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ABSTRACT

The scattering characteristics of 3-D discontinuity consisting of
[I-VI-epitaxial layer grown on lossy dielectric substrate inserted in
the waveguide with gaps are investigated in detail by the method
which combines the multimode network theory with the rigorous mode
matching procedure. The experimental data verify the accuracy and
the effectiveness of the present method.

INTRODUCTION

Recently, II-VI semiconductors have become more and more im-
portant in material science and engineering because of their inher-
ent advantages for applications in optoelectronic, infrared and mil-
limeter wave techniques. For these purposes the exact knowledge of
their electric properties, e.g. conductivity, are of essential significance.
However, poorly conducting II-VI semicondutors have always created
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problems. In many cases, it is extremely difficulty or even impossible
to obtain good ohmic contacts. For characterising II-VI compounds
under these circumstances, a contactless conductivity measurement [1]
has been developped employing a microwave bridge technique. In this
method, the determination of property parameters of a semiconductor
is transfered to the measurement of the scattering characteristics of the
corresponding samples. The key point of realizing this idea is to theo-
retically determine the relationship between the property parameters
of the semiconductor and scattering parameters of the corresponding
samples. In the former measurement, the height of the semiconductor
sample was chosen to be the same as the waveguide so that the theo-
retical analysis for the boundary value problem became easier; because
in that case it is a two dimensional scattering problem as previously
have done using the multireflection method[1], the multimode network
method|[2] and the high-order finite element method[3]. However, in
that case, special care must be taken in the measurement to ensure
good electric contact between the sample and the waveguide walls{1].
It is inconvenient and time consuming. Besides, to satisfy the partic-
ular dimension requirement, the height dimension of the sample has
to be made in a very precise way; it is not so convenient and in some
cases is rather difficult.

In order to avoid above mentioned disadvantages and to make the
contactless microwave measurement a simple routine to determine the
properties of the semiconductor with sufficient accuracy in a suffi-
ciently short time, in this paper we propose a new sample mounting
structure as shown in Fig.1. The sample having different height with
the waveguide, includes an epitaxial layer (¢,) and a lossy dielectric
slab (¢;) as substrate. Two dielectric films having the dielectric con-
stant ¢ and ¢, about 2.0 are introduced as two transient regions to get
good microwave conducting between the sample and the walls of the
waveguide. The other two dielectric blocks having the dielectric con-
stants around 1.0 together with the films form the mounting structure
to precisely fix the position of the sample in the waveguide so that
the repeatability of the measurement is guaranteed. Although the
new mounting structure really makes the measurement much quicker
and more reliable, the improvements require an extended and more
elaborate mathematical analysis of the experimental data, as a result,
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the theoretical analysis becomes much more complicated as compared
to the simple situation of the partially filled waveguide before. Thus
in the present case it is a complicated three dimensional scattering
problem. The following two aspects make the problem even more dif-
ficult. First, the conductivity of the epitaxial layer may vary in a wide
range from ten to some thousands (mhos/cm) to satisfy the practi-
cal requirements for different devices. As a consequence, the real and
imaginary part of the corresponding complex dielectric constants may
be very large, especially the imaginary part may vary from several
hundreds to some millions. If the calculation is not carried out prop-
erly, it may suffer from convergence problem. In addition, because the
epitaxial layer is neither an ideal dielectric nor ideal conductor, some
assumptions for these two extreme circumstances can not be used, for
instance, one can not simplify the problem with approximate methods
such as perturbation theory. Secondly, the epitaxial layer is very thin,
only 1 to § pm, or even less than 1 pum, but it can not be assumed to
be zero, because investigating the effect of the thickness on scattering
characteristics is one of our tasks. Therefore, it may also cause a con-
vergence problem if the method is not correctly adopted in analyzing
the present discontinuity which creates the current distribution func-
tion with high order singularities.

In this paper, an accurate and relatively simple method is used
to analyze the scattering characteristics of 3-D discontinuity consist-
ing of the II-VI semiconductor sample partially filled in waveguide
with two dielectric gaps. Since the present method combines the mul-
timode network theory with the rigorous mode matching procedure
and transfers the electromagnetic field boundary value problem into
a multimode network analysis problem, the whole calculation proce-
dure is simplified while still retaining the high accuracy of the mode
matching method.

The validity of the present approach is justified by comparisons of
the transmission coefficients for different samples with different gaps
between the experimental data and theoretical predictions.
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METHOD OF ANALYSIS

Fig.1 shows the cross section of the structure under consideration.
This discontinuity structure is corresponding to a semiconductor sam-
ple partially filled in the waveguide with film gaps. As described in
the last section, the sample having different height than the waveguide
consists of an epitaxial layer and a lossy dielectric slab as substrate.
Two dielectric films are introduced as the transient regions to ensure
the good microwave conducting between the sample and the waveg-
uide; the other two dielectric blocks together with the films form the
mounting structure to precisely fix the position of the sample in the
waveguide. We would like to calculate the scattering characteristics of
this 3-D discontinuity problem. The solution procedure of the problem
may be divided into two steps. First, analyze the eigenvalue problem
of the two waveguides respectively in the transverse cross section; sec-
ondly, calculate the scattering characteristics of the discontinuity in
the longitudinal direction, in which the symmetrical property of the
structure in the longitudinal direction is used to simplify the calcula-
tion procedure.
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Fig.1 Cross section of the stratified lossy dielectric blocks in the
rectangular waveguide.
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STEP I. Analysis of the Eigenvalue
Problem for the Two Waveguides

1. Eigenvalue problem of the empty waveguide

It is well known that the eigenvalues and eigenfunctions for the
empty rectangular waveguide are respectively as shown in Table 1.
Here we use a single prime to denote quantities for H modes, a double
prime for £ modes and no prime for either H modes or E modes. It
should be emphasized that in order to accelerate the convergence in
the mode matching calculation, the sequence of the H and E modes
must be rearranged according to the eigenvalues k. from small to large.

Table 1. Eigenfunctions and field components of the H and F
modes in the empty rectangular waveguide.

H mode E mode
e, = Alq, cos g xsinqy ey = A'q; cos qlxsingy

¢, = —A'q,sing .z cos qly A”q sin g,z cos g,y
hy, = A'q, sin g,z cos ¢,y } vy = —A'q, sin gz cos gy
K, = A'q, cos g,z sin g,y b, = A"q] cos ¢}z sinq)y
B = U()el (z,9) R = U"(2)e(z,y)
E, = U'(z)e,(z,y) B =U"(z)ey(z,y)
E. =0 EY = J"(2)B"sin ¢Jz sin ¢y
H, = T (2,y) HY = J7(2)h(z,9)
Hy = I (r,0) HY = (k)

U'(z)B'cosqizcosqy H! =0

A" = Crn\/Am V|7 A" = =20, /7

B' = —j\/EA7AeCrn B = —j [RNERC,,
Conn = 1/4/m2(b/a) + n2(a/b)

Ymn =1 (if mor n =0)

Ymm =2 (fmandn#0), (m=n=0excluded)
¢z =mn/a, q, =nn/b, @=q+q
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In Table 1, U’'(2), U"(z), J'(z) and J"(z) are respectively, the volt-
age and current amplitudes of the H and E eigenmodes; they satisfy
the transmission line equation:

du’ . dJ' .

dz(z) = —jq.2.J'(z), —-—diz) = —jq.Y.U'(2); (1)
dU”(z) _ s Wen qn d‘]”( ) nyHyTH
—5 - = TIGZl(2), o = Y= ) (2

where the propagation wavenumber g, the characteristic impedance
and admittance Z, Z!  Y! and Y/ are given by:

0 =q —q, (3)

— —_ = — = ——, 4
Y, q; ) c )/;” LU(,() ( )

The mode functions e’,h’,e”, and h” possess the vector orthogo-
p g
nality properties

//(e’,»xh’j)-ds = 6 //(e",'xh”j)-ds:&j, (5)

//(e',- xh")-ds = 0, //(e”i x h';) - ds = 0, (6)

where ¢ and j represent a pair of mode indices m,n, respectively.
The transverse electric and magnetic fields in the waveguide can be
expressed in terms of the above defined orthogonal functions by means
of the representation:

Il

Ei(z,y,2 ZU' z)e'i(z,y +ZU" "z, y), (7)

,y,Z)—ZJ Wiz, y +ZJ” (2)h"i(z,y). )
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2. Eigenvalue problem of the lossy dielectric
blocks (sample) filled waveguide

Fig.2 shows the discontinuity structure and its equivalent multi-
mode network representation in the transverse cross section, there are
three (A;, | = 1,2,3) constituent parts. Each constituent supports
two kinds of eigenmodes; one is the LSE mode ( H type modes,
characterized by E, = 0 ) and the other is the LSM modes ( E®)
type modes, characterized by H, = 0 ). Table 2 gives the eigenfunc-
tions and field components of the eigenmode in each multilayer planar
dielectric structure.

Table 2. Eigenfunctions and field components of the eigenmode
in each multilayer planar dielectric structure

LSE or H® mode LSM or E® mode
= (/R I'(2)$ (y) er = [—1/(koe(y))] I"(z)$" (v)
ey =0 . e, = [—jweo/(ke(y))] V" (2)¢" (y)
hy = [=§/(wpo)] V'(z)¢ (y) hz (jweok./k,?) V"(2)¢" (v)
hy =I'(z)¢ () by =0
E; = e (z,y)U(2) By = ei(z,y)U(z)
E, =0 E] = e”(m YU (2) -
B, = -V'(z)¢'(y)J(2) E;’ k. / (ke(y))] V"' (x)9"(y)J (2)
H; = h(z,y)J(2) Hy = hi(z,y)J(2)
H’ = h’(:c y)J(2) H/ =10
= C'I'(z)¢'(y)U(2) H} = C"I"(2)4"(y)U (=)

C' = —jwep/k? C" = —jweo/k,
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Fig.2 Discontinuity structure in transverse cross section and its
equivalent network representation.
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In Table 2, we use a single prime to denote quantities for the LSE
modes and a double prime for the LSM modes. ¢(y) denotes the
derivative of ¢(y) with respect to y. U(z) and J(z) are respectively
the voltage and current amplitudes of the eigenmode in the sample
filled waveguide, they satisfy the following transmission line equation:

‘”222) = —jk,Z.J(2), (9)
YE ke (10)

where k, is the longitudinal propagation constant of the eigenmode in

the sample filled waveguide and Z, is the characteristic impedance of

the equivalent transmission line in the z direction, which is defined by
1 k.

Zo= = =2 11
Y " o (11)

It is noted that the boundary conditions at the discontinuity re-
quire the total tangential field components be continuous across the
discontinuity, and a necessary condition for the continuity of the tan-
gential field components is that every mode in the constituent regions
must have the same propagation wavenumber k., in the direction along
the discontinuity. Equation (14) reflects this fact.

In Table 2, V'(z), V"(x), I'(z) and ["(z) can be interpreted as the
voltage and current respectively for the LSE and LSM modes; they
satisfy the transmission line equations

, U
W) _ k2o T2 - v (o)
dr dzx
dvll "
(z) _ K Z"1"(2) a'a) _ —JkJYV (x) (13)
d'T dz r o
K2 4 k2 = k2 K24 k2 = K2 (14)
k! ot
pol o owmk Kk (15)

Y,/ k! wepel’
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1 k!’ woe!
Z(I)I = ﬁ = wcok;’ = _—k;’ ; (16)
kl2 klr?
€rp ==, €= =% (17
If kg /! kg

From Table 2 it is found that once the eigenvalues k!, kI, and
the eigenfunctions V'(z), V"(z), I'(z), I"(z), ¢'(y) and ¢"(y) are ob-
tained, the modefunctions €', e¢”, h’ and h” are determined. Then
the modefunctions e and h for the sample filled waveguide can be ex-
pressed in terms of the superposition of the complete set of €', e”, h’
and h” as

e,=) €+ e, (18)
h; = Z him + Z h";,; (19)

and the transverse electric and magnetic fields in the sample filled
waveguide can be expressed in terms of mode function e and h as

Eg = ZG;U,‘ = Z(Z elim + Zeuin)Ui‘, (20)
Ht = Zh.’Ji = Z(Z h,im + Zh”in)']i- (21)

Where i denotes the mode number in the sample filled waveguide and
m,n the mode number in the multilayer planar dielectric structure in
the constituent A, regions. (cf. Fig. 2)

From (18)-(21) it is clear that we choose the modefunctions of
multilayer dielectric waveguide as the basis functions to express the
modefunctions for the sample filled waveguide. In such a way the
fast convergence and less computing time can be obtained. Also, it is
worth to note that each eigenmode in sample filled waveguide has six
field components whereas in the empty waveguide (H and E mode) or
in every constituent guided region (LSE and LSM mode) each eigen-
mode has only five field components; therefore we can not separate
the complete set of modefunctions into two classes (H and E mode).
It means that only one voltage and one current amplitude function
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U;, J; are sufficient to describe the behavior of the eigenmodes in the
z direction. Following gives the solution procedure of the eigenvalue
problem.

(1) Determination of ¢'(y) and ¢"(y)

Since ¢'(y) and ¢"(y) are independent of variable x, we consider
each constituent region as being infinitely wide while retaining the
structure unchanged in the y direction. As a result, each region be-
comes a four layer, or one layer infinite planar dielectric waveguide as
shown in Fig.3.

y
Ya
E4=Ey Z, ty
y3
E3=€, 74 t3
Y2
676, I 1 b
Y1
E1=E, 2y ty
0

Fig.3 Multilayer planar dielectric structure and its equivalent
network representation.

The solutions of ¢'(y) and ¢”(y) for the four layer planar dielectric
waveguide are respectively as follows:
For TE modes:

Aj sin(k,1y) (0<=y <)
A'2 sin [kyg(y - y2) - 02] (y1 <=y < .712) (22)
Aysin[kya(y —ys) — 03] (y2 <=y < y3)

(

Alsin [kya(y — y4)] Yz <=y < ya)
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For TM modes:

AY cos(yy1y) (0<=y <y)

o = Ajcos[kya(y —y2) —02] (11 <=y < 1) (23)
A cos [kya(y — ys) — 03] (y2 <=y < y3)
A cos [kya(y — y4)] (ys <=y < ya)

where

0, = jlin(-T3)]/2, (24)
s = j[In(=I3)]/ 2 (25
N2 = (Z:-2) /(72 + 2), (26,
I3 = (73 - Zs) / (73 + Z3) ; (27
Zl = wulky, (28
Zl' = kjjweoe; (29
ki = kge — kI, (30
1=1,2,3,4
ki = kgeess, 31
Zy = jZstan (kyts), (32

- - 7 73 + ] Z3 tan (ky3t3)
3 Z3 + ]73 tan (kygtg) '

The amplitudes A; can be determined with the boundary condi
tions at each interface as follows:
For TE modes:

A’2 = —-All sin (kyltl) / sin (ky2t2 -+ 02)
Al = Aysin 0,/ sin (kyats + 05) (34
A; = Ag sin 93/ sin (k‘y4t4)
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For TM modes:
Al = AY cos (kyity) [ cos (kyata + 03)

Af = A cos 02/ cos (kysts + 03) (35)
Al = AY, cos b3/ cos (kyats)

It has been proved that the eigenfunctions ¢'(y) and ¢”(y) for
different modes possess the following orthonormality relation

< Bl >= [ 6u)lo)dy = b, (36)
<ol sl >= [ o)y = b (1)

(Ko )? < My)lﬁl«iﬁll(y) > 4

(kun)? < dn ()| ——d(y) > = 0, (38)

( )

or

kum) / S (y)dy +

s [ 1 ., B
) /0 B im0y = 0. (39)

The amplitude A} and A}, then all the normalized amplitudes of
the eigenfunctions can be obtained from the orthonormal relation:

/b¢>’2dz ~1 /b¢”2—1—d —1 (40)
o YT o “rem™ T
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The eigenvalues k., and k. are calculated with the transverse
resonance method as

Zup+ Zgn =0 (41)

at any reference plane in principle. However, because the conductivity
of the epitaxial layer is very large in the present case, it is better to
choose the upper or the lower interface of the epitaxial layer as a
reference plane to avoid missing modes.

(2) Determination of k,, I(z) and V(z)

It can be seen from Fig.2 that there are three discontinuities in the
cross section. In order to get the general idea of the method and to
make the explanation more convenient we had better consider the Ith
discontinuity first, which is shown in Fig.4 together with its equivalent
network representation.

Referring to Fig.4, we observe that the tangential components of
the fields at the I-th discontinuity consist of the y and z components
and we shall therefore consider only those components explicitly. As
stated earlier, the general field solution in each constituent region
may be expressed in terms of the superposition of the complete set of
mode functions. For the tangential field components in the A region
(z1-1 <z < 27 ), from Table 2, we have

Ey(xayaz) = —an::an(x)d)n(y)e(y)sz(Z% (42)
O LR WA O
Hw2) = LI, (40

n=1

=i |33 nietn + 3 L@ Uy 6

n=1

[l

H,(z,y,2)
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Fig.4 The l-th discontinuity structure and its equivalent network
representation.
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where we employ simplified notations

) k, d .
¢n(y) - 'k_lu%:d—yqbn(y)a

L k'r 1 d "

Y (y) = Ve dy n(Y)-

A similar set of tangential field components may also be written for
the z; < ¢ < 14 region, but it is omitted here for simplicity.

At the step discontinuity, at z = z;, the tangential field compo-
nents must be continuous. From (42)-(45), we obtain

o0 ” " 1 o o —T”
nz::l Vn (ml)d)n(y).é(_yj - ngl Vn(‘”)q)n(y)__(y—jv
S V)6, ) + 3 Vi (aely) =

n=1

Y L(e)vn(y) + X I (@) (y) =

n=1 n=1
ST @) + 3 T (0hw).
n=1 n=1

The quantities with a superbar indicate those on the right hanc
side of the discontinuity. Above four equations hold for any y at z = =
within the enclosure. Scalar-multiplying these equations with eithe
é., or ¢, and making use of the orthogonality relation (36) and (37)
we then obtain

V' = P'V (46

’
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V+R'V' = QV +8'V (47)
I = PT (48)
RT+1' = ST+Q'T (49)

where V' and I’ are column vectors with the transmission-line voltage
and current of the n-th LSE mode, V,(z;) and I (z;), at the n-th
position; similar definitions hold for V” and I” for the LSM modes
and also for those vectors with a superbar. The P', P”, Q', Q", R/,
R", S" and 8", are matrices characterizing the coupling of the modes
at the step discontinuity, and their elements are defined by scalar
products or overlap integrals of the mode functions on the two sides
of the discontinuity as follows:

" " 1 —
Pmn = < ¢m[——|¢n >
<(y)
" 1" 1 —r
an = < ¢m|—|¢n >
<(y)
! " 1 1
Rmn = < ¢m|—|¢n >
e(y)

Rpn = < bl >
" 1 —
Smn = <¢m|—|’¢)n>
e(y)
Spn = < Bl >

for m,n = 1,2,3,--- . It is evident from above equations that the
matrices P's and Q's are responsible for the coupling among modes
of the same polarization, whereas R's and S's are responsible for the
cross-coupling among modes of opposite polarization.

It is proved that the following matrix identities hold for the present
case:
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" " " "

P,Q = QP =1
Rl — _thl
SI _ Qn—ﬁ’
I _ Qr—ﬁ”,

where 1 is the unit matrix and t stands for the transpose.
Using (46)-(49) and the above matrix identities, the relationship

between the voltage and current on both sides of the I-th step discon-
tinuity can be expressed in terms of coupling matrices as

V= le, I= Pli; (50)

or

P.V=V, QI=L (51)

In the above equations we define a super colum voltage and current
vectors V, VT and I, and a super coupling matrices of the I-th step
discontinuity Q; and P; by

V—: l:V,, 3 v: Ii_Y_ujI (52)
Vv Vv

r] . [T
1= " 3 I= _n 53
HiEsH e

Q:[Q - R'P" | n:[ P "} (54)

0 P Sl _ RIPI QII

It is straightforward to prove that the matrices P; and Q; satisfy the
following identity

P.Qi=QuP =1 (55)
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If the input admittance matrix at £ = 2] plane looking to the
right is known as Y(z}'), according to (50) and (51), it can be derived

that the input admittance matrix Y(z;) at = z; plane looking to
the right satisfies

where

On the other hand, if the input admittance matrix at z = z;” plane
looking to the left, Y(z;) is known, the input admittance matrix at

x = z; plane looking to the left {/(:):f) can be obtained as:

Y(r!) = QuY(z])Q, (58)

The current reflection coefficient matrix I'(z;) at the z = z;” plane
looking to the right can be obtained as

T(e7) = [Y(27) + Yol ' [Y () — Yo, (59)

and the input admittance matrix at the z = 2 | plane looking to the
right is determined by admittance transform technique as

Y(zt,) = Y[l + HDH][I- HTH]™, (60)

where Y,; and H; are respectively, the characteristic admittance and
phase matrices of the I-th step discontinuity. They are all diagonal
matrices, and their elements are
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0 H/
Y, 0 ]
Yol - of " ’
0 Y,

(Hl')mn = 6mnexp("jk;fnll)7
(H!”)mn = 6mneXp(*jklxllnll)»

(Y;I)mn = 6mn)/<>ln?
(Y;;)mn - 6mnY"

oln*

where k., and Y, are respectively, the wave number in the x direction
and the characteristic admittance for the n-th mode in the I-th section.

Now let us come back to the whole discontinuity problem in the

transverse cross section. Since the input admittance matrix at =

plane looking to the right is known as

?(.r;) = —jYoscot[kya(z3 — 22)]. (61)

By using (56), (59) and (60), the input admittance matrix at = = z7

plane looking to the right, Y(z7) can be obtained:
-1
Y(zf) = Yo [I+H,[(27)Hy| [I- H,I (27 )Ho| (62)

Dep) = [¥len)+ Yoo [Vloz) - Y, (63

P,Y (z})Py. (64)

o
&

N
I
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Similarly, the input admittance matrix at = z{ plane looking to
the left, Y(z7) can be obtained:

Y(z}) = QuY(z])Qi, (65)

Y(z7) = —jYwmcot(knzy). (66)

Refering to Fig.2, the relationship between the voltage and current
at = = z{ plane may be expressed by:

L(z}) = Y(af)Va(e) (67)

L(z}) = —Y(e})Va(a}) (68)

where subscript 2 and later 1, 3 indicates the different constituent
regions. The negative sign in (68) reflects the fact that the current
in the transmission line flows in the positive x direction, while the
admittance ?(rf) is defined with respect to the opposite direction.
Evidently, (67) and (68) are two different equations relating the same
set of voltages to the same set of currents. Equating (67) and (68),
we obtain

Y (z})V,(zf) =0, (69)

where

Y(zf) = Y(zf) + Y(a}). (70)

For the linear homogeneous system of equations (69) the necessary
and sufficient condition for the existence of a nontrival solution is that
the determinant of the coeflicient matrix vanishes, namely,
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detY(zf) =0. (71)

In other words, this is a condition under which non-zero current may
exist in the absence of any source excitation in the network of Fig.2.
Since the admittances in (71) are all functions of the longitudinal
propagation constant k,, the eigenvalue of the sample filled waveg-
uide; therefore, (71) is the equation to determine the allowable values
of k,; for the i-th mode, and is actually the dispersion equation for the
sample filled waveguide. Once the eigenvalues are obtained, the volt-
age at x= z{ plane can be determined by equation (69) in following
way.

Let Vy(zt) =1, and f = (fi, f2,- ), then from (69), we have
Y(zH)f =0. (72)

Equation (72), though simple in form, involves matrices of infinite
order which must be truncated to obtain numerical approximations to
prescribed accuracy. If the truncation number is chosen to be m, only
m-1 solutions are independent for the linear homogeneous system of
equations. We thus can rearrange equation (69) as follows

Yoof: + Yasfs + - + Youfe = -Yafi
Yoofd + Yasfs + -+ + Yaufn = —-Yafi (73)
Ym2f2 + Y;n3f3 + -+ Ymmfm = - mlfl‘

This is a (m-1)-dimensional linear inhomogeneous system of equa-
tions. We may let f; = 1 temporarily so that the equations can be
solved with some numerical methods, say, Gauss eliminate method,
and the relationship between f, (o = 2,3,---,m) and f; is then
known.
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In order to determine the eigenfunctions of the sample filled waveg-
uide with fy, let us define the n-th element of the voltage and current
vectors in the three constituent regions as:

Vin = Amnsin(kizgnz), (0 <z <a);
‘/271 = A?n Sin(kZJ:nx + p2n)7 (Il S z S :1:2)) (74)
VE%n = A3n Sin(kl}xn(x - -7:3))7 ((172 S z S 13)7

Iln = j)/lnAln Cos(kl:r:nx)v (0 S T S xl)y
]2n = j)/ZnAZn COS(kZz:nx + p2n)7 (wl S z S 152); (75)
ISn = j)/BnABn COS(kI}rn(I - 1:3))7 (:171 S z S. 1'2)-

The amplitudes and phases in (74) and (75) for each region can be
obtained as follows:

In Region 1: (0 <z < z4)
From
Vi(a7) = QiVa(af) = Qif =g = (1,92, " gn," "1 9m)ss
we obtain
Ain Sin(kxlnml) = Gn,

or

Aln = gn/sin(krln;rl). (76)

In Region 2: (z; <z < )
From

L(z{) = Y(e)Va(a!) = Y(eF) £ = h = (hi, ko, hay oy ),

V2(~TT) =f= (f17f27"' 7fn7" . 7fm)t;
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we have
3YanAgn cos(kzzn1 4 pan) = hn,
Ay sin(kpan®1 4 pan) = fu;
or
Pan = arctan(j Yo, fo/hn) — kazn1; (77)
Agn = fn/ sin(kgan®1 + pan)- (78)

In Region 3: (z <z < 23)

Since the amplitudes and phases of the voltage in Region 2 are deter-
mined, it means that each element of the voltage vector at z = z3
plane is obtained as:

‘/gn(flf;) = A2n Sin(kx2nx2 -+ p?n)

therefore, from

V3($-2+-) = P?tv2($;) =d= (dla d21 o 7dn7 T dm)ta
we get
A3n Sin(k.z‘Sn(zZ - -TB)) = dn7

Az, = d,/ sin(kesn(z2 — 23)). (79)

Through the above procedure, all the amplitudes and phases of
the voltages and currents in the three regions can be determined once
f is obtained. As mentioned before, the elements f; (¢ = 2,3,-,m)
of vector f can be expressed by f; which can be now determined by
the orthonormal relation of the modefunctions in the sample filled
waveguide as

h=1/VA (80)
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where

A

Il

//S(exh)-ds:zA://A(exh)~ds:%:AA
//A elxh;d:cdy—}—//A e:h’yda:dy—l—( // y 'dwdy)
o (- L)

= Si+ 5+ 53+ 54

AA

NESP ¢ —(k, av' (2)]?

5 =3 o (k’um)) /:"[ = ]dm

m

| NLSENLSM (k.. )? = dV,,(z) dV, (z)
S = 33w e

U i 61y dg,(y )dy]

NLSE NLSM

S ) R ACTATT

n

| oz e
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STEP II. Calculation of the Scattering
Characteristics of the Discontinuity in
the Longitudinal Direction

1. Symmetrical consideration of the structure to
facilitate the analysis procedure

The 3-D discontinuity under consideration as shown in Fig.1 has
two step discontinuities in the longitudinal cross section. However,
the present structure is symmetrical in the longitudinal direction as
shown in Fig.5. The scattering of a guided mode by such a sym-
metrical structure may be analyzed in terms of the symmetrical and
anti-symmetrical excitations for which we have the open-circuit and
short-circuit bisections respectively, as shown in Fig.5. It means that
only one discontinuity is needed to be analyzed.

2. Determination of the S-parameters for the
discontinuity

Referring to Ilig.5, it is clear that the reflection coefficient for each
guided mode at the symmetrical plane z=w/2 ( O-O' plane) is 1.0 for
the O.C. bisection or —1.0 for the S.C. bisection. Let R, and R be the
reflection coefficient matrices at z = 0~ plane for the O.C. and the
S.C. bisections respectively. The guided mode reflection coeflicient
matrix R (at z=0~ plane) and the transmission matrix T (at z=w
plane) of the entire symmetrical structure are then given by

R = (Ro+R.)/2, (81)

T = (R, —Ry)/2. (82)

The scattering parameters S;; = Sy and Sy; = Sy, of the domi-

nant mode in the empty waveguide are determined from the first row
and the first column of R and T matrices respectively as

Su=R(1,1) = [Ro(l, 1)+ Rs(1,1)]/2, (83)

S2I:T(l’1) - [Ro(l’l)"'Rs(lal)]/2’ (84)
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where matrices Ry, and Rg are determined by:

Ro = [Zo + Zcrl [Zo - ZC] 3 (85)
Ry = [Zo+2Z " [Zs—2Z.]. (86)

z
i i
z=0 z=w/2 z
i !
12R, = i o.c.
| |
12R, = | s.c.

Fig.5 Symmetrical consideration and the equivalent network rep-

resentation of the discontinuity in the longitudinal cross
section.
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Here Z, and Zg are the input impedance matrices at 2 = 0~ plane
looking to the right for the open-circuit and short-circuit bisections of
the O-O' plane respectively. They are determined by:

Zo = MzoMta (87)
Z, = MZ,M,; (88)

where Z, and Z, are input impedance matrices for the eigenmodes
at z = 0% plane looking to the right for the open-circuit and short-
circuit bisections of the O-O' plane respectively. Z. is the characteris-
tic impedance in the empty waveguide. Z, , Z, and Z. are all diagonal
matrices, their elements are respectively given as follows

Z. 0
Zc = N " )
0 Z,

Zew = who/d,n,
ch = q:z,n/weo’

Zon = —JZeqcob (Eznw/Q) ,

Zsw = jZeptan (kznw/Q) ;

where Z., is the characteristic impedance of the sample filled waveg-
uide and is determined by (11) as

—ch = an/w%;

where M is the coupling matrix whose elements are determined in the
next section.
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3. Determination of the coupling matrices
at the discontinuity plane

At the discontinuity plane, or at z=0 cross section, the tangential
components of the electromagnetic fields in the two waveguide must
be continuous; from (7)(8) and (20)(21), in the Ath region we have

S U+ YUl = YT, (59)
i i J
S+ SN = YT (90)
i i J

Here quantities with a superbar indicate the quantities in the sample
filled waveguide. Cross multiplying (89) by h; and h; respectively
from left; (90) by e; and e; respectively from right, then integrating
the resultant equations while making use of the orthogonal relation

(5) and (6), we obtain
U =3 Li;U;, J =3 Al (91)
J J

U;, = Z GijUj, Ji” = ZBijjj; (92)
J J
with

Li; = //S (& x hy) - ds, (93)
Gy = //S (& x b)) - ds, (94)

Equations (91) and (92) may be written in matrix form as

U =LU, ¥ = AJ, (97)
U"=GU, J"=BIJ. (98)
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If we define a super column voltage vector U with the column vectors
U’ and U" as its elements, and similarly for J as

U// J/I

U =MTU, J=N7, (99)

we can obtain

where

It can be proved that
M,N=NM=1

which states that the inverses of the infinite matrices M and N may
be simply obtained from the transposes of N and M. Using above
matrix identity, (99) may be rewritten as

According to the definition of the impedance of the multimode network
we have

U=2ZJ, U=177J, (101)

From (99)-(101), we get
Z = MZM, (102)

Mathematically, (102) corresponds with the linear complex space
transformation; physically, it can be understood as an impedance
transform formula which was just used in (87) and (88) to determine
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the impedance matrices Z, and Zs.

Referring to Table 1 and Table 2 , the elements of the coupling
matrices in (93)-(96) can be determined by the following formulae

LA

¥

Sta

St

Sta

3 3
Z// (& x hy) - ipdady = 3" L3
A JJA A

// 2% y]dzdy—}—// er] wda:dy—l—( // ey] mdmdy)

Sta + Stz + Sis

N§E @ k2 jAk,

w Vo (k)2 ko

a X

awdV,,
/ y L cos k,;xdz

X [/0 Py )Smky,ydy]

NLSM k2 A x dV” ) ,
ET,ICO—LJ_—W / P8 mi o kzdz
pouy o (kum)Q kokz]‘ za dzx

b dall (y) 1 ) ,
m\y) - k .yd

" [/o dy ey Y

M [l koK, [ [V sn k;ixda:]
to ks Fa ’

m

b_»n 1 '
| [ gy cos kvt
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Se

Saa

Sas

3

Z//A (& x by) - i,dedy = Xzzgg_

A

Xuetal

J[Euitiidody + [[ €Linisdedy + (= [[ @nidedy)

Sa1+ Saz2 + Sas

N o B Ak,
™ 3 ko

Ho (kxmj)2

X [/0” a:n(y)sin k;,-ydy]

dV "
/ ’ L cos km»:l:d:c]
za dT

NLSM _ko ]Auk"

E 1 T

m ,u0 (kum)2 ko 2j

bdgi(y) 1 .
% [/0 dy E(y) SRy yay
NLSM "oy

- k A k i "
3 M [ [ Vysin krixdm]
kZ] Ta

m

b__n 1 .
X [/0 ¢m(y)@ cos kyiydy]

o dV. .
/ " cos km-a:dx}
o dT
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3 3
A = ;//A (e;XHj)~izdxdy=§A$

A5 = [[ dbdady+ (= [[ efosdedy) + (= [f <, Fodedy)

= Sa1+ Saz2+ Sas

S = S (E ) 105k / Wi ookl wda
AL = ; /lo( )2 ko e AT o
Tmj

x [ " Bra(y)sin ky,ydy]
0

NLSE
_--] Az krz v . !
Saz = ; " [/za V,.;sin km-xd:v]

bda' W
Zrmid/ ud
X [/0 dy cos k,,ydy

NLSM k2 _]A k k A
S = _,,0 1zi [/ Vo s1nk ;xdz
wE (kum)z ko U,

X [/Ob B(y) cos k;iydy}
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3

By = 3 [ (el %) iudedy = 3358
A

A

Bf? = // en; wd:vdy-l—( // eyt z]d:vdy) ( // ;:Mda:dy)

= Sp1+ Sp2+ SB3

NLSE 7 N\2 A" ivd
_ €0 (kum) ]Az kmi /zb dvmj "
Spr = ; - (_E;mj)z e & cos k;xde

X [ /0 b () sin k;,'iydy]

NLSE A“k‘ ., .
Spy = Z CoJ 7 i [/ ijsinkzia:dm]

NLSM 2

€o kO Az kyz k [ Vil " ]

Sps = —— / V,.isinkzdz
33 = Vo, )2 ke e

b_n "
X L/O ¢m(y) cos kyzydy:l
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NUMERICAL RESULTS

In order to verify the reliability and efficiency of the present method,
we have calculated the scattering characteristics of different II-VI
semiconductor samples. Table 3 presents comparisons of the trans-
mission characteristics for different samples with different gaps g be-
tween the experimental data and the theoretical predictions. The
input parameters for the samples are compiled in Table 4, while the
data of the mounting structure is: € = 2.3, ¢, = & = €, = 1.0,
ys—y3 = 10.5mm (cf. Fig.1). We did the measurements in a standard
W/G 16 waveguide at a frequency of 8.89 GHz. It can be seen from
the table that the agreement is very good for the transmission coef-
ficient Sy; =| Sg1 | exp(jypa1). The reliability and the accuracy of the
present method are thus justified.

Table 3.  Comparisons of the transmission coefficients for dif-
ferent samples between the experimental data and the theoretical
predictions

il L) IS s e
?CliilgTe) 1.26 0.2 -10.58 | -10.68 | -82.59 | -87.04
8?;30) 4.65 0.2 -1.98 | -2.21 | -96.88 | -99.40
8?;50) 4.76 0.2 205 -2.14 | -71.80 | -76.81
?g;sle) 4.96 0.2 -2.77 -3.12 | -98.70 | -108.71
?Cl;;flgTe) 5.16 0.0 -1.79 -1.79 | -62.51 | -60.51
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Table 4. Values of the sample parameters: dielectic constant and

Xuetal

thickness of epitaxial layer and substrate, length of the sample.

(cf. Fig.1)
Sample Ep dy €, d, v

(wm) (rm) | (mm)
Q114 | ~704 — 51.276-10% | 4.7 11.0-70.5 1.0 5.0
Q310 | —768 — 71.390-10° | 0.63 | 11.0— ;0.0 0.5 6.6
Q319 | —893—351.612-10°| 1.1 11.0-370.0 0.5 9.6
Q411 | —893 — 71.612-10° | 0.62 | 11.0— 74.0 0.8 10.0

ACKNOWLEDGEMENTS

This work was supported by The National Natural Science Foun-

dation of China and The Deutsche Forschungsgemeinschaft.

REFERENCES

[1] P. Greiner, L.Polignone, C.R. Becker, R. Geick, Appl. Phys.
A55, 279 (1992).

2] Xu Shanjia, Wu Xinzhang, P. Greiner C.R. Becker, R. Geick,
Int’l. J. of Infrared and Millimeter Waves 13, 569 (1992).

[3] Xu Shanjia, Sheng Xinqing, P. Greiner, C.R.. Becker, R. Geick,
J. of Infrared and Millimeter Waves, 11, (1992).

[4] Xu Shanjia, Journal of Electronics 6, 50 (1989).
[5] Xu Shanjia, Journal of Electronics 6, 232 (1989).

[6] Xu Shanjia, S. T. Peng and F. K. Schwering, IEEE Trans. on
MTT 37, 686 (1989).




	Becker_Scattering-characteristics__001__2155
	Becker_Scattering-characteristics__002__2156
	Becker_Scattering-characteristics__003__2157
	Becker_Scattering-characteristics__004__2158
	Becker_Scattering-characteristics__005__2159
	Becker_Scattering-characteristics__006__2160
	Becker_Scattering-characteristics__007__2161
	Becker_Scattering-characteristics__008__2162
	Becker_Scattering-characteristics__009__2163
	Becker_Scattering-characteristics__010__2164
	Becker_Scattering-characteristics__011__2165
	Becker_Scattering-characteristics__012__2166
	Becker_Scattering-characteristics__013__2167
	Becker_Scattering-characteristics__014__2168
	Becker_Scattering-characteristics__015__2169
	Becker_Scattering-characteristics__016__2170
	Becker_Scattering-characteristics__017__2171
	Becker_Scattering-characteristics__018__2172
	Becker_Scattering-characteristics__019__2173
	Becker_Scattering-characteristics__020__2174
	Becker_Scattering-characteristics__021__2175
	Becker_Scattering-characteristics__022__2176
	Becker_Scattering-characteristics__023__2177
	Becker_Scattering-characteristics__024__2178
	Becker_Scattering-characteristics__025__2179
	Becker_Scattering-characteristics__026__2180
	Becker_Scattering-characteristics__027__2181
	Becker_Scattering-characteristics__028__2182
	Becker_Scattering-characteristics__029__2183
	Becker_Scattering-characteristics__030__2184
	Becker_Scattering-characteristics__031__2185
	Becker_Scattering-characteristics__032__2186
	Becker_Scattering-characteristics__033__2187
	Becker_Scattering-characteristics__034__2188
	Becker_Scattering-characteristics__035__2189
	Becker_Scattering-characteristics__036__2190

