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Abstract  

 

Regional climate models (RCMs) are tools used to project future climate change at a regional 

scale. Despite their high horizontal resolution, RCMs are characterized by systematic biases 

relative to observations, which can result in unrealistic interpretations of future climate 

change signals. On the other hand, bias correction (BC) is a popular statistical post-processing 

technique applied to improve the usability of output from climate models. Like every other 

statistical technique, BC has its strengths and weaknesses. Hence, within the regional context 

of Germany, and for temperature and precipitation, this study is dedicated to the assessment 

of the impact of different BC techniques on the RCM output. The focuses are on the impact of 

BC on the RCM’s statistical characterization, and physical consistency defined as the 

spatiotemporal consistency between the bias-corrected variable and the simulated physical 

mechanisms governing the variable, as well as the correlations between the bias-corrected 

variable and other (simulated) climate variables. Five BC techniques were applied in adjusting 

the systematic biases in temperature and precipitation RCM outputs. The BC techniques are 

linear scaling, empirical quantile mapping, univariate quantile delta mapping, multivariate 

quantile delta mapping that considers inter-site dependencies, and multivariate quantile delta 

mapping that considers inter-variable dependencies (MBCn). The results show that each BC 

technique adds value in reducing the biases in the statistics of the RCM output, though the 

added value depends on several factors such as the temporal resolution of the data, choice of 

RCM, climate variable, region, and the metric used in evaluating the BC technique. Further, 

the raw RCMs reproduced portions of the observed modes of atmospheric circulation in 

Western Europe, and the observed temperature, and precipitation meteorological patterns in 

Germany. After the BC, generally, the spatiotemporal configurations of the simulated 

meteorological patterns as well as the governing large-scale mechanisms were reproduced. 
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However, at a more localized spatial scale for the individual meteorological patterns, the BC 

changed the simulated co-variability of some grids, especially for precipitation. Concerning 

the co-variability among the variables, a physically interpretable positive correlation was 

found between temperature and precipitation during boreal winter in both models and 

observations. For most grid boxes in the study domain and on average, the BC techniques that 

do not adjust inter-variable dependency did not notably change the simulated correlations 

between the climate variables. However, depending on the grid box, the (univariate) BC 

techniques tend to degrade the simulated temporal correlations between temperature and 

precipitation. Further, MBCn which adjusts biases in inter-variable dependency has the skill 

to improve the correlations between the simulated variables towards observations.   
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Zusammenfassung 

 

Regionale Klimamodelle (RCMs) sind Werkzeuge, die verwendet werden, um den 

zukünftigen Klimawandel auf regionaler Ebene zu prognostizieren. Trotz ihrer hohen 

horizontalen Auflösung sind RCMs je nach Beobachtung durch systematische Verzerrungen 

gekennzeichnet, was zu unrealistischen Interpretationen zukünftiger Signale des 

Klimawandels führen kann. Andererseits ist die Bias-Korrektur (BC) eine beliebte statistische 

Nachbearbeitungstechnik, die angewendet wird, um die Nutzbarkeit der Ergebnisse von 

Klimamodellen zu verbessern. Wie jede andere statistische Technik hat BC seine Stärken und 

Schwächen. Daher widmet sich diese Studie im regionalen Kontext Deutschlands und für 

Temperatur und Niederschlag der Bewertung der Auswirkungen verschiedener BC-Techniken 

auf den das RCM-ErtragErgebnis. Die Schwerpunkte liegen auf der Auswirkung von BC auf 

die statistische Charakterisierung des RCM und auf der physikalischen Konsistenz. Letztere 

ist, definiert als die räumlich-zeitliche Konsistenz zwischen der systematisch korrigierten 

Variablen und den simulierten physikalischen Mechanismen, die diese Variable steuern, 

sowie auf den Korrelationen zwischen der systematisch korrigierten Variablen und anderen 

(simulierten) Klimavariablen. Fünf BC-Techniken wurden angewendet, um die 

systematischen Abweichungen in den Temperatur- und Niederschlags-RCM-Ausgaben 

Ergebnissen anzupassen. Die BC-Techniken sind lineare Skalierung, empirisches Quantil-

Mapping, univariates Quantil-Delta-Mapping, sowie multivariates Quantil-Delta-Mapping, 

das Abhängigkeiten zwischen Standorten berücksichtigt, und multivariates Quantil-Delta-

Mapping, das intervariable Abhängigkeiten (MBCn) berücksichtigt. Die Ergebnisse zeigen, 

dass jede BC-Technik einen Mehrwert bei der Reduzierung der Verzerrungen in den 

Statistiken der RCM-Ausgabe bringt, und dies, obwohl der Mehrwert von mehreren Faktoren 

abhängt, wie der zeitlichen Auflösung der Daten, der Wahl der RCM, der Klimavariable, der 
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Region und desr verwendeten Massstabsetrik zur Bewertung der BC-Technik verwendet. 

Darüber hinaus reproduzierten die rohen RCMs Teile der beobachteten Modi der 

atmosphärischen Zirkulation in Westeuropa und die beobachteten meteorologischen 

Temperatur- und Niederschlagsmuster in Deutschland. Nach der BC wurden im Allgemeinen 

die raumzeitlichen Konfigurationen der simulierten meteorologischen Muster sowie die 

maßgeblichen großräumigen Mechanismen reproduziert. Auf einer stärker lokalisierten 

räumlichen Skala änderte der BC jedoch für die einzelnen meteorologischen Muster die 

simulierte Kovariabilität einiger Gitter, insbesondere für Niederschlag. Bezüglich der 

Kovariabilität zwischen den Variablen wurde sowohl in Modellen als auch in Beobachtungen 

eine physikalisch interpretierbare positive Korrelation zwischen Temperatur und Niederschlag 

im borealen Winter gefunden. Für die meisten Gitterboxen Gitterfelder im 

Untersuchungsbereich und auch im Durchschnitt änderten die BC-Techniken, die die 

Abhängigkeit zwischen den Variablen nicht anpassen, die simulierten Korrelationen zwischen 

den Klimavariablen nicht merklich. Allerdings neigen die (univariaten) BC-Techniken je nach 

Gitterbox Gitterfeld dazu, die simulierten zeitlichen Korrelationen zwischen Temperatur und 

Niederschlag zu verschlechtern. Darüber hinaus hat MBCn, das Verzerrungen in der 

Abhängigkeit zwischen Variablen anpasst, die Fähigkeit, die Korrelationen zwischen den 

simulierten Variablen gegenüber den Beobachtungen zu verbessern. 
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1. Introduction 

 

1.1 Motivation and background  

 

Climate change impact assessment is among the core interests of current climatological 

research. In this respect, climate models represent a key methodology since they are 

applicable for estimating projected changes in atmospheric and surface variables (Paeth et al. 

2005, 2009) and for the analysis of processes (Abiodun et al. 2008; Druyan et al. 2008). 

Climate change signals are expected to occur at regional scales (Trenberth 2007) and 

hydrological hazards are often associated with local precipitation extremes (Olsson et al. 

2012; Barros et al. 2014).  

General circulation models (GCMs) are climate simulations that are applicable when studying 

the climate system on a global scale. GCMs have coarse horizontal resolutions (of about 100 

to 500 km) that are typically not sufficient to study local and regional climates. Thus, the 

GCMs are downscaled to finer horizontal resolution either statistically or dynamically 

(Benestad 2016). The downscaled GCMs enable the understanding of local and regional 

climate responses to global change. In statistical downscaling, the empirical relationship 

between climate variables at smaller and larger scales (for example, precipitation and 

pressure) is used to downscale a climate variable (Wilby and Wigley 1997). In dynamical 

downscaling (that is the focus of this study) a GCM or reanalysis data provides the lateral 

boundary conditions for a regional climate model (RCM). The dynamical downscaling 

method incorporates both the physics and statistics of the climate system to obtain regional 

climate information. Thus, it is considered a better alternative to statistical downscaling 

(Rosen 2010). RCMs have higher horizontal resolutions (typically 50 km or less), and have 

relative advantages over GCMs, such as the provision of detailed features of a regional and 

local climate; provision of a more accurate projection of the future climate change; they 
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resolve vital parameterization schemes; have a better description of surface characteristics 

including topography, and also provide a better representation of the present-day climate. 

Thus, RCMs are often used when it comes to the assessment of local climate change signals 

and associated extremes (Paeth and Diederich 2011).  

Despite the high horizontal resolution of RCMs and the relative advantages over GCMs, 

RCMs are still inapplicable for direct use in assessing the impact of climate change (Paeth et 

al. 2005; Fowler et al. 2007; Cannon et al. 2015) because they are often characterized by 

systematic biases against observations (Sillmann et al. 2013). The systematic biases can result 

from large-scale circulation biases from the GCM that provides the lateral boundary 

conditions (Ador et al. 2016; Maraun et al. 2017; Wu and Gao 2020), model parameterization, 

limited model complexity, and uncertain internal variability (Eden et al. 2012). For this 

reason, to improve the usability of RCMs for local impact modeling and navigate unrealistic 

interpretations of future climate change signals, bias correction (BC) is a commonly used 

statistical post-processing technique in reducing the systematic biases - to adjust model output 

towards observations (Dosio and Paruolo 2011; Hagemann et al. 2011; Paeth 2011; Cannon 

2017; Maraun et al. 2019; Faghih et al. 2022). However, BC is not without critics as state-of-

the-art BC techniques are mostly capable of improving some basic spatiotemporal statistical 

characteristics of individual output variables (Paeth 2011; Maraun 2016). There are still 

uncertainties on how BC impacts the spatiotemporal consistency of the bias-corrected variable 

and its co-variability with other climate variables (Maraun et al. 2010; Ehret et al. 2012). 

Thus, using temperature and precipitation that are most relevant for hydrological impact 

assessment (Bronstert et al. 2007) this study provides a process-based framework for 

evaluating the added value of distinct BC techniques by assessing their impact on the 

statistical characteristics and physical consistency of the bias-corrected variables.  
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1.2 Problem statement   

 

Over different domains and time scales, several studies have reported that BC improves the 

usability of good-performing RCMs (Paeth and Diederich 2011; Berg et al. 2012; Widmann et 

al. 2019; Adakudlu et al. 2022). Nonetheless, the added value of BC techniques is mostly 

focused on the improved representation of the statistical distributions of RCM output 

(Vaittinada Ayar et al. 2021).  Ehret et al. (2012) argued that BC techniques neglect feedback 

mechanisms and modify spatiotemporal field consistency. Ehret et al. (2012) further 

suggested that improved climate simulations can be expected by increasing the model 

resolution to the convection-permitting scale. Maraun and Widmann (2018) highlighted that 

state-of-the-art BC techniques do not improve circulation biases and the biases associated 

with the uncertainties in internal variability. Maraun (2016) noted that BC might alter the 

spatial dependency of the variables and so introduce inconsistencies with the driving model. 

Further, the stationarity assumption of the correction factor from the BC is questionable given 

the transient nature of the climate system (Bürger et al. 2011; Ehret et al. 2012; Cannon et al. 

2015; Merkenschlager and Hertig 2020). After the BC, some aspects of the physical 

consistency in the corrected fields may be altered, which can affect the agreement between 

model dynamics and the correlation between different climatic variables (Bürger et al. 2011). 

Unlike the usual focus on how the BC adjusts the statistics of the RCM towards observations, 

the aforementioned shortcomings, that is, possible impact on the simulated meteorological 

patterns and coherency among climate variables, require to be considered equally as further 

evaluation metrics after the implementation of the BC approach. This will enhance the 

understanding of how the BC impacts the simulated underlying physics of the RCM. 
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1.3 Research objectives  

 

Considering that BC does not improve circulation biases, before the application of the BC to 

the temperature and precipitation RCM outputs, this study aims to evaluate the representation 

of the reference large-scale atmospheric circulation patterns in the RCMs and to diagnose the 

misrepresentation of processes. Further, a process-based approach is applied to assess the 

added value of distinct BC techniques in reducing the systematic biases in the simulated 

precipitation and temperature output in Germany, as well as the impact of the BC techniques 

on the physical consistency of the RCM outputs. The impact of the BC on the physical 

consistency of the RCM is evaluated in two aspects, first, as the consistency between the bias-

corrected climate variable and the simulated meteorological modes of variability that are 

associated with the variable at different spatial and time scales; second, as the consistency 

between temperature and precipitation at different spatial and time scales. Thus, in the 

regional context of Germany, given the plausible shortcomings of BC, the objectives of this 

study are: 

(1) To evaluate the representation of large-scale atmospheric circulation modes in 

Western Europe, in the RCMs, using reanalysis data as the reference.  

(2) To compare the performance of distinct BC techniques in improving the simulated 

statistics of temperature and precipitation towards observation.   

(3) To evaluate the impact of the BC techniques on the simulated meteorological patterns 

of the climate variables and the governing mechanisms. 

(4) To assess the impact of the BC techniques on the seasonal correlations between 

temperature and precipitation. 
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1.4 Structure of the thesis  

 

This study is structured into ten chapters. In the first chapter, the motivation, background, and 

objectives of the research are presented. The second chapter describes the study region, its 

climate, and the patterns of atmospheric circulations in Western Europe that modulate the 

climate variability of the study region. The third chapter describes the data and methodology 

on which this study is based on. The fourth chapter presents the results on the capability of 

RCMs to capture the large-scale modes of atmospheric circulations in Western Europe. The 

fifth to eighth chapter presents the major results on the impact of different BC techniques on 

the statistics and physical consistency of RCMs. Discussion and recommendations are 

presented in the ninth chapter. Conclusions are drawn in the last chapter.  
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2. Study region 

 

Germany is a country located in Central Europe. Figure 2.1 shows the geographical location 

of Germany. It borders the Baltic Sea to the northeast and the North Sea to the northwest. 

Starting from the north and moving clockwise, the countries sharing boarders with Germany 

are Denmark, Poland, Czech Republic, Austria, Switzerland, France, Luxembourg, Belgium, 

Netherlands 

 

Figure 2.1: Geographical location of Germany in Europe. The black-shaded region shows the position 

of Germany in Central Europe   
 

2.1 Climatology of precipitation and temperature in Germany  

 

Germany is characterized by four seasons in a year. The seasons are boreal winter (typically 

from December to February, henceforth referred to as DJF); boreal spring (typically from 

March to May, henceforth referred to as MAM); boreal summer (typically from June to 

August, henceforth referred to as JJA), and boreal autumn (typically from September to 
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November, henceforth referred to as SON). Figure 2.2 and Figure 2.3 show the seasonal 

climatology and the annual cycle of precipitation and temperature, respectively, in Germany.  

a) 

 

b) 

 

Figure 2.2: Seasonal climatology of precipitation (a), and the annual cycle of precipitation averaged 

over Germany (b). The climatology is calculated from the E-OBS data from 1981 to 2010 
 

Based on Figure 2.2b, averaged over Germany, MJJA is the wettest period, and the months of 

February, March, April, and October are relatively drier. Also, some spatial differences 

become apparent: due to the proximity to the North Sea coast, the northwestern parts of 

Germany have an oceanic climate with more precipitation. The eastern parts of Germany are 
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relatively drier with a more continental climate because they are downstream with respect to 

the dominating (westerly) wind directions. The central parts can be classified as transition 

regions exhibiting both oceanic and continental climates with clearly visible windward and 

lee effects due to the low mountain ranges. The Alps, that is, the southernmost mountainous 

region, receive the highest precipitation, especially during the summer season.  

a) 

 

b) 

 

Figure 2.3: Seasonal climatology of temperature (a), and the annual cycle of temperature averaged 

over Germany (b). The climatology is calculated from the E-OBS data from 1981 to 2010 
 

For temperature, JJA is relatively the hottest season and DJF is relatively the coldest season 

(Figure 2.3a). The transition seasons, MAM and SON, have relatively warmer (colder) 
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temperatures in months that are adjacent to the summer (winter) season. Figure 2.3b indicates 

that in Germany, there are spatial differences in temperature. For example, during DJF, the 

northern parts (specifically the northwestern parts) are warmer compared to the southern 

parts. Figure A1 indicates that the temporal variability of temperature, averaged over 

Germany is fairly related to temporal variations in solar radiation, especially during the 

summer and winter seasons.  

2.2 Large-scale circulation patterns modulating the climate of Germany 

 

Teleconnections such as the North Atlantic Oscillation (NAO) and the Arctic Oscillation that 

link variations in climate variables over long distances through the transport of energy and 

wave propagations in the ocean and atmosphere, significantly impact the climate of (Western) 

Europe. Hurrell (1995) noted that the NAO strongly impacts the mean winter climate of vast 

regions in the Northern Hemisphere. According to Ricardo et al. (2002), NAO influences 

precipitation rate and precipitable water in Europe. Scaife et al. (2008) highlighted that 90th 

percentile precipitation events over Europe are found from changes in the NAO. During the 

positive phase of the NAO, a strong subtropical anticyclone is situated over the central North 

Atlantic while a strong low-pressure system is centered over Iceland. Thus, the positive phase 

of the NAO is associated with the northward shift of the mid-latitude cyclone and enhanced 

westerly wind over the North Atlantic. During boreal winter, positive NAO corresponds with 

wet conditions in Northern Europe. During the negative phase of the NAO, dry condition is 

expected since westerly winds are weakened coupled with the intrusion of Arctic air into 

Europe. The NAO also influences storm tracks over the Atlantic region (Osborn et al. 1999). 

According to Mehta et al. (2000), North Atlantic sea surface temperature anomalies can 

modify the NAO. Towards the twenty-first century, Scaife et al. (2008) reported that changes 

in the frequency of NAO events might be linked to anthropogenic forcing. These 

teleconnections are the building blocks of atmospheric circulation patterns (Huth et al. 2008). 
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Further, anomalies of the NAO are also related to temperature variations in Germany. From 

Figure 2.4, anomalies of the NAO relate to the variations of the dominant mode of 

atmospheric circulation in Western Europe and temperature averaged over Germany, during 

the DJF season. This implies that during DJF, when the NAO oscillates to its negative phase, 

below-average temperature can be expected over large parts of Germany; on the other hand, 

when the NAO oscillates to its positive phase, during DJF, above-average temperature can be 

expected in large parts of Germany. Figure 2.5 shows that the fingerprint of the positive NAO 

in atmospheric circulations over Western Europe is characterized by westerly moisture fluxes 

and cyclonic activity over parts of Western Europe; this pattern brings wet and warmer 

conditions to Germany, during the DJF season (Figure 2.6). Conversely, the fingerprint of the 

negative NAO in atmospheric circulations over Western Europe is characterized by dry 

northerly fluxes and anti-cyclonic circulation over the mid-latitudes; this pattern brings dry 

and colder conditions to Germany, during the DJF season (Figure 2.6).  

 

Figure 2.4: Time series of the NAO index, the temperature averaged over Germany and the amplitude 

of the dominant mode of atmospheric circulation in Western Europe. The classified circulation mode 

is the PC loadings of the dominant circulation mode over Western Europe classified in Ibebuchi 

(2022a). Temperature is obtained from E-OBS. The time series is for the boreal winter (DJF) season. 

Copyright © [2022a] [Ibebuchi CC]. All rights reserved. 

Figure 2.4 to Figure 2.6 show that at specific periods, large-scale climate drivers such as the 

NAO modulate synoptic-scale circulations (Ibebuchi and Paeth 2021), that is, circulation 

features typically at the spatial scale of 1000 to 5000 km. Also, the spatiotemporal variations 

of temperature and precipitation in Germany can be related to variations in the synoptic 
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circulations that modulate atmospheric transport and large-scale convection over Western 

Europe (Ibebuchi 2022a). A cursory investigation of Figure 2.6, shows that large-scale 

patterns associated with the NAO bring heterogeneous amounts of rainfall as well as different 

temperature values in Germany. The inference is that other localized factors such as 

orography, as well as the proximity of the landmasses to the adjacent oceans, and so forth, 

also play role in modifying the influence of synoptic circulations over different regions 

(Rebetez 1996).  

 

 

Figure 2.5: Asymmetry of the dominant circulations mode in Western Europe related to the North 

Atlantic Oscillation. CT1+ implies circulation type related to the positive NAO and CT1− implies 

circulation type related to the negative NAO. Vector is 850 hPa moisture flux composites and color is 

sea level pressure. Copyright © [2022a] [Ibebuchi CC]. All rights reserved. 

 

Indeed, climate extremes in Germany such as floods, drought and extreme temperatures can 

be related to variations in synoptic patterns in Western Europe and beyond. During boreal 

summer, omega blocking can be associated with positive temperature anomalies in Western 

Europe (Henley et al. 2019). Concerning controls of moisture transport, the major sources of 

moisture in Europe are the North Atlantic Ocean and the Mediterranean Sea (Craig et al. 

2016; Volosciuk et al. 2016; Skliris et al. 2018; Vazquez et al. 2020). Though during boreal 

summer, the North Atlantic Ocean becomes the major source of moisture for Western Europe 

(Vazquez et al. 2020). Variations in the North Atlantic anticyclone (that is, the semi-
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permanent high pressure over the North Atlantic in Figure 2.5), also impact moisture transport 

to Western Europe and significantly impact the weather and climate of Western Europe 

(Davis et al. 1997) 

a) 

 

b) 

 

Figure 2.6: Composites of temperature (a), and precipitation (b) during the positive and negative 

phases of the circulation mode in Figure 2.5 that is related to the NAO. The composite maps are 

created for the DJF season. 

 

Further, in the July 2021 flood episode in Germany, using circulation typing Ibebuchi (2022a) 

reproduced the spatiotemporal configuration of the synoptic circulations that contributed to 

the flood event. Among other factors, at the synoptic scale, the enhancement and northward 

track of the cyclonic system over the Mediterranean; northward track of the North Atlantic 
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anticyclone, further displacing poleward, the mid-latitude cyclone over the North Sea, 

enabling a band of westerly moisture fluxes to penetrate Germany; cyclonic system over the 

Baltic Sea coupled with northeast fluxes of moisture to Germany; and unstable atmospheric 

conditions over Germany, in addition to a cut-off low that formed over Central Europe were 

found to have contributed to the heavy rainfall event (Figure 2.7).  

Given that large-scale patterns of atmospheric circulation contribute to climate extremes in 

Germany, in evaluating the capability of climate models to simulate the climate of Germany, 

it is useful to equally assess how the models represent the observed large-scale circulation 

patterns that influence the climate of Germany. Proper representation of the large-scale 

circulation patterns in the climate models will increase their credibility and the usability in 

projecting future climate extremes in Germany.  

a)                                                                         b) 

 

 

Figure 2.7: Synoptic circulations during the 14 July to 15 July flood episode in Germany. SLP (color) 

and 850 hPa moisture flux composites (black vectors) (a), and 500 hPa geopotential height (color) and 

700 hPa moisture flux composites (black vectors) (b), for 14 July to 15 July 2021. The dates are when 

a classified circulation type associated with precipitation extremes in Germany persisted for at least a 

day. Copyright © [2022a] [Ibebuchi CC]. All rights reserved 
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3. Data and Methodology  

3.1 Data 

 

Simulated 2-meter temperature, precipitation, 10-meter wind vectors, and sea level pressure 

(SLP) are obtained from the European Coordinated Regional Climate Downscaling 

Experiment (EURO-CORDEX) Coupled Model Intercomparison Project Phase 5 (CMIP5) 

ensemble (Jacob et al. 2014). Table 3.1 contains an overview of the RCMs used in this study. 

The lateral boundary conditions for the RCMs are provided by ERA-Interim reanalysis, and 

two GCM data, respectively. ERA-Interim is based on the combination of different 

observations and numerical short-term weather forecasts. Conversely, GCMs are models 

without assimilation of observational data. Therefore, the RCMs driven by ERA-Interim are 

more consistent with the observed climate. Evaluating the quality of the RCMs when the 

lateral boundary condition is provided by ERA-Interim provides further information on 

whether the biases stem from the GCM or are due to the weaknesses of the RCM. Observed 

gridded precipitation and 2-meter temperature data are obtained from E-OBS (European daily 

high-resolution gridded dataset) version 23.1e (Cornes et al. 2018). SLP and 10-meter wind 

vectors data sets are obtained from ERA5 reanalysis (Hersbach et al. 2020), which is the 5th 

generation climate reanalysis product from the European Centre for Medium-Range Weather 

Forecasts. The NAO index is obtained from https://www.ncdc.noaa.gov/teleconnections/.  

The RCMs that are driven by the GCMs are obtained under the historical experiment from 

1950 to 2005 when they overlap with the E-OBS data and under the representative 

concentration pathway (RCP) 8.5 emission scenario (from 2070 to 2100). Depending on the 

time at which the data is available across the RCMs driven by ERA-Interim, the data sets are 

generally obtained from 1979 to 2005. Simulated precipitation and 2-meter temperature data 

sets are obtained at both daily and monthly original temporal resolutions. Simulated SLP is 
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obtained at daily temporal resolution. The E-OBS and ERA5 data sets are obtained at daily 

temporal resolution from 1950 to 2020, and 1979 to 2020, respectively. The horizontal 

resolution of the RCMs is 0.11°; 0.1° for E-OBS; and 0.25° for ERA5 reanalysis. The RCMs 

are further interpolated to the 0.1° longitude and latitude of the E-OBS data using first-order 

conservative remapping (Jones 1999) for precipitation and bilinear interpolation for 

temperature. The simulated SLP data sets are interpolated to the 0.25° resolution of the ERA5 

data using the bilinear interpolation.  

All analyses in this study are made for the RCMs in Table 3.1, but in evaluating the 

performance of the BC techniques, the results from CCLM4 and REMO model driven by the 

MPI-ESM-LR GCM will be mostly presented.  

Table 3.1: Overview of the selected EURO-CORDEX RCMs. The references for each of the 

simulations are given in Jacob et al. (2014) 

 

Institution  RCM Driving data Ensemble-member  

under each driving 

model 

Royal Netherlands 

Meteorological 

Institute, Ministry of 

Infrastructure and 

the Environment 

RACMO 2.2E MPI-ESM-LR; CNRM-

CM5;ERA-Interim 

r1ip1; r1ip1; r1ip1 

CLMcom (CLM 

Community with 

contributions by BTU, 

DWD, ETHZ, 

UCD, WEGC) 

COSMO-crCLIM MPI-ESM-LR; CNRM-

CM5; ERA-Interim 

r1ip1; r1ip1; r1ip1 

Climate Service Center 

Germany, 

Hamburg, Germany 

REMO2015 MPI-ESM-LR; CNRM-

CM5; ERA-Interim 

r3ip1;r1ip1; r1ip1 

Danish Meteorological 

Institute, 

Copenhagen, Denmark 

HIRHAM5 MPI-ESM-LR; CNRM-

CM5 

r1ip1; r1ip1 

Rossby Centre, Swedish 

Meteorological and 

Hydrological Institute, 

Norrkoping Sweden 

RCA4 MPI-ESM-LR; CNRM-

CM5 

r3ip1; r1ip1 

CLMcom (CLM 

Community) 

 

CCLM4 MPI-ESM-LR; CNRM-

CM5; ERA-Interim 

r1ip1; r1ip1; r1ip1 
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3.2 Methodology  

 

3.2.1 Bias correction techniques 

 

The performances of different BC techniques in reducing the systematic biases in simulated 

precipitation and temperature in Germany are evaluated, in addition to the impact of the BC 

techniques on the physical consistency of the bias-corrected variable. The BC techniques are 

linear scaling (LS) (Lenderink et al. 2007), empirical quantile mapping (EQM) (Panofsky and 

Brier 1968), univariate quantile delta mapping (QDM) (Cannon et al. 2015), multivariate 

quantile delta mapping using homogeneous grid points as related variables (MQDM) 

(Ibebuchi et al. 2022a), and multivariate quantile delta mapping using the individual climate 

variables (that is, temperature and precipitation) as related variables (MBCn) (Cannon 2017). 

The technique(s) is applied to the simulated precipitation and temperature RCM outputs both 

at daily and monthly resolutions to also assess the performance of the BC techniques as a 

function of the temporal resolution at which the BC is applied. The BC transfer functions are 

obtained at a seasonal time scale (that is, conditioning the data by seasons to account for the 

time dependency of the biases) for the four seasons in the study region. For the univariate 

techniques that assume a stationary correction factor (that is, LS and EQM), the transfer 

functions (that is, the correction factor) are obtained and applied at each grid box in Germany 

(Figure A2). The QDM is not based on a stationary correction factor but incorporates the 

change signal during the BC. For MQDM that is applied to a single variable, the spatial 

heterogeneity of the field is simplified to obtain a homogeneous region (generally 

characterized by a common climate for the climate variable); the homogeneous grids are 

treated as related variables. Hence, using the sub-grids as related variables, the MQDM is 

designed to improve the spatial dependency structure of the field (that is, inter-site 

correlations) during the BC. The rationale behind reducing the spatial complexity of 
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the field is that the consideration of all grid boxes over Germany implies an immense 

dimensionality of the spatiotemporal field and hence, might lead to overfitting in the 

statistical models. Similar to the MQDM, the MBCn also adjusts the simulated multivariate 

distribution towards the observed multivariate distribution, but in MBCn, the related variables 

are the individual climate variables (that is, temperature and precipitation) at each grid box. 

The general difference between MQDM and MBCn is that the former is designed to improve 

inter-site correlations and the latter is designed to improve inter-variable correlations, towards 

observations.    

The analysis period, 1950 to 2005, is divided into two halves – 1950 to 1977 and 1978 to 

2005. The first half is the training period for which the BC transfer function is obtained, and 

the second half is the validation period when the performance of the BC technique is 

evaluated, that is, the added value of the post-processing in reducing the systematic biases of 

the RCM output variable. When correcting projected future values, the historical period (1950 

to 2005) is used as the training period when the correction factor is obtained and used to 

adjust the biases in the forecast period (that is, to adjust the biases in the projected simulated 

values). As earlier explained, the transfer function is assumed to be stationary for the LS and 

EQM techniques, but for QDM, MQDM, and MBCn, climate change signals are incorporated 

in the course of the BC. As a result, the stationarity assumption is not necessary under the 

QDM technique and its multivariate versions. 

3.2.1.1 Linear scaling 

The LS approach is among the simplest BC techniques. It adjusts the biases in the mean based 

on Equation (3.1): 

�̂�𝑚,𝑓(𝑡) = 𝑥𝑚,𝑓(𝑡) × (
�̅�𝑜,ℎ

�̅�𝑚,ℎ
)    (3.1) 

𝑥𝑚,𝑓(𝑡) = Raw modeled values, at time 𝑡 in the validation or forecast period  
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�̂�𝑚,𝑓(𝑡) = Corrected modeled values, at time 𝑡 in the validation or forecast period 

�̅�𝑜,ℎ = Seasonal mean of the observed values, during the training or historical period 

�̅�𝑚,ℎ = Seasonal mean of the simulated values, during the training or historical period 

For a non-zero bounded variable, like temperature in °C, Equation (3.1) becomes: 

𝑥𝑚,𝑓(𝑡) = 𝑥𝑚,𝑓(𝑡) + (�̅�𝑜,ℎ  − �̅�𝑚,ℎ)  (3.2) 

3.2.1.2 Empirical quantile mapping  

In the EQM, the transfer function is based on the cumulative distribution function (CDF). The 

transfer function that is based on the historical CDF (or CDF obtained in the training period) 

is applied to the forecast (or validation) period by matching the quantiles of the simulated data 

to that of the observed data, according to Equation (3.3):  

�̂�𝑚,𝑓(𝑡) =  𝐹𝑜,ℎ
−1{𝐹𝑚,ℎ[𝑥𝑚,𝑓(𝑡)]}  (3.3)                 

𝐹𝑜,ℎ
−1 = Inverse CDF of observed values over the historical or training period 

𝐹𝑚,ℎ = Modelled CDF from the simulated data in the training or historical period 

The major limitation of the EQM is the stationarity assumption of the CDF. Since the 

algorithm relies on the historical CDF to correct future projections, problems can be 

encountered when the forecast data is outside the range of the historical values, which is 

plausible when there is a strong climate change signal. As a consequence, projected trends can 

be affected in an undesirable way. 

3.2.1.3 Quantile delta mapping 

The QDM can be considered an improved version of the EQM. Instead of the stationarity 

assumption in the EQM, the QDM is designed to preserve the model’s relative changes in the 

quantiles (Cannon et al. 2015). As outlined in Cannon et al. (2015), there are two steps 
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followed by the QDM to preserve the projected changes in the simulated quantiles: (1) before 

the quantile mapping, model outputs are detrended by quantile so that simulated historical and 

simulated projected values take the characteristics of the historical observations - without 

considering the change signal, and (2) projected relative (or absolute) changes in the 

simulated quantiles are incorporated in the corrected values. The aim of step (2) is to 

incorporate the climate change signal. These steps are described further in Equation (3.4) to 

Equation (3.6) as implemented in Cannon et al. (2015) from where the equations were 

adapted.  

∆(𝑡) =  
𝑥𝑚,𝑓(𝑡)

𝐹𝑚,ℎ
−1 [𝜏𝑚,𝑓(𝑡)]    

    (3.4)    

𝜏𝑚,𝑓(𝑡) = The non-exceedance probability (ranging from 0 to 1) of the projected value at a 

given time in the validation or forecast period 

𝐹𝑚,ℎ
−1 = Inverse CDF of the simulated value during the historical or training period for the 

original values 

∆(𝑡) = Relative change signal in the simulated quantiles (for the precipitation variable) 

�̂�𝑜:𝑚,ℎ:𝑝(𝑡) =  𝐹𝑜,ℎ
−1{𝜏𝑚,𝑓(𝑡)}    (3.5) 

�̂�𝑜:𝑚,ℎ:𝑝(𝑡) is the corrected quantile in the forecast or validation period using the inverse CDF 

of observed values over the historical simulations. The final bias-corrected quantiles with 

climate change signal are obtained by:   

�̂�𝑚,𝑝(𝑡) =  �̂�𝑜:𝑚,ℎ:𝑝(𝑡)∆(𝑡)   (3.6) 

For temperature, in °C ∆(𝑡) is suited for an absolute change, and Equation (3.4) becomes: 

∆(𝑡) = 𝑥𝑚,𝑓(𝑡) − 𝐹𝑚,ℎ
−1 [𝜏𝑚,𝑓(𝑡)]  (3.7) 
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Also, Equation (3.6) becomes: 

𝑥𝑚,𝑝(𝑡) = 𝑥𝑜:𝑚,ℎ:𝑝(𝑡) + ∆(𝑡)   (3.8) 

3.2.1.4 Multivariate quantile delta mapping 

Depending on what is treated as related variables, the QDM can be implemented as a 

multivariate BC technique, that is, the MQDM and the MBCn (Cannon 2017; Ibebuchi et al. 

2022a). The methodological concepts are explained in detail in Cannon (2017). The 

multivariate versions of the QDM reorder the time series of ranks so that the empirical copula 

is adjusted; nevertheless, the marginal distributions are the same as QDM that is used in 

matching the simulated multivariate distribution to the observed multivariate distribution. 

Hence, the multivariate versions of the QDM transfer the full multivariate distribution and the 

empirical copula following these basic steps: 

(1) Apply orthogonal rotation to the 3 sets of data sets respectively, that is, the set of related 

observed variables in the training period; the set of the same related simulated variables in the 

training period; and the set of the same related simulated variables in the validation period. 

The rotation in step (1) aims to (i) obtain a linear combination of the related variables and, (ii) 

a uniform multivariate distribution that allows convergence between the simulated and 

observed multivariate distributions. In this study, the set of related variables that are rotated to 

obtain the uniform multivariate distribution are either temperature and precipitation, or group 

observations at homogeneous grid boxes for a given variable.  

(2) Match the simulated multivariate distribution (from the RCM) to fit the target multivariate 

distribution (from the observed data) using QDM.  

(3) Apply inverse rotation to the matched multivariate distribution in step (2). 

Iteratively repeat steps (1) to (3) until the multivariate distribution of the simulated data 

converges to the multivariate distribution of the observed data.  
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3.2.2 Classification of atmospheric circulation modes of variability and evaluation 

of the modes in climate models  

 

Model-derived climate data are rooted in physical laws programmed in those models to 

approximate atmospheric processes. Therefore, model outputs are imperfect and can only 

reproduce a portion of the observed atmospheric circulation modes of variability. Model 

deficiencies in representing meteorological processes can be identified by spatiotemporal 

variability of the climate variable, and such deficiency is often a major cause of errors in 

model data output (Flato et al. 2013). Therefore, if reference modes of variability that govern 

a given climate variable are known for a given region, it is advantageous to document the 

correspondence between modes of variability from modeled data, and the reference modes of 

variability in hindcast experiments. Such diagnostic checks can be used to ascertain the 

physical processes that are misrepresented in the models, which can be improved as part of 

model developments.  

In this study, two concepts are applied in evaluating the representation of the atmospheric 

circulation modes of variability in the RCMs: first, is the classification of circulation types 

(CTs) in Western Europe using the SLP data, which explains atmospheric circulation (Kidson 

1999) and influences surface variables such as precipitation and temperature; second, is the 

regionalization of the temperature and precipitation data over Germany, to obtain individual 

meteorological patterns or climate regimes. The reference CTs and climate regimes are 

obtained from observational or reanalysis data. The portion of the reference CTs and climate 

regimes that are reproduced by the RCM output are documented. If a statistical post-

processing technique such as BC is applied to an RCM output, it is not expected that the BC 

corrects the physical processes that are misrepresented in the RCM, but at least, upon 

reducing the systematic biases in the statistics of the RCM, significant portions of the 

simulated modes of variability should also be reproduced from the post-processed data.    
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The individual meteorological patterns of temperature and precipitation are defined using 

homogeneous regions of temperature and precipitation anomalies, respectively. Given the 

high spatiotemporal variability of climate fields such as precipitation, regionalization of the 

field helps in simplifying the spatial heterogeneity and identifying a set of homogeneous 

regions that covary over time. The co-variability of the precipitation regions can arise from 

the variability that can be resolved by the grid network. Thus, depending on factors such as 

the grid resolution, typical mesoscale variability (that is, features that are between about 2 km 

and 1000 km) to synoptic- and larger-scale variability (that is, features that are about 1000 km 

and above) can be captured in the classified meteorological patterns.  

Among the multivariate techniques used to study the spatiotemporal characteristics of climatic 

modes of variability, the rotated principal component analysis (PCA) is popular and 

commonly applied (White et al. 1991). In this study, the rotated PCA is applied not just to 

reduce the dimensionality of the data (that is, removal of the noise portion), but basically as a 

classification tool, following the logic outlined in Richman (1981, 1986) that ensures that the 

rotated PC patterns have a physical foundation. Hence rotated PCA is applied as a time 

decomposition technique to obtain a group of time series with a similar spatial pattern of a 

field that explains atmospheric circulation (that is, CTs); and as a spatial decomposition 

technique to obtain a group of grid boxes that covary over time (that is, homogeneous regions 

for a climate variable).  

3.2.2.1 Modes of matrix decomposition 

The general idea behind the different modes to represent a data matrix is that in a 

climatological field there are three underlying entities: 

(1) The (meteorological) field: a field can be described as a spatial array of the variable(s) 

such as temperature, precipitation, SLP, and so forth, with observations (mostly) in 

form of time series. 
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(2) Time: time series at which the field observations were made. 

(3) Location: stations or grid points at which the field was observed at a given time. 

The application of PCA to a meteorological field has the flexibility of holding one of the three 

entities constant while varying the others. The entity held constant and the one that is varied 

depends on the (matrix) mode in which the data is represented. Richman (1986) listed six 

(matrix) modes of decomposing a meteorological field. However, in this work, the focus will 

be on the T-mode (T-MD) matrix and the S-mode (S-MD) matrix. The common characteristic 

between both is that the field is fixed whereas either time or location is varied. Therefore, an 

S-MD matrix is simply the matrix transpose of the T-MD matrix. Figure 3.1 shows the 

respective structures of both matrices. In the S-MD, variable or column matrix is grid points, 

and the observations or row matrix is time series. In T-MD, the variable or column matrix is 

time series, and the observations or row matrix is grid points.  

 

Figure 3.1: Structures of the T-MD matrix (a), and the S-MD matrix (b). For the T-MD matrix: the 

column or variables contains m number of time series in the study period, and the rows contain n 

number of grid points in the study region. For the S-MD matrix: the column or variables contain n 

number of grid points in the study region, and the rows contain m number of time series in the study 

period 
 

3.2.2.2 Precipitation regionalization with rotated S-MD PCA 

The rotated S-MD PCA is a spatial decomposition technique that is applied to denoise, and 

regionalize a climate variable (Richman and Lamb 1985). The denoising aspect is based on 
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the variance maximization property of the PCA. The regionalization aspect follows the 

rotation of the PC loadings to obtain a simple structure that can be physically interpreted. The 

standard methods that are applied to select an appropriate number of PCs to retain, for 

example, the scree test (Cattell 1966), are applicable for unrotated PCs because the 

eigenvalues or variances are characteristics of unrotated PCs. However, rotated PC analysis 

redistributes the variance among individual PCs, so eigenvalues are no longer defined and are 

not applicable in deciding the number of rotated PCs to be analyzed (Richman 1981, 1986). 

The first unrotated PC usually merges multiple unique sources of pattern variability that 

results in an inflated eigenvalue of the first PC (Karl and Koscielny 1982). When PCA is 

applied as a classification tool, the rotation is aimed at making the PC loadings resemble the 

patterns embedded in the correlation matrix (Richman 1986). Therefore, in deciding the 

optimal number of rotated PC patterns, only the solution where every rotated PC loading 

vector contains valid (physically interpretable) signals that match well quantitatively to those 

signals in the correlation patterns are retained and interpreted. This is based on the assumption 

that in climate science, correlations can be physically interpreted.  

The rotated S-MD PCA is applied in this study to obtain homogenous regions of precipitation 

and temperature, respectively. In the process, the correlation matrix is used to relate the grid 

boxes in Figure A2. The correlation matrix containing the Pearson’s correlation between the 

grid boxes is decomposed with singular value decomposition to obtain the PC scores, 

eigenvectors, and eigenvalues. The eigenvectors are multiplied by the square root of the 

corresponding eigenvalues to obtain the PC loadings that can be longer than a unit length and 

are more responsive to simple structure rotation (Richman and Lamb 1985). PC loadings are 

in units of Pearson’s correlation coefficients that relate the standardized data with the PC 

scores. Equation (3.9) shows the PC model equation linking the PC loadings to the PC scores. 

In an S-MD analysis, the PC loadings summarize the spatial patterns of variability in the 
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correlation matrix and the PC scores are time series that designate the amplitude of the spatial 

variability patterns for each of the time steps. The simple structure rotation of the PC loadings 

using Equation (3.10), aims at simplifying the patterns in the PC loadings as much as the data 

allow by finding a position of the PC axes that provide a maximum count of near-zero 

loadings, and a smaller number of salient magnitude loadings, thereby creating a 

homogeneous pattern representing a region of precipitation anomalies (Richman 1986).  

𝑍 = 𝐹𝐴𝑇   (3.9) 

𝑍 = original standardized matrix of the field 

𝐹 = matrix of PC scores 

𝐴𝑇 = Transpose of the PC loadings 

𝐵 = 𝐴𝑇   (3.10) 

B = rotated loading vector (using a simple structure rotation method) 

T = (linear) transformation matrix 

When PCA is applied as a classification tool aiming to group similar variables, for example, 

homogeneous grid boxes for a given climate data, the similarity matrix that decides the 

efficacy of the grouping is the correlation (or covariance) matrix; and the simple structure 

rotation as previously noted aims to make the PC loadings reflect the patterns in the similarity 

matrix from where they are drawn (Richman 1981, 1986). The resemblance of the rotated PC 

loadings with the correlation patterns is used as a test for the physical interpretability of the 

PCs.   

To determine the number of PCs to retain and rotate, the PCs are retained and rotated 

iteratively (that is, keeping and rotating two components, then three, four...), and then 
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matched to the correlation vector that indexes the highest loading magnitude on that PC 

vector using the congruence coefficient in Equation (3.11). A congruence coefficient 

magnitude ≥0.92 (Richman 1986) is required as an arbiter to assess if the PC pattern is 

sufficiently similar to the correlation pattern to be considered free of artifacts arising from the 

PCA process. Considering that congruence matches can be biased high, compared to 

correlations, following Richman (1986), the congruence matches are defined as follows: 0.98 

≤ excellent match ≤ 1.00; 0.92 ≤ good match < 0.98; 0.82 ≤ borderline match < 0.92; 0.68 ≤ 

poor match < 0.82; terrible match < 0.68.   

𝐼𝑋𝑌 =
∑ 𝑋𝑌

√∑ 𝑋2 ∑ 𝑌2
   (3.11) 

𝐼𝑋𝑌 is the congruence coefficient; X and Y are two distinct (PC loading) vectors. 

The decision of the optimal number of components to retain is made by identifying the largest 

set of components where all rotated PC loadings match the correlation patterns with a 

congruence coefficient magnitude of  ≥0.92 (Ibebuchi 2022b). Because the observational data 

(that is, E-OBS) or ERA5 reanalysis are the most reliable data sets that provide the most 

realistic representation of the variability patterns, they are used as a reference in determining 

the optimal number of PC patterns to rotate. Oblique rotation is used in this study as that 

relaxes the orthogonality in the PC scores and adds additional information on the correlation 

among the PC scores. Hence the Promax oblique rotation algorithm (Hendrickson and White 

1964) is applied at integer powers of two to four (that is, the power at which the Varimax 

rotation is raised). The Promax solution at which all rotated PC loadings have the highest 

congruence match with the correlation patterns is deemed optimal in rotating the PC patterns 

to reflect the correlation patterns. Also, the data sets that are regionalized were first detrended 

as the analysis is not interested in the trend component of temporal variability. Hence each 

rotated PC loading pattern is designated as a homogeneous region of rainfall or temperature 
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anomaly (or referred to as variability pattern or meteorological pattern). The Promax solution 

and the number of components to retain and rotate that are determined from the observational 

data, are also used when the same algorithm is applied to climate models. 

For precipitation, the physical interpretability of the observed variability patterns is further 

diagnosed by analyzing the precipitation, 10-meter wind, and SLP composite anomaly maps 

associated with the time development of the variability patterns. The PC scores designate the 

time development of the classified homogeneous regions. To cluster dates when a given 

classified homogeneous region has dominant signals, a PC Score threshold at which the PC 

loading pattern matches the associating precipitation composite anomaly pattern with a 

congruence match of at least 0.92 is required. Thus, the PC loading vectors are matched 

iteratively with the composite anomaly precipitation pattern arising from a given PC score 

threshold and seeking a PC score threshold that gives a congruence match of at least 0.92. 

When the required threshold is established, for a given PC, the composite anomaly patterns of 

the aforementioned climate variables (that is, precipitation, 10-meter wind, and SLP) are 

created from a group of dates that have PC score magnitudes above the required threshold. 

The anomaly patterns are created with respect to the seasonal climatology. Given the 

continuous nature of atmospheric processes, this steps aid in reducing noise to signal ratio, by 

enabling the creation of composite patterns that reflects the precipitation variability pattern 

strongly and so enhance the robust diagnosis of the physical processes associated with the 

time development of the respective homogeneous regions. The variability patterns are tested 

for robustness, by first applying the classification scheme to the E-OBS and reanalysis data 

set from 1979 to 2020, and then from 1979 to 2005, for which the RCMs driven by ERA-

Interim and the GCMs are available. 
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3.2.2.3 Classification of circulation types with rotated T-MD PCA 

The rotated T-MD PCA analysis is a time decomposition technique. The time-scale 

decomposition associated with this technique, when applied meticulously as a fuzzy 

classification tool (for example, Ibebuchi and Richman 2022) can capture the three aspects of 

time-scale variability comprising trends (that is, variations due to an anthropogenic influence), 

low-frequency, and high-frequency variability (Compagnucci et al. 2001). The classification 

procedure is the T-MD analysis is the same as the S-MD analysis. The major differences are 

that the standardized SLP field (the standardization is to give equal weight to all dates) is used 

for the classification and the correlation matrix contains the correlation between the times 

series. Hence the PC loadings are time series that localize in time the spatial patterns captured 

by the PC scores (Compagnucci and Richman 2008). Similar to the S-MD analysis, the largest 

number of components to retain and the most optimal Promax power to use in rotating the 

PCs is that at which all the rotated PCs have the largest congruence match with the correlation 

patterns. Again, PCs are expected to resemble the correlation patterns to pass the test for 

physical interpretability (Richman 1981).  

PCA being a linear multivariate tool does not explore the non-linearity of the rotated PC 

loadings in the T-MD analysis (or PC scores in the S-MD analysis). Basically, in the T-MD 

analysis, post-processing the loadings with a simple structure rotation simplifies those PC 

loadings (time series) as much as the data allow into groups of dates that have similar spatial 

patterns (and their inverse) for subsets of the analyzed dates, simultaneously finding the 

configuration where most dates have near-zero loadings, ensuring unique patterns. Hence, 

unique CTs are obtained when a simple structure rotation is applied to the SLP data. To 

explore the non-linearity of the rotated and retained PC loadings, a threshold of ±0.2 

(Richman and Gong 1999; Ibebuchi 2022b) is used to separate loadings within the zero-

interval from the signal, implying that only loading magnitudes greater than |0.2| are 
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considered signals. Hence, each retained component forms two classes, CTK+ and CTK− (K 

is the PC number), with loadings above and below the ±0.2 threshold. The two CTs from 

each PC have asymmetric spatiotemporal characteristics that are common for atmospheric 

modes of variability (Ibebuchi 2022b). A PC comprising both the positive and negative phase 

of the loadings is defined as the mode whereas the SLP composite of the days assigned to a 

given phase of the mode is defined as the CT. A day can also be grouped under more than one 

CT, using the |0.2| threshold width to define the signal and the probability of group 

membership. Thus, an overlapping solution is possible, implying that a day can be assigned to 

more than one CT insofar as the loadings under the CT in question are associated with the 

signal. The preference for an overlapping solution is due to the continuous nature of 

atmospheric circulation patterns. 

3.2.2.4 Physical consistency evaluations for temperature and precipitation 

Climate variables are commonly correlated due to the continuous nature of the atmospheric 

system. There are continuous interactions and feedbacks among atmospheric signals at 

various spatiotemporal scales. Large-scale signals, such as the NAO modulate synoptic-scale 

signals, which are also modulated by other atmospheric processes and features at smaller 

scales. Therefore, mesoscale to microscale variability contains synoptic to large-scale signals, 

and so forth. Hence, any statistical processing technique applied to modeled climate data is 

expected not to notably change the physical consistency of the data. This implies that the 

simulated portion of the atmospheric signals that govern the climate variable and the 

simulated correlation between the variable and other climate variables should not be notably 

changed. There is no guarantee that a post-processing technique such as BC, applied to a 

model data will not change some aspects of the physical consistency. Discrepancies can arise 

as the post-processed simulated data may not capture the same variability as the raw 

simulated data, which can lead to differences in the respective PC patterns. Most important, 



  3.2 - Methodology 

         
 

30 

 

the spatiotemporal scale and the extent to which the change in simulated pattern variability 

occurred, after the BC, can be documented to inform end users of the post-processed data. In 

this study, the model data is first decomposed spatially, and the portion of the reference 

modes that are simulated by the data is documented. After the BC, the bias-corrected data is 

decomposed again spatially, and then it is evaluated if the documented portion of the 

simulated modes of variability was preserved or changed at certain spatiotemporal scales.   

If during model evaluations, it is diagnosed that some meteorological processes that can 

enhance the physical consistency of the model data are misrepresented relative to 

observations, such errors can be qualitatively corrected as part of climate model development 

and not during statistical post-processing that neglects feedback mechanisms. For a targeted 

impact assessment requiring that a specific set of simulations have statistical characterizations 

that are comparable with observations, BC is indeed a suitable approach to reducing the 

systematic biases in the statistical characterizations of RCMs. Nonetheless, it is an arbiter for 

success that any set of statistical post-processing techniques applied to climate model data (1) 

reduces uncertainty in the data, relative to a reference, without changing the simulated 

meteorological processes that govern the data, and the correlation between the data and other 

climate variables, and (2) if possible, can be used to diagnose the source of model error, 

which can be improved as part of climate model developments.  

To assess physical relationships between climate variables, multivariate analysis such as PCA 

can be applied to a single variable to obtain modes of variability, and composite maps of 

distinct climate variables can be used to diagnose the meteorological processes that are 

associated with the variability pattern (Ibebuchi 2022a). For example, Behera et al. (2003) 

applied rotated PCA to obtain the Indian Ocean dipole mode, and the physical and dynamical 

understanding of the mode was enhanced through composites of ocean-atmosphere 

parameters. Alternatively, multivariate analysis can be applied to obtain coupled modes of 
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variability from distinct fields by using the singular value decomposition (SVD) (Prohaska 

1976), canonical correlation analysis (CCA) (Rencher 1992), or combined PCA, that is, 

applying eigenanalysis on multiple variables at the same time; or other advanced methods 

such as the maximum covariance analysis (MCA) (An 2003). Cherry (1996) made a detailed 

comparison of SVD and CCA and found that both methods can generate spurious spatial 

patterns and highly correlated maps that are due to mathematics but have no physical 

justification. The major issue with the SVD, when applied in geosciences, is the orthogonality 

constraint placed on the coupled modes; nonetheless, the actual climatic modes are not 

orthogonal. Further, a combined PCA will not necessarily show shared patterns unless cases 

are discovered when the maps of both fields analyzed have large loading magnitudes over a 

set of PC scores with large magnitudes; and since such a scenario is rare, combined PCA is 

not guaranteed to reveal much about the coupling of the fields. The MCA tends to generate 

coupled patterns that are not due to physical interaction between the climate variables but due 

to the influence of external factors (An 2003).  

As explained in section 3.2.2.2, unrotated vectors whether in PCA, MCA, CCA, or SVD can 

be post-processed with a rotation to obtain physically interpretable patterns. Nonetheless, 

Cherry (1997) argued that when the goal is to obtain coupled modes, simultaneously rotating 

two distinct fields is not physically justifiable. Cherry (1997) suggested, that separate PCA 

analysis can be carried out in distinct meteorological fields. According to Cherry (1997), if 

there are set of rotated PC patterns from each of the distinct fields that are strongly correlated, 

and if the rotated PC patterns are physically interpretable, then evidence of coupling that has 

not been mathematically forced can be established. Such an approach suggested by Cherry 

(1997) was applied by Ibebuchi (2022c) to successfully uncover physically interpretable 

coupled atmospheric patterns (from the time decomposition of SLP and spatial decomposition 

of precipitation, with rotated PCA), through which the Subtropical Indian Ocean dipole 
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influence summer rainfall variability of the central parts of Africa, south of the equator.  

Moreover, a more optimal method (referred to as Procrustes target analysis) of applying 

rotated PCA on the individual fields and then matching the respective PC patterns, to seek 

coupled modes was introduced by Richman and Easterling (1988). Hence, to navigate 

analyzing spurious coherent patterns, evidence of coupling between the variability patterns of 

temperature and precipitation will be investigated by correlating the respective PCs that have 

passed the test for physical interpretability. If a post-processing technique such as BC does 

not notably change the temporal variability of the mode (that is, the time series), then the 

coupling (or correlations between distinct modes) will not be notably affected, since it is the 

time series of the coupled modes that are correlated before and after BC.   

Further, in addition to assessing the consistency of a climate variable with the governing 

mechanisms, this study aims to also evaluate how statistical post-processing with BC impacts 

the coherency between specific climate variables (that is, temperature and precipitation) that 

are relevant for certain impact studies. In assessing such relationships, calculating and plotting 

spatial correlation maps to uncover physically important mechanisms between two variables 

have long been found useful to advance the science of the climate since Walker (1904) 

applied correlation maps to discover the Walker Oscillation. Pearson’s correlations, presented 

in Equation (3.12), can be deemed physically interpretable due to their cohesiveness and 

magnitude.  

𝑟𝑋𝑌 =
𝑛(∑ 𝑋𝑌)−(∑ 𝑋)(∑ 𝑌)

√(𝑛 ∑ 𝑋2−(∑ 𝑋)2) (𝑛 ∑ 𝑌2−(∑ 𝑌)2)
   (3.12) 

𝑟𝑋𝑌 is the Pearson’s correlation coefficient. The correlation coefficient of −1 indicates a 

strong negative correlation and the correlation coefficient of +1 indicates a strong positive 

correlation. 0 indicates no correlation.  

n is the sample size 
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Hence Pearson’s correlation is used to relate temperature and precipitation with a focus on the 

magnitude, sign, and large-scale mechanisms driving the correlations. The statistical 

significance of the correlations is tested using the non-parametric Kendall Tau-b (Kendall 

1938) at a 95% confidence level.  

3.2.3 Metrics used to validate the bias correction techniques 

 

A process-based approach is developed in this study for evaluating the performance of the BC 

techniques. The assessment of the added value of the BC techniques includes their relative 

impacts on the model’s (1) statistical characterization, (2) simulated meteorological patterns 

and, (3) the correlation between the bias-corrected variable and other output variables, relative 

to the reference.  

3.2.3.1 Impact on the statistical characterizations  

To assess how the BC techniques impact the statistics of precipitation and temperature, the 

first to fourth statistical moments of the raw and bias-corrected climate variables, averaged 

over Germany, are compared with the observed values at a seasonal time scale. Also, the 

mean absolute error (MAE) presented in Equation (3.13) is used to evaluate the performance 

of the BC techniques in adjusting the biases at the grid box level, for spatial mean and spatial 

variability (that is, the standard deviation) of precipitation and temperature, respectively.  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − 𝑦|𝑛

𝑗=1    (3.13) 

𝑦𝑗 are the simulated values and 𝑦 is the reference values 

To assess the performance of the BC techniques concerning extreme values, which are of 

importance in modeling climate extremes, return value calculations are used during JJA when 

Germany receives on average the highest precipitation (and temperature in absolute values). 

To optimize the fit of the extreme value distribution on the data values, the extreme value 
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theoretical distribution that fits relatively best on the data values and the technique that best 

fits the distribution on the data are adopted. The peak over threshold method was prioritised 

so that more representative data values are obtained compared to the annual maxima 

approach. For estimating the parameters of the distributions, the maximum likelihood 

estimation and method of moments are also compared. Return values between 2 and 150 years 

are calculated and the simulated results from the bias-corrected output are compared to 

observed values using MAE.  

3.2.3.2 Impact on the simulated meteorological patterns  

Unlike the Pearson’s correlation, which assumes normality of the data, the congruence match 

from Equation (3.11) has no statistical assumptions and is insensitive to scalar multiplication 

of the (PC loading) vectors, X and Y. The congruence match is commonly applied in 

assessing the closeness of eigenpatterns (Lorenzo-Seva and ten Berge 2006; Dholakia and 

Bhavasar 2017). Therefore, given its advantages, the simulated meteorological patterns, 

before and after bias correction, are matched with the reference patterns using the congruence 

match. The aim is to assess if the BC techniques alter the spatiotemporal structure of the 

simulated meteorological patterns. For coupled variability patterns of temperature and 

precipitation (that is, the respective individual PC patterns that are strongly correlated), it is 

investigated if BC impacts the coupling or correlation between the variability patterns.  Also, 

in addition to the congruence matches, by further visual examination of the isopleths of the 

variability patterns (before and after BC), the assessment explores the possible spatial scale at 

which a notable change was made to the pattern configuration.  

Further, the PC scores that are the amplitude of the variability patterns at a given time are 

used to find dates when the patterns occurred with strong signal, that is, dates with high PC 

score magnitudes above a pre-selected threshold. After BC, a physically consistent 

eigenpattern should have PC scores that find the correct periods or representative dates when 
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the composites of SLP, wind, precipitation, and so forth, give physically interpretable 

composite patterns that are comparable with the reference. Therefore, when the raw simulated 

data reproduced a portion of governing mechanisms associated with a mode, if the PC scores 

are comparable before and after BC, then it is suggested that the BC has not notably changed 

the simulated physical consistency of the field. 

3.2.3.3 Impact on the correlations between the simulated variables  

It is investigated if the observed statistical correlation between temperature and precipitation 

is replicated by the raw RCMs and how the BC techniques affect the simulated seasonal 

coherency between temperature and precipitation. The correlations between temperature and 

precipitation at the grid box level results in 4840 correlation coefficients (that is, the number 

of grid boxes in the study domain at which temperature and precipitation time series are 

related, in a specific season). The empirical distribution of the correlation coefficients from 

the simulated data sets is compared to the reference using the Kolmogorov-Smirnov (KS) 

two-sample test (Massey 1951). The KS test is non-parametric and assumes the distribution of 

the data is continuous. The null hypothesis is that the two data values are from the same 

distribution. The null hypothesis is tested at a 95% confidence level. Also, the test provides a 

KS statistic value (that is, the D statistic). The KS D statistic quantifies the distance between 

the empirical distribution functions of the two samples that are compared. Thus, the KS D 

statistic is used to evaluate how close the distribution of the correlation coefficients from the 

(un)corrected data sets are to the correlation coefficients from the reference. Since the KS test 

does not indicate the aspect of the statistical distributions that are changing, the summary 

statistics of the respective distributions are also computed and compared among the data sets. 

Also, correlation maps are computed from the observed data and simulated data before and 

after BC. The changes in the magnitude and sign of correlations at the grid box level are 
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equally assessed to establish the effect of the BC techniques on the simulated correlations 

between temperature and precipitation in Germany.   

For the season(s) that the correlations are statistically significant at a 95% confidence level, 

based on the non-parametric Kendall Tau-b, the possible underlying (large-scale) atmospheric 

mechanism(s) that control the correlations is investigated. This will enhance the physical 

interpretations of the statistical correlations. Further, when the large-scale mechanism that 

governs the seasonal correlation between temperature and precipitation in the study region is 

simulated by the raw RCMs, the effect of BC on the mechanism is investigated.  
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4. Representation of atmospheric circulation modes in regional climate 

models 

 

A major source of model biases stems from the limitations in representing meteorological 

processes. In Europe, biases associated with the misrepresentation of processes have been 

reported to include blocking frequency biases, sea surface temperature biases, representation 

of teleconnections such as the NAO, orographic effects, and cloud parameterizations 

(Feldmann et al. 2008; Muller et al. 2018). The circulation biases in the GCMs are propagated 

into the RCMs used to downscale them, which can result in the misrepresentation of surface 

variables, such as precipitation and temperature (Teichmann et al. 2013).   

Further, the representation of atmospheric circulation modes in RCMs can enhance the 

credibility of regional climate projections. Circulation biases are regional constraints in 

studying and projecting changes in dynamically downscaled surface variables such as 

precipitation (Zhang and Soden 2019; Fernandez-Granja et al. 2021). A good representation 

of large-scale atmospheric circulation modes in Western Europe in the RCMs will enhance 

the accuracy of the future projections of temperature and precipitation changes over Germany. 

Though the added value of dynamical downscaling towards a better representation of large-

scale circulation features is unclear (Prein et al. 2019), through better representation of 

smaller-scale processes such as orography, improvements, for example, in rains shadow 

effects have been reported (Clark et al. 2010). However, there are also concerns that RCMs 

might not be physically consistent with the driving GCM because increasing resolution might 

alter the structure of climate parameters such as wind field (Benestad 2016). For that reason, it 

is crucial to examine how the RCM ensemble simulates the observed CTs under different 

constraints. Moreover, BC techniques do not improve circulation biases and biases associated 
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with the misrepresentation of processes (Maraun et al. 2021). Therefore, it is important that 

the RCMs faithfully simulate the observed large-scale circulation modes.  

4.1 The capability of the climate models to replicate the observed circulation types 

 

The reference large-scale atmospheric circulation modes are represented by the classified 

ERA5 CTs in Figure 4.1. The CTs are classified using SLP data from 1979 to 2005, which is 

the longest period that all data sets are available. Also, when ERA-Interim provides the lateral 

boundary conditions, HIRHAM and RCA4 RCMs are not available from 1979; hence in the 

CT analysis, HIRHAM and RCA4 were not included for the RCMs driven by ERA-Interim. 

The ERA5 CTs are more consistent with the observed climate. Moreover, external validation 

of the ERA5 CTs in Western Europe has been made using other reanalysis products (Ibebuchi 

2022a). The same rotated T-MD PCA classification scheme that is used to classify the ERA5 

CTs is applied to the individual RCMs aiming to reproduce the reference CTs. Hence the 

reference CTs from ERA5 are matched with their counterparts as classified from the 

individual RCMs using the congruence coefficient as a measure of goodness-of-match. The 

ERA5 CTs are compared with the same CTs from (1) the individual RCMs driven by ERA-

Interim, (2) individual RCMs driven by MPI-ESM and CNRM, respectively and, (3) the 

multi-model ensemble mean of the RCMs driven by reanalysis and by the GCMs, 

respectively. Thus, the analysis aims to measure the sensitivity of the results to (1) the choice 

and quality of the RCM, (2) the choice of GCM and, (3) the reduction of inter-model 

uncertainties using the multi-model ensemble mean.  

By matching the rotated PC loadings from the ERA5 and the climate simulations, 

respectively, to the correlation vectors that they are indexed to, the first four Promax rotated 

components all have congruence coefficients greater than 0.92. At a Promax power of 2, the 

highest magnitude of congruence matches (with the correlation patterns) for all the four 
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components were attained. Thus, the four components rotated at a Promax power of 2 are 

analyzed. Figure 4.1 to Figure 4.4 show the classified CTs when the classification is applied 

to the RCMs driven by ERA-Interim, the GCMs (that is, MPI-ESM and CNRM), and the 

multi-model ensemble mean of the RCMs, respectively. The simulated CTs are compared to 

the same ERA5 CTs, and the CTs (that is, the SLP composite patterns) were replicated in 

each case with one-to-one correspondence. There are biases (that is, mismatch in the isopleths 

of the composite patterns) specific to both the choice of RCM and the GCM-RCM 

combination. To quantify these biases, that is, how well the simulated CTs match with the 

observed CTs, Table 4.1 contains the congruence coefficients between the observed SLP 

composite anomaly patterns from ERA5 and the same simulated SLP composite anomaly 

patterns from the climate models. First, the congruence match is highest for the CTs classified 

from the RCMs driven by ERA-Interim compared to when the GCMs provide the lateral 

boundary condition. This is an indication that the RCMs can capture the atmospheric 

circulation modes as obtained from ERA5 and the major biases that constrain the model chain 

in replicating the CTs stem from the driving GCM. Also, the explained variance of the 

simulated modes is quite comparable with the modes from ERA5 (Table 4.2). The major 

uncertainty in the explained variance arises when the data driving the RCM is changed, 

mostly for the first retained component that explains most of the variability. 

Further, in Table 4.1 and Figure 4.2 to Figure 4.4, it can be inferred that when the RCMs are 

driven by GCM, the biases associated with the representation of the CTs depend on the choice 

of RCM and the quality of the data providing the lateral boundary conditions. Further, the 

results show that GCMs have large deficits in simulating large-scale atmospheric circulation 

compared to ERA-Interim. On average, the multi-model ensemble mean of the analyzed 

RCMs slightly improved the representation of the large-scale atmospheric circulation modes 
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when the RCMs are driven by ERA-Interim. No improvement was attained in the ensemble 

mean of the five RCMs driven by the GCMs. But a slight improvement was attained if only 

the ensemble mean of the best performed RCMs (that is, RACMO and COSMO driven by 

CNRM) were considered (Table 4.1). Thus, there is no guarantee that multi-model ensemble 

mean will improve the skill of the RCMs in simulating the large-scale atmospheric circulation 

modes. Only with careful consideration of the ensemble members, a benefit might be 

obtained. From Table 4.1, when the RCMs are driven by reanalysis, the lowest congruence 

match with the reference is in CT4− associated with anticyclonic circulation over Western 

Europe. In the ensemble mean of the five RCMs driven by GCM data, CT2+ and CT4− that 

are associated with anticyclonic circulations have the lowest congruence matches with the 

reference CT, respectively. Thus, the models indicate deficiencies in simulating anticyclonic 

circulations over Western Europe.   

From Table 4.3, for the RCMs driven by reanalysis, the loadings (amplitude) of mode 1 and 

mode 2 match mostly in the good range with ERA5 loadings. The accuracy relatively drops 

under mode 3 and mode 4. The plausible reason can be that the first two modes (and their 

temporal evolution), which explain ~56% of the variability in the SLP field (Table 4.2) are 

well represented in the climate models, compared to modes that explain lesser variability. 

Figure 4.5 shows that the inter-annual variability of the amplitude of the modes from ERA5 is 

in phase with the simulated modes when ERA-Interim provides the lateral boundary 

condition. From Table 4.3, on average, the multi-model ensemble mean helps in reducing the 

model uncertainties in the temporal variations of the amplitudes of the simulated modes when 

reanalysis provides the lateral boundary condition. However, when the GCMs provide the 

lateral boundary conditions, the match between the PC loadings of the simulated modes and 

the ERA5 modes is in the terrible range (Table 4.3). Thus, while the GCM-RCM chain can 
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reproduce the climatological mean of circulation patterns, there is nearly no skill in 

reproducing the temporal sequence of circulation patterns.  

Table 4.1: Congruence match between the anomaly maps from ERA5 CTs and the same CTs from the 

RCMs. Copyright © [2022b] [Ibebuchi CC]. All rights reserved. 

 

 

 

 

 

 

 

Data CT1+ CT1− CT2+ CT2− CT3+ CT3− CT4+ CT4− Average 

   ERA-Interim 

(RCM) 

      

COSMO 0.99 1.00 0.99 0.99 0.95 0.99 0.94 0.85 0.96 

RACMO 1.00 1.00 0.98 0.98 0.94 0.98 0.95 0.92 0.97 

REMO 1.00 0.99 0.98 0.99 0.96 0.98 0.94 0.94 0.97 

   MPI-ESM 

(RCM) 

      

COSMO 0.97 0.91 0.79 0.78 0.88 0.97 0.91 0.84 0.88 

RACMO 0.98 0.95 0.82 0.89 0.85 0.97 0.92 0.81 0.90 

REMO 0.96 0.84 0.63 0.63 0.85 0.81 0.95 0.92 0.82 

RCA4 0.96 0.77 0.60 0.61 0.79 0.79 0.95 0.88 0.79 

HIRHAM 0.97 0.89 0.76 0.85 0.76 0.89 0.88 0.74 0.84 

   CNRM 

(RCM) 

      

COSMO 0.97 0.95 0.90 0.97 0.94 0.87 0.90 0.83 0.92 

RACMO 0.98 0.98 0.87 0.98 0.91 0.86 0.83 0.86 0.91 

REMO 0.97 0.97 0.79 0.96 0.88 0.81 0.74 0.74 0.86 

RCA4 0.96 0.98 0.81 0.98 0.86 0.79 0.82 0.86 0.88 

HIRHAM 0.98 0.96 0.78 0.94 0.94 0.91 0.75 0.80 0.88 

   ENSEMBLE 

(RCM) 

      

ERA-

Interim 

1.00 1.00 1.00 1.00 0.99 1.00 0.96 0.94 0.99 

MPI-ESM 0.98 0.80 0.72 0.91 0.99 0.77 0.92 0.77 0.86 

CNRM 0.97 0.92 0.77 0.98 0.87 0.86 0.81 0.77 0.87 

CNRM 

(COSMO, 

RACMO) 

0.99 0.98 0.92 0.98 0.90 0.82 0.85 0.88 0.92 
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Figure 4.1: Circulation types from ERA5 and the regional climate models, driven by the ERA-Interim. 

The circulation types are the SLP composites of the days grouped under a given class.  Copyright © 

[2022b] [Ibebuchi CC]. All rights reserved
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Figure 4.2: Circulation types from ERA5 and the regional climate models, driven by the MPI-ESM-

LR GCM. The circulation types are the SLP composites of the days grouped under a given class. 

Copyright © [2022b] [Ibebuchi CC]. All rights reserved 
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Figure 4.3: Circulation types from ERA5 and the regional climate models, driven by the CNRM 

GCM. The circulation types are the SLP composites of the days grouped under a given class. 

Copyright © [2022b] [Ibebuchi CC]. All rights reserved. 
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Figure 4.4: Circulation types from ERA5 and the multi-model ensemble mean output of the regional 

climate models driven by ERA-Interim, MPI-ESM-LR and CNRM GCMs. Copyright © [2022b] 

[Ibebuchi CC]. All rights reserved. 
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Table 4.2: Explained variance (in %) of the PC patterns from ERA5 and the RCMs when driven by 

ERA-Interim, MPI-ESM-LR, and CNRM; and for the multi-model ensemble mean of the RCMs under 

each of the driving data. Copyright © [2022b] [Ibebuchi CC]. All rights reserved 

 

Component ERA5 RACMO COSMO REMO HIRHAM RCA4 ENSEMBLE 

   ERA-

Interim 

    

1 34.22 33.92 33.30 35.31 - - 34.57 

2 21.31 21.74 20.948 21.78 - - 22.10 

3 16.49 17.42 18.882 16.28 - - 17.63 

4 8.78 8.00 8.295 8.13 - - 8.05 

Total 80.80 81.08 81.429 81.51   82.34 

   MPI-

ESM 

    

1 - 37.63 37.39 39.72 38.11 39.99 44.79 

2 - 20.77 20.34 20.07 20.25 19.90 19.94 

3 - 15.95 16.47 14.50 15.78 15.25 13.20 

4 - 7.97 8.14 8.19 8.11 7.67 7.05 

Total 80.80 82.32 82.35 82.48 82.25 82.80 84.99 

   CNRM     

1 - 32.94 33.01 34.18 33.35 34.84 35.47 

2 - 21.41 20.85 21.10 20.88 18.86 22.45 

3 - 15.53 15.91 15.22 15.66 16.78 14.97 

4  9.18 9.69 9.06 9.06 9.05 8.85 

Total 80.80 79.05 79.47 80.05 78.95 79.53 81.74 

 

 

Figure 4.5: Annual mean loadings from classified ERA5 modes and the RCMs driven by ERA-

Interim. The annual mean loading summarizes the inter-annual variability in the amplitude of the 

modes. Thick (dotted) lines represent the loadings from ERA5 (RCM ensemble mean). The time series 

is for the 1979 to 2005 period. Copyright © [2022b] [Ibebuchi CC]. All rights reserved. 
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Table 4.3: Congruence match between the loadings of the modes from ERA5 and the same modes 

from the RCMs. Copyright © [2022b] [Ibebuchi CC]. All rights reserved. 

 

Data Mode 1 Mode 2 Mode 3 Mode 4 Average 

  ERA-

Interim 

(RCM) 

   

COSMO 0.92 0.94 0.91 0.81 0.90 

RACMO 0.94 0.95 0.90 0.82 0.90 

REMO 0.93 0.94 0.90 0.83 0.90 

  MPI-ESM 

(RCM) 

   

COSMO 0.24 0.21 0.28 0.08 0.20 

RACMO 0.26 0.20 0.27 0.07 0.20 

REMO 0.25 0.14 0.26 0.00 0.16 

HIRHAM 0.27 0.21 0.28 0.06 0.21 

RCA4 0.24 0.27 0.28 0.04 0.21 

  CNRM 

(RCM) 

   

COSMO 0.26 0.15 0.20 0.06 0.17 

RACMO 0.27 0.26 0.31 0.14 0.25 

REMO 0.26 0.24 0.30 0.07 0.22 

HIRHAM 0.28 0.25 0.30 0.06 0.22 

RCA4 0.24 0.27 0.27 0.07 0.21 

  ENSEMBLE 

(RCM) 

   

ERA-Interim 0.95 0.97 0.94 0.87 0.93 

MPI-ESM 0.30 0.29 0.23 0.11 0.23 

CNRM 0.32 0.30 0.34 0.08 0.26 
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5. Impact of the linear scaling bias correction technique on regional 

climate models 

 

The LS technique is the simplest BC technique designed to adjust systematic biases in the 

mean statistic of the data. Shrestha et al. (2017) reported that the LS technique can be 

sufficient to adjust systematic biases in model output at a monthly resolution. However, there 

are speculations that for a highly variable parameter like precipitation, such a scaling 

technique that changes how much precipitation is allowed in each grid box can alter some 

aspects of the physical consistency in the field; for example, the variability in the simulated 

meteorological patterns, and the effects of microphysical and dynamical cloud processes on 

precipitation might be altered (Maraun 2016). In this chapter, the impact of the LS technique 

on the statistical characterization and the simulated meteorological patterns of monthly 

precipitation are examined. The results are exemplified during the MJJA season when 

Germany averages the highest rainfall (Figure 2.2). Also, considering the availability period 

of the RCMs driven by ERA-Interim that is used to evaluate the quality of the RCMs, against 

when the same RCMs are driven by GCM data, the analysis period is 1979 to 2005. The 

analysis period is divided into 1979 to 1992, and 1993 to 2005. The BC transfer function is 

obtained for each period (that is, the training period), and then applied to the other period (that 

is, the validation period). Thus, the complete analysis period is bias-corrected based on 

Equation (3.1). The correction factor is obtained and applied at each grid point in the study 

region to address the spatial heterogeneity of precipitation.  

5.1 Impact of the linear scaling technique on the statistics of monthly precipitation 

 

The performance of the LS bias correction approach in reducing the precipitation biases at 

each grid point in Germany is shown in Figure 5.1 and Table 5.1. During MJJA, the raw 

RCMs simulated the monthly precipitation estimates in Germany with some biases.  
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Figure 5.1: Validation of the linear scaling technique for the 1993 to 2005 period. Biases are 

computed as precipitation estimates from RCM minus observed values from E-OBS. Copyright © 

[2022b] [Ibebuchi et al.]. All rights reserved. 
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Table 5.1: Spatial correlation coefficient (r), and mean absolute error (MAE), in mm/month, for the 

basic spatial statistics of the RCMs compared to E-OBS before and after bias correction of the RCMs 

driven by MPI-ESM-LR, for the 1993 to 2005 validation period. The bias correction is based on linear 

scaling. SD implies standard deviation. Copyright © [2022b] [Ibebuchi et al.]. All rights reserved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data MAE  r 

 Mean  

REMO (ERA-Interim) 10.86 0.66 

REMO (MPI-ESM RAW) 21.5 0.52 

REMO (MPI-ESM BC) 8.63 0.97 

CCLM4 (ERA-Interim) 14.4 0.93 

CCLM4 (MPI-ESM RAW) 28.3 0.90 

CCLM4 (MPI-ESM BC) 3.17 0.98 

 SD  

REMO (ERA-Interim) 5.21 0.43 

REMO (MPI-ESM RAW) 5.43 0.42 

REMO (MPI-ESM BC) 4.72 0.81 

CCLM4 (ERA-Interim) 4.20 0.63 

CCLM4 (MPI-ESM RAW) 10.6 0.80 

CCLM4 (MPI-ESM BC) 2.53 0.87 

 5 percentile  

REMO (ERA-Interim) 6.47 0.71 

REMO (MPI-ESM RAW) 21.09 0.41 

REMO (MPI-ESM BC) 14.4 0.79 

CCLM4 (ERA-Interim) 10.12 0.88 

CCLM4 (MPI-ESM RAW) 11.2 0.88 

CCLM4 (MPI-ESM BC) 3.62 0.90 

 95 percentile  

REMO (ERA-Interim) 21.82 0.53 

REMO (MPI-ESM RAW) 25.75 0.50 

REMO (MPI-ESM BC) 11.38 0.90 

CCLM4 (ERA-Interim) 16.01 0.85 

CCLM4 (MPI-ESM RAW) 45.23 0.84 

CCLM4 (MPI-ESM BC) 10.04 0.91 
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Figure 5.1 and Table 5.1 show that when the RCMs are driven by ERA-Interim, the 

precipitation estimates are closer to observed values, compared to when they are driven by 

MPI-ESM. Moreover, the MPI-ESM has been reported to be characterized by wet bias over 

Europe (Teichmann et al. 2013), and in chapter 4, it was found that the MPI-ESM model has a 

deficiency in simulating anticyclonic circulations (that is, the synoptic pattern associated with 

dryness) over Western Europe. The wet bias is evident from the mean precipitation values in 

Figure 5.1 from both the REMO and CCLM4 RCMs. This follows the result from chapter 4 

that the GCMs are characterized by circulation biases that are propagated in the RCMs used to 

downscale the GCMs. The stronger biases in REMO might be due to challenges in simulating 

orographically induced precipitation over the Rhine valley and Black Forest region (Feldmann 

et al. 2008). Also, compared to CCLM4, REMO has a low spatial correlation, probably due to 

the missing precipitation advection (Table 5.1). Further, Table 5.1 and Figure 5.1 suggest that 

the biases for REMO and CCLM4 have different causes.  

 The results from Table 5.1 and Figure 5.1 indicate that the systematic biases in the statistics 

of simulated precipitation were reduced by the LS technique. The LS technique improved the 

spatial variation of precipitation, measured by the spatial correlation coefficient between 

simulated and observed values in Germany during MJJA. Also, the mean values and extreme 

value statistics (that is, the 5 and 95 percentile precipitation values) of the simulated 

precipitation were brought closer to the observed by the LS. The added value of the LS is 

relatively less for the standard deviation of precipitation, especially for the REMO model. 

From Figure 5.1, there are few grid boxes where the LS increased the biases in the standard 

deviations. Nonetheless, Table 5.1 contains that when the spatial average is computed, 

improvement in the simulated standard deviation, following LS, can be inferred since the grid 

boxes where the LS technique increased the biases are relatively few. The results equally 

indicate that the BC performance can be dependent on the choice of RCM. 



               5.1 - Impact of the linear scaling technique on the statistics of monthly precipitation             

                                                
 

52 

 

For example, under CCLM4, the largest contribution to the overall bias (that is, the MAE) is 

coming from a few isolated grid points, mostly in the southernmost parts of Germany, and 

when these biases are reduced, the precipitation estimates from the RCM become quite closer 

to the observed.  

The results in this section, concerning the capability of the LS technique to improve the basic 

statistics of the simulated precipitation estimates over Germany, are not limited to the 

analyzed RCMs, the analyzed period, and the analyzed variable. Figure A3 and Figure A4 

show that for an ensemble of RCMs, there are marked improvements from the LS technique 

in adjusting the systematic biases for all seasons, in a longer time frame, both for monthly 

precipitation and temperature, respectively.  

5.2 Precipitation variability patterns in Germany and the associating mechanisms  

 

Figure 5.2 shows the spatial patterns of the homogeneous regions of MJJA precipitation 

anomalies in Germany from ERA5 and E-OBS. Following the application of the rotated S-

MD PCA, only rotated PCs that match the correlation patterns with a minimum congruence 

coefficient of 0.92 are retained. Hence following this criterion that ensures that the retained 

modes can be physically interpreted, four regions are classified which represent the western 

part of Germany (R1), the southeastern part including the Bavarian Alps (R2), the eastern part 

(R3), and the northern and northwestern parts that are close to the North Sea and the Baltic 

Sea (R4). The central part of Germany is characterized by an overlap of these four regions and 

hence, indicates the fuzziness of precipitation and its governing processes, supporting the idea 

of a transition zone with varying rain-producing or inhibiting influences. Based on the E-OBS 

data, those four retained PCs explain ~75% of the variance of MJJA precipitation in 

Germany. From Figure 5.2, though the loading magnitudes appear to differ, E-OBS and 

ERA5 have comparable patterns. The precipitation data from ERA5 is a product of data 
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assimilation that can be biased because of systematic and random errors from the 

observations, the forecast model, and the observation operator when converting model fields 

to equivalent precipitation observation (Janjic et al. 2017). The differences in isopleths of the 

observed and assimilated patterns in Figure 5.2 reflect the basic differences in precipitation 

between the models and observations Nonetheless, Table 5.2 shows that there is a good 

congruence match between the variability patterns as obtained from the ERA5 and E-OBS 

data. Thus, the E-OBS patterns are externally validated using ERA5 reanalysis data, and in 

subsequent analysis, the focus will be on the precipitation variability patterns observed from 

E-OBS.   

 

Figure 5.2: Variability patterns of MJJA precipitation anomalies in Germany from E-OBS and ERA5 

for the 1979 to 2020 period. Copyright © [2022b] [Ibebuchi et al.]. All rights reserved. 

 

Figure 5.2 shows that some precipitation regions have varying loading magnitudes, for 

example in the western region (R1), the loadings for the southwest are lower than in other 

domains in R1. The heterogeneity of the loading magnitudes in each region can be an 

indication that the co-variability of the grids has different extents. Even though a significant 

effort is made by the classification to simplify the spatial complexity of the precipitation field, 

the imprecise nature of the processes leading to the development of the regions can imply also 

that the governing mechanism of precipitation is expected to be generally homogeneous for a 
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given region (at least at the synoptic scale), nonetheless, spatial heterogeneity of precipitation 

can still be expected within a classified homogeneous region. This can be because of the local 

effects that modify the synoptic processes, which can translate, for example, to different 

precipitation amounts in each homogeneous region.  

Table 5.2: Congruence coefficient between the variability patterns of MJJA precipitation anomalies in 

Germany from E-OBS and ERA5 for the 1979 to 2020 period. Copyright © [2022b] [Ibebuchi et al.]. 

All rights reserved. 

 

Region Congruence coefficient 

R1 0.97 

R2 0.95 

R3 0.96 

R4 0.97 

 

To diagnose the physical processes associated with the time development of the precipitation 

regions in Figure 5.2, Figure 5.3 shows the spatial patterns of wind and SLP anomalies during 

the positive and negative phases of the homogeneous precipitation regions. For diagnosis of 

which phase in Figure 5.3 is dry or wet concerning the region in question, the associating 

precipitation composite anomaly maps are created in Figure 5.4. In the western region (R1), 

the positive phase indicates a widespread cyclonic anomaly over Germany and the maritime 

regions. The wind anomalies are mostly southwest over the western domains. Figure 5.4 

indicates that the positive phase of the western region is wet in the domains classified under it, 

whereas the negative phase comes along with dry conditions. From Figure 5.3, an 

anticyclonic anomaly dominates over Germany and the North Sea during the negative phase 

of the western region. The wind anomaly is dominantly northerly in the negative phase. The 

anticyclonic anomaly over the North Sea is equally an indication of suppressed convection.  
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Under the R2 regime (that is, the southeastern region), Figure 5.3 shows a weak pressure 

gradient between the North Sea and the southeastern parts of Germany. During the positive 

(negative) phase, a positive (negative) SLP anomaly is evident over the North Sea; as a result, 

the wind patterns are northwest (southerly) towards the regions of a relative enhanced 

cyclonic anomaly. In combination with orographic effects along the northern Alps, these 

patterns associated with the positive (negative) phase of R2 bring wet (dry) conditions over 

southern Germany. A further reason for the difference between the precipitation in the 

positive and negative phase includes that the lower pressure over southern Germany (in the 

positive phase of the southeastern region) steers moist air from the surrounding oceans into 

southeastern Germany. 

Under the positive (negative) phase of the eastern region (R3), the pressure gradient indicates 

a cyclonic anomaly, situated at the south (widespread) over the landmasses in Germany; this 

results in maritime northeast winds from the Baltic Sea (dry continental easterly winds) over 

the landmasses in the eastern region (Figure 5.3). Thus, from Figure 5.4, the positive 

(negative) phase of the eastern region is wet (dry). 

Under the positive (negative) phase of the northern/northwestern region (R4), a strong 

cyclonic (anticyclonic) anomaly dominates from the central to the northern parts of Germany. 

The wind patterns are dominantly southwest (northwest) towards the domains under the 

northern/northwestern region, resulting in wet (dry) conditions in the northern/northwestern 

region. The northerly wind anomaly during the negative phase is dry since it could be related 

to the anticyclone that develops over Scandinavia.  

In summary, the positive (negative) phases of all four MJJA precipitation variability patterns 

denote wet (dry) conditions. The associated wind and SLP anomalies are in line with the basic 

understanding of rain-bearing (rain-suppressing) meteorological situations over Central 

Europe. 
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Figure 5.3: SLP and 10-meter wind anomalies during the positive and negative phases of the 

precipitation variability patterns in Figure 5.2. The green vectors denote wind anomalies, and the black 

contours indicate SLP in hPa. Contour interval is 0.2 hPa. Only values exceeding the 95% confidence 

limit based on the permutation test are plotted. Dashed (thick) contour lines indicate negative 

(positive) SLP anomalies. Anomalies are created with respect to the MJJA climatology. Copyright © 

[2022b] [Ibebuchi et al.]. All rights reserved. 

 



Chapter 5 - Impact of the linear scaling bias correction technique on regional climate models                                                                                             
 

57 

 

 

 

Figure 5.4: Precipitation composite anomaly patterns of the positive and negative phases of the 

variability patterns of MJJA precipitation anomalies in Germany in Figure 5.2  

 

The positive and negative phases of all considered modes are mostly asymmetric. Also, there 

seems to be asymmetry in the contribution to the precipitation composites. This can be a 

consequence of the fuzzy and overlapping nature of the large-scale meteorological processes 

that cause precipitation: the synoptic-scale processes associated with the formation of 

precipitation at a given region, modified by local geographical effects such as orography, can 

extend to influence precipitation at other regions equally. In principle, the regions are not hard 

with step boundaries, especially when it comes to advective flow. 

5.3 Impact of the linear scaling technique on the simulated meteorological patterns  

 

From Figure 5.5, it is exemplified from the CCLM4 model that the observed precipitation 

regions from the E-OBS data can be replicated in the RCMs, though with biases (that is, 

spatial mismatch in the pattern configurations). As a spatial mode depends on the precise 

geographical location with the largest PC loadings and gradient of the pattern, the agreement 
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in geographical overlap and magnitude at each location, which is measured by the congruence 

matches, is the arbiter of success for the climate model in replicating the reference modes. 

Based on Table 5.3, the southeastern region is robustly captured by the RCM regardless of the 

data that provides the lateral boundary conditions. Also, from Table 5.3, the bias in 

representation of the observed pattern is higher under the northern/northwestern region. 

Moreover, unlike in chapter 4, where the representation of the CTs (created from the SLP 

field) is improved when reanalysis data provides the boundary conditions, there is no 

guarantee of such improvement (that is, when reanalysis is used as the driving data) for the 

precipitation variability patterns shown in Figure 5.5. For example, from Table 5.3, the 

representations of R3 and R4 were better when MPI-ESM provides the lateral boundary 

conditions. A possible reason for the results is that, unlike SLP, precipitation is a highly 

variable parameter and due to observational uncertainty, the model physics, and limited model 

resolution, the variability of precipitation cannot be fully captured in models. Moreover, 

differences in the variability of precipitation due to small differences in the variance structure 

arising from spatiotemporal interpolation errors, data handling, and so forth can lead to 

differences in the structure of the PCs.  

The impact of the LS technique on the simulated meteorological patterns can be equally 

assessed in Table 5.3 and Figure 5.5.  Interestingly, all the individual variability patterns were 

reproduced after the BC which at least suggests that the LS technique does not constrain the 

reproducibility of the simulated meteorological patterns from the CCLM4 model. Based on 

the congruence matches in Table 5.3 and cursory investigation of the maps in Figure 5.5, 

there is no robust indication that (at a larger scale) the LS technique impacted the overall 

structure of the simulated meteorological patterns from the CCLM4 model. However, a close 

cursory investigation of the variability patterns, for example in R2, shows that the isopleths 

were changed by the LS technique, relative to the patterns from the raw RCM. This is an 
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indication that at smaller spatial scales (for example, mesoscale or less), there is the 

possibility that the LS technique can change the co-variability of the regions and the 

simulated (local) governing mechanisms.    

Table 5.3: Congruence coefficient between the variability patterns of MJJA precipitation anomalies in 

Germany classified from E-OBS and their counterparts from the CCLM4 RCM with different forcing 

for the 1979 to 2005 period. Copyright © [2022b] [Ibebuchi et al.]. All rights reserved.  

 

Data  R1 R2 R3 R4 

MPI-ESM (RAW) 0.90 0.93 0.94 0.85 

MPI-ESM (BC) 0.91 0.92 0.94 0.85 

ERA-Interim 0.95 0.96 0.87 0.79 

 

The PC scores are used to find the dates when the variability patterns occurred, either in the 

observed or simulated climate depending on the data that was spatially decomposed. Hence it 

is necessary that to preserve the physical (temporal) consistency of the spatially decomposed 

precipitation data, the PC scores after BC should be comparable with the PC scores before the 

BC, otherwise, the dates in the simulated data when a variability pattern occurred will be 

inconsistent after the BC. In the simplest explanation, it is a sufficient achievement that if on a 

given date, and due to misrepresentation of weather patterns, the date exhibits wet biases in 

the RCM, but after the BC, the wet biases are reduced, but not to the extent of 

misrepresenting the variability patterns that occurred at that date. In principle, it should be 

documented that the variability pattern occurred at that date but the BC improved the “actual” 

resulting precipitation amount that should have been simulated on that date, assuming the 

climatology of the variability patterns is comparable with observations. This is the idea 

behind requiring that the univariate BC does not notably change the PC scores (both the sign 

and magnitude) compared to the raw RCM. In chapter 4, it was concluded that climate models 

(that is, RCMs driven by GCM) have no skill to simulate the temporal sequence of the 
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reference CTs. Thus, it is not even a worthy goal to require that the simulated PC scores of the 

variability patterns from the RCM driven by MPI-ESM, in Figure 5.5, are adjusted towards 

observations after the BC. Also, in chapter 4, it was found that the RCMs have the skill to 

reproduce the climatological mean of atmospheric circulations. Hence if the BC improved the 

geographical overlap between the simulated and reference patterns, that is an added value, but 

the temporal consistency before and after BC should be maintained, though this is not 

guaranteed because any changes in the PC loadings are propagated into the PC scores.  

The PC loadings and the standardized field are used to create the PC scores, as shown in 

Equation (3.9). Further, Table 5.4 indicates that the spatiotemporal configuration of the 

simulated meteorological pattern from the bias-corrected data is more or less the same as the 

same patterns from the raw RCM. The congruence matches of the PC loadings (and PC 

scores) from the LS output are in the excellent range with the same PC loadings (and PC 

scores) from the raw CCLM4 RCM (Table 5.4). Despite the scaling of the precipitation at 

each grid box, following the BC, the PC scores, are comparable in the corrected and raw data. 

This is because there are no large changes in the magnitude and configuration of the PC 

loadings after the BC (Table 5.4). Figure 5.6 shows the inter-annual time series of the PC 

scores before and after the BC, indeed there are small disparities in the absolute value of the 

PC scores from the raw and bias-corrected data. This is promising because it suggests that 

though there are some changes in the amplitude of the variability patterns, generally the 

changes are not so large and the temporal pattern matches, in the (un)corrected CCLM4 

model, are in the excellent range (Table 5.4).  

Table 5.4: Congruence match between the same respective PC scores, and PC loadings of the 

variability patterns of MJJA precipitation anomalies in Germany from the raw and bias-corrected 

CCLM4 RCM for the 1979 to 2005 period 

 

PC R1 R2 R3 R4 

Scores 0.99 0.99 0.99 0.99 

Loadings  1.00 0.99 1.00 1.00 
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Figure 5.5: Variability patterns of MJJA precipitation anomalies in Germany from E-OBS and as 

simulated in the CCLM4 RCM for the 1979 to 2005 period. The simulations are for the ERA-Interim 

driven RCMs, MPI-ESM-LR driven RCMs for raw and bias-corrected data. Copyright © [2022b] 

[Ibebuchi et al.]. All rights reserved. 

 



            5.3 - Impact of the linear scaling technique on the simulated meteorological patterns                                                                                                             
 

62 

 

 

 

Figure 5.6: PC scores of the variability patterns of MJJA precipitation anomalies in Germany from the 

CCLM4 RCM driven by MPI-ESM-LR before and after bias-correction with the linear scaling 

technique for the 1979 to 2005 period. 

 

From Figure 5.7, even after the BC with the LS technique, similar to Figure 5.4, the 

asymmetries of the precipitation composites associated with the individual meteorological 

patterns were replicated using the corrected CCLM4 precipitation data. Since the PC scores 

from the corrected CCLM4 precipitation data (that is, the LS output) can still find 

representative dates when the positive and negative phases of a given variability pattern 
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in Figure 5.5 were expressed, it is a further confirmation that the bias-corrected data still have 

a significant extent of (temporal) consistency with the simulated governing large-scale 

mechanisms associated with the precipitation patterns. Nonetheless, compared to observations 

(that is, Figure 5.4) Figure 5.7 reproduced the precipitation composite anomaly patterns with 

biases, especially for the dry phase of the western region (R1). Also like Figure 5.3, the 

simulated composite anomaly maps of the dates assigned to a given variability pattern (that is, 

the simulated wind and SLP anomaly patterns) were comparable with observations mostly for 

the wet phases of the variability patterns (Figure A5). The pattern configurations for the dry 

phases of the variability patterns were mostly misrepresented given that the SLP and wind 

vector composite anomaly patterns are not much comparable with the observed patterns in 

Figure 5.3, and at the synoptic scale, this can be a reason for the wet bias in the precipitation 

field: the models do not sufficiently simulate portions of large-scale anticyclonic circulations 

and the resulting dry regimes over Germany. For the CCLM4 model and within the analysis 

constraints in this study, the exception to the deficiency in simulating the dry regimes of the 

variability patterns is the eastern region (R3) which has the highest congruence match with 

the observed pattern (Table 5.3). Figure 5.7 and Figure 5.8 shows that the observed 

precipitation composite anomaly pattern, SLP, and wind vector composite anomaly patterns 

during the dry and wet phase of R3 are simulated by the CCLM4 model and reproduced with 

the PC scores from the LS approach. As observed from Figure 5.3, the CCLM4 model 

reproduced in Figure 5.8 that in the climatology of R3, northeast winds from the Baltic Sea 

bring wet conditions to the eastern region during summer, and dry continental easterly winds 

bring dry conditions to the eastern region. The PC scores from the LS output also reproduced 

composite anomaly patterns of the wet phases of the western region (R1), southeastern region 

(R2), and northern/northwestern region (R4) that are also consistent with observations (Figure 

A5). Thus, for the analyzed RCM, while the LS does not improve the misrepresentation of 

processes related to precipitation variability in Germany, when the large-scale processes that 
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govern the precipitation variability are sufficiently simulated, the LS output (that is, the bias-

corrected precipitation field) can be expected to be consistent with the large-scale governing 

mechanisms to a significant extent. However, depending on the grid boxes and how much the 

LS changed the precipitation amounts, some inconsistency between the precipitation field and 

other smaller scale variability can be introduced, which can equally be deduced from the 

localized changes in the co-variability of the grids in Figure 5.5.  

 

Figure 5.7: Precipitation composite anomaly patterns of the positive and negative phases of the 

variability patterns of MJJA precipitation anomalies in Germany from the bias-corrected CCLM4 

RCM driven by MPI-ESM-LR 

 

 

Figure 5.8: SLP (black contour) and 10-meter wind (green vectors) composite anomaly patterns of the 

eastern region (R3) variability pattern of MJJA precipitation anomalies from the bias-corrected 

CCLM4 RCM driven by MPI-ESM-LR. Dashed (thick) contour lines indicate negative (positive) SLP 

anomalies 
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Further, the LS technique is based on the assumption of a time-invariant or stationary 

correction factor. Under future climate change, strong climate change signals might imply that 

the correction factor obtained in the historical period becomes inapplicable in adjusting the 

future precipitation biases and might equally constrain the simulated meteorological patterns. 

Therefore, it is investigated if the assumption of a stationary correction factor constrains the 

reproducibility of the precipitation variability patterns under future climate change. Hence, the 

correction factor was obtained during the historical period and following the assumption of 

stationarity, was then applied to bias-correct the future precipitation under the highest 

warming scenario. Figure 5.9 suggests that the assumption of a time-invariant correction 

factor might not constrain the reproducibility of the simulated meteorological pattern of the 

bias-corrected future precipitation data. Under future climate change, Figure 5.9 shows that 

the patterns of the homogeneous precipitation regions were all reproduced, but with at least a 

borderline congruence match with the historical patterns. Since the congruence match 

between the patterns from the historical and the RCP8.5 scenario are not in an excellent range, 

some dissimilarity in the spatial configuration of the patterns can be inferred. Thus, three 

inferences can be made (1) since the patterns were reproduced under the RCP8.5 scenario, the 

basic meteorological processes that govern wet or dry conditions in Germany remain the same 

and lead to more or less the same homogeneous MJJA rainfall regions across the country as 

observed under present-day conditions, (2) the differences between the spatial structure of the 

historical and the RCP8.5 scenario patterns, suggest that while the meteorological processes 

associated with the development of the regions remain the same, climate change might be 

expected to impact some aspects of the governing meteorological processes, which translates 

to the future changes in the patterns, (3) model error in the different experiments, or 

assumption of a time-invariant correction factor, or the post-processing of the future data 

using LS, might also contribute to some of the differences between the spatial structure of the 

historical and the RCP8.5 scenario patterns.  
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Figure 5.9: Variability patterns of MJJA precipitation anomalies in Germany as simulated by the 

REMO and CCLM4 RCMs, driven by MPI-ESM-LR, for the 2070 to 2100 period under the RCP8.5 

emission scenario.  Copyright © [2022b] [Ibebuchi et al.]. All rights reserved. 
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6. Evaluations of bias correction techniques in reducing the biases in the 

daily statistics of simulated precipitation and temperature  

 

6.1 Performance of bias correction techniques in reducing simulated precipitation 

biases 

 

Compared to when reanalysis data provides the lateral boundary condition, the daily 

precipitation amount is inflated when the RCMs are driven by MPI-ESM, increasing wet day 

biases (Table 6.1). Hence, like the precipitation data at the monthly resolution, at a daily 

resolution, the MPI-ESM model introduces more (wet) biases in the RCMs when it provides 

the initial and lateral boundary conditions. Figure A6 to Figure A7 show that for other RCMs 

in Table 3.1 and when the driving data is either MPI-ESM or CNRM, the models are 

characterized by wet biases, which is more notable under MPI-ESM in all calendar months.  

Table 6.1: Mean absolute error in the temporal series, spatial series, and annual frequency of wet days 

from the REMO and CCLM4 RCMs against E-OBS for the 1989 to 2005 period. Copyright © [2022a] 

[Ibebuchi et al.]. All rights reserved. 

 

Data set Time 

(mm/day) 

Spatial 

(mm/day) 

Wet day bias 

(day/year) 

CCLM4 (ERA-Interim) 1.18 0.26 12 

CCLM4 (MPI-ESM) 2.95 0.47 58 

REMO (ERA-Interim) 1.40 0.62 18 

REMO (MPI-ESM) 2.79 0.81 44 

 

The performances of three BC techniques in adjusting the biases in the statistics of daily 

simulated precipitation in Germany are assessed. The techniques are LS, EQM, and MQDM. 

Table 6.2 and Table 6.3 contain the MAE in the spatial mean and standard deviation of 

precipitation, before and after BC techniques are applied to the REMO and CCLM4 RCMs. 

Figure 6.1 and Figure 6.2 show the biases in the spatial mean and standard deviation of 

precipitation, respectively, exemplified from the REMO model.  
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Figure 6.1: Validation of the added value of the bias correction techniques on the spatial mean of 

daily precipitation as simulated in the REMO RCM, driven by MPI-ESM-LR, during the 1978 to 2005 

validation period. Biases are computed as the difference between the simulated seasonal mean 

precipitation and the observed seasonal mean precipitation (RCM minus E-OBS). Copyright © 

[2022a] [Ibebuchi et al.]. All rights reserved. 

 

From Table 6.2, all BC techniques added value in reducing the biases in the simulated mean 

precipitation at the grid boxes in Germany. The relative performances of the respective BC 

techniques depend on the RCM and season that is considered. The dipole precipitation pattern 

over the southwestern part of Germany and the local biases in the REMO model were 

significantly reduced by all the BC techniques (Figure 6.1). For the REMO model, the LS 

technique performs best for all seasons in reducing the biases in the simulated mean 

precipitation at the grid boxes (Table 6.2). Considering that the LS algorithm focuses on 
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scaling the mean precipitation at each grid box to be closer to the observed, its good 

performance in adjusting the biases in the mean statistic is not surprising. Nonetheless, the 

distribution-based techniques, that is, EQM and MQDM, also added value in reducing the 

biases in the simulated mean precipitation at most grid boxes. 

 

Figure 6.2: Validation of the added value of the bias correction techniques on the spatial standard 

deviation of daily precipitation as simulated in the REMO RCM, driven by MPI-ESM-LR, during the 

1978 to 2005 validation period. Biases are computed as the difference between the simulated seasonal 

variability of precipitation and the observed seasonal variability of precipitation (RCM minus E-OBS). 

Copyright © [2022a] [Ibebuchi et al.]. All rights reserved. 

Table 6.3 contains that the added value of the BC techniques in improving the spatial standard 

deviation of precipitation is slim compared to the performance of the same BC techniques on 

the simulated mean precipitation. Moreover, depending on the season and RCM, the LS 
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technique indicates the tendency of increasing the biases in the spatial standard deviation of 

precipitation. This is more pronounced in the CCLM4 model (Table 6.3). During DJF, the 

MQDM technique performs well in reducing the biases in the standard deviation and on 

average, did not increase the biases over Germany, for any of the seasons, relative to the raw 

RCM. Overall, the distribution-based BC techniques perform better in reducing the biases in 

the spatial variability of precipitation over Germany compared to the LS technique. The time 

(or seasonal) dependency of the biases can be partly due to the transient nature of the 

processes associated with rainfall formation in the study region. Different processes can be 

associated with precipitation formation at different periods. Therefore, the systematic bias in 

the simulated precipitation during the distinct seasons differs (Figure 6.1 and Figure 6.2).  

Table 6.2: Mean absolute error (mm/day) in spatial mean of daily precipitation estimates from the 

RCMs, driven by MPI-ESM-LR, relative to E-OBS during the 1978 to 2005 validation period. (*) 

indicates the best performing BC technique with the lowest error for a given season. Copyright © 

[2022a] [Ibebuchi et al.]. All rights reserved.   

 

RAW LS EQM MQDM 

              CCLM4   

                DJF   

0.64 0.10* 0.39 0.10* 

               MAM   

0.63 0.13* 0.14 0.14 

                JJA   

1.03 0.24 0.30 0.17* 

                SON   

0.62 0.19 0.10* 0.21 

               REMO   

                 DJF   

0.82 0.08* 0.27 0.14 

                MAM   

0.59 0.08* 0.20 0.13 

                JJA   

0.70 0.11* 0.15 0.22 

                                                    SON    

0.51 0.09*             0.14 0.15 
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Table 6.3: Mean absolute error (mm/day) in the spatial standard deviation of daily precipitation 

estimates from the RCMs, driven by MPI-ESM-LR, relative to E-OBS during the 1978 to 2005 

validation period. (*) indicates the best performing BC technique with the lowest error for a given 

season. (**) indicates where the BC technique increased the biases. Copyright © [2022a] [Ibebuchi et 

al.]. All rights reserved.     

 

RAW LS EQM MQDM 

                  CCLM4   

                   DJF   

0.41 0.87** 0.55** 0.25* 

                   MAM   

0.43 0.57** 0.41* 0.42 

                    JJA   

0.72 0.73** 0.42* 0.44 

                   SON   

0.48 0.49** 0.39* 0.39* 

                  REMO   

                   DJF   

1.04 0.44 0.45 0.32* 

                   MAM   

0.56 0.59** 0.55 0.33* 

                    JJA   

0.74 0.80** 0.42* 0.56 

                   SON   

0.70 0.39* 0.40 0.41 

 

Next, the added value of BC techniques in terms of the first to fourth statistical moments of 

the distribution of daily precipitation time series, averaged over Germany is evaluated. 

Regardless of the driving data and the RCM, BC adds value in reducing the wet biases of the 

RCMs (Figure A6 and Figure A7). For CCLM4 and REMO, respectively, Table 6.4 and Table 

6.5 contain the biases in the first to fourth statistical moments, as major statistical 

characteristics of the empirical distributions, before and after BC. Overall, the relative 

performances of the BC techniques depend on the season and RCM. However, the 

distribution-based BC techniques outperform the LS approach which in some cases increased 

the biases in the third and fourth moments (that is, skewness and kurtosis). The MQDM 

generally performs best in reducing the biases in the third and fourth moments. The EQM 

increased the biases in the third and fourth moments during SON in the REMO model. The 

good performance of the LS approach in reducing the biases in mean precipitation at the grid 
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box level, especially in the REMO model, is also replicated in Table 6.5 where for most 

seasons the LS technique outperforms other techniques in adjusting the temporal simulated 

mean value to the observed.  

Table 6.4: Errors in the first to fourth moments, in mm/day, for the raw and bias-corrected 

precipitation estimates from the CCLM4 model driven by MPI-ESM-LR against observed 

precipitation values from E-OBS, during the 1978 to 2005 validation period. Error is calculated as the 

absolute value of the observed minus simulated statistic. (*) indicates the best performing (or no) BC 

technique with the lowest error for a given season, and (**) indicates the third to the fourth moment 

where the BC technique increased the biases.  Copyright © [2022a] [Ibebuchi et al.]. 

 

Statistic RAW  LS  EQM  MQDM   
DJF  

   

Mean  0.64 0.08 0.39  0.02*  

SD  0.03* 0.68  0.56  0.18  

Skewness  0.42  0.43**  0.08  0.05*  

Kurtosis  1.77  1.73 0.85  0.44*   
MAM  

   

Mean  0.63  0.13  0.12 0.10*  

SD  0.17*  0.37  0.32  0.25 

Skewness  0.49  0.36  0.10* 0.22 

Kurtosis  2.27  1.50 0.56* 1.31   
JJA  

   

Mean  1.03  0.33 0.23 0.14* 

SD  0.43  0.38 0.02*  0.06 

Skewness  0.43 0.49**  0.20 0.07*  

Kurtosis  2.17  2.42**  1.43 0.59*   
SON  

   

Mean  0.59  0.18  0.01*  0.19  

SD  0.12* 0.34  0.23 0.37  

Skewness  0.48 0.58**  0.30  0.08*  

Kurtosis  2.45 3.15** 1.88 0.36*  

 

For the CCLM4 model, the MQDM performs best in improving the first moment. The 

second-moment quantity that is represented by the standard deviation poses a challenge to the 

BC techniques. Mostly, the raw RCMs capture the temporal variability better than the 

corrected precipitation time series. Nonetheless, there are some relative improvements in the 

simulated standard deviation under the MQDM technique. The relatively better performance 

of the MQDM in improving the higher moments can be attributed to the change-preserving 
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attribute of the QDM over the entire distribution, and the incorporation of the spatial 

dependency of precipitation during the BC, which enhanced the inter-site correlations. The 

tendency of the LS technique to increase the biases in the higher moments of daily 

precipitation was not replicated when the same LS is applied to precipitation data from the 

same RCMs but at monthly resolution (Table 5.1). This suggests that the performance of the 

BC technique depends also on the temporal resolution of the data. 

Table 6.5: Same as Table 6.4 but for the REMO model. Copyright © [2022a] [Ibebuchi et al.].     

 

Statistic RAW  LS  EQM  MQDM   
DJF  

   

Mean  0.58 0.00*  0.25  0.11 

SD  0.07*  0.44  0.46 0.43  

Skewness  0.37  0.36  0.19*  0.22 

Kurtosis  1.52  1.92** 1.19  0.93*   
MAM  

   

Mean  0.50  0.04* 0.19 0.04* 

SD  0.05*  0.46  0.32  0.21 

Skewness  0.23 0.42 0.27 0.08*  

Kurtosis  1.45 1.86**  1.50**  1.44*   
JJA  

   

Mean  0.51 0.09  0.00*  0.30  

SD  0.14  0.40  0.13  0.00*  

Skewness  0.46  0.26  0.03*  0.26  

Kurtosis  2.06 0.98  0.23*  0.98   
SON  

   

Mean  0.24  0.04**  0.13  0.10  

SD  0.06*  0.33 0.39 0.20 

Skewness  0.20  0.38**  0.38**  0.02*  

Kurtosis  0.57  2.08**  2.22**  0.45*  

 

To examine the performance of the BC techniques in capturing extreme values of 

precipitation, return value calculations during JJA are used. First, a generalized extreme value 

distribution is fitted to the annual maximum JJA values of (un)corrected simulated 
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precipitation during the validation period and the results are compared to the observed return 

values from E-OBS (Figure 6.3). Second, to assess the sensitivity of the results in Figure 6.3, 

the analysis is repeated using the peak-over-threshold approach with the Gumbel distribution 

(Figure 6.4). The peak-over-threshold approach helps to optimize the calculations given that 

the sample size can be larger compared to the annual maxima approach. To accommodate 

more values, the 90th percentile precipitation threshold from E-OBS was used in defining 

extreme precipitation in Germany. Observed daily precipitation, raw, as well as bias-corrected 

(precipitation) outputs that exceed this threshold, are used for the return value estimates 

depicted in Figure 6.4. 

Figure 6.3 shows that based on the GEV distribution, the observed return values of 

precipitation are best represented by the MQDM approach. Based on the MAE, MQDM 

outperforms other BC techniques by a large margin in both RCMs. For the peak-over-

threshold approach, the results are slightly different compared to the annual maxima 

approach. Fischer and Schumann (2014) reported that in terms of extreme events, the peak-

over-threshold approach can be relatively more robust. This is also confirmed in this study 

based on the Gumbel model fit. Figure 6.4 shows that similar to the annual maxima approach, 

the MQDM output is closest to observations in the CCLM4 model, whereas in REMO, the 

EQM outperforms the MQDM by a slim margin (that is, based on the MAE). In all cases, the 

LS approach increases the biases in the simulated return values of precipitation. Generally, the 

MQDM outperforms the other BC techniques in adjusting the simulated summer extreme 

precipitation characteristics across Germany to the observed values. Moreover, Cannon et al. 

(2015) noted that compared to the EQM, the QDM, which is implemented in the MQDM 

algorithm performs better in correcting precipitation extremes. Since the change signal is 

incorporated in the MQDM, it is reasonable that it performs well in capturing precipitation 

extremes during JJA in Germany. Moreover, the MQDM has the skill to reduce the biases in 
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other statistical aspects of precipitation such as the annual cycle and the frequency statistics 

(Figure A6 to Figure A9). The MQDM also has skill in adjusting the inter-site temporal 

correlations of the precipitation field towards observations. However, it is a univariate BC 

technique in the sense that it is applied to only one variable and is not designed to adjust inter-

variable dependencies towards observations. 

a) 

 

b) 

 

Figure 6.3: Return level plot of precipitation averaged over Germany from (a) REMO and (b) 

CCLM4, driven by MPI-ESM-LR, before and after bias correction, during JJA in the 1978 to 2005 

validation period, using the annual maxima approach and generalized extreme value distribution. 
Copyright © [2022a] [Ibebuchi et al.]. All rights reserved. 
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a) 

 

b) 

 

 

Figure 6.4: Return level plot of precipitation averaged over Germany from (a) REMO and (b) 

CCLM4, driven by MPI-ESM-LR, before and after bias correction, during JJA in the 1978 to 2005 

validation period, using the peak over threshold approach and Gumbel distribution. Copyright © 

[2022a] [Ibebuchi et al.]. All rights reserved  
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6.2 Performance of bias correction techniques in reducing simulated temperature 

biases 

 

For temperature that is mostly well simulated by the RCMs and does not exhibit high spatial 

heterogeneity compared to precipitation, using the MQDM did not indicate any clear added 

value, both in improving the inter-site correlations (that were already comparable with 

observations) and the basic statistics. The BC output was almost the same as using the QDM 

that is used in matching the multivariate distributions. Therefore, for temperature, the 

traditional QDM is applied in adjusting the systematic biases.  

Figure 6.5 and Figure 6.6 show the performance of the BC techniques for the mean and 

standard deviation of simulated temperature values from the REMO model. Accordingly, the 

MAE before and after bias correcting the CCLM4 and REMO RCMs is contained in Table 

6.6 and Table 6.7. The added value of the BC in adjusting the simulated mean temperature 

towards the observed is highest during JJA when the CCLM4 is characterized by a notable 

cold bias (Figure A10). During JJA, for the CCLM4 model, ~ 77.8% of the errors in the 

spatial mean statistic of temperature were reduced by the LS and QDM, while ~ 68.3% of the 

errors were reduced by the EQM. Similarly, Figure 6.5 shows that the REMO model has the 

highest bias in simulating mean temperature over Germany during the SON season. The EQM 

reduces the errors during SON by ~ 76.6%; the LS and QDM reduced the errors by ~ 73.4%. 

Seasons when the error magnitude is small, that is, when the raw RCM performs well in 

simulating the mean temperature values during the validation period, for example, JJA from 

the REMO model (Table 6.7); DJF and SON for the CCLM4 model (Table 6.6), the BC 

techniques did not add value but rather increased the biases (in the mean statistic), especially 

for CCLM4. Thus, when there is little or no room for improvement in the temperature 

estimates during the validation period, the need for applying BC or an optimal BC approach 

to adopt might as well be assessed. 
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The relative performances of the BC techniques in adjusting the simulated mean temperature 

values show dependency on the season, RCM, and region. Unlike in precipitation where the 

BC techniques mostly perform differently, visual inspection of the spatial maps in Figure 6.5 

and Figure A10 shows that the added value from the BC techniques is quite similar for 

temperature. 

 

Figure 6.5: Validation of the added value of the bias correction techniques on the spatial mean of 

daily temperature as simulated in the REMO RCM, driven by MPI-ESM-LR, during the 1978 to 2005 

validation period. Biases are computed as the difference between the simulated seasonal mean 

temperature and the observed seasonal mean temperature (RCM minus E-OBS) 

The same inferences on the added value of the BC techniques also hold when the standard 

deviation of temperature is considered. When the error magnitude in simulating the standard 

deviation of temperature over Germany is large in the validation period, the (distribution-
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based) BC techniques add value by reducing the errors; but when the errors are small the BC 

techniques increased the biases (Table 6.6 and Table 6.7; Figure 6.6 and Figure A11). Also, 

the LS technique has no significant effect on changing the variability of temperature. 

 

Table 6.6: Mean absolute error (in °C) for the spatial mean and standard deviation of the daily 

temperature values from the CCLM4 RCM, driven by MPI-ESM-LR, relative to E-OBS during the 

1978 to 2005 validation period. (*) indicates the best performing (or no) BC technique with the lowest 

error for a given season. 

 

RAW LS EQM QDM 

 Mean   

 DJF   

0.33* 0.86 0.95 0.84 

 MAM   

0.48 0.36 0.33* 0.36 

 JJA   

1.26 0.28* 0.40 0.28* 

 SON   

0.39* 0.83 0.72 0.81 

 SD   

 DJF   

0.19* 0.19* 0.28 0.34 

 MAM   

0.41 0.41 0.17 0.16* 

 JJA   

0.64 0.64 0.18 0.10* 

 SON   

0.32* 0.32* 0.60 0.72 

 

 

Further, as exemplified in Table 6.8 with the CCLM4 model, during the DJF and JJA seasons, 

when the averages were considered (that is, average temperature over Germany), the 

inferences from the spatial statistical analysis still hold. For the first to fourth statistical 

moments, the larger the error magnitude in simulating the statistical moments, during the 

validation periods, the higher the added value of the BC techniques. Thus, unlike simulated 

precipitation, which is usually characterized by notable biases, the added value of the BC 

techniques for temperature seems to be more controlled by the magnitude of the biases. 

Overall, the more sophisticated BC techniques do not outperform the simple LS approach in 
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adjusting daily temperature biases over Germany, especially when the biases in the statistical 

moments of the raw RCM outputs are closer to zero. 

 

Table 6.7: Mean absolute error (in °C) for the spatial mean and standard deviation of daily 

temperature values from the REMO RCM, driven by MPI-ESM-LR, relative to E-OBS during the 

1978 to 2005 validation period. (*) indicates the best performing (or no) BC technique with the lowest 

error for a given season. 

 

RAW LS EQM QDM 

 Mean   

 DJF   

0.33 0.19* 0.20 0.19* 

 MAM   

0.49 0.40* 0.40* 0.40* 

 JJA   

0.26* 0.33 0.32 0.33 

 SON   

0.64 0.17 0.15* 0.17 

 SD   

 DJF   

0.63 0.63   0.43* 0.47 

 MAM   

0.19* 0.19* 0.28 0.29 

 JJA   

0.31* 0.31* 0.32 0.32 

 SON   

0.19* 0.19* 0.37 0.41 

 

Table 6.8: Errors in the first to fourth moments, in °C, for the raw and bias-corrected temperature 

values from the CCLM4 model driven by MPI-ESM-LR against observed temperature values from E-

OBS, during the 1978 to 2005 validation period. Error is calculated as the absolute value of the 

observed minus simulated statistical moment. (*) indicates the best performing (or no) BC technique 

with the lowest error for a given season. 

 

Statistic RAW LS EQM QDM 

 DJF    

Mean 0.03* 0.86 0.95 0.86 

SD 0.65 0.65 0.41* 0.42 

Skewness 0.25 0.25 0.17 0.15* 

Kurtosis 0.50 0.50 0.29* 0.41 

 JJA    

Mean 1.26 0.25* 0.38 0.25* 

SD 0.59 0.59 0.17 0.08* 

Skewness 0.49 0.49 0.18* 0.22 

Kurtosis 0.90 0.90 0.39* 0.47 
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Figure 6.6: Validation of the added value of the bias correction techniques on the spatial standard 

deviation of temperature as simulated in the REMO RCM, driven by MPI-ESM-LR, during the 1978 

to 2005 validation period. Biases are computed as the difference between the simulated standard 

deviation of temperature and the observed standard deviation of temperature (RCM minus E-OBS) 
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7. Impact of distinct bias correction techniques on the simulated 

meteorological patterns of temperature and precipitation at a daily 

temporal resolution  

 

In chapter 5, the impact of the LS technique on the statistics and simulated meteorological 

patterns of precipitation, at a monthly resolution was examined; it was found that the LS 

technique can be sufficient to adjust the basic statistics of monthly precipitation towards 

observations; also, the spatiotemporal configurations of the simulated meteorological patterns 

of precipitation were reproduced after the bias correction with LS. However, from chapter 6, 

for the same set of RCMs, the LS technique indicates the tendency to increase the biases in 

the higher moments of daily precipitation. This suggests that there can be further uncertainty 

on how the BC techniques impact the simulated meteorological patterns as a function of the 

temporal resolution at which the BC is applied and the temporal resolution at which the 

meteorological patterns were classified. Hence in this chapter, three BC techniques (LS, 

EQM, and QDM) are applied to reduce the biases in simulated precipitation and temperature 

on a daily scale. The impact of the distinct BC techniques on the individual and coupled 

simulated meteorological patterns of precipitation and temperature, classified at daily and 

monthly time scales are examined during the 1978 to 2005 validation period. 

 Figures 7.1 to Figure 7.3 show the summer variability patterns of precipitation and 

temperature, in Germany. Following the same criterion of analyzing only PC patterns that 

match well with correlation vectors that they are indexed to with at least a congruence 

coefficient of 0.92, four variability patterns were classified for precipitation, and two 

variability patterns for temperature. The rotated S-MD PCA algorithm was applied to daily 

data during the summer season. Figure 7.1 and Figure 7.2 show that as obtained from the 

monthly precipitation data (Figure 5.2), the summer homogeneous precipitation regions are 

also the western, southeastern, eastern, and northern/north-western regions when daily data is 
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used for the classification. However, based on congruence matches, the simulated 

meteorological patterns based on monthly data have more errors (relative to observations 

from E-OBS) compared to the simulated meteorological patterns that are based on daily data. 

Perhaps the daily simulated data relatively captures better than the monthly simulated data, 

some spatiotemporal variability of the meteorological patterns. Thus, for the precipitation data 

at a daily scale, the co-variability of the grids (and the governing processes driving the 

correlations) is well simulated and quite close to observations from E-OBS. The congruence 

matches between the observed and simulated meteorological patterns in Figure 7.1 were all 

greater than 0.99 (that is, an excellent match in the overall spatial structure) both before and 

after BC. Therefore, the BC techniques do not notably change the simulated co-variability of 

the grids and the large-scale governing mechanisms, since the overall spatial configuration of 

the PC loadings patterns remains more or less the same before and after BC. Based on the 

congruence matches between the same PC scores from the corrected and uncorrected RCM, 

which were in the excellent range, no notable changes were equally found in the amplitude 

(that is, temporal structure) of the summer variability patterns.  

A cursory inspection of Figure 7.1 shows that the isopleths were slightly altered by the BC 

techniques. Therefore, similar to the conclusions in chapter 5 that were based on only the LS 

technique applied to monthly data: while in at least the synoptic scale, no notable changes in 

the spatiotemporal structure of the simulated meteorological patterns were found at a more 

localized scale, the BC changed the co-variability of the grids and so the underlying local 

mechanisms. Thus, the basic inference from Figure 7.1 is that the effect of the BC on the 

simulated meteorological patterns depends on the spatial scale considered. At a larger scale 

(that is, at least the synoptic scale), since the simulated meteorological patterns were all 

reproduced before and after the BC with a congruence match with the reference (greater than 

0.99 in all cases) the BC techniques have little or no effect on the simulated meteorological 



Chapter 7 - Impact of distinct bias correction techniques on the simulated meteorological 

patterns of temperature and precipitation at a daily temporal resolution                     

84 

 

patterns at a larger spatial scale. However, at a more localized spatial scale, depending on the 

region, and specifically where strong spatial correlation exists among the grids as can be seen 

in Figure 7.1, the BC changes the localized spatial configuration of the simulated 

meteorological patterns.   

 

Figure 7.1: Variability patterns of daily boreal summer precipitation anomalies from E-OBS and as 

simulated by the REMO RCM driven by MPI-ESM-LR for the for the 1978 to 2005 validation period. 

The simulations are for the raw RCM and bias-corrected outputs from the three BC techniques. The 

similarity matrix used in the rotated S-MD PCA is based on the temporal correlations between the 

daily precipitation values at the grid boxes. 
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From Table 7.1, for the meteorological patterns of precipitation based on the daily data 

accumulated on a monthly scale, the RCMs all perform well (congruence match greater than 

0.90 in all cases) in producing the observed patterns (Figure 7.2). Also, relatively, the LS 

technique did not significantly affect the co-variability of the grids (Table 7.1). The EQM and 

QDM techniques appear to slightly impact the spatial configuration of the patterns, based on 

the congruence matches in Table 7.1, but the effect is slim (or more localized) and not notable 

at a larger scale. Thus, the distinct BC techniques can impact the spatial structure of the 

simulated meteorological patterns differently, at more localized spatial scales (Figure 7.1 and 

Figure 7.2). Further, it can be inferred from Figure 7.1 and Figure 7.2 that regardless of the 

temporal resolution at which the meteorological patterns are classified, they are reproduced 

after the BC.  

Table 7.1: Congruence coefficient between the simulated variability patterns of boreal summer 

precipitation from E-OBS, and for the raw and bias-corrected precipitation model output for the 1978 

to 2005 validation period 

 

Output R1 R3 R3 R4 

  REMO   

RAW 0.94 0.92 0.95 0.93 

LS 0.94 0.92 0.95 0.93 

EQM 0.95 0.92 0.94 0.92 

QDM 0.95 0.92 0.95 0.92 

  CCLM4   

RAW 0.94 0.95 0.96 0.91 

LS 0.94 0.95 0.96 0.91 

EQM 0.93 0.96 0.95 0.90 

QDM 0.93 0.96 0.95 0.91 

 

Figure 7.3 show that the summer temperature variability patterns comprise the northern region 

and southern region with an overlap in the central regions. The co-variability of the grids is 

highest in each case at the southernmost and northernmost domains. Both the REMO and 

CCLM4 RCMs reproduced the temperature regions as observed (both with daily and monthly 

data) with congruence matches greater than 0.98 in all cases (Figure 7.3, only shown for 
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REMO). Thus, the RCMs simulate the temperature regimes better than the precipitation 

regimes, regardless of the time scale at which the classification is done. Moreover, it is 

promising that overall, none of the BC techniques (clearly) modified the spatial structure and 

reproducibility of the simulated meteorological patterns, both for temperature and 

precipitation. The same result holds for meteorological patterns from other adjacent seasons 

other than the summer season. 

 

Figure 7.2: Variability patterns of monthly boreal summer precipitation anomalies from E-OBS and 

as simulated by the REMO RCM driven by MPI-ESM-LR for the 1978 to 2005 validation period. The 

simulations are for the raw RCM and bias-corrected outputs from the three BC techniques. The 

similarity matrix used in the rotated S-MD PCA is based on the correlation between the daily 

precipitation values accumulated to monthly precipitation totals.  
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Figure 7.3: Variability patterns of daily boreal summer temperature anomalies from E-OBS and as 

simulated by the REMO RCM driven by MPI-ESM-LR for the1978 to 2005 validation period. The 

simulations are for the raw RCM and bias-corrected outputs from the three BC techniques.  

 

Based on the suggestion of Cherry (1997), an optimal way to investigate the coupling between 

atmospheric modes is to apply rotated PCA to the individual fields, ensure that the individual 

patterns can be physically interpretable, and then apply correlations between the PC patterns 

from the respective fields; therefore, the rotated S-MD PC patterns between precipitation and 

temperature obtained from the respective seasons of the year were correlated. Correlation with 
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a magnitude of ~0.5 (that is, the correlation coefficient) was found between two respective PC 

patterns from precipitation and temperature during the DJF season. Given that the PC scores 

(that is, the time series) that were correlated, were not notably changed after the BC, there was 

equally no robust indication that the simulated coupling between the PC patterns was 

constrained or improved by the BC techniques, based on the statistical significance of the 

correlations.  
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8. Impact of bias correction on inter-variable dependencies  

 

8.1 Seasonal correlations between temperature and precipitation before and after 

bias correction  

 

Table 8.1 contains the correlations between the daily time series of temperature and 

precipitation averaged over Germany, during the 1978 to 2005 validation period. A 

statistically significant correlation was obtained only during DJF from the observational data. 

Interestingly, the raw RCM outputs simulate the coherency of temperature and precipitation 

averaged over Germany during DJF with the same correlation sign and a quite similar 

magnitude of the correlation coefficient as observed from E-OBS (Table 8.1). The positive 

correlation implies that during winter, higher temperatures can be related to enhanced 

precipitation over Germany; to physically justify the statistical correlations, recall that the 

DJF temperature averaged over Germany relates to the NAO with a statistically significant 

correlation coefficient of 0.64 (Figure 2.4). Further, it can be recalled from Figure 2.4 to 

Figure 2.6 that during DJF, the fingerprint of the positive (negative) NAO on the dominant 

atmospheric circulation mode over Western Europe implies enhanced moist westerly 

advective flow from the North Atlantic (dry northerly advective flow from the anticyclone 

over the high latitude) towards western Europe, resulting in higher temperatures and enhanced 

precipitation (lower temperature and dry conditions) over Germany. Therefore, it is concluded 

that the observed statistical correlations in Table 8.1 between DJF temperature and 

precipitation, averaged over Germany, can be physically interpreted. Since the raw RCMs 

capture the statistical correlations as observed, it is an indication that large portions of the 

mechanisms behind the relationship between winter temperature and precipitation over 

Germany are simulated by the models. 
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Table 8.1: The correlation coefficient between the seasonal time series of daily temperature and daily 

precipitation averaged over Germany, from E-OBS, the raw REMO and CCLM4 RCMs driven by the 

MPI-ESM-LR. (*) indicates correlations that are statistically significant at a 95% confidence level 

based on the Kendall Tau-b. The correlations are for the 1978 to 2005 validation period 

 

E-OBS  RCM 

 REMO 

DJF  

0.37* 0.39* 

MAM  

−0.01 −0.09 

JJA  

−0.19 −0.20 

SON  

0.08 −0.01 

 CCLM4 

DJF  

0.37* 0.36* 

MAM  

−0.01 −0.01 

JJA  

−0.19 −0.01 

SON  

0.08 0.06 

 

Further, to examine if the RCMs simulate the observed correlations between the NAO and 

DJF temperature, averaged over Germany (that is, the relationship shown in Figure 2.4), the 

RCMs driven by ERA-Interim are used for the analysis. This is because as mentioned earlier, 

the simulations are more consistent with observations when reanalysis provides the boundary 

condition. Indeed, the RCMs captured the observed correlation between average DJF 

temperature in Germany and the NAO index, and based on the statistical significance of the 

correlations, the BC techniques did not notably alter the simulated correlations, at least for 

most grid boxes and on average (Table 8.2). This is a further confirmation that when the 

models simulate the signals of large-scale climate drivers such as the NAO, BC does not 

destroy the imprint of the climate driver that is represented in the simulated variable. 

Therefore, averaged over Germany, Table 8.2 contains that the climate models are still 

physically consistent with the NAO variability before and after BC.  
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Table 8.2: Correlation coefficients between simulated temperatures, averaged over Germany, from the 

RCMs driven by ERA-Interim, and the NAO index, during DJF, for the 1978 to 2005 validation 

period. (*) indicates correlations that are statistically significant at a 95% confidence level based on the 

Kendall Tau-b  

 

RCM RAW LS EQM QDM 

REMO 0.77* 0.77* 0.76* 0.72* 

CCLM4 0.73* 0.72* 0.76* 0.75* 

 

Next, the correlations between temperature and precipitation at the grid box level are 

examined for both observed data and (un)corrected RCMs. Table 8.3 contains the summary 

statistics of the 4840 correlation coefficients, that is, the number of grid boxes in the study 

domain at which daily temperature and precipitation time series are related during DJF. The 

values for each statistic are comparable across the data sets (that is, observational data, bias-

corrected, and raw RCMs), though the values are not the same in most cases, especially 

between the observed and simulated values. This suggests that while the simulated and 

observed correlations at some grid boxes are distinct, on average the magnitude and sign of 

the correlations are comparable. Nonetheless, under the REMO model, the minimum values 

indicate that some grid(s) has a negative correlation coefficient, and the LS technique inflates 

the magnitude of that negative correlation. 

The comparison of the correlations between temperature and precipitation at each grid box, 

across the data sets is investigated further using the KS test. First, the KS test indicated that 

the data values (that is, the 4840 correlation coefficients) from the observed and simulated 

data sets (both corrected and uncorrected) are from different continuous distributions (pvalue 

< 0.05, so the null hypothesis is rejected). This further indicates that there is no robust 

indication that the univariate BC techniques improved the simulated correlations towards 

observation. Table 8.4 contains the KS D statistics for each simulated data value compared to 

the observed. It can be seen that the simulated empirical distribution function from the raw 



Chapter 8 - Impact of bias correction on inter-variable dependencies                     

92 

 

RCMs is closest to observation. Also, from Table 8.4, depending on the RCM, the univariate 

BC techniques can increase that distance, in other words, degrade the simulated correlations at 

specific grid boxes. 

Table 8.3: Summary statistics of the empirical distribution of the correlation coefficients between 

temperature and precipitation time series at the 4840 grid boxes in the study domain during DJF 1978 

to 2005 validation period 

 

Statistic E-OBS RAW LS EQM QDM 

  REMO    

minimum 0.00 −0.06 −0.21 −0.07 −0.09 

5 percentile 0.17 0.10 0.09 0.09 0.09 

First quartile 0.24 0.20 0.20 0.20 0.20 

Median 0.28 0.26 0.26 0.25 0.26 

mean 0.27 0.26 0.25 0.25 0.25 

Third quartile 0.31 0.33 0.32 0.31 0.32 

95 percentile 0.34 0.39 0.39 0.37 0.38 

Maximum 0.38 0.47 0.47 0.45 0.45 

  CCLM4    

minimum 0.00 0.11 0.11 0.12 0.11 

5 percentile 0.17 0.18 0.18 0.17 0.17 

First quartile 0.24 0.23 0.23 0.21 0.21 

Median 0.28 0.27 0.27 0.25 0.26 

mean 0.27 0.26 0.26 0.25 0.25 

Third quartile 0.31 0.30 0.30 0.28 0.29 

95 percentile 0.38 0.33 0.33 0.31 0.31 

Maximum 0.38 0.35 0.34 0.33 0.33 

 

In Table 8.4, The KS D statistic from the LS approach is mostly close to that from the raw 

RCM. A plausible reason is that the LS approach applied to daily data, mostly corrects the 

biases in the mean statistic, while other simulated statistics, for example, the higher moments, 

still have biases that are comparable with the raw RCM. Considering the REMO model, the 

QDM performs well for both temperature and precipitation, but the same QDM technique 

increased the DJF spatial mean and variability temperature biases under CCLM4 (Table 6.6). 



                   8.1 - Seasonal correlations between temperature and precipitation before and 

after bias correction                     

93 

 

As a result, the distance between the empirical distribution function from the simulated and 

observed data values is further increased in the CCLM4 model by the QDM approach (Table 

8.4). This suggests that the choice of the RCM and the performance of distribution-based 

univariate BC techniques on the individual variables also play major roles in how the BC 

affects the correlations at the grid box level. 

Table 8.4: KS D statistic between the observed empirical distribution functions and that of the 

simulated data values before and after bias correction, during DJF 1978 to 2005 validation period. The 

distribution is based on the correlation coefficients between temperature and precipitation time series 

at the 4840 grid boxes. 

 

RAW LS EQM QDM 

 REMO   

0.16 0.17 0.19 0.16 

 CCLM4   

0.10 0.10 0.24 0.21 

 

To examine further, Figure 8.1 shows the spatial map of the correlations between the daily 

DJF temperature and precipitation for observations, and for the CCLM4 model before and 

after BC with QDM. By visual examination of the correlation maps, the spatial patterns of the 

correlations were captured by the raw RCM with modest bias (spatial match with Pearson’s 

correlation is 0.83). From both observed and simulated data, the relationship between DJF 

precipitation and temperature in Germany is weakest over the northeastern parts of Germany 

and the southeastern parts of Germany. Based on synoptic circulations, a plausible reason can 

be because, for the northeastern region, dry easterly continental air masses make the boundary 

layer drier (R3 in Figure 5.3 and Figure 5.4). From Figure 8.1, it can be inferred that (1) for 

most grid boxes, the simulated correlations between temperature and precipitation in 

Germany, were not notably changed by the BC; and on the assumption that the correlations 

(on average) can be physically interpreted based on the NAO variability, this strengthens 

previous results that univariate BC techniques do not notably change the simulated large-scale 
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processes, (2) the information from Table 8.3 and Table 8.4 can be further strengthened that 

while on average, the simulated correlations before and after BC are comparable, at specific 

grid boxes the BC techniques changed the simulated correlations. For example, in the western 

part of Germany, Figure 8.1 shows that the magnitude of the simulated correlations was 

weakened in some regions after the QDM was applied to the individual variables. Indeed, 

from Figure 8.2a and Figure 8.2b, compared to E-OBS, there are biases in the magnitude of 

the simulated correlations from the (un)corrected CCLM4 model that is comparable in some 

domains, but distinct in other domains. Figure 8.2c confirms further that the QDM (slightly) 

weakened the magnitude of the simulated correlations at some grid boxes, except for the 

southern parts that have positive biases relative to the raw CCLM4 model.  

 

Figure 8.1: Correlation maps between temperature and precipitation from (a) E-OBS, (b) raw CCLM4 

RCM output driven by MPI-ESM-LR, and (c) bias-corrected CCLM4 RCM with the QDM technique. 
The Colour bar is Pearson’s correlation coefficient. The correlations are for the daily data for the DJF 

season, from 1978 to 2005 validation period. 
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Figure 8.2: Difference between (a) simulated correlation coefficients from raw CCLM4 RCM and that 

from E-OBS, (b) simulated correlation coefficients from the bias-corrected CCLM4 RCM using the 

QDM and that from EOBS, (c) simulated correlation coefficients from the bias-corrected CCLM4 

RCM using the QDM and that from the raw CCLM4 RCM. The correlation is for the daily 

temperature and precipitation data for the DJF season, from 1978 to 2005 validation period. The 

Colour bar is Pearson’s correlation coefficient. 

 

8.2 Added value of inter-variable multivariate bias correction on the coherency 

between climate variables  

 

Recall that the QDM as presented in this study has the flexibility to be used as a univariate 

BC technique; or as a multivariate BC technique but applied to a single variable and using 

homogeneous grid boxes as related variables to improve inter-site correlations (that is, 

MQDM); or as a multivariate BC technique applied to more than one variable at the same 

time and grid box to improve inter-variable dependencies (that is, MBCn). Further, it is 

plausible that at specific grid boxes where the QDM degraded the simulated statistical 

correlations, the bias-corrected variables are no longer physically consistent. For hydrological 

modeling that relies on consistency between both temperature and precipitation, it will be 

necessary to ensure that the BC techniques do not degrade the simulated correlations or even 

improves the correlations among the corrected variables towards observations. Therefore, 

during the 1978 to 2005 evaluation period for the DJF season when significant correlation 

was obtained between temperature and precipitation (Table 8.1), the performance of the 

MBCn in adjusting the biases in the simulated correlations, as well as in the statistics of the 
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simulated variables is examined further. Given that the MBCn is computationally intensive, 

randomly selected grid points where the QDM output (that is, QDM applied to CCLM4 

model) and the raw CCLM4 model failed to capture a comparable magnitude of the observed 

correlations are used to investigate the added value of the MBCn. For that reason, two grid 

points (further referred to as G1 and G2) are used to exemplify the results as documented in 

Table 8.5 and Table 8.6.   

Table 8.5: Correlations coefficients between temperature and precipitation as observed from E-OBS 

and as simulated by the CCLM4 RCM at the two randomly selected grid boxes before and after 

univariate and multivariate bias corrections during the 1978 to 2005 validation period for the DJF 

season. (*) indicates the best performing BC technique with the lowest error. 
 

Grid box E-OBS RAW QDM MBCn 

G1 0.25 0.14 0.13 0.25* 

G2 0.24 0.15 0.16 0.25* 

 

From Table 8.5, it is obvious that unlike QDM (and the other univariate BC techniques), the 

MBCn adds clear value in improving the inter-variable correlations towards observations. 

Nonetheless, the marginal distribution of the MBCn output is supposed to be comparable with 

that from QDM. Therefore, the bias in the statistics of the corrected individual variables after 

using QDM and MBCn should be comparable (Table 8.6). From Table 8.6, both QDM and 

MBCn add more value in reducing the precipitation biases at the grid boxes, but the QDM 

slightly outperforms the MBCn in adjusting the statistics of the individual variables towards 

observation. For temperature, the tendency of increasing the biases can be seen under G1 (that 

is, the 95-percentile value) because the bias from the raw RCM is closer to zero in the 

validation period - leaving no room for improvement by the BC. As the evaluations in this 

study is based on the historical climate, the possibility of the BC techniques to increase the 

biases in the simulated statistic might not be a challenge when the BC techniques are applied 

to projected values under future emission scenarios. This is because for simulated 

temperature, warm biases are common in the projected temperature values, especially under 
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the higher emission scenarios, relative to the historical temperature values. Thus, the BC will 

be of added value in reducing the warm biases. Further, a reason for the slightly better 

performance of the QDM in improving the statistics of temperature and precipitation, 

respectively, at the randomly selected grid boxes (Table 8.6) can be because MBCn reorders 

the time series of ranks, therefore, possible change in the temporal structure of the data is 

possible (Vrac 2018).  

Table 8.6: Errors in the basic statistics of the time series of simulated temperature and precipitation 

from CCLM4 RCM at the two randomly selected grid boxes before and after univariate and 

multivariate bias corrections during the 1978 to 2005 validation period for the DJF season. (*) 

indicates the best performing (or no) BC technique with the lowest error  
 

Statistic  RAW QDM MBCn 

Precipitation (mm/day)    

 G1   

Mean 1.77 0.30* 0.35 

Standard deviation 0.66 0.44* 0.47 

5 percentile 0.00 0.00 0.00 

95 percentile 3.61 1.86* 1.89 

 G2   

Mean 3.66 0.41* 0.46 

Standard deviation 2.89 0.48* 0.51 

5 percentile 0.00 0.00 0.00 

95 percentile 8.45 1.91* 2.00 

Temperature (°C)    

 G1   

Mean 1.72 0.01* 0.12 

Standard deviation 0.71 0.11* 0.22 

5 percentile 2.47 0.28* 0.30 

95 percentile 0.03* 0.68 0.69 

 G2   

Mean 0.20 0.18* 0.19 

Standard deviation 0.50 0.11* 0.15 

5 percentile 1.08 0.38* 0.41 

95 percentile 0.49 0.33* 0.38 
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9. Discussion and recommendations 

 

Several previous studies have highlighted the added value of BC in improving the usability of 

RCMs for climate impact studies (Paeth et al. 2005; Hagemann et al. 2011; Cannon 2016, 

2017; Maraun et al. 2019). Nonetheless, a more comprehensive evaluation of the strengths 

and weaknesses of RCMs in simulating meteorological processes, and the assessment of the 

impact of distinct BC techniques on both the statistical and physical aspects of the bias-

corrected data sets are necessary (Maraun 2016). The reasons are because (1) current BC 

techniques do not correct circulation biases and biases associated with the misrepresentation 

of processes (Maraun et al. 2021), therefore the raw RCMs need to capture large portions of 

the observed meteorological processes, (2) commonly applied BC techniques do not improve 

all the statistical characteristics of the RCM output (Ibebuchi et al. 2022a), (3) BC might alter 

the simulated meteorological patterns and the corresponding meteorological processes 

(Rocheta et al. 2014), (4) possible modification of the statistical moments and the simulated 

meteorological patterns might imply that the coherency between the bias-corrected variable 

and other climate variables is equally altered  (Cannon 2017). 

Ehret et al. (2012) have suggested that BC may hide the simulated biases because while it 

appears to improve some statistical aspects of the RCM, the BC output might no longer be 

physically consistent, and the GCM-RCM model chain might equally be modified. 

Nonetheless, BC can indeed be a viable technique for impact studies that have targeted 

requirements on the (statistical) aspect of the RCMs that need to be improved for a specific 

set of simulated climate variables. The need for hindcast evaluation of distinct BC techniques, 

to determine the most optimal technique for a targeted study is crucial to avoid further 

uncertainties in interpreting future change signals (Figure A12). Also, in model selection and 

evaluations, the selected climate models need to simulate meteorological processes because 
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deficiencies in simulating processes are major causes of model error and are not corrected by 

BC but can be improved as part of model development. 

Prein et al. (2019) reported that biases from GCMs can significantly impact the representation 

of weather types in RCMs and the credibility of climate impact assessment with RCMs. One 

of the major challenges in characterizing circulation biases in climate models is the method 

used in classifying the atmospheric circulation modes. For example, Landgren et al. (2013) 

found that the choice of the classification method used, constrained the capability of the 

RCMs to replicate the reference atmospheric circulation modes over Scandinavia. Addor et al. 

(2016) stressed the need to decompose GCM-RCM time series using CTs to enable evaluation 

of process misrepresentation in the RCMs. This study applied a new fuzzy time 

decomposition technique (that is, the rotated T-MD PCA applied in a fuzzy manner), which 

has been successfully tested for climate research in several studies (Ibebuchi and Paeth 2021; 

Ibebuchi 2022a, 2022b, 2022c). The classification method was used to obtain physically 

interpretable CTs over Western Europe that were easily reproduced from climate model data 

sets. Using the classified CTs, the representation of atmospheric circulation modes in the 

RCMs, based on the quality of the RCMs and the data providing the lateral boundary 

condition was evaluated. Interestingly, the analyzed RCMs replicated portions of the 

reference circulation patterns and the temporal sequence of circulation patterns when 

reanalysis data provides the lateral boundary conditions. Further, the results indicated that the 

GCM-RCM chain can only reproduce the climatological mean of the reference circulation 

patterns but does not have the skill in reproducing the temporal sequence of the reference 

circulation patterns. The results agree with Herrara-Lormendez et al. (2022) that in Europe, 

there is a better agreement in the representation of synoptic circulations among reanalysis 

products compared to GCMs. Also, the models indicated deficiency in simulating anticyclonic 

circulations over Western Europe. A major conclusion in the capability of the RCMs to 
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replicate the reference circulation patterns is that the forcing model was found to be the main 

factor in reproducing atmospheric circulation (Ibebuchi 2022b).  

Several studies have reported that the added value of BC techniques on the statistical aspect of 

the RCM can be constrained by (1) the choice of RCM and reference data (Gampe et al. 

2019), (2) the climate variable considered and the region of inquiry (Luo et al. 2018), (3) the 

time considered (Haerter et al. 2010; Teng et al. 2015),  (4) the choice of the BC technique  

(Gudmundsson et al. 2012), (5) the temporal resolution of the underlying data (Shreshtha et 

al. 2017), and (5) the statistical metric of interest: often statistical mean against standard 

deviation in addition to simulated trends (Hempel et al. 2013). An important finding in this 

study is that the choice of the appropriate BC technique highly depends on the variable of 

interest, computation resources, and the aspect of the RCM which is needed to be improved 

for a targeted study. This implies that no BC technique might be ranked the best, without 

reservations in relative performances or computation time and resources. 

 The performances of the BC techniques are evaluated based on the added value to the 

statistical characterization of the RCMs, and in maintaining the physical consistency of the 

RCM. Physical consistency was defined in this study as consistency with the meteorological 

processes associated with the climate variable, and consistency between the bias-corrected 

variable and other climate variables. For monthly data, simple bias correction techniques such 

as LS can be sufficient to adjust the biases in the statistics of the simulated climate variable 

(Shreshtha et al. 2017; Ibebuchi et al. 2022b). However, for precipitation data at the daily 

resolution, the LS technique adjusts only biases in the first moment but tends to increase the 

biases in the higher moments. A similar result was reported by Berg et al. (2012) that scaling 

BC techniques applied to daily simulated precipitation increase the biases in the higher 

statistical moments. Thus, another important finding in this study is that the temporal 

resolution, at which the BC technique is applied, is a significant factor in the performance of 
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the BC technique (Ibebuchi et al. 2022a, 2022b). Adjusting the biases in the statistical 

moments of daily simulated data is more challenging compared to monthly data, especially 

for precipitation.  

For hydrological impact assessments that require a better representation of the statistics of 

precipitation (including extreme values), and inter-site correlations that are comparable with 

observations, the MQDM was developed in this study to produce bias-corrected precipitation 

data that can fulfil such requirements (Ibebuchi et al. 2022a). For temperature that is mostly 

well simulated in the raw RCMs, the added value of the distinct BC techniques is relatively 

slim, compared to when the same techniques are applied to precipitation data for the same 

suite of RCMs. The results are in agreement with Tong et al. (2021) that for temperature data, 

there is mostly consistency among the BC techniques, so it is difficult to decide the overall 

best performing technique. Moreover, it was found that the LS technique did not improve the 

higher moments of temperature towards observations when they are simulated with biases. 

The results in this study on the performance of the BC techniques in reducing the biases in the 

statistics of temperature and precipitation are equally valid if a different data is considered as 

a reference if its resolution is comparable to the model data (Adakudlu et al. 2022).  

Maraun and Widmann (2018) reported that BC techniques might introduce inconsistencies 

with the driving model. In this study, and for the first time, physically interpretable 

homogenous regions of summer precipitation and temperature anomalies in Germany were 

classified using the rotated S-MD PCA applied in a fuzzy manner (Ibebuchi et al. 2022b). No 

robust indication was found that the BC techniques applied to the analyzed RCMs changed (at 

a larger scale) the simulated meteorological patterns of temperature and precipitation and the 

consistency with between the simulated patterns and the synoptic scale mechanisms 

associated with the pattern variability. Generally, the spatiotemporal configuration of the 

variability patterns (at a larger scale) was barely affected by all the BC techniques. 
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Nonetheless, at a relatively more localized spatial scale, the simulated co-variability of the 

grids was changed by the BC. Thus, while the simulated meteorological patterns are 

reproduced after the BC, at more localized spatial scales, the simulated co-variability of the 

grids and the (localized) governing process might be changed by the BC techniques.  

Further, univariate BC techniques do not consider inter-variable dependency. According to 

Rocheta et al. (2014), the application of univariate BC techniques at each grid box in the 

study region can alter the spatial variability of the simulated variable, which might modify the 

underlying spatial atmospheric modes and physics. Since BC corrects how much precipitation 

and temperature that are allowed in each grid box, it is plausible that some aspects of the 

physical consistency in the fields can be altered, for example, the effects of microphysical and 

dynamical cloud processes on precipitation, depending on the grid box. Hence, it is arguable 

that univariate BC techniques might negatively impact the simulated correlations between 

different climate variables (Maraun 2016). This can imply also that the agreement between 

aspects of model dynamics might become inconsistent (Bürger et al. 2011).  

In this study, a statistically significant correlation between temperature and precipitation in 

Germany was obtained during the DJF season. The correlation between the spatially averaged 

temperature and precipitation during the DJF season in Germany implies that higher 

temperatures can result in higher precipitation amounts (Trenberth and Shea 2005). Further, 

this relationship can be modified by elevation, continentality and other local-scale processes 

(Rebetez 1996) so that the correlations are not homogeneous across the grid boxes. To 

understand the dynamics linking temperature and precipitation in Germany during DJF, and to 

justify the statistical correlations it was found that during DJF, positive (negative) NAO can 

imply synoptic circulations associated with wet and warmer (dry and colder) winter 

conditions over Germany. Thus, the observed and simulated statistical correlation between 

temperature and precipitation is subject to a well-founded physical explanation. 
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Depending on the grid box, all the univariate BC techniques tested in this study can degrade 

the simulated correlations between temperature and precipitation in Germany. This can be a 

further reason why at localized spatial scales the BC techniques changed the co-variability of 

the grids (that is, in the simulated meteorological patterns) because the rotated S-MD PCA 

applied to obtain the meteorological patterns is based on temporal correlations between values 

at the grid boxes. Therefore, since the correlations between temperature and precipitation can 

be physically interpreted, depending on the grid box, some aspects of the physical consistency 

in the simulated variable can be changed by the univariate BC techniques that degraded the 

inter-variable dependencies (Meyer et al. 2019). Given that hydrological hazards are often 

associated with local precipitation extremes (Olsson et al. 2012) the overreaching inference is 

that for hydrological modeling that relies on consistency between both temperature and 

precipitation, it should be examined if the relevant grid boxes have simulated correlation 

between the variables that are comparable with observation, and if the grid boxes are 

negatively affected by the univariate BC technique applied. 

Commonly, a copula theory (Nelson 2006) that considers the joint dependency of variables in 

the course of the BC is used in multivariate bias correction. The implementation of 

multivariate BC usually relies on univariate BC algorithms to match the simulated 

multivariate distribution to the observed multivariate distribution (Cannon et al. 2015). The 

MBCn is the multivariate aspect of the QDM that is designed to improve inter-variable 

dependencies. Unlike the QDM and MQDM, the MBCn improved the simulated correlations 

between temperature and precipitation towards observations. Also, at some boxes, the MBCn 

slightly improved the inter-site correlations of precipitation, but not better than the MQDM. 

Nonetheless, as reported by François et al. (2020), multivariate BC techniques designed to 

improve inter-variable dependencies have their deficiencies which were fairly reproduced in 

this work. François et al. (2020) explained that due to the instability of some multivariate BC 
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techniques, there is the possibility that the statistical features (for example, simulated 

temporal structures compared to observations) of the corrected RCMs are degraded. There is 

also the open question if the coherency between the variables is time-invariant because the 

non-stationarity of the copula under future climate change is plausible (Zscheischler et al. 

2017). Further, increasing the number of variables to be corrected can result in the 

deterioration of spatial properties of the corrected outputs (François et al. 2020).  

In summary, for the study region, it is recommended that simple BC techniques such as LS 

have the advantage of not being computationally intensive and can be applied to adjust biases 

in the statistics of monthly temperature and precipitation when incorporating change signal is 

not of interest. The MQDM that incorporates the spatial dependency structure of precipitation 

(that has complex spatial interactions) during the BC can be recommended to adjust the biases 

in the statistics of daily precipitation. For daily temperature, any of the univariate distribution-

based BC techniques (that is, EQM or QDM) can be used to adjust the biases in the statistics 

of temperature, but to incorporate the change signal, QDM might be preferred. The univariate 

BC techniques tested in this study do not improve the correlations between climate variables. 

Hence while relative to QDM, the MBCn can be computationally intensive, the MBCn is 

highly recommended for impact studies that require physical consistency or coherency among 

climate variables that is comparable with observations. Nonetheless, depending on factors 

such as nonstationary copula, the MBCn might not always be superior to the QDM, and so its 

superiority over univariate BC techniques can be problem dependent. Given these trade-offs, 

the most recommended BC technique depends on the targeted applications of the bias-

corrected RCM outputs. Given that depending on the grid box, the QDM that is less 

computationally intensive does not notably change the simulated inter-variable correlations, a 

combination of both univariate and multivariate techniques might be considered when the 

model simulates the observed inter-variable and inter-site dependencies well. This implies 
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that after applying the univariate BC technique, the few relevant grid boxes where the 

coherency of the climate variables was significantly misrepresented can be noted, and the 

multivariate BC technique that considers inter-variable dependency can be applied to adjust 

the biases at those grid boxes. 

Finally, it is recommended that regardless of the BC technique applied, the simulated portions 

of the meteorological processes should be examined before and after the BC, to further 

document how the BC has impacted the physical consistency of the RCM.   
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10.  Conclusions 

 

This study evaluated the representation of large-scale circulation patterns in an ensemble of 

EURO-CORDEX CMIP5 RCMs, and the added value of distinct BC approaches to improving 

the usability of RCMs for impact assessments. The conclusions are: 

(1) The analyzed EURO-CORDEX CMIP5 RCMs produced the reference circulation 

patterns in Western Europe, but with biases dependent on the choice of RCM and the 

data providing the lateral boundary conditions. The results further indicated that the 

data providing the lateral boundary conditions is the main factor in reproducing the 

atmospheric circulation.  

(2) BC techniques added value in reducing the systematic biases in the statistics of 

simulated temperature and precipitation in Germany. However, the relative 

performances of the BC techniques can be problem dependent. Hence for a targeted 

study, a careful evaluation of the distinct BC techniques is necessary for deciding the 

most appropriate technique(s) to use. 

(3) There was no robust indication that at a larger spatial scale, the BC techniques tested 

in this study constrained the reproducibility of the simulated meteorological patterns 

of the bias-corrected variables as well as the governing large-scale mechanisms. 

Nonetheless, at more localized spatial scales, there is the indication that the BC 

techniques changed the co-variability of the grids, especially for precipitation.  

(4) Univariate BC techniques improved the statistics of the RCM towards observations, 

but did not improve inter-variable correlations, that is, the correlation between 

temperature and precipitation in Germany. To improve the co-variability among bias-

corrected variables, multivariate BC techniques that adjust inter-variable dependencies 

during the BC proved to be efficient.  
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Appendix  

 

 

 

Figure A1: Standardized values of temperature and solar radiation, averaged over Germany. The data 

source is E-OBS from 1981 to 2010 
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Figure A2: Horizontal resolution of the RCM data in the study domain 
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Figure A3: Performance of linear scaling on the spatial correlation between observed and simulated 

precipitation data from five distinct RCMs driven by MPI-ESM-LR. The validation period is 1979 to 

2005.  
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Figure A4:  Performance of linear scaling on the spatial correlation between observed and simulated 

temperature data from five distinct RCMs driven by MPI-ESM-LR. The validation period is 1979 to 

2005.  
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Figure A5: SLP (black contour) and 10-meter wind (green vectors) composite anomaly patterns of the 

positive phase of some MJJA precipitation variability patterns from the CCLM4 RCM driven by MPI-

ESM-LR. The composite patterns are created with the PC scores from the linear scaling output applied 

to the CCLM4 RCM. Dashed (thick) contours indicate negative (positive) SLP anomaly. 
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a) 

 

b) 

 

Figure A6: Annual cycle of daily precipitation data from the raw RCMs driven by the MPI-ESM-LR 

(a) and after bias correction with MQDM (b)  

 

 

 

 

 

 

 

 



Appendix 

128 

 

 

 

a) 

 

b) 

 

 

Figure A7: Annual cycle of daily precipitation data from the raw RCMs driven by the CNRM (a) and 

after bias correction with MQDM (b) 
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a) 

 

b) 

 

Figure A8: Annual wet day frequency of daily precipitation data from the raw RCMs driven by the 

MPI-ESM-LR (a) and after bias correction with MQDM (b) 
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a) 

 

b) 

 

Figure A9: Annual wet day frequency of daily precipitation data from the raw RCMs driven by the 

CNRM (a) and after bias correction with MQDM (b) 
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Figure A10: Validation of the added value of the bias correction techniques on the spatial mean of 

daily temperature as simulated in the CCLM4 RCM, driven by MPI-ESM-LR, during the 1978 to 

2005 validation period. Biases are computed as the difference between the simulated seasonal mean 

temperature and the observed seasonal mean temperature (RCM minus E-OBS) 
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Figure A11: Validation of the added value of the bias correction techniques on the spatial standard 

deviation of daily temperature as simulated in the CCLM4 RCM, driven by MPI-ESM-LR, during the 

1978 to 2005 validation period. Biases are computed as the difference between the simulated standard 

deviation of temperature and the observed standard deviation of temperature (RCM minus E-OBS) 
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Figure A12: Return level plot of daily precipitation averaged over Germany under the RCP8.5 

scenario (2070-2100). The precipitation values are from BC outputs using LS; EQM and MQDM 

techniques.  
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