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Abstract

Transcriptome analysis of individual cells by single-cell RNA-seq (scRNA-seq) has become routine for eukaryotic tissues, even being
applied to whole multicellular organisms. In contrast, developing methods to read the transcriptome of single bacterial cells has
proven more challenging, despite a general perception of bacteria as much simpler than eukaryotes. Bacterial cells are harder to lyse,
their RNA content is about two orders of magnitude lower than that of eukaryotic cells, and bacterial mRNAs are less stable than their
eukaryotic counterparts. Most importantly, bacterial transcripts lack functional poly(A) tails, precluding simple adaptation of popular
standard eukaryotic scRNA-seq protocols that come with the double advantage of specific mRNA amplification and concomitant de-
pletion of rRNA. However, thanks to very recent breakthroughs in methodology, bacterial scRNA-seq is now feasible. This short review
will discuss recently published bacterial scRNA-seq approaches (MATQ-seq, microSPLiT, and PETRI-seq) and a spatial transcriptomics
approach based on multiplexed in situ hybridization (par-seqFISH). Together, these novel approaches will not only enable a new un-
derstanding of cell-to-cell variation in bacterial gene expression, they also promise a new microbiology by enabling high-resolution
profiling of gene activity in complex microbial consortia such as the microbiome or pathogens as they invade, replicate, and persist
in host tissue.
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Main text
Single-cell RNA-sequencing (scRNA-seq) is revolutionizing biology
and medicine, combining the advantages of bulk sequencing tech-
niques and microscopic analysis of individual cells (Jovic et al.
2022). It has catalyzed the discovery of new cell types and provided
an unprecedented view of tissue anatomy and cellular transi-
tions (Stubbington et al. 2017). While eukaryotic scRNA-seq proto-
cols have generally taken advantage of the same next-generation
sequencing (NGS) technologies that have enabled fast and cost-
effective whole genome sequencing, they have evolved quickly
thanks to the introduction of additional specialized platforms and
protocols, e.g. the droplet-based sequencing 10x Genomics plat-
form (Zheng et al. 2017), Smart-Seq (Ramsköld et al. 2012, Picelli
et al. 2013, Hagemann-Jensen et al. 2020), or BD microwell-array-
based sequencing (Fan et al. 2015, Mair et al. 2020). These work-
flows usually target polyadenylated RNAs and are, therefore, tai-
lored to scRNA-seq of eukaryotic cells.

NGS technologies including RNA-seq have also opened a new
window on the diversity and complexity of microbes (Wester-
mann and Vogel 2021), and thereby contributed to the current re-
naissance of molecular microbiology. While the classical view of
bacterial gene expression was relatively simple, the emerging view
is more complex, encompassing extensive post-transcriptional
control and regulatory networks (Wade and Grainger 2014, Georg
and Hess 2018, Hör et al. 2018, Holmqvist et al. 2018, Adams
and Storz 2020, Ponath et al. 2022). Moreover, increasing interest

in the human microbiota and environmental microbial commu-
nities has highlighted the importance of understudied bacterial
species with unknown transcriptome structures. While the bulk
RNA-seq methodologies underlying these discoveries have revo-
lutionized the field, understanding how regulatory networks and
bacterial communities are organized at the level of single cells re-
mains technically challenging.

Single-cell transcriptomics has the potential to move beyond
bulk methods and provide direct insight into the differences in ex-
pression between individual cells within a community (Brennan
and Rosenthal 2021, Lloréns-Rico et al. 2022). Cell heterogeneity
allows clonal communities to develop a complex array of phe-
notypes (Elowitz et al. 2002, Ackermann 2015), such as produc-
tion of persisters that resist antibiotic treatment, the formation
of spatially organized biofilms, or the development of metaboli-
cally specialized cells under nutrient-limiting conditions (Stewart
and Franklin 2008, Gollan et al. 2019). Fluorescent reporter con-
structs have helped to visualize heterogeneous gene expression
within bacterial populations (Roche and Bumann 2021). However,
such reporters are limited to assaying single genes in a few genet-
ically tractable model species, while the vast majority of bacteria
remain difficult to engineer and or even cultivate.

While bulk RNA-seq approaches capture the average gene ex-
pression signal across large cell populations, they cannot provide
information on heterogeneity in transcriptional output between
individual bacteria. Similarly, initial attempts to establish global
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gene expression profiling for single (Kang et al. 2011, 2015, Wang et
al. 2015) or small numbers of bacterial cells (Avital et al. 2017, Pe-
naranda and Hung 2019) struggled to infer the physiological state
of individual bacteria within a population. Bacterial scRNA-seq
opens a large collection of research topics to study (Box 1). As will
be described in this short review, global transcriptomics in single
bacteria has now been firmly established, but has had to overcome
several major hurdles, briefly introduced in the following.

Box 1: Examples of research topics to benefit from bac-
terial single-cell transcriptomics.
The promises of bacterial scRNA-seq for microbiology and in-
fection biology are manifold. Phenotypic heterogeneity of genet-
ically identical bacteria has been observed in numerous stud-
ies in the area of microbiology and infection biology (Striednig
and Hilbi 2022). For example, biofilms formed by uropathogenic
E. coli exhibit distinct subpopulations showing heterogeneous
expression of respiratory complexes (Beebout et al. 2019) and
differentiation into various phenotypic cell states (Yannarell
et al. 2021). Quorum sensing, a molecular process that regu-
lates biofilm formation, shows heterogeneity especially in the
early phase of biofilm lifecycle (Cárcamo-Oyarce et al. 2015).
Phenotypic heterogeneity has also been reported in reference
to antibiotic tolerance and stress responses. Examples include
heterogeneous expression of flagellar genes and antibiotic tol-
erance under Ciprofloxacin exposure in S. enterica (Lyu et al.
2021); and heterogeneity in stress responses such as the SOS
response in E. coli and S. enterica (Jones and Uphoff 2021, Mérida-
Floriano et al. 2021, Jaramillo-Riveri et al. 2022, Sampaio et al.
2022). Bacterial secretion systems also show highly heteroge-
neous expression patterns within genetically identical popula-
tions. One prominent example is the type-III secretion system
(T3SS) found in many Gram-negative bacteria. Animal experi-
ments, where mice infected with S. enterica revealed an ON/OFF
state of the energetically costly T3SS expression, even though it
is required for infection, indicative of a ‘self-destructive coop-
eration’ (Ackermann et al. 2008). Such heterogeneity seems to
be a common feature of host–pathogen interactions (Bumann
2015). A particularly important example of this is in persister
formation. Persisters are a small subpopulation of bacteria that
can withstand antibiotic exposure and cause infection relapse
(Fisher et al. 2017). The underlying mechanisms leading to this
state remain unclear. However, within their host niche, persister
cells seem far from transcriptionally silent (Stapels et al. 2018).
Bacterial scRNA-seq of pathogenic persisters isolated from in-
fected patients could help us understand their in vivo activities
and reveal when, how, and why they reactivate their gene ex-
pression and metabolic state.

Technical challenges for scRNA-seq in bacteria
In establishing single-cell transcriptomics workflows in bacteria,
several technical challenges had to be considered in the selection
of suitable protocols (Fig. 1). Because bacterial cells contain only
femtogram amounts of RNA (Milo and Phillips 2015), which is
> 100-times less than a typical eukaryotic cell, a very sensitive
cDNA synthesis and amplification protocol is required. In addi-
tion, bacterial mRNAs are intrinsically labile, displaying half-lives
in the minute range, as compared to hours in eukaryotes. This
necessitates rapid perforation of the thick bacterial envelope, cell
lysis, and subsequent RNA stabilization. At the same time, the
cell lysis procedure has to be highly efficient in order to extract
mRNAs from single bacterial cells; it is fair to assume that lysis
efficiency anticorrelates with the RNA retention rate, i.e. the

amount of RNA available per cell after lysis to serve as template
for reverse transcription (RT). A low retention rate due to dif-
ferences in lysis efficiency risks biasing resulting data against
certain cell states, or the loss of certain species during library
preparation from multibacteria communities. It is important to
bear in mind that some of the typical lysis procedures for bulk
RNA-seq, such as the use of guanidinium thiocyanate (as in the
popular TRIzol reagent and variants thereof), bead beating, soni-
cation, or column-based extraction are largely incompatible with
the workflow of bacterial scRNA-seq. For example, guanidinium
thiocyanate would inhibit the downstream cDNA synthesis steps
when scRNA-seq is performed as a single-tube reaction. Finally,
washing and rebuffering steps must be kept to a minimum so
as not to risk loss of the minute amount of RNA that can be
extracted from a single bacterium.

Another important step in RNA-seq workflows is the removal
of the most abundant class of RNA, ribosomal RNA (rRNA), which
constitutes up to 98% of a bacterium’s total RNA (Giannoukos et
al. 2012, Westermann et al. 2016) and is generally not informative
of cellular state. However, the absence of a poly(A) tail on bacterial
transcripts precludes a straight-forward RT using poly-T primers
to selectively enrich mRNAs and concomitantly deplete rRNA, as
generally done for eukaryotic scRNA-seq. Therefore, the majority
of available protocols for eukaryotic scRNA-seq cannot be used
for bacteria without major modifications. The average transcript
concentration in bacterial cells is also an important considera-
tion: whereas most current eukaryotic scRNA-seq protocols have
a lower transcript detection limit of 10 copies per transcript per
cell (Ziegenhain et al. 2017, Bagnoli et al. 2018), bacterial scRNA-
seq must take into account the much lower average mRNA copy-
number in these organisms [0.4 copies/cell according to Taniguchi
et al. (2010), Bartholomäus et al. (2016)]. Thus single-cell transcrip-
tomics in bacteria requires a highly sensitive RNA-seq protocol;
ideally, this protocol would be generic in the sense that it can be
applied to diverse bacterial species and so used for the analysis of
mixed microbial communities.

New protocols for bacterial single-cell
transcriptomics
Over the past 2 years, four different protocols for bacterial single-
cell transcriptomics have been published (Fig. 2). As discussed
below, these protocols have proven the feasibility of scRNA-seq
for both Gram-negative and -postive bacteria, including both ma-
jor human pathogens and model bacteria (Blattman et al. 2020,
Imdahl et al. 2020, Dar et al. 2021, Kuchina et al. 2021). One
of these studies adapted eukaryotic Multiple Annealing and dC-
Tailing-based Quantitative scRNA-seq (MATQ-seq; Sheng et al.
2017) to profile individual Salmonella enterica and Pseudomonas
aeruginosa cells after cell sorting (Imdahl et al. 2020). Bench-
marking with established bulk RNA-seq data for S. enterica re-
vealed that these single-bacterium transcriptomes faithfully cap-
ture condition-dependent gene expression patterns. A total of
two other studies introduced protocols based on permeabiliza-
tion of cell membranes followed by repeated pooling and in situ
ligation (so-called microbial Split-Pool Ligation Transcriptomics
(microSPLiT) and Prokaryotic Expression profiling by Tagging
RNA In situ and sequencing (PETRI-seq) to study individual
Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis,
Staphylococcus aureus) bacteria (Blattman et al. 2020, Kuchina et al.
2021)). Both approaches build on a protocol previously developed
for eukaryotic scRNA-seq that uses combinatorial indexing to bar-
code transcripts in situ, a method originally known as ‘SPLiT-seq’
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Figure 1. Challenges in bacterial single-cell transcriptomics. Bacterial single-cell transcriptomic studies come along with various challenges related to
the specific features of bacterial mRNA, cell wall composition, and cell scale. Thus, method development requires consideration of technical methods
for resolution of these challenges. Created with Biorender.com.

(Rosenberg et al. 2018). Besides bacterial scRNA-seq, gene expres-
sion analysis can also be combined with spatial context informa-
tion using Parallel Sequential Fluorescence In situ Hybridization
(par-seqFISH). The par-seqFISH technique allowed for the tran-
scriptome imaging of more than 100 marker genes in P. aeruginosa
and identified distinct phenotypic structuring and variation dur-
ing different stages of biofilm formation (Dar et al. 2021). The fol-
lowing sections will cover these four protocols in more technical
detail.

MATQ-seq: multiple annealing and tailing-based
microbial scRNA-seq
In the MATQ-seq protocol, total RNA recovered after single-cell
lysis undergoes RT using a combination of random-hexamer
and Multiple Annealing and Looping-based Amplification Cycles
(MALBAC) primers. MALBAC primers, originally used for whole-
genome amplification, enable high efficiency in hybridization with
transcripts even at low temperatures, thereby targeting even low
abundant transcripts. Those serve as primers for quasilinear
preamplification of RT during MATQ-seq, which leads to a reduc-
tion of amplification bias by excluding full amplicons as templates
for subsequent polymerase chain reaction (PCR) cycles (Zong et
al. 2012). The RT reaction is followed by dC-tailing facilitating effi-
cient second-strand synthesis. Finally, the cDNA is amplified dur-
ing several rounds of PCR and serves as input for Nextera XT (Il-
lumina) library preparation. Compared to the originally published
MATQ-seq protocol implemented for eukaryotic cells (Sheng et al.
2017, Sheng and Zong 2019), major adaptations were required for
bacteria in both the cell isolation and lysis strategy as well as the
data analysis pipeline (Imdahl et al. 2020).

In the published bacterial MATQ-seq protocol (Imdahl et al.
2020), the isolation of bacterial cells is performed using fluores-
cent activated cell sorting (FACS) and cells are sorted directly into
multiwell plates granting separation of each cell before lysis. Bac-

terial MATQ-seq captures around 150–200 different mRNAs per
single bacterium. On the face of it, this is only ∼5% of all mR-
NAs in a typical bacterium (Bartholomäus et al. 2016). However,
it is two orders of magnitude more than what was achieved with
fluorescent gene reporters and these numbers sufficed to iden-
tify specific transcriptional signatures in S. enterica associated with
three different growth and stress conditions (Imdahl et al. 2020).
Additionally, MATQ-seq also captures small regulatory RNAs
(sRNAs), which can serve as proxies for the activity of certain
stress responses or virulence programmes (Papenfort and Vogel
2014, Fröhlich and Gottesman 2018, Hör et al. 2020). MATQ-seq
has been successfully applied to two bacterial species, S. enterica
and P. aeruginosa (Imdahl et al. 2020), which are sufficiently differ-
ent to suggest that this scRNA-seq protocol has the potential for
application to many other bacteria.

PETRI-seq and microSPLiT: barcoding based
scRNA-seq of microbes
Both microSPLiT (Kuchina et al. 2021) and PETRI-seq (Blattman et
al. 2020) build upon the previously developed eukaryotic SPLiT-
seq method (Cao et al. 2017, Rosenberg et al. 2018), so their work-
flows are very similar. Bacteria are immobilized by fixation and
subsequently permeabilized with the help of either lysozyme or
lysostaphin (PETRI-seq) or a combination of lysozyme and Tween-
20 (microSPLiT). The permeabilization allows for the introduction
of barcoded random hexamers, RT enzymes and ligases for subse-
quent in situ split-pool barcoding. The combinatorial barcoding re-
quires three major experimental steps: (1) splitting of the bacteria
into 96-well plates containing well-specific barcodes; (2) introduc-
tion of a well-specific barcode through RT (in the first round) or lig-
ation (in the second and third rounds); and (3) cell pooling before
splitting for next round of barcoding. This repeated splitting, tag-
ging, and pooling procedure leads to the RT products within each
individual cell being labelled with a unique combination of bar-
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Figure 2. Bacterial scRNA-seq workflows. Generic bacterial scRNA-seq workflows: (A) MATQ-seq is a multiple annealing and tailing-based workflow,
which enables targeting of low abundant transcripts in single bacteria. After RT, poly-C tailing, second strand synthesis, and PCR amplification, cDNA
suitable for library preparation and sequencing is generated. (B) microSPLiT as well as PETRI-seq are based on split-pool barcoding system. After
permeabilization and fixation of cells, three rounds of barcoding using RT and ligation process are performed. Thereby, each cDNA within a cell
receives a unique barcode combination, which is used as cell identity. Barcoding is followed by cell lysis, library preparation, and sequencing. (C)
Spatial transcriptomics of single bacteria: par-seqFISH is based on sequential FISH technology using sets of primary and secondary probes specifically
targeting a selection of genes for high-throughput microscopy. Rounds of hybridization and stripping of three probes per cycle allow detection of gene
expression profiles gene by gene. An overlay of the generated images results in a merged transcriptome map providing gene expression profiles of
individual bacteria including spatial information.
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codes that serves as a cell identification. After pooling at the end of
the third round of barcoding, cells are lysed to access the cDNA, i.e.
then used as input for library preparation. Library preparation for
microSPLiT is performed with NGS Library Construction Reagents
from Enzymatics, while PETRI-seq uses the Nextera XT kit dis-
tributed by Illumina. In microSPLiT, there is an additional enrich-
ment step for mRNAs using the polyadenylate polymerase (PAP)
enzyme, which preferentially polyadenylates mRNAs. In contrast
to MATQ-seq, these two barcoding-based scRNA-seq approaches
do not require physical separation of cells using microfluidics or
cell sorters. Instead, the cell itself serves as a reaction compart-
ment where RT, barcoding, and cDNA synthesis are performed.

Both split and pool-based studies profiled one Gram-negative
(E. coli) and one Gram-positive (B. subtilis or S. aureus) bacterium
each to prove applicability beyond a single species. Both meth-
ods can capture in the range of 100 different mRNAs per single
bacterium. In the microSPLiT study, Kuchina et al. (2021) ana-
lyzed > 25 000 bacteria, successfully separating bacterial subpop-
ulations based on their transcriptional profiles and in B. subtilis
identifying rare cell states induced by cellular stress. The PETRI-
seq study (Blattman et al. 2020) focused on the analysis of differ-
ent growth-conditions and revealed growth-dependent subpopu-
lations via their distinct single-cell transcription profiles in E. coli.
This study also identified rare cell states related to phage lysis.

par-seqFISH: spatial transcriptomics in bacterial
communities
The development of spatial transcriptomics has a history span-
ning several decades since the invention of in situ hybridization,
initially to detect rRNA (Moses and Pachter 2022). Despite this,
conventional fluorescence-in situ hybridization (FISH)-based tech-
nologies were long restricted to measuring the expression of only
a few genes at a time (Fei and Sharma 2018). However, the re-
cently developed sequential FISH (seqFISH) technique (Eng et
al. 2019) increased this number to thousands of genes, at least
in eukaryotes, by combining FISH with combinatorial imaging.
For the fluorescent-based readout of seqFISH, a set of primary
probes are designed complementary to a selection of target genes.
The probes include unique flanking regions, which enable gene-
specific binding of a single secondary, or readout, probe coupled
to a fluorophore. By using different fluorophores and performing
several rounds of hybridization, imaging, and stripping of the sec-
ondary probes, the expression of many different genes can be de-
tected consecutively in a single sample.

In developing par-seqFISH, the original eukaryotic seqFISH pro-
tocol was refined and successfully adapted for complex bacterial
communities (Dar et al. 2021). As to major challenges to over-
come, the small size of bacteria did not allow the standard ‘bar-
coding’ approach, wherein several probes are applied to read the
expression of multiple genes simultaneously. Instead, par-seqFISH
uses a parallelization step where three orthogonal fluorophores
are used at once to read out three genes per hybridization round.
Thereby par-seqFISH was shown to capture transcripts across a
wide range of expression levels without interference from the
abundant rRNA. In addition to this parallelization and cell-level
barcoding procedure for multiplexing, par-seqFISH uses auto-
mated microscopy to generate a sequence of images capturing the
gene expression through sequential application of different sec-
ondary probe sets, which further helps to achieve high through-
put. To correct for underestimation of the transcript count due to
the merging of fluorescent signal from spatially close transcript
copies, continuous intensity values were digitized using the flu-

orescent signal from low-expression genes. This digitization pro-
vides an estimate of the transcript copy number at each fluores-
cent spot. Overlaying the images from many rounds of secondary
hybridization resulted in a merged data set that provides tran-
scriptomic measurements on a spatial scale with single-cell res-
olution.

The pioneering par-seqFISH study (Dar et al. 2021) investi-
gated P. aeruginosa, an opportunistic pathogenic bacterium associ-
ated with nosocomial infections and a model organism for study-
ing biofilm formation. Primary and secondary probes were de-
signed for a selection of 105 marker genes to study various plank-
tonic populations as well as heterogeneity in different biofilm
states. In total, the transcriptional profiles of > 600 000 P. aerug-
inosa cells were analyzed. This data revealed distinct metabolic
and virulence-related subpopulations in planktonic growth con-
ditions. Comparing biofilm with planktonic lifestyle, the authors
identified several transcriptional responses specific to biofilms.
Specifically, they found that sessile cells can be defined by the ex-
pression of matrix component genes not observed in planktonic
cells. Moreover, they found differences in spatial architecture dis-
tinguishing early and mature biofilms, defined by distinct expres-
sion patterns of proteases and quorum sensing regulatory net-
works (Dar et al. 2021).

Comparison and development of different
methods
The four methods discussed above come with their own strengths
and weaknesses, as summarized in Table 1. MATQ-seq has a
much lower drop-out rate (percentage of cells lost during sample
processing and/or excluded by bioinformatic filtering) than have
PETRI-seq and microSPLiT, while the combinatorial barcoding-
based methods offer a much higher throughput. MATQ-seq
showed a consistently high number of genes detected per sin-
gle bacterium and a very high lysis efficiency due to optimiza-
tion for each species. In contrast, PETRI-seq and microSPLiT had a
lower transcript recovery rate but used a more generic lysis proto-
col with broader applicability. However the different filtering and
transcript detection cut-off criteria applied in each data analysis
pipeline, as well as the different bacterial species investigated in
each study, makes a direct comparison challenging at this point
in time. The strength of par-seqFISH is its ability to reveal spatial
dynamics by preserving the physical context of bacteria. However,
par-seqFISH is limited by the number of probes, and each probe
set added requires an additional washing and hybridization step.
This may have implications for detecting subpopulations of cells
expressing genes not previously associated with a condition of in-
terest by bulk RNA-seq.

Regarding the high prevalence of noninformative rRNA, only
microSPLiT includes a dedicated enrichment step for mRNA.
There, a separate polyadenylation using PAP is performed after
permeabilization. However, a targeted rRNA depletion protocol
is currently missing for bacterial scRNA-seq. We have recently
achieved efficient depletion of rRNA reads from bacterial cDNA
using the Cas9 nuclease (Prezza et al. 2020) and successfully im-
plemented it in the MATQ-seq workflow (own unpublished re-
sults). Generally speaking, such rRNA depletion step will substan-
tially lower the cost of bacterial scRNA-seq experiments and while
also increasing the proportion of mRNA reads at the same time,
thus improving mRNA detection rates. Future improvements of
the current protocols should also focus on the optimization of
turn-around times and the implementation of automation steps
in sample preparation as well as liquid handling. A more broadly
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Table 1: Characteristics of approaches to bacterial single-cell transcriptomics.

Categories MATQ-seq microSPLiT PETRI-seq par-seqFISH

Probe-independent
approach

Yes Yes Yes No

Cell throughput Hundreds of cells Thousands of cells Thousands of cells Thousands of cells
Sensitivity# 150–200 genes (S.

enterica)
230 genes (B. subtilis);
138 genes (E. coli)

103 operons (E. coli) 105 genes
(probe-dependent)

Cell drop-out rate Low High High Low
Costs High Moderate Moderate Moderate
Applied organisms S. enterica, P. aeruginosa E. coli, B. subtilis E. coli, S. aureus P. aeruginosa

#Number of detected genes is highly dependent on applied cut-off criteria.

applicable lysis protocol, higher cell throughput (for MATQ-seq)
and a lower drop-out rate (for barcoding based workflows) would
be desirable. For par-seqFISH we are yet to see how this method
will perform with an organism other than P. aeruginosa.

Conclusion and outlook
The proof-of-concept studies discussed here have firmly estab-
lished that transcriptomes can be read from individual bacterial
cells. These new methods promise a new single-cell microbiol-
ogy that seeks to fathom cellular heterogeneity in microbial pop-
ulations and its consequences for adaptation to diverse condi-
tions including infection and other multiorganism interactions.
Fulfilling this promise will require further developments to in-
crease throughput, capture temporal dynamics, and allow for di-
rect probing of multicellular interactions.

The development of microfluidic methods for cell isolation and
library preparation was one of the major factors driving the ex-
ponential scaling in the number of cells analyzed by eukary-
otic scRNA-seq over the past decade (Svensson et al. 2018). In
particular, the development of reliable microfluidic droplet se-
quencing, in which cells are individually encapsulated in emul-
sion droplets that serve as vessels for RT, has made scRNA-seq
experiments measuring gene expression in thousands of cells si-
multaneously increasingly routine (Klein et al. 2015, Macosko et
al. 2015, Zheng et al. 2017). However, these methods are still in
their infancy for bacteria, mainly due to a lack of both universal
droplet-compatible bacterial cell lysis techniques and robust RT
protocols that do not depend on transcript polyadenylation. Of
note, two recent preprints describe the successful use of the com-
mercial 10x Genomics platform for bacterial scRNA-seq (McNulty
et al. 2021, Ma et al. 2022). In the future, successful development
of universal droplet-based methods may lead to a general pipeline
for high-throughput bacterial scRNA-seq that retains the sensi-
tivity of MATQ-seq, while approaching the throughput enabled by
split and pool protocols. Very recently, single-microbe genomics at
the level of DNA using single-cell droplet encapsulation has been
published and lends itself for adaptation to bacterial scRNA-seq
(Zheng et al. 2022).

One major limitation of most ‘omics approaches, scRNA-seq in-
cluded, is that the profiles generated only capture a single point
in time, obscuring the underlying dynamics of the system under
study. As we are generally interested in dynamic processes, for
instance metabolism within a single cell or during host cell in-
vasion, it would be helpful if we could extract some indication
of how the system evolves over time. In the study of eukaryotic
cells, the concept of RNA velocity has been used to achieve this
with wide application (Bergen et al. 2021). Conceptually, RNA ve-
locity uses the ratio of spliced to newly transcribed unspliced

mRNA to provide an estimate of the instantaneous change in tran-
scription at the time the sample was taken. As bacterial mRNA is
generally not spliced during maturation, such techniques would
not be directly transferrable. However, there are existing proto-
cols that profile nascent transcripts through whole-cell metabolic
labelling (Erhard et al. 2022), which allows for the marking of
newly synthesized RNA through incorporation of artificial mod-
ified nucleotides. One of these methods is Thiol(SH)-linked Alky-
lation for the Metabolic Sequencing of RNA (SLAM-seq; Herzog et
al. 2017) that uses metabolic labelling using 4-thiouridine, which
can be converted to cytidine by chemical treatment, allowing dif-
ferentiation between newly transcribed and old RNA by the pres-
ence of T to C conversions in sequencing reads. Extending this
concept to single cells, scSLAM-seq (Erhard et al. 2019) enabled
the analysis of rapid cellular responses of individual cells to vi-
ral infections. New methods for metabolic labelling of RNA in
bacteria suggest a similar approach could be extended to bacte-
ria (Meng et al. 2020). A modified scSLAM-seq protocol for bac-
teria would be a promising tool to understanding the transcrip-
tional adaptation that occurs upon entrance to a new environ-
ment, for instance a host cell. However, it is important to con-
sider the short half-lives of bacterial mRNAs (in the minute range)
as limiting time factor for capturing temporal transcriptional
changes.

Host–microbe interactions involve multiple interaction part-
ners, and scRNA-seq has already revealed the existence of com-
plex signalling pathways and a high level of transcriptional het-
erogeneity in infected host cells (Avraham et al. 2015, Saliba et al.
2016). Simultaneous bulk transcriptome profiling of pathogen and
host has become a popular approach to investigating the interac-
tions that occur during infection (Tsai and Coombes 2019, Wester-
mann and Vogel 2021). These multiorganism RNA-seq approaches
(Dual RNA-seq, Triple RNA-seq) are based on poly(A)-independent
library preparation protocols and capture all transcript classes
(Westermann et al. 2016, Westermann and Vogel 2018, Seelbinder
et al. 2020), but lack the sensitivity necessary to be performed
on the level of single cells. A number of approaches have been
taken towards establishing Dual RNA-seq with single-cell reso-
lution. For instance, the single-cell Dual RNA-seq (scDual-Seq)
method isolates single infected eukaryotic cells by FACS and uses
random hexamers to prime both host and pathogen-derived tran-
scripts. Subsequent poly-A tailing and in vitro transcription allows
simultaneous transcriptome analysis of host and pathogen (Avi-
tal et al. 2017). In contrast, the Pathogen Hybrid-Capture (PatH-
Cap) method specifically enriches bacterial mRNA over host RNA
through capture with targeted oligonucleotides. PatH-Cap is sen-
sitive enough to capture the transcriptome of a few bacterial
cells within a single host cell (Betin et al. 2019). However, neither
method provides insight into potential heterogenous gene expres-
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sion among multiple intracellular bacteria within the same host
cell. For this, the development of new methods and refinement
of existing methods is required. One of the major challenges will
be to capture efficiently RNA of both eukaryotic and prokaryotic
cells with unbiased efficiency and resolution. The spatial tran-
scriptomics techniques reviewed here may provide an interme-
diate step to whole transcriptome capture of individual bacteria
from intracellular communities.

It seems unlikely that any single technique will come to domi-
nate the bacterial scRNA-seq field in the immediate future. As in
eukaryotes, where multiomics approaches that layer information
from suites of assays are becoming increasingly common (Sharma
et al. 2020, Li et al. 2021, Conrad and Altmüller 2022), the bacte-
riology community will benefit from having access to a range of
single-cell technologies with different strengths and weaknesses.
For instance, with the technologies discussed in this review, one
could already imagine applying split and pool methods to identify
highly expressed marker genes in a large number of cells within
a complex population, then using these markers to map the spa-
tial organization of cells using par-seqFISH, before using MATQ-
seq to produce high resolution transcriptomes for selected cells
with characteristics of interest. As these technologies mature and
new ones are added, methods for data integration will become
increasingly important, as can be seen in the current transforma-
tion of the eukaryotic single-cell field from being driven primar-
ily by experimental techniques to one increasingly reliant on ad-
vanced data science. While many technical challenges remain to
be solved to create production-ready bacterial scRNA-seq proto-
cols that can be applied on the industrial scales currently being
undertaken for eukaryotic scRNA-seq in projects like the Human
Cell Atlas (Rozenblatt-Rosen et al. 2017), the studies reviewed here
have already made significant progress towards opening the mi-
crobial world to investigation on the scale of the fundamental unit
of life: the single cell.
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