elaborated in
more detail in the Methods section). The goal of k-space
interpolation methods is to find an optimal combination
(i.e., convolution filters) of measured k-space samples to
reconstruct a missing sample. This combination strongly
depends on the specific scan-setup including coil geome-
try, slice orientation, and phase-encoding direction.9,10 For
example, the optimal convolution filters are expected to
differ between two neighboring imaging slices or between
different breathing states as the coil sensitivities have dif-
ferent profiles. Hence, RAKI is often referred to as a
scan-specific machine learning approach that does not
depend on large databases for training.

This is contrary to many deep-learning parallel imag-
ing reconstructions operating in image-space. They are
often related to traditional supervised machine learning
and generally rely on CNNs, which can be used to define
generalized regularizers. This allows for higher computa-
tional complexity compared to regularizers that are used in
classical compressed sensing,11 such as image gradient or
Tikhonov. The supervised learning process requires a set of
fully sampled raw k-space data, acquired in a phased-array
coil setup. The data is retrospectively undersampled and
forms the input of the reconstruction network. The fully
sampled data serves as the target reference image.12 There-
fore, the reconstruction parameters are learned from a
large number of raw datasets.

Although RAKI does not require large databases for
training, it cannot benefit from existing training data aug-
mentation techniques. Therefore, alternative augmenta-
tion approaches have to be developed for RAKI.

In this work, we address the issue of limited train-
ing samples in RAKI by proposing an iterative train-
ing process, termed iterative RAKI (iRAKI). We demon-
strate the flexibility of iRAKI for several 2D imaging and
reconstruction scenarios with different contrast settings,
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different calibration approaches (e.g., with pre-scan or
integrated ACS) and implementation of phase-constrained
reconstruction. Part of this work has been presented at the
annual meeting of the ISMRM 2022.13

2 METHODS

2.1 Review of RAKI

RAKI can be seen as a generalization of GRAPPA, because
it applies a multi-layer CNN instead of a single-layer con-
volution. In RAKI, the CNN parameters are trained on
ACS and applied to acquired k-space signals for interpolat-
ing missing signals. The interpolation function to obtain
signals of the nth set of evenly spaced missing lines of coil
j can be expressed by,4,12

s𝑗
(

kx, ky − n Δky
)
= g𝑗,c

({
sc
(

kx − bx Δkx,

ky − R by Δky
)}

bx∈[−Bx ,Bx],by∈[−By,By],c∈[1,Nc]
)
,

(1)

where g𝑗,c stands for the layer-wise convolution of sig-
nals with non-linear activation in the receptive field of
the CNN, R denotes the undersampling rate and NC
denotes the coil number. The extent of the receptive field
is specified by the parameters Bx and By in readout and
phase-encoding direction, respectively. The parameters Bx
and By are effective convolution filter sizes and depend on
the filter sizes of each single layer. A detailed description of
Equation (1) for this work is given in the following section.

2.2 Tailored RAKI network

In this work, RAKI was tailored for improved performance
with limited amount of training data. The network archi-
tecture used in this work is depicted in Figure S1A. We
implemented a single CNN for simultaneous multi-coil
k-space interpolation, rather than assigning each single
coil one CNN as implemented in original RAKI. In this
way, the correlations and interactions between all coils are
preserved. Furthermore, instead of performing real-valued
convolution, we implemented its complex-valued equiv-
alent.14,15 As nonlinear activation function, we used
the leaky variant of the complex rectifier linear unit
(CReLU)15,16:

CLeakyReLU(z) = LeakyReLU(Re{z})
+i LeakyReLU(Im{z}),

(2)

with Re{z} and Im{z} denoting the real and imaginary
part of signal z, respectively, i denoting the imaginary

unit, and LeakyReLU is the leaky variant of the stan-
dard real-valued rectifier linear unit.17 Note, that the total
number of hidden layers, the assigned channel-number
for each layer, the learning rate as well as the slope for
CLeakyReLU were determined heuristically in a hyper-
parameter search, because currently there are no existing
methods for optimally tuning the network-architecture in
deep learning applications.18,4 Especially the convolution
kernel sizes were tailored for the case of a limited training
data amount. The hyperparameter optimization resulted
in the following network architecture: The input layer s1
takes the complex-valued, zero-filled multi-coil k-space
data, resulting in Nc total input channels, with Nc being the
number of receiver coils. The hidden layers s2 and s3 are
then calculated through linear, complex-valued convolu-
tion, and an element-wise activation using a leaky complex
rectifier linear unit CLeakyReLU: s2 =CLeaky ReLU(s1 ⊛

W1
C) and s3 = CLeaky ReLU(s2 ⊛ W2

C), with the complex
convolution matrix W1

C of size ky × kx = 2 × 5 and W2
C of

size ky × kx = 1 × 1 in phase-encoding and readout direc-
tion, respectively. The first hidden layer s2 is assigned 256
channels and the second hidden layer s3 is assigned 128
channels. The output layer s4 predicts all missing points
across all coils simultaneously, therefore having (R − 1) ×
Nc channels, where R denotes the undersampling rate. It
is activated with the identity function 𝛾(x) = x, therefore,
reading s4 = 𝛾(s3 ⊛ W3

C), with W3
C of size ky × kx = 1 × 5.

The mean-squared-error (MSE) of signal prediction y to
its groundtruth ŷ was used as cost function L(y, ŷ) for
training,

L(y, ŷ) = 1
N

( N∑

i=0

||yi − ŷi
||
2

)

, (3)

with N denoting the total number of training sam-
ples. The adaptive moment estimation (Adam)
optimizer19 was chosen as optimization algorithm to min-
imize the mean-squared-error of estimated k-space data
to its ground-truth. Bias terms were excluded in the CNN,
because they may perturb k-space scaling.4 The CNN
was implemented within the PyTorch package 1.8.0.20

To obtain the final reconstructed image, the interpolated
k-spaces are Fourier-transformed and combined by root
sum-of-squares.

We compared our tailored RAKI implementation
against the publically available original implementation
on 200 datasets assembled from the fastMRI neuro
database21 (see section “2.4.1 Datasets” for details). The
datasets were fourfold retrospectively undersampled, and
22 ACS lines were used for evaluation.

Note that the GRAPPA k-space reconstruction via con-
volution can be formulated as sint = 𝛾

(
s1 ⊛ WG

C
)
, where

sint denotes the interpolated k-space signals, s1 denotes
the undersampled, multi-coil k-space data, WG

C is the



DAWOOD et al. 815

GRAPPA kernel, and 𝛾 is the identity function assigned
to the only convolution layer. Therefore, the model in
GRAPPA can be obtained from the RAKI model by
omitting the hidden layers, which are used for abstract
multi-layer feature extraction of k-space signals. There-
fore, essentially, GRAPPA can be seen as a reduced ver-
sion of RAKI.4 All reconstructions were performed on
a high-performance-computing-cluster with Intel Xeon
Gold 6134 (CPU).

2.3 Iterative training

Because k-space interpolation is based on correlations
between adjacent points and redundancies induced by
coil sensitivity profiles, the effective convolution fil-
ter size determines the extent in which the k-space
footprint of spatially varying coil sensitivity profiles is
captured.

Previous works have shown that a larger kernel size in
general is beneficial for k-space interpolation as it yields
improved image reconstruction.22 However, the use of
a larger kernel requires more ACS. The common strat-
egy to handle the issue of limited training data is to
use data augmentation techniques to synthetically enlarge
the effective amount of training data. Sandino et al.23

trained unrolled neural networks on augmented 2D car-
diac cine MRI data in image space (e.g., by random
flipping along readout- and phase-encoding direction) or
random circular translations along phase-encoding direc-
tion. However, these augmentation techniques do not
work for k-space interpolation in standard 2D imaging,
because the multi-channel k-space correlations must be
preserved. The phase-encoding direction must be coherent
with the underlying coil geometry for estimation of con-
volution filters. However, an image rotation, −stretching
or –compression comes along with corresponding oper-
ations on the coil geometry. Therefore, the coherence of
the convolution filter and k-space points is lost, as the
underlying basis functions to be combined change as well.
Therefore, one cannot find the searched filter param-
eters with the augmented data for standard Cartesian
undersampling.

For the case of simultaneous multi-slice (SMS) imag-
ing, Nencka et al.24 demonstrated an augmentation strat-
egy for specialized RAKI networks. In SMS, additional
acceleration is achieved by the simultaneous excitation
of multiple slices via dedicated RF-pulses. To separate
the aliased slices, RAKI has to be adapted to this spe-
cific reconstruction problem. To improve the separation of
aliased slices, Nencka et al. generated additional synthetic
k-space signals via linear combination of k-space observa-
tions for subsets of the target slices in the excited package.

For standard 2D imaging, however, this approach is not
applicable because of the lack of multiple slice excitations.

As illustrated in Figure 1, the proposed iterative train-
ing in iRAKI includes different amounts of original and
augmented ACS, as well as different convolution filter
sizes. The goal is to enhance RAKI image quality when
only a reduced amount of original acquired ACS is avail-
able. The training in iRAKI is a three step procedure.
In a first step, an initial GRAPPA reconstruction is per-
formed using 18 and 22 original ACS lines for R = 4 and
R = 5, respectively, to obtain augmented ACS (includ-
ing re-inserted original ACS). In this work, GRAPPA is
assigned a kernel size 2 × 5 and Tikhonov regularization
is applied (singular values less than or equal to λ * σ
max are set to zero, with σ max denoting the largest singu-
lar value of the calibration matrix, and λ = 1e–4). In the
second step, N = 65 central lines of the initial GRAPPA
k-space reconstruction (including both re-inserted origi-
nal and augmented ACS) are used to train RAKI initially.
The first hidden layer in RAKI is assigned a filter size
4× 7 in phase-encoding (PE)- and readout (RO)-direction,
respectively. Inspired by iterative-GRAPPA25, subsequent
iteration steps follow to refine the CNN weights in the third
step. In each iteration, the CNN weights are transferred,
and further optimized using N′ = 65 central lines (includ-
ing both re-inserted original and augmented ACS) from the
RAKI reconstruction of the previous iteration. The initial
learning rate 𝜂0 passed to the Adam optimizer is decreased
by a constant factor Δ𝜂 after each subsequent iteration
step. Therefore, the learning rate at iteration step number
𝑗 reads 𝜂𝑗 = 𝜂0 − 𝑗 ⋅ Δ𝜂. In this work, we set empirically
𝜂0 = 5e − 3 and Δ𝜂 = 2e − 4 for R = 4, and Δ𝜂 = 3e − 4
for R = 5. We chose Δ𝜂 heuristically such that the cost
function (MSE) does not diverge at late iteration steps,
ensuring robustness in the iterative training procedure.
Accordingly, the total number of iterations Niter amounts
to Niter = 𝜂0∕Δ𝜂. The final optimized CNN interpolates the
multi-coil sub-sampled k-spaces simultaneously, which
are then Fourier-transformed to image domain, and com-
bined via root sum-of-squares coil combination to obtain
the final reconstructed image.

2.4 Experiments

2.4.1 Datasets

To study the performance of iRAKI across a larger cohort,
it was tested on 10 fully sampled datasets randomly
selected from the fastMRI21 neuro-database, with the first
five slices reconstructed in each case. Four different con-
trasts (T1, T1post, T2, and fluid attenuated inversion recov-
ery [FLAIR]) were considered, resulting in a total of 200
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F I G U R E 1 Workflow of iRAKI. RAKI is initially trained with augmented ACS obtained from an initial GRAPPA reconstruction using a
kernel size 2 × 5 (phase-× readout-direction). The first hidden layer in RAKI is assigned a convolution filter size 4 × 7. From the initial
GRAPPA reconstruction, N = 65 central k-space lines are used as training samples for RAKI training. In subsequent iteration steps, the CNN
weights are further optimized using N′ = 65 central lines from the RAKI reconstruction of the previous iteration step as ACS. Original ACS
are inserted after each reconstruction step. The learning rate is decreased by a constant factor after each iteration step, which determines the
total iteration number, given an initial learning rate. iRAKI, iterative robust artificial-neural-networks for k-space interpolation; ACS,
auto-calibration signals

slices for evaluation. For training, 18 and 22 original ACS
lines were used for four- and fivefold retrospective under-
sampling, respectively.

Additionally, three in-plane brain imaging datasets
were acquired on healthy volunteers at 3T (Siemens Mag-
netom Skyra, Siemens Healthineers) using a 20-channel
head–neck coil array, with only 16 coils activated. The
study was approved by our institutional review board.
Written informed consent was obtained before each in vivo
study.

One dataset is referred to as neuro1, acquired using
FLASH with T1-weighting (TR-/TE: 250/2.9 ms, flip
angle: 70◦, FOV: 230× 230 mm2, matrix-size: 320× 320,
slice-thickness: 3.0 mm).

Furthermore, a T1- and T2-weighted neuro imaging
was carried out subsequently (referred to as neuro2) using
Turbo-Spin-Echo with the following imaging parame-
ters for T1-weighting: TR-/TE: 500/10.0 ms, flip angle:
90/180◦, FOV: 193× 220 mm2, matrix-size: 224× 256,
slice-thickness: 4.0 mm. The T2-weighting imaging param-
eters read: TR-/TE: 4500/102.0 ms, flip angle: 90/180◦,
FOV: 193× 220 mm2, matrix-size: 230× 256, slice-
thickness: 4.0 mm

This experiment was carried out on another subject
(neuro3) using Turbo-Spin-Echo with a fat saturation
module for the T1-weighted image with following imaging
parameters: TR-/TE: 600/6.4 ms, flip angle: 90/180, FOV:

199× 220 mm2, matrix-size: 320× 320, slice-thickness:
4.0 mm. The T2-imaging parameters read: TR-/TE:
4500/95 ms, flip angle: 90/180, FOV: 200× 220 mm2,
matrix-size: 320× 320, slice-thickness: 4.0 mm.

A fourth dataset (referred to as neuro4) was acquired
using FLASH with T1-weighting (TR/TE: 250/3.1 ms, flip
angle: 70, FOV: 195× 250 mm2, matrix-size: 250× 320,
slice-thickness: 4.0 mm). This scan was prospectively
undersampled at rate 4. A pre-scan with PD-weighting
(matrix size: 64× 64) was acquired beforehand to study
the performance of iRAKI in case of strongly varying con-
trast information (see section “2.4.3 Pre-scan calibration”
below).

2.4.2 In-line calibration

All datasets were retrospectively undersampled, and
18 and 22 ACS lines were used as training data for
four- and fivefold uniform undersampling, respectively.
Original ACS were re-inserted into the final recon-
structed k-space. To provide comparable results to
image-based deep-learning approaches, both the reference
and the reconstructed image were masked to compute
numeric metrics such as normalized mean squared error
(NMSE), structural-similarity-index-measure (SSIM)26

and peak-signal-to-noise-ratio (PSNR). The masks were
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derived from the standard coil mapping procedure with
ESPIRiT.27 In addition, all image reconstructions were
evaluated qualitatively via error images.

The model complexity of the CNN in RAKI is signif-
icantly determined by its convolution filter sizes. Analo-
gous to GRAPPA, the choice of the filter sizes affects the
total number of available training data, given a fixed num-
ber of ACS lines.22 As both complexity and total number
of training data are crucial factors for the performance
of the CNN, a more detailed evaluation for this trade-off
is obligatory. For this purpose, we vary the number of
ACS lines between NACS = 15, … , 100 with step size 5,
and assign two different convolution filter sizes to the
first convolution filter in the CNN (denoted as W1

C in
section 2.2): ky × kx = 2 × 5 and 4 × 7, respectively. Image
reconstruction quality is assessed qualitatively via error
images and quantitatively via the NMSE of the magnitude
image with respect to (w.r.t.) the fully sampled reference
image. For comparison, the NMSE of the corresponding
GRAPPA reconstruction is evaluated. In all cases, to inves-
tigate the reconstruction performance only, ACS were not
re-inserted into the final reconstructed k-space.

2.4.3 Pre-scan calibration

In the in-line calibration acquisition scheme, the
scan-specific training data used to calibrate the GRAPPA
kernel and the model weights in iRAKI can be re-inserted
into the reconstructed k-spaces, because the ACS are an
integral part of the image scan. Alternatively, the train-
ing data can be obtained by acquiring a fully sampled,
low resolution pre-scan before the actual undersampled
image scan series. Because no contrast information is
needed in the standard parallel imaging, the pre-scan
sequence parameters like TR- and TE can be adjusted to
maximize SNR, or to minimize the total acquisition time.
The pre-scan approach is also useful for the acquisition
of an image series with high temporal resolution, or in
combination with sequences that require uniform under-
sampling (e.g., Echo-Planar-Imaging). However, for these
cases, the training data cannot be re-inserted into to the
reconstructed k-space of the actual image scan. Therefore,
the performance of iRAKI needs to be investigated sep-
arately for pre-scan ACS with different contrast. For this
purpose, we acquired a proton-density weighted pre-scan
of size 64 × 64 in PE-and RO-direction, which was used to
calibrate GRAPPA, RAKI, and iRAKI. The training pro-
cedure in iRAKI with pre-scan calibration setting differs
from in-line calibration setting described in section 2.3
“Iterative training” only by omitting the re-insertion of the
original training data back into reconstructed k-spaces.
Please note that the pre-scan provides 64 ACS lines.

However, the number of readout points is also reduced to
64 (compared to, e.g., 320 readout points in the imaging
scans). The calibrated models were then used to recon-
struct a subsequently acquired, fourfold prospectively
undersampled 2D neuro image scan with T1-weighting
(referred to as neuro4).

2.4.4 Phase-constrained reconstruction

The virtual conjugate coils (VCC) concept28 has been intro-
duced to improve parallel MRI performance by using con-
jugate symmetry properties of the k-space, and can be seen
as a phase-constrained reconstruction technique. From
actual physical coils, additional virtual coils are gener-
ated, which contain conjugate symmetric k-space signals.
Thereby, additional image phase and coil phase informa-
tion is used to improve reconstruction conditions. The
VCC concept has been presented as a practical approach
especially in combination with GRAPPA, because no
explicit spatial phase information is required. In this work,
we study the influence of VCCs on the reconstruction
quality of RAKI and iRAKI in comparison to GRAPPA.
The additional k-space signals from a virtual coil can be
generated from an actual coil h according to,

sh+Nc(k) = s∗h(−k), h = 1 … Nc, (4)

where Nc denotes the number of actual physical coils in
the phased array, k denotes a k-space vector and s∗h is the
complex conjugate signal assigned to coil h. The stack of
virtually received k-spaces therefore contains two times as
many coils as actual coils. The reconstruction process is
carried out by first generating the virtual coils for both ACS
and undersampled data according to Equation (4), and
subsequently performing a k-space reconstruction using a
standard GRAPPA-, RAKI- or iRAKI reconstruction. The
resulting images of the physical coils are then combined
using a root sum-of-squares combination.

2.4.5 Comparison to end-to-end variational
network

We compared the performance of iRAKI to an image-based
variational network (VarNet)29 for two scenarios:

• Single anatomy: VarNet training on knee datasets,
image reconstruction of undersampled knee datasets
with matching contrast.

• Cross-anatomy: VarNet training on knee datasets,
image reconstruction of undersampled neuro datasets
with different contrast (i.e. scans from the fastMRI
cohorts).



818 DAWOOD et al.

We used a VarNet from BART30 that was pre-trained
on 20 uniformly undersampled (R = 4) knee datasets (10
slices each) with proton-density weighting. The training
data was assembled from knee datasets of proton-density
weighting of the original VarNet publication.29 Coil sen-
sitivity maps were computed with ESPiRIT27 using 27
ACS lines. The same undersampled datasets were recon-
structed with iRAKI using 27 original ACS lines for train-
ing.

3 RESULTS

3.1 Network tailoring

The tailored RAKI model was compared to the original
RAKI implementation on a total of 200 datasets assembled
from the fastMRI neuro database. At fourfold retrospec-
tively undersampling and 22 ACS lines as training data,
our tailored variant achieved NMSE-medians reduced
by 33.51%, 43.21%, 34.53%, and 27.98% for T1, T1post,
T2, and FLAIR-weighting, respectively (Figure S1B). On
a visual scale, the tailored network strongly suppresses
residual artifacts compared to the original implementa-
tion (Figure S1C). Based on these results, we consider the
tailored variant as the favored model for this manuscript,
and all subsequently shown RAKI-reconstructions
were obtained from the tailored RAKI implementation
described in the section “2.1. Review of RAKI” and
denoted as standard RAKI.

3.2 Experiments

3.2.1 Training data amount

Figure 2 depicts the NMSE of GRAPPA, RAKI, and iRAKI
at fourfold retrospectively undersampling of the neuro1
dataset in dependence of the number of ACS lines in range
15 to 100. Both GRAPPA and RAKI were evaluated with
two different kernel sizes (2× 5 and 4× 7 in PE×RO direc-
tion). Although standard RAKI deteriorates rapidly for
ACS amounts <20 lines at both kernel sizes, we notice
that iRAKI is much more robust in the limit of only a few
ACS lines (note that training data is not re-inserted). For
ACS amounts exceeding 50 lines, the larger kernel size in
standard RAKI outperforms the smaller kernel size, which
is the reason why the former is favored in iRAKI. On a
visual scale (Figure 3), we notice that iRAKI trained with
15 original ACS lines yields a reconstruction quality that
is comparable to standard RAKI trained with 100 origi-
nal ACS lines (also shown by numeric results from top to
bottom: NMSE, PSNR, and SSIM). For all configurations

F I G U R E 2 The NMSE of GRAPPA, standard RAKI and
iRAKI in dependence of the number of ACS lines used as training
data for fourfold undersampled neuro1 dataset. GRAPPA and
standard RAKI were evaluated for two kernel sizes assigned to the
first convolution layer (2× 5 and 4× 7 in phase-encoding × readout
direction). ACS were not re-inserted into reconstructed k-spaces.
Corresponding image reconstructions are included in Supporting
Material S1. NMSE, normalized mean-squared-error; RAKI, robust
artificial-neural-networks for k-space interpolation; iRAKI, iterative
RAKI; ACS, auto-calibration signals

evaluated in Figure 2, corresponding image reconstruc-
tions with error maps and quantitative metrics have been
compiled in a movie, which can be found in Supporting
Material S1. The movie underlines that residual artifacts,
which appear in standard RAKI at low ACS amounts (<25
lines) are being gradually suppressed with successively
increasing ACS amount.

3.2.2 In-line calibration

Figure 4 shows boxplots of the NMSE and SSIM metrics for
GRAPPA, RAKI, and iRAKI evaluated on fastMRI cohorts
with T1, T1post, T2, and FLAIR contrasts. Although
GRAPPA is generally outperformed for both R = 4 and
R = 5, iRAKI enhances standard RAKI as it yields NMSE
medians systematically reduced by 26.4%, 28.7%, 26.2%,
and 21.7% for T1, T1post, T2, and FLAIR, respectively, for
R = 4 and 28.3%, 36.4%, 32.6%, and 30.4% for R = 5. The
SSIM medians are systematically enhanced by 1.5%, 1.4%,
1.7%, 1.6% (R= 4) and 2.3%, 2.6%, 3.4%, 3.7% (R= 5) for T1,
T1post, T2, and FLAIR, respectively.

Figure 5 depicts exemplary GRAPPA, standard RAKI
and iRAKI image reconstructions for all evaluated con-
trasts from the fastMRI cohorts at fourfold retrospectively
undersampling and 18 ACS lines (see Figure 6 for fivefold
retrospectively undersampling and 22 ACS lines). We note
that GRAPPA, as expected, suffers from pronounced noise
enhancement. Standard RAKI provides noise-resilience,
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F I G U R E 3 GRAPPA, standard RAKI and iRAKI in comparison at 15 and 100 ACS lines as training data (left- and right-hand side,
respectively) using a convolution kernel of size 4× 7 (phase-× readout-direction) assigned to the first convolution layers. Note that the
depicted images correspond to samples shown in Figure 2. Error maps with respect to the fully sampled reference image are shown at the
bottom including NMSE, PSNR, and SSIM difference-metrics. RAKI, robust artificial-neural-networks for k-space interpolation; iRAKI,
iterative RAKI; ACS, auto-calibration signals; NMSE, normalized mean-squared-error; PSNR, peak-signal-to-noise-ratio; SSIM,
structural-similarity-index-measure

F I G U R E 4 Boxplots of NMSE (top) and SSIM (bottom) for GRAPPA, standard RAKI and iRAKI evaluated on cohorts assembled from
the fastMRI neuro database. Four different contrast were considered (T1, T1post, T2 and FLAIR), and 50 datasets per contrast were
retrospectively undersampled at rate 4 (left) and rate 5 (right) using 18 and 22 ACS lines, respectively. Exemplary image reconstructions are
depicted in Figure 5 (R = 4) and Figure 6 (R = 5). NMSE, normalized mean-squared-error; SSIM, structural-similarity-index-measure; RAKI,
robust artificial-neural-networks for k-space interpolation; iRAKI, iterative RAKI; FLAIR, fluid attenuated inversion recovery; ACS,
auto-calibration signals
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F I G U R E 5 GRAPPA, standard RAKI and iRAKI reconstructions for exemplary sample datasets from evaluated fastMRI cohorts (see
Figure 4, from left to right, and top to bottom: T1, T1post, T2 and FLAIR). Error maps are shown at the bottom and include NMSE, PSNR, and
SSIM w.r.t. the fully sampled reference image. Datasets were fourfold retrospectively undersampled, and 18 ACS lines were used as training
data (re-inserted into reconstructed k-space). RAKI, robust artificial-neural-networks for k-space interpolation; iRAKI, iterative RAKI;
FLAIR, fluid attenuated inversion recovery; NMSE, normalized mean-squared-error; PSNR, peak-signal-to-noise-ratio; SSIM,
structural-similarity-index-measure; ACS, auto-calibration signals

however, suffers from residual artifacts because of limited
training data amount for both acceleration factors. iRAKI,
however, incorporates desirable features of both GRAPPA
and standard RAKI by suppressing noise enhancement
and residual artifacts, respectively, resulting in improved
visual appearance and outperforming NMSE, PSNR, and
SSIM for all depicted examples.

Similar outcomes are obtained from three acquired
in-plane imaging experiments neuro1–3, for both T1-and
T2-weighting and R = 4 and R = 5 (Figures S2–S6, respec-
tively, for image reconstructions with error maps and
numeric difference metrics).

3.2.3 Pre-scan calibration

Figure 7 depicts results of GRAPPA, standard RAKI,
and iRAKI using the pre-scan as training data to recon-
struct the fourfold accelerated neuro4 dataset. Note that
the contrast information in the pre-scan (proton-density)

varies from that of the undersampled image scan (T1).
We observe that standard RAKI is deteriorated because
of contrast-loss artifacts (contrast of ACS data sneaks into
reconstruction); however, it yields less noise-amplification
in comparison to GRAPPA, which maintains contrast.
Moreover, iRAKI does not reveal “contrast-loss” artifacts
appearing in standard RAKI, but preserves its improved
noise resilience in comparison to GRAPPA, without the
cost of blurring artifacts. We emphasize that iRAKI com-
bines advantages of both GRAPPA and RAKI (more natu-
ral contrast and stronger noise suppression, respectively),
therefore, providing an improved visual appearance.

3.2.4 Phase-constrained reconstruction

Figure 8 depicts comparisons of iRAKI with iRAKI includ-
ing phase constraints via the VCC concept (iRAKI-VCC)
using the T1-neuro1 and the T2-neuro3 datasets. For both
four- and fivefold undersampling using 18 and 22 original
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F I G U R E 6 GRAPPA, standard RAKI and iRAKI reconstructions for exemplary sample datasets from evaluated fastMRI cohorts (see
Figure 4, from left to right, and top to bottom: T1, T1post, T2 and FLAIR). Error maps are shown at the bottom and include NMSE, PSNR, and
SSIM w.r.t. the fully sampled reference image. Datasets were fivefold retrospectively undersampled, and 22 ACS lines were used as training
data (re-inserted into reconstructed k-space). RAKI, robust artificial-neural-networks for k-space interpolation; iRAKI, iterative RAKI;
FLAIR, fluid attenuated inversion recovery; ACS, auto-calibration signals

F I G U R E 7 A pre-scan (top row) served
as training data for image reconstructions of
prospectively fourfold undersampled image
scan (neuro4) via GRAPPA, standard RAKI and
iRAKI (bottom row). Because of the different
contrasts, the training data from the pre-scan
was not re-inserted after image reconstructions.
RAKI, robust artificial-neural-networks for
k-space interpolation; iRAKI, iterative RAKI
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F I G U R E 8 iRAKI in comparison to phase-constrained iRAKI via the VCC concept (iRAKI-VCC) at four- and fivefold retrospective
undersampling (top and bottom row, respectively), evaluated on the T1 neuro2- (left column) and T2 neuro3 datasets (right column). Error
maps are shown at the bottom and include NMSE, PSNR, and SSIM w.r.t. the fully sampled reference image. iRAKI, iterative robust
artificial-neural-networks for k-space interpolation; VCC, virtual-conjugate-coils; NMSE, normalized mean-squared-error; PSNR,
peak-signal-to-noise-ratio; SSIM, structural-similarity-index-measure

ACS lines, respectively, iRAKI-VCC enhances standard
iRAKI as it yields improved suppression of both resid-
ual artifacts and noise-enhancement, leading to greatly
improved visual appearance and improved NMSE, PSNR,
and SSIM.

Note that comparisons of GRAPPA, standard RAKI,
and iRAKI with and without VCC included for all three
datasets neuro1-neuro3 are depicted in the Figures S2–S6,
respectively. We underline that standard RAKI-VCC
provides improved noise resilience in comparison to
GRAPPA-VCC; however, it still reveals residual artifacts,
which are not apparent in iRAKI-VCC.

3.2.5 Comparison to image-based
end-to-end variational network

Figure 9A depicts a fourfold retrospectively undersam-
pled T1 knee dataset reconstructed using iRAKI, and a
variational network (VarNet). The VarNet was trained
on a database of knee datasets with matching con-
trast. Although both iRAKI and the VarNet provide high

quality reconstructions, the VarNet shows improved
denoising effects, because it reveals a better noise
resilience in comparison to iRAKI, also indicated by
improved quantitative metrics.

However, using the same VarNet to reconstruct a four-
fold retrospectively undersampled dataset from the T1post
fastMRI neuro database, which represents a cross-domain
task regarding anatomy and contrast of the target image,
we occasionally observe the emerge of severe residual arti-
facts, as exemplary depicted in Figure 9B. Moreover, iRAKI
generally retains its improved reconstruction quality, and
shows high flexibility across different anatomy- or con-
trast information. The above mentioned findings were also
observed for datasets of the fastMRI cohorts with T1-, T2-,
and FLAIR-weighting (see Figure S7 for exemplary image
reconstructions).

4 DISCUSSION

This study aimed to enhance the deep-learning method
RAKI in the limit of only few ACS lines in standard 2D
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F I G U R E 9 Comparison between iRAKI
and VarNet (A) with matching anatomy and
contrast in training- and reconstructed data and
(B) with non-matching anatomy and contrast.
Error maps are shown at the bottom and
include NMSE, PSNR, and SSIM w.r.t. the fully
sampled reference image. iRAKI, iterative
robust artificial-neural-networks for k-space
interpolation; VarNet, variational network;
NMSE, normalized mean-squared-error; PSNR,
peak-signal-to-noise-ratio; SSIM,
structural-similarity-index-measure

imaging. To this end, a tailored RAKI model was evaluated
in a first step. Compared to the original RAKI model, it
achieved significantly lower NMSE compared to the orig-
inal RAKI model on test data from the fastMRI neuro
database for less than 30 ACS lines. However, the per-
formance of tailored RAKI significantly declines when
the number of ACS lines is further decreased. An itera-
tive training approach is proposed that relies on an initial
GRAPPA reconstruction for training data augmentation
and iterative refining of the CNN weights using original
and augmented ACS. To evaluate its robustness, iRAKI
was tested on 200 different datasets assembled from the
fastMRI neuro database. Using only 18 and 22 ACS lines
for R = 4 and R = 5, respectively, it yields systematically
enhanced NMSE and SSIM for different contrast settings
in comparison to GRAPPA and standard RAKI. On a visual
scale, iRAKI suppresses residual artifacts apparent in

standard RAKI, whereas showing less noise-enhancement
than GRAPPA. Therefore, iRAKI incorporates beneficial
features from both methods.

The improved performance of iRAKI can be attributed
to several aspects. First, the augmented ACS data allows
for the use of a larger convolution filter size and helps
to better capture the extended k-space “footprint” of the
coil sensitivities.9,10,22 Second, the augmented ACS data
gain in accuracy after each reconstruction step. Analo-
gous to SPIRiT,31 both original and reconstructed data are
used during k-space interpolation. After each iteration, the
reconstructed samples become more accurate after apply-
ing the reconstruction kernel and re-inserting the original
measured data. We emphasize that in iRAKI the original
ACS lines are re-inserted after each iteration step, and the
augmented ACS provide additional information. In con-
trast to SPIRiT, the convolution weights are refined after
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each iteration in iRAKI. Decreasing the initial learning
rate after each iteration ensures further robustness.

GRAPPA has been chosen as initial reconstruction,
because it has proven to be robust with only few ACS lines
and has only few reconstruction parameters. In this work,
the number of central lines N from the initial GRAPPA
reconstruction for training data augmentation was chosen
empirically. In general, N should be chosen sufficiently
large to benefit from the increased filter size assigned to the
first hidden layer in tailored RAKI. However, we observed
that the initial RAKI reconstruction appears noisier the
larger N is chosen. The exact reason for this behavior is not
yet clear. This may be because of an increased noise con-
tamination as the amount of the GRAPPA-reconstructed
training data increases compared to the amount of original
training data. Alternatively, RAKI could exhibit a similar
paradoxical behavior as GRAPPA regarding the impact of
the amount and SNR of training data on the image qual-
ity. Therefore, further research is required to automatically
determine an optimized amount of augmented ACS lines.

The scope of this work was to improve RAKI by iter-
ative training. Another approach for improving RAKI
includes residual RAKI6 (rRAKI) that trains non-linear
CNNs jointly with a linear convolution implemented via a
skip connection. In our experience, however, rRAKI suf-
fers from similar limitations regarding the amount of train-
ing data. Exemplary reconstructions with varying number
of ACS lines are presented in Supporting Material S9. Sim-
ilar to original RAKI, rRAKI performs well with more than
40 ACS lines at R = 4. However, for typical matrix size of
320× 320 (e.g., often used in the fastMRI database), the
effective acceleration factor increases from 2.9 to 3.4 when
the number of ACS lines is reduced from 40 to 18.

Although GRAPPA can further be improved by iter-
ative training, its performance is limited by the lin-
earity. As shown in Figure S8, iRAKI outperformed
iterative-GRAPPA for a wide range of imaging scenarios.

iRAKI relies on an initial GRAPPA reconstruction for
training data augmentation. It is worth noting that this
approach has also been proposed, but not demonstrated
in the original RAKI article.4 An initial parallel imaging
reconstruction is also used in scan-specific artifact reduc-
tion in k-space (SPARK),33 where a CNN is used to correct
for k-space artifacts of the initial reconstruction to achieve
better reconstruction quality. Future investigations may
focus on the evaluation of an initial iRAKI recon-
struction in SPARK to further enhance reconstruction
quality.

Another approach based on an initial fast recon-
struction is inspired by low-rank matrix modeling of
local k-space neighborhoods (LORAKS)34 and RAKI,
and is termed LORAKI.35 LORAKI translates the linear
auto-calibrated-LORAKS method into a nonlinear deep

learning method. LORAKI admits a wide range of sam-
pling patterns, and even calibrationless patterns are pos-
sible if synthetic ACS data is generated with a fast initial
reconstruction. However, it requires tuning of multiple
parameters (e.g., rank, kernel sizes, and regularization
parameters) and needs VCCs to capture the LORAKS
phase constraints. In contrast, iRAKI is more flexible
in terms of phase-constraints, and the use of VCCs is
optional. It is worth noting that k-space inconsistencies
such as non-periodic flow or motion may prevent the use
of phase-constraints.

Additional flexibility of iRAKI stands in the varying
contrast information between calibration- and undersam-
pled data, because it prevents contrast contamination in
standard RAKI (also shown in Dawood et al.36), while
preserving its noise-resilience. In this work, it was demon-
strated that iRAKI provides better image quality than
GRAPPA and standard RAKI for the case of pre-scan cali-
bration, which is often used in parallel imaging.

4.1 Limitations and outlook

The performance of iRAKI was evaluated for standard
2D imaging so far. Its applicability for 3D imaging,37,38

wave-encoding,39 or simultaneous multi-contrast recon-
struction (JVC-GRAPPA)40 needs to be investigated in
future works.

One drawback of iRAKI is the increased reconstruction
time. The total training time in iRAKI amounts to ≈ 180
s and≈ 170 s for R = 4 and R = 5, respectively, exceed-
ing standard RAKI (≈12 s and ≈20 s) and GRAPPA (<15
s both R = 4 and R = 5). Future work should focus on
optimizing the training speed to apply iRAKI in clinical
applications.

The performance of iRAKI is expected to depend on
the reconstruction quality of the initial GRAPPA recon-
struction. A general acceleration factor limit for the appli-
cation of iRAKI cannot be specified, because the quality
of the initial GRAPPA reconstruction depends on the base
signal-to-noise ratio and the g-factor.2,41 In our experience,
iRAKI yields better image quality than GRAPPA and stan-
dard RAKI at R = 6, but the reconstructed images may
not be of diagnostic value because of residual artifacts and
noise enhancement (Figure S9). However, one should keep
in mind that the acquisition of many ACS lines comes
along with decreases overall acceleration. Depending on
the matrix size of the final image, it may be faster to scan
with fourfold undersampling and 18 ACS lines instead of
sixfold undersampling and 48 ACS lines.

In this work, it was also investigated whether iRAKI
yields comparable results to the image-based varia-
tional networks. The variational network showed better
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denoising performance in comparison to iRAKI, when
it is trained on a database, whose anatomy and contrast
information matches to the target undersampled image.
However, as shown in this work, VarNets may suffer
from residual artifacts when this condition is not ful-
filled, in accordance to previous findings.42 In case of the
development of novel MR sequences or the examination
of uncommon anatomies, there may be a lack of large
databases for end-to-end network training. For these sit-
uations, scan-specific iRAKI may be beneficial because it
does not require large databases.

5 CONCLUSION

The number and contrast of training samples are essential
for standard RAKI reconstruction quality. Given a limited
training data amount, the proposed iRAKI combines ben-
eficial features of GRAPPA and standard RAKI and yields
reconstructions with suppression of both noise and resid-
ual artifacts for standard 2D imaging. It shows flexibility
in terms of different calibration approaches (pre-scan or
integrated ACS) and implementation of phase-constrained
reconstruction.
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Figure S1 (A) Architecture of the tailored convolutional
neural network (CNN) used for RAKI implementation in
this work. Convolution is performed with complex-valued
filter matrices. The input-layer takes in the zero filled,
k-space data, therefore, having Nc channels, with Nc denot-
ing the number of receiver coils. The first and second
hidden layers are assigned 256 and 128 channels, respec-
tively. The output layer predicts all missing k-space data
across all coils, therefore, having (R − 1) × Nc channels,
with R denoting the undersampling rate. (B) Boxplots of
the normalized mean-squared-error (NMSE, top) and the
structural similarity index measure (SSIM, bottom) for
GRAPPA, original RAKI and tailored RAKI evaluated on
cohorts from the fastMRI neuro database (50 datasets for
each T1, T1post, T2, and FLAIR). (C) GRAPPA, original
RAKI and tailored RAKI in comparison shown for exem-
plary sampled datasets of evaluated fastMRI cohorts from
B. Error maps are shown below, and include NMSE, PSNR,
and SSIM (from top to bottom).
Figure S2 GRAPPA, standard RAKI and iRAKI evaluated
on the T1-neuro2 dataset at four- and fivefold retrospec-
tively undersampling (R = 4, left column and R = 5,
right column) using 18 and 22 ACS lines as training data,
respectively. Error maps are shown below, and include
NMSE, PSNR, and SSIM. Reconstructions were performed
without phase constrains (top row) and including the
virtual-conjugate-coils (VCC) concept (bottom row).
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Figure S3 GRAPPA, standard RAKI and iRAKI evaluated
on the T2-neuro2 dataset at four- and fivefold retrospec-
tively undersampling (R = 4, left column and R = 5,
right column) using 18 and 22 ACS lines as training data,
respectively. Error maps are shown below, and include
NMSE, PSNR, and SSIM. Reconstructions were performed
without phase constrains (top row) and including the
virtual-conjugate-coils (VCC) concept (bottom row).
Figure S4 GRAPPA, standard RAKI and iRAKI evaluated
on the T1-neuro1 dataset at four- and fivefold retrospec-
tively undersampling (R = 4, left column and R = 5,
right column) using 18 and 22 ACS lines as training data,
respectively. Error maps are shown below, and include
NMSE, PSNR, and SSIM. Reconstructions were performed
without phase constrains (top row) and including the
virtual-conjugate-coils (VCC) concept (bottom row).
Figure S5 GRAPPA, standard RAKI and iRAKI evaluated
on the T1-neuro3 dataset at four- and fivefold retrospec-
tively undersampling (R = 4, left column and R = 5,
right column) using 18 and 22 ACS lines as training data,
respectively. Error maps are shown below, and include
NMSE, PSNR, and SSIM. Reconstructions were performed
without phase constrains (top row) and including the
virtual-conjugate-coils (VCC) concept (bottom row).
Figure S6 GRAPPA, standard RAKI and iRAKI evaluated
on the T2-neuro3 dataset at four- and fivefold retrospec-
tively undersampling (R = 4, left column and R = 5,
right column) using 18 and 22 ACS lines as training data,
respectively. Error maps are shown below, and include
NMSE, PSNR, and SSIM. Reconstructions were performed
without phase constrains (top row) and including the
virtual-conjugate-coils (VCC) concept (bottom row).
Figure S7 iRAKI and the variational network (Var-
Net) in comparison for scans with T1-, T1post-, T2-, and
FLAIR-weighting (from left to right and top to bottom).
The VarNet was trained one knee-data with proton-density
weighting. Error maps are shown at the bottom and
include NMSE, PSNR, and SSIM w.r.t. the fully sampled
reference image.
Figure S8 (A) Boxplots of NMSE (top) and SSIM (bot-
tom) for GRAPPA, iterative-GRAPPA, standard RAKI,

and iRAKI evaluated on cohorts assembled form the
fastMRI neuro-database. Four different contrast were con-
sidered (T1, T1post, T2, and FLAIR), and 50 datasets
per contrast were retrospectively undersampled at rate
4 (left) and rate 5 (right) using 18 and 22 ACS lines,
respectively.(B) Exemplary image reconstructions from
evaluations depicted in A (left: T1post fourfold under-
sampling, right: FLAIR fivefold undersampling). Error
maps are shown at the bottom and include NMSE,
PSNR and SSIM w.r.t. the fully sampled reference image.
(C) T1-neuro2-dataset (left, fourfold undersampling, 18
ACS lines) and T1-neuro1-dataset (right, fivefold under-
sampling, 22 ACS lines) reconstructed with GRAPPA,
iterative-GRAPPA, standard RAKI, and iRAKI including
the VCC concept.
Figure S9 GRAPPA, standard RAKI and iRAKI eval-
uated on sixfold retrospectively undersampling of
T1-neuro1-dataset. Twenty-eight ACS lines were used as
training data (re-inserted into reconstructed k-spaces).
Error maps are shown below, and include NMSE, PSNR,
and SSIM difference metrics.
Supporting Material S1 mp4-Movie image reconstruc-
tions of GRAPPA, standard RAKI and iRAKI evalu-
ated on varying training data amount (Figure 2). Error
maps are shown below, and include NMSE, PSNR, and
SSIM difference metrics w.r.t. the fully sampled reference
image.
Supporting Material S2 mp4-Movie image reconstruc-

tions of VarNet, rRAKI, and iRAKI evaluated on varying
training data amount. Error maps are shown below, and
include NMSE, PSNR and SSIM difference metrics w.r.t.
the fully sampled reference image.
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