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ABSTRACT 

The scattering characteristics of 3-D discontinuity consisting of 
II- VI-epitaxial layer grown on lossy dielectric substrate inserted in 
the waveguide with gaps are investigated in detail by the method 
which combines the multimode network theory with the rigorous mode 
matching procedure. The experimental data verify the accuracy and 
the effectiveness of the present method. 

INTRODUCTION 

Recently, lI-VI semiconductors have become more and more im­
portant in material science and engineering because of their inher­
ent advantages for applications in optoelectronic, infrared and mil­
limeter wave techniques. Für these purposes the exact knowledge of 
their electric properties, e.g. conductivity, are of essential significance. 
However, poorly condllcting lI-VI semicondutors have always created 
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problems. In many cases, it is extremely difficulty or even impossible 
to obtain good ohmic contacts. For characterising lI-VI compounds 
under these circumstances, a contactless conductivity measurement [1] 
has been developped employing a microwave bridge technique. In this 
method, the determination of property parameters of a semicondudor 
is transfered to the measurement of the scattering characteristics of the 
corresponding sampies. The key point of realizing this idea is to theo­
rctically determine the relationship between the property parameters 
of the semiconductor and scattering parameters of the corresponding 
sampies. In the former measurement, the height of the semicondudor 
sampie was chosen to be the same as the waveguide so that the theo­
rctical analysis for the boundary value problem became easierj because 
in that case it is a two dimensional scattering problem as previously 
have done using the multireflection method[l], the multimode network 
method[2] and the high-order finite element method[3]. However, in 
that case, special care must be taken in the measurement to ensure 
good electric contact between the sam pie and the wavcguide walls[l]. 
It is inconvenient and time consuming. Besides, to satisfy the partic­
ular dimension requirement, the height dimension of the sam pie has 
to be made in a very precise wayj it is not so convenient and in some 
cases is rather difficult. 

In order to avoid above mentioned disadvantages and to make the 
contactless microwave measurement a simple routine to determine the 
properties of the semiconductor with sufficient accuracy in a suffi­
ciently short time, in this paper we propose a new sampie mounting 
structure as shown in Fig.1. The sampie having different height with 
the waveguide, includes an epitaxial layer (tp ) and a lossy dielectric 
slab (ts ) as substrate. Two dielectric films having the dielectric con­
stant tf and tb about 2.0 are introduced as two transient regions to get 
good microwave conducting between the sampie and the walls of the 
waveguide. The other two dielcctric blocks having the dielectric con­
stants around 1.0 togethcr with the films form the mounting structure 
to precisely fix the position of the sam pie in the waveguide so that 
the repeatability of the measurement is guaranteed. Although the 
new mounting structure really makes the measurement much quicker 
and more reliable, the improvements require an extended and more 
elaborate mathematical analysis of the experimental data, as a result, 
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the theoretical analysis becomes much more complicated as compared 
to the simple situation of the partially filled waveguide before. Thus 
in the present case it is a complicated three dimensional scattering 
problem. The following two aspects make the problem even more dif­
ficult. First, the conductivity of the epitaxiallayer may vary in a wide 
range from ten to some thousands (mhos/cm) to satisfy the practi­
cal requirements for different devices. As a consequence, the real and 
imaginary part of the corresponding complex dielectric constants may 
be very 1 arge , especially the imaginary part may vary from several 
hundreds to some millions. If the calculation is not carried out prop­
erly, it may suffer from convergence problem. In addition, because the 
epitaxiallayer is neither an ideal dielectric nor ideal conductor, some 
assumptions for these two extreme circumstances can not be used, for 
instance, one can not simplify the problem with approximate methods 
such as perturbation theory. Secondly, the epitaxiallayer is very thin, 
only 1 to 5 p,m, or even less than 1 p,m, but it can not be assumed to 
be zero, because investigating the effect of the thickness on scattering 
characteristics is one of our tasks. Therefore, it may also cause a con­
vergence problem if the method is not correctly adopted in analyzing 
the present discontinuity which creates the current distribution func­
tion with high order singularities. 

In this paper, an accurate and relatively simple method is used 
to analyze the scattering characteristics of 3-D discontinuity consist­
ing of the li-VI semiconductor sample partially filled in waveguide 
with two dielectric gaps. Since the present method combines the mul­
timode network theory with the rigorous mode matching procedure 
and transfers the electromagnetic field boundary value problem into 
a multimode network analysis problem, the whole calculation proce­
dure is simplified while still retaining the high accuracy of the mode 
matching method. 

The validity of the present approach is justified by comparisons of 
the transmission coefficients for different samples with different gaps 
between the experimental data and theoretical predictions. 
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METHOD OF ANALYSIS 

Fig.l shows the cross section of the structure under consideration. 
This discontinuity structure is corresponding to a semiconductor sam­
pIe partially filled in the waveguide with film gaps. As described in 
the last section, the sampie having different height than the waveguide 
consists of an epitaxial layer and a lossy dielectric slab as substrate. 
Two dielectric films are introduced as the transient regions to ensure 
the good microwave conducting between the sam pIe and the waveg­
uide; the other two dielectric blocks together with the films form the 
mounting structure to precisely fix the position of the sampie in the 
waveguide. We would like to calculate the scattering characteristics of 
this 3-D discontinuity problem. The solution procedure of the problem 
may be divided into two steps. First, analyze the eigenvalue problem 
of the two waveguides respectively in the transverse cross section; sec­
ondly, calculate the scattering characteristics of the discontinuity in 
the longitudinal direction, in which the symmetrical property of the 
structure in the longitudinal direction is used to simplify the calcula­
tion procedure. 
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Fig.l Cross section of the stratified lossy dielectric blocks in the 
rectangular waveguide. 
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STEP I. Analysis of the Eigenvalue 
Problem for the Two Waveguides 
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1. Eigenvalue problem of the empty waveguide 

It is weIl known that the eigenvalues and eigenfunctions for the 
empty rectangular waveguide are respectively as shown in Table l. 
Here we use a single prime to denote quantities for H modes, a double 
prime for E modes and no prime for either H modes or E modes. It 
should be emphasized that in order to accelerate the convergence in 
the mode matching calculation, the sequence of the Hand E modes 
must be rearranged according to the eigenvalues kc from small to large. 

Table 1. Eigenfunctions and field components of the Hand E 
modes in the empty rectangular waveguide. 

H mode 
I - AI I ,I . I ex - qy cos qxx sm qyy 

el = - A'q' sin ql x cos ql Y Y I I > Y 

h~ = AI q~ sin q~x cos q~y 

h~ = AI q~ cos q~x sin q~y 

E~ = UI(z)e~(x,y) 

E~ = UI(z)e~(x,y) 

E~ = 0 
H; = J'(z)h~(x,y) 

H~ = J/(z)h~(x,y) 

H~ = U'(z)B'cosq~xcosq~y 

E mode 

e~ = A" q: cos q:x sin q:y 

< = A" q: sin q:x cos q:y 
h" = - A"q" sin q" x cos q"y .T y' X y 

h; = A" q~ cos q:x sin q:y 

E: = U"(z)e~(x,y) 

E: = U"(z)e~(x,y) 

E~ = JI(z)B"sinq~xsinq:y 

H:: = J"(z)h~(x,y) 

H; = J"(z)h;(x,y) 

H;' = 0 

AI = CmnVimin/7r A" = -2Cmn /7r 
BI = -J' m). r:;;-;:vC B" = -J' m>',/Ym'Ync V eo __ V Im In mn V co ab mn 

Cmn = 1/ jm2(b/a) + n2(a/b) 

im,n = 1 (if m or n = 0) 

im,n = 2 (if m and n =j:. 0 ), (m = n = 0 excluded) 

qx = m7r/a , qy=n7r/b, q~=q;+q; 
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In Table 1, U'(z), U"(z), J'(z) and J"(z) are respectively, the volt­
age and current amplitudes of the Hand E eigenmodes; they satisfy 
the transmission line equation: 

dU'(z) 
-jq~Z;J'(z), dJ'(z) = _. 'Y'U'( ). (1) 

dz dz Jqz c z, 

dU"(z) 
= - jq: Z~' J"(z), dJ"(z) = _. "Y"U"( ) (2) 

dz dz Jqz c z . 

where the propagation wavenumber qz, the characteristic impedance 
and admittance Z~, Z~', Y: and Y:' are given by: 

(3) 

Z' = ~ = WJ.Lo 
c Y; q~' 

1 " Z"= - = ~ 
c Y;' W(o 

(4) 

The mode functions e',h',e", and h" possess the vector orthogo­
nality properties 

jj(e'j x h'j)' ds 

jj(e'j x h"j)' ds 

Öjj, jj(e"j x h"j)' ds = Öij, 

0, j!(e"j x h'j)' ds = 0, 

(5) 

(6) 

where i and j represent a pair of mode indices m, n, respectively. 
The transverse electric and magnetic fields in the waveguide can be 
expressed in terms of the above defined orthogonal functions by means 
of the representation: 

Et(x,y,z) = "LU:(z)e'i(x,y) + "LU:'(z)e"i(x,y), (7) 

Ht(x,y,z) = "LJ:(z)h'j(x,y) + "LJ:'(Z)h"i(X,y). (8) 
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2. Eigenvalue problem of the lossy dielectric 
blocks (sampie) filled waveguide 

Fig.2 shows the discontinuity structure and its equivalent multi­
mode network representation in the transverse cross section, there are 
three (ß/, I = 1,2,3) constituent parts. Each constituent supports 
two kinds of eigenmodes; one is the LSE mode ( H{Y) type modes, 
characterized by E y = 0 ) and the other is the LSM mo des ( E{y) 

type modes, characterized by H y = 0 ). Table 2 gives the eigenfunc­
tions and field components of the eigenmode in each multilayer planar 
dielectric structure. 

Table 2. Eigenfunctions and field components of the eigenmode 
in each multilayer planar dielectric structure 

LSE or H(Y) mode 

e~ = (k6/k~2)I'(x)<jJ'(y) 
e' = 0 

y 

h~ = [-j/(W/lo)] V'(x)~'(y) 
h~ = I'(x)<jJ'(y) 

E~ = e~(x,y)U(z) 
E' = 0 y 

E~ = -V'(x)<jJ'(y)J(z) 

H~ = h~(x,y)J(z) 

H~ = h~(x, y)J(z) 
H~ = C' I'(x)~'(y)U(z) 

LSM or E(Y) mode 

e~ = [-l/(kzE(y))]I"(x)~"(y) < = [-jwEo/(kzE(Y))] V"(x)<jJI/(y) 
h~ = (jwEokz/k~2) V"(x)<jJI/(y) 
hl/ = 0 

Y 

E~ = e~(x,y)U(z) 

E~ = e~(x,y)U(z) 
E; = [kz/(k~2E(Y))] V"(x)~"(y)J(z) 
H~ = h~(x,y)J(z) 

H" = 0 y 

H~' = C"I"(x)<jJ"(y)U(z) 

cl/ = -jwEo/kz 
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Fig.2 Discontinuity structure in transverse cross section and its 
equivalent network representation. 
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In Table 2, we use a single prime to denote quant.ities for the LSE 
modes and a double prime for the LSM modes. 4>(Y) denotes the 
derivative of 4>(Y) with respect to y. U(z) and J(z) are respectively 
the voltage and current amplitudes of the eigenmode in the sampie 
filled waveguide, they satis{y the following transmission line equation: 

(9) 
dU(z) 

dz 
dJ(z) 

dz 
= -jkzYcU(z); (10) 

where kz is the longitudinal propagation cOIlstant of the eigenmode in 
the sam pie filled waveguide and Zc is the characteristic impedance of 
the equivalent transmission line in the z direction, which is defined by 

(11) 

It is noted that the boundary conditions at the discontinuity re­
quire the total tangential field components be continuous across thc 
discontinuity, and a necessary condition for the continuity of the tan­
gential field components is that every mode in the constituent regions 
must have the same propagation wavenumber kz , in the direction along 
the discontinuity. Equation (14) reflects this fact. 

In Table 2, V'(x), V"(x), f'(x) and fll(X) can be interpreted as the 
voltage and current respectively for the LSE and LSM modes; they 
satisfy the transmission line equations 

dV'(x) = _ ·k' Z' f'( ) 
dx J x 0 X 

dV"(x) = -·k"Zlfl( ) 
dI J x 0 x 

Z'=~ = 
o y; 

(12) 

dI"(x) = _ ·klyIV"( ) (13) 
dx J x 0 x 

(14) 

(15) 
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Z" = _l_ 
a y;' (16) 

I k~ 
{elf = kJ' ( 17) 

From Table 2 it is found that once the eigenvalues k~, k~, and 
the eigenfunctions V'(x), V"(x), ]'(x), ]"(x), ljJ'(y) and ljJ"(y) are ob­
tained, the modefunctions e', e", h' and h" are determined. Then 
the modefunctions e and h for the sampie filled waveguide can bc ex· 
pressed in terms of the superposition of the complete set of e', e", h' 
and h" as 

~, ~" ei = L..J e im + L..J ein, ( 18) 
m n 

h i = L h'im + L h"in; ( 19) 
m n 

and the transverse elcctric and magnetic fields in thc sampie filled 
waveguidc can be cxpressed in terms of mode function e and h as 

E t = LeiUi = L(Le'im + Le"in)Ui , (20) 
m n 

(21 ) 
m n 

Whcre i dcnotes the mode number in the sam pie fillcd wavcguide and 
m, n the mode number in the multilayer planar dielectric strtlCture in 
the constituent ~I regions. (cf. Fig. 2) 

From (18)-(21) it is clear that we choose thc modefunctions of 
multilaycr dielectric wavcguide as thc basis functions to express the 
modefunctions for thc sam pIe filled waveguide. In such a way the 
fast convergence and less computing time can be obtained. Also, it is 
worth to note that each eigen mode in sampie filled waveguide has six 
field components whereas in the empty waveguide (H and E mode) or 
in every constituent guided region (LSE and LSM mode) each eigen­
mode has only five field components; therefore we can not separate 
the complete set of modefunctions into two classes (H and E mode). 
It mcans that only one voltage and one current amplitude function 
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Ui, Ji are sufficient to describe the behavior of the eigen mo des in the 
z direction. Following gives the solution procedure of the eigenvalue 
problem. 

(1) Determination of <jJ'(y) and <jJ"(y) 

Since <jJ'(y) and <jJ"(y) are independent of variable x, we consider 
each constituent region as being infinitely wide while retaining the 
structure unchanged in the y direction. As a result, each region be­
comes a four layer, or one layer infinite planar dielectric waveguide as 
shown in Fig.3. 

Y 

C4=cw Z4 t t4 t r3 t Z3 

Y2 

C3=Cs Z3 t t3 t r2 t Z2 

C2=Cp Zz t t2 

C\=Ca Z\ 

I" 

Zup 

Yl 

Z3. ky3 

-. __ ._. _._0_._.- f-o_. 

Z2' kY2 

o 

Fig.3 Multilayer planar dielectric structure and its equivalent 
network representation. 

The solutions of <jJ'(y) and <jJ"(y) for the four layer planar dielectric 
waveguide are respectively as folIows: 
For TE modes: 

1 
A~ sin(ky1Y) (0 <= Y :s; Yd 

<jJ' 
A~ sin [ky2 (Y - Y2) - 02J (YI <= y :s; Y2) 

(22) 
A~ sin [ky3 (Y - Y3) - 03J (Y2 <= Y :s; Y3) 

A~ sin [k y4 (Y - Y4)J (Y3 <= Y :s; Y4) 
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Für TM müdes: 

! 
A~ CÜS(YYl y) (0 <= Y ::; yt) 

f/y" 
A~ CÜS [ky2 (Y - Y2) - O2] (Yl <= Y ::; Y2) 

(23) = 
A~ cüs [ky3 (Y - Y3) - 03] (Y2 <= Y ::; Y3) 

A~ cos [ky4 (Y - Y4)] (Y3 <= Y ::; Y4) 

where 

O2 j [ln( -1'2)] / 2, (24; 

03 = j [ln(-I'3)] / 2; (2.5: 

1'2 ( Z 2 - Z2) / (Z 2 + Z2) , (26: 

1'3 ( Z 3 - Z3) / (Z 3 + Z3) ; (2T 

z; WJ.l/k~l' (28' 

Z" I k~dwEO(I; (29 

k2 
yl k~tl - k~, (30 

1=1,2,3,4 

k2 
u k~(eJJ' (31 

Z3 j Z4 tan (ky4 t4 ), (32 

Z2 
Z Z3 + j Z3 tan (ky3 t3) 

3 . 
Z3 + j Z3tan(ky3t3) 

(33 

The arnplitudes Ai can be determined with the büundary condi 
tions at each interface as füllüws: 
Für TE müdes: 

A~ = -A~ sin (ky1tt) / sin (k y2 t 2 + O2 ) 

A~ = A~ sin O2 / sin (ky3 t3 + 03 ) 

A~ = A~ sin 03 / sin (ky4 t4 ) 

(34 
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For TM modes: 

A~ = A~ cos (ky1t1) / COS (ky2 t2 + ()2) 

A~ = A~ cos ()2/ cos (ky3 t3 + ()3) 

A~ = A~n cos ()3/ cos (ky4 t4 ) 

2167 

(35) 

It has been proved that the eigenfunctions <p'(y) and <p1/(y) for 
different modes possess the following orthonormality relation 

(36) 

(37) 

(38) 

or 

((m)21
b 

<p~(Y)fL)~~(Y)dY + 

((n)21
b 

<p~(Y)f/y)~~(Y)dY o. (39) 

The amplitude A~ and A~, then all the normalized amplitudes of 
the eigenfunctions can be obtained from the orthonormal relation: 

{b 1/2 1 d 
Jo <Pm f(Y) Y = 1 ( 40) 
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The eigenvalues k~m and k~n are calculated with the transverse 
resonance method as 

(41 ) 

at any reference plane in principle. However, because the conductivity 
of the epitaxial layer is very large in the present case, it is better to 
choose the upper or the lower interface of the epitaxial layer as a 
reference plane to avoid missing modes. 

(2) Determination of kz'!(x) and F(x) 

It can be seen from Fig.2 that there are three discontinuities in the 
cross section. In order to get thc general idea of thc method and to 
make the explanation more convenient wc had better considcr the lth 
discontinuity first, which is shown in Fig.4 together with its equivalcnt 
network reprcsentation. 

Rcferring to Fig.4, we observe that the tangential componcnts of 
the fields at the l-th discontinuity consist of the y and z cornponents 
and we shall therefore consider only thosc components explicitly. As 
statcd earlier, the general field solution in each constituent region 
may be expressed in terms of the superposition of the completc set of 
mode functions. Für thc tangential field componcnts in the ßl region 
(Xl-l :s; x :s; Xl ), from Tablc 2, we have 

Ey(x, y, z) -j f V~/(X)<t>~(y) (WE)Ok U(z), (42) 
n=l E y z 

- [~ V~(x)1>~(Y) + ~ V~' (X)~~(y)] J(z), (43) 

00 

lly(x, y, z) 2: I~(x)J(z)1>~(Y), ( 44) 
n=l 

-j [~((x)~~(y) + ~ ((X)1>~(Y)] U(z); (45) 
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where we employ simplified notations 

1jJ~(y) 

k. 1 d 11 

= k':2-( )d;4>n(Y). 
un f Y Y 

A similar set of tangential field components mayaiso be written for 
the Xl ~ X ~ Xl+l region, but it is omitted here for simplicity. 

At the step discontinuity, at X = Xl, the tangential field compo­
nents must be continuous. From (42)-(45), we obtain 

n=1 n=1 

n=1 n=1 

00 

I: I~(XI)4>~(Y) 
00, , 

I: 7n(XI)~n(Y), 
n=1 n=1 

00 00 

I: I~(XI)1jJ~(y) + I: I:(XI)4>~(Y) = 
n=1 n=1 

n=1 n=1 

The quantities with a superbar indicate those on the right hane 
side of the discontinuity. Above four equations hold for any y at X = x 
within the enclosure. Scalar-multiplying these equations with eithel 
4>~ or 4>: and making use of the orthogonality relation (36) and (37) 
we then obtain 

V" 
,,_11 

PV 
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Y'+R"Y" Q'Y' +S"y" ( 47) 

I' p'I' (48) 

R'I' + I" s'I' + Q"I" ( 49) 

where y' and I' are column vectors with the transmission-line voltage 
and current of the n-th LSE mode, V~(XI) and ((XI), at the n-th 
position; similar definitions hold for y" and I" for the LSM modes 
and also for those vectors with a superbar. The p', p", Q', Q", R', 
R", S' and S", are matrices characterizing the coupling of the mo des 
at the step discontinuity, and their elements are defined by scalar 
products or overlap integrals of the mode functions on the two sides 
of the discontinuity as follows: 

P~n Q~n = < <p~I~~ > 

P;n 11 1 _11 

< <Pmlf(y) l<Pn > 

Q" /' 1 -" 
mn < <Pm I f(Y) l<Pn > 

R~n 
" 1 , 

< <Pmlf(y)l~n > 

R" mn < <p~I~~ > 

S~n 
If 1 -' 

< <Pmlf(y)l~n > 

S" mn < <p~!~~ > 

for m, n = 1,2,3,'" . It is evident from above equations that the 
matrices p' sand Q' s are responsible for the coupling among modes 
of the same polarization, whereas R' sand S' s are responsible for the 
cross-coupling among mo des of opposite polarization. 

It is proved that the following matrix identities hold for the present 
case: 
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p~Q" = Q"p"-t -1 

R' = -R" t 

S' 
11-' 

= QR 
S" Q'R", 

where 1 is the unit matrix and t stands for the transpose. 

Using (46)-(49) and the above matrix identities, the relationship 
between the voltage and current on both sides of the I-th step discon­
tinuity can be expressed in terms of coupling matrices as 

(50) 

or 

P/tV = V, QltI = I (51 ) 

In the above equations we define a super colum voltage and current 
vectors V, V, I and I, and a super coupling matrices of the I-th step 
discontinuity QI and PI by 

v = [~:, 1 ; V= [~:, 1 (52) 

I=[~:'l; 1= [~:, 1 (53) 

- [Q' s" - R"P" l. 
QI- 0 pli , [ p' 0 1 

PI = S' _ R'P' Q" (54) 

It is straight forward to prove that the matrices PI and QI satisfy the 
following identity 

(55) 
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If the input admittance matrix at x = xt plane looking to the 

right is known as Y(xt), according to (50) and (51), it can be derived 

that the input admittance matrix Y(xf) at x = xl plane looking to 
the right satisfies 

y(xt) (56) 

where 

1= y(xt)V; 1= Y(xf)V. (57) 

On the other hand, if the input admittance matrix at x = xl plane 

looking to the left, Y(xt) is known, the input admittance matrix at 

x = xl plane looking to the left y(xt) can be obtained as: 

(58) 

The current reflection coefficient matrix r( x f) at the x = xl plane 
looking to the right can be obtained as 

(59) 

and the input aelmittance matrix at the x = xtl plane looking to the 
right is eletermined by aelmittance transform technique as 

(60) 

where Y ol anel H l are respectively, the characteristic admittance and 
phase matrices of the l-th step discontinuity. They are all diagonal 
matrices, ancl their elements are 
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H, = [~; ~J 
y - [y~, 

:" l; 01 -
0 01 

(H;)mn = bmn exp (-jk~lnll), 

(H;')mn = bmn exp (-jk;lnll), 

(Y;I)mn DmnY;ln, 

(Y;;) mn 
ff 

bmnYoln' 

wherc kxln and Valn are respectively, thc wave numbcr in the x directioll 
and the characteristic adrnittanccfor the n-th mode in the I-th section. 

Now let us come back to thc whole discontinuity problem in the 
transverse cross section. Since the input adrnittance matrix at x = xI 
plane looking to the right is known as 

(61) 

By using (56), (59) and (60), the input adrnittancc matrix at ;r = xi 
plane looking to thc right, Y(xi) can be obtained: 

Y(xi) Y02 [I + H2r(X~)H2] [I - H2r(X~)H2]-1 (62) 

r(x~) = [Y(x~) + Y o2fl [y(x~) - Y 02] , (63) 

Y(x~) P2 Y(xt)P2t· (64; 
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Similarly, the input admittance matrix at x = xr plane looking to 

the left, Y(xt) can be obtained: 

(65) 

(66) 

Refering to Fig.2, the relationship between thc voltage and current 
at x = xr plane may be expressed by: 

Y(xi)V2(xi) 

-V(xt)VAxt) 

(67) 

(68) 

whcre subscript 2 and later 1, 3 indicatcs the different constitucnt 
regions. Thc negative sign in (68) refleets the faet that the current 
in the transmission line flows in thc positive x direetion, while thc 

'ldmittance V(xi) is defined with respeet to thc opposite direetion. 
Evidently, (67) and (68) are two different equations relating the same 
,et of voltages to thc same set of cllrrents. Equating (67) and (68), 
we obtain 

(69) 

where 

(70) 

For the linear homogeneous system of equations (69) the necessary 
'lnd sufficient condition for the existence of a nontrival solution is that 
the determinant of the coefficient matrix vanishes, namely, 
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det Y(xi) = O. (71) 

In other words, this is a condition under which non-zero nlfrent may 
exist in the absence of any source excitation in the network of Fig.2. 
Sinee the admittanees in (71) are aB functions of the longitudinal 
propagation constant k" the eigenvalue of the sam pie filled waveg­
uide; therefore, (71) is the equation to determine the aBowable values 
of kzi for the i-th mode, and is actually the dispersion equation for the 
sampie filled waveguide. Onee the eigenvalues are obtained, thc volt­
agc at x= xi plane ean be deterrnined by equation (69) in following 
way. 

Let V 2(xi) = r, and r = (11,12," .), then frorn (69), we have 

Y(xi)r = O. (72) 

Equation (72), though simple in form, involves matriees of infinite 
order whieh must be truncated to obtain numerieal approximations to 
prcseribed aecuracy. If thc truncation numbcr is chosen to be m, only 
rn-I solutions are independent for the linear homogeneous system of 
equations. We thus can rearrange equation (69) as follows 

Ynh + Y23h + + Y2m!m = -Y21 !1 
Y32!2 + Y33h + + Y3m!m -Y3dl 

(73) 

Ym2/2 + }"m3h + ... + Ymm!m -Ymdl. 

This is a (m-I )-dirnensionallinear inhomogencous system of equa­
tions. We may let !t = 1 temporarily so that the equations ean be 
solved with some numerical methods, say, Gauss eliminate method, 
and thc relationship between !a (0: = 2,3,"" m) and !t is then 
known. 
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In order to determine the cigenfunctions of the samplc filled waveg­
uide with Jet, let us define the n-th element of thc voltage and currcnt 
vectors in thc three constituent regions as: 

{ 

Vin = A1n sin( k1xnx), (0 :s: x :s: xt); 

VZn = AZnsin(kzxnx + PZn), (XI:S: x:S: xz); 

V1n = A3n sin(k3xn(x - X3», (xz:S: x :s: X3); 

(0< X < X ). _ _ I, 

{ 

Iin = jYinAln cos( k\xnx), 

Izn = jYznAZn cos(kzxnx + P2n), (XI:S: X :s: X2); 

{ln = jY3n A3n COS( k3xn (x - X3», (XI:S: X :s: X2). 

(74) 

(75) 

The amplitudes and phases in (74) and (75) for each region can be 
obtaincd as folIows: 

In Region 1: (O:S: X :s: XI) 

Frorn 

we obtain 

or 

(76) 

From 
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we have 

or 

Xuetal. 

(77) 

(78) 

Since the amplitudes and phases of the voltage in Region 2 are deter­
mined, it means that eaeh element of the voltage vector at x = x;; 

plane is obtained as: 

therefore, from 

we get 

or 

(79) 

Through the above procedure, all the amplitudes and phases of 
the voltages and currents in the three regions can be determined onee 
f is obtained. As mentioned before, the elements fi (i = 2,3,·, m) 
of vector f ean be expressed by !I which can be now determined by 
the orthonormal relation of the modefunctions in the sample filled 
waveguide as 

!I = 1/..JA (80) 
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where 

3 3 

A = 1 fs (e x h) . ds = ;; 11 (e x h) . ds = ;; A ~ 

A~ = 11 e~h~dxdy + 11 e~h~dxdy + (-11 e~h~dxdY) 

NLSENLSM Eo ((m)2 [lxb dV~(x) dV~'(x) ] 
S2 L L - (k' )2(k")2k d d dx 

m n /10 xm un Z X a X X 

NLSE NLSM E 1 [jXb ] 
S3 = ~ ~ /1: k

z 
X

a 
V~(x)V~' (x)dx 

X [rb 1jJ"(y) __ l dljJ~(Y)dY] 
Jo n E(Y) dy 
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STEP 11. Calculation of the Scattering 
Characteristics of the Discontinuity in 

the Longitudinal Direction 

1. SYl111netrical consideration of the structure to 
facilitate the analysis procedure 

The 3-D discOlltilluity undel' consieleration as shown in Fig.l has 
t.wo step discontinuities in the longitudinal cross section. However, 
the present stf1lcture is symmetrical in the longitudinal direction as 
shown in Fig.5. The scattering of a gllided mode by such a sym­
metrical structure may be analyzeel in terms of the symmetrical anel 
anti-symmetrical excitations for which we have the open-circuit anel 
short-circuit bisections respectively, as shown in Fig.5. It means that 
only one discontinuity is needed 1,0 be analyzed. 

2. Determination of the S-parameters for the 
discontinuity 

Refel'ring to Fig.5, it is dear that thc reflection coefficient for each 
guided mode at the symmetrical plane z=w /2 ( ()-()' plane) is 1.0 for 
the ().C. hisection or -1.0 for the S.C. bisection. Let R o and R s be the 
rcflection coefficient matrices at z 0- plane for the O.C. and the 
S.C. bisections respectively. The guided mode reflection coefficient 
matrix R (at z=O- plane) and the transmission matrix T (at z=w 
plane) of the entirc symmetrical structure are then given by 

R (Ro + Rs)/2, 

T = (Ro - Rs )/2. 

(81) 

(82) 

The scattering parameters 5ll = 522 and 521 = 5\2 of the domi­
nant mode in the empty waveguide are determined from the first row 
and the first column of Rand T matrices respectively as 

511 R(l,l) 

521 = T(I, 1) 

[Ro(l, 1) + Rs(l, 1)] /2, 

[Ro(l, 1) - Rs(l, 1)] /2; 

(83) 

(84) 
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where matrices R o and R s are determined by: 

1/2 R., 

1/2 Rs 

[Zo + Zcl- l [Zo - Zcl, 

[Zs + Zcr l [Zs - Zcl· 

A o 
I i i 

A' 0 ' 

I 
i 

~ ~ 
i i . . 
I I 

z=O z=w/2 

i 
--; o.c. 

I 
-t s.c. , 

z 

z 
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(85) 

(86) 

Fig.5 Symmetrical consideration and the equivalent network rep­
resentation of the discontinuity in the longitudinal cross 
section. 
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Here Zo and Zs are the input impedance matrices at z = 0- plane 
looking to the right for the open-circuit and short-circuit bisections of 
the 0-0' plane respectively. They are determined by: 

(87) 

(88) 

where Zo and Zs are input impedance matrices for the eigenmodes 
at z = 0+ plane looking to the right for the open-circuit and short­
circuit bisections of the 0-0' plane respectively. Zc is the characteris­
tic impedance in the empty waveguide. Zo , Zs and Ze are all diagonal 
matrices, their elements are respectively given as follows 

Z" 
en 

where Zen is the characteristic impedance of the sampIe filled waveg­
uide and is determined by (11) as 

where M is the coupling matrix whose elements are determined in the 
next section. 
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3. Determination of the coupling matrices 
at the discontinuity plane 

2183 

At the discontinuity plane, or at z=O cross section, the tangential 
components of the electromagnetic fields in the two waveguide must 
be continuous; from (7)(8) and (20)(21), in the ßth region we have 

L" L 1111 Ue· + U e· ~ 1 t I = LUjej, (89) 
j 

L J'h: + L i'h:' 1: 1 t I L]jhj. (90) 
j 

Here quantities with a superbar indicate the quantities in the sampIe 
filled wavcguide. Cross multiplying (89) by h; and h;' rcspectively 
from left; (90) by e; and e;' respectively from right, then integrating 
the resultant equations while making use of the orthogonal relation 
(5) and (6), we obtain 

with 

j 

J: = LAij]j, 
j 

j 

Li,) 11 (ej x h;) . ds, 

Gi,j 1fs (ej x hn . ds, 

Ai,j 11s (e; x hj ) . ds, 

Bi,j = 11 (e;' x hj ) . ds. 

Equations (91) and (92) may be written in matrix form as 

V' = L V, J' = AJ, 

V" = GV, J" = BJ. 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 
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If we define a super column voltage vector V with the column vectors 
Vi and V" as its elements, and similarly for J as 

V- J- . 
(

VI ) ( J' ) 
- V" ' - J" ' 

we can obtain 

V=MV, J=NJj (99) 

where 

It can be proved that 

which states that the inverses of the infinite matrices M and N may 
be simply obtained from the transposes of N and M. Using above 
matrix identity, (99) may be rewritten as 

(100) 

According to the definition of the impedance of the multimode network 
we have 

V = ZJ, V = ZJ, (101 ) 

From (99)-(101), we get 

Z = MZM t (102) 

Mathematically, (102) corresponds with the linear complex space 
transformationj physically, it can be understood as an impedance 
transform formula which was just used in (87) and (88) to determine 
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the impedance matrices Zo and Zs. 

Referring to Table 1 and Table 2 , the elements of the coupling 
matrices in (93)-(96) can be determined by the following formulae 

Lc. 
I] f1 e~jh~jdxdy + f1 e~jh~jdxdy + ( - fft:. e~jh~idxdY) 

SLl + SL2 + SL3 

N LSE ~ 2 . A' k' [dV
' 1 ~ Co ko J i yi l xb 
mj k' d L...J - -- --cos·x X 

m J.10 (k' .)2 ko X a dx XI 
xm] 

~ ~JkoAikxi [l Xb 
V" .. k' . d ] 

NLSM~. I I 

L...J mJ SIn x,x X 
m J.10 kzj Xa 
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GD.. 
'J 

NLSE~O P J'A"k". [l xb dVm'· " 1 
'" _ 0 'x, J kd LJ Xa -dx COS xiX X 

m 110 (k')2 ko 
xmJ 

'" fO -J oAi kyi [lXb
-" • " ] 

NLSM~ 'k "" 
LJ V mj sm kxixdx 
m 110 kzj Xa 
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A 'J 

A~ 
'J Ji e~)i~jdxdy + ( - Ji e~)i~jdxdY) + ( - Ji e~ih~jdxdy ) 

SAI + SA2 + SA3 

2:: ~ _~o J i xi zj 
NLSM~ 2 "A'k'-k 

m po (kumF ko 
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B~ 
'J 1L e~Ji~jdxdy + ( - 1L e~i(jdxdY) + ( - 1L e~Ji~jdxdY) 

SEl + SB2 + SB3 

NLSE ~ (-k' )2 . "k " [dV' 1 " ~ um J Ai xi l Xb 

----.!!!:i k". d L.J -, deos x,x X 
m /10 (k .)2 ko Xa X 

xmJ 

NLSE~·Allkll EO J . . Xb -' 11 E - -k' Y' [1 V mj sin kXixdx] 
m /10 0 X a 

SB3 ,,~~ -JAi yi zj [l Xb V" .. k". d ] 
NLSM~ 2 . " k"-k 

L.J _11 k mJ sln x,X X 
m /10 (kumF 0 X a 
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NUMERICAL RESULTS 

In order to verify the reliability and efflciency of the present method, 
we have calculated the scattering characteristics of different lI-VI 
semiconductor sampies. Table 3 presents comparisons of the trans­
mission characteristics for different sampies with different gaps g be­
tween the experimental data and the theoretical predictions. The 
input parameters for the sampies are compiled in Table 4, while the 
data of the mounting structure is: Cf 2.3, Ca = cb = CU! = 1.0, 
Y4 - Y3 10.5mm (cf. Fig.l). We did the measurements in a standard 
W /G 16 waveguide at a frequency of 8.89 GHz. It can be seen from 
the Lable that the agreement is very good for the transmission coef­
ficient 52l =1 S21 I exp(j<p21)' The reliability and the accuracy of the 
present method are thus justified. 

Table 3. Comparisons of the transmission coefflcients for dif­
ferent sam pies between the experimental data and the theoretical 
predictions 

Sampie g (mm) h (mm) 
1521 1 (dB) <P21 (degree) 

exp. theory exp. theOl'Y 

Q114 
1.26 0.2 10.58 -10.68 -82.59 -87.04 

(CdHgTe) 

Q319 
4.65 0.2 -1.98 -2.21 -96.88 -99.40 

(HgSe) 

Q310 
4.76 0.2 -2.05 -2.14 -71.80 -76.81 

(HgSe) 

Q411 
4.96 0.2 -2.77 -3.12 -98.70 -108.71 

(HgSe) 

Q1l4 
5.16 0.0 -1.79 -1.79 -62.51 -60.51 

_(CdHgT<1 
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Table 4. Values of the sampie parameters: dielectic constant and 
thickness of epitaxial layer and substrate, length of the sample. 
(cf. Fig.1) 

I SampIe I 

Q114 -704 - j 1.276 . 105 4.7 11.0 - j 0.5 1.0 5.0 

Q310 - 768 - j 1.390 . 105 0.63 11.0 - j 0.0 0.5 6.6 

Q319 -893 - j 1.612 . 105 1.1 11.0 - j 0.0 0.5 9.6 

Q411 -893 - j 1.612 . 105 0.62 11.0 - j 4.0 0.8 10.0 
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