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Zusammenfassung

In den letzten Jahren hat sich eine spannende Suche nach faszinierenden topolo-
gischen Phänomenen in zeitabhängigen Quantensystemen entwickelt. Ein Schlüssel
zu zahlreichen Ausprägungen der Topologie in dynamischen Systemen beruht auf der
effektiven Dimensionserweiterung durch zeitlich-periodische Antriebe. Ein Beispiel ist
die Thouless-Pumpe in einer räumlichen Dimension, in der ein robuster und quan-
tisierter Ladungstransport mittels eines Quanten-Hall-Effekts beschrieben werden kann,
sofern Zeit als zusätzliche Dimension interpretiert wird. Durch Verallgemeinerung
dieses Grundkonzepts auf Multifrequenzantriebe kann eine Vielzahl höherdimensionaler
topologischer Modelle in zeitlich synthetischen Dimensionen konstruiert werden, bei
denen die zugrunde liegende topologische Klassifikation zu quantisierten Pumpeffekten
in den zugehörigen niederdimensionalen zeitabhängigen Systemen führt.

In dieser Dissertation wird untersucht, wie Korrelationen die topologischen Eigen-
schaften von zeitlich synthetischen Quantenmaterialen maßgeblich beeinflussen. Konkret
wird gezeigt, dass das Zusammenspiel von Wechselwirkung und zeitlicher synthetis-
cher Dimension zu erstaunlichen topologischen Phänomenen führt, die über nicht-
wechselwirkende Realisierungen hinausgehen. Als Ausgangspunkt wird das Floquet-
Gegenstück eines Quanten-Hall-Szenarios genutzt, ein Zwei-Niveau-System, das von
zwei inkommensurablen Frequenzen getrieben wird. In diesem Modell spiegelt sich
die topologisch quantisierte Antwort in einen Prozess wider, bei dem Photonen ver-
schiedener Frequenzen zwischen den externen Moden ausgetauscht werden, auch bekannt
als topologische Frequenzumwandlung. Wir erweitern dieses prototypische Setup auf
eine interagierende Version, indem wir uns auf den Minimalfall zweier korrelierter Spins
konzentrieren, die gleichermaßen den externen Antrieben ausgesetzt sind. Wir zeigen,
dass die topologische Invariante, die die Frequenzumwandlung bestimmt, durch ungerade
ganze Zahlen verändert werden kann. Ein Zustand, der im nicht-wechselwirkenden Fall
ausdrücklich verboten ist. Dieses korrelierte topologische Verhalten kann wiederum zu
einer Verstärkung der quantisierten Antwort führen.

Robuste Antwortsignale, wie sie für den topologischen Frequenzumwandler vorherge-
sagt werden, sind von grundlegendem Interesse für potentielle technologische Anwen-
dungen der topologischen Quantenmaterie. Basierend auf einer offenen Quantensystem-
Realisierung des Frequenzumwandlers schlagen wir einen neuartigen Mechanismus der
topologischen Quantisierung vor, den wir als ”topologischen Brennglaseffekt” bezeichnen.
Dieser Mechanismus verstärkt die lokale Antwort des getriebenen Zwei-Niveau-Systems
um eine ganze Zahl, die proportional zur Anzahl der Freiheitsgrade der Umgebung ist,
an die das System koppelt. Konkret werden unsere Erkenntnisse durch die Erweiterung
des Frequenzumwandlers auf ein Zentralspinmodell veranschaulicht. Der lokale Energi-
etransfer, der ausschließlich durch den zentralen Spin vermittelt wird, wird durch die
kollektive Bewegung der umgebenden Spins maßgeblich verstärkt. In diesem Sinne
erbt der Zentralspin die topologische Natur des Gesamtsystems in seiner nicht-unitären
Dynamik, die die Korrelationen mit der Umgebung berücksichtigt.
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Abstract

The last years have witnessed an exciting scientific quest for intriguing topological
phenomena in time-dependent quantum systems. A key to many manifestations of
topology in dynamical systems relies on the effective dimensional extension by time-
periodic drives. An archetypal example is provided by the Thouless pump in one
spatial dimension, where a robust and quantized charge transport can be described in
terms of an integer quantum Hall effect upon interpreting time as an extra dimension.
Generalizing this fundamental concept to multifrequency driving, a variety of higher-
dimensional topological models can be engineered in dynamical synthetic dimensions,
where the underlying topological classification leads to quantized pumping effects in the
associated lower-dimensional time-dependent systems.

In this Thesis, we explore how correlations profoundly impact the topological
features of dynamical synthetic quantum materials. More precisely, we demonstrate
that the interplay of interaction and dynamical synthetic dimension gives rise to striking
topological phenomena that go beyond noninteracting implementations. As a starting
point, we exploit the Floquet counterpart of an integer quantum Hall scenario, namely
a two-level system driven by two incommensurate frequencies. In this model, the
topologically quantized response translates into a process in which photons of different
frequencies are exchanged between the external modes, referred to as topological
frequency conversion. We extend this prototypical setup to an interacting version,
focusing on the minimal case of two correlated spins equally exposed to the external
drives. We show that the topological invariant determining the frequency conversion
can be changed by odd integers, something explicitly forbidden in the noninteracting
limit of two identical spins. This correlated topological feature may, in turn, result in
an enhancement of the quantized response.

Robust response signals, such as those predicted for the topological frequency con-
verter, are of fundamental interest for potential technological applications of topological
quantum matter. Based on an open quantum system implementation of the frequency
converter, we propose a novel mechanism of topological quantization coined ”topological
burning glass effect”. Remarkably, this mechanism amplifies the local response of the
driven two-level system by an integer that is proportional to the number of environ-
mental degrees of freedom to which the system is strongly coupled. Specifically, our
findings are illustrated by the extension of the frequency converter to a central spin
model. There, the local energy transfer mediated exclusively by the central spin is
significantly enhanced by the collective motion of the surrounding spins. In this sense,
the central spin adopts the topological nature of the total system in its non-unitary
dynamics, taking into account the correlations with the environment.
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1
Introduction

When asked what the difference is between the shape1 of a ball (sphere) and a
doughnut (torus), a child might answer that the doughnut, unlike the ball, has a
hole. And although the child’s answer may seem trivial at first glance, it reveals with
remarkable acuity an essential geometrical discrepancy between these two objects. In
fact, it is the hole that makes it impossible to transform the doughnut into a ball without
irreversibly breaking its surface. Or in other words, the doughnut will never turn into a
ball under continuous deformations, such as those occurring when its body is stretched,
compressed, twisted, or bent. Rather, the hole has to be closed, e.g. by cutting the
doughnut with a knife, before a continuous deformation into the ball can take place.
In mathematics, such classification is treated within the concept of topology, in which
geometrical objects are distinguished by topological invariants that are preserved under
continuous deformations. In this sense, the ball and the doughnut exhibit a distinct
topology, as both can be assigned a topological invariant that differs in the number of
holes. On the other hand, a coffee cup and a doughnut are identical from a topological
point of view, as they can be continuously deformed into each other without opening or
closing a hole.

The preceding, rather pedagogical discussion raises the question whether topology
offers practical applications beyond its purely mathematical formulation [Wil70, Mun00].
Here, it turns out that the solutions to many geometrical problems do not rely on the
exact shape, but solely on the topological properties of the objects. Already in the
early 18th century, Leonhard Euler applied the idea of topology in his discussion of
the Seven Bridges of Königsberg [Eul36, Cro89]. There, four islands are ergodically
connected2 by a total number of seven bridges, with one of the islands accessible by five
bridges and the remaining three by three bridges each. As each island carries an odd
number of connections, Euler concluded that it is impossible to take a continuous trip

1In what follows, we only refer to the geometry of objects and not to their material properties,
assuming that their bodies are fully pliable under mechanical action.

2Here, ”ergodically connected” means that each island can be reached from any position on the map.
This, however, does not necessarily require that the islands are directly connected to each other.
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Chapter 1 Introduction

through the city of Königsberg that passes each of its seven bridges only once. This
follows directly from the fact that at most two of the islands are allowed to show an
odd number of bridges, as this is the maximum number of islands that can serve as
the start and end points of the walk. The remaining islands, in turn, must show an
even number of connections, such that they can be left on a novel path. Indeed, these
arguments are topological in nature, as they do not depend on the explicit shape of the
islands or the position and length of the bridges, but only on the information of how
the islands are connected to each other.

Besides this historical problem, another quite modern application of topology is
given by topological band theory in the context of solid state physics [CF21]. Here,
the properties of electrons in a lattice-periodic potential are determined by Bloch’s
theorem [Blo29, Kit71, AM76], which provides the single-electron solutions of the
Schrödinger equation as a function of crystal momentum. These so-called Bloch elec-
trons form an electronic band structure in momentum space, which may result in
energy bands that are well separated from each other by finite band gaps. Now, it
has been figured out that Bloch electrons can assume geometrical features as well,
assigning topological invariants to the respective energy bands that are preserved under
continuous3 deformations [XCN10, Van18]. This invariance, in turn, leads to robust
response signals, paving the way for fascinating phenomena in physics [Tho98, Wen17].
A paradigmatic example in this context is provided by the integer quantum Hall ef-
fect [KDP80, PG90], where the transverse conductance of a two-dimensional system
consists with high accuracy of integer multiples of natural constants. According to the
celebrated Kubo formula [Kub57, Mah00], this quantized response originates from the
first perturbative correction of the state, which in fact can be projected onto the first
Chern number [Che46, TKNdN82, QHZ08], an invariant defined in terms of the adiabatic
Berry curvature [Ber84] of the occupied Bloch bands [Lau81, Sim83a, Koh85, Hal88].

Inspired by this cornerstone of modern physics, a wide range of exciting topolog-
ical platforms have been explored, such as topological insulators [KBWM+08, QZ10,
Moo10, HK10], topological superconductors [QZ11, BH13], and topological semimet-
als [Vol03, YF17, AMV18]. Besides these condensed matter realizations, however, recent
advances in the fabrication and manipulation of topological phases in photonics [LJS14,
KS17, OPA+19], ultracold atomic gases [DGJbuO11, GJÖS14, GBZ16, CDS19], and
Floquet insulators [CDSM13, OK19, RL20a] have triggered the quest for identifying and
observing novel topological physics in synthetic dimensions [OP19]. The innovative idea
behind this approach is to extend the dimensionality of a system by interpreting some of
its internal degrees of freedom as an extra dimension, while controlling the motion within
the synthetic direction by suitable external drives. In this sense, synthetic dimensions
provide a powerful tool for the realization of exotic topological phenomena, some of
which involve the simulation of higher-dimensional topological models in experimental
settings of lower spatial dimensionality [PZO+15, OPG+16, OP19]. An archetypal
example of this kind is provided by the Thouless pump [Tho83], in which a periodically
driven one-dimensional system is mapped onto a two-dimensional integer quantum Hall

3Here, ”continuous” means that the band gap remains finite during the deformation of the quantum
state.
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scenario upon interpreting time as an extra dimension. In this setting, the higher-
dimensional topology manifests itself in a robust and quantized charge pump in the
lower-dimensional time-dependent system, yielding exciting signatures that have been
experimentally identified in both ultracold atomic gases [LSZ+16, NTT+16, LSP+18]
and photonic systems [KLR+12, KRZ13, ZHG+18].

In the Thouless pump, the dimensional extension of the system originates from
periodic driving in time, as the quantum state is dressed by all harmonics of the driving
frequency. Generalizing this fundamental concept to multifrequency drives, dynamical
modulations offer a highly controllable and flexible design of synthetic topological
models, as the harmonics of each incommensurate driving frequency can be viewed as
lattice sites along different synthetic spatial dimensions [HCT83, CT04, EA15, VPM16].
Along these lines, Martin et al. [MRH17] have demonstrated that quasiperiodically
driven quantum systems constitute an illustrative realization of dynamical synthetic
quantum matter, in which the topological features are exclusively defined in dimensions
of time. Their prototypical example is given by a topological frequency converter (TFC),
namely a single spin-1/2 driven by two circularly polarized drives, allowing the formation
of a Floquet counterpart of a Chern insulator [Hal88, QWZ06, BHZ06]. There, the
topologically quantized response translates into a frequency conversion between the
classical modes, with a time-averaged pumping rate proportional to the Chern number
classifying the synthetic Hall regime. Triggered by this pioneering work, a number of
advanced discoveries have been made in this field [KNG+18, PR18, CMC19, NMR19,
CMC20, CLY+20, NRRM20, LCC21, NGG+21, PR21, QRP21, SYZ22], some of which
even involve the indirect measurement of the topological frequency conversion [BCCS20,
MS21]. The understanding of the consequences of interparticle interactions in these
dynamical settings, however, is rather limited. This Thesis is dedicated to the discovery
of new insights on this field.

To this end, we extend the notion of topologically quantized frequency conversion to
interacting spin systems. In doing so, we show that correlations can dramatically broaden
the spectrum of topological numbers in the dynamically-induced synthetic dimensions,
eventually leading to the occurrence of topological responses that are forbidden in the
noninteracting regime. This feature, in turn, can improve the efficiency of the frequency
conversion, as the energy transfer between the external drives gets significantly enhanced.
Our findings are illustrated by two concrete and experimentally feasible settings. The
first model, which we refer to as an interacting topological frequency converter (ITFC),
represents the simplest extension of a TFC, namely two interacting spins equally exposed
to two incommensurate periodic drives [KPBT20]. Despite its simplicity, this setup
already provides a suitable platform for the generation of the aforementioned correlated
topological phenomena. For example, while in an uncorrelated system of two identical
spins the topological invariant determining the frequency conversion must be even, in
the ITFC odd integers are also allowed. We then generalize these intriguing features
to many spins, focusing on an open quantum system realization of the TFC in the
framework of a central spin model (CSM) [Gau76, DPS04, CDBF19]. In this model, a
central spin driven by two incommensurate frequencies statically couples to a set of
surrounding spins [KPBT22]. We show that the local energy transfer is exclusively
mediated by the driven central spin, exhibiting a topological quantization that is
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Chapter 1 Introduction

enhanced by the collective motion of the environmental spins. As a consequence, the
adiabatically defined topological invariant of the central spin fails to predict the local
response signal, but is rather governed by the topology of the total system. We explain
this novel mechanism of topological quantization, which we denote as topological burning
glass effect (TBGE), by investigating the non-unitary dynamics of the (small) quantum
system, revealing that the latter adopts the topological nature of the total system
due to its correlations to the (larger) environment. We argue that the amplification
of the TBGE not only exemplifies a general principle of topological open quantum
systems, but could moreover be exploited for the direct experimental observation of the
topological frequency conversion, which to our knowledge has so far only been detected
indirectly [SKK+14, RNC+14, BCCS20, MS21].

The Thesis is organized as follows: In Chap. 2, we introduce the notion of dynamical
synthetic quantum matter using fundamental concepts such as adiabatic perturbation the-
ory (APT) [ROP08, WBD+17] and (generalized) Floquet theory [Flo83, Shi65, Sam73].
Starting from the dynamics of a generic quantum system that temporally evolves in
parameter space, we show that the first perturbative expansion around the adiabatic
limit leads to a physical response proportional to the Berry curvature of the adiabatic
energy band [GP12]. Based on this geometrical property, quasiperiodically driven
quantum systems provide an illustrative platform for dynamical topological phenomena,
where the quantized response manifests itself in a frequency conversion between the
external drives. In Chap. 3, we apply these generic features to the concrete example
of the TFC, demonstrating that the response signal of the driven spin is described by
its adiabatically defined winding number [Vol03, QWZ06, QHZ08]. We extend this
prototypical model to its simplest interacting generalization, the ITFC, and interpret
the correlated topological responses by means of analytical and numerical calculations.
In Chap. 4, we study the TBGE using the paradigmatic example of the quasiperiodi-
cally driven CSM, the latter motivated by experimental realizations in lateral quantum
dots (QDs) [KAT01, HKP+07, RT10, ZDM+13, CSDF+21] or nitrogen-vacancy (NV)
centers [JW06, DMD+13, SCLD14]. We derive the topological band structure of the
CSM, demonstrating that the TBGE is a generic phenomenon that also applies to
generalizations of the interacting spin system. Using numerically exact simulations, we
corroborate our analytical findings and investigate the nonequilibrium phase diagrams
of the CSM, revealing that the topological frequency conversion can even extend to a
strongly nonadiabatic situation. This analysis allows us to identify the transient dynam-
ics and fundamental time-scales of (pre)thermalization, showing that the nonadiabatic
breakdown of the TBGE can lead to an ensemble-averaged pumping rate identical to
the noninteracting regime. In Chap. 5, we conclude our results and provide an outlook
for future studies. Throughout the Thesis, we set ~ = 1.

Parts of this Thesis have been published in journals under Copyright (2022) by the
American Physical Society. The associated publications are explicitly mentioned in the
relevant Chapters or Sections, and reprinted or adapted figures/tables are specifically
highlighted in the captions.

4



2
Dynamical Synthetic Quantum

Matter

Contents

2.1 Quantum Dynamics in Parameter Space . . . . . . . . . . . 7

2.1.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Adiabatic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Adiabatic Perturbation Theory . . . . . . . . . . . . . . . . . 10

2.1.4 Geometrical Response . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Periodically Driven Quantum Systems . . . . . . . . . . . . . 17

2.2.3 Extended Hilbert Space and Floquet Lattice . . . . . . . . . 21

2.3 Quasiperiodically Driven Quantum Systems . . . . . . . . . 26

2.3.1 Higher-Dimensional Floquet Lattice . . . . . . . . . . . . . . 26

2.3.2 Semiclassical Equations of Motion . . . . . . . . . . . . . . . 29

2.3.3 Topological Response . . . . . . . . . . . . . . . . . . . . . . 31

5



Chapter 2 Dynamical Synthetic Quantum Matter

Since its discovery, the Berry phase has been proven to have a crucial and intriguing
impact on the electronic transport properties of solid-state quantum devices [XCN10,
Van18, CF21]. This observation can be traced back to the semiclassical formulation
of electron dynamics in a periodic lattice [CN95, CN96, SN99], involving the first
perturbative correction of the state due to a small external field. The latter induces
virtual couplings between the Bloch energy bands of the crystal [Blo29, Kit71, AM76],
resulting in a transverse response proportional to the adiabatic Berry curvature [Ber84]
of the occupied Bloch state. Integrating this local geometrical quantity over the closed
manifold of the Brillouin zone (BZ), this accounts for a variety of topological response
signals, such as those predicted in quantum Hall effects, quantum charge pumps, or in
the modern description of electric polarization [BMK+03, XCN10, Van18].

In this introductory chapter, we exploit the semiclassical approach to illustrate that
quasiperiodically driven quantum systems reveal a Floquet counterpart of an integer
quantum Hall scenario [MRH17]. There, the quasiperiodic dynamics can be mapped
onto a higher-dimensional Floquet lattice, with lattice sites corresponding to the Fourier
harmonics of the incommensurate driving frequencies [HCT83, CT04, EA15, VPM16].
Applying the semiclassical equations of motion to the Floquet lattice, this yields an
anomalous response that translates into a frequency conversion between the external
drives. Simultaneously, the synthetic BZ of the Floquet lattice is entirely covered during
the quasiperiodic time-evolution, resulting in a quantized response that is determined by
the global topological invariant of the associated synthetic energy band. We argue that
the Floquet picture provides an illustrative implementation of basic geometrical concepts
of dynamical synthetic quantum matter, the latter corresponding to a generic quantum
system temporally evolving in parameter space and described by means of adiabatic
perturbation theory (APT) [ROP08, WBD+17]. In fact, analogous to the semiclassical
formulation, the motion in an individual direction of the parameter space leads to virtual
transitions to the excited states of the instantaneous spectrum, which can eventually be
mapped to the Berry curvature of the adiabatic energy band [GP12]. In the concrete
setting of time-quasiperiodic drives, the parameter space of the generic quantum system
is discovered in the same way as the synthetic BZ of the higher-dimensional Floquet
lattice, revealing a topological response equivalent to the Floquet picture.

The Chapter is organized as follows: In Sec. 2.1, we solve the quantum dynamics
in parameter space using APT, showing that the geometrical response stems from
the first-order corrections of the state around the adiabatic limit. In Sec. 2.2, we
apply Floquet theory [Flo83, Shi65, Sam73] to periodically driven quantum systems,
providing the basis for our generalization to multifrequency drives. The latter is done in
Sec. 2.3, demonstrating that both the semiclassical formulation and APT yield the same
topological response of the quasiperiodically driven quantum system. We argue that
this observation reflects a fundamental concept of topological quantization, where linear
response properties such as the (synthetic) Hall conductance are generally described
by a first perturbative correction of the state due to an electric field [Kub57, Mah00].
These corrections, however, can eventually be understood in terms of the adiabatic Berry
curvature of the unperturbed state alone [Lau81, TKNdN82, Sim83a, Koh85, Hal88],
revealing a correspondence between adiabatically defined topological invariants and
quantized response signals.
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2.1 Quantum Dynamics in Parameter Space

2.1 Quantum Dynamics in Parameter Space

We consider the dynamics of a generic quantum system that depends on a set of control
parameters temporally evolving in parameter space. Assuming that the rate of change
of these parameters is sufficiently slow, it follows from the adiabatic theorem that
the quantum state remains in the instantaneous energy band to which it has been
initialized [BF28, Kat50, Mes62]. Using APT [ROP08, WBD+17], we demonstrate that
the first-order corrections around the adiabatic limit yield virtual transitions to the
excited states of the spectrum, eventually leading to a geometrical response proportional
to the Berry curvature of the adiabatic energy band [GP12]. We argue that these
Berry phase effects [Ber84, XCN10] reflect fundamental concepts, which apply to any
system that exhibits energetically separated energy bands in its spectrum and evolves
sufficiently slowly in time.

2.1.1 General Setting

We study a generic quantum system whose Hamiltonian Ĥ(~Rt) depends on a set of control
parameters ~Rt = (R1,t, R2,t, . . . , RD,t)

T temporally evolving in the D−dimensional

parameter space ~Rt ∈ RD. The dynamics of this system is governed by the time-
dependent Schrödinger equation [Sch26, Sha08, GS18]

i
d

dt
|Ψ(t)〉 = Ĥ(~Rt) |Ψ(t)〉 , (2.1)

which induces a unitary time-evolution of the quantum state |Ψ(t)〉. Given an arbitrary
time-dependence ~Rt, the dynamics of Eq. (2.1) is generally hard to solve, which is why
it is often convenient to examine the spectral properties of the Hamiltonian Ĥ(~Rt):

Ĥ(~Rt) |n(~Rt)〉 = En(~Rt) |n(~Rt)〉 . (2.2)

At any instant, Eq. (2.2) corresponds to an eigenvalue problem with eigenstates |n(~Rt)〉
and energy eigenvalues En(~Rt), the latter forming a synthetic band structure along
the trajectory ~Rt in parameter space. For simplicity, we assume that the energy levels
En(~Rt) are discrete and nondegenerate, resulting in a well-defined1 orthonormal set of
basis states {|n(~Rt)〉}n. The exact quantum state |Ψ(t)〉 can be expressed as

|Ψ(t)〉 =
∑

n

e−iλn(t) bn(t) |n(~Rt)〉 , (2.3)

where we have introduced the dynamical phase factor λn(t) =
∫ t
t0
dt′En(~Rt′) and the

time-dependent coefficients bn(t). Based on this ansatz, we have to determine the
coefficients bn(t), which contain the essential information about the dynamics of the
quantum state |Ψ(t)〉. Inserting Eq. (2.3) into Eq. (2.1), the time-dependent Schrödinger
equation can be transferred to a differential equation for the coefficients bn(t):

ḃn(t) = −bn(t)Mnn(~Rt)−
∑

m 6=n

eiλnm(t) bm(t)Mnm(~Rt), (2.4)

1Apart from an overall phase factor, which we discuss in Eq. (2.6).
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Chapter 2 Dynamical Synthetic Quantum Matter

where we have used the shorthand notations ḃn(t) =
d
dt bn(t) and λnm(t) = λn(t)−λm(t).

The challenge in solving Eq. (2.4) for arbitrary time-dependencies ~Rt comes from the
fact that the coefficients bn(t) are connected by nontrivial coupling terms

Mnm(~Rt) = 〈n(~Rt)|
d

dt
m(~Rt)〉 = ~̇Rt 〈n(~Rt)|∇~Rm(~Rt)〉 , (2.5)

composed of the rate of change of the control parameters ~̇Rt and the overlaps between
the instantaneous eigenstates |n(~Rt)〉 and their derivatives |∇~Rm(~Rt)〉. Formally, the

latter is only well-defined for a single-valued set of basis states {|n(~Rt)〉}n, with a gauge
degree of freedom

|n(~Rt)〉 7→ eiχn(~Rt) |n(~Rt)〉 (2.6)

that features a smooth and differentiable phase factor χn(~Rt). For our derivations,
however, this explicit choice is not mandatory, which manifests itself in gauge-invariant
quantities that apply to any solution of Eq. (2.2).

So far, we have made no assumption about the initial condition of the differential
equation (2.4). Throughout the Thesis, we suppose that the quantum state |Ψ(t)〉 is
initialized in an instantaneous eigenstate |m(~Rt0)〉, reflected by coefficients bn(t0) = δnm.
In this case, our results work whenever the energy band Em(~Rt) is energetically separated
from the other bands, yielding a less restrictive condition for Eq. (2.2). In fact, energy
bands En 6=m(~Rt) can pass through level crossings in the excited part of the spectrum,
which is why degeneracies are explicitly allowed for these bands.

2.1.2 Adiabatic Limit

The main idea of the quantum adiabatic limit is to omit the second expression of Eq. (2.4),
thus neglecting the off-diagonal coupling terms Mnm(~Rt) between the coefficients
bn(t) [BF28]. Introducing the real phase factor2

ξn(t) = i

∫ t

t0

dt′Mnn(~Rt′) = i

∫

Ct
t0

d~R 〈n(~R)|∇~R n(
~R)〉 , (2.7)

the differential equation ḃn(t) = −bn(t)Mnn(~Rt) can be solved as

bn(t) = bn(t0) e
i ξn(t) = δnm ei ξn(t). (2.8)

We have used the initial condition bn(t0) = δnm, and defined the path Ct
t0 that is sampled

during the time-evolution of ~Rt in parameter space. Inserting Eq. (2.8) into Eq. (2.3),
this yields the state vector of the quantum adiabatic limit [BF28, Kat50, Mes62]

|Ψad
m (t)〉 = ei γm(t) |m(~Rt)〉 , (2.9)

2Since Mnm(~Rt) = −M∗
mn(~Rt), the diagonal terms Mnn(~Rt) of Eq. (2.5) are purely imaginary num-

bers. The phase factor ξn(t) is thus real. We have used that 〈∇~R n(
~Rt)|m(~Rt)〉+ 〈n(~Rt)|∇~Rm(~Rt)〉 =

∇~R 〈n(~Rt)|m(~Rt)〉 = ∇~R δnm = 0.

8



2.1 Quantum Dynamics in Parameter Space

with the phase factor γm(t) = ξm(t)−λm(t). Eq. (2.9) states that the system remains in
the energy band Em(~Rt) to which it has been initialized, as at each instant the quantum
state |Ψad

m (t)〉 is proportional to the instantaneous eigenstate |m(~Rt)〉.
The adiabatic limit of Eq. (2.8) is based on the assumption that couplings to

neighboring states of the instantaneous spectrum are completely suppressed, which is
approximately satisfied under two conditions: (i) the time-dependence of the Hamiltonian
Ĥ(~Rt) is made sufficiently slow, (ii) the quantum state |Ψ(t)〉 is initialized in an energy
band Em(~Rt) that is energetically separated from the other bands En 6=m(~Rt). We

corroborate these statements by rewriting the off-diagonal coupling terms Mnm(~Rt) of
Eq. (2.5) as

Mnm(~Rt) = −
~̇Rt

∆nm(~Rt)
〈n(~Rt)|

(

∇~R Ĥ(~Rt)
)

|m(~Rt)〉 , (2.10)

showing that transitions to neighboring energy bands are associated with a finite energy
gap ∆nm(~Rt) = En(~Rt) − Em(~Rt). If the rate of change of the control parameters

| ~̇Rt| ≪ ∆nm(~Rt) is sufficiently small, the excitation energy required to overcome this
gap is not reached, which is why the system remains in the instantaneous eigenstate
|m(~Rt)〉. We have derived Eq. (2.10) applying the identity

〈n(~Rt)|
(

∇~R Ĥ(~Rt)
)

|m(~Rt)〉 = ∇~REn(~Rt) δnm −∆nm(~Rt) 〈n(~Rt)|∇~Rm(~Rt)〉 , (2.11)

in which we have used that Mnm(~Rt) = −M∗
mn(

~Rt).
In addition to the dynamical phase factor λn(t), the adiabatic quantum state |Ψad

m (t)〉
exhibits a phase factor ξn(Ct

t0) ≡ ξn(t) that only depends on the geometrical properties
of the path Ct

t0 in parameter space. The representation ξn(Ct
t0) manifests itself in the

line integral of Eq. (2.7), which reveals a geometrical phase factor that transforms as

ξn(Ct
t0) 7→ ξn(Ct

t0) + χn(~Rt0)− χn(~Rt) (2.12)

when applied to the gauge transformation of Eq. (2.6). Due to the gauge dependence

of Eq. (2.12), it has been assumed that the geometrical phase ei ξn(C
t
t0
) can never be

physically measured, as its phase factor ξn(Ct
t0) can be canceled out by a suitable choice

of χn(~Rt) [BF28, Foc28]. This assumption, however, does not apply to a cyclic evolution
around a closed path CT

t0 with ~Rt0 =
~RT , where the adiabatic quantum state |Ψad

m (t)〉
acquires a gauge-invariant Berry phase ei ξ

B
n (CT

t0
) with phase factor [Ber84]

ξBn (CT
t0) = i

∮

CT
t0

d~R 〈n(~R)|∇~R n(
~R)〉 . (2.13)

In fact, assuming a single-valued set of basis states {|n(~Rt)〉}n, the condition ~Rt0 = ~RT

implies that (cf. Eq. (2.6))

χn(~Rt0)− χn(~RT ) = 2πn, n ∈ Z,

indicating that Eq. (2.13) can be only changed by an integer multiple of 2π (cf. Eq. (2.12)).

As a result, the Berry phase ei ξ
B
n (CT

t0
) becomes a gauge-invariant physical quantity,

with observable consequences that have received considerable attention in all fields of
physics [Res00, XCN10].
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Chapter 2 Dynamical Synthetic Quantum Matter

2.1.3 Adiabatic Perturbation Theory

Assuming that the time-evolution of the system proceeds insufficiently slow, the quantum
adiabatic theorem no longer applies. In this case, the differential equation (2.4) does
not simplify to a diagonal form, but can be perturbatively solved using APT [ROP08,
WBD+17]. The latter yields solutions bn(t) expanded in the rate of change of the control

parameters ~̇Rt, with a zeroth-order term corresponding to the adiabatic limit in which the
dynamics is confined to the initialized energy band Em(~Rt). Off-diagonal coupling terms
Mnm(~Rt) (see Eq. (2.10)) between neighboring energy bands En 6=m(~Rt) are accounted
for by higher orders of the perturbative approach, resulting in corrections to Eq. (2.9)
that explicitly involve overlaps with excited states of the instantaneous spectrum. We
show that these transitions already appear in first-order APT, demonstrating that the
latter provides a powerful tool to systematically go beyond the adiabatic limit.

We start our derivation by introducing a unitary operation3 V̂ (~Rt) that transforms
the instantaneous eigenstates |n(~Rt)〉 of Eq. (2.2) into a set of ~Rt-independent basis
states {|en〉}n:

|n(~Rt)〉 = V̂ (~Rt) |en〉 . (2.14)

Eq (2.14) defines a basis transformation in which the transformed Hamiltonian Ĥ ′(~Rt) =
V̂ †(~Rt)Ĥ(~Rt)V̂ (~Rt) obtains diagonal matrix elements

〈en|Ĥ ′(~Rt)|em〉 = 〈en|V̂ †(~Rt)Ĥ(~Rt)V̂ (~Rt)|em〉 = 〈n(~Rt)|Ĥ(~Rt)|m(~Rt)〉 = En(~Rt) δnm
(2.15)

that correspond to the energy eigenvalues En(~Rt) of Eq. (2.2). Applying the unitary
transformation to the time-dependent Schrödinger equation (2.1), the exact solution
|Ψ(t)〉 can be transformed to a rotated state vector |Ψrot(t)〉 = V̂ †(~Rt) |Ψ(t)〉, whose
dynamics

i
d

dt
|Ψrot(t)〉 = Ĥrot(~Rt) |Ψrot(t)〉 (2.16)

is governed by the rotated-frame Hamiltonian Ĥrot(~Rt) = Ĥ ′(~Rt) + Â(~Rt). We have

introduced the Hermitian operator4 Â(~Rt) = −i ~̇Rt V̂
†(~Rt) [∇~RV̂ (~Rt)], which accounts

for the overlaps between neighboring basis states in terms of matrix elements

〈en|Â(~Rt)|em〉 = −i ~̇Rt 〈en|V̂ †(~Rt)
(

∇~RV̂ (~Rt)
)

|em〉 =

= −i ~̇Rt 〈n(~Rt)|∇~Rm(~Rt)〉 = −iMnm(~Rt). (2.17)

As the coupling terms Mnm(~Rt) of Eq. (2.5) are proportional to the rate of change of the

control parameters ~̇Rt, the potential Â(~Rt) can be considered as a weak perturbation that

3The existence of a unitary operation V̂ (~Rt) is guaranteed by the spectral theorem, which states
that the eigenvectors of any Hermitian operator Ĥ(~Rt) can be chosen to form an orthonormal set of
basis states {|n(~Rt)〉}n. This implies that Ĥ(~Rt) can be diagonalized by a unitary operation V̂ (~Rt),
the latter generated according to the transformation relation (2.14).

4Since [∇~RV̂
†(~Rt)] V̂ (~Rt) + V̂ †(~Rt) [∇~RV̂ (~Rt)] = ∇~R [V̂ †(~Rt) V̂ (~Rt)] = ∇~R [✶] = 0, the potential

Â(~Rt) is a Hermitian operator.
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2.1 Quantum Dynamics in Parameter Space

slightly changes the spectral properties (2.15) of the unperturbed Hamiltonian Ĥ ′(~Rt).
The associated modifications can be systematically derived using static perturbation
theory [Sch07, SN21], in which the spectrum of the perturbed Hamiltonian

Ĥrot(~Rt) |mrot(~Rt)〉 = Erot
m (~Rt) |mrot(~Rt)〉

gets expanded in the small parameter ~̇Rt. Using the matrix elements of Eq. (2.17), this
yields first-order corrections

Erot
m (~Rt) = Em(~Rt) + 〈em|Â(~Rt)|em〉 = Em(~Rt)− iMmm(~Rt),

|mrot(~Rt)〉 = |em〉+
∑

n 6=m

〈en|Â(~Rt)|em〉
∆mn(~Rt)

|en〉 = |em〉+ i
∑

n 6=m

Mnm(~Rt)

∆nm(~Rt)
|en〉 ,

with eigenstates |mrot(~Rt)〉 that explicitly exhibit transitions to neighboring basis states
|en 6=m〉 weighted by off-diagonal coupling terms Mnm(~Rt) (see Eq. (2.10)) and energy

gaps ∆nm(~Rt) = En(~Rt)− Em(~Rt).

Taking into account that d
dt |mrot(~Rt)〉 only contains higher orders in ~̇Rt, a set

of fundamental solutions to Eq. (2.16) is formed by |Ψrot
m (t)〉 = ei γm(t) |mrot(~Rt)〉,

with phase factors γm(t) = −
∫ t
t0
dt′Erot

m (~Rt′). Rotating back to the original basis

|Ψ(t)〉 = V̂ (~Rt) |Ψrot(t)〉, and assuming that the system is initialized in an instantaneous
eigenstate |m(~Rt0)〉, we obtain the final result of first-order APT [ROP08, WBD+17]

|Ψm(t)〉 = ei γm(t)
[

|m(~Rt)〉+ i
∑

n 6=m

Mnm(~Rt)

∆nm(~Rt)
|n(~Rt)〉

]

, (2.18)

with an overall phase factor γm(t) = −
∫ t
t0
dt′ [Em(~Rt′)− iMmm(~Rt′)]. In the quantum

adiabatic limit, the second expression of Eq. (2.18) is neglected, resulting in a zeroth-
order term confined to the synthetic energy band Em(~Rt). First-order corrections,
however, yield transitions to the excited states of the instantaneous spectrum, generated
by the off-diagonal coupling terms Mnm(~Rt) of Eq. (2.10). The quantum state |Ψm(t)〉
is well-defined whenever the system is initialized in an energy band Em(~Rt) that is
energetically separated from the other bands En 6=m(~Rt), which is why degeneracies in
the excited part of the spectrum are explicitly allowed.

2.1.4 Geometrical Response

Considering the energy transfer rate associated with the time-evolution in a given
direction of the parameter space, the second expression of Eq. (2.18) reveals a first-order
response proportional to the Berry curvature of the adiabatic energy band [GP12,
WBD+17]. This fundamental concept can be derived by analyzing the equations of
motion for the total energy transfer rate [Ehr27, Bal15, GS18]

d

dt
〈Ĥ(~Rt)〉 = 〈∂t Ĥ(~Rt)〉 = ~̇Rt 〈Î(~Rt)〉 , Î(~Rt) = ∇~R Ĥ(~Rt), (2.19)

where the expectation values are calculated according to the exact solution |Ψ(t)〉 of the
time-dependent Schrödinger equation (2.1). Each term Ṙk,t 〈̂Ik(~Rt)〉 can be interpreted
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Chapter 2 Dynamical Synthetic Quantum Matter

as the individual pumping rate generated by temporally evolving in k direction of
the parameter space, with Îk(~Rt) = ∂Rk

Ĥ(~Rt) resembling a current operator for the
motion in the associated synthetic direction. Using the perturbed quantum state
|Ψm(t)〉 of Eq. (2.18), the expectation value 〈̂Ik(~Rt)〉 can be expanded to first order in

~̇Rt [GP12, WBD+17]:

〈̂Ik(~Rt)〉m = 〈Ψm(t)|̂Ik(~Rt)|Ψm(t)〉 = ∂Em(~Rt)

∂Rk
+

D
∑

l=1

Ṙl,tΩ
(m)
kl (~Rt), (2.20)

where the sum runs over the components of the D−dimensional parameter space
~Rt ∈ RD. Eq. (2.20) demonstrates that the Berry curvature [Ber84]

Ω
(m)
kl (~Rt) = −i

∑

n 6=m

〈m(~Rt)|̂Ik(~Rt)|n(~Rt)〉 〈n(~Rt)|̂Il(~Rt)|m(~Rt)〉 − (l ↔ k)

∆2
nm(~Rt)

(2.21)

arises as the first-order response to the current operator Îk(~Rt), accompanied by the
individual components of the rate of change of the control parameters Ṙl,t. In this
sense, the geometrical features of the dynamical synthetic quantum matter rely on
the first-order corrections of APT, in which the interband excitations of Eq. (2.18)

can be readily mapped onto the Berry curvature Ω
(m)
kl (~Rt) whenever the system is

initialized in an energetically separated energy band and evolves sufficiently slowly in
time. Couplings between synthetic energy bands are thus essential for the generation
of the Berry phase effects [XCN10, CF21], as the adiabatic limit only produces Bloch
oscillations ∂Rk

Em(~Rt) [Blo29].

The Berry curvature Ω
(m)
kl (~Rt) of Eq. (2.21) is a gauge-invariant quantity5, which

provides a purely local description of the geometrical properties of the parameter space.
The latter becomes more clear by expressing Eq. (2.21) as an intrinsic property of the
occupied instantaneous eigenstates

Ω
(m)
kl (~Rt) = −i [〈∂Rk

m(~Rt)|∂Rl
m(~Rt)〉 − (l ↔ k)] = 2 Im[〈∂Rk

m(~Rt)|∂Rl
m(~Rt)〉],

(2.22)
where we employ the matrix elements (2.11) of the current operator Î(~Rt), the com-
pleteness relation

∑

n |n(~Rt)〉〈n(~Rt)| = ✶, and introduce the imaginary part Im[z] of
a complex number z ∈ C. Eq. (2.22) implies that the transitions to the excited states
of the spectrum are virtual in nature, as the off-diagonal contributions of Eq. (2.21)
are exclusively projected onto the adiabatic properties of the synthetic energy band
Em(~Rt). This projection, in turn, leads to a representation of the Berry curvature

Ω
(m)
kl (~Rt) that involves the incremental changes of the occupied eigenstates |m(~Rt)〉

in the synthetic directions of the parameter space. In this sense, the Berry curvature

5In fact, Eq. (2.21) does not depend on derivatives of the instantaneous eigenstates |∇~Rm(~Rt)〉,
which is why a smooth and differentiable choice of gauge (cf. Eq (2.6)) is not mandatory. Moreover, it is
not even necessary to choose a single-valued set of basis states {|n(~Rt)〉}n, so that Eq. (2.21) holds for
any solution of the instantaneous spectrum of Eq. (2.2). This becomes especially relevant for numerical
calculations, in which phase relations between instantaneous eigenstates are usually hard to control by
exact diagonalization routines.
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2.1 Quantum Dynamics in Parameter Space

Ω
(m)
kl (~Rt) represents a local geometrical quantity, whose gauge-invariance does not rely

on the global condition of a closed path CT
t0 (cf. Eq. (2.13)) in parameter space. For this

reason, Eq. (2.22) can be considered as the local counterpart of the Berry phase ξBm(CT
t0),

which becomes particularly evident for a three-dimensional parameter space (D = 3).
In this illustrative case, the closed line integral of Eq. (2.13) can be reformulated into a
surface integral according to Stokes’ theorem [Gri13]

ξBm(CT
t0) =

∫∫

S
d~S · ~Ω(m)(~R), ~Ω(m)(~R) = i∇~R × 〈m(~R)|∇~Rm(~R)〉 , (2.23)

in which the integration is performed along a two-dimensional surface S whose boundary
is given by the closed path CT

t0 in parameter space. Using the vector calculus of R3,

we have introduced the vector field ~Ω(m)(~R), which reveals a flux through the surface
S corresponding to the Berry phase ξBm(CT

t0). This geometrical structure suggests an

analogy to electrodynamics, where ~Ω(m)(~R) plays the role of a magnetic field and
ξBm(CT

t0) represents the magnetic flux that is generated by traversing the boundary
of the surface ∂S = CT

t0 . In this sense, the r−th component of the vector form

Ω
(m)
r (~R) = i

∑

p,s ǫrps 〈∂Rp m(~R)|∂Rs m(~R)〉 reflects the local geometrical properties of

the parameter space, which eventually manifests itself in the Berry curvature relation6

Ω
(m)
kl (~R) =

3
∑

r=1

ǫlkr Ω
(m)
r (~R). (2.24)

We have introduced the epsilon tensor ǫlkr, whose indices run over the components of
the three-dimensional parameter space R3. The above statements, however, can also
be extended to arbitrary dimensions of the parameter space ~Rt ∈ RD. In this case,
Eq. (2.23) can be generalized using the basic concepts of differential forms [Con08, Lee13],

suggesting that the Berry curvature Ω
(m)
kl (~R) is analogous to the field strength tensor of

electrodynamics [Res00, XCN10].
Berry phase effects have attracted much attention in the condensed matter commu-

nity, as they are essential for the modern description of quantum Hall effects, electric
polarization, or quantum charge pumps [BMK+03, XCN10, Van18]. Many of these
intriguing observations can be characterized by the semiclassical formulation of electron
dynamics in a periodic lattice, where the equations of motion are modified by a Berry
curvature term arising from virtual couplings between energy bands [CN95, CN96, SN99].
Integrating these geometrical corrections over the Brillouin zone (BZ) of the crystal,
this leads to topological phases that have served as the basis for the most fascinating
phenomena in physics [Tho98, Wen17]. In the remainder of Chap. 2, we show that
quasiperiodically driven quantum systems provide an illustrative platform for generating
geometrical and topological effects in dynamical synthetic quantum matter, deriving
an analogy between Eq. (2.20) and the semiclassical equations of motion in a higher-
dimensional Floquet lattice [HCT83, CT04, EA15, VPM16]. The latter features a
synthetic BZ that is entirely sampled during the quasiperiodic dynamics of the quantum
state |Ψm(t)〉, yielding a quantized response proportional to the topological invariant

6Note that Eq. (2.24) formally includes the two-dimensional parameter space (D = 2) as well.
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Chapter 2 Dynamical Synthetic Quantum Matter

of the synthetic energy band Em(~Rt) [MRH17]. Our derivations are based on the
mathematical concept of Floquet theory [Flo83, Shi65, Sam73], which is why we start
with the theoretical treatment of periodically driven quantum systems.

2.2 Floquet Theory

A versatile tool for the generation of topological phenomena in nonequilibrium quantum
systems involves periodic driving in time [Hol16, Eck17], leading to time-translation
invariant settings theoretically explained in terms of Floquet theory [Flo83]. As Flo-
quet theory represents the temporal analog of Bloch’s theorem for spatially periodic
systems [Blo29, Kit71, AM76], the associated Floquet state is characterized by both
a time-periodic modulation and a stroboscopic phase evolution, the latter governed
by the quasienergies of the effective time-independent Hamiltonian of the Floquet sys-
tem [GH98]. We argue that this effective Hamiltonian can exhibit topological properties
absent in its nondriven counterpart, revealing light-induced topological phase transitions
as observed in ultracold atomic gases [GJÖS14, GBZ16, CDS19] or Floquet topological
insulators [CDSM13, OK19, RL20a]. Exploiting the periodicity of the quasienergy
spectrum, we show that the periodically driven quantum system can be mapped onto
an eigenvalue problem in an extended Floquet Hilbert space [Sam73], allowing for an
analytic calculation of the effective Hamiltonian in the context of a high-frequency
expansion [BDP15, EA15]. The eigenvalue problem can be further illustrated in terms
of a tight-binding model in the Floquet lattice [Shi65, RL20b], in which the quantum
state is expanded in the Fourier modes of the driving frequency. This projection serves
as a basis for the formation of topological phases in dynamically-induced synthetic
dimensions, with linear response signals that translate into topological pumping ef-
fects in the lower-dimensional system. As the origin of Floquet theory goes back to
the mathematical description of linear differential equations (LDEs) with periodic
coefficients, we start our investigation with the mathematical concepts of Floquet
theory [Chi99, Tes12, Sid13, BES13, Awr14].

2.2.1 Mathematical Background

We consider the initial value problem (IVP)

~̇y(t) = Â(t) ~y(t), ~y(t0) = ~y0, (2.25)

where we introduce the vector ~y(t) : R 7→ Cn, the shorthand ~̇y(t) = d
dt ~y(t), and the

operator Â(t) : R 7→ Cn×n. We assume that Â(t) is a locally integrable matrix-valued
function, yielding a unique locally absolutely continuous solution ~y(t, t0, ~y0) ∈ Cn

satisfying the initial condition of Eq. (2.25) [BES13]. A linearly independent and
fundamental set of solutions ~yi(t) {i = 1, . . . , n} of the LDE forms a vector space Cn,
such that a fundamental matrix Γ̂(t) : R 7→ Cn×n can be generated whose i−th column
is given by the basis vector ~yi(t). The unique solution of the IVP can be represented as

~y(t, t0, ~y0) = Φ̂(t, t0) ~y0, (2.26)
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2.2 Floquet Theory

where Φ̂(t, t0) = Γ̂(t) Γ̂−1(t0) corresponds to a specific fundamental operator, the
transition (matricant) matrix of the system [Chi99, Sid13, Awr14]. We use that any
fundamental matrix Γ̂(t) represents a regular operator7, whose inverse matrix is given
by Γ̂−1(t). With Φ̂(t, t0), any fundamental matrix Γ̂(t) can be generated as

Γ̂(t) = Φ̂(t, t0) Γ̂(t0), (2.27)

where we employ Γ̂−1(t0) Γ̂(t0) = ✶. Inserting Eq. (2.26) into the LDE of Eq. (2.25),
this leads to the matrix analog of the IVP:

˙̂
Φ(t, t0) = Â(t) Φ̂(t, t0), Φ̂(t0, t0) = ✶. (2.28)

Within the interval [t0, t1], the transition matrix Φ̂(t, t0) transforms the initial vector
~y0 = ~y(t0) into the time-evolved vector ~y(t1) = Φ̂(t1, t0) ~y(t0) (cf. Eq. (2.26)), resulting
in group properties

Φ̂(t2, t0) = Φ̂(t2, t1) Φ̂(t1, t0), Φ̂(t0, t1) = Φ̂−1(t1, t0). (2.29)

Considering periodic coefficients Â(t) = Â(t + NT ) with N ∈ ❩, Eqs. (2.25) and
(2.28) yield LDEs with periodicity T > 0. Assuming that Φ̂(t, t0) corresponds to the
transition matrix of the periodic IVP, the operator Σ̂(t, t0, NT ) = Φ̂(t + NT, t0) is
identified as a fundamental matrix of the LDE of Eq. (2.28):

˙̂
Σ(t, t0, NT ) =

˙̂
Φ(t+NT, t0) = Â(t+NT ) Φ̂(t+NT, t0) = Â(t) Σ̂(t, t0, NT ).

As each fundamental matrix can be represented as shown in Eq. (2.27), the transition
matrix Φ̂(t, t0) of the periodic LDE obeys the property

Φ̂(t+NT, t0) = Φ̂(t, t0) M̂(NT, t0), (2.30)

where we have introduced the monodromy matrix M̂(T, t0) = Φ̂(t0 + T, t0) [Chi99,
Tes12, BES13, Awr14]. The latter represents a regular operator obeying the relation

M̂(NT, t0) = Φ̂(t0 +NT, t0) = Φ̂(t0 + (N − 1)T, t0) M̂(T, t0) = · · · = M̂N (T, t0),

which is why the monodromy matrix M̂(T, t0) can be parametrized as a matrix expo-
nential8 of an operator ÂF

t0 ∈ Cn×n:

M̂(T, t0) = Φ̂(t0 + T, t0) = eTÂF
t0 . (2.31)

7By definition, a fundamental matrix Γ̂(t) contains linearly independent columns that yield a non-
vanishing determinant det(Γ̂(t)) 6= 0. This guarantees the existence of an inverse matrix Γ̂−1(t), showing
that Γ̂(t) represents a regular operator.

8In fact, any regular operator M̂(T, t0) can be written as a matrix exponential M̂(T, t0) = eX̂(T,t0)

of an operator X̂(T, t0) ∈ Cn×n [Chi99, Sid13, Hal15]. As M̂(NT, t0) = M̂N (T, t0), this implies
that X̂(NT, t0) = N X̂(T, t0), where the latter can be solved as X̂(T, t0) = TÂF

t0 by introducing a

T−independent operator ÂF
t0 ∈ Cn×n.
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Chapter 2 Dynamical Synthetic Quantum Matter

Using Eqs. (2.30) and (2.31), the transition matrix Φ̂(t, t0) of the periodic IVP can be
represented as

Φ̂(t, t0) = Φ̂F (t, t0) e
(t−t0)ÂF

t0 , Φ̂F (t0, t0) = ✶, (2.32)

where we have introduced the T−periodic operator

Φ̂F (t, t0) = Φ̂(t, t0) e
−(t−t0)ÂF

t0 , Φ̂F (t+NT, t0) = Φ̂F (t, t0). (2.33)

Inserting Eq. (2.32) into the LDE of Eq. (2.28), this yields a relation between the periodic
coefficients Â(t) = Â(t+NT ) and the t−independent operator ÂF

t0 :

ÂF
t0 = Φ̂−1

F (t, t0) Â(t) Φ̂F (t, t0)− Φ̂−1
F (t, t0)

˙̂
ΦF (t, t0), (2.34)

where we use the inverse matrix Φ̂−1
F (t, t0) of the regular operator Φ̂F (t, t0) defined in

Eq. (2.33).
Let ~yi(t0) ∈ Cn be nontrivial eigenvectors of ÂF

t0 ∈ Cn×n with eigenvalues9 λi ∈ C,
while we assume that the algebraic equals the geometric multiplicity. The vectors ~yi(t0)
{i = 1, . . . , n} are linearly independent, and we can identify the fundamental set of the
periodic LDE as

~yi(t, t0) = Φ̂(t, t0) ~yi(t0) = Φ̂F (t, t0) e
(t−t0)ÂF

t0 ~yi(t0) = eλi(t−t0) Φ̂F (t, t0) ~yi(t0).

Introducing the function
~ui(t, t0) = Φ̂F (t, t0) ~yi(t0), (2.35)

the Floquet solutions ~yi(t, t0) can be represented as a product of an exponential eλi(t−t0)

and the T−periodic Floquet modes ~ui(t, t0) = ~ui(t+NT, t0) [Flo83]:

~yi(t, t0) = eλi(t−t0) ~ui(t, t0), ~ui(t0, t0) = ~yi(t0). (2.36)

The unique solution ~y(t, t0, y0) of the IVP with periodic coefficients Â(t) = Â(t+NT )
is given by the superposition of the Floquet solutions ~y(t, t0, y0) =

∑

i ci ~yi(t, t0), with
coefficients ci ∈ C satisfying the initial condition

∑

i ci ~yi(t0) = ~y0 of Eq. (2.25).
The eigenvalues λi ∈ C of Eq. (2.36) are called Floquet exponents [Chi99, Tes12,

Sid13, BES13], and are explicitly independent of the initial time t0. This stems from
the fact that monodromy matrices at different initial times are connected by a basis
transformation

M̂(T, t′0) = Φ̂(t′0+T, t
′
0) = Φ̂(t′0+T, t0) Φ̂(t0, t

′
0) = Φ̂−1(t0, t

′
0) M̂(T, t0) Φ̂(t0, t

′
0), (2.37)

yielding t0−independent eigenvalues M̂(T, t0) ~yi(t0) = eTλi ~yi(t0) denoted as Floquet
multipliers of the periodic LDE [Tes12, Sid13, BES13]. Here, we employ the properties
of Eqs. (2.29) and (2.30). Inserting Eq. (2.31) into Eq. (2.37), this yields the associated
basis transformation for the operator ÂF

t0 :

ÂF
t′0
= Φ̂−1(t0, t

′
0) Â

F
t0 Φ̂(t0, t

′
0) = Φ̂−1

F (t0, t
′
0) Â

F
t0 Φ̂F (t0, t

′
0), (2.38)

where we use the representation (2.32) of the transition matrix Φ̂(t, t0) of the periodic
LDE.

9The eigenvalues λi ∈ C are explicitly independent of the initial time t0, which directly follows from
the basis transformations of Eqs. (2.37) and (2.38).
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2.2 Floquet Theory

2.2.2 Periodically Driven Quantum Systems

Let a periodically driven quantum system be described by the T−periodic Hamiltonian
Ĥ(t) = Ĥ(t+T ), where the quantum state |Ψ(t)〉 obeys the time-dependent Schrödinger
equation [Sch26, Sha08, GS18]

i
d

dt
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (2.39)

The time-evolution of an initial state |Ψ(t0)〉 is governed by the unitary evolution
operator Û(t, t0), formally revealing the solution |Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉. Applying this
approach to Eq. (2.39), the Schrödinger equation for the quantum state |Ψ(t)〉 turns
into the equation for the time-evolution operator

i
d

dt
Û(t, t0) = Ĥ(t) Û(t, t0), Û(t0, t0) = ✶. (2.40)

For autonomous systems with a time-independent Hamiltonian Ĥ(t) = Ĥ0, Eq. (2.40)

reduces to the evolution operator Û(t, t0) = e−i Ĥ0 (t−t0), readily characterized by the
energy eigenvalues En and eigenstates |n〉 of the Hamiltonian Ĥ0: Û(t, t0) |n〉 =

e−i Ĥ0 (t−t0) |n〉 = e−iEn(t−t0) |n〉. Expanding the initial state |Ψ(t0)〉 =
∑

n cn |n〉
in the orthonormal set of basis states {|n〉}n, the solution to Eq. (2.39) yields

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 =
∑

n

cn e
−i Ĥ0 (t−t0) |n〉 =

∑

n

cn e
−iEn(t−t0) |n〉 , cn ∈ C.

(2.41)
For an arbitrary time-dependence Ĥ(t), the evolution operator Û(t, t0) can be formally
written as

Û(t, t0) = T̂

[

exp
(

− i

∫ t

t0

dt′ Ĥ(t′)
)

]

, (2.42)

with the time-ordering operator T̂. Finding analytical expressions for Eq. (2.42) generally
proves to be very challenging, which is why the description of dynamical quantum
systems often relies on numerical calculations. In what follows, however, we apply
the T−periodicity of the Hamiltonian Ĥ(t) = Ĥ(t + T ), revealing exact solutions to
Eqs. (2.39) and (2.40) in the context of Floquet theory (see Sec. 2.2.1).

Comparing Eqs. (2.28) and (2.40), the time-evolution operator Û(t, t0) can be
identified as a transition matrix of a LDE with periodic coefficients Â(t) = −i Ĥ(t).
Applying Floquet theory, this yields a representation (cf. Eq. (2.32))

Û(t, t0) = ÛF (t, t0) e
−i ĤF

t0
(t−t0), ÛF (t0, t0) = ✶, (2.43)

with a T−periodic operator ÛF (t+ T, t0) = ÛF (t, t0) (cf. Eq. (2.33)) transforming the
time-dependent Hamiltonian Ĥ(t) into a time-independent operator (cf. Eq. (2.34))

ĤF
t0 = Û †

F (t, t0) Ĥ(t) ÛF (t, t0)− i Û †
F (t, t0)

˙̂
UF (t, t0). (2.44)

We have used the unitarity of the time-evolution operator Û(t, t0), implying that

Û−1
F (t, t0) = Û †

F (t, t0) and (ĤF
t0)

† = ĤF
t0 . A fundamental set of basis states for the time-

periodic Schrödinger equation (2.39) is given by the Floquet solutions (cf. Eq. (2.36))

|ψn(t, t0)〉 = |un(t, t0)〉 e−i ǫn(t−t0), |un(t0, t0)〉 = |un(t0)〉 , (2.45)
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Chapter 2 Dynamical Synthetic Quantum Matter

where we have introduced the T−periodic Floquet modes |un(t+ T, t0)〉 = |un(t, t0)〉
(cf. Eq. (2.35)), and the eigenvalues ǫn and eigenstates |un(t0)〉 of the Hermitian operator
ĤF

t0 . The structure of the Floquet solutions |ψn(t, t0)〉 reveals an analogy to Bloch’s
theorem [Blo29, Kit71, AM76] for spatially-periodic systems:

1. The Floquet modes |un(t, t0)〉 take the role of crystal-periodic functions, where
time t is considered as a coordinate. The translation vector is given by the
periodicity T , with modes satisfying the condition |un(t+ T, t0)〉 = |un(t, t0)〉.

2. The Hermitian operator ĤF
t0 , known as the Floquet Hamiltonian of the period-

ically driven quantum system [GH98, EA15, Eck17], guarantees the existence
of real eigenvalues ǫn ∈ R and a complete orthonormal set of Floquet solu-
tions {|ψn(t, t0)〉}n. Apart from an overall phase factor, the Floquet solutions
|ψn(t+ T, t0)〉 = |ψn(t, t0)〉 e−i ǫn T are periodic in time.

3. The eigenvalue ǫn assumes the role of a crystal wave vector, denoted as the
quasienergy of the Floquet state |ψn(t, t0)〉 [GH98, EA15, Hol16, Eck17]. In
Sec. 2.2.3, we show that different quasienergies ǫnm = ǫn + mω, with ω = 2π

T
and m ∈ ❩, correspond to the same Floquet state |ψn(t, t0)〉, resulting in the
definition of a first BZ. The reciprocal lattice vector in the temporal case is given
by Gm = mω, satisfying the condition Gm T = 2πm.

Introducing constant coefficients cn = 〈un(t0)|Ψ(t0)〉, the dynamics of the quantum state
|Ψ(t)〉 =

∑

n cn |ψn(t, t0)〉 =
∑

n cn |un(t, t0)〉 e−i ǫn(t−t0) solving the time-dependent
Schrödinger equation (2.39) is affected by two contributions [EA15, Eck17]:

1. The temporal dependence of the T−periodic Floquet modes |un(t, t0)〉, referred to
as the micromotion of the quantum state |Ψ(t)〉. As this time-evolution is generated
by |un(t, t0)〉 = ÛF (t, t0) |un(t0)〉 (cf. Eq. (2.35)), the unitary operator ÛF (t, t0) is
denoted as the micromotion operator of the periodically driven quantum system.

2. The relative dephasing of the phase factors e−i ǫn(t−t0), determined by the quasiener-
gies ǫn of the Floquet states |ψn(t, t0)〉. As the micromotion |un(t+ T, t0)〉 =
|un(t, t0)〉 is temporally periodic, the dephasing reflects the stroboscopic time-
evolution10 of the periodically driven quantum system. In this sense, the quasiener-
gies ǫn play a role similar to the stationary energies En of an autonomous system
(cf. Eq. (2.41)).

Accordingly, the dynamics of a periodically driven quantum system can be divided into
a short-time (micromotion) and a long-time (stroboscopic) evolution of the quantum
state |Ψ(t)〉, allowing for a significant improvement in computation time as numerical
simulations can be restricted to the time-interval of periodicity T . In fact, as the Floquet
Hamiltonian ĤF

t0 of Eq. (2.44) is originally defined by (cf. Eq. (2.31))

Û(t0 + T, t0) = e−iTĤF
t0 , (2.46)

10The stroboscopic time-evolution refers to times t = t0 +NT that are integer multiples N ∈ Z of the
periodicity T > 0.
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2.2 Floquet Theory

both the micromotion operator ÛF (t, t0) (cf. Eq. (2.33)) and the Floquet Hamiltonian
ĤF

t0 can be determined by diagonalizing the evolution operator Û(t, t0) over one period
T . The dephasing effects of the stroboscopic time-evolution are then captured by the
spectral properties of Eq. (2.46).

The Floquet Hamiltonian ĤF
t0 =

∑

n ǫn |un(t0)〉〈un(t0)| formally shows a parametric
dependence on the initial time t0, generated by the Floquet modes |un(t0)〉 obeying
the initial condition of Eq. (2.45). This yields a unique representation11 of ĤF

t0 , where

a Floquet Hamiltonian ĤF
t′0

at different initial time t′0 is related to ĤF
t0 by a unitary

transformation ĤF
t′0

= Û †
F (t0, t

′
0) Ĥ

F
t0 ÛF (t0, t

′
0) (cf. Eq. (2.38)). This unitary equivalence

reveals t0-independent quasienergies ǫn, suggesting that the parametrization on the
initial time t0 can be completely avoided by introducing an effective Hamiltonian12

ĤF = Û †
F (t) Ĥ(t) ÛF (t)− i Û †

F (t)
˙̂
UF (t), (2.47)

with a time-periodic unitary operator ÛF (t+ T ) = ÛF (t). In Eq. (2.47), the parametric
dependence on t0 is eliminated at the price of an unitary arbitrariness in the set of
operators ĤF and ÛF (t). In fact, the Floquet Hamiltonian ĤF

t0 of Eq. (2.44) can

be interpreted as a concrete choice of the effective Hamiltonian ĤF , as described by
the unitary transformation ĤF

t0 = ÛF (t0) ĤF Û
†
F (t0). Here, the micromotion operator

takes the form ÛF (t, t0) = ÛF (t) Û
†
F (t0), yielding a representation of the evolution

operator [Shi65, EA15, Eck17]

Û(t, t0) = ÛF (t) e
−i ĤF (t−t0) Û †

F (t0). (2.48)

From this formula, the degree of freedom in the set of operators ĤF and ÛF (t) becomes
immediately clear. Namely, multiplying ÛF (t) by an arbitrary time-independent unitary
operator Û ′

F (t) = ÛF (t) Û , Eq. (2.48) remains invariant as long as the effective Hamilto-

nian transforms as Ĥ ′
F = Û † ĤF Û . Taking the concrete choice Û = Û †

F (t0), this yields

the aforementioned unitary equivalence between the effective Hamiltonian ĤF and the
Floquet Hamiltonian ĤF

t0 .

As the effective Hamiltonian13 ĤF can be explicitly manipulated by suitable driving
protocols of the T−periodic Hamiltonian Ĥ(t), this can be used to impose topolog-
ical phenomena on quantum systems by engineered external fields. Following this
approach, known as Floquet engineering [GD14, BDP15, EA15, Hol16, Eck17], the
effective Hamiltonian ĤF can be designed to induce artificial gauge-fields in ultracold
atomic gases [GJÖS14, GBZ16, CDS19] or topologically nontrivial band structures in
Floquet topological insulators [CDSM13, OK19, RL20a]. More precisely, in the Floquet
topological insulators, conventional condensed matter materials can be driven into non-
trivial quantum Hall phases by time-periodic modulations, yielding highly controllable

11Apart from a diagonal term, such as mω with ω = 2π
T

and m ∈ ❩, as discussed in detail in Sec. 2.2.3.
12Assuming a finite state space of the physical system, the existence of such a transformation is

ensured by Floquet theory [EA15, Eck17].
13In what follows, we choose between the effective Hamiltonian ĤF and the Floquet Hamiltonian ĤF

t0

according to the concrete setting in which they are used.
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quantum phases with transport signatures similar to those of ordinary topological insu-
lators [Moo10, HK10, QZ11, BH13]. In fact, these topological phase transitions stem
from the long-time dynamics of the periodically driven quantum system, which is well
described by the spectral properties of the effective time-independent Hamiltonian ĤF as
long as the period T of the external driving field represents the shortest time-scale of the
experimental setup14. Accordingly, the topological features of the Floquet topological
insulators are captured by the quasienergy spectrum of ĤF , characterized by topological
invariants already known from equilibrium systems [Che46, TKNdN82, QHZ08]. As the
topological invariants of the quasienergy spectrum can significantly differ from those of
the original band structure, this allows for a light-induced quantum phase transition
from a trivial to a nontrivial topological regime. An archetypal example of this kind is
provided by the irradiation of graphene with circularly polarized drives [OA09, KOB+11],
where the originally semi-metallic band structure transforms into a gapped quasienergy
spectrum whose topological properties are captured by an effective Hamiltonian ĤF that
successfully imitates the topological Haldane model [Hal88]. Consequently, this effect
has enabled the experimental realization of the Haldane phase, with topological signa-
tures detected in optical wave guides [RZP+13] and ultracold atomic gases [JMD+14],
as well as in the aforementioned graphene [MSS+20]. Another interesting realization
of the Floquet topological insulator is based on HgTe/CdTe semiconductor quantum
wells [BHZ06, KWB+07], which have proven to be a suitable platform for generating the
quantum spin Hall effect [KBWM+08, QZ10], a topologically insulating phase originally
proposed for graphene [KM05a, KM05b] and semiconductors [BZ06, QWZ06]. In the
HgTe/CdTe heterostructure, the phase transition between a conventional insulating
phase and a quantum spin Hall phase is controlled by the thickness of the quantum
well, the latter demanding a high degree of sample control. Given this drawback,
time-periodic perturbations have emerged as a versatile tool for generating topological
spectra in semiconducting quantum devices, with well-controlled topological phase
transitions that do not depend on changes in the material structures of the experimental
sample [LRG11].

The topological invariants of the quasienergy bands do not necessarily contain all
the information about the topological properties of a periodically driven quantum
system [KBRD10]. A paradigmatic example is given by the anomalous Floquet topolog-
ical insulator, a system that exhibits chiral edge states even though the quasienergy
spectrum shows a topologically trivial band structure [RLBL13]. By introducing spa-
tial disorder, this scenario can be even extended to an anomalous Floquet-Anderson
insulator, in which robust chiral edge states appear though all bulk states are Anderson
localized [TBR+16]. In fact, these novel topological phenomena have no equilibrium
counterpart and rely on the periodicity of the quasienergy spectrum, discussed in the
next section.

14In this limit, analytical expressions for the effective Hamiltonian ĤF can be perturbatively derived
by a high-frequency expansion [BDP15, EA15], as briefly illustrated in Sec. 2.2.3. For the Floquet
Hamiltonian ĤF

t0 , the Floquet-Magnus expansion [COR01, BCOR09] provides a similar approach,

showing that the explicit choice of ĤF
t0 is accompanied by a different approximation scheme.
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2.2.3 Extended Hilbert Space and Floquet Lattice

Although the stroboscopic time-evolution of a periodically driven quantum system is
effectively described by a time-independent Floquet Hamiltonian ĤF

t0 , the latter shows
properties that are generally quite different from those of autonomous quantum systems.
This stems from the fact that ĤF

t0 is not uniquely defined, reflected in the multivaluedness
of the matrix logarithm of Eq. (2.46). Namely, adding an integer multiple of the driving
frequency ω = 2π

T , the Floquet Hamiltonian

ĤF
t0,m = ĤF

t0 +mω, m ∈ Z, (2.49)

does not change the time-evolution over the period T :

Û(t0 + T, t0) = e−iTĤF
t0,m = e−iTĤF

t0 e−imωT = e−iTĤF
t0 e−i2πm = e−iTĤF

t0 .

At the same time, Eq. (2.44) implies that the micromotion operator transforms as

ÛF,m(t, t0) = ÛF (t, t0) e
imω(t−t0), (2.50)

revealing the uniquely defined time-evolution operator (cf. Eq. (2.43))

Û(t, t0) = ÛF,m(t, t0) e
−i ĤF

t0,m
(t−t0) = ÛF (t, t0) e

−i ĤF
t0
(t−t0).

Eqs. (2.49) and (2.50) form a quasienergy spectrum that is periodic in the driving
frequency ω, with quasienergies

ĤF
t0,m |un(t0)〉 = ǫnm |un(t0)〉 , ǫnm = ǫn +mω, (2.51)

and Floquet modes

|unm(t, t0)〉 = ÛF,m(t, t0) |un(t0)〉 = |un(t, t0)〉 eimω(t−t0)

generating the Floquet solutions of Eq. (2.45):

|ψn(t, t0)〉 = |unm(t, t0)〉 e−i ǫnm(t−t0) = |un(t, t0)〉 e−i ǫn(t−t0).

The Floquet solutions |ψn(t, t0)〉 remain invariant under an arbitrary choice of m,
revealing a periodicity of the quasienergy spectrum that has been shown to be essential for
the generation of novel topological phenomena in Floquet systems [KBRD10, RLBL13,
TBR+16]. Moreover, any quasienergy ǫn can be selected within an interval of energy
size ω, motivating the definition of a first BZ, e.g. −ω/2 ≤ ǫn < ω/2, in analogy to the
Bloch solutions [Blo29, Kit71, AM76] of spatially periodic systems.

In what follows, we use the degree of freedom in the quantum number m to formally
map the periodically driven quantum system onto a time-independent eigenvalue problem
in an extended Floquet Hilbert space. To this end, we insert the ansatz15

|ψn(t)〉 = |unm(t)〉 e−i ǫnmt, |unm(t)〉 = |un(t)〉 eimωt, m ∈ ❩, (2.52)

15From now on, we consider a linearly independent and fundamental set of solutions {|ψn(t)〉}n,
ignoring the initial condition on the time t0. Starting from these general basis states, the complete
orthonormal set of Floquet solutions {|ψn(t, t0)〉}n of Eq. (2.45) can be generated by suitable basis
transformations.
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into the time-dependent Schrödinger equation (2.39), yielding a LDE for the Floquet
modes

Q̂(t) |unm(t)〉 = ǫnm |unm(t)〉 , (2.53)

with the quasienergy operator Q̂(t) = Ĥ(t)− i d
dt [EA15, Hol16, Eck17]. As the Floquet

modes |unm(t)〉 are time-periodic in T , time t can be considered as a coordinate under
periodic boundary conditions |unm(t+ T )〉 = |unm(t)〉, suggesting the definition of a
scalar product [Sam73, GH98, EA15, Eck17]

〈〈u|v〉〉 = 1

T

∫ T

0
dt 〈u(t)|v(t)〉 . (2.54)

The states |u〉〉 are elements of an extended Floquet Hilbert space F = H⊗LT , generated
by the tensor product of the Hilbert space H of the physical quantum system and the
space of square-integrable T−periodically functions LT [Sam73, EA15]. For a state
|u〉〉 ∈ F , the corresponding physical quantum state at time t is given by |u(t)〉 ∈ H,
while a state |v(t)〉 = |v(t+ T )〉 is denoted |v〉〉 when it is considered to be an element
of F . For an operator Â(t) that acts on H, we analogues use the notation Ā in the
composite space F . Following this mathematical construction, the relation between the
extended Floquet Hilbert space F and the physical Hilbert space H manifests itself in
the scalar product of Eq. (2.54). Using these notations, the time-dependent equation
(2.53) for the quasienergy operator Q̂(t) can be mapped onto an eigenvalue problem
within the extended Floquet Hilbert space F [Sam73, EA15, Eck17]:

Q̄ |unm〉〉 = ǫnm |unm〉〉 . (2.55)

Eq. (2.55) resembles the form of a time-independent Schrödinger equation, allowing
the application of concepts already known from autonomous quantum systems. In fact,
the eigenstates and eigenvalues of the quasienergy operator Q̄ are given by the Floquet
modes |unm〉〉 and quasienergies ǫnm, similar to the stationary eigenstates and energies of
a static Hamiltonian. However, there exists an essential difference between the solutions
of Eq. (2.55) and those of an autonomous quantum system: While in the latter the
eigenstates of the physical system are orthogonal to each other, orthonormal solutions
of the quasienergy eigenvalue problem can lead to linearly dependent quantum states in
the Hilbert space H. In fact, as Q̄ represents a Hermitian operator in F , the Floquet
modes |unm〉〉 can be chosen to build a complete orthonormal set

〈〈un′m′ |unm〉〉 = 1

T

∫ T

0
dt 〈un′m′(t)|unm(t)〉 =

=
1

T

∫ T

0
dt ei(m−m′)ωt 〈un′(t)|un(t)〉 = δnn′ δmm′ ,

with eigenstates |unm〉〉, |unm′〉〉 (m 6= m′) that are orthogonal to each other in F .
However, applying Eq. (2.52), these basis states give rise to the same Floquet solution
|ψn(t)〉 in H. In this sense, the extended Floquet Hilbert space F and the associated
eigenvalue problem of Eq. (2.55) contain a lot of redundant information, which is,
however, compensated by the infinite number of quasienergies ǫnm and Floquet modes
|unm(t)〉 with m ∈ ❩.
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2.2 Floquet Theory

To further analyze the structure of the quasienergy operator Q̄, we construct a
complete orthonormal set of basis states |αm〉〉 for the composite Hilbert space F . This
can be done by combining a complete set of orthonormal basis states |α〉 of H with
the time-periodic functions eimωt [Sam73, GH98, EA15, Eck17]: |αm(t)〉 = |α〉 eimωt.
Within this basis, the quasienergy operator adopts matrix elements

〈〈α′m′|Q̄|αm〉〉 = 1

T

∫ T

0
dt 〈α′m′(t)|Q̂(t)|αm(t)〉 = 〈α′|Ĥ(m−m′)|α〉+mω δαα′ δmm′ ,

containing the Fourier transform of the time-periodic Hamiltonian

Ĥ(m) =
1

T

∫ T

0
dt eimωt Ĥ(t), Ĥ(t) =

∑

m

e−imωt Ĥ(m). (2.56)

The Fourier harmonic index m of the driving frequency ω provides a block structure of
the quasienergy operator Q̄ =

∑

m′,m Q̂(m′,m) |m′〉〉〈〈m|, in which each block

Q̂(m′,m) = Ĥ(m−m′) +mω δmm′ (2.57)

corresponds to an operator acting in the physical Hilbert space H. This results in a
block representation of the quasienergy operator

Q̄ =

m = −2 m = −1 m = 0 m = 1 m = 2 m = 3









































































































. . .
...

...
...

... . .
.

m′ = −2

. . . Ĥ(0) − ω Ĥ(1) Ĥ(2) Ĥ(3) . . . m′ = −1

. . . Ĥ(−1) Ĥ(0) Ĥ(1) Ĥ(2) . . . m′ = 0

. . . Ĥ(−2) Ĥ(−1) Ĥ(0) + ω Ĥ(1) . . . m′ = 1

. . . Ĥ(−3) Ĥ(−2) Ĥ(−1) Ĥ(0) + 2ω . . . m′ = 2

. .
. ...

...
...

...
. . . m′ = 3

(2.58)
that formally resembles the structure of a quantum system with Hilbert space H
coupled to a photon-like mode in the classical limit of large photon numbers [EA15,
Eck17, RL20b]. Based on this picture, the diagonal blocks Ĥ(0) +mω of Eq. (2.58)
can be considered as copies of the physical quantum system acting in the subspace of
constant photon number m, while the off-diagonal blocks Ĥ(m 6=0) describe m−photon
processes associated with the coupling to the fictitious photon-like mode. In this sense,
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Chapter 2 Dynamical Synthetic Quantum Matter

quasienergies ǫnm (cf. Eq. (2.51)) are generated by the absorption (m > 0) or emission
(m < 0) of integer multiples of the photon energy ω, potentially revealing heating effects
in the periodically driven quantum system [LDM14, DR14, Eck17, RL20a].

By exploiting a suitable unitary transformation Q̄F = Ū †
F Q̄ ŪF in the extended

Floquet Hilbert space F , the quasienergy operator Q̄ of Eq. (2.58) can be block-
diagonalized with respect to the quantum number m. This results in decoupled blocks

Q̂
(m′,m)
F = (ĤF + mω) δmm′ acting in the physical Hilbert space H, and revealing

an effective Hamiltonian ĤF that provides the quasienergies (cf. Eq. (2.55)) of the
periodically driven quantum system. In fact, ŪF directly corresponds to a time-periodic
unitary operator ÛF (t+T ) = ÛF (t) in the physical Hilbert space H, generating a unitary
transformation that leads to the effective Hamiltonian ĤF of Eq. (2.47) [EA15, Eck17].
In this context, the unitary arbitrariness in the set of operators ĤF and ÛF (t) stems
from the fact that multiplying ÛF (t) by an arbitrary time-independent unitary operator
Û ′
F (t) = ÛF (t) Û only leads to a mixing of states within the decoupled blocks, but does

not destroy the block diagonal form. Thus, the block diagonalization of the quasienergy
operator Q̄ constitutes an appropriate starting point for the determination of the effective
Hamiltonian ĤF , especially useful when the driving frequencies ω are large as compared
to the energy scales of the system. In these cases, the diagonal blocks Ĥ(0) +mω of
Eq. (2.58) are already well separated from each other, such that the off-diagonal coupling
terms Ĥ(m 6=0) can be neglected in good approximation. The effective Hamiltonian ĤF is
then well described by the time-averaged Hamiltonian Ĥ(0) = 1

T

∫ T
0 dt Ĥ(t), while first-

order corrections around this approximation can be achieved in terms of a high-frequency
expansion [BDP15, EA15]. There, couplings between the subspaces of constant photon
number m are considered as virtual processes, eventually leading to light-induced
topological phase transitions in the Floquet topological insulators [CDSM13, OK19,
RL20a]. Generally speaking, this is at the heart of Floquet engineering [GD14, Hol16,
Eck17], where analytical expressions for the effective Hamiltonian ĤF are determined
by means of the aforementioned approximation schemes.

Employing the block representation Q̄ =
∑

m′,m Q̂(m′,m) |m′〉〉〈〈m| (cf. Eq. (2.57)),
the quasienergy eigenvalue problem of Eq. (2.55) can be further reduced to a tight-
binding model in frequency space [Shi65, RL20b]:

∑

m′

(

Ĥ(m−m′) −mω δmm′

)

|u(m′)
n 〉 = ǫn |u(m)

n 〉 . (2.59)

Here, we have used that

〈〈m′|Q̄|unm〉〉 =
∑

m′′

Q̂(m′,m′′)
〈

〈m′′|unm〉
〉

=
∑

m′′

Q̂(m′,m′′) |u(m−m′′)
n 〉 ,

and introduced the Fourier transform of the time-periodic Floquet mode

|u(m)
n 〉 = 1

T

∫ T

0
dt eimωt |un(t)〉 , |un(t)〉 =

∑

m

e−imωt |u(m)
n 〉 . (2.60)

In Eq. (2.59), the Fourier harmonics of the driving frequency ω can be interpreted as
the lattice sites of a Floquet lattice (for a schematic illustration see Fig. 2.1). The off-
diagonal couplings constitute to time-independent hopping terms Ĥ(m 6=0) (cf. Eq. (2.56)),
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2.2 Floquet Theory

Figure 2.1: Floquet lattice of a periodically driven quantum system. Each lattice site (blue
spheres) corresponds to a Fourier harmonic index m of the driving frequency ω, resembling a
copy of the physical quantum system containing a relative number of photons m. The hopping
terms Ĥ(m 6=0) describe processes in which the physical quantum system absorbs (red sphere,
m > 0) or emits (green sphere, m < 0) a number of m photons from or to the external drive.
The on-site term Ĥ(0) is accompanied by a potential Um = −mω (brown line), which takes into
account the energy costs of the photon processes and leads to a fictitious electric field E = ω.

describing processes in which a photon is absorbed (m > 0) or emitted (m < 0)
from or to the external drive. The on-site term Ĥ(0) is accompanied by a potential
Um = −mω, which counts the photons at the corresponding site m and produces a
fictitious electric field E = ω. In this sense, the Floquet lattice resembles a Wannier-
Stark ladder [Wan60, Wan62], with wave functions that provide physical interpretations

for the Fourier coefficients |u(m)
n 〉 in limiting cases of the driving frequencies ω. In fact,

depending on the relation between the photon energy ω and the energy scales of the
Fourier components Ĥ(m), the system is divided into a high- and low-frequency regime.
In the high-frequency limit, the wave function in the frequency domain becomes Wannier
localized at the individual Fourier harmonic index m, with a quasienergy determined
by the effective Hamiltonian ĤF . In the low-frequency regime, however, the Fourier

coefficients |u(m)
n 〉 are described by a Bloch wave function that experiences a small

perturbation with respect to the fictitious electric field E = ω. This approach is the very
origin of the Thouless pump [Tho83], in which a one-dimensional system is extended to
a two-dimensional quantum Hall scenario [KDP80, PG90] by inducing an additional
Floquet lattice direction through a time-periodic drive. Assuming the associated Bloch
Hamiltonian exhibits a nontrivial topological band structure in the composite space of
crystal and time momentum, the Hall conductance generated by the fictitious electric
field E = ω translates into a motion in the spatial direction of the one-dimensional system.
Throughout the periodicity T , this reveals a time-averaged charge pump proportional
to the topological invariant of the synthetic Hall regime [TKNdN82, Tho83, OK19].
Generalizing this fundamental concept to multifrequency drives, we demonstrate in the
next section that this approach can even induce topological phenomena solely rooted in
dimensions of time.
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Chapter 2 Dynamical Synthetic Quantum Matter

2.3 Quasiperiodically Driven Quantum Systems

We generalize Floquet theory (see Sec. 2.2) to quasiperiodically driven quantum systems,
demonstrating that the latter provide a paradigmatic platform for the generation of
topological phenomena in dynamically-induced synthetic dimensions. To this end, we
expand the driven system in its Fourier modes, revealing a projection of the quasiperiodic
dynamics to a higher-dimensional Floquet lattice [HCT83, CT04, EA15, VPM16]. Using
methods already known from Bloch’s theorem [Blo29, Kit71, AM76], we show that the
underlying tight-binding model forms a band structure in the synthetic BZ of the Floquet
lattice. We address the dynamics in the Floquet lattice by means of the semiclassical
equations of motion [CN95, CN96, SN99], which account for virtual transitions between
the synthetic energy bands and yield a transverse response characterized by a nontrivial
Berry phase term [Ber84]. The associated motion in the frequency domain corresponds
to a process in which photons of different frequencies are exchanged between the external
drives, referred to as frequency conversion. The latter turns into a topological quantity
once the entire synthetic BZ is sufficiently sampled, yielding a time-averaged pumping
rate proportional to the topological invariant of the synthetic energy band [MRH17].
We argue that this illustrative picture is fully consistent with the results of APT (see
Sec. 2.1.3), reflecting a generic mechanism of topological quantization in terms of linear
response theory [Kub57, Mah00].

2.3.1 Higher-Dimensional Floquet Lattice

We investigate the dynamics of a quantum system that is exposed to a number of D
external periodic drives, described by a quantum state |Ψ(t)〉 that follows the unitary
evolution of the time-dependent Schrödinger equation [Sch26, Sha08, GS18]

i
d

dt
|Ψ(t)〉 = Ĥ(~ϕt) |Ψ(t)〉 . (2.61)

The Hamiltonian Ĥ(~ϕt) = Ĥ0+
∑D

j=1 Ĥj(ϕj,t) is composed of two kinds of contributions:

The static Hamiltonian Ĥ0 of the autonomous quantum system, and the time-dependent
Hermitian operators Ĥj(ϕj,t) accounting for the couplings to the external drives. We

assume that the time-dependent phases ~ϕt = (ϕ1,t, ϕ2,t, . . . , ϕD,t) = ~ω t + ~φ linearly
evolve in the D−dimensional parameter space ~ϕt ∈ RD, with an explicit motion that
is characterized by the set of frequencies ~ω = (ω1, ω2, . . . , ωD) and offset phases
~φ = (φ1, φ2, . . . , φD) of the driving fields. The frequencies ωj =

2π
Tj

correspond to the

periodicities Tj of the drives, revealing a dynamical modulation of the operators Ĥj(ϕj,t)
that is 2π−periodic in the individual phase components

Ĥj(ϕj,t+Tj ) = Ĥj(ϕj,t + 2π) = Ĥj(ϕj,t). (2.62)

The Hamiltonian Ĥ(~ϕt) provides a concrete example of the generic quantum system of
Sec. 2.1.1, meaning that the solutions to Eq. (2.61) can be immediately investigated
using the presented techniques of Sec. 2.1. There, we have shown that the time-
evolution in a given direction of the parameter space induces a geometrical response
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2.3 Quasiperiodically Driven Quantum Systems

proportional to the Berry curvature [Ber84] of the adiabatic energy band (see Sec. 2.1.4),
a fundamental concept described in terms of first-order APT (see Sec. 2.1.3). In
what follows, however, we solve the dynamics of the driven quantum system using
concepts from Floquet theory (see Sec. 2.2), revealing an analogy between the results
of Sec. 2.1 and the semiclassical equations of motion in a higher-dimensional Floquet
lattice [HCT83, CT04, EA15, VPM16]. To this end, we restrict ourselves to quasiperiodic
driving16

~m~ω = 0, ~m ∈ ZD ⇔ ~m = 0, (2.63)

and argue that the geometrical properties of the dynamical synthetic quantum matter
can be illustrated by means of a Floquet counterpart of an integer quantum Hall
scenario [MRH17].

We start our investigation by parametrizing a fundamental and orthonormal set
of basis states {|ψn(t)〉}n of the quasiperiodically driven quantum system in terms of
the generalized Floquet solutions17 |ψn(t)〉 = e−i ǫnt |un(~ϕt)〉 (cf. Eq. (2.45)), where the
Floquet modes |un(~ϕt)〉 can be expanded in the vector of Fourier harmonic indices
~m = (m1, m2, . . . , mD) of the driving frequencies ~ω (cf. Eq. (2.60)):

|un(~ϕt)〉 =
∑

~m

e−i ~m ~ϕt |u(~m)
n 〉 , |u(~m)

n 〉 = 1

(2π)D

∫

· · ·
∫ 2π

0
dD ~ϕ ei ~m ~ϕ |un(~ϕ)〉 . (2.64)

Inserting this ansatz into the time-dependent Schrödinger equation (2.61), the quasiener-

gies ǫn and Fourier coefficients |u(~m)
n 〉 of the Floquet solutions |ψn(t)〉 are determined

by a tight-binding model in frequency space (cf. Eq. (2.59))

∑

~m′

(

Ĥ(~m−~m′) − ~m~ω δ~m~m′

)

|u(~m′)
n 〉 = ǫn |u(~m)

n 〉 , (2.65)

with coupling terms Ĥ(~m) corresponding to the Fourier coefficients of the Hamiltonian
(cf. Eq. (2.56))

Ĥ(~m) =
1

(2π)D

∫

· · ·
∫ 2π

0
dD ~ϕ ei ~m ~ϕ Ĥ(~ϕ), Ĥ(~ϕt) =

∑

~m

e−i ~m ~ϕt Ĥ(~m). (2.66)

Eq. (2.65) represents the quasiperiodic analog of the Floquet lattice of a periodically
driven quantum system (cf. Fig. 2.1). In fact, the vector of Fourier harmonic indices ~m
provides a position in a higher-dimensional Floquet lattice (for a schematic illustration
see Fig. 2.2), in which the number of Floquet lattice dimensions equals the number of
incommensurate driving frequencies ωj , as described by Eq. (2.63). Each lattice site
~m = (m1, m2, . . . , mD) corresponds to a copy of the quantum system acting in the

16In case of two external periodic drives (D = 2), Eq. (2.63) translates into frequencies ω1 and ω2

that are irrationally related to each other: ω1

ω2
/∈ Q.

17Note that such an ansatz is justified because of the 2π−periodicity of the Hamiltonian Ĥ(~ϕt) in
each phase component ϕj,t, as described in Eq. (2.62). In fact, this implies an expansion of Ĥ(~ϕt) in its
Fourier modes (cf. Eq. (2.66)), and suggests that the Floquet modes |un(~ϕt)〉 obey the same periodicity
(cf. Eq. (2.64)).
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Chapter 2 Dynamical Synthetic Quantum Matter

Figure 2.2: Higher-dimensional Floquet lattice of a quasiperiodically driven quantum system.
For illustration, we restrict ourselves to the case of two external driving fields with incommensu-
rate frequencies ω1 and ω2. Each lattice site (blue spheres) corresponds to the vector of Fourier
harmonic indices ~m = (m1, m2) of the driving frequencies ~ω = (ω1, ω2), resembling a copy of
the quantum system containing a relative number of mj photons of the individual drives. The

hopping terms Ĥ(~m 6=0) describe processes in which the quantum system absorbs (red sphere,
mj > 0) or emits (green sphere, mj < 0) a number of mj photons from or to the external fields

with frequencies ωj . The on-site term Ĥ(~m=0) is accompanied by a potential U~m = −~m~ω, which
takes into account the energy costs of the photon processes and leads to a fictitious electric
field ~E = ~ω. If the system exhibits a nontrivial topological band structure in the synthetic
2D Brillouin zone (BZ) of the two-dimensional Floquet lattice (cf. Fig. 2.3), the semiclassical

equations of motion yield an anomalous velocity ~v⊥n = (ω2, −ω1) Ω
(n)
12 (cf. Eq. (2.69)) along the

equipotential lines of the potential U~m = −m1 ω1 −m2 ω2 = const., translating into an energy
pumping between the driving fields.
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subspace of constant photon numbers mj , while off-diagonal couplings constitute to
time-independent hopping terms Ĥ(~m 6=0) that describe processes in which photons are
absorbed (mj > 0) or emitted (mj < 0) from or to the external drives with frequencies
ωj . The on-site term Ĥ(~m=0) is accompanied by a potential Um = −~m~ω, which counts

the photons at the corresponding site ~m and produces a fictitious electric field ~E = ~ω.

As for the extended Hilbert space of a periodically driven quantum system (see
Sec. 2.2.3), the higher-dimensional Floquet lattice contains a lot of redundant information.

In fact, assuming that |u(~m)
n 〉 is a solution to the tight-binding model with quasienergy ǫn,

it is straightforward to show that |u(~m)
n~m′〉 = |u(~m+~m′)

n 〉 with quasienergy ǫn~m′ = ǫn + ~m′ ~ω
solves Eq. (2.65) for any combination of ~m′ as well. Apart from an unimportant total
phase factor, this leads to the same Floquet state

|ψn~m′(t)〉 = e−i ǫn~m′ t
∑

~m

e−i ~m ~ϕt |u(~m)
n~m′〉 = e−i ǫn t

∑

~m

e−i ~m ~φ e−i (~m+~m′) ~ω t |u(~m+~m′)
n 〉 =

= ei ~m
′ ~φ e−i ǫn t

∑

~m

e−i ~m ~ϕt |u(~m)
n 〉 = ei ~m

′ ~φ |ψn(t)〉 .

In the next section, we use this degree of freedom to implement topological phenomena
solely rooted in the synthetic dimensions of frequency space, concentrating on the
case of two external driving fields (D = 2) for simplicity. By assuming a nontrivial
band structure in the synthetic 2D BZ of the two-dimensional Floquet lattice, the
semiclassical equations of motion [CN95, CN96, SN99] reveal an anomalous velocity

~v⊥n = (ω2, −ω1)Ω
(n)
12 (cf. Eq. (2.69)) transverse to the fictitious electric field ~E = ~ω.

As the anomalous response runs along the equipotential lines of the potential U~m =
−m1 ω1 −m2 ω2 = const., this Hall scenario translates into an energy pumping between
the external driving fields [MRH17].

2.3.2 Semiclassical Equations of Motion

Assuming that the fictitious electric field ~E = ~ω shows energy scales much smaller
than those of the Fourier components Ĥ(~m) of Eq. (2.66), the dynamics in the higher-
dimensional Floquet lattice can be described in terms of the semiclassical formulation
of electron dynamics in a spatially periodic lattice [XCN10, CF21]. In its original form,
this approach reveals Bloch electrons that behave almost like free particles in vacuum,
provided that their energy dispersion E(~ϕ) = |~ϕ|2/2 (m = 1) with Bloch quasimomenta
~ϕ is replaced by the band dispersion En(~ϕ) of the crystal [Kit71, AM76]. The latter
results in a band group velocity ∂ϕk

En(~ϕ), which has been shown to be essential for the
generation of Bloch oscillations in the periodic lattice [Blo29]. However, if the crystal
is exposed to a static electric field, Bloch electrons can even show phenomena that
go beyond Bloch oscillations [Blo62]. In this context, it has been demonstrated that
couplings between energy bands can induce corrections to the band group velocity of the
Bloch wave function, eventually revealing an anomalous velocity transverse to the electric
field [KL54, KL57, AB59]. While these first-order corrections already provided insights
on the Hall conductance of the anomalous Hall effect [JNM02, NSO+10], it has later
been shown that the anomalous response can even be projected onto a local geometrical
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quantity, the Berry curvature of the occupied energy band [CN95, CN96, SN99]. This
observation paved the way for a variety of intriguing Berry phase effects [Ber84] in
condensed matter materials, including the modern description of quantum Hall effects,
electric polarization, or quantum charge pumps [BMK+03, XCN10, Van18].

We apply the semiclassical formulation of electron dynamics to the Bloch solutions
of the two-dimensional Floquet lattice (D = 2), revealing a Floquet counterpart of an
integer quantum Hall scenario [MRH17]. For vanishing frequency ~ω = 0, the Floquet
lattice becomes periodic in the synthetic space, which is why Bloch’s theorem [Blo29,
Kit71, AM76] can be applied to diagonalize the tight-binding model of Eq. (2.65). The

wave functions of the Fourier coefficients |u(~m)
n 〉 (cf. Eq. (2.60)) are then described by

Bloch solutions

|u(~m)
n 〉 = ei ~m ~ϕ |ũn(~ϕ)〉 , (2.67)

leading to quasienergies ǫn(~ϕ) = En(~ϕ) that correspond to the energy eigenvalues of
the physical quantum system: Ĥ(~ϕ) |ũn(~ϕ)〉 = En(~ϕ) |ũn(~ϕ)〉. As the individual phase
components ϕj of the Hamiltonian Ĥ(~ϕ) can be projected to an interval of size 2π
(cf. Eq. (2.62)), the phases ~ϕ = (ϕ1, ϕ2) can be interpreted as Bloch quasimomenta,
revealing a synthetic 2D BZ of the two-dimensional Floquet lattice (for a schematic
illustration see Fig. 2.3). In this sense, the Hamiltonian Ĥ(~ϕ) constitutes to the
Bloch Hamiltonian of the periodic system, with energy levels {En(~ϕ)}n that generate
a Bloch band structure in the synthetic 2D BZ. Assuming the Bloch wave functions
of Eq. (2.67) form a wave-packet restricted to the synthetic energy band En(~ϕ), the
dynamics of the Fourier harmonic indices mk is governed by the semiclassical equations
of motion [CN95, CN96, SN99]

ṁ
(n)
k (~ϕ) =

∂En(~ϕ)

∂ϕk
−

D
∑

l=1

3
∑

r=1

ǫklr ωl Ω
(n)
r (~ϕ), with ~̇ϕ = ~ω. (2.68)

At zeroth order, the band group velocity of the wave-packet generates Bloch oscillations
∂ϕk

En(~ϕ) [Blo29], while first-order corrections involve a Berry phase term associated

with the r−th component of the Berry curvature18 ~Ω(n)(~ϕ) = i∇~ϕ × 〈ũn(~ϕ)|∇~ϕ ũn(~ϕ)〉
(cf. Eq. (2.23)). The latter implies synthetic Hall physics in the frequency domain, with
an anomalous velocity

~v⊥n (~ϕ) =

(

ω2

−ω1

)

Ω
(n)
12 (~ϕ) (2.69)

transverse to the fictitious electric field ~E = ~ω. The anomalous response is proportional

to the Berry curvature Ω
(n)
kl (~ϕ) = 2 Im[〈∂ϕk

ũn(~ϕ)|∂ϕl
ũn(~ϕ)〉] (cf. Eqs. (2.22) and (2.24)),

and translates into an energy transfer between the external drives that goes along the
equipotential lines of the potential U~m = −m1 ω1 −m2 ω2 = const. (for a schematic
illustration see Fig. 2.2). At the same time, the Bloch quasimomenta ~ϕ = (ϕ1, ϕ2)
undergo an evolution ~ϕt = ~ω t+~φ, revealing the original dynamics of the quasiperiodically
driven quantum system.

18Note that we assume a complete orthonormal set of Bloch modes {|ũn(~ϕ)〉}n.
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Let us take a closer look at the energy pumping effect. The total energy transfer
rate of the quasiperiodically driven quantum system with Hamiltonian Ĥ(~ϕt) = Ĥ0 +
∑D

k=1 Ĥk(ϕk,t) is given by (cf. Eq. (2.19))

d

dt
〈Ĥ(~ϕt)〉 = 〈∂t Ĥ(~ϕt)〉 =

D
∑

k=1

ωk 〈̂Ik(~ϕt)〉 , Îk(~ϕt) = ∂ϕk
Ĥk(ϕk,t),

where the expectation values are calculated according to the exact solution |Ψ(t)〉 of
the time-dependent Schrödinger equation (2.61). The semiclassical equations of motion
(2.68) apply whenever the energy gaps of the synthetic band structure exceed the
energy scales of the frequencies ωj , which is why the expectation value of the k−th
component of the current operator 〈̂Ik(~ϕt)〉 can be expanded by means of first-order
APT (cf. Eq. (2.20)):

〈̂Ik(~ϕt)〉n =
∂En(~ϕt)

∂ϕk
+

D
∑

l=1

ωl Ω
(n)
kl (~ϕt). (2.70)

Comparing this result with the semiclassical equations of motion (2.68), we find that the

dynamics of the Fourier harmonic indices ṁ
(n)
k exactly corresponds19 to the expectation

value of Eq. (2.70). In this sense, the fictitious electric field ~E = ~ω of the higher-
dimensional Floquet lattice couples to the current operator Î(~ϕt) = ∇~ϕ Ĥ(~ϕt) of the un-
derlying quantum system (cf. Eq. (2.19)), allowing for additional insights into the physics
of Eq. (2.68): As Î(~ϕt) exhibits off-diagonal matrix elements (cf. Eq. (2.11)), its coupling
to ~E induces virtual transitions between the synthetic energy bands (cf. Eq. (2.18)),

which can eventually be projected onto the Berry curvature Ω
(n)
kl (~ϕt) of the adiabatic en-

ergy band En(~ϕt) (cf. Eq. (2.20)). The dynamics of the Bloch wave-packet of Eq. (2.68)
then induces processes in which photons of different frequencies ωk are absorbed or
emitted by the quantum system, revealing energy pumping rates

Ẇ
(n)
k (t) = ωk 〈̂Ik(~ϕt)〉n = ωk ṁ

(n)
k (~ϕt) (2.71)

for the individual driving fields. Analogous to first-order APT (see Sec. 2.1.3), the
semiclassical equations of motion (2.68) and the associated energy pumping rates (2.71)
are thus associated with a first-order perturbative expansion with respect to the fictitious
electric field ~E = ~ω.

2.3.3 Topological Response

The anomalous response of Eq. (2.70) strongly depends on the explicit details of the
quasiperiodically driven quantum system. Namely, modifying the properties of the
Bloch Hamiltonian Ĥ(~ϕ) changes both the Bloch mode |ũn(~ϕ)〉 of Eq. (2.67) and the

associated Berry curvature Ω
(n)
kl (~ϕ) = 2 Im[〈∂ϕk

ũn(~ϕ)|∂ϕl
ũn(~ϕ)〉] (cf. Eq. (2.22)). To

19Although the semiclassical equations of motion (2.68) are usually applied in two (D = 2) or three
(D = 3) dimensions, the representation of Eq. (2.70) also holds for arbitrary dimensions of the parameter
space ~ϕt ∈ RD (cf. Eq. (2.20)).
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Chapter 2 Dynamical Synthetic Quantum Matter

Figure 2.3: Schematic illustration of the synthetic 2D Brillouin zone (BZ) of the two-
dimensional Floquet lattice (cf. Fig. 2.2). The phases ~ϕ = (ϕ1, ϕ2) take the role of Bloch

quasimomenta, undergoing a time-evolution ~ϕt = ~ω t+ ~φ (illustrated by gray lines and red dot)
described by the semiclassical equations of motion (2.68). Starting from t0 = 0, the quasiperi-
odic dynamics entirely covers the torus structure T2 of the 2D BZ, such that the geometrical

response in terms of the anomalous velocity ~v⊥n (~ϕ) = (ω2, −ω1)Ω
(n)
12 (~ϕ) (cf. Eq. (2.69)) turns

into a topological quantity. In two dimensions, this yields a topological frequency conversion

proportional to the first Chern number Cn = 1
2π

∫∫ 2π

0
d2~ϕΩ

(n)
12 (~ϕ) of the associated Bloch energy

band En(~ϕ) (cf. Eq. (2.73)).

observe robust and quantized transport signatures, such as those predicted for the integer

quantum Hall effect [KDP80, PG90], the Berry curvature Ω
(n)
kl (~ϕ) has to be integrated

over the closed manifold of the synthetic BZ of the higher-dimensional Floquet lattice.
In this case, the geometrical response turns into a global topological quantity robust to
continuous deformations of the synthetic energy bands En(~ϕ), thus revealing quantized
response signals in a variety of topological systems [Tho98, Wen17].

In Fig. 2.3, we provide a schematic illustration of the synthetic 2D BZ of the two-
dimensional Floquet lattice (cf. Fig. 2.2). The phases ~ϕ = (ϕ1, ϕ2) characterize the
Bloch solutions of Eq. (2.67), and can be interpreted as the Bloch quasimomenta defined
on the two-dimensional surface of a torus T2 (cf. Eq. (2.62)). Applying the semiclassical
equations of motion (2.68), the 2D BZ is discovered by the time-dependent phases
~ϕt = ~ω t+ ~φ, the latter revealing the original phase evolution of the quasiperiodically
driven quantum system. As the two frequencies ω1

ω2
/∈ Q are incommensurate, this

yields a situation in which the quasiperiodic dynamics of the Bloch wave-packet entirely
samples the synthetic 2D BZ of the system. Averaging the pumping rates of Eqs. (2.20)
and (2.70) over a long period of time20, this translates into an integration over the

20In Eq. (2.72), the limit t 7→ ∞ formally requires vanishing frequencies ωk 7→ 0, such that the
semiclassical equations of motion (2.68) apply throughout the whole time process. In the numerical
simulations performed in this Thesis, we choose the time scales and frequencies such that both the
synthetic BZ is adequately sampled and the semiclassical formulation holds at all times for broad
parameter ranges of the system.

32



2.3 Quasiperiodically Driven Quantum Systems

closed manifold of the two-dimensional torus T2:

Pn,k = lim
t 7→∞

ωk

t

∫ t

0
dt′ 〈̂Ik(~ϕt′)〉n =

ωk

(2π)2

∫∫ 2π

0
d2~ϕ 〈̂Ik(~ϕ)〉n . (2.72)

Due to the symmetry of the synthetic energy bands En(~ϕ) (cf. Eq. (2.61)), the Bloch
oscillations ∂ϕk

En(~ϕ) do not contribute to this integration. The first-order corrections,

however, provide an integrated Berry curvature Ω
(n)
kl (~ϕ) that results in a time-averaged

pumping rate [MRH17]

P 12
n = −P 21

n =
Cn

2π
ω1 ω2 (2.73)

proportional to the first Chern number [Che46, TKNdN82, QHZ08]

Cn =
1

2π

∫∫ 2π

0
d2~ϕΩ

(n)
12 (~ϕ). (2.74)

The Chern number Cn is nothing else than the Berry phase calculated along the
torus structure T2 of the 2D BZ, divided by 2π (cf. Eqs. (2.23) and (2.24)). The
associated result only takes integer values, which is why changes of Cn can only occur
discontinuously. In fact, the Chern number Cn remains invariant as long as the energy
gaps of the synthetic band structure are finite, revealing a quantization of the time-
averaged pumping rate P 12

n that is robust to smooth modifications of the Hamiltonian
Ĥ(~ϕt) of the quasiperiodically driven quantum system.

Eq. (2.73) demonstrates that the quantized energy pumping effects of the dynamical
synthetic quantum matter are governed by the topological properties of the underlying
Bloch Hamiltonian Ĥ(~ϕ), an observation that arises from the coupling of a small pertur-
bation to the off-diagonal terms of the current operator Î(~ϕ) = ∇~ϕ Ĥ(~ϕ) (cf. Eqs. (2.11)
and (2.19)). Remarkably, these off-diagonal coupling terms can eventually be projected

onto the adiabatic Berry curvature Ω
(n)
kl (~ϕ) = 2 Im[〈∂ϕk

ũn(~ϕ)|∂ϕl
ũn(~ϕ)〉] of the oc-

cupied Bloch modes |ũn(~ϕ)〉 (cf. Eqs. (2.20) and (2.70)), while integration over the
closed manifold of the BZ yields robust response signals proportional to the topological
invariants of the associated synthetic energy bands En(~ϕ) (cf. Eqs. (2.72) and (2.73)).
We have illustrated this mechanism using two equivalent methods, APT (see Sec. 2.1.3)
and the semiclassical formulation of electron dynamics (see Sec. 2.3.2), showing that
virtual couplings between (synthetic) energy bands are indeed essential for the genera-
tion of the aforementioned features. We argue that these results reflect a fundamental
concept of topological quantization, already applied in the theoretical development
of the integer quantum Hall effect [KDP80, PG90]. There, the linear response signal
can be derived in terms of the celebrated Kubo formula [Kub57, Mah00], in which
first-order corrections of the state due to an external field produce a (synthetic) Hall
conductance that is directly related to the adiabatically defined topological invariant
of the occupied (synthetic) Bloch bands [Lau81, TKNdN82, Sim83a, Koh85, Hal88].
In this sense, both the Kubo formula and the aforementioned methods reveal a corre-
spondence between quantized physical observables and adiabatically defined topological
invariants, a mechanism that finds applications in a variety of (synthetic) condensed
matter materials [Tho98, XCN10, Van18, CF21]. In the remainder of this Thesis, we
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Chapter 2 Dynamical Synthetic Quantum Matter

apply these generic topological concepts to the Floquet counterpart of a Chern insula-
tor [MRH17], and show that interacting extensions of this dynamical setup can even lead
to intriguing topological phenomena solely induced by correlation effects between the
constituents [KPBT20, KPBT22]. An outstanding example of this kind is the TBGE
(see Sec. 4.2), which states that the aforementioned topological correspondence can be
fundamentally modified in open quantum systems.
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Chapter 3 Correlations in Dynamical Synthetic Dimensions

The emergence of topological phenomena in dynamical synthetic quantum matter
often relies on the effective dimensional extension of the system by time-periodic drives, as
anticipated by Thouless in the topologically quantized charge pump [Tho83]. Following
this line of reasoning, Martin et al. [MRH17] have demonstrated that quasiperiodically
driven quantum systems provide a paradigmatic platform for the generation of synthetic
quantum Hall physics in the frequency domain, with a transverse response that translates
into a robust and quantized energy transfer between the quasiperiodic external drives
(see Sec. 2.3). Starting from this illustrative picture, they have applied the geometrical
concepts of dynamical synthetic dimensions to the concrete example of a topological
frequency converter (TFC), which can be interpreted as the Floquet counterpart of a
Chern insulator [Hal88, QWZ06, BHZ06]. In the TFC, a single spin-1/2 subjected to two
circularly polarized drives mediates a frequency conversion between the classical modes,
the latter occurring at a topologically quantized rate proportional to the adiabatic
winding number [Vol03, QWZ06, QHZ08] of the driven spin. However, for both the
Thouless pump and the TFC, there is limited understanding of the consequences of
interparticle interactions on the associated linear response signals. Typically, the effects
of interactions are addressed only with respect to the robustness of the dynamical
topological response. What needs to be better understood is what topological effects
can be interaction-driven in such time-dependent settings.

In this Chapter, we present a simple and feasible example of how interactions can
qualitatively change the topological properties of a quantum system with dynamically-
induced synthetic dimensions, revealing correlated topological phases that have no
counterpart to the noninteracting regime. To this end, we add spin-spin interaction to the
TFC, showing that the aforementioned correlated features already appear for the simplest
generalization, namely two interacting spins exposed to two incommensurate periodic
drives. As the quantized response is associated with both the frequency conversion and
the interplay of interaction and synthetic dimension, we coin this minimal setup an
interacting topological frequency converter ITFC. An experimental realization of the
ITFC could be achieved in gated double quantum dots [PJT+05, BFT+15, SPF+19] or
in superconducting quantum circuits [SKK+14, RNC+14]. By calculating the topological
phase diagrams of the ITFC as a function of interaction strength, we demonstrate the
appearance of topological responses that are explicitly forbidden in the noninteracting
case of two identical spins: The topological invariants determining the frequency
conversion can take odd integer values. This extended set of topological numbers, in
turn, can result in an enhancement of the dynamical response of the ITFC.

The Chapter is organized as follows: In Sec. 3.1, we introduce the TFC and relate
its topological response to the adiabatically defined winding number of the driven spin.
The quantized response signal only arises as long as the spin dynamics is described
by first-order adiabatic perturbation theory APT (see Sec. 2.1.3), which we illustrate
by numerically calculating the exact dynamics and the related frequency conversion
of the TFC. In Sec. 3.2, we discover the topological features of the ITFC, providing a
simple explanation of the correlated topological responses in terms of two-body spin
configurations. Again, we corroborate our analytical findings by numerical simulations.
Parts of this Chapter have been published as a Rapid Communication in Physical
Review Research [KPBT20]. Copyright (2022) by the American Physical Society.
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3.1 Topological Frequency Converter

3.1 Topological Frequency Converter

We apply the synthetic Hall physics of quasiperiodically driven quantum systems (see
Sec. 2.3) to the prototypical model of a two-frequency driven spin, the latter revealing a
Floquet counterpart of a quantum anomalous Hall scenario [WYH+15, LZQ16, CLM22].
The physics of this topologically nontrival phase is theoretically described by a Chern
insulator [Hal88, QWZ06, BHZ06], whose topological properties translate into a synthetic
Hall conductance in the two-dimensional Floquet lattice of the dynamical synthetic
quantum matter (cf. Fig. 2.2). As the associated energy transfer between the classical
modes is solely mediated by the two-level quantum system, we refer to the driven
spin as a TFC [MRH17]. The time-averaged response of the TFC is proportional to
the adiabatically defined topological invariant of the Chern insulator, which can be
interpreted as the winding number [Vol03, QWZ06, QHZ08] obtained by projecting
the two-level quantum states onto the associated Bloch sphere [NC10]. Following
the adiabatic time-evolution of the Bloch vector, this yields a mapping of the spin
configurations at high-symmetry points HSPs of the synthetic 2D BZ to the winding
number of the Bloch sphere, with topological phase transitions exclusively induced by
band inversions between the associated spin-polarized states. We corroborate our analysis
by exact numerical calculations, showing that the topological frequency conversion can
be suppressed by nonadiabatic excitation processes between the Bloch energy bands of
the synthetic 2D BZ. In these cases, the description of the quasiperiodic dynamics by
means of first-order APT (see Sec. 2.1.3) breaks down.

3.1.1 Quasiperiodically Driven Spin-1/2

We consider the dynamics of a single spin-1/2 subjected to a static magnetic fieldB0 ∈ R3

and two quasiperiodic drives1 Bj(ϕj,t) ∈ R3 {j = 1, 2}, the latter parametrized by a set

of control parameters ~ϕt = (ϕ1,t, ϕ2,t) = ~ω t+ ~φ linearly evolving in the two-dimensional
parameter space ~ϕt ∈ R2. As the driving fields Bj(ϕj,t) underlie periodicities Tj =

2π
ωj
,

the vectors of frequencies ~ω = (ω1, ω2) and offset phases ~φ = (φ1, φ2) reveal a dynamical
modulation that is 2π−periodic in the individual phase components (cf. Eq. (2.62))

Bj(ϕj,t+Tj ) = Bj(ϕj,t + 2π) = Bj(ϕj,t),

thus inducing a torus structure of the parameter space ~ϕt ∈ T2. Introducing the total
field vector B(~ϕt) = B0 +

∑2
j=1 Bj(ϕj,t), the magnetic coupling to the spin operator

Ŝ = 1
2 σ̂ can be parametrized by a Zeeman term [Sch07, Sha08, SN21]

Ĥ(~ϕt) = g∗ µB B(~ϕt) · Ŝ = g∗ µB
∑

i=x,y,z

Bi(~ϕt) Ŝi, (3.1)

where we use the vector of Pauli matrices σ̂ = (σ̂x, σ̂y, σ̂z). The magnetic moment

produced by the spin operator Ŝ is proportional to Bohr’s magneton µB and the

1Throughout the Thesis, we assume that the external periodic drives correspond to photon-like modes
in the classical limit of large photon numbers [EA15, Eck17, RL20b], consistent with the derivations of
Chap. 2. For a generalization to the few-photon quantum limit, we refer to Refs. [NMR19, NRRM20,
PR21].
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effective g∗−factor of the spin, the latter potentially realized by an electron spin
trapped in lateral QDs [KAT01, HKP+07, RT10, ZDM+13, CSDF+21] or NV centers
in diamond2 [JW06, DMD+13, SCLD14]. Alternatively, the Hamiltonian Ĥ(~ϕt) of
Eq. (3.1) might be implemented using superconducting quantum circuits, in which the
physical Hilbert space H = C2 of the single spin-1/2 can be resembled by suitable
Josephson-junction devices [MSS01, YN05, SG08, CW08].

As shown in Sec. 2.3.1, the quasiperiodic modulation with incommensurate driving
frequencies ω1

ω2
/∈ Q allows projection onto a two-dimensional Floquet lattice (see

Fig. 2.2), in which a fictitious electric field ~E = ~ω divides the system into a high-
and low-frequency regime. In the low-frequency limit, the dynamics in the Floquet
lattice is adequately described by the semiclassical equations of motion (cf. Eq. (2.68)),
revealing an anomalous response that translates into a topological frequency conversion
between the external drives (see Sec. 2.3.3). The associated time-averaged pumping
rate (cf. Eq. (2.73))

P 12
± =

C±

2π
ω1 ω2 (3.2)

is proportional to the first Chern number (cf. Eq. (2.74))

C± =
1

2π

∫∫ 2π

0
d2~ϕΩ

(±)
12 (~ϕ), (3.3)

a topological invariant defined in terms of the adiabatic Berry curvature Ω
(±)
kl (~ϕ) =

2 Im[〈∂ϕk
Φ±(~ϕ)|∂ϕl

Φ±(~ϕ)〉] (cf. Eq. (2.22)) of the occupied Bloch modes |Φ±(~ϕ)〉.
The Bloch modes |Φ±(~ϕ)〉 correspond to eigenstates of the Bloch Hamiltonian Ĥ(~ϕ):
Ĥ(~ϕ) |Φ±(~ϕ)〉 = E±(~ϕ) |Φ±(~ϕ)〉, with phases ~ϕ = (ϕ1, ϕ2) resembling the Bloch
quasimomenta of a spatially periodic system. Accordingly, the parameter space ~ϕt ∈ T2

of the driven quantum system can be interpreted as a synthetic 2D BZ of the two-
dimensional Floquet lattice, entirely covered during the quasiperiodic dynamics of the
time-dependent phases ~ϕt = ~ω t+ ~φ (see Fig. 2.3). If now the associated Bloch band
structure is gapped throughout the entire synthetic 2D BZ, each energy band E±(~ϕ)
can be assigned a Chern number C± (see Eq. (3.3)), revealing a physical observable that
is given by the time-averaged pumping rate P 12

± of Eq. (3.2). In this sense, Eq. (3.1)
can mimic two-dimensional topological models of condensed matter systems, with
adopted topological features that manifest themselves in quantized energy pumping
effects between the external drives.

We exploit the aforementioned approach by designing the external field vector
B(~ϕt) such that it induces topological properties to the synthetic band structure of the
driven two-level system. To this end, we choose a static magnetic field B0 = B0 ẑ with
amplitude B0 > 0, and two circularly polarized drives with incommensurate frequencies
ω1 and ω2 (for a schematic illustration see Fig. 3.1). Using the natural basis {x̂, ŷ, ẑ}

2In both systems, the lateral QDs and the NV centers, the trapped electron spin potentially couples
to the surrounding nuclear spins of the host material by hyperfine interaction (see Sec. 4.1.1). For
simplicity, however, we assume that the electron spin is well isolated from its environment, such that
the model of Eq. (3.1) constitutes an appropriate starting point for our investigations. An extended
analysis taking into account environmental effects is studied in the context of a CSM in Chap. 4.
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3.1 Topological Frequency Converter

Figure 3.1: Topological frequency converter (TFC) as a prototypical example of a quasiperi-
odically driven quantum system. A single spin-1/2 subjected to a static magnetic field with
amplitude B0 and two circularly polarized drives with incommensurate frequencies ω1 and ω2

generates synthetic quantum Hall physics in the frequency domain (see Sec. 2.3). The associated
quantized response translates into a topological frequency conversion between the dynamical
drives, with a time-averaged pumping rate proportional to the adiabatically defined topological
invariant of a Chern insulator.

of the three-dimensional space R3, the dynamical field vectors are chosen as

B1(ϕ1,t) = B1

(

sin(ϕ1,t) x̂− cos(ϕ1,t) ẑ
)

, B2(ϕ2,t) = B2

(

sin(ϕ2,t) ŷ − cos(ϕ2,t) ẑ
)

,

with amplitudes B1/2 > 0. Setting B1/2 = Bc, this yields a Bloch Hamiltonian

Ĥ(~ϕ) = λd(~ϕ) · Ŝ, d(~ϕ) =





sin(ϕ1)
sin(ϕ2)

M − cos(ϕ1)− cos(ϕ2)



 , (3.4)

resembling the momentum-space representation of a Chern insulator [Hal88, QWZ06,
BHZ06] with mass parameter M = B0/Bc and energy scale3

λ = g∗ µB Bc.

Using the correspondence between linear response signals and adiabatically defined topo-
logical invariants (see discussion below Eq. (2.74)), this model explains the quantization
of the transverse Hall conductance in the quantum anomalous Hall effect [WYH+15,
LZQ16, CLM22], the quantized version of the anomalous Hall effect [JNM02, NSO+10].
In fact, each of the two Bloch energy bands E±(~ϕ) of Eq. (3.4) can be characterized by
a Chern number C± = ∓νgr, with νgr = ±1 (nontrivial) for |M | < 2, M 6= 0 or νgr = 0
(trivial) for |M | > 2 [Vol03, QWZ06, QHZ08]. Applying this topological classification
to the quasiperiodically driven spin-1/2 of Eq. (3.1), the Hall conductance of the Chern
insulator translates into a topological frequency conversion between the dynamical
drives, which is why we coin this concrete setup a TFC [MRH17].

3We assume λ > 0 for simplicity.
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3.1.2 Winding Number

In the previous section, we have claimed that the topological features of the Chern
insulator can induce quantum anomalous Hall responses to the driven quantum system,
characterized by topological invariants that strongly depend on the explicit values of
the mass parameter M (see discussion below Eq. (3.4)). In what follows, we argue that
this topological classification can be visually illustrated by projecting the associated
quantum states onto the two-dimensional surface S2 of the Bloch sphere of the two-level
quantum system [NC10]. We start our investigation by introducing the spectrum of the
Bloch Hamiltonian Ĥ(~ϕ) of Eq. (3.4):

Ĥ(~ϕ) |Φ±(~ϕ)〉 = E±(~ϕ) |Φ±(~ϕ)〉 .

Assuming the Bloch energy bands E±(~ϕ) are nondegenerate throughout the entire
(synthetic) 2D BZ, the local geometrical properties of the parameter space are carried by

the well-defined Berry curvature Ω
(±)
kl (~ϕ) = 2 Im[〈∂ϕk

Φ±(~ϕ)|∂ϕl
Φ±(~ϕ)〉] (cf. Eqs. (2.21)

and (2.22)). Introducing the density matrices ρ̂±(~ϕ) = |Φ±(~ϕ)〉〈Φ±(~ϕ)| of the associated
Bloch modes |Φ±(~ϕ)〉, the Berry curvature can be further rewritten as

Ω
(±)
kl (~ϕ) = −i Tr

(

ρ̂±(~ϕ)
[

∂ϕk
ρ̂±(~ϕ), ∂ϕl

ρ̂±(~ϕ)
])

. (3.5)

Here, Tr denotes the trace operating on the physical Hilbert space H2, and [Â, B̂] =
ÂB̂−B̂Â is the commutator between operators Â and B̂. In what follows, we exploit the
elementary approach that density matrices of a generic two-level quantum system can be
parametrized by a Bloch vector u ∈ R3: ρ̂ = 1

2 (✶+ u · σ̂), with |u| ≤ 1 [NC10]. To this

end, we introduce SU(2) matrices Û(~ϕ) that rotate the z quantization axes of Eq. (3.4) in
the z′ direction of the dimensionless field vector d(~ϕ): Û †(~ϕ)d(~ϕ) · σ̂ Û(~ϕ) = |d(~ϕ)| σ̂z′ .
Within the rotated basis {|↑〉z′ , |↓〉z′}, this yields a transformed Bloch Hamiltonian

Ĥ ′(~ϕ) = Û †(~ϕ) Ĥ(~ϕ) Û(~ϕ) = λ |d(~ϕ)| Ŝz′ ,

with spectral properties given by the energy eigenvalues E±(~ϕ) = ±λ
2 |d(~ϕ)| and

density matrices ˆ̺± = 1
2 (✶ ± σ̂z′). Performing the inverse transformation ρ̂±(~ϕ) =

Û(~ϕ) ˆ̺± Û
†(~ϕ), the density matrices ˆ̺± can be rotated back to the original basis of

Eq. (3.4):

ρ̂±(~ϕ) =
1

2

(

✶± d̃(~ϕ) · σ̂
)

, (3.6)

with d̃(~ϕ) = d(~ϕ)
|d(~ϕ)| . Inserting Eq. (3.6) into Eq. (3.5), and integrating over the closed

manifold of the synthetic 2D BZ (cf. Eq. (3.3)), this yields a Chern number C± = ∓νgr,
with [Vol03, QWZ06, QHZ08]

νgr = − 1

4π

∫∫ 2π

0
d2~ϕ d̃(~ϕ)

(

∂ϕ1d̃(~ϕ)× ∂ϕ2d̃(~ϕ)
)

. (3.7)

Let’s work out a visual interpretation of Eq. (3.7). The density matrices ρ̂±(~ϕ)
of Eq. (3.6) are parametrized by normalized Bloch vectors4 |d̃(~ϕ)| = 1, revealing a

4Provided that |d(~ϕ)| 6= 0, which is the case whenever the Bloch energy bands E±(~ϕ) = ±λ
2
|d(~ϕ)|

remain gapped throughout the entire synthetic 2D BZ.
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3.1 Topological Frequency Converter

Figure 3.2: Adiabatic spin polarization 〈σ̂(~ϕt)〉− = −d̃(~ϕt) represented on the Bloch sphere
(left side) and in the two-dimensional parameter space ~ϕ = (ϕ1, ϕ2) ∈ T2 (right side) for mass

parameters (a) M = 2.2 and (b) M = 1.2. The temporal evolution of the phases ~ϕt = ~ω t+ ~φ
is illustrated up to times T = 40π

ω , with a vector of frequencies ~ω = (1, γ)ω and offset-phases
~φ = (π/6, π/3). We set ω = 0.1λ and γ = 1

2 (1 +
√
5). As the quasiperiodic dynamics entirely

samples the torus structure T2 of the synthetic 2D Brillouin zone (BZ) (illustrated by gray
lines and black dot on the right side, cf. Fig. 2.3), the coverage of the two-dimensional surface
S2 of the Bloch sphere can be approximated by the projection d̃(~ϕ) : T2 7→ S2, revealing
winding numbers (a) νgr = 0 and (b) νgr = 1. Besides numerical calculations (cf. Fig. 3.4), this
topological classification can be determined by the spin configurations at high-symmetry points
(HSPs) of the synthetic 2D BZ (cf. Fig. 3.3). There, the spin-1/2 points in the z direction of the
Bloch sphere: σ̂z |↑〉z = |↑〉z or σ̂z |↓〉z = − |↓〉z. Note that the black arrows on the right side

correspond to vectors −(d̃x, d̃y).

mapping from the torus structure T2 of the synthetic 2D BZ to the two-dimensional
surface S2 of the Bloch sphere, denoted as

d̃(~ϕ) : T2 7→ S2. (3.8)

In fact, this mapping reveals an illustrative explanation of the Chern number νgr of
Eq. (3.7): As the integrand d̃(~ϕ) (∂ϕ1d̃(~ϕ) × ∂ϕ2d̃(~ϕ)) corresponds to the oriented

41



Chapter 3 Correlations in Dynamical Synthetic Dimensions

Figure 3.3: Spin configurations of the ground state |Φ−(~ϕ)〉 at high-symmetry points (HSPs) of
the synthetic 2D Brillouin zone (BZ) for different mass parametersM . As the Bloch Hamiltonian
(3.4) commutes with Ŝz at HSPs, there exists a mapping (see also Appendix A.1) from the
spin configurations at HSPs to the winding number νgr of Eq. (3.7). This allows an illustrative
explanation for the topological classification of Fig 3.2. For M = 2.2, the spin configurations
at HSPs only point in negative z direction of the Bloch sphere, revealing a winding number
νgr = 0. For M = 1.2, however, the spin in (0, 0) is polarized in opposite direction with respect
to the other HSPs, resulting in a winding number νgr = 1 as the Bloch sphere is covered once.
Our mapping is corroborated by exact numerical calculations in Fig. 3.4.

Jacobian5 of the projection (3.8), the integral over the closed manifold of the torus T2

reveals the relative area covered by the vector d̃(~ϕ). However, as the Chern number
C± = ∓νgr only takes integer values [Che46, TKNdN82, QHZ08], fractional surfaces
do not contribute to this integration, meaning that the covered area can only assume
multiples of the entire two-dimensional surface S2. As the latter equals 4π, Eq. (3.7)
corresponds to the definition of a winding number νgr, indicating how many times the
Bloch sphere is covered by the projection (3.8). In what follows, we use the terminology
of the winding number νgr whenever the topology of a two-level quantum system is
addressed.

Following the aforementioned approach, we can determine the winding number νgr
by considering the adiabatic time-evolution of the driven quantum system of Eq. (3.1).
In Fig. 3.2, the adiabatic spin polarization 〈σ̂(~ϕt)〉− = −d̃(~ϕt) of the single spin-1/2
is represented on the Bloch sphere (left side) and in the two-dimensional parameter
space ~ϕ = (ϕ1, ϕ2) ∈ T2 (right side) for mass parameters (a) M = 2.2 and (b) M = 1.2.
Assuming sufficiently long time scales, the time-dependent phases ~ϕt = ~ω t+ ~φ entirely
sample the closed manifold of the torus T2 (cf. Fig. 2.3), such that the coverage of the
two-dimensional surface S2 of the Bloch sphere can be approximated by the mapping
(3.8). Setting ω = 0.1λ and γ = 1

2 (1 +
√
5), we illustrate the temporal evolution

up to times T = 40π
ω , with a vector of frequencies ~ω = (1, γ)ω and offset-phases6

5The Jacobian of the mapping (3.8) is defined as

√

det(ĴT Ĵ), with the Jacobian matrix Ĵ that

involves matrix elements Jij = ∂d̃i
∂ϕj

[Fed69, Sim83b, KP08, Mor16]. It is straightforward to show that

this definition equals the absolute value of the integrand d̃(~ϕ) (∂ϕ1
d̃(~ϕ)× ∂ϕ2

d̃(~ϕ)).
6In the remainder of this Thesis, the explicit values of the offset phases ~φ = (φ1, φ2) play a minor

role, as we are interested in the quasiperiodic dynamics that entirely covers the synthetic 2D BZ of the
system (cf. Fig. 2.3). Accordingly, the topological response of Eq. (2.73) is independent of the explicit
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Figure 3.4: Numerically calculated winding number νgr (cf. Eq. (3.7)) as a function of mass
parameter M . Due to its topological origin, the winding number νgr remains invariant as long
as the minimum band gap between the energy levels E±(~ϕ) = ±λ

2 |d(~ϕ)| is finite. For mass
parameters |M | = 2.0, M = 0.0 (vertical red lines), the energy gaps close at high-symmetry
points (HSPs) of the synthetic 2D Brillouin zone (BZ) (cf. Tab. 3.1), resulting in topological
phase transitions with discontinuous changes in the winding number νgr.

~φ = (π/6, π/3). For M = 2.2, the Bloch sphere is only partially covered, resulting in a
winding number νgr = 0. For M = 1.2, however, the spin polarization at HSPs of the
synthetic 2D BZ implies a winding number νgr = 1: At (0, 0), the spin is polarized in
opposite direction with respect to the other HSPs, which is why the Bloch sphere is
covered once. This simple explanation stems from the fact that the Bloch Hamiltonian
(3.4) at HSPs commutes with Ŝz, revealing a mapping (see also Appendix A.1) between
the spin configurations at HSPs and the winding number νgr of Eq. (3.7). For the
ground state |Φ−(~ϕ)〉, these spin configurations are illustrated in Fig. 3.3 for different
mass parameters M . Topological phase transitions lead to inversions between states
|↑〉z and |↓〉z, changing both the spin configuration at HSPs and the winding number
νgr. Notably, gap closings and reopenings at (0, π) and (π, 0) occur simultaneously, such
that the change in the winding number νgr is twice as large as in (0, 0) or (π, π).

We corroborate our visualization on the Bloch sphere by exact numerical calculations
in Fig. 3.4. The results are consistent with our previous discussion. The winding number
νgr remains invariant as long as the minimum band gap between the energy levels
E±(~ϕ) = ±λ

2 |d(~ϕ)| is finite, which is the case whenever |d(~ϕ)| 6= 0 throughout the
entire synthetic 2D BZ. For mass parameters |M | = 2.0,M = 0.0 (cf. Tab. 3.1), however,
the Bloch vector d̃(~ϕ) is not well-defined, revealing a discontinuity in the definition of
Eq. (3.7). As a consequence, Dirac gap closings and reopenings are accompanied with
discrete changes in the winding number νgr, explaining the topological phase transitions
in Fig. 3.4.

starting point in parameter space at t0 = 0.
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Chapter 3 Correlations in Dynamical Synthetic Dimensions

HSP (0, 0) (0, π), (π, 0) (π, π)

M 2 0 −2

Table 3.1: Mass parameter M for which a Dirac gap closing happens at high-symmetry points
(HSPs) of the synthetic 2D Brillouin zone (BZ). The associated topological phase transitions are
induced by band inversions between states |↑〉z and |↓〉z (cf. Fig. 3.3), accompanied by discrete
changes in the winding number νgr (cf. Fig. 3.4). As gap closings and reopenings at (0, π) and
(π, 0) occur simultaneously, the change in νgr is twice as large as in the other HSPs.

3.1.3 Topological Frequency Conversion

Having determined the winding number νgr as a function of mass parameter M (see
Fig. 3.4), we investigate whether the correspondence between adiabatically defined
topological invariants and linear response signals (see discussion below Eq. (2.74))
actually holds in the driven two-level quantum system of Eq. (3.1). To this end, we
numerically solve the time-dependent Schrödinger equation [Sch26, Sha08, GS18]

i
d

dt
|Ψ(t)〉 = Ĥ(~ϕt) |Ψ(t)〉 (3.9)

associated with the Hamiltonian7 Ĥ(~ϕt) = λd(~ϕt) · Ŝ (cf. Eq. (3.4)), and determine the
related frequency conversion by means of the equations of motion (cf. Eq. (2.19))

d

dt
〈Ĥ(~ϕt)〉 = 〈∂t Ĥ(~ϕt)〉 = ~ω 〈Î(~ϕt)〉 , Î(~ϕt) = ∇~ϕ Ĥ(~ϕt).

The expectation values are calculated according to the exact solution |Ψ(t)〉 of Eq. (3.9),
while each term8 Ẇk(t) = ωk 〈̂Ik(~ϕt)〉 can be interpreted as the energy pumping rate
provided by the individual driving field (cf. Eq. (2.71)). If the initial state at t0 = 0
corresponds to the ground state |Φ−(~ϕt0)〉 of the Bloch Hamiltonian (3.4), the time-
averaged pumping rates P−,k (cf. Eq. (2.72)) can be extrapolated by the gradient9 of

the associated energy transfers Wk(t) = ωk

∫ t
0 dt

′ 〈̂Ik(~ϕt′)〉. Throughout the numerics,

we choose the vectors of frequencies ~ω = (1, γ)ω and offset phases ~φ = (π/10, 0), with
ω = 0.1λ and γ = 1

2(1 +
√
5). To ensure that the entire synthetic 2D BZ is adequately

sampled (cf. Fig. 2.3), we calculate the exact dynamics up to times λT = 104.
Fig. 3.5(a) shows the energy transfers Wk(t) of the individual drives as a function of

time t for different mass parameters M , with an offset in time inserted for each value of

7We have multiplied (3.4) by an overall factor η = 4.0, which formally increases the minimum band
gap of the system and thus improves the ability to stay within the associated energy level E±(~ϕt) during
the quasiperiodic dynamics. This allows us to choose a larger frequency ω = 0.1λ, such that the entire
synthetic 2D BZ is sufficiently sampled for a time evolution up to times λT = 104. This leads to a
reduction of computation time.

8Since the expectation value of the current operator 〈̂Ik(~ϕt)〉 is determined by the exact solution
|Ψ(t)〉 of the time-dependent Schrödinger equation (3.9), the individual energy puming rates Ẇk(t) =
ωk 〈̂Ik(~ϕt)〉 also involve the higher orders in the perturbative expansion of APT (see Sec. 2.1.3). This
reveals a significant difference from Eq. (2.71), where only first-order terms in APT are considered.

9We obtain the gradient by computing P−,k = 2
T
(W̄T

k − W̄
T/2
k ) with the associated time-averaged

energy transfers W̄
T/2
k = 2

T

∫ T/2

0
dtWk(t) and W̄

T
k = 2

T

∫ T

T/2
dtWk(t).
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3.1 Topological Frequency Converter

Figure 3.5: Numerical results for the exact dynamics of the topological frequency converter
(TFC) (for a schematic illustration see Fig. 3.1). (a) Energy transfers Wk(t) as a function
of time t for different mass parameters M , with an offset in time inserted for each value of
M for illustrative reasons. Assuming the exact dynamics in the nontrivial topological regime
(cf. Fig. 3.4) is well described within first-order adiabatic perturbation theory (APT), the
driven spin mediates a linear energy transfer between the external drives. In the trivial regime,
contributions to the energy transfersWk(t) are mainly provided by Bloch oscillations ∂ϕk

E−(~ϕt).
Near the Dirac gap closing at M = 2.0, the quantized pumping effect is suppressed due to
nonadiabatic excitation processes between the synthetic energy bands E±(~ϕt) of the two-level
system. (b) Extrapolated energy pumping rate P− as a function of mass parameters M . The
quantization P 12

− =
νgr

2π ω1 ω2 (cf. Eq. (3.2)) occurs in excellent agreement (white regimes) with
the topological classification of Fig. 3.4. This applies as long as the TFC shows quasiadiabaticity,
while otherwise the topological response breaks down (gray regimes).

M for illustrative reasons. Besides the contributions from Bloch oscillations ∂ϕk
E−(~ϕt)

(cf. Eq. (2.70)), the energies Wk(t) exhibit a linear time-dependence for mass parameters
M = 1.2 to M = 1.6. Accordingly, the driven spin absorbs photons of frequency ω1 from
the first mode, and emits the same amount of energy in form of photons of frequency
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Chapter 3 Correlations in Dynamical Synthetic Dimensions

ω2 to the second mode (or vice versa). The associated frequency conversion occurs at
a topologically quantized rate as long as the dynamics of the system is well described
within first-order APT (see Sec. 2.1.3), while for mass parameters M = 1.7 and M = 1.8
the energy transfer becomes suppressed. As these parameters are close to the Dirac
gap closing at M = 2.0 (see Tab. 3.1), the energy scales of the frequencies ωk can
exceed the minimum band gap of the Bloch energy levels E±(~ϕ), leading to nonadiabatic
excitation processes between these bands. As a consequence, the quantized energy
pumping effect breaks down whenever the mass parameters M sufficiently approach an
associated topological phase transition of Fig. 3.4. Although a mass parameter M = 2.4
reveals quasiadiabatic dynamics10, the associated energy transfers Wk(t) are mainly
described by the contributions from Bloch oscillations ∂ϕk

E−(~ϕt). This, however, can
be explained by the topological properties of the synthetic energy bands E±(~ϕ), in which
mass parameters M > 2 correspond to trivial regimes. The extrapolated time-averaged
pumping rates P− as a function of mass parameter M are illustrated in Fig. 3.5(b). As
long as the TFC shows quasiadiabaticity (white regimes), a quantized energy pumping
effect P 12

− =
νgr
2π ω1 ω2 (cf. Eq. (3.2)) occurs in excellent agreement with the topological

classification of Fig. 3.4. Otherwise, the dynamical response is suppressed (gray regimes),
and perfect quantization breaks down.

Fig. 3.5 corroborates that the topological observable of the dynamical synthetic
quantum matter is proportional to the adiabatically defined winding number of the
driven spin (cf. Fig. 3.3), the latter mediating a process in which photons of incom-
mensurate frequencies are exchanged between the external drives at a topologically
quantized rate. Inspired by this observation, a number of advanced studies have been
emerged [KNG+18, PR18, CMC19, NMR19, CMC20, BCCS20, CLY+20, NRRM20,
LCC21, MS21, NGG+21, PR21, QRP21, SYZ22], such as the generalization to quantum
cavity modes [NMR19, NRRM20, PR21], the investigation of topological semimetallic
regimes [CMC20, QRP21], or the indirect measurement of the quantized energy pumping
effect [BCCS20, MS21]. In the next section, we extend the prototypical example of a
TFC to an interacting two-spin model and show that correlations in dynamical synthetic
dimensions give rise to novel topological responses in quasiperiodically driven quantum
systems.

3.2 Interacting Topological Frequency Converter

By adding spin-spin interactions to the TFC (see Sec. 3.1), we extend the notion of
topologically quantized frequency conversion to correlated spin systems. To this end,
we focus on a minimal model of two interacting spins equally exposed to two circularly
polarized incommensurate drives. Despite its simplicity, this setup already offers a
striking example of how the interplay of interaction and the dynamical dimensional
extension of a quantum system can have a profound impact on the resulting topological
properties. Most prominently, while in a noninteracting system of two identical spins

10Throughout the Thesis, we use equivalent terminologies for the dynamics associated with the
first-order corrections of APT (see Sec. 2.1.3). These include, for example, the terms quasiadiabaticity,
quasiadiabatic dynamics, or strong coupling regime.
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3.2 Interacting Topological Frequency Converter

the topological charge determining the frequency conversion is constrained to be even, in
the interacting case also odd integers are allowed. This feature may, in turn, result in an
enhancement by interactions of the topological response. For these reasons, we call our
setup an ITFC. We provide a simple interpretation of our results in terms of two-body
spin configurations and corroborate the observed topological phase transitions with
an explicit calculation of the system’s dynamics and the related frequency conversion.
Throughout this Section, we closely follow the derivations and results presented in
Ref. [KPBT20]. Copyright (2022) by the American Physical Society.

3.2.1 Interacting Two-Spin Model

We analyze the ITFC schematically as shown in Fig. 4.3, in which two spins coupled
by spin-spin interaction are equally exposed to a dynamical magnetic field B(~ϕt). The
corresponding Hamiltonian is given by (cf. Eq. (3.1))

Ĥ(~ϕt) =
g∗ µB
2

B(~ϕt) · (σ̂A + σ̂B) +
∑

i=x,y,z

Ji σ̂
i
A σ̂

i
B, (3.10)

where we introduce the vector of Pauli matrices σ̂α = (σ̂xα, σ̂
y
α, σ̂zα) acting on the

individual constituents α = A/B, and assume anisotropic Heisenberg interaction with
coupling parameters Ji {i = x, y, z}. We focus on the case of spin-1/2, generating a
Zeeman coupling term proportional to Bohr’s magneton µB and the effective g∗−factor of
the spin. An experimental realization of Eq. (3.10) could be implemented in gated double
quantum dots [PJT+05, BFT+15, SPF+19], in which spin-orbit coupling can potentially
induce anisotropies in the interaction between the trapped electron spins [FSC+20,
FVV+22]. Alternatively, superconducting quantum circuits allow for the realization of
this type of interaction, with a substantial degree of tunability of the anisotropy [SKK+14,
RNC+14]. In addition to a static magnetic field with amplitude B0 > 0 in z direction,
the external field

B(~ϕt) =





B1 sin(ϕ1t)
B2 sin(ϕ2t)

B0 −B1 cos(ϕ1t)−B2 cos(ϕ2t)



 (3.11)

is composed of two circularly polarized drives with time-dependent phases ~ϕt =
(ϕ1,t, ϕ2,t) = ~ω t + ~φ and amplitudes B1/2 > 0. The frequencies and offset phases

are parametrized by ~ω = (ω1, ω2) and ~φ = (φ1, φ2). In what follows, we set B1/2 = Bc

for simplicity.
The interaction favors ferromagnetic (Ji < 0) or antiferromagnetic (Ji > 0) alignment

of the spins along the respective quantization axis in the ground state. The interplay of
interaction and magnetic field B(~ϕt) can be conveniently investigated by introducing the
total spin operator Ŝ = 1

2 (σ̂A + σ̂B) and the associated eigenstates |ψs,mz〉 determined
by quantum numbers (s,mz) [Sch07, Sha08, GS18]:

Ŝ2 |ψs,mz〉 = s (s+ 1) |ψs,mz〉 , Ŝz |ψs,mz〉 = mz |ψs,mz〉 ,

where {s = 0, 1} and {mz = −s, . . . , s}. The Hamiltonian of Eq. (3.10) commutes
with the total spin [Ĥ(~ϕt), Ŝ

2] = 0, such that the total spin quantum number s is
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Chapter 3 Correlations in Dynamical Synthetic Dimensions

Figure 3.6: Interacting topological frequency converter (ITFC) as a minimal interacting
extension of the topological frequency converter (TFC). The spins A/B (blue spheres) coupled
by spin-spin interaction are equally exposed to a static magnetic field with amplitude B0 and
two circularly polarized drives with incommensurate frequencies ω1 and ω2. The interaction
is controlled by the coupling parameters Ji {i = x, y, z}, allowing the realization of correlated
topological phases in synthetic dimensions (cf. Fig. 3.7). Reprinted figure with permission from
Ref. [KPBT20]. Copyright (2022) by the American Physical Society.

a constant of motion of the interacting spin system11. Accordingly, the singlet state
|ψ0,0〉 constitutes to a solution of the time-dependent Schrödinger equation with trivial
dynamics, which is why we restrict ourselves to study the Hilbert subspace with s = 1.
In this case, apart from a global constant, the Hamiltonian (3.10) can be written in the
basis of triplet states {|ψ1,1〉 , |ψ1,0〉 , |ψ1,−1〉}:

ĤT = λ′







2 Bz
Bc

+ Jz

√
2 B−

Bc
Jx−y√

2 B+

Bc
−Jz

√
2 B−

Bc

Jx−y

√
2 B+

Bc
−2 Bz

Bc
+ Jz






, (3.12)

with the energy scale12

λ′ =
g∗ µB Bc

2
,

the transverse components B± = Bx ± i By, and the effective interaction strengths

Jx±y =
Jx ± Jy
λ′

, Jz =
Jz
λ′

− Jx+y

2
.

The interaction enters ĤT with the parameters Jz and Jx−y, while the third parameter
Jx+y only affects the energy E0,0 = −λ′ (2Jx+y+Jz) of the decoupled singlet state |ψ0,0〉.
With isotropic exchange interaction, the interacting part of Eq. (3.10) commutes with

11This can be seen from the equations of motion [Ehr27, Bal15, GS18]: d
dt

〈Ŝ2〉 = i 〈[Ĥ(~ϕt), Ŝ
2]〉 +

〈∂t Ŝ
2〉 = 0, where the expectation values are calculated according to the exact solution of the time-

dependent Schrödinger equation of the interacting spin system.
12We assume λ′ > 0 for simplicity.
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3.2 Interacting Topological Frequency Converter

Ŝz, effectively resulting in interaction strengths Jz = Jx−y = 0. Below, we focus on the
anisotropic case, setting Jx−y = 0 for simplicity13. Additional results for nonvanishing
Jx−y are presented in the Appendix A.2, showing that our main predictions are not
qualitatively affected.

3.2.2 Topological Phase Diagrams

For each spin, the noninteracting part of Eq. (3.10) is equivalent to a Chern insulator
with mass parameter M = B0/Bc (cf. Eq. (3.4)). The time-dependent phases ϕ1,t and
ϕ2,t play the role of Bloch quasimomenta: as they vary between 0 and 2π, they define a
two-dimensional torus T2, analogous to a 2D BZ (cf. Fig. 2.3). Hence, the dynamics
of the magnetic field B(~ϕt) of Eq. (3.11) can induce nontrivial topological responses
in the single-spin subspaces for quasiperiodic driving (see Sec. 2.3.3). Each of the two
Bloch energy bands of the single-spin Hamiltonian can be characterized by a winding
number νgr = −νex = ±1 (nontrivial) for |M | < 2, M 6= 0 or νgr = νex = 0 (trivial)
for |M | > 2, where νgr (νex) corresponds to the single-spin ground (excited) energy
band (cf. Fig. 3.4). In the interacting case, we can diagonalize the projected Bloch
Hamiltonian of Eq. (3.12): ĤT (~ϕ) |Ψn(~ϕ)〉 = En(~ϕ) |Ψn(~ϕ)〉, and determine the Chern
number (cf. Eqs. (2.22) and (2.74))

Cn =
1

2πi

∫∫ 2π

0
d2~ϕ [〈∂ϕ1Ψn(~ϕ) | ∂ϕ2Ψn(~ϕ)〉 − 〈∂ϕ2Ψn(~ϕ) | ∂ϕ1Ψn(~ϕ)〉] (3.13)

of the respective synthetic energy bands En(~ϕ). Here, the associated Bloch states of
the synthetic 2D BZ are given by |Ψn(~ϕ)〉 {n = 0, 1, 2}. The resulting topological
phase diagrams as a function of mass parameter M and effective interaction strength
Jz (Jx−y = 0) are displayed in Fig. 3.7. Interactions have two striking effects on the
topological properties of the synthetic energy bands En(~ϕ). First, phases with odd
Chern numbers Cn = ±1, ±3 emerge. This observation is a genuine interaction effect
since for Jz = 0 the two spins are independently exposed to the same magnetic field
B(~ϕ), such that the global topological invariant can only change by an even number
∆Cn = ±2, ±4. Second, a finite interaction strength Jz 6= 0 can induce a nontrivial
topology for states that were trivial in the noninteracting regime.

The topological phase transitions in Fig. 3.7 are caused by band inversions at HSPs
of the synthetic 2D BZ (for a schematic illustration see Fig. 3.8), accompanied by
Dirac gap closings for mass parameters |M | = 2 or M = 0 (cf. Fig. 3.4), and effective
interaction strengths Jz shown in Tab. 3.2. Notably, gap closings and reopenings
at (0, π) and (π, 0) occur simultaneously, such that the change in the global Chern
number Cn is twice as large as in (0, 0) or (π, π). At HSPs, the Hamiltonian (3.10)
commutes with Ŝz, making ĤT diagonal in the |ψs,mz〉 basis: Gap closings caused
by Jz (M = const.) lead to inversions between the ferromagnetic triplet states |ψ1,1〉,
|ψ1,−1〉 and the antiferromagnetic triplet state |ψ1,0〉. The corresponding topological
phases are bounded by straight lines in Fig. 3.7. Topological phase transitions for mass
parameters |M | = 2 or M = 0, however, only involve the ferromagnetic states |ψ1,1〉

13For Jx−y = 0, the interacting part of Eq. (3.10) still commutes with Ŝz.

49
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Figure 3.7: Topological phase diagrams associated with Bloch eigenstates |Ψn(~ϕ)〉 {n = 0, 1, 2}
as a function of mass parameter M and effective interaction strength Jz (Jx−y = 0). Due to
many-body effects, interactions can drive the system into correlated topological phases with
odd Chern numbers Cn = ±1, ±3. Furthermore, a finite interaction strength Jz 6= 0 can induce
a nontrivial topology for states that were trivial in the noninteracting regime. The associated
topological phase transitions are accompanied by band inversions at high-symmetry points
(HSPs) of the synthetic 2D Brillouin zone (BZ) (cf. Fig. 3.8). Reprinted figure with permission
from Ref. [KPBT20]. Copyright (2022) by the American Physical Society.

Figure 3.8: Schematic illustration of the energy levels En/λ
′ at high-symmetry points (HSPs)

of the synthetic 2D Brillouin zone (BZ). We restrict ourselves to the HSP (0, 0), while similar
observations can be obtained for the other HSPs as well (cf. Tab. 3.2). For Jz = 0, a topological
phase transition can only occur for the mass parameterM = 2, revealing an inversion between the
ferromagnetic triplet states |ψ1,1〉 and |ψ1,−1〉. Assuming antiferromagnetic couplings between
the spins, the effective interaction strength Jz = |2 −M | induces an inversion between the
ferromagnetic state |ψ1,1〉 (as M < 2) and the antiferromagnetic state |ψ1,0〉, corresponding to a
linear phase boundary in Fig. 3.7.
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3.2 Interacting Topological Frequency Converter

HSP (0, 0) (0, π), (π, 0) (π, π)

Jz ± |2−M | ± |M | ± |2 +M |

Table 3.2: Interaction strength Jz (as a function of M) for which a Dirac gap closing happens
at high-symmetry points (HSPs) of the synthetic 2D Brillouin zone (BZ). Positive (negative)
Jz correspond to inversions between the ferromagnetic ground (highest excited) state and the
antiferromagnetic state |ψ1,0〉 (cf. Fig. 3.8(b)). Since gap closings and reopenings at (0, π) and
(π, 0) occur simultaneously, the change in the global Chern number Cn is twice as large as in
the other HSPs. Adapted table with permission from Ref. [KPBT20]. Copyright (2022) by the
American Physical Society.

and |ψ1,−1〉, which is why the polarization of both spins reverses upon band inversion at
the respective HSP. The global topological invariant then changes by an even number
∆Cn = ±2, ±4. Conversely, a band inversion containing the antiferromagnetic state
|ψ1,0〉 is the reason for the generation of the odd topological phases with Cn = ±1, ±3.

3.2.3 Two-Body Spin Configurations

From the previous considerations, it seems illuminating to investigate the relationship
between the spin configurations of the Bloch eigenstates |Ψn(~ϕ)〉 and the respective
topological invariants of the synthetic energy bands En(~ϕ). In our case, it suffices to
focus on HSPs, which completely determine the topology of the system14. In Fig. 3.9,
the spin configurations at HSPs are schematically shown for an increasing interaction
strength Jz ≥ 0 and fixed mass parameter M = 1.2 (cf. Fig. 3.7). For Jz = 0, the
ground state |Ψ0(~ϕ)〉 is always a separable state, and the global topological features
can be interpreted by examining the spins separately: each spin exhibits a well-defined
single-particle Chern number corresponding to the winding number νgr, the latter
describing the coverage of the single-spin Bloch sphere as ~ϕ varies (cf. Fig. 3.2). The
global Chern number C0 = 2 νgr is then simply the sum of the two single-particle ones.
Since the two spins at (0, 0) are polarized in opposite directions with respect to the other
HSPs, each spin winds once around its Bloch sphere (νgr = 1, cf. Fig. 3.3), resulting in
the combined Chern number C0 = 2.

By increasing the interaction strength Jz > 0, a phase transition into the correlated
topological phase C0 = 1 is achieved. Within this phase, the separable ground state
|ψ1,1〉 (as M < 2) at (0, 0) is substituted by the maximally entangled state |ψ1,0〉
(cf. Fig. 3.8(b)). Thus, since it is no longer possible to specify a winding number for the
individual constituents15, we exploit the following idea: We examine the topological

14Since the Hamiltonian (3.10) commutes with Ŝz at HSPs, there exists a mapping (see Fig. 3.9) from
the spin configurations at HSPs to the topological invariant of Eq. (3.13). This applies whenever Jz 6= 0
and Jx−y = 0, while for nonvanishing Jx−y this argument breaks down. The topological invariant then
needs to be explicitly calculated by Eq. (3.13), but as discussed in the Appendix A.2, this does not
qualitatively change the phenomenological results obtained for the ITFC.

15As a maximally entangled state |ψ1,0〉 entails vanishing Bloch vectors for the associated reduced
density matrices [NC10], a winding number for the individual constituents of the ITFC is not well
defined (see discussion around Eq. (B.8)).
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Chapter 3 Correlations in Dynamical Synthetic Dimensions

Figure 3.9: Spin configurations of (a) the ground state |Ψ0(~ϕ)〉 and (b) the first excited state
|Ψ1(~ϕ)〉 at high-symmetry points (HSPs) for interaction strengths Jz ≥ 0 and a fixed mass
parameter M = 1.2 (cf. Fig. 3.7). Topological phase transitions caused by Jz lead to inversions
between separable |ψ1,1〉, |ψ1,−1〉 and maximally entangled states |ψ1,0〉 (cf. Fig. 3.8), which is why
it is no longer possible to specify a winding number for the individual constituents. To describe
the topology, we consider each separable state that contributes to the linear combination in |ψ1,0〉
individually according to its topological features. Depending on the number {k = 0, . . . , 3}
of HSPs containing a maximally entangled state |ψ1,0〉, this leads to 2k combinations for the
spin configurations formed by the equally weighted quantum states |↑↓〉 and |↓↑〉 at different
HSPs. Adapted figure with permission from Ref. [KPBT20]. Copyright (2022) by the American
Physical Society.

features of each separable state that contributes to the linear combination in |ψ1,0〉
individually. For instance, for the phase of C0 = 1 the topology associated with the
equally weighted quantum states (I) |↑↓〉(0,0) and (II) |↓↑〉(0,0) at (0, 0) is examined.

Each separable state reveals a single-spin winding number ν
(I)
A = 1 or ν

(II)
A = 0 for spin

A. Moreover, spin B is antiferromagnetically correlated to spin A, resulting in the

winding number ν
(I)
B = 0 or ν

(II)
B = 1. In both cases (I) and (II), the single-particle

winding numbers add up to a global Chern number C0 = 1. This picture provides an
intuitive explanation for the odd topological phase: each band inversion between an
antiferromagnetic (maximally entangled) state |ψ1,0〉 and a ferromagnetic (separable)
state |ψ1,1〉, |ψ1,−1〉 causes a change in the global Chern number by ∆Cn = ±1.

When the interaction strength Jz > 0 is increased up to the phase C0 = −1, the
separable ground states |ψ1,−1〉 (asM > 0) at (0, π), (π, 0) are replaced by the maximally
entangled states |ψ1,0〉. By applying the previous picture, we have to consider four16

combinations for the spin configurations formed by the equally weighted quantum states
|↑↓〉 and |↓↑〉 at different HSPs: |↑↓〉(0,0) |↑↓〉(0,π), |↑↓〉(0,0) |↓↑〉(0,π), |↓↑〉(0,0) |↑↓〉(0,π),

16Due to the symmetry of the Hamiltonian Ĥ(0, π) = Ĥ(π, 0), the quantum states at (0, π), (π, 0)
show the same spin configuration.
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3.2 Interacting Topological Frequency Converter

and |↓↑〉(0,0) |↓↑〉(0,π). For each combination, the corresponding single-spin winding
numbers17 add up to the combined Chern number C0 = −1. This mechanism is quite
generic and applies whenever Jz 6= 0 and Jx−y = 0: If {k = 0, . . . , 3} is the number
of HSPs containing a maximally entangled state |ψ1,0〉, we have to examine 2k equally
weighted combinations of spin configurations individually (see Fig. 3.9). Topological
phase transitions in Fig. 3.7 are thus associated with a change in the spin configuration of
the Bloch eigenstate |Ψn(~ϕ)〉 under consideration. Remarkably, in the first excited state
|Ψ1(~ϕ)〉, this generic concept can produce a correlated topological phase C1 = 3 in which
one of the spins effectively winds twice around its Bloch sphere (see Appendix A.1), a
situation that is impossible in the noninteracting case (cf. Fig. 3.3).

3.2.4 Correlated Topological Response

The dynamics of the system can be described in a two-dimensional Floquet lattice with
fictitious electric field ~E = ~ω, the latter inducing a linear Hall response that gives rise to
a transverse current in the frequency domain (for a schematic illustration see Fig. 2.2).
For a system initially prepared in a Bloch eigenstate |Ψn(~ϕ)〉 of ĤT , the topological
features of Fig. 3.7 then translate into a quantized frequency conversion between the
circularly polarized drives (see Sec. 2.3.3). As first realized in Ref. [MRH17], energy is
pumped between the two fields at a time-averaged rate (cf. Eq. (2.73))

P 12
n = −P 21

n =
Cn

2π
ω1 ω2,

provided the dynamics is approximately confined to a Bloch energy band En(~ϕ) of Chern
number Cn (see Eq. 3.13). A necessary condition for the observation of a quantized
rate, besides quasiadiabaticity, is that the two frequencies ω1

ω2
/∈ Q are incommensurate

in such a way that the dynamics effectively samples the entire synthetic 2D BZ of the
two-dimensional Floquet lattice (cf. Fig. 2.3). Here, we have used the terminology of
quasiadiabaticity, corresponding to dynamics well described by first-order APT (see
Sec. 2.1.3). Thus, quasiadiabaticity is given for frequencies ω1 and ω2 that are much
smaller than the minimum band gaps between the synthetic energy bands En(~ϕ) of the
Hamiltonian (3.12), so that over time nonadiabatic excitations are suppressed. In this
regime, the topological phase with Chern number Cn = ±3 generates an enhancement
of the frequency conversion as a direct consequence of the correlated spin configurations
in the ITFC. Remarkably, this amplification is found to be more pronounced as the
number of spins increases, as we explicitly confirm in the Appendix A.3 for the example
of three interacting spins. There, global Chern numbers up to Cn = ±5 are observed.

We investigate the topological energy pumping effect by numerically solving the
time-dependent Schrödinger equation associated with the Hamiltonian (3.10) of the
interacting spin system18 (cf. Sec. 3.1.3). To this end, we compute the expectation value

17A mapping of all possible single-spin configurations at HSPs to the winding number ν is given in
the Appendix A.1.

18We have multiplied (3.10) by an overall factor η = 2.0, which formally increases the minimum band
gaps of the system and thus improves the ability to stay within the associated energy level En(~ϕt)
during the quasiperiodic dynamics. This allows us to choose a larger frequency ω = 0.1λ′, such that
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Chapter 3 Correlations in Dynamical Synthetic Dimensions

Figure 3.10: Extrapolated energy pumping rate P0 as a function of Jz for mass parameters
(a) M = 1.2 and (b) M = 2.2. The quantization occurs in an excellent agreement (white
regimes) with the topological phase diagrams of Fig. 3.7. This applies as long as the system
shows quasiadiabaticity, while otherwise the topological response breaks down (gray regimes).
Reprinted figure with permission from Ref. [KPBT20]. Copyright (2022) by the American
Physical Society.

of the current operator Î(~ϕt) = ∇~ϕ Ĥ(~ϕt), which is associated with the total energy

transfer rate as can be seen from the equations of motion (cf. Eq. (2.19)): d
dt 〈Ĥ(~ϕt)〉 =

〈∂t Ĥ(~ϕt)〉 = ~ω 〈Î(~ϕt)〉. If the initial state at t0 = 0 is the eigenstate |Ψn(~ϕt0)〉,

the entire synthetic 2D BZ is sufficiently sampled for a time evolution up to times λ′ T = 104. This
leads to a significant reduction of computation time.
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3.2 Interacting Topological Frequency Converter

the averaged pumping rates Pn,k (cf. Eq. (2.72)) can be extrapolated through linear

regression of the associated energy transfers Wk(t) = ωk

∫ t
0 dt

′ 〈̂Ik(~ϕt′)〉 (cf. Fig. 3.5).
Throughout the numerics, we choose the vectors of frequencies ~ω = (1, γ)ω and offset
phases ~φ = (π/10, 0), with ω = 0.1λ′ and γ = 1

2(1 +
√
5). To ensure that the entire

synthetic 2D BZ is adequately sampled (cf. Fig. 2.3), we calculate the exact dynamics
up to times λ′ T = 104. In Fig. 3.10, the extrapolated pumping rate P0 associated with
the ground state |Ψ0(~ϕt0)〉 is shown as a function of Jz for mass parameters (a)M = 1.2
and (b) M = 2.2. A quantized frequency conversion occurs in an excellent agreement
(white regimes) with the topological phase diagrams of Fig. 3.7. This applies as long as
the ITFC shows quasiadiabaticity. Otherwise, the topological response is suppressed
(gray regimes), and perfect quantization breaks down.
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Chapter 4 Open Quantum System Perspective

A key ingredient of many manifestations of topology in physics is the appearance of
impressively robust and quantized linear response signals, such as those predicted for the
transverse conductance in the integer quantum Hall effect [KDP80, PG90]. According
to the well-known Kubo formula [Kub57, Mah00], the linear response due to an external
field originates from the first perturbative correction of the state, which can eventually
be projected onto a topological invariant characterizing the occupied Bloch bands of
the system [Lau81, TKNdN82, Sim83a, Koh85, Hal88]. Following this line of reasoning,
the topologically quantized response of an isolated quantum system is characterized by
its adiabatically defined topological invariant, revealing a correspondence that has been
applied to a variety of topological systems [Tho98, XCN10, Van18, CF21].

In this chapter, we show how this correspondence between adiabatically defined
topological invariants and quantized response properties can be profoundly modified in
open quantum systems. In this context, we propose a topological burning glass effect
(TBGE) in which the local response of a system exhibits a topological quantization
that is amplified by its environmental coupling. The (small) quantum system coupled
to a (larger) environment adopts the topological nature of the total system in its non-
unitary dynamics, imposing a local response that is not captured by the adiabatically
defined topological invariant of the quantum system. As a paradigmatic platform, we
extend the Floquet counterpart of a Chern insulator, namely the topological frequency
converter (TFC) of Sec. 3.1, by statically coupling it to a set of N − 1 surrounding
spins by means of a central spin model (CSM) [Gau76, DPS04, CDBF19]. In the strong
coupling regime, the collective motion of the environmental spins is readily understood
to imprint on the TFC an N -fold enhanced topological frequency conversion between
the two driving frequencies, while the adiabatic winding number (see Sec. 3.1.2) of the
driven spin remains equal to one. Given this discrepancy, we argue that the TBGE is
induced by the non-unitary dynamics of the TFC, which locally involves the collective
motion of the surrounding spins and leads to fluctuations around the adiabatic spin
polarization that significantly differ from those of the single spin case. Besides using
basic concepts of quantum information theory [NC10], our results are derived in the
framework of adiabatic perturbation theory (APT) (see Sec. 2.1.3) and fully corroborated
by exact numerical simulations, the latter allowing for a systematic investigation of the
nonadiabatic breakdown of the strong coupling regime in our concrete model.

The Chapter is organized as follows: In Sec. 4.1, we study the hyperfine interactions in
lateral quantum dots (QDs) [KAT01, HKP+07, RT10, ZDM+13, CSDF+21] or nitrogen-
vacancy (NV) centers [JW06, DMD+13, SCLD14], elaborating a parametrization of
the environmental effects in terms of the CSM. Taking this interacting system, we
analytically derive the topological band structure in the synthetic 2D Brillouin zone (BZ),
with energy gaps that are robust to variations in the interaction strength and scale with
1/N due to spin-wave excitations. Based on these calculations, we examine the TBGE
in its full glory in Sec. 4.2, using fundamental concepts that imply a generic validity
of our results. In Sec. 4.3, we analyze the transient dynamics of the nonequilibrium
phases diagrams, predicting (pre)thermalization into a dynamical quantum phase with
ensemble-averaged pumping rate identical to the single spin case. Parts of this Chapter
have been published as a Letter in Physical Review B [KPBT22]. Copyright (2022) by
the American Physical Society.
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4.1 Central Spin Model

Trapped electron spins in lateral QDs [KAT01, HKP+07, RT10, ZDM+13, CSDF+21] or
NV centers [JW06, DMD+13, SCLD14] can serve as building blocks for quantum com-
putation [LD98, DiV00, NC10], in which fundamental concepts of quantum mechanics,
such as coherent superposition or entanglement, can be applied to solve complex prob-
lems by powerful quantum algorithms [Sho94, EJ96, Gro97, Wil11]. In these systems,
the spin degree of freedom of the electron can be employed to build a two-level system,
the quantum version of a classical bit [NC10]. However, since the electron wave function
is not perfectly localized, its spatial extent induces interactions with the surrounding
nuclear spins of the host material [UMA+13, KL13]. As a consequence, the electron spin
is not isolated from its environment, revealing decoherence effects that can be properly
described in the framework of a CSM [Gau76, DPS04, CDBF19]. Apart from being of
fundamental interest for the study of quantum integrability [CDBF19, VCC20, VCP+20],
the CSM can address the hyperfine interactions between a central spin and an arbi-
trary number of environmental spins in the lateral QDs or NV centers [SKL03, CB09].
If we restrict ourselves to a star-like geometry, in which a central spin exposed to
a time-quasiperiodic magnetic field statically couples to the surrounding spins by a
homogeneous and isotropic interaction strength, the CSM exhibits a block diagonal form
in its Hamiltonian. Concentrating on the block that contains the overall ground state
of the system, we analytically derive the topological band structure in the synthetic BZ.
The latter reveals a gapped spectrum robust to variations in the interaction strength,
with a minimum band gap that scales inversely with the total number of spins due
to spin wave excitations. This analysis provides fruitful insights into the topological
properties of the CSM, essential for the subsequent discussion of the TBGE (see Sec. 4.2)
and the associated nonequilibrium phase diagrams (see Sec. 4.3). Parts of this Section
are based on the Supplemental Material of Ref. [KPBT22]. Copyright (2022) by the
American Physical Society.

4.1.1 Hyperfine Interactions

Quasiperiodically driven few-spin devices, such as the TFC or ITFC proposed in
Chap. 3, provide an intriguing platform for the generation of topological phenom-
ena in dynamically-induced synthetic dimensions. While in the TFC only a single
spin is exposed to the time-quasiperiodic external fields, the correlated topological
responses in the ITFC are induced by additional Heisenberg interactions between the
two driven spins. A possible implementation of the TFC is given by a driven electron
spin captured in a lateral QD [KAT01, HKP+07, RT10, ZDM+13, CSDF+21] or NV
center in diamond [JW06, DMD+13, SCLD14], while an extension to a gated double
quantum dot [PJT+05, BFT+15, SPF+19] can realize the ITFC. In both models,
however, we have supposed that the electron spins are perfectly isolated from their
environment, an assumption that does not hold under realistic experimental conditions.
There, interactions with the environment can significantly modify the spin dynamics
of the electron, eventually revealing decoherence effects for the associated quantum
states [SKL03, HKP+07, CB09, KL13]. In what follows, we briefly outline the funda-
mental interactions in solid-state QDs, and derive a minimal model that accounts for
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the environmental effects.
In QDs, the spatial degrees of freedom of an electron can be constrained by suitable

geometric arrangements and electronic gates, resulting in discrete states similar to those
of a conventional atom [KAT01, HKP+07, UMA+13]. By filling such a zero-dimensional
state with a single electron, its spin degree of freedom can serve as the building block
of a quantum computer [LD98, DiV00, NC10]. There, the classical bit is replaced by
a two-level quantum system, which can be initialized in any superposition of the two
classical outputs of the bit. This enables the application of fundamental concepts of
quantum mechanics, where the coherent superposition and entanglement between several
two-level systems can provide the basis for fascinating quantum algorithms [Sho94, EJ96,
Gro97, Wil11]. In these algorithms, successful quantum computation requires coherent
manipulation of the spin state over sufficiently long time-scales. Interaction with the
environment, however, eventually leads to a loss of this coherence. In fact, as the electron
spin wave function is not perfectly confined to the zero-dimensional structure, these
decoherence effects are mainly induced by the hyperfine interactions between the trapped
electron spin and the nuclear spins of the host material [HKP+07, UMA+13, KL13].

Two of the most relevant interaction mechanisms in solid-state QDs involve the
Zeeman coupling of an external field to the magnetic moments of the underlying spins,
and the hyperfine interactions of the electron spin to the surrounding nuclear spins.
Accordingly, a proper theoretical model for a quasiperiodically driven QD is provided
by the Hamiltonian [SKL03, CB09, KL13]

Ĥ(~ϕt) = g∗ µB B(~ϕt) · Ŝ0 − gN µN

N−1
∑

k=1

B(~ϕt) · Ŝk −
N−1
∑

k=1

Ak

∑

µ,ν

X̂µν Ŝ
µ
0 Ŝ

ν
k . (4.1)

The spin operators Ŝ0 = 1
2 σ̂0 and Ŝk = 1

2 σ̂k constitute to the central electron spin
and the surrounding nuclear spins of the host material, where we restrict ourselves to
spin-1/2 for both components. The vector of Pauli matrices acting on the individual
subspaces of the constituents is given by σ̂i = (σ̂xi , σ̂

y
i , σ̂

z
i ). The Zeeman coupling

terms associated with the dynamical magnetic field B(~ϕt) are proportional to Bohr’s
magneton µB (the nuclear magneton µN ) and the effective g∗−factor of the central
spin (the nuclear gN−factor of the environmental spins) [SKL03, CB09, UMA+13]. The
relative sign difference in the Zeeman coupling terms is due to the opposite charge of
the corresponding constituents, while we assume that there only exists one nuclear spin
species in the QD. The central electron spin couples to a set of N − 1 nuclear spins via
hyperfine interactions, the latter parametrized by a Heisenberg term with inhomogeneous
coupling strengths Ak. In this context, we further introduce the dimensionless tensor X̂µν

{µ, ν = x, y, z}, which accounts for possible anisotropies in the interaction [CB09, RT10].
We neglect the dipole-dipole coupling between the nuclear spins, as their energy scales
are typically much smaller than those of the hyperfine interaction between the electron
spin and the environmental spins [SKL03, HKP+07, KL13].

The details of the interaction can significantly vary according to the choice of the
host material of the QD. In fact, prototype materials such as GaAs QDs [HKP+07,
UMA+13, KL13] or graphene QDs [TBLB07, RT10, RGB+11] differ in several aspects.
For instance, while the hyperfine interaction in graphene is generally anisotropic in
nature, it is isotropic in GaAs. However, the probably most crucial difference between
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these two substrates appears in the size of the associated spin environments. While
in GaAs there typically exists up to 106 nuclear spins in the QDs [KAT01, HKP+07,
UMA+13, KL13], isotopic purification [TLAR03, BNT+09, CSDF+21] in carbon based
materials allows for a variable size in the number of environmental spins. In this
sense, isotopic purification offers the opportunity to explore the physical limits of both
large and small spin environments, which could find application in QDs based on
graphene [TBLB07, RT10, RGB+11] or SiGe [ZDM+13, CSDF+21]. Alternatively, NV
centers in diamond can provide a moderately small number of environmental spins as
well [JW06, DMD+13, SCLD14].

We choose the dynamical modulation of the external field B(~ϕt) = Bc d(~ϕt) as
(cf. Eq. (3.4))

d(~ϕt) =





sin(ϕ1t)
sin(ϕ2t)

M − cos(ϕ1t)− cos(ϕ2t)



 ,

consisting of a static magnetic field with amplitude Bs = BcM in z direction, and two
circularly polarized drives with amplitudes Bc. The associated time-dependent phases
~ϕt = (ϕ1t, ϕ2t) = ~ω t + ~φ are generated by the vector of incommensurate frequencies
~ω = (ω1, ω2) and offset phases ~φ = (φ1, φ2). Introducing the relation ∆x = gN µN

g∗ µB
, the

energy scale1

λ = g∗ µB Bc,

and the renormalized interaction strength Ak = Ak/λ, the Hamiltonian (4.1) can be
rewritten as

Ĥ(~ϕt) = λ
[

d(~ϕt) · Ŝ0 −∆x

N−1
∑

k=1

d(~ϕt) · Ŝk −
N−1
∑

k=1

Ak

∑

µ,ν

X̂µν Ŝ
µ
0 Ŝ

ν
k

]

.

Typically, the Zeeman splitting between the nuclear spin states is much smaller than that
of the central electron spin, revealing a relation |∆x| ≪ 1 [SKL03, HKP+07, UMA+13].
If we consider rather small spin environments, we can thus neglect the Zeeman coupling
terms of the environmental spins. For simplicity, we further assume homogeneous
Ak = A and isotropic X̂µν = δµν Heisenberg interactions between the central electron
spin and the surrounding spins, eventually leading to the quasiperiodically driven
CSM [Gau76, DPS04, CDBF19]

Ĥ(~ϕt) = λ [d(~ϕt) · Ŝ0 −A Ŝ0 · Ĵ]. (4.2)

Although this minimal model may not reflect the physics of real experimental setups,
the Hamiltonian (4.2) shows an important symmetry based on the star-geometry of the
homogeneous interaction: [Ĥ(~ϕt), Ĵ

2] = 0, with Ĵ =
∑N−1

k=1 Ŝk. As a consequence, the
total system can be transformed into a block diagonal form, with each block characterized

1We assume λ > 0 for simplicity.
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by a constant of motion2

j =







N−1
2 , N−1

2 − 1, . . . , 1
2 ; N even

N−1
2 , N−1

2 − 1, . . . , 0 ; N odd

corresponding to the total spin Ĵ2 of the surrounding spins with N ≥ 2. In the remainder
of Sec. 4.1, we explicitly analyze this block diagonal form, showing that the overall
ground state is contained in the block j = N−1

2 . Restricting ourselves to this block, we
derive the topological band structure in the synthetic 2D BZ, and demonstrate that
it leads to a gapped spectrum robust to variations in the interaction strength. The
minimum band gaps of the synthetic band structure scale with the inverse of the total
number of spins, described by the collective behavior of spin wave excitations. This
analysis forms the basis for the subsequent discussion of the TBGE (see Sec. 4.2) and
the associated nonequilibrium phase diagrams (see Sec. 4.3), which are derived from
the quasiperiodic dynamics of the system. In what follows, however, we derive the
instantaneous spectrum of the Hamiltonian (4.2) for fixed values of the phases ~ϕt, that
is at a given point of the synthetic 2D BZ. To this end, we suppress the subscript t
from ~ϕt.

4.1.2 Block diagonal form

Rewriting Eq. (4.2) by means of the total spin Ŝtot = Ŝ0 + Ĵ, it becomes clear that the
interaction is invariant under the transformation

Ĥ ′(~ϕ) =
(

N−1
⊗

i=0

Û †(~ϕ)
)

Ĥ(~ϕ)
(

N−1
⊗

i=0

Û(~ϕ)
)

= λ
[

|d(~ϕ)| Ŝz′

0 − A
2

(

Ŝ2
tot− Ĵ2− 3

4

)]

. (4.3)

The SU(2) matrices Û(~ϕ) rotate the z quantization axes of the subspaces in the z′

direction of the field vector d(~ϕ): Û †(~ϕ)d(~ϕ) · σ̂ Û(~ϕ) = |d(~ϕ)| σ̂z′ . By introducing

raising and lowering operators Ŝ′±
0 = Ŝx′

0 ± i Ŝy′

0 and Ĵ ′± = Ĵx′ ± i Ĵy′ within the rotated
basis, Eq. (4.3) can be rewritten as

Ĥ ′(~ϕ) = λ
[

|d(~ϕ)| Ŝz′

0 − A
2

(

Ŝ′+
0 Ĵ ′− + Ŝ′−

0 Ĵ ′+ + 2 Ŝz′

0 Ĵz′
)]

. (4.4)

Eq. (4.4) immediately reveals the symmetries of the model: [Ĥ ′(~ϕ), Ĵ2] = [Ĥ(~ϕ), Ĵ2] = 0
and [Ĥ ′(~ϕ), Ŝz′

tot] = 0, where we use that the total spin Ĵ2 of the environmental spins
is invariant under the transformation defined in Eq. (4.3). The associated quantum
numbers are given by

j =







N−1
2 , N−1

2 − 1, . . . , 1
2 ; N even

N−1
2 , N−1

2 − 1, . . . , 0 ; N odd
and ms = −j − 1

2
, −j + 1

2
, . . . , j +

1

2
.

2This can be seen from the equations of motion [Ehr27, Bal15, GS18]: d
dt

〈Ĵ2〉 = i 〈[Ĥ(~ϕt), Ĵ
2]〉 +

〈∂t Ĵ
2〉 = 0, where the expectation values are calculated according to the exact solution of the time-

dependent Schrödinger equation of the interacting spin system.
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Due to the symmetries of the Hamiltonian Ĥ ′(~ϕ), it seems convenient to represent
Eq. (4.4) within the rotated basis of product states between the central spin-1/2 and the
total spin Ĵ2 of the surrounding spins: |ms0 , j,mj , η〉 = |ms0〉 ⊗ |j,mj , η〉. We introduce
the eigenstates within the rotated basis

Ŝz′

0 |ms0〉 = ms0 |ms0〉 , Ĵ2 |j,mj , η〉 = j (j + 1) |j,mj , η〉 ,
Ĵz′ |j,mj , η〉 = mj |j,mj , η〉 , (4.5)

with quantum numbers ms0 = ±1
2 , mj = −j, −j + 1, . . . , j, and η = 1, 2, . . . , ηmax.

The quantum numbers η distinguish orthogonal states 〈j,mj , η|j,mj , η̃〉 = δη,η̃, having
identical quantum numbers j and mj . Consequently, ηmax equals the dimension of the
degenerated subspace formed by states |j,mj , η〉 [WM02, BBP04]. The rotated basis
states |ms0 , j,mj , η〉 form an orthonormal set with

〈ms0 , j,mj , η|m̃s0 , j̃, m̃j , η̃〉 = δms0 ,m̃s0
δj,j̃ δmj ,m̃j δη,η̃. (4.6)

We would like to emphasize that the quantum numbers j are constants of motion, while
the quantum numbers ms are not. This follows from the fact that Ŝz′

tot becomes explicitly
time-dependent when rotated back into the original basis of Eq. (4.2). Dynamical excita-
tions into states of different ms are then possible during the nonequilibrium evolution of
the system. Concerning the exact dynamics, we can thus restrict ourselves to the basis
states with fixed quantum numbers j. The Hamiltonian Ĥ ′(~ϕ) is transformed into a block
diagonal form, with each block characterized by the constants of motion j. The explicit
representation of the blocks within the rotated basis 〈ms0 , j,mj , η|Ĥ ′(~ϕ)|m̃s0 , j, m̃j , η̃〉
can be derived using the properties of Eqs. (4.5), (4.6) and

Ŝ′±
0 |±1

2
〉 = 0, Ŝ′±

0 |∓1

2
〉 = |±1

2
〉 ,

Ĵ ′± |j,mj , η〉 =
√

j (j + 1)−mj (mj ± 1) |j,mj ± 1, η〉 .

This yields the only nonvanishing matrix elements

〈ms0 , j,mj , η|Ĥ ′(~ϕ)|ms0 , j,mj , η〉 = λms0 (|d(~ϕ)| − Amj) (4.7)

and

〈∓1

2
, j,mj ± 1, η|Ĥ ′(~ϕ)| ± 1

2
, j,mj , η〉 = −λA

2

√

j (j + 1)−mj (mj ± 1). (4.8)

By proper arrangement of the nonvanishing matrix elements of Eqs. (4.7) and (4.8), the
block j can be further separated into one- and two-dimensional blocks characterized
by quantum numbers ms (and η). It should be noted that the Hamiltonian Ĥ ′(~ϕ)
is degenerate in the quantum numbers η. The one-dimensional blocks correspond to
eigenstates |E, j,ms, η〉 with minimal and maximal values ms = ±1

2 ± j:

|E(1)
± , j,±1

2
± j, η〉 = |±1

2
, j,±j, η〉 , E

(1)
± (~ϕ, j) = ±λ

2

[

|d(~ϕ)| ∓ A j
]

. (4.9)
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We have introduced quantum numbers E corresponding to the energy eigenvalues
of the associated eigenstates |E, j,ms, η〉. The remaining quantum numbers ms =
−j + 1

2 , −j + 3
2 , . . . , j − 1

2 define two-dimensional blocks within the rotated basis
{|12 , j,ms − 1

2 , η〉 , |−1
2 , j,ms +

1
2 , η〉}, resulting in equations

λ
( l σ̂′

2
+

A
4

)

|E(2)
± , j,ms, η〉 = E

(2)
± (~ϕ, j,ms) |E(2)

± , j,ms, η〉 (4.10)

with

l(~ϕ, j,ms) =







−A
√

j (j + 1)− (m2
s − 1

4)

0
|d(~ϕ)| − Ams






.

The solutions of Eq. (4.10) are given by

|E(2)
± , j,ms, η〉 =















|±1
2 , j,ms ∓ 1

2 , η〉 ; A = 0

|l|±l σ̂′√
2 |l| (|l|±lz)

(

1

0

)

; A 6= 0
,

E
(2)
± (~ϕ, j,ms) = ±λ

2

[

|l(~ϕ, j,ms)| ±
A
2

]

. (4.11)

The representation of the instantaneous eigenstates can be further simplified to

|E(2)
± , j,ms, η〉 =

1√
2

[

√

1± lz
|l| |

1

2
, j,ms −

1

2
, η〉∓sgn(A)

√

1∓ lz
|l| |−

1

2
, j,ms +

1

2
, η〉
]

,

(4.12)
with the sign-function

sgn(x) =







+1 ; x ≥ 0

−1 ; x < 0
.

Assuming that |d(~ϕ)| 6= 0, A 6= 0 and λ > 0, we examine the overall ground state of
Eqs. (4.9) and (4.11). By formally performing the derivative

∂E
(2)
− (~ϕ, j,ms)

∂ms
=

λ |d(~ϕ)| A
2 |l(~ϕ, j,ms)|

at a given point of the synthetic 2D BZ, we can conclude that for ferromagnetic/antiferromagnetic

interaction strength A > 0/A < 0 the lowest energy level E
(2)
− within each block j is

given by the minimal/maximal quantum number ms = −j + 1
2/ms = j − 1

2 . Moreover,
it can be shown that

lim
ms 7→− 1

2
−j
E

(2)
− (~ϕ, j,ms) =

λ

4

(

A−
∣

∣

∣
2 |d(~ϕ)|+ (2 j + 1)A

∣

∣

∣

)







= E
(1)
− (~ϕ, j) ; A > 0

≤ E
(1)
− (~ϕ, j) ; A < 0

,

which implies that the local ground state energy level within each block j is given

by E
(1)
− (~ϕ, j)/E

(2)
− (~ϕ, j, j − 1

2) for ferromagnetic/antiferromagnetic interaction strength
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4.1 Central Spin Model

A > 0/A < 0. By additionally performing the derivatives

∂E
(1)
− (~ϕ, j)

∂j
= −λA

2
,

∂E
(2)
− (~ϕ, j, j − 1

2)

∂j
=
λA [2 |d(~ϕ)| − (2 j + 1)A]

4 |l(~ϕ, j,ms)|
,

it becomes obvious that the block j = N−1
2 contains the overall ground state for

interaction strengths A 6= 0. The associated instantaneous spectrum is not degenerate
(ηmax = 1) [WM02, BBP04].

4.1.3 Topological Band Structure

Since the Hamiltonian Ĥ ′(~ϕ) of Eq. (4.3) commutes with Ŝz′
tot, the block j = N−1

2 can
be further separated into one- and two-dimensional blocks characterized by quantum
numbers ms = −N

2 , −N
2 + 1, . . . , N

2 . The one-dimensional blocks correspond to the
minimal and maximal values ms = ±N/2, resulting in energy bands (see Eq. (4.9))

E
(1)
± (~ϕ) = ±λ

4

[

2 |d(~ϕ)| ∓ A (N − 1)
]

. (4.13)

The remaining quantum numbers ms define two-dimensional blocks with energy bands
(see Eq. (4.11))

E
(2)
± (~ϕ,ms) = ±λ

4

[

√

A2N2 + 4 |d(~ϕ)| (|d(~ϕ)| − 2Ams)±A
]

. (4.14)

The invariance of the interaction under the transformation of Eq. (4.3) stems from the
isotropy of the interaction, leading to a gapped band structure robust to variations in
the interaction strength A. Namely, the spectrum of Eqs. (4.13) and (4.14) is gapped
throughout the entire synthetic 2D BZ for |d(~ϕ)| 6= 0 and A 6= 0. The dependence
on the phases ~ϕ can then be addressed by introducing the (~ϕ-dependent) interaction
strength A~ϕ = A/|d(~ϕ)| and the dimensionless energy eigenvalues

E(1)
± (A~ϕ) =

E
(1)
± (~ϕ)

λ |d(~ϕ)| , E(2)
±,n(A~ϕ) =

E
(2)
± (~ϕ,−N

2 + n)

λ |d(~ϕ)| . (4.15)

The eigenvalues E(1)
± and E(2)

±,n depend only on the interaction strength A~ϕ, but not on
the explicit phases ~ϕ. Instead of the quantum numbers ms, we have introduced the
number n = 1, 2, . . . , N − 1 of flipped spins as compared to the ferromagnetic state
ms = −N

2 for illustration. The instantaneous eigenstates within the rotated basis are
given by

|E(1)
± 〉 =

∣

∣

∣

∣

±1

2
,±N − 1

2

〉

, |E(2)
±,n〉 =

√

1± χn

2

∣

∣

∣

∣

1

2
,−N + 1

2
+ n

〉

∓

∓ sgn(A~ϕ)

√

1∓ χn

2

∣

∣

∣

∣

−1

2
,−N − 1

2
+ n

〉

, (4.16)

with

χn(A~ϕ) =
2 +A~ϕ (N − 2n)

√

4− 8A~ϕ n+A~ϕN (4 +A~ϕN)
. (4.17)
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We have used the definitions of Eqs. (4.9), (4.12) and introduced the rotated basis
|ms0 ,mj〉 = |ms0〉⊗ |mj〉, neglecting the constant quantum numbers j = N−1

2 and η = 1.
Flipping a spin represents a collective excitation in the spin structure. However, as far
as the physical explanation permits, we simply refer to a (local) flipping of spins: either
a flip of the central spin or a (local) flip in the environment. Both flipping mechanisms
are defined by the same quantum number n, but produce different energy contributions

manifested in the two eigenvalues E(2)
±,n. In fact, the associated eigenstates (4.16) are

described by linear combinations of both flipping mechanisms, reflecting the collective
behavior of the spin excitations.

Fig. 4.1(a) shows the schematic structure of the instantaneous spectrum E as a
function of ferromagnetic interaction strength A~ϕ ≥ 0. The ground state corresponds to
ms = −N

2 , and is separated from the state ms =
N
2 by the Zeeman energy term equal

to 1 (in units of λ |d(~ϕ)|). Excited states |E(2)
±,n〉 are generated by flipping a number of n

spins relatively to the ground state. For A~ϕ ≫ 2
N , the energy difference between high-

|E(2)
+,n〉 and low-lying states |E(2)

−,n〉 goes linearly with the interaction strength A~ϕ (see
Sec. 4.1.4). In what follows, we focus on gaps

∆n(A~ϕ) = E(2)
−,n(A~ϕ)− E(1)

− (A~ϕ). (4.18)

Exact results for ∆n and ∆f = 1 − ∆N−1 are shown in Fig. 4.1(b) for N = 6. The
underlying processes can be roughly divided into the following ranges of interaction
strengths A~ϕ. For A~ϕ ≪ 2

N , the gaps ∆n = n
2 A~ϕ + O(A2

~ϕ) are properly described

by (locally) flipping n environmental spins3. By increasing the interaction strength to
A~ϕ ≈ 2

N , it becomes energetically more favorable to have collective excitations similar
to spin waves: a rotation in the environment manifests itself in a rotation of the central
spin (and vice versa). Energy costs associated with flipping of spins are then reduced
by distributing the excitation across the total system. As shown in Sec. 4.1.4, this

leads to low-energy states |E(2)
−,n〉 that exhibit ferromagnetic ordering 〈Ŝ0 · Ĵ〉 ≈ N−1

4 for

A~ϕ ≫ 2
N . Gaps ∆n ≈ n

N then arise from Zeeman splittings induced by the misalignment

〈Ŝz′
0 〉 ≈ −1

2 +
n
N of the central spin. From these considerations, it becomes clear why

we have defined the crossover interaction strength Acr
~ϕ = 2

N as the intersection of the

approximations ∆f ≈ 1− N−1
2 A~ϕ and ∆f ≈ 1

N .
The previous observations can be straightforwardly expanded to antiferromagnetic

interaction strengths A ≤ 0, which is why subsequent results are not limited to the
ferromagnetic case (see Appendix B.4). For example, the topological classification of
the synthetic energy bands is independent of the sign of interaction strength A. For

A = 0, the instantaneous spectrum formally leads to degenerate eigenvalues E(2)
±,n = E(1)

± .
Nevertheless, in the noninteracting case, Eq. (4.2) is in fact a single-spin Hamiltonian
equivalent to a Chern insulator with mass parameter M (cf. Eq. (3.4)). Thus, each of
the two single-spin energy bands can be characterized by a winding number (provided
that |d(~ϕ)| 6= 0): νgr = −νex = ±1 (nontrivial) for |M | < 2, M 6= 0 or νgr = νex = 0
(trivial) for |M | > 2, where νgr (νex) corresponds to the single-spin ground (excited)
energy band (cf. Fig. 3.4). In the interacting case A 6= 0, the spectrum is explicitly

3Note that a flip of the central spin would lead to a high-energy excitation.
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Figure 4.1: Spectrum E and gaps ∆ as a function of interaction strength A~ϕ ≥ 0. (a) The
ground state corresponds to ms = −N

2 , separated from the state ms = N
2 by the Zeeman

term equal to 1 (in units of λ |d(~ϕ)|). Flipping a number of n spins with respect to the

ground state yields low- and high-energy states |E(2)
±,n〉. For A~ϕ ≫ 2

N , the high-energy excited

states |E(2)
+,n〉 are well separated (∝ A~ϕ) from the other states. (b) Exact results for ∆n and

∆f = 1−∆N−1 for N = 6. For A~ϕ ≪ 2
N , gaps ∆n ≈ n

2 A~ϕ are described by (locally) flipping n
environmental spins. For A~ϕ ≫ 2

N , the gaps converge to ∆n ≈ n
N due to collective spin wave

excitations. We have defined the crossover interaction strength Acr
~ϕ = 2

N as the intersection

of the approximations ∆f ≈ 1− N−1
2 A~ϕ and ∆f ≈ 1

N . Reprinted figure with permission from
Ref. [KPBT22]. Copyright (2022) by the American Physical Society.
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Chapter 4 Open Quantum System Perspective

gapped (provided that |d(~ϕ)| 6= 0) and a total Chern number Cn = (N − 2n) νgr can
be assigned to the synthetic energy bands of Eq. (4.15). We have introduced indices
n = 0, 1, . . . , N representing (again) the number of flipped spins as compared to the
ferromagnetic state ms = −N

2 . The total Chern number Cn only depends on the

quantum number n, yielding the same topology of low- and high-energy bands E(2)
±,n for

(anti)ferromagnetic interaction strengths A 6= 0. The topological classification can be
explained by the effective interaction-induced extension of the magnetic coupling to the
surrounding spins. As a result, the environmental spins also rotate along the direction
of the external magnetic field B(~ϕt), producing adiabatic topological properties beyond
those of the central spin. For n = 0, this yields the total Chern number C0 = N νgr: The
adiabatic spin polarizations of the environmental spins point in the same direction as
that of the central spin, such that each spin contributes to the many-body wave function
by the single-spin Chern number νgr (cf. Fig. 3.2). Starting from this state, each flip of
a spin leads to an even change in the total Chern number ∆C = Cn+1 − Cn = −2 νgr.

4.1.4 Spin-Wave Excitations

In the following, we investigate the nature of spin excitations in the instantaneous
spectrum. We start our consideration by determining the expectation values 〈Ŝz′

0 〉,
〈Ŝ0 · Ĵ〉 associated with the instantaneous eigenstates of the Hamiltonian (4.3):

χ = 〈Ŝz′

0 〉 = 1

λ

〈

∂Ĥ ′(~ϕ)

∂|d(~ϕ)|

〉

=
1

λ

∂E(~ϕ)

∂|d(~ϕ)| ,

ξ = 〈Ŝ0 · Ĵ〉 = − 1

λ

〈

∂Ĥ ′(~ϕ)

∂A

〉

= − 1

λ

∂E(~ϕ)

∂A . (4.19)

We apply the Hellmann-Feynman theorem, which relates the expectation values χ, ξ
to the synthetic energy bands E(~ϕ) of the Hamiltonian Ĥ ′(~ϕ). Further, we use that
the interaction Ŝ0 · Ĵ is invariant under the transformation defined in Eq. (4.3). By
inserting the energy bands of Eqs. (4.13), (4.14) into Eq. (4.19), this yields expectation

values χ
(1)
± = ±1

2 , ξ
(1)
± = N−1

4 for the one-dimensional blocks, and expectation values

χ
(2)
±,n(A~ϕ) = ±1

2
χn(A~ϕ), ξ

(2)
±,n(A~ϕ) = −1

4
± 4n−N (2 +A~ϕN)

4
√

4− 8A~ϕ n+A~ϕN (4 +A~ϕN)
(4.20)

for the two-dimensional blocks. We have used the values χn(A~ϕ) of Eq. (4.17), which
have now been assigned a physical meaning. Using the relations of Eqs. (4.19) and (4.20),
the dimensionless energy eigenvalues (4.15) can be solely expressed by the associated

expectation values χ, ξ: E(1)
± = χ

(1)
± −A~ϕ ξ

(1)
± and E(2)

±,n = χ
(2)
±,n −A~ϕ ξ

(2)
±,n. Restricting

ourselves to ferromagnetic interaction strengths A~ϕ ≥ 0, the gaps (4.18) can be described
by ∆n = ∆χn +A~ϕ∆ξn, with expectation values

∆χn(A~ϕ) = χ
(2)
−,n(A~ϕ)− χ

(1)
− , ∆ξn(A~ϕ) = ξ

(1)
− − ξ

(2)
−,n(A~ϕ). (4.21)

The formation of gaps ∆n can be explained according to the separation into spin
expectation values ∆χn, ∆ξn: one contribution is given by the Zeeman splittings
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4.1 Central Spin Model

induced by the interaction-driven rotation of the central spin (indicated by ∆χn), while
the other part explicitly originates from the interaction Ŝ0 · Ĵ (indicated by ∆ξn).
Fig. 4.2 shows exact results for the expectation values ∆χn, ∆ξn of Eq. (4.21), and
∆χf = 1 − ∆χN−1, as a function of ferromagnetic interaction strength A~ϕ ≥ 0 and
N = 6. As in Sec. 4.1.3, the underlying processes can be roughly divided into the
following ranges of interaction strengths A~ϕ. For A~ϕ ≪ 2

N , the expectation values
∆χn = O(A2

~ϕ) indicate that the central spin is hardly affected by interactions, which is
why gaps ∆n can only arise due to rotations in the environment. Indeed, the expectation
values ∆ξn = n

2 +O(A~ϕ) are properly described by (locally) flipping n environmental
spins, which finally leads to gaps ∆n = n

2 A~ϕ +O(A2
~ϕ). By increasing the interaction

strength to A~ϕ ≈ 2
N , the expectation values ∆χn/∆ξn increase/decrease with the

interaction strength A~ϕ, indicating the collective behavior of the excitations similar
to spin waves. As explicitly shown in Fig. 4.2(b), this leads to vanishing expectation
values ∆ξn ≈ 0, A~ϕ∆ξn ≈ 0 for interaction strengths A~ϕ ≫ 2

N , revealing that the

low-energy states |E(2)
−,n〉 exhibit ferromagnetic ordering. Gaps ∆n ≈ n

N then arise solely
from the Zeeman splittings induced by the misalignment ∆χn ≈ n

N of the central spin.

High-energy states |E(2)
+,n〉 exhibit antiferromagnetic ordering ξ

(2)
+,n ≈ −N+1

4 , which is

why they separate linearly (∝ A~ϕ) from the low-energy states |E(2)
−,n〉 for interaction

strengths A~ϕ ≫ 2
N .
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Figure 4.2: Spin expectation values (a) ∆χn, ∆χf = 1−∆χN−1 and (b) ∆ξn, A~ϕ ∆ξn as a
function of ferromagnetic interaction strength A~ϕ ≥ 0 and N = 6. For A~ϕ ≪ 2

N , expectation
values ∆χn ≈ 0 indicate that the central spin is hardly affected by interactions. Expectation
values ∆ξn ≈ n

2 are then described by (locally) flipping n environmental spins. For A~ϕ ≫ 2
N ,

the expectation values converge to ∆χn ≈ n
N and ∆ξn ≈ 0, A~ϕ ∆ξn ≈ 0, which shows that

low-energy states |E(2)
−,n〉 exhibit ferromagnetic ordering. The central spin is then rotated due to

interactions, demonstrating the collective nature of the spin wave excitations: rotations in the
environment manifest themselves in rotations of the central spin (and vice versa).
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4.2 Topological Burning Glass Effect

4.2 Topological Burning Glass Effect

We extend the TFC of Sec. 3.1 by statically coupling it to a set of surrounding spins in
the framework of a CSM (see Sec. 4.1). There, the topologically quantized response is
given by the energy transfer between the two driving modes, which represents a local
observable of the driven central spin. Yet, the adiabatically defined winding number
(see Sec. 3.1.2) of the central spin fails to predict the linear response signal, which can
instead only be topologically understood from the adiabatic state of the total system.
In this sense, the topological properties of the environmental spins are focused to the
local response of the TFC, motivating the terminology of a topological burning glass. In
our concrete topological burning glass scenario, the quantized energy transfer is found
to be N -fold enhanced by the collective motion of N spins, while the adiabatic winding
number of the driven spin remains equal to one. By investigating the fluctuations around
the adiabatic spin polarization of the central spin-1/2, we argue that the collective
motion of the surrounding spins crucially affects the non-unitary dynamics of the TFC,
which is the very origin of the TBGE. Throughout this Section, we closely follow the
derivations and results presented in Ref. [KPBT22]. Copyright (2022) by the American
Physical Society.

4.2.1 Concrete Model

We consider the dynamics of a central spin that is subjected to a time-quasiperiodic
magnetic field B(~ϕt), and interacts in a static fashion with its environment. A minimal
framework for this scenario is provided by the following driven CSM (see Fig. 4.3 for an
illustration):

Ĥ(~ϕt) = g∗ µB B(~ϕt) · Ŝ0 −A Ŝ0 · Ĵ, (4.22)

where Ŝ0 = 1
2 σ̂0 represents the central spin-1/2 and Ĵ =

∑N−1
k=1 Ŝk =

∑N−1
k=1

σ̂k
2 the

surrounding spins. The environment is composed of a number of N − 1 spin-1/2, and is
assumed to interact homogeneously with the central spin with coupling strength A. We
further introduce the vector of Pauli matrices σ̂i = (σ̂xi , σ̂

y
i , σ̂

z
i ) acting on the individual

subspaces of the constituents. The Zeeman term generated by the magnetic field B(~ϕt)
is proportional to Bohr’s magneton µB and the effective g∗−factor of the central spin.
This model effectively applies for instance to driven electron spins trapped in lateral
QDs in SiGe or NV centers in diamond4. In these systems, the (central) electron spin
couples in a star-like fashion to the surrounding nuclear spins of the host material,
with a hyperfine interaction that is typically three orders of magnitude larger than the
dipole-dipole coupling between the nuclear spins themselves (cf. Sec. 4.1.1).

4In lateral QDs or NV centers, the Heisenberg interaction to the surrounding spins is not necessarily
homogeneous or isotropic (cf. Sec. 4.1.1), as assumed for simplicity in Eq. (4.22). However, as our main
statements about the TBGE reflect fundamental concepts that do not depend on the details of the
model (cf. Appendix B.1), our results generally apply to inhomogeneous and anisotropic interactions as
well.
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Figure 4.3: Quasiperiodically driven central spin model (CSM) as a topological burning glass.
A central spin (red sphere) couples in star-geometry to N − 1 surrounding spins (blue spheres).
The isotropic interaction is parametrized by the homogeneous coupling constant A. The central
spin is subjected to a static magnetic field with amplitude Bs and two circularly polarized
drives with incommensurate frequencies ω1 and ω2, so as to induce a topological frequency
conversion. Reprinted figure with permission from Ref. [KPBT22]. Copyright (2022) by the
American Physical Society.

The time-dependence of the external fieldB(~ϕt) = Bc d(~ϕt) is chosen as (cf. Eq. (3.4))

d(~ϕt) =





sin(ϕ1t)
sin(ϕ2t)

M − cos(ϕ1t)− cos(ϕ2t)



 .

It consists of a static magnetic field with amplitude Bs = BcM in z direction, and
two circularly polarized drives, with amplitudes Bc and time-dependent phases ~ϕt =
(ϕ1t, ϕ2t) = ~ω t+ ~φ. The offset phases and incommensurate frequencies are parametrized
by ~φ = (φ1, φ2) and ~ω = (ω1, ω2).

In order to cope with the influence of the surrounding spins, we take advantage
of the homogeneity of the interaction based on the star-like symmetry of Eq. (4.22),
that entails [Ĥ(~ϕt), Ĵ

2] = 0 (see also Sec. 4.1). The Hamiltonian Ĥ(~ϕt) may thus be
transformed into a block diagonal form, with each block characterized by a constant of
motion

j =







N−1
2 , N−1

2 − 1, . . . , 1
2 ; N even

N−1
2 , N−1

2 − 1, . . . , 0 ; N odd

corresponding to the total spin Ĵ2 of the surrounding spins with N ≥ 2. As we want to
focus on the dynamics originating from the ground state, we restrict ourselves to the
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4.2 Topological Burning Glass Effect

block5 j = N−1
2 . The associated block matrix size is 2N × 2N , and the instantaneous

spectrum is obtained by solving

Ĥ(~ϕt) |Φα(~ϕt)〉 = Eα(~ϕt) |Φα(~ϕt)〉 . (4.23)

The energies Eα(~ϕt) are ordered from low to high values by ascending indices α =
0, 1, . . . , 2N − 1, where α = 0 denotes the ground state. For an incommensurate
pair of frequencies ω1

ω2
/∈ Q, the phases ϕ1t and ϕ2t entirely sample the surface of a

two-dimensional torus, analogously to a synthetic 2D BZ (cf. Fig. 2.3). The energy
levels {Eα(~ϕt)}α then resemble a Bloch band structure in parameter space, with the
phases ~ϕt taking the role of Bloch quasimomenta.

4.2.2 Collective Motion Picture

Assuming that the interacting spin system of Eq. (4.22) is gapped6 and initially prepared
in an instantaneous eigenstate |Φβ(~ϕt0)〉 of Eq. (4.23), the dynamics can be expanded
to first order in ~ω using APT (cf. Eq. (2.18)):

|Ψβ(t)〉 = eiγβ(t)
[

|Φβ(~ϕt)〉+ i
∑

α 6=β

Mαβ(~ϕt)

∆αβ(~ϕt)
|Φα(~ϕt)〉

]

. (4.24)

At zeroth order, the quantum state |Ψβ(t)〉 is restricted to the synthetic energy band
Eβ(~ϕt). First-order corrections, however, yield virtual transitions to the excited states of
the instantaneous spectrum, weighted by the terms Mαβ(~ϕt) = ~ω 〈Φα(~ϕt)|∇~ϕΦβ(~ϕt)〉
and the energy gaps ∆αβ(~ϕt) = Eα(~ϕt)− Eβ(~ϕt). We have also introduced the overall

phase factor γβ(t) = −
∫ t
t0
dt′ [Eβ(~ϕt′)− iMββ(~ϕt′)].

As shown in Sec. 2.3.3, a feature of quasiperiodically driven quantum systems is
energy pumping, a process in which photons of different frequencies are exchanged
between the external drives. The total energy transfer rate is determined by the equations
of motion (cf. Eq. (2.19)): d

dt 〈Ĥ(~ϕt)〉 = 〈∂t Ĥ(~ϕt)〉 = ~ω 〈Î(~ϕt)〉, with Î(~ϕt) = ∇~ϕ Ĥ(~ϕt).

Each term Ẇk(t) = ωk 〈̂Ik(~ϕt)〉 can be interpreted as the pumping rate provided by the
individual drive (cf. Eq. (2.71)), where Îk(~ϕt) = ∂ϕk

Ĥ(~ϕt) resembles a current operator
in k direction of the parameter space. Using the perturbed quantum state |Ψβ(t)〉
from Eq. (4.24), the expectation value 〈̂Ik(~ϕt)〉 can be expanded to first order in ~ω
(cf. Eq. (2.20)):

〈̂Ik(~ϕt)〉β = 〈Ψβ(t)|̂Ik(~ϕt)|Ψβ(t)〉 =
∂Eβ(~ϕt)

∂ϕk
+

2
∑

l=1

ωl Ω
(β)
kl (~ϕt). (4.25)

This result emphasizes that virtual couplings between bands are essential for the
generation of geometrical and topological effects, as the adiabatic limit only produces

5The block j = N−1
2

contains the overall ground state for both ferromagnetic and antiferromagnetic
coupling strengths A 6= 0, as explicitly derived in Sec. 4.1.2.

6As shown in Sec. 4.1.3 and in the Appendix B.4, the Bloch band structure of the CSM is gapped
throughout the entire synthetic 2D BZ for both ferromagnetic and antiferromagnetic coupling strengths
A 6= 0 (provided that |d(~ϕ)| 6= 0).
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Bloch oscillations ∂ϕk
Eβ(~ϕt) (cf. Sec. 2.3.2). In fact, the virtual interband excitations

of Eq. (4.24) can be readily shown to be identical to the Berry curvature Ω
(β)
kl (~ϕt) =

2 Im[〈∂ϕk
Φβ(~ϕt)|∂ϕl

Φβ(~ϕt)〉] (cf. Eq. (2.22)) of the synthetic energy band Eβ(~ϕt) to
which the quasiadiabatic dynamics is confined. This phenomenon demonstrates that,

in an isolated quantum system, the Berry curvature Ω
(β)
kl (~ϕt) arises as the adiabatic

first-order response of the physical observable Îk(~ϕt) = ∂ϕk
Ĥ(~ϕt) to the rate of change

of the external parameter ~̇ϕt = ~ω (cf. Sec. 2.1.4).
As the two frequencies ω1

ω2
/∈ Q are incommensurate, the entire synthetic 2D BZ is

sampled during the time-evolution of the quantum state |Ψβ(t)〉 (cf. Fig. 2.3). Averaging
the pumping rates of Eq. (4.25) over a long period of time, this translates into an inte-
gration over the closed manifold of the two-dimensional torus (cf. Eq. (2.72)). The Bloch
oscillations ∂ϕk

Eβ(~ϕt) do not contribute to this integration, while the integrated Berry

curvature Ω
(β)
kl (~ϕt) produces a topological frequency conversion between the dynami-

cal drives that is proportional to the first Chern number C(β) = 1
2π

∫∫ 2π
0 d2~ϕΩ

(β)
12 (~ϕ)

(cf. Eq. (2.74)). As explicitly shown in Sec. 4.1.3, this topological invariant is governed by
the collective motion of the central spin and the environmental spins: The interactions
in the CSM effectively extend the magnetic coupling to the environmental spins, which
is why the latter also rotate along the direction of the external magnetic field B(~ϕt)
at every point in time. This leads to adiabatic topological properties beyond those of
the central spin, revealing a time-averaged pumping rate determined by the collective
motion of all spins of the CSM (cf. Eq. (2.73)):

P 12
β = −P 21

β =
C(β)

2π
ω1 ω2. (4.26)

The topologically quantized response of the total quantum system of Eq. (4.22) is thus
characterized by its adiabatically defined topological invariant C(β). We contrast this
behavior with its counterpart in an open quantum system in the next section.

4.2.3 Non-Unitary Dynamics

We take an open quantum system perspective, in which a physical observable of interest
operates locally on the (small) quantum system that is coupled to a (larger) environment.
Specifically, in Eq. (4.22), only the central spin is exposed to the quasiperiodic field

B(~ϕt), resulting in a current operator Îk(~ϕt) = λ ∂d(~ϕt)
∂ϕk

· Ŝ0 that acts exclusively on the
central spin-1/2. Accordingly, the expectation value

〈̂Ik(~ϕt)〉β = Tr[ρ̂dyβ (t) Îk(~ϕt)] = Tr0[ρ̂
dy
0,β(t) Îk(~ϕt)] (4.27)

can be fully determined by the non-unitary dynamics of the central spin, expressed by
the reduced density matrix ρ̂dy0,β(t) = Tr

Ĵ
[ρ̂dyβ (t)] [NC10]. Here, we have introduced the

total density matrix ρ̂dyβ (t) = |Ψβ(t)〉〈Ψβ(t)|, where |Ψβ(t)〉 represents the perturbed

quantum state7 of Eq. (4.24). The reduced density matrix ρ̂dy0,β(t) is calculated by tracing

7Note that Eq. (4.27) also holds for the exact dynamics of the system, involving the higher orders in
the perturbative expansion of Eq. (4.24).
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4.2 Topological Burning Glass Effect

out the environment Ĵ (denoted as Tr
Ĵ
), while Tr (Tr0) denotes the trace operating on

the total system (the central spin-1/2). We have further introduced the energy scale

λ = g∗ µB Bc,

assuming λ > 0 for simplicity.
Eq. (4.27) illustrates that the frequency conversion is entirely carried by the central

spin. The topological quantization of the local response, however, is determined by the
geometrical and topological properties of the total system, namely the Berry curvature

Ω
(β)
kl (~ϕt) and the Chern number C(β) of the synthetic energy band Eβ(~ϕt) to which the

quasiadiabatic dynamics is confined (see Sec. 4.2.2). Thus, the non-unitary dynamics of
the central spin effectively inherits the topological nature of the total system. Employing
the perturbed quantum state |Ψβ(t)〉 of Eq. (4.24), this phenomenon can be further
analyzed by a first-order expansion in ~ω of the reduced density matrix

ρ̂dy0,β(t) = ρ̂ad0,β(~ϕt) +
∑

α 6=β

T̂αβ(~ϕt)

∆αβ(~ϕt)
. (4.28)

Here, we introduce the adiabatic limit of the reduced density matrix ρ̂ad0,β(~ϕt) =
Tr

Ĵ
[|Φβ(~ϕt)〉〈Φβ(~ϕt)|], which corresponds to the zeroth order of Eq. (4.24), and re-

sults in Bloch oscillations ∂ϕk
Eβ of Eq. (4.25). The local response, however, arises

from the operators T̂αβ(~ϕt) = iMαβ(~ϕt) TrĴ[|Φα(~ϕt)〉〈Φβ(~ϕt)|] + h.c. accounting for
the virtual transitions to the excited states in the instantaneous spectrum of the total
system. In fact, the correlations of the total system are manifested in the matrix
elements of T̂αβ(~ϕt), thus imposing a topological quantization that is not captured
by basic geometrical or topological aspects of the reduced adiabatic density matrix
ρ̂ad0,β(~ϕt). In this sense, the adiabatic topological properties of the total system are
focused to the local response of the central spin, which motivates the terminology of a
topological burning glass. This mechanism is quite generic, since Eqs. (4.23) to (4.28)
reflect fundamental concepts that do not depend on the details of the model. In fact,
the TBGE generically occurs in any static extension of the CSM under the following
three conditions: (i) the initial state of the interacting spin system is energetically
separated from the other bands, (ii) the dynamics is well described within first-order
APT (see Sec. 2.1.3), (iii) the time-quasiperiodic fields only act on the central spin. The
robustness of our results to more generic couplings is corroborated in the Appendix B.1.

In the open quantum system perspective of the TFC, the correspondence between
the adiabatically defined winding number of the central spin (cf. Sec. 3.1.2) and its
local response signal is fundamentally modified. This discrepancy, however, can be
explained by the non-unitary quantum formalism of Eq. (4.28), which, due to Eq. (4.27),
shows an identical response to that of the collective motion description of Sec. 4.2.2.
Accordingly, both pictures can be treated at the same level, while the collective motion
of the environmental spins is locally imprinted in the non-unitary dynamics of the
central spin. This manifests itself in fluctuations around the adiabatic spin polarization
of the central spin-1/2, which can be illustrated by parametrizing the reduced density

matrix ρ̂dy0,β(t) by vectors udy
β (t) [NC10]:

ρ̂dy0,β(t) =
1

2

(

✶+ u
dy
β (t) · σ̂

)

. (4.29)
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A first-order expansion in ~ω yields udy
β (t) = uad

β (~ϕt) + ∆uβ(~ϕt), separated in terms of

the adiabatic spin polarization uad
β (~ϕt) and the corrections ∆uβ(~ϕt). Using the notation

of Eq. (4.28), the associated contributions to the reduced density matrix ρ̂dy0,β(t) can be
written as

ρ̂ad0,β(~ϕt) =
1

2

(

✶+ uad
β (~ϕt) · σ̂

)

,
∑

α 6=β

T̂αβ(~ϕt)

∆αβ(~ϕt)
=

1

2
∆uβ(~ϕt) · σ̂,

showing that the operators T̂αβ(~ϕt) induce corrections ∆uβ(~ϕt) around the adiabatic spin
polarization uad

β (~ϕt) of the central spin-1/2. Remarkably, these corrections contribute

to the expectation value of the current operator Îk(~ϕt) = λ ∂d(~ϕt)
∂ϕk

· Ŝ0. This can be

directly seen by applying the parametrization of the reduced density matrix ρ̂dy0,β(t) of
Eq. (4.29) to Eq. (4.27):

〈̂Ik(~ϕt)〉β =
λ

2

∂d(~ϕt)

∂ϕk
· uad

β (~ϕt) +
λ

2

∂d(~ϕt)

∂ϕk
·∆uβ(~ϕt). (4.30)

Comparing Eq. (4.30) with Eq. (4.25), this yields

∂Eβ(~ϕt)

∂ϕk
=
λ

2

∂d(~ϕt)

∂ϕk
· uad

β (~ϕt),

2
∑

l=1

ωl Ω
(β)
kl (~ϕt) =

λ

2

∂d(~ϕt)

∂ϕk
·∆uβ(~ϕt), (4.31)

demonstrating that the corrections ∆uβ(~ϕt) include the topological information of the

total system in terms of the Berry curvature Ω
(β)
kl (~ϕt). In the next section, we illustrate

this behavior by concentrating on the concrete topological burning glass scenario in
which the dynamics of the system is initialized in the ferromagnetic ground state
|Φ0(~ϕt0)〉.

4.2.4 Spin Polarization

To further analyze the TBGE, we contrast the dynamics of a decoupled central spin
with the collective dynamics in the strong coupling regime8. We start with the nonin-
teracting case, where Eq. (4.22) transforms into a single-spin Hamiltonian resembling
the momentum-space representation of a Chern insulator with mass parameter M
(cf. Eq. (3.4)). Thus, each of the two single-spin energy bands can be characterized by
a winding number νgr = −νex = ±1 (nontrivial) for |M | < 2, M 6= 0 or νgr = νex = 0
(trivial) for |M | > 2, where νgr (νex) corresponds to the single-spin ground (excited)
energy band (cf. Fig. 3.4). Starting from the single-spin ground state, the quasiadi-
abatic dynamics produces a topological frequency conversion that is proportional to

νgr = − 1
4π

∫∫ 2π
0 d2~ϕ d̃(~ϕ)

(

∂ϕ1d̃(~ϕ) × ∂ϕ2d̃(~ϕ)
)

with d̃(~ϕ) = d(~ϕ)
|d(~ϕ)| (see Eq. (3.7)). In

the interacting case, the interaction effectively extends the magnetic coupling to the

8Throughout the Thesis, we use equivalent terminologies for the dynamics associated with the
first-order corrections of APT (see Sec. 2.1.3). These include, for example, the terms quasiadiabaticity,
quasiadiabatic dynamics, or strong coupling regime.
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4.2 Topological Burning Glass Effect

surrounding spins, forcing them to rotate along the direction of the external field B(~ϕt)
as well. In the strong coupling regime and for ferromagnetic coupling strength9 A > 0,
this collective behavior imposes a topological frequency conversion that is proportional
(cf. Eq. (4.26)) to the total Chern number

C(0) = N νgr (4.32)

of the ferromagnetic ground state10 |Φ0(~ϕt0)〉. This behavior affords a simple inter-
pretation (see also Sec. 4.1.3): In the adiabatic limit, the spin polarizations of the
surrounding spins point in the same direction as that of the central spin, such that
each spin contributes to the many-body wave function by the same single-spin Chern
number νgr (cf. Fig. 3.2). Importantly, the adiabatic ground state is a product state
at all times, such that the reduced adiabatic density matrix ρ̂ad0,0(~ϕ) =

1
2 (✶− d̃(~ϕ) · σ̂)

yields a Chern number νgr that is given by that of a single spin-1/2 (cf. Sec. 3.1.2).
The latter thus fails to capture the topological quantization and enhancement of the
local response, revealing a burning glass effect in which the aforementioned collective
motion of all spins is locally imprinted in the non-unitary dynamics of the central spin.
In fact, as we have described in Sec. 4.2.3, the operators T̂αβ(~ϕt) of Eq. (4.28) induce
fluctuations around the adiabatic spin polarization of the central spin-1/2, including
the topological information of the total system, and affecting the indirect measurement
of the topological frequency conversion [SKK+14, RNC+14, MS21].

In Fig. 4.4, we illustrate the numerically exact simulations of the spin polarization
u
dy
0 (t) = (udy0,x(t), u

dy
0,y(t), u

dy
0,z(t)) as a function of time ω t for different ferromagnetic

interaction strengths A = 0.0 (green), A = 0.5 (blue), A = 4.0 (red). Here, we
introduce the renormalized interaction strength A = A/λ and the vector of frequencies
~ω = (1, γ)ω, with γ = 1

2(1+
√
5). We initialize the system at t0 = 0 in the ferromagnetic

ground state |Φ0(~ϕt0)〉 (cf. Eq. (4.23)), selecting a total number of spins N = 5 and a
frequency ω/λ = 5 · 10−3. The remaining parameters are chosen as φ1 = π/10, φ2 = 0,
and M = 1.2, while the adiabatic spin polarization uad

0 (~ϕt) = −d̃(~ϕt) (cf. Fig. 3.2) is
represented as a solid black line. In the interacting case A 6= 0, the spin polarization
u
dy
0 (t) differs from the single spin case (A = 0), indicating that the non-unitary dynamics

of the central spin is crucially affected by the geometrical properties of the total system
(cf. Eq. 4.31). Note that this information is contained in the enhanced fluctuations
(compared to the single spin case) around the black line in Fig. 4.4.

9Results for antiferromagnetic coupling strength A < 0 are presented in the Appendix B.4.
10For simplicity, we restrict ourselves to the dynamics originating from the ferromagnetic ground state

|Φ0(~ϕt0)〉, leading to a concrete topological burning glass scenario in which the quantized frequency
conversion is maximally amplified by a factor N . However, as the Bloch band structure in the synthetic
2D BZ is explicitly gapped (cf. Sec. 4.1.3), the TBGE can be also observed for the excited states of the
interacting spin system (4.22), as explicitly discussed in the Appendix B.3.
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Figure 4.4: Spin polarization u
dy
0 (t) = (udy0,x(t), u

dy
0,y(t), u

dy
0,z(t)) as a function of time ω t for

different interaction strengths A = 0.0 (green), A = 0.5 (blue), A = 4.0 (red). In the interacting
case A 6= 0, the collective motion of the environmental spins crucially affects the non-unitary
dynamics of the central spin, as can be seen from the enhanced fluctuations (compared to the
single spin case) around the adiabatic spin polarization uad

0 (~ϕt) = −d̃(~ϕt) (solid black line).
We have selected a total number of spins N = 5 and a frequency ω/λ = 5 · 10−3. Note that
the green line only slightly deviates from the black line. Reprinted figure with permission from
Ref. [KPBT22]. Copyright (2022) by the American Physical Society.
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4.3 Nonequilibrium Phase Diagrams

Performing exact numerical calculations, we explore the parameter ranges of the CSM
(see Sec. 4.1) for which the strong coupling regime breaks down. To this end, we
investigate the associated nonequilibrium phase diagrams as a function of interaction
strength, driving frequencies, time-scales of the quasiperiodic dynamics, and the total
number of spins in the CSM. The TBGE (see Sec. 4.2) is suppressed whenever the
driving frequencies approach the size of the energy gap above the many-body ground
state, the latter generally scaling with the inverse of the total number of spins in the
CSM (see Sec. 4.1.3). Accordingly, there exists an ideal choice of environmental spins
such that the TBGE is as pronounced as possible, but the energy gaps are still large
enough to allow for a strong coupling regime under realistic driving frequencies and
interactions. Although this observation indicates that the TBGE constitutes a finite
size effect in our model, the quantized energy transfer between the external drives is
not immediately gone after the breakdown of the quasiadiabatic dynamics. Rather, the
system (pre)thermalizes into an intermediate dynamical quantum phase in which the
topological frequency conversion even extends to a strongly nonadiabatic situation, with
an ensemble-averaged pumping rate similar to that of the decoupled central spin case.
Characterizing the nonequilibrium quantum phases by the time-averaged von Neumann
entropy of the central spin, we further identify the transient dynamics and fundamental
time-scales of (pre)thermalization. Parts of this Section are based on the Supplemental
Material of Ref. [KPBT22]. Copyright (2022) by the American Physical Society.

4.3.1 Nonadiabatic Breakdown

We corroborate the formation of a topological burning glass by numerically solving the
Schrödinger equation associated with the Hamiltonian (4.22) up to times11 λT = 5 · 105.
If the initial state at t0 = 0 corresponds to the ferromagnetic ground state |Φ0(~ϕt0)〉
(cf. Eq. (4.23)), the time-averaged pumping rate P 12 can be extrapolated by the
gradient12 of the energy transfer W1(t) = ω1

∫ t
0 dt′ 〈̂I1(t′)〉 (cf. Fig. 3.5). In Fig. 4.5,

the pumping rate P 12 is shown as a function of ferromagnetic interaction strength13

A > 0 and frequency ω for different total spin numbers N , where we introduce the
renormalized interaction strength A = A/λ. The mass parameter M = 1.2 is selected
such that the system is in the nontrivial topological regime, yielding an adiabatic Chern
number νgr = 1 of the driven spin (cf. Fig. 3.4). We further choose the frequencies
ω1 = ω and ω2 = γ ω, with γ = 1

2(1 +
√
5) the golden ratio, and the offset phases

φ1 = π/10, φ2 = 0. A finite interaction strength drives the system into the burning glass
regime with an N -fold enhanced topological frequency conversion determined by the
Chern number C(0) = N νgr of Eq. (4.32) (red regime). Away from the zero-frequency
limit, there exists parameter ranges at which the strong coupling regime of Eq. (4.26)

11For a time λT = 5 · 105, the entire synthetic 2D BZ is sufficiently sampled for our choice of
parameters.

12We obtain the gradient by computing P 12 = 2
T
(W̄T

1 − W̄
T/2
1 ) with the time-averaged energy

transfers W̄
T/2
1 = 2

T

∫ T/2

0
dtW1(t) and W̄

T
1 = 2

T

∫ T

T/2
dtW1(t).

13Results for antiferromagnetic interaction strength A < 0 are presented in the Appendix B.4.
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Figure 4.5: Nonequilibrium phase diagrams as a function of interaction strength A > 0 and
frequencies ω1 = ω, ω2 = γ ω for different total spin numbers N . The mass parameter M = 1.2
is chosen in the nontrivial topological regime (νgr = 1). Provided the quasiadiabatic dynamics
is confined to the ferromagnetic ground state |Φ0(~ϕt0)〉, the time-averaged pumping rate P 12 is
proportional to the Chern number C(0) = N νgr (red regime). Nonadiabatic excitation processes
can result in dynamical transitions to intermediate/featureless quantum phases with pumping
rates P̄ 12 =

νgr

2π ω1 ω2 (blue regimes)/P 12 = 0 (white regimes). The critical frequencies ωc scale
with the energy gaps separating the spectrum into the aforementioned dynamical quantum
phases (see Fig. 4.1), roughly illustrated by phase boundaries ωc = 0.11∆min

1/f (dashed yellow

lines). Reprinted figure with permission from Ref. [KPBT22]. Copyright (2022) by the American
Physical Society.

breaks down. The dynamics leads to nonadiabatic excitation processes between the
instantaneous eigenstates of the spectrum, yielding a suppression of the dynamical
response. Finally, the system enters an ergodic regime that leads to a featureless state
with pumping rate P 12 = 0 (white regime). Interestingly, in the CSM, there exists an
intermediate dynamical quantum phase in which the spectrum is only partially occupied.
The topological frequency conversion then even extends to a nonadiabatic situation,
with a pumping rate P̄ 12 =

νgr
2π ω1 ω2 (see Eq. (4.33)) similar to that of the single spin

(blue regime).
The nonadiabatic breakdown of the strong coupling regime can be described in

terms of the topological band structure of Fig. 4.1. Starting from the ferromagnetic

ground state energy band E(1)
− , the dynamical breakdown occurs in two main stages14.

(I) The exact quantum state shows equal time-averaged overlaps with the instantaneous

eigenstates of the energy bands E(1)
− and E(2)

−,n, resulting in an intermediate dynamical
quantum phase with an ensemble-averaged pumping rate P̄ 12 =

νgr
2π ω1 ω2 identical to

that of a single spin (cf. Sec. 3.1). The remaining stage (II) divides into two featureless
phases (IIa) and (IIb) with zero time-averaged pumping rate P 12 = 0. (IIa) In addition

to the overlaps of the intermediate phase, also the energy band E(1)
+ is equally occupied

on time-average. (IIb) Within the block j = N−1
2 , an ergodic situation arises in which

the exact quantum state additionally exhibits equal time-averaged overlaps with the

instantaneous eigenstates of the high-energy bands E(2)
+,n. The stages (I)-(II) can be

14Again, we restrict ourselves to ferromagnetic interaction strengths A > 0, while similar results can
be also obtained for the antiferromagnetic case (see Appendix B.4).
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considered as (pre)thermalization processes, while the ergodic situation (IIb) in this
analogy corresponds to a featureless ”infinite-temperature” state.

Let us analyze the above statements in more detail. Starting from the ferromagnetic

ground state energy band E(1)
− , the nonequilibrium evolution can drive the system into

the dynamical quantum phase (I) with integer-quantized energy current

P̄ 12 = −P̄ 21 =
1

N

N−1
∑

n=0

P 12
n =

νgr
2π

ω1 ω2. (4.33)

Each occupied energy band contributes by a time-averaged pumping rate P 12
n = −P 21

n =
Cn
2π ω1 ω2 determined by the total Chern number Cn = (N − 2n) νgr (cf. Sec. 4.1.3). The
ensemble-averaged pumping rate of Eq. (4.33) can be observed for interaction strengths
A~ϕ > 0 that induce low-energy gaps ∆1 ≪ ∆f (cf. Fig. 4.1): once the dynamics leads

to nonadiabatic excitation processes to the first excited energy band E(2)
−,1, subsequent

energy bands E(2)
−,n are gradually occupied as gaps ∆1 and ∆n+1 −∆n are of similar size.

Populations in the instantaneous ground E(1)
− and low-energy bands E(2)

−,n then become
equal within an intermediate (pre)thermal regime, while transitions to the energy band

E(1)
+ are suppressed. For A~ϕ ≫ 2

N , however, all low-energy gaps ∆1 ≈ ∆f ≈ ∆n+1 −∆n

have approximately the same size. (Pre)thermalization then immediately leads to a
featureless quantum phase (II) with zero time-averaged pumping rate P 12 = 0, as the
total Chern numbers sum to

∑N
n=0Cn =

∑N−1
n=1 Cn = 0.

The phase boundaries of the dynamical transitions are not sharp, as they originate
from nonanalytical excitation processes. Nevertheless, the numerics suggest that the
leading processes are approximately covered by critical frequencies ωc ∝ ∆min

1/f , which
is roughly illustrated by assuming a proportionality constant KT = 0.11 in Fig. 4.5
(dashed yellow lines). We have evaluated the gaps ∆1/f of Eq. (4.18) in the origin
(~ϕ = 0) of the synthetic 2D BZ, obtaining the minimum band gaps (see Appendix B.2)

∆min
1/f (A) = λ |d(0)|∆1/f

( A
|d(0)|

)

for the mass parameter M = 1.2. The approach for the critical frequencies ωc becomes
less accurate with larger total spin numbers N , especially evident in Figs. 4.5(b) and
4.5(c). This, however, can be explained by the time-scales required for (pre)thermalization
into the nonequilibrium quantum phases (see Sec. 4.3.2): with a higher number of energy
bands (controlled by a larger total number of spins N), transition phases with pumping
rates beyond the integer-quantized values become more pronounced. This transient
effect, in turn, leads to a broadening of the phase boundaries of the dynamical transitions,
which slightly distorts the approximation ωc ∝ ∆min

1/f . Nevertheless, the fundamental
scaling behavior of the phase diagrams of Fig. 4.5 can be analyzed: both the crossover
interaction strength Acr = 2 |d(0)|

N = 1.6
N (cf. Fig. 4.1) and the minimum band gaps

∆min
1/f /λ ≈ 0.8

N scale with the inverse of N for a larger number of environmental spins,
indicating that the TBGE represents a finite size effect in our model. We have used
that |d(0)| = 0.8.
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4.3.2 Transient Dynamics

In the previous section, we have shown that for a time λT = 5 · 105, the dynamical
transitions to the different nonequilibrium quantum phases mainly depend on the relation
between the frequency ω and the minimum band gap ∆min

1/f (see dashed yellow lines in

Fig. 4.5). For a finite frequency ω 6= 0, however, the breakdown of the prethermal regime
strongly depends on the time-scales of the nonequilibrium dynamics. We investigate
the transient dynamics for the quasiperiodically driven CSM by numerically calculating
the von Neumann entropy of the central spin [NC10]:

Sdy(t) = −Tr0

[

ρ̂dy0,0(t) ln[ρ̂
dy
0,0(t)]

]

, (4.34)

where Tr0 denotes the trace acting on the central spin-1/2 and ln the natural matrix

logarithm. We use the reduced density matrix ρ̂dy0,0(t) introduced in Eq. (4.27), while in
contrast to Eq. (4.28) we now also take into account the higher orders in the perturbative
expansion. Within the prethermal regime, the quasiadiabatic dynamics is confined to

the energy band E(1)
− (see Fig. 4.1) if the system has been initialized in the ferromagnetic

ground state |Φ0(~ϕt0)〉 (cf. Eq. (4.23)). Since the associated instantaneous eigenstate
|Φ0(~ϕt)〉 corresponds to a ferromagnetic product state at all times (cf. Sec. 4.1.3), the
von Neumann entropy nearly vanishes15: Sdy(t) ≈ 0. Away from the zero-frequency
limit, however, there exists a critical time tc at which the prethermal regime breaks
down. The dynamics then leads to nonadiabatic excitation processes between the energy
bands of Eq. (4.15), resulting in an increase of the von Neumann entropy Sdy(t) > 0 for
times t > tc. This change enables, in principle, the determination of the critical time tc.

The von Neumann entropy Sdy(t) described by Eq. (4.34) thus reveals the transient
dynamics for the breakdown of the strong coupling regime. In the CSM, however,
(pre)thermalization additionally leads to the two main stages (I) and (II), as discussed
in Sec. 4.3.1. To determine the fundamental time-scales of this (pre)thermalization
processes, we analyze the time-averaged von Neumann entropy

S̄dy(t) =
1

t

∫ t

0
dt′ Sdy(t′). (4.35)

This quantity provides a proper characterization of the different nonequilibrium quantum
phases (I)-(II), as explicitly suggested in the Appendix B.5. In particular, the featureless
states (IIa) and (IIb) can be distinguished. Thus, it can be used not only to detect the
transient dynamics, but also as a diagnostic tool to confirm the discussions of Sec. 4.3.1.
In Fig. 4.6, the time-averaged von Neumann entropy S̄dy(t) of Eq. (4.35) is shown as a
function of time t and frequency ω for different ferromagnetic interaction strengths A > 0
and total numbers of spins N . The remaining parameters are chosen as in the numerical
computation of the time-averaged pumping rate P 12 (see Fig. 4.5). The numerical
values of S̄dy(t) roughly correspond to the predictions for the different dynamical phases
derived in the Appendix B.5. The nonequilibrium quantum phases are resolved as the

15Although the first-order corrections in Eq. (4.28) induce non-unitary dynamics to the central spin,
their contributions to the von Neumann entropy (4.34) are much smaller compared to those of the
adiabatic limit.
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4.3 Nonequilibrium Phase Diagrams

Figure 4.6: Time-averaged von Neumann entropy S̄dy(t) as a function of time λ t and frequencies
ω1 = ω, ω2 = γ ω for different ferromagnetic interaction strengths A > 0 and total spin numbers
N . The different nonequilibrium quantum phases are resolved as the prethermal phase (red
regime), the intermediate dynamical phase (I) (blue regime), the featureless phases (IIa) (orange
regime) and (IIb) (white regime). The transient dynamics and fundamental time-scales of
(pre)thermalization can be estimated by analyzing the phase boundaries of the dynamical
transitions, yielding critical frequencies ωc for a time λT = 5 · 105 consistent with those of
Fig. 4.5.
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prethermal phase (red regime), the intermediate dynamical phase (I) (blue regime), the
featureless phases (IIa) (orange regime) and (IIb) (white regime). The intermediate
dynamical phase (I) exhibits finite values of the time-averaged von Neumann entropy
S̄dy(t) > 0, arising from the nonadiabatic conditions discussed in Sec. 4.3.1. Thus,
the dynamics of the central spin significantly differs from that of a single spin in the
noninteracting topological regime, reflecting the decoherence effects arising from the
interactions with the environment. In both cases, however, the dynamical response is
described by the ensemble-averaged pumping rate P̄ 12 of Eq. (4.33), as explicitly shown
in Fig. 4.5. For A = 4.0, no (pre)thermalization into an ”infinite-temperature” state
(IIb) takes place for parameters used in Figs. 4.6(b) and 4.6(d). This follows from the

fact that the high-energy bands E(2)
+,n are well separated from the other energy bands

for A ≫ 1.6
N (see also Fig. 4.1(a)). For N = 2 and A = 0.5, the system immediately

(pre)thermalizes from the intermediate dynamical phase (I) to the ergodic situation (IIb),
as shown in Fig. 4.6(a). In this case, the minimum band gap ∆min

f is much larger than

the energetic separation between the ferromagnetic energy band E(1)
+ and the high-energy

bands E(2)
+,n (note that the crossover interaction strength is Acr = 0.8). Nonadiabatic

excitations to the energy band E(1)
+ then immediately populate high-energy bands E(2)

+,n

as well. For N = 5, the crossover interaction strength is Acr = 0.32. An interaction

strength A = 0.5 then leads to a spectrum in which the ferromagnetic energy band E(1)
+

is separated from the high-energy bands E(2)
+,n. The system then also (pre)thermalizes

to the featureless state (IIa), as demonstrated in Fig. 4.6(c). The fundamental time-
scales of (pre)thermalization can be estimated by analyzing the phase boundaries of the
dynamical transitions: changes from red 7→ blue / blue 7→ white / blue 7→ orange regimes
happen at critical times tc and frequencies ωc. The associated boundaries thus provide
the critical frequencies ωc as a function of time t. The logarithmic scales in Fig. 4.6
suggest that this time-dependence could be modulated by a power law. This results
in critical times tc that decrease with larger frequencies ω, while a time λT = 5 · 105
leads to critical frequencies ωc that are consistent with those of the phase boundaries of
the nonequilibrium phase diagrams of Fig. 4.5. In this sense, the topological frequency
conversion could be employed as an indicator of thermalization in a many-body spin
system.
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5
Conclusion

We have shown that interactions can drastically modify the topological properties
of quantum systems with dynamically-induced synthetic dimensions, with correlated
topological responses that have no counterpart to the noninteracting regime. Inspired by
these interaction-driven features, we have discovered a novel mechanism of topological
quantization coined topological burning glass effect (TBGE), in which the local response
of a quantum system exhibits a topological quantization that is enhanced by an integer
due to its environmental coupling. Our results reflect fundamental concepts that do
not depend on the details of the model, but simply refer to the quantum dynamics of a
generic (interacting) system evolving quasiperiodically in parameter space. Treating
these dynamics by means of a perturbative expansion around the adiabatic limit, the
topological response stems from the virtual couplings between the synthetic energy
bands of the instantaneous spectrum.

Before presenting our main results on the interplay between interaction and synthetic
dimension, we have given an overview on the field of dynamical synthetic quantum
matter. To this end, we have focused on energy pumping in quasiperiodically driven
quantum systems, providing a demonstrative implementation of the aforementioned
fundamental concepts. In these systems, the time-quasiperiodic dynamics can be
mapped onto a higher-dimensional Floquet lattice, with a tight-binding model forming
a synthetic band structure in parameter space. Focusing on a gapped energy band, the
semiclassical equations of motion reveal a nontrivial Berry phase term in the frequency
domain, resulting in a transverse response similar to that of a quantum Hall scenario.
The Hall response in this generalized Floquet system manifests itself in a topological
frequency conversion between the quasiperiodic drives, with a time-averaged pumping
rate proportional to the nonzero integer classifying the synthetic Hall regime. Following
this line of reasoning, it has been shown that a single spin-1/2 subjected to two fields of
incommensurate temporal periodicity generates a concrete and feasible example of a
topological frequency converter (TFC), in which the quantized rate is determined by the
adiabatically defined winding number of a Chern insulator.

Based on this knowledge, we have demonstrated that correlated topological phases
in synthetic dimensions already appear for the simplest generalization of the TFC,
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namely two interacting spins equally exposed to two circularly polarized drives. This
minimal model, which we have coined interacting topological frequency converter (ITFC),
already offers striking topological phenomena that can only be interpreted by means
of two-body spin configurations. By calculating the topological phase diagrams of
the ITFC as a function of interaction strength, we have predicted an amplification
of the frequency conversion as a direct manifestation of the correlated topological
response. This enhancement is more pronounced as the number of interacting spins
increases, which we have explicitly confirmed by extending the model to three interacting
spins. Experimental realizations of the ITFC might be implemented in superconducting
quantum circuits [SKK+14, RNC+14] or gated double quantum dots (QDs) [PJT+05,
BFT+15, SPF+19], the latter allowing for even more exotic couplings between spins
due to spin-orbit interactions [FSC+20, FVV+22].

Extending the aforementioned geometrical aspects to open quantum systems, we
have identified that the TBGE fundamentally modifies the correspondence between
adiabatically defined topological invariants and quantized response signals. To this end,
we have shown that the topologically quantized response of a quantum system coupled
to its environment is magnified in a way that can not be understood from the adiabatic
properties of the quantum system alone. Instead, the quantum system inherits the
topological information of the total system in its non-unitary dynamics, imposing a local
response that is not covered by its reduced adiabatic density matrix. We have illustrated
the TBGE with the concrete example of a quasiperiodically driven central spin model
(CSM), in which a central spin experiences a topological frequency conversion that is
significantly enhanced with the number of surrounding spins. Although this choice
makes sense from a pedagogical point of view, the TBGE itself is a generic phenomenon
that applies to any static extension of the CSM (or equivalent models) as long as three
conditions are met: (i) the interacting system is initialized in a (synthetic) energy band
that is energetically separated from the other bands, (ii) the dynamics is accurately
described by the first-order terms of adiabatic perturbation theory (APT), (iii) the
physical observable of interest locally acts on the (small) quantum system coupled to the
(larger) environment. In this sense, the details of the model are not important, which is
why we expect that the TBGE exemplifies a more general principle of topological open
quantum systems.

So far, topological frequency conversion has only been measured indirectly using
interference patterns in nitrogen-vacancy (NV) centers [BCCS20] or spin polarization
detections in superconducting quantum circuits [MS21]. Given this shortcoming, the
amplification of the TBGE could be employed to enable the direct experimental obser-
vation of the quantized energy current, providing a complementary approach to the
recent proposals made in the context of Weyl semimetals [NMR22]. As the enhanced
response might be destroyed by nonadiabatic transitions, we have investigated the exact
dynamics of the system by numerical calculations. This analysis has shown that the
nonadiabatic breakdown occurs when the driving frequencies approach the size of the
energy gap above the many-body ground state, the latter scaling with the inverse of
the total number of spins in the CSM. We suggest that this scaling behavior could be
compensated by counterdiabatic protocols [DR03, DR05, dC13, CPSP19], potentially
improving the lifetime of the quasiadiabatic dynamics and thus making the TBGE also
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accessible to a larger number of surrounding spins.
The main idea behind the dynamical synthetic quantum matter presented in this

Thesis is to project the parameter space of a generic quantum system onto the momentum
space of condensed matter materials. Assuming quasiperiodic modulation, this allows
for the generation of Floquet counterparts of topological states of matter, such as
the presented realization of a quantum anomalous Hall phase by means of the well-
known Chern insulator. However, since the geometrical and topological features of the
dynamical synthetic quantum matter underlie a generic mechanism that is independent
of the concrete model in the physical Hilbert space, our results can in principle be
extended to a variety of other topological models from solid-state physics. Following this
line of reasoning, a more generic parametrization of the multi-frequency drives can induce
three- or higher-dimensional Floquet spaces, in which correlation effects might reveal
further topological features unique to the dynamically-induced synthetic dimensions.
In this context, the correlated topological responses observed in the ITFC or the CSM
could be extended to more exotic couplings between the spins. For example, interactions
in lateral QDs or NV centers are not necessarily isotropic, while anisotropic interactions
could lead to topological phase transitions that potentially enrich the nonequilibrium
phase diagrams of the CSM. As nonadiabatic transitions to excited states of the
spectrum suppress the topological response in both the ITFC and the CSM, it would be
highly desirable to find mechanisms that stabilize the quasiadiabatic dynamics in these
systems. In this context, many-body localization might be a promising candidate for
protecting dynamical synthetic quantum matter against thermalization to an infinite
temperature state [PPacHA15, LDM15, NH15, AABS19, RL20a]. In fact, this approach
has already been shown to persist under quasiperiodic driving [ZMKM22, LCC22], such
that it may be used for the stabilization of the TBGE in the CSM.
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Appendix A Details about the Interacting Topological Frequency Converter

In the main text, we have explored the interplay of interaction and dynamical
synthetic dimension by examining the correlated topological response of the interacting
topological frequency converter (ITFC), a minimal platform consisting of two interacting
spins exposed to two incommensurate periodic drives. The main goal of this Appendix A
is to provide additional technical details about this prototypical model, including a
schematic illustration of the mapping of all possible single-spin configurations at high-
symmetry points (HSPs) to the winding number ν (Sec. A.1), an explicit analysis of
the topological phase diagrams for nonvanishing interaction strength Jx−y (Sec. A.2),
and the extension of the ITFC to an interacting three-spin model (Sec. A.3). Parts of
this Appendix A are based on the Supplemental Material of Ref. [KPBT20]. Copyright
(2022) by the American Physical Society.

A.1 Mapping the Spin Configuration to the Winding Num-
ber

Taking into account that the Hamiltonian (3.10) commutes with Ŝz at HSPs of the
synthetic 2D BZ (Jx−y = 0), we examine the mapping of all possible single-spin
configurations at HSPs to the winding number1 ν. A schematic illustration is presented in
Fig. A.1. Besides the mappings already applied in Fig. 3.3, there exist spin configurations
at HSPs in which the spin winds twice around its Bloch sphere. This stems from the
fact that the quantum states at (0, π), (π, 0) show the same spin configuration, such
that they count twice in determining the coverage of the Bloch sphere.

1This mapping is based on the approach introduced in Sec. 3.2.3, where the topological features of
each separable state contributing to the linear combination in |ψ1,0〉 are explored individually.
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A.1 Mapping the Spin Configuration to the Winding Number

Figure A.1: Mapping of all possible single-spin configurations at high-symmetry points (HSPs)
to the winding number ν. Since quantum states at (0, π), (π, 0) show the same spin configuration,
they count twice in determining the coverage of the Bloch sphere. As a consequence, there exist
spin configurations in which the spin winds twice around its Bloch sphere.
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A.2 Topological Phase Diagrams for nonvanishing Jx−y

We investigate the influence of a nonvanishing interaction strength Jx−y on the topo-
logical phase diagrams of Fig. 3.7. For a finite Jx−y 6= 0, the Hamiltonian (3.10) does
not commute with Ŝz at HSPs of the synthetic 2D BZ, leading to a coupling of the
ferromagnetic triplet states |ψ1,1〉, |ψ1,−1〉. A band inversion at HSPs then occurs
between the antiferromagnetic triplet state |ψ1,0〉 and a superposition of ferromagnetic
triplet states |ψ1,1〉 and |ψ1,−1〉. Accordingly, the topology of the system can no longer
be determined by considering the spin configurations at HSPs only, but needs to be
explicitly calculated by the integral of Eq. (3.13). Thus, we have to diagonalize the
projected Hamiltonian (3.12) for a finite Jx−y 6= 0, and calculate the Chern number Cn

of the respective Bloch eigenstates |Ψn(~ϕ)〉 {n = 0, 1, 2} by Eq. (3.13).
The resulting topological phase diagrams as a function of mass parameter M and

interaction strength Jz are displayed in Fig. A.2 for different interaction strengths
Jx−y 6= 0. For a finite Jx−y, the topological phases are no longer bounded by straight
lines as in Fig. 3.7. Especially, phase transitions that corresponded to the horizontal
lines at |M | = 2 and M = 0 now show dispersive character. Although the critical values
of Jz and M are strongly modified by the coupling of the ferromagnetic triplet states
|ψ1,1〉, |ψ1,−1〉, the corresponding topological invariants of the phases do not vary from
those of the main text. In particular, the striking topological phenomena with odd
Chern numbers Cn = ±1, ±3 are still present and are influenced at most only by a shift
of the boundaries of the phase transitions. Accordingly, the phenomenological results
of the main text are not qualitatively affected by a nonvanishing interaction strength
Jx−y.
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A.2 Topological Phase Diagrams for nonvanishing Jx−y

Figure A.2: Topological phase diagrams as a function of M and Jz for different interaction
strengths Jx−y. The topological phases are no longer bounded by straight lines as in Fig. 3.7,
which is why the topological phase transitions are quantitatively modified by a finite Jx−y 6= 0.
The topological invariants of the phases, however, do not differ from those of the main text.
In particular, the striking topological phenomena with odd Chern numbers Cn = ±1, ±3 are
still present, and only influenced by a shift of the boundaries. The phenomenological results
of the main text are therefore not qualitatively influenced by a finite interaction strength
Jx−y. Reprinted figure with permission from Ref. [KPBT20]. Copyright (2022) by the American
Physical Society.
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A.3 Extended Three-Spin Model

In the main text, we have demonstrated that the interacting topological frequency
converter (ITFC) consisting of two interacting spins (see Fig. 3.6 for an illustration)
realizes correlated topological phases in which the topological response can be enhanced
by interactions for global Chern numbers Cn = ±3. In the following, we illustrate
that such correlated topological phases are also to be expected with an increasing
number of interacting spins, and that in these cases the associated amplification of the
topological frequency conversion is even more pronounced. As a prime example, we
extend the Hamiltonian (3.10) by an additional spin C and, for simplicity, concentrate
on a symmetrical arrangement of the spins given by

Ĥ3(~ϕt) =
g∗ µB
2

B(~ϕt) (σ̂A + σ̂B + σ̂C) +
∑

i=x,y,z

Ji (σ̂
i
A σ̂

i
B + σ̂iB σ̂

i
C + σ̂iA σ̂

i
C).

In the external field B(~ϕt) of Eq. (3.11) we again set the amplitudes to B1/2 = Bc.

For the interacting three-spin model Ĥ3, the same calculations as in the main text for
two spins can now be performed. In particular, the system again commutes with the
total spin [Ĥ3, Ŝ

2] = 0, and the problem can be decoupled into the Hilbert subspaces
with s = 3/2 and s = 1/2. Apart from a global constant, the Hamiltonian can then be
written in a diagonal form: Ĥ3 = diag[ĤQ, ĤD1, ĤD2], where

ĤQ = λ′











3 (Bz
Bc

+ Jz)
√
3 B−

Bc

√
3Jx−y 0√

3 B+

Bc
−Jz +

Bz
Bc

2 B−

Bc

√
3Jx−y√

3Jx−y 2 B+

Bc
−Jz − Bz

Bc

√
3 B−

Bc

0
√
3Jx−y

√
3 B+

Bc
−3 (Bz

Bc
− Jz)











is represented in the basis of quartet states {|ψ 3
2
, 3
2
〉 , |ψ 3

2
, 1
2
〉 , |ψ 3

2
,− 1

2
〉 , |ψ 3

2
,− 3

2
〉}. Again,

we have introduced the transverse components B± = Bx ± i By, the energy scale

λ′ = g∗ µB Bc

2 , and the effective interaction strengths Jx±y =
Jx±Jy

λ′ and Jz = Jz
λ′ − Jx+y

2
for ease of notation. The Hilbert subspace with s = 1/2 consists of two degenerate

doublet states2 {|ψ 1
2
, 1
2
〉(D1) , |ψ 1

2
,− 1

2
〉(D1)} and {|ψ 1

2
, 1
2
〉(D2) , |ψ 1

2
,− 1

2
〉(D2)}, each showing

the structure3 of a noninteracting Chern insulator:

ĤD1/D2 = λ′

(

Bz
Bc

B−

Bc
B+

Bc
−Bz

Bc

)

− λ′ (3Jx+y + Jz).

For this reason, we restrict ourselves to study the Hilbert subspace with s = 3/2, for
which we diagonalize the projected Hamiltonian ĤQ for a finite interaction strength
Jz 6= 0 (Jx−y = 0) and determine the Chern number of the respective eigenstates
|Ψn(~ϕ)〉 {n = 0, 1, 2, 3} according to Eq. (3.13).

2Note that we choose the doublet states such that they form an orthonormal basis of the associated
Hilbert subspace.

3Except for an overall energy shift caused by Jx+y and Jz.
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A.3 Extended Three-Spin Model

The resulting topological phase diagrams as a function of mass parameterM = B0/Bc

and effective interaction strength Jz (Jx−y = 0) are displayed in Fig. A.3. Interactions
lead to correlated topological phases with Chern numbers Cn = ±1, ±2, ±4, ±5, which
are completely prohibited in the noninteracting regime. Especially, the amplification
of the topological frequency conversion is even more pronounced (Cn = ±5) than in
the case of two interacting spins. Since at HSPs the system Ĥ3 commutes with Ŝz
(because Jx−y = 0), the Hamiltonian ĤQ becomes diagonal in the basis of quartet states.
Consequently, the topological phase transitions can be investigated in an completely
analogous way as in the interacting two-spin case, which additionally illustrates that the
physical interpretations of the main text are also valid for the symmetrically arranged
three-spin model.
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Figure A.3: Topological phase diagrams for the interacting three-spin model as a function
of mass parameter M and effective interaction strength Jz (Jx−y = 0). Since we restrict
ourselves to investigate the Hilbert subspace with s = 3/2 (quartet states), the eigenstates of
the projected Hamiltonian ĤQ are given by |Ψn(~ϕ)〉 {n = 0, 1, 2, 3}. For a better identification
we have marked the phases with Chern numbers Cn = ±4 by a yellow dot. Interactions drive
the system into correlated topological phases with Chern numbers Cn = ±1, ±2, ±4, ±5 that
are forbidden in the noninteracting regime. For Cn = ±5, this leads to an amplification of
the topological frequency conversion that is even more pronounced than in the case of two
interacting spins. Reprinted figure with permission from Ref. [KPBT20]. Copyright (2022) by
the American Physical Society.
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Appendix B Details about the Central Spin Model

In the main text, we have illustrated the topological burning glass effect (TBGE)
by exploring energy pumping in the quasiperiodically driven central spin model (CSM).
The main goal of this Appendix B is to provide additional technical details about this
prototypical example. This includes the stability analysis for more generic extensions of
the CSM (Sec. B.1), the determination of the minimum band gaps in the synthetic 2D
Brillouin zone (BZ) by means of the spin wave excitations (Sec. B.2), the generalization
of the TBGE to the excited states of the interacting spin system (Sec. B.3), the results
for antiferromagnetic coupling strength A < 0 (Sec. B.4), and the argumentation why the
characterization of the nonequilibrium quantum phases introduced in Sec. 4.3 is properly
described by the time-averaged von Neumann entropy of the central spin-1/2 (Sec. B.5).
Parts of this Appendix B are based on the Supplemental Material of Ref. [KPBT22].
Copyright (2022) by the American Physical Society.

B.1 Stability Analysis

We explore the quasiperiodically driven CSM for more generic couplings. To this end, we
consider two concrete static extensions of Eq. (4.22) by implementing (I) inhomogeneous
coupling strengths Ak = xk A between the central spin and the surrounding spins (see
Eq. (B.1)), and (II) finite coupling strengths I = y A between the surrounding spins
(see Eq. (B.3)). By numerically calculating the instantaneous spectrum using exact
diagonalization (see Fig. B.1), we argue that the TBGE is robust to these extensions.

We start with inhomogeneous coupling strengths Ak = xk A, yielding the Hamiltonian

ĤI(~ϕt) = g∗ µB B(~ϕt) · Ŝ0 −A
N−1
∑

k=1

xk Ŝ0 · Ŝk. (B.1)

We use the definitions of Eq. (4.22), and introduce real positive numbers xk ∈ R+ to
account for the inhomogeneity of the interaction. We analyze the energy bands EI(~ϕt)
of Eq. (B.1) for fixed values of the phases ~ϕt, that is at a given point of the synthetic
2D BZ. In what follows, we thus suppress the subscript t from ~ϕt. As in Sec. 4.1.2, we
perform the transformation

Ĥ ′
I(~ϕ) =

(

N−1
⊗

i=0

Û †(~ϕ)
)

ĤI(~ϕ)
(

N−1
⊗

i=0

Û(~ϕ)
)

= λ |d(~ϕ)|
[

Ŝz′

0 −A~ϕ

N−1
∑

k=1

xk Ŝ0 ·Ŝk

]

, (B.2)

where we use the definitions of Eq. (4.3) and introduce the (~ϕ-dependent) interaction
strength A~ϕ = A/|d(~ϕ)|. Again, we assume that |d(~ϕ)| 6= 0 and λ > 0. Unlike the

homogeneous case (cf. Sec. 4.1.2), the Hamiltonian Ĥ ′
I(~ϕ) does not commute with

the total spin Ĵ2 of the surrounding spins, meaning that the total system can not
be decomposed into a block diagonal form. Rather, the full Hilbert space must be
considered, which is why we derive the dimensionless energy eigenvalues EI(A~ϕ) =

EI(~ϕ)
λ |d(~ϕ)|

of Eq. (B.2) by exact diagonalization. Fig. B.1(a) shows the instantaneous spectrum EI
as a function of ferromagnetic interaction strength A~ϕ ≥ 0 and a total number of spins
N = 5 for both homogeneous xk = 1 (solid blue lines) and inhomogeneous xk = −k

4 + 8
5

(dashed red lines) coupling strengths Ak = xk A. Although some anti-crossings may
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B.1 Stability Analysis

arise in the excited energy bands of the spectrum, the inhomogeneity of the interaction
hardly affects the ferromagnetic ground state energy band. In fact, as the latter remains
energetically separated from the other bands, the quasiadiabatic dynamics starting from
the ferromagnetic ground state can still be described by APT (cf. Eq. (4.24)). Thus,
subsequent derivations of the TBGE (cf. Eqs. (4.25) to (4.28)) are not fundamentally
affected by inhomogeneous couplings.

Similar results can be found for finite coupling strengths I = y A between the
surrounding spins, described by the Hamiltonian

ĤII(~ϕt) = g∗ µB B(~ϕt) · Ŝ0 −A
(

Ŝ0 · Ĵ+ y
N−1
∑

k=1

Ŝk · Ŝk+1

)

(B.3)

with y ∈ R+
0 and periodic boundary conditions ŜN = Ŝ1. The dimensionless energy

eigenvalues EII associated with Eq. (B.3) are illustrated for y = 0 (solid blue lines)
and y = 0.2 (dashed red lines) in Fig. B.1(b). Again, the ferromagnetic ground state
energy band remains energetically separated from the other bands. Hence, the TBGE is
robust against generalizations of the CSM, e.g. for the cases of inhomogeneous couplings
between central spin and surrounding spins or a finite coupling between the surrounding
spins. Note that, in Fig. B.1, we only show the lower half of the instantaneous spectrum
for illustrative reasons, while the results for the remaining energy bands are not essential
for the aforementioned discussion.
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Figure B.1: Spectrum E as a function of interaction strength A~ϕ ≥ 0 and a total number
of spins N = 5. For illustrative reasons, only the lower half of the synthetic energy bands is
shown. (a) Results for homogeneous xk = 1 (solid blue lines) and inhomogeneous xk = −k

4 + 8
5

(dashed red lines) coupling strengths Ak = xk A. The inhomogeneity of the interaction hardly
affects the ferromagnetic ground state energy band, such that its quasiadiabatic dynamics can
still be described by adiabatic perturbation theory (APT). (b) Similar results for finite coupling
strengths I = y A between the surrounding spins with y = 0 (solid blue lines) and y = 0.2
(dashed red lines). Reprinted figure with permission from Ref. [KPBT22]. Copyright (2022) by
the American Physical Society.
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B.2 Minimum Band Gaps

The nature of spin wave excitations (see Sec. 4.1.4) can be used to derive the minimum
band gaps ∆min

1/f (A) within the synthetic 2D BZ. Restricting ourselves to ferromagnetic
interaction strengths A ≥ 0, we start our calculation by introducing the low-energy gaps

∆̃1(~ϕ,A) = E
(2)
− (~ϕ,−N

2
+1)−E(1)

− (~ϕ), ∆̃f (~ϕ,A) = E
(1)
+ (~ϕ)−E(2)

− (~ϕ,
N

2
−1), (B.4)

which explicitly depend on the phases ~ϕ = (ϕ1, ϕ2) defined on the synthetic 2D BZ.
Applying the Hellmann-Feynman theorem ∂ϕiE(~ϕ) = 〈∂ϕiĤ

′(~ϕ)〉 = λ (∂ϕi |d(~ϕ)|) 〈Ŝz′
0 〉

associated with the energy bands of Eqs. (4.13), (4.14), the extremal points within the
synthetic 2D BZ can be determined by the condition

∂∆̃1/f (~ϕ,A)

∂ϕi
= 0, with

∂∆̃1/f (~ϕ,A)

∂ϕi
= λ∆χ1/f

( A
|d(~ϕ)|

) ∂|d(~ϕ)|
∂ϕi

.

For interaction strengths A > 0, the expectation values ∆χ1/f 6= 0 are not vanishing
as explicitly demonstrated in Fig. 4.2(a). The extremal points are then exclusively
determined by the condition ∂ϕi |d(~ϕ)| = 0, leading to the HSPs of the synthetic 2D BZ.
To find the minimum band gaps ∆min

1/f (A), the low-energy gaps (B.4) thus have to be

evaluated only at these HSPs. For fixed values of the phases, the behavior of Eq. (B.4)
as a function of ferromagnetic interaction strength A ≥ 0 can be illustrated in terms of
the low-energy gaps (4.18):

∆̃1/f (~ϕ,A) = λ |d(~ϕ)|∆1/f

( A
|d(~ϕ)|

)

. (B.5)

Considering the associated approximations (see also Fig. 4.1(b))

∆̃1(~ϕ,A)

λ
≈







A
2 ; A ≪ 2 |d(~ϕmin)|

N

|d(~ϕ)|
N ; A ≫ 2 |d(~ϕmax)|

N

,

∆̃f (~ϕ,A)

λ
≈







|d(~ϕ)| − (N − 1) A
2 ; A ≪ 2 |d(~ϕmin)|

N

|d(~ϕ)|
N ; A ≫ 2 |d(~ϕmax)|

N

,

it becomes clear that the minimum band gaps ∆min
1/f (A) = ∆̃1/f (~ϕmin,A) are associated

with the extremal points ~ϕmin that result in minimal values |d(~ϕmin)|. The extremal
points ~ϕmin/~ϕmax and associated minimal/maximal values |d(~ϕmin)|/|d(~ϕmax)| are
illustrated as a function of the mass parameter M in Tab. B.1. For M = 1.2, Eq. (B.5)
then yields the minimum band gaps

∆min
1/f (A) = λ |d(0)|∆1/f

( A
|d(0)|

)

.

103



Appendix B Details about the Central Spin Model

M ≥ 1 0 ≤M ≤ 1 −1 ≤M ≤ 0 M ≤ −1

~ϕmin (0, 0) (0, π), (π, 0) (0, π), (π, 0) (π, π)

|d(~ϕmin)| |M − 2| |M | |M | |M + 2|

~ϕmax (π, π) (π, π) (0, 0) (0, 0)

|d(~ϕmax)| |M + 2| |M + 2| |M − 2| |M − 2|

Table B.1: Extremal points of the synthetic phases ~ϕ = (ϕ1, ϕ2) and associated minimal and
maximal values |d(~ϕ)| as a function of the mass parameter M .

B.3 Generalization to Excited States

In the main text, we have illustrated the TBGE by restricting ourselves to the dynamics
originating from the ferromagnetic ground state |Φ0(~ϕt0)〉 (cf. Eq. (4.23)) for two
main reasons. First, the adiabatic ground state |Φ0(~ϕt)〉 is a product state at all
times (cf. Sec. 4.1.3), allowing a simple and descriptive topological classification of the
reduced adiabatic density matrix ρ̂ad0,0(~ϕ) = 1

2 (✶ − d̃(~ϕ) · σ̂) of the central spin-1/2
(cf. Sec. 3.1.2). Second, the TBGE is most pronounced if the coupled system is initialized
in its ferromagnetic ground state |Φ0(~ϕt0)〉, with a topological frequency conversion
that is magnified by a factor N (cf. Eq. (4.32)). Initializing the system in the next
excited state instead, the enhancement would decrease from N to N − 2 (and so on).
To emphasize the general applicability of the derivations of the main text, however, we
also show results for the excited energy bands of the interacting spin system below. In
doing so, we refer to the topological band structure derived in Sec. 4.1.3.

Considering the instantaneous eigenstates of Eq. (4.16), the reduced adiabatic density
matrix of the central spin-1/2 can be derived by tracing out the environment Ĵ (denoted
as Tr

Ĵ
):

ˆ̺
(1)
0,± = Tr

Ĵ

[

|E(1)
± 〉〈E(1)

± |
]

=
1

2

(

✶±σ̂z′
)

, ˆ̺
(2)
0,±,n = Tr

Ĵ

[

|E(2)
±,n〉〈E

(2)
±,n|

]

=
1

2

(

✶±χn σ̂
z′
)

.

(B.6)
We use the property of the partial trace

Tr
Ĵ

[

|ms0 ,mj〉〈m̃s0 , m̃j |
]

= |ms0〉〈m̃s0 | δmj ,m̃j ,

and represent Eq. (B.6) within the rotated basis {|+1
2〉 , |−1

2〉} of the central spin-1/2.
As the quantum number n is conserved, the reduced adiabatic density matrix ˆ̺0 only
contains diagonal matrix elements, related to the expectation values χ of Sec. 4.1.4. In
fact, this reveals the values χn(A~ϕ) of Eqs. (4.17), (4.20). By performing the inverse

transformation ρ̂0 = Û(~ϕ) ˆ̺0 Û
†(~ϕ), we rotate (B.6) back into the original basis of

Eq. (4.22):

ρ̂
(1)
0,±(~ϕ) =

1

2

(

✶± d̃(~ϕ) · σ̂
)

, ρ̂
(2)
0,±,n(~ϕ) =

1

2

(

✶+ u
(2)
±,n(~ϕ) · σ̂

)

. (B.7)
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We have introduced vectors u
(2)
±,n(~ϕ) = ±χn(A~ϕ) d̃(~ϕ), and used the SU(2) matrices

Û(~ϕ) defined in the transformation of Eq. (4.3):

Û(~ϕ) σ̂z
′

Û †(~ϕ) = d̃(~ϕ) · σ̂ with d̃(~ϕ) =
d(~ϕ)

|d(~ϕ)| .

The reduced adiabatic density matrix ρ̂
(1)
0,± corresponds to that of a single spin-1/2,

following from the separable structure of the ferromagnetic states. Provided that
|d(~ϕ)| 6= 0, a topological invariant can then be assigned to the central spin (cf. Eq. (3.7)):

ν
(1)
± = ∓νgr (independent on the interaction strength A). The reduced adiabatic density

matrix ρ̂
(2)
0,±,n of Eq. (B.7) is parametrized by vectors u

(2)
±,n(~ϕ) proportional to the

expectation values χn(A~ϕ). For an interaction strength A 6= 0, the vectors u
(2)
±,n(~ϕ)

exhibit an adiabatic spin polarization that passes inside the Bloch sphere. The length

|u(2)
±,n(~ϕ)| = |χn(A~ϕ)| ≤ 1 then measures the purity of the reduced density matrix

Tr0[ρ̂
2
0] =

1
2 (1 + |u|2) [NC10]. As long as |u(2)

±,n(~ϕ)| > 0 remains finite throughout the
entire synthetic 2D BZ, topologically inequivalent states can be distinguished by the
winding number [DRBZ11, BBK+13, BZD15, BD15, HZB16]

ν
(2)
±,n =

1

4π

∫∫ 2π

0
d2~ϕ ũ

(2)
±,n(~ϕ)

(

∂ϕ1ũ
(2)
±,n(~ϕ)×∂ϕ2ũ

(2)
±,n(~ϕ)

)

with ũ
(2)
±,n(~ϕ) =

u
(2)
±,n(~ϕ)

|u(2)
±,n(~ϕ)|

.

(B.8)

However, if |u(2)
±,n(~ϕ)| = 0 vanishes at a given point of the synthetic 2D BZ, the

topological classification of the central spin becomes undefined.

The length |u(2)
±,n(~ϕ)| = |χn(A~ϕ)| ≤ 1 is associated with the expectation values

χn(A~ϕ). In Fig. B.2, the expectation values χn(A~ϕ) are shown as a function of fer-
romagnetic interaction strength A~ϕ ≥ 0 and N = 6. As in Sec. 4.1.4, the underlying
processes can be roughly divided into the following ranges of interaction strengths A~ϕ.
For A~ϕ ≪ 2

N , the expectation values χn(A~ϕ) = 1+O(A2
~ϕ) indicate that the central spin

is hardly affected by interactions. By increasing the interaction strength to A~ϕ ≈ 2
N , the

expectation values χn(A~ϕ) decrease with the interaction strength A~ϕ, indicating that
the central spin becomes rotated due to collective spin wave excitations. For A~ϕ ≫ 2

N ,
the expectation values converge to χn ≈ 1− 2n

N , showing that the central spin becomes
effectively flipped for quantum numbers n > N

2 . Then, expectation values χn(A~ϕ)
change sign at an interaction strength A~ϕ = 2

2n−N , resulting in vanishing lengths

|u(2)
±,n(~ϕ)| = |χn(A~ϕ)| = 0. The sign analysis of χn(A~ϕ) is summarized in Tab. B.2.
The topological classification of the central spin is calculated according to Eq. (B.8),

leading to the results of Tab. B.3. We use that A~ϕ = A/|d(~ϕ)|, resulting in minimal
and maximal interaction strengths

Amin
n =

2 |d(~ϕmin)|
2n−N

, Amax
n =

2 |d(~ϕmax)|
2n−N

. (B.9)

We have evaluated the interaction strength A~ϕ in the extremal points ~ϕmin/~ϕmax of
the synthetic 2D BZ, obtaining the minimal/maximal values |d(~ϕmin)|/|d(~ϕmax)| for
mass parameters M (see Tab. B.1). Our results reveal that the single-spin winding
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Figure B.2: Expectation values χn(A~ϕ) as a function of ferromagnetic interaction strength
A~ϕ ≥ 0 and N = 6. For A~ϕ ≪ 2

N , expectation values χn(A~ϕ) ≈ 1 indicate that the central
spin is hardly affected by interactions. For A~ϕ ≈ 2

N , the central spin becomes rotated due to
collective spin wave excitations. For A~ϕ ≫ 2

N , the expectation values converge to χn ≈ 1− 2n
N ,

indicating that for n > N
2 the central spin becomes effectively flipped. Then, expectation values

χn(A~ϕ) change sign at an interaction strength A~ϕ = 2
2n−N .

A~ϕ ≥ 0

n ≤ N
2 n > N

2

A~ϕ <∞ A~ϕ <
2

2n−N A~ϕ = 2
2n−N A~ϕ >

2
2n−N

χn > 0 χn > 0 χn = 0 χn < 0

Table B.2: Sign analysis of the expectation values χn(A~ϕ) as a function of ferromagnetic
interaction strength A~ϕ ≥ 0 and quantum number n. The entry A~ϕ < ∞ symbolizes a finite
interaction strength.

A ≥ 0

n ≤ N
2 n > N

2

A <∞ A < Amin
n Amin

n ≤ A ≤ Amax
n A > Amax

n

ν
(2)
±,n = ∓νgr ν

(2)
±,n = ∓νgr undefined ν

(2)
±,n = ±νgr

Table B.3: Winding number ν of the central spin as a function of ferromagnetic interaction
strength A ≥ 0 and quantum number n. We have introduced minimal/maximal interaction
strengths Amin

n /Amax
n defined in Eq. (B.9). The entry A < ∞ symbolizes a finite interaction

strength.
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number ν differs from the topological response for all quantum numbers n. In fact,
each energy band produces a time-averaged pumping rate P 12

n = −P 21
n = Cn

2π ω1 ω2

determined by the total Chern number Cn = (N − 2n) νgr (cf. Sec. 4.1.3). Considering

the quasiadiabatic dynamics confined to an excited energy band E(2)
±,n, this can lead

to a situation where the topological quantization of the local response P 12
n exists even

though the winding number ν of the central spin is undefined.
The previous observations can be straightforwardly extended to antiferromagnetic

interaction strengths A~ϕ ≤ 0 using the property of the expectation values

χn(A~ϕ) = χN−n(−A~ϕ).

B.4 Antiferromagnetic Interaction Strength

We examine the instantaneous spectrum and the nonequilibrium phase diagrams of
the quasiperiodically driven CSM for an antiferromagnetic interaction strength A < 0.
Analogous to the ferromagnetic case (see Fig. 4.1(a)), the energy bands (4.15) can be
energetically ordered for an antiferromagnetic interaction strength. Fig. B.3 shows the
schematic structure of the instantaneous spectrum E as a function of antiferromagnetic
interaction strength A~ϕ ≤ 0. The antiferromagnetic ground state corresponds to

|E(2)
−,N−1〉, followed by low-energy states |E(2)

−,n〉 with gradually decreasing number n.
Note that the number n = 1, 2, . . . , N − 1 of flipped spins is again defined with respect

to the ferromagnetic state ms = −N
2 . The high-energy excited states |E(2)

+,n〉 are located

between the ferromagnetic statesms = −N
2 andms =

N
2 , with the latter again separated

by the Zeeman energy term equal to 1 (in units of λ |d(~ϕ)|). We restrict ourselves to
gaps

∆I(A~ϕ) = E(2)
−,N−2(A~ϕ)− E(2)

−,N−1(A~ϕ),

∆II = E(1)
− (A~ϕ)− E(2)

−,1(A~ϕ), ∆III(A~ϕ) = E(2)
+,1(A~ϕ)− E(1)

− (A~ϕ), (B.10)

which are relevant for the formation of the dynamical topological quantum phases in
the antiferromagnetic case. For A~ϕ ≪ − 2

N , the gaps converge to ∆I ≈ ∆III ≈ 1
N

due to collective spin wave excitations, while ∆II ∝ A~ϕ indicates that the energy

difference between low- |E(2)
−,n〉 and high-lying states |E(2)

+,n〉 goes again linearly with
the interaction strength A~ϕ. The corresponding nonequilibrium phase diagrams as a
function of antiferromagnetic interaction strength A < 0 and frequency ω are shown in
Fig. B.4 for different total numbers of spins N . The numerical methods and associated
parameters are chosen as in Fig. 4.5, except that the system is initially prepared in

the antiferromagnetic ground state energy band E(2)
−,N−1. Provided the quasiadiabatic

dynamics is confined to the energy band E(2)
−,N−1, the time-averaged pumping rate

P 12 is proportional to the total Chern number CN−1 = (2 − N) νgr (red regimes).
An ensemble-averaged pumping rate P̄ 12 =

νgr
2π ω1 ω2 (see Eq. (4.33)) identical to the

noninteracting case (blue regimes) can be observed for interaction strengths A~ϕ < 0
that induce energy gaps ∆II ≪ ∆III (see Fig. B.3): populations in the low-energy

bands E(2)
−,n and the ferromagnetic energy band E(1)

− become equal within an intermediate
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Figure B.3: Spectrum E as a function of interaction strength A~ϕ ≤ 0. The ground state

corresponds to |E(2)
−,N−1〉, followed by low-energy states |E(2)

−,n〉 with decreasing number n. High-

energy excited states |E(2)
+,n〉 are located between states ms = −N

2 and ms = N
2 , the latter

separated by the Zeeman energy term equal to 1 (in units of λ |d(~ϕ)|). For A~ϕ ≪ − 2
N , the low-

energy states |E(2)
−,n〉 are well separated (∝ A~ϕ) from the other states. Gaps ∆I−III relevant for

the nonequilibrium evolution (see Fig. B.4) are schematically illustrated, while gaps ∆II = ∆III

are exactly the same for an interaction strength A~ϕ = − 2
N . Reprinted figure with permission

from Ref. [KPBT22]. Copyright (2022) by the American Physical Society.

(pre)thermal regime, while transitions to the high-energy band E(2)
+,1 are suppressed. For

∆II ' ∆III , (pre)thermalization immediately leads to a featureless quantum phase
with zero time-averaged pumping rate P 12 = 0 (white regimes), as the total Chern
numbers sum to

∑N−1
n=1 Cn =

∑N
n=0 Cn = 0. Gaps ∆II = ∆III are exactly the same

for A~ϕ = − 2
N , which makes this especially relevant for interaction strengths A~ϕ ≪ − 2

N .
However, (pre)thermalization into a featureless quantum state can also be observed
in general for interaction strengths A~ϕ < 0 that induce low-energy gaps ∆I ≪ ∆II ,
completely independent of gaps ∆III . As in Sec. 4.3.1, the exact dynamics suggests
that the leading nonadiabatic excitation processes are approximately covered by critical
frequencies ωc ∝ ∆min

I−III , which is roughly illustrated by assuming a proportionality
constant K = 0.11 in Fig. B.4 (dashed yellow lines). Again, we have evaluated the
gaps ∆I−III of Eq. (B.10) in the origin (~ϕ = 0) of the synthetic 2D BZ, obtaining the
minimum band gaps

∆min
I−III(A) = λ |d(0)|∆I−III

( A
|d(0)|

)

.
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Figure B.4: Nonequilibrium phase diagrams as a function of interaction strength A < 0 and
frequencies ω1 = ω, ω2 = γ ω for different total spin numbers N . The system is initially prepared

in the antiferromagnetic ground state energy band E(2)
−,N−1. Numerical methods and associated

parameters are chosen as in Fig. 4.5. Provided the quasiadiabatic dynamics is confined to the

energy band E(2)
−,N−1, the time-averaged pumping rate P 12 is proportional to the total Chern

number CN−1 = (2 − N) νgr (red regimes). Nonadiabatic excitation processes can in turn
lead to dynamical transitions to intermediate/featureless quantum phases with pumping rates
P̄ 12 =

νgr

2π ω1 ω2 (blue regimes)/P 12 = 0 (white regimes). The critical frequencies ωc scale with
the associated gaps (see Fig. B.3), roughly illustrated by phase boundaries ωc = 0.11∆min

I−III

(dashed yellow lines). Reprinted figure with permission from Ref. [KPBT22]. Copyright (2022)
by the American Physical Society.

B.5 Approximated von Neumann Entropy

We propose that the time-averaged von Neumann entropy S̄dy(t) of Eq. (4.35) provides
a proper characterization of the different nonequilibrium quantum phases (I)-(II). We
show this by comparing the numerical values of S̄dy(t) with the phase-averaged von
Neumann entropy of the relevant instantaneous state populations of the CSM. Although
the latter calculations only account for the instantaneous spectrum, the associated
ansatz actually leads to a reasonable approximation of the numerical results of S̄dy(t)
(see Fig. 4.6).

As discussed in Sec. 4.3.2, the strong coupling regime breaks down at some critical
time tc for a finite frequency ω 6= 0. The dynamics then leads to nonadiabatic excitation
processes between the energy bands of Eq. (4.15). Starting from the ferromagnetic

ground state energy band E(1)
− , the breakdown of the prethermal regime occurs in

two main stages. (I) The exact quantum state shows equal time-averaged overlaps

with the instantaneous eigenstates of the energy bands E(1)
− and E(2)

−,r. Considering
the instantaneous eigenstates of Eq. (4.16), this situation can be modeled by a linear
combination with equal contributions from the associated state vectors:

|ψ−
n {A~ϕ, θ

−
1...n}〉 =

1√
n+ 1

(

|E(1)
− 〉+

n
∑

r=1

eiθ
−
r |E(2)

−,r〉
)

. (B.11)

Within this ansatz, we introduce phases θ−r ∈ [0, 2π[, which can be considered as
free parameters of the modulation. The approach of Eq. (B.11) corresponds to the
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intermediate dynamical phase (I) for the number n = N − 1. Similarly, the remaining
phases (IIa) and (IIb) are modulated by linear combinations

|ψN{A~ϕ, θ
−
1...N−1, θN}〉 = 1√

N + 1

(√
N |ψ−

N−1{A~ϕ, θ
−
1...N−1}〉+ eiθN |E(1)

+ 〉
)

, (B.12)

and

|ψ+
n {A~ϕ, θ

−
1...N−1, θN , θ

+
n...N−1}〉 =

1√
2N + 1− n

×

×
(√

N + 1 |ψN{A~ϕ, θ
−
1...N−1, θN}〉+

N−1
∑

r=n

eiθ
+
r |E(2)

+,r〉
)

, (B.13)

where we introduce the additional phases θN ∈ [0, 2π[, θ+r ∈ [0, 2π[. In Eq. (B.13), the
”infinite-temperature” state (IIb) corresponds to the quantum number n = 1.

We analytically derive the von Neumann entropy of the central spin for the instan-
taneous state populations of Eqs. (B.11), (B.12) and (B.13):

S{A~ϕ,θ} = −Tr0

[

ˆ̺0{A~ϕ,θ} ln
(

ˆ̺0{A~ϕ,θ}
)

]

, (B.14)

where Tr0 denotes the trace acting on the central spin-1/2 and ln the natural matrix
logarithm. We have introduced the reduced density matrix of the central spin-1/2

ˆ̺0{A~ϕ,θ} = Tr
Ĵ

[

|ψ{A~ϕ,θ}〉〈ψ{A~ϕ,θ}|
]

=
1

2

(

✶+ u{A~ϕ,θ} σ̂′
)

(B.15)

by tracing out the environmental spins Ĵ of the host material (denoted as Tr
Ĵ
). The

reduced density matrix of Eq. (B.15) is parametrized by vectors u{A~ϕ,θ} that explicitly
depend on the interaction strength A~ϕ and set of phases θ, which contain the associated
parameters {θ−r , θN , θ+r } of Eqs. (B.11), (B.12) and (B.13). Analytical expressions for
u{A~ϕ,θ} are derived using the property of the partial trace

Tr
Ĵ

[

|ms0 ,mj〉〈m̃s0 , m̃j |
]

= |ms0〉〈m̃s0 | δmj ,m̃j ,

the instantaneous eigenstates derived in Eq. (4.16), and the nonvanishing matrix elements
within the rotated basis {|+1

2〉 , |−1
2〉} of the central spin-1/2:

Tr
Ĵ

[

|E(1)
± 〉〈E(1)

± |
]

=
1

2

(

✶± σ̂z
′
)

, (B.16)

Tr
Ĵ

[

|E(1)
− 〉〈E(2)

±,r|
]

=

√

1± χr

2

σ̂x
′ − i σ̂y

′

2
δr,1, (B.17)

Tr
Ĵ

[

|E(1)
+ 〉〈E(2)

±,r|
]

= ∓
√

1∓ χr

2

σ̂x
′
+ i σ̂y

′

2
δr,N−1, (B.18)

Tr
Ĵ

[

|E(2)
±,r〉〈E

(2)
±,v|

]

=
1

2

(

✶± χr σ̂
z′
)

δr,v∓

∓
√

1± χr

2

√

1∓ χv

2

σ̂x
′
+ i σ̂y

′

2
δv,r−1 ∓

√

1∓ χr

2

√

1± χv

2

σ̂x
′ − i σ̂y

′

2
δv,r+1, (B.19)
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Tr
Ĵ

[

|E(2)
±,r〉〈E

(2)
∓,v|

]

=

√

1− χ2
r

2
σ̂z

′

δr,v±

±
√

1± χr

2

√

1± χv

2

σ̂x
′
+ i σ̂y

′

2
δv,r−1 ∓

√

1∓ χr

2

√

1∓ χv

2

σ̂x
′ − i σ̂y

′

2
δv,r+1. (B.20)

The matrix elements illustrate which combinations of the instantaneous eigenstates of
Eq. (4.16) contribute to the von Neumann entropy S{A~ϕ,θ} of Eq. (B.14). Performing
the calculations for the linear combination (B.11), we obtain

u−
n {A~ϕ, θ

−
1...n} =

1

n+ 1

[

√

2 (1− χ1)





cos(θ−1 )
− sin(θ−1 )

0



+

+
n−1
∑

r=1

√

(1 + χr) (1− χr+1)





cos(θ−r+1 − θ−r )
− sin(θ−r+1 − θ−r )

0



− (1 + n χ̄n)





0
0
1





]

, (B.21)

where we introduce the summarized expectation value χ̄n = 1
n

∑n
r=1 χr. The first term

of Eq. (B.21) stems from the lower solution of the off-diagonal matrix elements (B.17),

which arise from overlaps between the instantaneous eigenstates |E(1)
− 〉 and |E(2)

−,1〉. The
second term originates from the lower solution of the off-diagonal matrix elements (B.19),

which correspond to overlaps between neighboring low-energy states |E(2)
−,r〉 and |E(2)

−,r+1〉.
The last term is obtained from the lower solutions of the diagonal matrix elements
(B.16) and (B.19), taking into account the direct contributions of the instantaneous

eigenstates |E(1)
− 〉 and |E(2)

−,r〉. Similarly, we derive the analytical expression

uN{A~ϕ, θ
−
1...N−1, θN} =

1

N + 1

[

N u−
N−1{A~ϕ, θ

−
1...N−1}+

+
√

2 (1 + χN−1)





cos(θN − θ−N−1)

− sin(θN − θ−N−1)

0



+





0
0
1





]

(B.22)

for the linear combination (B.12). The first term of Eq. (B.22) results from the
contributions of the intermediate dynamical phase (I). The second term originates from
the lower solution of the off-diagonal matrix elements (B.18), which take into account

the overlaps between the instantaneous eigenstates |E(2)
−,N−1〉 and |E(1)

+ 〉. The last term

represents the direct contribution of the instantaneous eigenstate |E(1)
+ 〉, given by the

upper solution of the diagonal matrix elements (B.16). For the linear combination

111



Appendix B Details about the Central Spin Model

(B.13), further calculations lead to

u+
n {A~ϕ, θ

−
1...N−1, θN , θ

+
n...N−1} =

1

2N + 1− n

[

(N + 1)uN{A~ϕ, θ
−
1...N−1, θN}+

+
√

2 (1 + χ1) δn,1





cos(θ+1 )
− sin(θ+1 )

0



−
√

2 (1− χN−1)





cos(θN − θ+N−1)

− sin(θN − θ+N−1)

0



+

+ (1− δn,1)
N−1
∑

r=n

√

(1 + χr) (1 + χr−1)





cos(θ+r − θ−r−1)
− sin(θ+r − θ−r−1)

0



+

+ δn,1

N−1
∑

r=2

√

(1 + χr) (1 + χr−1)





cos(θ+r − θ−r−1)
− sin(θ+r − θ−r−1)

0



−

−
N−2
∑

r=n

[

√

(1− χr) (1− χr+1)





cos(θ−r+1 − θ+r )
− sin(θ−r+1 − θ+r )

0



+

+
√

(1− χr) (1 + χr+1)





cos(θ+r+1 − θ+r )
− sin(θ+r+1 − θ+r )

0





]

+

+
(

2

N−1
∑

r=n

√

1− χ2
r cos(θ−r − θ+r ) + (N − n)

¯
χn

)





0
0
1





]

, (B.23)

with the summarized expectation value
¯
χn = 1

N−n

∑N−1
r=n χr. The individual terms of

Eq. (B.23) can be interpreted analogously to Eqs. (B.21) and (B.22), while additional

overlaps between low- |E(2)
−,r〉 and high-energy states |E(2)

+,v〉 result in diagonal and off-
diagonal contributions originating from the matrix elements (B.20).

After calculating the von Neumann entropy S{A~ϕ,θ} of Eq. (B.14) for the instanta-
neous state populations of Eqs. (B.11), (B.12) and (B.13), we exploit the following idea:
(pre)thermalization leads to a sampling of all possible phase combinations during the
nonequilibrium dynamics. The time-averaged von Neumann entropy S̄dy(t) of Eq. (4.35)
can then be approximated by selecting the relevant instantaneous state population and
integrating (B.14) along the set of phases θ:

S̄(A) =
1

(2π)p+2

∫∫ 2π

0
d2~ϕ

∫

· · ·
∫ 2π

0
dpθ S

{ A
|d(~ϕ)| ,θ

}

. (B.24)

We have introduced the number p ∈ N, which corresponds to the dimension of the phase
vector θ containing the parameters {θ−r , θN , θ+r } of Eqs. (B.11), (B.12) and (B.13).
In Eq. (B.24), we have additionally integrated along the phases of the (~ϕ-dependent)
interaction strength A~ϕ = A/|d(~ϕ)|, which accounts for the sampling of the synthetic
2D BZ during the time-evolution of the quantum state. In Fig. B.5, the phase-averaged
von Neumann entropy S̄(A) of Eq. (B.24) is shown as a function of ferromagnetic
interaction strength A > 0 for different total numbers of spins N . We have performed
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the integration numerically, and have chosen the mass parameterM = 1.2 as in the main
text. We have calculated the phase-averaged von Neumann entropy S̄(A) for the different
instantaneous state populations of Eqs. (B.11), (B.12) and (B.13): blue/green lines
correspond to linear combinations (B.11)/(B.13), the red line corresponds to the linear
combination (B.12). The solid lines of Fig. B.5 then represent the different dynamical
stages (I)-(II). Assuming that the relevant instantaneous state population is selected,
the numerical values of the time-averaged von Neumann entropy S̄dy(t) of Eq. (4.35)
are reasonably approximated by the phase-averaged von Neumann entropy S̄(A) of
Eq. (B.24). This, in turn, suggests that S̄dy(t) provides a proper characterization of the
different nonequilibrium quantum phases (I)-(II). We have used that the von Neumann
entropy of Eq. (B.14) is invariant under the transformation defined in Eq. (4.3).
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Figure B.5: Phase-averaged von Neumann entropy S̄(A) as a function of ferromagnetic
interaction strength A > 0 and total numbers of spins (a) N = 2 and (b) N = 5. The integration
has been performed numerically, and a mass parameter M = 1.2 has been chosen as in the
main text. The phase-averaged von Neumann entropy S̄(A) is calculated for the different
instantaneous state populations of Eqs. (B.11), (B.12) and (B.13): blue/green lines correspond
to linear combinations (B.11)/(B.13), the red line corresponds to the linear combination (B.12).
Solid lines then represent the different dynamical stages (I)-(II). Once the relevant instantaneous
state population is selected, the time-averaged von Neumann entropy S̄dy(t) of Eq. (4.35) is
reasonably approximated by the phase-averaged von Neumann entropy S̄(A). This, in turn,
suggests that S̄dy(t) provides an appropriate characterization of the different nonequilibrium
quantum phases (I)-(II).
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Acronyms

APT adiabatic perturbation theory

BZ Brillouin zone

CSM central spin model

HSP high-symmetry point

IVP initial value problem

LDE linear differential equation

NV nitrogen-vacancy

QD quantum dot

TBGE topological burning glass effect

TFC topological frequency converter

ITFC interacting topological frequency converter
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[p. 13]

119

http://dx.doi.org/10.1088/1751-8121/aafe9b
http://dx.doi.org/10.1103/RevModPhys.91.015005
http://dx.doi.org/10.1002/pssr.201206451
http://dx.doi.org/10.1088/2515-7639/abf0b5
http://dx.doi.org/10.2307/1969037
http://dx.doi.org/10.48550/arXiv.2202.13902
http://dx.doi.org/10.1103/PhysRevA.102.052606
http://dx.doi.org/10.1103/PhysRevB.99.064306
http://dx.doi.org/10.1103/PhysRevLett.125.100601
http://dx.doi.org/10.1103/PhysRevLett.75.1348
http://dx.doi.org/10.1103/PhysRevB.53.7010


Bibliography

[COR01] F. Casas, J. A. Oteo, and J. Ros. Floquet theory: exponential perturbative
treatment. J. Phys. A: Math. Gen. 34, 3379 (2001). doi:10.1088/0305-
4470/34/16/305. [p. 20]

[CPSP19] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov.
Floquet-Engineering Counterdiabatic Protocols in Quantum
Many-Body Systems. Phys. Rev. Lett. 123, 090602 (2019).
doi:10.1103/PhysRevLett.123.090602. [p. 86]

[Cro89] F. H. Croom. Principles of Topology. Saunders College Publishing,
Philadelphia (1989). [p. 1]

[CSDF+21] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon,
and F. Kuemmeth. Semiconductor qubits in practice. Nat. Rev. Phys.
3, 157 (2021). doi:10.1038/s42254-021-00283-9. [pp. 4, 38, 58, 59, 61]

[CT04] S.-I. Chu and D. A. Telnov. Beyond the Floquet theorem: generalized
Floquet formalisms and quasienergy methods for atomic and molecular
multiphoton processes in intense laser fields. Phys. Rep. 390, 1 (2004).
doi:10.1016/j.physrep.2003.10.001. [pp. 3, 6, 13, 26, 27]

[CW08] J. Clarke and F. K. Wilhelm. Superconducting quantum bits. Nature
453, 1031 (2008). doi:10.1038/nature07128. [p. 38]

[dC13] A. del Campo. Shortcuts to Adiabaticity by Counterdiabatic Driving. Phys.
Rev. Lett. 111, 100502 (2013). doi:10.1103/PhysRevLett.111.100502.
[p. 86]

[DGJbuO11] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg. Colloquium:
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Boston (2008). [p. 42]

[KPBT20] S. Körber, L. Privitera, J. C. Budich, and B. Trauzettel. Interacting
topological frequency converter. Phys. Rev. Research 2, 022023(R) (2020).
doi:10.1103/PhysRevResearch.2.022023. [pp. 3, 34, 36, 47, 48, 50, 51, 52,
54, 92, 95, 98]

[KPBT22] S. Körber, L. Privitera, J. C. Budich, and B. Trauzettel. Topo-
logical burning glass effect. Phys. Rev. B 106, L140304 (2022).
doi:10.1103/PhysRevB.106.L140304. [pp. 3, 34, 58, 59, 67, 71, 72, 78, 79,
80, 100, 102, 108, 109]

124

http://dx.doi.org/10.1103/PhysRev.95.1154
http://dx.doi.org/10.1103/PhysRev.108.590
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184248
http://dx.doi.org/10.1103/PhysRevLett.109.106402
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.120.150601
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1103/PhysRevResearch.2.022023
http://dx.doi.org/10.1103/PhysRevB.106.L140304


Bibliography

[KRZ13] Y. E. Kraus, Z. Ringel, and O. Zilberberg. Four-Dimensional Quan-
tum Hall Effect in a Two-Dimensional Quasicrystal. Phys. Rev. Lett.
111, 226401 (2013). doi:10.1103/PhysRevLett.111.226401. [p. 3]

[KS17] A. B. Khanikaev and G. Shvets. Two-dimensional topological photonics.
Nat. Photonics 11, 763 (2017). doi:10.1038/s41566-017-0048-5. [p. 2]

[Kub57] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. Gen-
eral Theory and Simple Applications to Magnetic and Conduction Prob-
lems. J. Phys. Soc. Jpn. 12, 570 (1957). doi:10.1143/JPSJ.12.570. [pp. 2,
6, 26, 33, 58]

[KWB+07] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
Molenkamp, X.-L. Qi, and S.-C. Zhang. Quantum spin Hall in-
sulator state in HgTe quantum wells. Science 318, 766 (2007).
doi:10.1126/science.1148047. [p. 20]

[Lau81] R. B. Laughlin. Quantized Hall conductivity in two dimensions. Phys.
Rev. B 23, 5632 (1981). doi:10.1103/PhysRevB.23.5632. [pp. 2, 6, 33,
58]

[LCC21] D. M. Long, P. J. D. Crowley, and A. Chandran. Nonadiabatic Topological
Energy Pumps with Quasiperiodic Driving. Phys. Rev. Lett. 126, 106805
(2021). doi:10.1103/PhysRevLett.126.106805. [pp. 3, 46]

[LCC22] D. M. Long, P. J. D. Crowley, and A. Chandran. Many-body local-
ization with quasiperiodic driving. Phys. Rev. B 105, 144204 (2022).
doi:10.1103/PhysRevB.105.144204. [p. 87]

[LD98] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots.
Phys. Rev. A 57, 120 (1998). doi:10.1103/PhysRevA.57.120. [pp. 59, 60]

[LDM14] A. Lazarides, A. Das, and R. Moessner. Equilibrium states of generic
quantum systems subject to periodic driving. Phys. Rev. E 90, 012110
(2014). doi:10.1103/PhysRevE.90.012110. [p. 24]

[LDM15] A. Lazarides, A. Das, and R. Moessner. Fate of Many-Body Local-
ization Under Periodic Driving. Phys. Rev. Lett. 115, 030402 (2015).
doi:10.1103/PhysRevLett.115.030402. [p. 87]

[Lee13] J. M. Lee. Introduction to Smooth Manifolds. Springer, New York, 2nd
ed. (2013). [p. 13]

[LJS14] L. Lu, J. D. Joannopoulos, and M. Soljačić. Topological photonics. Nat.
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