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Abstract: A number of cross-sectional epidemiological studies suggest that poor oral health is associ-
ated with respiratory diseases. However, the number of cases within the studies was limited, and
the studies had different measurement conditions. By analyzing data from the National Health and
Nutrition Examination Survey III (NHANES III), this study aimed to investigate possible associations
between chronic obstructive pulmonary disease (COPD) and periodontitis in the general population.
COPD was diagnosed in cases where FEV (1)/FVC ratio was below 70% (non-COPD versus COPD;
binary classification task). We used unsupervised learning utilizing k-means clustering to identify
clusters in the data. COPD classes were predicted with logistic regression, a random forest classifier,
a stochastic gradient descent (SGD) classifier, k-nearest neighbors, a decision tree classifier, Gaussian
naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural
network (CNN), a multilayer perceptron artificial neural network (MLP), and a radial basis function
neural network (RBNN) in Python. We calculated the accuracy of the prediction and the area under
the curve (AUC). The most important predictors were determined using feature importance analysis.
Results: Overall, 15,868 participants and 19 feature variables were included. Based on k-means
clustering, the data were separated into two clusters that identified two risk characteristic groups of
patients. The algorithms reached AUCs between 0.608 (DTC) and 0.953% (CNN) for the classification
of COPD classes. Feature importance analysis of deep learning algorithms indicated that age and
mean attachment loss were the most important features in predicting COPD. Conclusions: Data
analysis of a large population showed that machine learning and deep learning algorithms could
predict COPD cases based on demographics and oral health feature variables. This study indicates
that periodontitis might be an important predictor of COPD. Further prospective studies examining
the association between periodontitis and COPD are warranted to validate the present results.

Keywords: COPD; periodontitis; bone loss; machine learning; prediction; artificial intelligence;
model; gingivitis

1. Introduction

The rise of chronic diseases is one of society’s most pressing challenges. The most
significant risk factor is the lifestyle associated with stress, unhealthy eating habits, alcohol
consumption, and tobacco use. A poor oral hygiene routine is related to periodontal disease
as well as poor general health [1]. Inflammation of the gums and surrounding bone tissue
causes periodontitis, which is a chronic condition that results in the loss of teeth. As a
result of bacteria forming a biofilm as dental plaque, the immune system is stimulated,
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ultimately leading to irreversible loss of periodontal structures [2]. The formation of
biofilms can directly influence the inflammatory process at the local level and indirectly
through the stimulation of catabolic cytokines and inflammatory mediators in the body’s
systemic circulation [2–4]. A growing body of literature focuses on the systemic effects of
periodontitis and its consequences on general health [5]. Various chronic diseases, such as
cardiovascular diseases, adverse pregnancy outcomes, diabetes, and rheumatic diseases,
have been linked to periodontitis [6–9].

Chronic obstructive pulmonary disease (COPD) is another widespread disease that
negatively impacts global health [10]. There are several similarities between COPD and
periodontitis and the presence of chronic inflammation, which can have both systemic and
local effects [11]. An altered microbiome in the lungs has been associated with an escalation
of the production of inflammatory mediators, similar to the effects of periodontitis, which
have a systemic as well as a local effect [12–14]. A systematic review has already found
evidence that COPD is associated with poor oral health [15]. However, as a limitation, no
subgroup analysis could be conducted since the study endpoints of the 14 included studies
of varying quality were very different. Due to the differences in parameters examined,
further studies will need to be conducted to confirm the correlation [15].

There appears to be a highly multifactorial connection between the two diseases. An
investigation of immunomodulatory mechanisms was conducted in a recent systematic
review [16]. It was noted by the authors that immune cells play an important role in both
diseases. Neutrophils play an integral role in the imbalance of proteases and oxidative
stress [16,17]. In addition, macrophages play a crucial role in the progression of the disease
process on a systemic level. It appears that these cells have a similar impact on the severity
of both disease entities. Recently, it was also demonstrated that dendritic cells play a major
role in the development of both diseases [16,17]. It has also been suggested that genetic
conditions associated with COPD, such as alpha-1 antitrypsin deficiency or rheumatoid
arthritis deficiency (AATD), may cause predisposition to the disease. According to the
authors, neutrophil inflammation can exacerbate the condition owing to an increased
neutrophil function. It has been reported that this enhancement occurs in diseases such
as periodontitis, COPD, and AATD [18,19]. A correlation between the aspiration of an
anaerobic microorganism called Fusobacterium nucleatum, which is one of the key germs
for the formation of a biofilm and the development of periodontitis, and the exacerbation
of COPD was shown by Suzuki et al. [20]. The opposite effect with optimization of
oral hygiene and reduction in the microbial load, and consequently a lower number of
exacerbations, was shown in a systemic review from 2021 [21]. Generally, patients with high-
risk constellations, such as hospitalized patients, are more at risk for bacterial colonization
than outpatients [22,23]. Another mechanism is the production of inflammatory mediators
such as IL-1α, IL-1β, IL-6, IL-8, and TNF-α, which can enter the systemic circulation and
thereby maintain or trigger other chronic diseases [4,24,25]. A combination of the above-
mentioned mechanisms can stimulate the production of further cytokines as well as the
migration of inflammatory cells into the tissue through the production of cytokines located
within the sulcus fluid on the one hand and aspirated saliva on the other [25–28]. As a
consequence, an excess of enzymes is produced, which destroy the respiratory epithelium
in a manner similar to what occurs in the gingiva, resulting in the progression of the
disease [2,3,22,26,29]. There are other very interesting associations besides COPD, such as
COVID-19, which primarily affects the respiratory system. Both periodontitis and COVID-
19 have been associated with an exaggerated immune response. There is already evidence
of an association between both disease entities in a case-control study, which highlights the
importance of these associations in the scientific community [30]. Due to the multifactorial
nature of these associations, molecular and genetic interactions are also an intriguing area
of research.
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Using artificial intelligence for large data analysis could be of great benefit due to its
capability to identify patterns in large amounts of data that cannot be deciphered by basic
statistical approaches [31,32]. A number of artificial intelligence-based algorithms have
recently made significant advances due to the increasing digitalization of medicine and
the emergence of databases with large amounts of data. A number of medical tasks are
becoming increasingly accurate as a result of the ability to obtain accurate results from large
training datasets and improvements in algorithms over time [33]. Nevertheless, learning
requires well-documented databases containing a large number of data [34]. A wide
variety of information is collected within the different clinics, and each clinic collects and
documents information in a way that is often unique. Considering that individual institutes
create databases with a specific aim, they are biased towards the institute creating the
database. It is not possible to overcome this bias, even with modern artificial intelligence
algorithms for noise reduction [35]. Although there has been a great deal of research,
independent public databases are relatively uncommon. It would be beneficial to use a large
open-access database of the general population in order to train an artificial intelligence
based on a specific question.

The relationship between periodontitis and COPD has already been suggested by
several studies [36–38]. In spite of this, they have not been able to provide a conclusive
explanation to date, although multiple confounding variables were considered in mul-
tivariate analyses [39]. The present study uncovers hidden links between COPD and
periodontitis in a large general population for the first time using artificial intelligence and
biostatistical approaches.

2. Materials and Methods
2.1. Study Design

The Third National Health and Nutrition Examination Survey (NHANES III) surveyed
the civilian population in the United States between 1988 and 1994. Multistage stratified
sampling was used to select the sample population. The National Center for Health
Statistics (NCHS) and the Center for Disease Control and Prevention (CDC) monitored and
approved this survey. The data are available for research purposes and were extracted and
processed for the present study.

According to NHANES III, this sample represents the total noninstitutionalized popu-
lation in each of the 50 U.S. states aged 2 months and older. Generally, the NHANES III
sample design follows the same structure as the previous National Health and Nutrition
Examination Surveys. Stratified multistage probability designs were used in each of these
surveys. As part of the design, an initial sample of 81 primary sampling units (PSUs),
which are generally individual countries, was selected. To keep PSUs above a minimum
size, adjacent counties were combined in some cases. A probability-proportional-to-size
(PPS) method was used to stratify and select PSUs. In total, thirteen large counties (strata)
were selected with certainty (probability of one). As a result of logistical and operational
considerations, these 13 certainty PSUs were divided into 21 stands (survey locations). The
remaining PSUs were divided into 34 strata after the 13 certainty strata were determined,
and 2 noncertainty PSUs were chosen for each stratum. PPS was used in the selection
process, without replacement. In addition, each noncertainty PSU was also referred to as
a “stand;” therefore, NHANES III contained 81 PSUs or 89 stands. In addition to these
steps, several other stages of sampling were conducted until the stage of “interviewing the
sample person” and “examining the sample person”. The exact sampling process can be
found in the report “Sample Design: Third National Health and Nutrition Examination
Survey” [40].

A licensed dentist who is specially trained in the use of specific epidemiologic indices
of oral health conducted an oral and dental examination on subjects one year of age and
older. In order to determine the degree of attachment loss (AL), two measurements were
taken: (1) the distance between the free gingival margin (FGM) and the cementoenamel
junction (CEJ), and (2) the distance between the FGM and the bottom of the sulcus (pocket
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depth). Those cases in which the gingival margin had receded and the CEJ was exposed
indicated gingival recession. To calculate the attachment loss (level) variables, the distance
between the base of the sulcus and the CEJ was subtracted from the distance between the
FGM and the CEJ (Figure 1) [41,42].
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Figure 1. To investigate the extent of the attachment loss, measurements were taken with a probe. The
first measurement was the distance between the free gingival margin (FGM) and the enamel–cement
junction (CEJ) and the second was the difference between the FGM and the bottom of the sulcus
(pocket depth) [41–43]. Illustration created with BioRender.com.

Subjects eight years of age and older were subjected to pulmonary function tests
(spirometry) by trained personnel at the mobile examination center. It was also possible
to conduct the examination at home for subjects 60 years and older who were unable or
unwilling to come to the mobile examination center. Prior to the examination, subjects
were asked screening questions to determine whether they were excluded due to medical
reasons. Exclusion from the study was made for individuals who had undergone chest
or abdominal surgery within three weeks prior to the examination or had suffered from
heart problems (myocardial infarction or heart attack, angina or chest pain, congestive
heart failure) throughout the preceding six weeks.

2.2. Data Handling and Statistical Analysis

After extraction of the Excel table from the database (https://wwwn.cdc.gov/nchs/
nhanes/nhanes3/default.aspx, accessed on 6 November 2022), the dataset was imported
into the statistical program SPSS V. 18.0 (IBM Corp., Armonk, NY, USA). This study
also included information on the subjects’ demographics and socioeconomic status (SES).
Medical and demographic data were obtained by means of questionnaires and physical
examinations by a physician. Age, gender, and ethnicity (categorized as white, black,
Mexican-American, and other ethnicities) were the demographic variables included in this

https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx
https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx
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analysis. The poverty income ratio (PIR) was used as a measure of SES. Two components
were used to calculate PIR. Using the Family Questionnaire, the numerator represented
the midpoint of the observed family income category. Denominators included the poverty
threshold, the ages of family reference individuals, and the year in which the family was
interviewed. The lifestyle characteristics examined included smoking history (estimated
by multiplying the number of years each subject smoked by the average number of packs
smoked per day). American Thoracic Society recommendations were followed in perform-
ing the spirometry. Participants with forced expiratory volume in 1 s (FEV1)/forced vital
capacity (FVC) <70% were diagnosed with chronic obstructive pulmonary disease.

In this analysis, “COPD diagnosis” (((FEV1)/(FVC) × 100) < 70%) was used as the
dependent variable. Several independent variables reflecting oral health were consid-
ered for the investigation of COPD and periodontitis, including mean clinical attachment
loss (MAL), gingival bleeding, number of furcations, and decayed/missing/filled teeth
(DMFT)/decayed/missing/filled surfaces (DMFS). Descriptive statistics were performed
on the data following the identification of all independent and dependent variables and
covariates in order to examine possible associations between the general characteristics of
the population. The Shapiro–Wilk test was performed on the continuous variables in order
to determine whether they had a normal distribution. Pairwise analyses were employed
to evaluate and compare the parameters studied between the COPD group and the non-
COPD group. The proportion of subjects with and without COPD in relation to categorical
independent variables was evaluated using contingency tables and chi-square tests.

The dataset was clustered based on the features in the dataset using unsupervised
learning with k-means clustering. An automated clustering method was used based on
Schwarz’s Bayesian criterion (BIC). Cluster variables were compared using the Mann–
Whitney U test or chi2-test as appropriate. A multiple imputation approach was used to
impute missing values. The target COPD classes were predicted using machine learning
techniques and deep learning algorithms. In this study, logistic regression, random for-
est, stochastic gradient descent, k-nearest neighbors, decision tree, Gaussian naive Bayes
(GaussianNB), support vector machines (SVMs), a custom convolutional neural network
(CNN), a multilayer perceptron artificial neural network (MLP), and a radial basis function
neural networks (RBNNs) were employed as classifiers. The Python code is available in
the data availability section. The hardware and software environment specifications were
as follows:

• CPU: AMD Ryzen 9 5950X 16-Core Processor (Santa Clara, CA, USA);
• RAM: 64 GB;
• GPU: NVIDIA Geforce RTX 3090 (Santa Clara, CA, USA);
• Python version: 3.10.4 (64-bit) (Wilmington, DE, USA);
• OS: Windows 10 (Redmond, WA, USA).

Statistical analyses were conducted in Python and SPSS v27 (IBM, Armonk, NY, USA).

3. Results

An overall of 15,868 participants were included after data preprocessing. The mean age
of participants was 40.42 ± 19.85 years (range: 13–90 years). Mean attachment loss signifi-
cantly differed between the COPD (2.05 ± 1.64 mm) and the non-COPD (0.96 ± 1.03 mm)
group (p < 0.0001) (Figure 2).
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Figure 2. Comparison of the mean attachment loss (MAL) between the COPD and the non-COPD
group. Asterisks (*) represent extreme outliers (3rd quartile + 3*interquartile range or 1st quartile
− 3*interquartile range; circles represent moderate outliers (3rd quartile + 1.5*interquartile range or
1st quartile − 1.5*interquartile range). **** p < 0.0001.

To cluster the dataset into two classes, we performed unsupervised learning using
k-means cluster analysis and evaluated which features are significant for clustering. There
were two clusters as a result of the cluster analysis (39.0% in the high-risk group and 61.0%
in the low-risk group) (Figure 3). There was a significant difference between the high-risk
cluster and the low-risk cluster on several cluster variables (age, mean attachment loss
(MAL), systolic blood pressure, the sum of permanent DMFT and DMFS due to disease,
number of furcations, etc.) (p < 0.0001 for all comparisons). Notably, the high-risk group
contained 85.0% of all COPD cases, whereas the low-risk cluster contained 15.0% of the
COPD cases. Conversely, 34.5% of non-COPD instances were present in the high-risk group,
whereas 65.5% were present in the low-risk group. In general, results revealed that there
were two clusters depicting the patients’ risk levels (i.e., patients with a high-risk level had
a higher age, a higher MAL, and a higher percentage of COPD cases).

Table 1 illustrates the feature distribution between high- and low-risk clusters. All
participants who were edentulous in one arch were present in the high-risk group. Most
patients having teeth were present in the low-risk group. All variables but sex (p = 0.814),
upper quadrant periodontal assessment (p = 0.513), and lower quadrant periodontal assess-
ment (p = 0.285) showed highly significant differences between the high-risk and low-risk
clusters (p < 0.0001).
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Figure 3. K-means cluster analysis, including the COPD class variable. The most important feature
to classify the data was the age at interview, followed by the mean attachment loss (MAL), the
sum of permanent DMFS due to disease (i.e., caries or periodontitis), and the sum of permanent
DMFT due to disease. In the distribution charts, the distribution of the features is shown for both
clusters. (A) illustration of most important predictors (feature importance ≥0.8; (B) illustration of less
important predictors (feature importance <0.8); (C) In order to facilitate interpretation, an example
feature is presented (age at interview). According to the selected feature, the age distribution is
shifted to the right for the high-risk cluster while it is shifted to the left for the low-risk cluster.
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Table 1. Using the k-means cluster analysis, including the COPD class variable, descriptive statistics
were calculated, and pairwise comparisons were made between the clusters.

Low-Risk Cluster High-Risk Cluster

Count Row N % Mean Standard
Deviation Count Row N % Mean Standard

Deviation

COPD diagnosis
no 7187 65.5% 3780 34.5%

yes 161 15.0% 915 85.0%

Race/ethnicity

Non-Hispanic
white 1946 44.0% 2477 56.0%

Non-Hispanic black 2295 66.4% 1163 33.6%

Mexican-American 2786 76.3% 867 23.7%

Other 321 63.1% 188 36.9%

Sex
Male 3525 61.1% 2242 38.9%

Female 3823 60.9% 2453 39.1%

Upper-quadrant
periodontal assessments

1 3694 60.7% 2389 39.3%

2 3654 61.3% 2306 38.7%

Lower-quadrant
periodontal assessments

3 3659 61.5% 2291 38.5%

4 3689 60.5% 2404 39.5%

Dentate status

Completely
edentulous 0 0.0% 0 0.0%

Edentulous in one
arch 0 0.0% 177 100.0%

Teeth present 7348 61.9% 4518 38.1%

Age at interview (Screener) 28 11 53 16

Poverty income ratio (unimputed income) 3 2 2 2

Pulse rate (beats/min) (age 5+ years) 74 12 75 12

Overall average K1, systolic, BP (age 5+) 114 12 129 19

Overall average K5, diastolic, BP (age 5+) 69 11 76 10

Body mass index 25.6 5.9 27.5 5.7

Sum of permanent DMFS due to disease 12 11 56 23

Sum of permanent DFMS due to any cause 13 11 58 23

Sum of permanent DFS 8 7 30 19

Sum of permanent DMFT due to disease 5 4 16 5

Sum of permanent DMFT due to any cause 5 4 17 5

Bleeding_Percentage 10.43 14.37 7.88 11.26

Furcation_SUM 0.05 0.30 0.57 1.40

MAL 0.58 0.53 1.51 1.16

COPD: chronic obstructive pulmonary disease; DFMS: decayed, filled, missing surfaces; DFS: decayed, filled
surfaces; DMFT: decayed, missing, filled teeth; MAL: mean attachment loss.

The next step involved the application of machine learning and deep learning algo-
rithms in order to predict COPD classes. Multilayer perceptrons achieved an AUC of 0.836
over fivefold cross-validation (Figure 4). Based on the feature importance analysis, age
was found to be the most crucial factor for classification, followed by MAL, BMI, and the
number of furcations (Figure 5).
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The accuracies and AUC of the machine learning algorithms and the custom-made
convolutional neural network (CNN) are shown in Table 2. The custom-made CNN reached
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the highest accuracy and AUC, whereas the decision tree classifier and the SVM performed
worse with regard to the AUC.

Table 2. Measuring the performance of machine learning and deep learning algorithms for predicting
the COPD class (binary classification task). A k-fold cross-validation analysis was performed (k = 5).
AUC: area under the curve; Accuracy: (TP + TN)/(TP + TN + FP + FN).

Algorithm Accuracy AUC

Logistic regression 0.884 0.835

Random forest classifier 0.883 0.819

SGD classifier 0.879 0.804

K-nearest neighbors 0.872 0.723

Decision tree classifier 0.823 0.608

GaussianNB 0.803 0.807

SVM 0.884 0.685

Custom CNN 0.887 0.953

The loss curves during the training and validation phase for the best-performing
algorithm (custom-made CNN) are shown in Figure 6.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 6. Loss and accuracy curves for the training and validation phase of the custom-made CNN 

model. 

4. Discussion 

An extensive database containing standardized oral health and lung function evalu-

ations was used for prediction modeling using machine learning and deep learning tech-

niques. Based on sociodemographic factors and oral health variables, the algorithms pre-

sented in this study were capable of accurately predicting COPD classes. The results sug-

gest that oral health parameters, including a high attachment loss, play a significant role 

in predicting the COPD class. Thus, based on the large dataset included in this study, 

COPD and periodontitis appear to be significantly related. 

Despite the fact that a connection between periodontitis and COPD was also exam-

ined in the more recent NHANES data from 2009 to 2012 with non-AI-based methodolo-

gies, the analysis of the present work utilized older data from 1988 to 1994 [44]. As already 

mentioned, artificial intelligence requires a large amount of data in order to recognize the 

best possible analysis of hidden patterns [34]. Specifically, algorithms need a lot of differ-

ent data to learn exactly what patterns they should or should not recognize [45]. Even 

though the data of the present study are older, they provide a larger amount of data with 

a total of 15,868 participants than the new data from 2009 to 2012 with a total of only 6313 

subjects [44]. A comparison of the data of both studies would be desirable on the basis of 

further studies. It would also be interesting to generate a pooled data source from all avail-

able databases that would allow the maximum number of subjects for training an artificial 

intelligence. However, the different documentation within the various data sources must 

be taken into account here [46]. 

Figure 6. Loss and accuracy curves for the training and validation phase of the custom-made CNN model.



J. Clin. Med. 2022, 11, 7210 11 of 15

4. Discussion

An extensive database containing standardized oral health and lung function eval-
uations was used for prediction modeling using machine learning and deep learning
techniques. Based on sociodemographic factors and oral health variables, the algorithms
presented in this study were capable of accurately predicting COPD classes. The results
suggest that oral health parameters, including a high attachment loss, play a significant
role in predicting the COPD class. Thus, based on the large dataset included in this study,
COPD and periodontitis appear to be significantly related.

Despite the fact that a connection between periodontitis and COPD was also examined
in the more recent NHANES data from 2009 to 2012 with non-AI-based methodologies,
the analysis of the present work utilized older data from 1988 to 1994 [44]. As already
mentioned, artificial intelligence requires a large amount of data in order to recognize
the best possible analysis of hidden patterns [34]. Specifically, algorithms need a lot of
different data to learn exactly what patterns they should or should not recognize [45]. Even
though the data of the present study are older, they provide a larger amount of data with
a total of 15,868 participants than the new data from 2009 to 2012 with a total of only
6313 subjects [44]. A comparison of the data of both studies would be desirable on the
basis of further studies. It would also be interesting to generate a pooled data source from
all available databases that would allow the maximum number of subjects for training
an artificial intelligence. However, the different documentation within the various data
sources must be taken into account here [46].

There is an increasing impact of chronic diseases on general health in today’s soci-
ety [1,2]. It has been demonstrated in several studies that chronic inflammation plays a
role in both periodontitis and chronic obstructive pulmonary disease (COPD) [6–9,11–14].
Several studies have already attempted to demonstrate a relationship between periodon-
titis and COPD or pneumonia [36–38,47,48]. In addition to this clear evidence, other
authors have reported weak or no evidence of a relationship between periodontitis and
COPD [49–51]. This discrepancy might be attributed to the different methodologies used
in these studies. This discrepancy may also be explained by different diagnostic criteria
for periodontitis and COPD [46]. This may also be due to the general limitations of the
statistical approach used in most studies on this subject. A pairwise analysis, for example,
has a high risk of overlooking the influence of other factors. Using an artificial intelligence
approach for the analysis of the dataset has the advantage of detecting hidden patterns
more effectively than using pairwise statistical analysis [46].

The present analysis may be affected by the possibility of polymedication among
COPD patients. Steroids, for example, suppress inflammatory activity, which negatively
impacts mucous membranes and periodontal appendages [46]. Polymedications were not
considered in the NHANESIII dataset. As of yet, most studies carried out to date have used
pairwise statical approaches to analyze their institute databases. Studies comparing COPD
and non-COPD groups regarding periodontal health often did not include additional factors
that might influence periodontal health, as demonstrated in a meta-analysis [39]. There
are drawbacks to pooling small studies from different institutes in order to examine the
relationship between COPD and periodontitis, such as different measurement techniques
or limited comparability due to the different predefined study questions and the resulting
different recruitment strategies [35]. By using artificial intelligence in this paper, we were
able to uncover patterns that would have been hidden by simple pairwise analysis. The
results of our study confirm the findings of previous meta-analyses on this topic, indicating
that COPD and periodontitis are significantly related in the general population [16,39].

Due to the cross-sectional design of the NHANES III study, a longitudinal study of
patients and an examination of the cause–effect relationship between COPD and periodon-
titis was not possible. Further, since the dataset was constructed using the US population,
no generalizations can be made regarding the data for other races or populations [46]. As a
result of the nature of the study, other relevant data, such as brushing behavior or frequency
of dental visits, cannot be assessed, which limits the final interpretation [46]. However,
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such confounding variables may have an important impact on outcomes. In a random-
ized clinical trial, significant evidence of a lower incidence of COPD exacerbations was
demonstrated for the group that received regular professional dental cleaning compared
to the group that only received a dental examination [52]. Compared to basic statistical
methods, such as pairwise analysis, sophisticated artificial intelligence-based algorithms
are able to recognize many different variables with regards to their importance for a specific
outcome [34,46]. However, the statistical approach chosen has some limitations as well.
Predictions are based on the training dataset (US population), which limits their applicabil-
ity to other populations. Additionally, there may be other suitable prediction algorithms
that were not included in the present study. The chosen approach has the disadvantage of
requiring a significant amount of resources for the learning and prediction process. The
use of basic statistical methods in other software may be faster and more cost-effective in
future studies that examine this relationship. Additionally, the chosen approach is highly
dependent on the dataset. This may lead to different conclusions in future studies that
include more variables. For example, data regarding alcohol and nicotine consumption
were missing in many cases, limiting the analysis of their impact on COPD. In most cases,
COPD is associated with tobacco use, and tobacco use is known to contribute to the pro-
gression of periodontal disease [37]. This study has several strengths, including a large
number of subjects, providing a good overview of a particular cohort—in this case, the US
population—and the numerous algorithms that were included for evaluation.

Our study demonstrated that poor oral health and age play a significant role in
predicting COPD. Bacterial infection is a known risk factor for COPD, and exacerbations of
COPD may be caused by bacterial infections [53,54]. The most common bacteria responsible
for exacerbations are Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella
catarrhalis. A correlation was found between poor oral health and infections with these
bacteria in patients with COPD by Scannapieco et al. [22]. An infection of the lungs may
result from the inhalation of oral microorganisms through the saliva. This mechanism is
responsible for the majority of anaerobic infections of the lung [22,55–57].

Studies also showed that if periodontitis is effectively treated, the measurable in-
flammation parameters can be reduced [4,52,58–61]. It is not possible to determine the
direction of the relationship between periodontitis and COPD based on the results of the
study. However, optimizing oral health has been shown to improve the disease activity of
COPD [4,52] and our results support the theory that oral health improvements should be
an important therapeutic pillar in COPD patients.

5. Conclusions

The findings of the study indicate that poor oral health is strongly associated with
COPD. Based upon sophisticated artificial intelligence-based analyses, high CAL appears
to increase the risk of COPD, although causal relationships cannot be concluded due
to the cross-sectional design of the study. Providing a detailed understanding of the
multivariate pathogenesis will require an analysis of all influencing factors, including other
noxious agents, genetic predispositions, and concomitant diseases. The results of this study
are of high interest to clinicians and epidemiologists considering the high prevalence of
periodontitis and COPD. There is a need for large prospective longitudinal studies in order
to examine the relationship in greater detail. Additionally, oral health should be considered
an important therapeutic pillar in patients with COPD and those at risk of developing it.
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