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Bismuth telluride is a layer-structure crystal belonging to the space group D ~d' 
The electron band structure of this narrow gap semiconductor is very well known 

because of the interest in its thermo-elec"tric properties (see for example the ref­

erences given in (1) and (2». It was found from studies of the transport phenomena 

that even at high carrier concentrations greater than 5x10
19

/ cm 
3 

(p- and n-type), 

the scattering of free carriers from acoustical phonons dominates in the temper­

ature region down to 10 K. This would be understandable in spite of the high carrier 

concentration and hence a high density of charged scattering centres, if the static 

dielectric constant in Bi2 Te
3 

were very large. 

It is well known that the dielectric constant in the far infrared is dominated by 

optical phonons which give rise to the "Re strahlbande " . In order to obtain information 

about the dielectric constant in the far infrared region we measured" the reflectivity 
-1 

of cleavage planes of Bi2 Te
3 

crystals between 10 and 600 cm . At nearly normal in-

cidence the polarization of the light was perpendicular to the trigonal axis of the 

crystals (It 1 c). The measurements were carried out at room temperature, using 

a Polytec Fourier spectrometer FIR 30 and a Beckmann Fourier spectrometer FS , 
720. 

The crystals were pulled by the Bridgman-Stockbarger method with carrier con­

centrations of about 5x10 
1 7

/ cm 
3 

and less. 

Fig. 1 shows the reflectivity of two samples with different carrier concentrations. 

The concentration dependence of the reflectivity minima at 39 and 48 }Am demon­

strates their connection with the plasma resonance. By the step in the reflectivity be-

tween 160 and 250 ~m wavelength the lattice vibrations were found for the first 

time in Bi
2

Te
3

. 
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Fig. 1. Reflectivity vs. wavelength at room temperature for two samples with dif­
ferent carrier concentrations 

Using the Kramers Kronig transformations we obtained the real and imaginary 

parts of the dielectric constant El = n 
2 

- k 
2 

and E:2 = 2nk = nKwc. 

In Fig. 2 n
2 

- k
2 

and nK are plotted over the wavelength. The absorption can­

not be described with only one eigenfrequency at .::1.1 = 205 ).Im, because there exists 

an additional peak in the absorpti6n at about .::1.2 = 100 JJm wavelength. This might be 

caused by a second eigenfrequency. Indeed from group theory it follows that there 

exist two doubly degenerate IR active modes for light polarized perpendicular to the 

c-axis (3). In view of this fact we tried to fit the optical constants with two classical 

oscillators: 
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where the w. are the transverse optical frequencies, ~e. the contributions of the 
1 1 

(1) 

(2) 

classical oscillators to the static dielectric constant, and the (i describe the damp-

ing of the lattice vibrations. 
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Fig. 2. Dispersion and absorption vs. wavelength for a sample with p = 2. 7x10
17

/cm
3 

at room temperature. 
-- Kramers Kronig transformation, 
---- oscillator fit, using equations (1) and (2) 

The last terms are free carrier contributions. The best fit to the experimental 

data - Fig. 2 - was obtained with the following parameters: 

.l 12 
£1£1 = 240, f1 = 2.2x10 Is, 

13 
A€:2 =40, f2 =1.9x10 Is, 

17 3 -14 
N=2.7x10 /cm, 't'=4x10 Is, 

12 
w

1 
= 9.3x10 /s , 

13 
w

2 
=1.9x10 /s , 

m* = 0.085 m 
o 

The carrier concentration N and the- relaxation time 't' of the electron were 

determined by galvanomagnetic measurements. The susceptibility mass m* = 

= 0.085 m was calculated from the effective mass tensor (4) which was obtained 
o 

from Shubnikov-de Haas experiments. 

The contribution of the two oscillators to the static dielectric constant is Ae= 

= 280 + 50. The resulting dielectric constant is then e = e + A e = 360 + 50 for 
- stat 00 -

the polarization E .1. c. This high value implies that the Coulomb potential of charged 

scattering centres is strongly screened and therefore contributes very little to elec­

tron scattering. Hence the transport behaviour dependence upon scattering from 

acoustical phonons mentioned above is reasonable. 
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