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Abstract

Magnetism is a phenomenon ubiquitously found in everyday life. Yet, together with superconductivity and superfluid-
ity, it is among the few macroscopically realized quantum states. Although well-understood on a quasi-classical level,
its microscopic description is still far from being solved. The interplay of strong interactions present in magnetic
condensed-matter systems and the non-trivial commutator structure governing the underlying spin algebra prevents
most conventional approaches in solid-state theory to be applied.

On the other hand, the quantum limit of magnetic systems is fertile land for the development of exotic phases of
matter called spin-liquids. In these states, quantum fluctuations inhibit the formation of magnetic long-range order
down to the lowest temperatures. From a theoretical point of view, spin-liquids open up the possibility to study their
exotic properties, such as fractionalized excitations and emergent gauge fields. However, despite huge theoretical
and experimental efforts, no material realizing spin-liquid properties has been unambiguously identified with a three-
dimensional crystal structure. The search for such a realization is hindered by the inherent difficulty even for model
calculations. As most numerical techniques are not applicable due to the interaction structure and dimensionality of
these systems, a methodological gap has to be filled.

In this thesis, to fill this void, we employ the pseudo-fermion functional renormalization group (PFFRG), which
provides a scheme to investigate ground state properties of quantum magnetic systems even in three spatial dimensions.
We report the status quo of this established method and extend it by alleviating some of its inherent approximations.
To this end, we develop a multi-loop formulation of PFFRG, including hitherto neglected terms in the underlying
flow equations consistently, rendering the outcome equivalent to a parquet approximation. As a necessary prereq-
uisite, we also significantly improve the numerical accuracy of our implementation of the method by switching to a
formulation respecting the asymptotic behavior of the vertex functions as well as employing state-of-the-art numerical
algorithms tailored towards PFFRG. The resulting codebase was made publicly accessible in the open-source code
PFFRGSolver.jl.

We subsequently apply the technique to both model systems and real materials. Augmented by a classical analysis
of the respective models, we scan the phase diagram of the three-dimensional body-centered cubic lattice up to
third-nearest neighbor coupling and the Pyrochlore lattice up to second-nearest neighbor. In both systems, we uncover
in addition to the classically ordered phases, an extended parameter regime, where a quantum paramagnetic phase
appears, giving rise to the possibility of a quantum spin liquid.

Additionally, we also use the nearest-neighbor antiferromagnet on the Pyrochlore lattice as well as the simple cubic
lattice with first- and third-nearest neighbor couplings as a testbed for multi-loop PFFRG, demonstrating, that the
inclusion of higher loop orders has quantitative effects in paramagnetic regimes and that the onset of order can be
signaled by a lack of loop convergence.



vi | Abstract

Turning towards material realizations, we investigate the diamond lattice compound MnSc2S4, explaining on
grounds of ab initio couplings the emergence of a spiral spin liquid at low temperatures, but above the ordering
transition. In the Pyrochlore compound Lu2Mo2O5N2, which is known to not magnetically order down to lowest
temperatures, we predict a spin liquid state displaying a characteristic gearwheel pattern in the spin structure factor.



Zusammenfassung

Das Phänomen des Magnetismus ist allgegenwärtig im täglichen Leben und doch ist es, zusammen mit der Supralei-
tung und -fluidität, eines der wenigen makroskopisch realisierten Quantenphänomene. Auf quasi-klassischer Ebene
ist Magnetismus gut verstanden, doch seine mikroskopische Beschreibung ist noch weit davon entfernt, als gelöst
bezeichnet zu werden. Das Zusammenspiel von starken Wechselwirkungen, die in magnetischer kondensierte Mate-
rie am Werke sind, und der nicht-trivialen Kommutatorstruktur, die die zugrunde liegende Spin-Algebra bestimmt,
verhindert, dass konventionelle Herangehensweisen der Festkörpertheorie angewendet werden können.

Andererseits ist der quantenmechanische Grenzfall magnetischer Systeme ein fruchtbarer Boden für die Herausbil-
dung exotischer Phasen der Materie, die als Spin-Flüssigkeiten bezeichnet werden. In diesen Zuständen verhindern
Quantenfluktuationen die Ausbildung einer langreichweitigen magnetischen Ordnung auch bei niedrigsten Temperatu-
ren. Aus theoretischer Sicht eröffnen Spinflüssigkeiten die Möglichkeit, exotische Eigenschaften, wie fraktionalisierte
Anregungen und emergente Eichfelder, zu studieren. Großen theoretischen und experimentellen Anstrengungen zum
Trotz wurde jedoch bisher kein Material mit dreidimensionaler Kristallstruktur identifiziert, das unzweifelhaft die
Eigenschaften von Spinflüssigkeiten aufweist. Die Suche nach einer solchen Realisierung wird von der Komplexität
behindert, die sogar einfachen Modellrechnungen inhärent ist. Da die meisten numerischen Verfahren aufgrund der
Wechselwirkungsstruktur und Dimensionalität der Systeme nicht anwendbar sind, bleibt eine methodische Lücke
bestehen.

In dieser Arbeit benutzen wir die pseudo-fermionische funktionale Renormierungsgruppe (PFFRG), um diese zu
füllen. Mit ihr realisieren wir ein Verfahren, um die Grundzustandseigenschaften von quantenmagnetischen Systemen
in drei Raumdimensionen zu studieren,

Wir fassen den Status quo dieser bereits etablierten Methode zusammen und erweitern sie, indem wir einige ihrer
inhärenten Näherungen abmildern. Dafür entwickeln wir eine Mehrschleifen-Formulierung der PFFRG, die bisher
vernachlässigte Terme der zugrunde liegenden Flussgleichungen konsistent berücksichtigt und damit die PFFRG
äquivalent zur Parquet-Näherung macht. Um dies zu erreichen, verbessern wir außerdem die numerische Genauigkeit
der Methode signifikant, indem wir einerseits zu einer Formulierung wechseln, welche die Asymptotiken der Vertex-
Funktionen explizit berücksichtigt und andererseits moderne Algorithmen, maßgeschneidert für die PFFRG, nutzt. Der
daraus resultierenden Computercode wurde im Open-Source Paket PFFRGSolver.jl öffentlich zugänglich gemacht.

Im Anschluss wenden wir die Methode sowohl auf Modellsysteme, als auch echte Materialien an. Vor dem Hin-
tergrund klassischer Analysen scannen wir die Phasendiagramme des dreidimensionalen raumzentrierten kubischen
und des Pyrochlorgitters, wobei wir Wechselwirkungen bis zu drittnächsten beziehungsweise übernächsten Nach-
barn berücksichtigen. In beiden Systemen finden wir, neben den klassisch geordneten Phasen, einen ausgedehnten
Parameterraum, in dem eine quantenparamagnetische Phase im Phasendiagramm erscheint, welche die Möglichkeit
einer Quantenspinflüssigkeitsphase eröffnet. Wir nutzen außerdem den Nächstnachbarantiferromagnet auf dem Py-
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rochlorgitter und das kubische Gitter mit Nächst- und Drittnächstnachbarwechselwirkung als einen Prüfstand für
die Vielschleifen-PFFRG, indem wir zeigen, dass die Berücksichtigung höherer Schleifenordnungen quantitative
Auswirkungen in den paramagnetischen Regimen hat und außerdem magnetische Ordnung durch ein Fehlen der
Schleifenkonvergenz signalisiert werden kann.

Abschließend wenden wir uns den echten Materialien zu und untersuchen MnSc2S4, welches eine Diamantgitter-
struktur aufweist. Basierend auf ab intio Kopplungsstärken erklären wir das Auftreten einer Spiralspinflüssigkeit bei
niedrigen Temperaturen, aber oberhalb des Ordnungsübergangs. Zudem sagen wir im Pyrochlormaterial Lu2Mo2O5N2,
welches in Experimenten auch bei niedrigsten Temperaturen nicht magnetisch ordnet, einen Spinflüssigkeitszustand
voraus, der sich durch ein charakteristisches Zahnradmuster im Spinstrukturfaktor auszeichnet.
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Chapter 1

Introduction

Magnetic materials are ubiquitous in everyday life: from the humble fridge magnet through electric motors relying on
strong ferromagnets for their basic functionality to hard drives in computers, where information is saved magnetically.
Historically, magnetized lodestones have already been known 2500 years ago in both ancient Greece and China, where
also their alignment with the earth’s magnetic field was discovered, consequently leading to the development of the
compass [1, 2].

In the following centuries, the notion of magnetic poles and their attraction and repulsion was formed, but a deeper
theoretical understanding of magnetism even on a classical level was lacking till the 19th century, at the beginning
of which Coulomb formulated the 1/𝑟2 dependence of the interaction forces not only between electrical charges but
also magnetic poles. In 1820, Hans-Christian Oersted laid the foundations of a unified theory of electromagnetism
by discovering that currents create magnetic fields. Only one year later, Michael Faraday discovered induction as the
complementary effect. All this culminated in the formulation of the fundamental equations of electrodynamics by
James Clerk Maxwell in 1864, which, together with the Lorentz force acting on charges in electric and magnetic fields
constitute the foundation of all classical understanding of magnetism is built on [1, 2].

Despite these efforts, the existence of (ferro-)magnetic materials remained an open question. Although the mean-
field theory by Pierre Weiss offered an explanation for the thermodynamic properties of magnets in terms of magnetic
domains [3], the microscopic origin of the magnetization could not be explained by classical notions, like circular
currents, which would have to be in the order of gigaamperes in strength to explain the static magnetic fields known
at the time.

Magnetism is not classical

This lack of a classical model turned out to be a fundamental one, as magnetism, like superconductivity and superflu-
idity, is one of the few macroscopic behaviors rooted in quantum effects. According to the Bohr-van Leuwen theorem,
which was discovered very early in the development of quantum mechanics, a purely classical system cannot exhibit
a finite thermal expectation value of the magnetization [4].

The proof of this theorem starts from system of 𝑁 particles, which we couple to a magnetic field 𝑩 = ∇× 𝑨 derived
from the corresponding vector potential 𝑨. The magnetization of this system is given by

⟨𝑴⟩ = 𝜕𝐹

𝜕𝑩
, (1.1)

where 𝐹 = −𝛽 ln 𝑍 is the free energy, which can be obtained from the canonical partition sum 𝑍 at inverse
temperature 𝛽. The classical Hamiltonian 𝐻 (𝒒𝑖 , 𝒑𝑖) in terms of generalized coordinates 𝒒𝑖 and corresponding
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generalized momenta 𝒑𝑖 can be coupled to the vector potential by means of the minimal substitution 𝒑𝑖 → 𝒑𝑖 − 𝑞𝑖𝑨𝑖 .
Therefore, the partition sum of such a system can then be written as

𝑍 = 𝐶 (𝑁)
∏︂
𝑖

∫
d 𝒑𝑖

∫
d𝒒𝑖e−𝛽𝐻 (𝒒𝑖 ,𝒑𝑖−𝑞𝑖𝑨𝑖 ) (1.2)

with a suitable normalization constant𝐶 (𝑁). Clearly, as the momentum integration is carried out over all momenta,
a shift 𝒑𝑖 → 𝒑′𝑖 = 𝒑𝑖 +𝑞𝑖𝑨𝑖 of the individual momenta leaves the partition sum invariant, but removes the dependence
on the vector potential, i.e. the magnetic field, completely. Consequently, the magnetization in eq. (1.1) will vanish.

Quantum mechanics changes this conclusion in a very substantial way: As the phase space integration in eq. (1.2)
is replaced by a trace over the Hilbert space of the system, a simple shift of variables is no longer possible, leaving
room for finite magnetization even in the thermodynamic limit.

Why quantum magnetism is non-trivial

Having established, that magnetism necessitates a quantum mechanical treatment, we can readily see, that the non-
commutativity of operators has a non-trivial impact on the analysis of magnetic systems.

As in classical mechanics, quantum magnetic moments are connected to a charge possessing some angular mo-
mentum. In the vast majority of cases, and in particular ones we consider in this thesis, these are electrons with
their intrinsic quantized spin 𝑆 = 1/2. Let us recall the quantum mechanical angular momentum operator 𝑺̂ and the
corresponding commutation relations1 [︂

𝑆̂
𝛼
, 𝑆̂
𝛽
]︂
= i

3∑︂
𝛾=1

𝜖𝛼𝛽𝛾 𝑆̂
𝛾
, (1.3)

where 𝑆̂𝛼 is the 𝛼-component of the vector operator 𝑺̂, as well as the ladder operators for the 𝑆̂𝑧 eigenvalue of an
eigenstate

𝑆̂
±
= 𝑆̂

𝑥 ± 𝑖𝑆̂𝑦 . (1.4)

The simplest form of interaction between stationary magnetic moments proportional to these operators is given by
the Heisenberg Hamiltonian

𝐻̂H =
∑︂
𝑖< 𝑗

𝐽𝑖 𝑗 𝑺̂𝑖 · 𝑺̂ 𝑗 , (1.5)

with couplings 𝐽𝑖 𝑗 . The sum is defined to run over each pair 𝑖, 𝑗 exactly once. We will discuss the emergence of
this Hamiltonian from purely fermionic systems shortly but will focus on the physics encoded in it first.

Considering eq. (1.5) for a one-dimensional (1D) spin-1/2 chain with purely nearest neighbor (NN) interactions, i.e.
𝐽𝑖 𝑗 = 𝐽 for nearest neighbors and vanishing elsewhere, we can distinguish two cases.

Viewing for a moment the spin operators as classical vectors, clearly, a ferromagnetic (FM) configuration with all
spins pointing to the same direction will be the ground state of this Hamiltonian for 𝐽 < 0. This classical view2 also
holds true when restoring the operator nature of the spins. Rewriting the Heisenberg Hamiltonian in terms of ladder
operators,

𝐻̂H = 𝐽
∑︂
⟨𝑖, 𝑗 ⟩

(︃
1
2

(︂
𝑆̂
+
𝑖 𝑆̂

−
𝑗 + 𝑆̂

−
𝑖 𝑆̂

+
𝑗

)︂
+ 𝑆̂𝑧𝑖 𝑆̂

𝑧
𝑗

)︃
, (1.6)

1Throughout this thesis, we will use units in which ℏ = 1.
2We will show in Section 2.1, that this picture is indeed the classical limit of a spin system.
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(a) (b) (c)

Figure 1.1: Illustration of frustration: (a) In an antiferromagnetically coupled triangle with two antiparallely aligned spins, the third
spin cannot optimize its energy, it is frustrated. (b) Classically, this is solved by assuming a 120° order. (c) In a square lattice
including next-nearest neighbor interactions (dashed), triangles are formed (red), which are frustrated for antiferromagnetic
interactions, which are an example for geometric frustration.

using ⟨𝑖, 𝑗⟩ to denote the sum over nearest neighbors, helps to establish the energy eigenvalue of the FM state of 𝑁
spins, which we choose without loss of generality to be |↑↑↑↑ . . .⟩, to be

𝐻̂𝐻 |↑↑↑↑ . . .⟩ = 𝑁 𝐽
4
|↑↑↑ . . .⟩ , (1.7)

as the ladder operator terms in eq. (1.6) vanish due to 𝑆̂+ annihilating the FM state.
Flipping the sign of 𝐽, classically an antiparallel configuration of neighboring spins, called Néel state, will minimize

the energy. Analogous to the FM case, one would expect this ground state to carry over to the quantum model as well,
however, the ladder operator contributions prevent the Néel state from being the exact ground state of eq. (1.6).

For illustration purposes, we consider the action of the combination of one raising and one lowering operator for
the first two sites in the chain on the Néel state,

𝑆̂
−
1 𝑆̂

+
2 |↑↓↑↓ . . .⟩ = |↓↑↑↓ . . .⟩ , (1.8)

which yields a state orthogonal to the original Néel one. This means, that the ground state of the antiferromagnetic
(AF) chain has to be a superposition of spin configurations, i.e. a highly entangled state, which has no classical analog.

These results generalize to higher dimensions, meaning, that conceptually FM and AF interactions have very
different implications in a quantum model. While for the former, the classical intuition of a FM order still is valid, the
latter opens up the possibility for quantum effects to severely change physics compared to a classical model, purely
due to the non-commutativity of spin operators, here encoded in the existence of ladder operators. In the most extreme
cases, quantum fluctuations can even destroy classical orders, leading to a more exotic state of matter with no classical
analog.

Frustration as a path to destroy order

Quantum effects alone, however, will in most cases not lead to the absence of magnetic long-range order. The second
main ingredient to achieve such a state is known as frustration, which describes the situation, where not all interactions
in a system can be fulfilled simultaneously. To illustrate this, consider three spins arranged in a triangle, coupled AF
to each other, as illustrated in Figure 1.1(a). Orienting the first spin, without loss of generality, upwards, the second
spin will point downwards. The third spin would have to point downwards as well, to minimize its interaction with
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the first one, but upwards to be antiparallel to the second. The interaction is frustrated. The classical (and in this case
also quantum mechanical) solution to this specific problem is for the spins to assume an angle of 120° with respect to
each other, as shown in Figure 1.1(b).

As this frustration is only determined by the underlying geometry of the spin arrangement, it is called geometric
frustration, in contrast to parametric frustration induced by the interplay between different interactions. This is for
example the case for NN and next-to-nearest neighbor (NNN) AF interactions on the square lattice, which form again
a triangle, cf. Figure 1.1(c).

Quantum spin liquids

The interplay of quantum fluctuations and frustration can lead to the emergence of spin states, which lack the magnetic
long-range order generically found in classical spin models. Prime examples are the valence-bond solids, realized as
exact ground states in the two-dimensional (2D) Shastry-Sutherland model [5] and very recently on the Maple-Leaf
lattice [6]. Here spins pair up with one of their neighbors to form spin singlets, thereby optimizing the energy along
the bond connecting the pair, while nullifying the contributions from all other bonds. The localization of the singlets,
however, relies on the peculiar structure of the lattice models, which favors the potential energy gain over one in kinetic
energy.

Even before the discovery of the exact valence-bond solids, Anderson proposed the resonating valence bond (RVB)
state [7, 8], which takes into account this peculiar interplay. Instead of selecting a unique singlet covering of a lattice,
the RVB is constructed as a superposition of all coverings, allowing for an energy gain by fluctuations between the
different coverings. Although originally proposed as a ground state for the triangular NNAF, which however is now
established to host an ordered state [9], it is believed to be closely connected to the notion of high-𝑇𝐶 superconductivity
in cuprate materials [10]. As this state breaks (in contrast to the valence-bond solid) no symmetries of the original
Hamiltonian and also is paramagnetic, i.e. it exhibits no long-range magnetic order, it is the first example of a quantum
spin liquid [11–13]. Although very commonly used, this term is only loosely defined, mainly by the abovementioned
absence of long-range order despite strong interactions. Therefore, it is extremely challenging to positively identify a
quantum spin liquid both in experimental and theoretical analysis of both models and materials.

This does, however, not exclude the possibility of explicitly constructing quantum spin liquid states. For example,
in 1987 Kalmeyer and Laughlin connected quantum spin liquids to the fractional quantum hall effect by constructing
a chiral spin-liquid state [14]. In the same year, the RVB wave functions proposed in connection with the cuprate
family [10, 15] were the first to utilize a parton decomposition of the spin operators into two fermions, in modern
language called spinons, to construct according quantum spin-liquid wave functions. To this end, they obtain the
ground state of a mean-field Ansatz on the level of partons and subsequently project this state onto its spin-1/2, a
process called Gutzwiller projection. This approach was later formalized by Xiao-Gang Wen [16] and used to classify
spin liquid Ansätze allowed by the underlying lattice symmetry according to their projective symmetry group in spinon
space [17].

From electrons to spins: the Heisenberg model

Knowing the possible physics emerging from a pure spin model, the question remains, how a Hamiltonian like eq. (1.5)
can be relevant in a condensed matter setting, which is dominated by electronic physics.
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As its main ingredient, a spin Hamiltonian necessitates localized degrees of freedom, which naturally arise in
Mott insulators, in which the electron mobility is greatly reduced due to strong interactions gapping the spectrum,
thereby rendering them localized in the atomic lattice. The simplest approach to capture this physics is the Hubbard
model [18–23]

𝐻̂ = −
∑︂
𝑖, 𝑗
𝜎=↑,↓

𝑡𝑖 𝑗 𝑐̂
†
𝑖𝜎 𝑐̂ 𝑗 𝜎 +𝑈

∑︂
𝑖

𝑐̂†
𝑖↑ 𝑐̂𝑖↑ 𝑐̂

†
𝑖↓ 𝑐̂𝑖↓, (1.9)

which captures the main contribution of the Coulomb repulsion between electrons as a local Hubbard-interaction
term𝑈, while the band structure is encoded in the hopping 𝑡𝑖 𝑗 . In the strongly interacting limit𝑈 → ∞ at half-filling,
appropriate for Mott insulators, the ground state of this Hamiltonian will consist of exactly one electron per site.
Expanding eq. (1.9) around this limiting state to second order in 𝑡𝑖 𝑗 , one finds the Heisenberg term [24]

𝐻̂eff =
∑︂
𝑖, 𝑗

4𝑡2𝑖 𝑗
𝑈

𝑺̂𝑖 · 𝑺̂ 𝑗 , (1.10)

where 𝑺̂𝑖 =
∑︁

𝜎,𝜎′=↑,↓
𝑐̂†𝑖𝜎𝝈𝑐̂𝑖𝜎′ is the spin operator of the electron at site 𝑖.

As the interaction strength 4𝑡2𝑖 𝑗/𝑈 is strictly positive, this represents an antiferromagnetic Heisenberg model, a
posteriori justifying both the choice of Hamiltonian eq. (1.5) and the subsequent discussion of antiferromagnetic
couplings. This sign of interaction is in contrast to what one would naively expect from magnetic dipole-dipole
interactions, which are ferromagnetic in nature.

There is a simple picture to understand AF interactions: for electrons to gain any kinetic energy through the
perturbing hopping, there has to be the possibility to move to another lattice space and back again. According to the
Pauli exclusion principle, with one electron per site, this is only possible (without spin flips), if the two sites connected
by 𝑡𝑖 𝑗 have spin oriented in different directions, i.e. they form an AF arrangement.

In real materials, this direct exchange of particles between magnetic sites is typically obstructed by interstitial
non-magnetic atoms. A hopping path over the orbitals of these is called superexchange and the exact details of the
sign and spatial structure of the orbitals involved in this process will influence both the strength and even sign of the
Heisenberg coupling. This opens up the existence of both FM and AFcouplings in real materials.

Numerical approaches to quantum magnets

As we have established by now, quantum spin models can give rise to both theoretically and experimentally compelling
states of matter. In particular, in three-dimensional (3D) crystals, in contrast to for example the NNAF on the 2D
Kagome lattice [25–27], there has not yet been unambiguously found a spin liquid state in a Heisenberg model. This
is mostly due to the fact, that there is a distinct lack of computational methods applicable to this dimension.

Exact Diagonalization

Exact diagonalization builds upon the idea of representing the Hilbert space of a finite system by vectors, which in
turn leads to a representation of operators on this space as matrices. The latter, specifically the Hamilton operator,
subsequently can be numerically diagonalized using standard algorithms, which allows obtaining both the energy
spectrum of this system and the corresponding eigenstates exactly.

In interacting systems, however, these eigenfunctions no longer can be decomposed into products of single-particle
states, such that the whole Hilbert space has to be considered. For systems consisting of 𝑛 spins, the number of basis
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states scales as 2𝑛. With the size of the Hamiltonian matrix being proportional to the square of this number, memory
constraints in the numerical implementation limit the method to a low number of spins. Especially in 3D, this poses a
severe problem, as it will induce severe finite-size effects in the calculations.

Quantum Monte Carlo

The quantum Monte-Carlo (QMC) method is another (statistically) exact method. Here the goal is to calculate the
actual partition sum of the quantum system numerically using stochastic quadrature algorithms. In principle, 3D
systems do not pose an inherent obstacle to this method, however for frustrated problems one usually encounters what
is known as a sign problem. Here the integrand of the partition sum changes its sign for different configurations of
the system, spoiling convergence of the stochastic sampling of the integral. This leads to a critical slow down of the
calculations. While theoretically still an exact method, obtaining meaningful results would necessitate impractically
long calculation times.

Density matrix renormalization group

The density matrix renormalization group (DMRG) [28, 29], in contrast to the previously mentioned methods, is an
approximate scheme. The general idea is to approximate the ground state wave-function of a quantum mechanical
system by a matrix product state, which can be efficiently represented numerically. DMRG now provides a procedure
to consistently adjust the internal degrees of freedom of this state to better approximate the true ground state.

The method works extremely efficiently in 1D where correlations between spins die off quickly. Higher-dimensional
systems, however, have to be implemented by mapping back to an effective 1D chain of spins, which however will
induce longer-range correlations in the effective wave-function. This extremely enlarges the internal degrees of
freedom of the matrix product state, which have to be taken into account to describe the system, rendering DMRG
inaccurate, especially in 3D systems.

Variational Monte Carlo

Variational Monte Carlo, although being a method exact for a given family of ground state Ansätze, has the limitation,
that it is biased, in contrast to all aforementioned schemes. The basic idea is to parton-decompose the spin Hamiltonian
and employ a mean-field description of the resulting fermions. The ground state of this mean-field then is Gutzwiller
projected, i.e. only the contained subspace corresponding to physical spins is retained and taken as an approximation to
the true ground state of the system. During a variational Monte Carlo run, the parameters of the fermionic mean-field
are adjusted to minimize the energy to obtain an as accurate as possible description of the target spin system.

This method is excellent for testing various spinon mean-field quantum spin liquid Ansätze for a known quantum
paramagnetic system, but, by design, the method is limited to only the mean-field couplings assumed from the
beginning and thus does not allow to determine the ground state of a generic spin system in an objective way.

Pseudo-fermion functional renormalization group

The PFFRG fills in the gap left by the other methods. It is an unbiased field theoretical method, taking into account both
quantum fluctuations and classical ordering tendencies. This is done by tracking the evolution and mutual influence of
different diagrammatic channels in the quantum system from a high energy scale, where only microscopic interactions
are relevant, down to the scale-free fully correlated ground state.
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Although it is also approximate, including only correlations up to a finite distance and at the same time neglecting
expectation values of three or more spins, it has been proven to give excellent predictions both of phase diagrams [30–
32] and real material properties [33–35] of 3D quantum magnetic systems. Therefore, this is the method of our choice,
which we will employ and extend in this thesis.

Outline

This thesis is structured as follows. Before tackling the full quantum model, we first discuss the classical limit of
spin systems in Part I, as it is more intuitive to think about vectors than quantum spins. Here we first define in
Chapter 2 what is exactly meant by classical spin limit. In Chapter 3, we subsequently introduce the Luttinger-Tisza
method as an analytical approach to solving classical spin systems, explicitly discussing its domain of applicability
and relation to the approximate O(𝑁 → ∞) limit. In Chapter 4, as a complementary numerical method, we introduce
the iterative minimization. In Part II the PFFRG is introduced as the numerical method of choice to treat quantum
spin systems within this thesis. After the introduction of the Abrikosov pseudo-fermion decomposition in Chapter 5
and an introduction to functional renormalization group (FRG) in general in Chapter 6, we recapitulate the previously
developed PFFRG in Chapter 7, while at the same time introducing a better-suited frequency parametrization of the
vertex functions. In Chapter 8 we extend the formalism to include multi-loop contributions in the flow equations, which
is the main technical advancement of this thesis, together with the improvements of its numerical implementation
described in Chapter 9.

In Part III we apply the techniques developed to three prototypical three-dimensional spin models to produce
their phase diagrams hitherto not discussed in literature. In Chapter 10, the body-centered cubic (BCC) lattice with
interactions up to NNN level is discussed both on classical and quantum levels, unveiling the existence of quantum
paramagnetic regimes emerging due to parametric frustration from the classically ordered phases. In Chapter 11 we
repeat the analysis on the geometrically frustrated Pyrochlore lattice, considering Heisenberg interactions up to NN,
uncovering an extended quantum paramagnetic regime even for a spin-1 model. We also apply the multiloop extension
of PFFRG to discuss its effects on the findings for the NNAF on this lattice. As a final model, we investigate the
cubic lattice including first and third NN interactions to demonstrate the multi-loop extension of PFFRG in an ordered
regime.

In Part IV we shift focus towards models for real quantum magnetic materials, starting in Chapter 13 with a
discussion of the spiral spin liquid in the diamond lattice material MnSc2S4, followed by uncovering the signatures of
a gearwheel quantum spin liquid in the Pyrochlore compound Lu2Mo2O5N2 in Chapter 14.

We conclude in Chapter 15 and give an outlook on the future of PFFRG and three-dimensional quantum magnetism.





I
Classical Spins

In this part, we take a detour to the classical limit of spin systems and
numerical methods to find their ground states.
After introducing the limit itself, we review the analytical Luttinger-Tisza
approximation based on Reference [36], adding a physical interpretation
of its output even when it is not fully applicable. As an analytical approach
we introduce iterative minimization based on References [37] and [38].
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Chapter 2

Classical spin systems

Quantum mechanics in general is often perceived as an unintuitive theory, as it does not fit our day-to-day perception
of the world, which is governed by classical physics. This is especially true for quantum spins, which, due to their
peculiar commutator structure, defy the notion of them behaving as a vector quantity.

Although quantum magnetism is an inherently quantum mechanical phenomenon, as discussed in Section 1, one
can still define a meaningful classical limit. This stands in contrast to the other macroscopic quantum effects, i.e.
superconductivity and superfluidity, which rely on the coherent superposition of quantum mechanical objects.

2.1 The 𝑆 → ∞ limit

The classical limit of spin systems can be obtained by performing the limit, where the spin length 𝑆 is taken to infinity1,
effectively replacing the spin operator 𝑺̂ by a classical unit vector 𝒔. This limit can be proven rigorously as done
in References [39] and [40], but we will take in the following a more illustrative approach, which leads to the same
conclusions.

Firstly, we define a rescaled spin operator
𝒔̂ =

1
𝑆
𝑺̂, (2.1)

where we have divided by the spin length to obtain a quantity, which is sensibly defined in the limit 𝑆 → ∞. Note,
that ⟨︁

𝒔̂2⟩︁ = 𝑆(𝑆 + 1)
𝑆2 → 1 as 𝑆 → ∞, (2.2)

i.e. 𝒔̂ is normalized in this limit. To motivate, that it indeed behaves as a classical vector, we consider the commutation
relations for the components of the rescaled spin operator, given by[︁

𝑠̂𝑖 , 𝑠̂ 𝑗
]︁
=

i
𝑆

∑︂
𝑘

𝜖𝑖 𝑗𝑘 𝑠̂
𝑘 → 0 as 𝑆 → ∞. (2.3)

This implies, that in the infinite spin length limit, the components of the rescaled spin can be measured independently.
In conjunction with the commutator, also the difference between subsequent eigenvalues of the spin componentsΔ = 1

𝑆

vanishes, rendering the components well-defined continuous variables, only constrained by the unit length requirement
given above.

1Instead of the spin quantum number 𝑆, one could equally well refer to root of the spin-square expectation value,
√︁
𝑆 (𝑆 + 1) , as the spin length.

We choose the former, as it simplifies notation and is equivalent in the large-𝑆 limit.
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In total, the classical limit of a spin operator is given by

lim
𝑆→∞

1
𝑆
𝑺̂ = 𝒔, (2.4)

where 𝒔 is a three-component unit vector.

2.2 Classical Heisenberg Hamiltonian and its ground state

Having found the classical limit of a single spin operator, we are now also able to determine the classical spin
Hamiltonian and its connection to its quantum version. To this end, we perform the limit (2.4) in the quantum
Heisenberg Hamiltonian eq. (1.5), giving

𝐻cl =
∑︂
𝑖, 𝑗

𝐽𝑖, 𝑗 𝒔𝑖 · 𝒔 𝑗 (2.5)

under the constraints
𝒔2
𝑖 = 1 ∀𝑖. (2.6)

Note, that we have rescaled the Hamiltonian 𝐻cl = 𝐻/𝑆2, such that it is finite in the 𝑆 → ∞ limit. In the following,
we will drop subscript cl, as it will be clear from context, if this rescaling was performed.

Determining the classical ground state of the Heisenberg model, therefore, amounts to finding the spin configuration
{𝒔𝑖}, that minimizes (2.5). Although superficially one would expect this task to be easily solvable using vector calculus,
this minimization problem, due to the indefiniteness of the interaction matrix 𝐽𝑖, 𝑗 is a non-convex quadratically
constrained quadratic optimization, which is known to be computationally NP-hard [41]. Therefore, even in the
classical spin limit, in general, we have to resort to approximate methods, two of which we will discuss in the following
chapters. However, we will see, that in certain classes of lattices, their corresponding underlying symmetries render
these methods exact.
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Chapter 3

The Luttinger-Tisza method

An extremely powerful approach to determining the classical Heisenberg ground state is the approximate Luttinger-
Tisza method [36]. Initially, it was developed for small spin clusters on the simple cubic lattice [42] and later also
found to work for Ising spins on three-dimensional Bravais lattices [43]. A generalization to non-Bravais lattices was
given shortly after [44]. The method recently found its renaissance due to the increasing interest in three-dimensional
magnetic materials with Octahedral [37] and Pyrochlore [38] magnetic lattices. Our discussion of the method will
follow its description given in Reference [36].

3.1 From strong to weak constraint

The most prominent symmetry, almost always exploited in condensed matter systems, is the periodicity of the
underlying lattice. To this end, we define the Fourier transform of the classical spins on sublattice 𝛼 in the 𝑖th unit cell
as

𝒔𝑖𝛼 =
∑︂
𝒒∈BZ

ei𝒒 ·𝒓𝑖𝛼 𝒔𝛼 (𝒒), (3.1)

where the sum on the r.h.s. runs over the first Brillouin zone (BZ) of the lattice and 𝒓𝑖 is the Bravais vector of the
𝑖th unit cell. Note, that this discrete Fourier transform implicitly assumes a finite real space spin system consisting of
𝑁 unit cells. This is primarily done for notational convenience, but generalizes trivially to infinite systems using the
Fourier series. We will not make a notational distinction between the spin 𝒔𝑖𝛼 and its Fourier transform 𝒔𝛼 (𝒒), but
rely on their arguments to clarify which space we treat the objects in.

Plugging the transform into eq. (2.5), we obtain the energy per unit cell

E = 𝐻/𝑁 =
∑︂
𝒒,𝜇,𝜈

𝐽𝜇,𝜈 (𝒒) 𝒔𝜇 (𝒒) · 𝒔∗𝜈 (𝒒), (3.2)

where we have used 𝒔𝛼 (−𝒒) = 𝒔∗𝛼 (𝒒) due to real space spins 𝒔𝑖𝛼 being real. The Fourier transform of the couplings,
called Luttinger-Tisza matrix, is defined as

𝐽𝜇,𝜈 (𝒒) =
∑︂
𝑗

𝐽𝑖𝜇, 𝑗𝜈 ei𝒒 · (𝒓𝑖𝜇−𝒓 𝑗𝜈 ) . (3.3)

Note, that, due to translational symmetry, the distance vector 𝒓𝑖𝜇 − 𝒓 𝑗𝜈 between sites in unit cell 𝑖 on sublattice 𝜇 and
unit cell 𝑗 and sublattice 𝜈 is independent of 𝑖.
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Equation (3.2) suggests, that the ground state of the classical spin system should be connected to the ordering vector
𝑞, for which the smallest eigenvalue of the Luttinger-Tisza matrix is minimized. This conclusion, however, can only
be drawn, if we relax the spin length constraint eq. (2.6) to only be fulfilled on average, as we will find.

To be able to incorporate the spin length constraint into the calculations and at the same time make the reasoning
more rigorous, we introduce Lagrange multipliers 𝜆𝑖𝜇 for the constraints eq. (2.6), leading to

𝐻strong =
∑︂
𝑖𝜇, 𝑗𝜈

𝐽𝑖𝜇, 𝑗𝜈 𝒔𝑖𝜇 · 𝒔 𝑗𝜈 −
∑︂
𝑖𝜇

𝜆𝑖𝜇

2
(𝒔𝑖𝜇2 − 1) (3.4)

to be minimized with respect to both the spins and Lagrange multipliers at the same time. The strong spin length
constrained is here traded for an even larger space, the minimization has to be done in, by adding one additional
minimization parameter per site. Additionally, the 𝜆𝑖𝜇 are, in general, not constrained by the underlying lattice
symmetries, in contrast to the couplings 𝐽𝑖𝜇, 𝑗𝜈 [36]. Therefore, a straightforward Fourier transform similar to
eq. (3.1), generically will not be periodic in spin space for the Lagrange multipliers and consequently not simplify the
calculations1.

The idea of Luttinger and Tisza [42] is now to relax the strong spin length constraint eq. (2.6) by only enforcing it
after summing over all lattice sites, i.e. on average. This leads to the single weak constraint∑︂

𝑖,𝜇

𝒔𝑖𝑚𝑢
2 = 𝑁𝑠 , (3.5)

where by 𝑁𝑠 we denote the total number of spins in the system. Clearly, the set of states fulfilling eq. (3.5) is a
superset of the true classical spin configurations subject to the strong constraint eq. (2.6).

Weakening the constraint means, that now only one Lagrange multiplier 𝜆, constant over the whole system, is
sufficient to take it into account in the minimization, i.e. the function to minimize reduces to

𝐻weak =
∑︂
𝑖𝜇, 𝑗𝜈

𝐽𝑖𝜇, 𝑗𝜈 𝒔𝑖𝜇 · 𝒔 𝑗𝜈 − 𝜆

2

(︄∑︂
𝑖𝜇

𝒔𝑖𝜇
2 − 𝑁𝑠

)︄
. (3.6)

The stationary state of this function now has to be found with respect to both Λ and the spins 𝒔𝑖𝜇. The former leads
to the condition

𝜕𝐻weak
𝜕𝜆

=
∑︂
𝑖,𝜇

𝒔𝑖𝜇
2 − 𝑁𝑠 = 0, (3.7)

i.e. the weak constraint, by construction. Extremalizing w.r.t. the spins, on the other hand, gives

𝜕𝐻weak
𝜕𝒔𝑖𝜇

=
∑︂
𝑗𝜈

𝐽𝑖𝜇, 𝑗𝜈 𝒔 𝑗𝜈 − 𝜆 𝒔𝑖𝜇 = 0, (3.8)

which reduces, after Fourier transform, to the Eigenvalue problem∑︂
𝜈

𝐽𝜇,𝜈 (𝒒) 𝒔𝜈 (𝒒) = 𝜆𝒔𝜇 (𝒒) ∀𝒒 (3.9)

for the Fourier transformed interaction matrix, where the Lagrange multiplier 𝜆 takes on the role of the eigenvalue. The
energy minimization now amounts to finding the Luttinger-Tisza ordering vector 𝒒LT, for which the lowest eigenvalue

1In addition to the lower symmetry of the Lagrange multipliers, the strictly local nature of the constraint term will lead to a convolution in Fourier
space, additionally complicating the search for a minimal energy state.
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band of the Luttinger-Tisza matrix takes on its minimum value within the first BZ. Note, that this vector will not
be unique: firstly, 𝐽𝜇,𝜈 (𝒒) is subject to the lattice symmetries, typically leading to multiple symmetry equivalent
energy minima in reciprocal space. Secondly, independently of the lattice, ordering vectors will always come in
pairs ±𝒒, as due to the real space interaction matrix 𝐽𝑖𝜇, 𝑗𝜈 being real and symmetric, its Fourier transform has to
fulfill 𝐽𝜇,𝜈 (𝒒) = 𝐽𝜇,𝜈 (−𝒒)∗ = 𝐽𝜈,𝜇 (𝒒)∗, i.e. it is hermitian for a given 𝒒 and complex conjugated under reflection in
reciprocal space, leaving the real spectrum of the matrix invariant. Therefore, in the following discussions, we will
this not consider to be a degeneracy of the ground state, as it is always present.

The energy of the Luttinger-Tisza eigenstate can be found, using the weak constraint eq. (3.5) in reciprocal space∑︂
q,𝜇

|︁|︁𝒔𝜇 (𝒒)|︁|︁ = 𝑁𝑏, (3.10)

where 𝑁𝑏 = 𝑁𝑠/𝑁 is the number of sites constituting the basis of the lattice, together with eq. (3.9) and eq. (3.2) to be

E = 𝑁𝑏 𝜆. (3.11)

Let us finally consider the real space representation of the Luttinger-Tisza state. To this end, we denote the
normalized eigenvector of the Luttinger-Tisza matrix corresponding to the minimal eigenvalue at 𝒒LT as 𝝍. Note, that
this is a vector in sublattice rather than spin space. Due to rotational invariance of the Heisenberg model, everything
discussed so far holds for each component 𝑆𝛼 of the spin vector separately, which means, we can scale the eigenvectors
by a factor 𝑐𝛼 for each spin component 𝛼, i.e. 𝑠𝛼𝜇 (𝒒LT) = 𝑐𝛼𝜓𝜇. To build a configuration of real vector spins, we also
have to consider the energetically degenerate eigenstate for −𝒒LT, which has eigenvector 𝑠𝛼𝜇 (−𝒒LT) = 𝑐𝛼∗𝜓𝜇∗. In real
space, using eq. (3.1), the most general Luttinger-Tisza state therefore is

𝒔LT
𝑖𝜇 =

∑︂
𝛼=1,2,3

𝒙̂𝛼
(︂
𝑐𝛼𝜓𝜇ei𝒒LT ·𝒓𝑖𝜇 + 𝑐𝛼∗𝜓𝜇∗e−i𝒒LT ·𝒓𝑖𝜇

)︂
, (3.12)

where 𝒙̂𝛼 represent the Cartesian unit vectors. Using spin rotation symmetry to eliminate one spin component and
demanding, that 𝒔𝑖,𝜇2 should be independent of the unit cell 𝑖, we can restrict the state to a set of spirals on the
sublattices [36]

𝒔LT
𝑖,𝜇 = 𝑐 |𝜓𝜇 |

⎛⎜⎜⎜⎜⎜⎝
cos

(︁
𝒒LT · 𝒓𝑖𝜇 + 𝜙𝜇

)︁
± sin

(︁
𝒒LT · 𝒓𝑖𝜇 + 𝜙𝜇

)︁
0

⎞⎟⎟⎟⎟⎟⎠
, (3.13)

where 𝑐 ∈ R and 𝜓𝜇 = |𝜓𝜇 | exp
{︁
i𝜙𝜇

}︁
. The sign in the second component is the chirality of the spirals, which is

not fixed by the Heisenberg model.

3.2 Exact cases: Bravais lattices and beyond

Having found the real space expression for the Luttinger-Tisza state eq. (3.13), we can now recast the strong constraint
eq. (2.6) in terms of the Luttinger-Tisza eigenvectors, leading to the condition, that

𝑐2 |𝜓𝜇 |2 = 1 ∀𝜇, (3.14)
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i.e. the components of the Luttinger-Tisza vectors have to be equal on all sublattices, as their modulus can always
be compensated by the free parameter 𝑐. In general, this is not fulfilled, but there are two very general classes of
Lattices, this condition will always be satisfied.

3.2.1 Bravais lattices

The simplest case is the one of a Bravais lattice, featuring only a single sublattice, which renders the Luttinger-Tisza
eigenvectors simple scalars within sublattice space. This means, there is only one component𝜓𝜇 and setting 𝑐2 = 1/𝜓𝜇
satisfies eq. (3.14). This proves, what is referred to as the spiral theorem for Bravais lattices in literature [36, 44, 45]:

The classical ground state of a Heisenberg model with arbitrary interactions on a Bravais lattice is always
a coplanar spiral given by eq. (3.13).

This in turn implies, that any non-coplanar magnetic ground states on Bravais lattices cannot originate from a pure
Heisenberg model, but other interactions have to be present.

3.2.2 Two equivalent basis points

A second quite general class of lattices, where the Luttinger-Tisza method gives the true ground state, is the one with
exactly two basis points per unit cell, which are equivalent under space group transformations.

To clarify this statement, let us analyze the Luttinger-Tisza matrix 𝐽𝜇,𝜈 (𝒒) as defined in eq. (3.3). For a two basis
point lattice, it is a hermitian, 𝒒-dependent 2 × 2 matrix, which can in general be expanded in terms of Pauli-matrices
and the identity as

𝐽𝜇,𝜈 (𝒒) = 𝑎0 (𝒒)1𝜇,𝜈 + 𝑎𝑥 (𝒒)𝜎𝑥𝜇,𝜈 + 𝑎𝑦 (𝒒)𝜎𝑦𝜇,𝜈 + 𝑎𝑧 (𝒒)𝜎𝑧𝜇,𝜈 . (3.15)

The Luttinger-Tisza eigenvectors for such a lattice are then (up to normalization) given by

𝜓± =
⎛⎜⎜⎝
𝑎𝑧 (𝒒)±

√
𝑎𝑥 (𝒒)2+𝑎𝑦 (𝒒)2+𝑎𝑧 (𝒒)2

𝑎𝑥 (𝒒)−i𝑎𝑦 (𝒒)

1

⎞⎟⎟⎠ (3.16)

If the two sublattices are equivalent by a space-group symmetry operation, this in particularly means, that interactions
between spins located on the same sublattice have to be the same, regardless of which sublattices they are located on.
In terms of the Luttinger-Tisza matrix, this means, that the diagonal entries have to be the same, i.e. 𝑎𝑧 (𝒒) has to
vanish. This simplifies the Luttinger-Tisza eigenvector to

𝜓± =
⎛⎜⎜⎝
±
√
𝑎𝑥 (𝒒)2+𝑎𝑦 (𝒒)2

𝑎𝑥 (𝒒)−i𝑎𝑦 (𝒒)

1

⎞⎟⎟⎠ , (3.17)

which obviously fullfills |𝜓±
1 | = |𝜓±

2 | = 1, therefore fulfilling the strong constraint eq. (3.14). This proves the spiral
theorem for lattices with two equivalent basis points:

The ground state of a classical Heisenberg model on a lattice with exactly two symmetry equivalent basis
points per unit cell is always a coplanar spiral given by eq. (3.13).

A prime example for this class of lattices is the Diamond structure, where we will apply the Luttinger-Tisza method
in Chapter 13.



3.3 General remarks | 17

C
ha

pt
er

3

3.3 General remarks

To round up our discussion of the Luttinger-Tisza method, we collect some generic findings, which hold true, regardless
of the specific lattice underlying the spin model under investigation.

3.3.1 Superposition of spiral states

Up to now, we have implicitly assumed, that there is a unique reciprocal vector 𝒒LT within the first BZ characterizing
the Luttinger-Tisza state. On most lattices in two or more dimensions, however, this is only true, if this ordering vector
is at special high symmetry points. Away from these, due to rotational and mirror symmetries, there will always be a
set of symmetry equivalent reciprocal vectors with the same minimal energy eigenvalue of the Luttinger-Tisza matrix2.

As the states are found by solving the linear eigenvalue problem of the Luttinger-Tisza matrix eq. (3.9), one would
expect the superposition of two spiral states, as parametrized in eq. (3.13), to also form a ground state of the full
classical model, given this is true for the individual spirals. The strong spin length constraint, eq. (2.6), on the other
hand, is intrinsically non-linear, which will render this assumption false in general. Suppose, we form of a linear
combination 𝒔𝑖𝜇 of two spin spirals 𝒔′𝑖𝜇 and 𝒔′′𝑖𝜇 with ordering vectors 𝒒′LT and 𝒒′′LT, respectively, as defined in eq. (3.13),
according to

𝒔𝑖𝜇 = 𝑎𝒔′𝑖𝜇 + 𝑏𝒔′′𝑖𝜇 (3.18)

with real prefactors 𝑎 and 𝑏, then the resulting

(𝒔𝑖𝜇)2 = 𝑎2 + 𝑏2 + 2 𝑎 𝑏 𝑐′ |𝜓′
𝜇 | 𝑐′′ |𝜓′′

𝜇 | cos
(︂
(𝒒′LT − 𝒒′′LT) · 𝒓𝑖𝜇 + (𝜙′𝜇 − 𝜙′′𝜇)

)︂
(3.19)

is a priori dependent on the lattice site 𝒓𝑖𝜇 and therefore the strong constraint can not be fulfilled for arbitrary 𝒒′LT and
𝒒′′LT [36].

We would like to highlight two special exceptions to this rule:

1. If 𝒒′LT − 𝒒′′LT is a reciprocal lattice vector and (𝒒′LT − 𝒒′′LT) · 𝒓𝜇 = −(𝜙′𝜇 − 𝜙′′𝜇), i.e. the phase difference in the
spirals within one unit cell cancels out the relative angle induced by the spiraling. This is trivially the case in
Bravais lattices.

2. |𝜓′
𝜇 | vanishes on sublattices, where |𝜓′′

𝜇 | is non-zero and vice versa.

The latter case implies another larger ground state degeneracy: due to the eigenvector structure, the spins corre-
sponding to the different ordering vectors are independent of each other, which allows for the two sets to be rotated
freely with respect to each other, introducing two continuous degrees of freedom into the ground state. This trivially
generalizes to more than two ordering vectors.

3.3.2 Non-coplanar spin states

From our discussion of the exactness of the Luttinger-Tisza method on both Bravais lattices and ones with two
equivalent basis sites in Section 3.2 and the explicit parametrization of the Luttinger-Tisza eigenstate as a planar spiral
in eq. (3.13), we can immediately deduce, that for these two classes of lattices, there cannot exist a true non-coplanar
classical ground state. By true, we mean, that there is still the possibility of internal rotational freedom in a given

2Note, that space inversion is the only symmetry, which will not induce additional reciprocal vectors, as the sign of the ordering vector does not
matter.
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state, as discussed in the previous section, but at least one fully coplanar spin configuration will always be part of the
ground-state manifold.

To find classical states ground states, in which spins are forced to point in three linearly independent directions, we,
therefore, have to consider lattices with at least two inequivalent or three symmetry-equivalent basispoints per unit
cell. However, even in these cases, Luttinger-Tisza eigenstates will generally form coplanar spirals, as parametrized
by eq. (3.13). The only known possibility, to construct such non-coplanar states, is the cuboctahedral order on the
Kagome [46, 47] and Octochlore lattices [37]. Here the ordering vector is commensurate, such that spins separated
by a lattice vector are antiparallel. Additionally, the corresponding Luttinger-Tisza eigenvector only has non-zero
weight on two of the three basis points and for the symmetry equivalent reciprocal vectors, the sublattice combinations
supporting the state are different. These features allow the state to have different ordering vectors for different spin
components on different basis points, forcing the spins to form a non-coplanar spin structure.

From this we can formulate three necessary, but not sufficient, conditions to construct non-coplanar Luttinger-Tisza
eigenstates:

1. The lattice has to feature at least two non-equivalent or three equivalent basis points.

2. The Luttinger-Tisza eigenvector corresponding to the ordering vector has to feature zeros, otherwise, the ground
state would be a planar spiral.

3. The ordering vector has to be commensurate, otherwise, the ordering cannot be constrained to a single spin
direction, which prevents normalization.

3.3.3 Connection to O(𝑁 → ∞)
Apart from the classes of lattices discussed in the previous section, the Luttinger-Tisza method generically does not
yield a classical ground state. In a lattice featuring symmetry inequivalent or more than two symmetry equivalent
basis points, typically eq. (3.14) is not fulfilled, i.e. spins in the Luttinger-Tisza approximation have different lengths
on different basis sites.

We can, however, still extract physically meaningful information from the Luttinger-Tisza result on these lattices.
To this end, we turn to a mean-field approach for generalized spin systems [48, 49].

In our discussion of the classical spin limit, we found, that in the limit 𝑆 → ∞, quantum spin operators turn into
normalized three-vectors, cf. eq. (2.4). The corresponding Classical Hamiltonian, eq. (2.5), features a full global
𝑂 (3) symmetry of the classical spins, i.e. it is invariant under

𝒔𝑖 → 𝑅𝒔𝑖 with 𝑅 ∈ 𝑂 (3). (3.20)

As a first step, we generalize this symmetry by elevating 𝑂 (3) → 𝑂 (𝑁), which implies also promoting 𝒔 to a
𝑁-component vector, while at the same time preserving normalization of the spins.

The mean-field free energy of this system is to second order in the spins given by [48, 49]

F =
∑︂
𝒒,𝜇,𝜈

(︃
𝑁𝑇

2
𝛿𝜇𝜈 + 𝐽𝜇𝜈 (𝒒)

)︃
𝒔𝜇 (𝒒) · 𝒔𝜈 (−𝒒), (3.21)

where the first term, diagonal in sublattice space, originates in the second order expansion of the entropy, while the
second one is just the internal energy. Using the eigenvalues 𝜆𝛼 (𝒒) and corresponding normalized eigenvectors 𝜓𝛼 (𝒒)



3.3 General remarks | 19

C
ha

pt
er

3

of the interaction matrix 𝐽𝜇𝜈 (𝒒), the spin-spin correlator

⟨︁
𝒔𝜇 (𝒒) · 𝒔𝜈 (𝒒′)

⟩︁
=

∫
D{𝒔} 𝒔𝜇 (𝒒) · 𝒔𝜈 (𝒒′)e−F/𝑇/Z (3.22)

=
∑︂
𝛼

𝑁𝜓𝛼𝜇 (𝒒)𝜓𝛼𝜈 (𝒒′)𝛿(𝒒 + 𝒒′)
𝑁 + 2𝜆𝛼 (𝒒)/𝑇 (3.23)

can be solved using standard Gaussian integration. The partition sum is defined by

Z =
∫

D{𝒔} e−F/𝑇 (3.24)

This mean-field, being a saddle point approximation of the full 𝑂 (𝑁) spin model, neglecting terms O(𝒔4), clearly
does not capture the full physics present in the model. Setting 𝜇 = 𝜈 in eq. (3.23), one immediately realizes, that due
to the finite eigenvalues 𝜆𝛼 (𝒒), the strong constraint eq. (2.6) is not fulfilled for any finite 𝑁 , but only

lim
𝑁→∞

⟨︁
𝒔𝜇 (𝒒) · 𝒔𝜇 (−𝒒)

⟩︁
= 1. (3.25)

This precisely is the limit, in which the mean-field becomes exact, as fluctuations within the infinite-dimensional
spin space will not lead to renormalization of the results [50–52].

Considering the temperature dependence of eq. (3.23), we find, that there will be a divergence of the correlations
at 𝑇𝑐MF = −2/𝑁 min(𝜆𝛼 (𝒒)), which signals a phase transition. Here the minimum of the eigenvalues is taken over the
whole BZ. This temperature will always be finite, even on lattices, like Kagome or Pyrochlore, where the classical
ground state is known to be disordered. The reason for this inaccuracy lies in the inconsistency with which the
correlations are calculated: in setting up the mean-field eq. (3.21), we have neglected correlations between the spins,
or, to be more precise, the molecular field. The subsequent calculation of the correlations of the order parameter
from the result of the mean-field approximation will therefore inherently yield inconsistent results. An established
method to deal with this shortcoming is the self-consistent Gaussian approximation, which also takes into account
fluctuations of the molecular field itself [50–52]. For illustration purposes, however, we have in this section taken the
more inaccurate, but also more instructive and easier-to-follow approach.

To round up this discussion, let us connect back to the Luttinger-Tisza method: The eigenvalues and eigenvectors
used to construct eq. (3.23) are exactly the ones, that determine the Luttinger-Tisza energy landscape and eigenstates.
Therefore, we can view eq. (3.23) for 𝑁 = 3 as a Luttinger-Tisza mean-field spin structure factor. Additionally, the
reciprocal vector, determined by the minimal energy eigenvalue, at which the structure factor diverges, is exactly the
one found from the Luttinger-Tisza approach in the ground state.

Combining the above results, we conclude, that not only is Luttinger-Tisza equivalent to an 𝑂 (𝑁 → ∞) mean-
field, but additionally both approaches support each other with valuable contributions: Luttinger-Tisza provides a
parametrization for the real-space spin structure in the limit 𝑂 (3), when applicable, while the 𝑁 → ∞ limit provides
an expression for a spin-structure factor and physical interpretation of the results.
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Chapter 4

Iterative minimization

In the cases, where the Luttinger-Tisza eigenstate is not a normalizable spin configuration, we have to resort to other
methods to find a candidate for the classical ground state spin configuration. To this end, we will employ the iterative
minimization method [37, 38], capable of finding local energy minima in configuration space.

4.1 Constrained steepest descent

The idea behind iterative minimization is to use a steepest descent algorithm, which is known to converge to a solution
even for non-linear minimization problems [53], as we face when minimizing the classical Heisenberg Hamiltonian
eq. (2.5).

We start from a random spin configuration on a finite lattice, consisting of 𝐿 unit cells along each direction, i.e.
we consider 𝑁𝑠 = 𝐿𝑑𝑁𝑏 spins, where 𝑑 is the dimensionality of the lattice and 𝑁𝑏 the number of basis sites. From
experience, we find, that the real space cluster used in the scheme should not violate the symmetries of the underlying
lattice in order to capture the correct physics.

Upon this state we perform single spin updates by choosing a random lattice point 𝑖 and rotating the spin 𝒔𝑖 residing
there antiparallel to its local field originating from its coupling to the neighboring spins

𝒉𝑖 =
𝛿𝐻

𝛿𝒔𝑖
=

∑︂
𝑗

𝐽𝑖, 𝑗 𝒔 𝑗 , (4.1)

therefore simultaneously minimizing the total energy and satisfying the strong spin length constraint eq. (2.6). A full
lattice update, after which the total energy is calculated using eq. (2.5) and checked for convergence, consists of 𝑁𝑠
such single-spin updates. This scheme can be viewed as a variant of classical Monte Carlos at zero temperature, using
metropolis updates, where only optimal updates are proposed and accepted.

As we work in real space, we naturally will detect spontaneous symmetry breaking, not detectable by Fourier space
methods such as Luttinger-Tisza. The finite real space lattice we complement with periodic boundary conditions,
although open and twisted ones are in principle also possible. In the latter case, however, we observe severe finite-size
effects due to the different environment of spins at the boundary and also the formation of domains with differently
symmetry broken states.

Although this scheme is not guaranteed to converge to the global energy minimum, we find, that in all phases with
exactly known ground state parametrization, e.g. where Luttinger-Tisza is exact, the iterative minimization recovers
this state. To judge the quality of the converged ground state of a single minimization run and to maximize the
likelihood to find the true ground state, we carry out the minimization starting from multiple random initial conditions.
We then take the state with the lowest energy over these runs as the best approximation to the true one. The distribution
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of energies additionally allows us to judge the energy landscape of the model, i.e. how frequent local energy minima
occur.

4.2 Analysis tools

The real space spin configuration with minimal energy produced by iterative minimization is not the most intuitive
object to work with, on one hand, due to its typically large number of spins 𝑁𝑠 , on the other hand, the O(3) symmetry
of the Heisenberg model means, that the spin orientation after the minimization is usually not such, that e.g. spirals
are easily visible. Therefore, we use several tools to further analyze the obtained state.

4.2.1 Spin structure factor

To directly probe the ordering wave vectors contained in the numerically obtained ground state, we calculate the spin
structure factor

𝐹 (𝒌) = 1
𝑁𝑠

|︁|︁|︁∑︂
𝑖

𝒔𝑖𝑒
i𝒌 ·𝒓𝑖

|︁|︁|︁2, (4.2)

where the sum runs over all lattice sites 𝑖. It captures the spectral composition of the state and develops sharp peaks
at the ordering vectors for spin states governed by a single wave vector. For more complicated states, there are
subdominant peaks present, which will carry a fraction of the total spectral weight.

4.2.2 Real space diagnostics

Although extremely useful in the case of single-𝒒 states, the spin structure factor does not fully characterize the real
space configuration for states governed by multiple wave vectors. To get a better understanding of their structure and
find possible parametrizations, we employ a series of real space diagnostics. Firstly, the spin inertia tensor [37]

𝑀𝜇𝜈 =
1
𝑁𝑠

∑︂
𝑖

(𝒔𝑖)𝜇 (𝒔𝑖)𝜈 (4.3)

encodes the information about preferred directions in spin space in its eigenvalues and -vectors. A collinear spin
state has only one non-vanishing eigenvalue with its corresponding eigenvector giving the direction the collinear state
points to in spin space. Similarly, a coplanar state features two finite eigenvalues, where the corresponding eigenvectors
span the plane the spins of the state reside in. Finally, a non-coplanar state will feature three finite eigenvalues.

Typically, using the rotational symmetry of the Heisenberg model to align the eigenvectors in spin space with the
cardinal directions in real space, will help uncover the state’s structure. For further visual inspection, we use a common
origin plot by shifting all spin vectors of the lattice, such that they start at the same point. This will reveal any lattice
commensurability within the state, as then only a finite set of spin orientations will be visible.

As a final real space diagnostic, a fit of linear combinations of single-𝒒 states governed by dominant and subdominant
ordering vectors, as found using the spin structure factor, can reveal a clearer picture of the state.

4.2.3 Competitive minimization

The starting point for iterative minimization does not necessarily have to be a random initial configuration, but any
configuration can be used. This is useful in two ways: firstly, having obtained a candidate ground state parametrization,
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we can use such a state as the initial configuration, to check, if it is (a) indeed a (local) energy minimum of the system
and (b) how it is modified by minimization if it is not. Secondly, especially at phase boundaries, we can swap
iteratively obtained configurations of neighboring phases, preferably from deep within the respective phase, to check,
if the location of the phase boundary is correctly determined. This we dub competitive minimization. Of course, this is
not only constrained to the vicinity of phase boundaries but can always be used to cross-check, if the iteratively-found
ground state has indeed competitive energy or minimization procedure just got stuck in local minima.





II
Pseudo-Fermion Functional

Renormalization Group

This part introduces the pseudo-fermion functional renormalization
group as a methodological approach to quantum spin systems.
After a pedagogical review of Abrikosov pseudo-fermions with an em-
phasis on their inherent symmetries and the functional renormalization
group, as well as their fusion into the pseudo-functional renormalization
group method, we extend this formalism to a multi-loop formulation and
discuss the state-of-the-art numerical implementation of the equations.
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Chapter 5

Abrikosov Pseudo-Fermions

The inherent difficulty in solving any spin Hamiltonian can be traced back to the algebra of the spin operators 𝑺̂. As
they are generators of rotations in spin space, they fulfill the defining commutation relations of the Lie-algebra 𝔰𝔲(2)

[︁
𝑆𝑖 , 𝑆 𝑗

]︁
= iℏ

3∑︂
𝑘=1

𝜖𝑖 𝑗𝑘𝑆
𝑘 , (5.1)

which in turn necessitates the spin states to form a representation of the Lie-Group SU(2).
These operators fulfill neither fermionic anticommutation relations nor canonical bosonic commutators, which

prevents most methods of condensed matter physics to be applied to them, as Wick’s theorem [54] in its standard
formulation does not hold [55, 56]. To circumvent this problem, we will introduce pseudo-particles with canonical
commutation relations, which are then amenable to standard diagrammatic techniques.

5.1 Operator mapping

We choose a representation of the spin operators in terms of two species of fermions 𝑐↑ and 𝑐↓ introduced originally
by Abrikosov [57] given by

𝑆𝜇 =
1
2

∑︂
𝛼,𝛽=↑,↓

𝑐†𝛼𝜎
𝜇
𝛼𝛽𝑐𝛽 , (5.2)

where 𝜎𝜇 (𝜇 ∈ {1, 2, 3}) are the standard Pauli matrices. Clearly, this representation fulfills the necessary
commutation relations eq. (5.1), but brings along a different complication: by splitting up the spin operators into two
fermions, we have doubled the size of the Hilbert space, which now consists of the four states|︁|︁0↑, 0↓⟩︁ |︁|︁1↑, 0↓⟩︁ = 𝑐†↑ |︁|︁0↑, 0↓⟩︁|︁|︁0↑, 1↓⟩︁ = 𝑐†↓ |︁|︁0↑, 0↓⟩︁ |︁|︁1↑, 1↓⟩︁ = 𝑐†↑𝑐†↓ |︁|︁0↑, 0↓⟩︁ = −𝑐†↓𝑐

†
↑
|︁|︁0↑, 0↓⟩︁ , (5.3)

of which only the states filled with a single fermion correspond to a physical spin state corresponding to the
mapping |↑⟩ ≡

|︁|︁1↑, 0↓⟩︁ and |↓⟩ ≡
|︁|︁0↑, 1↓⟩︁. The additional states filled with none or two fermions,

|︁|︁0↑, 0↓⟩︁ and
|︁|︁1↑, 1↓⟩︁,

respectively, have, in contrast, no counterpart in the physical Hilbert space of the original spins.
To cure this overcounting, we have to complement the operator mapping eq. (5.2) by the single occupation constraint

𝑐†
𝑖↓𝑐𝑖↓ + 𝑐

†
𝑖↑𝑐𝑖↑ = 1. (5.4)



28 | 5 Abrikosov Pseudo-Fermions

to construct a faithful mapping between the Hilbert spaces of spin 1/2 and Abrikosov pseudo fermions. Note, that
this identity has to hold on an operator level.

5.2 Gauge symmetry of the mapping

The restriction to half-filling in pseudo-fermion space introduced by eq. (5.4) implies an additional ambiguity in the
pseudo-fermion description. As both none and doubly occupied fermionic states are not physical, the choice of the
fermionic vacuum we implicitly made in eq. (5.3), namely by constructing all other states from

|︁|︁0↑, 0↓⟩︁, is not unique.
By, e.g., interchanging fermionic creation and annihilation operators appropriately, one can as well start from

|︁|︁1↑, 1↓⟩︁
as the fermionic vacuum. Indeed, one can rotate the description continuously between these two cases independently
for each spin operator in a lattice model, leading to an inherent SU(2) gauge symmetry of the pseudo-fermion
description.

To formalize this intuitive picture, we introduce the matrix operator [58]

Ψ =
⎛⎜⎜⎝
𝑐↑ 𝑐†↓

𝑐↓ −𝑐†↑

⎞⎟⎟⎠ , (5.5)

which allows us to express the mapping eq. (5.2) as

𝑆𝜇 = −1
4

Tr
[︁
𝜎𝜇ΨΨ†]︁ . (5.6)

In this form, it becomes clear, that the mapping is invariant under a right-multiplication with an SU(2) matrix
according to

Ψ → Ψ𝑈†, 𝑈 ∈ SU(2), (5.7)

i.e. a SU(2) transformation intermixing creation and annihilation operators of up- and down spins. This gauge
symmetry, in turn, leads to an intermixing of the two possible vacua

|︁|︁0↑, 0↓⟩︁ and
|︁|︁1↑, 1↓⟩︁ due to their definitions

eq. (5.3). As operator expectation values are always taken with respect to a specific vacuum, therefore only the U(1)
and Z2 subgroup of the full SU(2) gauge symmetry can be exploited, as they will lead to a pure, rather than mixed,
vacuum state. The former amounts to multiplying the operators with a complex phase, leaving the vacuum invariant,
while the latter represents a particle-hole transformation given by

𝑈Z2 =
⎛⎜⎜⎝

0 1

−1 0

⎞⎟⎟⎠ . (5.8)

Under this transformation,
|︁|︁0↑, 0↓⟩︁ and

|︁|︁1↑, 1↓⟩︁ swap their roles. Both these subgroups of the full SU(2) symmetry,
therefore, lead to well-defined expectation values, which can be brought into relation with each other.

For completeness, let us mention, that the single occupation constraint eq. (5.4) can also be recast in terms of the
matrix operator eq. (5.5), by realizing, that half filling additionally implies the operator identities

𝑐†
𝑖↑𝑐

†
𝑖↓ = 𝑐𝑖↑𝑐𝑖↓ = 0, (5.9)

as for exactly one fermion, we can neither create nor annihilate two fermions at the same site.
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Together, Equations (5.4) and (5.9) can be recast as the vector equation

𝐺𝜇 =
1
4

Tr
[︂
𝜎𝜇Ψ†

𝑖 Ψ𝑖

]︂
= 0. (5.10)

Using the cyclicity of the trace, an SU(2) transformation according to eq. (5.7) corresponds to transforming the
Pauli matrix in eq. (5.10) according to

𝜎𝜇 → 𝑈†𝜎𝜇𝑈 = 𝑅𝜇𝜈𝜎𝜈 , (5.11)

where we have used, that any SU(2) transformation on a Pauli matrix will correspond to an O(3) rotation 𝑅 in
Pauli matrix space. This means, although superficially superfluous, and equivalent to the half-filling constraint, the
additional operator identities in eq. (5.9) will be generated under the action of the SU(2) gauge symmetry of the
pseudo-fermion representation. The special case of a particle-hole symmetry eq. (5.8) does not mix the components
of the constraint vector 𝐺𝜇 defined in eq. (5.10), but only flips the sign of its 𝑦 component.

Using the relation between O(3) and SU(2) backward, we can straightforwardly show, that any rotation in spin
space corresponds to an 𝑆𝑈 (2) transformation of the corresponding fermionic operators:

𝑅
𝜇
𝜈 𝑺

𝜈
𝑖 = −1

4
Tr

[︂
(𝑅𝜇𝜈𝜎𝜈)Ψ𝑖Ψ†

𝑖

]︂
(5.12)

= −1
4

Tr
[︂
𝑈†𝜎𝜈𝑈Ψ𝑖Ψ

†
𝑖

]︂
(5.13)

= −1
4

Tr
[︂
𝜎𝜈 (𝑈Ψ𝑖) (𝑈Ψ𝑖)†

]︂
. (5.14)

5.3 Gauge symmetry of the pseudo-fermion Heisenberg Hamiltonian
and Lagrangian

Having defined the pseudo-fermion mapping, we now are able to rewrite the Heisenberg Hamiltonian eq. (1.5) in
fermionic language, leading to

𝐻 =
1
4

∑︂
𝑖, 𝑗 ,𝜇,𝜈,𝜌,𝜎

𝐽𝑖 𝑗𝑐
†
𝑖𝜇𝑐𝑖𝜈𝑐

†
𝑗𝜌𝑐 𝑗 𝜎𝝈𝜇𝜈 · 𝝈𝜌𝜎 , (5.15)

where the prefactor comes from the mapping of the spin operators to pseudo-fermions. The quadratic form of this
Hamiltonian makes it apparent, that spin systems inherently are strongly interacting. In particular, the absence of a
quadratic, i.e. kinetic, term in the Hamiltonian prevents the notion of a non-interacting pseudo-fermion system due
to the vanishing kinetic energy scale. Therefore, perturbative expansions of the problem around a Gaussian theory
are not possible, calling for more sophisticated many-body methods to analyze the problem, such as the functional
renormalization group (FRG) we will introduce in Chapter 6.

5.4 Symmetries of pseudo-fermion Green’s functions

The Heisenberg Hamiltonian features a series of symmetries, both physical ones, such as hermiticity and time-reversal
invariance, and, most importantly for practical calculations, the local SU(2) gauge symmetry of the pseudo-fermion
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mapping. In this section, we will, following the presentation in Reference [59], summarize these symmetries and their
implications on the important one- and two-particle Green’s functions1.

To fix notation, we define the one-particle Green’s function

𝐺 (1′; 1) =
⟨︂
𝑐†1′𝑐1

⟩︂
(5.16)

and its two-particle counterpart
𝐺 (1′, 2′; 1, 2) =

⟨︂
𝑐†1′𝑐

†
2′𝑐1𝑐2

⟩︂
, (5.17)

where we use multi-indices 𝑗 = (𝑖 𝑗 , i𝜔 𝑗 , 𝜇 𝑗 ), capturing the site index 𝑖 𝑗 , Matsubara frequency2 𝜔 𝑗 and spin index 𝜇 𝑗 .
Primed indices, corresponding to creation operators, we refer to as outgoing indices, whereas the unprimed indices
corresponding to annihilation operators, we call incoming indices.

5.4.1 Time-translation invariance

We start our discussion of symmetries with the invariance of the pseudo-fermion Hamiltonian under translations in
imaginary time, which is manifestly seen in eq. (5.15) by the absence of any explicit time or Matsubara frequency
dependence. This implies, that all Green’s functions only are dependent on imaginary time differences, which,
after Fourier transform, leads to a Matsubara frequency conservation. Therefore, the sum of incoming Matsubara
frequencies has to equal the sum of outgoing ones. For the Green’s functions, we can sum up this discussion in the
relations

𝐺 (1′; 1) = 𝐺 (1′; 1)𝛿𝜔1′ ,𝜔1 (5.18)

and
𝐺 (1′, 2′; 1, 2) = 𝐺 (1′, 2′; 1, 2)𝛿𝜔1′+𝜔2′ ,𝜔1+𝜔2 . (5.19)

These reduce the dependence of these correlators by one frequency, which can be expressed as a linear combination
of the others. Note, that this relation, when formulated in terms of real frequencies, is equivalent to conservation of
energy in the Green’s functions.

5.4.2 Time-reversal invariance

Another important physical symmetry relating to imaginary time is reversing its direction. The effect of time reversal
on spins is to flip their direction, i.e. 𝑺 → −𝑺. Additionally, time-reversal has to be antiunitary and therefore contain
a complex conjugation in its action. This can be understood easily considering the time evolution operator exp(−i𝐻𝑡).
For it to be invariant under time reversal for an invariant Hamiltonian, the imaginary i has to flip sign, compensating
the sign change in time 𝑡.

The action of time-reversal T on the fermionic operators can be implemented as

T
⎛⎜⎜⎝
𝑐†𝑖𝜇

𝑐𝑖𝜇

⎞⎟⎟⎠T −1 =
⎛⎜⎜⎝

ei𝜋𝜇/2𝑐†𝑖 𝜇̄

e−i𝜋𝜇/2𝑐𝑖 𝜇̄

⎞⎟⎟⎠ , (5.20)

1In literature, 𝑛-particle functions are also called 2𝑛-point functions. We choose the former name, referring to the number of pairs of creation and
annihilation operators within an expectation value, signifying the number of particles involved, while the latter refers to the number of operators
itself, or equivalently the number of external arguments to the function.

2For clarity, we drop the discrete index of the Matsubara frequencies.
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where the notation 𝜇̄ = −𝜇 is a shorthand to indicate the flip of the spin index with 𝜇 = ±1 representing spin up/down.
Using this relation on the two-particle Green’s function eq. (5.16), we find for time-reversal invariant systems the

relation
𝐺 (1′; 1) = ei𝜋 (𝜇1′−𝜇1 )/2𝐺 (𝑖1′ ,−i𝜔1′ , 𝜇̄1′ ; 𝑖1 ,−i𝜔1 , 𝜇̄1 )∗. (5.21)

Here the complex conjugation is only meant to act on the Green’s function itself, but not on its arguments, where we
have explicitly added the negative sign for the Matsubara frequency arguments.

The origin of this complex conjugation is the antiunitarity of time-reversal, as expectation values of an operator 𝐴
transform as ⟨𝐴⟩ → ⟨︁T 𝐴T −1⟩︁∗.

The phase factor ei𝜋 (𝜇1′−𝜇1𝑛𝑜𝑝𝑟𝑖𝑚𝑒 )/2 can be simplified using the fact, that 𝜇 = ±1 to

ei𝜋 (𝜇1′−𝜇1 )/2 = 𝜇1′𝜇1 , (5.22)

as can be easily verified by considering all possible combinations of the spin indices.
Similarly, the two-particle vertex obeys the relation

𝐺 (1′, 2′; 1, 2) = 𝜇1′𝜇2′𝜇1𝜇2𝐺 (𝑖1′ ,−i𝜔1′ , 𝜇̄1′ , 𝑖2′ ,−i𝜔2′ , 𝜇̄2′ ; 𝑖1 ,−i𝜔1 , 𝜇̄1 , 𝑖2 ,−i𝜔2 , 𝜇̄2 )∗. (5.23)

Please note, that time-reversal symmetry of a magnetic system is already spoiled when coupling to an external
magnetic field 𝑩 via a term 𝑺 · 𝑩 and also by interactions involving an odd number of spins. As, however, time-
reversal symmetry will turn out crucial for the performance of our calculations, we will refrain from adding such
terms, although the formalism is in principle capable of handling these.

5.4.3 Hermiticity of the Hamiltonian

Representing the energy as a physical observable, the Hamiltonian necessarily has to be a hermitian operator. This
allows us to obtain relations involving the complex conjugate of expectation values. As the density operator, being
an exponential of the Hamiltonian, is invariant under hermitian conjugation, complex conjugation of such expectation
values is equivalent to a hermitian conjugation of the operators contained in these. Carrying out the hermitian conjugate
exchanges creation and annihilation operators, reverses their order and, due to complex conjugation, reverses the sign
of the Matsubara frequency.

From this process, we obtain the relation

𝐺 (1′; 1) = 𝐺 (𝑖1,−i𝜔1 , 𝜇1 ; 𝑖1′ ,−i𝜔1′ , 𝜇1′ )∗ (5.24)

for the one-particle Green’s function and

𝐺 (1′, 2′; 1, 2) = 𝐺 (𝑖1 ,−i𝜔1 , 𝜇1 , 𝑖2 ,−i𝜔2 , 𝜇2 ; 𝑖1′ ,−i𝜔1′ , 𝜇1′ , 𝑖2′ ,−i𝜔2′ , 𝜇2′ )∗ (5.25)

for the two-particle one. By themselves, these relations already give some insight into the analytical structure of the
Green’s functions, however a combination with the time-reversal relations Equations (5.22) and (5.23) will lead to
new relations for the whole Green’s function, rather than their real and imaginary parts separately,
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5.4.4 Lattice symmetries

As a last physical symmetry, we discuss the one associated with the underlying lattice of the Heisenberg Hamiltonian
in eq. (5.15). Although the specific symmetry group highly depends on the specific lattice considered, the effect on
Green’s functions can be stated universally, as the lattice symmetry always maps one lattice point 𝑖 onto another point
L(𝑖) within the lattice. In operator language, this transformation, defining a suitable unitary symmetry operator L,
reads

L
⎛⎜⎜⎝
𝑐†𝑖𝜇

𝑐𝑖𝜇

⎞⎟⎟⎠L−1 =
⎛⎜⎜⎝
𝑐†L(𝑖)𝜇

𝑐L(𝑖)𝜇

⎞⎟⎟⎠ . (5.26)

As the Hamiltonian, being defined on the lattice, is by definition invariant under such transformations3, the Green’s
functions are as well, leading to the relations

𝐺 (1′; 1) = 𝐺 (L(𝑖1′ ), i𝜔1′ , 𝜇1′ ; L(𝑖1 ), i𝜔1 , 𝜇1 ) (5.27)

for the one-particle Green’s function and likewise

𝐺 (1′, 2′; 1, 2) = 𝐺 (L(𝑖1′ ), i𝜔1′ , 𝜇1′ ,L(𝑖2′ ), i𝜔2′ , 𝜇2′ ; L(𝑖1 ), i𝜔1 , 𝜇1 ,L(𝑖2 ), i𝜔2 , 𝜇2 ) (5.28)

in the two-particle case.
As any lattice symmetry group contains a translational symmetry subgroup by definition, this implies we can always

map back at least one of the site arguments onto a site in a given reference unit cell. Furthermore, if all sites in the
lattice are equivalent, there will be an additional symmetry within that unit cell, that allows us to select a single
reference point we can map one of the points onto4.

5.4.5 Crossing symmetries

Before turning towards the gauge symmetries of the pseudo-fermion mapping, let us briefly mention another symmetry
of any Green’s function, which derives from their definition of expectation values combined with the canonical
anticommutation relations of fermionic operators. Using the latter to swap the two annihilation or creation operators
in the definition eq. (5.23) of the two-particle vertex, we find, that this Green’s function is invariant under exchange of
the incoming or outgoing indices, up to a sign, i.e.

𝐺 (1′, 2′; 1, 2) = −𝐺 (2′, 1′; 1, 2) = −𝐺 (1′, 2′; 2, 1) = 𝐺 (2′, 1′; 2, 1) . (5.29)

This is commonly referred to as crossing symmetry of the Green’s function, as in a diagrammatic language it
corresponds to crossing the incoming or outgoing legs of a given diagram.

5.4.6 Local U(1) gauge symmetry

Having exhausted all symmetries of the Green’s functions, which hold for general fermionic systems respecting the
discussed physical symmetries, we now explore the additional constraints the pseudo-fermion mapping imposes on
these objects. As already discussed in Section 5.2, the single occupation constraint accompanying the mapping of

3We treat any symmetry breaking imposed by couplings not compatible with the full symmetry of the lattice by defining a new lattice compatible
with the coupling symmetries.

4In the case of 𝑛 symmetry inequivalent points in the unit cell, we have to consider 𝑛 of these reference points.
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spin operators to bosons introduces a local SU(2) gauge symmetry. As however, the vacuum is not invariant under
this group, only two subgroups of the full symmetry can be exploited for expectation values. The first one, we want
to discuss, is the local U(1) symmetry.

The action of this group amounts to rotating the complex phase of an operator at site 𝑖 by an angle 𝜙𝑖 , i.e. the
operators transform as

U𝜙

⎛⎜⎜⎝
𝑐†𝑖𝜇

𝑐𝑖𝜇

⎞⎟⎟⎠U−1
𝜙 =

⎛⎜⎜⎝
ei𝜙𝑖 𝑐†𝑖𝜇

e−i𝜙𝑖 𝑐𝑖𝜇

⎞⎟⎟⎠ . (5.30)

Again, applying the symmetry transform to the Green’s functions yields

𝐺 (1′; 1) = ei(𝜙𝑖1′ −𝜙𝑖1 )𝐺 (1′; 1) (5.31)

and

𝐺 (1′, 2′; 1, 2) = ei(𝜙𝑖1′ +𝜙𝑖2′ −𝜙𝑖1 −𝜙𝑖2 )𝐺 (1′, 2′; 1, 2) (5.32)

for the one- and two-particle Greens functions, respectively.
To allow for non-vanishing Green’s functions, the phase factors in Equations (5.31) and (5.32) have to equal unity.

The individual phases 𝜙𝑖 on different lattice points, however, can be chosen independently, such that for the total phase
to vanish, incoming and outgoing sites have to be pairwise equal. This means in the one-particle case, the Green’s
function becomes purely local, i.e.

𝐺 (1′; 1) = 𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 , (5.33)

while the two-particle Green’s function features two possible combinations of incoming an outgoing sites

𝐺 (1′, 2′; 1, 2) = 𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 − 𝐺 (2′, 1′; 1, 2)𝛿𝑖1′ 𝑖2 𝛿𝑖2′ 𝑖1 . (5.34)

In the second term, we have already explicitly incorporated the crossing-symmetry eq. (5.29) in the parametrization,
leading to a direct and crossed term in terms of real space indices. This implies, that in any given correlator, for it
to be non-vanishing, there must be an equal number of creation and annihilation operators at the same site present,
rendering the particle number at each site a conserved quantity. This is in analogy to a global U(1) symmetry, which
implies total particle number conservation.

We can understand this constraint most easily in the light of the pseudo-fermion mapping eq. (5.2). Here, every spin
operator, defined at a particular point 𝑖 in the lattice decomposes into one creation and annihilation operator, which
both have to carry the same lattice index 𝑖 as the original spin operator. The U(1) symmetry now guarantees, that only
correlations consistent with this parametrization can be generated by the system.

This multi-locality constraint on the Green’s functions has profound implications on what forms the best basis to
treat multi-fermion systems formally. Itinerant fermions, which one usually deals with, tend to delocalize, which
usually renders a momentum-space picture more appropriate. The locality of the pseudo-fermions, which is already
encoded in the Heisenberg Hamiltonian eq. (5.15) in the absence of a kinetic hopping term, implies, that the Green’s
functions are constant in momentum space. In direct space, however, lattice summations will be extremely simplified,
as we will see in Section 7.3, rendering a real space description the more convenient picture for pseudo-fermions.
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𝐺 (1′; 1) = 𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 (U(1))
𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 = 𝐺 (L(𝑖1′ ), i𝜔1′ , 𝜇1′ ; L(𝑖1 ), i𝜔1 , 𝜇1 )𝛿𝑖1′ 𝑖1 (L)

𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 = 𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 𝛿𝜔1′ ,𝜔1 (TT)

𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 = −𝜇1′𝜇1𝐺 (𝑖1 ,−i𝜔1 , 𝜇̄1 ; 𝑖1′ ,−i𝜔1′ , 𝜇̄1′ )𝛿𝑖1′ 𝑖1 (PH)

𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 = 𝜇1′𝜇1𝐺 (𝑖1′ ,−i𝜔1′ , 𝜇̄1′ ; 𝑖1 ,−i𝜔1 , 𝜇̄1 )∗𝛿𝑖1′ 𝑖1 (TR)

𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 = 𝐺 (𝑖1 ,−i𝜔1 , 𝜇1 ; 𝑖1′ ,−i𝜔1′ , 𝜇1′ )∗𝛿𝑖1′ 𝑖1 (H)

Table 5.1: Symmetry relations of the one-particle correlation function for pseudo-fermion Hamiltonians. The combined index
𝑗 = (𝑖 𝑗 , i𝜔 𝑗 , 𝜇 𝑗 ) is used as shorthand for site index 𝑖 𝑗 , Matsubara frequency i𝜔 𝑗 and spin index 𝜇 𝑗 for incoming (unprimed) and
outgoing (primed) parameters. The labels are shorthands for the underlying symmetry of the relations: TR denotes time-reversal,
TT time translation, L lattice symmetries, H hermitian conjugation, X crossing symmetry in both incoming and outgoing particles
and PH1/2 is a particle-hole transformation for particle 1/2.

5.4.7 Local particle-hole symmetry

The second subgroup of the SU(2) gauge symmetry, we want to discuss, is theZ2 subgroup, which amounts to a local
particle-hole transformation

Z𝑖

⎛⎜⎜⎝
𝑐†𝑖𝜇

𝑐𝑖𝜇

⎞⎟⎟⎠Z−1
𝑖 =

⎛⎜⎜⎝
𝜇𝑐𝑖 𝜇̄

𝜇𝑐†𝑖 𝜇̄

⎞⎟⎟⎠ , (5.35)

which also swaps spin sectors. As shown in the previous section, the Green’s functions are multi-local in real space,
which allows us to apply the transformation directly to the appropriately parametrized Green’s functions, yielding

𝐺 (1′; 1)𝛿𝑖1′ 𝑖1 = −𝜇1𝜇1𝐺 (𝑖1 ,−i𝜔1 , 𝜇̄1 ; 𝑖1′ ,−i𝜔1′ , 𝜇̄1′ )𝛿𝑖1′ 𝑖1 (5.36)

for the one-particle case. The negative sign is due to an anticommutation within the expectation value defining the
Green’s function, while the inversion of frequency is due to the swapping of creation and annihilation operators, which
flips the energy spectrum.

For the two-particle case, we analogously find, by applying the local transform to the two independent sites separately

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = −𝜇1′𝜇1𝐺 (𝑖1 ,−i𝜔1 , 𝜇̄1 , 2′; 𝑖1′ ,−i𝜔1′ , 𝜇1′¯ , 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (5.37)

= −𝜇2′𝜇2𝐺 (1′, 𝑖2 ,−i𝜔2 , 𝜇̄2 ; 1, 𝑖2′ ,−i𝜔2′ , 𝜇2′¯ )𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 . (5.38)

Note, that even in the case of 𝑖1 = 𝑖2, the two relations Equations (5.37) and (5.38) hold separately. This is due to
the fact, that the labels 1 and 2 in 𝑖1 and 𝑖2 directly connect to which original spin operator the individual fermions are
part of. As the relations are obtained from the symmetry of this operator mapping, even for 𝑖1 = 𝑖2 no intermixing of
the pseudo-fermions corresponding to different spin operators will take place.

5.4.8 Summary of the symmetries

For reference, we summarize all symmetry relations of the one-particle Green’s function in Table 5.1 and the ones for
the two-particle one in Table 5.2.

We can divide the symmetries into two groups. The first one reduces the dependence of the Green’s functions
on the external degrees of freedom: The local U(1) symmetry renders the one(two)-particle function (bi-)local,
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𝐺 (1′, 2′; 1, 2) = 𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 − 𝐺 (2′, 1′; 1, 2)𝛿𝑖1′ 𝑖2 𝛿𝑖2′ 𝑖1 (U(1))
𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = 𝐺 (L(𝑖1′ ), i𝜔1′ , 𝜇1′ ,L(𝑖2′ ), i𝜔2′ , 𝜇2′ ; L(𝑖1 ), i𝜔1 , 𝜇1 ,L(𝑖2 ), i𝜔2 , 𝜇2 )𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (L)

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = 𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 𝛿𝜔1′+𝜔2′ ,𝜔1+𝜔2 (TT)

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = −𝜇1′𝜇1𝐺 (𝑖1 ,−i𝜔1 , 𝜇̄1 , 2′; 𝑖1′ ,−i𝜔1′ , 𝜇1′¯ , 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (PH1)

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = −𝜇2′𝜇2𝐺 (1′, 𝑖2 ,−i𝜔2 , 𝜇̄2 ; 1, 𝑖2′ ,−i𝜔2′ , 𝜇2′¯ )𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (PH2)

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = 𝜇1′𝜇2′𝜇1𝜇2𝐺 (𝑖1′ ,−i𝜔1′ , 𝜇̄1′ , 𝑖2′ ,−i𝜔2′ , 𝜇̄2′ ; 𝑖1 ,−i𝜔1 , 𝜇̄1 , 𝑖2 ,−i𝜔2 , 𝜇̄2 )∗𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (TR)

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = 𝐺 (𝑖1 ,−i𝜔1 , 𝜇1 , 𝑖2 ,−i𝜔2 , 𝜇2 ; 𝑖1′ ,−i𝜔1′ , 𝜇1′ , 𝑖2′ ,−i𝜔2′ , 𝜇2′ )∗𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (H)

𝐺 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 = 𝐺 (2′, 1′; 2, 1)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 (X)

Table 5.2: Symmetry relations of the two-particle correlation function for pseudo-fermion Hamiltonians. The combined index
𝑗 = (𝑖 𝑗 , i𝜔 𝑗 , 𝜇 𝑗 ) is used as shorthand for site index 𝑖 𝑗 , Matsubara frequency i𝜔 𝑗 and spin index 𝜇 𝑗 for incoming (unprimed) and
outgoing (primed) parameters. The labels are shorthands for the underlying symmetry of the relations, for details see main text.

greatly reducing their spatial dependence. Additionally, lattice symmetries (L) reduce these dependencies further,
as translational invariance always allows to set one of these local points to a reference one. In frequency-space,
time-translational invariance (TT) has a similar effect, reducing the number of frequency arguments by one.

The second group of symmetries establishes relations within the remaining structure of the Green’s functions: In
this group falls the remaining part of the lattice symmetries. Furthermore, the local particle-hole symmetry, which
induces one symmetry relation (PH) in the one-particle case and two, (PH1) and (PH2), in the two-particle one, one
for each site index, in the two-particle case. Time-reversal (TR) and Hermitian (H) symmetry as a special case induce
relations for the real and imaginary parts of the Green’s function separately. For the case of the two-particle Green’s
function, we also have the combined crossing symmetry in both incoming and outgoing arguments (X), but not the
separate version for one of the species of arguments only. This is due to the bilocality constraint following from (U(1)),
which already decomposes the vertex into two components, which are related by an individual crossing symmetry, as
shown in eq. (5.29).

5.5 Gauge-invariance of the pseudo-fermion Lagrangian

Having discussed the symmetries of both the Heisenberg Hamiltonian and the Green’s functions, we still have to see,
how the gauge symmetry affects the Lagrangian, which we need for a field-theoretic treatment of pseudo-fermion
systems. To this end, we bring the Heisenberg Hamiltonian in a for our purpose more convenient form

𝐻 = − 1
16

∑︂
𝑖, 𝑗 ,𝜇

Tr
[︂
𝜎𝜇Ψ𝑖Ψ

†
𝑖

]︂
Tr

[︂
𝜎𝜇Ψ 𝑗Ψ

†
𝑗

]︂
. (5.39)

Here, we immediately see, that the Heisenberg model is invariant both under a local gauge transformation SU(2)
gauge transformation according to eq. (5.7),

Ψ𝑖 → Ψ𝑖𝑈
†
𝑖 , 𝑈𝑖 ∈ SU(2), (5.40)

where the matrix 𝑈𝑖 can be site-dependent, as well as a global rotation in spin space as given by eq. (5.14). For
field-theoretical treatments, we will need the Lagrangian of this system [58]



36 | 5 Abrikosov Pseudo-Fermions

𝐿 = i
∑︂
𝑖,𝜇

𝑐†𝑖𝜇
𝜕

𝜕𝑡
𝑐𝑖𝜇 − 𝐻, (5.41)

which is by means of integration by parts up to a constant term equivalent to the manifestly gauge invariant form

𝐿 =
i
2

∑︂
𝑖

Tr
[︃
Ψ𝑖

𝜕

𝜕𝑡
Ψ†
𝑖

]︃
− 𝐻. (5.42)

To include the single-occupation per site constraints in this formulation, we add three Lagrange multipliers 𝐴𝜇

enforcing the three components of eq. (5.10), adding a term Tr
[︂
Ψ𝑖 (𝑨 · 𝝈)Ψ†

𝑖

]︂
to the Lagrangian. This term, however,

is nothing else than a coupling of the matrix valued field Ψ to the temporal component of a SU(2) gauge field 𝑨 · 𝝈,
given we allow for fluctuations of the Lagrange multipliers, promoting them to fields.

This view even allows for time-dependent gauge transformations, which would not leave the kinetic term in eq. (5.42)
invariant, due to time derivative terms of the transformation not being cancelled. Demanding a suitable transformation
of the gauge field

𝑨 · 𝝈 → 𝑈† (𝑨 · 𝝈 − i
𝜕

𝜕𝑡
)𝑈, (5.43)

heals this invariance, promoting the local SU(2) gauge invariance to a time-dependent one. The Lagrangian fully
invariant under the local and time-dependent gauge symmetry of the SU(2) symmetry of the pseudo-fermions therefore
reads

𝐿 =
1
2

∑︂
𝑖

Tr
[︃
Ψ𝑖 (i 𝜕

𝜕𝑡
+ 𝑨 · 𝝈)Ψ†

𝑖

]︃
− 𝐻. (5.44)
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Chapter 6

Functional renormalization group

The reformulation of the spin Heisenberg Hamiltonian eq. (1.5) in terms of fermionic operators, as discussed in
the previous chapter, opens up the possibility of employing standard many-body techniques developed for itinerant
fermionic systems. The explicit form of eq. (5.15), however, at the same time severely restricts the applicable
techniques. The pseudo-fermions representing localized magnetic moments results in the absence of a kinetic term
in the Hamiltonian, which is prohibited by the SU(2) gauge symmetry introduced by the mapping, cf. Section 5.4.6.
This lack of a hopping term implies that perturbative approaches, which usually assume the interaction term to be
small compared to the kinetics, allowing for an expansion around a non-interacting state.

A non-perturbative approach originally developed in the context of high-energy physics, where especially dealing
with the strong nuclear force, breakdown of perturbation theory is ubiquitous, is the FRG [60–62], which extends the
ideas of the Wilsonian renormalization group [63, 64] to Green’s and vertex functions. Here it has been successfully
applied to, e.g., electroweak physics [65], quantum chromodynamics [66–69] and models of quantum gravity [70, 71].

In the context of condensed matter systems, FRG historically was introduced by Wilson in the context of the Kondo
problem [72]. More recently, it was utilized to investigate zero dimensional systems such as quantum dots [73–76],
Luttinger-Liquid physics in one-dimensional (1D) [77–79] and extensive studies were performed on the Hubbard model
[80–90] with respect to superconducting and magnetic instabilities. Using multi-orbital extensions [91] of the method
together with ab initio models, superconductivity in copper [92], iron [92–96] and nickel-based superconductors [97]
were investigated.

In the realm of spin system, which are the main focus of our work, FRG was introduced by Reuther in References [98]
and [99] in terms of the Abrikosov pseudo-fermions discussed in Chapter 5. However, before laying out the details
of this implementation in Chapter 7, in the current section, we want to introduce the general FRG formalism, without
focussing on a particular implementation.

As there is a plethora of reviews [73, 79, 91, 100–102] and textbooks [103] on the method, we aim at giving as
concise of an introduction as while being pedagogical enough to follow the derivation of the FRG flow-equations from
scratch. In the subsequent discussion, we will follow closely the notation of Reference [99] in this discussion.

6.1 General setup

The main idea behind the renormalization group in general and FRG in particular, is, to make a connection between
the fully correlated many-body problem and an effective microscopic description of the same system, based on a
single-particle picture.
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This connection is made by defining a path through the space of physical models, starting from the microscopic
Hamiltonian description, gradually including correlations corresponding to the low-energy sector, till the description
arrives at the full physical model.

The most pictorial description of this procedure is the block spin renormalization group due to Kadanoff [104],
which prescribes renormalization procedure in real space, grouping together localized spins to coarsen the system and
include spatially longer-range correlations into its description.

The FRG aims at a similar procedure, while operating at a more general and formal level. Starting point is a generic
fermionic system, described by the Hamiltonian

𝐻 = 𝐻0 + 𝐻int (6.1)

with a kinetic term
𝐻0 =

∑︂
𝑘,𝑘′

𝜁𝑘,𝑘′𝑐
†
𝑘′𝑐𝑘 , (6.2)

where 𝑐† (𝑐) are fermionic creation (annihilation) operators. The indices 𝑘 , 𝑘 ′ represent a full set of generalized
quantum numbers labeling the fermions. If one or more of these are continuous the summation implies a suitably
normalized integration over the respective quantum numbers. 𝜁𝑘,𝑘′ is a generalized hopping matrix.

We furthermore consider a generic biquadratic interaction of the form

𝐻int =
∑︂

𝑘1 ,𝑘
′
1 ,𝑘2 ,𝑘

′
2

𝑉
𝑘1 ,𝑘2;𝑘′1 ,𝑘

′
2
𝑐†
𝑘′1
𝑐†
𝑘′2
𝑐
𝑘2
𝑐
𝑘1
, (6.3)

where the interaction matrix V is antisymmetric under pairwise exchange of indices.

6.2 Generating functionals

Before deriving the FRG equations, we repeat the main elements of the path integral representation of Green’s
functions, mainly to fix our notation for the following discussions. To this end, we start from the functional integral
representation of the partition function given by

Z = Tr
[︁
𝑒−𝛽𝐻

]︁
=

∫
D[Ψ̄,Ψ] exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−

𝛽∫
0

d𝜏
⎛⎜⎜⎜⎜⎝
∑︂
𝑘,𝑘′

Ψ̄𝑘′ (𝜏 + 0+) (𝜕𝜏 + 𝜉𝑘 ,𝑘′ )Ψ𝑘 (𝜏)

+
∑︂
𝑘1 ,𝑘

′
1 ,

𝑘2 ,𝑘
′
2

Ψ̄𝑘′1 (𝜏 + 0+)Ψ̄𝑘′2 (𝜏 + 0+)𝑉𝑘1 ,𝑘2;𝑘′1 ,𝑘
′
2
Ψ𝑘2

(𝜏)Ψ𝑘1
(𝜏)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)

where we replaced the creation and annihilation operators by Grassmann fields Ψ and Ψ̄, which are dependent on
imaginary time 𝜏. This dependence is periodic with the inverse temperature 𝛽. Therefore, the imaginary frequency
representation of the fields is given in terms of a discrete Fourier series
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Ψ𝑘 (𝜏) = 1
𝛽

∑︂
𝜔𝑛

Ψ𝑘 (i𝜔𝑛)e−i𝜔𝑛𝜏 (6.5)

with fermionic Matsubara frequencies 𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽 (𝑛 ∈ Z). The corresponding inverse transform reads

Ψ𝑘 (i𝜔𝑛) =
𝛽∫

0

d𝜏 Ψ𝑘 (𝜏)e−i𝜔𝑛𝜏 . (6.6)

Introducing the compact notation (︁
Ψ̄, 𝐴Ψ

)︁ ≡ ∑︂
1,1′

Ψ̄1′𝐴1′1Ψ1, (6.7)

with the multi-index 1 = (i𝜔1, 𝑘1) and again treating sums over this index as sums/integrals over all contained
indices, we can rewrite the partition function in the compact form

Z
Z0

=
1
Z0

∫
D[Ψ̄,Ψ] e(Ψ̄,𝐺−1

0 Ψ) − 𝑆int , (6.8)

where we divide by the noninteracting partition function Z0 = Tr
[︁
𝑒−𝛽𝐻0

]︁
to cancel additional factors from possibly

changing the integration measure. The inverse bare propagator is given by

(𝐺−1
0 )1,1′ = (i𝜔1 − 𝜉𝑘1 ,𝑘1′ )𝛿(i𝜔1 − i𝜔1′ ) (6.9)

and we defined the interacting part of the action

𝑆int =
1
𝛽

∑︂
1 ,1′ ,
2 ,2′

𝛿i𝜔′
1+i𝜔′

2−i𝜔1−i𝜔2
𝑉𝑘′1 ,𝑘

′
2;𝑘1 ,𝑘2

Ψ̄𝑘′1 (i𝜔
′
1)Ψ̄𝑘′2 (i𝜔

′
2)Ψ𝑘2

(i𝜔2)Ψ𝑘1
(i𝜔1). (6.10)

From a physical point of view, the objects of interest are the𝑚-particle Green’s functions, which are the (imaginary)
time-ordered expectation values of 𝑚 creation and annihilation operators

𝐺𝑚 (1′, . . . , 𝑚′; 1, . . . , 𝑚) = (−1)𝑚
⟨︂
𝑇

{︂
𝑐†1′ . . . 𝑐

†
𝑚′𝑐𝑚 . . . 𝑐1

}︂⟩︂
(6.11)

=
1
Z

∫
𝐷 [Ψ̄,Ψ] Ψ̄𝑘′1 (𝜏

′
1) . . . Ψ̄𝑘′𝑚 (𝜏′𝑚)Ψ𝑘𝑚 (𝜏𝑚) . . .Ψ𝑘1

(𝜏1)𝑒(Ψ̄,𝐺
−1
0 Ψ) − 𝑆int , (6.12)

as these govern the behavior of the quantum system.
The functional integral form eq. (6.12) of this definition hints towards the possibility of defining a generating

functional for all Green’s function. To this end, we introduce two further Grassmann fields 𝜂 and 𝜂̄, called source
field, and couple these to the original fermionic fields, leading to the generating functional for Green’s functions

W[𝜂, 𝜂̄] = 1
Z

∫
D[Ψ̄,Ψ]𝑒(Ψ̄,𝐺−1

0 Ψ)−𝑆𝑖𝑛𝑡−(Ψ̄,𝜂)−( 𝜂̄,Ψ)

=
Z[𝜂, 𝜂̄]

Z .

(6.13)

Here we have defined an extension Z[𝜂, 𝜂̄] of the partition sum including the coupling to the source field. The
normalization is chosen such that W[0, 0] = 1.
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From eq. (6.13) we can derive all 𝑚-particle Green’s functions by taking functional derivatives with respect to the
source field and setting them to zero afterward:

𝐺𝑚 (1′, . . . , 𝑚′; 1, . . . , 𝑚) = (−1)𝑚 𝛿

𝛿𝜂̄1′
. . .

𝛿

𝛿𝜂̄𝑚′

𝛿

𝛿𝜂1
. . .

𝛿

𝛿𝜂𝑚
W[𝜂, 𝜂̄]

|︁|︁|︁|︁
𝜂=𝜂̄=0

. (6.14)

The factor (−1)𝑚 is inserted to cancel the signs from the anticommutativity of the Graßmann derivatives. The full
Green’s functions, however, are cumbersome to work with, as generic operator expectation values always require a
cancellation of the disconnected parts of the involved Green’s functions [105]. The latter, in a diagrammatic language,
can be decomposed into products of two or more other fully connected diagrams, which are not mutually connected.

It is therefore convenient, to distill the fully connected parts of eq. (6.14) from the beginning to avoid the technical-
ities, which subtractions of (possibly) divergent disconnected parts are accompanied by.

Conveniently, by taking the logarithm of W[𝜂, 𝜂̄], we obtain the generating functional

W𝑐 [𝜂, 𝜂̄] = ln(W[𝜂, 𝜂̄]), (6.15)

from which we can obtain the connected 𝑚-particle Green’s functions by taking functional derivatives analogous
to eq. (6.14) [105]:

𝐺𝑐𝑚 (1′, . . . , 𝑚′; 1, . . . , 𝑚) = (−1)𝑚 𝛿

𝛿𝜂̄1′
. . .

𝛿

𝛿𝜂̄𝑚′

𝛿

𝛿𝜂1
. . .

𝛿

𝛿𝜂𝑚
W𝑐 [𝜂, 𝜂̄]

|︁|︁|︁|︁
𝜂=𝜂̄=0

. (6.16)

Although this new functional reduces the redundant information contained in the full generating functional W
by excluding unconnected contributions, there is still more redundancy in this description: some diagrams can be
separated into two mutually unconnected parts by cutting a single line, i.e. they are just products of multiply connected
parts and a suitable connecting propagator. For a full description of the physical system, it suffices therefore to know
just these one-particle irreducible (1PI) quantities with amputated external legs [105].

The functional generating those objects is the effective action Γ, which can be obtained from W𝑐 by means of a
Legendre transformation

Γ[𝜙̄, 𝜙] = −W𝑐 [𝜂, 𝜂̄] − (︁
𝜙̄, 𝜂

)︁ − (𝜂̄, 𝜙) +
(︂
𝜙̄, 𝐺−1

0 𝜙
)︂
, (6.17)

where 𝜂, 𝜂̄ are now to be treated as functionals of the conjugate external fields 𝜙, 𝜙̄, obtained by inverting the
definitions

𝜙 = −𝛿W
𝑐

𝛿𝜂̄
𝜙̄ =

𝛿W𝑐

𝛿𝜂
(6.18)

of the latter.
The amputated 𝑚-particle vertex 𝛾𝑚 functions can in turn be computed as derivatives of eq. (6.17) with respect to

the external fields

𝛾𝑚 (1′, . . . , 𝑚′; 1, . . . , 𝑚) = 𝛿

𝛿𝜙̄1′
. . .

𝛿

𝛿𝜙̄𝑚′

𝛿

𝛿𝜙𝑚
. . .

𝛿

𝛿𝜙1
Γ

[︁
𝜙̄, 𝜙

]︁ |︁|︁|︁|︁
𝜙=𝜙̄=0

(6.19)

Note that the definition of the effective action in eq. (6.17) differs from the one used, e.g., in perturbative FRG by
the Gaussian term

(︁
𝜙̄, 𝐺−1

0 𝜙
)︁

in the external fields. We include this term to both connect to existing pseudo-fermion
functional renormalization group (PFFRG) literature and to simplify the connection between the two-particle vertex
and the self-energy, as we will show by relating the second derivatives of the Γ and W𝑐.
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6.3 Connecting different Green’s and vertex functions

In the previous section, we have heavily relied on the fact, that Green’s functions can be reduced to their connected
parts and these in turn can be expressed using one-particle irreducible vertex functions. For a full derivation, we defer
the interested reader to the excellent discussions in References [103] and [105]. In the following, we collect the main
results on the one- and two-particle functions we will use in our implementation of FRG.

6.3.1 From full to connected Green’s functions

Starting from the one-particle Green’s function as the most instructive example, we can use the relations between
Green’s functions and their generating functionals in Equations (6.14) and (6.16) together with the definitions of the
latter given in Equations (6.13) and (6.15) to relate

𝐺1 (1′; 1) = − 𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂1
W[𝜂, 𝜂̄]

|︁|︁|︁|︁
𝜂=𝜂̄=0

= − 1
Z

𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂1
Z[𝜂, 𝜂̄]

|︁|︁|︁|︁
𝜂=𝜂̄=0

= −
[︃

1
Z[𝜂, 𝜂̄]

𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂1
Z[𝜂, 𝜂̄]

]︃
𝜂=𝜂̄=0

= − 𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂1
W𝑐 [𝜂, 𝜂̄]

|︁|︁|︁|︁
𝜂=𝜂̄=0

= 𝐺𝑐1 (1′; 1).

(6.20)

This confirms the rather obvious notion, that a one-particle Green’s function will always consist of connected
diagrams.

The simplest non-trivial relation is found for the two-particle Green’s function along similar lines

𝐺2 (1′, 2′; 1, 2) = (−1)2 1
Z

𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂̄2′

𝛿

𝛿𝜂1

𝛿

𝛿𝜂2
Z[𝜂, 𝜂̄]

|︁|︁|︁|︁
𝜂=𝜂̄=0

=
1
Z

[︃
𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂1
Z[𝜂, 𝜂̄] 𝛿

𝛿𝜂̄2′

𝛿

𝛿𝜂2
W𝑐 [𝜂, 𝜂̄]

]︃
𝜂=𝜂̄=0

=

[︃
𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂̄2′

𝛿

𝛿𝜂1

𝛿

𝛿𝜂2
W𝑐 [𝜂, 𝜂̄] +

(︃
𝛿

𝛿𝜂̄1′

𝛿

𝛿𝜂1
W𝑐 [𝜂, 𝜂̄]

)︃ (︃
𝛿

𝛿𝜂̄2′

𝛿

𝛿𝜂2
W𝑐 [𝜂, 𝜂̄]

)︃]︃
𝜂=𝜂̄=0

= 𝐺𝑐2 (1′, 2′; 1, 2) + 𝐺𝑐1 (1′; 1)𝐺𝑐1 (2′; 2).

(6.21)

This decomposition of the full two-particle Green’s function into its connected counterpart and products of connected
one-particle functions generalizes to 𝑚-particle Green’s functions, which similarly can be decomposed in connected
𝑚-particle Green’s functions and products of 𝑛 < 𝑚 particle ones [103, 105]. With this realization, we also gain an a
posteriori justification, that W𝑐 actually generates connected Green’s functions.

6.3.2 Tree expansion

A similar connection, commonly known as tree expansion can be made between the connected Green’s and the vertex
functions generated by the effective interaction Γ. We again illustrate this on the level of one- and two-particle
connected Green’s functions.
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This process, however, is a bit more involved, as the definition of the effective action eq. (6.17) involves a change
of field variables in the functional via Legendre transform. We therefore start out derivation by calculating the first
derivatives of the effective action with respect to the new field variables

𝛿Γ
𝛿𝜙1

= −
(︃
𝛿W𝑐

𝛿𝜂
,
𝛿𝜂

𝛿𝜙1

)︃
−

(︃
𝛿W𝑐

𝛿𝜂̄
,
𝛿𝜂̄

𝛿𝜙1

)︃
+ 𝜂̄1 −

(︂
𝜙̄ 𝐺−1

0

)︂
1
+

(︃
𝜙̄,

𝛿𝜂

𝛿𝜙1

)︃
−

(︃
𝛿𝜂̄

𝛿𝜙1
, 𝜙

)︃
= −

(︃
𝜙̄,

𝛿𝜂

𝛿𝜙1

)︃
−

(︃
𝜙,

𝛿𝜂̄

𝛿𝜙1

)︃
+ 𝜂̄1 −

(︂
𝜙̄ 𝐺−1

0

)︂
1
+

(︃
𝜙̄,

𝛿𝜂

𝛿𝜙1

)︃
−

(︃
𝛿𝜂̄

𝛿𝜙1
, 𝜙

)︃
= 𝜂̄1 −

∑︂
2
𝜙̄2

(︂
𝐺−1

0

)︂
21

(6.22)

𝛿Γ

𝛿𝜙̄1
= −

(︃
𝛿W𝑐

𝛿𝜂
,
𝛿𝜂

𝛿𝜙̄1

)︃
−

(︃
𝛿W𝑐

𝛿𝜂̄
,
𝛿𝜂̄

𝛿𝜙̄1

)︃
− 𝜂1 +

(︂
𝐺−1

0 𝜙
)︂

1
+

(︃
𝜙̄,

𝛿𝜂

𝛿𝜙̄1

)︃
−

(︃
𝛿𝜂̄

𝛿𝜙̄1
, 𝜙

)︃
= −𝜂1 +

∑︂
2

(︂
𝐺−1

0

)︂
12
𝜙1,

(6.23)

where we used eq. (6.18) to simplify the relations.
These we can now can use as a starting point to connect the second derivatives of the generating functionals by

using the chain rule of differentiation, by considering

𝛿11′ =
𝛿𝜙1
𝛿𝜙1′

= − 𝛿

𝛿𝜙1′

𝛿W𝑐

𝛿𝜂̄1

= −
(︃
𝛿𝜂

𝛿𝜙′1
,
𝛿2W𝑐

𝛿𝜂𝛿𝜂̄1

)︃
−

(︃
𝛿𝜂̄

𝛿𝜙′1
,
𝛿2W𝑐

𝛿𝜂̄𝛿𝜂̄1

)︃
=

∑︂
2

[︃(︃
𝛿2Γ

𝛿𝜙1′𝛿𝜙̄2
−

(︂
𝐺−1

0

)︂
21′

)︃
𝛿2W𝑐

𝛿𝜂2𝛿𝜂̄1
− 𝛿2Γ
𝛿𝜙1′𝛿𝜙2

𝛿2W𝑐

𝛿𝜂̄2𝛿𝜂̄1

]︃
, (6.24)

and

0 =
𝛿𝜙̄1
𝛿𝜙1′

=
∑︂

2

[︃(︃
− 𝛿2Γ

𝛿𝜙1′𝛿𝜙̄2
+

(︂
𝐺−1

0

)︂
21′

)︃
𝛿2W𝑐

𝛿𝜂2𝛿𝜂1
− 𝛿2Γ
𝛿𝜙1′𝛿𝜙2

𝛿2W𝑐

𝛿𝜂̄2𝛿𝜂1

]︃
. (6.25)

Similar expressions for 𝛿𝜙̄1
/︁
𝛿𝜙̄1′ and 𝛿𝜙1

/︁
𝛿𝜙̄1′ can be computed. Combining all these equations, we find the

matrix relation [98]

V =
⎛⎜⎜⎝
𝛿2W𝑐

𝛿 𝜂̄ 𝛿𝜂 − 𝛿2W𝑐

𝛿 𝜂̄ 𝛿 𝜂̄

− 𝛿2W𝑐

𝛿𝜂𝛿𝜂
𝛿2W𝑐

𝛿𝜂𝛿 𝜂̄

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝛿2Γ
𝛿 𝜙̄ 𝛿𝜙

+ 𝐺−1
0

𝛿2Γ
𝛿 𝜙̄ 𝛿 𝜙̄

𝛿2Γ
𝛿𝜙𝛿𝜙

𝛿2Γ
𝛿𝜙𝛿 𝜙̄

− (︁
𝐺−1

0
)︁𝑇⎞⎟⎟⎠

−1

. (6.26)

Setting the external fields 𝜂 and 𝜂̄ to zero on both sides of eq. (6.26) and assuming, that the second derivatives of the
free energy with respect to two fields of the same kind is vanishing1, we find for the upper left component of eq. (6.26)

𝐺𝑐1 (1′; 1) = 𝛿2W𝑐

𝛿𝜂̄1′𝛿𝜂 1

|︁|︁|︁|︁
𝜂=𝜂̄=0

=

(︄
𝛿2Γ

𝛿𝜙̄
′
1𝛿𝜙1

|︁|︁|︁|︁
𝜙=𝜙̄=0

+ 𝐺−1
0 (1′; 1)

)︄−1

=
(︂
𝛾1 (1′; 1) + 𝐺−1

0 (1′; 1)
)︂−1

. (6.27)

1This has always to be the case, as long as the particle number is conserved, which is especially true for Abrikosov Pseudo-Fermions, as a result
of the SU(2) gauge symmetry inherent in this mapping, see Section 5.2.
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Now eq. (6.27) is simply Dyson’s equation, where the one-particle vertex 𝛾1 takes on the role of the negative
self-energy Σ:

𝛾1 = −Σ . (6.28)

Note, that we have found this identity directly, as we have included the Gaussian part in eq. (6.17). If we had taken a
pure Legendre transform W𝑐 without the Gaussian part, eq. (6.28) would contain an additive inverse bare propagator
on the right-hand side. The addition of the Gaussian part is however only relevant for the one-particle vertex, as
it vanishes due to the higher derivatives of W𝑐 with respect to the source fields taken to calculate 𝑚 > 2-particle
vertices.

The tree expansion for the connected two-particle Green’s function 𝐺𝑐2 follows the same line of argument, starting
from higher derivatives of the field 𝜙 and 𝜙̄ with respect to themselves. As this calculation is more involved, we refer
the interested reader to References [103] and [105] for details and only cite the result. The connected two-particle
Green’s function can be expressed as a two-particle vertex function with a single-particle Green’s function attached to
each of the external legs:

𝐺𝑐2 (1′, 2′; 1, 2) =
∑︂

3′ ,4′ ,3,4
𝐺𝑐1 (1′; 3′)𝐺𝑐1 (2′; 4′)𝛾2 (3′, 4′; 3, 4)𝐺𝑐1 (3; 1)𝐺𝑐1 (4; 2). (6.29)

As, according to eq. (6.20) connected and full one-particle Green’s function are equivalent, 𝐺𝑐1 in eq. (6.29) can
equally well be replaced by 𝐺1.

6.4 Flow-equations

Having discussed the definitions of the relevant generating functionals as well as the connections of the different
Green’s and vertex functions one can obtain from these, we are now well-equipped to derive the so-called flow
equations of FRG. In particular, we aim for an renormalization group (RG) equation for the effective action defined in
eq. (6.17), as it both contains all physical information and, at the same time, we can deduce sensible initial conditions
for the flow, as we will show in Section 6.6.

The FRG aims at connecting the microscopic physical model, only containing high-energy degrees of freedom, in a
controlled way to the low energy model containing all correlations induced by interactions, as already discussed in the
beginning of this chapter. This is achieved by defining a path through the space of physical models, which connects
these two limits and along its way includes more and more low-energy degrees of freedom.

In FRG such a flow is implemented in frequency space by introducing a multiplicative regulator function 𝑅(𝜔,Λ)
in the free propagator, which suppresses all degrees of freedom below a cut-off Λ. Then, starting from the high-energy
limit Λ → ∞ the full theory can be obtained by lowering the cut-off down to Λ = 0.

We, therefore, have to consider a regulated bare propagator

𝐺0 (𝑖𝜔) → 𝐺Λ
0 (𝑖𝜔) = 𝑅(𝜔,Λ)𝐺0 (𝑖𝜔), (6.30)

which depends on the scale by means of the regulator. To implement the desired RG flow, the regulator function
has to fulfill
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𝑅(𝜔,Λ) =
⎧⎪⎪⎨⎪⎪⎩

0 for Λ → ∞
1 for Λ → 0,

(6.31)

meaning, that

𝐺Λ
0 =

⎧⎪⎪⎨⎪⎪⎩
0 for Λ → ∞
𝐺0 for Λ → 0.

(6.32)

This implies, that the regulator effectively freezes out all fluctuations with 𝜔 ≲ Λ and therefore at Λ → ∞ no
correlations can build up. In principle, one could also use a momentum space regulator, as regularly done for
itinerant fermion systems citePlatt2013, but due to the strict locality of the pseudo-fermion Hamiltonian discussed in
Section 5.4.6 we will refrain from this possibility and use the frequency regulator discussed here.

Replacing all propagators according to eq. (6.30), all generating functionals and consequently all Green’s and vertex
functions acquire a dependence on the flow parameter Λ.

6.4.1 Flow of the generating functionals for Green’s functions

As a first intermediate step, we will derive the flow equation for the generating functional of the connected 𝑚-particle
Green’s functions W𝑐 defined in eq. (6.15). We, however, not only implement the replacement of the propagators
eq. (6.30), but for convenience, we also change Z → ZΛ

0 in the denominator. This modifies W𝑐 and therefore the
effective action only by an additional constant ln

(︁ZΛ/︁ZΛ
0

)︁
, independent of the external fields, such that both the

connected Green’s functions and vertex functions are unchanged by this replacement.
To derive the flow equations we now take the derivative of eq. (6.15) after doing the replacements and find

dW𝑐,Λ

dΛ
=

1
WΛ

d
dΛ

[︄
1
ZΛ

0

∫
𝐷 [Ψ̄,Ψ]e

(︂
Ψ̄,(𝐺Λ

0 )−1
Ψ

)︂
−𝑆int−(Ψ̄,𝜂)−( 𝜂̄,Ψ)

]︄
=

1
WΛ

1
ZΛ

0

∫
𝐷 [Ψ̄,Ψ]

(︄
Ψ̄,

d
(︁
𝐺Λ

0
)︁−1

dΛ
Ψ

)︄
𝑒

(︂
Ψ̄,(𝐺Λ

0 )−1
Ψ

)︂
−𝑆int−(Ψ̄,𝜂)−( 𝜂̄,Ψ) − 1

ZΛ
0

dZΛ
0

dΛ

= − 1
WΛ

(︄
𝛿

𝛿𝜂
,

d
(︁
𝐺Λ

0
)︁−1

dΛ
𝛿

𝛿𝜂̄

)︄
WΛ − 1

ZΛ
0

∫
𝐷 [Ψ̄,Ψ]

(︄
Ψ̄,

d
(︁
𝐺Λ

0
)︁−1

dΛ
Ψ

)︄
e
(︂
Ψ̄,(𝐺Λ

0 )−1
Ψ

)︂

= − 1
WΛ

(︄
𝛿

𝛿𝜂
,

d
(︁
𝐺Λ

0
)︁−1

dΛ
𝛿

𝛿𝜂̄

)︄
WΛ −

∑︂
1,1′

(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
1,1′

1
ZΛ

0

∫
𝐷 [Ψ̄,Ψ]Ψ̄1Ψ1′e

(︂
Ψ̄,(𝐺Λ

0 )−1
Ψ

)︂

= − 1
WΛ

(︄
𝛿

𝛿𝜂
,

d
(︁
𝐺Λ

0
)︁−1

dΛ
𝛿

𝛿𝜂̄

)︄
WΛ −

∑︂
1,1′

(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
1,1′

(︂
𝐺Λ

0

)︂
1′ ,1

= − 1
WΛ

(︄
𝛿

𝛿𝜂
,

d
(︁
𝐺Λ

0
)︁−1

dΛ
𝛿

𝛿𝜂̄

)︄
WΛ − Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
,

(6.33)

where we used, the definition of the bare propagator in functional integral language in the second-to-last step. To
connect to the effective action we have to simplify the first term in (6.33) further by using (6.15) and explicitly taking
the derivatives to find
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dW𝑐,Λ

dΛ
= − e−W

𝑐,Λ
∑︂
1,1′

(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
1,1′

𝛿

𝛿𝜂1

𝛿

𝛿𝜂̄1′
eW

𝑐,Λ − Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
= − e−W

𝑐,Λ
∑︂
1,1′

(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
1,1′

𝛿

𝛿𝜂1
eW

𝑐,Λ 𝛿W𝑐,Λ

𝛿𝜂̄1′
− Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
= −

∑︂
1,1′

(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
1,1′

𝛿W𝑐,Λ

𝛿𝜂1

𝛿W𝑐,Λ

𝛿𝜂̄1′
−

∑︂
1,1′

(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
1,1′

𝛿2W𝑐,Λ

𝛿𝜂1𝛿𝜂̄1′
− Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
= − Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
+ Tr

[︄(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
𝛿2W𝑐,Λ

𝛿𝜂̄𝛿𝜂

]︄
−

(︄
𝛿W𝑐,Λ

𝛿𝜂
,

d
(︁
𝐺Λ

0
)︁−1

dΛ
𝛿W𝑐,Λ

𝛿𝜂̄

)︄
(6.34)

This flow equation is the starting point for a field theoretical method known as exact renormalization group.

6.4.2 Flow of the effective interaction

For FRG, however, we want to focus on the flow of the effective action, defined in eq. (6.17). To arrive there, we first
have to note, that by changing the independent variable from 𝜂 to 𝜙 in the Legendre transform means, that the former
acquire a dependence on the renormalization scale Λ by the relation eq. (6.18), while the latter, being an external
source field, do not.

Taking the derivative of eq. (6.17) the flow is found to be

dΓΛ

dΛ
= −dW𝑐,Λ [𝜂Λ, 𝜂̄Λ]

dΛ
−

(︃
𝜙̄,
𝜕𝜂Λ

𝜕Λ

)︃
−

(︃
𝜕𝜂̄Λ

𝜕Λ
, 𝜙

)︃
+

(︄
𝜙̄,
𝜕
(︁
𝐺Λ

0
)︁−1

𝜕Λ
𝜙

)︄
= −𝜕W

𝑐,Λ

𝜕Λ
−

∑︂
1

(︄
𝜕𝜂Λ1
𝜕Λ

𝛿W𝑐,Λ

𝛿𝜂Λ1
+ 𝜕𝜂̄

Λ
1

𝜕Λ
𝛿W𝑐,Λ

𝛿𝜂̄Λ1

)︄
−

(︃
𝜙̄,
𝜕𝜂Λ

𝜕Λ

)︃
−

(︃
𝜕𝜂̄Λ

𝜕Λ
, 𝜙

)︃
+

(︄
𝜙̄,
𝜕
(︁
𝐺Λ

0
)︁−1

𝜕Λ
𝜙

)︄
= −𝜕W

𝑐,Λ

𝜕Λ
+

(︄
𝜙̄,
𝜕
(︁
𝐺Λ

0
)︁−1

𝜕Λ
𝜙

)︄
.

(6.35)

Note the order of the factors in the second term of eq. (6.35), which have been simplified using eq. (6.18).
Substituting eq. (6.34) we can remove the dependence on W𝑐,Λ

dΓΛ

dΛ
= Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
− Tr

[︄(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
𝛿2W𝑐,Λ

𝛿𝜂̄𝛿𝜂

]︄
−

(︄
𝜙̄,
𝜕
(︁
𝐺Λ

0
)︁−1

𝜕Λ
𝜙

)︄
+

(︄
𝜙̄,
𝜕
(︁
𝐺Λ

0
)︁−1

𝜕Λ
𝜙

)︄
= Tr

[︄
d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ

0

]︄
− Tr

[︄(︄
d
(︁
𝐺Λ

0
)︁−1

dΛ

)︄
VΛ

1,1

]︄
,

(6.36)

where VΛ
1,1 is the upper left component of eq. (6.26).

Equation (6.36), also known as Wetterich equation [62], is the central object of FRG, which we will in the following
make amenable to numerical treatment.
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6.4.3 Vertex function flow

Although representing an exact relation, the flow of the effective Action eq. (6.36) in its current form is not suitable
for numerical investigations. As the physically interesting vertex functions can only be obtained from Γ by the means
of functional derivatives, one would be faced to track the complete functional structure in a solution of eq. (6.36).
Both analytically and numerically, this is an insurmountable task, such that we resort to further refining this equation.

To this end, consider the definition of the vertex functions in eq. (6.19). From it, we can infer an expansion of the
effective action in terms of the source fields

ΓΛ =
∞∑︂
𝑘=1

(−1)𝑘
𝑘!

∑︂
1′ ,...,𝑘′

∑︂
1,...,𝑘

𝛾Λ𝑘 (1′, . . . , 𝑘 ′; 1, . . . , 𝑘)𝜙̄1′ . . . 𝜙̄𝑘′𝜙𝑘 . . . 𝜙1 , (6.37)

which we can substitute directly into the left-hand side of eq. (6.36). Expanding also the right-hand side of this
equation and comparing coefficients will lead to a set of flow equations for the 𝑚-paricle vertices. To this end, we
rewrite V aiming at the use of a geometric series according to

VΛ =
⎛⎜⎜⎝
𝛿2ΓΛ

𝛿 𝜙̄ 𝛿𝜙
+ (︁
𝐺Λ

0
)︁−1 𝛿2ΓΛ

𝛿 𝜙̄ 𝛿 𝜙̄

𝛿2ΓΛ

𝛿𝜙𝛿𝜙
𝛿2ΓΛ

𝛿𝜙𝛿 𝜙̄
−

[︂ (︁
𝐺Λ

0
)︁−1

]︂𝑇⎞⎟⎟⎠
−1

(6.38)

=

⎡⎢⎢⎢⎢⎢⎣1 −
⎛⎜⎜⎝
−𝐺Λ 0

0
[︁
𝐺Λ

0
]︁𝑇⎞⎟⎟⎠

⎛⎜⎜⎝
UΛ 𝛿2ΓΛ

𝛿 𝜙̄ 𝛿 𝜙̄

𝛿2ΓΛ

𝛿𝜙𝛿𝜙 −UΛ

⎞⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
−1

·
⎛⎜⎜⎝
−𝐺Λ 0

0
[︁
𝐺Λ

]︁𝑇⎞⎟⎟⎠ , (6.39)

where we have defined the shorthand UΛ = 𝛿2ΓΛ

𝛿 𝜙̄ 𝛿𝜙
− 𝛾1. This enables us to perform an expansion of the upper left

entry of VΛ in terms of propagators

VΛ
1,1 = 𝐺Λ − 𝐺ΛUΛ𝐺Λ + 𝐺ΛUΛ𝐺ΛUΛ𝐺Λ − 𝐺Λ 𝛿

2ΓΛ

𝛿𝜙̄𝛿𝜙̄

[︁
𝐺Λ]︁𝑇 𝛿2ΓΛ

𝛿𝜙𝛿𝜙
𝐺Λ + . . . (6.40)

Please note, that in this expansion the double derivatives with respect to the same kind of field do not vanish even
in symmetry unbroken phases, as source fields are not set to zero in this calculation.

Finally, combining the Wetterich equation eq. (6.36), the vertex expansion of the effective action eq. (6.37) and
the expansion of the matrix V eq. (6.40), we can find the flow equations for the one- and two-particle vertices by
comparing the coefficients in the Wetterich equation for terms quadratic and quartic in the source field, respectively.

For the two-particle vertex, we find

d
dΛ

𝛾Λ1 (1′; 1) =
∑︂
2′ ,2

𝛾Λ2 (1′, 2′; 1, 2)𝑆Λ (2, 2′) (6.41)

with the so-called single-scale propagator

𝑆Λ = 𝐺Λ d
(︁
𝐺Λ

0
)︁−1

dΛ
𝐺Λ = − d

dΛ
𝐺Λ

|︁|︁|︁|︁
𝛾Λ1 =const

(6.42)

as the derivate of the full propagator with respect to the scale Λ without considering the scale dependence of the
one-particle vertex, i.e. not including the contributions of the self-energy flow.
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Figure 6.1: Diagrammatic representation of the FRG flow equations of the (a) one-particle (circle, eq. (6.41)) and (b) two-particle
vertex (square, eq. (6.43)). The hexagon denotes the three-particle vertex, arrows represent full Green’s functions 𝐺Λ, while
slashed arrows are single scale propagators 𝑆Λ. The label corresponding to a propagator means, that it depends on both the
primed and unprimed variable.

From eq. (6.41) we immediately see, that the two-particle vertex couples both to itself, as it is part of the full
propagator 𝐺Λ via Dyson’s equation eq. (6.27), but also to the two-particle vertex 𝛾Λ2 . This is a recurring theme, as in
the flow for the two-particle vertex

𝛾Λ2 (1′, 2′; 1, 2) =
∑︂

3′ ,4′ ,3,4

[︁
𝛾Λ2 (1′, 2′; 3, 4)𝛾Λ2 (3′, 4′; 1, 2)

− 𝛾Λ2 (1′, 4′; 1, 3)𝛾Λ2 (3′, 2′; 4, 2) − (3′ ↔ 4′, 3 ↔ 4)
+𝛾Λ2 (2′, 4′; 1, 3)𝛾Λ2 (3′, 1′; 4, 2) + (3′ ↔ 4′, 3 ↔ 4)]︁
× 𝐺Λ (3, 3′)𝑆Λ (4, 4′)

+
∑︂
3′ ,3

𝛾Λ3 (1′, 2′, 3′; 1, 2, 3)𝑆Λ (2, 3′)

(6.43)

also one- (through 𝐺Λ), two- and even three-particle vertices enter.
Along the same lines, one can calculate flow equations for all 𝑚-particle vertices. As exemplified here, these

equations will depend on all other vertices up to the (𝑚 + 1)-particle order. Therefore, the vertex flow equations form
an infinite system of coupled ordinary differential equations.2 This is the direct result of the appearance of second
derivatives with respect to external sources in VΛ

1,1.
A diagrammatic representation of the flow equations is shown in Figure 6.1. It decomposes into four classes

of diagrams: the first line in eq. (6.43), corresponding to the first diagram in Figure 6.1(b) is the particle-particle
diagram, also called 𝑠-channel in literature3. The second line of eq. (6.43) (second and third diagram) are called
direct particle-hole diagrams or alternatively 𝑡-channel. The crossed particle hole terms are found in the third line of
eq. (6.43) (fourth and fifth diagram), which are also dubbed 𝑢-channel contributions. The last contribution (fourth
line/last diagram) concerns the influence of the three-particle vertex on the flow of 𝛾2. This part will be the focus of
the approximations we employ in the following section.

2The flow equations are often considered to be integro-differential equations. This notion is however wrong, as the integrals on the right-hand
side, included in the multi-index sums, do not run over the scale Λ, which is the variable with respect to which the derivatives are taken. The
frequency integrals therefore only constitute scalar product-like couplings within the functional vector space of the vertex functions.

3In the literature on itinerant fermion FRG 𝑠-, 𝑡- and 𝑢-channel are also referred to as parallel (𝑝), crossed (𝑥) and antiparallel (𝑎) diagrams.
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6.5 Truncation of the flow

As an infinite set of differential equations is not amenable to a numerical treatment, we have to introduce an
approximation, which truncates this hierarchy after a finite number of equations. Note, that, up to now, the derivation
of the flow equations was completely exact.

The most commonly employed simplification is done, by setting all 𝑚-particle vertices with 𝑚 ≥ 3 to zero

𝛾Λ𝑚≥3 ≡ 0, (6.44)

effectively removing all three- and higher-particle correlations from the system. For itinerant fermions, this can be
justified by a power-counting argument, as the three-particle vertex has to be of higher order in the initial interaction
than the two-particle one [84, 91]. This in turn means, that for small enough interactions with respect to the bandwidth,
the three-particle vertex can be neglected as long as the system does not flow to strong coupling.

For purely interacting systems like the Abrikosov pseudo-fermions we will deal with, this approximation, however,
is a priori not justified and indeed does not capture the relevant physics in the sense, that no quantum paramagnetic
behavior shows up in the corresponding calculations [59, 98, 99].

It was, however, realized early on [98, 99], that the so-called Katanin substitution [106] cures this problem. It
amounts to a replacement of the single scale propagator with the full scale-derivative of the full propagator

𝑆Λ = − d
dΛ

𝐺Λ

|︁|︁|︁|︁
𝛾Λ1 =const

→ 𝑆Λkat = − d
dΛ

𝐺Λ

|︁|︁|︁|︁
𝛾Λ1 =const

= 𝑆Λ +
(︂
𝐺Λ

)︂2 d
dΛ

𝛾Λ1 . (6.45)

in the flow equation for the two-particle vertex, but not the one-particle one.
Such a substitution has been shown to improve the fulfillment of the Ward identities to a consistent order of the

approximation [106]. We will use this scheme in the remainder of this thesis.
The Katanin truncation can also be viewed as including parts of the three-particle vertex contributions back into

the flow of the two-particle vertex. We will discuss this notion in more detail in Section 8.1.

6.6 Initial conditions

As any differential equation, we have to supply the flow equations Equations (6.41) and (6.43) with initial conditions.
These can be found in an involved formal derivation, utilizing the generating functional for amputated connected
Green’s functions we have not considered here [107]. Instead, we will here take a more intuitive route: At the initial
cut-off Λ → ∞, all propagator lines, that could constitute diagrams contributing to the effective action vanish due to
the regulator introduced in FRG. Hence, the only diagrammatic contributions to the one-particle irreducible vertex
functions, and therefore the effective action, are constituted solely by the interactions present in the microscopic action,
given by eq. (6.10), and we conclude

ΓΛ→∞ = 𝑆int. (6.46)

Inserting the vertex expansion eq. (6.37) and comparing coefficients, we end up at the initial conditions for the specific
quartic interaction term defined in eq. (6.10), which are given by

𝛾Λ→∞
1 = 0 (6.47)
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𝛾Λ→∞
2 (1′, 2′; 1, 2) = 4𝑉1′ ,2′;1,2 (6.48)

𝛾Λ→∞
𝑚≥3 = 0. (6.49)

To conclude the discussion of initial conditions, let us note another reason for relying on the flow of the effective
action instead of building up from eq. (6.34), which describes the scale derivative of the generating functional for the
connected Green’s functions W𝑐.

Starting from its definition in eq. (6.15), combined with the definition of the generating functional for interacting
Green’s functions eq. (6.13), we find

W𝑐 = ln(Z[𝜂, 𝜂̄]) − ln(Z). (6.50)

Taking now the limit Λ → ∞, implying 𝐺Λ→∞
0 → 0, we find from eq. (6.13), that Z[𝜂, 𝜂̄] → Z, i.e. the

interactions become negligible compared to the kinetic part of the action. This implies, that W𝑐 → 0 in the initial
limit Λ → ∞, removing any notion of the interactions defining the physical system and rendering the initial condition
problem given by eq. (6.34) ill-defined.
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Chapter 7

Pseudo-Fermion Functional renormalization group

Having introduced both the Abrikosov pseudo-fermion representation and its properties in Chapter 5, as well as
the general formalism of FRG in Chapter 6, our goal now is to fuse both together, resulting in the pseudo-fermion
functional renormalization group (PFFRG). To this end, we will use the symmetry relations obtained in Section 5.4 to
establish the parametrization of one- and two-particle vertices as well as the corresponding flow equations.

7.1 Symmetry constrained parametrization of the self-energy

As a first step, we want to analyze the one-particle vertex 𝛾1, following closely the derivation given in Reference [59].
As it generically is equivalent to the self-energy (up to a sign), cf. eq. (6.28), we from hereon will switch notation and
only consider the pseudo-fermionic self-energy ΣΛ (1′; 1).

To better understand its properties, recall Dyson’s equation, eq. (6.27), which relates the connected Green’s function
and the self-energy. The former is, according to eq. (6.20) equivalent to the full Green’s function. Upon inspection of
Table 5.1 we realize, that the full one-particle Green’s function for any pseudo-fermionic system has to be diagonal in
all its quantum numbers, as we will outline in the following.

The local U(1) symmetry guarantees locality in real space. In combining with the lattice space group symmetries,
we find, that there even cannot be any dependence on the explicit real space coordinate, as we can map any real
space point back to a given reference point using translations.1 Time-translation invariance dictates diagonality in
Matsubara frequency space due to energy conservation according to Noether’s theorem [108].

As an intermediate result, we collect these findings in the parametrization

𝐺 (1′, 1) =
(︂
𝐺𝜈 (𝜔1 )𝜎𝜈𝜇1′ 𝜇1

)︂
𝛿𝑖1′ 𝑖1 𝛿𝜔1′ ,𝜔1 , (7.1)

where we have expanded the remaining spin structure in terms of Pauli matrices. A sum over 𝜈 ∈ {0, 1, 2, 3} is
implied, where 𝜎1, 𝜎2 and 𝜎3 denote the standard Pauli matrices, which are supplemented by the 2 × 2 unit matrix
𝜎0.

Combining hermitian and time-reversal symmetry, we find the relation

𝐺𝜈 (𝜔1 )𝜎𝜈𝜇1′ 𝜇1
= 𝜇1′𝜇1𝐺

𝜈 (𝜔1 )𝜎𝜈𝜇̄1 𝜇̄1′ , (7.2)

1This is only strictly true for Archimedean lattices, which only feature equivalent lattice sites. If there are 𝑛 symmetry inequivalent classes of
sites in the lattice, we would have to consider 𝑛 components of the one-particle Green’s function.
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which we can simplify realizing, that

𝜇1′𝜇1𝜎
𝜈
𝜇̄1 𝜇̄1′ = 𝜇1′𝜇1

(︂
𝜎𝜈𝜇̄1′ 𝜇̄1

)︂∗
= 𝜉 (𝜈)𝜎𝜈𝜇1′ 𝜇1

(7.3)

with

𝜉 (𝜈) =
⎧⎪⎪⎨⎪⎪⎩

1 𝜈 = 0

−1 𝜈 ∈ {1, 2, 3}.
(7.4)

This relation is purely based on the properties of Pauli matrices and will help to remove the spin-dependent prefactors
of the symmetry relations in all following discussions.

For the one-particle Green’s function, this simplifies the combined time-reversal and hermitian symmetry eq. (7.2)
to

𝐺𝜈 (𝜔1) = 𝜉 (𝜈)𝐺𝜈 (𝜔1), (7.5)

implying, that only the 𝜈 = 0 component is non-vanishing, rendering the one-particle Green’s function diagonal in the
spin index.

Along the same lines, we find that particle-hole symmetry leads to a symmetry statement with respect to the
frequency argument of 𝐺𝜈

𝐺𝜈 (𝜔1) = −𝜉 (𝜈)𝐺𝜈 (−𝜔1), (7.6)

i.e. the non-vanishing 𝜈 = 0 component of the Green’s function is antisymmetric in frequency space.
Finally, by combining time-reversal and particle hole symmetry, we can conclude, that

𝐺𝜈 (𝜔1) = −𝜉 (𝜈)𝐺𝜈 (𝜔1)∗. (7.7)

Therefore, in total, the one-particle Green’s function can be parametrized as

𝐺 (1′, 1) = 𝐺 (𝜔1)𝛿𝑖1′ 𝑖1𝛿𝜔1′ ,𝜔1𝛿𝜇1′ ,𝜇1 (7.8)

with an imaginary antisymmetric function 𝐺 (𝜔). To connect to the one-particle vertex function we have to invoke
Dyson’s equation eq. (6.27). Realizing, that for a generic pseudo-fermionic Hamiltonian given in eq. (5.15), which
lacks any kinetic term, the non-interacting one-particle Green’s function 𝐺0 (𝜔) is given by

𝐺0 (𝜔) = 1
i𝜔
. (7.9)

This means, that Dyson’s equation assumes the simple form

𝐺 (1′; 1) = 1
i𝜔1𝛿𝜔1′ ,𝜔1 − Σ(1′; 1) . (7.10)

Combining this with the parametrization eq. (7.8), we realize, that the diagonality in spin, real space and frequency
carries directly over from the one-particle Green’s function to the self-energy, leading to a similar parametrization

Σ(1′; 1) = Σ(𝜔1)𝛿𝑖1′ 𝑖1 𝛿𝜔1′ ,𝜔1 𝛿𝜇1′ ,𝜇1 . (7.11)

with Σ(𝜔) being purely imaginary and antisymmetric.
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This parametrization relies heavily on the presence of time-reversal symmetry. Its breaking, e.g. by including
magnetic fields in the Hamiltonian, would destroy this extremely simple structure by both introducing a real part and
a spin structure to the self-energy.

7.2 Spin and real-space dependence of the two-particle vertex

Similar to the self-energy, we now aim at a representation of the two-particle vertex, completely dictated by the
symmetries of the pseudo-fermion Green’s functions, summarized in Table 5.2. To this end, we first note, that by
combining the relation between full and connected two-particle Green’s function, eq. (6.21), with the tree expansion
of the latter, eq. (6.29), we find

𝐺2 (1′, 2′; 1, 2) =
∑︂

3′ ,4′ ,3,4
𝐺𝑐2 (1′; 3′)𝐺𝑐2 (2′; 4′)𝛾2 (3′, 4′; 3, 4)𝐺𝑐2 (3; 1)𝐺𝑐2 (4; 2) + 𝐺𝑐1 (1′; 1)𝐺𝑐1 (2′; 2) . (7.12)

Due to the diagonality of 𝐺𝑐 in all indices, as discussed in the previous section, all symmetries of the full two-particle
Green’s function directly carry over to the two-particle vertex 𝛾2.

To simplify notation and make connection with the existing literature [59, 98, 99, 109, 110], we will, in the remainder
of this thesis, refer to the two-particle vertex as Γ instead of 𝛾2. This is not to be confused with the effective action
Γ[𝜙̄, 𝜙].

As in the case of the self-energy, we start form the local U(1) symmetry of the pseudo-fermions, which induces a
bi-locality of the Green’s function, which leads to the expansion

Γ(1′, 2′; 1, 2) = Γ=,𝑖1𝑖2 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 − Γ×,𝑖1𝑖2 (1′, 2′; 1, 2)𝛿𝑖1′ 𝑖2 𝛿𝑖2′ 𝑖1 . (7.13)

Γ= and Γ× have been defined as the parts of the vertex i eq. (7.13), where the first and second incoming and
outgoing indices separately are located at the same real space site or are interchanged, respectively. Clearly, from the
antisymmetry of the vertex in its arguments, the relation

Γ×,𝑖1𝑖2 (1′, 2′; 1, 2) = Γ=,𝑖2𝑖1 (1′, 2′; 2, 1) , (7.14)

holds.
Employing the space group symmetries of the lattice, we are able to project back one of the site indices the vertices

depend on onto a single reference site, rendering the vertex only dependent on the difference vector of sites 𝑖1 and 𝑖2.
We, however, only note this fact, but refrain from explicitly introducing it into our notation, as it would complicate the
notation of the flow equations in the following.

As a next step, that does not involve the frequency arguments of the vertex functions, we expand the spin dependence
of the vertex in terms of Pauli matrices. This leads to

Γ=,𝑖1𝑖2 (1′, 2′; 1, 2) = Γ𝜈
′𝜈
𝑖1𝑖2

(𝜔1′ , 𝜔2′ ;𝜔1 , 𝜔2 )𝜎𝜈′𝜇1′ 𝜇1
𝜎𝜈𝜇2′ 𝜇2

(7.15)

with a similar expansion for Γ×,𝑖1𝑖2 . Summation over 𝜈′, 𝜈 is implied. In the special case of a Heisenberg Hamiltonian,
which is spin-rotation invariant, this relation can be further simplified to

Γ=,𝑖1𝑖2 (1′, 2′; 1, 2) = Γs,𝑖1𝑖2 (𝜔1′ , 𝜔2′ ;𝜔1 , 𝜔2 )𝜎𝜈𝜇1′ 𝜇1
𝜎𝜈𝜇2′ 𝜇2

+ Γd,𝑖1𝑖2 (𝜔1′ , 𝜔2′ ;𝜔1 , 𝜔2 )𝛿𝜇1′ 𝜇1 𝛿𝜇2′ 𝜇2 , (7.16)
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Figure 7.1: Diagrammatic representation of the multi-local PFFRG flow equations of the (a) self-energy Σ (circle, eq. (7.18)) and
(b) two-particle vertex Γ= (gray square, eq. (7.19)). Along solid lines of the vertices, the site index remains constant. The arrows
represent full Green’s functions 𝐺Λ, while slashed arrows are single scale propagators 𝑆Λ. A slash crossing two propagators
denotes a sum of the two possibilities of replacing one propagator by a single scale one. Along solid lines the lattice site index
remains constant.

introducing the spin- and density vertex Γs and Γd, respectively.
The last symmetry we want to invoke to simplify the two-particle vertex is a combination of the two particle hole

symmetries listed in Table 5.2, followed by a time-reversal transform, hermitian conjugation and another time-reversal
operation. This involved sequence of symmetry transforms is necessary to achieve the relation

Γ𝜈
′𝜈
𝑖1𝑖2

= 𝜉 (𝜈′)𝜉 (𝜈)
(︂
Γ𝜈

′𝜈
𝑖1𝑖2

)︂∗
, (7.17)

extremely simplifying the analytic structure of the components of the vertex functions. In particular, this means, that
both spin and density vertex Γ𝑠 and Γ𝑑 are purely real.

7.3 Multi-local flow equations

As an intermediate step, we present the multilocal flow equations, obtained by inserting the bilocal parametrization of
the two-particle vertex, eq. (7.13) into the scale derivative of the one-particle vertex eq. (6.41) and two-particle vertex
eq. (6.43), respectively. Keeping in mind the locality of the self-energy, we find

d
dΛ

ΣΛ (1′; 1) =
∑︂

2

(︄
ΓΛ
×,𝑖1𝑖1 (1′, 2; 1, 2) −

∑︂
𝑗

ΓΛ
=,𝑖1 𝑗 (1′, 2; 1, 2)

)︄
𝑆Λ (2, 2) (7.18)
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for the self-energy and

ΓΛ
=,𝑖1𝑖2 (1′, 2′; 1, 2) =

∑︂
3,4

[︁
ΓΛ
=,𝑖1𝑖2 (1′, 2′; 3, 4)ΓΛ

=,𝑖1𝑖2 (3, 4; 1, 2)

−
∑︂
𝑗

ΓΛ
=,𝑖1 𝑗 (1′, 4; 1, 3)ΓΛ

=, 𝑗𝑖2 (3, 2′; 4, 2) − (︁
3 ↔ 4

)︁
+ ΓΛ

=,𝑖1𝑖2 (1′, 4; 1, 3)ΓΛ
×,𝑖2𝑖2 (3, 2′; 4, 2) + (︁

3 ↔ 4
)︁

+ ΓΛ
×,𝑖1𝑖1 (1′, 4; 1, 3)ΓΛ

=,𝑖1𝑖2 (3, 2′; 4, 2) + (︁
3 ↔ 4

)︁
+ΓΛ

=,𝑖1𝑖2 (2′, 4; 1, 3)ΓΛ
=,𝑖1𝑖2 (3, 1′; 4, 2) + (︁

3 ↔ 4
)︁ ]︁

× 𝐺Λ (3, 3)𝑆Λkat (4, 4)

(7.19)

for the two-particle vertex. Note, that we have already neglected the three-particle vertex terms and performed the
Katanin substitution in these flow equations. Furthermore, we have explicitly incorporated the diagonality of the full
and single-scale propagator in all their arguments.

Using eq. (7.14), we can replace Γ× by Γ=, fully decoupling the two (equivalent) components of the vertex. In
Figure 7.1 we give a diagrammatic representation of the multilocal flow equations.

Comparing eq. (7.19) to eq. (6.43), there are a few notable features. Firstly, all but the second line in eq. (7.19) do
not involve a site summation, rendering these terms completely local, in the sense, that at most two combinations of site
indices appear in these terms. Secondly, the t-channel diagram contained in eq. (6.43) splits into three contributions:
The second line in eq. (7.19) represents an RPA-like contribution, which involves a site summation. As this is the only
term mixing correlations between different lattice sites, we can expect it to be pivotal in the formation of long-range
order, a notion we will put on more solid grounds in Section 7.10.1. The third and fourth lines in eq. (7.19), we
dub them, due to their appearance in Figure 7.1, chalice diagrams, originate in the intermixing of Γ× and Γ= in the
parametrization.

The flow of the self-energy, eq. (7.18), also splits into two contributions, with the first term resembling a purely
local Fock-style diagram, while the second term is a Hartree contribution, which again involves a sum over the lattice.

7.4 Conventional frequency parametrization

In this section, we will discuss the frequency parametrization originally introduced in Reference [98], which will be
used in all on-loop calculations in this thesis.

7.4.1 Parametrization of the two-particle vertex

Up to now, we have not utilized most symmetry relations shown in Table 5.2, as these involve the frequency arguments
of the vertex function. To find a suitable parametrization of those, we first invoke time-translation invariance, dictating
a conservation of Matsubara frequency, meaning

Γ𝜈
′𝜈
𝑖1𝑖2

(𝜔1′ , 𝜔2′ ;𝜔1, 𝜔2) = Γ𝜈
′𝜈
𝑖1𝑖2

(𝜔1′ , 𝜔2′ ;𝜔1, 𝜔2)𝛿𝜔1′+𝜔2′−𝜔1−𝜔2 . (7.20)
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Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = 𝜉 (𝜈′)𝜉 (𝜈)Γ𝜈′𝜈𝑖1𝑖2 (𝑠,−𝑡, 𝑢) (TR ◦ H)

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = 𝜉 (𝜈′)𝜉 (𝜈)Γ𝜈𝜈′𝑖2𝑖1
(𝑠, 𝑡,−𝑢) (X ◦ TR ◦ H)

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = Γ𝜈𝜈
′

𝑖2𝑖1
(−𝑠, 𝑡, 𝑢) (X ◦ TR ◦ H ◦ PH1 ◦ PH2)

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = −𝜉 (𝜈)Γ𝜈′𝜈𝑖1𝑖2 (𝑢, 𝑡, 𝑠) (PH2)

Table 7.1: Symmetry relations of the two-particle vertex functions for pseudo-fermion Hamiltonians expanded in terms of Pauli
matrices in transfer frequency parametrization. The labels specify the combinations of physical symmetries to realize the
described relations. TR denotes time-reversal, H hermitian conjugation, X crossing symmetry in both incoming and outgoing
particles and PH1/2 is a particle-hole transformation for particle 1/2.

Therefore, we can constrain ourselves to a parametrization in terms of three frequencies, for which we choose the
transfer frequencies

𝑠 = 𝜔1′ + 𝜔2′

𝑡 = 𝜔1′ − 𝜔1

𝑢 = 𝜔1′ − 𝜔2,

(7.21)

which correspond to the three possible frequency transfers within the two-particle vertex.
Combining time-reversal and hermitian symmetry transforms (TR ◦ H) on top of this parametrization, we find

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = 𝜉 (𝜈′)𝜉 (𝜈)Γ𝜈′𝜈𝑖1𝑖2 (𝑠,−𝑡, 𝑢) , (7.22)

dictating (anti-)symmetry of the vertex components in the 𝑡 frequency. Augmenting this relation with a crossing
symmetry transformation in both arguments2 (X ◦ TR ◦ H), we find a similar relation

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = 𝜉 (𝜈′)𝜉 (𝜈)Γ𝜈𝜈′𝑖2𝑖1
(𝑠, 𝑡,−𝑢) , (7.23)

for the symmetry in the 𝑢 frequency. Note, that both site and spin indices are swapped here.
The analogous relation for the remaining transfer frequency 𝑠 is more involved, necessitating a combination of both

particle-hole transformations, time-reversal, hermitian conjugation and crossing symmetry, but directly leads to

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = Γ𝜈𝜈
′

𝑖2𝑖1
(−𝑠, 𝑡, 𝑢) . (7.24)

As a last symmetry, we invoke a particle-hole transformation for the second arguments (PH2), which leads to a
possibility of exchanging 𝑠 and 𝑢

Γ𝜈
′𝜈
𝑖1𝑖2

(𝑠, 𝑡, 𝑢) = −𝜉 (𝜈)Γ𝜈′𝜈𝑖1𝑖2 (𝑢, 𝑡, 𝑠). (7.25)

We summarize these symmetries in Table 7.1. Altogether, Equations (7.22), (7.23), and (7.24) imply, that the
frequency content of the vertex can be mapped to only the positive Matsubara axis for all three transfer frequencies.
Additionally, it suffices to restrict the vertex to 𝑠 ≥ 𝑢 due to the exchange symmetry between the two frequencies given
in eq. (7.25). In the special case of Heisenberg Hamiltonians, these relations imply, that both Γs and Γd are symmetric
in all three transfer frequencies, with Γ𝑠 being also symmetric under 𝑠 ↔ 𝑢, while Γ𝑑 is antisymmetric under this
transformation.

2Due to the bilocal parametrization eq. (7.13) of the vertex, a crossing symmetry in only incoming or outgoing arguments is not present anymore.
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7.4.2 Parametrized flow equations

At this point, we have all the necessary ingredients to formulate the fully parametrized PFFRG flow equations. To
connect to existing literature, however, let us introduce some simplifying notation.

Taking advantage of the self-energy Σ(𝜔) defined in eq. (7.11) being purely imaginary by defining the real quantity

𝛾(𝜔) = iΣ(𝜔). (7.26)

Please note, that 𝛾 is not to be confused with the full one-particle vertex 𝛾1, but indeed 𝛾 = −i𝛾1. We furthermore will
focus on Heisenberg systems, while the full flow equations for general spin systems can be found in References [59]
and [111].

Combining this with the self-energy flow eq. (7.18), using eq. (7.14) to express Γ× by Γ=, and substituting the
latter’s parametrization in spin space, eq. (7.16), as well as using the transfer frequencies introduced in eq. (7.21), we
find

d
dΛ

𝛾Λ (𝜔) =
∫

d𝜔′
{︃
3Γs,𝑖1𝑖1 (𝜔 + 𝜔′, 𝜔 − 𝜔′, 0)

+ Γd,𝑖1𝑖1 (𝜔 + 𝜔′, 𝜔 − 𝜔′, 0)

−
∑︂
𝑖2

2Γd,𝑖1𝑖2 (𝜔 + 𝜔′, 0, 𝜔 − 𝜔′)
}︃ 𝜕
𝜕Λ𝑅(𝜔′,Λ)
𝜔′ + 𝛾(𝜔′) ,

(7.27)

where we have also substituted the explicit form of the single-scale propagator following from Equations (7.10), (6.30),
and (6.42), which involves introducing the FRG regulator 𝑅, which has the general properties given in eq. (6.31).
Its explicit form we will discuss in Section 7.6. Furthermore, we have taken the zero temperature limit 𝑇 → 0, for
which PFFRG is usually formulated, rendering the Matsubara frequencies we are dealing with continuous rather than
discrete as for finite 𝑇 . Therefore, all Matsubara sums 1

𝛽

∑︁
have to be replaces by the appropriate frequency integral

1
2𝜋

∫
, while at the same time 𝛽 → 1/2𝜋.

Going to zero temperature has several advantages. Firstly, the continuous frequency axis does allow for arbitrary
transformations of the integration variable, which would for finite temperature lead to an intermixing of fermionic
and bosonic Matsubara frequencies. This leads to analytical difficulties solving the Matsubara sums using standard
techniques mapping them to complex integrals, where the integrand has poles either at the bosonic or fermionic
Matsubara frequencies. Secondly, the RG scale Λ acts as a regulator similarly to a temperature 𝑇 by suppressing
low-frequency degrees of freedom3. Having two of these regulating energy scales, i.e. Λ and 𝑇 , in the description of
the system would lead to ambiguities in the interpretation of effects at phase transition scales: one could not easily
disentangle if lowering temperature or cutoff has caused the transition.

The same substitutions can also be performed for the two-particle vertex flow eq. (7.19). As the resulting equations
are quite lengthy, we give them in appendix A. Let us here note, that we perform a split of the vertex derivative into
the respective diagrammatic channels, according to

d
dΛ

ΓΛ = 𝑔̇s + 𝑔̇t + 𝑔̇u. (7.28)

3As we will see in Section 7.10.1, for the right choice of regulator, there is even an exact mean-field relation between Λ and 𝑇 at large spin length
𝑆 → ∞.
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Figure 7.2: (a) A full representative spin-vertex Γ shown in the 𝑡 = 0 plane, showing characteristic double-cross structure. Its
decomposition in the (b) 𝑠-, (c) 𝑡- and (d) 𝑢-channel contributions reveals the origin of the structure in the different channels.
Due to this structure, the asymptotics are not well-defined in the transfer frequency parametrization, necessitating a natural
parametrization per channel.

Here 𝑔̇c describes the 𝑐-channel contributions (c = s, t, u) to the derivative. These correspond to the diagrammatic
channels described in Section 6.4.3 and are distinguished in this parametrization by the fact, that the corresponding
transfer frequency enters the propagator bubble

𝑃Λ (𝜔, 𝑐 + 𝜔) = 𝑆Λkat (𝜔)𝐺Λ (𝑐 + 𝜔), (7.29)

i.e. the respective contributions are two-particle reducible in the corresponding transfer frequency 𝑐, i.e. can be
separated by cutting two propagator lines in a diagram involving 𝑐, which amounts to removing the bubble function
eq. (7.29) and the correspoding frequency integration over 𝜔. With 𝑔c we denote the part of the full vertex generated
by the derivatives 𝑔̇c.

7.5 Asymptotic frequency parametrization

The parametrization of vertex functions in terms of transfer frequencies introduced in the previous section has been used
for PFFRG calculations since the method has been established in Reference [98]. Despite its success in applications
to both models [30–32, 98, 112–126] and real materials [33–35, 127–135], it is not the most natural way to express
the vertex functions.

As established in References [136] and [137], the full vertex function displays a characteristic behavior, where it
exhibits most of its structure around several lines: a cross-like feature parallel to two frequency axes, for the third
transfer frequency fixed, overlaid by another one, rotated 45° with respect to the first one, as shown in Figure 7.2(a)
for a representative PFFRG vertex. This in particular means, that there are no well-defined limits for taking any of the
transfer frequencies to infinity, due to the diagonal structure. In particular lim

𝑐→∞ Γ(𝑠, 𝑡, 𝑢) = 0 for any one of the transfer
frequencies 𝑐 = 𝑠/𝑡/𝑢 separately, does not hold, but for simplicity is usually assumed in numerical calculations using
this parametrization. The assumption is still justified, as the propagators will suppress the respective contributions
when integrating the flow equations.

As laid out in Reference [136], this structure can be understood by the nature of the three diagrammatic channels.
As each channel 𝑔c is reducible in the transfer frequency 𝑐, this enters the internal propagator bubble, leading to
an asymptotic behavior lim

𝑐→∞ 𝑔
c (𝑠, 𝑡, 𝑢) = 0. This in turn means, that the other two contributions do not necessarily

show this behavior, which calls for tracking the contributions of each channel separately during the RG flow. Indeed,
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(a)
𝜔1 = 𝑠

2 + 𝜈𝑠

𝜔2 = 𝑠
2 − 𝜈𝑠

𝜔1′ = 𝑠
2 − 𝜈′𝑠

𝜔2′ = 𝑠
2 + 𝜈′𝑠

𝑔s

(b)
𝜔1 = − 𝑡2 + 𝜈𝑡

𝜔2 = 𝑡
2 + 𝜈′𝑡

𝜔1′ = 𝑡
2 + 𝜈𝑡

𝜔2′ = − 𝑡2 + 𝜈′𝑡

𝑔t

(c)
𝜔1 = 𝑢

2 + 𝜈𝑢

𝜔2 = −𝑢2 + 𝜈′𝑢

𝜔1′ = 𝑢
2 + 𝜈′𝑢

𝜔2′ = −𝑢2 + 𝜈𝑢
𝑔u

Figure 7.3: Natural frequency parametrization as used in the asymptotic parametrization scheme. The diagrammatic 𝑠-, 𝑡-, and 𝑢-
channels have well-defined asymptotic in the corresponding bosonic transfer frequency 𝑠/𝑡/𝑢, as well as the respective fermionic
frequencies 𝜈 and 𝜈′. The shift by half the transfer frequency allows for a simpler implementation of symmetries.

𝑔s,𝜈′𝜈
𝑖1𝑖2

(𝑠, 𝜈𝑠 , 𝜈′𝑠) = 𝑔s,𝜈 𝜈′
𝑖2𝑖1

(−𝑠, 𝜈𝑠 , 𝜈′𝑠) (X ◦ TR ◦ H ◦ PH1 ◦ PH2)

𝑔s,𝜈′𝜈
𝑖1𝑖2

(𝑠, 𝜈𝑠 , 𝜈′𝑠) = −𝜉 (𝜈′)𝑔u,𝜈 𝜈′
𝑖2𝑖1

(𝑠,−𝜈𝑠 , 𝜈′𝑠) (PH2 ◦ X)

𝑔s,𝜈′𝜈
𝑖1𝑖2

(𝑠, 𝜈𝑠 , 𝜈′𝑠) = −𝜉 (𝜈)𝑔u,𝜈′𝜈
𝑖1𝑖2

(𝑠, 𝜈𝑠 ,−𝜈′𝑠) (PH2)

𝑔s,𝜈′𝜈
𝑖1𝑖2

(𝑠, 𝜈𝑠 , 𝜈′𝑠) = 𝑔s,𝜈 𝜈′
𝑖2𝑖1

(𝑠, 𝜈′𝑠 , 𝜈𝑠) (X ◦ TR ◦ H)

𝑔t,𝜈′𝜈
𝑖1𝑖2

(𝑡, 𝜈𝑡 , 𝜈′𝑡 ) = 𝜉 (𝜈′)𝜉 (𝜈)𝑔t,𝜈′𝜈
𝑖1𝑖2

(−𝑡, 𝜈𝑡 , 𝜈′𝑡 ) (TR ◦ H)

𝑔t,𝜈′𝜈
𝑖1𝑖2

(𝑡, 𝜈𝑡 , 𝜈′𝑡 ) = −𝜉 (𝜈′)𝑔t,𝜈′𝜈
𝑖1𝑖2

(𝑡,−𝜈𝑡 , 𝜈′𝑡 ) (PH1)

𝑔t,𝜈′𝜈
𝑖1𝑖2

(𝑡, 𝜈𝑡 , 𝜈′𝑡 ) = −𝜉 (𝜈)𝑔t,𝜈′𝜈
𝑖1𝑖2

(𝑡, 𝜈𝑡 ,−𝜈′𝑡 ) (PH2)

𝑔t,𝜈′𝜈
𝑖1𝑖2

(𝑡, 𝜈𝑡 , 𝜈′𝑡 ) = 𝑔t,𝜈 𝜈′
𝑖2𝑖1

(𝑡, 𝜈′𝑡 , 𝜈𝑡 ) (X ◦ TR ◦ H)

𝑔u,𝜈′𝜈
𝑖1𝑖2

(𝑢, 𝜈𝑢, 𝜈′𝑢) = 𝜉 (𝜈′)𝜉 (𝜈)𝑔u,𝜈 𝜈′
𝑖2𝑖1

(−𝑢, 𝜈𝑢, 𝜈′𝑢) (X ◦ TR ◦ H)

𝑔u,𝜈′𝜈
𝑖1𝑖2

(𝑢, 𝜈𝑢, 𝜈′𝑢) = −𝜉 (𝜈)𝑔s,𝜈 𝜈′
𝑖2𝑖1

(𝑢,−𝜈𝑢, 𝜈′𝑢) (X ◦ PH2)

𝑔u,𝜈′𝜈
𝑖1𝑖2

(𝑢, 𝜈𝑢, 𝜈′𝑢) = −𝜉 (𝜈)𝑔s,𝜈′𝜈
𝑖1𝑖2

(𝑢, 𝜈𝑢,−𝜈′𝑢) (PH2)

𝑔u,𝜈′𝜈
𝑖1𝑖2

(𝑢, 𝜈𝑢, 𝜈′𝑢) = 𝑔u,𝜈 𝜈′
𝑖2𝑖1

(𝑢, 𝜈′𝑢, 𝜈𝑢) (TR ◦ H)

Table 7.2: Symmetry relations of the two-particle vertex functions for pseudo-fermion Hamiltonians expanded in terms of Pauli
matrices in the natural frequency parametrization for the 𝑠-, 𝑡- and 𝑢-channels respectively. The labels specify the combinations
of physical symmetries to realize the described relations. TR denotes time-reversal, H hermitian conjugation, X crossing
symmetry in both incoming and outgoing particles and PH1/2 is a particle-hole transformation for particle 1/2.

implementing this scheme, we find that the full vertex structurally decomposes into contributions, each displaying only
one specific part of the cross-structure, cf. Figure 7.2(b)-(d). To capture the corresponding asymptotics efficiently, we
introduce a natural frequency parametrization for each of the channels, consisting of the respective bosonic transfer
frequency 𝑐, as well as mixed bosonic-fermionic frequencies 𝜈𝑐 and 𝜈′𝑐, given by

𝑠 = 𝜔1 + 𝜔2 = 𝜔1′ + 𝜔2′ 𝜈𝑠 = (𝜔1 − 𝜔2)/2 𝜈′𝑠 = (𝜔2′ − 𝜔1′ )/2 (7.30)

𝑡 = 𝜔1′ − 𝜔1 = 𝜔2 − 𝜔2′ 𝜈𝑡 = (𝜔1 + 𝜔1′ )/2 𝜈′𝑡 = (𝜔2 + 𝜔2′ )/2 (7.31)

𝑢 = 𝜔1 − 𝜔2′ = 𝜔1′ − 𝜔2 𝜈𝑢 = (𝜔1 + 𝜔2′ )/2 𝜈′𝑢 = (𝜔1′ + 𝜔2)/2. (7.32)

For readability, we will in the following refer to 𝜈 (′) as fermionic frequencies, because the mixed character will not be
important for our discussions.

This choice differs from the prescription in References [136] and [137], where purely fermionic frequencies are
used in addition to the transfer ones, by a shift of each fermionic frequency by half the transfer frequency. This more
symmetric choice, illustrated in Figure 7.3, leads to simpler symmetry relations, as the cross-structures in the vertex
are shifted to the frequency space origin. For a finite temperature implementation, which we are however not using,
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(a) (b) (c) (d)

Figure 7.4: Exemplary diagrammatic contributions to the 𝑠-channel kernel functions. (a) 𝐾s
1 diagram, where all external legs

couple to the bare vertex (black dot). (b) and (c) are 𝐾s
2 and 𝐾̄s

2 contributions, respectively, as the 𝜈𝑠 or 𝜈′𝑠 dependencies enter
the additional loops. These are dubbed fish-eye diagrams. The nested three-loop diagram (d) contributes to the 𝐾s

3 kernel.

this choice would complicate calculations, as 𝜈 (′) do neither represent bosonic, nor fermionic Matsubara frequencies,
but a mixture of both.

The actual symmetries of the channels can be obtained from the general relations for the two-particle vertex given
in Table 5.2, similarly to the procedure in the transfer frequency parametrization. The resulting symmetries are
summarized in Table 7.2. Most noteworthy, the 𝑡-channel decouples from the other two, while 𝑠- and 𝑢-channels are
coupled by inverting the fermionic frequencies. In total, the symmetries listed allow us to reduce the domain of every
channel individually to only positive frequencies on all axes with 𝜈 ≥ 𝜈′.

Analyzing the diagrammatic structure contained in a 𝑐-reducible channel further, we find, that this part of the vertex
can further be decomposed into asymptotic classes, according to the number of external frequency arguments, that
enter the internal loop integrations [136, 137], leading to

𝑔̇c (𝑐, 𝜈𝑐, 𝜈′𝑐) = 𝐾c
1 (𝑐) + 𝐾c

2 (𝑐, 𝜈𝑐) + 𝐾̄
c
2 (𝑐, 𝜈′𝑐) + 𝐾c

3 (𝑐, 𝜈𝑐, 𝜈′𝑐). (7.33)

Here the kernel functions 𝐾𝑖 capture certain asymptotic limits of the full vertex derivative, as they vanish for
taking any of their respective frequency arguments to infinity. The index 𝑖 labels the number of external frequency
dependencies of the kernels. In Figure 7.4 we illustrate diagrammatic contributions to the 𝐾1, 𝐾2 and 𝐾3 classes.
Note, that, although the FRG flow only contains single loop diagrams on the right-hand side, the multi-loop structure
of the latter two asymptotic classes is generated when iterating the flow equations.

To see this explicitly, we expand the right-hand side of the flow at a scale Λ0 − dΛ in terms of the infinitesimal
deviation dΛ from the initial scale Λ0 → ∞. To focus on the Λ dependence, we here drop all frequency arguments,
turning to a symbolic notation for the asymptotic classes

𝑔̇c,Λ =

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c
, (7.34)

where the internal frequency and real space summations according to the respective channel 𝑐 are implied. The
expansion in dΛ in this notation reads

𝑔̇c′ ,Λ0−dΛ =

[︄
ΓΛ0 ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂|︁|︁|︁|︁
Λ0−dΛ

◦ ΓΛ0

]︄
c

(7.35)

+
[︄(︄
−dΛ

∑︂
𝑐′
𝑔̇c′ ,Λ0

)︄
◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂|︁|︁|︁|︁
Λ0−dΛ

◦ ΓΛ0

]︄
c

(7.36)
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+
[︄
ΓΛ0 ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂|︁|︁|︁|︁
Λ0−dΛ

◦
(︄
−dΛ

∑︂
c′
𝑔̇c′ ,Λ0

)︄]︄
c

(7.37)

+
[︄(︄
−dΛ

∑︂
𝑐′
𝑔̇c′ ,Λ0

)︄
◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂|︁|︁|︁|︁
Λ0−dΛ

◦
(︄
−dΛ

∑︂
𝑐′
𝑔̇c′ ,Λ0

)︄]︄
c

+ O
(︂
dΛ2

)︂
. (7.38)

As ΓΛ0 is frequency independent, the first term in this expansion, eq. (7.35), will be independent of the fermionic
frequencies, but only depend on the transfer frequency, that enters the propagators, cf. appendix A. The diagram in
Figure 7.4(a) is part of this contribution. The vertex derivative at the scale Λ, by virtue of this contribution, acquires
a dependence on the respective transfer frequency 𝜔𝑐 of the different channels. The second contribution, eq. (7.36),
therefore will carry a dependence on 𝜈𝑐, which enters into the transfer frequency 𝜔𝑐′ for 𝑐′ ≠ 𝑐, these contributions
are therefore of 𝐾2 type, with a representative diagram shown in Figure 7.4(b). For the same reason, the third term,
eq. (7.37), will contribute to the 𝐾̄2 class, with an exemplary diagrammatic contribution drawn in Figure 7.4(c). The
last term, we consider here, eq. (7.38), is quadratic in dΛ and features two insertions of 𝑔̇Λ0 . AS argued before, this
will lead to a dependence on both 𝜈𝑐 and 𝜈𝑐′ , rendering these contributions 𝐾3-type. We again give an example of a
corresponding diagram in Figure 7.4(d).

The symmetries of the Kernel functions can be deduced from the ones given in Table 7.2 by setting the appropriate
frequencies to infinity. We would like to emphasize, that, due to the symmetry under exchange of the bosonic
frequencies, 𝐾2 and 𝐾̄2 are equivalent for pseudo-fermionic systems.

We present the full flow equations in this asymptotic frequency parametrization in appendix B due to their length.
Please note, that, for the right-hand side, the full set of frequencies in all channels has to be stated there, as the full
vertex enters, rather than just a single asymptotic component, leading to an intermixing of these.

7.6 Choice of regulator

So far, we have not specified the regulator function 𝑅 used to implement the RG flow. In FRG literature, a plethora
of implementations of 𝑅 have been used. In the context of itinerant fermions, a simple cutoff in reciprocal space,
separating high and low energy degrees of freedom, has been utilized [101], but also a rescaling of the interactions [138]
or temperature itself [84, 91] have been utilized to implement the renormalization flow.

For PFFRG, however, being formulated in real space at zero temperature, a cutoff in frequency space is the most
natural way to introduce the RG scale Λ. We will discuss here two different implementations. Firstly, the sharp
step regulator used since the first implementation of PFFRG [98] and secondly a smoothened version of this recently
introduced by us [139, 140].

7.6.1 Step regulator

The easiest way to separate high- and low-energy degrees of freedom is by introducing a step-like regulator of the
form

𝑅(𝜔,Λ) = 𝜃 ( |𝜔 | − Λ), (7.39)

in frequency space, where 𝜃 denotes the Heaviside step function

𝜃 (𝑥) =
⎧⎪⎪⎨⎪⎪⎩

0 𝑥 < 0

1 𝑥 ≥ 1,
(7.40)
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which trivially fulfills the limiting conditions on a regulator function given in eq. (6.31).
The bare propagator of a pseudo-fermionic system using this cutoff scheme reads

i𝐺Λ
0 (𝜔) =

𝜃 ( |𝜔′ | − Λ)
𝜔

, (7.41)

from which we immediately find the full propagator using Dyson’s equation eq. (7.10) to be

i𝐺Λ (𝜔) = 𝜃 ( |𝜔′ | − Λ)
𝜔 + 𝛾Λ (𝜔) . (7.42)

At first glance, the discontinuity in the regulator function renders the single-scale propagator 𝑆Λ as introduced in
eq. (6.42) ill-defined: The scale derivative of the regulator 𝜕

𝜕Λ 𝜃 ( |𝜔′ |−Λ) = −𝛿( |𝜔′ |−Λ) is the Dirac delta-distribution,
which features the peak right at the discontinuity of the step functions in the denominator of eq. (6.42). This leads at
first glance leads to an ambiguity, as the value of the step function at this point is not uniquely defined.

Invoking the representation of the Heaviside function as a limit of a regularized family of smooth functions
𝜃 (𝑥) = lim

𝜖→0
𝜃 𝜖 (𝑥), one can prove Morris’ Lemma [141] consistently defining such products:

lim
𝜖→0

𝛿𝜖 (𝑥) 𝑓 (𝜃 𝜖 (𝑥)) = 𝛿(𝑥)
1∫

0

d𝑡 𝑓 (𝑡), (7.43)

where 𝑓 is a continuous function and the regularized delta function is defined by 𝛿𝜖 (𝑥) = 𝜕
𝜕𝑥 𝜃 𝜖 (𝑥).

Invoking this lemma, we find the single-scale propagator to be

i𝑆Λ (𝜔) = 𝛿( |𝜔′ | − Λ)
𝜔 + 𝛾Λ (𝜔) , (7.44)

which a posteriori accounts for its name: the single-scale propagator in this formulation filters out exactly the frequency
corresponding to the RG scale Λ by the means of the Dirac-delta distribution. As we will see in Section 7.10.1, this
form of 𝑆 allows for a direct connection between the RG sclae Λ and an effective temperature 𝑇 via the relation
𝑇 = 𝜋

2 Λ. Moreover, the appearance of the Dirac delta extremely simplifies the bubble integrations on the right-hand
side of the FRG equations, as it analytically replaces these by a finite summation.

This advantage, however, is gone, once we employ the Katanin-substitution eq. (6.45), as the Katanin-substituted
single-scale propagator

𝑆Λkat = − d
dΛ
𝐺Λ = 𝑆Λ −

(︂
𝐺Λ

)︂2 d
dΛ

ΣΛ (7.45)

does not contain the delta-peak in its second term and therefore a frequency integration is necessary anyway.
Furthermore, due to the non-analyticity of the regulator, the frequency dependence of the vertex functions shows

characteristic kinks at Λ dependent positions, which in a numerical implementation leads to an oscillating behavior
of the RG flow, see e.g. Reference [98].

7.6.2 Smoothened frequency cutoff

To circumvent these numerical problems, in more recent implementations of PFFRG, especially the one of the multi-
loop scheme, which will be introduced in Chapter 8, we employ a smoothened version of the step cutoff, given
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by

𝑅(𝜔,Λ) = 1 − e−
𝜔2
Λ2 , (7.46)

which smears out the step at |𝜔 | = Λ over a width of Λ. This regulator is similar to the so-called Ω-flow used in
itinerant fermion FRG [142], in the sense, that in eq. (7.46) the suppression of the low-frequency region is done in a
Gaussian shape, while in the Ω-flow, this is done using a Lorentzian.

The bare propagator for the smooth cutoff is given by

i𝐺Λ
0 (𝜔) =

1 − e−
𝜔2
Λ2

𝜔
, (7.47)

and, consequently, the full propagator reads

i𝐺Λ (𝜔) = 1 − e−
𝜔2
Λ2

𝜔 + 𝛾Λ (𝜔) . (7.48)

As no discontinuities are present in this function, we can directly use eq. (6.42) to obtain the single scale propagator

i𝑆Λ (𝜔) = 2e−
𝜔2
Λ2

(𝜔 + 𝛾Λ (𝜔))2
𝜔3

Λ3 , (7.49)

which is, as in the sharp cutoff case, features two peaks located symmetrically around 𝜔 = 0, but at a frequency
𝜔𝑝 < Λ, whereas we have 𝜔𝑝 = Λ in the sharp case.

7.7 Susceptibilities

The PFFRG formalism we have laid out in the previous sections implicitly assumed, that no symmetries present in the
original Hamiltonian are spontaneously broken during the RG flow. While this is a good assumption in spin liquid
phases, which are exactly defined by the lack of such a breaking, magnetically long-range ordered states naturally will
break lattice symmetries. This will lead to an instability of the RG flow below a certain critical scale Λ𝑐, usually in
the form of a divergence or kink, as the formalism below this scale can no longer faithfully track the physical content
of the model.

While flow into such phases is in principle possible in FRG by introducing an order parameter field, which becomes
finite approaching Λ𝑐 [100], we refrain from implementing such a scheme. As the form of the order parameter is
specific to the exact way symmetries are spontaneously broken, one would have to anticipate an ordering pattern to a
priori implement the suitable field. This, however, would introduce a bias in the PFFRG method, which is up to now
not present, as we have not assumed any symmetry breaking whatsoever.

As an alternate route to access the ordering tendencies, we calculate the static spin-spin real-space correlators

𝜒
𝛼𝛽,Λ
𝑖 𝑗 (𝜔 = 0) =

∞∫
0

d𝜏
⟨︂
𝑇𝜏𝑆

𝛼
𝑖 (𝜏)𝑆𝛽𝑗 (0)

⟩︂
(7.50)

during the flow. For Heisenberg systems, only the 𝛼 = 𝛽 components are non-vanishing and all equal, therefore we
will in this case use 𝜒Λ𝑖 𝑗 (𝜔 = 0) = 𝜒𝑧𝑧,Λ𝑖 𝑗 (𝜔 = 0) as a shorthand.
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A long-range ordering tendency will be signalled by an instability in the flow of these correlators. At this RG scale,
the maximum of the static susceptibility

𝜒(𝒌) = 1
𝑁

∑︂
𝑖, 𝑗

ei𝒌 · (𝒓𝑖−𝒓 𝑗 ) 𝜒Λ𝑖 𝑗 (i𝜔 = 0) (7.51)

characterizes the magnetic long-range order the system would realize.
Using the relations between full and connected Green’s functions eq. (6.21) as well as the tree expansion of the

latter given in eq. (6.29), we can express this quantity in terms of one-particle Green’s functions and the two-particle
vertex as

𝜒
𝛼𝛽,Λ
𝑖 𝑗 (𝜔) = − 1

2
1

2𝜋

∫
d𝜔′𝐺Λ (𝜔′)𝐺Λ (𝜔′ + 𝜔)𝛿𝑖 𝑗

− 1
4

(︃
1

2𝜋

)︃ ∬
d𝜔′d𝜔′′𝐺Λ (𝜔′)𝐺Λ (𝜔′ + 𝜔)𝐺Λ (𝜔′′)𝐺Λ (𝜔′′ + 𝜔)

×
∑︂

𝜇1′ ,𝜇2′ ,𝜇1 ,𝜇2

ΓΛ (𝑖, 𝜔′ + 𝜔, 𝜇1′ , 𝑗 , 𝜔
′′, 𝜇2′ ; 𝑖, 𝜔′, 𝜇1 , 𝑗 , 𝜔

′′ + 𝜔, 𝜇2 )𝜎𝛼𝜇1 𝜇1′𝜎
𝛼
𝜇2 𝜇2′ .

(7.52)

Although we in principle can calculate the susceptibility for all Matsubara frequencies i𝜔, we here focus on the
static limit 𝜔 → 0, as this is the only real Matsubara frequency. In principle, the frequency dependence of 𝜒 would
be interesting to explore due to it being measurable using inelastic neutron scattering, from the PFFRG formalism
presented here, we, however, only obtain it along the imaginary frequency axis. Although an analytical continuation
to the real frequency axis is possible [143], it is well-known, that for any approximate numerical data, as we would
have to use as a starting point after solving the RG flow numerically, is inherently unstable [144].

7.8 Initial conditions

As the last ingredient to complete our discussion of the PFFRG method, we have to specify the initial conditions for
both the self-energy and the two-particle vertex. For a general fermionic problem, we already have stated these in
Equations (6.47) and (6.48), but we want to specify to the specific parametrizations tailored towards pseudo-fermionic
Hamiltonians developed in this chapter.

From eq. (6.47) we trivially find that the self-energy has to vanish at the beginning of the flow, meaning

𝛾Λ→∞ (𝜔) = 0. (7.53)

To connect the initial condition for the two-particle vertex eq. (6.48), we first have to rewrite the pseudo-fermion
Hamiltonian eq. (5.15) into the antisymmetrized form used in eq. (6.10). We find

𝐻 =
1
2

1
2

1
4

∑︂
𝑖1′ ,𝑖2′
𝑖1 ,𝑖2
𝜇1′ ,𝜇2′
𝜇1 ,𝜇2

(︁
𝐽𝑖1′ 𝑖2′𝝈𝜇1′ 𝜇1 · 𝝈𝜇2′ 𝜇2 𝛿𝑖1′ 𝑖1 𝛿𝑖2′ 𝑖2 − 𝐽𝑖1′ 𝑖2′𝝈𝜇1′ 𝜇1 · 𝝈𝜇2′ 𝜇2 𝛿𝑖1′ 𝑖2 𝛿𝑖2′ 𝑖1

)︁
𝑐†𝑖1′ 𝜇1′

𝑐†𝑖2′ 𝜇2′
𝑐𝑖2 𝜇2

𝑐𝑖1 𝜇1
, (7.54)

where we got an additional factor 1⁄2 from reintroducing the double-counting of interactions not present in eq. (5.15)
and another factor 1⁄2 from antisymmetrization4.

4The combinatorial factor for antisymmetrization actually would be 2! = 4, but all terms appear twice, thus only 2 remains.
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Therefore, combining Equations (6.48), (7.14), and (7.16), we find for the spin- and density vertex [98]

ΓΛ→∞
s,𝑖1𝑖2 =

𝐽𝑖1𝑖2
4

(7.55)

ΓΛ→∞
d,𝑖1𝑖2 = 0. (7.56)

7.9 Single occupation constraint

So far, we have not discussed the implementation of the single occupation constraint per site eq. (5.4). As shown
in Section 5.5, the introduction of an SU(2) gauge field will enforce its fulfillment, as this consequently acts as a
Lagrange multiplier. In FRG, however, the treatment of such a non-Abelian field is far from trivial [145]. It is also not
clear, how different approximation and truncation schemes would influence the ability of the gauge field to enforce
the constraint. Hence, we refrain from implementing such an approach in our current work.

A second approach, that has been put forward by Popov and Fedotov in Reference [146], is to include an imaginary
chemical potential

𝜇PPV = −i
𝜋𝑇

2
(7.57)

in the Hamiltonian via the replacement

𝐻 → 𝐻PPV = 𝐻 − 𝜇ppv
∑︂
𝑖,𝜇

𝑐†𝑖𝜇𝑐𝑖𝜇 . (7.58)

Although spoiling the hermiticity of the Hamiltonian, expectation values calculated with respect to 𝐻PPV and consid-
ering the full Hilbert space of the pseudo-fermions, i.e. including the unphysical states, will be identical to the same
expectation values obtained using 𝐻 constrained to only the half-filled states [146, 147]. This is true for any physical
operator, i.e. one vanishing in the unphysical sector. As explicated in Reference [99], this is due to a cancellation of
the contributions from the non- and doubly occupied sectors in the partition sum.

PFFRG as we have set up here, is formulated in the 𝑇 → 0 limit. In this case, formally also 𝜇PPV → 0, but this
limit not necessarily commutes with the calculation of thermal averages involving 𝐻PPV, as the cancellation can only
occur for any finite 𝑇 . With the pseudo-fermionic Hamiltonian eq. (5.15) being particle-hole symmetric, a vanishing
chemical potential, however, amounts to half-filling. This implies, that the constraint, in this case, will be fulfilled on
average, instead of exactly.

Previous PFFRG studies have found, that, at low temperatures, this averaged fulfillment already leads to the physically
correct results when compared to an exact implementation of the Popov-Fedotov scheme [99, 145]. Therefore, we
will in this thesis resort to the average projection scheme.

We can rationalize these findings along the lines of References [99] and [59]: The Hamiltonian by itself respects the
constraint in the sense, that it does not induce transitions from the physical half-filled to unphysical empty or doubly
occupied states. Therefore, all contributions to the partition sum stemming from this sector have to be thermally
activated. Starting now from a system at exactly half-filling at every site, a fluctuation into the unphysical sector will
amount to creating a doubly occupied site and an empty one at the same time. As these both feature a total spin 𝑆 = 0,
their energetic contribution in the Hamiltonian vanishes, effectively removing the sites from the system. In generic
spin systems, however, the binding energy of a site is negative, thus this fluctuation will lead to an energetically higher
state. For small enough temperature, such an excited state cannot be thermally activated, strongly suppressing the
respective contribution to the thermal average.
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7.10 Exact limits

Closing our discussion of the PFFRG formalism, we will outline two of its extensions, both leading to exact limits: the
generalization to arbitrary spin-length 𝑆, rendering the formalism exact in the classical 𝑠 → ∞ limit, and the extension
from SU(2) to SU(𝑁) spins, which gives also an exact analytical solution in the 𝑁 → ∞ limit.

7.10.1 Large-𝑆 limit

So far, we have considered only the 𝑆 = 1/2 case of spin. Having in mind applications of the Heisenberg model to
real materials, it however would be beneficial to also be able to treat higher values of 𝑆. To this end, we have to extend
the fermionic representation of spin operators (5.2) to a higher spin representation of SU(2) generators. The most
straightforward way to achieve this would be to generalize the Pauli matrices 𝜎𝛼/2 to their higher spin counterparts,
i.e. traceless hermitian (2𝑆 + 1) × (2𝑆 + 1) matrices 𝜎𝜇𝑆 fulfilling the su(2)-algebra

[𝜎𝛼𝑆 , 𝜎𝛽𝑆 ] = 𝑖𝜖𝛼𝛽𝛾𝜎
𝛾
𝑆 . (7.59)

This leads to a pseudo-fermionic representation

𝑆𝛼𝑖 =
1
2

2𝑆∑︂
𝜇,𝜈=−2𝑆

𝑐†𝑖𝜇𝜎
𝛼
𝑆,𝜇𝜈𝑐𝑖𝜈 , (7.60)

where we have introduced 2𝑆 + 1 fermions per lattice point 𝑖. For this to be a faithful representation of SU(2), the
number of fermions has also in this case to be restricted to one, i.e. the constraint

2𝑆∑︂
𝛼=−2𝑆

𝑐†𝑖𝛼𝑐𝑖𝛼 = 1. (7.61)

has to be fulfilled. This 1/(2𝑆 + 1) filling is not easily achieved in an average projection scheme, as it is not a
priori known what the value of the chemical potential has to be. An exact implementation would be possible using
imaginary chemical potentials at finite temperatures, which is however not possible in a 𝑇 = 0 scheme [147].

As an alternative route, in Reference [148] it has been put forward to instead introduce 2𝑆 replicas of spin 𝑆 = 1/2

fermions per site, expressing a spin-𝑆 at site 𝑖 as

𝑺𝑖 =
2𝑆∑︂
𝜅=1

𝑺𝒊,𝜿 , (7.62)

with 𝜅 enumerating the different replicas. Form this, we can deduce a pseudo-fermionic representation of the
spin-operator

𝑺𝛼𝑖 =
1
2

∑︂
𝜅,𝜇,𝜈

𝑐†𝜇𝜅𝜎
𝛼
𝜇𝜈𝑐𝜈𝜅 , (7.63)

now subject to the constraint, that at each lattice point, the system has to be at half-filling and additionally, the
total spin length must be maximized at each point individually. Similarly to the Popov-Fedotov scheme, this can be
achieved using imaginary valued chemical potential [147], but we again will resort to an average projection scheme
to implement half-filling.

From the spin addition rules, apart from the maximum spin length states with total spin 𝑆, there also exist states
with a smaller effective spin, the minimum possible spin length being 𝑆 = 0 for 2𝑆 even and 𝑆 = 1/2 in the case 2𝑆
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being odd. To minimize the contributions of these states to the partition sum, we can add a level-repulsion term [148]

𝐻LR = −𝐴
∑︂
𝑖

(︄ 2𝑆∑︂
𝜅=1

𝑺𝑖,𝜅

)︄2

(7.64)

to the Hamiltonian. For positive 𝐴 < 0, this will energetically favor the case, where the spin replicas line up to form
effective spin 𝑆, while gapping out the sectors with smaller spin. It has however been shown, that such a term usually
is not needed in practical calculations, as the spin replicas already tend to form the largest spin length multiplets [148].
An alternative point of view is to interpret 𝐴 in eq. (7.64) as a Lagrange multiplier implementing maximum total spin
length in the field theory.

Flow equations at arbitrary 𝑆

From the definition of the spin 𝑆 pseudo-fermions in eq. (7.63), we can readily derive the modifications necessary to
the flow equations in order to treat arbitrary spin length 𝑆.

Firstly, we note, that in eq. (7.63) every site index 𝑖 is accompanied by an additional flavor index 𝜅. As the U(1)
gauge symmetry of the pseudo-fermions (cf. Section 5.2) acts on every replica of the 𝑆 = 1/2 fermions separately, we
find a locality not only in the site index, as discussed in Section 5.4.6, but also for the flavor index.

Secondly, considering the initial conditions of the vertex in Equations (7.55) and (7.56), we see, that these are
agnostic of the flavor index. Combined with the flavor index locality, this leads to the vertex function staying
completely independent of the flavor index during the flow. Therefore, any summation over flavor indices is trivially
carried out, contributing a factor of 2𝑆 in the flow equations, wherever there is an internal site summation, due to the
intimate connection between site and flavor indices discussed above. This effect is most easily shown in the multi-local
form of the flow equations discussed in Section 7.3. Generalizing to arbitrary spin 𝑆, Equations (7.18) and (7.19) are
modified to become

d
dΛ

ΣΛ (1′; 1) =
∑︂

2

(︄
ΓΛ
×,𝑖1𝑖1 (1′, 2′; 1, 2) − 2𝑆

∑︂
𝑗

ΓΛ
=,𝑖1 𝑗 (1′, 2′; 1, 2)

)︄
𝑆Λ (2, 2) (7.65)

for the self-energy and

d
dΛ

ΓΛ
=,𝑖1𝑖2 (1′, 2′; 1, 2) =

∑︂
3′ ,4′ ,3,4

[︁
ΓΛ
=,𝑖1𝑖2 (1′, 2′; 3, 4)ΓΛ

=,𝑖1𝑖2 (3′, 4′; 1, 2)

− 2𝑆
∑︂
𝑗

ΓΛ
=,𝑖1 𝑗 (1′, 4′; 1, 3)ΓΛ

=, 𝑗𝑖2 (3′, 2′; 4, 2) − (3′ ↔ 4′, 3 ↔ 4)

+ ΓΛ
=,𝑖1𝑖2 (1′, 4′; 1, 3)ΓΛ

×,𝑖2𝑖2 (3′, 2′; 4, 2) + (3′ ↔ 4′, 3 ↔ 4)
+ ΓΛ

×,𝑖1𝑖1 (1′, 4′; 1, 3)ΓΛ
=,𝑖1𝑖2 (3′, 2′; 4, 2) + (3′ ↔ 4′, 3 ↔ 4)

+ΓΛ
=,𝑖1𝑖2 (2′, 4′; 1, 3)ΓΛ

=,𝑖1𝑖2 (3′, 1′; 4, 2) + (3′ ↔ 4′, 3 ↔ 4)]︁
× 𝐺Λ (3, 3′)𝑆Λkat (4, 4′)

(7.66)

for the two-particle vertex.
As one can see, in the limit 𝑆 → ∞, the leading contribution to the vertex function is the RPA-like 𝑡-channel

diagram. As this contains a non-local summation over the lattice, it is, therefore, the natural candidate to induce
quasi-classical long-range ordering, which is confirmed by this construction.
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Mean-field temperature conversion

The limit outlined above limit simplifies the flow equations enough to allow for an analytical solution of the two-
particle vertex. As we can see from eq. (7.66), the only term surviving in the 𝑆 → ∞ limit is the non-local t-channel
contribution. Therefore, the initially frequency independent vertex can only acquire a structure in the 𝑡 transfer
frequency. For simpler notation, let us define

Γ̃
𝑠/𝑑,Λ
𝑖 𝑗 (𝑡) = 1

2𝑆
Γ𝑠/𝑑,Λ𝑖 𝑗 (𝑠, 𝑡, 𝑢), (7.67)

which remains finite in the 𝑆 → ∞ limit due to the rescaling with 2𝑆. Using this notation, the simplified flow equation
for the density vertex, derived from eq. (A.6) reads

Γ̃
𝑑,Λ
𝑖1𝑖2 (𝑡) =

1
𝜋

∫
d𝜔

∑︂
𝑗

Γ̃
𝑑,Λ
𝑖1 𝑗 (𝑡)Γ̃

𝑑,Λ
𝑗𝑖2 (𝑡)

(︂
𝑆Λkat (𝜔)𝐺Λ (𝜔 + 𝑡) + 𝑆Λkat (𝜔 + 𝑡)𝐺Λ (𝜔)

)︂
, (7.68)

which shows, that the density vertex decouples from the spin component in this limit. Due to its vanishing initial
condition Γ̃

𝑑,Λ→∞
= 0, the density vertex therefore will not be generated in the RG flow.

The same holds for the self-energy, which in the 𝑆 → ∞ limit only couples to the density part of the vertex according
to

d
dΛ

𝛾(𝜔) = − 1
𝜋

∫
d𝜔

∑︂
𝑗

Γ̃
𝑑,Λ
𝑖1 𝑗 (0)𝑆Λ (𝜔), (7.69)

which is the 𝑆 → ∞ limit of eq. (7.27).
This extremely simplifies the flow of the remaining spin component of the two-particle vertex, as due to the vanishing

self-energy and its derivative the propagators assume a simple form. Resorting to the step-like cutoff, the flow of the
spin vertex given in eq. (A.3) reduces to

Γ̃
𝑠,Λ
𝑖1𝑖2 (𝑡) =

1
𝜋

∫
d𝜔

∑︂
𝑗

Γ̃
𝑠,Λ
𝑖1 𝑗 (𝑡)Γ̃

𝑠,Λ
𝑗𝑖2 (𝑡) (

𝛿( |𝜔 | − Λ)
𝜔

𝜃 ( |𝜔 + 𝑡 | − Λ)
𝜔 + 𝑡 + 𝛿( |𝜔 + 𝑡 | − Λ)

𝜔 + 𝑡
𝜃 ( |𝜔 | − Λ)

𝜔
), (7.70)

which allows for an analytic solution of the frequency integration. Additionally, introducing a Fourier transform of
the spatial dependence of the vertex to simplify the lattice sum, the flow equation reads

Γ̃
𝑠,Λ (𝒌, 𝑡) = 2

𝜋Λ(Λ + 𝑡) Γ̃
𝑠,Λ (𝒌, 𝑡)2, (7.71)

which is amenable to an analytic solution [149]. If there is more than one point in the lattice’s basis, Γ̃ is to be
understood as a matrix in sublattice space and the square as the according product. The analytic solution to eq. (7.71)
is given by

Γ̃
𝑠,Λ (𝒌, 𝑡) = 𝐽 (𝒌)/4

1 + 𝐽 (𝒌 )
2𝜋Λ ln

(︁
1 + 𝑡

Λ

)︁ . (7.72)

Examining the analytic structure of this solution, we find, that it has a leading divergence for 𝑡 = 0 at

Λ𝑐 = −min𝒌 𝐽 (𝒌)
2𝜋

, (7.73)
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in other words, the spin vertex diverges at the wave-vector, where the Fourier transform of the initial interaction is
most negative. In case of a multi-site basis, the minimum in eq. (7.73) has to be taken over the eigenvalues of the
matrix valued Fourier transform in sublattice space.

We can now compare these results to our findings in Chapter 3: In accordance with our findings in the Luttinger-
Tisza eigenvalue problem, eq. (3.9), the location of the minimal eigenvalue of the interaction matrix determines the
Luttinger-Tisza ordering vector 𝒒LT. Therefore, the 𝑆 → ∞ limit of PFFRG is exact in the sense, that it produces the
same ordering tendencies as the Luttinger-Tisza method [148].

Connecting further to our discussions of the classical O(𝑁 → ∞) mean-field in Section 3.3.3, we can even make
a connection between the critical scale Λ𝑐 determined here and the critical temperature determined by the mean-field
calculation. Specializing to the case 𝑁 = 3 in the mean-field result, relevant for three-dimensional spin operators,
and rescaling energies by 𝑆(𝑆 + 1) to reinclude the spin-length, the mean-field critical temperature is given by
𝑇𝑐MF = −𝑆 (𝑆+1)/3 min(Λ𝛼 (𝒒)). Comparing to eq. (7.73), we find the linear connection

𝑇𝑐 =
2𝜋𝑆(𝑆 + 1)

3
Λ𝑐 (7.74)

between critical temperature and renormalization scale. The above outlined derivation holds only in the classical
𝑆 → ∞ limit of PFFRG right at the phase transition temperature. Assuming, however, that the transition into an
ordered phase at smaller spin values, even in the extreme case 𝑆 = 1/2, can be well described by a suitable classical
mean-field state, the conversion is also valid for finite spin lengths and has been successfully used in literature [31,
34, 125, 134] and remarkable agreement between temperature and scale dependence has been found even for larger
scales Λ > Λ𝑐 [30].

7.10.2 Large-𝑁 limit

The second case, where PFFRG becomes exact is, in contrast to the classical 𝑆 → ∞ limit, the extreme quantum limit.
This is achieved by promoting the SU(2) symmetry group of spins to SU(𝑁). Although the generalization of spins in
this sense is not unique and several implementations with possibly different ground-state properties exist [150], these
details do not matter for the general intention of the approach. By enlarging the symmetry group of the spin operators,
the relevance of quantum fluctuations is significantly enhanced, rendering them dominant in the 𝑁 → ∞ limit.

The approach we show here was introduced in References [149] and [151] and our discussion will follow their
presentation. In contrast to the arbitrary 𝑆 generalization of PFFRG, as discussed in the previous section, for arbitrary
𝑁 we can follow the intuitive path of promoting the spin operators directly to a higher symmetry class. To this end,
we introduce the generators 𝑇 𝛼 of SU(𝑁) in the fundamental representation of this group, with 𝛼 ∈ 1, 2, . . . , 𝑁2 − 1.
They are 𝑁 × 𝑁 hermitian, traceless matrices characterized by the 𝔰𝔲(𝑁) Lie-algebra

[︁
𝑇 𝛼, 𝑇𝛽

]︁
= i

𝑁−1∑︂
𝛾=1

𝑓𝛼𝛽𝛾𝑇
𝛾 , (7.75)

where 𝑓 are the structure factors of the group. The generalized spin operators can then be decomposed into 𝑁
flavors of pseudo-fermions according to

𝑆𝛼 =
𝑁∑︂

𝜇,𝜈=1
𝑐†𝜇𝑇

𝛼
𝜇𝜈𝑐𝜈 , (7.76)
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in accordance with the SU(2) case5 in eq. (5.2). For this mapping to be faithful, we now have to introduce the modified
half-filling constraint

𝑁∑︂
𝜇=1

𝑐†𝜇𝑐𝜇 =
𝑁

2
, (7.77)

which immediately constraints the generalization to even 𝑁 . As for the SU(2) case, this will only be implemented on
average, as again defects in the spin structure should be energetically gapped out, similarly to what we have discussed
in Section 7.9.

Employing a parametrization in terms of spin and density like vertex components

Γ=,𝑖1𝑖2 (1′, 2′; 1, 2) = Γs,𝑖1𝑖2 (𝜔1′ , 𝜔2′ ;𝜔1 , 𝜔2 )𝑇 𝛼𝜇1′ 𝜇1
𝑇 𝛼𝜇2′ 𝜇2

+ Γd,𝑖1𝑖2 (𝜔1′ , 𝜔2′ ;𝜔1 , 𝜔2 )𝛿𝜇1′ 𝜇1 𝛿𝜇2′ 𝜇2 , (7.78)

we immediately see, that the general structure of the flow equations will remain unchanged by the generalization,
which amounts to a mere change of prefactors. As we will not need the explicit equations for the remainder of this
thesis, we refer to literature for the corresponding parametrization of the SU(𝑁) PFFRG flow, which can be found in
References [30] and [59].

The main outcome we mention here is the result for 𝑁 → ∞: In this limit, the only contribution to the two-particle
vertex is the 𝑢-channel diagram of the spin vertex, which does not generate non-local terms. Thus, the susceptibility
will remain finite throughout the whole RG flow, while the vertex itself will diverge, signaling a transition into an
ordered, but not magnetically ordered, phase [149]. This reproduces the analytical mean-field results for 𝑁 → ∞,
which are exact in this limit. Furthermore, the relation between critical scale and mean-field critical temperature,
eq. (7.74), found in the 𝑆 → ∞ limit is also reproduced in the 𝑁 → ∞𝑙𝑖𝑚𝑖𝑡. This instills confidence in the validity of
the conversion factor also away from the extreme classical and quantum limits.

The Katanin truncation is a vital ingredient in making this connection, a posteriori rationalizing the necessity to
include these corrections to obtain magnetically disordered ground-states. In summary, PFFRG is exact in both the
classical large-𝑆 and extreme quantum large-𝑁 limits, instilling confidence in the unbiasedness of the method.

The SU(𝑁) generalization breaks the symmetry between 𝑠- and 𝑢-channel we have found in eq. (7.25) not only for
𝑁 → ∞, but also for any finite 𝑁 > 2. We can easily understand this fact by considering the origin of this connection:
being rooted in the SU(2) gauge symmetry of the pseudo-fermion mapping, the symmetry naturally will no longer be
present in the SU(𝑁) generalization of the fermions. While this enlarged symmetry group at first is only introduced
regarding the physical spin-SU(2), due to its inherent connection with the pseudo-fermion mapping, the change will
also destroy the SU(2) gauge structure of the mapping. Please note, that this fact was not fully appreciated in the
original publication Reference [149] introducing finite 𝑁 calculations, where this symmetry, although broken in the
analytical formulation, was still implemented in the numerical code, producing wrong results. To the best of our
knowledge, this, however, was not rectified in literature to date.

5Please note, that in the context of the large 𝑁 generalization the factor 1⁄2 in eq. (5.2) is absorbed into the definition of the generators 𝑇𝛼.
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Chapter 8

Multi-Loop extension to PFFRG

The implementation of PFFRG introduced in the previous chapter, although proven in many applications, suffers
from the approximations inherent to its formulation. Specifically, the necessity to truncate the flow equations after
the two-particle vertex effectively eliminates all correlations in the physical system involving three or more spins.
This, however, is an uncontrolled approximation, as there exists no estimate for the impact of such terms. Chiral spin
liquids [152], e.g., are characterized by a non-vanishing expectation value of the spin chirality ⟨𝑺1 · (𝑺2 × 𝑺3)⟩ [33],
which – by definition – can only be captured through the three-particle vertex. Additionally, the full FRG flow should
be independent of the specific regulator function chosen, as long as it fulfills the general boundary conditions given
in eq. (6.31) [101]. Unfortunately, this is only true for the full FRG flow and will be spoiled by truncation of the
equations [153].

To partially remedy these shortcomings, in this chapter we will discuss a way to consistently include parts of the
𝑚-particle vertex flows for 𝑚 > 2, which are constructible using self-energy and two-particle vertices only. Due to
two-particle reducibility of the FRG equations, these higher-particle vertex contributions will in turn be made up of
the two-particle reducible subset of diagrams representing them. This class of diagrams, we end up with, is known as
parquet-type [154].

The general formalism we adopt here has been laid out in References [155], [153], and [156], where the flow
equations have been derived from the self-consistency equations of the parquet formalism, namely the Schwinger-
Dyson and Bethe-Salpeter equations. It turns out, that the resulting formalism naturally extends the one-loop structure
of the FRG flow by including orders on the right-hand side [156]. In the context of the one-band Hubbard model,
multi-loop FRG has been shown to significantly improve the quantitative outcome of FRG to be on par with other
state-of-the-art numerical methods [81, 90].

Concerning the notion of loop-order, we have to distinguish two different scenarios this term is used in: Firstly,
the diagrammatic content of the vertex function Γ, which solves the FRG flow already has a loop multi-loop structure
introduced by the flow equations even without including the corrections we will discuss. The loop order we are
concerned with, however, is the one of the right-hand side of the FRG flow equations. In the standard formulation,
cf. eq. (6.43), there is only one loop present, while the corrections we derived in this section will feature multiple
overlapping ones.

Concerning PFFRG, first steps have been taken in Reference [157] to include such corrections up to two-loop level
into the flow. This was done in an iterative manner based on an implementation of the scheme for itinerant fermions
introduced in Reference [158]. This two-loop PFFRG is indeed part of the formalism we present in the following,
which therefore can be seen as a natural extension to higher loop orders.

As a first step, we will go back to the Katanin truncation to show, that by virtue of the corresponding substitution,
what we consider one-loop PFFRG actually contains two-loop contributions. Starting from the Katanin-truncated
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(a) (b)

Figure 8.1: (a) Exemplary contribution from the Katanin substitution, where the self-energy derivative (green box) is inserted in
the 𝑠-channel contribution. (b) Partial ladder diagram already included in the two-particle vertex by virtue of the flow. Here a
𝑠-channel ladder (green box) is connected to a 𝑡-channel contribution.

flow equations, we will outline a derivation of the multi-loop FRG for general models purely starting from the flow
equations. This means, we do not have to invoke the self-consistent parquet equations at any point, to construct our
multi-loop flow, but can rely on a self-contained derivation in the context of FRG. To the best of our knowledge, this
direct connection has not been drawn in the literature to date.

Finally, we will discuss the caveats of implementing the multi-loop equations in a PFFRG context, which mostly
are rooted in the parametrizations introduced in Chapter 7 and the corresponding symmetries.

8.1 Katanin truncation as partial two-loop

The Katanin truncation is widely employed in standard PFFRG calculations, as it restores the balance between classical
ordering tendencies from the 𝑆 → ∞ limit, cf. Section 7.10.1 and quantum fluctuations, as distilled in the 𝑁 → ∞
limit, cf. Section 7.10.2 . While the former is already exact without invoking Katanin1, the exactness of the latter
limit explicitly requires the replacement

𝑆Λ (𝜔) → 𝑆Λkat (𝜔) = − d
dΛ
𝐺Λ (𝜔) (8.1)

to capture the right physics. This also explains, why without invoking eq. (8.1), magnetic long-range order is found
even in systems known to avoid such a transition due to quantum fluctuations, such as the nearest-neighbor Heisenberg
antiferromagnet on the Kagome lattice [59].

To better understand the structure introduce by the substitution prescribed in eq. (8.1), let us first state, that the
additional terms introduced

𝑆Λkat (𝜔) − 𝑆Λ (𝜔) = − d
dΛ
𝐺Λ + d

dΛ
𝐺Λ

|︁|︁|︁|︁
𝛾Λ=const.

= −i
(︂
𝐺Λ

)︂2 d
dΛ

𝛾Λ (8.2)

are proportional to the scale-derivative of the self-energy. This quantity already recasts as a diagram containing a
loop integration, cf. eq. (7.27), therefore inserting it into the FRG flow equations, which as well have a one-loop
structure, will yield a contribution containing two nested loops, as shown in Figure 8.1(a). The structure of the two
loops, however, a vastly different: In the self-energy derivative being a single-particle quantity constructed from a

1The additional contributions from the Katanin-substitution exactly vanish in the 𝑆 → ∞ limit.
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two-particle vertex, naturally, the loop only consists of one propagator joining one incoming and outgoing leg of the
same two-particle vertex. In contrast, the loop from the two-particle vertex flow equation connects two vertices Γ by
virtue of two separate propagators, each carrying different frequency arguments. These are chosen, such that their
sum is the transfer frequency of the two-particle reducible channel the respective diagram is part of.

This justifies the notion found in literature, that the Katanin substituted flow, even though there are two loop
integrations present, is still considered to have a one-loop structure [139, 140, 153, 155–157]. In accordance with
this naming scheme, in the following discussion of multi-loop FRG, by referring to loop order we always mean the
number of two-propagator loops, as found in the flow of the two-particle vertex, included in the scheme.

We want to highlight an additional crucial feature of the Katanin substitution: It is only performed in the two-particle
vertex flow, while the equation for the self-energy derivative is left unaltered [106]. We will find the reason for this
seemingly inconsistent prescription in the discussion of the full multiloop expansion in Section 8.2.4.

8.2 Derivation of Multi-loop corrections from general flow-equations

In literature, the first steps to include higher loop orders in the FRG flow was taken in References [159] and [160]
by explicitly calculating two-loop corrections to the two-particle vertex flow originating from the hitherto neglected
three-particle vertex, cf. Section 6.5. The practical implementation was tremendously simplified by the realization by
Eberlein in Reference [158]: These two-loop contributions can either be recast into a sum of the Katanin contributions
discussed in the previous Section 8.1 or into additional diagrams featuring overlapping loops, which can be obtained
by reinserting one-loop results into the flow equations.

Kugler et al.have extended this structure in References [155], [153], and [156], however from a completely different
point of view: Starting from the self-consistent parquet equations for the self-energy and two-particle vertex, they
derive multi-loop flow equations by introducing the RG regulator function as prescribed in eq. (6.30) and subsequently
differentiating the self-consistency with respect to the scale Λ. The standard Katanin-substituted FRG equations in
this approach are recovered in a one-loop approximation.

While a completely valid construction, in a FRG context, employing the parquet equations as an external input
seems out-of-place, as they do not immediately connect to the flow equations. Therefore, our following derivation
of the multi-loop corrections is based solely on the diagrammatic FRG formalism we have developed in Chapter 6.
We will see, that the resulting equations are the same as the ones derived from the parquet equations, rendering both
approaches equivalent.

8.2.1 Loop structure, cutting lines and reducibility

As a prerequisite for our derivation, we first have to fix the exact meaning of a few technical terms we have intuitively
used so far in the context of a diagrammatic representation of the FRG. In particular, we have to put the notion of a
loop belonging to the transfer frequency channel 𝑐, as well as cutting a line in diagrams and the resultant reducibility
of diagrams on more solid grounds.

We have introduced in Section 7.5 a shorthand notation for the 𝑐-channel (𝑐 = 𝑠/𝑡/𝑢) loop in eq. (7.34). To arrive
at a better understanding of the frequency structure of this quantity, consider a slightly expanded expression, based
on the general flow equation eq. (6.43), inserting the asymptotic frequency parametrization introduced in Section 7.5,
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but explicitly refraining from using the multilocality of the pseudo-fermion vertex2[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c
(𝑐, 𝜈𝑐, 𝜈′𝑐) = 𝐶c

∫
d𝜔 ΓΛ (𝑐, 𝜈𝑐, 𝜔)

d
dΛ

[︂
𝐺Λ

(︂
𝜔 + 𝑐

2

)︂
× 𝐺Λ

(︂
𝜔 − 𝑐

2

)︂]︂
ΓΛ (𝑐, 𝜔, 𝜈′𝑐),

(8.3)
where we have only given the frequency arguments of the vertex functions in the natural parametrization of the vertex.
The corresponding conversions can be found in the flow equations in appendix B. Lattice and spin sums are implied
and the constant 𝐶c denotes all channel specific prefactors.

From eq. (8.3) it becomes immediately clear, what is meant by a 𝑐-channel loop contribution: The loop integration
variable 𝜔 in the propagators is accompanied by the respective transfer frequency 𝑐, which is referred to 𝑐 “flowing
through the loop”. Note, that the fermionic frequencies 𝜈 (′) , in contrast, do not enter the loop integration.

Cutting a line in diagrammatic language now means removing one of the (possibly differentiated) propagators 𝐺
in eq. (8.3). As this still leaves one one-particle Green’s function, which depends on the loop frequency, the graph
representing eq. (8.3) remains connected by this cut, rendering it one-particle irreducible. On the other hand, cutting
both propagator lines, 𝜔 is no longer part of the argument of any 𝐺, meaning that as part of the cutting we have to
additionally remove the integral at this point, and eq. (8.3) factorizes into two-particle vertices. This is equivalent to
the graph being disconnected, rendering the channels two-particle reducible.

As a last comment on the analytical structure of eq. (8.3), we want to note, that although we have given the frequency
dependence of the full vertex in terms of the respective natural frequencies of a channel 𝑐, Γ, in fact, is made up of
contributions from all channels according to

Γ = 𝑅 +
∑︂

c′
𝑔c′ , (8.4)

where the remainder term 𝑅 denotes all two-particle irreducible contributions3 to Γ. This means, that for the
contributions from channels 𝑐′ ≠ 𝑐, a conversion from the asymptotic frequencies of channel 𝑐 to the ones of 𝑐′ has
to be performed, which intermixes bosonic and fermionic frequencies, as explicitly stated in appendix B.

8.2.2 Diagrammatic content of the two-particle vertex in Katanin-truncation

As we will extend the standard one-loop flow in the following, let us first discuss, which diagrams are already included
in the standard one-loop flow equation

d
dΛ

Γ =
∑︂
𝑐

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c

(8.5)

and what this implies for the vertex Γ, that solves eq. (8.5). In Section 7.5 we have argued, that during the flow
equation implies, that starting from the bare vertex at Λ0 → ∞, a structure of coupled two-particle bubbles is formed,
cf. the expansion of the flow in eq. (7.38). We can view this as a repeated reinsertion of the (integrated) right-hand
side of eq. (8.5) into itself for successive infinitesimal scale steps dΛ. This means, that in particular all partial ladder
diagrams in a specific channel, i.e. diagrams, in which multiple of the same 𝑐-channel reducible bubbles are chained
together, possibly connecting to a part of different reducibility, are included in the flow. Such a diagram featuring
a partial 𝑠-ladder is shown in Figure 8.1(b). Therefore, the solution of the standard flow equations already has a
multi-loop structure.

2This choice of parametrization broadens the application of our derivation, rendering it in principle also valid for itinerant fermionic systems,
where the frequency arguments are extended to become full 4-momenta.

3In the truncated formulation of FRG, 𝑅 is just the bare vertex ΓΛ→∞.
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What we will consider in the following, however, is not the diagrammatic structure of the vertex Γ itself, but its
derivative given in the flow equations. From eq. (8.5) we immediately find, that even having the structure of the vertex
function in mind, the differentiated loop still is the outermost one, i.e. it is not nested. Therefore, all corrections to
eq. (8.5) we will derive have to feature the differentiated loop as a nested one.

8.2.3 Multi-loop flow of the two-particle vertex

We now can start our derivation of the multi-loop flow of the two-particle vertex. To this end we rewrite the symbolic
form of the Katanin-truncated flow equation, given in eq. (7.34), as

d
dΛ

ΓΛ =
∑︂
𝑐

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c

=
d

dΛ

∑︂
𝑐

[︂
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︂
c
−

∑︂
𝑐

[︃
dΓΛ

dΛ
◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c
−

∑︂
𝑐

[︃
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ dΓΛ

dΛ

]︃
c
.

(8.6)

Upon integration with respect to the flow parameter from the initial scale Λ0 → ∞ to some lower Λ, we find

ΓΛ = ΓΛ0 +
∑︂
𝑐

[︂
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︂
c
−

Λ∫
Λ0

dΛ′ ∑︂
𝑐

[︃
dΓΛ′

dΛ′ ◦
(︂
𝐺Λ′ × 𝐺Λ′ )︂ ◦ ΓΛ′

]︃
c

−
Λ∫

Λ0

dΛ′ ∑︂
𝑐

[︃
ΓΛ′ ◦

(︂
𝐺Λ′ × 𝐺Λ′ )︂ ◦ dΓΛ′

dΛ′

]︃
c
.

(8.7)

A crucial observation now is, that the second term on the right-hand side of eq. (8.7) is of order O (︁
Γ2)︁ , whereas the

last two terms, containing derivatives of the vertex, are O (︁
Γ3)︁ . These originate from completing the scale derivative

in eq. (8.6). As they prevent the right-hand side of the flow equation from being a total scale derivative, we can view
the integral terms in eq. (8.7) as manifestations of the Katanin truncation. Therefore, to reinclude at least part of the
discarded three-particle vertex contributions and find a self-consistent flow-equation on two-particle vertex level, we
discard these integral terms, leading to

ΓΛ = ΓΛ0 +
∑︂
𝑐

[︂
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︂
c
− o.c. , (8.8)

where we have already anticipated, that this formulation will overcount contributions to the flow by including diagrams,
which cannot be derived from three-particle vertex contributions, by subtracting o.c..

Differentiating eq. (8.8) with respect to the RG scale Λ, we find the corresponding flow-equation

d
dΛ

ΓΛ =
∑︂
𝑐

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c
+

∑︂
𝑐

[︃
dΓΛ

dΛ
◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c

+
∑︂
𝑐

[︃
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ dΓΛ

dΛ

]︃
c
− o.c. ,

(8.9)
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(a) (b)
(c)

Figure 8.2: Exemplary diagrammatic content of the multi-loop expansion of the two-particle vertex Γ. (a) Two-loop diagram
resulting from the insertion of a one-loop 𝑠-channel contribution (blue box) into the right vertex of a 𝑠-channel diagram. (b)
Example of a three-loop diagram not to include in multi-loop, obtained by inserting the ℓ = 2 contribution form (a) (blue box)
into the right vertex of the 𝑠-channel. The partial ladder (green box) is already included in the two-particle vertex by virtue
of the flow equations, meaning this diagrammatic contribution is already included in (a). (c) Contribution to the central part,
where the right insertion (a) is inserted into the left vertex of the 𝑠-channel, leading to a nested structure not included before.

i.e. we now have found an implicit differential equation for the two-particle vertex Γ. In an attempt to solve eq. (8.9),
we resort to a fixed point iteration: starting from d

dΛΓ
Λ, (0) = 0 we apply the right-hand side of the implicit equation

repeatedly to find the iterated approximations

d
dΛ

ΓΛ, (𝑛+1) =
∑︂
𝑐

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c
+

∑︂
𝑐

[︃
d

dΛ
ΓΛ, (𝑛) ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c

+
∑︂
𝑐

[︃
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ d

dΛ
ΓΛ, (𝑛)

]︃
c
− o.c. ,

(8.10)

converging to the final solution. This scheme is not guaranteed to converge, however, as we will see in Sections 11.3
and 12, numerical results show the validity of this approach.

As we can see,
d

dΛ
ΓΛ, (1) =

∑︂
𝑐

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c

(8.11)

exactly reproduces the (over-counting free) one-loop FRG result. Due to the insertion of the vertex from iteration 𝑛
into the loops to obtain iteration 𝑛 + 1, all diagrams newly generated in this step will be of loop-order ℓ = 𝑛 + 1. As
these diagrams are topologically different for each ℓ, they cannot cancel each other, i.e. the overcounting has to be
addressed at each loop order separately. This motivates to define the ℓ-loop contributions

d
dΛ

ΓΛ,ℓ =
d

dΛ
ΓΛ, (ℓ ) − d

dΛ
ΓΛ, (ℓ−1) , (8.12)

with

d
dΛ

ΓΛ,ℓ=1 =
∑︂
𝑐

[︃
ΓΛ ◦ d

dΛ

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c

(8.13)

d
dΛ

ΓΛ,ℓ>1 =
∑︂
𝑐

[︃
d

dΛ
ΓΛ,ℓ−1 ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︃
c
+

∑︂
𝑐

[︃
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ d

dΛ
ΓΛ,ℓ−1

]︃
c
− o.c. . (8.14)

Equations (8.13) and (8.14) clearly define an iterative scheme in the spirit of the two-loop corrections derived in
References [158] and [157]. To close the derivation, we just have to address the issue of overcounting still present
in eq. (8.14). Referring to the untruncated flow equation for the two-article vertex, eq. (6.43), clearly all ℓ ≥ 2
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contributions to the flow have to be part of the three-particle vertex, where two external legs are connected by a single-
scale propagator 𝑆. By definition, the three-particle vertex is one-particle irreducible, meaning eq. (8.14) can only
include terms, which are one-particle irreducible after cutting the single scale propagator contained in the diagrams.
This in turn means for ℓ = 2, that any insertion of terms of loop order ℓ = 1 in eq. (8.14) have to be performed such
that the single-scale propagator is contained in a nested loop. By this, we mean, that the loop variable of the outer
loop has to flow through the loop of the insertion. Following our discussions in Section 8.2.1, this implies, that the
outer loop frequency has to enter the transfer frequency of the respective channels of the insertion of loop-order ℓ = 1,
cf. eq. (8.3). From the same expression, we can deduce, that this excludes all insertions of a channel 𝑐 into a diagram
of the same channel, as then the integration variable would enter the fermionic frequency of the insertion. Therefore,
we have to restrict insertion in a way, that only complementary channels are to be inserted to calculate the ℓ = 2
contributions. As an illustration, we show one of the resulting diagrams in Figure 8.2(a).

The same rule applies for higher loop orders, but for a different reason. If we were to insert a 𝑐-channel term of loop
order ℓ − 1 into the 𝑐-reducible diagram, we would generate a contribution, that features a partial ladder structure. As
we have discussed in Section 8.2.2, the two-particle vertex already contains all partial ladders, i.e. we can absorb the
partial ladder, leading to an ℓ − 1-loop diagram already summed up. We illustrate this in Figure 8.2(b) using a partial
𝑠-channel ladder. Therefore, a self-insertion of channels is also not possible for ℓ ≥ 3.

Here, however, we find one exception: for ℓ ≥ 3, there is the possibility to insert ℓ − 1 diagrams of the same
channel, such that the propagator bubble is connected to the ℓ − 2 insertion, leading again to a nested loop structure,
cf. Figure 8.2(c). This means, that we have to insert the 𝑐-channel ℓ − 1 contribution, where the ℓ − 2 insertion has
been performed in the right vertex or vice versa. This term has been coined the central part in literature [153, 155,
156].

In total, we can summarize our findings by rewriting eq. (8.14) as

d
dΛ

ΓΛ,ℓ>1 =
∑︂
𝑐

(︂
𝑔̇c,Λ,ℓ

L + 𝑔̇c,Λ,ℓ
C + 𝑔̇c,Λ,ℓ

R

)︂
, (8.15)

where the left (L), right (R) and central (C) part of the channels are defined by

𝑔̇c,Λ,ℓ>1
L =

[︄∑︂
𝑐′≠𝑐

𝑔̇c′ ,Λ,ℓ−1 ◦
(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︄
c

(8.16)

𝑔̇c,Λ,ℓ>1
R =

[︄
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦

∑︂
𝑐′≠𝑐

𝑔̇c′ ,Λ,ℓ−1

]︄
c

(8.17)

𝑔̇c,Λ,ℓ>2
C = 𝑔̇c,Λ,ℓ

L =
[︂
𝑔̇c,Λ,ℓ−1

R ◦
(︂
𝐺Λ × 𝐺Λ

)︂
◦ ΓΛ

]︂
c
=

[︂
ΓΛ ◦

(︂
𝐺Λ × 𝐺Λ

)︂
◦ 𝑔̇c,Λ,ℓ−1

L

]︂
c
. (8.18)

where the full channel at loop order ℓ is defined by

𝑔̇c,Λ,ℓ = 𝑔̇c,Λ,ℓ
L + 𝑔̇c,Λ,ℓ

C + 𝑔̇c,Λ,ℓ
R (8.19)

and the central part is vanishing for ℓ = 2. The iterative structure of the flow equations given here exactly reproduces
the results from the derivation based on the parquet equations [153, 155, 156].
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8.2.4 Multi-loop flow of the self-energy

Having found the higher loop corrections to the two-particle vertex flow, we now also have to consider the changes
these corrections induce in the flow of the self-energy, as given in eq. (6.41). We will arrive there considering a similar
fix-point iteration as in the previous section. To this end, we rewrite eq. (6.41), using, that the one-particle vertex is,
up to a sign, the self-energy, in the symbolic form

d
dΛ

ΣΛ = − [︁
ΓΛ ◦ 𝑆Λ]︁

. (8.20)

In a similar fashion to eq. (8.6), we now distill a total derivative out of eq. (8.20) by using the definition of the
single-scale propagator, eq. (6.42). We find

d
dΛ

ΣΛ =
d

dΛ
[︁
ΓΛ ◦ 𝐺Λ]︁ − [︃

dΓΛ

dΛ
◦ 𝐺Λ

]︃
+

[︃
ΓΛ ◦

(︃
𝐺Λ × dΣΛ

dΛ
× 𝐺Λ

)︃]︃
(8.21)

and upon integration with respect to the scale

ΣΛ = ΣΛ0 + [︁
ΓΛ ◦ 𝐺Λ]︁ − Λ∫

Λ0

[︃
dΓΛ

dΛ
◦ 𝐺Λ

]︃
−

Λ∫
Λ0

[︃
ΓΛ ◦

(︃
𝐺Λ × dΣΛ

dΛ
× 𝐺Λ

)︃]︃
. (8.22)

This is the one-particle equivalent to the integrated two-particle flow given in eq. (8.7). Similar to the argument
we have given there, the integral terms in eq. (8.22) are realizations of the approximation introduced by truncating
the hierarchy of flow equations using the Katanin substitution. We therefore go the same route as for the two-particle
vertex and neglect these terms to alleviate shortcomings of the formulation, leading to the improved expression

ΣΛ = ΣΛ0 + [︁
ΓΛ ◦ 𝐺Λ]︁ − o.c. , (8.23)

where we again have anticipated an overcounting of diagrams. Upon differentiation with respect to Λ, we again find
the improved flow equation

d
dΛ

ΣΛ = − [︁
ΓΛ ◦ 𝑆Λ]︁ + [︃

dΓΛ

dΛ
◦ 𝐺Λ

]︃
−

[︃
ΓΛ ◦

(︃
𝐺Λ × dΣΛ

dΛ
× 𝐺Λ

)︃]︃
− o.c. . (8.24)

The first term in eq. (8.24) now is nothing else than the standard self-energy derivative we have used earlier, while
the second term introduces corrections generated by multi-loop contributions to the vertex-derivative. The third term
again renders eq. (8.24) an implicit differential equation, which necessitates another fixed point iteration.

Before we, however, turn to implementing this, let us first consider, which diagrams to actually include in the flow, to
avoid the overcounting. We start with the second term in eq. (8.24), which introduces contributions stemming from the
three-particle vertex. Here we have to take care to not include diagrams, that can already be generated by the first term.
Our observation now is, that in the two-particle vertex, no diagrams are included, where a propagator connects a two-
particle vertex to itself, cf. Equations (8.16), (8.17), and (8.18), but all other fully connected ones. Therefore, the first
term in eq. (8.24) captures all possibilities, building multi-loop contributions in which all undifferentiated propagators
are connected to pairwise different vertices. What is left for the second term now is to sum up contributions, in which
the propagator 𝐺 can connect two legs of the same vertex, meaning we have to restrict the insertions done there to
𝑡-channel corrections.
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Furthermore, as already outlined in Section 8.2.2, we cannot form partial ladders to avoid overcounting, as they are
already included in the two-particle vertex. We, therefore, have to restrict the insertions to terms, where the outermost
loop structure is fully nested, which exactly is the case in the central part of the vertex corrections given by eq. (8.18).
Therefore, the second term has to be restricted to only feature 𝑔̇t,Λ,ℓ

C contributions to the self-energy. Having performed
the full multi-loop summation, these terms are readily available, meaning no additional computations are necessary.

To be consistent at this level of loop order, we now have to reinsert the contributions from the second term into the
third term in eq. (8.24). This then concludes the full self-energy correction in the first step of the fixed point iteration
of eq. (8.24), at which level the self-energy derivative now is given by

d
dΛ

ΣΛ = Σ̇Λ
Std + Σ̇Λ

t + Σ̇Λ
t̄ (8.25)

where the three terms are given by

Σ̇Λ
Std = − [︁

ΓΛ ◦ 𝑆Λ]︁
(8.26)

Σ̇Λ
t =

[︄∑︂
ℓ

𝑔̇t,Λ,ℓ
C ◦ 𝐺Λ

]︄
(8.27)

Σ̇Λ
t̄ = −

[︂
ΓΛ ◦

(︂
𝐺Λ × Σ̇Λ

t × 𝐺Λ
)︂]︂
. (8.28)

As the multi-loop corrections to the vertex depend, by virtue of the Katanin substitution, on the self-energy
derivative, the fixed point iteration has to be performed by recalculating the two-particle vertex derivatives with
eq. (8.25) to find the completely self-consistent limit [153]. If, the corrections given by Σ̇Λ

t and Σ̇Λ
t̄ turn out to be

small, however, a one-shot scheme, calculating eq. (8.25) only once without reaching self-consistency, will be a good
approximation.

We want to highlight a special feature of the multi-loop corrections given in eq. (8.25): As both contributions not
captured by the standard flow depend on the central part of the multi-loop vertex flow, this, in turn, means, that up
to ℓ = 2-loop order, the standard self-energy flow fully captures all diagrammatic contributions. This a posteriori
justifies, that the Katanin substitution is only performed in the two-particle vertex flow, while leaving the self-energy
flow equation unchanged.

8.3 Peculiarities of PFFRG

The multi-loop corrections given in eq. (8.15) and eq. (8.25) have been derived without referring to any of the
parametrization specifically implemented for pseudo-fermionic systems. While the multi-loop corrections can be
straightforwardly implemented by plugging the explicit parametrization of the two-particle vertex into the multi-loop
equations, we want here to give a simple recipe to generalize the flow given in Sections A and B to arbitrary loop
orders.

Analogous to the prescription in eq. (8.15), ℓ-loop multi-loop corrections for the self-energy flow for the parametrized
two-particle vertex are obtained by inserting the (ℓ−1)-loop terms of complementary channels into the flow equations.
For the 𝑠- and 𝑢-channels, this can be done straightforwardly, for the 𝑡-channel, we have to pay special attention. The
non-local term involving the lattice sum does not need any treatment, the chalice diagrams, however, are different:
As can be seen from eq. (7.19), the local vertex in these contributions originates from Γ× , which is mapped to Γ=
using crossing symmetry eq. (7.14). This exchanges the meaning of 𝑡 and 𝑢 transfer frequencies, meaning the external
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transfer frequency now flows through the other channel, as can be seen in the explicit frequency parametrization given
in eq. (B.3). As the insertions have to be done such that the loop integration enters the transfer frequency of the
insertion, we have to substitute the complementary channels to the 𝑢 channel for this vertex. Similarly, in the flow of
the self-energy, the local terms in eq. (B.1) originate from Γ× , meaning there the central part of the 𝑢-channel, instead
of the 𝑡-channel has to be inserted.

The last caveat concerns the implementation of symmetries on the level of 𝑔̇c
L, 𝑔̇c

C and 𝑔̇c
R. While the central part

exhibits the full symmetries given in Table 7.2, care has to be taken considering the exchange in 𝜈 and 𝜈′. As this
amounts to exchanging the role of left and right vertices, this symmetry additionally maps left and right parts onto
each other.
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Chapter 9

Numerical implementation of PFFRG

The solution of the PFFRG flow is analytically only possible in very few limiting cases, such as the large-𝑆 (cf.
Section 7.10.1) and large-𝑁 (cf. Section 7.10.2) limits we have discussed before. In the physically relevant SU(2)
case with finite spin-length, however, the highly coupled structure of the PFFRG equations prevents any analytical
attempt to find a closed solution. Therefore, we have to resort to numerical methods to obtain an approximate solution
to the flow equations.

Historically, most numerical codes used in this context employed the algorithmic structure introduced in the first
PFFRG works in References [98] and [99], in particular employing the step regulator introduced in Section 7.6.1
and the conventional frequency parametrization in terms of transfer frequencies, cf. Section 7.4. In this section,
we will discuss the steps taken to render the flow equations amenable to numerical integration in what we dub the
"conventional implementation" of PFFRG. All one-loop results presented in this thesis have been obtained employing
these algorithms. There is also an open-source codebase available, which exactly implements the scheme we have
used for our calculation in Reference [161].

Through the development of the multi-loop scheme describe in Chapter 8, however, it became clear, that it is
imperative to utilize more advanced algorithms to control numerical errors. This is especially important, as due to
the iterative nature of the multi-loop corrections, numerical errors will grow significantly by reinserting numerical
derivatives into the diagrams. From an analytical point of view, to amend the numerical improvements, we employ the
asymptotic frequency parametrization introduced in Section 7.5 in conjunction with the smoothened frequency cutoff
described in Section 7.6.2. In addition, we describe in the following the more advanced algorithms implemented in
the PFFRGSolver.jl open-source package we have developed in this thesis [129, 162], which we dub "improved
implementation".

9.1 Lattice symmetries

Before diving into the numerical details of the implementation, let us first discuss the practical implementation of the
lattice underlying the spin system. Considering the spatial dependence of the flow equations given in Equations (7.18)
and (7.19) in conjunction with the lattice space group symmetries, which carry over to the vertex functions, as
discussed in Section 5.4.4, we firstly realize, that the vertex only depends on the displacement 𝒓𝑖 − 𝒓 𝑗 between two
lattice points.

To efficiently parametrize this dependence and to make the, in principle infinite, lattice numerically tractable, we
construct a finite-size lattice in real space, centered around one lattice point we treat as the reference. This is done
up to a maximum distance 𝑑max, such that 𝑑 (𝒓𝑖 , 𝒓 𝑗 ) ≤ 𝑑max for all 𝑗 , with 𝑑 being a suitable length measure in real
space. For 𝑑 several measures have been used, including the Euclidean norm of the distance vector [140] and a norm
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counting the minimum number of nearest neighbor connections in the lattice connecting 𝒓𝑖and 𝒓 𝑗 [30, 129], which
all agree qualitatively in the physics found. We then allow only vertex functions, that have a spatial extent within
this lattice, to obtain finite values. This amounts to the physical approximation of allowing only a finite correlation
length to be taken on within the calculations, which is limited by the lattice size. This is in contrast to a true finite-size
calculation, as we still employ translational symmetry, but only limit the correlation length to be taken on.

Utilizing further the symmetries of the lattice, we identify an irreducible wedge of lattice points in real space,
which are mutually symmetry inequivalent. By definition, all other points can be mapped onto this part of the
lattice employing a combination of point group symmetries. This symmetry reduced set then can be linearly indexed,
rendering the actual implementation of the flow equations independent of the geometry.

To be able to carry out the lattice sum contained in the 𝑡-channel contribution, we also have to define how to
handle these non-local terms in the flow equations. As we have limited the spatial extent of the vertex function,
out of the terms Γ𝑖1 𝑗Γ 𝑗𝑖2 in eq. (7.19), only the ones with 𝑑 (𝒓𝑖1 , 𝒓 𝑗) ≤ 𝑑max and at the same time 𝑑 (𝒓 𝑗 , 𝒓𝑖1 ) ≤ 𝑑max

contribute. It is now convenient to tabulate the pairs (𝑖1 𝑗 , 𝑗𝑖2) for which this is the case for all 𝑖1𝑖2 combinations within
the irreducible wedge at the beginning of the flow to construct what we call the overlap matrix. At the same time,
using lattice symmetries, we map the connection 𝑗𝑖2 back to the irreducible wedge, such that we find an equivalent
connection 𝑖1𝑖∗2 originating from the reference point 𝑖1. The lattice sum during the flow then only runs over these pairs
of spatial vertex components. Converting both 𝑖1 𝑗 and 𝑖1𝑖∗2 to the linear index defined within the irreducible lattice
again removes the specific lattice dependence, allowing the further implementation to be lattice agnostic.

9.2 Frequency discretization

In the 𝑇 → 0 formulation of PFFRG, both the self-energy and the two-particle vertex acquire a continuous depen-
dence on one and three frequencies, respectively. Symmetries imply, that we can resort to only considering positive
frequency components in all frequencies for both conventional and asymptotic parametrization schemes. Neverthe-
less, a numerical treatment of continuous functions always necessitates a discretization of their continuous domain,
introducing a frequency mesh.

The frequency integration on the right-hand side implies, that values of the vertex not coinciding with the discrete
mesh points are needed in the flow calculation. To extract vertex values at an arbitrary point (𝜔, 𝜈, 𝜈′) in three-
dimensional frequency space, we use a multilinear interpolation scheme

Γ(𝜔, 𝜈, 𝜈′) = [︁
Γ(𝜔𝑖< , 𝜈𝑖< , 𝜈′𝑖< ) (𝜔𝑖> − 𝜔) (𝜈𝑖> − 𝜈) (𝜈′𝑖> − 𝜈′)+
Γ(𝜔𝑖< , 𝜈𝑖< , 𝜈′𝑖> ) (𝜔𝑖> − 𝜔) (𝜈𝑖> − 𝜈) (𝜈′ − 𝜈′𝑖< )+
Γ(𝜔𝑖< , 𝜈𝑖> , 𝜈′𝑖< ) (𝜔𝑖> − 𝜔) (𝜈 − 𝜈𝑖< ) (𝜈′𝑖> − 𝜈′)+
Γ(𝜔𝑖< , 𝜈𝑖> , 𝜈′𝑖> ) (𝜔𝑖> − 𝜔) (𝜈 − 𝜈𝑖< ) (𝜈′ − 𝜈′𝑖< )+
Γ(𝜔𝑖> , 𝜈𝑖< , 𝜈′𝑖< ) (𝜔 − 𝜔𝑖< ) (𝜈𝑖> − 𝜈) (𝜈′𝑖> − 𝜈′)+
Γ(𝜔𝑖> , 𝜈𝑖< , 𝜈′𝑖> ) (𝜔 − 𝜔𝑖< ) (𝜈𝑖> − 𝜈) (𝜈′ − 𝜈′𝑖< )+
Γ(𝜔𝑖> , 𝜈𝑖> , 𝜈′𝑖< ) (𝜔 − 𝜔𝑖< ) (𝜈 − 𝜈𝑖< ) (𝜈′𝑖> − 𝜈′)+
Γ(𝜔𝑖> , 𝜈𝑖> , 𝜈′𝑖> ) (𝜔 − 𝜔𝑖< ) (𝜈 − 𝜈𝑖< ) (𝜈′ − 𝜈′𝑖< )

]︁
× 1

(𝜔𝑖> − 𝜔𝑖< ) (𝜈𝑖> − 𝜈𝑖< ) (𝜈′𝑖> − 𝜈′𝑖< )
,

(9.1)
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where the indices 𝑖> (𝑖<) indicate the nearest larger (smaller) frequency in the grid on the respective frequency axis.
This scheme is used for the full vertex in the transfer frequency parametrization or for the three different diagrammatic
channels in the asymptotic frequency parametrization separately. The asymptotic parts of the vertex function in the
latter as well as the self-energy are interpolated using the two- and one-dimensional analogs of this interpolation
scheme.

9.2.1 Frequency discretization in the conventional implementation

In the conventional scheme, where the parametrization in terms of transfer frequencies is used, traditionally, one
frequency mesh is chosen for all transfer frequency axes and the self-energy. It is built up from logarithmically spaced
discrete points, being denser towards the origin of the axis. The intent of this construction is to resolve the richer
structure of the vertex functions around zero frequency, while at the same time being able to capture the behavior of
the large frequency tails of the vertex. If one of the frequencies exceeds the upper limit of the discrete frequencies,
the vertex value is set to zero.

This approach has proven itself in various applications, in particular in combination with ab initio data to explain
real material properties [30, 33–35, 131, 134]. It however has several shortcomings regarding numerical accuracy.
Firstly, the vertex functions do not necessarily vanish in the limit of a single large transfer frequency. As we have seen
in Section 7.5, this is only true for the three diagrammatic channels in their respective transfer frequency, but not for
the sum of the three comprising the full vertex. From literature, this inaccuracy, however, seems to be not important
at one-loop level, as the physical results fit experiments.

The second shortcoming, in contrast, is more severe: As the frequency mesh is chosen at the beginning of the flow,
it remains the same for all RG scales Λ. Due to the scale dependence of the regulator function in the propagators,
however, the location of features, i.e. extrema and roots of the vertex function along the frequency axes, will change
and be proportional to the specific scale Λ. This means, that a static mesh will never be able to capture all features of
the vertex at every scale. As the density of the mesh increases towards the origin, resolution at the important locations
will increase with decreasing Λ, such that the inaccuracies only occur at high scale, where the vertex still is relatively
small meaning that a one-loop scheme still will be sufficiently accurate. As for the inclusion of higher loops, the
right-hand side of the flow has to be reinserted into diagrams, these inaccuracies will multiply, rendering a static mesh
inadequate for such an application.

A third numerical problem originates in the interplay of the sharp cut-off employed in the conventional scheme
combined with the static mesh. Every time the scale Λ crosses a discrete frequency 𝜔𝑖 , new contributions for this
frequency point will become finite in the frequency integrals, which were suppressed by the regulator before. This
leads to a discontinuity in the flow of the vertex at the corresponding frequency, to which the RG dynamics reacts with
an overcompensation in the flow, leading to oscillating behavior, which is most pronounced at low Λ.

9.2.2 Frequency discretization in the improved implementation

In the improved implementation, we ameliorate the shortcomings of the previously described scheme in multiple ways.
On an analytical level, we switch from the conventional to the asymptotic frequency parametrization, cf. Section 7.4.
This allows to fully capture the behavior for both large transfer frequencies and also large fermionic frequencies in all
channels independently.

In the practical implementation, we do not use the Kernel functions 𝐾 defined in eq. (7.33), as in this formulation
calculating the value of a single channel at a specific frequency point amounts to the interpolation and subsequent
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summation of all kernel functions. To reduce this computational overhead, we define new functions 𝑄 according to

𝑄c
3 (𝑐, 𝜈𝑐, 𝜈′𝑐) = 𝑔̇c (𝑐, 𝜈𝑐, 𝜈′𝑐) (9.2)

𝑄c
2 (𝑐, 𝜈𝑐) = lim

|𝜈′𝑐 |→∞
𝑔̇c (𝑐, 𝜈𝑐, 𝜈′𝑐) (9.3)

𝑄̄
c
2 (𝑐, 𝜈′𝑐) = lim

|𝜈𝑐 |→∞
𝑔̇c (𝑐, 𝜈𝑐, 𝜈′𝑐) (9.4)

𝑄c
1 (𝑐) = lim

|𝜈𝑐 | , |𝜈′𝑐 |→∞
𝑔̇c (𝑐, 𝜈𝑐, 𝜈′𝑐). (9.5)

In an evaluation of the vertex, we then only have to interpolate 𝑄c
3 within its domain of definition, while resorting

to the according asymptotics if one or both of the fermionic arguments of the vertex exceed the frequency mesh.
These new functions can be related to the kernel functions according to

𝑄c
3 (𝑐, 𝜈𝑐, 𝜈′𝑐) = 𝐾c

1 (𝑐) + 𝐾c
2 (𝑐, 𝜈𝑐) + 𝐾̄

c
2 (𝑐, 𝜈′𝑐) + 𝐾c

3 (𝑐, 𝜈𝑐, 𝜈′𝑐) (9.6)

𝑄c
2 (𝑐, 𝜈𝑐) = 𝐾c

1 (𝑐) + 𝐾c
2 (𝑐, 𝜈𝑐) (9.7)

𝑄̄
c
2 (𝑐, 𝜈′𝑐) = 𝐾c

1 (𝑐) + 𝐾̄
c
2 (𝑐, 𝜈′𝑐) (9.8)

𝑄c
1 (𝑐) = 𝐾c

1 (𝑐). (9.9)

The asymptotic behavior we extract by numerically setting the according frequency arguments to a practically infinite
value. The numerical advantage of the 𝑄 functions defined here, however, comes at a price: in the parametrization
using the kernels 𝐾 , the frequency discretization on all axes for all asymptotic classes, i.e. 𝐾1, 𝐾2, 𝐾̄2 and 𝐾3 can be
chosen independently, such that the numerically cheaper to calculate 𝐾1 class can be augmented by a higher resolution
mesh. Using the sum of these kernels in form of the 𝑄s defined above, we do not have this choice anymore. Although
one would naively expect, that the same split can be done for the limiting functions, i.e. 𝑄1, 𝑄2, 𝑄̄2 and 𝑄3, in a
real implementation, this will lead to interpolation artifacts at the boundaries of the frequency mesh, which lead to
unphysical errors in the flow. The reduced accuracy in the kernel functions with lower frequency degrees of freedom,
however, turned out to not alter the accuracy of the calculation as a whole, cf. Reference [163].

Therefore, the only split we introduce in the frequency meshes is to allow for different meshes for the bosonic and
fermionic axes, with the latter being the same for both 𝜈 and 𝜈′. The reason for this is the symmetry under exchange
of 𝜈 and 𝜈′, as discussed in Section 7.5. We also allow the 𝑡-channel contributions to be defined on a different set of
meshes than the 𝑠- and 𝑢-channel, with the latter utilizing the same discretization, again due to the symmetry between
both under exchange of the two fermionic arguments. This split in the diagrammatic channels turns out to be crucial
for tracking the interplay between magnetic ordering tendencies in the 𝑡 channel and paramagnetic behavior stemming
from the 𝑠- and 𝑢-channels at low RG scale Λ. Additionally, spin- and density-part of the vertex are allowed to be
defined on possibly different meshes, as their frequency content qualitatively differs. Including another separate mesh
for the self-energy, the improved implementation, therefore, utilizes nine different frequency meshes.

We also change the nature of the meshes themselves compared to the conventional implementation. The logarith-
mical increase of the mesh spacing is only used for frequencies larger than a bound 𝜔𝑏, up to which we employ a
linear mesh spacing. This allows to more accurately resolve the structure of the vertex around the origin in frequency
space, while still resolving the high-frequency behavior of the functions.

The linear part consists of 40% of the frequencies per axis, while the remainder is put into the logarithmic tail. The
bound 𝜔𝑏 between these, as well as the maximum frequency 𝜔𝑚, both needed to fully define the mesh, are adjusted
during the flow to best fit the actual frequency structure of the vertex. After each step in the RG flow, we scan both
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bosonic and fermionic axes in all channels and subsequently adjust 𝜔𝑏 and 𝜔𝑚 to resolve the main extrema of the
vertex along these axes appropriately. For details, we refer to References [139] and [162].

This dynamical adjustment of the frequencies, in conjunction with the implementation of the smooth frequency
cutoff, removes the unphysical oscillations from the flow.

9.3 Frequency integration

With the frequency discretization defined, a quadrature rule has to be put in place to solve the frequency integrals
over vertices and bubbles on the right-hand side of the flow equations. In the conventional implementation, this was
realized using a trapezoidal rule, where the integration points coincide with the mesh points.

This fixed quadrature rule is highly inaccurate and misses structures of the integrand away from the integration
origin and therefore is highly dependent on the exact way the integration variable is shifted in an implementation.
Analyzing the way the flow equations in conventional parametrization, given in appendix A, are parametrized in
frequency space, we can trace back the success of this quadrature rule to the structure of the bubble function 𝑃. From
the definition in eq. (7.29), we see, that it has two (regulated) poles, the one from the Katanin substituted single-scale
propagator 𝑆kat and the other one from the full propagator 𝐺. The former, however, is stronger peaked than the latter,
and additionally the frequency integrals are shifted, such that the single-scale pole is located at 𝜔 = 0, meaning, that
the quadrature rule accurately captures at least the dominant contribution of the propagator bubble.

In a multi-loop scheme, however, the single-scale propagator is replaced by a full one, rendering both contributions
equal. To efficiently capture the richer frequency structure in this case, adaptive integration routines are called for to
control the numerical error. In the improved implementation, we use an adaptive trapezoidal rule augmented by a
Richardson extrapolation. Tho this end we divide the integration interval into four regions, [−100(Λ + 𝜔/2),−2(Λ +
𝜔/2)], [−2(Λ +𝜔/2), 0], [0, 2(Λ +𝜔/2)], and [2(Λ +𝜔/2), 100(Λ +𝜔/2)], where 𝜔 represents the bosonic transfer
frequency to enter the bubble integration. The outer limits are meant as numerical approximations to the infinite
integration range, while the additional division points aid the adaptive integration routine in accurately resolving
the structure of the bubble function, as they are located near the zeros of the latter. The four intervals are further
subdivided into 30 intervals each, with a linear distribution of division points for the inner two and a logarithmical one
for the outer intervals. Finally, on each of these subintervals the adaptive trapezoidal rule is used, further subdividing
these till a set relative and absolute error, computed from the change between two divisions, is reached.

9.4 Differential equation solver

As last step in the numerical implementation, an algorithm for the integration of the ordinary differential equation
comprising the RG flow has to be chosen. In the conventional scheme, an Euler stepper was chosen, where the flow
was updated according to

ΓΛ+dΛ = ΓΛ + dΛ
d

dΛ
ΓΛ, (9.10)

and analogously for the self-energy. The step-size dΛ in these schemes is chosen proportional to the current scale
Λ, typically with dΛ = 1 − 5% · Λ. This accounts for the fact, that at high RG scales the change in the vertex is
small, allowing for larger steps, while at lower Λ care has to be taken to not miss a breakdown of the flow. The main
advantage of the Euler scheme is, that it does not put any requirements on the smoothness of the right-hand side of
the flow equations, allowing also to integrate the flow utilizing the step regulator, which leads to a non-differentiable
(with respect to Λ) right-hand side.
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Figure 9.1: Median computational runtime of 60 samples of a single calculation of the right-hand side of the flow equation for
Λ/𝐽 = 1 relative to the runtime of the fastest computation in each series. Calculations start from a parquet solution to make the
code integrate over non-trivial frequency structures. The numerical parameters for all plots are fixed to 𝑁𝜔 = 50, 𝑁𝜈 = 30,
𝜉 = 4 and ℓ = 1, if not varied. The asymptotic behavior expected analytically is achieved in all cases (dashed red lines).

Introducing the smooth regulator in the improved implementation, however, allows employing more advanced
algorithms, which depend on the smoothness of the derivative function. We resort to a third-order Bogacki-Shampine
method [164], which adapts the step width in Λ according to the current absolute and relative errors. This allows for
a more efficient calculation of the flow, as in numerically less demanding regions of Λ, larger steps will automatically
be taken, while in the harder to solve parts, especially close to a flow breakdown, the step size will be decreased. We
have found this integrator to be a good compromise between accuracy and efficiency [165].

9.5 Initial conditions

In the conventional implementation, the initial vertex was set according to Equations (7.55) and (7.56) at a scale
Λ ∼ 100 · 𝐽, where 𝑗 is a measure for the interaction strength. This is a valid numerical approximation for Λ → ∞. For
multi-loop calculations, which reproduce the parquet approximation, another route can be taken, which we optionally
can use in the improved implementation: We set ourselves to a smaller scaleΛ, where the regularized parquet equations
are still easily solvable using a fixed point iteration and start the flow from the resulting vertex and self-energy.

9.6 Run-time scaling

The dominant contribution to the numerical runtime is given by the evaluation of the deriviatives of the two-particle
vertex, as given in Sections A and B. The self-energy derivative, in comparison, is negligible. Analyzing the flow
equations, we find, that the asymptotic complexity is given by

O
(︂
𝑁2

L × 𝑁𝜔𝑁2
𝜈 × ℓ

)︂
, (9.11)
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where 𝑁L is the number of symmetry reduced lattice sites, 𝑁𝜔 (𝑁𝜈) the number of bosonic (fermionic) frequencies,
and ℓ denotes the number of loops. In 𝑑 spatial dimensions, the number of sites is expected to follow a O(𝑑𝑑max)
dependence, with 𝑑max the maximal correlation length considered, cf. Section 9.1.

In our implementation in PFFRGSolver.jl, we indeed reach these asymptotic scaling limits, as shown in Figure 9.1.
Here we show the median runtime for 60 evaluations of the right-hand side of the flow equations. The expected linear
and quadratic behavior in the number of both bosonic and fermionic frequencies, respectively, is achieved for the
whole range of parameters tested. Slight deviations, as we find here, are to be expected due to adaptive integration and
the numerical parallelization employed. Similarly, the power-law in the maximal correlation length 𝑑max is achieved
for the whole parameter range. The linear scaling in the number of loops only sets in at ℓ = 5, while we find a steeper
slope for smaller ℓ. This behavior we attribute to the fact, that due to the successively diminishing contributions from
higher and higher loops, the adaptive frequency integration converges faster. Therefore, the initial overhead with of
twice (thrice) the number of integrals to be computed, compared to ℓ = 1 for two (three) loop contributions diminishes,
and the analytically expected linear scaling in ℓ is recovered.





III
Phase-diagrams of frustrated

three-dimensional lattices

scrheadingsIn this part, we analyze the phase diagrams of Heisenberg
models on the three-dimensional body-centered cubic, Pyrochlore, and
simple cubic lattices, unveiling a plethora of different ordered phases as
well as quantum spin liquid candidates.
The contents of this part of the thesis are partially included in Refer-
ences [32], [31], and [139].
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Chapter 10

Body-Centered Cubic Lattice up to
third-nearest-neighbor interactions

scrheadingsIn the two-dimensional (2D) square-lattice, it has been established, that classical spiral orders, comprising
the ground state of any Bravais lattice (cf. Section 3.2), give way to extended quantum spin liquid phases in parameter-
space upon inclusion of quantum fluctuations [126, 166, 167]. Taking this insight as a guiding principle, we will
investigate the phase diagram of the body-centered cubic (BCC) lattice with couplings up to third-nearest-neighbors.
It is a natural extension of the two-dimensional square lattice in three dimensions in the sense, that it is bipartite, i.e.
it can be decomposed into two interpenetrating simple cubic lattices, as shown in Figure 10.1, when keeping only
second-nearest neighbor interactions. This is similarly true for the square lattice, which decomposes into two square
lattices, and can host both Nèel and stripe ordered phases [168].

The corresponding magnetic Hamiltonian is given by

𝐻̂ = 𝐽1
∑︂
⟨𝑖, 𝑗 ⟩1

𝑺̂𝑖 · 𝑺̂ 𝑗 + 𝐽2
∑︂
⟨𝑖, 𝑗 ⟩2

𝑺̂𝑖 · 𝑺̂ 𝑗 + 𝐽3
∑︂
⟨𝑖, 𝑗 ⟩3

𝑺̂𝑖 · 𝑺̂ 𝑗 , (10.1)

where we denote sums over nearest, second-nearest and third-nearest neighbors by ⟨𝑖, 𝑗⟩1, ⟨𝑖, 𝑗⟩2 and ⟨𝑖, 𝑗⟩3, respec-
tively. The coupling structure is illustrated together with the lattice in Figure 10.1. As there is no a priori restriction
on the couplings, we will consider both ferromagnetic (FM) (𝐽𝑖 < 0) and antiferromagnetic (AF) (𝐽𝑖>0) values for 𝐽1,
𝐽2 as well as 𝐽3.

10.1 Classical Phase diagram

The BCC lattice being a Bravais lattice allows us to employ the Luttinger-Tisza method to determine its exact classical
phase diagram. To this end, we need the Fourier transform of the considered interactions, given by

𝐽 (k) = 8𝐽1 cos
(︃
𝑘𝑥
2

)︃
cos

(︃
𝑘𝑦

2

)︃
cos

(︃
𝑘𝑧
2

)︃
+2𝐽2

(︁
cos(𝑘𝑥) + cos

(︁
𝑘𝑦

)︁ + cos(𝑘𝑧)
)︁

+4𝐽3
(︁
cos(𝑘𝑥) cos

(︁
𝑘𝑦

)︁ + cos
(︁
𝑘𝑦

)︁
cos(𝑘𝑧) + cos(𝑘𝑥) cos(𝑘𝑧)

)︁
.

(10.2)

The classical ground-state for a given set of couplings can subsequently be found by minimizing eq. (10.2) with
respect to the wave-vector 𝒌 and employing the general form of a Luttinger-Tisza spiral state given in eq. (3.13).
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𝐽3

𝐽2

𝐽1 𝒂1

𝒂2

𝒂3

Figure 10.1: Cubic unit cell of the BCC lattice together with its lattice vectors 𝒂1 = 𝑎( 1
2 ,

1
2 ,− 1

2 ), 𝒂2 = 𝑎(− 1
2 ,

1
2 ,

1
2 ), and

𝒂3 = 𝑎( 1
2 ,− 1

2 ,
1
2 ) with lattice constant 𝑎. Exemplary exchange paths corresponding to nearest neighbor (NN) (𝐽1), next-to-

nearest neighbor (NNN) (𝐽2), and next-to-next-to-nearest neighbor (NNNN) (𝐽3) Heisenberg coupling are shown, as defined in
the model Hamiltonian eq. (10.1). The BCC lattice decomposes into two interpenetrating simple cubic lattices, shown in red
and purple, respectively, which are offset by the Bravais vectors 𝒂1, 𝒂2 and 𝒂3, rendering the BCC bipartite.

Before discussing the effects of quantum fluctuations in the 𝑆 = 1/2-limit, we first present the classical magnetic
phase diagram of the 𝐽1–𝐽2–𝐽3 Heisenberg model on the BCC lattice. The phase diagrams, shown in Figure 10.2(a)
and (c) host in total six distinct incommensurate spiral orders, three each for FM and AF nearest-neighbor coupling,
respectively. In addition, four commensurate orders are observed. In Figure 10.3 we illustrate the different real space
configurations found in parameter space, which we further outline in the following, placing them in the corresponding
phase diagrams.

10.1.1 Ferromagnetic 𝐽1

The classical phase diagram in the 𝐽1–𝐽2–𝐽3 parameter space with FM 𝐽1 is shown in Fig. 10.2(a). Starting with
both FM 𝐽1 and 𝐽2 we trivially find a FM ground state (see Figure 10.3(a)). The inclusion of a moderate AF 𝐽3

coupling up to a critical value 𝐽𝑐3 = 1
4 ( |𝐽1 | + |𝐽2 |) does not destabilize the FM state. At this value a phase transition

into an incommensurate spiral phase (Figure 10.3(e)) takes place. The corresponding ordering vector is of the form
𝒒 = (𝑞, 0, 0) with 𝑞 given in Table 10.1, evolving smoothly from the FM value of 𝑞 = 0, establishing the second order
nature of the transition. As in this state spins are only spiraling when moving in one cardinal direction in real space,
but are FM ordered in the other two, we call this a 1D spiral state. Its ordering vector is 3-fold degenerate within
the first BZ due to cubic symmetry. However, the spiral state spontaneously breaks this symmetry, as a superposition
of spirals with different incommensurate wave vectors would violate the strong spin length constraint, which means
the 1D spiral has to be governed by only one of these symmetry equivalent vectors. Hence, the degeneracy is only
a discrete one. This 1D spiral structure is stabilized purely by a FM 𝐽2 interaction and subsequently, along the line
𝐽2 = 0, there is a 1st order phase transition to another incommensurate spiral whose wave vector is 𝒒 = (𝑞, 𝑞, 0)
with 𝑞 given in Table 10.1 and therefore dubbed 2D spiral (see Figure 10.3(f) for an illustration). Similar to the 1D
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(0, 0, 0) (π, π, π)

(q, 0, 0) (q, q, 0) (π, π, 0)

(q, q, q)

(0, 0, 0) (π, π, π)

(q, 0, 0) (q, q, 0) (π, π, 0)

(q, q, q)
PM

(a) (b)J1 – Ferromagnetic J1 – Ferromagnetic

(2π, 0, 0) (π, π, π)

(2π-q, 0, 0) (2π-q, q, 0) (π, π, 0)

(2π-q, q, q)

(2π, 0, 0) (π, π, π)

(2π-q, 0, 0) (2π-q, q, 0) (π, π, 0)

(2π-q, q, q)
PM

(c) (d)J1 – Antiferromagnetic J1 – Antiferromagnetic

Figure 10.2: Classical and 𝑆 = 1/2 quantum phase diagrams of the Heisenberg model up to third-nearest neighbor on the BCC
lattice for (a) and (b) FM and (c) and (d) AF nearest-neighbor coupling 𝐽1. Solid (dashed) phase boundaries mark first (second)
order phase transitions. In the (b) and (d), we overlay the classical phase boundaries to visualize the impact of quantum
fluctuations on the phase diagram. Figure reproduced from Reference [32].
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(a) q = (0, 0, 0) (b) q = (2π, 0, 0) (c) q = (π, π, π) (d) q = (π, π, 0)

(e) q = (q, 0, 0) (f) q = (q, q, 0) (g) q = (q, q, q)

(h) q = (2π − q, 0, 0) (i) q = (2π − q, q, 0) (j) q = (2π − q, q, q)

Figure 10.3: Classical spin configurations found in the phase diagram of the Heisenberg model on the BCC lattice up to third-
nearest neighbor couplings. Due to global rotational symmetry, the global orientation of the spins and chiralities for the spiral
states are not determined by the model. The (a) ferromagnet and (b) Nèel antiferromagnet are the simplest, collinear states
found. The latter can be viewed as two interpenetrating FM simple cubic lattices located at each other’s body centers, which are
oriented antiparallel to each other. The (𝜋, 𝜋, 𝜋) stripe AF (c) can similarly be decomposed into interpenetrating Nèel-ordered
simple cubic lattices, which can be freely rotated with respect to each other. We choose a relative rotation by 𝜋/2 for this
illustration. The (𝜋, 𝜋, 0) planar antiferromagnet is built from FM 110-type planes of spins, AF aligned to neighboring planes.
The remaining spiral phases come in pairs corresponding to FM and AF 𝐽1. In the (𝑞, 0, 0) one-dimensional (1D) spiral (e),
spins are rotating when moving along one cardinal direction, but are FM ordered in the two remaining directions. For AF 𝐽1 the
corresponding (2𝜋 − 𝑞, 0, 0) 1D spiral (h) is the same configuration, but with flipped spins at the body center. In the (𝑞, 𝑞, 0) 2D
spiral (f) rotation is present along two cardinal directions, with the same period for both. This leads to FM ordered {110}-planes
parallel to the remaining direction. In the corresponding (2𝜋 − 𝑞, 𝑞, 0) 2D spiral (i) the same spiraling in two cardinal directions
is found, but again with flipped spins on the body centers. This results in opposite chiralities of the spirals in the two directions,
which is fixed by the Heisenberg model, in contrast to the global direction of spiraling. The (𝑞, 𝑞, 𝑞) three-dimensional (3D)
spiral (j) features the same spiraling behavior in all three directions, leading to FM ordered {111}-planes. The (2𝜋 − 𝑞, 𝑞, 𝑞)
state for AF 𝐽1 again has a different chirality along one particular spatial direction ad flipped spins on the body centers, which
leads to FM {−111}-planes. Figure reproduced from Reference [32].
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Ordering vector (𝒒) Component 𝑞 Degeneracy Energy 𝐸
𝑁𝑆2

(𝑞, 0, 0)
2 cos−1

(︂
|𝐽1 |
𝐽2+4𝐽3

)︂
3–fold 𝐽2 − 2𝐽3 − 2(𝐽1 )2

𝐽2+4𝐽3(2𝜋 − 𝑞, 0, 0)

(𝑞, 𝑞, 0)
cos−1

(︂
|𝐽1 |−𝐽2−2𝐽3

2𝐽3

)︂ 6–fold −𝐽2 − 2𝐽3 − (− |𝐽1 |+𝐽2 )2

2𝐽3(2𝜋 − 𝑞, 𝑞, 0) 12–fold

(𝑞, 𝑞, 𝑞)
2 cos−1

(︂ |𝐽1 |+
√
𝑢

16𝐽3

)︂ 4–fold − (𝐽1 )2 (𝑢+16𝐽3 (4𝐽3+𝐽2 ) )+|𝐽1 |𝑢
3
2 +384(𝐽2 )2 (𝐽3 )2

1024(𝐽3 )3

(2𝜋 − 𝑞, 𝑞, 𝑞) 12–fold 𝑢 = (𝐽1)2 + 32𝐽3 (4𝐽3 − 𝐽2)

(0, 0, 0)
1–fold −4|𝐽1 | + 3𝐽2 + 6𝐽3

(2𝜋, 0, 0)

(𝜋, 𝜋, 0) 3–fold −𝐽2 − 2𝐽3

(𝜋, 𝜋, 𝜋) 1–fold −3𝐽2 + 6𝐽3

Table 10.1: Ordering vectors of the spiral orders in the classical 𝐽1–𝐽2–𝐽3 Heisenberg model on the BCC lattice. The degeneracy in
the first Brillouin zone (BZ) up to inversion in reciprocal space, as well as the energy per spin in the corresponding ground-state
is additionally given.

spiral, no superpostions of the six symmetry equivalent (𝑞, 𝑞, 0)-type wave vectors1 are possible without violating
the spin length constraint, leading again to a spontaneous symmetry broken single-𝒒 state with discrete degeneracy.
Upon increasing 𝐽2 for sufficiently large 𝐽3 (the analytical expression for this phase boundary is given in Table 10.2),
the value of 𝑞 continuously evolves towards 𝜋. At the line 𝐽2/|𝐽1 | = 1 and above a critical 𝐽𝑐3 /|𝐽1 | ≈ 0.29, a 2nd
order phase transition to a planar AF order with 𝒒 = (𝜋, 𝜋, 0), illustrated in Figure 10.3(d), takes place. In contrast
to the incommensurate previously discussed, this ordering vector is commensurate, as it is half of a reciprocal lattice
vector, i.e., 2𝒒 ≅ 0. This special condition allows the ground state to be composed of all six symmetry equivalent
ordering vectors, namely, (𝜋, 𝜋, 0), (𝜋, 0, 𝜋), (0, 𝜋, 𝜋), (𝜋,−𝜋, 0), (−𝜋, 0, 𝜋), and (0,−𝜋, 𝜋)[169]. For all six vectors
the relation sin(𝒒 · 𝑹𝑖) = 0 holds at every lattice site. Therefore, the general ground state can be written as

𝑺𝑖 = 𝑆{𝒂 cos[(𝜋, 𝜋, 0) · 𝑹𝑖] + 𝒃 cos[(𝜋, 0, 𝜋) · 𝑹𝑖] + 𝒄 cos[(0, 𝜋, 𝜋) · 𝑹𝑖]
+ 𝒅 cos[(𝜋,−𝜋, 0) · 𝑹𝑖] + 𝒆 cos[(−𝜋, 0, 𝜋) · 𝑹𝑖] + 𝒇 cos[(0,−𝜋, 𝜋) · 𝑹𝑖]}

(10.3)

with

𝒂2 + 𝒃2 + 𝒄2 + 𝒅2 + 𝒆2 + 𝒇 2 = 1

𝒂 · 𝒃 + 𝒅 · 𝒆 = 𝒂 · 𝒄 + 𝒅 · 𝒇 = 𝒂 · 𝒆 + 𝒃 · 𝒅 = 𝒂 · 𝒇 + 𝒄 · 𝒅 = 0

𝒃 · 𝒄 + 𝒆 · 𝒇 = 𝒄 · 𝒆 + 𝒃 · 𝒇 = 𝒃 · 𝒆 + 𝒂 · 𝒅 + 𝒄 · 𝒇 = 0

(10.4)

1By symmetry equivalent vectors, we only consider the ones not related by inversion, as these will always be present in any spin structure. The
remaining six vectors therefore are (𝑞, 𝑞, 0) , (−𝑞, 𝑞, 0) ,(𝑞, 0, 𝑞) ,(𝑞, 0, −1) ,(0, 𝑞, 𝑞) , and (0, 𝑞, −𝑞) .
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Phase I Phase II Equation for the phase boundary Transition Type

(0, 0, 0) (𝑞, 0, 0)
𝐽2 = |𝐽1 | − 4𝐽3 2nd Order

(2𝜋, 0, 0) (2𝜋 − 𝑞, 0, 0)

(0, 0, 0) (𝑞, 𝑞, 𝑞)
𝐽2 = |𝐽1 | − 4𝐽3 2nd Order

(2𝜋, 0, 0) (2𝜋 − 𝑞, 𝑞, 𝑞)

(0, 0, 0) (𝜋, 𝜋, 𝜋) 𝐽2 = 2
3 |𝐽1 | 1st Order

(2𝜋, 0, 0)

(𝑞, 0, 0) (𝑞, 𝑞, 0)
𝐽2 = 0 1st Order

(2𝜋 − 𝑞, 0, 0) (2𝜋 − 𝑞, 𝑞, 0)

(𝑞, 𝑞, 0) (𝜋, 𝜋, 0) 𝐽2 = |𝐽1 | 2nd Order
(2𝜋 − 𝑞, 𝑞, 0)

(𝑞, 𝑞, 0) (𝑞, 𝑞, 𝑞)
𝐽2 =

56 |𝐽1 | (𝐽3 )2−11(𝐽1 )2𝐽3−32(𝐽3 )3−
√

|𝐽1 | (𝐽3 )2 (5 |𝐽1 |−16𝐽3 )3

8(𝐽3 )2
1st Order

(2𝜋 − 𝑞, 𝑞, 0) (2𝜋 − 𝑞, 𝑞, 𝑞)

(𝑞, 𝑞, 𝑞) (𝜋, 𝜋, 0) 𝐽2 = (𝐽1 )4+4416(𝐽1 )2 (𝐽3 )2+( (𝐽1 )2+48(𝐽3 )2 ) 3√𝑢+(𝑢)2/3+36864(𝐽3 )4

108𝐽3
3√𝑢 1st Order

(2𝜋 − 𝑞, 𝑞, 𝑞)

(𝑞, 𝑞, 𝑞) (𝜋, 𝜋, 𝜋) 𝐽2 = (𝐽1 )2+144(𝐽3 )2

36𝐽3
1st Order

(2𝜋 − 𝑞, 𝑞, 𝑞)

where 𝑢 =(𝐽1)6 − 10872(𝐽1)4 (𝐽3)2 − 2709504(𝐽1)2 (𝐽3)4 + 7077888(𝐽3)6

+ 108
√

3𝐽3

√︂
−(𝐽1)2 (︁

12(𝐽3)2 − (𝐽1)2)︁ (︁
512(𝐽3)2 − (𝐽1)2)︁3

Table 10.2: Analytical phase boundaries between the respective Phase I and Phase II in the classical phase diagram of the 𝐽1–𝐽2–𝐽3
Heisenberg model on the BCC lattice. The corresponding order of the phase transition is additionally given.

where 𝒂, 𝒃, 𝒄, 𝒅, 𝒆, 𝒇 are arbitrary vectors constrained by eq. (10.4), which normalizes the spin length at each
site. These six vectors have in total 18 continuous degrees of freedom. As they are subject to 8 constraints and
two additional degrees of freedom are accounted for by the global spin rotation invariance of the Heisenberg model,
the planar AF order has a continuous 8-dimensional ground state manifold. This is in contrast to the other classical
magnetic orders in the 𝐽1–𝐽2–𝐽3 parameter space which feature only an 𝑛-fold discrete degeneracy due to them being
defined by incommensurate ordering vectors, where 𝑛 depends on the exact phase. The respective degeneracies are
given in Table 10.1. A similar enhancement for the available degrees of freedom is also found for the stripe AF phase
on the square lattice [170] and other cubic lattice systems [171].

Keeping AF 𝐽2 and decreasing 𝐽3, the interplay between these couplings stabilizes an incommensurate 𝒒 = (𝑞, 𝑞, 𝑞)
3D spiral (see Figure 10.3(g)) in a sliver of parameter space, which again, due to incommensurability of the ordering
vector, spontaneously breaks lattice symmetry and is described by only one of the 4 degenerate wave vectors of
(𝑞, 𝑞, 𝑞)-type. At the phase boundaries to the FM phase, we find a continuous 2nd order phase transition, whereas



10.1 Classical Phase diagram | 97

C
ha

pt
er

10

the transition into the (𝑞, 𝑞, 0) and (𝜋, 𝜋, 0) states is of 1st order. For even lower AF 𝐽3, we find that in the region
𝐽2/|𝐽1 | > 2/3 the collinear stripe order (see Figure 10.3(c)) with wave vector 𝒒 = (𝜋, 𝜋, 𝜋) is stabilized. In this state
the BCC lattice can be decomposed into two interpenetrating simple cubic lattices, each being Nèel ordered. For
any spin on a given sublattice, all its nearest-neighbor spins are located on the other sublattice and subsequently their
sum vanishes. Hence, the energy of the stripe ordered state is independent of the relative spin orientation on the two
sublattices [172], which is thus not determined within the 𝐽1–𝐽2–𝐽3 Heisenberg model. As the ordering vector of this
state is located at the corners of the first BZ, it is non-degenerate. Changing the sign of 𝐽3 to FM only enhances the
stability of the state, as all third-nearest neighbors of a given spin are second-nearest ones on the respective simple
cubic sublattice and therefore FM ordered. Thus, this state occupies the entire parameter space for 𝐽2/|𝐽1 | > 2/3
and FM 𝐽3. Due to the independence of the stripe order’s energy from 𝐽1, the phase value of the boundary between
the FM and the stripe collinear order is determined solely by the coordination numbers of nearest-neighbors (𝑧1) and
second-nearest neighbors (𝑧2) of the BCC lattice and therefore given by 𝐽2/|𝐽1 | = 𝑧1/2𝑧2 = 2/3.

10.1.2 Antiferromagnetic 𝐽1

Changing 𝐽1 from FM to AF, the phase boundaries and orders of phase transitions in the 𝐽2–𝐽3 parameter space do
not change, as shown in the corresponding phase diagram Figure 10.2(c) and analytical expressions in Table 10.2.
To understand this behavior, one should view the BCC lattice as two interpenetrating simple cubic lattices, located
at the body centers of each other. In this geometry, 𝐽2 and 𝐽3 couple sites within the same sublattices, whereas 𝐽1

is an inter-sublattice coupling. Therefore, a sign change in 𝐽1 can be compensated by flipping the spins on only one
of the sublattices, which leaves 𝐽2 and 𝐽3 couplings unaffected. This does not shift the phase boundaries, however,
the spin flips are reflected by a shift of ordering vectors 𝒒 → (2𝜋, 2𝜋, 2𝜋) − 𝒒 in reciprocal space. Folding back the
resulting wave-vector into the first BZ, this transformation is equivalent to shifting any, but only, one of the wave
vector components 𝑞 → 2𝜋 − 𝑞. As a result, the Nèel AF (Figure 10.3(b)) with wave vector 𝒒 = (2𝜋, 0, 0) 2 replaces
the FM phase. Similarly, the incommensurate spirals are shifted: the 1D spiral is now controlled by a wave vector of
the form 𝒒 = (2𝜋 − 𝑞, 0, 0), shown in Figure 10.3(h), where 𝑞 and ground state degeneracy are the same as for the
FM 1D spiral. Along the same lines, the 2D spiral wave vector is modified for AF 𝐽1 as 𝒒 = (2𝜋 − 𝑞, 𝑞, 0), which is
now 12–fold degenerate, whereas its FM counterpart only possesses 6–fold degeneracy. Nevertheless, as this ordering
vector is still incommensurate, only one of these wave vectors is present in any given ground state. Upon increasing
𝐽2, the 2D spiral evolves continuously into the planar AF, which remains unchanged compared to the case with FM 𝐽1.
The 3D spiral’s incommensurate wave vector for FM 𝐽1 is given by 𝒒 = (2𝜋 − 𝑞, 𝑞, 𝑞), also extending the degeneracy
to 12–fold in contrast to the 6–fold one for FM nearest-neighbor coupling. The final phase in the 𝐽2–𝐽3 parameter
space, the stripe AF with 𝒒 = (𝜋, 𝜋, 𝜋) remains unchanged when inverting the sign of 𝐽1.

A complete overview of the analytical expressions for the ordering vectors governing the different spiral phases on
the BCC, depicted in Figure 10.3, together with the degeneracy of the phases, is given in Table 10.1. Additionally,
analytical expressions for the phase boundaries and the corresponding orders of the phase transition can be found in
Table 10.2.

2The Nèel AF state is also specified by the ordering vector 𝒒 = (2𝜋, 2𝜋, 2𝜋 ) in literature, which is equivalent to 𝒒 = (2𝜋, 0, 0) after folding
back to the first BZ.
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Figure 10.4: Representative RG flows at the maxima of the magnetic susceptibility in reciprocal space for the phases in Fig-
ure 10.2(b) and (d). The flows are given for the couplings (𝐽2/|𝐽1 |, 𝐽3/|𝐽1 |) = (0, 0) (FM order), (1.5, 1) for (𝜋, 𝜋, 0) order,
(1.5, 0) for (𝜋, 𝜋, 𝜋)-order, (−0.5, 1) (1D spiral), (0.5, 1) (2D spiral), (0.26, 0.2) (3D spiral) and (0.8, 0.3) for the paramagnet,
each for FM (left panel) and AF (right panel) 𝐽1. The transition from solid to dashed lines marks an instability of the flow,
signalling the onset of long-range magnetic order, whereas a smooth flow forΛ → 0 indicates paramagnetism. Figure reproduced
form Reference [32].

10.2 Quantum Phase diagram

To investigate the changes to the classical phase diagram upon inclusion of quantum fluctuations, we employ one-loop
pseudo-fermion functional renormalization group (PFFRG) in the sharp regulator scheme. As one-loop calculations
already are usually sufficient to capture the correct phase boundaries [139, 157], and we find, that two-loop corrections
do not significantly change the ordering tendencies in the vicinity of the phase boundaries3, we reserve to employ
two-loop calculations only for a select set of parameter points to more correctly calculate ordering temperatures, which
we will present in Section 10.3.

Comparing the so-obtained quantum phase diagrams shown in Figure 10.2(b) and Figure 10.2(d) to their classical
counterparts, we first of all find, that all orders of the classical phase diagram are also found in the quantum version
and additionally no new long-range magnetic orders are stabilized in the 𝑆 = 1/2 limit. In Fig. 10.4, we show the
representative renormalization group (RG) flows for all the quantum phases and present their momentum resolved
susceptibility profiles in Figures 10.5 and 10.6.

The most striking effect of quantum fluctuations for 𝑆 = 1/2, however, is the appearance of a PM phase for both FM
and AF 𝐽1, which occupies an extended region in both 𝐽2–𝐽3 parameter spaces. Its extent is larger for FM 𝐽1 than in
the AF case and in both regimes occupies a substantial portion of parameter space, where we classically find 2D and
3D spirals, as well as, to a smaller extend, also takes over the domain of classical the planar AF with ordering vector
𝒒 = (𝜋, 𝜋, 0). The Nèel order present for AF 𝐽1 withstands the effect of quantum fluctuations, whereas the classical
FM phase is destabilized and partially taken over by a paramagnetic regime. In contrast, the 𝒒 = (𝜋, 𝜋, 𝜋) stripe AF
present classically for both FM and AF nearest-neighbor couplings is not destabilized at all by quantum fluctuations,
meaning that the paramagnetic phase does not eat into to classical stripe ordered phase at all. The momentum resolved
susceptibility profiles taken deep within the paramagnetic phase, as shown in Figure 10.7, show remnants of the
underlying classical correlations, i.e. in the shown cases the 3D (𝑞, 𝑞, 𝑞)- and (2𝜋 − 𝑞, 𝑞, 𝑞)-orders for FM and AF
𝐽1 respectively. The paramagnetic phase, therefore, can be viewed as the classical state, molten down by quantum
fluctuations.

3In the case of 𝑆 = 1/2, for FM 𝐽1, the maximal shift of the critical scale is ≈ 4% of |𝐽1 |, while for AF 𝐽1 it is ≈ 2% of 𝐽1.
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(a) q = (0, 0, 0) (b) q = (π, π, 0) (c) q = (π, π, π)

(d) q = (q, 0, 0) (e) q = (q, q, 0) (f) q = (q, q, q)

Figure 10.5: Normalized susceptibility profiles in the first BZ of the BCC lattice for the Heisenberg model with FM 𝐽1 for the
magnetically ordered states. The susceptibilities are plotted for the couplings used in Figure 10.4 at the cutoff values indicated
by arrows in the left panel of this figure. Figure reproduced from [32].

In the following, we investigate in more detail, the effects of quantum fluctuations for 𝑆 = 1/2 on the different
magnetically ordered phases.

Starting with the 𝒒 = (𝜋, 𝜋, 𝜋) stripe AF, we find, that quantum fluctuations shift its phase boundaries severely.
For 𝐽2 sufficiently large, for both 𝐽1 FM and AF, it completely replaces the 3D spiral present in the classical phase
diagram and also cuts into the region in the 𝐽2–𝐽3, where the 𝒒 = (𝜋, 𝜋, 0) planar AF exists, leading in turn to a phase
boundary between the two AF states not present in the classical phase diagram. The finding, that stripe AF is favored
over a planar AF is similar to the situation on the square lattice, where the (𝜋, 𝜋) AF wins over (𝜋, 0) state [170].

For the second phase boundary between stripe order and FM/ Nèel AF, we find a strong dependence on the sign of
𝐽1. For AF nearest-neighbor coupling, the transition between Nèel AF and the stripe order is shifted towards slightly
larger 𝐽2, similar to the analogous phase boundary in the simple cubic lattice [125]. In contrast to the simple cubic
and also the square lattice, however, we find no paramagnetic phase between FM/Nèel and the stripe order, which
agrees with previous findings in the 𝐽1–𝐽2-model [168, 173–178]. In Table 10.3 we compare the phase boundaries
for 𝐽3 = 0 obtained in these studies with the one obtained by PFFRG, which shows excellent agreement with both
exact diagonalization and the couple-cluster method. The fundamentally different behavior of FM and Nèel state with
respect to quantum fluctuations can be understood by the fact, that the FM state is an eigenstate of the Heisenberg
Hamiltonian, which will therefore not alter its ground state energy. As outlined in Section 1, the AF orders, in contrast,
are strongly affected and their ground state energies are lowered [179, 180]. This gives both a reason for why the FM
to stripe AF phase boundary is shifted towards smaller 𝐽2 and also, that the shift from the classical value 𝐽𝑐2 /|𝐽1 | = 2/3
is larger for FM 𝐽1 than for AF (see Figure 10.2(b) and (d)).

Similar to this finding, the boundary between FM/Nèel state and the spiral orders behaves differently depending on
the sign of 𝐽1. For FM 𝐽1 both 1D and 3D spirals take over regions in the 𝐽2–𝐽3 plane, where classically FM order
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(a) q = (2π, 0, 0) (b) q = (π, π, 0) (c) q = (π, π, π)

(d) q = (2π − q, 0, 0) (e) q = (2π − q, q, 0) (f) q = (2π − q, q, q)

Figure 10.6: Normalized susceptibility profiles in the first BZ of the BCC lattice for the Heisenberg model with AF 𝐽1 for the
magnetically ordered states. The susceptibilities are plotted for the couplings used in Figure 10.4 at the Λ values indicated by
arrows in the right panel of this figure. Figure reproduced from Reference [32].

is located, similar to the shift in the boundary between FM and stripe order. In total, this means that the FM ordered
regime shrinks under quantum fluctuations compared to its classical extent, as expected from the above-mentioned
eigenstate argument. In contrast, for AF 𝐽1, the Nèel state takes over parts of the classical 1D, 2D and 3D spiral
phases, but the shifts in phase boundaries are not as pronounced as in the FM 𝐽1 case. The domain of Nèel order,
therefore, is enhanced by quantum fluctuations.

Shifting focus to the phase boundary between 2D spiral and the planar AF, we find another significant shift by
quantum fluctuations. The classical value of 𝐽2/|𝐽1 | = 1 is lowered for both FM as well as AF 𝐽1, which implies
a stabilization of the planar AF by quantum fluctuations. This can be explained by the continuous 8–dimensional
degeneracy of the classical planar AF, as discussed in Section 10.1, in contrast to the 6–and 12–fold discrete
degeneracies of the 2D spirals for 𝐽1 FM and AF, respectively. Therefore, quantum fluctuations are more pronounced
on top of the planar AF, compared to the 2D spirals. The difference in degeneracy for the two cases of 𝐽1 can also
account for the fact, that for FM 𝐽1 the phase boundary is significantly shifted to 𝐽2/|𝐽1 | ≈ 0.82, whereas for AF 𝐽1

the shift is smaller and the phase boundary is located at 𝐽2/|𝐽1 | ≈ 0.93.
The remaining phase boundaries, namely the one between 1D and 2D spirals and the one between 2D and 3D spirals

remain insensitive to quantum fluctuations.
Within the incommensurate spiral phases, we find quantum effects to shift the values of the ordering wave vectors.

As can be seen in Figure 10.8, for the 1D spiral the shift is such, that both for FM and AF 𝐽1 the ordering vector is
shifted towards the Nèel ordering vector 𝒒 = (2𝜋, 0, 0), with the effect being, at fixed 𝐽2 more pronounced for smaller
𝐽3 and appearing to decrease with increasing value of third-nearest neighbor coupling. This shift is in accordance
with the stabilization of the Nèel and destabilization of the FM state reflected in the phase boundary changes. Keeping
𝐽3 fixed (see Figure 10.8(c)), the wave vector shift towards the Nèel one increases with increasing FM 𝐽2 for FM 𝐽1,
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(b)(a)

Figure 10.7: Normalized paramagnetic susceptibility profiles for Λ → 0, i.e. the lowest simulated Λ at (𝐽2/|𝐽1 |, 𝐽3/|𝐽1 |) =
(0.8, 0.3) for (a) FM 𝐽1 and (b) AF 𝐽1 for the spin-1/2 BCC Heisenberg model. Note, that the peaks are softer than the
corresponding ones in the ordered states. Figure reproduced from Reference [32].

which is counterintuitive, as one would expect a FM interaction to favor the ferromagnetically ordered state. For AF
𝐽1 this tendency is reversed, as there the shift towards the Nèel ordering vector decreases and is almost negligible for
large enough 𝐽2. Turning to the 2D spiral phase, we find, that for FM 𝐽1, the ordering vector is shifted towards planar
AF order, the absolute value of the shift again decreasing with increasing 𝐽3, as shown in Figure 10.8(b). With respect
to 𝐽2 for fixed 𝐽3, this shift is essentially constant (Figure 10.8(c)). Both findings result in a shift of the planar AF
phase boundary towards smaller 𝐽2. In the case of AF 𝐽1, however, we find, that the wave vectors are shifted towards
the 𝒒 = (2𝜋, 0, 0) Nèel ordering vector, with a shift that is essentially constant with respect to 𝐽2 and 𝐽3. We do not
discuss the 3D spiral, as its extent in parameter space is too small to draw reasonable conclusions.

10.3 Nèel and Curie temperatures

The Nèel temperature (𝑇𝑁 ) of an AF order, as well as the Curie temperature (𝑇𝐶 ) for a FM one can serve as a measure
thermodynamic measure of frustration in a magnetic system. In the absence of frustration, these can be computed
by (numerically) exact quantum Monte Carlo, i.e. on the BCC lattice in the region 𝐽2 ≤ 0 for 𝐽3 = 0. If one,
however, adds frustration, there are only approximate methods available. As already realized early one, one-loop
PFFRG in the step-cutoff formulation is not converged with respect to ordering temperatures, when compared to its
ability to determine phase boundaries [157]. Therefore, we calculate ordering temperatures in both one- and two-loop
formalism, to compare the ordering temperature estimates with the ones obtained from high-temperature expansion
and Green’s function methods, as well as QMC for the pure nearest-neighbor model.

Classically, the nearest neighbor model has equal Curie and Nèel temperatures𝑇class
𝐶 /|𝐽1 | = 𝑇class

𝑁 /|𝐽1 | = 1.54 [185],
but the finite spin Heisenberg model is known to have 𝑇𝑁 > 𝑇𝐶 for nonfrustrating interactions on bipartite lattices,
such as the BCC [183]. The difference between 𝑇𝑁 and 𝑇𝐶 of about 9% found in QMC [32] (see Table 10.4) is also
reproduced by two-loop PFFRG, but slightly overestimated by one-loop calculations, where we find a difference of
∼ 12%. Both formulations, however, overestimate both critical temperatures slightly. However, going from one- to
two-loop results, the errors in ordering temperature approximately halve. One therefore could expect higher accuracy
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Phase I Phase II Method 𝐽𝑐2 /|𝐽1 |

𝐽1–FM (0, 0, 0) (𝜋, 𝜋, 𝜋)

PFFRG 0.56(2)
Exact Diagonalization [32] 0.568

Coupled Cluster Method [32] 0.579

Rotation-invariant Green’s function method [173] 0.68

Random phase approximation [174] 0.6799

𝐽1–AF (2𝜋, 0, 0) (𝜋, 𝜋, 𝜋)

PFFRG 0.70(2)
Coupled Cluster Method [175] 0.704

Exact Diagonalization [168] 0.7

Non-linear spin-wave theory [176] 0.705

Random phase approximation [177] 0.72

Linked Cluster Series expansions [178] 0.705(5)

Table 10.3: The critical value 𝐽𝑐2 /|𝐽1 | for the pure 𝐽1–𝐽2 Heisenberg model on the BCC lattice, marking the transition between
FM Nèel and the stripe AF obtained from PFFRG and different methods for comparison.

for even higher loop-order calculations, which however are currently not possible in the step-cutoff scheme due to
numerical problems concerning the non-analytical cutoff, as discussed in Section 7.6.

Adding a frustrating next-nearest neighbor interaction 𝐽2, we find the ordering temperatures to monotonically
decrease with increasing 𝐽2, with a sharp drop close to the phase transition. From Table 10.4, we see from PFFRG, that
𝑇𝑁 > 𝑇𝐶 is valid even in the presence of frustrating interactions, in agreement with high-temperature expansion [173,
178, 183, 184], but contradicting the results from Green’s function approaches [173, 184]. As for the nearest-neighbor
model, PFFRG overestimates the ordering temperatures compared to high-temperature expansion results, while two-
loop PFFRG again gives mostly better agreement. This implies, that PFFRG in two-loop formulation is well suited
for capturing relative behavior of ordering temperatures, but absolute values are still to be taken with error bars of a
few percent.
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● ● ▲ ▲

J2/|J1 | = −0.5 J2/|J1 | = 0.5 J3/|J1 | = 1.0(a) (b) (c)

Figure 10.8: Variation of 𝑞 for the incommensurate spiral phases (𝑞, 0, 0), (𝑞, 𝑞, 0), (2𝜋 − 𝑞, 0, 0), and (2𝜋 − 𝑞, 𝑞, 0) along three
different cuts in the 𝐽2–𝐽3 plane of the Heisenberg model on the BCC lattice. Circles (triangles) denote the case of FM (AF) 𝐽1.
The corresponding classical values are shown by gray lines. Figure reproduced from Reference [32].

Method 𝐽2
|𝐽1 | = 0 𝐽2

|𝐽1 | = 0.1 𝐽2
|𝐽1 | = 0.2 𝐽2

|𝐽1 | = 0.3 𝐽2
|𝐽1 | = 0.4 𝐽2

|𝐽1 | = 0.5 𝐽2
|𝐽1 | = 0.6

𝐽1–FM

PFFRG (one loop) 1.45(1) 1.33(1) 1.18(1) 1.04(1) 0.88(1) 0.66(1)
PFFRG (two loop) 1.37(1) 1.26(3) 1.11(1) 0.97(1) 0.84(3) 0.62(1)
QMC [32] 1.260(1)
HTE [𝜒u] [181–183] 1.2602(5)
HTE [𝜒quot

u ] [173] 1.253(8) 1.125(15) 1.06(32)
HTE [𝜒DA

u ] [173] 1.268(8) 1.16(3) 0.89(7)
HTE [𝑆(𝑸)] [184] 1.273(8) 1.17(3) 1.09(10) 0.89(7) 0.72(11) 0.45(18)
GFA [173] 1.359 1.247 1.136 1.022 0.903 0.771

𝐽1–AF

PFFRG (one loop) 1.63(1) 1.52(1) 1.36(1) 1.26(2) 1.10(1) 0.90(1) 0.71(1)
PFFRG (two loop) 1.50(1) 1.42(1) 1.32(1) 1.16(1) 1.06(1) 0.89(1) 0.75(1)
QMC [32] 1.377(2)
HTE [𝜒s] [183] 1.376(4)
HTE [𝑆(𝑸)] [184] 1.50(8) 1.36(10) 1.26(13) 1.09(13) 0.96(7) 0.75(6) 0.61(10)
HTE [𝜒s] [178] 1.38(2) 1.26(2) 1.13(1) 1.00(2) 0.86(2) 0.71(2) 0.57(3)
GFA [184] 1.530 1.369 1.195 1.004 0.786 0.520

Table 10.4: Critical temperatures 𝑇𝑐/|𝐽1 | of the 𝑆 = 1/2 𝐽1–𝐽2 BCC Heisenberg model for various values of the frustrating AF 𝐽2
coupling, obtained from different methods for both FM as well as AF 𝐽1.
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Chapter 11

𝐽1-𝐽2 Heisenberg model on the Pyrochlore lattice

Similar to the BCC , the Pyrochlore lattice can also be seen as a 3D generalization of a 2D lattice namely the Kagome.
While the latter is built up as a net of corner-sharing triangles of lattice points, likewise the Pyrochlore lattice is
built up from corner-sharing tetrahedra, as shown in Figure 11.1. Its underlying Bravais lattice is the FCC lattice,
supplemented by a four-site basis, forming a single tetrahedron.

We here will focus on NN and NNN Heisenberg interactions on the Pyrochlore lattice, which we parametrize using
a single angle 𝜃, such that the Hamiltonian of the system is given by

𝐻̂ = 𝐽1
∑︂
⟨𝑖, 𝑗 ⟩1

𝑺̂𝑖 · 𝑺̂ 𝑗 + 𝐽2
∑︂
⟨𝑖, 𝑗 ⟩2

𝑺̂𝑖 · 𝑺̂ 𝑗 with 𝐽1 = 𝐽 cos(𝜃) and 𝐽2 = 𝐽 sin(𝜃), (11.1)

where 𝐽 is a for the ground state irrelevant overall energy scale. We denote the sums over nearest and second-nearest
⟨𝑖, 𝑗⟩1 and ⟨𝑖, 𝑗⟩2, respectively.

Akin to its 2D counterpart, the Pyrochlore NNAF features an extensively degenerate classical ground state [186–
189]. To understand this, let us introduce the total magnetization 𝑴T of the T th tetrahedron

𝑴T =
4∑︂
𝛼=1

𝑺T ,𝛼, (11.2)

whereby 𝑺T ,𝛼 we label the 𝛼th spin on the T th tetrahedron. Recasting the classical NN Heisenberg Hamiltonian
eq. (2.5) on the Pyrochlore lattice, i.e. 𝐽2 = 0, in terms of the 𝑆 → ∞ limit of eq. (11.2), we find, that it decomposes
into a disjoint sum of the magnetizations on the tetrahedra

𝐻 =
𝐽1
2

∑︂
T

𝑴2
T + const. (11.3)

This clearly is minimized if and only if all magnetizations vanish separately, i.e.

𝑴T = 0 ∀T . (11.4)

This set of constraints is commonly called ice rule, due to its similarity to the local order constraints found in water
ice [190]. It can indeed be fulfilled on the whole lattice and leads to a countably infinite manifold of degenerate ground
states, as can be seen from a “Maxwellian counting argument” [186, 187]. Considering a finite Pyrochlore lattice
consisting of 𝑁𝑆 spins, their number of degrees of freedom is 𝐹 = 2𝑁𝑆 , as due to the strong spin length constraint
eq. (2.6), only two of the three spin vector components are independent. Due to the ice-rule eq. (11.4), the number
of constraints is 𝐾 = 3𝑁T , where 𝑁T is the number of tetrahedra (one constraint for each of the components of the
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(a) (b)

𝐽1

𝐽2

𝐽3

𝐽𝑑

Figure 11.1: (a) Cubic unit cell of the Pyrochlore lattice containing 16 sites. All nearest-neighbor couplings (blue) within the cell
are shown. (b) Corner sharing tetrahedra as the building block of the Pyrochlore lattice. The nearest neighbor couplings 𝐽1
(blue) together with exemplary NNN 𝐽2 (green) and the two symmetry inequivalent third-nearest neighbor interactions 𝐽3 and
𝐽𝑑 are shown. 𝐽3 (orange) is the one crossing a NN site, while 𝐽𝑑 (brown) does not and connects to an additional point not
belonging to the two tetrahedra. The Bravais lattice of the Pyrochlore is a face-centered cubic (FCC) lattice with a four site unit
cell, which comprises one of the tetrahedra.

magnetization). As for corner-sharing tetrahedra, each spin is part of two tetrahedra, we have 𝑁T = 𝑁𝑠/2. Therefore,
the total dimensionality of the ground-state manifold is 𝐷 = 𝐹 − 𝐾 = 4𝑁T − 3𝑁T = 𝑁T .

11.1 Classical phase diagram

The absence of magnetic long-range order at zero temperature in the classical Heisenberg NN AF on the Pyrochlore
lattice means, that this cooperative paramagnetic state will be highly susceptible to any perturbations to that model,
resulting in strong changes of magnetic and thermodynamic properties of the system, e.g. inducing long-range order.
Already adding a NNN Heisenberg coupling 𝐽2 to the classical NN model will stabilize an abundance of intricate
magnetic orders, listed in Table 11.1, with the corresponding phase diagram shown in Figure 11.2. Part of these have
already been investigated in References [191–194], while the full phase diagram of the 𝐽1-𝐽2 parameter space was
explored in Reference [38]. We will in the following recapitulate this already quite extensive knowledge about the
classical phases of the classical 𝐽1-𝐽2, but also add some corrections and amendments to the current picture of the
phases drawn in literature.

Apart from the classical spin-liquid state for the antiferromagnetic pure nearest-neighbor model, we find seven
different classical magnetic long-range orders in the 𝐽1-𝐽2 phase diagram. Employing a Luttinger-Tisza analysis
combined with iterative minimization on large systems consisting of 32×32×32 cubic unit cells, cf. Figure 11.1,
which corresponds to 524 288 spins, we refine the analysis of the nature of the classical orders and the phase diagram
originally presented in Reference [38]. There, a similar approach based on smaller systems of 4 × 4 × 4 cubic unit
cells (1024 sites) was used, which leads to more severe finite-size effects compared to our analysis, which we can
attribute the main differences in our findings to. Additionally, we give the ordering vectors within the extended BZ in
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State Wave vector Ordering Classical domain Quantum 𝑆 = 1/2 domain

Paramagnet [345.6° ± 1.8°, 12.6° ± 1.8°]
𝒌 = 0 2𝜋(2, 0, 0) Coplanar (0°, 26.56°] [12.6° ± 1.8°, 26.56°]
Planar Spiral 2𝜋(𝑘, 0, 0) Coplanar [26.56°, 145.78°] [26.56°, 151.74° ± 0.36°]
Double-Twist 2𝜋( 3

4 ,
3
4 , 0) Noncoplanar [145.78°, 154.59°] [151.74° ± 0.36°, 160.83° ± 0.09°]

Multiply Modulated Spiral 2𝜋( 3
4
∗
, 1

2 ,
1
4
∗) Noncoplanar [154.59°, 158.37°] [160.83° ± 0.09°, 161.91° ± 0.09°]

Cuboctahedral Stack 2𝜋( 1
2 ,

1
2 ,

1
2 ) Noncoplanar [158.37°, 170.30°] [161.91° ± 0.09°, 171.27° ± 0.27°]

FM 2𝜋(0, 0, 0) Coplanar [170.30°, 312.53°] [171.27° ± 0.27°, 308.61° ± 0.27°]
Kawamura 2𝜋( 5

4
∗
, 5

4
∗
, 0) Noncoplanar [312.53°, 0°) [308.61° ± 0.27°, 345.6° ± 1.8°]

Table 11.1: Classically ordered phases featuring magnetic long-range order found in the 𝐽1-𝐽2 Pyrochlore Heisenberg model. If
the possible spin configurations corresponding to an order contain a subset of states which are coplanar, the phase is labeled
as such. Asterisks (*) indicate slight incommensurate deviations within the phase away from the given rational values of the
wave-vector components.

Table 11.1, in contrast to backfolded ones within the first BZ in Reference [38], as these are the ones that would be
determined in neutron-scattering experiments. The detailed discussion of the classical case will facilitate the one of
the quantum phase diagram in Section 11.2, as there we will find the same long-range ordered phases for both spin
𝑆 = 1/2 and 𝑆 = 1.

We start our discussion from the nearest-neighbor antiferromagnet, where the extensively degenerate ground state
manifold is solely characterized by the zero spin sum rule on every tetrahedron given in eq. (11.4). In Reference [48], it
was shown, that any infinitesimal perturbation of the nearest neighbor model by a second-nearest-neighbor interaction
𝐽2 will reduce this manifold down to either an ordered state for FM 𝐽2 or a nonextensive subset of ground states of
the pure nearest-neighbor model in the AF case. In the latter case, the AF 𝐽2 > 0 selects states out of the ice-rule
manifold, in which spins within each of the four FCC sublattices of the Pyrochlore lattice assume FM order, from
which the state is dubbed 𝒌 = 0. The ice-rule, however, is still preserved in this state, i.e. the four sublattices are
not necessarily aligned parallel to each other, but align such, that the spin sum on a given tetrahedron remains zero.
This leaves a subextensive manifold of degenerate ground states, which all are characterized by ordering wave-vectors
at 𝒌 = 2𝜋(2, 0, 0) and symmetry-related points in the extended BZ. Such a state can be understood by realizing, that
as long as the ice-rule is fulfilled on every tetrahedron, a second-nearest-neighbor interaction 𝐽2 is equivalent to a
third-nearest-neighbor interaction 𝐽3 of opposite sign [193]. To illustrate this, consider the for spins 𝑺1, 𝑺2, 𝑺3 and
𝑺4 that constitute a single tetrahedron. According to the ice-rule we have

4∑︂
𝑖=1

𝑺𝑖 = 0. (11.5)

Considering only 𝐽1 and 𝐽2 couplings, the effective field due to this tetrahedron a spin neighboring 𝑺1 belonging to an
adjacent tetrahedron will be subjected to is given by

𝑩eff,𝐽2 = 𝐽1𝑺1 + 𝐽2 (𝑺2 + 𝑺3). (11.6)
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Figure 11.2: The classical phase diagram of the 𝐽1-𝐽2 Heisenberg model on the Pyrochlore lattice. The couplings are parametrized
as 𝐽1 = 𝐽 cos(𝜃) and 𝐽2 = 𝐽 sin(𝜃) with 𝐽 an overall energy scale. See Table 11.1 for a description of the phases and the location
of the phase boundaries. Figure reproduced from Reference [31].

Employing 𝐽3 instead of 𝐽2, we find

𝑩eff,𝐽3 = 𝐽1𝑺1 + 𝐽3𝑺4

= 𝐽1𝑺1 + 𝐽3 (−𝑺1 − 𝑺2 − 𝑺3)
= (𝐽1 − 𝐽3)𝑺1 − 𝐽3 (𝑺2 + 𝑺3),

(11.7)

where we have used eq. (11.5). Comparing Equations (11.6) and (11.7), 𝐽3 is equivalent to 𝐽2 of opposite sign, while
at the same time renormalizing the NN interaction. 𝐽3 now only mediates interactions within the same sublattice,
so for AF 𝐽2 the effective FM 𝐽3 will select states with parallel spins on the sublattices form the NN ground state
manifold.

The 𝒌 = 0 is an exact Luttinger-Tisza eigenstate with an energy per spin 𝐸 = −2𝐽1 − 4𝐽2. The ferromagnetic
correlations within the individual sublattices lead to the formation of subdominant peaks in the spin structure factor
at all symmetry equivalent points of 2𝜋(1, 1, 1)-type at the edge of the extended BZ. The spectral weight of any given
subdominant peak is one-eighth of the total spectral weight of the dominant ones at the 2𝜋(2, 0, 0)-type points. As
the relative orientation of the sublattices is not completely fixed by the ice-rule, but three angular degrees of freedom
are left, the exact distribution of spectral weight among the dominant peaks, and therefore the breaking of the cubic
Pyrochlore symmetry, is not fixed by the interactions. Consequently, at 𝑇 = 0, there is no a priori determination of
the complete structure factor possible, however, for any finite temperature, there might be entropic effects selecting a
unique ground state. In this case, one can use the relative spectral weight of the dominant peaks in the structure factor
as a measure of the collinearity of the spins, with only a single peak being present corresponding to a completely
collinear state.

Since the 𝒌 = 0 relies on the ice-rule still being valid on each tetrahedron, naturally it minimizes the energy only for
AF 𝐽1 > 0, as long as AF 𝐽2 is sufficiently small for 𝐽1 to be the dominant interaction. As every site has twice as many
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second-nearest neighbors than nearest-neighbors, 𝐽2 becomes the dominant interaction for 𝐽2 > 𝐽1/2, i.e. 𝜃 ≳ 26.56◦

in Figure 11.2. For larger 𝐽2, the system transitions into planar spiral phase, governed by one of the symmetry-related
𝒌 = 2𝜋(𝑘, 0, 0)-type ordering wave vectors. Again, this is a Luttinger-Tisza eigenstate, allowing to extract

𝑘 =
2
𝜋

arccos
[︃
− 𝐽1

4𝐽2
− 1

2

]︃
(11.8)

as the exact wave vector. The energy per spin of the state is given by 𝐸 = −𝐽2
1/2𝐽2 − 6𝐽2. Compared to Reference [38],

the wave vector differs by a factor of 2. This we trace back to the mapping of the state onto an equivalent spin-chain
model [37] being carried out incorrectly.

The planar spiral phase also encompasses the pure second-nearest-neighbor AF with 𝐽1 = 0, 𝐽2 = 1, which features
a 120◦ spiral on each of the FCC sublattices, which results in an overall ordering wave-vector 𝒌 = 2𝜋(4/3, 0, 0) in
the extended BZ when taking into account the relative phases of the spirals on the different sublattices. In addition
to the aforementioned dominant peaks at 𝒌 = 2𝜋(𝑘, 0, 0)-type wave-vectors, there exist additional subdominant peaks
in the extended BZ at ordering wave-vectors of 𝒌 = 2𝜋(3 − 𝑘, 1, 1)-type. Here, the 𝑘 and 3 − 𝑘 components in the
dominant and subdominant ordering vectors, respectively, always appear in the same entry for both corresponding
wave-vectors. The subdominant peaks carry a fixed 1/4 of the spectral weight of the dominant ones and are a signature
of the correlations within the FCC sublattices in the Pyrochlore lattice.

Beyond the pure second-nearest-neighbor point, the planar spiral phase is still stable for FM 𝐽1 < 0, while keeping 𝐽2

AF. Beyond the phase transition at 𝐽2/𝐽1 = −0.68 (𝜃 ≈ 145.78◦), the ground state changes to the so-called double-twist
(DT) state, a non-coplanar spin configuration first found on the frustrated octahedral lattice with antiferromagnetic
interactions [37]. In this state, the spins form two different kinds of spirals in two distinct directions, but both being
controlled by the same wave-vector.

The spin structure factor of this state is characterized by cubic symmetry breaking selecting two of the three
reciprocal space planes. As the Heisenberg Hamiltonian does not determine this breaking, but it is spontaneously
chosen when entering the phase, for definiteness, we consider the 𝑘𝑥-𝑘𝑦 and 𝑘𝑦-𝑘𝑧 planes in our discussion of the
state. On both planes, peaks at pairs of 𝒌 = 2𝜋(3/4, 3/4, 0)-type wave vectors are present. On the first plane, the
𝑘𝑥-𝑘𝑦 plane, these are 𝒌 = 2𝜋(3/4, 3/4, 0) and 𝒌 = 2𝜋(3/4,−3/4, 0), where the dominant peaks of the structure
factor with identical spectral weight are located. In the second plane, the 𝑘𝑦-𝑘𝑧 plane, located at wave vectors
𝒌 = 2𝜋(0, 3/4, 3/4) and 𝒌 = 2𝜋(0, 3/4,−3/4), there are additional subdominant peaks with approximately 59 % of
the spectral weight of the dominant ones. These pairs of wave vectors characterize the spiral ordering on the individual
FCC sublattices. An approximate parametrization of the state is given in Reference [38]. Additionally, due to the
relative angles between the spins on the sublattices, there appear subdominant peaks at 𝒌 = 2𝜋(5/4, 5/4, 0)-type wave
vectors, corresponding to the pairs of dominant peaks on the respective planes, i.e. 𝑘𝑥-𝑘𝑦 plane, we find subdominant
peaks at 𝒌 = 2𝜋(5/4, 5/4, 0) and 𝒌 = 2𝜋(5/4,−5/4, 0) carrying approximately 29 % of the amplitude of the dominant
peaks. In the 𝑘𝑦-𝑘𝑧 plane, where the subdominant 𝒌 = 2𝜋(3/4, 3/4, 0)-type peaks are present, corresponding weaker
peaks at wave vectors 𝒌 = 2𝜋(0, 5/4, 5/4) and 𝒌 = 2𝜋(0, 5/4,−5/4), which have approximately 13 % of the spectral
weight of the most dominant ones in the 𝑘𝑥-𝑘𝑦 plane.

For even lower AF 𝐽2 > 0 keeping FM 𝐽1 < 0, at 𝐽2/𝐽1 = −0.475(5), i.e. 𝜃 ≈ 154.59°, we find a phase transition
to a state, which closely resembles the multiply modulated commensurate spiral found in Reference [38], where the
phase boundary is estimated to 𝐽2/𝐽1 ≈ −0.43. The state there is characterized by four dominant ordering vectors at
commensurate 𝒌 = 2𝜋(3/4, 1/2, 1/4) type points in the extended BZ, which all have the 1/2 component in the same
direction in spin space. Additionally, subdominant wave-vectors of 𝒌 = 2𝜋(3/4, 0,−3/4) type are present, where the
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zero component coincides with the 1/2 direction in the dominant ordering vectors. This structure originates from a
real space spin configuration, in which, moving along different directions in direct space, the spins trace out multiple
spirals, characterized by the aforementioned wave-vectors.

The commensurability of the wave-vectors found in Reference [38], however, is only an artifact of sizeable finite-size
effects in the simulations done there. By employing periodic boundary conditions on a system of 𝐿 × 𝐿 × 𝐿 cubic unit
cells in the iterative minimization, the accessible wave-vectors are restricted to have components, which are integer
multiples of 2𝜋/𝐿. This in turn will lead to an observation of an almost commensurate wave vector as a peak at
a commensurate position. Using 𝐿 = 32 compared to 𝐿 = 5 in Reference [38], we can resolve, that the dominant
wave vectors are indeed incommensurate. At the phase boundary, we find 𝒌 = 2𝜋[0.81(2), 0.50(2), 0.19(2)] type
wave-vectors, which, within the numerical resolution of 2𝜋/32 in the components in reciprocal space, upon lowering
𝐽2 evolve continuously towards the commensurate values given above. The latter are assumed at the phase transition
to the cuboctahedral stack (CS) state in Figure 11.2. In contrast to the dominant ones, the subdominant ordering
vectors stay unchanged, only their relative spectral weight compared to the dominant peaks changes. Starting from
approximately 26 % at the border to the DT state, it increases to approximately 32 % when reaching the phase boundary
with the CS state. This means, although the way in which the state is built up from the wave-vectors does not change,
the value of the dominant wave-vector is a function of 𝐽2/𝐽1, which is also supported by a Luttinger-Tisza analysis. For
the parameters considered here, we find, that there are minimal Luttinger-Tisza eigenvalues at incommensurate wave
vectors close to the commensurate points given above. These Luttinger-Tisza states, however, do not fulfill the strong
spin-length constraint (see Section 3.1), which necessitates the admixture of subdominant wave-vectors to be able to
normalize the state. As the dominant wave vectors are incommensurable, we refer to this state as a multiply-modulated
spiral (MMS).

Abovementioned phase transition from the MMS to the CS state, we find at 𝐽2/𝐽1 = −0.3965(5) (𝜃 ≈ 158.37°).
The latter can be best understood by viewing the Pyrochlore lattice as a stacking in [111] direction, consisting of
alternating Kagome and triangular lattice layers. In this state, the spins of the triangular lattice point towards the
eight corners of a cube, while the spins on the Kagome layers point towards the 12 edge midpoints of this same
cube, resulting in a 12-sublattice magnetic ordering on these layers. This structure was already found on the Kagome
lattice [46, 195], where it was viewed as the spins pointing towards the vertices of a cuboctahedron, inscribed to the
cube considered here. Extending this picture to the 3D Pyrochlore, the spins on the triangular lattice layers point
towards the middles of the eight triangular faces of the cuboctahedron. This state is inherently non-coplanar, but still
a Luttinger-Tisza eigenstate. Its average energy per spin is given by 𝐸 = 𝐽1 (3/4 +

√
6/2), which is independent of 𝐽2,

as, within the cuboctahedral state, the second-nearest neighbor interactions on the Kagome layer sum to zero for all
spins individually, whereas the NNN of the Kagome spins located in the triangular plane are perpendicular, meaning
the interaction vanishes. Given that all NNN of triangular layer spins within the Kagome layers, their 𝐽4 interactions
vanish completely. For more details on this argument, cf. Reference [38].

The particular spin arrangement of the CS state is achieved by building up the configuration from any three of
the four wave vectors of 𝒌 = 2𝜋(1/2, 1/2, 1/2) type, e.g., 𝒌 = 2𝜋(1/2, 1/2, 1/2), 𝒌 = 2𝜋(−1/2, 1/2, 1/2), and
𝒌 = 2𝜋(1/2,−1/2, 1/2), carrying identical spectral weight. The stacking direction is then the [111] direction
parallel to the fourth, unused symmetry equivalent wave vector, in this case 𝒌 = 2𝜋(1/2, 1/2,−1/2). An analytical
parametrization of this state is given in Reference [38]. Due to the relative orientation of the FCC sublattices,
subdominant wave vectors of 𝒌 = 2𝜋(1/2, 1/2, 3/2) type, carrying approximately 18 % of the spectral weight of the
dominant ones accompany each of the ordering vectors used to built up the state.

Due to the energetical independence of 𝐽2 in the CS means, lowering AF 𝐽2 even more only changes the energy of
competing states, in particular, the FM ordered state. At 𝐽2/𝐽1 = (−3/8+

√
6/12) (𝜃 ≈ 170.30°), the FM state actually
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supersedes the CS energetically. Apart from the dominant ordering vector at 𝒌 = 2𝜋(0, 0, 0), subdominant peaks at
all the 𝒌 = 2𝜋(1, 1, 1)-type wave-vectors in the extended BZ are present, which carry a quarter of the spectral weight
of the dominant ferromagnetic peak. These signal, as for the 𝒌 = 0 state, the ferromagnetic correlations within the
individual FCC sublattices of the Pyrochlore lattice.

The FM state, compared to the other states, occupies the largest extent in the phase diagram. Starting from moderate
AF 𝐽2 at the phase transition from the CS state, it trivially extends into the unfrustrated region, where both 𝐽1 and 𝐽2

are FM and even beyond the pure second-nearest neighbor FM: for FM 𝐽2 < 0, the FM state proves to be robust even
against moderately strong AF 𝐽1 > 0.

Only at 𝐽2/𝐽1 ≈ −1.09 (𝜃 ≈ 312.53°), the FM order is destroyed by the frustrated AF 𝐽1 coupling, giving way to
the Kawamura states, named after the group that investigated this family of states in depth [191]. It is characterized
by dominant wave-vectors at almost commensurate 𝒌 = (𝑘, 𝑘, 0)-type points with 𝑘 ≈ 2𝜋(5/4) and additional
subdominant ordering vectors at 𝑘 ≈ 2𝜋(3/4) carrying approximately 22 % of the spectral weight of the dominant
vectors. Stronger subdominant peaks are additionally located at 𝒌 ≈ 2𝜋(1, 1/4, 7/4)-type vectors with approximately
55 % spectral weight. There are two classes of ground states, which either feature four or all of the six symmetry
equivalent ordering vectors: The former state clearly breaks the cubic symmetry of the Pyrochlore lattice, again
without a priori determination of the specific nature of this breaking from the Heisenberg Hamiltonian, while the
latter state respects this symmetry. Both types of ground states have in common, that they realize a non-coplanar spin
configuration by superposition of spirals controlled by the aforementioned wave vectors. They also approximately
fulfill the zero spin sum constraint on the tetrahedra and therefore can be viewed as perturbed eigenstates of the 𝐽1

antiferromagnet. From iterative minimization, we find 𝑘 to evolve from 𝑘 ≈ 2𝜋(1.31) at the FM phase boundary
towards 𝑘 = 2𝜋(5/4) approaching the pure NNAF model.

11.2 Quantum Phase Diagram

Strong quantum fluctuations in a highly frustrated magnetic lattice like Pyrochlore at small spin 𝑆 can have several
effects on the phase diagram. Due to quantum corrections to the energy being strongly dependent on the underlying
order, phase boundaries can be shifted or, within spiral phases, the wave vector corresponding to a given set of
couplings can differ from its classical value. More severely, quantum effects can even lead to the stabilization of orders
not present in the classical model, even to the extent of melting classical long-range orders completely, allowing room
for a quantum paramagnetic phase.

On the Pyrochlore lattice, there is a natural candidate region in the 𝐽1 − 𝐽2-parameter space for the latter, namely
in the vicinity of the classical spin liquid in the pure AFNN model. However, even for this point, its fate in the
𝑆 = 1/2 limit is not fully settled. There have been indications from perturbative and mean-field approaches for an
𝑆𝑈 (2)-symmetric spin liquid [31, 196–202], but also chiral spin liquid states [203–205] and a variety of dimerized
ground states [206–215] were proposed. Recent studies employing large scale unbiased numerical methods point
towards a dimerized, inversion and rotation symmetry breaking ground state [117, 216, 217].

We defer the discussion of the pure NN point to Section 11.3, but will first answer the question, how stable a
quantum paramagnet is against additional NNN interactions. Classically, as already discussed, even an infinitesimal
addition of NNN interaction 𝐽2 will induce long-range magnetic order [48]. However, due to quantum fluctuations,
this selection may be prevented in the low spin 𝑆 regime for AF or even FM 𝐽2.

Mapping out the full 𝐽1 − 𝐽2 phase diagram using PFFRG for 𝑆 = 1/2, 𝑆 = 1 and 𝑆 = 3/2, as shown in Figure 11.3,
we find, that for both 𝑆 = 1/2 and, more surprisingly, even for 𝑆 = 1 a paramagnetic regime is found around the
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Figure 11.3: Quantum phase diagram (outer rings) of the 𝐽1-𝐽2 Heisenberg model on the Pyrochlore lattice for increasing values
of spin 𝑆. For comparison, the inner discs show the classical phase diagram. Apart from shifts in the phase boundaries, quantum
effects stabilize an extended paramagnetic regime for 𝑆 = 1/2 and 𝑆 = 1. The black dots in (a) highlight parameter points, for
which we show the susceptibility profiles in Figures 11.4 and 11.7, Figure reproduced from Reference [31].
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Figure 11.4: Representative RG flows (in units of 1/𝐽) in the paramagnetic regime for (a) 𝐽2/𝐽1 = 0.1 and (b) 𝐽2/𝐽1 = −0.1 with
𝐽1 > 0, located by black circles in Figure 11.3(a). Their respective spin susceptibilities at the lowest 𝑇 are shown in (c) and (d).
Figure reproduced from Reference [31].

NNAF point. As shown in Figure 11.3(a), the paramagnet melts a significant slice of parameter space around 𝐽2 = 0,
classically occupied by 𝒌 = 0 and Kawamura orders for AF 𝐽2 > 0 and FM 𝐽2 < 0 respectively. The same is true for
𝑆 = 1, however the span of the paramagnetic phase is found to be halved from −0.25(3) ⩽ 𝐽2/𝐽1 ⩽ 0.22(3) for 𝑆 = 1/2

to −0.11(2) ⩽ 𝐽2/𝐽1 ⩽ 0.09(2), which is still non-negligible.
Representative RG flows for 𝑆 = 1/2 in Figure 11.4 (a) and (b) for antiferromagnetic and ferromagnetic 𝐽2 (𝐽1

being AF), respectively, display a monotonically increasing smooth behavior down to the smallest RG scale simulated,
indicating the absence of long-range order. The corresponding spin susceptibilities in reciprocal space in the extended
BZ (Figure 11.4 (c) and (d)) support this finding, as there are no sharp maxima present. Such incipient Bragg
peaks would indicate the onset of magnetic long-range order. Instead, the spectral weight is smeared out by quantum
fluctuations, but still resembling a molten version of the underlying classical ground state. For AF 𝐽2, the susceptibility,
as shown in Figure 11.4(c), features maxima at 𝒌 = 2𝜋(2, 0, 0) (and symmetry-related points), in correspondence with
the dominant Bragg peaks of the classical 𝒌 = 0 order found in this coupling regime.

For FM 𝐽2, the parent classical state in the paramagnetic region is the Kawamura order, with dominant and
subdominant Bragg peaks at 𝒌 ≈ 2𝜋(5/4, 5/4, 0) and 𝒌 ≈ 2𝜋(3/4, 3/4, 0) (and symmetry-related points). Melting the
corresponding ordered susceptibility shown in Figure 11.7(h) via quantum fluctuations gives rise to smeared, almost
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Figure 11.5: Temperature evolution of the spin susceptibility in the [ℎℎ𝑙] plane for paramagnetic states on the Pyrochlore lattice.
Top row is evaluated for AF 𝐽2 = 0.1, bottom row at FM 𝐽2 = −0.1, both for 𝐽1 > 0.
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Figure 11.6: Susceptibility cuts along the [ℎℎ4𝜋] line (white line in Figure 11.5) for different values of 𝐽2 in the paramagnetic
regime at 𝑇/𝐽 = 1/100 showing the spectral shift when changing the sign of 𝐽2. Figure reproduced from Reference [31].

homogenous ringlike features on the hexagonal surfaces of the BZ, see Figure 11.4(d). The corresponding [ℎℎ𝑙]
plane susceptibility profiles for both cases of 𝐽2 are shown in Figure 11.5. We find, that the NNN coupling modifies
the paramagnetic susceptibility substantially. For AF NNN coupling 𝐽2 > 0, the maximum of the susceptibility lies
at 𝒌 = 2𝜋(2, 0, 0), the location of the so-called pinch point in the NNAF model, in accordance with the behavior of
the classical model [218]. At this point, the classical susceptibility is non-differentiable with a discontinuity in [00𝑙]
direction, while being constant on the perpendicular [ℎℎ4𝜋] line, leading to a pinched shape of the structure factor,
resembling a bow-tie in total. In contrast, for FM 𝐽2 < 0, the pinch point susceptibility is suppressed in favor of a
hexagonal cluster pattern in the [ℎℎ𝑙] plane, also similar to the classical limit [218].

To better illustrate this redistribution of spectral weight, in Figure 11.6 we plot a 1D cut along the white line in
Figure 11.5 of the susceptibility normalized to the pinch point, i.e. 𝜒/𝜒pinch point with 𝜒pinch point = 𝜒(0, 0, 4𝜋) at
𝑇/𝐽 = 1/100. Here we clearly see the enhancement of the pinch point weight at 𝒌 = 2𝜋(2, 0, 0) for increasing
AF 𝐽2, while for 𝐽2 < 0, the maxima of the susceptibility move away from these points due to the shift of spectral



114 | 11 𝐽1-𝐽2 Heisenberg model on the Pyrochlore lattice

(a) (b) k = 0

�

�

�

�
(c) Planar spiral

�

�

�

�

(d) DT

�

�

�

(e) MMS

�

�

�
(f) CS

�

�

�

(g) FM

�

��

��

��

��
(h) Kawamura

�

�

�

Figure 11.7: (a) Extended BZ of the Pyrochlore lattice, a truncated octahedron, with the high symmetry points labeled. (b)-(h)
Reciprocal space plots of the magnetic susceptibilities (in units of 1/𝐽) for the different magnetic orders found in the 𝑆 = 1/2
phase diagram for representative points marked by black dots in Figure 11.3(a). Figure reproduced from Reference [31].

weight towards the Kawamura state wave vectors. Increasing temperature, the general susceptibility profile of the
paramagnetic states appears to be robust up to temperatures of the order of the coupling𝑇/𝐽 ∼ 1, as seen in Figure 11.5.
Starting from that temperature, the profile starts to smear out, with the disordered state giving way to a high-temperature
paramagnet.

Increasing spin length from 𝑆 = 1/2 to 𝑆 = 1, the qualitative results for the quantum paramagnet discussed above
do not change, but only quantitative differences are found, most notably the smaller extent of the paramagnetic phase.
Apart from that, the entire discussion for 𝑆 = 1/2 also holds true for the 𝑆 = 1 case.

Moving away from the paramagnetic regime, we now turn to the magnetically long-range ordered part of the low-
spin 𝐽1-𝐽2 phase diagram. Comparing the classical and quantum phases in 11.3, we find, that all classical magnetic
orders are also found in the low-spin regime of the Pyrochlore model, and, more importantly, no new long-range
orders are stabilized by quantum effects. The latter is in contrast to, e.g. the square lattice Heisenberg model, where
additional commensurate phases are stabilized [166]. Starting from the region, where both 𝐽1 and 𝐽2 are AF, we find,
that the span of the 𝒌 = 0 phase is substantially shrunk in the 𝑆 = 1/2 case (see Table 11.1 for exact boundaries), due
to its melting into the extended paramagnetic phase around the NN point, which, to a lesser extent, is also true for
spin 𝑆 = 1. The onset of 𝒌 = 0 magnetic long-range order is indicated by a clear instability in the RG flow of the
susceptibility for a representative point in the middle of the phase at 𝐽2/𝐽1 = 0.36, as marked in Figure 11.3(a). From
the position of the breakdown, indicated by an arrow in Figure 11.8(a), we find a Nèel temperature 𝑇c/𝐽 ≈ 0.39(2).
Furthermore, the corresponding spin susceptibility profile at the instability in Figure 11.7(b) shows clear dominant
incipient Bragg peaks at the 𝑋 point, i.e., 𝒌 = 2𝜋(2, 0, 0), and all symmetry-related points. The expected subdominant
peaks at the 𝐿 points (𝒌 = 2𝜋(1, 1, 1) and symmetry-related) are also clearly resolved. While in principle both thermal
and quantum fluctuations, which could select a specific (non-)coplanar ground state out of the subextensive manifold
of 𝒌 = 0 states, are captured in the PFFRG [33], the RG flow will not spontaneously break any lattice symmetry.
Therefore, all symmetry-related Bragg peaks show the same density, which however cannot be taken as an indicator
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Figure 11.8: (a) Representative susceptibility RG flows at the ordering wave vectors for the seven long-range ordered phases of the
𝑆 = 1/2 model. The corresponding parameter points are marked by black dots in Figure 11.3(a). Arrows mark the position of an
instability of the flow, indicating the onset of long-range magnetic order. (b) Evolution of the ordering wave vectors of classical
and quantum planar spiral phase with varying NN coupling strength parametrized by 𝜃 = arctan(𝐽2/𝐽1). The inset shows the
deviation 𝛿 |𝒌 | = |𝒌quantum | − |𝒌classical | of quantum from the classical value. Figure reproduced from Reference [31].

of a non-collinear state. Indeed, as discussed in sec. 11.1, classically, the collinear 𝒌 = 0 state is selected by thermal
fluctuations [193], and quantum fluctuations are likely to select the same state [219].

As in the classical case, we find the phase transition from the 𝒌 = 0 to the incommensurate planar spiral order
at 𝐽2/𝐽1 = 1/2. From the RGflow deep in the spiral phase (𝐽2 = 𝐽1, marked by a black disk in Figure 11.3(a)), as
shown in Figure 11.8(a), shows an onset of magnetic long-range order at c/𝐽 ≈ 0.73(3) signalled by a flow instability.
In the susceptibility profile at the breakdown in Figure 11.7(c) the expected incommensurate Bragg peak is found.
However, the quantum model differs in two ways from the classical one in this phase. Firstly, quantum fluctuations
stabilize the planar spiral relative to the DT phase, extending the planar spiral phase in parameter space compared to
its classical boundaries. The transition between the two states is shifted from 𝐽2/𝐽1 ≈ −0.68 to 𝐽2/𝐽1 ≈ −0.537(6)
in the 𝑆 = 1/2 model, cf. Figure 11.3(a) and Table 11.1, implying a significant stabilization of the planar spiral by
quantum fluctuations.

Secondly, we find, that the spiral wave vector in the quantum case is shifted compared to its classical counterpart,
an effect already known on the cubic lattice [220]. In Figure 11.8(b), we find, that both quantum 𝒌quantum and
classical 𝒌classical ordering vectors evolve monotonically decreasing throughout the planar spiral phase, starting from
the boundary with the 𝒌 = 0 phase towards the DT order. The deviation 𝛿 |𝒌 | ≡ |𝒌quantum |− |𝒌classical |, in contrast, shows
a nonmonotonical behavior over the same parameter range hosting planar order, as seen in the inset of Figure 11.8(b).
For the most part of the phase, however, we find quantum fluctuations to increase the value of the wave-vector, shifting
the character of the order towards antiferromagnetism. The maximum shift 𝛿 |𝒌 | of approximately 4% of the classical
wave vector value is found at the boundary to 𝒌=0 order at 𝜃 ≈ 26 57◦.

The DT magnetic order takes over from the planar spiral at 𝐽2/𝐽1 = −0.537(6), with a representative RG flow of
the dominant wave vector evaluated at 𝐽2/𝐽1 ≈ −0.43 (marked by a black disk in Figure 11.3(a)) shows an instability
around 𝑇𝑐/𝐽 ≈ 0.39(2). The spin susceptibility profile (Figure 11.7(d)) clearly shows the dominant Bragg peaks
for this state at 𝒌 = 2𝜋(3/4, 3/4, 0)-type wave vectors, but also the subdominant peaks at 𝒌 = 2𝜋(5/4, 5/4, 0) and
symmetry-related points are clearly resolved. The extent of the DT phase in the 𝐽1-𝐽2 space in the 𝑆 = 1/2 case is
similar to the classical one, however its boundaries are shifted, with the planar spiral eating away some of its classical
extend, while DT, in turn, takes over parameter space classically occupied by MMS and CS orders.
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Method Pyrochlore Simple cubic 𝑇
Pyro
c /𝑇SC

c Pyrochlore Simple cubic 𝑇
Pyro
c /𝑇SC

c

PFFRG 0.77(4) 0.90(4) 0.86

QMC/CMC 0.7182(3) [221] 0.839(1) [222, 223] 0.86 1.316 95(2) [224] 1.443 [185, 225] 0.91

HTE (Padé) 0.724−0.754 [221] 0.827 [226] 0.88 1.316−1.396 [221] 1.438 [226] 0.92

RGM 0.778 [221] 0.926 [221] 0.84 1.172 [221] 1.330 [221] 0.88

RPA 0.872 [227] 0.989 [228] 0.88

MFA a 3/2 3/2 1 2 2 1

Table 11.2: The ordering (Curie) temperatures for the 𝑆 = 1/2 nearest-neighbor quantum Heisenberg ferromagnet (in units𝑇𝑐/|𝐽1 |)
(columns 2 and 3) and its corresponding classical (𝑆 → ∞) model (in units of 𝑇𝑐/[|𝐽1 |𝑆(𝑆 + 1)]) (columns 5 and 6) on the
Pyrochlore (Pyro) and simple cubic (SC)lattices as obtained by PFFRG and compared with estimates obtained from quantum
Monte Carlo (QMC), classical Monte Carlo (CMC), high-temperature expansion (HTE), rotation-invariant Green’s function
method (RGM), and random-phase-approximation (RPA). The fact that 𝑇pyro

c /𝑇SC
c < 1 can be attributed to finite-temperature

frustration effects [221]. We also quote the result in the mean-field approximation (MFA), which is insensitive to the difference
between the Pyrochlore and simple-cubic lattice, since it depends only on the coordination number.

aWe adopt the convention of single-counting of bonds in eq. (11.1), and thus employ the formula𝑇c/|𝐽1 | = 1
3 𝑧𝑆 (𝑆+1) , where 𝑧 is the coordination

number.

The transition from DT to MMS order is for 𝑆 = 1/2 found at 𝐽2/𝐽1 = −0.347(2), placing the phase completely
in the classical domain of MMS order. Its extent is also severely reduced to about one-third of the classical phase,
confining the phase to a small slice in the phase diagram Figure 11.3(a). The susceptibility profile, taken at the point
𝐽2/𝐽1 ≈ −0.335 marked therein, shown in Figure 11.7(e) shows Bragg peaks at incommensurate wave vectors, as in
the classical model, which are, however, shifted compared to their classical values. The profile is shown at the Nèel
temperature 𝑇c/𝐽 = 0.39(2), where the RG flow of the susceptibility at the dominant wave vector shows an instability
(see Figure 11.8(a)).

The MMS phase extends down to 𝐽2/𝐽1 = −0.326(2), where a transition to CS order takes place. For 𝑆 = 1/2 its extent
is comparable to the classical one, but shifted partially into the classically FM phase region. Its dominant Bragg peak
is located on the line connecting Γ and 𝐿 point in reciprocal space, as can be seen in Figure 11.7(f) for 𝐽2/𝐽1 = −0.24,
but substantially smeared out in reciprocal space due to quantum fluctuations. Additionally, the instability in the
corresponding RG flow (Figure 11.8(a)) is extremely weak. Both these facts hint at a certain "weakness" of the CS
order, analogous to the cuboctahedral orders on the Kagome lattice with longer-ranged Heisenberg interactions [46,
195], which also display only feeble, i.e. not well pronounced, instabilities in their RG flow [123, 131].

Lowering AF 𝐽2 even further, the now dominant FM 𝐽1 takes over, driving a transition at 𝐽2/𝐽1 = −0.153(5) into
the ferromagnetically ordered phase. As the FM state, being an exact eigenstate of the Hamiltonian, is not affected by
quantum fluctuations, these can make the CS order favorable over the FM one, by lowering this state’s energy. That
this indeed is the case is signaled by the shift of the phase boundary between these two states into the classically FM
domain. This had been predicted before [126, 179] and was also the case in the BCC lattice, see Section 10.2. For the
pure NNFM 𝐽2 = 0, the RG flow of the susceptibility in Figure 11.8(a) shows a clear instability at the critical (Curie)
temperature 𝑇c/|𝐽1 | = 0.77(4), which compares well with the Quantum Monte Carlo value of 𝑇𝑐/|𝐽1 | = 0.718 [221]
within two error bars. In Table 11.2 we compare this value with additional methods, showing a similarly good
agreement. Furthermore, the Curie temperatures on the simple cubic lattice are given, which, as the Pyrochlore
lattice, has a coordination number 𝑧 = 6, but, due to being a Bravais lattice, is bipartite. The Curie temperature, both
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Figure 11.9: (a) Susceptibility flows for the Pyrochlore NNAF at the momentum with carrying the largest spectral weight for loop
orders ℓ = 1 through ℓ = 4, showing rapid convergence and significant reduction of the susceptibility. (b) Self-energy evolution
with increasing loop order, showing excellent convergence for high scales Λ ∼ |𝐽 |, while convergence especially around the
maximum is worse in terms of height and location of the peak for small Λ/|𝐽 |, indicating slower convergence on the vertex level
in line with the findings in Reference [140]. Figure reproduced from Reference [139].

in the classical and extreme quantum 𝑆 = 1/2, is always lower for the Pyrochlore than the simple cubic lattice, which
can be attributed to finite temperature frustration effects [173, 221, 226, 229, 230].

Apart from the dominant Bragg peak at the Γ point, the spin susceptibility in Figure 11.7(g) clearly shows the
subdominant peaks at the 𝐿 points, which are due to the sublattice structure of the Pyrochlore lattice. Naturally, the
FM phase spans from its boundary at 𝐽2/𝐽1 = −0.153(5) throughout the whole quadrant of the phase diagram, where
both 𝐽1 and 𝐽2 are FM and, as in the classical case, is stable against quite sizeable AF 𝐽1 for FM 𝐽2. From PFFRG we
find the phase boundary between FM and Kawamura order at 𝐽2/𝐽1 ≊ −1.09, slightly lower compared to the classical
value, which we again attribute to the lack of energy corrections due to quantum fluctuations in the FM phase.

The dominant wave vector within the Kawamura phase is found to vary slightly throughout the phase, but remains
close to 2𝜋(5/4, 5/4, 0). At 𝐽2/𝐽1 = −0.634, as marked by a black disk in Figure 11.3(a), the RG flow shown in
Figure 11.8(a), shows a very weak signature of an instability around c/𝐽 = 0.54(2). The susceptibility at this point,
Figure 11.7(h), also shows a significant smearing of the dominant and subdominant Bragg peaks, both signaling a
weak order prone to being destabilized by further range interactions, as we will discuss in Chapter 14.

Increasing the spin length to 𝑆 = 1, the quantum phase diagram remains qualitatively similar to 𝑆 = 1/2, see
Figure 11.3(a) and (b), only showing quantitative differences such as shifts in the phase boundaries and precise
location of ordering vectors in reciprocal space, but the qualitative discussion remains unchanged. Increasing 𝑆

further, the quantum phase diagram evolves towards the classical one, with 𝑆 = 3/2 already only showing marginal
differences in Figure 11.3(c), most notably the absence of a paramagnetic phase.

11.3 Nearest-neighbor antiferromagnet in multi-loop

As already explicated in Section 11.1, the ground state of the 𝑆 = 1/2 NNAF on the Pyrochlore lattice is still a
highly debated problem. Latest simulations employing the density matrix renormalization group point towards a state,
in which inversion symmetry is spontaneously broken [216]. At the same time both unconstrained many-variable
variational Monte Carlo [217] and PFFRG [117] point towards a state with not only inversion but also 𝐶3 rotational
symmetry breaking1.

1In Reference [117] a sole breaking of 𝐶3 rotations, while leaving inversion symmetry intact, is also supported by the data.
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Figure 11.10: (a) Susceptibility profile at Λ = 0.05|𝐽 | in the [ℎℎ𝑙] plane for ℓ = 4, showing the characteristic bowtie pattern of
the Pyrochlore NNAF. (b) Cut along the bowtie in the [ℎℎ4𝜋] direction as indicated by the dashed horizontal line in (a). (c)
Line profile perpendicular to the bowtie along the [00𝑙] direction as indicated by the solid vertical line in (a) with the respective
full-width-at-half-maximum 𝜎, which increases with inclusion of higher loops, signifying enhanced quantum fluctuations. (d)
Flow of 𝜎 for different loop orders. The inset shows 𝜎 (for ℓ = 4) at small values of Λ/|𝐽 | following a

√
Λ behavior, as found in

the classical limit [52], while being linear for large Λ. Figure reproduced from Reference [139].

In PFFRG calculations, a symmetry breaking tendency has to explicitly be included and can subsequently be probed
for by tracking the response of the RG flow to this breaking [31, 117]. This procedure, however, can only probe for
predefined symmetry breaking patterns, thus spoiling the unbiased nature of PFFRG. Using the symmetry respecting
formulation we cannot distinguish these paramagnetic phases from each other, but at least at ℓ = 1 loop level, a
smooth flow of the susceptibility was found throughout the whole BZ, indicating a paramagnetic behavior even in the
symmetric case [31].

Employing multi-loop PFFRG, we find, that this result is robust with respect to the inclusion of higher loop
corrections. From the RG flows of the susceptibility shown in Figure 11.9(a), we find, that firstly already at ℓ = 4 loop
convergence for the flow is reached, but also the RG flows are smooth down to the lowest simulated scale Λ, providing
strong evidence for a quantum paramagnet even under inclusion of higher loop corrections. On the level of the
self-energy, the loop-convergence is dependent on the renormalization scale Λ, with convergence becoming harder to
achieve for small scales (see Figure 11.9(a)), which was also found in Reference [140]. The susceptibility profile in this
phase is distinctly characterized by a bowtie pattern [52] in the [ℎℎ𝑙] plane in reciprocal space, which develops sharp
singularities at 𝒌 = 2𝜋(0, 0, 2), called pinch points, in the 𝑇 = 0 limit of the classical model. These features directly
reflect dipolar spin correlations in this paramagnetic phase [231, 232], direct evidence of a cooperative paramagnetic
Coulomb phase [233], which has been argued to arise from the ice-rule eq. (11.4) for the classical NNAF [52, 186,
187].
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Due to quantum fluctuations, it is impossible for the 𝑆 = 1/2 to feature vanishing variance of the magnetization
on every tetrahedron. Therefore, the ice-rule will be violated by spin fluctuations, smearing out the pinch points,
rounding off their sharp peaks, as seen in Figure 11.10(a) at the 𝒌 = 2𝜋(0, 0, 2) and symmetry-related points. The
finite width of the pinch point perpendicular to the bowtie then serves as a measure for the net magnetization on the
tetrahedra, i.e. the violation of the ice-rule [31, 196, 198, 201, 206, 234–236]. In Figure 11.10(c) we show the relevant
cuts along the ℎ = 0 line (vertical white line in Figure 11.10(a)) for multiple loop orders. Here we find, that the width
of the pinch point, given as the full-width-at-half-maximum 𝜎 increases with increasing loop order ℓ, converging
at 𝜎 = 1.328𝜋 for ℓ = 4. This suggests, that the inclusion of higher loops in the PFFRG flow enhances the effect
quantum fluctuations in the Pyrochlore Heisenberg AF. Tracking 𝜎 over the flow, as shown in Figure 11.10(d), reveals
a monotonical reduction of 𝜎 when lowering Λ, serving as an effective temperature. At lowest Λ, we remarkably find
𝜎 to obey a

√
Λ behavior, as found in the classical model [52].

Taking cuts along the bowties, i.e. perpendicular to the so far discussed direction (horizontal white line in
Figure 11.10(a)), we find, that the maxima in the susceptibility are located symmetrically to the pinch points, but
not right at these points. This finding is in agreement with Reference [196], but has to be contrasted to recent
finite-temperature matrix product state studies, which locate the maxima of the equal time structure factor at the pinch
points at 𝒌 = (0, 0,±4𝜋) [216, 236]. These however suffer from the fact, that most geometries considered there do not
preserve the lattice symmetries, rendering their thermodynamically extrapolated result unreliable. Rotation-invariant
Green’s function method [201] and diagrammatic Monte Carlo simulations [198] find an essentially constant intensity
across the bowtie, adding a third scenario to the list of possible intensity distributions. All these different patterns
likely correspond to different spin liquid mean-field ansätze [237], rendering it even more important to accurately
resolve the susceptibility in reciprocal space accurately, to unambiguously identify the nature of the ground state of
the Pyrochlore NNAF. This, in turn, also shows the relevance of the multi-loop corrections to PFFRG which have
been shown here to quantitatively change the spectral distribution of the susceptibility.
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Chapter 12

𝐽1-𝐽3 Heisenberg model on the simple cubic lattice
in multi-loop

In Section 11.3 we have established, that in the disordered NNAF on the Pyrochlore lattice the multi-loop corrections
to PFFRG enhance the effects of quantum fluctuations, leading to quantitative changes in the susceptibility profile,
most notably a smearing of the pinch points. This specific case, although promising rich physics due to the absence
of long-range order in its ground state, can however not answer, how multi-loop corrections will affect the PFFRG
flow within ordered phases. As a test bed to probe for this influence, we consider the simplest geometry for a 3D
quantum magnet, the 𝑆 = 1/2 Heisenberg model on the simple cubic lattice. In addition to AF NN interaction 𝐽1 > 0,
we include a NNN coupling 𝐽3 as shown in Figure 12.1.

As long as 𝐽3 similarly is taken to be AF, the lattice remains unfrustrated and bipartite, i.e. can be decomposed into
two simple cubic lattices, which are coupled by AF interactions. These are sufficient conditions for the ground state to
realize a Néel order, in which neighboring spins are aligned antiparallel. A FM 𝐽3, on the other hand, parametrically
frustrates the nearest-neighbor model, leading in the classical 𝑆 → ∞ to a phase transition from staggered Néel
towards collinear order at 𝐽3/𝐽1 = −0.25.

This, on one hand, enables us to compare to quantum Monte-Carlo (QMC) simulations in the unfrustrated regime,
which have found relatively large ordering temperatures of 𝑇𝑐/|𝐽 | ∼ 1 [125, 238] with |𝐽 | = (𝐽2

1 + 𝐽2
3 )1/2, a fact already

reproduced at one-loop level in PFFRG [125]. In the frustrated regime, QMC calculations are not feasible due to a
sign problem, which would to exponentially long computation times to find reliable results. PFFRG on the other hand,
is still applicable, allowing us to probe for the effects of quantum fluctuations on the position of the phase boundary.

Focussing on the 𝐽3 = 0 point first we show the influence of varying loop orders on the susceptibility flow in
Figure 12.2(a). At one loop level, we find a divergence at Λ𝑐/|𝐽 | ≈ 0.861, with the real space correlations at this
point (see Figure 12.2(b)) clearly indicating antiferromagnetic Néel order, in line with the findings in References [238]
and [125]. Including higher loop orders into the flow, this picture changes, and only a slight shoulder replaces the
divergence in the susceptibility flow for loop level ℓ > 1 up to ℓ = 6, but still in close vicinity to the ℓ = 1 divergence.
Additionally, a convergence in loop order is not possible below Λ𝑐/|𝐽 | ≈ 0.85, where also numerical errors in the
differential equation solver were growing relatively large.

We attribute this lack of loop convergence to the onset of long-range magnetic order. Indeed, a complete convergence
at finite loop order would be surprising, when interpreting multi-loop PFFRG form the view of a large-𝑆 extension, as
discussed in Section 7.10.1. On ℓ = 1 level, as shown in eq. (7.66), the leading contributions in a large-𝑆 expansion

1A conversion to Temperature using the mean-field argument outlined in Section 7.10.1 is not valid here, as for multi-loop calculations a smooth
cutoff is used, invalidating the conversion factor of 𝜋/2.
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Figure 12.1: Unit cell of the simple cubic Bravais lattice. The NN (𝐽1, blue) and NNN (𝐽3,orange) couplings are shown by
exemplary exchange paths. For AF 𝐽1, AF(FM) 𝐽3 is parametrically unfrustrated (frustrated).
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Figure 12.2: (a) The susceptibility flow for the NNAF at the ordering wave-vector 𝒌 = (𝜋, 𝜋, 𝜋) displays a divergence at ℓ = 1
loop level, which is rounded off for ℓ > 1. Here onset of order is marked by a failure of loop convergence at Λ/|𝐽 | ≈ 0.85 (point,
where deviation between ℓ = 5 and ℓ = 6 exceeds 5%). Real space correlations in the 𝑧 = 0 plane at the point of flow breakdown
for (b) ℓ = 1 and (c) ℓ = 6 normalized to the reference site in gray. Purple/Yellow indicate positive/negative correlations, clearly
showing Néel order. Figure reproduced from Reference [139].

are constituted by the RPA diagram in the t-channel, being of O(1), while all other ℓ = 1 terms are subleading with
O(1/𝑆).

Constructing the multi-loop extension according to the iterative scheme devised in Chapter 8, additional O(1/𝑆)
terms are obtained when inserting the ℓ = 1 t-channel terms into subleading O(1/𝑆) s- and u-channel diagrams and
vice versa. All other terms in the ℓ = 2 expansion lead to O(1/𝑆2) terms as subleading ℓ = 1 contributions from the
s- and u-channel as well as the chalice diagrams of the t-channel are inserted back into these subleading diagrams, but
of another channel.

Additional O(1/𝑆) terms are subsequently generated for ℓ = 3 by inserting the leading ℓ = 2 t-channel terms in the
central part contribution to the t-channel. This completes this order of 1/𝑆, as these terms have to be inserted back
into subleading diagrams in ℓ = 4 and higher. Additionally, further subleading terms are generated from the remaining
diagrams at ℓ = 3.

As the 𝑆 → ∞ limit is exact already for ℓ = 1[110, 148], all multi-loop contributions have to subleading in
1/𝑆 consequently vanish in the classical limit. At finite 𝑆, however, the corrections from multi-loop constitute an
incomplete 1/𝑆 expansion, where every loop level adds additional subleading terms in the large-S expansion, but, as
can be seen from O(1/𝑆2) terms for ℓ = 2 and ℓ = 3, any given loop level truncation will only capture an incomplete
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Figure 12.3: 𝐽1-𝐽3 phase diagram and critical scales Λ𝑐 on the simple cubic lattice from one- and multi-loop (ℓ ≤ 6) PFFRG. The
quantum phase transition at 𝐽3/𝐽1 = −0.3 (black line) from the 𝒌 = (𝜋, 𝜋, 𝜋) Néel to the 𝒌 = (𝜋, 𝜋, 0) collinear order is shifted
compared to its classical value 𝐽3/𝐽1 = −0.25. Insets show the respective susceptibilities for 𝑘𝑧 = 𝜋. The breakdown scales
Λ𝑐 , though slightly shifted for higher loops, qualitatively show consistent behavior, with a suppression of Λ𝑐 around the phase
transition. Figure reproduced from Reference [139].

set of diagrams of a given order in 1/𝑆, rendering this expansion inherently inconsistent. This is in contrast to the
findings of multi-loop functional renormalization group (FRG) for itinerant systems, where due to the perturbative
nature of the coupling strength [91, 239], loop order is equivalent to an expansion in terms of this small parameter,
rendering it controlled even at a finite loop truncation [81, 90]. A similar argument holds for the 1/𝑁 expansion for
a SU(𝑁) generalization of the spins discussed in Section 7.10.2, with the u-channel being the leading contribution in
this case, swapping its role with the t-channel in the large 𝑆 case.

Therefore, there are only two limits of the multi-loop expansion, that can be regarded as physically consistent
and relevant: Firstly, the case ℓ = 1, which includes the relevant leading contributions for both magnetic ordering
and disordering tendencies to faithfully reproduce the large-𝑆 and large-𝑁 limits. The consistency is guaranteed by
means of the Katanin substitution implemented in the ℓ = 1 calculations. Secondly, the fully converged case for
some ℓ > ℓconv, where the multi-loop corrections to PFFRG have converged and reproduce a solution to the parquet
equations. The loop level ℓconv, where this happens, can however turn out to be infinite, i.e. multi-loop fails to
converge.

Considering, that in the Pyrochlore case in Section 11.3, loop convergence we found to be reached already at
ℓ = 5, even at RG scales Λ, which are an order of magnitude smaller than Λ𝑐/|𝐽 | ≈ 0.85 found here, the lack of
loop-convergence cannot be attributed to a methodological or numerical deficiency. We, therefore, conclude, that in
the magnetically ordered case, the large contributions from the t-channel found already in the ℓ = 1 case, spoil loop
convergence around the ordering scale.

We, therefore, regard this failure of loop convergence as an indicator for the onset of long-range magnetic order in
the multi-loop calculations. The correlations computed at a scale Λ ≳ Λ𝑐, shown in Figure 12.2(c), are still indicative
of a Néel order, but decay faster with distance than the one in the ℓ = 1 case (cf. Figure 12.2(b)).

Having established the lack of loop convergence as an indicator for long-range magnetic order, we now turn to
finite 𝐽3, obtaining a coarsely scanned phase diagram for both AF 𝐽3 > 0 and FM 𝐽3 < 0, shown in Figure 12.3. The
breakdown scales Λ𝑐 defined for ℓ = 1 by the point at which the flow shows a divergence, as well as ℓ > 1, where
multi-loop seizes to converge, show a qualitatively similar behavior, with the multi-loop critical scales, for the most
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part, being lowered with respect to ℓ = 1. Around the phase transition from the (𝜋, 𝜋, 𝜋) ordered Néel phase to the
collinear order, characterized by wave vector (𝜋, 𝜋, 0), which we locate for spin 𝑆 = 1/2 at 𝐽3/𝐽1 = −0.3, we find a
suppression of Λ𝑐, which we attribute to the competition of the two phases.

The only light shift of phase boundary from the classical value of 𝐽3/𝐽1 = −0.25 in the classical to 𝐽3/𝐽1 = −0.3
in the quantum model indicates, that quantum fluctuations have little influence on the nature of the ordered states in
this model. At the same time, the excellent agreement between one- and multi-loop PFFRG in both critical scales
Λ𝑐 and phase boundary means, that higher loop corrections to the ordered phases, at least in this mildly frustrated
model, are almost negligible. This instills confidence in the analysis of magnetic systems using one-loop PFFRG in
literature [30–32, 34, 35, 98, 99, 111–123, 125, 127–135, 143, 148, 151, 157, 240–242].



IV
Magnetic ordering and its absence in real

material systems

In this part, we study the spiral spin liquid in the diamond lattice com-
pound MnSc2S4 and the gearwheel spin liquid in the Pyrochlore material
Lu2Mo2O5N2.
The contents of this part of the thesis are partially included in Refer-
ences [134] and [33].
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Chapter 13

Spiral spin liquid in MnSc2S4

In quantum spin liquids, as introduced in Section 1, the combination of frustration, both geometric and parametric,
and quantum fluctuations in the extreme limit of spins with small quantum number prevents the spins from assuming
a long-range order.

This, however, is not the only path to achieving a spin liquid behavior. There is a second class of disordered systems,
dubbed classical spin liquids, in which even in the large spin limit 𝑆 → ∞ no long-range order is assumed [188, 189,
243, 244]. Here the suppression of order is not by a fluctuation mechanism of the single spins, but due to an extensive
energetical degeneracy of the classical ground states. This allows the system to collectively fluctuate through these
configurations, which justifies the notion of a classical liquid behavior. We have already discussed an example for
such a classically degenerate system in form of the nearest neighbor (NN)antiferromagnetic (AF) on the Pyrochlore
lattice in Chapter 11, where the ice-rule as the sole constraint on the ground state still leaves an extensively degenerate
ground state manifold in energy space for the classical model [186, 187, 190].

The existence of an ice-rule, however, is not a necessary condition to realize a classical spin liquid. The interplay
of geometry of a lattice and special arrangements of frustrating interactions can as well introduce a macroscopic
degeneracy of ground states, which are not connected by a common constraint.

This is for example realized on the three-dimensional (3D) diamond lattice, illustrated in Figure 13.1, a bipartite
lattice, constructed from the face-centered cubic (FCC) Bravais vectors, where every lattice point is decorated by
a two-site basis. This construction allows an exact solvability of the classical Heisenberg model on this lattice, as
discussed in Section 3.2 Including NN and NNN interactions 𝐽1 and 𝐽2 on this arrangement of spins and tuning
ourselves to the region, where 𝐽2

|𝐽1 | >
1/8 while taking 𝐽2 < 0 to be AF1, we find exactly such a degenerate ground-state

manifold [30, 243, 245, 246]. In this regime, the possible ground states occupy a closed surface in reciprocal states,
with each of these wave vectors 𝒒 corresponding to a distinct spiral configuration governed by this vector. This allows
the system to collectively move through these degenerate manifold of coplanar spiral-states, which is the reason, this
state is dubbed a spiral spin liquid. Note, that a similar spiral spin liquid state is found on the two-dimensional (2D)
Honeycomb lattice [148, 247, 248].

Relying on a fine-tuning of the interactions, spiral spin liquid states are in general very susceptible to perturba-
tions. Adding additional interactions, e.g. NNN couplings 𝐽3 to the 𝐽1-𝐽2 spiral liquid, will select a specific spiral
configuration, therefore forcing the system into long-range magnetic order. The same can happen by entropic effects,
where thermal fluctuations select a specific ground state in an order-by-disorder mechanism [249] and thus lift the
degeneracy. Indeed, for the diamond lattice spiral spin liquid, a series of phase transitions between different ordered
states is found for increasing 𝐽2

|𝐽1 | >
1/8 [243]. Similarly, quantum fluctuations for large, but finite, spin have been

found to select an ordered state [30]. Both effects destroy the spiral spin liquid, however, when increasing temperature

1The sign of 𝐽1 is not important in the 𝐽1-𝐽2 model, as the change of sign can be undone by flipping all spins on one of the sublattices.
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𝐽3

𝐽2

𝐽1

Figure 13.1: Cubic unit cell of the diamond lattice with NN couplings 𝐽1 (blue) within the unit cell, and exemplary next-to-nearest
neighbor (NNN) (𝐽2, green), and next-to-next-to-nearest neighbor (NNNN) couplings (𝐽3, orange).

above the transition into an ordered state, there may survive an approximate version of the spiral spin liquid state, as
order-by-disorder selection is not yet energetically active.

There remarkably exists a material, which shows approximate spiral spin liquid behavior, the A-site spinel
MnSc2S4 [244, 250–254]. In this compound, Mn2+ ions form a diamond lattice of spin 𝑆 = 5/2 spins. This
large spin moment in turn implies, that quantum fluctuations should be strongly suppressed, meaning the system
will behave quasi-classically. Indeed, in its paramagnetic phase above the ordering temperature 𝑇𝑐 ≈ 2 3K [244,
250, 252–254], but well below the Curie-Weiß temperature |ΘCW | = 23K [250], neutron scattering experiments 2 9K
directly show a surface structure in the scattering profile, which is reminiscent of the spiral spin liquid [244].

13.1 Model and classical analysis

Comparing the experimental radius of the spiral surface, in Reference [243], the ration of NN to NNN coupling
has been estimated to be 𝐽2

|𝐽1 | = 0.85 with 𝐽1 being ferromagnetic (FM). The classical model, however, does not
capture the selection of q ∼ 2𝜋(0.75, 0.75, 0) magnetic long-range order in experimental data below the transition, but
rather predicts a selection of momenta at incommensurate wave-vectors off the high-symmetry (ℎℎ0)-line [243]. The
selected wave-vectors are already visible above the magnetic ordering temperature in the form of higher intensities in
the structure factor [244, 252, 254].

In Reference [33], this discrepancy was resolved using ab initio density functional theory (DFT) calculations, which
reveal a significant presence of NNNN coupling 𝐽3. Here, as a best fit reproducing the experimentally determined
Curie-Weis temperature, 𝐽1 = −0 378K, 𝐽2 = 0 621K and 𝐽3 = 0 217 were determined, with the next longer range
coupling 𝐽4 being two orders of magnitude smaller than 𝐽3. This gives relative coupling strengths 𝐽2

|𝐽1 | = 1.64 and
𝐽3
|𝐽1 | = 0.57, substantially larger than proposed in previous studies [243, 245]. This can be explained by the ambiguity
of using fitting methods when dealing with competing interactions [33].

Treating the model completely classically for a moment, using the Luttinger-Tisza method, which is exact for a
diamond lattice, we first set 𝐽3 = 0 to get a better understanding for the effect of the DFT couplings. This pure 𝐽1-𝐽2

model exhibits a spiral surface, shown in Figure 13.2(a), which crosses the boundary as illustrated in Figure 13.2(b).
Compared to the one for the fitted 𝐽2

|𝐽1 | = 0.85, it has a slightly larger diameter. Tracking the size of the surface in
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Figure 13.2: (a) Spiral surface of the classical spiral spin liquid on the diamond lattice for 𝐽2/|𝐽1 | = 1.64 and 𝐽3 = 0 shown in
the extended Brillouin zone (BZ). All wave-vectors on this surface form a energetically degenerate manifold of spiral ground
states of the model. (b) 𝑞𝑥-𝑞𝑦 cut of this surface shown in red reaching into higher BZs indicated in black. Blue crosses
mark the positions of ordering vectors selected by adding NNNN coupling 𝐽3/|𝐽1 | = 0.57, black dots the experimentally
measured order of MnSc2S4 at 𝒒 ∼ 2𝜋(0.75, 0.75, 0). (c) Size of the spiral surface for 𝐽3 = 0 (red) and position of the
ordering vector for 𝐽3/|𝐽1 | = 0.57 (blue). The shaded area marks the position and width of the experimental Bragg peak at
𝒒 ∼ 2𝜋(0.75, 0.75, 0) [244]. Vertical lines indicate the coupling rations of NNN 𝐽2/|𝐽1 | = 0.85 from Reference [243] and
𝐽2/|𝐽1 | = 1.64 from Reference [33]. Figure reproduced from Reference [33].

Figure 13.2(c), it only increases moderately between 𝐽2
|𝐽1 | = 0.85 and 𝐽2

|𝐽1 | = 1.64, but still the DFT couplings seem to
overestimate its size, even when taking into account experimental uncertainties in the form of Bragg peak widths (see
Figure 13.2(c)).

The inclusion of 𝐽3, however, drastically changes this picture: already including infinitesimal AF 𝐽3 selects a
𝒒 = (𝑞, 𝑞, 0) wave vector from the degenerate manifold. Increasing 𝐽3 shifts this vector towards smaller values of
𝑞. For the ab initio value of 𝐽3/|𝐽1 | = 0.57, the Bragg peak is found at ordering vector q = 2𝜋(0.73, 0.73, 0), which
is in good agreement with the experimentally measured position. A shift of this wave-vector towards the close by
commensurate position found in experiment can be explained by lock-in effects rooted in weak anisotropic magnetic
effects possibly present in the real material, which however are not captured by the Heisenberg model. These lead to
a modification of the ground state structure to become commensurate with the underlying lattice [245].

13.2 PFFRG results

Having a classical understanding of the model and the importance of the 𝐽3 coupling, we now add thermal and quantum
fluctuations via pseudo-fermion functional renormalization group (PFFRG) to determine their role in destabilizing
the spiral spin liquid. To this end, we use the analogy between temperature and cutoff discussed in Section 7.10.1,
generalized to arbitrary spin 𝑆. The corresponding conversion between temperature 𝑇 and cutoff Λ is then given
by [125, 148]

𝑇

𝐽
=

(︃
2𝜋𝑆(𝑆 + 1)

3

)︃
Λ
𝐽
. (13.1)

As in the classical case, we start from the pure NN limit 𝐽2
|𝐽1 | = 1.64 and 𝐽3 = 0, where we classically find an intact

spiral surface. As shown in Figure 13.3(a)-(e), for large temperatures, i.e. renormalization group (RG) cut-offs Λ,
the spiral surface is still intact even under inclusion of fluctuations, with both its shape and size hardly changing as a
function of temperature, as indicated by the location of the maximal susceptibility along the (𝑞, 𝑞, 0) line shown in
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Figure 13.3: Temperature evolution of the susceptibility profiles in the 𝑞𝑥-𝑞𝑦 plane for the pure 𝐽1-𝐽2 model with 𝐽2/|𝐽1 | = 1.64
(top row) and including additional 𝐽3/|𝐽1 | = 0.57 (bottom row). Temperatures are given in units of the ordering temperature 𝑇 𝐽3

𝑐
of the full 𝐽1-𝐽2-𝐽3 Hamiltonian including 𝐽3/|𝐽1 | = 0.57. For both models and all temperatures the susceptibilities have been
normalized to lie in the range from 0 to 1 separately to highlight the prominent features of susceptibilities. The cut along the
radial (𝑞, 𝑞, 0) direction for profiles is shown in Figure 13.8. For both models the profile changes from a magnetic long-range
order selecting (𝑞, 𝑞, 0)-type points to a closed spiral surface upon increasing temperature, which subsequently smears out giving
way to correlations of a high temperature paramagnet. Figure reproduced from Reference [33].

Figure 13.4. Its sharpness, however, as captured by the full-width-at-half-maximum of the susceptibility along this
line, significantly increases at lower temperatures. At the critical scale Λ0

𝑐 = 0.83(1) |𝐽1 |, we find the surface to split
up into segments around the (𝑞, 𝑞, 0)-type points. The susceptibility along these segments is almost constant, with
only a very weak selection of the aforementioned points. Due to the lack of 𝐽3 couplings, the value of 𝑞 as shown
in Figure 13.4(a) is significantly larger than the experimental value of 𝑞/(2𝜋) = 0.75, as expected form our findings
in the classical model. The quantum model also does not noticeably shift the location of the surface, compared to
its classical location. To quantify the intactness of the spiral surface, we use the ratio of the maximum susceptibility
along the (𝑞, 𝑞, 0) and (𝑞, 0, 0) directions, shown in Figure 13.5. We find it to approach unity, i.e. a fully restored
surface, already at around Λ ≈ 2Λ0

𝑐, which means the spiral spin liquid is rapidly recovered.
Adding 𝐽3

|𝐽1 | = 0.57 has a pronounced effect on the selection of the (𝑞, 𝑞, 0) state. The susceptibility peaks
at q = 2𝜋(0.719, 0.719, 0) visible in Figure 13.3(f) are way more pronounced than for the pure 𝐽1-𝐽2 model, cf.
Figure 13.5, and also shifted slightly towards the Γ point compared to their classical location at q = 2𝜋(0.727, 0.727, 0).
The critical scale in turn is higher at Λ𝐽3

𝑐 = 0.99(1) |𝐽1 |, which means the addition of 𝐽3 interactions reduces the
frustration of the model. Furthermore, the restoration of the spiral surface with increasing temperature happens more
slowly for full model, compared to 𝐽3 = 0 (see Figure 13.5), which is a general trend when gradually varying the
strength of the 𝐽3 coupling, as seen in Figures 13.6 and 13.7.

From the ratios of maximal susceptibilities along the (𝑞, 𝑞, 0) and (𝑞, 0, 0) direction in Figure 13.5, we see, that at
the magnetic ordering transition, the selection of the (𝑞, 𝑞, 0) ordering vector is quite pronounced with a diverging
ratio. This slowly approaches unity as expected for a spiral spin liquid upon increasing temperature. Indeed, we find
a reappearance of the surface at Λ ≈ 3Λ𝐽3

𝑐 in a smooth crossover, as shown in Figure 13.3. The width of this surface,
shown in the inset of Figure 13.5, although increasing with temperature, generally is lowered by the inclusion of 𝐽3,
implying, that the ordering in the system is more concentrated around the spiral surface compared to 𝐽3 = 0, i.e. the
spiral spin liquid is well-defined and "intact" for the full model.
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Figure 13.4: Temperature dependence of the peak position along the (𝑞, 𝑞, 0) radial direction for the Hamiltonian with 𝐽2
|𝐽1 | = 1.64

and (a) 𝐽3 = 0 and (b) 𝐽3 = 0.57|𝐽1 |. Figure reproduced from Reference [33].

Upon increasing temperature, the spiral surface smears out further when approaching the high-temperature para-
magnetic state. The corresponding crossover is reached, when the width of the spiral surface reaches its distance to
the one in the neighboring BZ, i.e. the gap between the two maxima approximately located at 2𝜋(0.75, 0.75, 0) and
2𝜋(1.25, 1.25, 0) is gapped. Then the individual spiral surfaces are no longer discernible and the spiral spin liquid
becomes unstable. For the pure 𝐽1-𝐽2 model we find this to happen at about 𝑇crossover ≈ 3𝑇 𝐽3

c , while the inclusion of
𝐽3 = 0.57|𝐽1 | stabilizes the spiral surfaces to even higher temperature 𝑇crossover ≈ 5𝑇 𝐽3

c . This behavior is illustrated in
Figure 13.8.

In total, we summarize the approximate phase diagram as follows: For 𝑇/𝑇 𝐽3
𝑐 ⩽ 1 the model is long-range spiral

ordered, with the order melting down in the range 1 < 𝑇/𝑇 𝐽3
𝑐 ≲ 3. Although the susceptibility still is concentrated

around the wave-vectors of the long-range order for lower temperature, but the same does not emerge. With increasing
temperature, the system’s susceptibility develops towards the spiral surface, which is established in the temperature
interval 3 ≲ 𝑇/𝑇 𝐽3

𝑐 ≲ 5. In this regime, the spectral weight of the susceptibility is uniformly distributed along the
spiral surfaces, which are clearly discernible. The system, therefore, realizes a stable spiral spin liquid. As the critical
temperature of MnSc2S4 is 𝑇𝑐 = 2 3K, these temperature regimes all lie well below the Curie-Weiss temperature
|ΘCW | = 23K. This means our calculations confirm the existence of a spiral spin liquid in this material in the
temperature range between three and five times the ordering temperature. For high temperatures 𝑇/𝑇 𝐽3

𝑐 ≳ 5 the spiral
surfaces merge, destabilizing the spiral spin liquid towards a high-temperature paramagnetic phase.

To further assess the relevance of both the DFT model and our calculations for MnSc2S4, we compared the calculated
susceptibility at Λ = 1.33Λ𝐽3

𝑐 to the experimentally measured spin-structure factor at the corresponding temperature
𝑇 = 2 9K = 1.33𝑇𝑐 from Reference [244]. To make this comparison meaningful, we have to include the magnetic form
factor of the Mn2+ magnetic moments [255]. This |𝒒 | dependent modulation function is due to the extended orbital
structure of ions, which influences the neutron scattering, in contrast to the assumption of point-like moments for all
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Figure 13.5: Ratio 𝜒(𝑞, 𝑞, 0)/𝜒(𝑞, 0, 0) of the susceptibility maxima along the (𝑞, 𝑞, 0) and (𝑞, 0, 0) over temperature 𝑇 , used
as a measure of the intactness o the spiral spin liquid, with a value of unity indicating an undisturbed spiral surface. Inset:
Temperature dependence of the full-width-at-half-maximum of the susceptibility along the (𝑞, 𝑞, 0) direction in reciprocal space.
Figure reproduced from Reference [33].

presented PFFRG results. It is given by a sum of Gaussians tabulated in Reference [255]. Modulating the calculated
susceptibility profile with this factor dampens the spectral weight with increasing |𝒒 |, as shown in Figure 13.9. As it
becomes apparent there, the experimental neutron scattering profile is well reproduced by the PFFRG data, in particular
the spiral selection, which is pronounced Modulating the calculated susceptibility profile with this factor dampens the
spectral weight with increasing |𝒒 |, as shown in Figure 13.9. As it becomes apparent there, the experimental neutron
scattering profile is well reproduced by the PFFRG data, in particular the spiral selection, which is pronounced at this
temperature, as well as the incipient spiral surface already visible.

13.3 Further considerations

We have shown, that the inclusion of sizeable 𝐽3/|𝐽1 | = 0.57 in the model Hamiltonian for MnSc2S4, as predicted
by DFT [33], is essential to reproduce the experimental neutron scattering data for this material close to the ordering
temperature. Upon increasing the temperature, however, thermal fluctuations restore an approximate spiral spin liquid,
which actually is stabilized by the 𝐽3 coupling, as it is found to reduce the width of the spiral surface, allowing it to
exist over an even larger temperature range than in a pure 𝐽1-𝐽2 model.

The Heisenberg Hamiltonian we consider, being rotationally symmetric, does not determine the spiral plane with
respect to the lattice orientation. Including small anisotropic interactions like dipolar couplings, expected to exist in a
real material [244, 245], may lift this degeneracy. However, they are estimated to have a strength of only a few percent
relative to the NN coupling [244], rendering them only relevant close to the phase transition towards magnetic order.
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In contrast, below the critical point, such couplings may explain the observed ordering process involving multiple
intermediate phases, such as sinusoidal collinear, incommensurate, and helical spin orders [244]. We however cannot
probe for these with PFFRG, as currently we are not able to flow into symmetry broken phases.
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Figure 13.6: Temperature evolution of the spin susceptibility of the diamond model Hamiltonian with fixed ratio 𝐽2/|𝐽1 | = 1.64
plotted in the 𝑞𝑥-𝑞𝑦-plane. Different rows correspond to different ratios of 𝐽3/|𝐽1 |, with 𝐽3/|𝐽1 | = 0.57 being the DFT model
parameter for MnSc2S4. Temperatures are measured with respect to the critical temperature 𝑇 𝐽3

𝑐 of this model. Each panel has
to be rescaled to have susceptibility values lying between 0 and 1 to highlight the relevant features. Figure reproduced from
Reference [33].
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Figure 13.7: Temperature evolution of the spin susceptibility of the diamond model Hamiltonian with fixed ratio 𝐽2/|𝐽1 | = 0.85
plotted in the 𝑞𝑥-𝑞𝑦-plane. Different rows correspond to different ratios of 𝐽3/|𝐽1 |, with 𝐽3/|𝐽1 | = 0 corresponding to the
estimation of model parameters from the radius of the spiral surface for MnSc2S4 performed in Reference [243]. Temperatures
are measured with respect to the critical temperature 𝑇 𝐽3

𝑐 of the DFT model Hamiltonian for this material with 𝐽2/|𝐽1 | = 1.64
and 𝐽3/|𝐽1 | = 0.57. Each panel has to be rescaled to have susceptibility values lying between 0 and 1 to highlight the relevant
features. Figure reproduced from Reference [33].
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1.64 and (a) 𝐽3 = 0 and (b) 𝐽3 = 0.57|𝐽1 |. Figure reproduced from Reference [33].

(a) (b)

Figure 13.9: Comparison of (a) the spin structure factor calculated from PFFRG modulated wit the magnetic structure factor of
Mn2+ taken from Reference [255] and (b) measured structure factor from neutron scattering, reproduced from Reference [244]
in the 𝑞𝑥-𝑞𝑦 plane for 𝑇/𝑇 𝐽3

𝑐 = 1.33 and 𝑇 = 2 9K, respectively. Susceptibilities are calculated in units of 1/|𝐽1 |, experimental
data given in arbitrary units. Figure reproduced from Reference [33].
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Chapter 14

Gearwheel spin liquid in Lu2Mo2O5N2

The Pyrochlore lattice is not only a model system hosting a multitude of ordered, and, most notably, extended quantum
paramagnetic phases, as discussed in length in Chapter 11, but also is realized in a plethora of real materials. Most
prominently, in so-called 𝐵-site spinel systems, whit chemical composition AB2X4, the B ions occupy a Pyrochlore
lattice and can be magnetic, while A is a non-magnetic metal ion and X is either Oxygen or Sulfur [48, 256, 257].
But also other materials feature such a magnetic sublattice [196, 258–265]. However, most of these materials either
display a spin freezing akin to spin-glass or develop long-range magnetic order at low temperatures [134, 265].

A notable exception to this observation is the Molybdenum-based Pyrochlore Heisenberg antiferromagnet Lu2Mo2O5N2.
In this compound, the Mo5+ ions are arranged in a Pyrochlore lattice and carry spin 𝑆 = 1/2 moments, see Figure 14.1(a)
for the lattice structure. Experimentally, it does neither show magnetic long-range order nor any signs of other or-
dering tendencies down to 𝑇∗ ≈ 0 5K [263]. This is in stark contrast to its measured Curie-Weiss temperature of
Θ𝐶𝑊 = −121(1)K [263], which provides evidence for the strongly frustrated nature of the spin interactions in this
material.

Taking into account only leading AF NN interaction, one could place the material in the phase diagram Figure 11.3
discussed in Section 11.2. Ab initio calculations of Reference [134], however, have shown, that one of the two
symmetry-inequivalent NNNN interactions is non-negligible, at 23% of the nearest-neighbor interaction strength.
Basing our investigations on the model Hamiltonian

𝐻̂ = 𝐽1
∑︂
⟨𝑖, 𝑗 ⟩1

𝑺̂𝑖 · 𝑺̂ 𝑗 + 𝐽2
∑︂
⟨𝑖, 𝑗 ⟩2

𝑺̂𝑖 · 𝑺̂ 𝑗 + 𝐽3
∑︂
⟨𝑖, 𝑗 ⟩3

𝑺̂𝑖 · 𝑺̂ 𝑗 + 𝐽𝑑
∑︂
⟨𝑖, 𝑗 ⟩𝑑

𝑺̂𝑖 · 𝑺̂ 𝑗 , (14.1)

of Reference [134], where we distinguish the two inequivalent NNNN couplings 𝐽3, which connects two magnetic
sites with one additional one in between, and 𝐽𝑑 , which crosses an empty Hexagon in the Kagome structure of a [111]
cut of the Pyrochlore lattice, see Figure 14.1(b). The relative coupling strength was determined to be 𝐽2/𝐽1 = 0.008,
𝐽3/𝐽1 = 0.23 and 𝐽𝑑/𝐽1 = −0.078. As 𝐽1 > 0 is AF, so are 𝐽2 and 𝐽3, while the subleading 𝐽𝑑 < 0 is a FM interaction.

To determine the influence of the sizeable longer-range interactions on the state, which would be on 𝐽1-𝐽2 only level
a quantum paramagnet, as shown in Section 11.2, we first carry out a classical investigation of the model Hamiltonian
eq. (14.1), discussing also the influence of possible additional Dzyaloshinsky-Moriya interactions, which are not
diagonal in spin-space. Afterwards, we turn towards the quantum case, employing a PFFRG analysis. The results of
both approaches are summarized in Figure 14.2
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(a) (b)

𝐽3

𝐽𝑑

Figure 14.1: (a) Crystal structure of Lu2Mo2O5N2. (b) Slab of the Pyrochlore lattice formed by the Mo5+ ions, cut in the [111]
plane. The NNNN coupling 𝐽𝑑 crosses an empty hexagon in the Kagome lattice formed in this layer, while 𝐽3 with the same
length has another ion in between. Figure (a) reproduced from Reference [134].

14.1 Classical limit

As the Pyrochlore lattice features a four-site unit cell, the Luttinger-Tisza method will generically only allow to
determine an approximate classical ground state. Therefore, we supplement, as in Section 11.1, our analysis with an
iterative minimization calculation.

Using the equivalence of Luttinger-Tisza calculations to the O(𝑁 → ∞) limit of classical spins discussed in
Section 3.3.3, we first investigate the susceptibility in this limit defined by eq. (3.23). It diverges at a critical Néel
temperature of 𝑇𝑁/𝐽1 ≈ 0.625 at the ordering wave vector 𝒌LT = 2𝜋(1.305, 1.305, 0), as marked by an arrow in
the full susceptibility profile in Figure 14.2(e), and all symmetry-related points in reciprocal space. This signals the
transition from the high-temperature paramagnetic phase into a long-range ordered state.

To confirm the relevance of this approximate susceptibility, we perform an iterative minimization of the classical
energy as outlined in 4, where we can take into account the strong spin length constraint |S𝑖 |2 = 𝑆2 exactly and also
allow for spontaneous breaking of the lattice symmetries.

For the ground state of the classical model, using this technique, we find a noncoplanar triple-𝒌 structure, which is the
superposition of three different spirals. Each of these is controlled by a different incommensurate 𝒌o = (𝑞, 𝑞, 0)-type
wave-vector with 𝑞/2𝜋 = 1.312, which is in good agreement with 𝒌LT.

Examining the configuration closer, we find, that the spin sum on each tetrahedron is not completely zero, but the
energy deviation from the zero spin case is only a few percent of 𝐽1, rendering it energetically insignificant. This
implies, that an approximate equivalence between AF 𝐽3 and FM 𝐽2, along the lines discussed in Section 11.1 still
holds, which explains the similarities of the state found here to the Kawamura states found in the 𝐽1-𝐽2 only model,
see Section 11.1.

The full susceptibility profile from iterative minimization is shown in Figure 14.2(f). As finite-size effects in
conjunction with periodic boundary conditions leads to a splitting of Bragg peaks, the data here is shown after
applying a Gaussian smoothing over the peaks. The line cuts through these peaks, shown in Figure 14.2(g) reveal,
that there is a breaking of the cubic symmetry inherent to this state: The Bragg peaks n the 𝑘𝑥-𝑘𝑦 and 𝑘𝑥-𝑘𝑧 planes
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Figure 14.2: Classical and quantum susceptibilities for the model Hamiltonian eq. (14.1) for Lu2Mo2O5N2. The magnetic
susceptibility at 𝑇 = |Θ𝐶𝑊 |/100 as obtained from PFFRG for 𝑆 = 1/2 is shown in (a) the fullBZ, (b) the [ℎℎ𝑙] plane, where
its maxima form hexagonal clusters and (c) the [ℎ𝑘𝑜] plane, featuring a characteristic gearwheel pattern. The RG flow of the
dominant susceptibility (d) shows no signs of magnetic long-range order. The PFFRG susceptibility can be viewed as an molten
version of the classical one obtained from an (e) O(𝑁 → ∞) and (f) iterative minimization calculation, showing distinct Bragg
peaks. The (g) cuts through (f) reveal a breaking of the cubic lattice symmetry. (h) BZ of the Pyrochlore lattice, a truncated
octahedron, showing the location of high-symmetry points. Figure reproduced from Reference [134].

are of only slightly different height, but roughly twice as high as the one in the 𝑘𝑦-𝑘𝑧 plane. If this feature carries over
to the 𝑆 = 1/2 case, it could give rise to a nematic spin liquid [124, 126].

Moreover, the classical magnetic order we find here, is not invariant under a time-reversal operation 𝑺→− 𝑺, i.e.
this cannot be done by a global SO(3) rotation of the spins. This is characteristic of a chiral spin configuration,
which consequently features a finite scalar spin chirality ∼ S𝑖 · (𝑺 𝑗 × 𝑺𝑘), in this case 𝑖, 𝑗 and 𝑘 denote three arbitrary
positions on any given tetrahedron of the Pyrochlore lattice. This opens up the possibility to carry over to a possible
quantum spin liquid phase for the 𝑆 = 1/2 model [203, 204, 266], which would be the first realization of such in a
three-dimensional insulator.

To round up our classical discussion, we want to study the influence of a symmetry allowed Dzyaloshinsky-Moriya
interaction term of the form D𝑖 𝑗 ·(Ŝ𝑖×Ŝ 𝑗 ) [267] off-diagonal in spin space on top of the Heisenberg model Hamiltonian
eq. (14.1). The so-called Moriya rules [268] determine that there are only two types of this interaction in the Pyrochlore
lattice, dubbed “direct” or “indirect” [269, 270]. The ab initio calculations of Reference [134] determine its strength to
be of the order of ∼ 0.08−0.1𝐽1. However, including such an interaction up to 10% into our minimization calculations,
we do not find a significant alteration of the state determined by the pure Heisenberg model eq. (14.1). More precisely,
we do not find a shift of the Bragg peak positions within the reciprocal space resolution given by the size of the
considered real space lattice and observe only a minor redistribution of weight between the Bragg peaks. This leads
us to the conclusion, that the Heisenberg Hamiltonian given in eq. (14.1) already is an adequate description of the
system.



140 | 14 Gearwheel spin liquid in Lu2Mo2O5N2

14.2 Quantum ground state

To determine the fate of the classical triple-𝒌 ground state in the quantum limit of 𝑆 = 1/2 spins relevant for
Lu2Mo2O5N2, we employ one-loop PFFRG. The RG flow of the maximal susceptibility in reciprocal space, shown in
Figure 14.2(d) shows no sign of divergencies or instabilities down to 𝑇 → 0, signaling the absence of long-range order
in the 𝑆 = 1/2 model, in agreement with measurements on Lu2Mo2O5N2 [263]. The full three-dimensional profile at
the lowest simulated temperature 𝑇 = |Θ𝐶𝑊 |/100 = 1 21K is shown in Figure 14.2(a). At this point, which is two
orders of magnitude below the Curie-Weiss temperature Θ𝐶𝑊 , we find a smeared out spectral weight around the edges
of the Brillouin zone, which features slight enhancement at the W points. This interestingly is akin to the spectral
eight distribution of the spin liquid state of the 𝑆 = 1/2 AF on the 2D Kagome lattice [25, 123, 271]. Moving away
from the boundary of the BZ, we find soft maxima at an incommensurate wave vector 𝒌𝑄 = 2𝜋(1.296, 1.296, 0) and
symmetry-related points, marked by an arrow in Figure 14.2(a). For a better overview over the momentum structure
of the susceptibility, let us turn to the [ℎℎ𝑙] plane, as shown in Figure 14.2(b). Here we find, that the spectral weight
forms hexagonal clusters [272] with the symmetry-related 𝒌𝑄-points as corners, akin to the spectral distribution
experimentally found in ZnCr2O4 [273]. At the same time, the spectral weight at the pinch-points of the NNAF on
the Pyrochlore at 𝒌Pinch = 2𝜋(2, 0, 0) and symmetry-related points is strongly suppressed. Following the classical
analysis of Reference [218], this redistribution in the susceptibility is due to the non-vanishing NNNN couplings in
the model Hamiltonian eq. (14.1) for Lu2Mo2O5N2.

In the [ℎ𝑘0] plane, the diffuse susceptibility profile resembles an arrangement of “gearwheels”, which we dub the
spin liquid state following Reference [274]. Comparing the classical susceptibility profile in Figure 14.2(e) to the
quantum version Figure 14.2(a), one can view the latter as a molten version of the former. Quantum fluctuations
diffuse the dominant Bragg peaks at 𝒌o to form the gearwheel structure, with the susceptibility maxima at 𝒌𝑄 being
remnants of the classical peaks. Also, the whitish “teeth” of the gearwheels visible in Figure 14.2(c) can be viewed as
originating from this melting. The subdominant peaks in the classical model on the hexagonal faces of the Brillouin
zone likewise smear out and form uniform rings.

The PFFRG cannot probe for scalar spin chiralities discussed in Section 14.1 due to the absence of six-particle
vertices in the RG flow, which would be needed to calculate a three-spin quantity. Therefore, to probe for the possibility
of a chiral spin liquid in Lu2Mo2O5N2, a variational Monte Carlo analysis together with a projective symmetry group
classification of chiral spin liquids on the Pyrochlore lattice would be called for [275, 276].
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Chapter 15

Conclusion

In this thesis, we have set out to develop and methodologically as well as pedagogically refine a toolset applicable to
the analysis of quantum magnetism on three-dimensional lattices. In Part I, we have discussed the classical 𝑆 → ∞
limit of spins as an intuitively accessible foundation for the subsequent analysis of quantum spin systems. As an
approximate approach to determining the ground state of such classical micromagnetic models, we have introduced
the Luttinger-Tisza method. We have discussed the cases, in which the method becomes exact and introduced a
connection to the classical large 𝑁 mean-field not drawn in literature before, which allowed us to extract physically
meaningful results even in the realm, where Luttinger-Tisza is only approximately valid. For the determination of the
true ground state of such systems, we have additionally introduced the iterative minimization technique.

In Part II we have introduced our main approach to quantum spin systems, the pseudo-fermion functional renor-
malization group (PFFRG) method. After reviewing the general properties of the pseudo-fermion mapping of spin
operators and its consequences for Green’s functions, we have laid out the derivation of the functional renormalization
group (FRG) for general fermionic models. Combining those two aspects, we arrive at the PFFRG in Chapter 7, which
was originally introduced by Reuther [98, 99]. We have both pedagogically reviewed the conventional parametrization
of the vertex functions tailored towards pseudo-fermion systems and improved upon it by introducing the natural
frequency into the realm of PFFRG. In particular, our scheme possesses well-defined asymptotic behavior at large
frequencies, in contrast to the transfer-frequency formulation in previous works. This fact can be used to improve the
numerical accuracy in an implementation of the PFFRGflow equations.

In Chapter 8 we then introduced our second important methodological development, the introduction of multi-loop
corrections to the PFFRG flow. We give a derivation of the flow equations solely starting from the approximations
applied to the standard one-loop flow, which complements the discussion based on the Parquet approximation found
in literature [153, 155, 156] and outlined the caveats when applying the corrections to PFFRG.

The following Chapter 9 we devoted to sketching the conventional numerical implementation of PFFRG, commented
on its shortcomings and our improvements on that, employing state-of-the-art numerical algorithms. This development
has culminated in the open-source package PFFRGSolver.jl [129, 162], which has been developed in the course
of this thesis in cooperation with Dominik Kiese [139, 162]. It aims at rendering the numerical implementation of
multi-loop PFFRG, as developed in this work, accessible to a broader audience, sparing future researchers the overhead
of implementing a suitable numerical codebase from scratch.

In Part III of this thesis, we have finally applied the techniques developed in the previous chapters to physical model
systems. On the body-centered cubic (BCC) lattice, we establish on analytical grounds the complete magnetic phase
diagram up to third-nearest neighbor Heisenberg interactions. Using PFFRG we found, that quantum fluctuations both
shift phase boundaries compared to the classical model and, most importantly, destabilize the orders found for 𝑆 → ∞
in an extended parametric regime. This quantum paramagnetic phase is a candidate region or quantum spin liquid
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behavior. In the Pyrochlore Heisenberg model, we also established the classical phase diagram for interactions up to
second-nearest neighbors, reproducing and improving upon earlier studies of this model, which, however, only got
published as a preprint [38]. Here, we find a plethora of magnetically ordered states, which all survive upon inclusion
of quantum fluctuations. Additionally, as in the BCC lattice, in a finite region around the classically disordered
nearest-neighbor antiferromagnet, classical order gives way to a quantum paramagnetic regime putatively hosting
spin liquid physics. Most notably, this region is also present for increased spin length 𝑆 = 1. The aforementioned
NNAFwas chosen as a testbed to check the influence of the multi-loop corrections to PFFRGin a disordered ground
state. We show, that in this state lacking magnetic long-range order, loop convergence is achieved already for a
moderate number of loops and discuss the quantitative effects of the corrections. As a second test case, we use the
𝐽1-𝐽3 simple cubic model to also discuss the loop corrections in ordered phases and find, that an ordered is signaled by
a lack of loop convergence rather than a divergence in the flow at higher loop orders, which we explain on the grounds
of the 1/𝑆 expansion nature of the multi-loop corrections. The qualitatively unchanged results upon including higher
loops instill confidence in the one-loop calculations used in literature.

In the final Part IV we turned our focus towards ab initio models for the magnetic interactions in real materials.
We showed, that the spiral spin surface found in the diamond lattice compound MnSc2S4 for temperatures above
the ordering transition can be explained on microscopic grounds employing a Heisenberg model up to third-nearest
neighbor interactions. Using PFFRG we extracted the temperature evolution of the spiral surface and demonstrate
excellent agreement between the calculated structure factor and neutron scattering data. The second material we
considered, Lu2Mo2O5N2, features a magnetic Pyrochlore lattice and is known to not exhibit order down to low
temperatures. From PFFRG we find a spin-liquid structure factor, which resembles a gearwheel. We showed, that
this pattern can be viewed as a melted version of the classical parent order for the considered model up to third-nearest
neighbor interactions.

In summary, we have demonstrated, that PFFRG is capable of determining the ground-state properties of three-
dimensional quantum magnets on a variety of lattice geometries. We have improved the method by alleviating
some of its inherent approximations and provided a state-of-the-art open-source implementation of the corresponding
numerical implementation, which recently has been proven to be on par with independent implementations [163].

Outlook

Despite these methodological advances already implemented in this thesis, there still is room for improvement of the
method. On a purely numerical front, there is potential for more efficient algorithms to be employed. In the light of
our recent benchmark calculations comparing differential equation solvers in the context of itinerant fermion FRG in
Reference [165], showing potential for significant run-time gain, a similar study for PFFRG is called for. Additionally,
the adaptive frequency integration, although a major improvement over previous implementations, could be replaced
by a more efficient algorithm based on the known analytical structure of the interpolating functions making up the
integrands. We sketch this idea in appendix D, but leave its implementation as a future endeavor.

On an analytical level, the implementation of PFFRG could benefit from a reformulation akin to the truncated unity
FRG for itinerant fermions [277]. In this context, the momentum dependence of the vertex is expressed in terms of
form factors connected to the lattice symmetries. It turns out, that convergence in this expansion is rapid, such that
only a low number of form factors has to be kept, dramatically decreasing the numerical effort [90]. Although there
are no inherent lattice symmetries in frequency space, an expansion of these dependencies in terms of suitable basis
functions is still rapidly converging, promising a numerical speedup [278]. We propose an expansion as outlined in
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appendix E, relying on polynomials suitably mapped to reproduce the right asymptotic behavior. Due to its numerical
advantages, we propose Chebyshev polynomials as a suitable choice for the basis functions.

Another route that is called for is to access the real frequency axes in the susceptibilities. This would immediately
allow for comparisons with inelastic neutron scattering data at finite energy transfer corresponding to the frequency 𝜔
of the susceptibility. While a numerical analytic continuation of the Matsubara-frequency resolved susceptibility data
is in principle possible [143], such a procedure is known to be numerically unstable [144]. As an alternative approach,
reformulation of the whole PFFRG formalism in terms of the Keldysh technique [279] would allow immediate access
to real frequencies. Although this approach has been designed with non-equilibrium processes in mind, taking the
thermal equilibrium limit is possible. An implementation in the context of low-dimensional itinerant fermions has
been demonstrated [280–282], but it remains to be seen, if an implementation for PFFRG will be feasible in a suitable
high frequency resolution. First steps have recently been taken in that direction in Reference [283].

Broadening the scope, the lately introduced pseudo-Majorana FRG for spin systems [284, 285] offers a comple-
mentary approach to PFFRG, as it is applicable at finite temperatures. Our multi-loop formalism developed in this
thesis is in principle also applicable to this approach, allowing for a more accurate determination of finite-temperature
properties of spin systems.

Application-wise, there is still a plethora of open questions to be tackled in the realm of frustrated magnetism. As
one example, there is the physics of the Pyrochlore lattice for a line in parameter space, where due to macroscopic
degeneracies the classical model does not order at zero temperature, leading to half-moon patterns in the structure
factor [286], which is possibly relevant for the spin-liquid candidate NaCNi2F7 [235]. To fully explore this problem, a
generalization of the multi-loop implementation to include off-diagonal interactions in spin-space is probably needed.
Although we have derived all the necessary ingredients to do so in this thesis, mainly the symmetries of the vertex
functions away from the Heisenberg limit, an implementation still is lacking.

A second model system to be investigated is the XXZ-model on the Pyrochlore lattice, again calling for implemen-
tation of off-diagonal interactions. For this model, phase diagrams from approximate methods show a rich variety of
exotic phases, such as a U(1) spin liquid, nematic, and spin ice phases [287]. A PFFRG perspective on this problem
would introduce an unbiased view on the whole phase diagram from a singular approach.

An extension of the PFFRGSolver.jl to allow for these more general models will open up the way to exploring
more phase diagrams and real materials realizing quantum magnetism in three dimensions.
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Appendix A

Flow equations in conventional parametrization

A.1 Selfenergy flow
d

dΛ
𝛾Λ (𝜔) =

∫
d𝜔′

{︃
3Γs,𝑖1𝑖1 (𝜔 + 𝜔′, 𝜔 − 𝜔′, 0)

+ Γd,𝑖1𝑖1 (𝜔 + 𝜔′, 𝜔 − 𝜔′, 0)

−
∑︂
𝑖2

2Γd,𝑖1𝑖2 (𝜔 + 𝜔′, 0, 𝜔 − 𝜔′)
}︃ 𝜕
𝜕Λ𝑅(𝜔′,Λ)
𝜔′ + 𝛾(𝜔′)

(A.1)

A.2 Spin vertex flow

A.2.1 s-channel

𝑔̇s
s𝑖1𝑖2 (𝑠, 𝑡, 𝑢) =

1
2𝜋

∫
d𝜔

{︃
−2Γs,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔, 𝑠 + 𝑡 + 𝑢

2
+ 𝜔

)︂
Γs,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 − 𝑢

2
+ 𝜔, 𝑠 − 𝑡 + 𝑢

2
+ 𝜔

)︂
+Γs,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔, 𝑠 + 𝑡 + 𝑢

2
+ 𝜔

)︂
Γd,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 − 𝑢

2
+ 𝜔, 𝑠 − 𝑡 + 𝑢

2
+ 𝜔

)︂
+Γd,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔, 𝑠 + 𝑡 + 𝑢

2
+ 𝜔

)︂
Γs,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 − 𝑢

2
+ 𝜔, 𝑠 − 𝑡 + 𝑢

2
+ 𝜔

)︂
−2Γs,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 + 𝑢

2
+ 𝜔,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔

)︂
Γs,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 + 𝑢

2
− 𝜔,− 𝑠 + 𝑡 − 𝑢

2
− 𝜔

)︂
+Γs,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 + 𝑢

2
+ 𝜔,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔

)︂
Γd,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 + 𝑢

2
− 𝜔,− 𝑠 + 𝑡 − 𝑢

2
− 𝜔

)︂
+Γd,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 + 𝑢

2
+ 𝜔,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔

)︂
Γs,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 + 𝑢

2
− 𝜔,− 𝑠 + 𝑡 − 𝑢

2
− 𝜔

)︂
}︃
𝑃(𝜔, 𝑠 + 𝜔)

(A.2)
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A.2.2 t-channel

𝑔̇t
s𝑖1𝑖2 (𝑠, 𝑡, 𝑢) =

1
2𝜋

∫
d𝜔

{︃
2
∑︂
𝑗

Γs,𝑖1 𝑗

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡, 𝑠 − 𝑡 + 𝑢
2

− 𝜔
)︂
Γs, 𝑗𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔, 𝑡,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔
)︂

2
∑︂
𝑗

Γs,𝑖1 𝑗

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔
)︂
Γs, 𝑗𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔, 𝑡,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔
)︂

+Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡, 𝑠 − 𝑡 + 𝑢
2

− 𝜔
)︂
Γs,𝑖2𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑡
)︂

−Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡, 𝑠 − 𝑡 + 𝑢
2

− 𝜔
)︂
Γd,𝑖2𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑡
)︂

+Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔
)︂
Γs,𝑖2𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑡
)︂

−Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔
)︂
Γd,𝑖2𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑡
)︂

+Γs,𝑖1𝑖1

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔, 𝑡,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔
)︂

−Γd,𝑖1𝑖1

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔, 𝑡,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔
)︂

+Γs,𝑖1𝑖1

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔, 𝑡,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔
)︂

−Γd,𝑖1𝑖1

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔, 𝑡,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔
)︂

}︃
𝑃(𝜔, 𝑡 + 𝜔)

(A.3)

A.2.3 u-channel

𝑔̇u
s𝑖1𝑖2 (𝑠, 𝑡, 𝑢) =

1
2𝜋

∫
d𝜔

{︃
−2Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑢
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑢
)︂

−Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑢
)︂
Γd,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑢
)︂

−Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑢
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑢
)︂

−2Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑢
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑢
)︂

−Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑢
)︂
Γd,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑢
)︂

−Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑢
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑢
)︂

}︃
𝑃(𝜔, 𝑢 + 𝜔)

(A.4)
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A.3 Density vertex flow

A.3.1 s-channel

𝑔̇s
d𝑖1𝑖2 (𝑠, 𝑡, 𝑢) =

1
2𝜋

∫
d𝜔

{︃
3Γs,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔, 𝑠 + 𝑡 + 𝑢

2
+ 𝜔

)︂
Γs,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 − 𝑢

2
+ 𝜔, 𝑠 − 𝑡 + 𝑢

2
+ 𝜔

)︂
+Γd,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔, 𝑠 + 𝑡 + 𝑢

2
+ 𝜔

)︂
Γd,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 − 𝑢

2
+ 𝜔, 𝑠 − 𝑡 + 𝑢

2
+ 𝜔

)︂
3Γs,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 + 𝑢

2
+ 𝜔,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔

)︂
Γs,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 + 𝑢

2
− 𝜔,− 𝑠 + 𝑡 − 𝑢

2
− 𝜔

)︂
+Γd,𝑖1𝑖2

(︂
𝑠,
𝑠 + 𝑡 + 𝑢

2
+ 𝜔,− 𝑠 − 𝑡 − 𝑢

2
− 𝜔

)︂
Γd,𝑖1𝑖2

(︂
𝑠,− 𝑠 − 𝑡 + 𝑢

2
− 𝜔,− 𝑠 + 𝑡 − 𝑢

2
− 𝜔

)︂
}︃
𝑃(𝜔, 𝑠 + 𝜔)

(A.5)

A.3.2 t-channel

𝑔̇t
d𝑖1𝑖2 (𝑠, 𝑡, 𝑢) =

1
2𝜋

∫
d𝜔

{︃
2
∑︂
𝑗

Γd,𝑖1 𝑗

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡, 𝑠 − 𝑡 + 𝑢
2

− 𝜔
)︂
Γd, 𝑗𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔, 𝑡,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔
)︂

+2
∑︂
𝑗

Γd,𝑖1 𝑗

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔
)︂
Γd, 𝑗𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔, 𝑡,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔
)︂

−3Γd,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡, 𝑠 − 𝑡 + 𝑢
2

− 𝜔
)︂
Γs,𝑖2𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑡
)︂

−Γd,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡, 𝑠 − 𝑡 + 𝑢
2

− 𝜔
)︂
Γd,𝑖2𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑡
)︂

−3Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔
)︂
Γs,𝑖2𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑡
)︂

−Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔
)︂
Γd,𝑖2𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑡
)︂

−3Γs,𝑖1𝑖1

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔, 𝑡,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔
)︂

−Γd,𝑖1𝑖1

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

+ 𝜔, 𝑡,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔
)︂

−3Γd,𝑖1𝑖1

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔, 𝑡,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔
)︂

−Γd,𝑖1𝑖1

(︂ 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑡
)︂
Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔, 𝑡,− 𝑠 + 𝑡 − 𝑢
2

− 𝜔
)︂

}︃
𝑃(𝜔, 𝑡 + 𝜔)

(A.6)
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A.3.3 u-channel

𝑔̇u
s𝑖1𝑖2 (𝑠, 𝑡, 𝑢) =

1
2𝜋

∫
d𝜔

{︃
−3Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑢
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑢
)︂

−Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 − 𝑢
2

− 𝜔,− 𝑠 − 𝑡 + 𝑢
2

− 𝜔, 𝑢
)︂
Γd,𝑖1𝑖2

(︂ 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑢
)︂

−3Γs,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑢
)︂
Γs,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑢
)︂

−Γd,𝑖1𝑖2

(︂ 𝑠 − 𝑡 + 𝑢
2

+ 𝜔,− 𝑠 − 𝑡 − 𝑢
2

+ 𝜔, 𝑢
)︂
Γd,𝑖1𝑖2

(︂ 𝑠 + 𝑡 + 𝑢
2

+ 𝜔, 𝑠 + 𝑡 − 𝑢
2

− 𝜔, 𝑢
)︂

}︃
𝑃(𝜔, 𝑢 + 𝜔)

(A.7)

A.4 Susceptibility

𝜒𝑖1𝑖2 (𝜈) = − 1
4𝜋

∫
d𝜔𝐺 (𝜔)𝐺 (𝜔 + 𝜈)

− 1
8𝜋2

∫
d𝜔

∫
d𝜔′𝐺 (𝜔)𝐺 (𝜔 + 𝜈)𝐺 (𝜔′)𝐺 (𝜔′ + 𝜈)

(2Γs,𝑖1𝑖2 (𝜔 + 𝜔′ + 𝜈, 𝜈, 𝜔 − 𝜔′)
+ Γs,𝑖1𝑖2 (𝜔 + 𝜔′ + 𝜈, 𝜔 − 𝜔′, 𝜈) 𝛿𝑖1𝑖2
− Γd,𝑖1𝑖2 (𝜔 + 𝜔′ + 𝜈, 𝜔 − 𝜔′, 𝜈) 𝛿𝑖1𝑖2 )

(A.8)
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Appendix B

Flow equations in asymptotic parametrization

B.1 Selfenergy flow

d
dΛ

𝛾(𝜔) =
∫

d𝜔′
{︃
3Γs𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜔 + 𝜔′ 𝜈𝑠 = 𝜔′/2 − 𝜔/2 𝜈′𝑠 = 𝜔′/2 − 𝜔/2

𝑡 = 𝜔 − 𝜔′ 𝜈𝑡 = 𝜔′/2 + 𝜔/2 𝜈′𝑡 = 𝜔
′/2 + 𝜔/2

𝑢 = 0 𝜈𝑢 = 𝜔′ 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
+ Γd𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜔 + 𝜔′ 𝜈𝑠 = 𝜔′/2 − 𝜔/2 𝜈′𝑠 = 𝜔′/2 − 𝜔/2

𝑡 = 𝜔 − 𝜔′ 𝜈𝑡 = 𝜔′/2 + 𝜔/2 𝜈′𝑡 = 𝜔
′/2 + 𝜔/2

𝑢 = 0 𝜈𝑢 = 𝜔′ 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
−

∑︂
𝑖2

2Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜔 + 𝜔′ 𝜈𝑠 = 𝜔/2 − 𝜔′/2 𝜈′𝑠 = 𝜔′/2 − 𝜔/2

𝑡 = 0 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜔
′

𝑢 = 𝜔 − 𝜔′ 𝜈𝑢 = 𝜔/2 + 𝜔′/2 𝜈′𝑢 = 𝜔/2 + 𝜔′/2

⎞⎟⎟⎟⎟⎟⎠
}︃ 𝜕
𝜕Λ𝑅(𝜔′,Λ)
𝜔′ + 𝛾(𝜔′)

(B.1)
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B.2 Spinvertex Flow

B.2.1 s-channel

𝑔̇s
s𝑖1𝑖2

(︁
𝑠, 𝜈𝑠 , 𝜈

′
𝑠

)︁
=

1
2𝜋

∫
d𝜔

{︃

−2Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜈𝑠 𝜈′𝑠 = −𝜔

𝑡 = 𝜔 − 𝜈𝑠 𝜈𝑡 = (𝑠 + 𝜔 + 𝜈𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜈𝑠 − 𝜔)/2

𝑢 = 𝜔 + 𝜈𝑠 𝜈𝑢 = (𝑠 + 𝜈𝑠 − 𝑤)/2 𝜈′𝑢 = (𝑠 − 𝜈𝑠 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜔 𝜈′𝑠 = 𝜈′𝑠

𝑡 = −𝜈′𝑠 − 𝜔 𝜈𝑡 = (𝑠 + 𝜔 − 𝜈′𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜔 + 𝜈′𝑠)/2

𝑢 = −𝜈′𝑠 + 𝜔 𝜈𝑢 = (𝑠 + 𝑤 + 𝜈′𝑠)/2 𝜈′𝑢 = (𝑠 − 𝜔 − 𝜈′𝑠)/2

⎞⎟⎟⎟⎟⎟⎠
+Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜈𝑠 𝜈′𝑠 = −𝜔

𝑡 = 𝜔 − 𝜈𝑠 𝜈𝑡 = (𝑠 + 𝜔 + 𝜈𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜈𝑠 − 𝜔)/2

𝑢 = 𝜔 + 𝜈𝑠 𝜈𝑢 = (𝑠 + 𝜈𝑠 − 𝑤)/2 𝜈′𝑢 = (𝑠 − 𝜈𝑠 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜔 𝜈′𝑠 = 𝜈′𝑠

𝑡 = −𝜈′𝑠 − 𝜔 𝜈𝑡 = (𝑠 + 𝜔 − 𝜈′𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜔 + 𝜈′𝑠)/2

𝑢 = −𝜈′𝑠 + 𝜔 𝜈𝑢 = (𝑠 + 𝑤 + 𝜈′𝑠)/2 𝜈′𝑢 = (𝑠 − 𝜔 − 𝜈′𝑠)/2

⎞⎟⎟⎟⎟⎟⎠
+Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜈𝑠 𝜈′𝑠 = −𝜔

𝑡 = 𝜔 − 𝜈𝑠 𝜈𝑡 = (𝑠 + 𝜔 + 𝜈𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜈𝑠 − 𝜔)/2

𝑢 = 𝜔 + 𝜈𝑠 𝜈𝑢 = (𝑠 + 𝜈𝑠 − 𝑤)/2 𝜈′𝑢 = (𝑠 − 𝜈𝑠 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜔 𝜈′𝑠 = 𝜈′𝑠

𝑡 = −𝜈′𝑠 − 𝜔 𝜈𝑡 = (𝑠 + 𝜔 − 𝜈′𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜔 + 𝜈′𝑠)/2

𝑢 = −𝜈′𝑠 + 𝜔 𝜈𝑢 = (𝑠 + 𝑤 + 𝜈′𝑠)/2 𝜈′𝑢 = (𝑠 − 𝜔 − 𝜈′𝑠)/2

⎞⎟⎟⎟⎟⎟⎠}︃ (︂
𝑃( 𝑠

2
+ 𝜔, 𝑠

2
− 𝜔) + 𝑃( 𝑠

2
− 𝜔, 𝑠

2
+ 𝜔)

)︂

(B.2)

B.2.2 t-channel

𝑔̇t
s𝑖1𝑖2

(︁
𝑡, 𝜈𝑡 , 𝜈

′
𝑡

)︁
=

1
2𝜋

∫
d𝜔

{︃
− 2

∑︂
𝑗

Γs𝑖1 𝑗

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝜈𝑡 − 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜔 − 𝜈𝑡 − 𝑡)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜈𝑡 𝜈′𝑡 = 𝜔

𝑢 = −𝜔 + 𝜈𝑡 𝜈𝑢 = (𝑤 + 𝜈𝑡 − 𝑡)/2 𝜈′𝑢 = (𝑤 + 𝑡 + 𝜈𝑡 )/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γs 𝑗𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (𝜔 − 𝑡 − 𝜈′𝑡 )/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜈
′
𝑡

𝑢 = −𝜈′𝑡 + 𝜔 𝜈𝑢 = (𝜈′𝑡 − 𝑡 + 𝜔)/2 𝜈′𝑢 = (𝑡 + 𝜔 + 𝜈′𝑡 )/2)

⎞⎟⎟⎟⎟⎟⎠
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−Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝜈𝑡 − 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝑡 𝜈𝑡 = 𝜈𝑡 𝜈′𝑡 = 𝜔

𝑢 = −𝜔 + 𝜈𝑡 𝜈𝑢 = (𝜔 − 𝑡 + 𝜈𝑡 )/2 𝜈′𝑢 = (𝑡 + 𝜈𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖2𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (𝜈′𝑡 + 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑤 − 𝜈′𝑡 𝜈𝑡 = (𝜈′𝑡 + 𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈′𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜈′𝑡 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
+Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝜈𝑡 − 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝑡 𝜈𝑡 = 𝜈𝑡 𝜈′𝑡 = 𝜔

𝑢 = −𝜔 + 𝜈𝑡 𝜈𝑢 = (𝜔 − 𝑡 + 𝜈𝑡 )/2 𝜈′𝑢 = (𝑡 + 𝜈𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖2𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (𝜈′𝑡 + 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑤 − 𝜈′𝑡 𝜈𝑡 = (𝜈′𝑡 + 𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈′𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜈′𝑡 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
(B.3)

−Γs𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝑡 + 𝜔 − 𝜈𝑡 )/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝜈𝑡 − 𝜔 𝜈𝑡 = (𝑡 + 𝜈𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈𝑡

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (−𝑡 − 𝜈′𝑡 + 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜈
′
𝑡

𝑢 = −𝜈′𝑡 + 𝜔 𝜈𝑢 = (𝜈′𝑡 − 𝑡 + 𝜔)/2 𝜈′𝑢 = (𝜈′𝑡 + 𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
+Γd𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝑡 + 𝜔 − 𝜈𝑡 )/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝜈𝑡 − 𝜔 𝜈𝑡 = (𝑡 + 𝜈𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈𝑡

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (−𝑡 − 𝜈′𝑡 + 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜈
′
𝑡

𝑢 = −𝜈′𝑡 + 𝜔 𝜈𝑢 = (𝜈′𝑡 − 𝑡 + 𝜔)/2 𝜈′𝑢 = (𝜈′𝑡 + 𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠}︃ (︂
𝑃(𝜔 + 𝑡

2
, 𝜔 − 𝑡

2
) + 𝑃(𝜔 + 𝑡

2
, 𝜔 − 𝑡

2
)
)︂
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B.2.3 u-channel

𝑔̇u
s𝑖1𝑖2

(︁
𝑢, 𝜈𝑢, 𝜈

′
𝑢

)︁
=

1
2𝜋

∫
d𝜔

{︃

2Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑢 + 𝜔 𝜈𝑠 = (𝜈𝑢 + 𝑢 − 𝜔)/2 𝜈′𝑠 = (−𝑢 + 𝜈𝑢 − 𝜔)/2

𝑡 = 𝜔 − 𝜈𝑢 𝜈𝑡 = (𝜔 + 𝑢 + 𝜈𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜈𝑢 + 𝜔)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜈𝑢 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑢 + 𝜔 𝜈𝑠 = (𝜔 + 𝑢 − 𝜈′𝑢)/2 𝜈′𝑠 = (−𝑢 + 𝜔 − 𝜈′𝑢)/2

𝑡 = 𝜈′𝑢 − 𝜔 𝜈𝑡 = (𝜈′𝑢 + 𝜔 + 𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜔 + 𝜈′𝑢)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈′𝑢

⎞⎟⎟⎟⎟⎟⎠
+Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑢 + 𝜔 𝜈𝑠 = (𝜈𝑢 + 𝑢 − 𝜔)/2 𝜈′𝑠 = (−𝑢 + 𝜈𝑢 − 𝜔)/2

𝑡 = 𝜔 − 𝜈𝑢 𝜈𝑡 = (𝜔 + 𝑢 + 𝜈𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜈𝑢 + 𝜔)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜈𝑢 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑢 + 𝜔 𝜈𝑠 = (𝜔 + 𝑢 − 𝜈′𝑢)/2 𝜈′𝑠 = (−𝑢 + 𝜔 − 𝜈′𝑢)/2

𝑡 = 𝜈′𝑢 − 𝜔 𝜈𝑡 = (𝜈′𝑢 + 𝜔 + 𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜔 + 𝜈′𝑢)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈′𝑢

⎞⎟⎟⎟⎟⎟⎠
+Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑢 + 𝜔 𝜈𝑠 = (𝜈𝑢 + 𝑢 − 𝜔)/2 𝜈′𝑠 = (−𝑢 + 𝜈𝑢 − 𝜔)/2

𝑡 = 𝜔 − 𝜈𝑢 𝜈𝑡 = (𝜔 + 𝑢 + 𝜈𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜈𝑢 + 𝜔)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜈𝑢 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑢 + 𝜔 𝜈𝑠 = (𝜔 + 𝑢 − 𝜈′𝑢)/2 𝜈′𝑠 = (−𝑢 + 𝜔 − 𝜈′𝑢)/2

𝑡 = 𝜈′𝑢 − 𝜔 𝜈𝑡 = (𝜈′𝑢 + 𝜔 + 𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜔 + 𝜈′𝑢)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈′𝑢

⎞⎟⎟⎟⎟⎟⎠}︃ (︂
𝑃(𝜔 − 𝑢

2
𝑢, 𝜔 + 𝑢

2
) + 𝑃(𝜔 + 𝑢

2
, 𝜔 − 𝑢

2
)
)︂

(B.4)
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B

B.3 Densityvertex Flow

B.3.1 s-channel

𝑔̇s
d𝑖1𝑖2

(︁
𝑠, 𝜈𝑠 , 𝜈

′
𝑠

)︁
=

1
2𝜋

∫
d𝜔

{︃

3Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜈𝑠 𝜈′𝑠 = −𝜔

𝑡 = 𝜔 − 𝜈𝑠 𝜈𝑡 = (𝑠 + 𝜔 + 𝜈𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜈𝑠 − 𝜔)/2

𝑢 = 𝜔 + 𝜈𝑠 𝜈𝑢 = (𝑠 + 𝜈𝑠 − 𝑤)/2 𝜈′𝑢 = (𝑠 − 𝜈𝑠 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜔 𝜈′𝑠 = 𝜈′𝑠

𝑡 = −𝜈′𝑠 − 𝜔 𝜈𝑡 = (𝑠 + 𝜔 − 𝜈′𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜔 + 𝜈′𝑠)/2

𝑢 = −𝜈′𝑠 + 𝜔 𝜈𝑢 = (𝑠 + 𝑤 + 𝜈′𝑠)/2 𝜈′𝑢 = (𝑠 − 𝜔 − 𝜈′𝑠)/2

⎞⎟⎟⎟⎟⎟⎠
+Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜈𝑠 𝜈′𝑠 = −𝜔

𝑡 = 𝜔 − 𝜈𝑠 𝜈𝑡 = (𝑠 + 𝜔 + 𝜈𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜈𝑠 − 𝜔)/2

𝑢 = 𝜔 + 𝜈𝑠 𝜈𝑢 = (𝑠 + 𝜈𝑠 − 𝑤)/2 𝜈′𝑢 = (𝑠 − 𝜈𝑠 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝑠 𝜈𝑠 = 𝜔 𝜈′𝑠 = 𝜈′𝑠

𝑡 = −𝜈′𝑠 − 𝜔 𝜈𝑡 = (𝑠 + 𝜔 − 𝜈′𝑠)/2 𝜈′𝑡 = (𝑠 − 𝜔 + 𝜈′𝑠)/2

𝑢 = −𝜈′𝑠 + 𝜔 𝜈𝑢 = (𝑠 + 𝑤 + 𝜈′𝑠)/2 𝜈′𝑢 = (𝑠 − 𝜔 − 𝜈′𝑠)/2

⎞⎟⎟⎟⎟⎟⎠}︃ (︂
𝑃( 𝑠

2
+ 𝜔, 𝑠

2
− 𝜔) + 𝑃( 𝑠

2
− 𝜔, 𝑠

2
+ 𝜔)

)︂

(B.5)

B.3.2 t-channel

𝑔̇t
d𝑖1𝑖2

(︁
𝑡, 𝜈𝑡 , 𝜈

′
𝑡

)︁
=

1
2𝜋

∫
d𝜔

∑︂
𝑗

{︃
− 2Γd𝑖1 𝑗

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝜈𝑡 − 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜔 − 𝜈𝑡 − 𝑡)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜈𝑡 𝜈′𝑡 = 𝜔

𝑢 = −𝜔 + 𝜈𝑡 𝜈𝑢 = (𝑤 + 𝜈𝑡 − 𝑡)/2 𝜈′𝑢 = (𝑤 + 𝑡 + 𝜈𝑡 )/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γd 𝑗𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (𝜔 − 𝑡 − 𝜈′𝑡 )/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜈
′
𝑡

𝑢 = −𝜈′𝑡 + 𝜔 𝜈𝑢 = (𝜈′𝑡 − 𝑡 + 𝜔)/2 𝜈′𝑢 = (𝑡 + 𝜔 + 𝜈′𝑡 )/2

⎞⎟⎟⎟⎟⎟⎠
+3Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝜈𝑡 − 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝑡 𝜈𝑡 = 𝜈𝑡 𝜈′𝑡 = 𝜔

𝑢 = −𝜔 + 𝜈𝑡 𝜈𝑢 = (𝜔 − 𝑡 + 𝜈𝑡 )/2 𝜈′𝑢 = (𝑡 + 𝜈𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖2𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (𝜈′𝑡 + 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑤 − 𝜈′𝑡 𝜈𝑡 = (𝜈′𝑡 + 𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈′𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜈′𝑡 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
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+Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝜈𝑡 − 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝑡 𝜈𝑡 = 𝜈𝑡 𝜈′𝑡 = 𝜔

𝑢 = −𝜔 + 𝜈𝑡 𝜈𝑢 = (𝜔 − 𝑡 + 𝜈𝑡 )/2 𝜈′𝑢 = (𝑡 + 𝜈𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖2𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (𝜈′𝑡 + 𝑡 − 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑤 − 𝜈′𝑡 𝜈𝑡 = (𝜈′𝑡 + 𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈′𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜈′𝑡 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
(B.6)

+3Γs𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝑡 + 𝜔 − 𝜈𝑡 )/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝜈𝑡 − 𝜔 𝜈𝑡 = (𝑡 + 𝜈𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈𝑡

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (−𝑡 − 𝜈′𝑡 + 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜈
′
𝑡

𝑢 = −𝜈′𝑡 + 𝜔 𝜈𝑢 = (𝜈′𝑡 − 𝑡 + 𝜔)/2 𝜈′𝑢 = (𝜈′𝑡 + 𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠
+Γd𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑡 + 𝜔 𝜈𝑠 = (𝑡 + 𝜔 − 𝜈𝑡 )/2 𝜈′𝑠 = (𝜔 − 𝑡 − 𝜈𝑡 )/2

𝑡 = 𝜈𝑡 − 𝜔 𝜈𝑡 = (𝑡 + 𝜈𝑡 + 𝜔)/2 𝜈′𝑡 = (𝜈𝑡 − 𝑡 + 𝜔)/2

𝑢 = 𝑡 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈𝑡

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑡 + 𝜔 𝜈𝑠 = (−𝑡 − 𝜈′𝑡 + 𝜔)/2 𝜈′𝑠 = (𝜈′𝑡 − 𝑡 − 𝜔)/2

𝑡 = 𝑡 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜈
′
𝑡

𝑢 = −𝜈′𝑡 + 𝜔 𝜈𝑢 = (𝜈′𝑡 − 𝑡 + 𝜔)/2 𝜈′𝑢 = (𝜈′𝑡 + 𝑡 + 𝜔)/2

⎞⎟⎟⎟⎟⎟⎠}︃ (︂
𝑃(𝜔 + 𝑡

2
, 𝜔 − 𝑡

2
) + 𝑃(𝜔 + 𝑡

2
, 𝜔 − 𝑡

2
)
)︂
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B

B.3.3 u-channel

𝑔̇u
s𝑖1𝑖2 (𝑠, 𝑡, 𝑢)

(︁
𝑢, 𝜈𝑢, 𝜈

′
𝑢

)︁
=

1
2𝜋

∫
d𝜔

{︃

3Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑢 + 𝜔 𝜈𝑠 = (𝜈𝑢 + 𝑢 − 𝜔)/2 𝜈′𝑠 = (−𝑢 + 𝜈𝑢 − 𝜔)/2

𝑡 = 𝜔 − 𝜈𝑢 𝜈𝑡 = (𝜔 + 𝑢 + 𝜈𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜈𝑢 + 𝜔)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜈𝑢 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
×

× Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑢 + 𝜔 𝜈𝑠 = (𝜔 + 𝑢 − 𝜈′𝑢)/2 𝜈′𝑠 = (−𝑢 + 𝜔 − 𝜈′𝑢)/2

𝑡 = 𝜈′𝑢 − 𝜔 𝜈𝑡 = (𝜈′𝑢 + 𝜔 + 𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜔 + 𝜈′𝑢)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈′𝑢

⎞⎟⎟⎟⎟⎟⎠
+Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈𝑢 + 𝜔 𝜈𝑠 = (𝜈𝑢 + 𝑢 − 𝜔)/2 𝜈′𝑠 = (−𝑢 + 𝜈𝑢 − 𝜔)/2

𝑡 = 𝜔 − 𝜈𝑢 𝜈𝑡 = (𝜔 + 𝑢 + 𝜈𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜈𝑢 + 𝜔)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜈𝑢 𝜈′𝑢 = 𝜔

⎞⎟⎟⎟⎟⎟⎠
×

× Γd𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜈′𝑢 + 𝜔 𝜈𝑠 = (𝜔 + 𝑢 − 𝜈′𝑢)/2 𝜈′𝑠 = (−𝑢 + 𝜔 − 𝜈′𝑢)/2

𝑡 = 𝜈′𝑢 − 𝜔 𝜈𝑡 = (𝜈′𝑢 + 𝜔 + 𝑢)/2 𝜈′𝑡 = (−𝑢 + 𝜔 + 𝜈′𝑢)/2

𝑢 = 𝑢 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜈′𝑢

⎞⎟⎟⎟⎟⎟⎠}︃ (︂
𝑃(𝜔 − 𝑢

2
𝑢, 𝜔 + 𝑢

2
) + 𝑃(𝜔 + 𝑢

2
, 𝜔 − 𝑢

2
)
)︂

(B.7)

B.4 Susceptibility

𝜒𝑖1 𝑗2 (𝜈) = − 1
4𝜋

∫
d𝜔𝐺 (𝜔 − 𝜈/2)𝐺 (𝜔 + 𝜈/2)

− 1
8𝜋2

∫
d𝜔

∫
d𝜔′𝐺 (𝜔 − 𝜈/2)𝐺 (𝜔 + 𝜈/2)𝐺 (𝜔′ − 𝜈/2)𝐺 (𝜔′ + 𝜈/2)

(2Γs𝑖1𝑖2

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜔 + 𝜔′ 𝜈𝑠 = (𝜔 − 𝜔′ − 𝜈)/2 𝜈′𝑠 = (𝜔′ − 𝜔 − 𝜈)/2

𝑡 = 𝜈 𝜈𝑡 = 𝜔 𝜈′𝑡 = 𝜔
′

𝑢 = 𝜔′ − 𝜔 𝜈𝑢 = (𝜔 + 𝜔′ − 𝜈)/2 𝜈′𝑢 = (𝜔 + 𝜔′ + 𝜈)/2

⎞⎟⎟⎟⎟⎟⎠
+ Γs𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜔 + 𝜔′ 𝜈𝑠 = (𝜔 − 𝜔′ − 𝜈)/2 𝜈′𝑠 = (𝜔 − 𝜔′ − 𝜈)/2

𝑡 = 𝜔′ − 𝜔 𝜈𝑡 = (𝜔 + 𝜔′ − 𝜈)/2 𝜈′𝑡 = (𝜔 + 𝜔′ + 𝜈)/2

𝑢 = 𝜈 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜔′

⎞⎟⎟⎟⎟⎟⎠
𝛿𝑖1𝑖2

− Γd𝑖1𝑖1

⎛⎜⎜⎜⎜⎜⎝
𝑠 = 𝜔 + 𝜔′ 𝜈𝑠 = (𝜔 − 𝜔′ − 𝜈)/2 𝜈′𝑠 = (𝜔 − 𝜔′ − 𝜈)/2

𝑡 = 𝜔′ − 𝜔 𝜈𝑡 = (𝜔 + 𝜔′ − 𝜈)/2 𝜈′𝑡 = (𝜔 + 𝜔′ + 𝜈)/2

𝑢 = 𝜈 𝜈𝑢 = 𝜔 𝜈′𝑢 = 𝜔′

⎞⎟⎟⎟⎟⎟⎠
𝛿𝑖1𝑖2 )

(B.8)
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Appendix C

Collection of real space lattices

In this appendix, we collect the Bravais lattice and basis vectors of a selection of two-dimensional (2D) and three-
dimensional (3D) lattices.

C.1 Two-dimensional lattices

C.1.1 Square lattice

The square lattice is a 2D Bravais lattice with lattice vectors

𝒂1 =
⎛⎜⎜⎝
1

0

⎞⎟⎟⎠ 𝒂2 =
⎛⎜⎜⎝
0

1

⎞⎟⎟⎠ (C.1)

and the single basis point

𝒃1 =
⎛⎜⎜⎝
0

0

⎞⎟⎟⎠ . (C.2)

It tiles the plane with squares.

C.1.2 Triangular lattice

The triangular lattice is a 2D Bravais lattice with lattice vectors

𝒂1 =
⎛⎜⎜⎝
1

0

⎞⎟⎟⎠ 𝒂2 =
⎛⎜⎜⎝

1
2√
3

2

⎞⎟⎟⎠ (C.3)

and the single basis point

𝒃1 =
⎛⎜⎜⎝
0

0

⎞⎟⎟⎠ . (C.4)

It is a triangular tiling of the plane.
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C.1.3 Honeycomb lattice

The honeycomb lattice is a 2D lattice with the triangular lattice vectors

𝒂1 =
⎛⎜⎜⎝

3
2√
3

2

⎞⎟⎟⎠ 𝒂2 =
⎛⎜⎜⎝

3
2

−
√

3
2

⎞⎟⎟⎠ (C.5)

and the two basis points

𝒃1 =
⎛⎜⎜⎝
0

0

⎞⎟⎟⎠ 𝒃2 =
⎛⎜⎜⎝
1

0

⎞⎟⎟⎠ . (C.6)

The lattice is build from edge sharing hexagons.

C.1.4 Kagome lattice

The honeycomb lattice is a 2D lattice with the triangular lattice vectors

𝒂1 =
⎛⎜⎜⎝
2

0

⎞⎟⎟⎠ 𝒂2 =
⎛⎜⎜⎝

1
√

3

⎞⎟⎟⎠ (C.7)

and the three basis points

𝒃1 =
⎛⎜⎜⎝
0

0

⎞⎟⎟⎠ 𝒃2 =
⎛⎜⎜⎝
1

0

⎞⎟⎟⎠ 𝒃3 =
⎛⎜⎜⎝

1
2√
3

2

⎞⎟⎟⎠ . (C.8)

The lattice consists of corner sharing triangles, which surround a hexagon. Alternatively it can be viewed as removing
every fourth point out of a triangular lattice in a regular fashion.

C.2 Three-dimensional lattices

C.2.1 Simple cubic lattice

The simple cubic lattice is a 3D Bravais lattice with lattice vectors

𝒂1 =

⎛⎜⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎟⎠
𝒂2 =

⎛⎜⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎟⎠
𝒂=

⎛⎜⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎟⎠
(C.9)

and the single basis point

𝒃1 =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎠
. (C.10)
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C.2.2 Body-centered cubic lattice

The body-centered cubic (BCC) lattice is a 3D Bravais lattice with lattice vectors

𝒂1 =

⎛⎜⎜⎜⎜⎜⎝
1
2
1
2

− 1
2

⎞⎟⎟⎟⎟⎟⎠
𝒂2 =

⎛⎜⎜⎜⎜⎜⎝
− 1

2
1
2
1
2

⎞⎟⎟⎟⎟⎟⎠
𝒂3 =

⎛⎜⎜⎜⎜⎜⎝
1
2

− 1
2

1
2

⎞⎟⎟⎟⎟⎟⎠
(C.11)

and the single basis point

𝒃1 =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎠
. (C.12)

The lattice’s most symmetric unit cell is a cube, where the body-center point is added as a lattice point in addition to
the eight corners.

C.2.3 Face-centered cubic lattice

The face-centered cubic (FCC) lattice is a 3D Bravais lattice with lattice vectors

𝒂1 =

⎛⎜⎜⎜⎜⎜⎝
0
1√
2

1√
2

⎞⎟⎟⎟⎟⎟⎠
𝒂2 =

⎛⎜⎜⎜⎜⎜⎝
1√
2

0
1√
2

⎞⎟⎟⎟⎟⎟⎠
𝒂3 =

⎛⎜⎜⎜⎜⎜⎝
1√
2

1√
2

0

⎞⎟⎟⎟⎟⎟⎠
(C.13)

and the single basis point

𝒃1 =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎠
. (C.14)

The most symmetric unit cell of the FCC lattice is a cube, where in addition to the eight corners the midpoint of all
six faces are added as lattice points.

C.2.4 Diamond lattice

The diamond lattice is a 3D lattice with the FCC lattice vectors

𝒂1 =

⎛⎜⎜⎜⎜⎜⎝
0
2√
3

2√
3

⎞⎟⎟⎟⎟⎟⎠
𝒂2 =

⎛⎜⎜⎜⎜⎜⎝
2√
3

0
2√
3

⎞⎟⎟⎟⎟⎟⎠
𝒂3 =

⎛⎜⎜⎜⎜⎜⎝
2√
3

2√
3

0

⎞⎟⎟⎟⎟⎟⎠
(C.15)
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and the two basis points

𝒃1 =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎠
𝒃2 =

⎛⎜⎜⎜⎜⎜⎝
1√
3

1√
3

1√
3

⎞⎟⎟⎟⎟⎟⎠
. (C.16)

The lattice decomposes into two interpenetrating FCC lattices separated by the basis vector 𝒃2 from each other.

C.2.5 Pyrochlore lattice

The Pyrochlore lattice is a 3D lattice with the FCC lattice vectors

𝒂1 =

⎛⎜⎜⎜⎜⎜⎝
0
1
2
1
2

⎞⎟⎟⎟⎟⎟⎠
𝒂2 =

⎛⎜⎜⎜⎜⎜⎝
1
2

0
1
2

⎞⎟⎟⎟⎟⎟⎠
𝒂3 =

⎛⎜⎜⎜⎜⎜⎝
1
2
1
2

0

⎞⎟⎟⎟⎟⎟⎠
(C.17)

and the four basis points

𝒃1 =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎠
𝒃2 =

⎛⎜⎜⎜⎜⎜⎝
0
1
4
1
4

⎞⎟⎟⎟⎟⎟⎠
𝒃3 =

⎛⎜⎜⎜⎜⎜⎝
1
4

0
1
4

⎞⎟⎟⎟⎟⎟⎠
𝒃2 =

⎛⎜⎜⎜⎜⎜⎝
1
4
1
4

0

⎞⎟⎟⎟⎟⎟⎠
. (C.18)

The Pyrochlore lattice is built from corner-sharing tetrahedra and in this regard a 3D generalization of the Kagome
lattice.
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Appendix D

Exact integration of interpolating functions

Guided by the idea behind the common, non-adaptive integration routines, we will employ a different approach to the
frequency integrals. As we know the exact form of the interpolating functions we used for integration so far, we can
use this information to integrate them analytically, resulting in a quadrature rule tailored to our functions.

Within the central part of the Vertex function, we have to do a trilinear interpolation within the frequency cuboid
[𝜔𝑖 , 𝜔𝑖+1] × [𝜔 𝑗 , 𝜔 𝑗+1] × [𝜔𝑘 , 𝜔𝑘+1]. Therefore the interpolation within one of these cuboids in for one of the factors
in the integral generically is a third-order polynamial

Γ(𝑎 + 𝑏𝜔, 𝑐 + 𝑑𝜔, 𝑒 + 𝑓 𝜔) = 𝑎3𝜔
3 + 𝑎2𝜔

2 + 𝑎1𝜔 + 𝑎0. (D.1)

If less of the arguments are integrated over or the arguments are large enough, that we have to use asymptotics, we
will end up with a lower order polynomial, depending on the number of integrated arguments.

Worst case, the integrand in the Katnin part consists of two vertices, which are third-order polynomials, the
derivative of the self-energy (first-order polynomial), and three propagators (inverse first-order polynomials), which
are multiplied together. This rational function, therefore, is a polynomial of seventh order divided by one of third
order. Mathematica will help to do the integral, but the formula is lengthy.

In practice we have to find the intervals in 𝜔, where the 𝑎s and 𝑏s are constant, i.e. all frequency arguments of all
functions are in between two discretization points. This means, we have to integrate between all points, where one
of the shifted frequency arguments is on the discretization mesh. Calling the definite integral from 𝜔𝑙 to 𝜔ℎ of the
rational function defined above 𝐹 (𝑎⃗, 𝑏⃗, 𝜔𝑙 , 𝜔ℎ) and the discrete frequencies 𝜔⃗, the algorithm to integrate between 𝜔𝑖
and 𝜔 𝑓 is

1. Shift 𝜔⃗ for each argument of all functions, such that we plug in a point on the mesh.

2. Take the union 𝜔⃗𝑢 of these and cut the list such, that 𝜔𝑖 < 𝜔𝑖𝑢 < 𝜔 𝑓

3. Collect 𝑎⃗𝑖 and 𝑏⃗
𝑖
, such that these are valid on the interval [𝜔𝑖𝑢, 𝜔𝑖+1

𝑢 ]

4. The full integral is then given by
∑︁
𝑖 𝐹 (𝑎⃗𝑖 , 𝑏⃗

𝑖
, 𝜔𝑖𝑢, 𝜔

𝑖+1
𝑢 )

Remarks

• Caching of 𝑎⃗𝑖 and 𝑏⃗
𝑖

can be done independent of external 𝑠, 𝜈𝑠 , 𝜈′𝑠 and these can be implemented as a shift.
They will vetorize over all lattice points, as frequency integration is independent of it.

• 𝜕ΛΣ = 0 for 𝜔 → ∞, due to asymptotics. This cuts effectively the Katanin integral for high frequencies.
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• Multi-Loop integrations will go to infty, but are well controlled. Orders of polynomials will be lower there.
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Appendix E

Truncated unity in frequency space

Similar to the decomposition into lattice harmonics in functional renormalization group (FRG) for itinerant fermions
in truncated unity FRG we here want to sketch a similar scheme in frequency space.

E.1 Spectral decomposition of functions

We want to consider a decomposition of the vertex in the fermionic frequencies into a basis of (scaled) polynomials.
To this end, let us first fix notation. Let 𝑝𝑎 (𝑥), with 𝑎 ∈ N0 be a complete orthonormal polynomial basis in the
interval [−1, 1]. We define orthonormality with respect to a scalar product involving a weight function 𝑤(𝑥) as

< 𝑝𝑎, 𝑝𝑏 >=

1∫
−1

d𝑥𝑝𝑎 (𝑥)𝑝𝑏 (𝑥)𝑤(𝑥) = 𝛿𝑎,𝑏 . (E.1)

As the vertex functions are defined for all frequencies, we use the function 𝑚 : R → [−1, 1] to map the frequency
arguments to the interval the polynomials are orthogonal in. Choices one could consider as basis fucntions are the
Legendre Polynomials

𝑝𝐿𝑎 (𝑥) =
√︃

2𝑎 + 1
2

𝑃𝑎 (𝑥) with 𝑤(𝑥) = 1 (E.2)

where we introduced a factor to normalize them. Another common choice for orthogonal polynomials in numerics
are the Chebyshev polynomials

𝑝𝑇𝑎 (𝑥) =
√︃

1
𝜋
𝑇𝑎 (𝑥) with 𝑤(𝑥) =

√︁
1 − 𝑥2. (E.3)

Note, that in this convention < 𝑝𝑇0 , 𝑝
𝑇
0 >= 2.

For the mapping function we consider

𝑚(𝜔) = 𝜔√
𝜔2 − 1

𝑚−1 (𝑥 = 𝑥√
1 − 𝑥2

. (E.4)

Any function 𝑓 (𝜔) can then be expanded in terms of the polynomials as

𝑓 (𝜔) =
∞∑︂
𝑎=0

𝑐𝑎𝑝𝑎 (𝑥), (E.5)
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where

𝑐𝑎 =

1∫
−1

d𝑥𝑝𝑎 (𝑥) 𝑓 (𝑚−1 (𝑥))𝑤(𝑥) . (E.6)

This spectral decomposition can subsequently be used to construct an approximation to 𝑓 by truncating the sum in
eq. (E.5).

E.2 Expansion of the flow equations

We want to use the spectral decomposition defined above for the fermionic frequencies in each channel 𝑐 of the vertex
function Γ. A major part of the discussion is based on Reference [278]. The reason we do not consider an expansion of
the bosonic frequency axis is for now mainly numerical: expanding also this frequency would necessitate a projection
onto the basis functions, i.e. an additional integration, for each component in each step of the flow. This we can
circumvent by treating the bosonic variable as continuous. For the self-energy, there is another reason: the mapped
polynomials decay at least as 1/𝜔2 for 𝜔 → ∞, but the self-energy physically should decay as 1/𝜔, which can only be
achieved by considering a large number of basis functions. Therefore, we expand the Vertex function in the 𝑐-channel
(𝑐 = 𝑠/𝑡/𝑢) as

𝑔c
𝑠/𝑑,𝑖1𝑖2 (𝑐, 𝜈𝑐, 𝜈

′
𝑐) =

∑︂
𝑎,𝑏

Γc;𝑎𝑏
𝑠/𝑑,𝑖1𝑖2 (𝑐)𝑝𝑎 (𝑚(𝜈𝑐))𝑝𝑏 (𝑚(𝜈′𝑐)). (E.7)

Plugging this expansion into the flow equations we find in the 𝑠-channel

𝑔̇s;𝑎𝑏
𝑠,𝑖1𝑖2

(𝑠) = 1
2𝜋

∑︂
𝑐,𝑑

{︁ − 2Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑠)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑠)

+Γ𝑎𝑐𝑑,𝑖1𝑖2 (𝑠)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑠)
+Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑠)Γ𝑑𝑏𝑑,𝑖1𝑖2 (𝑠)

}︁
Π𝑐𝑑𝑠 (𝑠)

(E.8)

𝑔̇s;𝑎𝑏
𝑑,𝑖1𝑖2

(𝑠) = 1
2𝜋

∑︂
𝑐,𝑑

{︁
3Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑠)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑠)

+Γ𝑎𝑐𝑑,𝑖1𝑖2 (𝑠)Γ𝑑𝑏𝑑,𝑖1𝑖2 (𝑠)
}︁
Π𝑐𝑑𝑠 (𝑠),

(E.9)

where we defined the 𝑠-bubble function

Π𝑐𝑑𝑠 (𝑠) =
∫

d𝜔 𝑝𝑐 (𝑚(−𝜔))𝑝𝑑 (𝑚(𝜔))𝑃
(︂ 𝑠
2
+ 𝜔, 𝑠

2
− 𝜔

)︂
. (E.10)

Similarly, we get in the 𝑡-channel

𝑔̇t;𝑎𝑏
𝑠,𝑖1𝑖2

(𝑡) = 1
2𝜋

∑︂
𝑐,𝑑

{︁ − 2
∑︂
𝑗

Γ𝑎𝑐𝑠,𝑖1 𝑗 (𝑡)Γ𝑑𝑏𝑠, 𝑗 𝑖2 (𝑡)

−Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑡)Γ𝑏𝑑𝑠,𝑖2𝑖2 (𝑢 = 𝑡)
+Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑡)Γ𝑑𝑏𝑑,𝑖2𝑖2 (𝑢 = 𝑡)
−Γ𝑐𝑎𝑠,𝑖1𝑖1 (𝑢 = 𝑡)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑡)
+Γ𝑐𝑎𝑑,𝑖1𝑖1 (𝑢 = 𝑡)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑡)

}︁
Π𝑐𝑑𝑡 (𝑡)

(E.11)
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𝑔̇t;𝑎𝑏
𝑑,𝑖1𝑖2

(𝑡) = 1
2𝜋

∑︂
𝑐,𝑑

{︁ − 2
∑︂
𝑗

Γ𝑎𝑐𝑑,𝑖1 𝑗 (𝑡)Γ𝑑𝑏𝑑, 𝑗 𝑖2 (𝑡)

+3Γ𝑎𝑐𝑑,𝑖1𝑖2 (𝑡)Γ𝑏𝑑𝑠,𝑖2𝑖2 (𝑢 = 𝑡)
+Γ𝑎𝑐𝑑,𝑖1𝑖2 (𝑡)Γ𝑑𝑏𝑑,𝑖2𝑖2 (𝑢 = 𝑡)

+3Γ𝑐𝑎𝑠,𝑖1𝑖1 (𝑢 = 𝑡)Γ𝑑𝑏𝑑,𝑖1𝑖2 (𝑡)
+Γ𝑐𝑎𝑑,𝑖1𝑖1 (𝑢 = 𝑡)Γ𝑑𝑏𝑑,𝑖1𝑖2 (𝑡)

}︁
Π𝑐𝑑𝑡 (𝑡)

(E.12)

with the 𝑡-bubble
Π𝑐𝑑𝑡 (𝑡) =

∫
d𝜔 𝑝𝑐 (𝑚(𝜔))𝑝𝑑 (𝑚(𝜔))𝑃

(︂
𝜔 + 𝑡

2
, 𝜔 − 𝑡

2

)︂
. (E.13)

Finally, the 𝑢-channel reads

𝑔̇u;𝑎𝑏
𝑠,𝑖1𝑖2

(𝑢) = 1
2𝜋

∑︂
𝑐,𝑑

{︁
2Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑢)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑢)

+Γ𝑎𝑐𝑑,𝑖1𝑖2 (𝑢)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑢)
+Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑢)Γ𝑑𝑏𝑑,𝑖1𝑖2 (𝑢)

}︁
Π𝑐𝑑𝑢 (𝑢)

(E.14)

𝑔̇u;𝑎𝑏
𝑑,𝑖1𝑖2

(𝑢) = 1
2𝜋

∑︂
𝑐,𝑑

{︁
3Γ𝑎𝑐𝑠,𝑖1𝑖2 (𝑢)Γ𝑑𝑏𝑠,𝑖1𝑖2 (𝑢))

+Γ𝑎𝑐𝑑,𝑖1𝑖2 (𝑢)Γ𝑑𝑏𝑑,𝑖1𝑖2 (𝑢)
}︁
Π𝑐𝑑𝑠 (𝑠),

(E.15)

where the 𝑢-bubble is the same as the 𝑡-bubble

Π𝑐𝑑𝑢 (𝑢) = Π𝑐𝑑𝑡 (𝑢). (E.16)

If the polynoials fulfill
𝑝𝑎 (−𝑥) = (−1)𝑎𝑝𝑎 (𝑥) , (E.17)

i.e., 𝑝𝑎 is even(odd), if 𝑎 is even(odd), then

Π𝑐𝑑𝑠 (𝑠) = (−1)𝑐+1Π𝑐𝑑𝑡 (𝑠) , (E.18)

as 𝑝 is antisymmetric in each of its arguments separately.

E.3 Rotation between frequency parametrizations

To complete the picture of the spectral decomposition, we need to know how to rotate between the different frequency
parametrizations, as in the right-hand side of the flow equations in Section E.2 we need the full vertex in the antural
parametrizations. This amounts to plugging in the relations between the frequency arguments and projecting onto the
respective basis functions. We find

Γ𝑎𝑏𝑠/,𝑖1𝑖2 (𝑠) =
∞∫

−∞
d𝜔d𝜔′ ∑︂

𝑐,𝑑

Γ𝑐𝑑𝑠/,𝑖1𝑖2 (𝑡 = −𝜔 − 𝜔′)𝑝𝑐
(︃
𝑚

(︃
𝑠 + 𝜔 − 𝜔′

2

)︃)︃
𝑝𝑑

(︃
𝑚

(︃
𝑠 − 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑎 (𝑚(𝜔))𝑝𝑏 (𝑚(𝜔))𝑚′ (𝜔)𝑚′ (𝜔′) (E.19)
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=

∞∫
−∞

d𝜔d𝜔′ ∑︂
𝑐,𝑑

Γ𝑐𝑑𝑠/,𝑖1𝑖2 (𝑢 = 𝜔 − 𝜔′)𝑝𝑐
(︃
𝑚

(︃
𝑠 + 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑑

(︃
𝑚

(︃
𝑠 − 𝜔 − 𝜔′

2

)︃)︃
𝑝𝑎 (𝑚(𝜔))𝑝𝑏 (𝑚(𝜔))𝑚′ (𝜔)𝑚′ (𝜔′) (E.20)

for the projection to the 𝑠-parametrization,

Γ𝑎𝑏𝑠/,𝑖1𝑖2 (𝑡) =
∞∫

−∞
d𝜔d𝜔′ ∑︂

𝑐,𝑑

Γ𝑐𝑑𝑠/,𝑖1𝑖2 (𝑠 = 𝜔 + 𝜔′)𝑝𝑐
(︃
𝑚

(︃−𝑡 + 𝜔 − 𝜔′

2

)︃)︃
𝑝𝑑

(︃
𝑚

(︃−𝑡 − 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑎 (𝑚(𝜔))𝑝𝑏 (𝑚(𝜔))𝑚′ (𝜔)𝑚′ (𝜔′) (E.21)

=

∞∫
−∞

d𝜔d𝜔′ ∑︂
𝑐,𝑑

Γ𝑐𝑑𝑠/,𝑖1𝑖2 (𝑢 = 𝜔 − 𝜔′)𝑝𝑐
(︃
𝑚

(︃−𝑡 + 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑑

(︃
𝑚

(︃
𝑡 + 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑎 (𝑚(𝜔))𝑝𝑏 (𝑚(𝜔))𝑚′ (𝜔)𝑚′ (𝜔′) (E.22)

when projecting onto 𝑡 and finally

Γ𝑎𝑏𝑠/,𝑖1𝑖2 (𝑢) =
∞∫

−∞
d𝜔d𝜔′ ∑︂

𝑐,𝑑

Γ𝑐𝑑𝑠/,𝑖1𝑖2 (𝑠 = 𝜔 + 𝜔′)𝑝𝑐
(︃
𝑚

(︃
𝑢 + 𝜔 − 𝜔′

2

)︃)︃
𝑝𝑑

(︃
𝑚

(︃−𝑢 + 𝜔 − 𝜔′

2

)︃)︃
𝑝𝑎 (𝑚(𝜔))𝑝𝑏 (𝑚(𝜔))𝑚′ (𝜔)𝑚′ (𝜔′) (E.23)

=

∞∫
−∞

d𝜔d𝜔′ ∑︂
𝑐,𝑑

Γ𝑐𝑑𝑠/,𝑖1𝑖2 (𝑡 = −𝜔 + 𝜔′)𝑝𝑐
(︃
𝑚

(︃
𝑢 + 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑑

(︃
𝑚

(︃−𝑢 + 𝜔 + 𝜔′

2

)︃)︃
𝑝𝑎 (𝑚(𝜔))𝑝𝑏 (𝑚(𝜔))𝑚′ (𝜔)𝑚′ (𝜔′) (E.24)

projecting onto 𝑢.

E.4 Numerical considerations

As an algorithmic implementation of a single RG-step, one can follow how similar calculations are done in TUFRG:

1. Compute bubbles

2. Compute derivative in respective channel parametrization via matrix multiplication

3. Rotate derivatives in other parametrizations, to update full vertex in available in all three frequency parametriza-
tions

This means, in contrast to conventional PFFRG one would track the full vertex in three parametrizations instead of
the three channels separately. Therefore, the main work is shifted from integrating the bubble functions (which now
will be a relatively easy task) to rotating the vertex contributions, which will be one double integral per rotation. In
this regard, effort should be similar.

However, as shown in Reference [278] for fermionic systems, a low number of basis functions, there 16, but only
8 nonzero coefficients, is enough to capture the frequency content of the vertex. This would free up computational
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resources from the fermionic frequencies, where complexity scales as 𝑁2
𝜈 , which can be used to increase resolution in

bosonic frequency. Additionally, the interpolation effort is significantly reduced, as interpolation has to be done only
in the bosonic frequency.

Considering implementation effort, Legendre polynomials are readily available in Julia, for example via the C
library GSL, wrapped in GSL.jl. However, if convergence in Chebyshev polynomials is also good, we can rely on
more sophisticated methods to calculate the coefficients for vertex rotations. These algorithms need only 𝑛 function
evaluations to construct a Chebyshev approximation with 𝑛 polynomials and no integrations whatsoever.
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List of acronyms

1D one-dimensional.
2D two-dimensional.
3D three-dimensional.

AF antiferromagnetic.

BCC body-centered cubic.
BZ Brillouin zone.

CS cuboctahedral stack.

DFT density functional theory.
DMRG density matrix renormalization group.
DT double-twist.

FCC face-centered cubic.
FM ferromagnetic.
FRG functional renormalization group.

MMS multiply-modulated spiral.

NN nearest neighbor.
NNN next-to-nearest neighbor.
NNNN next-to-next-to-nearest neighbor.

PFFRG pseudo-fermion functional renormalization group.

QMC quantum Monte-Carlo.

RG renormalization group.
RVB resonating valence bond.
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