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Abstract: Polyneuropathy (PNP) is a term to describe diseases of the peripheral nervous system,
50% of which present with neuropathic pain. In some types of PNP, pain is restricted to the skin
distally in the leg, suggesting a local regulatory process leading to pain. In this study, we proposed a
pro-inflammatory pathway mediated by NF-κB that might be involved in the development of pain in
patients with painful PNP. To test this hypothesis, we have collected nerve and skin samples from
patients with different etiologies and levels of pain. We performed RT-qPCR to analyze the gene
expression of the proposed inflammatory pathway components in sural nerve and in distal and
proximal skin samples. In sural nerve, we showed a correlation of TLR4 and TNFα to neuropathic
pain, and an upregulation of TNFα in patients with severe pain. Patients with an inflammatory
PNP also presented a lower expression of TRPV1 and SIRT1. In distal skin, we found a reduced
expression of TLR4 and miR-146-5p, in comparison to proximal skin. Our findings thus support our
hypothesis of local inflammatory processes involved in pain in PNP, and further show disturbed
anti-inflammatory pathways involving TRPV1 and SIRT1 in inflammatory PNP.
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1. Introduction

Polyneuropathy (PNP) is a term to describe diseases of the peripheral nervous sys-
tem. This can include dysfunction of the motor, sensory, or autonomic system, leading to
symptoms such as weakness, numbness, paresthesia, and pain [1]. While a wide range of
underlying causes can result in PNP, up to 30% are idiopathic. About 50% of all PNP are
associated with neuropathic pain [1–3]. Current treatments have shown little effect in the
relief of neuropathic pain [4,5]. It is therefore imperative to find common pathophysiologi-
cal pathways that might determine the severity of the disease and the development of pain,
and guide the search towards effective therapies.

Many neuropathies are accompanied by inflammation, even if they do not belong
to the classic immune mediated disorders [1,6]. Immune processes and mediators can be
involved in neurodegeneration, -regeneration, and pain. For instance, an upregulation of
pro-inflammatory cytokines, including tumor necrosis factor (TNFα) or interleukin (IL)-1β,
may lead to pain, while anti-inflammatory cytokines such as IL-10 can have analgesic
properties. A balance between these components seems to be key to maintain a beneficial
equilibrium between neurodegeneration and -regeneration [7].

In PNP, several clinical studies point towards an enhanced systemic inflammation
associated with the development of the neuropathy. These studies, nevertheless, have
shown a high variability of results, suggesting that the analysis of local inflammatory
components might be more valuable [8–14]. Supporting this are the increased number of
macrophages and T-cells in the skin of patients with PNP, independent of its etiology [15],
as well as elevated mRNA levels of TNFα, IL-1, IL-6, IL-8, or IL-10 [16,17]. Moreover,
fibroblasts isolated from the skin of patients with neuropathies are able to secrete high
levels of IL-6 and IL-8 [18].
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This local inflammatory process might be triggered by the activation of toll-like re-
ceptor (TLR)-mediated pathways. In particular, stimulation of TLR4 results in the release
of pro-inflammatory cytokines, such as TNFα, through the upregulation of an NF-κB-
mediated cascade [19]. In turn, the NF-κB complex can be inhibited by the NAD-dependent
deacetylase sirtuin 1 (SIRT1) via the deacetylation of its p65 subunit [20]. Activation of
ion channels, such as the transient receptor potential cation channel 1 (TRPV1), trigger a
strong influx of calcium, activating SIRT1 through a calcium-dependent protein kinase,
and thus inhibiting the immune response [21,22]. On the other hand, activation of TRPV1
results in enhanced excitatory responses in nociceptors, promoting axonal degeneration
and the release of pro-inflammatory mediators [23]. This dichotomy leads to the question
of whether and how other factors in the local environment determine the actions of TRPV1.

Furthermore, small fragments of RNA, or microRNAs (miR), can regulate the expres-
sion of different inflammatory mediators. For instance, miR-146a-5p, miR-132-3p, and
miR-155-5p are able to modulate the NF-κB mediated cascade and have been found altered
in patients with neuropathic pain [24,25].

PNP symptoms are usually length-dependent and more severe in the extremities [26].
A local study of the inflammatory environment allows the comparison between painful
regions of skin, located distally in the leg, and painless regions at the proximal leg. There-
fore, this is a good model to study the local role of an immune imbalance within the same
patient.

Here, we hypothesized that a local pro-inflammatory environment is involved in
the severity of the disease and the development of neuropathic pain in PNP. To test our
hypothesis, we studied the gene expression of TLR4, TRPV1, TNFα, SIRT1, miR-146a-5p,
miR-132-3p, and miR-155-5p, in sural nerve, and in proximal and distal skin from patients
with PNP. We correlated their expression to different neuropathy scores, disease severity,
and levels of pain. Our results highlight the importance of the immune balance in the
development of neuropathic symptoms.

2. Results
2.1. Clinical Characteristics of Patient Cohort

Diagnostic subgroups and clinical characteristics are summarized in Table 1. Sixty-six
patients with PNP that presented for diagnostic work-up and had a sural nerve biopsy
were included in the study (median age 65 years, range 28–87). The median disease du-
ration was 3 years (range 0.01–27 years). Overall, 40 patients were diagnosed with an
inflammatory neuropathy including non-systemic vasculitis (16 patients), monoclonal IgM
gammopathy (5 patients), chronic inflammatory demyelinating polyneuropathy (CIDP)
(6 patients), and other inflammatory neuropathies [Guillain-Barré syndrome (GBS, 1 pa-
tient), ganglionitis (1 patient), multiple myeloma (3 patients), and other (8 patients)]. In
total, 26 patients were categorized as non-inflammatory, including idiopathic neuropathy
(14 patients), hereditary neuropathy (5 patients), diabetic neuropathy (3 patients), vitamin
B12 deficiency (2 patients), motor neuron disease (MND, 1 patient) and AL-amyloidosis
(1 patient).

Patients were further divided according to their levels of pain on the numerical rating
scale (NRS): No pain (NRS = 0; 17 patients), mild pain (1 ≤ NRS ≤ 3; 22 patients), and
severe pain (NRS ≥ 4; 27 patients). At the time of inclusion, 10 patients had been treated
for their neuropathy with intravenous immunoglobulin therapy (IVIG) within the last
6 months, while 56 had not received treatment.

While all patients received a sural nerve biopsy, in 33 out of 66 patients, a biopsy
of skin from the lower leg (distal skin) and the upper thigh (proximal skin) was also col-
lected. The analysis of the intraepidermal nerve fiber density (IENFD) showed a median of
2.1 fibers/mm (range 0.0–12.3) in the distal and 7.0 fibers/mm (0.0–18.0) in the
proximal skin.
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Table 1. Diagnostic subgroups and clinical characteristics of patient cohort.

Item Number (% of Group)

M, F (N) 40, 26
Median age (range) 65 years (28–87)
Median disease duration (range in years) 3 years (0.01–27)
Diagnostic subgroups (N and % of entire group):

Vasculitic neuropathy 16 (24.2%)
Idiopathic neuropathy 14 (21.2%)
Chronic inflammatory demyelinating

polyneuropathy (CIDP) 6 (9.1%)

Monoclonal IgM gammopathy 5 (7.6%)
Hereditary neuropathy 5 (7.6%)
Diabetic neuropathy 3 (4.5%)
Vitamin B12 deficiency 2 (3.0%)
Motor neuron disease (MND) 1 (1.5%)
AL-amyloidosis 1 (1.5%)
Other inflammatory neuropathies

[Guillain-Barré syndrome (GBS), ganglionitis,
multiple myeloma, other]

13 (19.7%)

Analysis subgroups (N):
Inflammatory, non-inflammatory neuropathy 40, 26
No pain, mild pain, severe pain 17, 22, 27
Patients with prior IVIG treatment, without

treatment (N) 10, 56

Biopsies (N):
Sural nerve biopsy 66
Distal and proximal skin biopsy 33

Intraepidermal nerve fiber density (IENFD)
Median distal IENFD (fibers/mm) (range) 2.1 (0.0–12.3)
Median proximal IENFD (fibers/mm) (range) 7.0 (0.0–18.0)

2.2. Gene Expression of Inflammatory Markers in Sural Nerve

In the 66 PNP patients that comprise the study cohort, we analyzed the gene expression
of the receptors TLR4 and TRPV1, the deacetylase SIRT1, the pro-inflammatory cytokine
TNFα, and the microRNAs miR-146a-5p, miR-132-3p, and miR-155-5p, in sural nerve
biopsies. To control for the effect of the IVIG treatment, we analyzed this subgroup
separately. While no difference was found for TLR4, TNFα, SIRT1, miR-132-3p, or miR-146-
5p, TRPV1 was upregulated in patients with IVIG treatment in comparison to those without
treatment (p < 0.001). Patients with this treatment also presented a downregulation of miR-
155-5p (p < 0.01). The effects of IVIG treatment on each of these markers were confirmed
with the 95% confidence intervals (Appendix A, Figure A1A). After this discovery, the
analyzes of TLR4, TNFα, SIRT1, miR-132-3p, and miR-146-5p were performed in the full
cohort of 66 PNP patients, while TRPV1 and miR-155-5p were investigated in the 55 patients
without prior treatment.

Comparisons between pain subgroups (no, mild, and severe pain) and between pa-
tients with an inflammatory and non-inflammatory neuropathy showed no differences in
the expression of TLR4 (Figure 1A), and the microRNAs miR-146a-5p, miR-132-3p, and
miR-155-5p (Figure 1E). On the other hand, patients with severe pain presented an up-
regulated expression of TNFα in comparison to those with no (p < 0.05) or mild pain (p <
0.01) (Figure 1B). Although this upregulation was limited to patients with an inflammatory
neuropathy, the expression of TNFα correlated with the severity of PNP in the entire cohort,
with its highest values in patients with an inflammatory neuropathy and severe pain and its
lowest values in patients with a non-inflammatory PNP and no pain (p < 0.001) (Figure 1F).
Furthermore, patients with an inflammatory PNP also presented a downregulation of
TRPV1 (p < 0.05) (Figure 1C) and SIRT1 (p < 0.05) (Figure 1D) in comparison to those with a
non-inflammatory one.
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pression of TLR4 (A), TNFα (B), TRPV1 (C), SIRT1 (D), and the microRNAs miR132-3p, miR146a-
5p, and miR155-5p (E) in sural nerve from patients with no (green), mild (orange), or severe (red) 
pain, and divided according to their inflammatory or non-inflammatory neuropathy. The number 
of patients included in each subgroup can be found in Table A1. Results are normalized to patients 
with no pain and a non-inflammatory neuropathy. Kruskal–Wallis tests were performed between 
pain subgroups (*) and Mann–Whitney tests between inflammatory subgroups (#). (F) Spearman 
correlation between the expression of TNFα and the severity of the neuropathy. Corr. coef., correla-
tion coefficient; Inflam, inflammatory PNP; Non inflam, non-inflammatory PNP. */#, p < 0.05; **, p < 
0.01; ***, p < 0.001. 

2.3. Gene Expression of Pro- and Anti-Inflammatory Markers in Skin 
Thirty-three PNP patients out of the sixty-six included in the study received a skin 

punch biopsy at a proximal (upper thigh) and distal (lower leg) region, where the same 

Figure 1. Inflammatory markers involved in the severity of PNP in sural nerve biopsies. Gene
expression of TLR4 (A), TNFα (B), TRPV1 (C), SIRT1 (D), and the microRNAs miR132-3p, miR146a-
5p, and miR155-5p (E) in sural nerve from patients with no (green), mild (orange), or severe (red)
pain, and divided according to their inflammatory or non-inflammatory neuropathy. The number
of patients included in each subgroup can be found in Table A1. Results are normalized to patients
with no pain and a non-inflammatory neuropathy. Kruskal–Wallis tests were performed between
pain subgroups (*) and Mann–Whitney tests between inflammatory subgroups (#). (F) Spearman
correlation between the expression of TNFα and the severity of the neuropathy. Corr. coef., correlation
coefficient; Inflam, inflammatory PNP; Non inflam, non-inflammatory PNP. */#, p < 0.05; **, p < 0.01;
***, p < 0.001.

2.3. Gene Expression of Pro- and Anti-Inflammatory Markers in Skin

Thirty-three PNP patients out of the sixty-six included in the study received a skin
punch biopsy at a proximal (upper thigh) and distal (lower leg) region, where the same
inflammatory markers were analyzed. In this case, patients with IVIG treatment did not
show any differential expression of the studied components in comparison to those without
treatment (Appendix A, Figure A1B,C). Therefore, the following analyzes were performed
in the entire 33-patient cohort.
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2.3.1. Inflammatory Markers in Neuropathic Pain

In distal skin, no differences in the expression of the studied inflammatory markers
were found between pain subgroups (no, mild, and severe pain). In proximal skin, an in-
creased expression of miR-146-5p was observed in patients with severe pain, in comparison
to those with mild pain (p < 0.05) (Figure 2E), while no differences were discovered for
TLR4 (Figure 2A), TRPV1 (Figure 2C), TNFα (Figure 2B), SIRT1 (Figure 2D), miR-132-3p,
and miR-155-5p (Figure 2E).
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Figure 2. TLR4 and miR-146a-5p differ between distal and proximal skin regions in PNP patients
with mild and severe pain. Gene expression of TLR4 (A), TNFα (B), TRPV1 (C), SIRT1 (D), and the
microRNAs miR-132-3p, miR-146-5p, and miR-155-5p (E) in distal (purple) and proximal (turquoise)
skin from patients with no (n = 5), mild (n = 10), or severe (n = 18) pain. Results are normalized
to the proximal skin of patients with no pain. Kruskal–Wallis tests were performed between pain
subgroups (#) and related-samples Wilcoxon Signed Rank tests between distal and proximal skin (*).
#/*, p < 0.05; ****, p < 0.0001.

Paired analyzes between distal and proximal skin allowed the study of these com-
ponents between painful (distal) and painless (proximal) regions within the same patient.
Our results showed a downregulation in the expression of TLR4 (p < 0.05) and miR-146-5p
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(p < 0.05) in distal skin in comparison to proximal, specifically in those patients with mild
or severe pain (Figure 2A,E).

2.3.2. Inflammatory Markers in Inflammatory and Non-Inflammatory Neuropathies

Comparison between patients with an inflammatory and non-inflammatory neuropa-
thy did not show any differences in the expression of the studied inflammatory markers
(Figure 3). Paired analyzes between distal and proximal skin showed a lower expression
of miR-146-5p in distal skin in comparison to proximal (p < 0.01) (Figure 3E), in all PNP
patients, and of TLR4 specifically in those patients with an inflammatory neuropathy (p <
0.01) (Figure 3A).
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Figure 3. TLR4 and miR-146a-5p differ between distal and proximal skin regions in patients with in-
flammatory PNP. Gene expression of TLR4 (A), TNFα (B), TRPV1 (C), SIRT1 (D), and the microRNAs
miR-132-3p, miR-146-5p, and miR-155-5p (E) in distal (purple) and proximal (turquoise) skin from
patients with an inflammatory (n = 19) and non-inflammatory (n = 14) neuropathy. Results are nor-
malized to the proximal skin of patients with a non-inflammatory neuropathy. Mann–Whitney tests
were performed between inflammatory subgroups (not significant) and related-samples Wilcoxon
Signed Rank tests between distal and proximal skin (*). Inflam, inflammatory PNP; Non inflam,
non-inflammatory PNP. **, p < 0.01; ****, p < 0.0001.
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2.3.3. Inflammatory Markers and Intraepidermal Nerve Fiber Density (IENFD)

In each skin biopsy, the IENFD can be used to determine the level of degeneration
of nerve fibers in the epidermis and dermis. Correlation analyzes between the expression
of the studied inflammatory components and the IENFD can be performed to determine
their role in nerve degeneration. Our results showed that while in distal skin no correlation
was found between the markers and IENFD (Figure 4A), in proximal skin miR-155-5p was
negatively related to IENFD (p < 0.05) (Figure 4B).
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Figure 4. Most inflammatory markers do not correlate to the IENFD in distal and proximal skin
regions of PNP patients. Volcano plot of Spearman correlations between IENFD and the gene expres-
sion of the inflammatory markers (in legend) in distal (A) and proximal (B) skin from patients with
PNP. (C) Volcano plot of Spearman correlations between the gene expression of each inflammatory
marker in distal versus proximal skin regions. Correlations with a p < 0.05 are colored, while those
not significant (p ≥ 0.05) are marked in grey. IENFD, intraepidermal nerve fiber density.

Moreover, the correlation between distal and proximal expression of each inflamma-
tory component was analyzed to determine the systemic aspect of their role in PNP. Our
analysis showed that the expression of TNFα (p < 0.05) and SIRT1 (p < 0.0001) correlated
between both regions, suggesting a systemic modulation of their expression.

2.4. Correlation of Inflammatory Markers with the Severity of PNP

All PNP patients included in the study were examined to determine the severity
of their neuropathy with standardized scales, including the modified Toronto clinical
neuropathy score (mTCNS), the overall disability sum score (ODSS), and the Medical
Research Council (MRC)-sumscore, while pain was specifically evaluated with NRS. In
order to determine the involvement of the inflammatory markers in the development of
the neuropathy and of neuropathic pain, these neuropathy scales were correlated with the
analyzed markers in sural nerve and distal and proximal skin. Our analysis of sural nerve
showed that NRS correlated positively with both TLR4 (p < 0.05) and TNFα (p < 0.001).
Furthermore, miR-132-3p expression correlated with TCNS (p < 0.01) and MRC (p < 0.05),
and negatively with NRS (p < 0.01) (Figure 5A).

In distal skin, our analysis showed that ODSS correlated with miR-132-3p
(p < 0.05) (Figure 5B), while in proximal skin NRS correlated with miR-146-5p (p < 0.05)
and miR-155-5p (p < 0.05) (Figure 5C). None of the other markers showed correlations with
neuropathy scores.
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Figure 5. Inflammatory markers correlate with the severity of PNP. Volcano plot of Spearman corre-
lations between the gene expression of the inflammatory markers (in legend) and four neuropathy
scores (MRC, NRS, ODSS, and TCNS), in sural nerve (A) and distal (B) and proximal (C) skin. Corre-
lations with a p < 0.05 are colored, while those not significant (p ≥ 0.05) are marked in grey. MRC,
Medical Research Council-sumscore; NRS, numerical rating scale; ODSS, overall disability sum score;
TCNS, modified Toronto clinical neuropathy score.

3. Discussion

In this study, we analyzed the gene expression of different inflammatory components
of the NF-κB pathway in sural nerve and proximal and distal skin from patients with
PNP. With this analysis, we aimed to elucidate whether a local pro-inflammatory environ-
ment mediated by NF-κB may determine the severity of the disease and the presence of
neuropathic pain.

The NF-κB-mediated pathway can be activated by the stimulation of TLR4 with a
damage-associated molecular pattern (DAMP), resulting in the release of pro-inflammatory
cytokines such as TNFα [19,27–29]. Our results in sural nerve showed that the expression
of TLR4 and TNFα correlated with each other and with the NRS, indicating a connection
to the development of neuropathic pain. Furthermore, TNFα expression levels correlated
positively with the severity of the neuropathy and were particularly elevated in the presence
of severe pain in patients with inflammatory PNP. It is likely that the amount of endogenous
TLR4 ligands, like high mobility group box1 (HMGB1), is increased in painful neuropathy,
binding to TLR4 and leading to the activation of the NF-κB pro-inflammatory cascade and
the upregulation of TNFα [30] (Figure 6).

Since TLRs are expressed in most cell types, fibroblasts and Schwann cells that are
supporting the nerve fibers might be involved in the upregulation of this cascade. How-
ever, fibroblasts and Schwann cells express low levels of TLR4 (20.5 and 0.8 normalized
protein-coding transcripts per million [nTPM], respectively) and TNFα (1.5 and 12.7nTPM,
respectively). Myeloid cells on the other hand, such as monocytes, macrophages, or T-cells,
express higher levels of TLR4 (118.1 nTPM, 89.3 nTPM, and 0.9 nTPM, respectively) and
TNFα (54 nTPM, 116.1 nTPM, and 94.6 nTPM, respectively) in order to respond against
stimuli [28,31,32]. Our data thus suggest that in sural nerve of patients with severe PNP,
resident or infiltrated myeloid cells may produce TNFα via activation of TLR4 (Figure 6).
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These results also confirm the previous literature that describes TNFα as closely related
to many neuropathies and, in particular, to neuropathic pain. Not only has TNFα been
reported upregulated in the peripheral and central nervous system in animal pain models,
but its administration has also reproduced pain hypersensitivity. The mechanisms in which
TNFα may induce neuropathic pain are plenty and very variable. One of the proposed
mechanisms is through the regulation of cation channels, leading to sensitization of primary
afferents, neuronal excitability, and repetitive firing. Another suggested mechanism would
be through the activation of NF-κB, p38 Mitogen-activated protein kinase (MAPK) and
c-Jun N-terminal kinases (JNK) pathways via TNF receptor 1 (TNFR1), promoting pro-
inflammatory loops and initiating apoptotic processes that contribute to nerve degeneration
and pain [28,33,34].

In addition, we found a close relation between TRPV1 and SIRT1, both being down-
regulated in sural nerve from patients with inflammatory PNP. SIRT1 is able to deacetylate
NF-κB, and its downregulation would imply an upregulation of the NF-κB pathway, ex-
plaining the high expression of TNFα [20]. While there are a few candidates that may
inactivate or inhibit the activity of SIRT1, little is known about the regulation of its expres-
sion [35–37]. One possibility is through the formation of a silencing complex between a
microRNA and the SIRT1 transcript, promoting its destabilization and/or translational re-
pression. In particular, two of the studied microRNAs, miR-132-3p and miR-155-5p, are able
to bind and silence the expression of SIRT1. While the expression levels of miR-132-3p and
miR-155-5p correlated strongly with each other, they did not differ between patients with
inflammatory and non-inflammatory neuropathy, thus suggesting that other microRNAs
might be involved in this regulation, including miR-138-5p, miR-9-5p, or miR-22-3p [38,39].
Furthermore, a relation between TRPV1 and SIRT1 has been described before. Therefore,
we cannot exclude the possibility of a downregulation of TRPV1 leading to a lower expres-
sion of SIRT1, or vice versa [21,40–44]. Our data thus suggests that a downregulation of
SIRT1 via TRPV1, or potentially other microRNAs than miR-132-3p and miR-155-5p, might
be involved in the development of an inflammatory PNP.

https://smart.servier.com/
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Since PNP symptoms are usually length dependent and more severe in the extremities,
the analysis of regions of skin distally located can provide clarity on the inflammatory
components associated with more severe and painful neuropathic symptoms [26]. Our
results did not show any differences in the expression of TNFα, TRPV1, SIRT1, miR-132-3p,
or miR-155-5p between distal and proximal regions of skin from PNP patients. On the
other hand, the expression of TLR4 and miR-146a-5p was found downregulated in distal
versus proximal skin regions, which replicates previous findings from our group [25]. MiR-
146a-5p is a microRNA that can form a silencing complex with the interleukin-1 receptor-
associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) transcripts,
components of the NF-κB pathway. Activation of the NF-κB cascade can lead to the
upregulation of miR-146a-5p, in order to repress components of the same pathway and
control the inflammation [38,39,45–47]. The low expression of miR-146a-5p might be due to
a downregulation of TLR4, and thus of the NF-κB pathway. This repression of TLR4 might
be the result of a regulatory loop being activated upon pro-inflammatory mechanisms
taking place in distal skin and being associated with severe neuropathic symptoms.

Furthermore, we found that the expression of SIRT1, as well as TNFα, correlated
positively between distal and proximal regions of skin, suggesting a systemic regulation of
these markers, and highlighting their involvement in systemic inflammation. Moreover,
the current literature has reported involvement of SIRT1 in systemic processes such as
ageing, metabolism, diet, glucose tolerance, or immune disorders [48–55]. Although we
did not find correlations between SIRT1 and age, we cannot discard other patient-inherent
processes altering its expression.

While our study includes some of the main inflammatory components of the NF-κB
pathway, a broader analysis might help elucidate other pathways and mediators that
might be involved in PNP. Furthermore, though sural nerve cannot be obtained from
healthy individuals, skin biopsies could be performed to include a control group. This may
clarify the role of the studied inflammatory components in the onset and worsening of the
neuropathy. In addition, the analysis of the protein levels of these inflammatory mediators
might shed light on the post-translational regulations that they might encounter and the
inter-modulatory activities affecting the NF-κB pathway. Lastly, our results are limited by
the well characterized but low number of recruited patients and the variance in etiologies.
A bigger cohort might yield clearer results.

At the moment, first-line treatments of neuropathic pain are based on the use of
antidepressant and antiepileptic drugs, while opioids are recommended as second- and
third-line treatment. These therapies are ineffective in many patients or inappropriate for
specific painful neuropathies. Many current efforts are being made into identifying new
targets to develop novel pharmaceutical agents [4,5]. Our study highlights the role of the
NF-κB pathway in PNP and uncovers new targets that could be used towards finding
better treatments against neuropathic pain. Furthermore, current therapeutic options
targeting inflammatory mediators, such as the cyclooxygenase-2 [56], reducing the levels of
TNFα [57,58], or inhibiting the activation of immune cells via the fractalkine receptor [59],
are being explored.

We conclude that stimulation of TLR4 by endogenous ligands in large nerve trunks
may result in the upregulation of TNFα, via the activation of the NF-κB pathway, leading
to the development of severe neuropathic pain in patients with PNP. Furthermore, we
propose that the activation of the NF-κB pathway in large nerve fibers, through the down-
regulation of SIRT1 and TRPV1, might be involved in the pathophysiology of inflammatory
neuropathies. From our results in skin, we cannot resolve the involvement of the NF-κB
pathway in the degeneration of nerve fiber endings and the development of localized
neuropathic pain. Further analysis of this and other inflammatory pathways may help
elucidate the role of inflammation in the skin of patients with PNP. We believe that the
study of the NF-κB pathway in large nerve fibers can be an additional indicator of the
severity of PNP and improve patient stratification, while a follow-up study may promote
the discovery of predictive biomarkers.
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4. Materials and Methods
4.1. Patient Recruitment and Sample Collection

Between 2017 and 2018, 66 patients with PNP that came to the Department of Neu-
rology, University of Würzburg, Germany for diagnostic work-up, were recruited for this
study. Patients were informed about the aim in which their tissue was going to be used
and gave written informed consent prior to inclusion. This project was approved by the
Würzburg Medical Faculty Ethics Committee (# 230/15).

Patients were diagnosed based on neurological examinations, laboratory studies, and
nerve conduction examinations. The severity of the neuropathy was determined using
standardized scales, including the modified Toronto clinical neuropathy score (mTCNS),
the overall disability sum score (ODSS), and the Medical Research Council-sumscore (MRC-
sumscore). Pain was evaluated by a numerical rating scale (NRS) from 0 (no pain) to 10
(worst pain).

From each patient, a biopsy of sural nerve was collected and embedded in RNA-later
over night at 4 ◦C for gene expression analysis. The RNA-later was removed the next
day and the samples were preserved at −80 ◦C until further analysis. From 33 out of
66 patients, a biopsy of skin from the lower leg and the upper thigh was collected following
the same protocol.

4.2. Gene Expression Analysis
4.2.1. RNA Isolation

Purification of total RNA including miRNA was performed using the miRNeasy
mini kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol. In summary,
samples were homogenized with 700 µL of Qiazol lysis reagent in a homogenizer disperser.
After incubation with 140 µL of chloroform, samples were centrifuged for 15 min at
12,000× g at 4 ◦C in order to separate the aqueous phase (containing the RNA), the organic
phase (containing proteins and lipids), and the interphase formed by DNA. The upper
phase was collected in a column tube and RNA was cleansed through several centrifugation
steps, upon addition of ethanol (EtOH), RWT buffer, and RPE buffer, while discarding the
supernatant in every step. Lastly, RNA was retrieved by pipetting 33 µL of RNase-free
water onto the membrane of the column and centrifuging the tubes for 1 min at 8000× g.
Samples were stored at −80 ◦C after the RNA quality and quantity was assessed with a
NanoDrop™ One (Thermo Fisher Scientific, Waltham, MA, USA).

4.2.2. cDNA Synthesis

The cDNA synthesis from mRNA was carried out with TaqMan Reverse Transcription
reagents (Thermo Fisher Scientific, Waltham, MA, USA). First, 250 ng mRNA of each
sample was pre-incubated with 5 µL random hexamer at 85 ◦C for 3 min. Next, 10 µL 10×
PCR buffer, 22 µL MgCl2, 20 µL deoxyribonucleoside triphosphate, 6.25 µL multiscribe
reverse transcriptase, and 2 µL RNase inhibitor was added per sample. Lastly, reaction was
performed under these conditions: annealing (25 ◦C, 10 min), reverse transcription (48 ◦C,
60 min), and enzyme inactivation (95 ◦C, 5 min).

For miRNA, reverse transcription was performed with the miRCURY LNA RT Kit
(Qiagen, Hilden, Germany). For each sample, 10 ng of RNA was mixed with 2 µL of
5x reaction buffer, 5 µL of nuclease free water, and 1 µL of enzyme mix. Reaction was
performed using the following program: reverse transcription (42 ◦C, 60 min) and enzyme
deactivation (95 ◦C, 5 min).

Reactions were carried out on a PRISM 7700 Cycler (Applied Biosystems, Waltham,
MA, USA) and transcribed cDNA was stored at −20 ◦C until further analysis.

4.2.3. RT-qPCR

Real-time qPCR of mRNA and miRNA targets was performed to analyze gene expres-
sion using the StepOnePlus Real-Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA). For mRNA, RT-qPCR was carried out with TaqMan qRT-PCR reagents (all
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Thermo Fisher Scientific, Waltham, MA, USA) and pre-designed assays. For target nor-
malization, experience from our group showed that the ribosomal protein L13a (RPL13A)
could act as a good housekeeping gene. Based on its comparability and standard deviation
across groups and samples, our tests showed that RPL13A could be selected as suitable
endogenous control. For each reaction, 3.5 µL cDNA was mixed with 0.5 µL nuclease free
water, 5 µL Fast Advanced Mastermix, and 0.5 µL TBP primer and 0.5 µL target primer (see
list of primers in Table 1).

For miRNA, the miRCURY LNA SYBR Green PCR Kit (Qiagen, Hilden, Germany)
and pre-designed miRCURY LNA miR PCR assays (Qiagen, Hilden, Germany) were
used. Based on previous experience from our group [11,12], the housekeeping genes 5S,
SNORD44, SNORD48, and U6 were tested in nerve and skin samples as endogenous
controls. Due to differences found between skin and nerve, different endogenous controls
were selected for each sample type. Our tests showed that 5S and U6 were stable across
groups in skin samples, while 5S and SNORD44 were more suitable for nerve samples.
Each miRNA was run adding 5 µL 2× miRCURY SYBR Green Master Mix with 1 µL ROX
per 50 µL and 1 µL primer (see list of primers in Table 2) to 4 µL of 1:80 diluted cDNA.

Table 2. List of primer assays.

Taqman Primer * Assay Number

TLR4 Hs00152939_m1
TNFα Hs00174128_m1
TRPV1 Hs00218912_m1
SIRT1 Hs01009006_m1
RPL13A Hs04194366_g1

SYBR Green Primer # Assay Number

hsa-miR-132-3p YP00206035
hsa-miR-146a-5p YP00204688
hsa-miR-155-5p YP00204308
SNORD44 YP00203902
U6 YP02119464
5S rRNA YP00203906

* Taqman Primers were purchased from Thermo Fisher Scientific, Waltham, MA, USA. # SYBR Green Primers
were purchased from Qiagen, Hilden, Germany. Abbreviations: TLR4, toll-like receptor 4, TNFα, tumor necrosis
factor α; TRPV1, transient receptor potential cation channel subfamily V member 1; SIRT1, sirtuin 1; RPL13A,
Ribosomal protein L13a; miR, microRNA; SNORD, Small nucleolar RNAs C/D box; rRNA, ribosomalRNA.

Each mRNA and miRNA was amplified in triplicates and relative quantitation (RQ)
values were obtained by the StepOnePlus™ Software v2.3 (Thermo Fisher Scientific,
Waltham, MA, USA) using interplate calibrators through the ∆∆Ct method.

4.3. Statistical Analysis and Visualization

Statistical analysis was performed in SPSS 27 (IBM, Armonk, NY, USA), where the
Shapiro–Wilk test was used to determine the normal distribution of the data. For parametric
data, a t-test was used for comparison between two groups, and One-Way ANOVA for three
groups. In non-parametric data, the Mann–Whitney U Test was applied for comparison
of two groups, and Kruskal–Wallis for three groups. The Spearman test was used for
correlations between data groups. Comparisons between distal and proximal skin were
analyzed through dependent-samples Wilcoxon signed-rank test. Data results were plotted
in GraphPad Prism 9 (GraphPad Software, Inc., La Jolla, CA, USA) for visualization.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24097814/s1.
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