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Abstract

Environmental issues have emerged especially since humans burned fossil fuels, which led
to air pollution and climate change that harm the environment. These issues’ substantial
consequences evoked strong efforts towards assessing the state of our environment.

Various environmental machine learning (ML) tasks aid these efforts. These tasks
concern environmental data but are common ML tasks otherwise, i.e., datasets are
split (training, validatition, test), hyperparameters are optimized on validation data,
and test set metrics measure a model’s generalizability. This work focuses on the
following environmental ML tasks: Regarding air pollution, land use regression (LUR)
estimates air pollutant concentrations at locations where no measurements are available
based on measured locations and each location’s land use (e.g., industry, streets). For
LUR, this work uses data from London (modeled) and Zurich (measured). Concerning
climate change, a common ML task is model output statistics (MOS), where a climate
model’s output for a study area is altered to better fit Earth observations and provide
more accurate climate data. This work uses the regional climate model (RCM) REMO
and Earth observations from the E-OBS dataset for MOS. Another task regarding
climate is grain size distribution interpolation where soil properties at locations without
measurements are estimated based on the few measured locations. This can provide
climate models with soil information, that is important for hydrology. For this task, data
from Lower Franconia is used.

Such environmental ML tasks commonly have a number of properties: (i) geospatiality,
i.e., their data refers to locations relative to the Earth’s surface. (ii) The environmental
variables to estimate or predict are usually continuous. (iii) Data can be imbalanced
due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related
potential target variables can be available per location, since measurement devices often
contain different sensors. (v) Labels are spatially often only sparsely available since
conducting measurements at all locations of interest is usually infeasible. These properties
present challenges but also opportunities when designing ML methods for such tasks.

In the past, environmental ML tasks have been tackled with conventional ML methods,
such as linear regression or random forests (RFs). However, the field of ML has made
tremendous leaps beyond these classic models through deep learning (DL). In DL, models
use multiple layers of neurons, producing increasingly higher-level feature representations
with growing layer depth. DL has made previously infeasible ML tasks feasible, improved
the performance for many tasks in comparison to existing ML models significantly, and
eliminated the need for manual feature engineering in some domains due to its ability to
learn features from raw data. To harness these advantages for environmental domains it
is promising to develop novel DL methods for environmental ML tasks.

This thesis presents methods for dealing with special challenges and exploiting op-
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portunities inherent to environmental ML tasks in conjunction with DL. To this end,
the proposed methods explore the following techniques: (i) Convolutions as in convo-
lutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial
data. (ii) Posing the problems as regression tasks to estimate the continuous variables.
(iii) Density-based weighting to improve estimation performance for rare and extreme
events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi–
supervised learning to cope with label sparsity. Using these techniques, this thesis
considers four research questions: (i) Can air pollution be estimated without manual
feature engineering? This is answered positively by the introduction of the CNN-based
LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can
colocated pollution data improve spatial air pollution models? Multi-task learning for
LUR is developed for this, showing potential for improvements with colocated data.
(iii) Can DL models improve the quality of climate model outputs? The proposed DL
climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised
training of multilayer perceptrons (MLPs) for grain size distribution interpolation is
presented, which can provide improved input data. (iv) Can DL models be taught to
better estimate climate extremes? To this end, density-based weighting for imbalanced
regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, im-
proving climate extremes estimation. These methods show how especially DL techniques
can be developed for environmental ML tasks with their special characteristics in mind.
This allows for better models than previously possible with conventional ML, leading to
more accurate assessment and better understanding of the state of our environment.
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Zusammenfassung

Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den
Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die
Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen
ausgelöst, den Zustand unserer Umwelt zu untersuchen.

Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen
diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben,
z. B. werden die Datensätze aufgeteilt (Training, Validation, Test), Hyperparameter
werden auf den Validierungsdaten optimiert, und die Metriken auf den Testdaten messen
die Generalisierungsfähigkeit eines Modells, aber sie befassen sich mit Umweltdaten.
Diese Arbeit konzentriert sich auf die folgenden Umwelt-ML-Aufgaben: In Bezug auf
Luftverschmutzung schätzt Land Use Regression (LUR) die Luftschadstoffkonzentration
an Orten, an denen keine Messungen verfügbar sind auf Basis von gemessenen Orten und
der Landnutzung (z. B. Industrie, Straßen) der Orte. Für LUR werden in dieser Arbeit
Daten aus London (modelliert) und Zürich (gemessen) verwendet. Im Zusammenhang mit
dem Klimawandel ist eine häufige ML-Aufgabe Model Output Statistics (MOS), bei der
die Ausgaben eines Klimamodells so angepasst werden, dass sie mit Erdbeobachtungen
besser übereinstimmen. Dadurch werden genauere Klimadaten erzeugt. Diese Arbeit
verwendet das regionale Klimamodell REMO und Erdbeobachtungen aus dem E-OBS-
Datensatz für MOS. Eine weitere Aufgabe im Zusammenhang mit dem Klima ist die
Interpolation von Korngrößenverteilungen. Hierbei werden Bodeneigenschaften an Orten
ohne Messungen auf Basis von wenigen gemessenen Orten geschätzt, um Klimamodelle
mit Bodeninformationen zu versorgen, die für die Hydrologie wichtig sind. Für diese
Aufgabe werden in dieser Arbeit Bodenmessungen aus Unterfranken herangezogen.

Solche Umwelt-ML-Aufgaben haben oft eine Reihe von Eigenschaften: (i) Georäumlich-
keit, d. h. ihre Daten beziehen sich auf Standorte relativ zur Erdoberfläche. (ii) Die zu
schätzenden oder vorherzusagenden Umweltvariablen sind normalerweise kontinuierlich.
(iii) Daten können unbalanciert sein, was auf relativ seltene Extremereignisse (z. B.
extreme Niederschläge) zurückzuführen ist. (iv) Pro Standort können mehrere verwandte
potenzielle Zielvariablen verfügbar sein, da Messgeräte oft verschiedene Sensoren ent-
halten. (v) Zielwerte sind räumlich oft nur spärlich vorhanden, da die Durchführung
von Messungen an allen gewünschten Orten in der Regel nicht möglich ist. Diese Eigen-
schaften stellen eine Herausforderung, aber auch eine Chance bei der Entwicklung von
ML-Methoden für derlei Aufgaben dar.

In der Vergangenheit wurden ML-Aufgaben im Umweltbereich mit konventionellen ML-
Methoden angegangen, wie z. B. lineare Regression oder Random Forests (RFs). In den
letzten Jahren hat der Bereich ML jedoch durch Deep Learning (DL) enorme Fortschritte
über diese klassischen Modelle hinaus gemacht. Bei DL verwenden die Modelle mehrere
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Schichten von Neuronen, die mit zunehmender Schichtungstiefe immer abstraktere Merk-
malsdarstellungen erzeugen. DL hat zuvor undurchführbare ML-Aufgaben realisierbar
gemacht, die Leistung für viele Aufgaben im Vergleich zu bestehenden ML-Modellen
erheblich verbessert und die Notwendigkeit für manuelles Feature-Engineering in einigen
Bereichen aufgrund seiner Fähigkeit, Features aus Rohdaten zu lernen, eliminiert. Um
diese Vorteile für ML-Aufgaben in der Umwelt nutzbar zu machen, ist es vielversprechend,
geeignete DL-Methoden für diesen Bereich zu entwickeln.

In dieser Arbeit werden Methoden zur Bewältigung der besonderen Herausforderungen
und zur Nutzung der Möglichkeiten von Umwelt-ML-Aufgaben in Verbindung mit DL
vorgestellt. Zu diesem Zweck werden in den vorgeschlagenen Methoden die folgenden
Techniken untersucht: (i) Faltungen wie in Convolutional Neural Networks (CNNs), um
wiederkehrende räumliche Muster in Geodaten zu nutzen. (ii) Probleme als Regressi-
onsaufgaben stellen, um die kontinuierlichen Variablen zu schätzen. (iii) Dichtebasierte
Gewichtung zur Verbesserung der Schätzungen bei seltenen und extremen Ereignissen.
(iv) Multi-Task-Lernen, um mehrere verwandte Zielvariablen zu nutzen. (v) Halbüber-
wachtes Lernen, um auch mit wenigen bekannten Zielwerten zurechtzukommen. Mithilfe
dieser Techniken werden in der Arbeit vier Forschungsfragen untersucht: (i) Kann Luftver-
schmutzung ohne manuelles Feature Engineering geschätzt werden? Dies wird durch die
Einführung des CNN-basierten LUR-Modells MapLUR sowie der automatisierten LUR–
Lösung OpenLUR positiv beantwortet. (ii) Können kolokalisierte Verschmutzungsdaten
räumliche Luftverschmutzungsmodelle verbessern? Hierfür wird Multi-Task-Learning
für LUR entwickelt, das Potenzial für Verbesserungen mit kolokalisierten Daten zeigt.
(iii) Können DL-Modelle die Qualität der Ausgaben von Klimamodellen verbessern?
Die vorgeschlagene DL-MOS-Architektur ConvMOS demonstriert das. Zusätzlich wird
halbüberwachtes Training von Multilayer Perceptrons (MLPs) für die Interpolation von
Korngrößenverteilungen vorgestellt, das verbesserte Eingabedaten liefern kann. (iv) Kann
man DL-Modellen beibringen, Klimaextreme besser abzuschätzen? Zu diesem Zweck
wird eine dichtebasierte Gewichtung für unbalancierte Regression (DenseLoss) vorge-
schlagen und auf die DL-Architektur ConvMOS angewendet, um die Schätzung von
Klimaextremen zu verbessern. Diese Methoden zeigen, wie speziell DL-Techniken für
Umwelt-ML-Aufgaben unter Berücksichtigung ihrer besonderen Eigenschaften entwickelt
werden können. Dies ermöglicht bessere Modelle als konventionelles ML bisher erlaubt
hat, was zu einer genaueren Bewertung und einem besseren Verständnis des Zustands
unserer Umwelt führt.
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1. Introduction

Environmental issues and their consequences have become increasingly prominent and
important in recent years. People are more and more aware of the difficulties we
encounter due to detrimental human influence on the environment like climate change
or air pollution [48]. Because of this, scientists research and assess the state of the
environment as well as the influence this state has on us humans, but also animals or
plants [65].

Another development of recent years are the considerable advances made in artificial
intelligence and machine learning (ML). Especially deep learning (DL) and large neural
networks pushed the boundaries in many domains like computer vision [36] or natural
language processing [21]. Methods from ML have long been used for environmental tasks,
for example, to provide forecasts [89], estimate environmental conditions at locations
where no measurements can feasibly be obtained [124], or enhance estimates from models
based on differential equations [106]. These approaches often rely on conventional ML
models like linear regression. However, modern and powerful ML approaches like DL
may also advance the state of the art for these domains [122].

This thesis aims to bridge the gap between environmental issues and powerful, modern
ML techniques like DL, as depicted in Figure 1.1. Of all the pressing environmental
issues that currently exist, this work focuses on air pollution and climate change. The
United Nations (UN) deem pollution and climate change “planetary crises”, highlighting
their importance [111]. For ML tasks in these domains, the contributions of this work
show how to develop novel, powerful ML and DL models by combining techniques that
fit well with the special characteristics of the respective tasks. This thesis considers four
research questions — two regarding air pollution modeling and two regarding climate
modeling — that are answered based on the newly proposed ML approaches.

1.1. Environmental Issues

In history, humans began to have lasting impact on the Earth’s environment long
ago. Starting from 10 000 to 8000 years ago, humans transformed the environment
lastingly, for example, through agriculture, leading to widespread deforestation and
effects such as soil erosion [137]. Some of these transformations have adverse effects on
the environment. Beginning in the 19th century, humans started emitting considerable
amounts of greenhouse gases leading to changes in the climate [34]. Additionally, humans
also emit air pollutants that are detrimental to human health, for example, through
combustion of fossil fuels [70]. While these are not the only environmental issues in
existence, the UN emphasize their importance by categorizing pollution and climate
change as “planetary crises” [111]. Therefore, this thesis focuses on these two issues.

1



1. Introduction

Figure 1.1.: Bridging the gap between environmental issues and ML. There are numer-
ous environmental issues that can severely affect life on earth. At the same time, ML provides
more and more powerful techniques like DL for the estimation and analysis of environmental
states. This thesis aims to bridge the gap between environmental issues and ML by showing how
to develop powerful, novel ML models for environmental ML tasks. Four research questions are
considered that are answered based on these models.
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1.1. Environmental Issues

1.1.1. Air Pollution

Air pollution has historically been a very noticeable environmental issue and still is a
large problem in many parts of the world today [22]. A major source of pollutants such
as particulate matter (PM), NO2, or SO2 is fossil fuel burning [121]. One important
contributor is transportation due to the use of combustion engines but also due to PM
created through brake and tire wear [77]. Other substantial contributors are heating and
power generation [22].

Air pollution is known to have adverse effects on human health. Studies found that
exposure to pollutants such as PM and O3 lead to an increase in mortality [71, 141]
and hospital admissions [11, 94]. Other pollutants like NO2 or SO2 have shown to be
negatively associated with lung function [2]. In addition to influencing human health,
pollutants are also known to affect plants negatively [4]. These effects make air pollution
an important issue and are the reason for why there is interest in modeling air pollution
concentrations.

One traditional way of modeling air pollution without ML are dispersion models.
These simulate pollutant dispersion based on mathematical equations using detailed
emission data of individual pollutant sources [16]. This provides information on how
these individual sources affect the pollution concentrations in the surroundings, which
may be of interest when approving new industrial premises, for example.

Air pollution concerns not only the emission of pollutants directly harmful to life, but
it often coincides with the emission of gases that affect the climate. These greenhouse
gases can increase the temperature in the atmosphere which leads to climate change,
which is discussed in the following section [34].

1.1.2. Climate Change

Among the most pressing environmental issues that we encounter today is climate
change. Since the late 20th century we observe a considerable increase in temperature
in comparison to previous centuries. While natural variability of the climate may have
some influence on this change, it is clear that the increased emissions of greenhouse
gases since the industrialization provide a substantially more likely explanation for the
warming [34]. Accordingly, there is a scientific consensus that the currently observed
climate change is mainly caused by humans [33].

There is already evidence of observed climate change impacts today, such as changing
precipitation or melting snow and ice which affects hydrological systems. Furthermore,
we observe that many species show behavioral adjustments and changing abundances due
to climate change. There is also evidence suggesting that climate change has negative
effects on crop yield. In the future, we expect to see even more impacts, for example,
increased extinction risk for many species, a decrease in food security, exacerbating
existing human health problems, accelerating aggregated economic losses, and increased
displacement of people. These effects show the importance of the issue and provide
motivation for research on climate modeling, that allows for more accurate estimation of
the climate change’s development [65].
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1. Introduction

In order to assess the climate’s state and make projections for potential future states,
numerical climate models such as general circulation models (GCMs) and regional
climate models (RCMs) are employed. These models are based on physical laws that are
expressed in mathematical terms which are then implemented in a computer program.
The outputs of these climate models are used to study climate change as they allow
for the simulation of future climatic conditions, for example, with different greenhouse
gas emission scenarios. It is possible through such simulations to assess how different
future emission levels affect the climate. This information is crucial for the mitigation of
climate change and the adaptation to its effects [49, 106].

1.2. Environmental ML Tasks

To assess the aforementioned environmental issues, models are built that often consist of
physical laws implemented mathematically. Air pollution modeling and climate modeling
are typically employed to estimate and forecast specific environmental variables of interest
(e.g., air pollutant concentrations) to better grasp the severity and implications of an
environmental issue. These traditional environmental modeling approaches are often
supported and complemented by tasks that are solved with ML. Such ML tasks address
environmental data but are otherwise technically common ML tasks, i.e., datasets are split
into a training, a validation, and a test set, hyperparameters are optimized on validation
set metrics, and test set metrics measure a model’s generalizability. The environmental
ML tasks considered in this thesis are visualized in Figure 1.2, and described in more
detail in the following.

1.2.1. For Air Pollution

For air pollution, ML is often used in practice to support assessing the effects of air
pollution in epidemiological studies [61]. These studies need to estimate the pollution
exposure for individual participants. To this end, the studies typically use either
interpolation or air pollution models such as dispersion models, which are discussed
briefly in Section 1.1.1, and land use regression (LUR) models, as visualized in Figure 1.2a.
In contrast to dispersion models, LUR models are based on ML and follow the intuition
that the way we use land (e.g., for streets, industry, residential areas) impacts local
pollutant concentrations. LUR models learn the relation between land use and pollutant
concentrations at locations where pollutant measurements are available. These models
are then applied to locations without measurements by providing their respective land
use features in order to estimate local pollutant concentrations and fill the spatial gaps
in pollution data [136]. LUR models are typically based on conventional ML models like
linear regression [99] or random forest (RF) [9, 20, 25, 132] and help to provide local air
pollution data in order to better assess the effects of air pollution on human health and
the environment.
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(a) LUR (b) Climate MOS (c) Grain size distribution
interpolation

Figure 1.2.: Environmental ML tasks considered in this thesis. (a) Land use regression
(LUR) produces spatially dense air pollutant concentrations for a gridded region based on per-
location land use information. (b) Climate model output statistics (MOS) reduces errors with
respect to observational data in dense, spatially gridded climate model outputs like precipitation.
(c) Grain size distribution interpolation yields spatially dense grain size distributions in soil
based on relatively few soil measurements.
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1.2.2. For Climate Change

Climate models are valuable tools for the assessment of climate change. However, they
are not perfect [92], leading to errors, and they can be partially hindered by incorrect
input data. ML can support climate models to alleviate these issues, as described in the
following.

Climate model output statistics (MOS). Some processes like those concerning clouds
cannot be implemented directly into climate models due to their complexity or because
they are too small-scale for the model’s resolution. For these processes so-called parame-
terizations are used, which are typically simplified replacements of the real processes.
These simplifications, but also issues in grid point representation for elevation, can lead to
errors in the model outputs compared to observational data. To alleviate these errors it
is common to use statistical methods or techniques from ML to derive empirical relation-
ships between the model outputs and the observations. Such techniques are called MOS
and are commonly built based on conventional ML models like linear regression [106]
or RF [102, 125]. Climate MOS, as visualized in Figure 1.2b, helps to provide more
accurate climate data especially at a local scale [49, 106].

Spatial Interpolation of Grain Size Distributions. ML may also help provide climate
models with more accurate input data. Climate models require some information on the
world as input in order to do their calculations. Measurements containing this information
are often not directly available for all locations of interest. Therefore, such missing values
have to be estimated from the existing measurements in the vicinity. An example for
this is data on the grain size distributions in the soil, which affects hydrological processes
like groundwater recharge, infiltration rates or surface flow [75]. Grain size distributions
are estimated for locations without soil samples through statistical techniques like
interpolation, as shown in Figure 1.2c. More accurate grain size distribution interpolation
may help climate models to produce more accurate forecasts [75].

1.3. Common Properties of Environmental ML Tasks

ML is used in many environmental domains like air pollution modeling or climate modeling.
Due to the nature of these domains, resulting environmental ML tasks have a number of
typical properties. Understanding these properties is crucial for developing efficient and
powerful solutions to these tasks. The following introduces common properties based on
which the solutions presented in this thesis are developed.

1.3.1. Geospatiality

When measuring the state of our environment, we typically collect data through sensors
which are deployed at particular locations on Earth. Because of this, environmental
data is typically geospatial, meaning that it refers to locations relative to the Earth’s
surface [103]. This in turn also means that there are spatial relations within the data.
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For example, consider sensors measuring some environmental variable (e.g., temperature)
at different locations. Through the geospatial nature of the data we know that some
locations are closer to each other than others and thus potentially have measurements
with higher correlation in comparison.

Geospatiality may be exploited when developing ML methods by focusing on spatially
close data for the estimation or prediction of an environmental variable at a particular
location. This can be interpreted as a spatially-aware feature selection that reduces the
amount of input features for a ML model by disregarding data that is far away and thus
potentially less helpful for the estimation or prediction at hand.

1.3.2. Continuous Variables

Environmental variables are almost always continuous in nature and rarely discrete or
categorical. For example, temperature, wind, air pressure, precipitation, air pollutant
concentration and most other environmental variables are measured on continuous scales.
Discrete or categorical environmental variables are typically derived from originally
continuous variables by separating their continuous scales into bins (e.g., no rain at a
precipitation of 0mm, rain otherwise). Values of continuous variables are ordered and —
similarly as with geospatial data — some values are closer to each other than others.

The continuous nature of typical environmental variables has implications on how
to design ML methods for the estimation or prediction of these variables. Namely, it
affects how to pose the task for ML models. Naturally, this suits itself for considering
the problem a regression task in such a setting, as will be discussed in Section 1.5.2.

1.3.3. Data Imbalance

Data imbalance is prevalent in environmental variables. They often follow skewed
distributions due to the relative rarity of extreme environmental conditions in comparison
to more common environmental conditions. This is intuitively clear when considering,
for example, precipitation. It is very common that it does not rain at any given moment
in time in most parts of the world. In contrast, extreme rainfall is rare.

Data imbalance can be a hindrance for training ML models since these typically
expect roughly uniform target distributions [76]. This assumption can lead to model
bias where the estimation quality of samples with relatively common target values is
better compared to samples with relatively rare and extreme target values [135]. This
can be problematic if one is especially interested in good estimation of these infrequent
samples. In particular, this is relevant for precipitation since rare extreme rainfall can
have detrimental effects like floods. It can therefore be helpful to address this issue when
developing environmental ML models.

1.3.4. Colocated Sensors

When building and deploying environmental sensing devices or stations such as earth
observation satellites, monitoring stations or small mobile measuring devices (e.g., Zurich
air pollution data [81]), it is common to include multiple sensors. Presumably, the effort
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and cost of designing, building and deploying the device or station itself is often higher
compared to the cost and effort of integrating additional sensors into such a design. Thus,
multiple sensors are often integrated into a measuring device or station to measure more
related environmental variables in addition to the main variable of interest.

Having colocated sensors is a common property of environmental ML tasks that leads
to data being available for different, related aspects of the environment at the same
locations. This may be exploited when developing solutions by providing ML models
with the additional, related information available.

1.3.5. Spatial Label Sparsity

As mentioned before, an important source of environmental data are measuring stations
that provide data for a specific location. Inherent to data from such stations is that
it is typically not available at all locations of interest since it is infeasible to deploy
the necessary number of stations. This is also not exclusive to data from such stations.
Another example are soil samples, where it would be expensive to densely sample large
areas [75]. Because of this, data for environmental ML tasks often has only sparsely
available labels, at least in the spatial dimensions.

Label sparsity can be an issue for ML models and especially DL models, since these
are particularly known to need sufficiently large datasets [54]. Depending on the severity
of label sparsity, the concrete task, and the chosen model, it may be necessary to think
of strategies that alleviate this issue.

1.4. Deep Learning

Environmental ML tasks with their aforementioned common properties have been solved
with conventional ML methods before. However, while conventional ML methods are
able to model many tasks well, recent years have shown that novel neural network (NN)
techniques can solve tasks that were infeasible before or provide better estimation quality
than prior methods [80]. The key to this success is an approach called deep learning
(DL) which is an important aspect of the solutions presented in this thesis.

With conventional ML (e.g., linear regression, logistic regression, naive Bayes, support
vector machine (SVM)) the success of a method depends heavily on the data representa-
tion. Raw data — especially if high dimensional — can often not be used directly as
inputs for these models. Instead, researchers and practitioners need to manually design
and build feature extractors based on domain knowledge that transform the raw data
into a suitable data representation [80].

In contrast, DL methods are representation-learning methods which can handle raw
data by learning suitable features on their own during optimization for their respective
tasks. They consist of a number of layers with each layer containing artificial neurons.
The neurons’ outputs are fed into a non-linear activation function and are then passed
to the next layer. Each consecutive layer produces higher-level feature representations
and these mappings are learned automatically during optimization [80].
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DL methods substantially enhance the possibilities of ML. It has allowed for record
results in computer vision [36, 78, 138], natural language processing [21, 39, 130], and
medicine [45, 74, 84], to name a few fields. The availability of software libraries like
PyTorch [108], Tensorflow [1], and Keras [31] has eased the adoption of DL methods.
There have also been first successful attempts of DL for environmental tasks, like
short-term precipitation forecasting (also known as precipitation nowcasting) [7, 129] or
detection of extreme weather events [113], but there are still many environmental tasks
where the development of novel DL methods is promising [122]. To this end, this thesis
contributes novel DL methods for the environmental ML tasks LUR, climate MOS, and
grain size distribution interpolation, showing how to make use of the special properties
common to environmental ML tasks when designing DL approaches.

1.5. Deep Learning for Geospatial Environmental Regression

This thesis presents ways of developing novel DL models specifically tailored for envi-
ronmental ML tasks. The promise of DL methods for environmental ML tasks is their
potential for improved performance as well as their capabilities for working on raw data
without the need for laborious manual feature engineering [54]. This can pave the way to
novel models and approaches for estimating and predicting the state of the environment.
Environmental ML tasks commonly have the aforementioned properties from which
follow opportunities to exploit but also challenges to overcome. To cope with these
properties, this thesis proposes the use of the solutions presented in the following.

1.5.1. Convolutions

Environmental data is often geospatial as is described in Section 1.3.1 from which follows
that spatially close data often has higher correlation in comparison to data that is further
away. A suitable way of exploiting this property for ML models are convolutions as used
in convolutional neural networks (CNNs).

1.5.1.1. What are Convolutions?

Convolutions in their general form are defined as an operation on two functions of a
real-valued argument and are denoted with an asterisk. In ML these two functions are
usually the input x and the weights or the kernel w [54]:

(x ∗ w)(t) =
∫

x(a)w(t− a)da, (1.1)

where t and a represent values in a particular domain (e.g., time for time-series data).
This operation can be used to, for example, smooth input x with a weighted average
over a certain span in the domain using the kernel w [54].

Since we do not have data available continuously at every point in a particular domain
(e.g., at each point in time) but at discretized points in a domain instead (e.g., every
second), we use the discrete convolution in practice [54]:
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(x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a), (1.2)

where t as well as a are integer-valued instead of real-valued and x as well as w are only
defined for integer inputs.

For geospatial data the input is typically at least two-dimensional since we have
a dimension for latitudes and another dimension for longitudes. This is similar to
image data where there is a dimension for width and one for height. When applying a
convolution to a two-dimensional input I, we commonly use a two-dimensional kernel K
that also has a two-dimensional array of weights [54]:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (1.3)

1.5.1.2. Properties of Convolutions

Convolutions have a number of properties that are beneficial for geospatial data, which
are described in the following.

Convolutions have sparse interactions since — in contrast to fully connected layers
of multilayer perceptrons (MLPs) — not each input unit is connected to each output
unit but instead only the input units connected to the relatively small kernel affect a
particular output unit [54]. These sparse interactions are well suited for geospatial data
since they exploit the relatively high correlations in spatially close data by connecting
nearby input units in a kernel and omitting interactions with less related input units that
are spatially further away. This reduces the number of model parameters substantially
while also improving efficiency [54].

Each member of a kernel in a convolution is applied to every position of the input
(disregarding potentially different behavior at boundary input units). Regardless of
the position a kernel is applied to, its parameters are the same and there are thus no
separate parameters to learn per location. This is called parameter sharing and it further
improves efficiency [54].

From the convolution’s parameter sharing follows translation-equivariance. This means
that when a convolution’s input is translated or shifted, its output is translated or shifted
in the same way [54]. From this property in conjunction with parameter sharing follows
that the kernels can detect features regardless of their specific position in the data.
Geospatial data benefits from this since helpful spatial patterns only have to be learned
once and not for each location individually.

This thesis shows that convolutions with their aforementioned properties are indeed
well-suited for environmental ML tasks by demonstrating ways of developing novel
DL models with CNNs for geospatial environmental data. To this end, this thesis
proposes a novel convolutional DL model for LUR called MapLUR (see Appendix A.1)
to answer the research question Can air pollution be estimated without manual feature
engineering?. MapLUR is able to automatically learn relevant features from map images
for the estimation of pollutant concentrations, while being able to achieve state-of-the-art
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performance in settings with large labeled datasets [136]. Analysis shows that MapLUR
automatically learns with its convolutions to detect, for example, streets in map images
which it correctly associates with higher pollution concentrations [136]. Furthermore,
this thesis proposes a novel convolutional DL model for climate MOS called ConvMOS
(see Appendices A.3 and A.4) to answer the research question Can DL models improve
the quality of climate model outputs?. ConvMOS is specifically tailored towards reducing
errors in geospatial climate data stemming from climate models by using convolutions that
are able to learn spatial error patterns as well as modules that learn error characteristics
for individual locations. It provides significantly better performance than conventional
ML models as well as CNNs not adapted for this specific task [133, 134].

1.5.2. Regression

Environmental variables are often continuous. This has implications on how to pose
the task for ML models, since these models have to be designed and trained differently
depending on whether they estimate continuous or categorical values.

The natural way of modeling the estimation or prediction of continuous variables is by
posing it as a regression task. These tasks are specifically designed to use ML models to
estimate or predict a numerical value. The alternative would be classification tasks that
ask ML models to specify to which category a sample belongs to. However, such models
would require binning the continuous variable and would also not inherently respect the
order of the values and the distances to each other [54]. It is therefore sensible to develop
regression models for environmental ML tasks which is why this thesis focuses on the
development of such models.

1.5.3. Density-based Weighting

The imbalanced nature of environmental data can lead to non-optimal performance
for the estimation or prediction of rare and extreme events, which can be of particular
interest especially in the climate domain (e.g., extreme rainfall events). To alleviate
this issue and answer the research question Can DL models be taught to better estimate
climate extremes?, this thesis proposes sample weighting for regression tasks based on
the target variable’s density to emphasize the importance of rare samples in comparison
to more common samples. This can lead to improved performance for rare and extreme
samples [135].

To combat data imbalance issues there are two basic approaches: resampling and
sample weighting. The former changes the data distribution by generating new data
points from existing rare samples and by omitting samples with target values in relatively
common target value ranges. However, the latter approach can be more desirable since
omitting samples can remove useful information while generating additional data points
from existing data may lead to overfitting. The sample weighting method DenseWeight
and the cost-sensitive learning method DenseLoss (which is based on DenseWeight), that
are proposed in this thesis, are among the first sample weighting methods for regression
tasks [135].
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Sample weighting for regression tasks is more complex compared to classification tasks,
since there is no clear measure of rarity for an individual data point based on which one
can weight its influence on training. The core idea of DenseWeight and DenseLoss is to
estimate the target variable’s density through kernel density estimation (KDE) in order to
have a notion of rarity for each individual data point. DenseWeight’s weighting function
fw calculates sample weights based on this rarity, so that samples with more common
target values receive smaller weights than rarer samples. One can control the degree of
the density-based weighting scheme with a hyperparameter α ∈ [0,∞) (α = 0 leads to
uniform weights; larger α emphasizes density-based weighting). It is specifically designed
for use in the cost-sensitive learning approach for imbalanced regression DenseLoss, where
these weights are used to adjust each sample’s contribution to the loss function: As
such, (i) DenseWeight never assigns negative weights, avoiding maximization of the error
instead of minimization during optimization. It also (ii) never assigns zero weights to
avoid ignoring parts of a dataset completely. It is designed so that (iii) the mean weight
over all data points is one to avoid influencing learning rates [135].

This thesis shows that the proposed method DenseLoss can reduce the estimation
error of samples with rare target values better than existing resampling approaches
for many tasks. Examples include statistical downscaling of precipitation, where a
convolutional DL model increases the resolution of geospatial precipitation data (see
Appendix A.5), and the proposed climate MOS convolutional DL architecture ConvMOS,
which aims to reduce errors in geospatial precipitation data from climate models (see
Appendix A.4) [133, 135].

1.5.4. Multi-Task Learning

The prevalence of colocated sensors leads to the availability of multiple related environ-
mental variables at the same locations in environmental data, especially in air pollution
data. To answer the research question Can colocated pollution data improve spatial air
pollution models?, this thesis proposes the use of multi-task learning to exploit this
circumstance and also alleviate label sparsity that is common in air pollution data. This
approach is evaluated for the environmental ML task LUR [41].

In multi-task learning, a ML model is trained to correctly estimate or predict multiple
target variables instead of just one. This can allow the model to leverage information
from several related tasks in order to train more accurate models. As such it can be
seen as an approach for ML models to mimic human learning where humans often profit
from knowledge of one task when learning another related task. Multi-task learning
can be especially beneficial in settings where relatively few labeled data instances are
available [160].

An environmental ML task for which it is not uncommon to have multiple related
potential target variables available for the same locations due to colocated sensors is
LUR. In this task, a model learns to estimate pollutant concentrations at locations where
no measurements are available based on relatively few locations with measurements.
This thesis answers the research question Can colocated pollution data improve spatial
air pollution models? by evaluating multi-task learning for LUR with MLPs (see
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Appendix A.2). Results show that multi-task learning can indeed improve model
performance significantly but only given sufficient data. This suggests that it is not
suitable for lowering a model’s data requirements, but it can optimize estimation quality
to a certain extent [41].

1.5.5. Semi-Supervised Learning

One common property for environmental ML tasks is spatial label sparsity, as discussed
in Section 1.3.5. One potential strategy to cope with this is semi-supervised learning. In a
work that I have contributed to, the use of semi-supervised learning in environmental ML
tasks with label sparsity is proposed and evaluated for grain size distribution interpolation
with MLPs [75].

In semi-supervised learning not only samples with labels are used for model training
but also samples without labels. This combination of supervised learning based on labeled
samples and unsupervised learning based on unlabeled samples can help improve model
performance and is especially relevant when there are relatively few labeled samples [143].

In the proposed model for grain size distribution interpolation (see Appendix B.2),
semi-supervised learning helps to achieve better results in comparison to supervised
methods [75]. This can provide climate models with more accurate input data, potentially
leading to more accurate simulations and thus presenting another answer to this thesis’
research question Can DL models improve the quality of climate model outputs?.

1.6. Contributions

This thesis contributes novel methods for environmental ML tasks and shows how to
design effective, modern ML approaches with techniques such as DL that are suitable for
the typical properties of environmental data. The proposed approaches consider either
air pollution or climate data and aim to answer research questions, as presented in the
following.

1.6.1. Air Pollution

In air pollution modeling, conventional ML models that aim to estimate a single pollutant
based on manually engineered features are prevalent for solving the LUR task. To push
the boundaries of what is possible in this domain with modern ML approaches, this
thesis considers the following research questions.

1.6.1.1. Can Air Pollution be Estimated Without Manual Feature Engineering?

Prior work on LUR typically employed conventional ML models like linear regression
and created features through considerable manual work for these models. The features
are often calculated from at least partially non-public data that is elaborately gathered
from different sources [15, 57]. To potentially ease applicability of LUR models, it is
interesting to look for ways that avoid this laborious process.
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One answer to this question can be DL models, since these are known to train on raw
data in an end-to-end manner, meaning that they do not necessarily need tailor-made
features. Instead, they can extract useful features from raw data themselves, potentially
eliminating the need for manual feature engineering [80]. This thesis shows how to
develop an effective, novel DL model with the geospatiality of air pollution data in mind
by presenting MapLUR (see Appendix A.1, [136]). MapLUR is a DL model based on
convolutions for LUR that learns to estimate pollutant concentrations based on map
images and/or satellite images. The work on MapLUR also proposes the Data-driven,
Open, Global (DOG) paradigm for LUR which argues for the automatic extraction of
features (e.g., through DL) from openly and globally available data. MapLUR is able to
outperform existing conventional LUR approaches on modeled NO2 concentrations in
Central London, showing that this approach can indeed work.

In another work, to which I provided only limited contribution, the question was an-
swered differently, by building a novel LUR approach called OpenLUR (see Appendix B.1,
[79]) that derives many features from OpenStreetMap (OSM) [104] and applies ML
methods which allow for automated hyperparameter tuning like AutoML [47] on these
features. This alternative approach provides an off-the-shelf solution for LUR that
also does not require laborious manual feature engineering and manual hyperparameter
optimization. OpenLUR can be used to apply DL models, but it can also make use of
conventional ML models.

1.6.1.2. Can Colocated Pollution Data Improve Spatial Air Pollution Models?

The devices used to measure air pollutant concentration often record not only concentra-
tions of one pollutant but multiple ones. These colocated sensors provide multiple related
potential target variables for an environmental ML model. It is therefore interesting to
consider, whether this can be of use for training models.

To this end, this thesis contributes multi-task learning for LUR (see Appendix A.2,
[41]), where a MLP is trained to estimate pollution data from multiple colocated sensors
of different pollutants. The idea is that estimating concentrations of multiple pollutants
at once may improve estimation quality as it effectively adds more related labeled data
for the available locations. Results show that this can indeed improve model performance
in certain settings. Furthermore, this approach could hypothetically reduce the effective
need of labeled samples for ML models to alleviate spatial label sparsity, but the results
suggest that multi-task learning for LUR can mainly improve model performance in
settings with relatively large datasets and not reduce a model’s data requirements. The
corresponding paper to this work won the “Best Student Paper” award at the second
International Conference on Frontiers of Artificial Intelligence and Machine Learning
(FAIML) [41].

1.6.2. Climate

Similarly, as in the air pollution modeling domain, it is also common to use conventional
ML models like linear regression for tasks like climate MOS, where a climate model’s
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outputs are adjusted with ML approaches to better fit with observational data [43]. To
evaluate the development and application of DL-based approaches, this thesis considers
the following research questions.

1.6.2.1. Can Deep Learning Models Improve the Quality of Climate Model
Outputs?

Climate model outputs follow observations reasonably well in many cases, but there
are still errors, especially when it comes to precipitation [106]. While conventional ML
models are able to reduce these errors, recent advances in ML beg the question whether
modern DL methods are able to do the same and also to which extent.

To this end, this thesis presents a novel DL architecture based on convolutions
for climate MOS called ConvMOS (see Appendices A.3 and A.4, [133, 134]) that
learns to reduce errors in climate model outputs of precipitation in order to achieve
better correspondence with observational data. The CNN-based architecture is designed
specifically with the errors from climate models in mind. It consists of modules with
per-location parameters and modules with global parameters. The former can learn
adaptations specific to each location, while the latter efficiently learn spatial error
patterns due to the convolution’s translation-equivariance. Results show better model
performance for ConvMOS in comparison to conventional climate MOS models. The
second more comprehensive follow-up paper also shows improvements in comparison to
standard CNN architectures, which shows the benefits of the task specific design of the
architecture [133]. The corresponding first paper won the “Best ML Innovation” award
at NeurIPS 2020’s “Tackling Climate Change with Machine Learning” workshop.

Another approach for more indirectly improving the quality of climate model outputs
with DL models is presented in work to which I contributed but only in a limited manner.
It presents a novel DL training strategy based on a MLP and semi-supervised learning
for spatial grain size distribution interpolation (see Appendix B.2, [75]) which aims to
provide more accurate soil data that can then be used in climate models for aspects
like soil-hydrological processes. In the proposed approach a MLP is pre-trained on
weak labels for data without measurements and fine-tuned on data with measurements
to estimate the portions of clay, silt, and sand in the soil. The MLP is furthermore
provided with additional information on all locations of interest like the topography. The
proposed approach reduces errors in soil data in comparison to conventional interpolation
techniques and plain supervised MLP training, providing more accurate soil data which
is likely to provide even more accurate climate data when used in a climate model.

1.6.2.2. Can Deep Learning Models be Taught to Better Estimate Climate
Extremes?

Besides mean variables, it is also of particular interest in the climate domain to look at
climate extremes because of their often severe consequences. Estimating such extreme
values poses a challenge to ML approaches in general but also to DL approaches since
they tend to provide more conservative estimates biased towards the mean [135]. Thus,
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it is interesting to consider whether DL models can be taught to better estimate climate
extremes.

At the core, this is a question of learning with imbalanced data since the climate
extremes can be considered rare outliers which skew the distribution with regard to
the large number of common data points closer to the mean. To cope with this in
a regression setting, this thesis proposes novel density-based weighting techniques for
data imbalance with the sample weighting approach DenseWeight and the cost-sensitive
learning method for NNs DenseLoss which is based on DenseWeight (see Appendix A.5,
[135]). These methods can be used to reduce errors in the estimates of rare events like
extreme precipitation, as shown in the corresponding publication. These techniques are
particularly useful for environmental ML tasks due to the prevalence of data imbalance
in environmental data and the importance of rare and extreme events, especially in the
climate domain. In the second publication regarding ConvMOS (see Appendix A.4),
DenseLoss was applied to ConvMOS, showing it allows for the improved estimation of
rare extreme precipitation events.

1.6.3. Conclusion

The aforementioned contributions demonstrate for the environmental ML tasks LUR,
climate MOS, and grain size interpolation how to design novel ML and especially DL
approaches. These approaches make use of techniques like convolutions, regression
modeling, density-based weighting, multi-task learning, and semi-supervised learning
where suitable, in order to alleviate issues and grasp chances that the properties, which
environmental ML tasks commonly have, provide. This thesis uses these approaches to
answer research questions regarding advanced ML, air pollution modeling, and climate
modeling. Improvements in environmental ML tasks can help better monitor, assess,
and forecast the state of the environment, which is especially important with regard
to understanding, mitigating, and adapting to the pressing environmental issues we
encounter today, like air pollution and climate change.
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2. Contextualization of the Contributions
within Related Work

The following contextualizes the contributions of this thesis within related work in their
specific field and with regard to the research question each contribution aims to answer.
First, air pollution modelling or, more specifically, land use regression (LUR) is considered
by reflecting on work related to MapLUR (see Appendix A.1, [136]) and OpenLUR
(see Appendix B.1, [79]) with regard to the question Can air pollution be estimated
without manual feature engineering? in Section 2.1.1. Then, multi-task learning for
LUR (see Appendix A.2, [41]) is contextualized within related work for the question Can
colocated pollution data improve spatial air pollution models? in Section 2.1.2. Next,
the contributions regarding climate modeling are considered. Related work for climate
model output statistics (MOS) and ConvMOS (see Appendices A.3 and A.4, [133, 134])
as well as related work for grain size distribution interpolation and the semi-supervised
approach presented in this thesis (see Appendix B.2, [75]) are examined with regard to
the question Can deep learning (DL) models improve the quality of climate model outputs?
in Section 2.2.1. Finally, the question Can DL models be taught to better estimate climate
extremes? is considered in Section 2.2.2, contextualizing the imbalanced regression
contributions DenseWeight and DenseLoss (see Appendix A.5, [135]) as well as their
application to ConvMOS for better estimation of climate extremes (see Appendix A.4,
[133]).

2.1. Air Pollution

Modeling air pollution geospatially with LUR is an important environmental machine
learning (ML) task, especially for epidemiological studies [124]. To further advance
the field, this thesis considers two research questions that are answered based on the
presented contributions. These contributions are contextualized within related work in
the following with regard to their research question.

2.1.1. Can Air Pollution be Estimated Without Manual Feature
Engineering?

Typical LUR approaches rely on laborious manual feature engineering based on the data
that is available for the considered study area. In order to ease the applicability of LUR,
it is interesting to consider ways of automating this process. The following presents prior
work on LUR, two solutions that alleviate the need for manual feature engineering in
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this domain, namely MapLUR [136] and OpenLUR [79], as well as recent developments
in related work regarding LUR.

2.1.1.1. Prior Related Work

Traditionally, LUR has mostly been solved with linear regression [15, 100, 126, 154].
Important work for this was done by the Escape project [15, 44] which has established a
procedure for model building that has been widely used thereafter [95, 98, 100, 147, 151].
This relatively simple approach is often suitable since there are often only few locations
(typically well under 100) with measurements per city available [15]. In such settings
there are typically only very sparsely available labels, which may then result in difficulties
when trying to train more complex models. Nonetheless, some more complex ML models
have been used, although in part by creating larger datasets with mobile measurement
campaigns yielding more than 100 measured locations [57]. Random forests (RFs) have
been applied successfully [19, 20, 146]. Other works also used multilayer perceptrons
(MLPs) [3, 8, 23, 25, 88]. These approaches rely on manual feature engineering based
on data that is often at least partially not openly available. This thesis presents two
LUR approaches which aim to automate the process and focus on openly available data,
namely MapLUR (see Appendix A.1, [136]) and OpenLUR (see Appendix B.1, [79]).

2.1.1.2. MapLUR

MapLUR is a novel convolutional neural network (CNN)-based DL model for LUR that
automatically learns to extract suitable land use features from openly available map
and/or satellite images for the estimation of pollutant concentrations. It follows the
Data-driven, Open, Global (DOG) paradigm proposed in this contribution which stands
for the automatic extraction of features from openly and globally available data. At
the core, the MapLUR model consists of 15 consecutive feature-learning blocks. Each
block contains a convolution layer, batch normalization [64], and ReLU activation [101].
Pooling layers are also incorporated in the first, third, fifth, seventh, tenth and thirteenth
block. These are able to learn spatial features from the input images through which
they implicitly recognize the relation between different types of land use (e.g., streets,
industrial areas, etc.) and air pollution. The corresponding paper “MapLUR: Exploring
a new paradigm for estimating air pollution using deep learning on map images” (see
Appendix A.1, [136]) was published in 2020 in the ACM journal Transactions on Spatial
Algorithms and Systems in its special issue on DL.

Since DL models typically require more data than conventional ML methods that
require manually engineered features, MapLUR’s experimental evaluation makes use of a
relatively large dataset of modeled annual mean NO2 concentrations for Central London
from the London Atmospheric Emissions Inventory (LAEI) [6]. The training set obtained
from LAEI data contains pollutant concentrations for 3000 locations, which also serve
as validation data for hyperparameter tuning through ten-fold cross-validations. The
test set contains 1500 unseen locations. For each model 40 instances were trained and
tested. The reported metrics are the mean over the 40 runs. To compare MapLUR to
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Table 2.1.: Results of MapLUR experiments with different input images and baseline
methods on the Central London NO2 dataset. R2 aims to measure the portion of the
target’s variation that is explained by the model (1 is perfect and 0 is the result when always
estimating the test data’s mean). RMSE is the square root of the mean squared error (lower is
better). Baseline models are implemented following LUR approaches presented in prior work.
The linear regression model follows Eeftens et al. [44], the multilayer perceptron follows Alam
and McNabola [8], and the random forest follows Brokamp et al. [20]. Best values are written in
bold. [136]

Model R2 RMSE [µgm−3]

Mean baseline 0.000 13.971
Linear regression 0.487 10.004
Multilayer Perceptron 0.499 9.887
Random Forest 0.662 8.119

MapLUR exp. 1: OpenStreetMap 0.673 8.002
MapLUR exp. 2: Google Maps 0.537 8.918
MapLUR exp. 3: Google Maps Satellite 0.206 12.389
MapLUR exp. 4: OpenStreetMap and Google Maps Satellite 0.660 8.112

commonly used LUR models, linear regression, RFs, and MLPs are trained and evaluated
in addition to a simple mean baseline. Experimental results (see Table 2.1) show that
MapLUR using OpenStreetMap (OSM) images as input can significantly outperform the
conventional baseline ML models on this modeled data without the need for manually
engineered features, proofing that MapLUR’s concept is feasible and promising. Satellite
imagery can also be used but results in lower performance, likely due to the noise inherent
to such imagery (e.g., visible pedestrians or cars that may not be representative of traffic
in general). The results suggest that DL-based LUR models do indeed have potential
for air pollution modeling and provide a new approach that can make effective use of
relatively large datasets by having the potential to provide improved performance while
also not requiring manual feature engineering. Thus, MapLUR expands the LUR toolkit
by being a method ideal for datasets containing measured locations in the thousands,
while conventional ML models like RFs and MLPs are the likely tool of choice for datasets
containing hundreds of measured locations, and simple linear regression models may still
be ideal for datasets containing only a few dozen measured locations. Lowering these
data requirement boundaries of methods that are more complex than linear regression is
an interesting research direction, for which this thesis evaluates an approach that makes
use of colocated pollution data in Section 2.1.2 [136].

There have been other CNN-based air pollution modeling approaches prior to the
publication of MapLUR and also thereafter, but these considered air haze level estimation
based on camera photos [85, 159] or air pollution prediction based on camera photos
and weather information [69] instead of LUR. Ghahremanloo et al. [52] also propose
a CNN-based DL model for NO2 estimation, but this approach relies on manually
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engineered features instead of automatically learning features from, for example, map
images. Published concurrently with our work on MapLUR, Zheng et al. [161] estimate
PM2.5 from satellite images with a CNN and a RF, but they also use manually engineered
meteorological features for their pollution estimation. In contrast to MapLUR, they
furthermore focus more on modeling the temporal variability than the relation between
land use and long-term mean pollutant concentrations by considering daily satellite
imagery from micro-satellites with daily PM2.5 measurements of the same locations. DL
approaches are more common for temporal air pollution or air quality models, where
time-series data is considered, e.g., for forecasting [10, 28, 30, 46, 51, 82, 155, 156].
In addition to being temporal models, these approaches rely on manually engineered
features from various sources that are partially not publically available. Jiang et al.
[68] recently proposed another CNN for estimating PM2.5 that also focuses on temporal
variability using daily satellite imagery and used a constrastive learning pre-training task.
Despite it being used in a different setting (i.e., temporal daily pollutant concentrations
instead of long-term mean concentrations), it also uses only imagery through which it
provides another air pollution modeling technique that avoids manual feature engineering.
Thus, MapLUR is still among the only CNN-based DL LUR models that can estimate
air pollution without manual feature engineering.

2.1.1.3. OpenLUR

OpenLUR is a LUR approach that generates openly and globally available features
from OSM [104], applies a multitude of ML models on these features, and automatically
tunes their hyperparameters in order to provide an easy-to-use off-the-shelf approach to
LUR. Similar as with MapLUR, OpenLUR also alleviates the need for manual feature
engineering as it automatically generates suitable features. The generated features for
each location of interest include the area of industrial, commercial, and residential zones
in the vicinity (50m to 3000m away), the length of larger and smaller streets nearby,
and the distances to the next motorway, primary road, traffic signal, and industrial
area from the considered location. These features are then used with ML approaches
like AutoML [47], RF [18], RFOstochastic which is a RF whose hyperparameters are
optimized with stochastic search, and generalized additive models (GAMs), but other
techniques like DL models, for example, can also be used. This approach called OpenLUR
is an easy-to-use off-the-shelf approach to LUR. The corresponding paper “OpenLUR:
Off-the-shelf air pollution modeling with open features and machine learning” (see
Appendix B.1, [79]) was published in 2020 in the journal Atmospheric Environment.
Note that I was involved with this work only as a co-author and thus, provided only
limited contribution to the work.

OpenLUR is evaluated using the OpenSense dataset containing ultra-fine particle
(UFP) measurements from a mobile measuring campaign in Zurich that attached sensors
on top of tram cars [57]. There are 200 locations with measurements that are deemed
reliable enough to calculate usable mean concentrations for three-month periods (seasons).
For the experiments, this data is randomly split into ten subsets, where one subset is
used for testing and the other nine subsets are used for building models. This ten-
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Table 2.2.: Absolute performance gain of the models AutoML, RFOstochastic,
RF, and GAM trained with OpenLUR’s generated open features (Ours) over the
manually engineered OpenSense features from local or closed sources with regard to
RMSE and R2. Negative (positive) RMSE (R2) values show a better model performance when
using our automatically generated and openly available OSM features and are highlighted in gray.
In nearly all cases, our OSM features yield significantly better air quality predictions compared
to the manually engineered OpenSense features (bold values indicate statistical significance
based on a Wilcoxon signed-rank test [150] with significance level 0.05), showing that OpenLUR
can alleviate the need for manual feature engineering in LUR. [79]

Season AutoML RFOstochastic RF GAM

RMSE [10
9particles

m3 ]

1 −0.18 −0.24 −0.24 −0.30

2 −0.06 −0.08 −0.07 −0.07

3 −0.05 0.06 0.06 0.10

4 −0.34 −0.39 −0.40 −0.19

R2

1 0.11 0.16 0.16 0.18

2 0.04 0.05 0.06 0.04

3 0.03 −0.02 −0.06 −0.06

4 0.13 0.19 0.19 0.03
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fold cross-validation is done 40 times per model and mean results of these 40 runs are
reported. Results in Table 2.2 show that the generated open features from OSM data
can even provide better performance than comparable features from local or closed
sources in 3 of the 4 seasons available in the dataset (root mean squared error (RMSE)
reductions between 0.05 109particles

m3 and 0.40 109particles
m3 , R2 increases between 0.03 and

0.19). Experiments also suggest that there is a tendency towards better performance
for models with automatic hyperparameter optimization like AutoML and RF with
stochastic hyperparameter optimization (RFOstochastic) in comparison to laborious
manual optimization efforts. The open and globally available features also allow for cross-
learning across data from different cities in order to potentially improve performance for
a city with few data points by adding samples from another city with more measurements
of the same (or at least a related) air pollutant. This may lower the data requirement
boundaries of more complex LUR methods. Just as with MapLUR’s evaluation (see
Section 2.1.1.2), modeled air pollutant concentration data for Central London from LAEI
is used in order to have data for another city besides Zurich. Results showed to improve
R2 for AutoML by 0.29 and RFOstochastic by 0.21 when training on only 20 samples
from Central London in conjunction with 180 samples from Zurich in order to estimate
air pollution in Central London. However, there are strongly diminishing returns as soon
as there are 40 to 60 measured locations. When there are even more measured locations
available, cross-learning seems to not improve performance [79].

Both before and after publication of OpenLUR, other easy-to-use software packages
were released for LUR.

The package RLUR [99] is based on the R programming language [112] and provides
a graphical user-interface for LUR. RLUR automatically generates features from data
provided by the user, which is similar to OpenLUR and also alleviates the need for
manual feature engineering. However, RLUR only considers simple linear regression
models while this thesis’ contribution considers more advanced models with automatic
hyperparameter optimization.

PyLUR [90] is a LUR software based on Python [144]. It is similar to RLUR in that
it can generate features and solely uses linear regression models, but the authors claim
superior efficiency, stability, and model performance.

XLUR [97] is also a LUR tool based on Python [144]. As with RLUR and PyLUR,
this software generates features and employs linear regression models, but it is integrated
into the ArcGIS Pro Software [117].

Considering these other LUR tools, OpenLUR provides a unique solution to LUR with
more advanced ML methods than available in comparable approaches while also auto-
matically generating features, which alleviates the need for manual feature engineering.

2.1.1.4. Recent Related Work

Since the publication of these contributions, there are no works that I am aware of that
consider eliminating manual feature engineering from LUR. However, there have been
other interesting advances in LUR. One example is hybrid LUR based on both modeled
pollution concentrations and measurements, which provides an interesting new direction
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for model development in this setting [142]. LUR has also been used to model residential
indoor air pollution, which may also be a useful direction for health studies based on
such estimates [87]. There are also new findings regarding the choice of ML model, with
a number of recent publications suggesting that XGBoost [29] models are also suitable
for LUR [62, 152, 153].

2.1.2. Can Colocated Pollution Data Improve Spatial Air Pollution
Models?

When air pollution concentrations are measured it is common to not only consider a single
pollutant. Because of this, datasets can contain colocated measurements of different
pollutants that may be used to facilitate ML model training for LUR through multi-task
learning. The following describes prior related work regarding LUR and multi-task
learning. Thereafter, this thesis’ contribution of multi-task learning for LUR is presented
and the usage of colocated sensor data for LUR in recent related work is addressed.

2.1.2.1. Prior Related Work

Existing LUR approaches consider one particular air pollutant at a time and train a
conventional ML model to estimate this pollutant based on the features available [15,
100, 154]. However, air pollution datasets like the OpenSense dataset from Zurich [57]
or the LAEI [6] tend to contain data for different pollutants at the same locations.
Therefore, this work asks whether this additional colocated air pollution data can be
used to improve air pollution models.

Multi-task learning has shown to improve models in numerous domains. Caruana
[24] compared multi-task models and single-task models for autonomous driving tasks,
image recognition tasks, and medical tasks, finding that multi-task learning improves
model performance. In natural language processing, Collobert and Weston [32] proposed
already in 2008 training neural networks (NNs) to solve multiple speech-related predictions
simultaneously. Nowadays, large language models are known to be unsupervised multi-
task learners since they are able to solve different tasks than the one they were trained in
a zero-shot setting [114]. Multi-task learning has also been used successfully in computer
vision tasks, like anomaly detection in railway tracks [53] or semantic and instance
segmentation [72]. Drug discovery models also benefited from this paradigm, showing
increased accuracy and learned shared representations useful for other tasks for which
the model was not trained [115]. Due to its success in many domains, it is promising to
also evaluate multi-task learning for LUR models, making use of colocated air pollution
data [41].

A number of publications have already considered multi-task learning for air pollution
modeling. Xu and Yoneda [155] conduct air pollution modeling with multi-task learning.
However, their multiple tasks use the same pollutants but at different stations, and
they consider an air pollution forecasting task. Chen et al. [28] propose an air pollution
model that uses multi-task learning in that it simultaneously tries to spatially estimate
and forecast air quality index levels. In contrast to this thesis’ contribution, it does not
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Table 2.3.: Multi-task learning for LUR results in Zurich. Average R2-scores on the test
samples from the OpenSense dataset using MLPs with different numbers of shared layers. The
increase is calculated between the single-task learning model (zero shared layers) and the best
performing multi-task learning model (at least one shared layer). Performance of comparison
LUR models is also provided for reference. Best MLP values are written in bold. [41]

MLP shared layers Comparison methods

Samples 0 1 2 Increase Linear Regression RF

100 0.224 0.169 0.224 +0.41% 0.131 0.262
300 0.410 0.448 0.391 +9.23% 0.250 0.475
500 0.463 0.474 0.379 +2.26% 0.264 0.566

make use of colocated air pollutant data, considers time-series data instead of annual
mean data, and it solves a classification instead of a regression task (air quality index
levels are discrete classes). Li et al. [82] does employ multi-task learning where each task
considers a different pollutant, but also in a time-series forecasting setting instead of
LUR. However, they also find improvements when making use of colocated pollution
data for their time-series task.

2.1.2.2. Multi-Task Learning for LUR

In order to make use of colocated sensors and alleviate label sparsity, the multi-task
learning approach is evaluated for MLPs in LUR, meaning that models are trained to
estimate multiple different pollutants at the same time. Experiments are conducted
with a MLP consisting of two hidden layers and varying number of hidden layers shared
between all tasks, starting from a model where all hidden layers are shared among the
tasks, over a model where one hidden layer is shared and another hidden layer is specific
to each task, and finally a single-task model, where all hidden layers are task-specific.
The corresponding paper “Evaluating the multi-task learning approach for land use
regression modelling of air pollution” (see Appendix A.2, [41]) was published in 2020
in the Journal of Physics: Conference Series and presented at the second International
Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML), where
it received the “Best Student Paper” award.

Multi-task learning for LUR is evaluated based on the OpenSense dataset containing
calibrated and filtered UFP measurements and factory pre-calibrated CO and O3 mea-
surements from a mobile measuring campaign in Zurich that attached sensors on top of
tram cars [57]. The CO and O3 measurements were filtered as well as possible for this
work, but there was no accurate reference data that would be needed for calibration,
leading to lower data quality. Furthermore, modeled NO2, NOx, and particulate matter
(PM) concentrations for Central London from the LAEI [6] are used which do not exhibit
data quality issues. The LUR models are trained to estimate annual mean air pollutant
concentrations. For evaluation, ten-fold cross-validation is conducted and mean metrics
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Table 2.4.: Multi-task learning for LUR results in London. Average R2-scores on the
test samples from the London dataset using MLPs with different numbers of shared layers. The
increase is calculated between the single-task learning model (zero shared layers) and the best
performing multi-task learning model (at least one shared layer). Performance of comparison
LUR models is also provided for reference. Best MLP values are written in bold. [41]

MLP shared layers Comparison methods

Samples 0 1 2 Increase Linear Regression RF

100 0.489 0.490 0.476 +0.32% 0.459 0.477
300 0.506 0.468 0.490 −3.09% 0.488 0.527
500 0.514 0.515 0.507 +0.18% 0.499 0.537
3000 0.522 0.528 0.534 +2.25% 0.505 0.572

across the folds are reported. Results show that multi-task learning can improve model
performance significantly when sufficient data is available. On the data from Zurich,
Table 2.3 shows that multi-task learning can improve performance by up to 9.23%, while
Table 2.4 shows more mixed results but still mostly improvements on the London data.
Furthermore, the MLPs consistently outperform simple linear regression baselines and
are close to RF models, but multi-task learning is not enough to let MLPs catch up to
the RF performance. Since performance gains only show with relatively large datasets,
multi-task learning seems not to be suited for lowering data requirements for more
complex LUR models, but it may improve already working models when measurements
for different pollutants are available.

2.1.2.3. Recent Related Work

To the best of my knowledge, no other work before or after this publication considered
making use of colocated sensors for training LUR models. Multi-task learning has also
not been applied in this LUR setting in any other way in the works known to me. Thus,
this contribution presents a novel approach to LUR that is useful to consider when
conducting future LUR studies.

2.2. Climate

In order to produce more accurate climate data, DL can be an important tool if new
methods for this domain are developed. Two research questions asked in this thesis
consider DL for climate modeling and this work’s contributions aim to answer these
questions. The following contextualizes these contributions within related work with
regard to their research question.
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2.2.1. Can Deep Learning Models Improve the Quality of Climate Model
Outputs?

Climate models are not perfect, which can affect the quality of their outputs [92]. Modern
DL models can improve these outputs in a data-driven way. The following describes
prior related work on improving climate model outputs with ML and DL approaches.
Next, two contributions of this thesis are presented which aim to improve climate model
outputs with DL models, namely ConvMOS [133, 134] and semi-supervised learning
for grain size distribution interpolation [75]. Finally, recent related work regarding the
research question and the presented contributions is addressed.

2.2.1.1. Prior Related Work

A well-established task where DL is used to improve the quality of climate data is
perfect-prognosis statistical downscaling [12]. This task aims to estimate local, often high-
resolution climate data from relatively coarse climate data. The term “perfect-prognosis”
stems from the fact that these models use so-called reanalysis data, which is not the
direct output of a climate model but instead data that combines past observations and
model data in order to obtain “perfect” predictors. Thus, these models aim to learn
the relationship between coarse, large-scale atmospheric variables and local variables.
Such models can improve climate model outputs by increasing their spatial resolution,
but errors made by a climate model are unlikely to be corrected since these models are
trained with “perfect” data and not with a climate model’s imperfect outputs. It is
common to use CNNs for this task [12, 107, 145].

This thesis considers two general approaches to improving climate model outputs where
DL methods have been less common: post-processing a climate model’s outputs through
climate model output statistics (MOS) and, more indirectly, by generating better input
data, namely soil data, that can be used by climate models using spatial interpolation
techniques. The following addresses prior related work to these two approaches.

Climate MOS The first approach — climate MOS — is related to the aforementioned
perfect-prognosis statistical downscaling task, but MOS considers the outputs of a
concrete climate model as an input instead of “perfect” data. This allows a climate MOS
method to learn specific error characteristics of the climate model in order to reduce
these errors in climate model outputs. Climate MOS has been worked on before in
either a distribution-wise or an event-wise manner. For the former type, distribution
characteristics like means or variances of the climate model’s output are mapped to the
observed distribution [43]. The latter type directly maps the individual simulated events
(e.g., specific precipitation simulations for each day) to the observed events (e.g., the
observed precipitation amounts for each day) with statistical and ML models, which
tends to perform better than distribution-wise climate MOS [43]. The following focuses
on event-wise MOS for its improved performance. A rather simple approach that has
shown to work reasonably well is local linear regression. With this method a linear
regression is fitted for each location of interest to estimate the observed precipitation per
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timeframe (e.g., per day) based on the simulated precipitation per timeframe at that
location [43]. More common are non-local MOS approaches where one also fits one model
per location, but that model is also provided with data from locations in the vicinity.
Many conventional ML methods have been used for non-local MOS in recent years.

One such technqiue commonly used is linear regression. It is typically combined with
principal component analysis (PCA), where it is then often called principal component
regression (PCR). PCA reduces the dimensionality of the input features and the resulting
leading principal components are fed into the linear regression model. While this PCA-
based pre-processing step has its own name when combined with linear regression, it is
also frequently applied when using other conventional ML models for climate MOS. An
example for the successful application of PCR for climate MOS is Eden and Widmann
[43] who applied it to the general circulation model (GCM) ECHAM5. Paeth [106] also
used PCR to post-process precipitation of the regional climate model (RCM) REMO
(which is also the climate model used in the experiments in this thesis) [43, 106].

Simple NNs have also been used for climate MOS. For example, Moghim and Bras [96]
proposed the use of a three-layer MLP, which they evaluated using the GCM CCSM3.

Precipitation of GCMs has been corrected with RF models by Sa’adi et al. [125] and
Noor et al. [102].

Support vector machines (SVMs) were also used for climate MOS with GCMs. Precip-
itation was corrected with this model in Bangladesh by Pour et al. [110], in Borneo by
Sa’adi et al. [125], and in Pakistan by Ahmed et al. [5], for example.

Ahmed et al. [5]’s approach does not only use SVMs, but it combines these with RFs.
The former correct the output of a GCM and the latter combine the outputs of multiple
SVMs, with each considering an own GCM, to form a sort of multimodel ensemble of data
corrected with MOS. However, RFs have also been used successfully for climate MOS
by themselves by Noor et al. [102], for example. Sa’adi et al. [125] not only evaluated
SVMs, but also RFs, finding that both models provide decent accuracy with SVMs still
providing a lower error.

In order to make use of the performance potential of DL techniques and the special
properties of the climate MOS task as a geospatial environmental regression task, the
ConvMOS architecture was developed (see Appendices A.3 and A.4, [133, 134]) [133].

Spatial Interpolation For the second approach, one particular climate model input
that can benefit from ML is soil data. To this end, grain size distribution interpolation
is conducted, providing grain size distributions in the soil for all locations of interest in
a study area based on relatively few soil samples that are available for some locations.
These distributions affect hydrological processes and are therefore important inputs for
climate models. Typical approaches to environmental geospatial interpolation tasks
like grain size distribution interpolation are techniques like k-nearest neighbor (kNN),
inverse distance weighting (IDW), or Kriging [83]. However, these methods can usually
not directly incorporate additional information available at the locations of interest and
many are not able to model non-linearities. To alleviate these issues, prior work has
successfully considered NNs for interpolation which can include other predictors and
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model non-linearities [35, 119, 139]. One issue these NN models have is their relatively
large demand for labeled data points [54], which are only sparsely available for grain
size distribution data. In this context, this thesis presents a novel interpolation method
based on NNs with the label sparsity issue in mind [75], where I have contributed to in a
limited manner. Such improved techniques provide more accurate soil data which may
then improve the quality of climate models using this data.

2.2.1.2. ConvMOS

ConvMOS is a novel convolutional DL architecture designed specifically with the nature
of typical errors of climate models in mind. These errors are often either location-specific
due to poor grid point representation of land surface characteristics like topography [106]
or systematic due to simplified climate processes, so-called parameterizations [106].
ConvMOS targets both error types efficiently by combining per-location model parameters
for location-specific errors and global model parameters for systematic geospatial error
patterns based on CNN layers. To this end, a global module based on 2D convolutional
layers is proposed and a local module, that uses a 1D convolution to effectively train
per-location parameters. ConvMOS models then consist of a sequential combination
of such modules. This architecture was first proposed in the paper “Deep Learning for
Climate Model Output Statistics” (see Appendix A.3, [134]) which was presented at the
“Tackling Climate Change with Machine Learning” workshop at NeurIPS 2020 where it
won the “Best ML Innovation” award. More refinements on the architecture, additional
experiments and a more in-depth analysis are proposed in the paper “ConvMOS: Climate
Model Output Statistics with Deep Learning” (see Appendix A.4, [133]) which was
published in the Springer journal Data Mining and Knowledge Discovery as part of the
special issue of the journal track for the conference ECML/PKDD. This latter work also
considers the popular U-Net architecture [123] as a global module, which is then called
CM-UNet (ConvMOS U-Net).

To evaluate ConvMOS, experiments are conducted on the daily outputs of the RCM
REMO [66, 67, 91] for the period from 2000 to 2015 in a study area that spans over an
extended German region with 0.11◦ resolution (−1.43◦ to 22.22◦ E and 42.77◦ to 57.06◦

N). The model aims to produce precipitation estimates that fit as close as possible to
the observational dataset E-OBS [58] version 19.0e, which is a gridded dataset based
on an ensemble of interpolated station data and also contains data for the extended
German region for the period from 2000 to 2015. The dataset is split into a training
(years 2000-2009), a validation (year 2010), and a test set (years 2011-2015) [133, 134].

An architecture composition study evaluates different combinations of the proposed
global and local modules. Crucially, it shows that models which have both types of
modules — and thus combine per-location and global model parameters — are able to
provide better performance than models that only consist of global or local modules [133].

The MOS approaches with non-deterministic fitting procedures (i.e., all except models
based on linear regression) were trained and tested 20 times and the mean metrics with
standard deviations are reported. Table 2.5 compares ConvMOS models (ConvMOS and
CM-UNet) and other baselines including the conventional climate MOS approaches local
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Table 2.5.: ConvMOS results. Mean metrics on the test set for all study area locations having
observational data. Values rounded to two decimal places. Std. dev. for correlation (always 0.00)
and skill score (between 0.00 and 0.03) omitted for brevity. RMSE and NRMSE represent the
average squared error, with the former expressed in mm of precipitation and the latter expressed
in percent of the range of possible precipitation values at a location. Pearson correlation (Cor.)
measures the linear correlation between observed and estimated precipitation, with a value of one
being best and a value of zero indicating no linear correlation. Correlation mean is calculated
with Fisher’s z-transformation [131]. The skill score considers the precipitation distributions and
measures the similarity between the estimated and observed probability distribution function,
with a value of one being best and zero being worst. R2 describes how much of the target
variable’s variance is explained by the model with a value of one being perfect, a value of zero
being the performance achieved by always estimating the mean, and lower values imply even
worse performance. Bias is the mean difference between model estimates and labels, which is
ideally zero. A positive bias indicates that the model tends to produce larger values than the
labels, while a negative bias implies the opposite. Best values are written in bold. [133]

MOS
Metric

RMSE [mm] NRMSE [%] Cor. Skill R2 Bias [mm]

REMO raw 5.32 15.83 0.49 0.91 −28.24 0.31

Lin 3.51 8.03 0.58 0.47 0.33 −0.03

NL PCR 3.37 7.80 0.62 0.81 0.36 0.02

NL RF 3.39 ± 0.00 7.82 ± 0.00 0.61 0.82 0.36 ± 0.00 0.03 ± 0.00
ResNet18 3.03 ± 0.01 7.04 ± 0.03 0.71 0.60 0.47 ± 0.01 −0.06 ± 0.07
ResNet34 3.06 ± 0.02 7.10 ± 0.04 0.71 0.61 0.46 ± 0.01 −0.07 ± 0.09
ResNet50 3.04 ± 0.01 7.05 ± 0.03 0.71 0.61 0.47 ± 0.00 −0.10 ± 0.10
ResNet101 3.03 ± 0.02 7.04 ± 0.04 0.71 0.64 0.47 ± 0.01 −0.04 ± 0.08
U-Net 2.97 ± 0.02 8.37 ± 0.12 0.74 0.82 −5.60 ± 0.88 −0.03 ± 0.08
CM-UNet 2.92 ± 0.01 7.01 ± 0.11 0.74 0.70 0.13 ± 0.22 0.01 ± 0.10
ConvMOS 2.93 ± 0.02 6.77 ± 0.05 0.73 0.89 0.51 ± 0.02 −0.10 ± 0.05
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linear regression (Lin), non-local PCR (NL PCR), and non-local RF (NL RF), but also
popular standard CNN architectures like ResNets [60] and U-Net [123] that have not
been developed for climate MOS in particular. The comparison is done using a number of
metrics, including the square root of the mean squared error called RMSE, a normalized
RMSE expressed in percentage of each location’s range of possible precipitation values,
Pearson correlation, the skill score proposed by Perkins et al. [109], R2 which measures
the portion of the target’s variation that is explained by the model (one is perfect and
zero is the result when always estimating the test data’s mean), and Bias which is
simply the mean error, indicating tendencies towards over- or underestimation. The
skill score calculates the common area between the probability density function of the
observed and estimated precipitation. As such, it considers the precipitation distributions’
similarity where one would be a perfect score [109]. The results show that both ConvMOS
models which combine local and global model weights tend to perform best, with regular
ConvMOS providing considerably better NRMSE, skill score, and R2 while CM-UNet
provides slightly better RMSE, Correlation, and Bias. All MOS approaches improve each
metric except for the skill score, which is reduced by all MOS methods, suggesting that
REMO’s precipitation distribution at land locations is already rather close to that of the
observations with a skill score of 0.93 and can barely be improved by MOS methods [133].

2.2.1.3. Semi-Supervised Learning for Grain Size Distribution Interpolation

The quality of climate model outputs can not only be improved by directly reducing errors
in the outputs, like described in the previous section on ConvMOS (see Section 2.2.1.2).
Providing a climate model with more accurate input data may also improve it. One such
input that some climate models make use of is grain size distribution data for soil which
can be used to model soil-hydrological processes. In order to estimate more accurate
soil data, this thesis presents an approach that considers semi-supervised learning as a
strategy to cope with label sparsity common in environmental ML tasks, which means
that a model is not only trained with labeled samples but also using samples that have
no label. The proposed method first makes use of the unlabeled samples by generating
weak labels for each location with a conventional interpolation technique with stronger
modeling assumptions, then trains a MLP on these weak labels, and finally fine-tunes
the MLP on the actual labeled dataset. Despite not all locations having labels, auxiliary
data (e.g., altitude, long-term means for precipitation and temperature) is available
everywhere, providing the model with additional information which it can make use
of. The corresponding paper “Semi-Supervised Learning for Grain Size Distribution
Interpolation” (see Appendix B.2, [75]) was presented at the “Machine Learning Advances
Environmental Science” (MAES) workshop at the International Conference on Pattern
Recognition (ICPR) 2020 and published by Springer in the ICPR conference proceedings
in 2021. Note that in contrast to the papers concerning ConvMOS, I have contributed
to this work only as co-author and therefore provided only limited contributions [75].

For experimental evaluation, a soil profile database from the Bavarian Environment
Agency is used that is not publically available [14]. It contains grain size distributions for
315 locations in Lower Franconia with soil information from a depth of 14 cm to 15 cm,
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Table 2.6.: Test results (mean ± standard deviation) for each interpolation model.
The metrics are mean absolute error (MAE), mean squared error (MSE), and Jensen-Shannon
divergence (JSD). “PT” stands for pre-training. “FT” stands for fine-tuning. Best values are
written in bold. [75]

Model MAE MSE JSD

Mean 0.5210± 0.0384 0.1337± 0.0183 0.054 90± 0.007 63

kNN 0.4267± 0.0412 0.1011± 0.0223 0.039 81± 0.009 03

IDW 0.4188± 0.0417 0.0954± 0.0225 0.038 15± 0.009 05

MLP 0.4361± 0.0552 0.1068± 0.0251 0.042 56± 0.008 83

SemiMLP (after PT) 0.4781± 0.0577 0.1296± 0.0283 0.049 74± 0.009 95

SemiMLP (after FT) 0.4078 ± 0.0445 0.0952 ± 0.0195 0.037 72 ± 0.007 65

which is the depth for which the model is supposed to estimate grain size distributions.
Additionally, meteorological data from the German Meteorological Service [38] as well as
topographic information from the Bavarian Environment Agency [13] are used to provide
the model with additional information about both labeled and unlabeled locations. All
methods are evaluated using a ten-fold cross-validation. The results in Table 2.6 show that
the semi-supervised MLP (SemiMLP) provides the best performance in comparison to
the baseline interpolation methods IDW and kNN. IDW is the best baseline interpolation
technique but a Wilcoxon signed-rank test [150] with a significance level of 0.01 indicates
that the fine-tuned SemiMLP outperforms it significantly. The combination of pre-
training on data with weak labels and fine-tuning on the labeled samples performs better
than plain supervised training (see row “MLP”), showing that it is an effective training
strategy in this setting. An analysis also finds considerable performance drops when
permuting the values of some features like precipitation and temperature, suggesting
that these features are important to the model and thus help the model’s estimation
quality [75].

2.2.1.4. Recent Related Work

Climate MOS Recently, a number of other works were published for climate MOS or
closely related fields that also proposed novel approaches and models.

Shortly after this thesis’ contribution “Deep Learning for Climate Model Output
Statistics” (see Appendix A.3, [134]) was published, Grönquist et al. [55] proposed post-
processing ensemble weather forecasts instead of climate data with CNNs and locally
connected networks, that has similarities to the ConvMOS architecture. They used
the U-Net [123] architecture and found good results, which is why we also considered
a similar model for climate MOS in the follow-up paper “ConvMOS: Climate Model
Output Statistics with Deep Learning” (see Appendix A.4, [133]).

François et al. [50] proposed post-processing of climate model outputs with cycle-
consistent adversarial networks based on CNNs. They compared their model to several
baseline methods not based on ML and found favorable results, but they did not compare
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their method to event-wise ML MOS approaches considered in this thesis.
Watt-Meyer et al. [149] recently proposed an interesting use-case for MOS in which they

trained a RF to correct simulations towards observations and then coupled this model to
a weather model, correcting variables at each timestep. They found no instabilities in
the model and reduced errors in precipitation outputs.

Spatial Interpolation No other recent work considered grain size distribution inter-
polation specifically, but numerous novel model approaches were proposed for spatial
interpolation with other geospatial data lately, which may also be used to interpolate
more accurate input data for climate models.

Zhu et al. [162] propose the novel conditional encoder-decoder generative adversarial
network (CEDGAN) architecture which combines an encoder-decoder structure with
adversarial learning and generative models for spatial interpolation. They compare
their method to the conventional interpolation techniques IDW and ordinary kriging on
elevation interpolation in China, finding superior performance with their method. The
authors aim to improve spatial interpolation with a more complex model architecture
while this thesis’ contribution, in contrast, proposes a different training strategy for a
comparatively simple MLP model.

Otake et al. [105] consider DL models based on long short-term memory (LSTM) cells
for seismic intensity data. They feed the model with data from nearby permanently
installed seismometers and use a temporary seismometer at a location of interest to
train the model to estimate seismic intensity there. While they use the term spatial
interpolation for their work, it is not a classical interpolation technique in that it does
need at least temporary measurements for locations of interest in contrast to other
methods.

Dauji and Rafi [37] use a MLP for the spatial interpolation of data from standard
penetration tests (SPTs). The MLP is trained to estimate the SPT value at a location of
interest based on the distance to the nearest neighbors and their respective SPT values.
They compared their model to conventional interpolation techniques, finding improved
performance with their MLP. While their model is structurally similar to the model
used in this thesis’ contribution (both are MLPs) they do not explore semi-supervised
learning to further improve model performance.

Shi and Wang [128] consider ensembles of NNs with radial basis activation functions
for spatial interpolation, which allows their model to quantify uncertainty. They find
better estimation of spatial patterns and prediction uncertainty given enough data in
comparison to baseline approaches, but they provide no comparison with other techniques
based on NNs.

Sekulić et al. [127] propose a spatial interpolation technique based on RFs called
Random Forest Spatial Interpolation. They find that it mostly outperforms baseline
methods, but they have not considered interpolation techniques based on NNs.

Another work that considers a RF variant for spatial interpolation is Maxwell et al. [93].
They use quantile regression forests to spatially model coal properties. These models can
quantify uncertainty and show better performance than IDW and similar performance
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to regression kriging in their experiment on data from a coal mine in Australia. They
have also not considered techniques using NNs for comparison.

Li [86] proposes the enhanced dual IDW method based on IDW. It is in particular
suitable for data exhibiting clusters by integrating data-to-data correlation with conven-
tional IDW and is further enhanced by incorporating locally varying exponents instead of
fixed global exponents that alter the effective distance of existing samples to an unseen
location of interest. Li [86] finds improved performance compared to IDW and dual
IDW without locally varying exponents as well as more robust estimates compared to
ordinary kriging. Again, no comparisons to interpolation techniques based on NNs were
conducted.

2.2.2. Can Deep Learning Models be Taught to Better Estimate Climate
Extremes?

When using DL models for the estimation of climate variables like precipitation, they
are likely to have issues in estimating extremes, since their typical training procedures
effectively reward them for providing conservative estimates closer to the mean [133].
Climate extremes can have severe consequences for life on earth [42], which is why it is of
interest to improve DL models’ estimation of climate extremes. The following presents
prior work related to DL for climate extreme estimation and regression with imbalanced
target distributions. Then, density-based weighting for imbalanced regression [135] and
its application to the ConvMOS model [133] are presented, which show how to teach DL
models to better estimate climate extremes. Thereafter, recent related work regarding
the research question and the contributions are discussed.

2.2.2.1. Prior Related Work

In related work, there are some DL approaches that consider climate extremes, but
they aim not to estimate climate extremes themselves well but forecast weather-patterns
that are associated with extremes instead, like El Niño/Southern Oscillation (ENSO)
events [56]. Chattopadhyay et al. [26] developed an analog forecasting system with a
DL model for extreme-causing weather patterns. This can avoid the aforementioned
issue since these patterns may not exhibit extreme climate variable values themselves,
but it may limit the model to detecting specific extreme events (e.g., ENSO) instead of
extremes in general. Other work uses DL models to detect extremes like tropical cyclones
in climate model outputs [73], but they do not estimate climate variables themselves.

The core issue to solve for the good estimation of climate extremes with ML is data
imbalance. Data imbalance is an issue for many ML algorithms, since these models tend
to become biased towards focusing more on samples with commonly occurring labels
than samples with rare labels [76]. In the literature, there are two general approaches to
alleviate this issue [76]: Data-level methods over- and/or undersample a dataset partly to
achieve a more balanced distribution. Algorithm-level methods adapt learning algorithms
to deal with the issue. A wealth of publications propose techniques to cope with data
imbalance for classification tasks. Notable data-level methods include ADASYN [59] and
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SMOTE [27], which propose strategies to create new samples for rare classes and remove
samples of common classes, leading to more balanced data. Algorithm-level methods are
usually based on cost-sensitive learning and often weight samples according to the inverse
class frequency [63, 148]. Up until recently, there have been very few publications that
proposed similar methods for regression tasks, all of which were only data-level methods,
namely SMOTE for regression (SmoteR) [140] and SMOGN [17]. In this context,
this thesis’ contributions of the density-based sample weighting method for imbalanced
regression DenseWeight and, building upon DenseWeight, the cost-sensitive learning
approach for imbalanced regression DenseLoss were developed (see Appendix A.5, [135]).
This technique is used in the second publication regarding the convolutional DL climate
MOS model ConvMOS (see Appendix A.4, [133]) in order to improve estimation quality
for climate extremes.

2.2.2.2. Density-based Weighting for Imbalanced Regression

DenseWeight is a sample weighting approach for imbalanced regression which first
estimates the density function of the training target values p(y) through kernel density
estimation (KDE). This density function is normalized to lie between zero and one with
min-max normalization, providing the normalized density function p′(y). Then, weights
are calculated for each of the N training data points based on the corresponding target
value’s normalized density with DenseWeight’s weighting function

fw(α, y) =
max(1− αp′(y), ϵ)

1
N

∑N
i=1(max(1− αp′(yi), ϵ))

. (2.1)

The hyperparameter ϵ defines the lower bound for the possible weights, that is set so
10−6 in the experiments to avoid zero and negative weights. The weighting function is
scaled by the hyperparameter α, which influences the severity of weighting differences
between common and rare samples (α = 0 disables density-based weighting, larger α
increases weighting differences between rare and common samples). Intuitively, this
weighting scheme leads to samples in rarer parts of the target variable range receiving
larger weights than those in more common parts. DenseLoss is a cost-sensitive learning
method for imbalanced regression which assigns these weights to the samples by weighting
a loss function during the model training of a NN. A more thorough explanation can be
found in the corresponding paper “Density-based weighting for imbalanced regression”
(see Appendix A.5, [135]) which was published in 2021 in the Springer journal Machine
Learning as part of the special issue of the journal track for the conference ECML/PKDD
2021, where the work has also been presented at [135].

In this work, three main experiments were conducted: one experiment on synthetic
data to confirm that DenseLoss works as expected, another experiment on benchmark
datasets to compare it to the best approach to imbalanced regression previously available
SMOGN [17], and an experiment with an existing CNN-based DL model for statistical
downscaling of precipitation called DeepSD [145], to show that DenseLoss works on
an environmental real-world task with a DL model. An additional experiment was
conducted where SMOGN is adapted to use DenseWeight as its relevance function in
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Figure 2.1.: Number of datasets from the 20 comparison datasets for which each
imbalanced regression method (DenseLoss, SMOGN, and None) leads to the best
performance per bin based on RMSE. Bins are ranked within each of the 20 test datasets
according to the number of data points. Bins with rank 1 (5) contain the fewest (most) samples.
Each bar section shows the number of datasets for which a particular method provides the best
performance (i.e., “wins”) at that bin rank. When a method’s “wins” are denoted as “sig.” they
are significant regarding both other methods. Five test datasets had a bin without data points
and two test datasets had two bins without samples. Because of this the bars for bin rank 1
and 2 are smaller as no winner can be determined for empty bins. DenseLoss leads to the best
performance most often in comparison to the sampling-based method SMOGN and applying no
imbalanced regression method (None) for the four rarest bin ranks (bin ranks 1 to 4). [135]
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Figure 2.2.: Normalized MAE (i.e., MAE divided by the difference between maximum
and minimum target value of a particular sample’s dataset) for test samples from
the 20 comparison datasets per normalized density when applying no method for
imbalanced regression (α = 0.0), DenseLoss (α = 1.0), or the sampling-based method
SMOGN. The graph is smoothed via moving mean (window size 300) for interpretability.
Samples with higher normalized density have more common target values than those with lower
normalized density, which are rarer. DenseLoss leads to lower errors for relatively rare samples
(∼ p′(y) < 0.5) while increasing error for common samples, shifting the model’s focus towards
rare samples. SMOGN does not provide good performance over the 20 datasets regardless of
sample rarity. Note that the two outlier segments stem each from a single sample of the availPwr
dataset that have a very high feature value, leading to very large estimates and high MAE. [135]
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order to find out whether DenseLoss’s superior performance stems from the different
relevance functions or from the difference between resampling and reweighting. Each
dataset used is split into a training, a validation, and a test set. Each model considered
in an experiment is trained and tested 20 times per dataset and mean metrics are
reported. For the first two experiments and the final additional experiment, a simple
MLP with three hidden layers and ten neurons each with ReLU activation [101] is used
as the main model, while additional MLP structures are also evaluated in the paper’s
Appendix, which show similar results as the main architecture. The last experiment uses
the CNN-based DL model for statistical downscaling of precipitation DeepSD [145] and
mostly adheres to its original experimental setup [135].

For the first experiment, synthetic datasets with different imbalanced distributions are
generated, showing that DenseLoss works as expected, emphasizing performance of rare
samples to a greater extent with increasing α [135].

In the second experiment, DenseLoss is compared to the best approach to imbalanced
regression previously available SMOGN, using the same 20 benchmark datasets evaluated
in the original SMOGN paper [17]. For evaluation, each dataset’s test data points are
binned based on their target value, with each bin spanning 20% of the target value
range in the test set. These bins are then ranked within each dataset by the number
of samples, so that the bin with the lowest number of samples has bin rank 1 and the
bin with the highest number of samples has bin rank 5. In this way, it is possible to
compare performance of similarly rare samples across datasets by considering performance
metrics per bin rank. Figure 2.1 shows the number of datasets of the 20 comparison
datasets for which each imbalanced regression method leads to the best performance
(i.e., “wins”) per bin rank. “Wins” denoted as “sig.” are statistically significant regarding
both other methods according to a Wilcoxon signed-rank test [150] and a significance
level of 0.05. Bin ranks 1 and 2 do not sum up to 20, since some bins were empty and,
accordingly, no winner could be determined there. DenseLoss most frequently provides
the best performance for the four rarest bin ranks (bin ranks 1 to 4), outperforming
the sampling-based method SMOGN. As expected, applying no method for imbalanced
regression typically performs best for the most common bins with rank 5.

To also consider the different imbalanced regression methods’ absolute performance
over the varying density of the 20 datasets, a continuous analysis can be used. Figure 2.2
plots each test data point’s mean absolute error (MAE) — min-max normalized to lie
between zero and one based on the particular dataset’s minimum and maximum target
values — with regard to its normalized density p′(y) within its dataset. Thus, the plot
visualizes the MAE across all 20 datasets depending on the data point rarity, which is
expressed in the normalized density p′(y), for training without an imbalanced regression
technique (α = 0.0), DenseLoss (α = 1.0), and the sampling-based method SMOGN. As
with the binned evaluation, DenseLoss again improves model performance for relatively
rare datapoints (∼ p′(y) < 0.5) while it is best to apply no imbalanced regression method
for optimal performance of more common samples. Thus, DenseLoss can shift a model’s
focus towards rare samples. SMOGN is not able to perform well on average across the
20 datasets, regardless of sample rarity [135].

The final main experiment with DenseLoss and the CNN-based DL model for statistical
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downscaling of precipitation DeepSD [145] also finds performance gains for rare samples
in addition to unusual performance improvements for very common samples. This shows
the applicability of the proposed method to environmental ML tasks with relatively
large DL models and large datasets, to which SMOGN could not be applied as it is
computationally infeasible for the size of the dataset [135].

The experiments show superior performance with DenseLoss in comparison to SMOGN,
but it is also interesting to investigate where this difference comes from. To this
end, SMOGN is adapted to use DenseWeight as its relevance function. An additional
experiment on the 20 comparison datasets shows that the performance difference between
SMOGN and DenseLoss seems to be mostly due to the difference between resampling
and reweighting and not due to different relevance functions, because SMOGN with
DenseWeight as its relevance function was not able to reach or improve upon DenseLoss’s
performance [135].

To apply density-based weighting to training models better suited for climate extremes,
the ConvMOS model is considered. In the second publication on this matter (see
Appendix A.4, [133]), analysis shows that the DL approaches considerably underestimate
the number of high precipitation events. Thus, an experiment is conducted using
ConvMOS with the cost-sensitive learning technique for imbalanced regression DenseLoss,
in order to shift the focus on better performance for rare extreme samples. For evaluation,
the same setting as described in Section 2.2.1.2 for ConvMOS is used, except that the
test samples are binned into a lower precipitation bin (less than 50mm precipitation) and
a high precipitation bin (at least 50mm precipitation), while ConvMOS is still trained to
solve a regression task and output concrete precipitation values. The ConvMOS model
with DenseLoss improves RMSE in the high precipitation bin while performing worse in
the lower precipitation bin and it also “classifies” the samples better in the two bins by
having a balanced accuracy of 60.49% instead of regular ConvMOS’ balanced accuracy
of 55.97%. This is also slightly better than the RCM REMO’s balanced accuracy for
these two bins of 59.90% [133].

2.2.2.3. Recent Related Work

While I am not aware of other work considering the improved estimation of climate
extremes with DL models, a number of other researchers took interest in imbalanced
regression and published additional work related to this topic.

Shortly prior to the publication of the cost-sensitive learning technique for imbalanced
regression DenseLoss, Ribeiro and Moniz [120] proposed the evaluation metric SERA that
can assess the effectiveness of models for the prediction of extreme values in imbalanced
regression and may also be used to optimize models for extreme value prediction. In
contrast to this thesis’ contribution, their method does not use the density function
to provide a measure for data point rarity but instead relies on an adjusted box-plot
method. They also do not use their technique to directly influence model training via
cost-sensitive learning.

Almost concurrently to the publication of “Density-based weighting for imbalanced
regression”, Yang et al. [157] proposed label distribution smoothing (LDS) and feature
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distribution smoothing (FDS) to cope with data imbalance for regression tasks. LDS also
estimates the target variable’s density through KDE, and they use the resulting density
function for cost-sensitive reweighting through simple multiplication with the inverse
density and a square-root variant thereof. DenseWeight, in contrast, proposes a more
complex function than the inverse that is specifically tailored with gradient-based learning
methods in mind. FDS bins the target variable and smooths the feature distributions
between nearby bins, so that a continuity in target space corresponds to continuity in
feature space, which is an interesting approach less related to this thesis’ contribution.
The authors find mostly superior performance in comparison to the sampling approaches
SmoteR [140] and SMOGN [17], but they have not compared their methods to the
approaches proposed in this thesis.

Thereafter, Ren et al. [118] proposed the balanced mean squared error (MSE) for
imbalanced regression, specifically with computer vision tasks like age estimation or pose
estimation in mind. The balanced MSE does not directly calculate sample weights before
the optimization like with DenseWeight or LDS, but it instead includes a balancing
term that aims to restore balanced predictions. The authors compared their method
not to DenseWeight or DenseLoss but to LDS from Yang et al. [157] and find that it
outperforms LDS.

To the best of my knowledge, none of these works considered applying their methods
to the improved estimation of climate extremes. Thus, it may be interesting future work
to consider these techniques as well.

38



3. Conclusion

The design of novel machine learning (ML) and especially deep learning (DL) approaches
for environmental domains was considered in this thesis. The following provides a
summary and gives an outlook for potential future work in this area.

3.1. Summary

This thesis presented ways of designing novel approaches for environmental ML tasks
especially based on DL. To this end, common properties of typical environmental ML
tasks have been identified, namely geospatiality, continuous variables, data imbalance,
colocated sensors, and spatial label sparsity. These properties have to be kept in mind
when developing novel ML approaches in this domain since they lead to certain challenges
but also opportunities.

In contrast to most existing approaches for these tasks, which employ conventional
ML techniques, this thesis specifically looked to contribute novel DL approaches for
their benefits, such as their potential for exceptional performance and their automatic
feature engineering capabilities. To ideally cope with the challenges and opportunities
typically presented by environmental data when developing ML and DL methods, this
thesis suggests the use of (i) convolutions to exploit the geospatiality of environmental
data and efficiently learn spatial patterns, (ii) regression models to estimate the typically
continuous environmental variables, (iii) density-based weighting for better estimation
quality for rare and extreme samples with imbalanced data when these samples are of
particular interest, (iv) multi-task learning to profit from the availability of multiple
related target variables due to the often colocated sensors, and (v) semi-supervised
learning to alleviate issues related to label sparsity.

Using these techniques and DL, this thesis considers four research questions which
demonstrate how to develop powerful, novel ML approaches in the environmental domain:
(i) Can air pollution be estimated without manual feature engineering? The land use
regression (LUR) model MapLUR based on convolutional neural networks (CNNs) as
well as the off-the-shelf LUR solution OpenLUR showed two ways of accomplishing this.
(ii) Can colocated pollution data improve spatial air pollution models? The proposed
multi-task learning approach for LUR showed potential improvements. (iii) Can DL
models improve the quality of climate model outputs? ConvMOS, the DL climate model
output statistics (MOS) architecture presented in this thesis, directly improved the
quality of climate model outputs. Additionally, the semi-supervised training of multilayer
perceptrons (MLPs) with weak labels for grain size distribution interpolation was able
to provide improved input data for climate models. (iv) Can DL models be taught to
better estimate climate extremes? This thesis first proposes density-based weighting

39



3. Conclusion

for imbalanced regression (DenseLoss) which is then used in conjunction with the DL
climate MOS architecture ConvMOS to estimate climate extremes more accurately.

These research questions and the contributions that answered them, helped to fur-
ther improve estimation quality for their specific tasks and also showed new ways of
approaching the tasks, which may open paths for future work to advance even further.
Such advances in environmental ML tasks provide us with more accurate information on
the environment’s state. Based on this information, we can better understand the envi-
ronmental issues we are experiencing and plan steps towards mitigation and adaptation
more effectively.

3.2. Outlook

While this thesis has presented a multitude of novel approaches to environmental ML
tasks, there are still many tasks where in particular DL techniques have potential to
improve estimation quality or maybe even allow for completely new approaches. Rolnick
et al. [122] provide an overview of tasks related to climate change where ML is promising,
many of which also are environmental ML tasks as described in this thesis, for example,
tasks related to peatland monitoring, modeling ice sheet dynamics and sea level rise, or
urban building energy models.

One aspect of this thesis was air pollution modelling and in particular LUR. There are
LUR models of different complexity which tend to provide better performance the more
complex they are. However, with increased complexity the data requirements also tend
to grow, which reduces the applicability. Thus, an interesting direction for future work
is to develop techniques that lower data requirements of more complex LUR models.
Another interesting LUR approach for future work may be the combination of dispersion
models and LUR as done in some initial prior work [142].

Another aspect this thesis regarded in particular were environmental ML tasks related
to climate modeling. For future work, there may of course still be room for improvement
in post-processing climate data with MOS. ML and DL in particular have very active
research communities continuously developing novel methods that may be even more
suitable for environmental ML tasks with their typical properties in the future. Another
interesting approach, other than post-processing, is learning better parameterizations
than those currently in use by climate models, which may lead to the climate model
directly producing more accurate forecasts. As of writing this, the latter approach could
be demonstrated to work to some extent in relatively simple settings but not yet in
complex climate models that are used in practice [116, 158]. The same is true for the
even more challenging approach of learning entire climate models with neural networks
(NNs) which is also not feasible yet [40]. In order to provide climate models with better
base data for their forecasts related to the hydrological cycles, grain size distribution
interpolation may also be advanced further in the future, for example, by modeling the
depth dimension. This would allow for more complete 3D soil information that would
also be useful for climate models and may also further enhance estimation quality [75].
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Fig. 1. MapLUR: Automatic feature extraction and globally available data for air pollution model-
ing.We propose the DOG paradigm (Data-driven, Open, Global) for land-use regression which advocates
openly and globally available data, and automatically extracting features in order to estimate pollution.
Following this newly introduced paradigm, we propose the MapLUR model. It consists of a deep neural
network architecture that estimates pollution concentrations for specific locations directly from globally
available map images (rendered maps or satellite images) resulting in area spanning pollution maps. For this,
MapLUR automatically learns to extract features from the given map images. The extracted features closely
resemble manually engineered features for land-use regression models.

Land-use regression (LUR) models are important for the assessment of air pollution concentrations in areas
without measurement stations. While many such models exist, they often use manually constructed features
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based on restricted, locally available data. Thus, they are typically hard to reproduce and challenging to adapt
to areas beyond those they have been developed for.

In this paper, we advocate a paradigm shift for LUR models: We propose the Data-driven, Open, Global
(DOG) paradigm that entails models based on purely data-driven approaches using only openly and globally
available data. Progress within this paradigm will alleviate the need for experts to adapt models to the local
characteristics of the available data sources and thus facilitate the generalizability of air pollution models to
new areas on a global scale.

In order to illustrate the feasibility of the DOG paradigm for LUR, we introduce a deep learning model called
MapLUR. It is based on a convolutional neural network architecture and is trained exclusively on globally
and openly available map data without requiring manual feature engineering. We compare our model to
state-of-the-art baselines like linear regression, random forests and multi-layer perceptrons using a large
data set of modeled NO2 concentrations in Central London. Our results show that MapLUR significantly
outperforms these approaches even though they are provided with manually tailored features.

Furthermore, we illustrate that the automatic feature extraction inherent to models based on the DOG
paradigm can learn features that are readily interpretable and closely resemble those commonly used in
traditional LUR approaches.

CCS Concepts: • Computingmethodologies→Neural networks; Image representations; Supervised learn-
ing by regression; • Applied computing→ Environmental sciences.

Additional Key Words and Phrases: land-use regression, air pollution, deep learning
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1 INTRODUCTION
Air pollution is known to have adverse effects on human health and the environment [11, 22].
Thus, especially in areas with high population counts, it is important to control local pollution
concentrations. For this reason, monitoring stations are deployed in many cities, which measure
pollution continuously in order to assess whether the pollution levels are still within acceptable/legal
limits. However, since the number of stations in a city is usually very limited, there are many areas
where no air quality data is available. To fill these gaps, land-use regression (LUR) models are often
used to estimate pollution concentrations in areas without monitoring stations [7, 26, 54].

Problem Setting. In recent years, a wealth of different land-use regression models have been
developed that have shown to provide promising pollution estimates. However these models i) are
at least partially based on neither globally nor openly available data [3, 7, 27] and ii) often rely on
hand-crafted features.
Thus, due to the local nature of the features, i) these models usually do not generalize easily

to locations other than the one they were developed for. Additionally, due to the involved hand-
crafting process, ii) optimizing the features for new models in specific study areas is a cumbersome
process.

Approach. To address the challenges inherent to inaccessible data and manual feature engineering
in land-use regressionmodels, in this work, we advocate a paradigm shift towards purely data-driven
land-use regression models based on open and globally available data. We call the corresponding
paradigm DOG (Data-driven, Open, Global). More specifically, models adhering to DOG work
directly on raw data, automatically extracting their features from the input. While such data-
driven methods have proven successful in multiple application domains [33], they have so far not
been introduced to land-use regression. Land-use regression models following the DOG paradigm
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have multiple advantages: i) they can be fit more easily to different study areas than other, more
specialized land-use regression approaches, ii) they do not require manual feature engineering,
and iii) they can be reproduced by other researchers without requiring access to data sources that
are not easily available. In order to demonstrate the feasibility of this paradigm, we introduce the
MapLUR model. MapLUR implements DOG by using deep learning, specifically a convolutional
neural network architecture. It automatically extracts features from map images, which are openly
available almost anywhere on earth, and estimates air pollution based on these features.

Experimental Evaluation. We assess the performance of MapLUR by comparing it against state-
of-the-art land-use regression models like linear regression, Random Forests (RF), and Multi-layer
Perceptrons (MLP) on modeled NO2 concentration data from the London Atmospheric Emissions
Inventory (LAEI) [2]. In the process, we employ different types of images including map images
from OpenStreetMap and Google Maps [24] as well as satellite imagery from Google Maps. We
find that our model works best using map images from OpenStreetMap and that it outperforms all
baselines significantly.
Furthermore, we analyze the data requirements of MapLUR and the baselines. We find that

common for deep learning models, MapLUR requires more training data than models that rely on
hand-crafted features. In this context, we evaluate how far the training set can be reduced and
discuss possible approaches to further address this challenge.
Finally, we analyze the automatically extracted features by observing which parts of the map

images were particularly important for our model using guided backpropagation [51] and artificial
map images. The analysis shows that the learned MapLUR features strongly relate to hand-crafted
features as commonly used in land-use regression models.

Contribution. Our core contributions in this work are threefold:
(1) We propose DOG, a new, data-driven paradigm to land-use regression. Models following

this paradigm should not require manual feature engineering and only rely on openly and
globally available data sources.

(2) We introduce MapLUR, a land-use-regression model based on DOG. MapLUR employs a
deep learning approach to automatically extract features from map images. We show that
this model is able to outperform traditional land-use regression models when trained on a
sufficiently large data set.

(3) We demonstrate that, contrary to popular believe, models based on the data-driven paradigm
are not necessarily black-boxes by inspecting the features MapLUR extracts, finding that the
automatically extracted features strongly relate to typical manually engineered features for
land-use regression models.

Structure. This work is organized as follows. Related work is summarized in Section 2. Section 3
describes the air pollution data and image data used in this work. DOG and the MapLUR model
are introduced in Section 4. The experiments and the baseline models are described in Section 5.
Section 6 presents our results and analyzes our model. We discuss advantages and limitations of
DOG and MapLUR in Section 7. Finally, Section 8 concludes this work.

2 RELATEDWORK
Land-use regression has been an active field of research for many years now. Work done in
the previous decade has laid important foundations for current land-use regression models and
established linear regression techniques as the de facto standard model [7, 43, 54]. Especially
noteworthy is the Escape project [7, 20] which built models for 36 European areas. The model
building procedure of this project has become a standard approach [40, 41, 43, 52, 53]. In order
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to make the application of land-use regression models easier, there is a tool available which
automizes the process of variable generation, modeling and prediction with a model based on linear
regression [42].
However, more advanced machine learning methods are starting to become more common.

One example for these approaches are Random Forests [9]. They have been used successfully to
estimate elemental components of particulate matter in Cincinnati, Ohio [10] and NO2 pollution in
Geneva [14].

Another example for a more advanced method are neural networks. These models have been used
to estimate a range of pollutants successfully, as shown in various publications. For example, they
have been applied to NO2 [1, 14, 37], PM2.5 [1, 5, 6, 23, 55], PM10 [3, 37, 55], and surface dust [12]
concentrations. The neural-network-based models are typically simple multi-layer Perceptrons.
However, there are deep learning models which use recurrent neural networks or deep belief
regression networks. These models differ from this work in that they are used to forecast pollution
concentrations from earlier measurements or fill missing values for locations where measurements
already exist [5, 6, 23, 55], while we estimate pollution for locations without measurements. To the
best of our knowledge, there are no deep learning models for our setting. Both Random Forests and
neural networks have been shown to outperform linear regression in land-use regression [10, 14].
Support vector regression models [19] are another possible approach. There are models which

can forecast pollution concentrations using this technique [35, 47], but there do not seem to be any
land-use regression models with this type of model.

All aforementioned land-use regression models rely on manually engineered features, which are
typically gathered from various locally available data sources that might not be available elsewhere.
In contrast to all methods above, we propose a deep learning model based on convolutional neural
networks (CNNs), which is able to automatically learn relevant features from openly available
maps.
Such image-based approaches have been used before in the context of air quality estimation

and pollution detection. Singh [50] interpreted modeled air pollution data as images and used
non-machine-learning image classification techniques in order to detect higher pollution episodes.
Furthermore, CNNs have been used before in the context of air quality estimation by Zhang
et al. [57] and Li et al. [36], who proposed models to estimate air haze level using photos from,
for example, mobile phones or webcams. In contrast, our work uses map and satellite imagery
depicting land-use as model input, making our model more closely related to land-use regression
models. Additionally, our model estimates pollution concentrations instead of haze levels.

3 MATERIALS
In this section, we introduce the air pollution data set we use to train and evaluate our method as
well as the data sources from which we extract map and satellite images.

3.1 Air Pollution Data
We train and test our model using pollutant concentrations from the London Atmospheric Emissions
Inventory (LAEI) [2]. It contains modeled annual mean concentrations of NO2 and PM10, among
other pollutants, at a 20 m grid level for the complete Greater London area in 2013. For our main
model development and evaluation we use the NO2 concentrations of the data set since it is a very
frequently used pollutant for land-use regression models. The data is the result of a dispersion
model which incorporates a vast number of input factors like for example road and rail networks,
traffic data, aviation, pollution from individual industrial premises, domestic and commercial fuel
consumption, as well as fires. Through this approach, 5,856,428 data points were generated where
each data point represents a 20 m by 20 m cell [2].
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Table 1. Statistics of London’s NO2 concentrations. The statistics for Central London include all LAEI
cells in the bounding box. The sampled data set contains randomly sampled cells from the Central London
data set, which are used for training and testing models in our experiments. Mean, standard deviation (SD),
minimum values (Min), and maximum values (Max) are in 𝜇g/m3.

Data set Count Mean SD Min Max

Central London 113,680 50.90 15.02 37.12 253.89
Sampled subset 4,500 50.85 15.02 37.17 171.06

We sample a training set consisting of 3,000 data points and a test set consisting of 1,500 data
points from the Central London part of the data set in order to have a reasonable number of urban
data points for our experiments. We choose data points from Central London because we believe
that it is more important in practice to reliably estimate pollutant concentrations in highly polluted
areas with a large population than in more rural areas. For this, we define a geographical rectangle
that roughly describes Central London and only use cells within. The box’s north western corner
is at 526,660 easting and 183,220 northing while the south eastern corner is at 534,760 easting
and 177,640 northing specified in British National Grid coordinates. The sampled data points are
depicted in Figure 8 in Appendix A. Descriptive statistics for the cells in Central London and the
sampled subset used for training and testing can be found in Table 1.

The map images, which we use to depict the areas of the data points, show 80 m by 80 m areas
even though the air pollution data is available at a 20 m grid level. The 20 m by 20 m cells are in
the center of these images. This allows MapLUR to see more of the surroundings and incorporate
information about distant emission sources. In order to avoid a potential evaluation issue, we
sample data points in such a way that no images can overlap. Any overlap could lead to a situation
where the model already roughly knows the pollution concentration for a test data point since it
might recognize the test data point’s area from the image of a nearby training data point. Such
implicitly learned proximity of data points could give our model an unfair advantage, which we
avoid with our procedure.

3.2 Image Data
This section describes the sources of map and satellite image data that we use in this paper as well
as the preprocessing applied to the images in order to generate training samples.

3.2.1 Image Sources. There is a variety of globally available sources for map images, two popular
services being Google Maps [24] and OpenStreetMap [46]. While Google Maps is a commercial and
proprietary service, OpenStreetMap is an open database for map data that is built and maintained by
volunteers. Data from OpenStreetMap can be used to render maps in various ways through different
stylesheets. In this work, we render map images based on OpenStreetMap data using a slightly
modified version of the default stylesheets used on the official OpenStreetMap website. It differs
from the default in that we do not render text like street or station names, since labels obstruct map
features making them harder to recognize and often only carry very localized information, thus,
possibly reducing generalizability. For tile rendering we use mod_tile which is a module for the
Apache web server with the rendering back-end renderd [45]. In addition to OpenStreetMap images,
we use map and satellite images from Google Maps, in order to compare the effectiveness of each
visualization for this task. Since Google Maps is proprietary, the images cannot be easily customized
to the same extent as OpenStreetMap images. We therefore use them without modification.
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3.2.2 Image Preparation. Before using MapLUR it is necessary to prepare map or satellite images.
We found through preliminary experiments that images depicting 80 m by 80 m provide the best
performance in this setting, as can be seen in Appendix B. To depict the correct area in an image we
approximate the 80 m distances using a meter per pixel value that depends on the zoom level of the
image and the latitude of the location due to the Mercator projection, which both OpenStreetMap
and Google Maps use. We obtain the images at zoom level 17, resulting in an pixel extent of
approximately 0.75 m by 0.75 m at London’s latitude. Thus, the images have a resolution of 106 px
by 106 px. The rendered images are then scaled to a fixed resolution of 224 px by 224 px similar
to what popular CNN architectures for the ImageNet competition [18] use. This way we avoid
having to change the model architecture when depicting different sized areas in the images or
when we fit the model to locations with a different latitude which would also result in differently
sized images. Using a model input resolution that fits the images exactly could reduce the model
size and improve training and inference speed. Nonetheless, we found it unnecessary considering
the already acceptable speed and we favored the increased flexibility.

4 METHODS
In the following, we introduce our data-driven paradigm DOG to land-use regression, which
suggests that models should estimate air pollution by automatically extracting relevant features
from openly and globally available data. We also present our model MapLUR, which follows this
paradigm by using a convolutional neural network as an automatic feature extractor, taking as
input globally and openly available map images.

4.1 The DOG Paradigm
Our data-driven paradigm DOG (Data-driven, Open, Global) aims to alleviate the issues of manual
feature engineering as well as only locally applicable models. To this end, it requires models to
fulfill the following criteria:

• Automatic extraction of relevant features: Models should learn a function from the raw
input to the desired output, which leads to automatic development of features and may even
uncover relevant factors that are not yet known as having an influence on air pollution. This
can for example be achieved by deep learning methods like the convolutional neural network
introduced in the next section.

• Usage of globally available data sources: Models should rely exclusively on data sources
that are available for (almost) all parts of the world. This allows the ubiquitous application of
the model without collecting additional, only locally available data sources.

• Usage of openly available data sources: Models should rely exclusively on openly avail-
able data sources. This allows researchers to reproduce and improve the model’s results
without requiring access to paid or not publicly available resources.

4.2 The MapLUR Model
In this section, we propose the specific model MapLUR based on the DOG paradigm described
above. Our model applies the paradigm by using map images as a globally, openly available source
of information and extracting features through deep learning, more specifically a convolutional
neural network (CNN). This type of network is a natural fit for our setting, since it is specifically
designed to work with two-dimensional shapes like images. CNNs utilize spatial locality within
the images and reduce the number of learned parameters through weight sharing. These concepts
make it feasible to learn relevant features from raw images, in contrast to fully-connected networks,
which would need an impractical amount of parameters [34].
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Fig. 2. Structure of MapLUR. The model consists of 15 feature-learning building blocks which contain a
convolution layer, batch normalization, rectified linear units (ReLUs), and sometimes a pooling layer. These
building blocks are concatenated and only the first, third, fifth, seventh, tenth, and thirteenth block contain a
pooling layer. These blocks are followed by a simple fully connected layer with ReLU activation and finally
a single fully connected neuron with linear activation which returns the estimation of the pollution at the
given location.

The structure of MapLUR is depicted in Figure 2. It contains 15 convolutional layers with batch
normalization [29] and rectified linear units (ReLUs), which are pair-wise linear activations [44]. The
last convolutional layer is followed by a fully connected layer with 128 neurons and ReLU activation
(depicted as the third and second to last boxes in Figure 2). These neurons are then connected to
a single neuron with linear activation that produces the estimated pollution concentration. Each
convolutional layer has 16 filters, a kernel size of 3, a padding of 1, a dilation of 1, and a stride of
1. The output size of these layers is the same as their input size. Maximum pooling layers with a
kernel size of 2 and stride of 2 are applied after the ReLUs of the first, third, fifth, seventh, tenth,
and thirteenth convolutional layer in order to reduce the number of activations. We found this
architecture and the corresponding hyperparameters by evaluating different variations of the model
using ten fold cross-validations on the training set.
We use ReLU activations since they have shown to work well for many different tasks and

models, making them the most popular activation function for deep learning applications [33].
While trying different architectures we have also experimented with SELU [31] and RReLU [56]
activations but we found no improvements with these functions. The linear activation in the final
layer is common practice for regression tasks [32]. It does not restrict the range of resulting values
allowing the model to estimate any value.

5 EVALUATION
In order to evaluate MapLUR, we conduct several experiments and compare our model to baseline
models which are commonly used in land-use regression. The experiments and the baseline models
are described in the following.
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5.1 Experimental Setting
We conduct four experiments using MapLUR, varying the data available to the model. For all
experiments, MapLUR is trained using the Adam optimizer [30] on batches of size 400 for at most
2,000 epochs with a learning rate of 0.0001. We augment the training data by flipping or transposing
the images. Additionally, we employ early stopping, interrupting training when the validation
performance has not increased for 20 epochs in a row.

Experiment 1 — OpenStreetMap. In the first experiment, only OpenStreetMap images are used
as input to the CNN. The input images have three channels (RGB), 224 px by 224 px, and depict
an area of 80 m by 80 m. All labels were removed from the rendering process of the images, as
described in Section 3.2.1.

Experiment 2 — Google Maps. Instead of OpenStreetMap images, Google Maps images were
captured and fed into the model in this experiment. The same size as in the previous experiment
was used. As Google Maps data is proprietary, modifications cannot be made as easily and to the
same extent as with OpenStreetMap images. Therefore, text labels are present in the imagery.

Experiment 3 — Google Maps Satellite. For the third experiment, instead of stylized map images,
we use satellite images from Google Maps Satellite [24] which uses imagery from both satellites
and aerial surveys. Training and test images from Google Maps Satellite have the same size and
zoom levels as the OpenStreetMap and the Google Maps images.

Experiment 4 — OpenStreetMap and Google Maps Satellite. Experiment 4 then combines Open-
StreetMap images and satellite images by concatenating the two RGB images to one six-channel
tensor.

5.1.1 Evaluation Setup. The models are evaluated using standard metrics for the evaluation of
land-use regression models, namely R2 and RMSE. Both metrics are explained in Appendix C. In
all experiments, the model is initialized and trained 40 times on the training set and evaluated on
the test set, both of which are described in Section 3.1. The average of the resulting evaluation
metrics is then used as the final score to counteract unfortunate initialization results. Additionally,
the sample of 40 evaluation runs can be used as the input to statistical significance tests to formally
confirm differences in evaluation results.

5.2 Baselines
In order to determine how well our model works, it is necessary to compare it to other methods.
Therefore, we first describe a set of features that is used by our baseline models. Thereafter, four
baseline models are introduced, namely a mean baseline, linear regression, Random Forest, and
multi-layer Perceptron. The last three of the aforementioned models are commonly used in land-use
regression. Random Forests and multi-layer Perceptrons tend to yield state-of-the-art results as
described in Section 2.

5.2.1 Features. We use a set of standard land-use and road-related features for our baseline models.
These features have shown to be important influencing factors for air pollution [20]. All of these
features can be calculated from OpenStreetMap data, since we want to provide similar information
to all models for a fair comparison. The features include the areas of commercial, industrial, and
residential land-use, the lengths of big and local streets, and the distances to the next traffic signal,
motorway, primary road, and industrial premise. Big streets include streets that are classified as
either motorway, trunk road, primary road or secondary road in OpenStreetMap while all other
streets are local streets. Most features are typically calculated for different buffers, which are areas
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with a specific radius around data points. For example, the areas of different types of land-use
and the lengths of streets are calculated for 50 m and 100 m buffers in order to give the baseline
models similar sight into the surroundings as the MapLUR model. However, the features which
calculate the distance from each data point to specific locations like the closest traffic signals, roads
or industrial premises exist only once and are not calculated for different buffers. Due to these
features, the baseline models are given a slight advantage since they can get information from
entities which are further away than MapLUR can see.

5.2.2 Mean. A simple baseline for a regression task is the mean baseline. It disregards all features
and estimates the mean value of all training data points for each test data point. This baseline
provides performance values that every other model should beat.

5.2.3 Linear regression. The most common approach to land-use regression is linear regression.
Therefore, it is useful to compare our novel model to this type of model.

We use the same supervised stepwise selection as Eeftens et al. [20] for selecting the most
relevant subset of features. A description of this procedure can be found in Appendix D.1. After
applying the stepwise selection on the development set the model is left with the variables length of
big streets (50 m buffer), distance to the next industrial premise, and distance to the next traffic signal.

5.2.4 Random Forest. The Random Forest is a more powerful model that was shown to work well
for land-use regression and can often provide better performance than typical linear regression
approaches, as it can model non-linear correlations between features [10, 14]. Therefore, we use it
as another baseline in this work.
This model is built in a similar way to the procedure in Brokamp et al. [10]. Details are in

Appendix D.2. The final Random Forest model uses the variables distance to the next industrial
premise, distance to the next primary road, distance to the next traffic signal, distance to the next
motorway, length of big streets (50 m buffer), and area of residential land-use (100 m buffer). It builds
394 trees using bootstrap samples, considers at most 42.79 % of the available features per split,
needs at least three samples to split a node, and needs at least three samples for a leaf node.

5.2.5 Multi-layer Perceptron. Neural networks, or more specifically multi-layer Perceptrons (MLPs),
are models whose popularity for land-use regression tasks has grown in recent years and which
often outperform other baselines [1, 3, 12, 14, 37]. Additionally, evaluating multi-layer Perceptrons
(even if not directly applied to image data) illustrates the performance of neural networks which,
in contrast to the MapLUR model, are not based on convolutions.
Again, we follow the model development procedure of previously published work. In this case,

we base our procedure on the one used by Alam and McNabola [3]. Appendix D.3 contains a
description of this procedure.
The MLPs use the variables distance to the next industrial premise, distance to the next primary

road, distance to the next traffic signal, distance to the next motorway, length of big streets (50 m
buffer), length of local streets (100 m buffer), area of industrial land-use (100 m buffer), area of
commercial land-use (100 m buffer), and area of residential land-use (100 m buffer). The architecture
search found that the best performing MLP model has a single hidden layer with 29 neurons. This
is similar to the MLPs used by previous publications [1, 3, 12, 14, 37].

6 RESULTS AND ANALYSIS
Given the baseline methods and MapLUR’s description, we now present the results for our experi-
ments and analyze MapLUR in terms of data requirements and features learned.
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(a) LAEI data (b) MapLUR estimates

Fig. 3. Comparison of LAEI data and MapLUR estimates. The estimated map shares strong similarities
with the original data. It can be seen that MapLUR is able to recognize streets and accurately associate them
with high pollution concentrations. However, our model tends to overestimate pollution in areas with very
low pollution concentrations and underestimate pollution for areas with no road close by.

6.1 Experiments
Table 2 shows the results of the baseline methods as well as MapLUR’s results for our experiments.
All results in the Table are significantly different from each other. To verify this, the metrics of each
model are tested for normality using the test from D’Agostino and Pearson [15, 16] with 𝑝 < 0.05.
The statistical significance for models whose metrics are normally distributed are tested using a
t-test, while the other models’ metrics are tested with the Wilcoxon signed-rank test, both testing
for 𝑝 < 0.05. Additionally, Bonferroni correction [8] is applied, which further substantiates the
statistical significance, since 𝑝 < 0.05

𝑛 with 𝑛 = 7 for each model pair. 𝑛 = 7 is chosen to account for
the number of hypotheses that are tested on the same data (each model is tested against 7 other
models).

Baselines. As described before, we use a simple mean baseline, a linear regression, an approach
with Random Forests, and a multi-layer Perceptron with manually engineered features from
OpenStreetMap data. The results in Table 2 show that the Random Forest is performing considerably
and significantly better than both the linear regression and the MLP.

Experiment 1 — OpenStreetMap. Our model with OpenStreetMap images performs better than all
baselines regardless of metric, which can be seen in Table 2.

Figure 3 shows the original NO2 concentrations of the LAEI data set in Central London and the
estimates of MapLUR. It can be seen that our model is able to come rather close to the original data
using only OpenStreetMap images, but tends to overestimate values of areas with low pollution
concentrations and underestimate values of areas which are not in the vicinity of roads.

Experiment 2 — Google Maps. This experiment uses Google Maps imagery instead of Open-
StreetMap images. A drop in R2 of more than 10 percentage points in comparison to the previous
experiment and a higher RMSE value may be explained by the styling of Google Maps images.
Googles Maps contain fewer color-coded entities. Especially streets, that are a common entity
for land-use regression features, are not diversified as much as in OpenStreetMap images. The
differences can be seen in Appendix E.

Experiment 3 — Google Maps Satellite. This experiment uses Google Maps Satellite imagery as
input. Table 2 shows that using only Google Maps Satellite imagery leads to a considerable drop in
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Table 2. Results of baseline methods and experiments. MapLUR with OpenStreetMap images is pro-
viding the best performance overall, beating all baselines and all other MapLUR variants. Using satellite
images from Google Maps instead of OpenStreetMap images decreases the metric scores on the evaluation
set. Combining both image types does not improve the score. The Random Forest model is outperforming all
other baseline models on this data set which makes it the best baseline. All results are significantly different
to each other.

Model R2 RMSE [𝜇g/m3]

Mean baseline 0.000 13.971
Linear regression 0.487 10.004
Multi-layer Perceptron 0.499 9.887
Random Forest 0.662 8.119

MapLUR experiment 1: OpenStreetMap 0.673 8.002
MapLUR experiment 2: Google Maps 0.537 8.918
MapLUR experiment 3: Google Maps Satellite 0.206 12.389
MapLUR experiment 4: OpenStreetMap and Google Maps Satellite 0.660 8.112

performance, even worse than the linear regression baseline with an R2 of 0.206 and an RMSE of
12.389.

These results are most likely due to the noise in the satellite images, which makes it harder to
discern influencing factors for air pollution. The hand-labeled map images therefore help a lot as
they already encode the desired entity labels as colors.

Experiment 4 — OpenStreetMap and Google Maps Satellite. The last experiment combines map
and satellite imagery by concatenating both three-channel RGB images to one six-channel tensor.
OpenStreetMap images are used for the map images, since they have shown better performance
than Google Maps in our task. Satellite imagery is taken from Google Maps Satellite. As both image
sources use the same spatial resolution of 80 m by 80 m, local OpenStreetMap data should only
be augmented by the satellite images. However, the results in Table 2 show no performance gain
compared to using OpenStreetMap only. In fact, the results are worse and significantly different for
both models.

Computation times. The computation times for the various models evaluated vary due to the
different model complexities. For example, with an Intel Xeon E5-2690V4 CPU training the MLP
takes on average 25 seconds, Random Forest trains on average for 11 seconds, and the linear
regression model is typically built in a single second. Estimating pollution concentrations with
these simple trained models for an area like Central London only takes seconds. MapLUR is the
most complex model among them, but can be trained in reasonable time on commodity hardware.
We found that training it on a single consumer graphics card (Nvidia GTX 1080 TI) takes about 50
minutes. Once MapLUR is trained it can estimate pollution concentrations for the complete Central
London area in 35 seconds.

6.2 Model Analysis
After seeing that MapLUR can work well, we now further analyze the model. First, we assess the
data requirements of MapLUR. Then, we demonstrate that our model can be made interpretable
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Fig. 4. Data requirements of land-use regression models. These graphs show the performance of com-
monly used land-use regression models and MapLUR with varying training data set sizes. The portion of the
data set used refers to the size of the NO2 data set with which the models were trained in our experiments.
Thus, 100% is equivalent to 3,000 data points. Each point in the graphs is the mean of 40 model runs, except
for MapLUR’s points which we only ran 5 times per data set size due to the model’s computational complexity.
This shows that MapLUR can provide comparable results with 900 data points and it tends to improve with
more data. Multi-layer Perceptrons behave similarly but they need more data to reach other baselines. Linear
Regression and Random Forests are less dependent on data set size.

by analyzing what our model has learned through guided backpropagation and by creating fake
OpenStreetMap images.

6.2.1 Analyzing Data Requirements. The previous experiments showed that our model can suc-
cessfully model air pollution in a data-driven way. While this is the main focus of this paper, the
data we use (3,000 data points) is larger than those typically available in a real world setting. In
the following, we analyze the actual data requirements of all models evaluated above. Overall, the
corresponding results will inform future studies on data requirements and point towards necessary
methodological advancements.

When gradually reducing the number of training data points, we noticed a drop in performance
with smaller data sets for all models except for linear regression (cf. Figure 4). Models based on
neural networks experience a more pronounced performance loss in comparison to, for example,
Random Forests, where there is only a slight decline. We believe that this stems from the size
and complexity of these models compared to simpler models like linear regression models. More
parameters need to be trained which tends to require more training examples. However, about
30 % of the training data is still sufficient for our model to exhibit performance comparable to the
strongest baseline, which is the Random Forest trained on hand-crafted features.
Addressing the increased need for data is an important point for future work, which we also

discuss in some more detail in Section 7.

6.2.2 Understanding Estimates using Guided Backpropagation. In this section, we apply a technique
called guided backpropagation [51], which allows us to visualize the regions of the input image that
the network focuses on for its estimation. This approach starts off with a forward pass of an image.
Thereafter, the gradient of the activation is computed with respect to the input image. At each
ReLU in the model, positive gradients whose corresponding output during the forward pass was
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Original im-
ages

Guided back-
propagation

Fig. 5. Visualization of detected features using guided backpropagation [51]. This technique high-
lights important pixels in the input images by visualizing gradients of the activation with respect to pixel
intensities. All negative gradients and positive gradients, whose corresponding output during the forward
pass was negative, are set to 0 at each ReLU during backpropagation. This approach reveals parts of an image
which contribute to the pollution. As one would expect, the model is concentrating on large streets. (Original
images: © OpenStreetMap contributors)

negative and negative gradients are set to 0 so that only features which contribute to the estimated
pollution concentration are shown. This allows us to visualize which parts of the image the model
is paying attention to. Several examples are shown in Figure 5.
The guided backpropagation shows that the model is paying special attention to motorways,

trunk roads, and primary roads which are rendered in red or orange colors in OpenStreetMap.
This shows that MapLUR is able to automatically learn intuitively relevant features, since traffic is
known as a large factor for NO2 pollution [13]. MapLUR also considers buildings, foot paths and
cycle paths to some extent for its estimates while it seems to be ignoring water and park areas. The
model tends to pay more attention to pixels close to the center, which is understandable since we
estimate the pollution concentration for the 20 m by 20 m areas that are in the center of each image.

6.2.3 Analyzing Entity Influence using Artificial Map Tiles. One of the biggest advantages of using
a DOG-based model for air pollution estimation is that it extracts features by itself, while previous
work always used hand-engineered features. The leading question in developing land-use regression
methods in previous work is:What entity of what area in what distance to the center is contributing
to the pollution? From this, three categories of features arise: entity features, area features, and
distance features. We now want to investigate the correlation of these features with the model’s
output. For this, we take advantage of the well-defined structure of map images with different
color-coded entities. Map images therefore can easily be recreated using graphic editing software,
which makes it possible to create artificial OpenStreetMap images for which we can control the
features separately while keeping all other features fixed. We then observe changes to the model’s
output while modifying the values of these features.

Entity Features: Entity features describe what is seen on the image. Entity features are often
used for the estimation of air pollution, as, for example, industrial areas are usually contributing
more to air pollution values than parks. In this experiment, we investigate how certain entities
are influencing the model estimate. We build two kinds of images: On the one hand, we create
images that are each completely covered by one specific type of entity, resulting in uniformly
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Table 3. Model estimate for a given OpenStreetMap entity. The entities span across the whole image
and they are overlaid with different types of roads. Overlaying a road with another road does not make sense
so these values are omitted. The ‘neutral’ entity is a background that is used by OpenStreetMap for indicating
land with no particular land-use. All estimates are in 𝜇g/m3.

Road type Entity Name

industrial
area

residen-
tial area

commer-
cial area

park forest water neutral motor-
way

trunk

no road 37.71 38.29 38.72 38.87 39.27 41.66 42.06 47.23 80.63
trunk 61.70 50.94 59.73 64.14 57.94 59.62 58.62 — —

motorway 60.04 48.48 64.18 46.05 54.21 53.45 55.00 — —

colored square images. On the other hand, the same images are then overlaid by the depiction of a
motorway and a trunk road. We expect that different underlying entities provide different estimates
according to the usual presence of sources for NO2 pollution. We also expect an increase in the air
pollution estimate whenever a road is added to the underlying entity. Depending on the type of
road this increase might fluctuate. Table 3 shows the resulting pollution estimates by the CNN.

Different underlying entities do not lead to large differences in pollution estimates if there is no
road. Only completely covering the image by a motorway or trunk road results in an estimate of
over 45 𝜇g/m3. Additionally, trunk roads seem to have a much higher impact on the air pollution
estimate than motorways. Adding a trunk road or motorway to any entity increases the air pollution
estimate as expected. The amount of increase depends on the underlying entity of the map and
what kind of road is present. This shows that the relationship of the entities that are visible in the
map image are also important. There seem to be complex correlations between different entity
features, which cannot be modeled easily in simpler models like linear regression.

Area Features: Area features describe how large a given entity is in the image. The area that an
OpenStreetMap entity has on an image should contribute to the estimated pollution value. In this
experiment, we use the trunk road entity to show the influence of the area. We build multiple
images that contain a straight road that goes top to bottom or left to right through the center of
the image. As the background we always use the same neutral background that depicts general
land-use in OpenStreetMap. We then vary the width of that street either horizontally or vertically,
depending on the street direction. A linear increase in the street’s width is equivalent to a linear
increase in the street’s area.

Figure 6 shows some of the artificial OpenStreetMap images as well as a plot of MapLUR’s output
given the street width in pixels. As expected, an increasing width — and therefore an increasing
area — of the street tends to increase the pollution estimate. Both horizontal and vertical growth
have very similar curves that are not linear but instead seem to be more logarithmic. The similarity
was expected, as during training, the images are augmented by rotation and flipping such that the
direction of streets should not have any impact on the overall output.

Distance Features: Distance features describe how far away a given entity is from the image
center. For this experiment, we create images that contain only one straight trunk road that is then
moved vertically or horizontally, depending on the direction of the street. With this setup, we can
control the distance of the motorway to the center of the image while fixing the area and entity
features. We expect that the model produces higher estimates for images where the street is closer
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(a) Two fake examples
with a trunk road of
width 10 px and 60 px,
respectively.
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(b) NO2 estimate for a given width of the road.

Fig. 6. Varying the width/area of the street while keeping other features such as distance to the
center and type of street fixed.

to the center, as this behavior was already observed in the guided backpropagation results. Also,
the desired value from LAEI is coming from a 20 m subframe of the image which is in the image
center. The model therefore should have learned a tendency to weight features from the center of
the image more than from the borders.

Figure 7 shows image samples and the resulting estimation curves when moving the trunk road
farther away from the center of the image. As expected, the proximity of a street to the image’s
center contributes to the overall NO2 estimate positively. Pearson correlations of the distance with
the estimated values are always lower than -0.6, indicating a relatively strong negative correlation.
The curves that are shown are also not linear and can be better fitted by polynomials with a squared
feature term than by a line. To capture this non-linearity, more sophisticated methods need to be
used, which justifies the use of Random Forests or neural networks.

7 DISCUSSION
In this section, we discuss some advantages and some current limitations of our proposed paradigm
and model. We believe that the advantages provide valuable additions to the models currently
applied in land-use regression. Since this is the first paper applying a model based on our new
paradigm, there are still some limitations regarding the applicability of our model to real world
data sets, for which we provide some possible ways to overcome.

Interpretability. Firstly, purely data-driven models tend to be harder to interpret than simpler
models, which is why they are often thought of as black-box models. This also raises the concern
that the models may put too much focus on unreliable features that explain the specific data set
well, but fail to generalize to other data sets. To alleviate these concerns, we have shown that it is
possible to reveal the inner workings of the model, finding that the model’s output heavily relies
on land-use features such as streets or commercially used areas. These features are also commonly
employed by traditional land-use regression models. We have also shown that MapLUR implicitly
focuses on other commonly used land-use information such as distance and area features. This
illustrates that purely data-driven approaches can yield interpretable models.
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(a) Two fake examples
with a trunk road that is
moved by 10 px and 60
px, respectively.
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(b) NO2 estimate for a given distance from the center of the image to the trunk road.

Fig. 7. Varying the distance of a trunk road to the image center pixel by pixel while keeping other
features fixed.

Feature extraction and complexity. In addition to information that closely resemble hand-crafted
features, our model is able to extract signals from the image in an automated and optimized fashion.
Thus, it can potentially capture more complex signals than modeled by hand-crafted features.
For example, it is likely that features like curvature of streets, street signs, and traffic lights are
also considered by MapLUR to estimate the air pollution. However, an analysis of these features
remains future work. In particular, we believe that applying further model analysis techniques
will enable researchers to find previously unknown features that can then be evaluated by experts
and transferred to other, traditional land-use regression models. Thus, MapLUR’s ability to extract
interpretable features in combination with its inherent potential to model more complex relations
of land-use and air pollution makes it a powerful tool for land-use regression.

Overfitting and generalization. Despite our strong results on the LAEI data set and gaining an
intuition for how MapLUR works, we were not able to test generalizability across areas of interest
due to the lack of similar data sets on different cities. While our setup allows for generalizability in
principle, in practice, certain challenges may arise. In particular, deep learning methods are prone
to overfitting, i.e, they may underperform when applied to input data that is very dissimilar to or
not covered by the training data [17]. However, we suspect that this problem is less pronounced
for MapLUR since map images are very structured and the model is therefore likely to see the vast
majority of entity types that exist in the study area during training. Additionally, we want to stress
again that previous models are often not applicable to new areas at all, since they often rely on data
that is either not open or only locally available. Nonetheless, the model needs to be evaluated for
every new application area before relying on its estimations. In order to use the model in new areas,
it will usually be necessary to fit the model to some data from this area. Therefore, it is important
to have training, validation, and test data sets that are similar in characteristics and representative
of the whole study area. Typically, a simple random split is enough to achieve this [17].

Data Requirements and Application to Real World Data. MapLUR uses a CNN that contains a large
number of weights due to its architecture. Training this deep-learning-based CNN requires more
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data than regular land-use regression models, which is why we have evaluated the approach on
data from a model [2] instead of real world data. We have shown that MapLUR works well given
the 3,000 data points of LAEI’s modeled NO2 concentrations. Since this number is far greater than
most real world data sets for land-use regression, future work needs to investigate the possibility
of applying models based on the DOG paradigm in more realistic settings. We believe that one
promising approach for research in this direction is the use of transfer learning, which has been
shown to be an effective way of dealing with low-resource settings in both the areas of computer
vision [38] and natural language processing [28]. Transfer learning could be applied to MapLUR or
other models based on the DOG paradigm by pre-training the model on a large data set, like for
example the LAEI data, and then fine-tuning it to a smaller data set of real world measurements.
The global nature of features used in models based on the DOG paradigm ensures that this approach
is generally possible. Additional large-scale data sets can also be collected in the context of mobile
measuring campaigns [25, 41]. These data sets can then be used to provide further training data for
the pre-training of DOG-based models.

Incorporating Distant Sources of Pollution. Our analysis has shown that using images depicting 80
m by 80 m areas for each data point leads to good results, as can be seen in Appendix B. However,
previous approaches to air pollution estimation based on land-use regression have shown that it is
useful to include information from wider surrounding areas in their features [49]. In the specific
case of the MapLUR model, the size of the surrounding area that can be used is bounded by the
resolution of the input images: If the area gets too large, the resolution of 224 x 224 px is not
sufficient to encode the corresponding image. While this could be countered by increasing the
input resolution, this would significantly increase the cost of training and prediction. Therefore, it
is an interesting direction for further research to develop models that can take into account larger
surrounding areas without increasing the image resolution. This could for example be achieved
by using stacked convolutional neural networks or a combination of convolutional and recurrent
neural networks.

Integration of Additional Data Sources. While we have focused only on map images as input,
MapLUR was able to outperform all considered baselines. Nevertheless, previous work has shown
that additional information can greatly improve the performance of air pollution models. One
example of such data would be elevation maps [49], which can be integrated into MapLUR in
a way similar to Experiment 4, where we provided the CNN with additional map image layers.
Beyond this, there is a wide variety of methods to provide deep learning methods with additional
information which holds great potential to further improve our results [4, 39].

8 CONCLUSION
In this paper, we have advocated DOG, a solely data-driven paradigm for air pollution estimation
through land use regression. Models that follow this paradigm do not require manually engineered
features and are based on data that is openly and globally available. This will ultimately result
in models that are globally generalizable and can be applied in any area without modification.
Working towards this goal, we have presented MapLUR, a deep learning based land-use regression
model for air pollution estimation. We have shown that it can estimate NO2 concentrations better
than all considered baselines on a data set of modeled data from the Greater London area. While our
analysis of MapLUR has shown that its data requirements are higher than commonly available data
set sizes, we argued that transfer learning is a promising approach to alleviate this issue. We have
also explored ways to analyze the factors that influence the prediction of this model, finding that a
data-driven model architecture can be made interpretable by careful inspection of the trained model.
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Thus, overall, this paper demonstrates the feasibility and advantages of our proposed data-driven
paradigm DOG for land-use regression based air pollution modeling.

Future directions encompass work to further reduce the data requirements of data-driven models,
the development of a comprehensive framework for extracting and interpreting features, as well as
in-depth studies on real-world data, large-scale mobile measurements, and different cities.
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Fig. 8. LAEI cells sampled for the experiments. The 3,000 blue cells are the training data set and the 1,500
red cells are the test data set. (Underlying OpenStreetMap Image: © OpenStreetMap contributors)

A SAMPLED LAEI CELLS
Figure 8 depicts the cells which we sampled from LAEI. The blue cells are used for training our
models while the red cells are used to evaluate model performance for unseen locations.

B ANALYSIS OF AREA SIZE
In this work, we only used 80 m by 80 m images as inputs for our model. However, despite the
potential evaluation issues with overlapping images described in Section 3.1, it is still interesting
to see how our model behaves when it is able to see more or less of the surroundings. Therefore,
the model was provided with OpenStreetMap images depicting square areas around the data point
with side lengths of 60 m, 80 m, 100 m, 200 m, 500 m, and 1000 m while maintaining a resolution of
224 px by 224 px. The mean results after 40 evaluations can be seen in Table 4.

Our model does not benefit from the increased image size as can be seen from both R2 and RMSE.
The mean performance decreases consistently with each increase in depicted area size over 80 m by
80 m. This implies that the potential evaluation issue with overlapping images, which is described
in Section 3.1, is not very severe since the model should be gaining performance with larger images
otherwise. It also suggests that the very close surroundings are important and that information from
further away is not helping. However, the model is suffering from performance loss with smaller
areas than 80 m by 80 m. Thus, it seems that a side length of 80 m for the depicted square areas is
optimal for MapLUR especially considering the fact that all other results are significantly different
according to the Wilcoxon signed-rank test even after Bonferroni correction, since 𝑝 < 0.05

𝑛 for
𝑛 = 9.
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Table 4. Evaluating the influence of the area size depicted in each map image onMapLUR’s perfor-
mance. The results suggest that 80 m by 80 m areas are optimal.

Model R2 RMSE

Mean baseline 0.000 13.971
Linear regression 0.487 10.004
Multi-layer Perceptron 0.499 9.887
Random Forest 0.662 8.119

60 m 0.626 8.511
80 m 0.673 8.002
100 m 0.637 8.381
200 m 0.618 8.603
500 m 0.597 8.833
1000 m 0.390 10.856

C EVALUATION METRICS
Given the desired target values 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} and the model’s output 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛},
two commonly used metrics in land-use regression papers, namely R2 and root-mean-square error
(RMSE) [14, 21, 37], are used to evaluate the model on the evaluation set.

On the one hand, R2 describes how much of the target’s variation is explained by the model:

R2 (𝑦,𝑦) = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 ,

where 𝑦 = 1
𝑛

∑𝑛
𝑖=1 𝑦𝑖 is the mean of all desired target values. The metric can take values from

−∞ to 1. A R2 of 1 indicates a perfect fit. A value of 0 is achieved by always estimating the mean of
the evaluation set’s target values. Negative values indicate that the model is worse than always
estimating the mean.
On the other hand, the RMSE is, as the name already suggests, the square root of the mean of

the squared errors:

RMSE(𝑦,𝑦) =
√√

1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 .

Thus, RMSE can only take non-negative values, where 0 would be perfect for this metric and
larger RMSEs are worse.

D MODEL BUILDING PROCEDURES FOR THE BASELINES
The following explains the model building procedures for the baseline methods in more detail.

D.1 Linear Regression
The first baseline model we consider is the commonly used linear regression. The model’s develop-
ment is based on a supervised stepwise selection which was used in the Escape project [20] for
land-use regression model development before. Each predictor variable is ranked based on the
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Table 5. Random Forest hyperparameters optimized using stochastic search with the correspond-
ing search spaces.

Hyperparameter Search space

Number of trees 1 to 1000
Fraction of features to consider at most per split 0.0 to 1.0
Minimum samples required to be a leaf node 1 to 100
Minimum samples required to split a node 2 to 20
Build trees with bootstrap samples True or False

model’s adjusted R2 from a univariate regression. The adjusted R2 used by Eeftens et al. [20] is like
the R2 but penalizes adding variables which do not fit the model. Thus, ideally only independent
variables which affect the dependent variable are used. If there are variables that are of the same
category but with different buffer sizes, then only the variable with the highest score is considered
for use in the final model due to the high correlation of these variables between each other. The
model starts with the variable that achieved the highest score. Thereafter, each one of the remaining
variables is temporarily added to the model, evaluated, and the best performing variable is added
to the model permanently if it increases the model’s adjusted R2 by at least 0.01. This is repeated
until no variables are left. Then all selected variables with a p-value greater than 0.1 are removed
and the resulting model is fit again, just like described in Eeftens et al. [20]. Finally, the variance
inflation factors (VIFs) are calculated for each variable in order to quantify the increase in variance
due to collinearity of the variables. If a variable has an VIF that is greater than 3, the variable with
the largest VIF is removed and the model is refit. In accordance with Eeftens et al. [20] this is also
repeated until no variable has an VIF greater than 3.

D.2 Random Forest
Another baseline is a Random Forest model which employs ensembles of decision trees for its
estimations [9]. This model is built in a similar way to the procedure in Brokamp et al. [10]. The
steps of the model building procedure are described in the following. First, the best buffer radii for
each type of variable were determined based on the adjusted R2 of a univariate regression on the
training data set. As described in Section D.1 before, the adjusted R2 is like the R2 but penalizes
adding variables which do not fit the model. Then, an initial Random Forest is considered for the
following which uses values that have shown to work decently in preliminary experiments: It
builds 500 trees, considers half the available features when looking for the best split, and uses the
default values of scikit-learn’s Random Forest implementation for the other hyperparameters [48].
The best variables of each type are then fitted using this Random Forest to rank the variables based
on the variable importance score of the Random Forest. Thereafter, the least important variables
are removed iteratively. For each iteration, the model is fitted to the remaining variables on the
training data set and the out of bag R2 is calculated by estimating each training sample without
using the trees that had the training sample in their bootstrap sample. This metric can be used
with Random Forests to estimate performance without an independent test set. The set of variables
that achieved the best performance is selected for further use. Then the best hyperparameters
for the Random Forest are found by a stochastic search that samples hyperparameter values and
evaluates them with a ten fold cross-validation on the folds of the training set. Each hyperparameter
value is sampled from a uniform distribution with a specific search space. Table 5 shows these
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(a) OpenStreetMap images (© OpenStreetMap
contributors)

(b) Google Maps images (Map data: Google)

Fig. 9. Comparison of OpenStreetMap and Google Maps images.OpenStreetMap images contain more
color-coded entities such as streets. As the visual style is highly important for the CNN to learn the task, the
simpler Google Maps style produces worse results.

hyperparameters with their search spaces. This search ran for three hours and used six CPU cores
of an Intel Xeon E5-2690V4 processor to fit as many models as possible. During this search, 1,051
sets of hyperparameters were evaluated. The best hyperparameters are then used to fit a Random
Forest on the complete training set and evaluate the model on the test set.

D.3 Multi-layer Perceptron
For the last baseline, we employ a multi-layer Perceptron, which is a type of neural network.
For this model, we base our model building procedure on the one used by Alam and McNabola
[3]. We adapt it slightly by first selecting the best buffer radius for each variable type based on
the adjusted R2 of an univariate regression. We use the adjusted R2 again for this selection to be
consistent with the model building procedures for linear regression and Random Forest described
before. Then we search for the best performing architecture by evaluating models with different
number of hidden layers and neurons for each layer with ten fold cross-validations on the training
data set. This is done by randomly sampling the number of layers from a uniform distribution
ranging from 1 to 3 hidden layers and randomly sampling the number of neurons for each layer
from another uniform distribution which ranges from 1 to 30. These bounds are chosen since they
encompass the architectures of all previously published models that we found [1, 3, 12, 14, 37].
We randomly sample model architectures and evaluate them for 24 hours during which 2,629
architectures were evaluated. The best performing architecture is then trained on the complete
training set and evaluated on the test set.

E COMPARISON OF OPENSTREETMAP AND GOOGLE MAPS IMAGES
Figure 9 compares Google Maps and OpenStreetMap images, showing the differences between both
default styles shown on the services’ websites. While OpenStreetMap provides at least four colors
to denote different types of streets, Google Maps only uses two. Google Maps does not color-code
all of the available information to ease the visual effort of the user. This however is not helpful for
the CNN model, which works better with clear visual cues that denote entities.
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Abstract. Air pollution has been linked to several health problems including heart disease,
stroke and lung cancer. Modelling and analyzing this dependency requires reliable and accurate
air pollutant measurements collected by stationary air monitoring stations. However, usually
only a low number of such stations are present within a single city. To retrieve pollution
concentrations for unmeasured locations, researchers rely on land use regression (LUR) models.
Those models are typically developed for one pollutant only. However, as results in different
areas have shown, modelling several related output variables through multi-task learning can
improve the prediction results of the models significantly. In this work, we compared
prediction results from singletask and multi-task learning multilayer perceptron models on
measurements taken from the OpenSense dataset and the London Atmospheric Emissions
Inventory dataset. LUR features were generated from OpenStreetMap using OpenLUR and
used to train hard parameter sharing multilayer perceptron models. The results show multi-task
learning with sufficient data significantly improves the performance of a LUR model.

1. Introduction
Evidence suggests that air pollution has adverse effects on health [1, 2, 3] and the environment [4]. In
order to research, assess and prevent these effects, availability of high quality measurements of air
pollutants is necessary. Official authorities maintain stationary air quality monitoring networks, mostly
equipped with sensors for multiple pollutants [5, 6]. However, such stations only offer data from a
limited number of locations, as usually only few stations are present within a single city and land-use
regression (LUR) models have been used successfully to account for spatial variability within cities
and for epidemiological analyses [7]. While LUR models are trained on only one pollutant, several
research areas have shown the potential of training on multiple related target variables, so called multi-
task learning [8].

Air pollution monitoring stations often measure concentrations of more than one pollutant and the
high spatial and temporal correlation of air pollutant concentrations [9] suggests that the emissions of
different pollutants depend on the same set of factors. Thus, the tasks of modelling the pollutants
should be highly related and modelling them with a multi-task learning model might improve the
accuracy of the predictions. However, this approach has not been assessed yet in the context of
modelling air pollution. To evaluate it, the performance of a multilayer perceptron LUR model is
compared between single-task and multi-task learning on two different datasets - measurements taken
from the OpenSense project collected by low-cost, portable sensors in the city of Zurich and modelled
concentrations taken from the London Atmospheric Emissions Inventory.
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The contribution of this work is twofold: We (i) propose a new approach to developing LUR
models using concentration data from multiple pollutants, which takes advantage of the available
measurements as shown in figure 1 and (ii) demonstrate the potential of the multi-task learning
approach compared to traditional single-task models for LUR.

The work is structured as follows: In Section 2 we summarize the related work. Section 3 describes
the air pollution datasets and LUR features used to develop the models. The selected multi-task
learning framework is described in Section 4 and the experimental approach and the models in Section
5. In Section 6 we present our results and in Section 7 we discuss the advantages and limitations of the
multi-task learning approach. Section 8 provides a conclusion and outlook for future work.

Figure 1. Air monitoring stations collect data from different pollutants. In our approach we use multi-
task learning to improve the accuracy of pollution maps.

2. Related work

2.1. Land-Use regression
LUR models are an active field of research as the public awareness of the health and environmental
effect of air pollution grows. Such models have been developed for numerous large cities worldwide.
A 2008 review collected models developed for several cities in Europe as well as the USA [10] and a
recent review from 2017 includes LUR models for 16 different cities worldwide [11]. Within the
European ESCAPEProject aimed at assessing the long-term effects of air pollution on human health,
models have been developed for 36 cities in Europe using a standardized approach of model selection
for a linear regression [1].

Traditionally, linear regression has been used for LUR [10, 11], however, several other machine
learning models have been proposed to increase the accuracy of the predictions and model non-linear
relationships between the variables. Generalized additive models are one such example and they have
been used to improve prediction scores in LUR models of nitrogen oxides (NOx) in Southern
California [12] and PM2.5 models in Beijing-Tianjin-Hebei (BTH) region in China [13]. Brokamp et al.
used random forest regression to improve concentration predictions of in the urban city of Cincinnati,
Ohio [14], and in [15] this approach is used to model NO2 concentration in a metropolitan area of
Japan.

Models using neural networks for LUR have also been proposed. For example, Alam and
McNabola compare linear LUR models with multilayer perceptron models, achieving better results
with the latter [16], while Adams and Kanaroglou use multilayer perceptron LUR models to construct
real-time air pollution health risk maps [17].

Steininger et al. use a deep learning neural network to model air pollutant concentrations directly
from globally available map images [18] and Lautenschlager et al. use features generated from
geographical information available in the OpenStreetMap database [19] to develop models performing
better than similar models using features from local or closed sources [20].

In all of these studies, only one pollutant is predicted with a single model. It has been shown that
different air pollutants show high temporal and spatial correlation patterns [21] and thus, the tasks of
modelling different air pollutants can be highly related. The goal of this work is to explore the
possibility of achieving better prediction results using a multi-task learning framework.

2.2. Multi-task learning
Multi-task learning is a machine learning paradigm in which several related tasks are modelled
simultaneously. A shared representation is used to guide the models to the most relevant features, thus
potentially improving generalization and performance [8, 22]. It has been shown to increase



2020 International Joint Conference on Civil and Marine Engineering (JCCME) 2020
Journal of Physics: Conference Series 1834 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/1834/1/012004

3

effectiveness of machine learning models in a wide range of fields.
Collobert and Weston proposed a multi-task learning approach for natural language processing, in

which several speech related predictions are made using a single neural network [23]. Gibert et al. use
a multi-task learning framework to automatically detect anomalies for railway track inspections using
machine vision. The multi-task model performs with increased accuracy as compared to single-task
detectors [24].

Ramsundar et al. use a multi-task framework to develop large-scale models in the field of drug
discovery. The results show increasing prediction accuracy when additional tasks are added to the
model and the shared representation learned by the models can be transferred to other tasks, which
were not used during training [25].

Caruana [8] explored the direct comparison of single-task models and multi-task models, the latter
achieving better results on problems including autonomous driving simulations, recognizing knobs on
images of doors and predicting the severity of pneumonia.

Multi-task learning has been applied in several fields where multiple related tasks are modelled,
performing better than using single-task models separately. However, its application in the context of
air pollution modelling has not been assessed. This work is aimed at filling this gap, by comparing
single-task LUR models with models used to predict several air pollutants at the same time.

We used a multilayer perceptron hard parameter sharing model for multi-task learning, as it is the
most commonly used approach in other applications and because it allows for a direct comparison
within a single framework.

3. Materials
In this section, the data sources used for the evaluation of the multi-task learning approach are
introduced: the OpenSense dataset collected during a mobile sensing campaign in Zurich [26] and the
London Atmospheric Emission Inventory [27], which contains a dataset developed using an
atmospheric dispersion model and is published by London authorities. Furthermore, the LUR features
which have been used to develop single-task and multi-task learning models are discussed in this
section.

3.1. OpenSense dataset
The OpenSense Project collected pollution data over the period of several years between 2012 and
2016 from mobile, low-cost sensing units equipped with an ultrafine particle (UFP) sensor,
carbonmonoxide (CO) sensor and ozone (O3) sensor placed on top of ten street cars, travelling on
regular routes within the city of Zurich. The particulate matter pollution was sampled every 5 s and the
O3 and CO concentrations every 20 s [28]. A GPS signal receiver provided spatial information about
the measurements. The gas sensors were equipped with water and dust covers to minimize possible
interference [28].

3.1.1. Data selection
For creating the LUR models, measurements from the year 2014 have been selected from the dataset.
Although there are certainly LUR models being developed for smaller time scales using additional
weather information as features ([29], [30]), the most common approach is to consider a long time
period for averaging the measurements. This removes any possible seasonal trends, which have a
considerable influence on air pollution [31, 32]. Additionally, aggregated means are important from a
regulatory perspective, as for example the European Commision enforces limits on annual averages
for emissions of air pollutants [33]. We used the concentration data collected during the year 2014,
with the exception of CO, where measurements were not available for the first two months of 2014.
Instead, to maintain a comparable representation of all seasons, CO was averaged using the period of
one year starting from 03/2014. Table 1 summarizes the data that has been selected from the
OpenSense dataset to develop the models.

Table 1. Subset of the OpenSense dataset considered.
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Pollutant Start End Samples
UFP 01/2014 12/2014 11.9 Mio
O3 01/2014 12/2014 5.3 Mio
CO 03/2014 02/2015 19.7 Mio

3.1.2. Data preprocessing
The UFP dataset has been properly calibrated and filtered and thus contains accurate measurements
[34]. Reference measurements and internal variables of the sensors are not available for the ozone and
carbonmonoxide datasets and thus a null-offset calibration cannot be done. The concentration
measurements for those two pollutants are therefore taken from the factory pre-calibrated sensors
without additional calibration. Following Hasenfratz et al., an initial GPS-filter is applied to assure an
accurate geo-tagging of the concentrations, based on the horizontal dilution of precision (HDOP) [29].
Hasenfratz et al. discarded all measurements with a HDOP of smaller than 3. To obtain an even more
accurate positioning we used the threshold of 2. Additionally, all measurements taken outside of the
boundaries of the routes taken by the street cars are also discarded. The remaining samples (97.1% of
the UFP measurements, 96.8% of the CO measurements and 96.9% of the O3 measurements) were
used for further processing.

3.1.3. Data aggregation
Following [29], where a 100 m×100 m grid was used to develop a LUR model with the OpenSense
UFP data, annual averages for the same spatial resolution of 100 m were calculated. Because the
measurements were taken by mobile sensors, there was a considerable variation in the number of
observations in each cell, ranging from 1 to over 300 000 for the 100 m grid. To ensure that the mean
annual concentrations are reliable and to exclude possible outliers due to positioning errors, cells with
less than 50 measurements were discarded.

(a) Ultrafine particles (b) Ozone (c) Carbonmonoxide

Figure 2. Distribution of the concentrations of ultrafine particles, ozone and carbon monoxide in
the year 2014 as compared to a log-normal distribution. Based on the OpenSense dataset.

3.1.4. Data evaluation
Data quality for air pollutants can be assessed using a well established observation that the
measurements of air pollutants approximately follow a log-normal distribution [35]. Figure 2 shows
the empirical distribution of the raw measurements in comparison to a theoretical log-normal
distribution with the same mean and standard deviation. The relatively close fit of both distributions
for the UFP indicates that the measurements are reliable. This does not hold true for the CO and O3

data, where there are substantial deviations from the log-normal distribution. The poor fit of the log-
normal distribution function to the concentration measurements for CO and O3 indicates poor data
quality, which can be attributed to the sensors not being adequately calibrated. A proper calibration
would require accurate reference data for a wide range of humidity and weather conditions, which is
not available for this dataset. The variability of atmospheric conditions in which the mobile sensors
have been used can thus result in the measurements not being accurate [34].

3.1.5. Summary
The previous analysis of the OpenSense dataset suggests that the measurements of CO and O3 might
be noisy and the question of whether an evaluation of multi-task learning can be done on such a
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dataset should be addressed. While a dataset containing measurements from well calibrated sensing
units would serve this purpose better, to our best knowledge there is no such a dataset that also
contains enough samples to enable training multilayer perceptron models. The measurements of UFP
from the OpenSense dataset have been used successfully to develop LUR models before [29, 19] and
for this reason, while accepting the limitations of using noisy measurements of the other pollutants, we
decided to include the OpenSense dataset in our analysis.

The OpenSense datasets that have been used here can be accessed online: [36] for the UFP dataset
and [37] for the CO and O3 datasets.

3.2. London Atmospheric Emissions Inventory
The London Atmospheric Emissions Inventory (LAEI) is a data collection containing estimates of
pollutant emissions and their sources for a given year in the city of London. The input factors include
traffic data from road and rail networks, domestic and commercial fuel consumption, aviation, and
pollution from individual industrial sites. The emission data is used to model ground-level average
yearly concentrations of air pollutants on a 20 m × 20 m grid using a atmospheric dispersion model.

In this work, we used the 2013 version of the inventory to develop LUR models for multiple
pollutants: nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter of diameter less than 10
µm (PM10), number of days with a daily mean PM10 concentration greater than 50 µg m−3 (PM10d),
and particulate matter of diameter less than 2.5 µm (PM2.5). It is important to stress that the LAEI
contains modelled annual mean concentrations and not measurements from air monitoring stations.
However, the inventory has been used for LUR modelling, as for example Steininger et al. developed
deep learning LUR models using the concentration data for NO2 from the LAEI [18].

3.3. Features
We generated LUR features using the OpenLUR approach [19]. Starting from a given point, the total
area of commercial, industrial and residential buildings within different radiuses (50m – 3000 m in
50m steps) was computed using geographical information from OpenStreetMap. Additionally, the total
length of roads of different types and the distance to the closest traffic signal, motorway, primary road
and industrial area was calculated. In total 244 features were generated this way.

Table 2. Results of feature selection for both datasets.
(a) Features selected for the OpenSense data (b) Features selected for the LAEI data
Features selected Features selected
residential area within 1550m
distance to the closest primary road
length of large roads within (100m, 850m, 1500m)
distance to the closest industrial area
residential area within (700m, 2950m, 3000m)
industrial area within (1750m, 2550m, 3000m)
commercial area within 3000m
industrial area within

length of large roads within 50m
residential area within 2150m
distance to the closest traffic signal

3.3.1. Selection
Feature selection is a systematic method of selecting the variables upon which to build the model.
Selecting only the relevant features ensures that the model is easily interpretable and improves the
performance of the model by enhancing generalization [38]. We used a selection method based on the
best performing features on linear models, similar to [1]. Starting from an empty model the feature
improving the average R2 score the most is iteratively added to the model until an improvement
threshold of 1% is no longer reached.

Features were selected separately for the OpenSense and LAEI. In total 13 features have been
selected for the OpenSense data at and 3 features for the London Atmospheric Inventory as shown in
table 2.
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4. Method
In this work, a hard-parameter sharing multi-task learning approach is implemented using a multilayer
perceptron model with two hidden layers. Multilayer perceptron models have been applied
successfully in LUR to model single pollutants [16]. It allows for a straightforward translation into a
multi-task learning framework by providing additional outputs and thus a relatively direct comparison.
When hidden layers are shared between outputs, the network is forced to learn a shared representation
between the tasks which reduces the risk of overfitting [39, 22], possibly improving the performance
of the model.

4.1. Network structure
For a direct comparison between multi-task learning and single-task learning, the model’s overall
structure is kept constant while varying the number of shared layers. This creates three distinct models
with similar architecture but different degrees of multi-task learning: a fully multi-task learning model
when all of the hidden layers are shared between pollutants, a single-task model if all of the layers are
task-specific, as well as an intermediate model with one shared layer and one task-specific layer.

4.2. Training
All training of the multilayer perceptron models was performed using the Keras library version 2.3.1
[40]. The Adam optimizer was used for the weight updating with the default learning rate of 0.001.
The mean squared error is used as the loss function and additionally the R2 score is monitored. An
early stopping condition is used to determine the end of the training before the maximum number of
epochs set to 2000. After each epoch, the improvement of the mean squared error on the validation
data is checked and if the score did not improve during the last 20 epochs the training stops and the
best performing weights are restored. The final R2 score of the model on the validation data is
calculated and averaged over all cross-validation sets. The same cross-validation division was used for
training and scoring all models. This score is then used to select the best performing model.

5. Experiments
In order to evaluate the multi-task learning approach the data is split into several training and
evaluation sets and used to train the baseline and experimental models. This procedure and the
baseline models are described in the following.

5.1. Data selection
In total, 929 cells with annual mean concentrations were available from the OpenSense dataset and
5851915 from the LAEI. However, only 4500 cells were sampled from the large dataset for training
and evaluating the models and the features have been calculated only for those measurements. The
decision to only include a limited number of data points was made due to the high computational cost
of obtaining LUR features from OpenStreetMap and to increase the generalizability of our evaluations,
as datasets usually used for LUR only contain limited number of samples [29]. For a comprehensive
evaluation of the multi-task learning approach, training sets of different sizes were included. For the
OpenSense dataset samples of 100, 300 and 500 measurements were sampled uniformly as training
sets to investigate the influence of the size of the training data on the performance of the multi-task
learning models. The models for the London Atmospheric Emissions were trained using sample sizes
of 100, 300, 500 and 3000. The measurements not included in the training set were used to evaluate
the resulting models to obtain the final score. All model types (including the baseline models) were
trained using the same training set and evaluated using the same test set and used the same cross-
validation division for all models. In total 7 different training sets were created this way.

5.2. Baseline
In order to evaluate the multi-task learning model and put the observed differences in context, the
LUR models for the available datasets are first developed using traditional approaches - linear
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regression and random forest regression. The details on how models were trained and evaluated using
both approaches are provided here.

5.2.1. Linear model
Linear regression has been traditionally used in LUR models [41], it is therefore a good baseline to
consider for the performance of other models. For each dataset, a linear model was fitted on the
training set using the features selected with the algorithm described in Section 3.3.1. Each of the
pollutants was modelled separately. The resulting models were then evaluated on the available test
samples.

5.2.2. Random forest
Random forest regression has been used for LUR models yielding good prediction results [14], which
is the reason why it was included as a baseline. For each dataset, a random hyperparameter search was
performed to find the optimal number of trees (10 – 2000), fraction of features considered (0.0 – 1.0),
fraction of data considered (0.0 – 1.0) and minimum samples for a split (2 - 21). The remaining
hyperparameters for the model use the default values provided by the scikit-learn library in version
0.22.1. The mean R2 score from a ten-fold cross-validation was used to select the best performing
model, which was then fitted on the whole training set and evaluated using the test set.

5.3. Hyperparameters for multi-task models
To evaluate the multi-task learning models, a hyperparameter optimization procedure was
implemented for each of the training sets to find the best performing models of each structure. All
models have two hidden layers, each of which contains the same number of neurons. They differ only
in the number of layers shared between the different pollutants.

Hyperparameter optimization was performed using random search for the number of neurons per
layer (5 - 200), dropout rate (0 - 0.8) and L2-regularization (0.0001 - 1). For other hyperparameters, the
default values provided by the Keras library version 2.3.1 were used during the training [40]. All three
models with different degrees of multi-task learning were trained using this set of hyperparameters and
evaluated using a ten-fold cross-validation method, similarily to the training of the random forest
regression models. The subsample of the training set left-out by the given crossvalidation iteration is
used as validation data for monitoring the performance of the model during training and for
calculating the final score.

6. Results
In this chapter we present the results of the different LUR models. This includes the results of the
baseline models and the comparison of different multi-task learning models and single-task learning
models. The models were trained using the best found hyperparameters and evaluated using the test
dataset which was not used before. The same tenfold cross-validation division of the training set used
during hyperparameter search was applied to keep track of the R2 score during training for the purpose
of early stopping. Each cross-validation was performed 30 times in total. This was a compromise
between the high computational cost of fitting the models and the requirements for an accurate
estimate of the scores.

6.1. OpenSense dataset

6.1.1. Multi-task learning
Table 3 shows the average R2 scores of models using different degrees of multi-task learning and
single-task learning on the OpenSense dataset. Zero shared layers correspond to single-task learning,
while with two or one shared layers features and activations of hidden layers are shared between
pollutants thus corresponding to multi-task learning.

The bold scores in table 3 indicate the best model for each training sample. The results show an
improvement of the R2 scores by using at least some shared representation as compared to single-task
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learning for all training samples considered.
Table 3.Average R2 scores on the test samples from the OpenSense dataset using multilayer

perceptron models with different numbers of shared layers. The increase is calculated between the
single-task learning model (zero shared layers) and the best performing multi-task learning model (at

least one shared layer).
Shared layers

Samples 0 1 2 Increase
100 0.224 0.169 0.224 +0.41%
300 0.410 0.448 0.391 +9.23%
500 0.463 0.474 0.379 +2.26%

The optimal structure of the model varies with the training sample considered as does the amount
of improvement as shown in the increase percentage of the R2 scores in table 3. The one-way ANOVA
performed for each training set shows that the modelling approaches differ significantly (p < .001).
Table 4.Average R2 scores on the test samples from the OpenSense dataset using linear regression

(LR), random forest regression (RF), as well as single-task learning (ST) and multi-task learning (MT)
using a multilayer perceptron (MLP).

MLP
Samples LR RF ST MT
100 0.131 0.262 0.224 0.224
300 0.250 0.475 0.410 0.448
500 0.264 0.566 0.463 0.474

6.1.2. Comparison
The comparison of the results of both baseline models, single-task learning models and the best multi-
task learning models for the OpenSense dataset is shown in table 4. The best performing model with at
least one shared layer has been taken to represent the multi-task learning approach. To check whether
the resulting R2 scores were significantly different, for each training sample the models were tested
pairwise using the Mann-Whitney U-test. The resulting p-values are shown in figure 3.

(a) 100 training samples (b) 300 training samples (c) 500 training samples

Figure 3. Pairwise Mann-Whitney U-tests between linear regression models (LR), random forest
models (RF) and multilayer perceptron models using single-task (ST) and multi-task learning (MT) on

the Opensense dataset.
For 300 and 500 training samples, the random forest model performs significantly better than any

other model. The linear models perform significantly worse than non-linear models. For all considered
samples, the multi-task learning model performs better than a similar multilayer perceptron single-task
model. The difference is significant for the training samples of size 300 and 500. For the training
sample of size 100, the difference is not statistically significant.

6.2. LAEI dataset

6.2.1. Multi-task learning
Table 5 shows the average R2 scores of LUR models using different degrees of multi-task learning and
single-task learning on the LAEI dataset. The best performing model for each training sample is in
bold type.
Table 5.Average R2 scores on the test samples from the LAEI dataset using multilayer perceptron
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models with different numbers of shared layers.
Shared layers

Samples 0 1 2 Increase
100 0.489 0.490 0.476 +0.32%
300 0.506 0.468 0.490 −3.09%
500 0.514 0.515 0.507 +0.18%
3000 0.522 0.528 0.534 +2.25%

The results show an increase of the R2 scores when using multi-task learning for models trained
with 100, 500 and 3000 samples, while for 300 samples the single-task model performs better.

Similarly to the OpenSense dataset, the results show that there is no one-fits-all optimal structure of
the model, with the optimal amount of shared layers varying with the training sample considered. A
clear increase of the R2 score with increasing degree of multi-task learning can however be seen when
using a large training set of 3000 samples. The one-way ANOVA performed for each training set
individually shows, that the modelling approaches differ significantly (p < .001).

6.2.2. Comparison
The comparison between the different models for the LAEI dataset can be seen in table 6.
Table 6. Average R2 scores on the test samples from the LAEI dataset using linear regression (LR),

random forest regression (RF), as well as single-task learning (ST) and multi-task learning (MT) using
a multilayer perceptron (MLP).

MLP
Samples LR RF ST MT
100 0.459 0.477 0.489 0.490
300 0.488 0.527 0.506 0.490
500 0.499 0.537 0.514 0.515
3000 0.505 0.572 0.522 0.534

Similarly to the OpenSense dataset, the models have been compared using pairwise Mann-Whitney
U-tests. The results are shown in figure 4.

The comparison shows that the random forest model performs significantly better than other
models and linear regression offers the statistically significant worse fit.

When comparing single-task and multi-task learning multilayer perceptron models, the results
show an increased fit of the models using a multi-task learning approach compared to single-task
models when trained using 100, 500 and 3000 samples. However, the difference is only statistically
significant when trained with 3000 samples. When using 300 training samples, the multi-task learning
model performs worse than the single-task learning model.

(a) 100 training samples (b) 300 training samples (c) 500 training samples (d) 3000 training samples
Figure 4. Pairwise Mann-Whitney U-tests between linear regression models (LR), random forest

models (RF) and multilayer perceptron models using single-task (ST) and multi-task learning (MT) on
the London Atmospheric Emissions Inventory dataset.

7. Discussion
The comparison of all the single-task models, including the baselines, shows a clear advantage of the
random forest models over all other model types. This holds true for both datasets and all examined
sample sizes. It is not an unexpected result, as previous comparisons have shown that random forest
models provide high accuracies in the context of LUR [14, 42].

When comparing multi-task learning with the single-task learning approach on the multilayer
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perceptron models the results for both the OpenSense and LAEI datasets indicate a possible increase
in performance of the models when using a shared representation. However, the increase in
performance is not large enough to surpass the random forest baseline model, which still outperforms
the multi-task learning model.

In this section we discuss possible reasons for this limitation, what can be done to increase the
benefits of multi-task learning and why it can still be a promising approach.

7.1. Task relatedness
Caruana [8] argues that multi-task learning helps improve generalization when using related tasks.
Two tasks are defined to be related if they use the same variables to predict the outcome and if they
use those variables in the same way [8].

Using this definition, it is possible to explore the relatedness of the tasks by comparing the relative
feature importance between different pollutants. If two tasks (modelling two different pollutants)
depend stronger on the same set of features and less so on different features, the tasks is considered
highly related.

We used the permutation variable importance measure introduced by Fisher et al. [43] on the
baseline random forest regression models to calculate the feature importance for all of the training
samples. Figure 5 shows the feature importance calculated for the OpenSense dataset with 500 training
samples and figure 6 for the LAEI dataset with 3000 samples. For all the other training samples the
calculations show a very similar pattern of feature importance.

For the OpenSense dataset, the tasks appear to be less related, as the feature importance values vary
strongly between the pollutants (figure 5). Figure 6 shows that all pollutants, except PM2.5, depend
similarly on the features. It is therefore reasonable to assume that the tasks of modelling different
pollutants in this dataset are highly related.

The feature importance analysis does not paint a clear picture of how task relatedness translates
into performance gain from shared representation. In our experiments, models on both datasets benefit
from the multi-task approach even though the task relatedness, as measured by feature importance, is
higher for the LAEI dataset.

Figure 5. Feature importance for the OpenSense
dataset with 500 samples.

Figure 6. Feature importance for the London
Atmospheric Emissions Inventory dataset with

3000.

7.2. Feature selection
One possible explanation for this unclear relationship between task relatedness and the advantage of
multi-task learning could be the used feature selection procedure. As described in Section 3.3.1,
variables used for training the models have been selected from a large pool of 244 features generated
from OpenStreetMap. The selection procedure involved comparing the R2 scores of linear models built
using each of the features and including the best one.

We used an average over all pollutants to calculate the score for each feature. An alternative
approach, which can be explored in further research, would be to select important features for each
pollutant individually and then consider an aggregate of those features for the multi-task learning.
However, because a shared metric was used only features that could on average predict all pollutant
concentrations reasonably well were included in the pool of variables to be used for the multi-task
learning models.

This selection procedure had two important consequences: First, it introduced a bias to the feature
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importance metric as calculated in Section 7.1. All features that would offer very accurate models for
only one of the pollutants, but not for the others, are not selected. Since only those features were
selected that on average predicted concentrations for all pollutants reasonably well, the tasks are more
related when comparing their feature importance than if a different feature selection method was used.

Second, selecting features that on average predict all pollutants well is in itself a form of multi-task
learning. In fact, sparsity-enforcing regularization techniques have been used for linear models in the
context of multi-task learning [22, 44]. Arguably feature selection is also one of the core mechanisms
how multi-task learning improves prediction scores in multilayer perceptron models [8]. While the
multi-task learning models considered for modelling pollutants still benefit from a shared hidden
representation, the single-task models are not truly independent, as they all depend on features that
have been selected using a multi-task method, possibly decreasing the observed difference.

7.3. Data quality
As discussed in Section 3.1.4 measurements for two of the pollutants within the OpenSense dataset are
possibly noisy and only one pollutant offers high quality measurements. In contrast, the LAEI offers
estimated concentrations of air pollutants which are not directly measured, but instead modelled using
a atmospheric dispersion model.

As neither of the datasets offers high-quality data from physical monitoring stations of air pollutant
concentrations, the question arises of how well the findings would generalize to such a hypothetical
dataset. While a definitive answer can only be given by examining multi-task learning on such a
dataset, there are some arguments that can be made on why our approach would still work.

As can be seen on the OpenSense dataset, multi-task learning increases the fit of the model
compared to a similar single-task learning model for all pollutants, including ultrafine particles for
which high-quality measurements are available. Thus, since including noisy measurements can
improve the prediction accuracy of high-quality data when modelling in a multi-task learning context,
it is reasonable to believe that a similar effect would be observed if high-quality data was used as the
additional tasks.

The LAEI dataset, on the other hand, offers only modelled concentrations. While air dispersion
models will always offer a simplified model of the emissions and spread of air pollution, they generate
accurate general trends, especially when only long averaging periods of one year or more are
considered. Thus, a similar benefit of multi-task learning can be expected when accurately measured
data is used.

Both single- and multi-task models are trained on equal data quality. The results show that multi-
task learning models offer better prediction performance than similar multilayer perceptron single-task
models. It is, however, unclear how the difference would manifest when comparing the predictions
from models trained on accurate air pollution data from high-end monitoring stations. Especially when
the sources of error are not independent, the multi-task models might only learn the noise patterns in
the data. While the findings on the OpenSense data indicate this not to be the case, additional
experiments using poor-quality data with independent sources of error could rule out this possibility.

7.4. Sample size
It is a known observation in machine learning that small sample sizes often lead to overfitting,
especially when using complex models like neural networks as compared to traditional models (e.g.
linear regression) [45, 46]. This limitation makes applying complex models in the context of LUR
difficult, since high-quality measurements are often a limited resource as mentioned in Section 1.

Our results clearly confirm this pattern, as more training samples lead to better prediction scores for
both datasets and all considered model types. When comparing multi-task and single-task learning
models, the advantage of a shared representation approach only becomes apparent with sufficient
training data. For the LAEI dataset the largest positive effect appears for 3000 training samples, while
with less data single-task models do not differ significantly from multi-task models or perform even
better. Multi-task learning shows a significant advantage for the 300 and 500 samples subset of the
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OpenSense dataset.
Large data requirements make the application of multitask learning models for LUR difficult, as

datasets containing air pollutant concentrations usually contain limited numbers of samples.

8. Conclusions and future work
In this work, we assessed multi-task learning for LUR. As pollutants are often monitored together, the
potential dependence on the same set of factors makes modelling several pollutants simultaneously an
attractive possibility. The results do indeed show that multi-task learning models perform significantly
better than similar multilayer perceptron single-task learning models when using a large enough
training set.

However, for both datasets that have been considered -the London Atmospheric Emissions
Inventory and the OpenSense dataset, random forest regression still outperforms the multi-task
learning models for all training samples. A possible direction for future research is the application of
multitask learning using tree-based ensemble methods [47]. Nonparametric ensemble models might
overcome the large data requirements of multilayer perceptron models while still benefiting from
shared information between different pollutants.

In order to decrease the data requirements for multilayer perceptron models it might be worthwhile
to explore pretraining with weak labels. Interpolation methods may be used to produce dense maps of
pollution estimates from measurements which can be used as weak labels. These labels can be used to
train the model. Thereafter, the model can be fine-tuned using only labels from real measurements.
This training procedure might improve multi-layer perceptron model performance for LUR, where
there are often relatively few data points.

Another promising research direction is the application of multi-task learning for deep-learning
based LUR models like MapLUR [18]. This model has shown better performance than random forests
on the dataset of the London Atmospheric Emissions Inventory for single-task learning and our results
suggest that multi-task learning can further increase performance.

Future work should also explore different feature selection methods, as more liberal selection
procedures might allow for higher variability in feature dependence between different pollutants and
consequently multi-task learning might benefit even more from a shared representation. Especially
sparsity-enforcing regularization techniques used for multivariate linear regression [22, 44] might be a
promising approach to building LUR models using multi-task learning.

As high-quality air pollution datasets mostly contain only a limited number of measurement
locations, the experiments have been performed on data obtained from low-cost sensors in the case of
the OpenSense dataset and modelled air concentrations using an atmospheric dispersion model in the
case of the London Atmospheric Emissions Inventory. An important direction for future research
would be to compare multi-task learning and single-task learning on a large-scale dataset containing
high-quality measurements.

Overall, the multi-task learning method using multilayer perceptrons shows better performance
than similar single-task models, while still being outperformed by Random Forest models. However,
this work demonstrates the potential of learning shared representations for better air pollution
prediction performance, which can be explored in further research using different model types.
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Abstract

Climate models are an important tool for the assessment of prospective climate
change effects but they suffer from systematic and representation errors, especially
for precipitation. Model output statistics (MOS) reduce these errors by fitting the
model output to observational data with machine learning. In this work, we explore
the feasibility and potential of deep learning with convolutional neural networks
(CNNs) for MOS. We propose the CNN architecture ConvMOS specifically de-
signed for reducing errors in climate model outputs and apply it to the climate
model REMO. Our results show a considerable reduction of errors and mostly
improved performance compared to three commonly used MOS approaches.

1 Introduction

An important source of information for the prospective effects of climate change are numerical
climate models such as general circulation models (GCMs) and regional climate models (RCMs).
However, these climate models often exhibit systematic errors and deficiencies in representations
of climate processes which limit the quality of the resulting projections. This problem is especially
pronounced for precipitation. It is therefore common to apply model output statistics (MOS), which
are statistical post-processing techniques to reduce these errors. MOS approaches correct the modeled
precipitation to correspond more closely to observational data. This allows us to study future climate
conditions and the effects of climate change more accurately especially at a local scale [1].

There are two general approaches to MOS – distribution-wise MOS and event-wise MOS. Distribution-
wise MOS corrects the distribution of the simulated variable by mapping means and other distribution
characteristics to the observational distribution. Event-wise MOS directly links the simulated and
observed time series through statistical models, which generally performs better than distribution-wise
MOS [2]. We therefore consider event-wise MOS in this work.

A number of approaches to event-wise MOS have been used in previous work. A very simple
approach is local scaling where an individual Linear Regression is fitted per location of interest,
which has shown to work reasonably well [2]. Other works propose non-local MOS approaches,
where for each location the MOS is aware of the climatic conditions at nearby locations. This can
lead to a large number of predictors for the MOS, which is why dimensionality reduction techniques,
e. g. principal component analysis (PCA), are often applied [1, 2, 3, 4]. Non-local MOS has been
done with a range of machine learning models namely Linear Regression [1, 2], Random Forests
(RFs) [3, 4], Support Vector Machines (SVMs) [3, 5, 6], and Multilayer Perceptrons (MLPs) [7].

While these methods have proven to be effective, we believe that there is considerable potential in
exploring the use of advanced deep learning techniques. Especially convolutional neural networks
(CNNs) [8] have shown proficiency in tasks with geospatial data [9, 10], which indicates potential for
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novel non-local MOS with this type of neural network. We believe that their ability to learn spatial
patterns is well suited for reducing systematic errors in climate models. It is therefore promising to
assess how this can be used for MOS and whether there is potential for performance improvements.

In this work, we examine the feasibility and potential of convolutional deep learning models as
MOS. Thus, we propose the CNN architecture ConvMOS specifically designed for climate MOS and
apply it to correcting simulated precipitation of the RCM REMO [11, 12, 13]. Our results show that
ConvMOS can reduce errors considerably, providing mostly better performance than three commonly
used MOS approaches. This suggests that our proposed approach is feasible and promising.

2 Dataset

Model Data For our study we use daily data of the hydrostatic version of the RCM REMO (version
REMO2015) [11, 12, 13] for the period 2000 to 2015. Our study area has been defined over an
extended German region with 0.11◦ × 0.11◦ resolution covering the area from −1.43◦ to 22.22◦ E
and 42.77◦ to 57.06◦ N (GER-11). We use the following 22 MOS predictors from REMO: Daily
mean, minimum and maximum temperature 2m above surface [K], u- and v-wind 10m above
surface [ms−1], sea level pressure [Pa] and total precipitation (convective + large scale + snow-
fall) [mm]. Further, the temperature [K], geopotential height [m], and specific humidity [kg kg−1] in
the pressure levels of 100, 200, 500, 850 and 950 hPa are used. For elevation information the dataset
GTOPO (0.009◦ × 0.009◦) [14, 15] is used by REMO, which we also employ as another predictor
for ConvMOS. More specifics about the climate model can be found in Appendix A.

Observational Data For observational data we use the gridded dataset E-OBS [16] version 19.0e
which is based on an ensemble of interpolated station data [17]. Since the station density varies
in space and time, the interpolation of the station data has some uncertainty [17]. Amongst other
variables E-OBS provides daily precipitation sums at a 0.1◦ resolution, which is our predictand. The
grids of the model and observational data are interpolated bilinearly to the same 0.11◦ grid [18].

3 Deep Learning for Climate Model Output Statistics

To explore the use of deep learning and CNNs as MOS we propose the architecture ConvMOS.

Idea The basic idea of ConvMOS stems from two potential sources of error in climate models: First,
specific location errors which typically stem from poor grid point representation of topography [1, 2].
Second, systematic errors originating from parameterization, which replaces too complex or too
small-scale processes with simplified variants. For precipitation, cloud and rainfall formation is based
on parameterization, leading to an overestimation over land [1].

To efficiently reduce both types of errors we combine per-location model parameters, which can
learn the characteristics of a specific location, and global model parameters, which can learn spatial
precipitation patterns to efficiently help reduce systematic errors in climate models. Thus, we define
two module types: Local network and global network.

Local Network The local network module contains individual model parameters for each location
in the study area, allowing it to reduce specific local errors. It is implemented with a linearly
activated 1D CNN where the input at each time is first reshaped so that it has the dimensions
(height ∗ width, predictors) instead of (predictors, height,width). In conjunction with setting the
kernel size equal to the number of predictors, this allows us to group the convolution for each input
channel (i.e. each location) so that each location is convolved with its own set of filters for all
predictors. Thus each location has its own model parameters, in which location characteristics can be
encoded. This module is not provided with elevation data as it would be static across all times for
each location. The output of the local network is a grid with precipitation residuals for each location.

Global Network The global network learns spatial patterns in precipitation and other predictors.
This can be done efficiently with CNNs [19]. The module contains a 2D CNN with 4 layers which
learns useful filters for the reduction of systematic errors across the study area using all predictors.
Starting from the first layer, the layers have 4, 8, 16, and 1 filters and kernel sizes of 9, 1, 5, and 3
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Figure 1: Architecture of ConvMOS.

respectively. Each convolutional layer has its padding parameter set to half its kernel size (rounded
down to the nearest whole number) which leads to the output of each layer having the same width
and height as its input. All layers use the ReLU [20] activation function, a stride of 1, and a dilation
of 1. As with the local network, this module also outputs a grid of precipitation residuals.

Architecture The architecture is depicted in Figure 1. It expects a 3D input with dimensions
(predictors, height,width) for each time step. The data is sequentially passed through three modules
(depicted in gray) where each module adjusts the precipitation input with the goal of reducing the error.
The architecture employs so called “shortcut connections” for each module where each module’s
output is added to its precipitation input, which eases training for neural networks [21]. We first apply
a local network to correct any specific local errors. Thereafter, the global network aims to reduce any
remaining systematic errors across the study area. Finally, another local network makes sure that
the systematic corrections of the global network are not introducing new local errors. The training
procedure is described in Appendix B.

4 Experiment

To evaluate ConvMOS we apply it to the data described in Section 2. We also apply three other
commonly used MOS approaches, a local Linear Regression, a non-local Principal Component
Regression approach and a non-local RF method, for comparison.

Local Linear Regression (Lin) For each cell in the study area a separate Linear Regression is fitted
where the predictor is the simulated precipitation and the predictand is the observed precipitation.
This approach is local in that each Linear Regression is unaware of conditions in nearby cells [2].

Non-local Principal Component Regression (NL PCR) Instead of only using the large-scale con-
ditions at a specific location for a Linear Regression, we provide all available predictors at each nearby
location which is at most ±5 cells away in either direction on the grid. To reduce the dimensionality
of the predictors, we apply a supervised PCA [22], which is explained in Appendix D [2].

Non-local Random Forest (NL RF) For the non-local Random Forest MOS approach we provide
all available predictors of each location ±5 cells away, as with the non-local PC regression approach.
Following [3] and [4] we also apply a supervised PCA (see Appendix D). Each location is fitted with
its own RF. Hyperparameters are optimized at each location individually (see Appendix C).

Experimental Setup We split the 16 years of daily data into a training (2000–2009), a validation
(2010), and a test set (2011–2015). All predictors are standardized based on the training set so that
they have a mean of zero and a standard deviation of one. We tried different hyperparameters for our
architecture and selected the ones presented in this work based on the validation set performance. All
results reported in the following are based on the unseen test set after fitting the MOS on the training
set. For evaluation we use a number of common MOS metrics, namely RMSE, Pearson Correlation,
Skill Score [23], R2, and bias to assess different aspects of MOS performance. ConvMOS is trained
10 times since its fitting method is, in contrast to the linear comparison methods, non-deterministic.
This results in slight performance differences for each fitted instance. Despite its inherent randomness,
the RF method is only calculated once since this computation already took over four days for our
study area with 15 CPU cores in parallel.
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Table 1: Experimental results. Mean metrics on the test set for all study area locations available in
observational data. All means and standard deviations are rounded to two decimal places. Correlation
mean is calculated with Fisher’s z-transformation [24].

MOS
Metric RMSE Corr. Skill R2 Bias

None 5.32 0.49 0.93 −28.24 0.31

Lin 3.77 0.49 0.93 0.23 0.03
NL PCR 3.37 0.62 0.92 0.36 0.02
NL RF 3.39 0.61 0.81 0.36 0.03
ConvMOS 2.99 ± 0.01 0.72 ± 0.00 0.92 ± 0.00 0.49 ± 0.01 −0.10 ± 0.06
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Figure 2: RMSE of precipitation in mm for the test set across the study area. Note that there are
some cells in REMO raw with considerably higher RMSE than 10mm but we limited the colorbar’s
extent for better visibility of the general performance.

Results Table 1 shows the mean metrics on the test set for all study area locations available in
observational data (i.e. land points). All MOS approaches improve all metrics considerably when
compared to applying no MOS, except for the skill score. This means that the precipitation distribution
of REMO is already rather close to that of the observations with a skill score of 0.93 and can barely
be improved by the MOS methods. ConvMOS is showing the best performance of all tested MOS
approaches for the metrics RMSE, correlation, and R2. This indicates that our approach is able to
estimate precipitation more accurately than all considered comparison methods. The skill score is
very close but still reduced slightly by 0.01 compared to the best value. ConvMOS shows less bias
than REMO but it seems to have a tendency to underestimate precipitation. The other approaches
to tend to overestimate, but to a lesser extent. ConvMOS is also showing rather stable performance
as can be seen on the standard deviations in Table 1 despite its non-deterministic fitting procedure.
We also ran this experiment with precipitation as the only climate predictor as some prior work has
done [2, 3, 4, 6] but found all methods to perform worse without additional predictors.

Figure 2 visualizes RMSEs for all locations with observational data across the study area for the raw
REMO output and ConvMOS. We can see that our approach reduces error across most locations.
Especially the precipitation in the Alps and other mountainous regions is improved considerably.

5 Conclusion

In this work we explored the feasibility and possibilities of deep learning MOS. To this end, we
proposed the CNN-based ConvMOS architecture specifically designed to reduce errors in climate
model outputs, which we applied to the RCM REMO. All in all, the initial results for ConvMOS
seem promising. Our MOS approach is able to improve the daily precipitation data considerably.
Improvements in MOS allow for more accurate climate data especially at high spatial resolutions.
While our approach mostly provides better performance than the other standard approaches considered
here, additional comparisons have to be made in the future with other MOS techniques and data from
different climate models.
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Table 2: Search space for the RF hyperparameter random search.
Hyperparameter Search space

n_estimators 10 – 2000
max_features 0.01 – 1.0
max_depth 10 – 110
min_samples_split 2 – 10
min_samples_leaf 1 – 10
bootstrap True or False

A Climate Model Data

For our study we use daily data of the hydrostatic version of the RCM REMO (version
REMO2015) [11, 12, 13] for the period 2000 to 2015. REMO is based on the Europa Modell
[11] with the model of the GCM ECHAM4 [25] with some improvements implemented since then
(e.g. [26, 27, 28, 29]). The reanalysis ERA-Interim (0.75◦ × 0.75◦) [30, 31] is used as forcing data,
providing the lateral boundary conditions. The atmosphere’s vertical resolution is represented by 27
hybrid levels with increasing distance to the top of the atmosphere. In lower levels they follow the
topography [32]. As mentioned in the main paper the dataset GTOPO (0.009◦ × 0.009◦) [14, 15] is
used by REMO for elevation information. Both model and observational data for the MOS methods
is provided at 0.11◦ resolution. The data is arranged on a 2D grid with 121× 121 cells or locations.

B ConvMOS Training Details

The architecture is fitted with the Adam optimizer [33], the mean squared error (MSE) as the loss
function and a learning rate of 0.001. Only errors at locations where observational data is available
were incorporated for the MSE. Training is conducted for at most 100 000 epochs. Early stopping is
used to stop training when the validation MSE is not improving for more than 40 epochs in a row,
preventing considerable overfitting [34].

C Random Forest Hyperparameter Optimization

Each location in our study area has its own RF instance for MOS which uses the RandomForestRe-
gressor from scikit-learn [35]. Since RF performance depends considerably on its hyperparameters
we look for optimal values with a random search. For each cell we train 20 RF instances on the
training set with hyperparameter values sampled randomly from the search space shown in Table 2.
Each instance is evaluated on the validation set. The RF instance with the best R2 is then applied on
the test set.

D Supervised Principal Component Analysis

Like other previous MOS approaches [1, 3, 4] we preprocess our predictors for the standard MOS
methods to reduce dimensionality and remove potentially unhelpful information. Like [3] and [4]
we use supervised PCA [22]. First, we select the best predictors based on a univariate regression.
How many of the predictors are retained is set according to a grid search with our validation data. In
this search we try all values between only choosing the single best predictor and using the 30 best
predictors. Then, PCA reduces the dimensionality of these predictors, keeping the first components
that explain 95% of the variance [3].
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Abstract
Climate models are the tool of choice for scientists researching climate change. Like
all models they suffer from errors, particularly systematic and location-specific rep-
resentation errors. One way to reduce these errors is model output statistics (MOS)
where the model output is fitted to observational data with machine learning. In this
work, we assess the use of convolutional Deep Learning climate MOS approaches
and present the ConvMOS architecture which is specifically designed based on the
observation that there are systematic and location-specific errors in the precipitation
estimates of climate models. We apply ConvMOS models to the simulated precipita-
tion of the regional climate model REMO, showing that a combination of per-location
model parameters for reducing location-specific errors and global model parame-
ters for reducing systematic errors is indeed beneficial for MOS performance. We
find that ConvMOS models can reduce errors considerably and perform significantly
better than three commonly used MOS approaches and plain ResNet and U-Net mod-
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els in most cases. Our results show that non-linear MOS models underestimate the
number of extreme precipitation events, which we alleviate by training models spe-
cialized towards extreme precipitation events with the imbalanced regression method
DenseLoss.While we consider climateMOS, we argue that aspects of ConvMOSmay
also be beneficial in other domains with geospatial data, such as air pollutionmodeling
or weather forecasts.

Keywords Neural networks · Climate · Model output statistics

1 Introduction

An important source of information for the prospective effects of climate change are
numerical climate models such as general circulation models (GCMs) and regional
climate models (RCMs). However, these models often exhibit systematic errors and
deficiencies in representations of climate processeswhich limit the quality of the result-
ing projections. Especially the hydrological cycle is subject to uncertainty, amplifying
this problem for precipitation. It is therefore common to apply model output statistics
(MOS), which are statistical post-processing techniques to reduce these errors. MOS
correct the modeled precipitation to correspond more closely to observational data.
With climate change becoming a more and more severe issue, we believe that it is
important for the data mining community to contribute to the global effort towards
assessing and combating climate change by further improving MOS performance
both in the mean and for extreme events. Better MOS allows us to study future climate
conditions and effects of climate change more accurately (Paeth 2011).

Currently used climate MOS approaches typically rely on standard methods from
statistics and machine learning like Linear Regression (Paeth 2011) and Random
Forests (RFs) (Noor et al. 2019). For each location of interest a separatemodel instance
is fitted to reduce errors in precipitation. These models are either local when they use
large-scale atmospheric conditions at that specific location or non-local, when they
also consider conditions at locations nearby.

In this work, we aim to further bridge the gap between climate science and machine
learning by assessing the use of convolutionalDeepLearning climateMOSapproaches
and designing our novel climate MOS architecture ConvMOS which considers the
nature of typical errors present in precipitation estimates of climate models: (i)
location-specific errors stemming from poor grid point representation of land sur-
face characteristics, e.g. topography (Paeth 2011) or great lakes (Samuelsson et al.
2010) and (ii) systematic errors originating from the use of simplified climate pro-
cesses, as is often the case for cloud and rainfall formation (Paeth 2011). To efficiently
reduce both types of errors, ConvMOS—as shown in Fig. 1—combines per-location
model parameters, which learn to reduce errors specific to a location, and global model
parameters, which learn spatial precipitation patterns to effectively reduce systematic
errors in climate model outputs. Our architecture composition studies (Sect. 5.2 and
Appendix A.2) show that such parameter combinations improve climate MOS perfor-
mance in practice. We also consider and evaluate other popular CNN architectures for
climate MOS, namely ResNets (He et al. 2016) and U-Net (Ronneberger et al. 2015).
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Fig. 1 ConvMOS: Systematic and location-specific errors in climate model outputs are reduced with our
Deep Learning architecture that combines global and per-location parameters

We apply the approaches to correcting simulated precipitation of the RCM
REMO (Majewski 1991; Jacob 2001; Jacob et al. 2001) and show that ConvMOS
models reduce errors considerably, providing significantly better performance than
the commonly used MOS approaches local Linear Regression (Eden and Widmann
2014), non-local Principal Component Regression (Eden and Widmann 2014), and
non-local Random Forest (Sa’adi et al. 2017; Noor et al. 2019) in most cases. Addi-
tionally, we find that ConvMOS models typically perform better in comparison to
plain ResNets or U-Net. Our results also show that all considered non-linear Deep
Learning models underestimate the number of extreme precipitation events more than
REMO and linear approaches. To alleviate this, we train ConvMOS models special-
ized towards estimating extreme precipitation events with the imbalanced regression
method DenseLoss (Steininger et al. 2021), showing that such MOS models are bet-
ter at estimating extreme precipitation events. Additional analysis is provided in the
Appendix, where we analyze the training duration of the considered MOS techniques
as well asMOS results over time. For this, we find no clear temporal error trends in our
setting, suggesting that MOS approaches do not necessarily have to be updated over
time. While we validated our approach on climate MOS, we argue that aspects of the
ConvMOS architecture may also be beneficial for other applications with geospatial
data, which is especially common in environmental tasks. Code and REMO data is
available.1

We make the following contributions:

• We present a novel convolutional Deep Learning architecture for climate MOS
ConvMOS, consisting of local and global network modules.

• We show with architecture composition studies (Sect. 5.2 and Appendix A.2) that
the combination of per-location and global model parameters does indeed improve
climate MOS performance.

• We compare ConvMOS to three commonly used climate MOS approaches and
two popular CNN models, finding that our approach performs significantly better
in most metrics.

1 https://github.com/SteiMi/convmosAnearly versionof thisworkwaspresented atNeurIPS2020Tackling
Climate Change with Machine Learning Workshop (Steininger et al. 2020).
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• WeassessConvMOSmodels specialized at estimating extremeprecipitation events
with the imbalanced regressionmethodDenseLoss to allow for improved estimates
for extreme events.

In Sect. 2 we discuss related research. Sect. 3 describes the data we used. We
describe our proposed ConvMOS architecture for climate MOS in Sect. 4. In Sect. 5
wedescribe our experimental evaluation and its results. Sects. 6, and7discuss thiswork
and consider its broader impact, respectively. Finally, Sect. 8 provides a conclusion.

2 Related work

The following introduces related prior work on spatio-temporal modeling, the climate
MOS task considered in this work, and fully convolutional models which are related
to the architecture proposed in this work.

2.1 Spatio-temporal modeling

In this work, we consider a combination of a climate model with machine learning
techniques in order to provide spatio-temporal predictions of precipitation. While this
is a standard approach in this particular domain, there are also other approaches to
spatio-temporal modeling.

One approach is modeling spatio-temporal autocorrelation. Specific techniques
includeLASSO-VAR(Cavalcante et al. 2017), trainingMultilayerPerceptrons (MLPs)
with entropy-based criteria (Ceci et al. 2019), or suitable feature extraction techniques
in conjunction with tree models (Corizzo et al. 2021). There are also models which
combine non-parametric tree models with parametric models for distribution tails in
order to improve forecasting of extreme values (Gonçalves et al. 2021), which is
similar in goal but different in technique to our experiment using a sample weighting
technique for better extreme value estimation in Sect. 5.7.

Spatio-temporal forecasts are also often modeled with Deep Learning in domains
like air pollution prediction, with approaches that combine temporal LSTM (Long
Short-Term Memory) (Hochreiter and Schmidhuber 1997) layers with, for example,
spatial attention (Shi et al. 2021), nearest neighbor approaches (Qin et al. 2019),
or convolutional neural networks (CNNs) (Zhang et al. 2020). This combination of
different model types for spatial and temporal aspects bears some resemblance to
the approach proposed in this work, where local and global model parameters are
combined to model different spatial aspects (location-specific and global, systematic
errors).

The difference between the climate MOS task considered in this work and the
aforementioned spatio-temporal modeling approaches is, that, strictly speaking, we
do not consider climate MOS to be a forecasting task from a machine-learning-view.
The temporal dynamics required for forecasts are entirely handled by the climate
model. A MOS approach does not directly need to forecast future states, but only
adjust the current state provided by the climate model. One may incorporate the time
dimension in climateMOS approaches, but it is uncommon andmay not necessarily be
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beneficial, which is why this work focuses on traditional non-temporal climate MOS.
Nonetheless, spatio-temporal models may benefit from also consider a combination
of global and local parameters for their spatial and maybe even temporal parts in order
to efficiently learn both global, systematic and location- or time-specific patterns.

2.2 Climatemodel output statistics

There are two approaches to climate MOS—distribution-wise and event-wise MOS.
Distribution-wise MOS corrects the simulated variable’s distribution by mapping dis-
tribution characteristics (e.g. means) to the observed distribution. Event-wise MOS
links simulated and observed time series through statistical models, which generally
performs better than distribution-wise MOS (Eden and Widmann 2014). Thus, this
work considers event-wise MOS.

A simple approach used by Eden and Widmann (2014) is local Linear Regres-
sion where an individual Linear Regression is fitted per location of interest, which has
shown towork reasonablywell.Most otherworks propose non-localMOSapproaches,
where for each location the MOS is aware of climatic conditions at nearby locations.
This can lead to a large number of predictors for the MOS, which is why dimen-
sionality reduction techniques, e.g. principal component analysis (PCA), are often
applied (Paeth 2011; Eden and Widmann 2014; Sa’adi et al. 2017; Noor et al. 2019).
Non-local MOS has been done with a range of machine learning models namely
Linear or Principal Component Regression (Paeth 2011; Eden and Widmann 2014),
Random Forests (RFs) (Sa’adi et al. 2017; Noor et al. 2019), Support VectorMachines
(SVMs) (Sa’adi et al. 2017; Pour et al. 2018; Ahmed et al. 2019), and Multilayer Per-
ceptrons (Moghim and Bras 2017).

While these methods have proven to be effective, we believe that there is con-
siderable potential in exploring advanced Deep Learning techniques. Especially
CNNs (LeCun et al. 1998) have shown proficiency in tasks with geospatial data,
where each input “pixel” relates to a geographic location on Earth and provides infor-
mation on the state there like prior precipitation for precipitation forecasts (Shi et al.
2017) or land-usage for air pollution estimation (Steininger et al. 2020). This indicates
potential for novel non-local climate MOS with this type of neural network.

2.3 Fully convolutional networks

A core aspect of the ConvMOS architecture is the use of fully convolutional networks.
These are neural networks that consist solely of convolutional layers.

Fully convolutional networks were first introduced for semantic segmentation of
images in the computer vision domain (Long et al. 2015). They are useful for tasks
where both the input and the output are image-like, meaning that pixels or cells are
arranged in a grid. This is the case in computer vision tasks like semantic segmentation
or instance segmentation (He et al. 2017). A particularly notable fully convolutional
network is U-Net (Ronneberger et al. 2015) that was proposed for biomedical image
segmentation and has been applied to many problems like image-to-image translation
since (Kandel et al. 2020).
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Fully convolutional networks are also suitable for geospatial environmental
machine learning tasks like climate MOS, since the locations of a study area can
be arranged in an image-like grid with the different environmental variables (e.g. pre-
cipitation) being channels of this image. One domain where they have shown good
results is statistical downscaling of climate data by improving its spatial resolution
through fully convolutional super-resolutionCNNs (Vandal et al. 2017;Liu et al. 2020).
Similarly, fully convolutional networks have been used successfully for precipitation
nowcasting, which is short-term forecasting of rainfall (Agrawal et al. 2019). These
positive results for similarly structured data suggests that this model type can also be
beneficial for climate MOS. We believe that their ability to learn spatial patterns is
also well suited for efficiently reducing systematic errors in climate models. Recent
work outside of the climate domain in the related field of post-processing ensemble
weather forecasts has also shown promising results by applying fully convolutional
CNNs and locally connected networks that are not translation invariant (Grönquist
et al. 2021). Thus, using CNNs in combination with per-location model parameters,
which can reduce location-specific errors, is a promising approach for use in climate
MOS.

3 Dataset

For evaluation we use the model and observational data presented next.
Model DataWe use daily data of the regional climatemodel (RCM)REMO (hydro-

static version REMO2015) (Majewski 1991; Jacob 2001; Jacob et al. 2001) for the
period 2000 to 2015. REMO is based on the Europa Modell (Majewski 1991) and
the model physics of the GCM ECHAM4 (Roeckner 1996) with further improve-
ments (e.g. Hagemann (2002); Semmler (2002); Kotlarski (2007)). The reanalysis
ERA-Interim (0.75◦ × 0.75◦) (Dee 2011; Berrisford et al. 2011) is used as forcing
data, providing the lateral boundary conditions. The atmosphere’s vertical resolution
is represented by 27 hybrid levels with increasing distance to the atmosphere’s top.
In lower levels they follow the topography (Teichmann 2010). Our study area spans
over an extended German region with 0.11◦ resolution covering the area from -1.43◦
to 22.22◦ E and 42.77◦ to 57.06◦ N (GER-11). This grid does not have 215 × 130
cells as one would think based on area and resolution but instead 121 × 121 cells
since the grid is not axially parallel to latitudes or longitudes due to REMO’s usage
of rotated coordinates for numerical reasons (Lüthi and Heinzeller 2017). We use 23
MOS predictors (see Table 1), which all stem from REMO except for the elevation
from the GTOPO dataset (0.009◦ × 0.009◦) (DAAC 1996; Gesch et al. 1999). REMO
also uses GTOPO’s elevation.

Observational Data For observational datawe use the gridded dataset E-OBS (Hay-
lock et al. 2008) version 19.0e. It is based on an ensemble of interpolated station data
and is therefore subject to some uncertainty, as station density varies in space and
time (Cornes et al. 2018). Our predictand is E-OBS’s daily precipitation sums at 0.1◦
resolution. Both model and observational data are interpolated bilinearly to the same
0.11◦ grid (Schulzweida 2019).
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Fig. 2 Local network module’s structure. H and W represent study area height and width. P is the number
of predictors. Depiction is not to scale

4 ConvMOS

To explore the combination of global and per-location model parameters with CNNs
as MOS we propose the architecture ConvMOS.

4.1 Idea

The basic idea of ConvMOS is derived from two sources of error in climate models:
First, location-specific errors which often stem from poor grid point representation of
topography. This representation can lead to abrupt topographic elevation, potentially
influencing processes affecting precipitation (Paeth 2011; Eden and Widmann 2014).
Second, systematic errors originating from parameterization, which replaces too com-
plex or too small-scale processes with simpler variants. Cloud and rainfall formation
is based on parameterization, leading to precipitation overestimation over land (Paeth
2011).

To efficiently reduce both types of errors, we propose a model consisting of both
per-location model parameters, which can learn the characteristics of a specific loca-
tion, and global model parameters, which can learn spatial precipitation patterns to
efficiently help reduce systematic errors in climate models. Thus, we define two mod-
ules: local network and global network.

4.2 Local network

The local network module contains individual model parameters for each location in
the study area, allowing it to reduce specific local errors. For ease of integration into the
neural network architecture, we do not use a separate model (e.g. a linear regression)
per location. Instead, we implement this through reshaping and a linearly activated 1D
CNN, as is depicted in Fig. 2. The input at each time of size (predictors, height,width)
is first reshaped so it has the dimensions (height ∗ width, predictors). In conjunction
with setting the kernel size equal to the number of predictors, this allows us to group
the convolution for each input channel (i.e. each location) so that each location is
convolved with its own set of filters for all predictors. Thus, each location has its own
model parameters, in which location characteristics can be encoded. The 1D CNN
output is of shape (height ∗ width, 1) which we reshape to (1, height,width), giving
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Fig. 3 ConvMOS architecture with the composition ConvMOS-gggl, having three global and one local
network module

us the output of the local network module. This output can be interpreted as a grid
with per-location precipitation residuals. This module is not provided with elevation
data as it would be static across all times for each location.

This approach allows us to integrate per-location model parameters seamlessly into
a Deep Learning model. The naive alternative of using separate models per location
is harder to implement concurrently within an Deep Learning architecture running on
a GPU. For Deep Learning libraries such as PyTorch (Paszke et al. 2019), which we
use in this work, our module is simply another convolutional layer. This allows for
efficient training and inference.

4.3 Global network

The global network learns spatial patterns in precipitation and other predictors. This
can be done efficiently with CNNs (Vandal et al. 2017). The module contains a 2D
CNN with four layers which should be well suited for learning useful filters which
can reduce systematic errors across the study area. In addition to the local modules’
predictors, the global network is also provided with elevation data for each location.
In contrast to the per-location model parameters, this information is not static for the
filters of the 2D CNN since the filters are applied for all locations across the study
area. Starting from the first layer, the layers have 4, 8, 16, and 1 filters and kernel sizes
of 9, 1, 5, and 3, respectively. Each convolutional layer has its padding parameter set
to half its kernel size (rounded down to the nearest whole number) which leads to
each layer’s output having the same width and height as its input. All layers use a
stride and a dilation of 1. The first three layers use the ReLU (Nair and Hinton 2010)
activation function while the last layer is activated linearly. As with the local network,
this module also outputs a grid of precipitation residuals.

4.4 Architecture

The ConvMOS architecture consists of sequentially concatenated instances of global
and local network modules. Figure 3 depicts an example of a ConvMOS model.
ConvMOS expects a 3D input with dimensions (predictors, height,width) for each
time step. The data is sequentially passed through the modules (depicted in gray)
where each module adjusts the precipitation input with the goal of reducing the error.
The architecture employs so called “shortcut connections” for eachmodulewhere each
module’s output is added to its precipitation input, which eases training for neural net-
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works (He et al. 2016). In this work, we employ the depicted model with three global
networks followed by a local network module, which is the result of our architecture
composition study described in Sect. 5.2. We call this exact architecture composition
ConvMOS-gggl. The global networks aim to reduce any systematic errors across the
study area. Finally, the local network corrects any specific local errors and makes sure
that the systematic corrections of the global network are not introducing new local
errors. As precipitation cannot be negative we use a ReLU after the final shortcut
connection to force positive values. The architecture is fitted with the Adam opti-
mizer (Kingma and Ba 2014), the mean squared error (MSE) as the loss function, a
learning rate of 0.001, and a batch size of 128. Only errors at locations where obser-
vational data is available were incorporated for the MSE. Training is conducted for
at most 100000 epochs. Early stopping is used to stop training when the validation
MSE is not improving for more than 40 consecutive epochs, preventing considerable
overfitting (Caruana et al. 2001).

5 Experiment

To evaluate ConvMOS models, we apply them to the data described in Sect. 3. After
defining our experimental setup, we evaluate our hypothesis regarding the benefit
of combined per-location model parameters and global model parameters while also
finding ConvMOS’s best architecture composition for use in the experiment. We also
apply standard ResNet and U-Net CNN models in addition to three commonly used
MOS approaches, a local Linear Regression, a non-local Principal Component Regres-
sion approach and a non-local Random Forest method, for comparison and evaluate
them for general and seasonal performance. Thereafter, we assess ConvMOS mod-
els specialized towards estimating extreme precipitation events using the imbalanced
regression method DenseLoss. Additional analysis can be found in the Appendix,
where we analyze the training duration of the considered MOS approaches and eval-
uate MOS results over time, finding no clear temporal error trends which suggests
that—at least for the climate model and timespan considered in this work—MOS
approaches do not necessarily have to be updated over time.

5.1 Experimental setup

We split the 16 years of daily data into a training (2000–2009), a validation (2010),
and a test set (2011–2015). All predictors are standardized based on the training set
so that they have a mean of zero and a standard deviation of one. Target values are
not standardized and metrics are thus also computed on non-standardized data. The
hyperparameter values presented in this work for the local and global network mod-
ules of our ConvMOS architecture were selected based on preliminary tests using the
validation set. For evaluation, we use a number of common MOS metrics, namely
root-mean-squared error (RMSE), normalized RMSE (NRMSE), Pearson Correla-
tion, Skill score (Perkins et al. 2007), R2, and Bias to assess different performance
aspects. NRMSE divides the RMSE for each location in the study area by the dif-
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ference between the maximum and minimum observed precipitation there, which we
then multiply by 100 to receive a percentage. Skill score measures the common area
between the probability density function of the observed precipitation and the simu-
lated precipitation. To this end, data is binned (we use bins of 1 mm width as Perkins
did) and the Skill score is both distributions’ cumulative minimum value of each
binned value. Thus, a perfect Skill score would be 1. R2 describes the proportion of
variance explained by a model with 1 being a perfect score. Models with R2 lower
than 0 fit worse than the data’s mean. The Bias metric is the mean error. A positive
value indicates overestimation of precipitation while a negative value indicates the
opposite. MOS approaches with non-deterministic fitting methods, i.e. ConvMOS,
ResNets, U-Net and the non-local Random Forest, are trained 20 times since per-
formance may differ per fitted instance. All reported mean Correlations use Fisher’s
z-transformation (Silver and Dunlap 1987). When we report significant differences in
the following, we confirmed this with a Wilcoxon signed-rank test (Wilcoxon 1945)
and a significance level of 0.05.

5.2 Architecture composition study

The key idea behind ConvMOS is the combination of per-location model parameters
and global model parameters which is why the architecture allows for different com-
binations of sequentially connected local and global network modules. In order to test
whether this combination is beneficial and to find the best module arrangement we
evaluate a number of composition candidates. We train 20 instances per composition
on the training set and test them on the validation set. To allow for early stopping we
remove the 2009 data from the training set, evaluate the model after each epoch on
this data and stop training when the MSE in 2009 does not improve for more than 40
epochs in a row.

Table 2 shows mean metrics on the validation set for all study area locations avail-
able in observational data (i.e. land points) of each architecture composition sorted by
RMSE. The architecture ConvMOS-gggl shows the best performance, surpassing all
other tested compositions in terms of RMSE,NRMSE, Correlation, andR2. Compared
to ConvMOS-glgl with the second lowest RMSE, ConvMOS-gggl’s RMSE and Bias
are not significantly different but its NRMSE, Correlation and R2 are significantly
better. ConvMOS-gggl’s Skill score is not significantly different from the best model
for that metric (ConvMOS-glll) as well as its Bias, which is also not significantly
different from the model with lowest Bias (ConvMOS-ggl). Overall, we consider
ConvMOS-gggl to provide the best performance, which is why we choose this com-
position for our experiment.We find that, considering the results of ConvMOS-ggl and
ConvMOS-gl, additional global network modules at the model’s front reduces errors
further, presumably since more complex spatial patterns can be learned. ConvMOS-
ggl performs significantly better than ConvMOS-gl in all metrics. ConvMOS-gggl
is significantly better than ConvMOS-ggl only in RMSE, NRMSE, and Correlation.
This suggests diminishing improvements with more global modules. The results also
show that the key idea behind ConvMOS—the combination of per-location and global
model parameters—can indeed improve performance in terms of RMSE, NRMSE,
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Correlation, and R2. The best architecture composition ConvMOS-gggl consists of
a combination of different modules. Furthermore, it performs significantly better in
terms of the aforementioned fourmetrics than the best composition consisting of solely
local or global modules, namely ConvMOS-gggg. Compositions consisting solely of
local modules or global modules typically perform worse than combinations of both.
Additionally, we find that having a local network module as the final module provides
relatively good NRMSE and R2 values. We hypothesize that the global module’s fil-
ters adjust precipitation in a similar way everywhere, leading to low performance for
these metrics in some areas, e.g. when there is only relatively minor precipitation.
An additional architecture composition study with U-Nets as global modules in the
Appendix (see Appendix A.2) further confirms most findings presented here.

5.3 Standard climate MOS approaches

For comparison, we also evaluate standard climate MOS approaches. Similar to prior
work (Paeth 2011; Sa’adi et al. 2017; Noor et al. 2019), we preprocess the standard
MOS methods’ predictors to reduce dimensionality and remove potentially unhelp-
ful information. Like Sa’adi et al. (2017) and Noor et al. (2019) we use supervised
PCA (Bair et al. 2006). For each location, we select the best predictors based on a
univariate regression. Local MOS models choose from 23 predictors for a specific
location while non-local models have another 23 predictors per considered nearby
location (i.e. 11 × 11 × 23 = 2783 predictors when considering locations at most 5
cells away). The number of retained predictors is set according to an exhaustive grid
search at each location that considers choosing the 1 to 30 best predictors with our
validation data. Then, PCA reduces the dimensionality of these predictors, keeping
the first components that explain at least 95 % of the variance (Sa’adi et al. 2017). All
non-Deep-Learning MOS methods described in the following use this preprocessing
scheme.

Local Linear Regression (Lin) For each cell in the study area, a separate Linear
Regression is fitted where simulated precipitation is the predictor and observed pre-
cipitation is the predictand. This approach is local in that each Linear Regression is
unaware of conditions in nearby cells (Eden and Widmann 2014).

Non-local Principal Component Regression (NL PCR) Instead of only using large-
scale conditions at a specific location for a Linear Regression, we provide all available
predictors at each nearby location (at most 5 cells away in either direction) on the grid.
This is feasible with the help of the supervised PCAwhich reduces the dimensionality
of the predictors (Eden and Widmann 2014).

Non-local RandomForest (NL RF) For the non-local RandomForest, we provide all
available predictors of each location ±5 cells away, as with NL PCR. The supervised
PCA applied for preprocessing is also what Sa’adi et al. (2017) and Noor et al. (2019)
used. Each location in our study area has its own RF instance for MOS which uses
scikit-learn’s RF (Pedregosa et al. 2011). Since RF performance depends considerably
on its hyperparameters, we look for optimal values with a random search. For each
cell we train 20 RF instances on the training set with hyperparameter values sampled
randomly from the search space shown in Table 6. Each instance is evaluated on the
validation set. The RF instance with the best R2 is then applied on the test set.
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5.4 Standard deep learning approaches

To further put our results in perspective, we also apply some common Deep Learning
architectures. Suitable architectures allow mapping an input image to a new output
image of the same size since this is structurally similar to our task of mapping an input
climate to a precipitation output with the same spatial dimensions. In our experiment,
we consider two commonly used architectures, namely ResNet (He et al. 2016) and
U-Net (Ronneberger et al. 2015).

ResNet ResNets are popularmodels in computer visionwhich iswhy it is interesting
to see how such a general architecture fares for climate MOS. ResNets are available
with different numbers of layers. In our experiment, we used ResNet18, ResNet34,
ResNet50, and ResNet101. We omit ResNet152 as its memory requirements are too
large for most GPUs available to us when trained on our task and we also found
no performance gains between larger and smaller ResNets anyways. The ResNets are
adapted for our task by changing the number of input features in the first convolutional
layer from 3 to 23 (one per predictor), removing the softmax activation necessary for
classification, and replacing the final fully connected layer with one that maps to 121 x
121 (height x width) outputs. Training is conducted in the same way as for ConvMOS
(i.e. same learning rate, optimizer, early stopping, loss, batch size).

U-Net Another important architecture for image-to-image tasks is U-Net. This
architecture has already shown its proficiency in the related task of post-processing
ensemble weather forecasts (Grönquist et al. 2021). Because of this similarity, we
use their U-Net variant that differs from the standard U-Net in a few aspects: (i) Up-
convolutions are replaced with bilinear interpolation followed by a 3 x 3 convolution
with stride 1 to avoid checkerboard artefacts. (ii) U-Net’s five levels are reduced to
three levels to avoid overfitting. (iii) The number of filters per convolution are halved
as they observed no improved performance with more filters.

Training is conducted in the same way as for ConvMOS (i.e. same learning rate,
optimizer, early stopping, loss, batch size).

We also evaluate the use of this U-Net within the ConvMOS architecture by using it
as a global networkmodule instead of the one presented in Sect. 4.3. For this approach,
we sequentially connect one global network module (here a U-Net) and one local
network module, which is the resulting composition of the architecture composition
study in the Appendix (see Appendix A.2). This is similar to the model proposed
by Grönquist et al. (2021) for their weather forecasting task but with a ConvMOS
local network module after the U-Net instead of their locally connected network. This
approach is denoted as ConvMOS-UNet or short CM-UNet in the following.

5.5 Results

Table 3 shows mean metrics on the test set for all study area locations available in
observational data. All MOS approaches improve all metrics considerably when com-
pared to applying no MOS, except for the Skill score. This suggests that REMO’s
precipitation distribution at land locations is already rather close to that of the obser-
vations with a Skill score of 0.93 and can barely be improved by MOS methods. All
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Table 3 Test set mean metrics for all locations having observational data

Metric
MOS RMSE (mm) NRMSE (%) Cor. Skill R2 Bias (mm)

REMO raw 5.32 15.83 0.49 0.91 −28.24 0.31

Lin 3.51 8.03 0.58 0.47 0.33 −0.03

NL PCR 3.37 7.80 0.62 0.81 0.36 0.02

NL RF 3.39 ± 0.00 7.82 ± 0.00 0.61 0.82 0.36 ± 0.00 0.03 ± 0.00

ResNet18 3.03 ± 0.01 7.04 ± 0.03 0.71 0.60 0.47 ± 0.01 −0.06 ± 0.07

ResNet34 3.06 ± 0.02 7.10 ± 0.04 0.71 0.61 0.46 ± 0.01 −0.07 ± 0.09

ResNet50 3.04 ± 0.01 7.05 ± 0.03 0.71 0.61 0.47 ± 0.00 −0.10 ± 0.10

ResNet101 3.03 ± 0.02 7.04 ± 0.04 0.71 0.64 0.47 ± 0.01 −0.04 ± 0.08

U-Net 2.97 ± 0.02 8.37 ± 0.12 0.74 0.82 −5.60 ± 0.88 −0.03 ± 0.08

CM-UNet 2.92 ± 0.01 7.01 ± 0.11 0.74 0.70 0.13 ± 0.22 0.01 ± 0.10

ConvMOS 2.93 ± 0.02 6.77 ± 0.05 0.73 0.89 0.51 ± 0.02 −0.10 ± 0.05

Bold values indicate the best value
Values rounded to two decimal places. Std. dev. for Correlation (always 0.00) and Skill score (between 0.00
and 0.03) omitted for brevity

Deep-Learning-based MOS approaches perform better than standard approaches in
terms of RMSE, NRMSE, Correlation and R2, except for U-Net’s NRMSE as well
as U-Net’s and CM-UNet’s R2. We find that U-Net and, to a lesser extent, CM-UNet
struggle at some locations as can be seen in the Appendix’ Fig. 7 for NRMSE. These
low performance locations typically have very low precipitation, with which these
models in particular have issues. The two ConvMOS models combining local and
global model weights—CM-UNet and ConvMOS—tend to perform best. CM-UNet
provides significantly better RMSE than all other approaches except for ConvMOS.
CM-UNet’s correlation is also significantly better than all other MOS methods except
for U-Net, while ConvMOS is also only closely behind. For NRMSE, Skill score, and
R2, ConvMOS is significantly better than all other MOS approaches. This indicates
that ConvMOS-based approaches can estimate precipitation more accurately than all
considered comparison methods. ConvMOS’s Skill score is close but still reduced
slightly by 0.02 compared to REMO’s. ConvMOS shows less Bias than REMO but
it seems to have a tendency to underestimate precipitation as most approaches do.
CM-UNet tends to show the lowest Bias. We also ran this experiment with precipita-
tion as the only climate predictor as some prior work has done (Eden and Widmann
2014; Noor et al. 2019) but found all considered methods to perform worse without
additional predictors.

Figure 4 visualizes RMSEs for all locations with observational data across the study
area for all assessed approaches using each method’s best instance with regard to test
RMSE. Similarly as in Table 3, all MOS methods can reduce errors from the original
REMO output. Especially precipitation in the Alps and other mountainous regions is
improved considerably. We find that CNN approaches tend to provide lower errors
compared to other MOS methods in general but also for seemingly difficult areas. All
standardMOS approaches show a bright yellow spot near the border between Italy and
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Fig. 4 RMSE of precipitation in mm for the test set across the study area.NoteREMO raw has cells with far
larger RMSE than 10 mm but we limited the colorbar’s extent for better visibility of general performance

Slovenia indicating high error and difficulty there, that is less pronounced for CNN
models. In the observational E-OBS data for this area we noticed that there tends to be
higher precipitation during the test time frame compared to the training time frame.
We hypothesize that especially the standard MOS approaches have difficulties due to
this shift in the precipitation distribution there.

Figure 5 depicts the daily precipitation distributions on the test set for all locations
with observational data for E-OBS’s observed precipitation, REMO’s precipitation,
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Fig. 5 Daily precipitation distributions on the test set. The 12 bins are 50mm wide, starting at 0mm. The
y-axis (number of events) is scaled logarithmically and the x-axis (precipitation) is compressed over 200
mm for brevity

and the outputs of each MOSmethod’s best model instance (i.e. lowest test RMSE). It
shows that REMO often simulates considerably more precipitation than ever observed
despite the good mean Skill score per location, showing the weaknesses of its hydro-
logical cycle. All MOS approaches underestimate the number of high precipitation
events (≥ 50 mm). NL RF and all Deep Learning models are particularly conservative
about their estimates, showing considerably fewer events with more than 100mm than
both linear MOS approaches and E-OBS. This indicates room for improvement when
considering relatively rare extreme precipitation events with non-linear MOS.

5.6 Seasonal results

To assess whether the MOS approaches fitted with training data covering entire years
exhibit seasonal anomalies, we also evaluate them per season. Table 4 shows the mean
RMSE per season on the test set for all study area locations available in observational
data. The seasons are DJF (December–February), MAM (March–May), JJA (June–
August), and SON (September–November).

The seasonal results show that all MOS methods reduce errors across the year.
REMO seems to have more problems estimating precipitation during summer and
autumn (i.e. JJA and SON) for this study area which also results in larger RMSE of
MOS outputs in these seasons. As with the overall RMSE, CM-UNet and ConvMOS
are providing the best RMSEacross the seasonswith similarly low standard deviations.
ConvMOS is slightly better in themore difficult JJA and SON seasonswhile CM-UNet
is best during DJF andMAM. This difference is statistically significant for all seasons.
All Deep Learning models that do not combine local and global weights are better
than the standard approaches but worse than ConvMOS and CM-UNet. NL PCR and
NL RF have similar performance and both tend to perform better than Lin.
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Table 4 Seasonal RMSE in mm for all locations with observational data

Season
MOS DJF MAM JJA SON

REMO raw 4.59 4.50 6.28 5.13

Lin 2.64 3.04 4.22 3.74

NL PCR 2.44 2.89 4.20 3.48

NL RF 2.48 ± 0.00 2.94 ± 0.00 4.18 ± 0.00 3.51 ± 0.00

ResNet18 2.14 ± 0.03 2.62 ± 0.01 3.77 ± 0.01 3.18 ± 0.02

ResNet34 2.18 ± 0.03 2.64 ± 0.01 3.79 ± 0.03 3.22 ± 0.02

ResNet50 2.13 ± 0.02 2.62 ± 0.01 3.77 ± 0.01 3.19 ± 0.02

ResNet101 2.13 ± 0.03 2.61 ± 0.02 3.77 ± 0.02 3.18 ± 0.02

U-Net 2.11 ± 0.02 2.54 ± 0.02 3.68 ± 0.03 3.09 ± 0.03

CM-UNet 2.06 ± 0.02 2.51 ± 0.01 3.64 ± 0.02 3.04 ± 0.02

ConvMOS 2.09 ± 0.02 2.52 ± 0.01 3.63 ± 0.02 3.04 ± 0.02

Bold values indicate the best value
Values rounded to two decimal places. “DJF” is December–February, “MAM” is March–May, “JJA” is
June–August, “SON” is September–November

5.7 Focusing on extreme precipitation estimation

Our results show that non-linear models underestimate the number of extreme pre-
cipitation events more severely than REMO and linear approaches (see Fig. 5).
These events can have negative effects on society and the environment like
floods (Kundzewicz 2003), impact on plants (Zeppel et al. 2014) or increased dis-
ease spread (Chen et al. 2012). As such, it can be of interest to train models that
perform particularly well for estimating the number and intensity of extreme events.
Thus, we adapt ConvMOS-gggl to improve extreme precipitation estimation as it is
among the best models in our experiment. In the following, we consider daily precip-
itation of at least 50 mm as extreme which is also the threshold at which the German
Meteorological Service gives out a stage 3 precipitation warning for very dangerous
weather (Deutscher Wetterdienst 2021).

One technique for training regression models with more emphasis on performance
for rare data points in comparison to common data points is DenseLoss (Steininger
et al. 2021). It estimates the target variable’s density function from the training data
points and gives each training data point a weight based on each sample’s target value
density. These weights are higher for samples in relatively rare parts of the target
value range (i.e. extreme precipitation samples) in comparison to samples from more
common parts of the target value range (i.e. precipitation closer to 0 mm). A sample’s
weight influences howmuch the error of that sample influencesmodel training, leading
to models better suited for estimating rare data points such as samples with extreme
precipitation. The magnitude of weighting differences between samples with different
rarity is configured through α. Through preliminary tests on the validation set, we
found α = 1.0 to provide the lowest RMSE for extreme samples which is why we set
α to one. DenseLoss’ minimal weight threshold ε is set to 10−6 as in the original paper.
We modify the early stopping procedure to consider the validation MSE of extreme
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samples only and train 20 instances of ConvMOS with DenseLoss, which we call
ConvMOS-DL in the following. DenseLoss shifts the model’s focus towards extreme
precipitation events due to which we expect model performance for non-extreme sam-
ples to degrade to some extentwhile extreme data points are estimatedmore accurately.

To asses performance for extreme precipitation events, we split all samples into two
bins, evaluating all occurrences of at least 50 mm separately from those with lower
precipitation in the test set. The test set contains 12240 extreme and 21331874 non-
extreme samples. Due to the rarity of extreme events we can not calculate meaningful
meanmetrics per cell but instead report meanmetrics over all samples of a bin. In addi-
tion to the RMSE, we also evaluate howwell a model can distinguish between extreme
and non-extreme samples. To this end, we calculate a recall per bin and the balanced
accuracy, which is defined as the mean of the extreme and non-extreme recalls. We
consider a prediction accurate if it is lower than 50 mm for non-extreme samples and
at least 50 mm for extreme samples. Table 5 shows RMSE and recall for REMO’s
raw output, ConvMOS, and ConvMOS-DL for non-extreme and extreme samples as
well as the models’ balanced accuracies. As expected, ConvMOS performs better in
terms of both metrics for non-extreme data points in comparison to ConvMOS-DL
and REMO raw, while the model using DenseLoss is still better than the raw REMO
output. For extreme precipitation events, we see significantly better performance with
ConvMOS-DL compared to ConvMOS. ConvMOS-DL can correctly identify on aver-
age 20.99%of the extreme sampleswhile ConvMOSonly identifies 11.94%correctly.
REMO raw is closer to ConvMOS-DL’s recall on extreme samples with 20.03 % but
has considerably higher RMSE. When considering balanced accuracy, we find that
ConvMOS-DL can distinguish best between extreme and non-extreme samples while
REMO is similarly skilled in this aspect. Improved prediction of extreme values with
DenseLoss can also be seen in a histogram, where the distribution is visibly closer
to the observed precipitation (see Appendix). All in all, we find that DenseLoss can
be used to train climate MOS models better suited for the analysis of extreme pre-
cipitation. Such models provide lower general performance but can distinguish better
between extreme and non-extreme events while also showing lower errors for extreme
precipitation events.

6 Discussion

In thiswork,we have shown that convolutional climateMOSand especiallyConvMOS
models can improve the quality of precipitation data significantly. However, we also
found that especially non-linear approaches tended to performpoorly for the estimation
of extreme precipitation events. We were able to alleviate this by training models
specialized for extreme events with DenseLoss but ideally we could train models
that perform well for both extreme and non-extreme precipitation events. Approaches
to consider in the future for this may be uncertainty quantification methods which
explicitly model uncertainty and, thus, may provide estimates that better follow the
desired distribution (Abdar et al. 2021). It remains to be seen whether such techniques
help the estimates’ distribution to become closer to the real distribution while keeping
metrics like RMSE at similarly low or even lower levels as reported here.
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The MOS methods evaluated in this work only consider the spatial but not directly
the temporal aspect of this task. The climate state at a particular time is dependent on
the previous states and in our case only the climate model takes this into account. It
is possible that including information of earlier time steps within the climate MOS
models can help improve performance even further. It would therefore be interesting
to consider this for future work.

As usual with machine learning techniques, it is often important to set suitable
hyperparameters to achieve decent performance with a specific estimator. While it is
feasibly possible to optimize the hyperparameters even for each location individually
with the NLRF baseline, it is considerably more complex to tune Deep Learning mod-
els due to the enormous number of hyperparameters to consider and the dependencies
between hyperparameters (e.g. CNN kernel sizes affect the output tensor shape, which
can affect the structure of all following layers). For this reason, we only conducted
limited hyperparameter tuning for ConvMOS and CM-UNet (e.g. architecture compo-
sition studies) and no tuning for the baseline ResNet and U-Net architectures. While
the performance for all Deep Learning approaches and especially the ResNets and
U-Nets may be further improved to some extent, this does not affect the main point
of this work, namely that a combination of global and location-specific model param-
eters is beneficial as shown in both architecture composition studies. We furthermore
believe that using pre-defined ResNets and U-Nets from prior work is an interesting
baseline as these are likely models a practitioner would use, especially if the hardware
and time is not available for more involved hyperparameter searches when conducting
a climate study.

In contrast to reducing errors with climate MOS after running a climate model, a
different approach to improving climate data is to directly reduce the source of errors
in climatemodels. Uncertainties in climatemodels are primarily caused by the approx-
imation of complex, high resolution processes through so-called parametrizations. To
this end, there is work on learning better parametrizations with Deep Learning tech-
niques, but they are not good enough yet to be used in practice (Rasp et al. 2018).
Until these problems are solved, climate MOS methods like those considered in this
work can be used as an effective tool for correcting climate model outputs.

7 Broader impact

The experiments conducted in this work consider climate MOS specifically and show
that ConvMOS’s combination of global and local model parameters are beneficial
for the estimation quality. However, we believe that other domains may also benefit
from aspects of ConvMOS’s architecture. Location-specific parameters allow for the
implicit encoding of a location’s special characteristics during training, which we
suspect to also be beneficial for other domains with geospatial data, where models
like CNNs with their global model parameters are generally used on their own. Such
data is common in environmental machine learning tasks like air pollution modeling
or weather forecasting. For example, air pollution forecasting approaches like the one
proposed by Zhang et al. (2020) use a CNN-based spatial feature extractor where each
input “pixel” corresponds to a specific location that has its specific characteristics.
We believe that the combination of the existing CNN-based model for the efficient
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extraction of spatial features with a model containing per-location weights is likely to
improve the overall model, as it is now able to encode location-specific characteristics
that may be important for air pollution modeling.

Within the climate domain, this work provides a powerful new tool with ConvMOS.
We hope to promote the application of ConvMOS through our publicly available code.
This allows researchers conducting climate studies to apply our technique in order to
provide them with more accurate data.

Besides the methodological and practical impact, we hope to foster more interest
with our work in the data mining and machine learning community towards novel
contributions for environmental tasks. Environmental issues like climate change are
among the most pressing issues of our time and we believe that our community can
provide important contributions for understanding, mitigation, and adaption of and to
these processes, as is laid out in more detail in Rolnick et al. (2022).

8 Conclusion

In this work, we assessed convolutional Deep Learning climate MOS approaches
and presented our ConvMOS architecture that is built specifically to reduce location-
specific errors as well as systematic errors in climate model outputs. We applied
ConvMOS models to the output of the RCM REMO in order to reduce errors in its
simulated precipitation. In our architecture composition study, we showed that the
combination of per-location model parameters and global model parameters is benefi-
cial for MOS performance. Furthermore, our MOS approach is able to improve daily
precipitation data considerably while also providing significantly better performance
than three commonly used MOS approaches and plain ResNet and U-Net models in
most cases. We also showed that issues of non-linear Deep Learning MOS for esti-
mating extreme precipitation events can be alleviated by training models specialized
for extreme events with the imbalanced regression method DenseLoss. Improvements
in MOS allow for more accurate climate data especially at high spatial resolutions
which allows us to better assess the effects of climate change. While ConvMOS is
designed with climate MOS in mind, we believe that the architecture’s combination
of location-specific and global model parameters can also be beneficial for other tasks
with geospatial data (e.g. air pollution modeling, weather forecasting), which opens
interesting opportunities for future work.
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A Appendix

Fig. 6 Daily precipitation distribution on the test set for E-OBS’s observations, the estimates of REMO,
ConvMOS, and ConvMOS-DL. The 12 bins begin at 0mm and are 50mm wide. The y-axis (occurrences)
is scaled logarithmically

Table 6 RF hyperparameter search space. “HP” stands for hyperparameter

HP Range HP Range HP Range

n_estimators 10–2000 min_samples_split 2–10 max_depth 10–110

max_features 0.01–1.0 min_samples_leaf 1–10 bootstrap T or F

A.1 Model training time

ApplyingMOS can provide more accurate climate data but it comes with an additional
time burden due to the MOS’s training procedure. To quantify this time burden fairly,
we fit each MOS approaches five times on the same hardware—in contrast to the
cluster of heterogeneous hardware used in the main experiment—and measure the
training time.

All DeepLearningmodels (i.e. ResNets, U-Nets, CM-UNet, ConvMOS) are trained
on a single Nvidia RTX 2080 TI GPU (Graphics Processing Unit), which is relatively
affordable consumer hardware in comparison to expensive data center GPUs. These
models are implemented in PyTorch 1.7.1 (Paszke et al. 2019) with CUDA 11.0.
The other models (i.e. Lin, NL PCR, NL RF) are fitted using 15 cores of an AMD
Epyc 7502P processor, which is not a standard consumer but a more expensive data
center CPU (Central Processing Unit). These non-GPU models are implemented in
Scikit-learn 0.23.2 (Pedregosa et al. 2011).

Table 7 shows themean training duration in hours perMOS approach in this training
duration experiment. Both NL RF and NL PCR stand out with relatively long training
duration. As with Lin, NL RF and NL PCR fit one model per location, which is time
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Fig. 7 Mean test NRMSEs per location. U-Net and CM U-Net show high NRMSE on mostly low-
precipitation locations in contrast to all other models

Table 7 Mean training duration in hours per MOS approach

MOS Train duration [h] Hardware MOS Train duration [h] Hardware

Lin 0.03 ± 0.00 CPU ResNet50 0.49 ± 0.05 GPU

NL PCR 58.16 ± 25.33 CPU ResNet101 0.62 ± 0.05 GPU

NL RF 93.32 ± 1.47 CPU U-Net 0.42 ± 0.03 GPU

ResNet18 0.38 ± 0.03 GPU CM-UNet 0.44 ± 0.05 GPU

ResNet34 0.49 ± 0.04 GPU ConvMOS 1.14 ± 0.25 GPU

consuming for large study areas like the one used here with 121 × 121 locations.
However, NL RF’s and NL PCR’s long training times are mostly due to supervised
PCA. NL RF takes longer than NL PCR due to the higher model complexity and the
per-location hyperparameter tuning, which we employ for optimal performance (see
Sect. 5.3). All Deep Learning approaches are trained in under two hours. ConvMOS’s
training duration is comparatively long and shows high variance. Regardless, there is
no large practical difference between these Deep Learning approaches with regard to
training duration since all train relatively quickly. All in all, we consider these training
times—except for NL PCR and NL RF—minor in comparison to the time needed for
the climate simulations of the climate model, which usually takes multiple days. The
Deep Learning approaches are faster in settings with large study areas while providing
better performance, as seen in this work’s main experiment.

A.2 Architecture composition study for CM-UNet

ConvMOS’s architecture composition study shows that a combination of local and
global modules is beneficial.We further confirm this and optimize CM-UNet’smodule
composition by conducting the architecture composition study again with U-Net as
the global module (CM-UNet). The experimental setup is the same except for the
different global modules and the batch size of 64 instead of 128 due to GPU memory
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limitations with compositions consisting of three or four U-Nets. We do not expect
the change in batch size to affect the comparison considerably.

Table 8 shows validation set mean metrics for all locations with observational data
of each CM-UNet architecture composition sorted by RMSE. The composition CM-
UNet-gl provides the lowest RMSE as well as Correlation, Skill score, and Bias that
are not significantly different to the composition with the best value in the respective
metric. While it is not best in NRMSE and R2, we choose this composition for our
experiments due to its low RMSE and it being among the best compositions with
regard to the other metrics. Again, we find that the combination of per-location and
global model parameters can improve performance in terms of RMSE, NRMSE and
R2, where CM-UNet-gl provides significantly better performance in comparison to
the best composition consisting solely of global or local modules, namely CM-UNet-
gggg. Compositions without both global and local modules typically perform worse
than combinations of both. An exception are Correlations, where CM-UNet-gggg
performs best significantly but performs subpar especially for NRMSE and R2. This
study confirms again that a local network as the final module provides relatively good
NRMSE and R2.

A.3 Estimation quality over time

This work considers MOS where temporal climate dynamics are entirely modeled by
the climate model. Daily precipitations are adjusted disregarding time. SinceMOS use
training data from a certain time range, it is interesting to consider error trends with
increasing distance to this time period. Distributions produced by climate models may
change over time, possibly leading to issues forMOS.We investigate this by analyzing
the test set performance over time.

Figure 8 visualizes daily RMSE of precipitation over the test set time range for
REMO, ConvMOS, and NL PCR, smoothed with a moving average window of 14

Fig. 8 RMSE of precipitation in mm for the test set across the study area over time. The graph is smoothed
using a moving average window of 14 days
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Table 9 Test set mean RMSE in mm per year for all locations having observational data. Values rounded
to two decimal places

Year 2011 2012 2013 2014 2015
MOS

REMO raw 4.93 5.20 5.45 5.72 4.86

Lin 3.41 3.32 3.55 3.80 3.31

NL PCR 3.26 3.20 3.44 3.67 3.11

NL RF 3.27 ± 0.00 3.19 ± 0.00 3.45 ± 0.00 3.70 ± 0.00 3.15 ± 0.00

ResNet18 2.93 ± 0.02 2.83 ± 0.02 3.08 ± 0.02 3.31 ± 0.01 2.85 ± 0.02

ResNet34 2.97 ± 0.02 2.87 ± 0.02 3.11 ± 0.02 3.34 ± 0.02 2.86 ± 0.02

ResNet50 2.92 ± 0.02 2.84 ± 0.01 3.08 ± 0.02 3.31 ± 0.02 2.86 ± 0.02

ResNet101 2.92 ± 0.03 2.84 ± 0.02 3.07 ± 0.02 3.32 ± 0.02 2.84 ± 0.02

U-Net 2.87 ± 0.03 2.78 ± 0.02 3.00 ± 0.02 3.21 ± 0.02 2.80 ± 0.02

CM-UNet 2.82 ± 0.02 2.73 ± 0.02 2.96 ± 0.02 3.17 ± 0.01 2.76 ± 0.02

ConvMOS 2.82 ± 0.02 2.75 ± 0.01 2.96 ± 0.02 3.18 ± 0.02 2.76 ± 0.02

Bold values indicate the best value

Table 10 Test set mean RMSE
relative to REMO’s RMSE in %
per year for all locations having
observational data. Values
rounded to percentages

Year 2011 2012 2013 2014 2015
MOS

REMO raw 100 100 100 100 100

Lin 69 64 65 67 68

NL PCR 66 62 63 64 64

NL RF 66 ± 0 61 ± 0 63 ± 0 65 ± 0 66 ± 0

ResNet18 59 ± 0 55 ± 0 57 ± 0 58 ± 0 59 ± 0

ResNet34 60 ± 0 55 ± 0 57 ± 0 58 ± 0 59 ± 0

ResNet50 59 ± 0 55 ± 0 57 ± 0 58 ± 0 59 ± 0

ResNet101 59 ± 1 55 ± 0 56 ± 0 58 ± 0 58 ± 0

U-Net 58 ± 1 53 ± 0 55 ± 0 56 ± 0 58 ± 1

CM-UNet 57 ± 0 53 ± 0 54 ± 0 55 ± 0 57 ± 0

ConvMOS 57 ± 0 53 ± 0 54 ± 0 56 ± 0 57 ± 0

Bold values indicate the best value

days to reduce noise. It shows that MOS RMSE mostly follows REMO’s RMSE but
on a lower level. We find no noticeable trend in RMSE for the models depicted, as
well as the otherMOS approaches.We come to the same conclusion when considering
Table 9, which shows the absolute RMSEper year for allMOS approaches andREMO,
and Table 10, which shows the relative RMSE per year for each MOS approach
as percentages of REMO’s RMSE. Especially the latter table shows for all MOS
techniques only small RMSE fluctuations of at the very most 5 % relative to REMO’s
RMSE, suggesting that MOS error trends follow REMO’s error trends.

While the limited timespan available does not allow for a conclusive answer regard-
ing error trends for longer timespans, the data does suggest that timedifference between
training data and test data may have no or only a minor influence on errors. Neverthe-
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less, when considering longer timespans than five years, the climate model output’s
distribution may change to such an extent, that there may be a noticeable effect. We
suggest to analyze this in climate studies that apply MOS in order to detect potential
issues with distributional shifts.

Fig. 9 Test RMSE in mm per location and season (DJF is December, January, and February; MAM is
March, April, andMay; JJA is June, July, and August; SON is September, October, and November). REMO
has larger RMSEs than 10mm but the colorbar’s extent is limited to better show general performance

123



ConvMOS: climate model output statistics...

A.4 Seasonal results over the study area

Seasonal results are visualized in Fig. 9 for REMO’s raw output, ConvMOS, and
NL PCR, which is overall the best standard MOS approach in terms of RMSE. We
show the same model instances as in Fig. 4. During all seasons, we find REMO’s
largest errors in mountainous regions like the Alps. This also shows in the RMSE
of both ConvMOS’s and NL PCR’s output where these areas often continue to have
more pronounced errors. The season with the largest error JJA shows more evenly
distributed large RMSE values across the study area compared to the other seasons,
resulting also in comparatively large RMSE in the MOS outputs. The relatively large
overall RMSE values of season SON concentrate in the Alps and the Mediterranean
coast, while RMSE for cells north of the Alps seem similar to those during seasons
DJF and MAM. Matching the findings of Table 4, we tend to see lower RMSE with
ConvMOS in comparison to NL PCR. For example, the latter has more difficulties
in reducing the large errors near the border between Italy and Slovenia and we also
often see slightly larger RMSEs north of the Alps in comparison to our approach.
These results show that ConvMOS can be better than standard MOS approaches at
improving precipitation estimates regardless of the season.
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Abstract
In many real world settings, imbalanced data impedes model performance of learning algo-
rithms, like neural networks, mostly for rare cases. This is especially problematic for tasks 
focusing on these rare occurrences. For example, when estimating precipitation, extreme 
rainfall events are scarce but important considering their potential consequences. While 
there are numerous well studied solutions for classification settings, most of them can-
not be applied to regression easily. Of the few solutions for regression tasks, barely any 
have explored cost-sensitive learning which is known to have advantages compared to 
sampling-based methods in classification tasks. In this work, we propose a sample weight-
ing approach for imbalanced regression datasets called DenseWeight and a cost-sensitive 
learning approach for neural network regression with imbalanced data called DenseLoss 
based on our weighting scheme. DenseWeight weights data points according to their tar-
get value rarities through kernel density estimation (KDE). DenseLoss adjusts each data 
point’s influence on the loss according to DenseWeight, giving rare data points more influ-
ence on model training compared to common data points. We show on multiple differently 
distributed datasets that DenseLoss significantly improves model performance for rare data 
points through its density-based weighting scheme. Additionally, we compare DenseLoss 
to the state-of-the-art method SMOGN, finding that our method mostly yields better per-
formance. Our approach provides more control over model training as it enables us to 
actively decide on the trade-off between focusing on common or rare cases through a single 
hyperparameter, allowing the training of better models for rare data points.

Keywords Imbalanced regression · Cost-sensitive learning · Sample weighting · Kernel-
density estimation · Supervised learning
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1 Introduction

Many machine learning algorithms, like neural networks, typically expect roughly 
uniform target distributions  (Cui et al. 2019; Krawczyk 2016; Sun et al. 2009). In the 
case of classification that means that there are similar numbers of examples per class. 
For regression there should be a similar density of samples across the complete target 
value range. However, many datasets exhibit skewed target distributions with target val-
ues in certain ranges occurring less frequently than others. Consequently, models can 
become biased, leading to better performance for common cases than for rare cases (Cui 
et al. 2019; Krawczyk 2016). This is particularly problematic for tasks where these rare 
occurrences are of special interest. Examples include precipitation estimation, where 
extreme rainfall is rare but can have dramatic consequences, or fraud detection, where 
rare fraudulent events are supposed to be detected.

There are many solutions to this problem for classification tasks including resa-
mpling strategies  (Chawla et  al. 2002; He et  al. 2008) and cost-sensitive learning 
approaches (Cui et al. 2019; Huang et al. 2016; Wang et al. 2017). However, these can-
not be applied easily to regression tasks because of the inherent differences between 
continuous and discrete, nominal target values. Typical solutions to data imbalance 
require a notion of rarity or importance for a data point in order to know which data 
points to over- and undersample or which data points to weight more strongly. It is 
harder to define which values are rare for regression tasks in comparison to classifica-
tion tasks, since one cannot simply use class frequencies  (Branco et  al. 2017). Only 
few works explore methods improving model performance for rare cases in regression 
settings, mostly proposing sampling-based approaches  (Branco et  al. 2017; Krawczyk 
2016; Torgo et al. 2013). These can have disadvantages in comparison to cost-sensitive 
methods since the creation of new data points via oversampling of existing data points 
may lead to overfitting as well as additional noise, while undersampling removes infor-
mation  (Cui et  al. 2019; Dong et  al. 2017). The success of cost-sensitive learning for 
imbalanced classification tasks suggests that exploring this direction for imbalanced 
regression could also lead to better methods in this domain (Krawczyk 2016).

In this paper, we propose a sample weighting approach for imbalanced regression 
datasets called DenseWeight and, based on this, a cost-sensitive learning method for 
imbalanced regression with neural networks called DenseLoss. Our approach is visual-
ized in Fig. 1: (i) We approximate the density function of the training target values using 
KDE. (ii) The resulting density function forms the basis for calculating DenseWeight’s 
weighting function. (iii) DenseLoss assigns each data point in the training set a weight 
according to DenseWeight, increasing the influence of rare data points on the loss and 
the gradients. We introduce a single, easily interpretable hyperparameter, which allows 
us to configure to which extent we shift a model’s focus towards rare regions of the tar-
get variable’s distribution.

Our contributions are as follows: (i) We propose DenseWeight, a sample weight-
ing approach for regression with imbalanced data. (ii) We propose DenseLoss, a cost-
sensitive learning approach based on DenseWeight for neural network regression mod-
els with imbalanced data. (iii) We analyze DenseLoss ’s influence on performance for 
common and rare data points using synthetic data. (iv) We compare DenseLoss to the 
state-of-the-art imbalanced regression method SMOGN, finding that our method typi-
cally provides better performance. (v) We apply DenseLoss to the heavily imbalanced 
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real world problem of downscaling precipitation, showing that it is able to significantly 
improve model performance in practice.

2  Related work

Imbalanced data can in principle be tackled with data-level methods, algorithm-level meth-
ods, or a combination of both (Krawczyk 2016). Data-level methods typically over- and/
or undersample subsets of a dataset to balance the distribution. Algorithm-level methods 
modify existing learning algorithms to better cope with imbalanced data.

There are many solutions to data imbalance for classification tasks. Data-level methods 
for classification often create new samples for rare classes (oversampling) and/or remove 
samples of common classes (undersampling). Notable examples include ADASYN  (He 
et  al. 2008) and SMOTE  (Chawla et  al. 2002). Recently, KDE was used to estimate the 
feature distribution of minority classes (Kamalov 2020). New minority class samples are 
generated using the estimated feature distribution. In contrast to Kamalov (i) we use KDE 
to measure rarity on a continuous target domain and not to model features, (ii) we do not 
generate samples, and (iii) we devise our method for regression. Algorithm-level meth-
ods for classification typically involve cost-sensitive learning, where the loss of samples 
with rare classes is emphasized in the overall loss  (Cui et  al. 2019). Weighting is often 
based on the inverse class frequency as a measure of rarity (Huang et al. 2016; Wang et al. 
2017). We propose a conceptually similar method, but for regression instead of classifi-
cation. The continuous target variable of regression tasks makes it harder to determine a 
single sample’s rarity, preventing simple adaptations of existing cost-sensitive learning 
approaches (Branco et al. 2017).

While there is work on cost-sensitive learning for regression models, these 
approaches assign different costs to over- and underestimation respectively, regardless 
of a data point’s rarity  (Zhao et  al. 2011; Hernández-Orallo 2013). However, we are 
interested in exploring how cost-sensitive learning can be used to solve the problem 
of imbalanced datasets for regression tasks, for which only few works exist. There is 
a cost-sensitive post-processing technique called probabilistic reframing which adjusts 

Fig. 1  Given the target values of all training examples, we (i) compute a kernel density estimation (KDE) 
that approximates the target value distribution, (ii) calculate a weighting function from the resulting prob-
ability density function, and (iii) weight the loss for each data point in the training procedure
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estimates of previously built models to different contexts (Hernández-Orallo 2014). It 
would be feasible to apply this to imbalanced domains but it was not evaluated for this 
yet (Branco et al. 2016b). A cost-sensitive method for obtaining regression tree ensem-
bles biased according to a utility function is ubaRules (Ribeiro 2011) which is mostly 
used to estimate extreme values as accurately as possible. It is specific to regression tree 
ensembles while our proposal is designed for—but not restricted to—the use with neu-
ral networks. A metric that takes both rare, extreme samples and common samples into 
account for evaluating a model’s ability to predict extreme values is SERA (Ribeiro and 
Moniz 2020). SERA can be considered a loss function that is used for model selection 
and hyperparameter optimization but it is not incorporated in a learning method like 
DenseLoss.

Despite the lack of cost-sensitive approaches, there are sampling-based data-level meth-
ods which are applied during data pre-processing. One approach is SMOTE for regression 
(SmoteR) (Torgo et al. 2013), which is based on the original SMOTE method for classifi-
cation (Chawla et al. 2002). It combines undersampling of common data points and over-
sampling of rare cases, in order to create a more balanced distribution. The authors adjust 
SMOTE to work for regression domains by binning data points into relevant and irrelevant 
partitions using a relevance threshold tR and a relevance function � . They use an automatic 
method for obtaining � based on box plot statistics through which specific control points 
on the target domain are obtained. Each control point is a tuple (y,�(y),��(y)) , where ��(y)
—the derivative of relevance �(y)—is always set to 0, since control points are assumed 
to be local extrema of relevance. The relevance function � is then defined with piecewise 
cubic Hermite interpolation through these control points (Ribeiro 2011). Figure 2 shows a 
resulting � for data following a pareto distribution. This automatic method for obtaining 
� assumes that extreme values are rare, which is in contrast to our work, where rare val-
ues are automatically detected without such assumptions. Data points marked as relevant 
( 𝜙(y) > tR ) are oversampled, creating new synthetic cases via interpolation of features and 
target values between two relevant data points. Irrelevant data points are undersampled.

The SMOGN (Branco et al. 2017) algorithm builds on SmoteR and combines it with 
oversampling via Gaussian noise. For the latter, normally distributed noise is added to the 
features and the target value of rare data points, creating additional, slightly altered replicas 
of existing samples (Branco et al. 2016a). Rare data points are identified using the same 
method for obtaining a relevance function � used by SmoteR. SMOGN iterates over all 
rare samples and selects between SmoteR’s interpolation based oversampling and Gaussian 
noise based oversampling depending on the distance to the k-nearest neighbors. For small 
distances, SmoteR’s interpolation is applied, since interpolation is deemed more reliable 
for close samples. Other rare data points are oversampled with Gaussian noise. Common 
data points are randomly undersampled. The authors report improvements compared to 

Fig. 2  SmoteR and SMOGN’s 
relevance function � for pareto-
distributed data
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SmoteR (Branco et al. 2017). Because of this and a lack of other methods, SMOGN can be 
considered the state-of-the-art.

In contrast to these data-level methods, we propose an algorithm-level, cost-sensitive 
method for imbalanced regression called DenseLoss using our density-based weighting 
scheme DenseWeight. The concept of weighting data points based on the target value dis-
tribution is already present in prior work, e.g. in the automatic method for obtaining rel-
evance functions used by SMOGN, or in SERA. However, DenseWeight does not make 
assumptions about which cases are rare since it determines relative rarity with a density 
function. Contrary to SmoteR and SMOGN, DenseLoss does not explicitly change the 
dataset, e.g. by creating new samples.

3  Method

In this section we introduce DenseWeight, our proposed sample weighting approach for 
imbalanced datasets in regression tasks, and DenseLoss, our cost-sensitive learning 
approach for imbalanced regression problems based on DenseWeight.

3.1  DenseWeight

Our goal is to weight individual data points based on the rarity of their target values. Thus, 
we want to calculate a weight for each sample inversely proportional to the probability of 
the target value’s occurrence. This is similar to the relevance functions used by the resam-
pling approach SMOGN but we base our weighting directly on the target distribution’s den-
sity function instead of box plot statistics (Branco et al. 2017). We call our density-based 
weighting scheme DenseWeight. We design its weighting function fw so that the degree of 
weighting can be controlled by a hyperparameter � ∈ [0,∞) with the following properties. 

P.1  Samples with more common target values get smaller weights than rarer samples.
P.2  fw yields uniform weights for � = 0 , while larger � values further emphasize the 

weighting scheme. This provides intuition for the effects of �.
P.3  No data points are weighted negatively, as models would try to maximize the differ-

ence between estimate and true value for these data points during training.
P.4  No weight should be 0 to avoid models ignoring parts of the dataset.
P.5  The mean weight over all data points is 1. This eases applicability for model optimi-

zation with gradient descent as it avoids influence on learning rates.

 These weights can theoretically be applied to any type of machine learning model that 
allows for sample weighting to allow fitting models better suited for the estimation of rare 
cases. We will use them for our cost-sensitive imbalanced regression approach for neural 
networks DenseLoss in this work. Next, we define how the rarity of a data point is meas-
ured, before designing the weighting function fw with these properties.

3.1.1  Measure of rarity

In order to weight data points based on the rarity of their target values, we need a measure 
of rarity for fw . To this end we want to determine the target variable’s density function p. 
Values of density functions can be interpreted as relative measures of density, allowing the 
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distinction between rare and common value ranges (Grinstead and Snell 2012). To obtain 
density function p for a dataset with N data points and target values Y = {y1, y2,… , yN} , 
we approximate it with KDE, which is a non-parametric approach to estimating a density 
function (Silverman 1986):

with kernel function K and bandwidth h. Literature shows that the choice of kernel func-
tion is rather unimportant for KDE with only small differences between common kernel 
functions (Chen 2017), which is why we use Gaussian kernels. For bandwidth selection, 
we found that, in practice, the automatic bandwidth selection method Silverman’s rule (Sil-
verman 1986) produces density functions which follow the distributions well for the data-
sets used in this work. KDE allows calculating a density value per data point. Since it does 
not affect relative density information, we can normalize all data points’ density values in 
the training set to a range between 0 and 1:

where p(Y) is the element-wise application of p to Y.
This normalized density function p� ∈ [0, 1] provides intuitively interpretable values. 

For example, the data point in the most densely populated part of Y is assigned a value of 1, 
while the data point in the most sparsely populated part of Y is assigned a value of 0. Note 
that this normalization does not work for completely uniform data but there is no reason to 
apply DenseWeight with uniformly distributed data anyways.

3.1.2  Weighting function

In this section, we introduce DenseWeight ’s final weighting function fw in a step wise 
manner. To this end, we use the normalized density function p′ , hyperparameter � , and a 
small, positive, real-valued constant � . Initially, we define a basic weighting function:

This function already satisfies properties P.1 and P.2, since −p� yields larger values for rare 
data points compared to more common data points and � scales p′ , controlling the strength 
of density-based weighting. Setting � = 0 has the intuitive effect of disabling density-based 
weighting, while � = 1 leads to the most common data point’s weight reaching 0 in this 
basic weighting function. Accordingly, all weights are positive for 𝛼 < 1 , while 𝛼 > 1 leads 
to negative weights for the most common data points. The defined behavior of the � values 
0 and 1 provides intuition for the choice of sensible values. However, there are still desired 
properties which f ′

w
 does not satisfy. For example, we want to avoid negative and 0 weights 

as described in properties P.3 and P.4. To this end, we clip f ′
w
 at the small, positive, real-

valued constant �:

Function f ′′
w

 satisfies all desired properties except for P.5. Using it for weighting a cost-
sensitive model optimization approach based on gradient descent like DenseLoss would 

(1)p(y) =
1

Nh

N∑
i=1

K
(y − yi

h

)

(2)p�(y) =
p(y) − min(p(Y))

max(p(Y)) − min(p(Y))
,

(3)f �
w
(�, y) = 1 − �p�(y).

(4)f ��
w
(�, y) = max(1 − �p�(y), �).
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influence the learning rate since � is scaling all gradients without any normalization. 
Changing � would also require a different learning rate if the magnitude of model param-
eter changes is to stay consistent. Finding a sensible learning rate would be tedious. Divid-
ing f ′′

w
 by its mean value over all data points of the training set corrects this. The mean 

weight becomes 1, preventing a change in the average gradients magnitude. This leads us 
to DenseWeight’s weighting function fw:

Figure  3 visualizes DenseWeight for a Gaussian distributed target variable. With 
increasing � , weight differences between common and rare data points are emphasized 
more strongly. Setting � = 1 yields a weighting function that barely reaches � for the most 
common data points. To push more of the common data points towards a weight of � , � can 
be increased beyond 1.

The most suitable � value for a specific task can be found by conducting a hyperparam-
eter study. DenseLoss ’s � allows for easy adjustment of the trade-off between focusing on 
common or rare parts of a dataset. Thus, there needs to be a definition (at least implicitly) 
for the meaning of performance regarding the task at hand, making it impossible to give a 
general rule for an optimal �.

3.2  DenseLoss

In this work we focus on neural networks due to their broad applicability to both simple 
and complex regression problems through the use of either relatively small multilayer per-
ceptrons (MLPs) or large deep learning neural networks, respectively. Neural networks 
are typically optimized with gradient descent optimization algorithms that, given model 
estimates Ŷ = {ŷ1, ŷ2,… , ŷN} , aim to minimize a metric M that is incorporated into a loss 
function L for which we can apply sample weighting. When combining DenseWeight and 
sample weighting for loss functions we obtain a cost-sensitive approach for regression with 
imbalanced datasets, which we call DenseLoss:

(5)fw(�, y) =
f ��
w
(�, y)

1

N

∑N

i=1
f ��
w
(�, yi)

=
max(1 − �p�(y), �)

1

N

∑N

i=1
(max(1 − �p�(yi), �))

.

Fig. 3  DenseWeight for data 
sampled from a Gaussian 
distribution. With � = 0 each 
sample’s weight is 1. Higher � 
stretches the function, emphasiz-
ing density differences. For 𝛼 > 1 
(neglecting � ) the function is 
partly clipped to avoid negative 
weights
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Weighting the loss per sample with DenseWeight affects the gradients’ magnitude cal-
culated based on each sample. Rarer samples yield larger gradients than more common 
samples even when the model’s estimates are equally good according to the chosen met-
ric. Thus, the gradients focus more on achieving best possible estimates for rare samples 
than for common samples. When updating model parameters with these gradients, this 
leads to models better suited for estimating rare samples. Similarly to cost-sensitive imbal-
anced classification methods weighting samples according to the inverse class frequency 
(Cui et al. 2019), DenseLoss is also cost-sensitive as it adapts the cost for rare samples in 
comparison to common samples according to the weights assigned by DenseWeight. In 
contrast to SMOGN, the state-of-the-art method for imbalanced regression, our approach 
works at the algorithm-level instead of the data-level. Weighting a loss function with 
DenseWeight is a very flexible approach in principle as it allows for optimization using any 
gradient descent optimization algorithm and any metric. Models trained with DenseLoss 
are expected to typically perform better for rare cases compared to models trained with 
uniform sample weights, as we show next.

4  Experiments

We evaluate DenseWeight and DenseLoss with three experiments: a case study on synthetic 
data, a comparison to the state-of-the-art, and an application to a real world task. First, we 
examine with synthetic datasets how DenseLoss behaves for different � values and different 
distribution characteristics, validating that DenseLoss is working as designed. Second, we 
compare DenseLoss to the state-of-the-art imbalanced regression method SMOGN, show-
ing that our algorithm-level method can typically provide better performance for rare data 
points than SMOGN’s data-level approach. Finally, we apply DenseLoss to the real world 
task statistical downscaling of precipitation, proving that it can also work for larger data-
sets and more complex neural network architectures.

For all experiments, we use the library KDEpy’s convolution-based KDE implementa-
tion FFTKDE. It provides fast density estimation that can, however, only be evaluated on 
an equidistant grid (Odland 2019). Thus, for each training dataset we span a grid over the 
target range and assign each data point the density of the closest grid point. We use an 
equidistant grid with 4096 points, which is 4 times KDEpy’s default resolution, to avoid 
potential negative effects on our method due to low KDE accuracy. In general, the quality 
of the resulting density function with respect to the real target distribution can be limited 
by low quality training data with noisy outliers. While we did not encounter such prob-
lems in this work, careful data cleaning and tuning of the KDE may improve this for such 
datasets. To provide a small, positive value to DenseLoss ’s clipping constant � we set it to 
10−6 for all experiments. When we report significantly different results for the experiments, 
the statistical significance is calculated for the metrics on test datasets with the Wilcoxon 
signed-rank test (Wilcoxon 1945) and a significance level of 0.05. Our experiments’ code 
and data is available1.

(6)LDenseLoss(𝛼) =
1

N

N
∑

i=1

fw(𝛼, yi) ⋅M(ŷi, yi) .

1 https:// github. com/ SteiMi/ densi ty- based- weigh ting- for- imbal anced- regre ssion   
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4.1  Case study with synthetic data

In this case study, we aim to validate the expectation that models trained with DenseLoss 
achieve improved performance in underrepresented parts of the dataset compared to a reg-
ular training procedure. To this end, we use four synthetic datasets with varying character-
istics: two heavy-tailed datasets, following a pareto (pareto) and a reversed pareto distribu-
tion (rpareto), respectively. Furthermore, we use a Gaussian dataset (normal) and a dataset 
built from two Gaussians with a sparse middle area (dnormal). Figure 4 shows their target 
distributions. We train models with DenseLoss and different � values to gain insight into 
the practical effects of different degrees of DenseWeight.

4.1.1  Dataset creation

We use an MLP as a random function to generate synthetic datasets. This guarantees that 
the function can be learned again by an MLP in theory. Our network’s parameters are ini-
tialized with a standard Gaussian distribution. This network is provided with 200,000 sets 
of 10 features each. The features are also drawn from a standard Gaussian distribution. 
The network consists of 3 hidden layers with 10 neurons each and ReLU (Nair and Hinton 
2010) activation. The final hidden layer is connected to a single neuron with linear activa-
tion to obtain target values for a regression task. From the resulting 200,000 data points 
10,000 were sampled in such a way that there are uniformly distributed target values. This 
uniform dataset’s target values range from − 32.13 to 76.42. Then, for each dataset a prob-
ability density function is defined corresponding to the desired target distribution. 1000 
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Fig. 4  Distribution of the target variable for each synthetic dataset



 Machine Learning

1 3

data points are sampled from the uniform dataset weighted by the samples’ desired densi-
ties, creating the datasets pareto, rpareto, normal, and dnormal. Figure 4 visualizes their 
target variable distributions.

Each dataset is split randomly in a training (60%), validation (20%), and test (20%) set. 
The resulting splits are inspected to confirm that their target variables are similarly distrib-
uted. Otherwise it would be possible that sparsely sampled ranges in the target variable are 
not represented in a split through unfortunate random sampling.

4.1.2  Experimental setup

To illustrate how DenseLoss affects model performance for underrepresented parts of data-
sets based on our weighting scheme DenseWeight, we conduct a parameter study to exam-
ine the effects of different � values. Therefore, we train models with � values ranging from 
0.0 to 2.0 with steps of 0.1. To strengthen confidence in the results of this experiment we 
train 20 model instances per � which are used for testing statistical significance with the 
Wilcoxon signed-rank test and a significance level of 0.05.

The MLP used is structurally equal to the data generator network. Thus, this model also 
consists of 3 hidden layers with 10 neurons each and ReLU activation as well as one neuron 
with linear activation for the output layer. Instead of initializing parameters from a standard 
Gaussian distribution, we use Kaiming Uniform initialization (He et al. 2015). DenseLoss 
is the loss function used in conjunction with the metric mean squared error (MSE). The 
model is trained with Adam optimization (Kingma and Ba 2014), a learning rate of 10−4 , 
and a weight decay coefficient of 10−9 . Training is run for at most 1000 epochs, but it is 
stopped early if the validation loss is not improving for 10 epochs in a row. This improves 
generalization performance (Prechelt 1998).

4.1.3  Results

To evaluate model performance for separate parts of the target domain, we bin the test 
data points based on their target value. Each bin spans 20% of the target variable’s range in 
the test set. We rank these bins per dataset by the number of data points. The bin with the 
fewest (most) samples has bin rank 1 (5) and is called the least (most) common bin. This 
allows performance comparisons between similarly rare bins over all datasets. We calculate 
the root mean squared error (RMSE) and mean absolute error (MAE) for each individual 
model instance of the 20 instances per tested configuration.

Our MLP without DenseLoss achieves on average over the 20 runs RMSEs (MAEs) 
between 3.53 (2.70) and 6.75 (5.47) for the most common bins, i.e. bin rank 5, and between 
6.68 (6.26) and 27.10 (26.74) for the rarest bins, i.e. bin rank 1, across the synthetic data-
sets. We find that DenseLoss with, for example, � = 1.0 improves average RMSE (MAE) 
for the rarest bins by between 1.21 (1.48) and 7.02 (7.00) while increasing it for the most 
common bins by between 1.12 (0.90) and 1.68 (1.49).

Figure 5 visualizes the mean RMSE of models trained with different � values over all 
synthetic datasets for different bin ranks. DenseLoss typically improves performance in 
sparsely sampled bins (bin ranks 1–3) with a suitable � value. As expected, DenseLoss 
tends to reduce performance for bins with many samples (bin ranks 4 and 5). We find that 
most � values greater than 0 lead to improvements in rare bins. For example, for pareto all 
tested configurations with � ≥ 0.8 yielded improvements in the rarest bin and the same is 
true for all runs with � ≥ 0.2 for dnormal. For rpareto all runs with DenseLoss enabled 
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( 𝛼 > 0.0 ) improved the rarest bin except for � = 1.5 and � = 1.6 , where performance 
dropped slightly. normal’s rarest bin is improved with 0.1 ≤ � ≤ 1.2 , which is discussed 
in the next paragraph. As described at the beginning of Sect. 4 we conduct statistical sig-
nificance tests to strengthen confidence in our results. When considering � = 1.0 , which 
seems to provide good performance for rare data points across all datasets, we find that the 
performance for the rarest bin has improved significantly compared to not using DenseLoss 
( � = 0.0 ) for each dataset. Bin rank 2 is improved significantly with � = 1.0 for normal and 
rpareto, while bin rank 3 is significantly better for normal and pareto. We also see with 
𝛼 > 1.0 that the performance for the most common bin deteriorates considerably for nor-
mal and dnormal, as the weight of more and more of these data points is pushed towards 
� . This effect is also noticeable in the other bin ranks albeit with reduced strength the rarer 
the bins get. Interestingly, this performance degradation seems less pronounced for both 
pareto datasets. We find very similar results with regards to the metric MAE.

Figure 6 shows detailed results for datasets normal and pareto. Bins are identified by bin 
rank and ordered to correspond to the dataset’s distribution plot at the top, thus visualizing 
RMSE and density from the lowest (left-most bin) to the highest target values (right-most 
bin). Setting � to around 1 provides improved performance for rare target ranges while only 
slightly reducing performance for common target ranges. For example, with � = 1.0 in 
pareto we observe an increase in RMSE of 1.68 in the most common bin with rank 5 and a 
drop in RMSE of 7.02 in the least common bin with rank 1. In general, error for samples in 
rare target ranges tends to decrease with increasing � while performance in common target 
ranges mostly deteriorates. For normal’s rarest bin with rank 1 too large � values ( � ≥ 1.4 ) 
also show performance degradation. We hypothesize that this can occur when the target 
range in the training set has very few data points and the neighboring, more common data 
points are assigned weights close to 0. In this case the model seems to struggle to learn a 
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general function for the higher target ranges, because of the effectively small number of 
samples there.

Given the continuous nature of regression datasets it is also interesting to regard the per-
formance over the datasets’ target domains. To account for different distributions among 
the datasets for this evaluation we calculate the normalized density per test data point’s tar-
get value (as defined in Eq. 2) through KDE (same parameters as for DenseWeight’s KDE) 
on the target variable of its respective test dataset. In contrast to before, we do not use 
this normalized density to weight samples or train models but instead use it as a dataset-
independent metric for each sample’s rarity within its test dataset. This rarity thus provides 
us with a dataset-independent proxy of the target variable domains. It is independent from 
the rarity used during model training and does not influence the estimates for the test sam-
ples. Also, we calculate the MAE over the 20 runs for each test data point of each dataset. 
To enable a continuous evaluation over all datasets we normalize the MAE via division by 
the difference between the maximum and the minimum value of its respective test data-
set’s target variable. The normalized MAE in conjunction with the normalized densities 
allow us to plot Fig. 7 which visualizes the normalized MAE depending on the data point 
rarity across all datasets for regular training ( � = 0.0 ), DenseLoss ( � = 1.0 and � = 2.0 ), 
and also the state-of-the-art imbalanced regression method SMOGN. To account for the 
high variability and to improve interpretability we smoothed the plot by applying a mov-
ing mean with a windows size of 30 data points over the 800 total test data points. We find 
that DenseLoss with both � = 1.0 and � = 2.0 typically reduces error for very rare samples 
( ∼ p�(y) < 0.15 ). Performance with � = 2.0 deteriorates considerably for more common 
data points ( ∼ p�(y) > 0.4 ) while performance of � = 1.0 remains close to � = 0.0 up until 
around p�(y) > 0.75 where a gap emerges.
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Fig. 6  Mean RMSE per test bin over 20 runs for datasets normal (left) and pareto (right). Bar charts show 
the density per bin in the test set. Line plots visualize the mean RMSE per test bin for the � values shown in 
the box at the figure’s bottom
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While this experiment mainly analyzes DenseLoss in a controlled manner we also 
applied SMOGN to our synthetic datasets, finding mostly better performance for � = 1.0 
than SMOGN, when applying SMOGN as described in Sect. 4.2. Rare parts in pareto and 
rpareto were identified automatically; rare parts in normal and dnormal were identified 
manually, since the automatic method wrongly deemed all samples relevant. For normal 
and dnormal we used the control points (−10, 1, 0), (20, 0, 0), (50, 1, 0) and (0, 0, 0), (20, 1, 
0), (50, 0, 0), respectively. Resulting relevance functions are visualized in the “Appendix”. 
Since SMOGN’s automatic method for obtaining � only works for datasets where rare val-
ues are also extreme, it is not suited for dnormal. With our manual control points it is still 
not ideal as it incorrectly deems low target values as relevant, but it is substantially better 
than considering all data points relevant. normal’s manual � shows no such issues. When 
considering binned evaluation we find that DenseLoss with � = 1.0 performs significantly 
better than SMOGN for the rarest bin on all datasets except pareto.

This experiment confirms that DenseLoss allows shifting a model’s focus to rarer cases 
away from the cases it would have focused on with regular training. Inspecting the model 
performance across the target range with varying � values enables an informed choice for 
the trade-off between performance in common and rare cases. Thus, DenseLoss provides 
additional control over model training, allowing to fit models with better performance for 
rare data points.

4.2  Comparison with state‑of‑the‑art

SMOGN can currently be considered the state-of-the-art method for imbalanced regres-
sion, as it has shown to be better than the other available method SmoteR  (Branco et al. 
2017). SMOGN’s authors present 20 imbalanced datasets in their paper. We apply both 
SMOGN and DenseLoss to those datasets and compare model performances. Neural net-
works trained without applying any method for imbalanced data are used as a baseline. 
To this end we apply both methods and the baseline to the 20 imbalanced datasets from 
SMOGN’s test section  (Branco et  al. 2017). We obtain the data from their repository2. 
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Fig. 7  Normalized MAE for test samples from all synthetic datasets per normalized density. Graph is 
smoothed via moving mean (window size 30) to ease interpretability

2 https:// github. com/ paobr anco/ SMOGN- LIDTA 17
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See the “Appendix” for an overview. We also compared DenseLoss with SMOGN using 
DenseWeight for its relevance function in the “Appendix”, finding similar results as pre-
sented in the following, where we compare DenseLoss to SMOGN using its default rel-
evance function.

4.2.1  Experimental setup

As with the synthetic data, we randomly split each dataset in a training (60%), a validation 
(20%), and a test (20%) set. Considering the small size of some of the datasets, we inspect 
the splits to confirm that they are similarly distributed and redo the random split if the dis-
tributions are too different.

Models trained with DenseLoss use � = 1.0 . For SMOGN we use the python package 
smogn  (Kunz 2019). Since SMOGN’s authors also aim to increase performance for rare 
data points on these datasets we apply the same hyperparameters as they did in their paper: 
Rare target values are determined by their automatic method (Ribeiro 2011) as described 
in Sect. 2. Just as SMOGN’s authors, we consider target values rare where the relevance 
function yields more than  0.8. SMOGN oversamples data points with rare target values 
to obtain a more balanced distribution. For oversampling SMOGN is set to consider the 
5 nearest neighbor samples. The amount of Gaussian noise added for oversampling (i.e. 
perturbation) is set to  0.01. We use the same MLP architecture and hyperparameters as 
described in Sect. 4.1. Additionally, we repeat the experiment with the same hyperparame-
ters but different MLP topologies, namely a deeper model (4 hidden layers with 10 neurons 
each), a shallower model (2 hidden layers with 10 neurons each), a wider model (3 hidden 
layers with 20 neurons each), and a narrower model (3 hidden layers with 5 neurons each), 
to confirm that our results are not due to a specific network architecture. We find very simi-
lar results for all architectures and therefore only report detailed results for one topology (3 
hidden layers with 10 neurons each) for brevity. Models are trained and evaluated 20 times 
per dataset and method to test statistical significance with the Wilcoxon signed-rank test 
and a significance level of 0.05.

4.2.2  Results

As in Sect. 4.1, we split each test dataset into 5 equidistant bins and rank the bins by the 
number of samples. Metrics RMSE and MAE are calculated for each bin.

Figure 8 visualizes the number of dataset wins of DenseLoss, SMOGN, and the base-
line (None) per bin rank over the 20 datasets for the metric RMSE. Due to some datasets’ 
small sizes there are some bins without data points in the test set. This results in the bars 
for rank 1 and 2 not containing 20 wins, since no winner can be found for empty bins. The 
results show for the rarest bins (bin rank 1) that DenseLoss provides the best performance 
for 8 datasets while SMOGN only performs best on 3 datasets and applying no method 
is best for only 2 datasets. DenseLoss has the highest number of significant dataset wins 
against both methods in this rarest bin rank but also in bin ranks 2–4. For bin ranks 1–4, 
DenseLoss wins more than half of the datasets, with most wins being statistically signifi-
cant against the baseline and SMOGN. Only for bin rank 5 with the most samples, it is typ-
ically best to apply no method for imbalanced data. This, however, is expected, as the usual 
training method is biased towards common target values. We found very similar results 
for the metric MAE. Repeating this experiment with the other network architectures intro-
duced in Sect. 4.2.1 further confirms these findings, as is shown in the “Appendix”. These 
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results suggest that DenseLoss typically provides better performance for rare data points in 
comparison to the state-of-the-art imbalanced regression method SMOGN.

Similarly as described in Sect. 4.1.3 we analyze the performance over the datasets’ tar-
get variable domains in a continuous manner. Thus, we visualize the normalized MAE per 
data point rarity across all datasets for regular training ( � = 0.0 ), DenseLoss ( � = 1.0 ), 
and SMOGN in Fig. 9. To account for the high variability and to improve interpretability 
we smooth the plot using a moving mean with a windows size of 300 samples over the 
7188 total test samples. Similarly as in the bin-wise evaluation, we find on average lower 
error with DenseLoss for rarer data points ( ∼ p�(y) < 0.5 ) compared to using no imbal-
anced regression method. Normalized MAE is improved by roughly 10% for rare data 
points with p�(y) < 0.3 while the error increases with larger densities. SMOGN seems to 
not work well on average over all datasets even though we used the same datasets with the 
same hyperparameters as the original SMOGN authors used in their work. We find high 
variability in SMOGN’s performance across the datasets with it working well for some 
datasets (e.g. cpuSm or acceleration) but considerably worse on most others, leading to 
relatively large normalized MAE regardless of density. Also note the two outlier segments 
in the plot showing high MAE that stem from one sample each of the dataset availPwr. 
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Almost all models estimate extremely large values for these two samples, likely due to an 
unusually high feature value, leading to very large MAE for all moving mean windows that 
include these samples.

4.3  Statistical downscaling of precipitation

To show that DenseLoss can work for larger datasets and more complex neural network 
architectures, we apply it to the real world task statistical downscaling of precipitation. Its 
objective is to generate local scale precipitation projections based on spatially coarse pre-
cipitation projections stemming from Earth System Models. This can be learned based on 
high-resolution historical climate observations (Vandal et al. 2017).

A model that does statistical downscaling of precipitation is DeepSD (Vandal et  al. 
2017). It uses super-resolution convolutional neural networks to improve the resolution of 
precipitation data. The model is supplied with a map showing daily precipitation at a low 
spatial resolution. This map is similar to an image where each pixel contains precipita-
tion data for a specific real world area. Additionally, the model is provided with a high-
resolution elevation map whose pixels are aligned with the precipitation map, so that any 
pixel in one map represents the same area as the corresponding pixel in the other map. This 
information helps the model to take topography as a known influence into account (Daly 
2008). DeepSD’s authors use the PRISM dataset  (Daly 2008) for precipitation data over 
the Continental United States and elevation data from the GTOPO30 dataset (U.S. Geolog-
ical Survey 1996). Commonly, there are far less rainy days than dry days at most locations 
(see “Appendix”). Yet, especially high precipitation events are interesting as they could 
have considerable consequences like flooding. Thus, we apply DenseLoss to this real world 
task in order to improve model performance especially for these rare and extreme events. 
To this end, we conduct a study for DenseLoss ’s � , investigating the influence of � on 
model performance.

4.3.1  Experimental setup

For our study, we modified DeepSD’s code3 to include DenseLoss. As such, we use three 
convolutional layers with 64, 32, and 1 filters and kernel sizes of 9, 1, and 5, respectively. 
Model training minimizes the MSE with a batch size of 200 and the Adam optimizer with 
a learning rate of 10−4 for the first two layers and 10−5 for the last layer. Precipitation data 
is split into a training (years 1981 to 2005) and a test set (years 2006–2014). In contrast to 
the hyperparameter values described in the DeepSD paper, we trained for 105 instead of 
107 epochs. This saves computation time as we found no further reduction in training loss 
when training longer. These are still many epochs but it is necessary given the relatively 
low learning rates used by DeepSD. We train DeepSD to downscale from 128 to 64 km 
resolution. The study tests � values from 0.0 to 4.0 with steps of 0.2. Compared to Sect. 4.1 
we extend this range to assess at which � performance plateaus considering we have found 
continuous performance gains up to � = 2.0 here. DeepSD is trained 20 times per � with 
different random model initializations to test statistical significance with the Wilcoxon 
signed-rank test and a significance level of 0.05 (Vandal et al. 2017).

3 https:// github. com/ tjvan dal/ deepsd.
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4.3.2  Results

As before we split the test dataset into 5 equidistant bins, rank the bins by the number of 
samples and calculate RMSE and MAE for each bin.

Figure 10 visualizes the change of mean RMSE in percent with respect to regular train-
ing ( � = 0.0 ) in all bin ranks for models trained with different � . E.g. a ΔRMSE of − 8% 
indicates an 8% lower RMSE compared to not using DenseLoss. Interestingly, DenseLoss 
does not only improve performance for rare samples (e.g. bin rank 1) but also for common 
values (e.g. bin rank 5) here. Improvement is most pronounced in the most common and 
the rarest bin. This suggests that the enormous over-representation of samples with precipi-
tation close to 0 mm may also negatively affect performance for these same very common 
data points. DenseLoss reduces their influence, effectively reducing the over-representa-
tion which in turn seems to lead to better performance for common samples. Performance 
improves with increasing � before plateauing for ∼ � ≥ 2.0 . Our tests for statistical sig-
nificance show that for each � ≥ 0.8 performance improvements compared to � = 0.0 are 
significant for all bin ranks.

As in the previous experiments (e.g. Sect. 4.1.3) we also analyze the performance over 
the target variable domain in a continuous manner. Thus, we visualize the normalized 
MAE per sample rarity for regular training ( � = 0.0 ) and DenseLoss ( 𝛼 > 0.0 ) in Fig. 11. 
To improve interpretability we smooth the plot by applying a moving mean with a window 

Fig. 10  Change in mean RMSE 
with respect to not using 
DenseLoss ( � = 0.0 ) per � for 
each bin rank in PRISM’s test 
set. Bins are ranked within the 
test dataset according to the 
number of samples. The Bin with 
rank 1 (5) contain the fewest 
(most) samples

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

α

−8

−6

−4

−2

0

∆
R
M
SE

(%
)

Bin Rank 1

Bin Rank 2

Bin Rank 3

Bin Rank 4

Bin Rank 5

Fig. 11  Normalized MAE for 
PRISM test samples per normal-
ized density. Graph is smoothed 
via moving mean (window size 
300,000) and logarithmic for 
interpretability

10−2 10−1 100

p (y)

10−2

2 × 10−2

N
or
m
al
iz
ed

M
A
E

α = 0.0

α = 1.0

α = 2.0

α = 4.0



 Machine Learning

1 3

size of 300,000 data points over the 6,143,403 test samples. We see again that DenseLoss 
improves estimates for both rare (left side) and even more so for common samples (right 
side) here. Performance improvements tend to increase with larger � but only marginally 
above � = 2.0.

In this experiment, we observe a different behavior of DenseLoss than before. Here, 
DenseLoss is able to improve performance across the complete target variable range 
instead of trading performance between common and rare samples. We hypothesize that 
DeepSD’s capacity is large enough to learn a good function for both rare and common data 
points at once, while smaller models might lack the capacity for this. DenseLoss seems to 
allow this model to converge to an overall better solution.

5  Discussion

In this work, we have shown that DenseWeight and DenseLoss can help to improve model 
performance for rare data points. However, there are still aspects to discuss.

While DenseWeight can theoretically be used with any algorithm that supports sample 
weights, we only evaluated it with neural networks using DenseLoss. We expect to see 
similar results for other algorithms but we did not test this assumption here.

We compared our approach to SMOGN in Sect. 4.2 but not in the last experiment as 
we found it to be computationally infeasible. SMOGN’s oversampling algorithm calculates 
the distance between all data points where a data point is the precipitation at one location 
at one time. Using the available implementation we found through initial testing that this 
would take years with any hardware available to us.

We did not systematically check whether the architectures used in the first two experi-
ments generalize well but we expect decent generalization performance due to our use of 
early stopping. Model training is stopped when the validation loss stops improving, which 
inhibits overfitting. Its effectiveness shows in spot checks where we found no model with 
substantially higher training than test or validation performance.

Our approach introduces a new hyperparameter � , controlling the strength of density-
based weighting, which must be set appropriately. While we find that setting � = 1.0 typi-
cally provides good performance for rare samples, there can be better choices. With a val-
idation dataset and a suitable goal it is possible to optimize � , however defining a goal 
is often not trivial in an imbalanced regression setting. It requires domain knowledge to 
define which data points are rare and important. If this knowledge is available one could 
simply search for the � that minimizes the MSE on these rare and important data points to 
achieve optimal performance for a specific domain.

For the data splits in Sect. 4.2 we manually confirmed whether the splits are similarly 
distributed. Random splitting was not able to reliably produce splits with similar distribu-
tions given the small sizes of some datasets. While we do not believe this to influence the 
results, a more automatic method to this would be more objective. One could perhaps try 
to maximize a distribution similarity score and stop redoing splits if a certain threshold is 
exceeded but we did not implement this in this work.
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6  Conclusion

In this work, we have proposed our sample weighting approach for imbalanced regres-
sion DenseWeight and our cost-sensitive learning method DenseLoss, tackling the prob-
lem of imbalanced regression for neural networks based on DenseWeight. We show that 
our approach can improve model performance for rare data points with synthetic datasets, 
specifically designed to represent different kinds of data distributions. Extensive hyperpa-
rameter studies for each dataset provide insight and intuition for how DenseWeight and 
DenseLoss ’s � controls a model’s focus on rare in comparison to common data points. 
Experiments on 20 datasets show that DenseLoss typically outperforms the sampling-
based method SMOGN. Applying DenseLoss to statistical downscaling of precipitation, 
we demonstrate its benefits on a real world task and discuss its potential for higher capacity 
models.

Future work includes examining ensemble approaches for DenseLoss which combine 
models trained with different � . Depending on � , each model is an expert in different target 
variable ranges. A meta-model could learn which ensemble member is likely to perform 
best based on a given sample’s features which may lead to nearly optimal performance 
not only for rare samples but across the whole target range. Furthermore, it is interesting 
to assess the relation between model capacity and performance across the target domain 
with DenseLoss, following the intuition that large enough models might be able to learn a 
function that consistently works well for both rare and common data points. Additionally, 
ideas which are already established for cost-sensitive learning in imbalanced classification 
settings could be transferred for regression tasks. Examples include weighting based on the 
effective number of samples in a target region (Cui et al. 2019) or incorporating sample dif-
ficulty in the weighting (Dong et al. 2017).

Appendix

In the “Appendix” we present some additional details and results of our work.
Figure 12 visualizes detailed results for datasets dnormal and rpareto of our experiment 

with synthetic data. Table 1 lists the datasets used in our comparison to the state-of-the-art 
with their respective sizes. Figure 13 visualizes the relevance functions for SMOGN on the 
synthetic datasets. Figure 14 shows the number of datasets won per method in our com-
parison with the state-of-the-art for additional network architectures. Figure 15 depicts the 
highly skewed precipitation distribution of the PRISM dataset used in our experiment for 
statistical downscaling of precipitation.

SMOGN with DenseWeight

The results in this work show that DenseLoss typically outperforms SMOGN. However, 
it is not clear to which extent the performance differences stem from the different meas-
ures of data point rarity or from the methodological differences between resampling and 
cost-sensitive learning. We therefore adapt SMOGN to use DenseWeight as its relevance 
function and we repeat the experiments involving SMOGN. We call SMOGN with Dense-
Weight SMOGN-DW in the following.
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Experimental Setup

SMOGN identifies the rarity of each data point through a relevance function � ∶ Y ↦ [0, 1] 
which is obtained through an automatic method based on box plot statistics by SMOGN’s 
authors  (Ribeiro 2011; Branco et  al. 2017). This relevance function is similar to Dense-
Weight in that both aim to measure the rarity of a data point. In order to use DenseWeight 
as a relevance function we normalize the weights of all training set data points to a range 
between 0 and 1. We set DenseWeight’s � to 1 which is the same value used for DenseLoss 
in the comparisons with SMOGN. We implement SMOGN with DenseWeight by expand-
ing the existing python implementation smogn (Kunz 2019). This expanded smogn pack-
age is also available in our online repository. All other aspects of the experimental setup 
remain as described in Sect. 4.
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figure’s bottom

Table 1  Datasets with imbalanced target values and their sizes

Dataset N Dataset N Dataset N Dataset N

a1 198 a6 198 AvailPwr 1802 dAiler 7129
a2 198 a7 198 Bank8FM 4499 FuelCons 1764
a3 198 Abalone 4177 Boston 506 MachineCpu 209
a4 198 Acceleration 1732 ConcrStr 1030 MaxTorq 1802
a5 198 Airfoild 1503 cpuSm 8192 Servo 167
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Fig. 13  SMOGN’s relevance function � for the synthetic datasets
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Fig. 14  Number of datasets won per method and bin based on RMSE with different MLP architectures. 
Subcaptions indicate the number of hidden layers and neurons per hidden layer. E.g., 10–10 represents an 
MLP with two hidden layers each having 10. Bins are ranked in each test dataset according to sample size. 
Bins with rank 1 (5) contain the fewest (most) samples. Bar section’s show the number of datasets won 
by a method at that bin rank. Wins denoted as “sig.” are significant with regards to both other methods. 5 
test datasets had an empty bin and 2 test datasets had 2 empty bins. Thus, the bars for bin rank 1 and 2 are 
smaller as there is no winner for empty bins
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Results

Figure 16 shows the normalized MAE depending on test data point rarity over the synthetic 
datasets (as in Fig. 7) now also with SMOGN-DW. We see that SMOGN and SMOGN-DW 
perform very similarly on these synthetic datasets and that DenseLoss still tends to provide 

Fig. 15  Distribution of precipita-
tion in the PRISM dataset over 
all cells and all days from 1981 
to 2005. Note that the y-axis is 
logarithmic. Negative precipita-
tion values may stem from an 
interpolation method used in the 
original work, but we decided not 
to clean the data to stay consist-
ent with previous work
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Fig. 16  Normalized MAE for 
test samples from all synthetic 
datasets per normalized density. 
Graph is smoothed via moving 
mean (window size 30) to ease 
interpretability
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better performance for more rare data points. For the continuous results over the twenty 
datasets from Sect. 4.2 we see in Fig. 17 that SMOGN and SMOGN-DW also show mostly 
similar performance, with lower normalized MAE for data points with ∼ 0.7 > p�(y) > 0.4 
for the latter. DenseLoss still seems to provide better performance than SMOGN-DW and 
SMOGN.

Figure 18 shows the number of dataset wins (as in Fig. 8) but now with SMOGN-DW 
instead of regular SMOGN and for all evaluated MLP architectures. DenseLoss still has the 
highest number of significant dataset wins against both methods and almost always wins 
more than half of the datasets for bin ranks 1 to 4. Only bin rank 1 with architecture 5–5–5 
shows one more SMOGN-DW win than the DenseLoss wins but even there DenseLoss 
has more significant wins. When comparing these results with the dataset wins of regular 
SMOGN in Figs. 8 and 14 we see that the performance difference between SMOGN and 
SMOGN-DW is rather small with SMOGN-DW occasionally competing slightly better.
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Fig. 18  Number of datasets won per method and bin based on RMSE with different MLP architectures. 
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Since using the same measure of rarity for both SMOGN and DenseLoss does not 
improve SMOGN’s performance considerably, we can conclude that most of the perfor-
mance difference seems to stem from the methodological differences between resampling 
and cost-sensitive learning. Using DenseWeight as a relevance function for SMOGN seems 
to provide slight improvements compared to the relevance function used by SMOGN’s 
authors but not enough to close the gap to DenseLoss.
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H I G H L I G H T S  

� Introduction of globally and openly available features for land use regression (LUR). 
� Machine learning featuring automated hyper-parameter tuning for LUR tasks. 
� Global features significantly enhance LUR through cross-learning on multiple cities. 
� Source code and data available at dmir.org/openlur  
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A B S T R A C T   

To assess the exposure of citizens to pollutants like NOx or particulate matter in urban areas, land use regression 
(LUR) models are a well established method. LUR models leverage information about environmental and 
anthropogenic factors such as cars, heating, or industry to predict air pollution in areas where no measurements 
have been made. However, existing approaches are often not globally applicable and require tedious hyper- 
parameter tuning to enable high quality predictions. In this work, we tackle these issues by introducing Open-
LUR, an off-the-shelf approach for modeling air pollution that (i) works on a set of novel features solely extracted 
from the globally and openly available data source OpenStreetMap and (ii) is based on state-of-the-art machine 
learning featuring automated hyper-parameter tuning in order to minimize manual effort. We show that our 
proposed features are able to outperform their counterparts from local and closed sources, and illustrate how 
automated hyper parameter tuning can yield competitve results while alleviating the need for expert knowledge 
in machine learning and manual effort. Importantly, we further demonstrate the potential of the global avail-
ability of our features by applying cross-learning across different cities in order to reduce the need for a large 
amount of training samples. Overall, OpenLUR represents an off-the-shelf approach that facilitates easily 
reproducible experiments and the development of globally applicable models.   

1. Introduction 

Epidemiological studies show the negative impact of air pollutants 
like NOx or particulate matter (UFP, PM2.5 and PM10) on respiratory and 
cardiovascular health (Pope et al., 1991; Polichetti et al., 2009; Brook 
et al., 2010). In order to assess the exposure of citizens to such pollut-
ants, many measurement campaigns have been conducted. However, 
such campaigns are often restricted to very few stationary monitoring 
sites (Briggs et al., 2000; Carr et al., 2002; Brauer et al., 2003; Sahsu-
varoglu et al., 2006; Henderson et al., 2007; Arain et al., 2007; Aguilera 

et al., 2007; Su et al., 2009; Dons et al., 2013; Ragettli et al., 2014; 
Montagne et al., 2015; Muttoo et al., 2018; Araki et al., 2018), and even 
if mobile monitoring devices are used, spatial coverage is limited to road 
segments or locations that have been chosen for the measurement 
campaign (Sîrbu et al., 2015; Larson et al., 2009; Zwack et al., 2011; 
Patton et al., 2014; Hasenfratz et al., 2014; Hankey and Marshall, 2015; 
Su et al., 2015; Shi et al., 2016; Minet et al., 2017; Basu et al., 2019). To 
retrieve pollutant concentration in unmeasured locations researchers 
rely on the correlation of air pollution with environmental and anthro-
pogenic factors such as cars, streets, heating or industry (Jerrett et al., 
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2004). In particular, they employ land use regression (LUR) models 
which leverage features extracted from land use statistics to overcome 
the limits and predict air quality in a spatially dense manner. 

1.1. Problem setting 

In previous work, the corresponding features usually stem from very 
specialized sources like local governments (Brauer et al., 2003; Hoek 
et al., 2001; Stafoggia et al., 2019), commercial providers (Sahsuvaroglu 
et al., 2006; Muttoo et al., 2018; Stafoggia et al., 2019), other models 
(for example traffic or weather models) (Dons et al., 2013; Stafoggia 
et al., 2019), or custom recordings (Briggs et al., 2000; Carr et al., 2002). 
For some studies, the source of the underlying land use data is even not 
easy to access (Montagne et al., 2015; Hankey and Marshall, 2015; Araki 
et al., 2018). The proposed methods are consequently hard to reproduce 
and hardly generalize to arbitrary locations. 

Additionally, current work is often based on relatively simple models 
like linear regression (Arain et al., 2007; Aguilera et al., 2007; Muttoo 
et al., 2018) or generalized additive models (GAM) (Hasenfratz et al., 
2014). While some newer work explores more advanced methods 
(Champendal et al., 2014; Brokamp et al., 2017; Araki et al., 2018; 
Stafoggia et al., 2019; Basu et al., 2019), state-of-the-art machine 
learning approaches are still frequently neglected or require tedious 
hyper-parameter studies. 

1.2. Approach 

In this work, we address this issue and propose OpenLUR, an off-the- 
shelf solution for air pollution modeling using land use regression (LUR) 
based on open features and state-of-the-art machine learning (see 
Fig. 1). First, to ensure reproducible and generalizable models, we 
derive features solely from openly and globally available data extracted 
from OpenStreetMap (OSM) (OpenStreetMap contributors, 2017). Sec-
ond, we apply various state-of-the-art machine learning methods on 
these features. Besides GAMs and random forests, we specifically focus 
on methods that feature automated hyper-parameter tuning, for 
example AutoML (Blum et al., 2015), in order to eliminate the need for 
tiresome hyper-parameter studies. We evaluate both, our novel features 
as well as the state-of-the-art methods, on two large scale datasets: 
mobile air pollution data collected by Hasenfratz et al. (2014) and 
modelled air pollution data from the London atmospheric emissions 
inventory (Greater London Authority, 2016). We are able to show (i) 
that our novel open features outperform previously applied local feature 
sets on the given data, (ii) that using machine learning with automated 
hyper-parameter tuning yields high quality, reproducible and spatially 
generalizable models, (iii) that our features are applicable wherever 
OpenStreetMap data is available and (iv) that cross-learning on multiple 
cities can significantly enhance the model performance for small 
datasets. 

1.3. Contribution 

Our contributions in this article are: (i) We introduce a set of globally 
and openly available features for modeling air pollution using land use 
regression that significantly outperform previously proposed specialized 
features and show their global applicability. (ii) We evaluate state-of-art 
machine learning featuring automated hyper-parameter tuning for the 
application in land use regression tasks. (iii) We assess the enhance-
ments for urban land use regression models achieved by the utilization 
of data from multiple cities. (iv) We propose OpenLUR as a globally 
applicable and expendable approach for land use regression and make 
the source code and our extracted features openly available at 
https://www.dmir.org/OpenLUR in order to ensure reproducibility and 
to enable future research. 

2. Air quality training data 

Our approach is generally applicable to any land use regression 
scenario. In this work, we train and test our models and features on a 
year of data collected during the OpenSense project in Zurich starting 
from April of 2012. Ensuing we show the global applicability of the 
approach on data extracted from the London Atmospheric Emissions 
Inventory (LAEI) (Greater London Authority, 2016) and demonstrate the 
potential of globally available land use features by combining both 
datasets. 

2.1. OpenSense data 

In the OpenSense project UFP was continuously measured by sen-
sorboxes fixed to the top of tram cars (Hasenfratz et al., 2014). Hasen-
fratz et al. (2014) show the good measurement quality through the 
statistical distribution of measurements, comparison of baseline signals 
from several measurement devices and evaluation against high-quality 
datasets. With regard to preprocessing, we follow Hasenfratz et al. 
(2014): To rule out effects of seasonal variability on air pollution we 
split the collected data into four seasons of three months each (see 
Table 1). 

To further smooth over smaller temporal and spatial variabilities and 
outliers, we divided the observation area into squares of 100m� 100m 
and averaged the measurements for each season and square. Finally, 
squares with small numbers of samples which are prone to outliers and 
may negatively impact the model building process were removed. In 
particular, we kept the 200 squares with the largest amount of measured 
points (Hasenfratz et al., 2014). The # rows in Table 1 show the mean, 
min and max amount of measurements in the squares, that were kept in 
the dataset. The values used for the model training therefore are aver-
ages of at least 2000 single measurements which limits the influence of 
single outliers in the original data. 

Table 1 shows statistics of our dataset by season. The mean as well as 
the standard deviation (SD) tend to be higher for the two later seasons in 
this dataset. 

For a spatial visualization of Season 2, see Fig. 2. The particular 

Fig. 1. Abstract-/ToC-Art: Off-the-shelf 
approach to air pollution modeling using 
land use regression (LUR) powered by 
openly available features and state-of-the-art 
machine learning: On the left this figure 
shows a set of sparsely collected air quality 
measurements. To derive a spatially dense 
map, we train a LUR air quality model using 
globally and openly available features 
derived from OpenStreetMap by applying 
state-of-the-art machine learning featuring 
automated hyper-parameter tuning. Open-
LUR ensures easily reproducible experiments 
and enables world wide applicable models.   
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spatial patterns of the measurements are due to the sensor boxes being 
mounted on tram cars. 

2.2. LAEI data 

For showcasing the global applicability of our approach and the 
potential of globally available features, apply our features on annual 
mean PM10 concentrations stemming from the LAEI dataset (Greater 
London Authority, 2016). The data was obtained from a detailed 
dispersion model based on a vast number of input factors like road and 
rail traffic, aviation, agriculture, industry and domestic and commercial 
fuel burning and fires. For the dataset generation we randomly sampled 
3000 datapoints for training and 1500 for testing purposes from the 
urban central London region. With this comparatively large dataset we 
are able to provide evaluation scores that are robust against outliers. 

Table 2 shows the mean and standard deviation (SD) of both training 
and testing dataset. Note that the mean concentrations are higher than 
in Table 1, as PM10 includes bigger particles on top of UFP. 

3. The OpenLUR approach 

In this section, we introduce the main components of OpenLUR, our 
off-the-shelf approach for building air quality models based on land use 
regression (LUR): a novel set of open and globally available features 
derived from OpenStreetMap as well as the concept of automated hyper- 

parameter tuning for state-of-the art machine learning methods. 

3.1. OpenStreetMap features 

In contrast to feature sets used in previous studies (Hasenfratz et al., 
2014; Aguilera et al., 2007; Briggs et al., 2000), our features are only 
based on OSM and thus are openly available and globally applicable. 

To assess the validity of our feature set we compare them to a set of 
features used in previous work. In particular, we focus on the features 
from Hasenfratz et al. (2014). 

Hasenfratz et al. (2014) derived features for each individual grid cell 
(cf. Section 2), including for example population or industry density, 
building heights or terrain properties shown in Table 3. While some of 
these features are derived from OpenStreetMap, most of them stem from 
data provided by governmental institutions in Switzerland and Zurich. 
Thus, they are only available in this region, which leads to a model, that 
is only applicable in Zurich and can not be compared to models designed 
fo other regions. 

Table 1 
The four seasonal OpenSense UFP datasets from Zurich and basic statistics. The 
# rows show mean, min and max count of measurements used for the average in 
the squares in which we aggregated the air pollution mesurements.  

Season 1 2 3 4 

From April 01, 
2012 

July 01, 2012 October 01, 
2012 

January 01, 
2013 

To June 30, 
2012 

September 30, 
2012 

December 31, 
2012 

March 31, 
2013 

Mean 

[
109particles

m3 ]  

12.88 13.69 16.08 17.99 

SD 

[
109particles

m3 ]  

2.81 2.36 3.72 4.25 

Mean # 7292 6111 11712 10986 
Min # 2817 2105 3647 3727 
Max # 29946 29781 74588 222928       

Fig. 2. An excerpt from the air pollution 
data from Zurich used for training LUR 
models. The figure shows the spatial distri-
bution of the data from Season 2 of the 
OpenSense dataset (Hasenfratz et al., 2014) 
collected via sensor boxes on trams. The in-
dividual measurements are aggregated 
based on 100m� 100m grid cells. Analo-
gously to the experiments in (Hasenfratz 
et al., 2014), the cells are restricted to those 
200 with the most measurements. ©Open-
StreetMap contributors (www.openstree 
tmap.org/copyright).   

Table 2 
Statistics for the LAEI PM10 dataset from London.  

Dataset Size 
Mean [

109particles
m3 ]  SD [

109particles
m3 ]  

Training 3000 28.15 2.78 
Testing 1500 28.13 2.43  

Table 3 
Baseline features from Hasenfratz et al. (2014) with their respective source. 
Except from OSM, none of the features are globally available.  

Feature Source 

Population density Swiss Federal Statistical Office 
Industry density Swiss Federal Statistical Office 
Building heights Swiss Federal Statistical Office 
Heating type Swiss Federal Statistical Office 
Terrain elevation Swiss Federal Statistical Office 
Terrain slope Swiss Federal Statistical Office 
Terrain aspect Swiss Federal Statistical Office 
Road type OSM 
Distance to next road OSM 
Distance to next large road OSM 
Distance to next traffic signal OSM 
Average daily traffic volume Department of Waste, Water, Energy  

and Air of the Canton of Zürich  

F. Lautenschlager et al.                                                                                                                                                                                                                        
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To derive our novel set of globally available features, we employ 
OpenStreetMap (OSM) which provides openly and globally available 
land use data. In this section, we briefly introduce OSM as a data source 
and describe the features as well as their extraction process. 

3.1.1. OpenStreetMap 
OSM is an open source map dataset developed and maintained by a 

large number of volunteers from all around the world (Haklay and 
Weber, 2008). Many studies confirm the quality of the data provided by 
OSM (Haklay, 2010; Hecht et al., 2013). Consequently, OSM is a popular 
data source in a variety of studies ranging from risk management 
(Schelhorn et al., 2014) and disaster warning (Rahman et al., 2012) to 
navigation (Hentschel and Wagner, 2010) and routing (Luxen and Vet-
ter, 2011). OSM also contains many variables related to air pollution. 
For example, it lists key:value pairs like landuse:industry or highway: 
motorway which can be directly used to derive relevant land usage and 
land cover statistics (Heymann, 1994; Estima and Painho, 2015; 
Hasenfratz et al., 2014).. 

3.1.2. Feature extraction 
To extract air pollution related features, we rely on OSM entities 

which are stored as polygons, lines or points (such as buildings, streets 
or traffic lights, respectively). Each entity is associated with a set of key: 
value pairs. In this study, we focus on entities with the keys landuse and 
highway. Using entities with these keys, we extracted two types of fea-
tures: area/length-based features and distance-based features. These fea-
tures are generated for each grid cell individually. We provide an 
overview over the features in Fig. 3. 

For the area/length-based features, we define a circular zone (buffer) 
of various sizes around a grid cell’s center (see top left of Fig. 3). Within 
those buffers, we measure the overall area or the overall length covered 
by those OSM entities relevant to the specific feature. In particular, we 
derive three area-based features by summing up the areas of entities 
with the key landuse and the values industrial, commercial and residential 
respectively. For the length-based features, we define two categories: 
roads with heavy traffic and roads with light traffic. For the heavy traffic 
features, we sum up the length of entities with the key highway and the 
values motorway, trunk, primary and secondary. For the light traffic fea-
tures, we sum up the length of entities with the key highway and the 
values tertiary and residential. This provides information about industrial 
land-use and traffic intensity. The procedure is illustrated in Fig. 3. We 
varied the buffer radii in 50m-steps ranging from 50m to 3000m for area- 
based features and from 50m to 1500m for length-based features to account 
for distance-dependencies. The radii were chosen according to their 
maximum distance of influence (Jerrett et al., 2004; Henderson et al., 
2007; Su et al., 2009). Three area-related key:value pairs using 60 buffer 

radii each and two length-related key:value pairs with 30 buffer radii 
each result in 240 features. 

For the distance-based features, we focus on the key:value pairs high-
way:motorway, highway:primary, highway:traffic_signals and landuse:in-
dustrial. For each of these pairs, we calculate the distance between a grid 
cell’s center and the nearest occurrence of an entity with the respective 
pair as illustrated in Fig. 3. Like for the area-based features, this repre-
sents information on the local traffic profile as well as industrial factors 
which are assumed to negatively influence air quality. Considering the 
four mentioned key:value pairs, this results in 4 features. 

Combining both feature classes results in 244 open and publicly 
available features derived solely from OSM, shown in Table 4. By con-
struction, these features represent land cover and traffic related infor-
mation and are closely tied to air pollution. We are aware, that this list of 
land use features is not exhaustive as factors like elevation, population 
density and other meteorological and environmental covariates can also 
highly influence air quality. OpenLUR can be extended with additional 
data sources via an easy to use API. The aim of this study however is to 
show the capability of OSM to provide land use information that can 
outperform closed source land use features. 

3.2. Automated hyper-parameter tuning 

Newer advancements in machine learning often promise better 
prediction results using the same data. These models however 
commonly require tedious hyper-parameter tuning and expert knowl-
edge concerning the applied algorithms. In this section we briefly 
introduce several approaches for automatic hyper-parameter tuning to 
negate this disadvantage. This is one key feature of our off-the-shelf 
approach. 

3.2.1. Basic approaches 
Most state-of-the-art machine learning methods need to be tailored 

to specific tasks by selecting an appropriate set of hyper-parameters. For 
the example of random forests, the number of estimators, the number of 
features per estimator or the minimal number of samples per leaf have to 
be tuned. The typical procedure to tune hyper-parameter sets is as fol-
lows: The dataset is split in a train, a validation and a test set. Different 
hyper-parameter sets are trained on the train data and tested on the 
validation data. The best performing model is used as final model, 
retrained on train and validation set and tested on the test set. Due to the 
combinatorial explosion of possible hyper-parameter combinations, this 
process either requires expert knowledge or has to be automated. In the 
following, we revisit two commonly used generic methods to automat-
ically optimize hyper-parameters: grid and stochastic search. 

3.2.1.1. Grid search. Grid search is performed by manually choosing a 
set of candidate values for each hyper-parameter. Then, all possible 
combinations of these values are evaluated. 

3.2.1.2. Stochasic search. Stochastic search optimizes hyper-parameters 
by randomly choosing candidate values for each hyper-parameter from a 
predefined probability distribution (mostly uniform) within a given time 
budget. This often allows to “find better models by effectively searching 
a larger, less promising configuration space” (Bergstra and Bengio, 
2012) than manual or grid search. 

3.2.2. AutoML 
Automated Machine Learning (AutoML) (Blum et al., 2015) goes one 

step further than the standard way to automated parameter tuning. It 
builds an ensemble learner that exploits the synergy of several weak 
regressors to produce an improved model. In other words, it simulta-
neously chooses and combines models from a set of model classes 
(random forests, support vector machines, naive Bayes, etc.) while at the 
same time optimizing their hyper-parameters. For this, it does not rely on 

Table 4 
Features derived from OpenStreetMap. The features are divided into two classes: 
area/length (top part) and distance based features (bottom part), where area/ 
length features use different buffer sizes (50m–3000m/50m–1500m with a step 
size of 50m). Overall this results in 244 features for each grid cell.  

Variable Unit key:value pairs in OSM 

Industry usage Area [m2]  landuse:industrial 

Commercial usage Area [m2]  landuse:commercial 

Residential usage Area [m2]  landuse:residential 

Heavy traffic Length [m] highway:motorway  
highway:trunk  
highway:primary  
highway:secondary 

Light traffic Length [m] highway:tertiary  
highway:residential 

Distance to next motorway Distance [m] highway:motorway 
Distance to next primary road Distance [m] highway:primary 
Distance to next traffic signal Distance [m] highway:traffic_signals 
Distance to next industrial area Distance [m] landuse:industrial  

F. Lautenschlager et al.                                                                                                                                                                                                                        



Atmospheric Environment 233 (2020) 117535

5

grid or stochastic search, but utilizes efficient Bayesian optimization 
methods based on Gaussian processes to intelligently pick the most 
promising model and hyper-parameter combinations while staying 
within a given computational budget, such as time or memory usage 
(Blum et al., 2015). 

4. Experimental setup 

For OpenLUR we evaluate the two key components introduced in 
Section 3: our set of OSM features and the concept of hyper-parameter 
tuning for state-of-the-art machine learning methods. To show the 
ability of these components to provide an off-the-shelf approach, we 
compare our globally available OSM features with baseline features 
from previous work as independent variable and evaluate the competi-
tiveness of machine learning methods featuring automated hyper- 
parameter tuning. 

In this context, our general experimental setup is as follows: We aim 
to train models to predict the dependent variable UFP concentration at 
unobserved locations for the four seasons of the OpenSense dataset listed 
in Section 2. As done in most previous work, R2 and the root mean 
squared error (RMSE) are computed as scores to compare their perfor-
mance. The spatial dependence of the UFP concentration is modelled 
through the spatial variations of the independent variables. The tem-
poral dependence is ruled out by averaging measurements over seasons 
(c.f. Section 2) and using only one season for each model building and 
evaluation process. To account for random outliers of these scores due to 
the inherently small training sets (� 200 labeled samples in the Open-
Sense datasets, cf. Section 2), we report the mean of 40 10-fold cross 
validation scores as the final score for each model (cf. Hasenfratz et al. 
(2014)): For each of the 40 iterations, the dataset is randomly split into 
10 subsets. Ensuingly each subset is used once for the evaluation while 
the models are built based on the 9 remaining subsets. 

As baselines we picked two models that have proven to perform good 
on state-of-the art land use regression tasks (Hasenfratz et al., 2014; 
Champendal et al., 2014; Brokamp et al., 2017). To evaluate our 
apporach we compare them against two machine learning methods 
featuring automated hyper-parameter tuning. This results in the 
following list of models:  

� GAM: generalized additive model (no hyper-parameter tuning) 
(Hastie and Tibshirani, 1986)  
� RF: random forest (no hyper-parameter tuning) (Breiman, 2001)  
� RFOstochastic: random forest (hyper-parameters tuned by stochastic 

search) (Breiman, 2001; Bergstra and Bengio, 2012)  
� AutoML: automated machine learning (automated hyper-parameter 

tuning) (Blum et al., 2015) 

Due to the technical limitations of GAMs, a small set of features needs 
to be selected. We explain this process in the supplementary material. 
Beyond evaluating different feature sets, we compare GAMs and 
untuned random forests, against two state-of-the-art models with auto-
mated hyper-parameter tuning. Besides AutoML, we chose to optimize 
random forests using stochastic hyper-parameter search since (i) 
random forests are one of the most popular machine learning methods 
for land use regression (Champendal et al., 2014; Brokamp et al., 2017; 
Araki et al., 2018; Stafoggia et al., 2019) and (ii) stochastic search is 
reported to outperform manual or grid search (Bergstra and Bengio, 
2012). 

Note that, the features we extracted from OpenStreetMap as well as 
the code used to produce the following results are publicly available at 
https://www.dmir.org/OpenLUR. A more detailed explanation of the 
experimental setup can be found in the supplementary material. 

Fig. 3. Visualization of our set of open and globally available features. The top picture shows features based on the area/length of land use related entities within a 
given buffer zone. The bottom picture shows features based on the minimum distance to certain land use related entities. 
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5. Results 

In this section, we report the results based on the experimental setup 
described in Section 4. This encompasses (i) results on comparing our 
novel OSM features against a baseline feature set, (ii) results on 
comparing machine learning methods with and without hyper- 
parameter tuning, (iii) the application of OpenLUR on the LAEI data-
set to evaluate the number of data samples needed for competitive re-
sults and the applicability of cross-learning across different cities, 
namely Zurich and London, to overcome the limits of small-scale air 
quality datasets, and (iv) a summary of the results and a recommenda-
tion of the overall approach for OpenLUR. 

5.1. Feature comparison 

In this section, we evaluate the performance of our feature set 
introduced in Section 3.1 and compare it with specialized — however 
only locally available — features from previous work (Hasenfratz et al., 
2014). For this, we train several air quality models using both sets of 
features on the four seasons introduced in Section 2. 

As a measure of absolute performance gain, we calculated the per-
formance difference of our novel feature set and the OpenSense features 
for each model and each season with regard to RMSE and R2, respec-
tively. Table 5 shows the results. For RMSE (R2) negative values (posi-
tive values) indicate a better model performance in favor of our 
proposed OSM features. Bold values indicate a statistically significant 
difference using the Wilcoxon signed-rank test (p < 0:05 with p values 
are provided in the supplementary materials). 

We observe that in nearly all cases, our novel features yield signifi-
cantly better results compared to the baseline features. That is, out of the 
32 differences, 24 show a significant improvement in model quality. 
Only in four cases there is a significant tendency towards the baseline 
features. For the remaining cases our features perform equally well. The 
latter cases focus on Season 3 pointing towards a very specific data 
configuration that does not seem to be representative across the evalu-
ated datasets (e.g., due to significant temperature drifts from October to 
December). 

Thus, our novel and open OSM features significantly improve the 
performance of all studied air quality models compared to specialized 
and possibly restricted data sources. The globally available features 
enable air quality models to be trained anywhere on earth where OSM 
data is available. 

5.2. Model comparison 

We further evaluate the potential of automated hyper-parameter 
tuning. We therefore focus on our OSM features since they promise to 
yield the overall best results. The results for the baseline features are 
listed in the supplementary material. The results in Table 6 show the 
performance of each model listed in Section 4 for each season with re-
gard to RMSE and R2. The models are also ranked from best (1) to worst 
(4) on their performance in each Season. To facilitate an overall com-
parison between the models, the table furthermore lists the mean rank 
across all seasons. 

We do not observe statistically significant differences between the 
regression models. Nevertheless, examining the mean ranks as an 
alternative evaluation measure, we clearly observe a tendency for 
models with automated hyper-parameter tuning to perform better than 
regular models. This holds with regard to both metrics and confirms that 
hyper-parameter tuning is an essential step for training land use 
regression models for air quality prediction. 

Of those methods featuring automated hyper-parameter tuning, 
RFOstochastic performs better on both metrics. We assume that due to 
our rather small dataset the AutoML approach based on Gaussian pro-
cesses can not exploit its full potential. On top of that Blum et al. (2015) 
showed, that the AutoML model needs a considerable amount of time to 
be able to outperform competitors like random forest (Blum et al., 
2015). However, we expect the AutoML-based methods to show their 
advantage on larger datasets, where training models is more expensive 
and selecting particularly promising sets of hyper-parameters is essen-
tial. This needs to be further investigated. 

Nevertheless, we have shown that advanced machine learning ap-
proaches employing automated hyper-parameter tuning, i.e., AutoML 
and RFOstochastic, are applicable to air pollution modeling and 
outperform the baseline methods when considering mean ranks across 
several experiments. We thus have shown that methods employing 
hyper-parameter tuning can alleviate manual effort while not compro-
mising on prediction quality. 

Fig. 4(a) depicts the spatial distribution of UFP in Zurich predicted by 
the RFOstochastic trained on OpenSense season 1 with our OSM fea-
tures. Some patterns are clearly distinguishable: The water area as well 
as the recreation area in the western central part of the predictions are 
less polluted than urban Zurich. The higher pollution along some major 
roads is also visible. Fig. 4(b) shows the standard deviation of multiple 
resampled OpenLUR runs. The standard deviations are low with values 
up to 1.6 [109particles

m3 ] while absolute predictions are values of up to 17 

[109particles
m3 ]. The deviations are equally low in areas with lower or higher 

Table 5 
The absolute performance gain of our OSM based features over the OpenSense 
features with regard to RMSE and R2 is shown. Negative (positive) RMSE (R2) 
values show a better model performance when using our openly available OSM 
features and are highlighted in gray. In nearly all cases, our OSM features yield 
significantly better air quality predictions (bold values indicate statistical 
significance).  

Season AutoML RFOstochastic RF GAM  

RMSE [
109particles

m3 ]   

1 ¡0.18 ¡0.24 ¡0.24 ¡0.30 
2 ¡0.06 ¡0.08 ¡0.07 ¡0.07 
3 � 0.05 0.06 0.06 0.10 
4 ¡0.34 ¡0.39 ¡0.40 ¡0.19  

R2   

1 0.11 0.16 0.16 0.18 
2 0.04 0.05 0.06 0.04 
3 0.03 � 0.02 ¡0.06 ¡0.06 
4 0.13 0.19 0.19 0.03  

Table 6 
RMSE and R2 metrics of the models using OSM features. Parenthesis show the 
rank of the model given a particular season for the corresponding metric. 
Generally, the model performances do not differ significantly. However, a clear 
tendency towards models featuring automatic hyper-parameter tuning can be 
observed judging by their mean rank over all seasons.  

Season AutoML RFOstochastic RF GAM  

RMSE [
109particles

m3 ] (rank)   

1 2.06 (3) 2.01 (2) 2.12 (4) 2.00 (1) 
2 1.75 (2) 1.74 (1) 1.82 (4) 1.75 (2) 
3 2.87 (1) 2.91 (2) 3.07 (3) 3.13 (4) 
4 3.55 (1) 3.55 (1) 3.69 (3) 3.73 (4) 
Mean rank 1.75 1.50 3.50 2.75  

R2 (rank)   

1 0.40 (3) 0.43 (1) 0.36 (4) 0.42 (2) 
2 0.38 (2) 0.39 (1) 0.32 (4) 0.37 (3) 
3 0.35 (1) 0.32 (2) 0.25 (3) 0.21 (4) 
4 0.19 (1) 0.19 (1) 0.11 (3) 0.08 (4) 
Mean rank 1.75 1.25 3.50 3.25  
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pollution, best visible in the western, higher polluted, region of Zurich. 
This means that the resampled models have a high agreement on the 
predictions, independent of the predicted pollution value. 

To show that the spatial dependence of the pollutant is modelled by 
the OSM features, as stated in Section 4, we computed the spatial cor-
relation of the residuals with each independent variable. The correlation 
coefficient c is between � 0:09 and 0.19. The coefficient of determina-
tion c2 describes the percentage of the residuals that can be explained by 
the independent variable (Taylor, 1990). With c2 < 4% the residuals are 
independent from our OSM features, meaning that the spatial depen-
dence of UFP is indeed modelled by the independent variables. 

In conclusion, the predictions achieved with OpenLUR are of a 
competitive prediction quality (c.f. Tables 5 and 6) and subjectively 
reasonable (c.f. Fig. 4(a)). 

5.3. Global applicability and cross-learning 

In this section, we utilize the LAEI dataset to show the applicability 
and potential of globally available land use features. We will first apply 
OpenLUR on the LAEI dataset and second demonstrate how the global 
applicability of our features can be used to improve the performance of 
LUR for small datasets through cross learning. 

We use our OSM features and the best working models from the 
previous experiment, namely AutoML and RFOstochastic. 

To show the global applicability of OpenLUR on datasets of different 
sizes, we first apply OpenLUR to different subsets (from 10 up to 1000 
datapoints) of the LAEI data. The results are shown in Table 7. While the 
results of the models do not differ significantly, the accuracy rises with 
the size of the training data with an especially strong increase below 200 

training samples. For a high number of training samples (� 300), 
AutoML seems to slightly (ΔR2 � 0:01), though not significantly, 
outperform RFOstochastic. 

Datasets in LUR scenarios however are mostly small (< 200 data 
points). We can exploit the potential of our globally available OSM 
features through cross-learning on multiple cities to overcome the limit 
of small datasets and enhance the model accuracy. For cross-learning we 
increase the size of our training dataset by adding data samples from 
another region. In our case, we added 180 OpenSense data points from 
season 1 to the LAEI training samples. 

Since both datasets measure different pollutants (PM10 and UFP 
respectively) the concentration values are in different ranges (see Sec-
tion 2). To just exploit the similar dependence of both pollutants on land 
use features, we standardized the measurements of both datasets to a 
mean of 0 and a standard deviation of 1. To retrieve pollutant pre-
dictions, the output of the resulting model has to be transformed back 
using the mean and standard deviation of the original dataset. 

The performance gain is shown in Table 8, where a positive value 
indicates a better performance through cross-learning. For small data-
sets, the enhancement of R2 is significant (up to a LAEI dataset size of 40 
for AutoML and 60 for RFOstochastic) with p < 0:05 (p-values are 
shown in the supplementary material). For bigger LAEI subsets, the 
performance gain is small and not significant. Especially for small 
datasets, cross-learning on multiple cities provides an opportunity to 
improve the model performance. Interestingly, for AutoML there is also 
a significant, however small (ΔR2 � 0:01), improvement for 1000 LAEI 
samples. The model enhancement through cross-learning on two cities 
gives a glimpse of the potential of our globally available features. 

Fig. 4. Predictions and standard deviations of OpenLUR trained on season 1 of the OpenSense data with values in [109particles
m3 ]. ©OpenStreetMap contributors (www. 

openstreetmap.org/copyright). 

Table 7 
R2of both models, RFOstochastic and AutoML, applied on subsets of the LAEI 
dataset. This shows, that OpenLUR performs well, when a sufficient amount of 
training data is available.  

Number of LAEI samples AutoML RFOstochastic 

20 � 0.08 0.01 
40 0.21 0.13 
60 0.29 0.27 
80 0.39 0.41 
100 0.42 0.41 
150 0.48 0.49 
200 0.51 0.51 
300 0.54 0.53 
400 0.58 0.57 
500 0.59 0.58 
1000 0.63 0.63  

Table 8 
R2 performance gain (difference of the R2 of models trained on both datasets and 
the R2 of models trained exclusively on LAEI data). Positive values show a 
performance gain through cross learning. Especially small datasets can signifi-
cantly take advantage of cross learning.  

Number of LAEI samples AutoML RFOstochastic 

20 0.29 0.21 
40 0.10 0.16 
60 0.05 0.10 
80 0.04 0.00 
100 0.02 0.02 
150 0.02 0.00 
200 � 0.01 0.00 
300 0.01 0.00 
400 0.00 0.01 
500 0.00 0.01 
1000 0.01 0.01  
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5.4. Recommended off-the-shelf approach for predicting air pollution 

For our OpenLUR approach, we recommend a combination of our 
novel OSM features and the AutoML model. With regard to the features, 
this recommendation is justified by the fact that the OSM features 
significantly outperformed the baseline features (Hasenfratz et al., 
2014) on the given dataset and have the advantages of being openly and 
globally available. The global availability enables land use regression 
even for small datasets through cross-learning. With regard to the un-
derlying model, the choice is less clear. While stochastically optimized 
random forests have a slight advantage with regard to the mean rank, we 
still recommend AutoML for its more sophisticated hyper-parameter 
tuning based on Gaussian processes which seems to yield a better pre-
diction performance on larger datasets. The gobal applicability of 
OpenLUR facilitates through cross-learning LUR studies on small data-
sets and could furthermore be used for multi-city or even global scale 
LUR research. Thus, with its novel openly and globally available feature 
set in combination with the notion of automated hyper-parameter tun-
ing to eliminate tedious parameter studies, OpenLUR provides a repro-
ducible, easily and widely applicable off-the-shelf land-use regression 
approach for air quality prediction even for small datasets that does not 
require expert knowledge in machine learning. 

6. Future work and implications 

In this section, we discuss several directions of future work as well as 
important implications of OpenLUR. In particular, (i) we discuss further 
potential features, approaches and models, (ii) we list some limitations 
of our dataset, and (iii) review the possibilities and limitations of glob-
ally available land use regression features. 

6.1. Features and machine learning methods 

While we have introduced an air quality regression pipeline that 
outperforms previously proposed methods, our novel features as well as 
our applied models can be further refined and extended: 

First, there is an endless amount of features to incorporate into air 
quality models: For example, based on OSM data, information about 
crossings, parks or specific venues like shops or sights has not been 
explored yet. Also, besides static land usage features, traffic models 
(Krauβ, 1998; Smith, 1993), open weather data or wind flow models 
could account for time-dependencies. However, the openly available 
code of OpenLUR provides the possibility to add custom features 
without restrictions to type or origin. 

Second, other machine learning algorithms than those covered in 
this work can be considered. In the supplementary material, we present 
some additional experiments. Concretely, we optimize random forests 
with auto-sklearn using Bayesian as well as stochastic optimization in 
combination with ensemble learning, but none was able to consistently 
outperform AutoML and RFOstochastic. Additionally, we evaluated two 
more recently applied methods as baselines: geographically weighted 
regression (Alam and McNabola, 2015) and feed forward neural net-
works (Hu et al., 2013) (results in the supplementary materials). How-
ever, with the limited amount of 200 datapoints, these models did not 
perform well. Nevertheless, models based on neural networks may be 
interesting to explore, as they may be able to alleviate the issue of 
deriving specific features from the OSM attributes by directly providing 
raw OSM data. 

Finally a disadvantage of most nonlinear state-of-the-art machine 
learning models as used in OpenLUR is the more difficult interpret-
ability: Unlike simple linear regression models, the influence of an in-
dependent variable is not measured by a single value — the respective 
slope — but is hidden in more complex model structures. Research to 
interpret these models has been conducted (Palczewska et al., 2014; 
Fabris et al., 2018). This is however out of the scope for this study and 
will be treated in future work. 

6.2. Dataset and measurements 

A crucial point for developing air quality regression models is the 
quality and quantity of measurement data. While traditional studies 
used stationary monitoring devices that resulted in a small number of 
datapoints (Montagne et al., 2015; Ragettli et al., 2014), recent studies 
show the potential of large amounts of mobile measurements. Mobile 
devices however are usually prone to inaccurate measurements and 
noise. To counteract short-term disturbances like bypassing trucks or 
simply wind, the measurements mostly get aggregated temporally or 
spatially which, analogously to the static case, results in fewer data-
points. Nevertheless, at least for our dataset, the spatial coverage was 
still a lot larger than using a handful of static devices. In future studies, it 
may be of interest to directly compare the quality of continuous mobile 
measurements with static approaches. This will require potentially very 
expensive, large scale measurement campaigns. 

6.3. Towards global land use regression models 

Because of the openly and globally available features, the models 
produced by OpenLUR can be applied in any city with comparable OSM 
data. With the LAEI data we have shown the global applicability as well 
as the ability for cross-learning. 

But locally differing characteristics of cities or the underlying OSM 
data (Davidovic et al., 2016), e.g., caused by structural difference of 
cities in different countries, conceptually differing ways of providing 
data within local OSM communities, or the general quality of the pro-
vided information, can lead to different dependencies of pollutants on 
the features. 

This points to the scientifically highly interesting area of the effects 
of local air pollution environments as well as the characteristics of area- 
specific OSM data. Neverthless, our results are promising and present an 
important step towards generalized global air pollution models. 
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In addition to the work presented in the main paper, this supplementary material covers an

extensive related work section on air pollution studies on the one hand, and includes additional

details and experiments on the other hand. The latter includes i) the feature selection procedure

which we employed in order to apply generalized additive models in our experiments, ii) details

on our experimental setup including, e.g., specific parameter settings, as well as iii) further results

investigating several aspects of our work. The latter results include model performances with

regard to the baseline OpenSense features (including the p-values for the comparison to our novel

OSM-based features), experiments on additional models (e.g., geographically weighted regression

or feed forward neural networks), and a small study on the optimization time for the stochastically

optimized random forest and AutoML.
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Related Work

In the past a lot of research regarding pollution measurement and modelling has been conducted.

Here, we give an overview of different modes of measurements, i.e., stationary vs. mobile, and

cover other air quality models besides land use regression.

Stationary measurements. Over time, many measurement campaigns as well as land use regres-

sion approaches have been studied.S1–S33 Table S1 gives a comprehensive overview of these studies

listing specific details like the measured variables, the number of measuring sites, the features for

building the models, as well as the corresponding feature sources.

The listed papers all determined a measurement variable averaged over predefined timespans

ranging up to several weeks to rule out noise as well as time dependencies. The most measured

variables are NO2 (nitrogen dioxide) and PM2.5 (particulate matter up to 2.5 µm in diameter) but

also NO (nitrogen monoxide), NOx (all reactive nitrogen oxides), UFP (ultrafine particles, PM0.1),

VOC (volantile organic compound), black carbon (also known as soot and elemental carbon),

BTEX (aromatic hydrocarbons) and absorbance of particulate matter have been measured.

The number of measurement sites ranged from 20 to 644, the latter, 644 sites, being an extreme

outlier. The study with the second most sites only features 240 locations, distributed over three

cities. The average number of sites per study is 93 distributed over one or more cities. Note, that

the spatial sparseness of the measurement sites limits the information in the data about small scale

variances, like the increase in pollution when moving towards a busy street.

After the measurement period, all the works tried to model sensed values dependent on sur-

rounding conditions. Table S1 also shows the features and feature sources the different studies

used. For most studies, these were mainly land usage, traffic and population density. They were

mostly extracted from commercial software (i.e., from ESRI: ArcGIS, ArcView, ArcInfo, . . . ) and

data from local or national governments. Five studies used data from CORINE (Coordination of

Information on the Environment) that contains land use data on a 100 m grid, but is only available

for the region of the EU.S16,S23,S25,S27,S30 Some studies incorporated meteorological values such as

wind fields and solar radiance into their models.S12,S20,S21,S25,S32,S34,S35 This globally available data
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can be obtained from commercial sources or national meteorological institutes.

While most measurement campaigns measured in periods of several weeks, the more recent

ones tend to be short-term measurements,S27–S29,S31,S33 where the sampling period ranges from

secondsS33 up to three hours.S29 This shorter measurement duration results in the possibility to

sense more sites in the same study duration compared to long-term measurements. On the other

hand, this data may suffer from temporal variances, like rush-hour traffic.

While most studies use the time average of all measurements on one point as final air pollution

value, some approaches average over a shorter time span, like hours, and incorporate this additional

information in their models.S30,S34 This is done by either using the time, in this example hours of

the day, as input variables for the model or to compute different models for the different hours. In

more recent research, time has also been modeled as a continuous input.S35,S36

Mobile measurements. In recent years, mobile measurement have become popular.S32,S34–S39

More details are shown in Table S2 listing the same attributes as for the stationary studies: the

measured variables, the number of measuring sites, the features for building the models, as well as

the corresponding feature sources. Mobile measurements often suffer from noise, that is brought

into the measurements by the movement: Even small movements, that are not detected by posi-

tioning systems like GPS, can have a lare effect on the actual measurements. Additionally, each

spatial location is often only measured by a few recordings, which fails to measure temporal vari-

ations. Thus, while mobile measurements enhance the spatial density of the measurend variables,

this often results in lower temporal coverage. In addition, to these issues mobile devices are often

less accurate and result in more noisy air pollution readings than dedicated monitoring stations. To

solve these flaws data is often averaged in space based on grid cells as we do in our study. While

this does not solve the listed issues perfectly, it allows to treat the aggregated data like stationary

measurements which we can model using land use regression as in the stationary case.

Models besides LUR. Other approaches try to predict the air quality based on other features,

e.g., meteorological variables.S40,S41 Meteorology has a big impact on transport and mixing of

air pollutants, through winds, as well as decomposition, through solar radiance and precipitation,
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thus strongly influencing the concentration of these pollutants. However, in contrast to LUR, the

sources of the pollutants are not taken into account this way.

Also, there are studies building on mobile measurements, that try to predict air quality maps

just based on the actual measurement and the geographic location.S42 They are combining the high

spatial resolution of mobile measurements and the better temporal resolution of some stationary

monitoring sites. Since these models simply interpolate between measured points, they are only

applicable, where measurements are available. Additionally, they do not take into account addi-

tional information like proven air pollutant sources, e.g., streets or factories.

Summary. All the abovementioned studies model stationary or aggregated mobile air pollution

measurements. But depending on their features or modelling techniques, the resulting models

use either commercial data, are only applicable in a restricted area, or do not model the spatial

variability of the pollutants. Also, mostly only simple regression models have been used. In the

main paper, we address these issues by proposing an off-the-shelf air pollution modeling pipeline

based on openly available features.
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Table S1: Stationary pollution measurements with land use models

Reference Measured

variable

No.

of

sites

Features Feature source

Briggs et al. S1 NO2 240 traffic, land cover, altitude,

sampling height

local gouvernmental data,

field measurements

Stedman

et al. S2

NO2, NOx 37 urban and suburban land

cover, vehicle NOx emis-

sions

Institute of Terrestrial

Ecology,S43 CORINE,

national emission data

Briggs et al. S3 NO2 83 traffic, land cover, altitude,

sampling height

GIS-data, local gouvern-

mental data, field mea-

surements

Carr et al. S4 NO2, soot,

VOC

34 traffic intensity, traffic jams manually counted

Brauer

et al. S5 , Hoek

et al. S44

PM2.5, soot,

NO2

122 population, household den-

sity, traffic, region

ArcInfo, local governmen-

tal data

Gilbert et al. S6 NO2 67 distance to highway, traffic

counts, area of open space,

population

ArcGIS

Kanaroglou

et al. S7

NO2 100 distance to expressway,

traffic, land cover, house-

hold density

ArcView
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Gonzales

et al. S8

NO2 20 distance to US-Mexican

border, distance to high-

way, altitude

ArcGIS

Smith et al. S9 NO2, VOC 22 distance to US-Mexican

border, distance to major

road, traffic, population,

distance to petroleum

facility, altitude

ArcGIS

Rossa et al. S10 NO2 39 traffic, length of road, dis-

tance to pacific coast, land

use, population

local and national govern-

ment

Hochadel

et al. S11

NO2, PM2,

absorbance,

PM2.5

40 traffic, number of build-

ings, distance to major

roads

ArcView

Sahsuvaroglu

et al. S12

NO2 107 physical geography, mete-

orology, population, roads,

traffic

Commercial sources

(DMTI Spatial Inc),

measurements, local

government

Beelen

et al. S13

NO2, NO,

soot

16-

36

land use, traffic, population ArcGIS, national govern-

ment

Ross et al. S14 PM2.5 36-

62

traffic, population, land

use, national PM2.5 emis-

sions

ArcGIS, local and national

government

Ryan et al. S15 soot 24 land usage, altitude, traffic ArcGIS, local government
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Morgenstern

et al. S16

NO2, PM2.5,

absorbance

40 land use, traffic, popula-

tion, household density

ArcGIS, CORINE, na-

tional an local government

Moore

et al. S17

PM2.5 23 land use, population, traf-

fic, physical geography

ArcGIS, local and national

government

Madsen

et al. S18

NO2, NO,

NOx

80 land use, traffic, popula-

tion, altitude

ArcGIS, national govern-

ment

Henderson

et al. S19

NO2, NO,

PM2.5, ab-

sorbance

25-

116

land use, traffic, road

length, population

government

Jerrett et al. S20 NO2 95 land use, traffic, popula-

tion, physical geography,

meteorology

ArcGis, commercial

source, local and national

government

Arain et al. S21 NO2 105 wind fields, land use, traf-

fic, phytical geography

ArcGIS, national govern-

ment

Rosenlund

et al. S22

NO2 70 traffic, population, altitude,

distance to sea, emission of

pollutants

ArcGIS, local government

Aguilera

et al. S23

NO2, NO,

BTEX

57 land use, traffic, popula-

tion, physical geography

ArcGIS, CORINE, local

government

Wheeler

et al. S24

NO2, VOC 54 traffic, population,

dwelling density, land

use, emission of pollutants

ArcGIS
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Gulliver

et al. S25

PM10 52 land use, traffic, popula-

tion, meteorology

ArcGIS, CORINE, com-

mercial data (Ordnance

Survey Landline)

Su et al. S26 NO2 100 physical geography, land

use, population, traffic, dis-

tance to roads

-

Rivera

et al. S27

UFP 644 traffic, land use, popula-

tion, household density

counted, CORINE, local

government

Abernethy

et al. S28

UFP, NOx 116 land use, traffic, population ArcGIS, national govern-

ment

Saraswat

et al. S29

UFP, PM2.5,

soot

30-

48

land use, road distance and

length, population, back-

ground population

ArcGIS, local and national

government

Dons et al. S30 soot 63 traffic, population, lan use CORINE, local model

Bellemans et al. S45

Ragettli

et al. S31

UFP 60 traffic, building height, me-

teorology

Measurements, no infor-

mation for GIS-data

Montagne

et al. S32

UFP, soot 161 land use, population, traf-

fic, meteorogy, season

no information

Kerckhoffs

et al. S33

UFP, soot 161 traffic, land use, popula-

tion, household density, air-

ports

no information
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Table S2: Mobile pollution measurements with land use models

Reference Measured

variable

Features Feature source

Larson

et al. S36

BC traffic, landuse, population government

Zwack

et al. S34

UFP meteorology, day of week,

traffic, physical geography

ArcGIS, measurements

Patton et al. S35 UFP meteorology, time, traffic,

distance to combustion

sources

no information

Hasenfratz

et al. S38

UFP Population, building height,

traffic, physical geography

OpenStreetMap, national

government

Montagne

et al. S32

UFP, BC meteorogy, land use, popula-

tion, traffic, season

no information

Hankey and

Marshall S39

Particle

Number,

BC, PM2.5,

Particle size

traffic, land use, population,

physical geography

no information

Feature selection for baseline methods

The feature extraction procedure described in the main paper results in a large number of features

(244). However, many regression models like linear regression or generalized additive models (as

we use as baselines in this work) can only handle a limited amount of features dependent on the

training set size. Therefore the most promising features have to be selected before building the
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final model.

Methodology

To find the best features, we apply a feature selection procedure similar to previous work:S23,S30,S32

First we calculate the R2 score for each independent feature based on a univariate GAM. Then the

independent feature with the highest R2 is added to the selected features. Next, we calculate the R2

of multivariate GAMs one for each remaining feature in addition to the already selected features.

Again the variable with the highest R2 is added to the selected features. This is repeated as long as

new features add at least 0.01 to the overall R2 score. To account for dependencies of the features

and the predicted variable in the training/test split, each R2 score was calculated as an average over

5 times 10-fold cross validation.

Results

For the baseline features Hasenfratz et al. S38 already conducted a feature selection. Therefore

we only selected appropriate features for our novel open source feature set. The feature selection

procedure determined five to seven different features for each season that add at least 0.01 to the R2

of the final model. The selected independent variables are shown in Table S3. The most important

feature seems to be the residential area in different buffers as one of them gets always chosen

first. Other features that are selected for every season are the length of big streets in a smaller

buffer (50m–200m) and the industrial area in different buffers. The commercial area on the other

hand seems to have a rather minor effects as it is only selected twice. Overall this shows that our

novel OSM-based features are meaningful for air quality prediction, as industry and big streets are

expected to have an influence on air pollution.
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Table S3: Results of the feature selection.

Season Chosen features

1
residential1050m, bigStreet100m, residential1950m, residential600m,

industrial2500m, distanceMotorway, distanceTrafficSignal

2
residential2000m, bigStreet100m, commercial2100m,

industrial2450m, industrial2950m

3
residential1850m, industrial1850m, bigStreet50m,

residential1250m, residential2350m, residential400m

4
residential1300m, commercial2950m, industrial1700m,

bigStreet200m, industrial550m

Experimental Setup

We have outlined the experimental setup in the main paper. However, we have skipped the detailed

parameter settings for brevity. In this section, we give a detailed description of the setup.

As already, mentioned, we trained four models on the four seasons from the OpenSense dataset

for different feature sets. For this, we used repreated cross-fold validation in order To account for

random outliers of the scores due to the inherently small training sets (≤ 200 labeled samples). In

particular, we report the mean of 40 10-fold cross validation scores similar to Hasenfratz et al. S38 .

R2 and the root mean squared error (RMSE) are computed as scores to compare the model re-

sults. For the different models we use implementations in Python if not denoted otherwise. The

parametrizations are described in the following:

• GAM: The GAM model was calculated by the R package mgcv with cubic splines. It requires

feature selection but no hyper-parameter tuning.S46

• RF: RF is a random forest with standard hyper-parameters provided by the sklearn package:

– n_estimators = 10: the number of trees in the forest.

– criterion = MSE: the function to measure the quality of a split. MSE is the mean squared

error.
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– max_depth = NONE: the maximum depth of a tree. NONE means, that each tree is

expanded as far as possible.

– max_features = auto: the number of features to consider when looking for the best split;

auto means to consider all features

– min_samples_leaf = 1: the minimum number of samples required to be at a leaf node

– min_samples_split = 2: the minimum number of samples required for a split.

– bootstrap = TRUE: whether to use bootstrap for sampling.

• RFOstochastic: RFOstochastic also represents a random forest regressor, but with hyper-

parameters optimized using stochasic optimization: The following hyper-parameters are op-

timized over the given distributions:

– n_estimators: uniformly distributed from 1 to 1000

– max_features: uniformly distributed from 0 to 1

– min_samples_leaf: uniformly distributed from 1 to 100

– min_samples_split: uniformly distributed from 2 to 20

– bootstrap: random boolean

Generally, the 10-fold split provides a training and test dataset. However, for the hyper-

parameter optimization, the we need to split each training set into a tuning and a validation

set. The optimization algorithm is given a predefined time to optimize hyper-parameters on

the tuning and validation data. Afterwards, the best hyper-parameter set is selected and the

model is retrained on the whole training data and evaluated on the test data.

• AutoML: AutoML requires no explicit hyper-parameter set. It only expects a fixed compu-

tational budget or a fixed time for the internal hyper-parameter search. As implementation

we use the auto-sklearnS47 package with disabled preprocessing.
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AutoML as well as the RFOstochastic require predefined time intervals for the hyper-parameter

search. In the main paper, we are presenting the results based on a tuning time of 300 seconds. In

the “Optimization Time” section, we also report results on different intervals ranging from one to

ten minutes; however, no significant impact on the results was found.

Additional Results

In addition to the results presented in the main paper, this section presents i) detailed results for

our selected models using the baseline OpenSense features (inclduing p-values for the comparison

to our novel OSM-based features), ii) experiments on additional models (e.g., feedforward neu-

ral networks), as well as iii) a study on the influence of optimization times for models featuring

automated hyper-parameter tuning.

Baseline features (OpenSense)

In this section, we present the results of the models listed from the main paper but using the baseline

OpenSense features, as well as the p-values for the comparison to our novel OSM-based feature

set.

Model performance

In the main paper, we used the features presented by Hasenfratz et al. S38 as baseline features to

compare our novel OSM-based features against. For these baseline features, analogously to the

main paper, each model for each season with regard to RMSE and R2. It also shows the rank

of each model — 1 (best) through 4 (worst) — with regard to its performance in each season.

To facilitate an overall comparison between the models, the table furthermore lists the mean rank

across all seasons.

As for our OSM-based feature set, considering the mean rank, the optimized models perform

better than the unoptimized models for both metrics. For RMSE, both, AutoML and RFOstochas-

S-13



Table S4: RMSE and R2 metrics of the models using OpenSense features. Parenthesis show the
rank of the model given a particular season for the corresponding metric. Bold values inidicate
statistically significant differences to all other models trained on the same season. Generally, the
model performances do not differ significantly. However, as for our novel OSM-based features,
a clear tendency towards models featuring automatic hyper-parameter tuning can be observed by
judging their mean rank over all seasons.

Season AutoML RFOstochastic RF GAM

RMSE (rank)

1 2.25 (1) 2.25 (1) 2.36 (4) 2.30 (3)
2 1.81 (1) 1.81 (1) 1.89 (4) 1.82 (3)
3 2.94 (2) 2.86 (1) 2.95 (3) 3.03 (4)
4 3.92 (1) 3.94 (2) 4.09 (4) 3.92 (3)

Mean rank 1.25 1.25 3.75 3.25

R2 (rank)

1 0.28 (1) 0.27 (2) 0.21 (4) 0.25 (3)
2 0.35 (1) 0.34 (2) 0.26 (4) 0.33 (3)
3 0.31 (2) 0.34 (1) 0.30 (3) 0.27 (4)
4 0.03 (2) -0.01 (3) -0.08 (4) 0.05 (1)

Mean rank 1.5 2.00 3.75 2.75

tic, are the best models for three seasons. Similar results can be observed for R2, where AutoML

can even outperform the RFOstochastic rank-wise. The RF and GAM are in two cases each even

significantly worse than all other models, signaling the superiority of the optimized models. Also,

AutoML achieves the best mean rank of 1.5, thus, outperforming RFOstochastic indicating a slight

advantage of its underlying algorithm. Overall, the results are similar to those for our novel fea-

tures reported in the main paper strengthening our recommendation for automated hyper-parameter

tuning.

Feature Comparison - Significance

Table S5 shows the p-values obtained by the Wilcoxon signed-rank test for the comparion of the

baseline OpenSense features and our novel OSM-based features (see main paper). As reported in

the main paper, most of the values are below 0.05 and indicate significant differences.
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Table S5: P-values of the Wilcoxon signed-rank test for the comparion of the baseline OpenSense
features and our novel OSM-based features (see main paper). Bold numbers indicate values below
0.05.

Season AutoML RFOstochastic RF GAM

RMSE

1 1.6e-08 1.1e-12 3.4e-13 5.4e-19
2 3.0e-02 3.8e-03 7.8e-03 4.6e-03
3 9.3e-01 1.7e-01 1.9e-03 9.9e-03
4 1.5e-08 2.6e-07 9.5e-07 1.4e-02

R2

1 5.8e-14 1.8e-20 1.7e-16 5.0e-23
2 1.5e-02 6.8e-04 2.9e-03 2.8e-03
3 1.0e-01 1.1e-01 2.6e-04 2.9e-04
4 2.5e-20 7.3e-17 5.6e-13 1.5e-04

Additional Models

In addition to the models listed in the main paper, we also investigated different variants of auto-

mated hyper-parameter tuning as well as other models:

• AutoMLstochastic builds an ensemble the same way as AutoML, but uses stochastic hyper-

parameter tuning instead of Bayesian processes.

• RFObayes optimizes a random forest using Bayesian processes. This is done using the

auto-sklearn Python package.

• RFOstochasticAutoML also optimizes the random forest using auto-sklearn. But instead of

using Bayesian processes, a stochastic search is performed.

• ANN is an artificial neural network with one hidden layer consisting of 100 neurons, ReLU

activation function and ADAM optimizer.

• GWR geographically weighted regression as described in Hu et al. S48 .

Table S6 shows the results of all models for a comparison. The results of the hyper-parameter

tuning variants do not differ greatly. However, a few tendencies can be observed: AutoMLstochas-
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tic to perform approximately equally well as the AutoML showing that the optimization mecha-

nism used by AutoML based on Gaussian processes has not yet shown its full potential. We expect

better results for larger datasets and signifantly longer runtimes.S47 Also, a tendency for auto-

sklearn-based optimization to perform worse than a direct implementation of stoachstic search

can be observed. Especially the discrepancy of RFOstochasticAutoML and RFOstochastic seems

counter-intuitive. The discrepancy could result from a less efficient implementation, where the al-

gorithm tests less hyper-parameter combinations in the same time. However, to prove this, further

investigation is required.

The new models, ANN and GWR, perform considerably worse than all other methods. This

could be a consequence of both models’ requirement for bigger training data quantity to build a

generalizing model or the need for specific hyper-parameter tuning.

Overall, the results in this section confirm that automated hyper-parameter tuning can improve

the quality of models and reduce the effort required to build models. Especially the bad per-

formance of the neural network model seems to confirm this fact. However, while AutoML and

stochastic search both have yielded superior performance and AutoML can be recommended based

on its optimization potential, there is still potential to increase the effectiveness of hyper-parameter

tuning.

Optimization Time

The best performing models we evaluated are based on automatic hyper-parameter optimization:

• AutoML, which uses Bayesian optimization to tailor a ensemble of models to the given

problem.

• RFOstochastic, a random forest regressor with randomly optimized hyper-parameters.

Each of these algorithms was given a time limit for hyper-parameter tuning. In order to see the

effect of this time limit, we applied both approaches using different limits. The RMSE scores,
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computed as mean over 40 10-fold cross validation scores, of the resulting models are shown

in Figure S1

Figure S1: RMSE scores resulting from models (AutoML and RFOstochastic) with different
hyper-parameter optimization times. Each of the graphs shows the results for one season. The
x-axis of each graph indicates the given optimization times. We evaluated at 60, 300, and 600
seconds. While some effects are visible (e.g., RFOstochastic in Season 1 and 2), overall, the there
is no clear trend towards improved performance with increasing optimization time.

First of all, none of those reported performance values differs significantly from the other

scores. While some effects are visible, e.g., RFOstochastic seems to perform better with an in-

creasing time limit on Season 1 and 2, there is no clear trend. However, the effect of longer opti-

mization times may improve when going beyond a training time of ten minutes (600s).S47 However

the choice of the optimization time for automated hyper-parameter tuning is an open problem and,

thus, is out of the scope of this work.
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Abstract. High-resolution grain size distribution maps for geographical
regions are used to model soil-hydrological processes that can be used
in climate models. However, measurements are expensive or impossible,
which is why interpolation methods are used to fill the gaps between
known samples. Common interpolation methods can handle such tasks
with few data points since they make strong modeling assumptions
regarding soil properties and environmental factors. Neural networks
potentially achieve better results as they do not rely on these assump-
tions and approximate non-linear relationships from data. However, their
performance is often severely limited for tasks like grain size distribution
interpolation due to their requirement for many training examples. Semi-
supervised learning may improve their performance on this task by taking
widely available unlabeled auxiliary data (e.g. altitude) into account.

We propose a novel semi-supervised training strategy for spatial inter-
polation tasks that pre-trains a neural network on weak labels obtained
by methods with stronger assumptions and then fine-tunes the network
on the small labeled dataset. In our research area, our proposed strategy
improves the performance of a supervised neural network and outper-
forms other commonly used interpolation methods.

Keywords: Spatial interpolation · Semi-supervised learning · Neural
networks

1 Introduction

The composition of different grain sizes in the soil affects many hydrological
processes such as groundwater recharge, infiltration rates or surface flow. For
example, soils with dominating clay fractions (grain size ≤ 0.002mm) retain
water better than sandy soils (0.063mm < grain size ≤ 2.0mm). Given accurate
grain size distribution maps, it is possible to estimate hydrological parameters for
environmental modelling purposes, e.g. regional climate models. Since sampling
is expensive or even impossible due to inaccessible terrain, spatial interpolation
methods are used to estimate grain size distributions for unknown locations.

c© Springer Nature Switzerland AG 2021
A. Del Bimbo et al. (Eds.): ICPR 2020 Workshops, LNCS 12666, pp. 34–44, 2021.
https://doi.org/10.1007/978-3-030-68780-9_4
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Fig. 1. In our proposed semi-supervised training method, (1) a spatial interpolation
method with strong assumptions is trained on the labeled dataset. (2) The neural
network is pre-trained on weak labels obtained by applying the interpolation method
to the unlabeled data. The network gets locations and auxiliary data as inputs. (3) It
is then fine-tuned on the labeled dataset.

A model for grain size distribution interpolation has the following require-
ments: (1) The model input is a location with (potentially) additional auxiliary
data (e.g. altitude). (2) The model outputs distributions across the grain size
classes (clay, silt, sand) for each unknown location. (3) The model works with
few labeled data points, since soil samples are rare.

Distance based interpolation methods such as k Nearest Neighbors or Inverse
Distance Weighting can output distributions and are applicable to small labeled
datasets due to their strong assumptions. However, they do not take auxiliary
data into account which can benefit performance [11,17]. Neural networks can
learn non-linear relationships from data, are able to incorporate additional aux-
iliary inputs, and are able to output distributions across grain size classes. How-
ever, they usually need many labeled training data points [15]. The idea of semi-
supervised learning utilizes large unlabeled datasets to support network training
[8]. In recent years, most methods for semi-supervised learning were designed for
image classification, which are not applicable to our setting.

Therefore, in this paper, we bring semi-supervised learning specifically to the
task of grain size distribution interpolation for spatial inputs. We propose a train-
ing strategy that makes use of weak labels produced by an interpolation method
with stronger modeling assumptions. Figure 1 gives a schematic overview of our
proposed three-step process. In our experiments for the region of Lower Franco-
nia, we show that our approach improves the performance of a supervised neural
network and outperforms other common interpolation methods. Furthermore, we
analyze the effects of the proposed training strategy on model performance.
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Our contributions are: (1) We describe a semi-supervised training strategy
for neural networks in the spatial domain to interpolate grain size distributions.
(2) We compare our strategy to supervised training and common interpolation
approaches and show that it outperforms them in our research area. (3) We
analyze the resulting model to understand what factors are important for its
performance.

2 Related Work

There are various spatial interpolation techniques with different properties used
in environmental sciences, e.g. k Nearest Neighbors, Inverse Distance Weight-
ing, or Kriging [16]. Neural networks have been successfully applied in such
tasks since they allow auxiliary data as input features and can model non-linear
relationships [5,20,23]. However, to obtain robust performance, they need many
labeled data points not available in most spatial interpolation tasks [15]. Semi-
supervised training promotes the use of large unlabeled datasets to support the
training of neural networks with few labeled data points [8]. For image classifi-
cation, which is the most popular semi-supervised learning task, domain-specific
strategies such as image augmentation have been proposed, which are not trivial
to apply in our setting. Classification specific approaches such as using the soft-
max output of the network as confidence for a weak label [26] are not directly
applicable to our task, since our desired output is a distribution and not a class.

For our semi-supervised training strategy, we adapt so-called “distant super-
vision” from other domains [10,14] by training the network on weak labels.
Obtaining weak labels from more traditional interpolation methods and fine-
tuning the network on labeled data afterwards is a new approach in this area.

3 Research Area and Dataset

In this section, we describe the research area and the dataset we use for the
interpolation task. Inputs to the interpolation models are the latitude, longitude,
and multiple features from different auxiliary data sources that we suspect to
have an influence on or are influenced by the grain size distribution. While only
315 locations have a target grain size distribution, the auxiliary data is widely
available in a fine grid of 25m × 25m cells (overall 11 952 963 grid cells).

The research area is Lower Franconia, northern Bavaria, Germany. It covers
8530 km and falls within 49.482°N to 50.566°N and 8.978°E to 10.881°E. The
topography of this region is characterized by alluvial zones with surrounding
low mountain ranging from 96m to 927m in altitude.
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(a) Labeled data point locations. Map tiles
by ESRI, USGS, NOAA, data by BEA.

(b) Distribution of target grain size distri-
butions.

Fig. 2. Map showing labeled locations and distribution of the labels.

3.1 Target Variable: Grain Size Distribution

Soils are compositions of grain sizes. To get soil conditions for the research area,
we use a soil profile database of the Bavarian Environment Agency (BEA)1. The
database covers detailed information on in-depth grain size distribution on 431
sites in Lower Franconia. The sampling took place in-between 1989 and 2017 and
exposes grain size distributions of the fine earth fraction per soil-horizon through
combined sieve and pipette analysis [12]. The method of sampling varies between
drill cores and complete profile excavations.

While each observed location lists multiple layers, we limit the interpolation
task to two dimensions by only using soil information from 14 cm–15 cm as most
recorded layers span across this range. This common approach [6] results in 315
labeled locations, shown in Fig. 2a.

Given the detailed grain sizes, we represent each location as a composition
of three grain size classes [1]: clay (grain size ≤ 0.002mm), silt (0.002mm <
grain size ≤ 0.063mm), and sand (0.063mm < grain size ≤ 2.0mm). Each label
is a three dimensional distribution vector, e.g. 20% clay, 50% silt, and 30%
sand. The label distribution is shown in Fig. 2b. The task is to estimate this
distribution for a location given other locations and auxiliary data.

3.2 Auxiliary Data

While there are only 315 labeled data points, auxiliary data is available for
all locations in Lower Franconia (11 952 963 grid cells). For this work, we use a
Digital Elevation Model (DEM) and meteorological data to generate ten features
for each grid cell: latitude, longitude, altitude, slope, Multi-Scale Topographic

1 Unpublished data; reference: https://www.lfu.bayern.de/umweltdaten/.
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Position Index (minimum, mean, and maximum), Topographic Wetness Index,
temperature, and precipitation, that are explained in the following.

The used DEM provided by the BEA2 reflects the altitude of the terrain
surface, excluding buildings and vegetation, resampled to our grid’s spatial reso-
lution of 25m. We derive five additional features through topographic, morpho-
metric and hydrographic analysis [25].

Slope . In basic terrain analysis, slope represents the change in elevation over
a given distance. For a cell with altitude alt, we calculate the mean altitude
over the neighboring cells in north and south direction altNS and in west and
east direction altWE. The slope ranges from 0° (a horizontal plane) to 90° and is
calculated using slope = 180

π·
√
(altNS−alt)2+(altWE−alt)2

.

Multi-scale Topographic Position Index . The Topographic Position Index
(TPI) [24] is defined as the altitude difference between a location of interest and
the mean altitude of a square area around it, giving values that indicate local
ridges and valleys. We obtain TPIs on multiple scales by altering the side length
of the square from 3 grid cells (75m) to 41 grid cells (1025m) in steps of two
cells, having the current location in the square’s center. From the resulting 19
TPIs, we take the minimum, mean, and maximum as features. They describe
the morphology of our study area at different scales as numeric factors.

Topographic Wetness Index . To represent spatial variations of soil moisture
content and soil water drainage, a terrain-based wetness index (TWI) is com-
puted [4]. The index is high for locations where water normally collects due to
the topographic setting. It is calculated as a tangent function of the cell’s slope
angle w.r.t. the cell’s area (625 m2): TWI = ln

(
625

tan(slope)

)
.

Meteorological Data . In addition to terrain based features described above,
we also obtain meteorological data provided by the German Meteorological Ser-
vice (DWD). The data reflects the 30-year (1971–2000) means of the monthly
averaged mean daily air temperature 2m above the ground and precipitation.3
The grid-based data was obtained by accurate interpolation methods for tem-
perature and precipitation at a resolution of 1 km2 [19] and resampled to the
target grid size of 25m using nearest neighbor interpolation.

4 Methodology

Given the data described above, we now have a large dataset of unlabeled data
as well as a small labeled dataset. A neural network should now learn to estimate
the grain size distribution of a location based on the ten input features. To make
use of the large unlabeled dataset, we propose a three step semi-supervised
training strategy that pre-trains the neural network on weak labels created by
an interpolation method with stronger assumptions:
2 https://geodatenonline.bayern.de/geodatenonline/seiten/dgm info.
3 https://opendata.dwd.de/climate environment/CDC/grids germany/multi annual/
air temperature mean and precipitation.
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1. Weak Label Generation . We apply a common interpolation method such
as Inverse Distance Weighting (IDW) on the small labeled dataset. Note that
these methods usually do not take auxiliary data into account. Due to the
strong modeling assumptions of such algorithms, they are able to work with
small datasets. The trained model then estimates the target labels for the large
unlabeled dataset, which are used as weak labels in the next step.

2. Pre-training . The neural network is pre-trained using the large amount of
available weakly labeled data, thus being exposed to the property assumptions
of the weak label generator. This way, the network learns representations from
all input features, including the auxiliary data, and is guided to create more
realistic outputs. Since interpolation methods such as IDW represent the location
information as distances, the network has to learn from different features, as we
will show in Sect. 6.1. Calculating the euclidean distance from locations is hard
for the network, therefore it tries to find other correlations as well.

3. Fine-tuning . The pre-trained network is fine-tuned on the labeled dataset.
This reinforces or weakens some correlations the network has found. For fine-
tuning, a smaller learning rate is used in order to keep the previously trained
weights intact. The resulting model can then be used on all locations.

5 Experiments

Now, we compare our self-supervised training strategy to the traditional super-
vised method and other common interpolation methods on the grain size distri-
bution task. Note that not all methods can output distributions, so we will only
apply methods that are able to handle this task-specific output type.

5.1 Methods

Mean . Always predicts the mean of all training examples. As the average of
multiple distributions is also a distribution, the prediction is valid.

k Nearest Neighbors (kNN). Calculates the average label of the nearest k
training locations [2]. We set k = 3 based on a parameter search on validation
data for k ∈ {1, . . . , 10}.

Inverse Distance Weighting (IDW). Same as kNN, but the average is
inversely weighted based on the distance to a labeled location [22]. A parameter
search for k ∈ {1, . . . , 10} results in k = 7.

Multilayer Perceptron (MLP). Trains a Multilayer Perceptron on the labeled
dataset in a supervised learning setting. The ten-dimensional input is normalized
to zero mean and unit variance. It is then fed through three hidden layers with
256 neurons each with ReLU activation functions [9] in a batch of size 1024.
The three-dimensional output is then converted to a probability distribution
by applying the softmax activation function. These hyperparameters have been
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Table 1. Test results (mean ± standard deviation) for each model. Best values are
written in bold.

MAE MSE JSD

Mean 0.5210 ± 0:0384 0.1337 ± 0.0183 0.0549 ± 0.0076

kNN 0.4267 ± 0.0412 0.1011 ± 0.0223 0.0398 ± 0.0090

IDW 0.4188 ± 0.0417 0.0954 ± 0.0225 0.0381 ± 0.0090

MLP 0.4361 ± 0.0552 0.1068 ± 0.0251 0.0426 ± 0.0088

SemiMLP (after
pre-training)

0.4781 ± 0.0577 0.1296 ± 0.0283 0.0497 ± 0.0099

SemiMLP (after
fine-tuning)

0.4078 ± 0.0445 0.0952 ± 0.0195 0.0377 ± 0.0077

found on validation data. The standard cross entropy loss function is used that
allows distributions as targets. The network is optimized with Adam [13] and
a learning rate of 10−1 for at most 1000 epochs. Early stopping [18] stops the
training if the validation loss does not improve at least 10−5 for ten epochs.

Semi-supervised MLP (SemiMLP). We apply our semi-supervised training
strategy to the same MLP architecture as above. We generate weak labels using
the IDW baseline with k = 7 as it achieved the best baseline validation results.
We train the network with learning rates 10−1 and 10−3 for pre-training and
fine-tuning, respectively.

5.2 Evaluation

To evaluate the methods described above, we perform a ten-fold cross-validation
(i.e. 31 or 32 examples per fold) using the labeled dataset. We average over
50 repetitions to account for the random initialization of the neural networks.
Three metrics are used for evaluation: Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Jensen-Shannon Divergence (JSD). While
MAE and MSE compute the mean (absolute and squared) deviation from the
correct values, JSD is specifically designed to measure the difference between two
distributions [7]. Note that MAE and MSE sum the errors up for an example
before averaging over all examples.

6 Results

Table 1 shows the test results for all models. The model with our training strat-
egy (SemiMLP) yields the best test results. While the supervised MLP performs
worse than kNN, the fine-tuned SemiMLP even improves the performance of
the IDW baseline. In fact, a Wilcoxon signed rank test (α = 0.01) on the MSE
indicates that the improvement w.r.t. IDW is significant. We suspect that the
network’s improvement comes from having direct access to locations as well as
auxiliary data that it uses during training, while IDW only relies on distances
between locations as inputs.
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6.1 Analysis

Pre-training Matters. For our experiments, we altered the MLP baseline by
adding the pre-training step to obtain SemiMLP, while the architecture and
preprocessing were fixed. Thus, SemiMLP’s better performance compared to
MLP (cf. Table 1) shows that pre-training has a positive effect on SemiMLP. Pre-
training the network seems to build better representations for the downstream
task than random initialization.

Fine-tuning Matters. While it helps, pre-training alone does not give superior
performance. Table 1 shows that only pre-training on weak labels gives worse
performance than most baselines and the supervised MLP. This indicates that
the network is not able to imitate the IDW baseline, which generated the weak
labels. This may be due to IDW using distances between new and labeled loca-
tions to assess its predictions. SemiMLP does not get distance information as
input and is not able to directly access the labeled dataset. Thus, it learns a surro-
gate function that fits the training data but will not exactly match IDW’s output
for new data points. Also, SemiMLP gets more features than IDW, increasing
the chance that the network exploits other correlations to predict the output.
After the fine-tuning step, the method is superior to all baselines.

Auxiliary Data Matters. The features that may be influenced by or influence
the target variable also have an effect on the performance. To investigate this,
we apply the permutation importance for feature evaluation method [3] that
permutes the values of a feature to see how much the predictive quality of the
trained model changes. The more important a feature is, the higher the drop
in performance if its input is altered. We average the features’ importances for
each test fold over ten different permutations to get more robust results.

Figure 3 shows the resulting feature importances. Besides location, the fea-
tures temperature, precipitation, and altitude have the largest influence. Accord-
ing to previous research, soil is formed by the alteration of present bedrock under
the influence of climate, relief, organisms, and human activity over time [21].
Since we do not provide features describing organisms and human activity, the
model focuses on climatic (30-year means of temperature and precipitation) and
relief-based (altitude) influences. While we expected other relief-based features
such as TPI or TWI to be more important for the model, altitude and location
seem to be descriptive enough.
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Fig. 3. Drop in MAE performance when the feature column was permuted.

7 Discussion

Neural networks make no modeling assumptions for the interpolation task. Com-
pared to common interpolation methods, the network can model non-linear rela-
tionships in the data and can utilize any kind of auxiliary data. Our method cir-
cumvents the necessity of large training datasets by guiding the network towards
more realistic outputs using weak labels before fine-tuning on few real labels. It
is very easy to replace the weak label generator with a potentially better inter-
polation method. The required pre-training of the network on weakly labeled
data takes extensively longer. However, depending on the neural network archi-
tecture, input data, and size of the research area, inference can be faster than
other approaches, as we can compute outputs in batches on specialized hardware
without any distance calculations.

As stated in Sect. 3, we restrict this work to the two-dimensional case of
grain size distribution interpolation. While depth information is expected to
increase performance, it is not trivial to use it in the weak label generation
methods. Labeled locations usually have large distances (hundreds to thousands
of meters), while labeled soil layers have very small distances (millimeters to few
centimeters). Distance based approaches such as IDW will only take the nearest
labeled location into account and average its soil layers as these are overall the
closest to the desired location. While this is not resolved, building a model for
each depth layer is the simplest approach that we can apply in practice.
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8 Conclusion

In this paper we have proposed a semi-supervised training method for spatial
interpolation tasks. For our grain size distribution task, additional pre-training
on weak labels improved the network’s performance compared to supervised
learning and common interpolation methods. Testing other weak label generators
and sampling strategies to optimize pre-training remains future work. Mixing
weak labels from methods with different modeling assumptions might enrich the
learned representations of the network. Future challenges include adding the
depth dimension, allowing the exploitation of soil layer relations. Further, we
will evaluate the interpolated map in a soil-hydrological simulation model.
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