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Abstract
Ó. Blasco and S. Pott showed that the supremumof oper-
ator norms over 𝐿2 of all bicommutators (with the same
symbol) of one-parameter Haar multipliers dominates
the biparameter dyadic product BMO norm of the sym-
bol itself. In the present work we extend this result to
the Bloom setting, and to any exponent 1 < 𝑝 < ∞. The
main tool is a new characterization in terms of para-
products and two-weight John–Nirenberg inequalities
for dyadic product BMO in the Bloom setting. We also
extend our results to the whole scale of indexed spaces
between little bmo and product BMO in the generalmul-
tiparameter setting, with the appropriate iterated com-
mutator in each case.
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Notation
𝟏𝐸 characteristic function of a set 𝐸;
d𝑥 integration with respect to Lebesgue measure;|𝐸| 𝑑-dimensional Lebesgue measure of a measurable set 𝐸 ⊆ ℝ𝑑;⟨𝑓⟩𝐸 average with respect to Lebesgue measure, ⟨𝑓⟩𝐸 ∶= 1|𝐸| ∫𝐸 𝑓(𝑥)d𝑥;
𝐿∞c space of compactly supported 𝐿∞ functions;

𝐿𝑝(𝑤) weighted Lebesgue space, ‖𝑓‖𝑝
𝐿𝑝(𝑤)

∶= ∫ℝ𝑑 |𝑓(𝑥)|𝑝𝑤(𝑥)d𝑥;⟨𝑓, g⟩ usual 𝐿2-pairing, ⟨𝑓, g⟩ ∶= ∫ 𝑓(𝑥)g(𝑥)d𝑥;
𝑤(𝐸) Lebesgue integral of a weight 𝑤 over a set 𝐸, 𝑤(𝐸) ∶= ∫𝐸 𝑤(𝑥)d𝑥;
𝑝′ Hölder conjugate exponent to 𝑝, 1∕𝑝 + 1∕𝑝′ = 1;
 family of all dyadic intervals in ℝ;

𝐼−, 𝐼+ respectively, left and right half of an interval 𝐼 ∈ ;
 family of all dyadic rectangles in the product space ℝ × ℝ;

(Ω) family of all dyadic rectangles 𝑅 in the product space ℝ × ℝ that are contained in the
set Ω;

sh( ) ‘shadow’ of a family of dyadic rectangles, sh( ) ∶=
⋃
𝑅∈ 𝑅;

ℎ(0)𝐼 , ℎ(1)𝐼 𝐿2-normalized cancellative and non-cancellative respectively Haar functions for an

interval 𝐼 ∈ , ℎ(0)𝐼 ∶=
𝟏𝐼+−𝟏𝐼−√|𝐼| , ℎ(1)𝐼 ∶=

𝟏𝐼√|𝐼| ; for simplicity we denote ℎ𝐼 ∶= ℎ(0)𝐼 ;

𝑏𝐼 usual Haar coefficient of a function 𝑏 ∈ 𝐿1loc(ℝ), 𝑏𝐼 ∶= ⟨𝑏, ℎ𝐼⟩, 𝐼 ∈ ;
ℎ
(𝜀1𝜀2)
𝑅 any of the four 𝐿2-normalized Haar functions for a rectangle 𝑅 ∈ , ℎ(𝜀1𝜀2)𝑅 ∶= ℎ

(𝜀1)
𝐼 ⊗

ℎ
(𝜀2)
𝐽 , where 𝑅 = 𝐼 × 𝐽 and 𝜀1, 𝜀2 ∈ {0, 1}; for simplicity we denote ℎ𝑅 ∶= ℎ(00)𝑅 ;

𝑏𝑅 (00) Haar coefficient of a function 𝑏 ∈ 𝐿1loc(ℝ
2), 𝑏𝑅 ∶= ⟨𝑏, ℎ𝑅⟩, 𝑅 ∈ ;

𝑇∗ formal 𝐿2-adjoint operator to the operator 𝑇, ⟨𝑇𝑓, g⟩ = ⟨𝑓, 𝑇∗g⟩.
The notation 𝑥 ≲𝑎,𝑏,… 𝑦means 𝑥 ⩽ 𝐶𝑦with a constant 0 < 𝐶 < ∞ depending only on the quan-

tities 𝑎, 𝑏, …; the notation 𝑥 ≳𝑎,𝑏,… 𝑦 means 𝑦 ≲𝑎,𝑏,… 𝑥. We use 𝑥 ∼𝑎,𝑏,… 𝑦 if both 𝑥 ≲𝑎,𝑏,… 𝑦 and
𝑥 ≳𝑎,𝑏,… 𝑦 hold. Sometimes wemight omit some of these quantities 𝑎, 𝑏, … from the notation. The
context will always make clear when this happens.

1 INTRODUCTION ANDMAIN RESULTS

In 1957, Z. Nehari [28] showed that Hankel operators H𝑏 are bounded from the Hardy space
2(𝜕𝔻) into itself if and only if the symbol 𝑏 belongs to the space of analytic functions with
bounded mean oscillation, or simply 𝑏 ∈ BMOA. In fact, Nehari [28] shows an equivalence
between the norm of the operator H𝑏 and the BMOA norm of the symbol 𝑏. His proof relies on
the fact that a function 𝑓 in the Hardy space 1(𝜕𝔻) can be factored as 𝑓 = g1g2, where both
g1, g2 ∈ 2(𝜕𝔻). Note here that the Hankel operator H𝑏 is essentially equivalent to the commu-
tator [𝐻, 𝑏], where 𝐻 denotes the Hilbert transform on 𝜕𝔻 and (abusing notation) 𝑏 stands for
multiplication by this function. This allows one to consider not only the real variable version of
Nehari’s result, but also analogues in ℝ𝑑 for any 𝑑 by studying commutators of the form [𝑅, 𝑏],
where 𝑅 denotes one of the Riesz transforms in ℝ𝑑. Nonetheless, observe that the factorization
for1(𝜕𝔻) has no counterpart in this setting (see also [9]).
In this direction, R. R. Coifman, R. Rochberg and G. Weiss [9] proved in 1976 their celebrated

commutator theorem. Namely, for a function 𝑏 with bounded mean oscillation on ℝ𝑑, denoted
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as 𝑏 ∈ BMO(ℝ𝑑), they show an equivalence between the BMO norm of 𝑏 and the sum of the
norms of the commutators [𝑅(𝑗), 𝑏], 𝑗 = 1,… , 𝑑 with 𝑅(𝑗) denoting the 𝑗th Riesz transform in ℝ𝑑,
as operators from 𝐿𝑝 into itself, for any 1 < 𝑝 < ∞. They also show that for a Calderón–Zygmund
operator 𝑇, the norm of [𝑇, 𝑏] as an operator from 𝐿𝑝 into itself, 1 < 𝑝 < ∞, is bounded above by‖𝑏‖BMO. The argument used by Coifman–Rochberg–Weiss [9] to show the lower bound for the
sum of commutators with the Riesz transforms is based on a decomposition of the identity as a
linear combination of products of Riesz transforms using spherical harmonics in ℝ𝑑. This allows
one to bound the oscillation of a BMO function by the sum of the norms of [𝑅(𝑗), 𝑏], 𝑗 = 1,… , 𝑑.
In a different direction, S. Bloom [5] proved in 1985 an analogue of Nehari’s result for weighted

spaces. Bloom [5] showed a norm equivalence between a certain weighted BMO space and the
operator norm of the commutator [𝐻, 𝑏], where 𝐻 is again the Hilbert transform. To be more
precise, for a function 𝑏 ∈ 𝐿1loc(ℝ

𝑑), and for a weight 𝜈 on ℝ𝑑 (that is a locally integrable, almost
everywhere (a.e.) positive function on ℝ𝑑), define the one-weight BMO norm

‖𝑏‖BMO(𝜈) ∶= sup
𝑄

1
𝜈(𝑄) ∫𝑄 |𝑏(𝑥) − ⟨𝑏⟩𝑄| d𝑥,

where the supremum ranges over all cubes 𝑄 ⊆ ℝ𝑑 and ⟨𝑏⟩𝑄 = 1|𝑄| ∫𝑄 𝑏(𝑥) d𝑥 is the unweighted
average of 𝑏 on 𝑄. This weighted BMO space had already been investigated by B. Muckenhoupt
and R. L. Wheeden [26]. Bloom [5] showed that for any 1 < 𝑝 < ∞, for any 𝐴𝑝 weights 𝜇 and 𝜆
on ℝ (see Section 2 for the definition of𝐴𝑝 weights), and for the weight 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝, which is
easily seen to be an 𝐴2 weight, one has the equivalence

‖[𝐻, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ ‖𝑏‖BMO(𝜈), (1.1)

where 𝐻 denotes the Hilbert transform and the implied constants depend only on 𝑝 and the 𝐴𝑝
characteristics of 𝜇 and 𝜆. Bloom’s [5] proof of the estimate ‖[𝐻, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳ ‖𝑏‖BMO(𝜈) uses
a different argument to that of Coifman–Rochberg–Weiss, and is based on a careful analysis of the
set where |𝑏 − ⟨𝑏⟩𝐼| is not too large with respect to the average oscillation on the interval 𝐼, and
the set where the former quantity is large using the adjoint commutator.
Muchmore recently, I. Holmes, M. T. Lacey and B. D.Wick [18] considerably extended Bloom’s

result, proving that for any Calderón–Zygmund operator 𝑇 on ℝ𝑑 and for any 𝐴𝑝 weights 𝜇, 𝜆 on
ℝ𝑑, 1 < 𝑝 < ∞, there holds

‖[𝑇, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲𝑇,𝑑,𝑝 ‖𝑏‖BMO(𝜈), (1.2)

and that for the Riesz transforms 𝑅(1), … , 𝑅(𝑑) on ℝ𝑑 there holds in addition

𝑑∑
𝑖=1

‖[𝑅(𝑖), 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳𝑝,𝑑 ‖𝑏‖BMO(𝜈), (1.3)

where in both (1.2) and (1.3), 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝, and all implied constants depend on 𝑝 and the 𝐴𝑝
characteristics of 𝜇, 𝜆 as well. Holmes–Lacey–Wick [18] proved and used in an essential way sev-
eral new characterizations of the weighted BMO space BMO(𝜈) in the form of two-weight John–
Nirenberg inequalities. More precisely, Muckenhoupt–Wheeden [26] had already showed that if
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𝜈 is an 𝐴2 weight on ℝ𝑑, then one has the equivalence

‖𝑏‖BMO(𝜈) ∼ sup
𝑄

(
1

𝜈(𝑄) ∫𝑄 |𝑏(𝑥) − ⟨𝑏⟩𝑄|2 𝜈−1(𝑥)d𝑥)1∕2

,

where the implied constants depend only on 𝑑 and the 𝐴2 characteristic of 𝜈. Holmes–Lacey–
Wick [18] complemented this result, by showing that if 𝜇, 𝜆 are 𝐴𝑝 weights on ℝ𝑑, 1 < 𝑝 < ∞,
and 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝, then one has the equivalences

‖𝑏‖BMO(𝜈) ∼ sup
𝑄

(
1

𝜇(𝑄) ∫𝑄 |𝑏(𝑥) − ⟨𝑏⟩𝑄|𝑝 𝜆(𝑥)d𝑥)1∕𝑝

and

‖𝑏‖BMO(𝜈) ∼ sup
𝑄

(
1

𝜆′(𝑄) ∫𝑄 |𝑏(𝑥) − ⟨𝑏⟩𝑄|𝑝′ 𝜇′(𝑥)d𝑥)1∕𝑝′

,

where 𝜇′ ∶= 𝜇−1∕(𝑝−1), 𝜆′ ∶= 𝜆−1∕(𝑝−1), and all implied constants depend only on 𝑑, 𝑝 and the𝐴𝑝
characteristics of 𝜇 and 𝜆. Their proof of these equivalences employed a duality result between
dyadic BMO(𝜈) and a certain dyadic weighted 𝐻1 space that they established in the same work,
as well as characterizations of two-weight BMO spaces in terms of two-weight boundedness of
certain paraproducts. It should be noted that the results of [18] were very recently extended to
the matrix-valued setting by J. Isralowitz, S. Pott and S. Treil [22]. In fact, the authors of [22]
proved there several results for the case of completely arbitrary (not necessarily𝐴𝑝) matrix-valued
weights, that are new even if one specializes to the fully scalar setting.
All resultsmentioned above concern one-parameter spaces. On the other hand,multiparameter

(unweighted) BMO spaces were investigated extensively in the seminal papers by S.-Y. A. Chang
[8] and R. Fefferman [14] in the late 1970s. These works concern mainly the biparameter product
BMO space BMO(ℝ × ℝ) on the product space ℝ × ℝ, defined by

‖𝑏‖BMO(ℝ×ℝ) ∶= sup
Ω

⎛⎜⎜⎜⎝
1|Ω| ∑

𝑅∈
𝑅⊆Ω

|⟨𝑏,𝑤𝑅⟩|2⎞⎟⎟⎟⎠
1∕2

, (1.4)

where the supremum ranges over all non-empty open sets Ω of finite measure,  is the family
of all dyadic rectangles in the product space ℝ × ℝ (with sides parallel to the coordinate axes),
and (𝑤𝑅)𝑅∈ is some (regular enough) wavelet system adapted to dyadic rectangles. Note that an
analogous definition of multiparameter product BMO can be given in any product space ℝ𝑑 ∶=
ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 . Works [8] and [14] provide equivalent descriptions of biparameter product BMO
spaces in terms of Carleson measures, extending the one-parameter classical ones. It is important
to note that in definition (1.4), one cannot restrict the supremum to rectangles. This follows from
a famous counterexample due to L. Carleson [6], recounted in Fefferman’s article [14] (see also
[3] or [30]).
The first breakthrough in the study of the relation between norms of commutators and the

BMO norm of their symbol in the multiparameter setting was achieved by S. H. Ferguson and
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C. Sadosky [15]. The authors of [15] proved there that

‖[𝐻 ⊗𝐻, 𝑏]‖𝐿2(ℝ2)→𝐿2(ℝ2) ∼ ‖𝑏‖bmo(ℝ×ℝ),
where 𝐻 is the Hilbert transform, 𝐻 ⊗𝐻 is a tensor product of Hilbert transforms (each acting
on one of the two variables) and bmo(ℝ × ℝ) is the so-called little bmo space,

‖𝑏‖bmo(ℝ×ℝ) ∶= sup
𝑅

1|𝑅| ∫𝑅 |𝑏(𝑥) − ⟨𝑏⟩𝑅|d𝑥,
where the supremum is taken over all rectangles 𝑅 in ℝ × ℝ (with sides parallel to the coordinate
axes). In [15], an upper bound for iterated commutators is also established. Namely, if𝐻1 and𝐻2

denote, respectively, the Hilbert transforms acting on the first and second variable, then one has
the upper bound

‖[𝐻1, [𝐻2, 𝑏]]‖𝐿2(ℝ2)→𝐿2(ℝ2) ≲ ‖𝑏‖BMO(ℝ×ℝ). (1.5)

Later, L. Dalenc and Y. Ou [11] proved that if𝑇1, 𝑇2 are (usual one-parameter) Calderón–Zygmund
operators acting on the first and second, respectively, variables of ℝ𝑑 ∶= ℝ𝑑1 × ℝ𝑑2 then

‖[𝑇1, [𝑇2, 𝑏]]‖𝐿2(ℝ𝑑)→𝐿2(ℝ𝑑) ≲𝑇1,𝑇2,𝑑 ‖𝑏‖BMO(ℝ𝑑) (1.6)

(in fact, Dalenc–Ou [11] established an analogous result in any number of parameters).
The result of Ferguson–Sadosky [15] was generalized and also extended to the weighted set-

ting by I. Holmes, S. Petermichl and B. D. Wick [19]. There, the authors proved that if 𝑇 is any
biparameter Calderón–Zygmund operator (aka Journé operator) on ℝ𝑑 ∶= ℝ𝑑1 × ℝ𝑑2 , then

‖[𝑇, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲𝑇,𝑑,𝑝 ‖𝑏‖bmo(𝜈,ℝ𝑑), (1.7)

and that if moreover 𝑅(1), … , 𝑅(𝑑) are the Riesz transforms on ℝ𝑑, then

𝑑∑
𝑘,𝑙=1

‖[𝑅(𝑘) ⊗ 𝑅(𝑙), 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳𝑝,𝑑 ‖𝑏‖bmo(𝜈,ℝ𝑑×ℝ𝑑), (1.8)

where in both results, 𝜇 and 𝜆 are biparameter𝐴𝑝 weights onℝ𝑑 (see Section 2 for the definition),
all implied constants depend on the biparameter𝐴𝑝 characteristics of𝜇, 𝜆 aswell, 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝,
1 < 𝑝 < ∞, and

‖𝑏‖bmo(𝜈,ℝ𝑑) ∶= sup
𝑅

1
𝜈(𝑅) ∫𝑅 |𝑏(𝑥) − ⟨𝑏⟩𝑅|d𝑥,

where the supremum is again taken over all rectangles 𝑅 in ℝ𝑑 (with sides parallel to the coor-
dinate axes). Holmes–Petermichl–Wick [19] proved and used in an essential way two-weight
John–Nirenberg inequalities for the weighted space bmo(𝜈, ℝ𝑑) that are analogous to the ones
in the one-parameter setting in [18], in order to prove the lower bound (1.8). For the upper
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bound (1.7), Holmes–Petermichl–Wick [19] defined and used the dyadic product Bloom space
BMOprod,(𝜈, ℝ

𝑑),

‖𝑏‖BMOprod, (𝜈,ℝ𝑑) ∶= sup


(
1

𝜈(sh( ))

∑
𝑅∈

|𝑏𝑅|2⟨𝜈−1⟩𝑅)1∕2

,

where the supremum ranges over all non-empty collections  of dyadic rectangles in the bipa-
rameter product space ℝ𝑑,

sh( ) ∶=
⋃
𝑅∈

𝑅,

and 𝑏𝑅 ∶= ⟨𝑏, ℎ𝑅⟩, where ℎ𝑅 is the cancellative in both-variables 𝐿2-normalized Haar function
over the dyadic rectangle 𝑅. In [19] a duality result between BMOprod,(𝜈, ℝ

𝑑) and a weighted𝐻1

space is established, which is essential for the proof of the upper bound (1.7). The authors of [19]
also extended the upper BMO bound (1.6) due to Dalenc–Ou in [11] to the case of multiparameter
indexed unweighted BMO spaces.
Since then, weighted product BMO andmultiparameter indexed weighted BMO upper bounds

have been investigated and established in full generality by E. Airta, K. Li, H. Martikainen and
E. Vuorinen [1], [2], [23], [24].
It is important to note that in all of the aforementioned works, the main tools for establishing

upper bounds for norms of commutators with Calderón–Zygmund operators in terms of the BMO
norm of their symbol are the decomposition theorem of Calderón–Zygmund operators in terms of
Haar shifts and paraproducts that T. Hytönen established and used to prove his 𝐴2 theorem [20],
as well as its extension to the multiparameter setting due to Martikainen [25].
While upper bounds for norms of commutators in terms of multiparameter BMO norms of the

symbol are by now well understood, in the fully general two-weight setting, the picture for lower
bounds remains incomplete even in the unweighted case. The study of such lower bounds was
addressed by S. H. Ferguson and M. T. Lacey [16], who gave a converse to (1.5), namely

‖[𝐻1, [𝐻2, 𝑏]]‖𝐿2(ℝ2)→𝐿2(ℝ2) ≳ ‖𝑏‖BMO(ℝ×ℝ). (1.9)

The proof of this fact was based on new and beautiful arguments on this matter. More recently,
Dalenc–Petermichl [12] proved similar results for iterated commutators of Riesz transforms.
Moreover, Y.Ou, S. Petermichl andE. Strouse [29] extended the result inDalenc–Petermichl [12] to
the case of multiparameter-indexed BMO spaces, which are between little bmo andmultiparame-
ter Chang–Fefferman product BMO. Bothworks [12] and [29] rely on the result of Ferguson–Lacey
[16].
There are as well some lower bounds that do not rely on (1.9), like [18, 19], [22]. However, all

these employ variants of the original argument by Coifman–Rochberg–Weiss [9]. Arguments of
this type rely on the availability of explicit ‘oscillatory’ expressions for BMO norms. While such
expressions are indeed available in the one-parameter setting, and also in the case of the little bmo
space, they are not at all available in the case of product BMO (in the sense of Chang–Fefferman),
making investigating such lower bounds significantly harder.
In another direction, Ó. Blasco and S. Pott [4] related dyadic biparameter product BMO norms

to iterated commutators of Haar multipliers. More precisely, consider the set Σ of all finitely
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supported maps 𝜎∶ → {−1, 0, 1}, and for each 𝜎 ∈ Σ consider its Haar multiplier 𝑇𝜎 on 𝐿2(ℝ)
(see Section 4 for precise definitions). Furthermore, consider Haar multipliers 𝑇1𝜎1 and 𝑇

2
𝜎2
acting

on 𝐿2(ℝ2) separately on each variable. Blasco–Pott [4] show that

sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿2(ℝ2)→𝐿2(ℝ2) ∼ ‖𝑏‖BMOprod, .
It should be noted that the supremum over all signs enables Blasco–Pott [4] to eliminate error
terms by taking average over all signs and then use orthogonality arguments in order to conclude
their result.
The main goal of the present paper is to extend the aforementioned result by Blasco–Pott [4] to

the weighted setting, and to the full range of exponents 1 < 𝑝 < ∞. More precisely, we show the
following.

Theorem 1.1. Let 1 < 𝑝 < ∞. Consider a function 𝑏 ∈ 𝐿1loc(ℝ
2), dyadic biparameter𝐴𝑝 weights 𝜇,

𝜆 and define 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝. Then

sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ ‖𝑏‖BMOprod, (𝜈), (1.10)

where the implied constants depend only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

The proof of this theorem will follow similar steps to that of the result due to Blasco–Pott.
Namely, firstly we show that the supremum in the left-hand side of (1.10) is equivalent to the norm
of a certain operator defined in terms of paraproducts. Then we show the equivalence between
the previous operator norm and the BMO norm of the symbol 𝑏. Nonetheless, here we must use
additional techniques to overcome the lack of orthogonality for 𝑝 ≠ 2. In particular, we make use
of amultiparameter extension of the classical Khintchine’s inequality together with vector-valued
estimates. Another possibility that also allows one to circumvent this difficulty would be to use
duality coupled with Hölder’s inequality, together with vector-valued estimates. Moreover, to be
able to handle the weighted spaces appearing in Theorem 1.1, we establish equivalent characteri-
zations of dyadic product Bloom BMO in the spirit of [18, 19]. More precisely, fix 1 < 𝑝 < ∞ and
two dyadic biparameter 𝐴𝑝 weights 𝜇 and 𝜆 on ℝ2. Given 𝑏 ∈ 𝐿1loc(ℝ

2), define the dyadic two-
weight Bloom product BMO norm

‖𝑏‖BMOprod, (𝜇,𝜆,𝑝) ∶= sup


1

(𝜇(sh( )))1∕𝑝
‖𝑆 (𝑏)‖𝐿𝑝(𝜆),

where the supremum ranges again over all non-empty collections  of dyadic rectangles in ℝ ×
ℝ, and 𝑆 (𝑏) is the biparameter dyadic square function of 𝑏 restricted to the collection  (see
Section 2 for precise definitions).We show the following two-weight John–Nirenberg inequalities.

Theorem 1.2. Let 1 < 𝑝 < ∞. Consider dyadic biparameter 𝐴𝑝 weights 𝜇, 𝜆 and define 𝜈 ∶=
𝜇1∕𝑝𝜆−1∕𝑝 . Then

‖𝑏‖BMOprod, (𝜈) ∼ ‖𝑏‖BMOprod, (𝜇,𝜆,𝑝),
where the implied constants depend only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .
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While the formulation of Theorem 1.2 reflects that of the two-weight John–Nirenberg inequal-
ities in the one-parameter setting [18] and in the case of little bmo [19], its proof addresses sev-
eral new difficulties not present in [18, 19] and requires new ideas. We split this proof in sev-
eral steps. For 1 < 𝑝 ⩽ 2 we show that the two-weight norm ‖𝑏‖BMOprod, (𝜇,𝜆,𝑝) is equivalent to
a certain paraproduct norm, as an operator from 𝐿𝑝(𝜇) to 𝐿𝑝(𝜆). Then, we prove the equiva-
lence between the norm of this paraproduct and the one-weight norm ‖𝑏‖BMOprod, (𝜈) for any
1 < 𝑝 < ∞. Although the remaining equivalence, that is for 2 < 𝑝 < ∞, is an immediate con-
sequence of Hölder’s inequality in the unweighted case, in our setting it requires the use of the so-
called (biparameter) Triebel–Lizorkin square function (see Section 2 for the definition and basic
properties). In addition, it is essential for this step of the proof to make use of an equivalence
between one-weight and unweighted product BMO due to E. Airta, K. Li, H. Martikainen and
E. Vuorinen [2]. In particular, the equivalence from [2] that we use corresponds to the particular
case of our Theorem 1.2 when 𝑝 > 2 and 𝜇 = 𝜆. These two ingredients are necessary to overcome
the lack of a ‘two-weight Hölder’s inequality’.
Note that John–Nirenberg inequalities hold for weighted little bmo, for all 1 < 𝑝 < ∞ (see [19]).

Moreover, it was already known that they also hold in unweighted product BMO as well, for all
1 < 𝑝 < ∞ (see [30] for a proof using atomic decompositions), and in fact for all 0 < 𝑝 < ∞ (see,
for example, [2]). Finally, for rectangular BMO, John–Nirenberg inequalities do not hold even in
the unweighted case, and for any 1 < 𝑝 < ∞ (see [4]).
It should also be noted that all of our results hold for functions defined on any multiparameter

product space ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 , with identical or similar proofs. Although for simplicity we restrict
the main part of this work to the case of functions on ℝ × ℝ, we also indicate how to modify
the arguments for the general multiparameter setting when appropriate. Moreover, we explain
briefly how to extend our results to the whole scale of indexed spaces between little bmo and
product BMO in the general multiparameter setting, with the appropriate iterated commutator in
each case.
Plan of the paper. The article is structured as follows. In Section 2 the reader can find the nota-

tions and definitions that will be used in the rest of the paper. In Section 3 we prove the two-
weight John–Nirenberg inequalities of Theorem 1.2. In Section 4 we prove Theorem 1.1. Finally,
in Section 5 we extend Theorem 1.1 to the whole scale of indexed spaces between little bmo and
product BMO in the general multiparameter setting, with the appropriate iterated commutator in
each case.

2 BACKGROUND AND NOTATION

We collect here some notation, definitions and a few basic facts that will be used repeatedly in
the sequel. While all of them are also valid in any multiparameter product space ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 ,
with the obviousmodifications, for simplicity we restrict ourselves to the case of the product space
ℝ × ℝ.

2.1 Dyadic intervals and dyadic rectangles

We denote by the set of all dyadic intervals in ℝ,

 ∶= {[𝑚2𝑘, (𝑚 + 1)2𝑘) ∶ 𝑘,𝑚 ∈ ℤ}.
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We also denote by the set of all dyadic rectangles in ℝ2,

 ∶= {𝐼 × 𝐽 ∶ 𝐼, 𝐽 ∈ }.
For any 𝐸 ⊆ ℝ × ℝ we denote

(𝐸) ∶= {𝑅 ∈  ∶ 𝑅 ⊆ 𝐸}.

Note that if 𝐸 ∈ , then 𝐸 ∈ (𝐸).

2.2 Haar systems

2.2.1 Haar system on ℝ

For any 𝐼 ∈ , ℎ(0)𝐼 , ℎ(1)𝐼 will denote, respectively, the 𝐿2-normalized cancellative and non-
cancellative Haar functions over the interval 𝐼 ∈ , that is

ℎ(0)𝐼 ∶=
𝟏𝐼+ − 𝟏𝐼−√|𝐼| , ℎ(1)𝐼 ∶=

𝟏𝐼√|𝐼|
(so ℎ(0)𝐼 hasmean 0). For simplicity we denote ℎ𝐼 ∶= ℎ(0)𝐼 . For any function 𝑓 ∈ 𝐿1loc(ℝ), we denote
𝑓𝐼 ∶= ⟨𝑓, ℎ𝐼⟩, 𝐼 ∈ . We will also denote by 𝑄𝐼 the projection on the one-dimensional subspace
spanned by ℎ𝐼 ,

𝑄𝐼𝑓 ∶= 𝑓𝐼ℎ𝐼, 𝑓 ∈ 𝐿1loc(ℝ).

It is well known that one has the expansion

𝑓 =
∑
𝐼∈

𝑓𝐼ℎ𝐼, ∀𝑓 ∈ 𝐿2(ℝ)

in the 𝐿2(ℝ)-sense, and that the system {ℎ𝐼}𝐼∈ forms an orthonormal basis for 𝐿2(ℝ). Recall that
for a function 𝑓 ∈ 𝐿1loc(ℝ) we denote by ⟨𝑓⟩𝐼 its (unweighted) average on interval 𝐼, that is,

⟨𝑓⟩𝐼 = 1|𝐼| ∫𝐼 𝑓(𝑥)d𝑥.
We will also make this notation extensive later on to averages on rectangles of locally integrable
functions on ℝ𝑛. It is then easy to see that for any 𝐼 ∈  there holds

𝟏𝐼(𝑓 − ⟨𝑓⟩𝐼) = ∑
𝐽∈
𝐽⊆𝐼

𝑓𝐽ℎ𝐽.

2.2.2 Haar system on the product space ℝ × ℝ

If 𝑅 = 𝐼 × 𝐽 is a dyadic rectangle in ℝ2, we denote by ℎ(𝜀1,𝜀2)𝑅 any of the four 𝐿2-normalized Haar
functions over 𝑅,

ℎ
(𝜀1,𝜀2)
𝑅 ∶= ℎ

(𝜀1)
𝐼 ⊗ ℎ

(𝜀2)
𝐽 , 𝜀1, 𝜀2 ∈ {0, 1},
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that is

ℎ
(𝜀1,𝜀2)
𝑅 (𝑡, 𝑠) = ℎ

(𝜀1)
𝐼 (𝑡)ℎ

(𝜀2)
𝐽 (𝑠), (𝑡, 𝑠) ∈ ℝ2.

For simplicity we denote ℎ𝑅 ∶= ℎ(0,0)𝑅 . For any function 𝑓 ∈ 𝐿1loc(ℝ
2), we denote

𝑓
(𝜀1,𝜀2)
𝑅 ∶= ⟨𝑓, ℎ(𝜀1,𝜀2)𝑅 ⟩, 𝑅 ∈ , 𝜀1, 𝜀2 ∈ {0, 1},

and we will often use the simplification 𝑓𝑅 ∶= ⟨𝑓, ℎ𝑅⟩. We will also denote by 𝑄𝑅 the projection
on the one-dimensional subspace spanned by ℎ𝑅,

𝑄𝑅𝑓 ∶= 𝑓𝑅ℎ𝑅, 𝑓 ∈ 𝐿1loc(ℝ
2).

From the corresponding one-dimensional facts we immediately deduce the expansion

𝑓 =
∑
𝑅∈

𝑓𝑅ℎ𝑅, ∀𝑓 ∈ 𝐿2(ℝ2)

in the 𝐿2(ℝ2)-sense, and that the system {ℎ𝑅}𝑅∈ forms an orthonormal basis for 𝐿2(ℝ2). It is then
easy to see by direct computation, following a reasoning similar to that of the inclusion–exclusion
principle, that for any 𝑅 = 𝐼 × 𝐽 ∈  there holds∑

𝑅′∈(𝑅)

𝑓𝑅′ℎ𝑅′(𝑡, 𝑠) = 𝟏𝑅(𝑡, 𝑠)(𝑓(𝑡, 𝑠) − ⟨𝑓(⋅, 𝑠)⟩𝐼 − ⟨𝑓(𝑡, ⋅ )⟩𝐽 + ⟨𝑓⟩𝑅).
Finally, for 𝐼, 𝐽 ∈  we denote by 𝑄1𝐼 , 𝑄

2
𝐽 the operators acting on functions 𝑓 ∈ 𝐿1loc(ℝ

2) by

𝑄1𝐼 𝑓(𝑡, 𝑠) = 𝑄𝐼(𝑓( ⋅ , 𝑠))(𝑡), 𝑄2𝐽𝑓(𝑡, 𝑠) = 𝑄𝐽(𝑓(𝑡, ⋅ ))(𝑠), for a.e. (𝑡, 𝑠) ∈ ℝ × ℝ.

Thus, if 𝑅 = 𝐼 × 𝐽, then 𝑄𝑅 = 𝑄1𝐼𝑄
2
𝐽 = 𝑄2𝐽𝑄

1
𝐼 . Note that (𝑄

1
𝐼 )
2 = 𝑄1𝐼 and (𝑄

2
𝐽)
2 = 𝑄2𝐽 .

Observe that the Haar system that we have just defined using dyadic rectangles inℝ × ℝ differs
from that defined using dyadic squares on ℝ2 when considered as a one-parameter space instead
of a product space. In the latter case, for a given dyadic square 𝑄 = 𝐼 × 𝐽, 𝐼, 𝐽 ∈  and |𝐼| = |𝐽|,
one defines the Haar function ℎ(𝜀1,𝜀2)

𝑄
= ℎ

(𝜀1)
𝐼 ⊗ ℎ

(𝜀2)
𝐽 with (𝜀1, 𝜀2) ≠ (1, 1). Both the biparameter

system {ℎ𝐼 ⊗ ℎ𝐽}𝐼,𝐽 with 𝐼, 𝐽 ∈  and the one-parameter system {ℎ
(𝜀1)
𝐼 ⊗ ℎ

(𝜀2)
𝐽 }𝐼,𝐽 with 𝐼, 𝐽 ∈ ,|𝐼| = |𝐽| and (𝜀1, 𝜀2) ≠ (1, 1) are orthonormal bases of 𝐿2(ℝ2) = 𝐿2(ℝ × ℝ). However, the system

defined using dyadic rectangles is more suitable to study problems that are invariant under dif-
ferent rescalings on each variable (as it is the case in the product spaces that we treat here), since
it considers all possible combinations of scales on each variable. On the other hand, the system
defined using dyadic cubes is more suitable for problems that are invariant only under uniform
rescalings on all variables, since all of its functions take the same scale on each variable.

2.3 𝑨𝒑 weights

By weight we always mean a locally integrable, a.e. positive function. We fix in what follows 1 <
𝑝 < ∞. Given a weight 𝑤, we consider the weighted Lebesgue space 𝐿𝑝(𝑤), which is the space of
𝑝-integrable functions with respect to themeasure𝑤(𝑥) d𝑥. In other words, we say that a function
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𝑓 belongs to 𝐿𝑝(𝑤) if

‖𝑓‖𝐿𝑝(𝑤) ∶= (
∫ |𝑓(𝑥)|𝑝𝑤(𝑥) d𝑥)1∕𝑝

< ∞.

The dual of 𝐿𝑝(𝑤) is the weighted space 𝐿𝑝
′
(𝑤′) under the usual 𝐿2-pairing ⟨𝑓, g⟩ =

∫ 𝑓(𝑥)g(𝑥) d𝑥, where 𝑝′ is the Hölder conjugate of 𝑝 (that is, 1
𝑝
+ 1

𝑝′
= 1) and𝑤′(𝑥) = (𝑤(𝑥))1−𝑝

′

is the conjugate weight to 𝑤. Note here that, in the particular case 𝑝 = 2, one has that the dual of
𝐿2(𝑤) is 𝐿2(𝑤−1).

2.3.1 𝐴𝑝 weights on ℝ

Consider a weight 𝑤 on ℝ. It should be noted that all that follows would still hold if we consid-
ered weights on ℝ𝑑, for any 𝑑, just by substituting intervals of ℝ by cubes of ℝ𝑑. We define the
Muckenhoupt 𝐴𝑝 characteristic of 𝑤, denoted by [𝑤]𝐴𝑝 , as

[𝑤]𝐴𝑝 ∶= sup
𝐼

⟨𝑤⟩𝐼⟨𝑤−1∕(𝑝−1)⟩𝑝−1𝐼 = sup
𝐼

⟨𝑤⟩𝐼⟨𝑤′⟩𝑝−1𝐼 ,

where the supremum is taken over all intervals 𝐼 in ℝ. We define a dyadic version of this by

[𝑤]𝐴𝑝, ∶= sup
𝐼∈

⟨𝑤⟩𝐼⟨𝑤−1∕(𝑝−1)⟩𝑝−1𝐼 .

We say that 𝑤 is an 𝐴𝑝 weight, respectively a dyadic 𝐴𝑝 weight, if [𝑤]𝐴𝑝 < ∞, respectively,
[𝑤]𝐴𝑝, < ∞. It is a very well-known fact that [𝑤]𝐴𝑝, ⩾ 1, in fact an immediate application of
Hölder’s inequality gives

⟨𝑤⟩𝐼⟨𝑤−1∕(𝑝−1)⟩𝑝−1𝐼 =
(⟨𝑤⟩1∕𝑝𝐼 ⟨𝑤−1∕(𝑝−1)⟩1∕𝑝′𝐼

)𝑝
⩾ ⟨𝑤1∕𝑝𝑤−1∕(𝑝′(𝑝−1))⟩𝑝𝐼 = ⟨𝑤1∕𝑝𝑤−1∕𝑝⟩𝑝𝐼 = 1,

for any interval 𝐼, where 𝑝′ = 𝑝∕(𝑝 − 1). Observe as well that 𝑤 is an 𝐴𝑝 weight if and only if
𝑤′ is an 𝐴𝑝′ weight, and in this case [𝑤′]𝐴𝑝′ = [𝑤]𝑝

′−1
𝐴𝑝

. The analogous fact is also true in the
dyadic case.
It is a classical result that [𝑤]𝐴𝑝 < ∞ if and only if the Hardy–Littlewood maximal function𝑀

given by

𝑀𝑓 ∶= sup
𝐼

⟨|𝑓|⟩𝐼𝟏𝐼,
where supremum is taken over all intervals 𝐼 in ℝ, is bounded as an operator from 𝐿𝑝(𝑤) into
itself and that in fact one has the estimate

‖𝑀‖𝐿𝑝(𝑤)→𝐿𝑝(𝑤) ≲𝑝 [𝑤]1∕(𝑝−1)𝐴𝑝
. (2.1)

A dyadic version of this is also true for the dyadic Hardy–Littlewood maximal function𝑀 given
by

𝑀𝑓 ∶= sup
𝐼∈

⟨|𝑓|⟩𝐼𝟏𝐼.
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2.3.2 Biparameter 𝐴𝑝 weights on ℝ2

Consider now a weight 𝑤 on ℝ × ℝ. As before, all that follows would be equally valid for weights
on any ℝ𝑑 ∶= ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 , with the obvious modifications. We define the biparameter Muck-
enhoupt 𝐴𝑝 characteristic [𝑤]𝐴𝑝 of 𝑤 by

[𝑤]𝐴𝑝 ∶= sup
𝑅

⟨𝑤⟩𝑅⟨𝑤−1∕(𝑝−1)⟩𝑝−1𝑅 = sup
𝑅

⟨𝑤⟩𝑅⟨𝑤′⟩𝑝−1𝑅 ,

where supremum is taken over all rectangles in ℝ × ℝ (with sides parallel to the coordinate axis).
We define a dyadic version of this by

[𝑤]𝐴𝑝, ∶= sup
𝑅∈

⟨𝑤⟩𝑅⟨𝑤−1∕(𝑝−1)⟩𝑝−1𝑅 .

We say that𝑤 is a biparameter𝐴𝑝 weight, respectively, a dyadic biparameter𝐴𝑝 weight, if [𝑤]𝐴𝑝 <
∞, respectively, [𝑤]𝐴𝑝, < ∞. Note that similarly to the one-parameter case we have [𝑤]𝐴𝑝 ⩾ 1

and [𝑤′]𝐴𝑝′ = [𝑤]𝑝
′−1
𝐴𝑝

, as well as the analogous facts for dyadic 𝐴𝑝 and dyadic 𝐴𝑝′ weights.
Consider the strongmaximal function𝑀S given by

𝑀S𝑓 ∶= sup
𝑅

⟨|𝑓|⟩𝑅𝟏𝑅,
where as previously the supremum is taken over all rectangles in ℝ × ℝ (with sides parallel to the
coordinate axis). Consider also the Hardy–Littlewood maximal functions acting in each variable
separately,

𝑀1𝑓(𝑡, 𝑠) ∶= 𝑀(𝑓( ⋅ , 𝑠))(𝑡), 𝑀2𝑓(𝑡, 𝑠) ∶= 𝑀(𝑓(𝑡, ⋅ ))(𝑠), 𝑓 ∈ 𝐿1loc(ℝ
2).

Using the Lebesgue differentiation theorem it is easy to see that

[𝑤]𝐴𝑝 ⩾ max(ess sup
𝑥1∈ℝ

[𝑤(𝑥1, ⋅ )]𝐴𝑝 , ess sup
𝑥2∈ℝ

[𝑤( ⋅ , 𝑥2)]𝐴𝑝 ).

It is also easy to see that𝑀S𝑓 ⩽ 𝑀
1(𝑀2𝑓), which coupled with (2.1) implies immediately

‖𝑀S‖𝐿𝑝(𝑤)→𝐿𝑝(𝑤) ≲𝑝 ess sup
𝑥1∈ℝ

[𝑤(𝑥1, ⋅ )]
1∕(𝑝−1)
𝐴𝑝

⋅ ess sup
𝑥2∈ℝ

[𝑤( ⋅ , 𝑥2)]
1∕(𝑝−1)
𝐴𝑝

.

On the other hand, it is also immediate to see that

‖𝑀S‖𝐿𝑝(𝑤)→𝐿𝑝(𝑤) ⩾ [𝑤]1∕𝑝𝐴𝑝
.

Therefore,𝑤 is a biparameter𝐴𝑝 weight if and only if𝑤 is an𝐴𝑝 weight in each variable separately
and uniformly. Dyadic versions of these facts are similarly true for the dyadic strong maximal
function𝑀 given by

𝑀𝑓 ∶= sup
𝑅∈

⟨|𝑓|⟩𝑅𝟏𝑅.
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Here it is worthmentioning the analogous property for𝐴𝑝 weights defined onℝ𝑑 = ℝ𝑑1 ×⋯ ×

ℝ𝑑𝑡 . We firstly introduce some convenient notation for the general setting. Given 𝑥 ∈ ℝ𝑑 and 𝑘 ∈
{1, 2, … , 𝑡}, let us denote 𝑥

𝑘
∶= (𝑥1, … , 𝑥𝑘−1, ⋅, 𝑥𝑘+1, … , 𝑥𝑡), so that a function 𝑓(𝑥𝑘) depends only

on the variable 𝑥𝑘. Similarly, we denote ℝ
𝑑
𝑘 ∶= ℝ𝑑1 ×⋯ × ℝ𝑑𝑘−1 × ℝ𝑑𝑘+1 ×⋯ × ℝ𝑑𝑡 . In general,

we will also extend this notation to any number of parameters, so that if 𝑘1, … , 𝑘𝑠 ∈ {1, 2, … , 𝑡},
thenwewill denote by 𝑥

𝑘1,…,𝑘𝑠
∶= (𝑥1, … , 𝑥𝑘1−1, ⋅, 𝑥𝑘1+1, … , 𝑥𝑘𝑠−1, ⋅, 𝑥𝑘𝑠+1, … , 𝑥𝑡), and similarly for

ℝ
𝑑
𝑘1,…,𝑘𝑠 . Then, the same reasoning as before shows that a weight𝑤 is amultiparameter𝐴𝑝 weight

on ℝ𝑑 if and only if, for any subsequence 𝑘 = (𝑘1, … , 𝑘𝑠) of (1, … , 𝑡), the weight 𝑤(𝑥𝑘) is an 𝐴𝑝
weight onℝ𝑑𝑘 with𝐴𝑝 characteristic uniformly bounded on 𝑥 ∈ ℝ𝑑. In particular, it is easy to see
that

[𝑤]𝐴𝑝 ⩾ max𝑘

⎛⎜⎜⎜⎝ess sup𝑥
𝑘
∈ℝ

𝑑
𝑘

[𝑤(𝑥
𝑘
)]𝐴𝑝

⎞⎟⎟⎟⎠,
where the maximum ranges over all subsequences 𝑘 of (1, … , 𝑡).

2.3.3 Averages of 𝐴𝑝 weights

We recall a few standard facts about averages of 𝐴𝑝 weights. Let 𝜇, 𝜆 be biparameter 𝐴𝑝 weights
on ℝ × ℝ. Using several times Jensen’s inequality, Hölder’s inequality and the 𝐴𝑝 condition for
the weights 𝜇 and 𝜆 it is easy to see that for all rectangles 𝑅 one has the estimates

⟨𝜇1∕𝑝⟩𝑅 ∼[𝜇]𝐴𝑝 ⟨𝜇⟩1∕𝑝𝑅 ∼[𝜇]𝐴𝑝
⟨𝜇−1∕(𝑝−1)⟩−(𝑝−1)∕𝑝𝑅 ∼[𝜇]𝐴𝑝

⟨𝜇−1∕𝑝⟩−1𝑅 , (2.2)

and

⟨𝜇1∕𝑝𝜆−1∕𝑝⟩𝑅 ∼[𝜇]𝐴𝑝 ,[𝜆]𝐴𝑝 ⟨𝜇⟩1∕𝑝𝑅 ⟨𝜆⟩−1∕𝑝𝑅 , (2.3)

see [22, p. 2] for a sketch of the argument (only the one-parameter setting is treated there, but it
is obvious that the same argument works in the multiparameter setting without any changes at
all). Moreover, using Hölder’s inequality it is easy to see that

1 ⩽ [𝜇1∕𝑝𝜆−1∕𝑝]𝐴2 ⩽ [𝜇]
1∕𝑝
𝐴𝑝
[𝜆]1∕𝑝

𝐴𝑝
,

see [18, Lemma 2.7] for a full proof (again, while only the one-parameter setting is treated there,
the multiparameter result follows from the same arguments).
Note that dyadic versions of all the above facts are similarly true.

2.4 Dyadic square functions and Littlewood–Paley estimates

We denote by 𝑆 the dyadic square function in ℝ,

𝑆𝑓 ∶=
(∑
𝐼∈

|𝑄𝐼𝑓|2)1∕2

=

(∑
𝐼∈

|𝑓𝐼|2 𝟏𝐼|𝐼|
)1∕2

, 𝑓 ∈ 𝐿1loc(ℝ).
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We also denote by 𝑆 the dyadic biparameter square function in ℝ × ℝ,

𝑆𝑓 ∶=

(∑
𝑅∈

|𝑄𝑅𝑓|2)1∕2

=

(∑
𝑅∈

|𝑓𝑅|2 𝟏𝑅|𝑅|
)1∕2

, 𝑓 ∈ 𝐿1loc(ℝ
2).

It is well known that if 𝑤 is a dyadic 𝐴𝑝 weight on ℝ, 1 < 𝑝 < ∞, then

‖𝑆𝑓‖𝐿𝑝(𝑤) ∼𝑝,[𝑤]𝐴𝑝, ‖𝑓‖𝐿𝑝(𝑤),
for all (suitable) functions 𝑓 onℝ. Iterating this and using well-known results about vector-valued
extensions of linear operators (see, for example, [17, Chapter 5]) we deduce, as remarked in [19],
that if 𝑤 is a dyadic biparameter 𝐴𝑝 weight on ℝ × ℝ, then

‖𝑆𝑓‖𝐿𝑝(𝑤) ∼𝑝,[𝑤]𝐴𝑝, ‖𝑓‖𝐿𝑝(𝑤),
for all (suitable) functions 𝑓 onℝ2 (for example, 𝑓 ∈ 𝐿∞c (ℝ

2) suffices, and then using approxima-
tion arguments one can extend it to more general functions 𝑓). In particular, the set of all finite
linear combinations of (bi-cancellative) Haar functions in ℝ2 is dense in 𝐿𝑝(𝑤).
Note that for 𝑝 = 2 we simply have

‖𝑆𝑓‖𝐿2(𝑤) = (∑
𝑅∈

|𝑓𝑅|2⟨𝑤⟩𝑅)1∕2

.

The above results also hold in the multiparameter setting, with the usual modifications for
general product spaces.
For the general multiparameter case, we will also need to consider indexed square functions for

functions defined onℝ𝑑 = ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 . For 𝑖 ∈ {1, … , 𝑡} and 𝐼𝑖 ∈ (ℝ𝑑𝑖 ), we denote here by𝑄𝑖𝐼𝑖
the operator 𝑄𝐼𝑖 acting on the 𝑖th variable, that is, 𝑄

𝑖
𝐼𝑖
𝑓(𝑥) = 𝑄𝐼𝑖 (𝑓(𝑥𝑖))(𝑥𝑖) for 𝑓 ∈ 𝐿1loc(ℝ

𝑑). Sim-

ilarly, for a subsequence 𝑘 = (𝑘1, … , 𝑘𝑠) of (1, … , 𝑡), let 𝑅 = 𝐼𝑘1 ×⋯ × 𝐼𝑘𝑠 ∈ (ℝ𝑑𝑘 ) and denote
𝑄𝑘𝑅 = 𝑄

𝑘1
𝐼1
…𝑄

𝑘𝑠
𝐼𝑠
. Fix a subsequence 𝑘 = (𝑘1, … , 𝑘𝑠) of (1, … , 𝑡). Then, we define the 𝑘-indexed

square function 𝑆𝑘

𝑓 of 𝑓 by

𝑆𝑘

𝑓 ∶=

(∑
𝑅∈

|𝑄𝑘𝑅𝑓|2
)1∕2

=

(∑
𝑅∈

|𝑓𝑘𝑅|2 𝟏𝑘𝑅|𝑅|
)1∕2

, 𝑓 ∈ 𝐿1loc(ℝ
𝑑)

(here we make an abuse of the notation , relying on the context for understanding to which
space it refers). Then, using an 𝐴∞-extrapolation result due to D. Cruz-Uribe, J. M. Martell and
C. Pérez [10, Theorem 2.1] one can see that for any subsequence 𝑘 of (1, … , 𝑡), any 1 < 𝑝 < ∞ and
any dyadic 𝑡-parameter 𝐴𝑝 weight 𝑤 it holds that

‖𝑆𝑘

𝑓‖𝐿𝑝(𝑤) ∼𝑑,𝑝,[𝑤]𝐴𝑝, ‖𝑓‖𝐿𝑝(𝑤)

(see also [1, Lemma 2.2]).
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2.4.1 Dyadic square function over collections of dyadic rectangles

Let be any collection of dyadic rectangles in ℝ × ℝ. We denote

𝑃 𝑓 ∶=
∑
𝑅∈

𝑓𝑅ℎ𝑅, 𝑆 𝑓 ∶=
(∑
𝑅∈

|𝑓𝑅|2 𝟏𝑅|𝑅|
)1∕2

.

By the above we have that if 𝑤 is a biparameter 𝐴𝑝 weight on ℝ × ℝ, then there holds

‖𝑃 𝑓‖𝐿𝑝(𝑤) ∼𝑝,[𝑤]𝐴𝑝, ‖𝑆 𝑓‖𝐿𝑝(𝑤) ⩽ ‖𝑆𝑓‖𝐿𝑝(𝑤) ∼𝑝,[𝑤]𝐴𝑝, ‖𝑓‖𝐿𝑝(𝑤).
In particular

‖𝑄𝑅𝑓‖𝐿𝑝(𝑤) ≲[𝑤]𝐴𝑝, ‖𝑓‖𝐿𝑝(𝑤), ∀𝑅 ∈ .

If Ω is any subset of ℝ2, we denote

𝑃Ω𝑓 ∶= 𝑃(Ω)𝑓.

Again, all these statements hold in the multiparameter setting as well.

2.4.2 Incorporating the weight in the square function

It is sometimes convenient to define square functions in an alternative way that directly incorpo-
rates the weight in the operator. This type of square functions and their properties will be useful
later for the proof of Proposition 3.3. Namely, given 1 < 𝑝 < ∞ and any dyadic biparameter 𝐴𝑝
weight 𝑤 on ℝ2, define

𝑆𝑤𝑓 ∶=

(∑
𝑅∈

|𝑓𝑅|2⟨𝑤⟩2∕𝑝𝑅

𝟏𝑅|𝑅|
)1∕2

, 𝑓 ∈ 𝐿1loc(ℝ
2).

This type of square functions appears naturally in the theory of matrix-valued weights (see, for
example, [21] for estimates in the matrix-weighted one-parameter setting), and is sometimes
referred to as the Triebel–Lizorkin square function associated to𝑤, because 𝐿𝑝 bounds for it allow
one to identify 𝐿𝑝(𝑤) as a certain Trielel–Lizorkin space (see, for example, [13] for the scalar one-
parameter case). Here we prove an estimate in the scalar biparameter setting. In fact, the proofs of
Lemma 2.1 and Corollary 2.2 below readily extend to the matrix-valued setting. This will be part
of forthcoming work of the authors.

Lemma 2.1. Let 𝑓 ∈ 𝐿1loc(ℝ
2). Then

‖𝑆𝑤𝑓‖𝐿𝑝 ≲𝑝,[𝑤]𝐴𝑝, ‖𝑆𝑓‖𝐿𝑝(𝑤).
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In particular

‖𝑆𝑤𝑓‖𝐿𝑝 ≲𝑝,[𝑤]𝐴𝑝, ‖𝑓‖𝐿𝑝(𝑤), ∀𝑓 ∈ 𝐿∞c (ℝ
2).

Proof. First of all, we note that by the Monotone Convergence Theorem we can assume without
loss of generality that 𝑓 has only finitely-many non-zero Haar coefficients. Now, we notice that
by (2.2) we have

‖𝑆𝑤𝑓‖𝑝𝐿𝑝 = ∫ℝ2
(∑
𝑅∈

|𝑓𝑅|2⟨𝑤⟩2∕𝑝𝑅

𝟏𝑅(𝑥)|𝑅|
)𝑝∕2

d𝑥

≲𝑝,[𝑤]𝐴𝑝, ∫ℝ2
(∑
𝑅∈

|𝑓𝑅|2(⟨𝑤1∕𝑝⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)𝑝∕2

d𝑥.

Thus, by standard (unweighted) dyadic Littlewood–Paley theory we only have to prove that

‖𝐹‖𝐿𝑝 ∶= ‖‖‖‖ ∑
𝑅∈

|𝑓𝑅|⟨𝑤1∕𝑝⟩𝑅ℎ𝑅‖‖‖‖𝐿𝑝 ≲𝑝 ‖𝑆𝑓‖𝐿𝑝(𝑤).
We use duality for that. Let g ∈ 𝐿𝑝

′ . Then, we have

|⟨𝐹, g⟩| ⩽ ∑
𝑅∈

|𝑓𝑅|⟨𝑤1∕𝑝⟩𝑅 ⋅ |g𝑅| = ∫ℝ2
∑
𝑅∈

|𝑓𝑅|𝑤(𝑥)1∕𝑝 ⋅ ℎ𝑅(𝑥) ⋅ |g𝑅| ⋅ ℎ𝑅(𝑥)d𝑥
⩽ ∫ℝ2(𝑆𝑓)(𝑥)𝑤(𝑥)

1∕𝑝(𝑆g)(𝑥)d𝑥 ⩽ ‖𝑆𝑓‖𝐿𝑝(𝑤)‖𝑆g‖𝐿𝑝′ ∼𝑝 ‖𝑆𝑓‖𝐿𝑝(𝑤)‖g‖𝐿𝑝′ ,
concluding the proof. □

Of course, for 𝑝 = 2 we have just ‖𝑆𝑤𝑓‖𝐿2 = ‖𝑆𝑓‖𝐿2(𝑤).
Using Lemma 2.1, we can immediately deduce the corresponding lower bound.

Corollary 2.2. There holds

‖𝑓‖𝐿𝑝(𝑤) ≲𝑝,[𝑤]𝐴𝑝, ‖𝑆𝑤𝑓‖𝐿𝑝 , ∀𝑓 ∈ 𝐿∞c (ℝ
2).

Proof. We use duality. Recall that 𝑤′ ∶= 𝑤−1∕(𝑝−1) is a dyadic biparameter 𝐴𝑝′ weight with
[𝑤]1∕𝑝

′

𝐴𝑝′
= [𝑤]1∕𝑝

𝐴𝑝
. Let 𝑓, g ∈ 𝐿∞c (ℝ

2). Then, using (2.2) and applying Lemma 2.1 (for the weight
𝑤′) we get

|⟨𝑓, g⟩| ⩽ ∑
𝑅∈

|𝑓𝑅| ⋅ |g𝑅| = ∑
𝑅∈

∫ℝ2 |𝑓𝑅|⟨𝑤⟩1∕𝑝𝑅 ℎ𝑅(𝑥) ⋅ |g𝑅|⟨𝑤⟩−1∕𝑝𝑅 ℎ𝑅(𝑥)d𝑥

≲𝑝,[𝑤]𝐴𝑝,

∑
𝑅∈

∫ℝ2 |𝑓𝑅|⟨𝑤⟩1∕𝑝𝑅 ℎ𝑅(𝑥) ⋅ |g𝑅|⟨𝑤′⟩1∕𝑝′𝑅 ℎ𝑅(𝑥)d𝑥
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⩽ ∫ℝ2(𝑆𝑤𝑓(𝑥))(𝑆𝑤′g(𝑥))d𝑥 ⩽ ‖𝑆𝑤𝑓‖𝐿𝑝‖𝑆𝑤′g‖𝐿𝑝′
≲𝑝,[𝑤]𝐴𝑝,

‖𝑆𝑤𝑓‖𝐿𝑝‖g‖𝐿𝑝′ (𝑤′),
so ‖𝑓‖𝐿𝑝(𝑤) ≲𝑝,[𝑤]𝐴𝑝, ‖𝑆𝑤𝑓‖𝐿𝑝 , concluding the proof. □

It is clear that the above results remain true in the general multiparameter setting.

3 EQUIVALENCES FOR DYADIC BLOOM PRODUCT BMO

We prove in this section that the dyadic Bloom product BMO admits several equivalent descrip-
tions. We will focus on dyadic biparameter 𝐴𝑝 weights, with 1 < 𝑝 < ∞, on ℝ × ℝ. It should be
noted that the results presented here also hold in the general multiparameter setting of func-
tions and weights defined on ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 , with identical proofs. However, for simplicity we
will restrict ourselves to the case of ℝ × ℝ.
In the sequel we fix 1 < 𝑝 < ∞ and dyadic biparameter 𝐴𝑝 weights 𝜇, 𝜆 on ℝ2, and we set

𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝. Note that we will be systematically suppressing from the notation dependence
of implied constants on the value of 𝑝 and the Muckenhoupt characteristics [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

Recall that 𝜈 is a dyadic biparameter 𝐴2 weight with 1 ⩽ [𝜈]𝐴2 ⩽ [𝜇]
1∕𝑝
𝐴𝑝
[𝜆]1∕𝑝

𝐴𝑝
.

Given any sequence 𝑎 = {𝑎𝑅}𝑅∈ of complex numbers, we define the dyadic two-weight Bloom
product BMO 𝑝-norm ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) by

‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) ∶= sup


1

(𝜇(sh( )))1∕𝑝

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜆),

where the supremum ranges over all non-empty collections of dyadic rectangles inℝ × ℝ, and

sh( ) ∶=
⋃
𝑅∈

𝑅.

By theMonotone Convergence Theorem, it is clear that one can restrict the supremum in the def-
inition of ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) to just non-empty finite sucollections  of . Observe that if  is
a non-empty finite collection of dyadic rectangles in ℝ × ℝ, then Ω ∶= sh( ) is a bounded mea-
surable subset of ℝ2 of non-zero measure, and moreover, since the measure 𝜇(𝑥)d𝑥 is absolutely
continuouswith respect to Lebesguemeasure onℝ2, it follows that there exists a sequence (Ω𝑛)∞𝑛=1
of bounded open subsets in ℝ2 such that Ω ⊆ Ω𝑛, for all 𝑛 = 1, 2, … and lim𝑛→∞ 𝜇(Ω𝑛) = 𝜇(Ω).
This shows that we have in fact

‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) = sup
Ω

1

(𝜇(Ω))1∕𝑝

‖‖‖‖‖‖
( ∑
𝑅∈(Ω)

|𝑎𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜆),

where the supremum is taken over all non-empty bounded open sets Ω in ℝ2, or even over all
measurable subsets Ω of ℝ2 of non-zero finite measure.
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For any dyadic biparameter 𝐴2 weight 𝜈 on ℝ2, define the dyadic one-weight Bloom product
BMO norm ‖𝑎‖BMOprod, (𝜈) by‖𝑎‖BMOprod, (𝜈) ∶= ‖𝑎‖BMOprod, (𝜈,𝜈−1,2).
We also define the unweighted product BMO norm

‖𝑎‖BMOprod, ∶= ‖𝑎‖BMOprod, (1).
If 𝑏 ∈ 𝐿1loc(ℝ), then we define‖𝑏‖BMOprod, (𝜇,𝜆,𝑝) ∶= ‖{𝑏𝑅}𝑅∈‖BMOprod, (𝜇,𝜆,𝑝).
The main goal of this section is to prove Theorem 1.2, which we state again for the reader’s

convenience, in a slightly more general (but in view of the Monotone Convergence Theorem,
equivalent) form.

Theorem 1.2. Let 1 < 𝑝 < ∞. Consider dyadic biparameter 𝐴𝑝 weights 𝜇, 𝜆 and define 𝜈 ∶=
𝜇1∕𝑝𝜆−1∕𝑝 . Then

‖𝑎‖BMOprod, (𝜈) ∼ ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝),
for any sequence of complex numbers 𝑎 = {𝑎𝑅}𝑅∈ , where the implied constants depend only on 𝑝,
[𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

The one-parameter analogue of Theorem 1.2 was shown by I. Holmes, M. T. Lacey and
B. D. Wick [18]. Moreover, the little bmo analogue of Theorem 1.2 was established by I. Holmes,
S. Petermichl and B. D. Wick [19] by iterating the one-parameter result of [18]. Also, in the special
case 𝜇 = 𝜆, Theorem 1.2 was proved by E. Airta, K. Li, H. Martikainen and E. Vuorinen [2] (in fact
under the weaker assumption that 𝜇 = 𝜆 is just a biparameter 𝐴∞ weight).
The proof of Theorem 1.2 will be done in several steps. Note that by theMonotone Convergence

Theorem, we can without loss of generality assume that the sequence 𝑎 = {𝑎𝑅}𝑅∈ is finitely sup-
ported.
Now, consider the ‘purely non-cancellative’ biparameter paraproduct with symbol 𝑎,

Π(1,1)𝑎 𝑓 ∶=
∑
𝑅∈

𝑎𝑅⟨𝑓⟩𝑅ℎ𝑅.
Note that the superscript (1, 1) indicates that in the expression of the paraproduct 𝑓 is integrated
only againstHaar functions of the formℎ(1,1)𝑅 . This operator is defined andused byHolmes–Lacey–
Wick [18] in the Bloom one-parameter setting, as well as by Blasco–Pott [4] in the unweighted
biparameter setting (for 𝑝 = 2) and Holmes–Petermichl–Wick [19] in the Bloom biparameter set-
ting.
First note that just by testing Π(1,1)𝑎 on 𝟏sh( ) and then using the weighted Littlewood–Paley

estimates, for any ⊆ , we trivially deduce

‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) ≲ ‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆). (3.1)
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We first show that the previous two quantities are actually equivalent in the regime 1 < 𝑝 ⩽ 2. To
this end, we follow a scheme similar to that of one of the standard proofs of the dyadic Carleson’s
embedding theorem (see, for instance, [31] for a very general one-parameter version), but with
the one-parameter maximal function replaced by the dyadic strong maximal function.

Proposition 3.1. Assume 1 < 𝑝 ⩽ 2. Then, there holds

‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) ∼ ‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆),
where the implied constants depend only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

Proof. We only need to show the ≳ direction, that is, the inequality

‖Π(1,1)𝑎 (𝑓)‖𝐿𝑝(𝜆) ≲ ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝)‖𝑓‖𝐿𝑝(𝜇).
By the weighted Littlewood–Paley estimates, we have

‖Π(1,1)𝑎 (𝑓)‖𝑝
𝐿𝑝(𝜆)

∼ ∫ℝ×ℝ
(∑
𝑅∈

|𝑎𝑅|2|⟨𝑓⟩𝑅|2 𝟏𝑅(𝑥)|𝑅|
)𝑝∕2

𝜆(𝑥)d𝑥.

Thus, without loss of generality we may assume that 𝑓 ⩾ 0.
Fix 𝑥 ∈ ℝ × ℝ. Consider the measure𝑚 on the countable set given by

𝑚(𝑅) ∶= |𝑎𝑅|2 𝟏𝑅(𝑥)|𝑅| , ∀𝑅 ∈ .

Consider also the function g ∶  → [0,∞) given by g(𝑅) ∶= (⟨𝑓⟩𝑅)𝑝, for all 𝑅 ∈ . Then, we
have (∑

𝑅∈

|𝑎𝑅|2(⟨𝑓⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)𝑝∕2

= ‖g‖𝐿2∕𝑝(,𝑚).
We emphasize here that 2∕𝑝 ⩾ 1. Thus, in the scale of Lorentz spaces, we have (see, for example,
[17, Proposition 1.4.10])

𝐿2∕𝑝,1 ⊆ 𝐿2∕𝑝,2∕𝑝 = 𝐿2∕𝑝.

Therefore(∑
𝑅∈

|𝑎𝑅|2(⟨𝑓⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)𝑝∕2

= ‖g‖𝐿2∕𝑝(,𝑚) ≲𝑝 ‖g‖𝐿2∕𝑝,1(,𝑚)
∼𝑝 ∫

∞

0
(𝑚({g > 𝑡}))𝑝∕2d𝑡 = ∫

∞

0

⎛⎜⎜⎜⎝
∑

𝑅∈
(⟨𝑓⟩𝑅)𝑝>𝑡 |𝑎𝑅|

2 𝟏𝑅(𝑥)|𝑅|
⎞⎟⎟⎟⎠
𝑝∕2

d𝑡.



918 KAKAROUMPAS and SOLER I GIBERT

Therefore

‖Π(1,1)𝑎 (𝑓)‖𝑝
𝐿𝑝(𝜆)

≲𝑝 ∫ℝ×ℝ 𝜆(𝑥)∫
∞

0

⎛⎜⎜⎜⎝
∑

𝑅∈
(⟨𝑓⟩𝑅)𝑝>𝑡 |𝑎𝑅|

2 𝟏𝑅(𝑥)|𝑅|
⎞⎟⎟⎟⎠
𝑝∕2

d𝑡d𝑥

⩽ ∫
∞

0 ∫ℝ×ℝ
⎛⎜⎜⎜⎝

∑
𝑅∈

𝑅⊆{(𝑀𝑓)
𝑝>𝑡}

|𝑎𝑅|2 𝟏𝑅(𝑥)|𝑅|
⎞⎟⎟⎟⎠
𝑝∕2

𝜆(𝑥)d𝑥d𝑡

⩽ ‖𝑎‖𝑝BMOprod, (𝜇,𝜆,𝑝) ∫ ∞

0
𝜇({(𝑀𝑓)

𝑝 > 𝑡})d𝑡

= ‖𝑎‖𝑝BMOprod, (𝜇,𝜆,𝑝)‖(𝑀𝑓)
𝑝‖𝐿1(𝜇) = ‖𝑎‖𝑝BMOprod, (𝜇,𝜆,𝑝)‖𝑀𝑓‖𝑝𝐿𝑝(𝜇)

≲ ‖𝑎‖𝑝BMOprod, (𝜇,𝜆,𝑝)‖𝑓‖𝑝𝐿𝑝(𝜇),
concluding the proof. □

Note that by applying the Monotone Convergence Theorem coupled with the weighted
Littlewood–Paley estimates, Proposition 3.1 extends to all (not necessarily finitely sup-
ported) sequences.
Holmes–Petermichl–Wick [19, Proposition 6.1] prove that

‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲ ‖𝑎‖BMOprod, (𝜈),
where 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝 (which is an 𝐴2 weight), 1 < 𝑝 < ∞ (in the general multiparameter case,
the analogous result is due to Airta [1]). From this and (3.1) it follows that for all 1 < 𝑝 < ∞ we
have

‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) ≲ ‖𝑎‖BMOprod, (𝜈).
Since also 𝜈 = (𝜆′)1∕𝑝

′
(𝜇′)−1∕𝑝

′ , where 𝜇′ ∶= 𝜇−1∕(𝑝−1), 𝜆′ ∶= 𝜆−1∕(𝑝−1), we deduce as well

‖𝑎‖BMOprod, (𝜆′,𝜇′,𝑝′) ≲ ‖Π(1,1)𝑎 ‖𝐿𝑝′ (𝜆′)→𝐿𝑝′ (𝜇′) ≲ ‖𝑎‖BMOprod, (𝜈).
We show now that ‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) and ‖𝑎‖BMOprod, (𝜈) are actually equivalent, for all 1 < 𝑝 <
∞.

Proposition 3.2. Let 1 < 𝑝 < ∞ and dyadic biparameter 𝐴𝑝 weights 𝜇 and 𝜆 on ℝ × ℝ. Define
𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝 . Then, there holds

‖𝑎‖BMOprod, (𝜈) ∼ ‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ ‖Π(1,1)𝑎 ‖𝐿𝑝′ (𝜆′)→𝐿𝑝′ (𝜇′),
where the implied constants depend only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .
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Proof. Recall that since 𝜇 is a dyadic biparameter 𝐴𝑝 weight, 𝜇′ ∶= 𝜇−1∕(𝑝−1) is a dyadic bipa-
rameter 𝐴𝑝′ weight with [𝜇′]𝐴𝑝′ , = [𝜇]𝑝

′−1
𝐴𝑝,

. Similarly, 𝜆′ ∶= 𝜆−1∕(𝑝−1) is a dyadic biparameter

𝐴𝑝′ weight with [𝜆′]𝐴𝑝′ , = [𝜆]𝑝
′−1
𝐴𝑝,

, and 𝜈−1 is a dyadic biparameter 𝐴2 weight with [𝜈−1]𝐴2, =

[𝜈]𝐴2, . In particular, 𝜇
′, 𝜆′, 𝜈−1 are also locally integrable. Using these observations and since the

sequence 𝑎 is finitely supported, it is easy to see that

‖𝑎‖BMOprod, (𝜈), ‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆), ‖Π(1,1)𝑎 ‖𝐿𝑝′ (𝜆′)→𝐿𝑝′ (𝜇′) < ∞.

For brevity we set 𝐶(𝑎) ∶= ‖𝑎‖BMOprod, (𝜈). By the weighted Littlewood–Paley estimates we have
that

‖Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ 𝐶1(𝑎), ‖Π(1,1)𝑎 ‖𝐿𝑝′ (𝜆′)→𝐿𝑝′ (𝜇′) ∼ 𝐶2(𝑎),

where 𝐶1(𝑎), 𝐶2(𝑎) are the best finite non-negative constants such that

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅|2⟨|𝑓|⟩2𝑅 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜆) ⩽ 𝐶1(𝑎)‖𝑓‖𝐿𝑝(𝜇),

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅|2⟨|𝑓|⟩2𝑅 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝′ (𝜇′) ⩽ 𝐶2(𝑎)‖𝑓‖𝐿𝑝′ (𝜆′),

for all measurable functions 𝑓 on ℝ × ℝ, that is

𝐶1(𝑎) = ‖𝑆Π(1,1)𝑎 ‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆), 𝐶2(𝑎) = ‖𝑆Π(1,1)𝑎 ‖𝐿𝑝′ (𝜆′)→𝐿𝑝′ (𝜇′),
where 𝑆 is the dyadic biparameter square function, see Subsection 2.4 above. Thus, it suffices to
prove that

𝐶(𝑎) ∼ 𝐶1(𝑎) ∼ 𝐶2(𝑎), (3.2)

where all implied constants depend on 𝑝, [𝜇]𝐴𝑝, , [𝜆]𝐴𝑝, . We will use bilinear estimates. Fix any ⊆ . Let 𝑓, g be any two measurable functions on ℝ × ℝ taking non-negative values, and con-
sider the bilinear form

𝐵(𝑓, g) ∶=
∑
𝑅∈

|𝑎𝑅|2⟨𝑓⟩𝑅⟨g⟩𝑅⟨𝜈−1⟩𝑅.
Clearly 𝐵(𝑓, g) = ∫ℝ×ℝ 𝐹(𝑥)𝜈−1(𝑥)d𝑥, where

𝐹 ∶=
∑
𝑅∈

|𝑎𝑅|2⟨𝑓⟩𝑅⟨g⟩𝑅 𝟏𝑅|𝑅| .
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By Cauchy–Schwarz and Hölder’s inequality we obtain

𝐵(𝑓, g) = ∫ℝ×ℝ 𝐹(𝑥)𝜈
−1(𝑥)d𝑥

⩽ ∫ℝ×ℝ
(∑
𝑅∈

|𝑎𝑅|2(⟨𝑓⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)1∕2( ∑

𝑅∈𝑛

|𝑎𝑅|2(⟨g⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)1∕2

𝜈−1(𝑥)d𝑥

= ∫ℝ×ℝ
(∑
𝑅∈

|𝑎𝑅|2(⟨𝑓⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)1∕2

𝜆1∕𝑝(𝑥)

(∑
𝑅∈

|𝑎𝑅|2(⟨g⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)1∕2

𝜇−1∕𝑝(𝑥)d𝑥

⩽
⎛⎜⎜⎝∫ℝ×ℝ

(∑
𝑅∈

|𝑎𝑅|2(⟨𝑓⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)𝑝∕2

𝜆(𝑥)d𝑥
⎞⎟⎟⎠
1∕𝑝

⋅
⎛⎜⎜⎝∫ℝ×ℝ

(∑
𝑅∈

|𝑎𝑅|2(⟨g⟩𝑅)2 𝟏𝑅(𝑥)|𝑅|
)𝑝′∕2

𝜇−𝑝
′∕𝑝(𝑥)d𝑥

⎞⎟⎟⎠
1∕𝑝′

= ‖𝑆Π(1,1)𝑎 𝑓‖𝐿𝑝(𝜆)‖𝑆Π(1,1)𝑎 g‖𝐿𝑝′ (𝜇′)
⩽ 𝐶1(𝑎)𝐶2(𝑎)‖𝑓‖𝐿𝑝(𝜇)‖g‖𝐿𝑝′ (𝜆′).

We now pick

𝑓 ∶= 𝜇−1∕𝑝𝜈1∕𝑝𝟏sh( ), g ∶= 𝜆1∕𝑝𝜈1∕𝑝
′
𝟏sh( ).

We have

‖𝑓‖𝑝
𝐿𝑝(𝜇)

= ∫sh( )
𝜇−1(𝑥)𝜈(𝑥)𝜇(𝑥)d𝑥 = 𝜈(sh( )),

‖g‖𝑝′
𝐿𝑝′ (𝜆′)

= ∫sh( )
𝜆𝑝

′∕𝑝(𝑥)𝜈(𝑥)𝜆−1∕(𝑝−1)(𝑥)d𝑥 = 𝜈(sh( )),

therefore

‖𝑓‖𝐿𝑝(𝜇)‖g‖𝐿𝑝′ (𝜆′) = 𝜈(sh( )).

So we have ∑
𝑅∈

|𝑎𝑅|2⟨𝜇−1∕𝑝𝜈1∕𝑝⟩𝑅⟨𝜆1∕𝑝𝜈1∕𝑝′⟩𝑅⟨𝜈−1⟩𝑅 ⩽ 𝐶1(𝑎)𝐶2(𝑎)𝜈(sh( )).

Set 𝑤 ∶= 𝜇−1∕𝑝𝜈1∕𝑝. Then clearly

𝜇−1∕𝑝𝜈1∕𝑝𝜆1∕𝑝𝜈1∕𝑝
′
= 1,
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so an immediate application of Jensen’s inequality (with exponent −1 < 0) gives

⟨𝜇−1∕𝑝𝜈1∕𝑝⟩𝑅⟨𝜆1∕𝑝𝜈1∕𝑝′⟩𝑅 = ⟨𝑤⟩𝑅⟨𝑤−1⟩𝑅 ⩾ 1.
Thus ∑

𝑅∈
|𝑎𝑅|2⟨𝜈−1⟩𝑅 ⩽ 𝐶1(𝑎)𝐶2(𝑎)𝜈(sh( )).

It follows that 𝐶(𝑎)2 ⩽ 𝐶1(𝑎)𝐶2(𝑎). Since we already know that 𝐶(𝑎) ≳ 𝐶𝑖(𝑎), 𝑖 = 1, 2, we deduce
𝐶(𝑎) ∼ 𝐶1(𝑎) ∼ 𝐶2(𝑎). □

Note that by applying the Monotone Convergence Theorem coupled with the weighted
Littlewood–Paley estimates, Proposition 3.2 extends to all (not necessarily finitely sup-
ported) sequences.
Combining Proposition 3.1 and 3.2, we already deduce that if 1 < 𝑝 ⩽ 2, then

‖𝑎‖BMOprod, (𝜈) ∼ ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝) ≳ ‖𝑎‖BMOprod, (𝜆′,𝜇′,𝑝′),
and that if 2 ⩽ 𝑝 < ∞, then

‖𝑎‖BMOprod, (𝜈) ∼ ‖𝑎‖BMOprod, (𝜆′,𝜇′,𝑝′) ≳ ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝).
The next proposition will complete the proof of Theorem 1.2. Note that this remaining equiv-

alence is an immediate consequence of Hölder’s inequality in the unweighted case. In order to
circumvent the lack of such a tool, we will make use of the (biparameter) Triebel–Lizorkin square
function (see Subsection 2.4.2). In addition, it is also essential to use an equivalence between one-
weight and unweighted product BMO from [2]. In particular, the equivalence from [2] that we use
corresponds to the particular case of our Theorem 1.2 when 𝑝 > 2 and 𝜇 = 𝜆.

Proposition 3.3. Let 𝑎, 𝑝, 𝜇, 𝜆, 𝜈 be as above. Assume 𝑝 > 2. Then, there holds

‖𝑎‖BMOprod, (𝜈) ≲ ‖𝑎‖BMOprod, (𝜇,𝜆,𝑝),
where the implied constant depends only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

Proof. First of all, note that we have already proved that

‖𝑐‖BMOprod, (𝜈,1,2) ≲ ‖𝑐‖BMOprod, (1,𝜈−1,2),
for any sequence 𝑐 = {𝑐𝑅}𝑅∈ . Applying this for the sequence 𝑐 = {𝑐𝑅 ∶= 𝑎𝑅⟨𝜈−1⟩1∕2𝑅 }𝑅∈ , we
deduce

‖𝑎‖BMOprod, (𝜈) = ‖{𝑎𝑅⟨𝜈−1⟩1∕2𝑅 }𝑅∈‖BMOprod, (𝜈,1,2) ≲ ‖{𝑎𝑅⟨𝜈−1⟩1∕2𝑅 }𝑅∈‖BMOprod, (1,𝜈−1,2)
= ‖{𝑎𝑅⟨𝜈−1⟩𝑅}𝑅∈‖BMOprod, .
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Since𝜇 is a dyadic biparameter𝐴𝑝 weight and𝑝 > 2, using the equivalence between one-weight
and unweighted product BMO from the second half of the proof of [2, Theorem 3.2], we have

‖𝑐‖BMOprod, ≲ sup
⊆

1

(𝜇(sh( )))1∕2

‖‖‖‖‖‖
(∑
𝑅∈

|𝑐𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿2(𝜇),

where the implied constant depends only on𝑝 and [𝜇]𝐴𝑝, , for any sequence 𝑐 = {𝑐𝑅}𝑅∈ , so since
𝑝 > 2, by Hölder’s inequality we deduce

‖𝑐‖BMOprod, ≲ sup
⊆

1

(𝜇(sh( )))1∕𝑝

‖‖‖‖‖‖
(∑
𝑅∈

|𝑐𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜇).

Thus

‖{𝑎𝑅⟨𝜈−1⟩𝑅}𝑅∈‖BMOprod, ≲ sup
⊆

1

(𝜇(sh( )))1∕𝑝

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅⟨𝜈−1⟩𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜇).

For all ⊆ , using Lemma 2.1 and Corollary 2.2 (since 𝑎 is finitely supported) and the fact that⟨𝜈−1⟩𝑅 ∼ ⟨𝜇⟩−1∕𝑝𝑅 ⟨𝜆⟩1∕𝑝𝑅 , for all 𝑅 ∈ , we get

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅⟨𝜈−1⟩𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜇)

∼

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅|2⟨𝜈−1⟩2𝑅⟨𝜇⟩2∕𝑝𝑅

𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝

∼

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅|2⟨𝜆⟩2∕𝑝𝑅

𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝 ∼

‖‖‖‖‖‖
(∑
𝑅∈

|𝑎𝑅|2 𝟏𝑅|𝑅|
)1∕2‖‖‖‖‖‖𝐿𝑝(𝜆),

concluding the proof. □

4 ESTIMATES FOR ITERATED COMMUTATORS OF HAAR
MULTIPLIERS

Let Σ be the set of all finitely supported maps 𝜎 ∶ → {−1, 0, 1}. In the sequel, the elements of Σ
similar spaces will be called sign choices, and will always be considered to be finitely supported.
For each 𝜎 ∈ Σ, we consider the constant coefficients Haar multiplier 𝑇𝜎, which we might also
callmartingale transform, on the real line given by

𝑇𝜎𝑓 ∶=
∑
𝐼∈

𝜎(𝐼)𝑓𝐼ℎ𝐼, 𝑓 ∈ 𝐿1loc(ℝ).
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Moreover, we consider Haar multipliers 𝑇1𝜎, 𝑇
2
𝜎 acting on functions 𝑓 ∈ 𝐿1loc(ℝ

2) separately in
each of the two variables, namely

𝑇1𝜎𝑓(𝑡, 𝑠) ∶= 𝑇𝜎(𝑓( ⋅ , 𝑠))(𝑡), 𝑇2𝜎𝑓(𝑡, 𝑠) ∶= 𝑇𝜎(𝑓(𝑡, ⋅ ))(𝑠),

for a.e. (𝑡, 𝑠) ∈ ℝ2. It is clear that

𝑇1𝜎𝑓 =
∑
𝐼,𝐽∈

𝜎(𝐼)𝑓𝐼×𝐽ℎ𝐼×𝐽 =
∑
𝐼∈

𝜎(𝐼)𝑄1𝐼 𝑓,

𝑇2𝜎𝑓 =
∑
𝐼,𝐽∈

𝜎(𝐽)𝑓𝐼×𝐽ℎ𝐼×𝐽 =
∑
𝐽∈

𝜎(𝐽)𝑄2𝐽𝑓.

The main result of this section is Theorem 1.1, which we recall here.

Theorem 1.1. Let 1 < 𝑝 < ∞. Consider a function 𝑏 ∈ 𝐿1loc(ℝ
2), dyadic biparameter𝐴𝑝 weights 𝜇,

𝜆 and define 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝. Then

sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ ‖𝑏‖BMOprod, (𝜈),
where the implied constants depend only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

In the unweighted casewith𝑝 = 2, Theorem 1.1 is proved byBlasco–Pott [4]. They get this result
by averaging over the set of sign choices and then using orthogonality in Hilbert spaces. While we
still rely on averaging over sign choices in our proof, we use a multiparameter extension of Khint-
chine’s inequalities as well as vector-valued estimates to compensate for the lack of orthogonality
for 𝑝 ≠ 2.
In the sequel we fix 1 < 𝑝 < ∞, 𝑏 ∈ 𝐿1loc(ℝ

2), dyadic biparameter𝐴𝑝 weights 𝜇, 𝜆 onℝ2, andwe
set 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝. Note thatwewill be systematically suppressing from the notation dependence
of implied constants on the value of 𝑝 and the Muckenhoupt characteristics [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

4.1 Relating Haar multipliers to a ‘symmetrized’ paraproduct

Consider the ‘purely non-cancellative’ and ‘purely cancellative’, respectively, biparameter para-
products

Π(1,1)
𝑏

𝑓 ∶=
∑
𝑅∈

𝑏𝑅⟨𝑓⟩𝑅ℎ𝑅, Π(0,0)
𝑏

𝑓 ∶=
∑
𝑅∈

𝑏𝑅𝑓𝑅
𝟏𝑅|𝑅| ,

and the ‘mixed non-cancellative–cancellative’ biparameter paraproducts

Π(1,0)
𝑏

𝑓 ∶=
∑
𝑅∈

𝑏𝑅𝑓
(1,0)
𝑅 ℎ(0,1)𝑅 , Π(0,1)

𝑏
𝑓 ∶=

∑
𝑅∈

𝑏𝑅𝑓
(0,1)
𝑅 ℎ(1,0)𝑅 .



924 KAKAROUMPAS and SOLER I GIBERT

In the notation of each paraproduct, the superscript indicates the type of Haar functions against
which the argument of the paraproduct is integrated, while the ‘complementary’ pair of indices
indicates the type of Haar functions appearing directly in the paraproduct.
Blasco–Pott [4] consider the ‘symmetrized’ paraproduct in the biparameter setting

Λ𝑏 ∶= Π(1,1)
𝑏

+ Π(0,0)
𝑏

+ Π(1,0)
𝑏

+ Π(0,1)
𝑏

.

Blasco–Pott [4] prove via direct computation that Λ𝑏 deserves to be called ‘symmetrized’ para-
product in the sense that

Λ𝑏𝑓 =
∑
𝑅∈

(𝑃𝑅𝑏)𝑓𝑅ℎ𝑅, (4.1)

where we recall that

𝑃𝑅𝑏 =
∑

𝑅′∈(𝑅)

𝑏𝑅′ℎ𝑅′ .

Note that in the general multiparameter setting of ℝ𝑑 ∶= ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 one can also define
an analogous operator 𝚲𝑏 as a sum of generalized paraproducts in a way that one still has
𝚲𝑏𝑓 =

∑
𝑅∈(𝑷𝑅𝑏)𝑓𝑅ℎ𝑅, where 𝑷𝑅 denotes the multiparameter analogue to 𝑃𝑅 (and, abusing the

notation, denotes the set of all dyadic rectangles in the product space ℝ𝑑).
It is important to note that for any 𝑅 = 𝐼 × 𝐽 ∈ , one has

𝑃𝑅𝑏(𝑡, 𝑠) = (𝑏 − ⟨𝑏( ⋅ , 𝑠)⟩𝐼 − ⟨𝑏(𝑡, ⋅ )⟩𝐽 + ⟨𝑏⟩𝐼×𝐽)𝟏𝑅(𝑡, 𝑠), (4.2)

for a.e. (𝑡, 𝑠) ∈ ℝ2. Also, the same computation along the lines of the inclusion–exclusion principle
that leads to (4.2) extends to yield a multiparameter analogue for 𝑷𝑅. Using expressions (4.1) and
(4.2), it is easy to see via direct computation, as remarked by Blasco–Pott [4], that

[𝑄1𝐼 , [𝑄
2
𝐽 , 𝑏]] = [𝑄1𝐼 , [𝑄

2
𝐽 , Λ𝑏]], ∀𝐼, 𝐽 ∈ , (4.3)

and

𝑄1𝐼Λ𝑏𝑄
1
𝐼 = 0, 𝑄2𝐽Λ𝑏𝑄

2
𝐽 = 0, ∀𝐼, 𝐽 ∈  (4.4)

(and, as before, the analogues of these two expressions also hold in the multiparameter setting).
In fact, the weighted Littlewood–Paley estimates imply that the family of all finite linear combi-
nations of Haar functions ℎ𝑅, 𝑅 ∈  is dense in the weighted space 𝐿𝑝(𝑤), for any dyadic bipa-
rameter 𝐴𝑝 weight 𝑤, 1 < 𝑝 < ∞, so one needs to check (4.3) and (4.4) only on functions of this
type. Note that (4.3) immediately implies

[𝑇1𝜎1
, [𝑇2𝜎2

, 𝑏]] = [𝑇1𝜎1
, [𝑇2𝜎2

, Λ𝑏]], ∀𝜎1, 𝜎2 ∈ Σ. (4.5)

The following lemma contains one of the most important steps towards the proof of Theo-
rem 1.1.
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Lemma 4.1. There holds

‖Λ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆).
For the proof of Lemma 4.1 we will rely on a straightforward extension of Khintchine’s inequal-

ities to the multiparameter setting, which is of independent interest.

Lemma 4.2. Let (𝕏𝑖, ℙ𝑖), 𝑖 = 1, 2 be probability spaces. For 𝑗 = 1, 2, let (𝑋𝑖
𝑗
)
𝑁𝑖
𝑗=1

be a Rademacher
sequence on (𝕏𝑖, ℙ𝑖), that is, 𝑋𝑖𝑗, 𝑗 = 1,… ,𝑁𝑗 are independent with

ℙ𝑖(𝑋
𝑖
𝑗 = 1) = ℙ𝑖(𝑋

𝑖
𝑗 = −1) = 1∕2, 𝑗 = 1,… ,𝑁𝑗.

Let 𝐴 be an𝑁1 × 𝑁2 (complex)matrix. Then, there holds‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖𝐿𝑞(𝕏1×𝕏2) ∼𝑞,𝑟
‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖𝐿𝑟(𝕏1×𝕏2)
for all 0 < 𝑞, 𝑟 < ∞. In particular

‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖𝐿𝑞(𝕏1×𝕏2) ∼𝑞
(

𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

|𝐴(𝑗1, 𝑗2)|2)1∕2

, ∀0 < 𝑞 < ∞.

Proof. Let 0 < 𝑞, 𝑟 < ∞ be arbitrary. Without loss of generality, we may assume 𝑞 < 𝑟. Then, by
Hölder’s inequality, it suffices only to prove that‖‖‖‖‖‖

𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖𝐿𝑟(𝕏1×𝕏2) ≲𝑞,𝑟
‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖𝐿𝑞(𝕏1×𝕏2).
Set

𝑌𝑗1 ∶=
𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
2
𝑗2
, 𝑗1 = 1,… ,𝑁1,

𝑍𝑗2 ∶=
𝑁1∑
𝑗1=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
, 𝑗2 = 1,… ,𝑁2.

Then, using first Khintchine’s inequalities, then Minkowski’s inequality (in view of the fact that
𝑟∕𝑞 ⩾ 1), and finally again Khintchine’s inequalities, we get

‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖
𝑟

𝐿𝑟(𝕏1×𝕏2)

= ∫𝕏2
⎛⎜⎜⎝∫𝕏1

||||||
𝑁1∑
𝑗1=1

𝑌𝑗1(𝜔2)𝑋
1
𝑗1
(𝜔1)

||||||
𝑟

dℙ1(𝜔1)
⎞⎟⎟⎠dℙ2(𝜔2)

∼𝑞,𝑟 ∫𝕏2
⎛⎜⎜⎝∫𝕏1

||||||
𝑁1∑
𝑗1=1

𝑌𝑗1(𝜔2)𝑋
1
𝑗1
(𝜔1)

||||||
𝑞

dℙ1(𝜔1)
⎞⎟⎟⎠
𝑟∕𝑞

dℙ2(𝜔2)
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⩽

⎛⎜⎜⎜⎝∫𝕏1
⎛⎜⎜⎝∫𝕏2

||||||
𝑁1∑
𝑗1=1

𝑌𝑗1(𝜔2)𝑋
1
𝑗1
(𝜔1)

||||||
𝑞⋅ 𝑟
𝑞

dℙ2(𝜔2)
⎞⎟⎟⎠
𝑞∕𝑟

dℙ1(𝜔1)

⎞⎟⎟⎟⎠
𝑟∕𝑞

=

⎛⎜⎜⎜⎝∫𝕏1
⎛⎜⎜⎝∫𝕏2

||||||
𝑁2∑
𝑗2=1

𝑍𝑗2(𝜔1)𝑋
2
𝑗2
(𝜔2)

||||||
𝑟

dℙ2(𝜔2)
⎞⎟⎟⎠
𝑞∕𝑟

dℙ1(𝜔1)

⎞⎟⎟⎟⎠
𝑟∕𝑞

∼𝑞,𝑟

⎛⎜⎜⎝∫𝕏1
⎛⎜⎜⎝∫𝕏2

||||||
𝑁2∑
𝑗2=1

𝑍𝑗2(𝜔1)𝑋
2
𝑗2
(𝜔2)

||||||
𝑞

dℙ2(𝜔2)
⎞⎟⎟⎠dℙ1(𝜔1)

⎞⎟⎟⎠
𝑟∕𝑞

=

‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖
𝑟

𝐿𝑞(𝕏1×𝕏2)

,

concluding the proof.
The second claim follows immediately from the first by just noting that an iteration of indepen-

dence gives

‖‖‖‖‖‖
𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

𝐴(𝑗1, 𝑗2)𝑋
1
𝑗1
⊗ 𝑋2𝑗2

‖‖‖‖‖‖𝐿2(𝕏1×𝕏2) =
(

𝑁1∑
𝑗1=1

𝑁2∑
𝑗2=1

|𝐴(𝑗1, 𝑗2)|2)1∕2

. □

Clearly, one can use induction to prove similarly a multiparameter version of Khintchine’s
inequalities, for any 0 < 𝑞, 𝑟 < ∞, in any number of parameters (one has just to replace any of
the two uses of Khintchine’s inequalities in the proof above by use of the inductive hypothesis).

Proof of Lemma 4.1. We first consider the direction ≳. It is well known that Haar multipliers on
ℝ are bounded from 𝐿𝑝(𝑤) into 𝐿𝑝(𝑤) for dyadic 𝐴𝑝 weights 𝑤 on ℝ, within constants depend-
ing only on [𝑤]𝐴𝑝, (and not the sign choice in the definition of the Haar multiplier). It follows
immediately that for any biparameter dyadic 𝐴𝑝 weight 𝑤 on ℝ × ℝ there holds

‖𝑇𝑖𝜎‖𝐿𝑝(𝑤)→𝐿𝑝(𝑤) ≲[𝑤]𝐴𝑝, 1, ∀𝑖 = 1, 2, ∀𝜎 ∈ Σ,

therefore

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) = ‖[𝑇1𝜎1 , [𝑇2𝜎2 , Λ𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆)
= ‖𝑇1𝜎1𝑇2𝜎2Λ𝑏 − 𝑇1𝜎1Λ𝑏𝑇2𝜎2 − 𝑇2𝜎2Λ𝑏𝑇1𝜎1 + Λ𝑏𝑇2𝜎2𝑇1𝜎1‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲ 4‖Λ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆)

for all 𝜎1, 𝜎2 ∈ Σ.
We now turn to the other direction. Let (𝑛)∞𝑛=1 be an increasing sequence of subsets of 

exhausting . For each 𝑛 = 1, 2, …, let Σ𝑛 be the set of all maps 𝜎 ∶ → {−1, 0, 1} that vanish
outside of 𝑛 and that take values only −1, 1 on 𝑛, and consider the natural probability measure
ℙ𝑛 on Σ𝑛 that to each coordinate 𝐼 ∈ 𝑛 assigns each of the values 1 and −1with probability 1∕2,
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independently of all the other coordinates. Clearly, it suffices to prove that

sup
𝑛=1,2,…∫Σ𝑛×Σ𝑛 ‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]](𝑓)‖𝑝𝐿𝑝(𝜆)d(ℙ𝑛 ⊗ ℙ𝑛)(𝜎1, 𝜎2) ≳ ‖Λ𝑏(𝑓)‖𝑝𝐿𝑝(𝜆), (4.6)

for all (suitable) functions 𝑓 on ℝ2. For brevity we set 𝐼×𝐽 ∶= [𝑄1𝐼 , [𝑄
2
𝐽 , 𝑏]]. Applying Lemma 4.2,

we have

sup
𝑛=1,2,…∫Σ𝑛×Σ𝑛 ‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]](𝑓)‖𝑝𝐿𝑝(𝜆)d(ℙ𝑛 ⊗ ℙ𝑛)(𝜎1, 𝜎2)

= sup
𝑛=1,2,…∫Σ𝑛×Σ𝑛

‖‖‖‖‖
∑

𝐼×𝐽∈

𝜎1(𝐼)𝜎2(𝐽)𝐼×𝐽(𝑓)
‖‖‖‖‖
𝑝

𝐿𝑝(𝜆)

d(ℙ𝑛 ⊗ ℙ𝑛)(𝜎1, 𝜎2)

= sup
𝑛=1,2,…∫ℝ×ℝ

(
∫Σ𝑛×Σ𝑛

|||||
∑

𝐼×𝐽∈

𝜎1(𝐼)𝜎2(𝐽)𝐼×𝐽(𝑓)(𝑥)
|||||
𝑝

d(ℙ𝑛 ⊗ ℙ𝑛)(𝜎1, 𝜎2)

)
𝜆(𝑥)d𝑥

∼𝑝 sup
𝑛=1,2,…∫ℝ×ℝ

( ∑
𝐼,𝐽∈𝑛

|𝐼×𝐽(𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥 = ∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝐼×𝐽(𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥,

where in the last equality we applied the Monotone Convergence Theorem. Observe that

|𝑄𝑅g| ⩽ ⟨|g|⟩𝑅𝟏𝑅 ⩽ 𝑀g , ∀𝑅 ∈ .

Moreover, O. N. Capri and C. Gutiérrez [7] establish the following one-weight vector-valued esti-
mate for the dyadic strong maximal function (in any number of parameters):

‖‖‖‖‖‖
(

∞∑
𝑛=1

|𝑀g𝑛|2)1∕2‖‖‖‖‖‖𝐿𝑝(𝑤) ≲
‖‖‖‖‖‖
(

∞∑
𝑛=1

|g𝑛|2)1∕2‖‖‖‖‖‖𝐿𝑝(𝑤),
where the implied constants depend only on𝑝 and [𝑤]𝐴𝑝, (their proof is for the case of the strong
maximal function 𝑀S and multiparameter 𝐴𝑝 weights 𝑤, but it works without any changes for
the case of the dyadic strong maximal function 𝑀 and dyadic multiparameter 𝐴𝑝 weights 𝑤).
Thus, we have

∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝐼×𝐽(𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥 ≳ ∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝑀(𝐼×𝐽(𝑓))(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥

⩾ ∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝑄1𝐼𝑄2𝐽(𝐼×𝐽(𝑓))(𝑥)|2
)𝑝∕2

𝜆(𝑥)d𝑥

= ∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝑄1𝐼𝑄2𝐽([𝑄1𝐼 , [𝑄2𝐽 , Λ𝑏]](𝑓))(𝑥)|2
)𝑝∕2

𝜆(𝑥)d𝑥,
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where in the last equality we have used (4.3). Notice that using (4.4) we obtain

𝑄1𝐼𝑄
2
𝐽([𝑄

1
𝐼 , [𝑄

2
𝐽 , Λ𝑏]](𝑓))

= 𝑄1𝐼𝑄
2
𝐽(𝑄

1
𝐼𝑄

2
𝐽Λ𝑏(𝑓) − 𝑄

1
𝐼Λ𝑏𝑄

2
𝐽(𝑓) − 𝑄

2
𝐽Λ𝑏𝑄

1
𝐼 (𝑓) + Λ𝑏𝑄

1
𝐼𝑄

2
𝐽(𝑓))

= 𝑄1𝐼𝑄
2
𝐽Λ𝑏(𝑓),

for all 𝐼, 𝐽 ∈ . It follows that

∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝑄1𝐼𝑄2𝐽([𝑄1𝐼 , [𝑄2𝐽 , Λ𝑏]](𝑓))(𝑥)|2
)𝑝∕2

𝜆(𝑥)d𝑥

= ∫ℝ×ℝ
( ∑
𝐼×𝐽∈

|𝑄1𝐼𝑄2𝐽Λ𝑏(𝑓)(𝑥)|2
)𝑝∕2

𝜆(𝑥)d𝑥 ∼ ‖Λ𝑏(𝑓)‖𝑝𝐿𝑝(𝜆),
concluding the proof. □

4.2 Bounds for the ‘symmetrized’ paraproduct and conclusion of the
proof

In this section we complete the proof of Theorem 1.1. Blasco–Pott [4] show that

𝑃Ω(𝑏) = 𝑃Ω(Λ𝑏(𝟏Ω)).

This can be readily checked by direct computation using the definition of the operator Λ𝑏 and
how paraproducts act on characteristic functions. From this, it follows that

‖𝑃Ω(𝑏)‖𝐿𝑝(𝜆) = ‖𝑃Ω(Λ𝑏(𝟏Ω))‖𝐿𝑝(𝜆) ≲ ‖Λ𝑏(𝟏Ω)‖𝐿𝑝(𝜆) ⩽ ‖Λ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆)(𝜇(Ω))1∕𝑝.
In the ≲ we used the weighted Littlewood–Paley estimates. The analogous expressions are also
valid for the multiparameter operators 𝑷Ω and 𝚲𝑏 and measurable sets Ω ⊆ ℝ𝑑, and their proofs
use the same idea of checking the action of the various paraproducts on characteristic functions.
It follows that

‖𝑏‖BMOprod, (𝜇,𝜆,𝑝) ≲ ‖Λ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆).
Combining this with Theorem 1.2 and Lemma 4.1 we deduce

‖𝑏‖BMOprod, (𝜈) ≲ sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆). (4.7)

Moreover, Holmes–Petermichl–Wick [19] prove that

‖𝑃𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲ ‖𝑏‖BMOprod, (𝜈),
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where 𝑃𝑏 is any of the four paraproductsΠ
(𝜀1,𝜀2)
𝑏

, 𝜀1, 𝜀2 ∈ {0, 1} (the same fact for all relevant mul-
tiparameter paraproducts is shown by Airta in [1]). It follows that

‖Λ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲ ‖𝑏‖BMOprod, (𝜈). (4.8)

Thus, combining Lemma 4.1, (4.7) and (4.8) we deduce

‖𝑏‖BMOprod, (𝜈) ∼ sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆),
concluding the proof.
Note that since 𝜈 is a dyadic biparameter 𝐴2 weight on ℝ2, 𝜈 = 𝜈1∕2(𝜈−1)−1∕2 and [𝜈]𝐴2, =

[𝜈−1]𝐴2, , we also get

‖𝑏‖BMOprod, (𝜈) ∼ sup
𝜎1,𝜎2∈Σ

‖[𝑇1𝜎1 , [𝑇2𝜎2 , 𝑏]]‖𝐿2(𝜈)→𝐿2(𝜈−1),
where all implied constants depend only on [𝜈]𝐴2, .

4.3 General multiparameter result

The ideas presented in this section can also be applied, with only minor modifications, to any
multiparameter setting. That is, Theorem 1.1 can be stated and proved for iterated commutators on
functions defined on ℝ𝑑 ∶= ℝ𝑑1 ×⋯ × ℝ𝑑𝑡 , 𝑑 ∶= (𝑑1, … , 𝑑𝑡). We have already been commenting
along the proof which steps have to be modified in this context. Abusing slightly the notation,
here we use to denote the set of dyadic rectangles in the product spaceℝ𝑑. The statement of the
result in full generality is the following.

Theorem4.3. Let 1 < 𝑝 < ∞. Consider a function𝑏 ∈ 𝐿1loc(ℝ
𝑑), dyadicmultiparameter𝐴𝑝 weights

𝜇, 𝜆 on ℝ𝑑 and define 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝 . Then

sup
𝜎1,…,𝜎𝑡∈Σ

‖[𝑇1𝜎1 , [… [𝑇𝑡𝜎𝑡 , 𝑏] …]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ ‖𝑏‖BMOprod, (𝜈),
where the implied constants depend only on 𝑑, 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

5 BOUNDS FOR GENERAL COMMUTATORS OF HAAR
MULTIPLIERS

In this section, we show bounds analogous to those of Section 4 for iterated commutators of gen-
eral martingale transforms, not necessarily of tensor type. As usual, consider dyadic multiparam-
eter 𝐴𝑝 weights 𝜇 and 𝜆 on ℝ𝑑, with 1 < 𝑝 < ∞, and let 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝. We define the dyadic
two-weight little BMO p-norm ‖𝑏‖bmo (𝜇,𝜆,𝑝) by

‖𝑏‖bmo (𝜇,𝜆,𝑝) ∶= sup
𝑅∈

1

(𝜇(𝑅))1∕𝑝
‖(𝑏 − ⟨𝑏⟩𝑅)𝟏𝑅‖𝐿𝑝(𝜆).
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We also say, for a dyadic multiparameter 𝐴2 weight 𝑤 on ℝ𝑑, that a function 𝑏 is in the dyadic
one-weight little BMO space if

sup
𝑅∈

1
𝑤(𝑅)

‖(𝑏 − ⟨𝑏⟩𝑅)𝟏𝑅‖𝐿1(ℝ𝑑) < ∞.

In this case, we assign to function 𝑏 the norm

‖𝑏‖bmo (𝑤) ∶= ‖𝑏‖bmo (𝑤,𝑤−1,2),
which is equivalent to the previous supremum. This equivalence is shown by Holmes–
Petermichl–Wick [19] in the biparameter case using an iteration of the one-parameter argument
due to Holmes–Lacey–Wick [18], but the same argument can be iterated to any number of param-
eters. Furthermore, the authors of [19] also prove that, for 𝜇, 𝜆 and 𝜈 as before, there holds

‖𝑏‖bmo (𝜇,𝜆,𝑝) ∼ ‖𝑏‖bmo (𝜆′,𝜇′,𝑝′) ∼ ‖𝑏‖bmo (𝜈)
(it is actually shown there for the continuous biparameter setting, but their argument holds
equally well in the dyadic case and can be iterated to any number of parameters as well).
Recall that if 𝑥 ∈ ℝ𝑑 and 𝑘 ∈ {1, 2, … , 𝑡}, we denote 𝑥

𝑘
∶= (𝑥1, … , 𝑥𝑘−1, ⋅, 𝑥𝑘+1, … , 𝑥𝑡), so that

a function 𝑓(𝑥
𝑘
) depends only on the variable 𝑥𝑘. Similarly, we also denote ℝ

𝑑
𝑘 ∶= ℝ𝑑1 ×⋯ ×

ℝ𝑑𝑘−1 × ℝ𝑑𝑘+1 ×⋯ × ℝ𝑑𝑡 . In general, we extend this notation to any number of parameters, so that
if 𝑘1, … , 𝑘𝑠 ∈ {1, 2, … , 𝑡}, then we take 𝑥

𝑘1,…,𝑘𝑠
∶= (𝑥1, … , 𝑥𝑘1−1, ⋅, 𝑥𝑘1+1, … , 𝑥𝑘𝑠−1, ⋅, 𝑥𝑘𝑠+1, … , 𝑥𝑡),

and similarly for ℝ𝑑𝑘1,…,𝑘𝑠 . Using this notation, Holmes–Petermichl–Wick [19] show that

‖𝑏‖bmo (𝜈) ∼ max

{
ess sup

𝑥
𝑘
∈ℝ

𝑑
𝑘

‖𝑏(𝑥
𝑘
)‖BMO (𝜈(𝑥𝑘))

∶ 𝑘 ∈ {1, 2, … , 𝑡}

}
,

where ‖ ⋅ ‖BMO(𝜈) denotes the usual dyadicweighted one-parameter BMOnorm (again, the result
is stated and proved there only in the continuous biparameter setting, but the argument holds as
well for the dyadic spaces and in any number of parameters). In other words, a function 𝑏 is in
dyadic weighted little bmo if and only if it is uniformly in dyadic-weighted one-parameter BMO
in each variable. Moreover, they also observe that

bmo(𝜈) ⊆ BMOprod,(𝜈).

More generally, let  = {𝐼1, … , 𝐼𝑙} be any partition of {1, … , 𝑡}. Let𝜇, 𝜆 be 𝑡-parameter𝐴𝑝 weights
on ℝ𝑑, 1 < 𝑝 < ∞. Define

‖𝑏‖bmo

(𝜇,𝜆,𝑝) ∶= max

𝚤∈𝐼1×⋯×𝐼𝑙

⎛⎜⎜⎝ess sup𝑥𝚤∈ℝ
𝑑𝚤

‖𝑏(𝑥𝚤)‖BMOprod (𝜇(𝑥𝚤),𝜆(𝑥𝚤),𝑝)

⎞⎟⎟⎠,
and as before if 𝑤 is any 𝑡-parameter 𝐴2 weight on ℝ𝑑, then we define

‖𝑏‖bmo

(𝑤) ∶= ‖𝑏‖bmo


(𝑤,𝑤−1,2).
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If  consists only of singletons, then one recovers product BMO in 𝑡 parameters, while if  has
just one element, then one recovers little BMO. In general, for any partition  we have that

bmo(𝑤) ⊆ bmo

(𝑤) ⊆ BMOprod,(𝑤).

Observe that our results in Section 3 immediately imply that if 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝, then

‖𝑏‖bmo

(𝜈) ∼ ‖𝑏‖bmo


(𝜇,𝜆,𝑝),

where all implied constants depend only on𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, . Notice that herewe aremaking

use of the fact that for any 𝚤 ∈ 𝐼1 ×⋯ × 𝐼𝑙, and for almost every 𝑥𝚤 ∈ ℝ𝑑𝚤 , the weight 𝜇(𝑥𝚤) is a
dyadic 𝑙-parameter 𝐴𝑝 weight on ℝ

𝑑𝑖1 ×⋯ × ℝ𝑑𝑖𝑙 with [𝜇(𝑥𝚤)]𝐴𝑝, ⩽ [𝜇]𝐴𝑝, , and similarly for 𝜆
and 𝜈.
Consider now the set 𝚺 of sign choices 𝜎 = {𝜎(𝑅)}𝑅∈ . For each 𝜎 ∈ 𝚺 we consider the Haar

multiplier 𝑇𝜎 defined by

𝑇𝜎𝑓∶ =
∑
𝑅∈

𝜎(𝑅)𝑓𝑅ℎ𝑅, 𝑓 ∈ 𝐿2(ℝ𝑑).

Observe that herewe consider all possible choices of signs over the dyadic rectangles in, not only
those that are of tensor type, as opposed to Section 4.Wewill study bounds for ‖[𝑇𝜎, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆)
in terms of ‖𝑏‖bmo (𝜈). We adapt the arguments presented in Section 4 to the biparameter case.
Proposition 5.1. Let 1 < 𝑝 < ∞. Consider a function 𝑏 ∈ 𝐿1loc(ℝ

2), dyadic biparameter𝐴𝑝 weights
𝜇, 𝜆 on ℝ2 and define 𝜈 ∶= 𝜇1∕𝑝𝜆−1∕𝑝 . Then

sup
𝜎∈𝚺

‖[𝑇𝜎, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ∼ ‖𝑏‖bmo(𝜈),
where the implied constants depend only on 𝑝, [𝜇]𝐴𝑝, and [𝜆]𝐴𝑝, .

Proof. Airta [1, Theorem 4.12] shows general upper bounds for iterated commutators of multipa-
rameter Haar shifts in terms of the symbol norm in the appropriate indexed BMO space. In par-
ticular, for a single commutator, this includes the upper bound ‖[𝑇𝜎, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≲ ‖𝑏‖bmo(𝜈).
Thus, we only need to show the corresponding lower bound.
Define the operator Θ𝑏 by

Θ𝑏𝑓 =
∑
𝑅∈

(𝜔𝑅𝑏)𝑓𝑅ℎ𝑅, 𝑓 ∈ 𝐿2(ℝ2),

where 𝜔𝑅𝑏 ∶= (𝑏(𝑥) − ⟨𝑏⟩𝑅)𝟏𝑅(𝑥). This operator satisfies the relations
[𝑄𝑅, 𝑏] = [𝑄𝑅,Θ𝑏], ∀𝑅 ∈ ,

and

𝑄𝑅Θ𝑏𝑄𝑅 = 0, ∀𝑅 ∈ ,

where𝑄𝑅 denotes the orthogonal projection from𝐿2(ℝ2) onto the one-dimensional space spanned
by ℎ𝑅. Observe that a simple computation using the definition ofΘ𝑏 shows that they hold for any
Haar function ℎ𝑅, from which the general result follows by a density argument.
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Now we see that

sup
𝜎∈𝚺

‖[𝑇𝜎, 𝑏]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳ ‖Θ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆). (5.1)

As before, the lower bound (5.1) will follow from that of the average of the commutator norms
over 𝚺. In this case we have

∫𝚺 ‖[𝑇𝜎, 𝑏](𝑓)‖𝑝𝐿𝑝(𝜆) dℙ(𝜎)
= ∫ℝ2

(
∫𝚺

|||||
∑
𝑅∈

𝜎(𝑅)[𝑄𝑅, 𝑏](𝑓)(𝑥)
|||||
𝑝

dℙ(𝜎)

)
𝜆(𝑥)d𝑥

∼ ∫ℝ2
(
∫𝚺

|||||
∑
𝑅∈

𝜎(𝑅)[𝑄𝑅, 𝑏](𝑓)(𝑥)
|||||
2

dℙ(𝜎)

)𝑝∕2

𝜆(𝑥)d𝑥,

where we have used Khintchine’s inequalities in the last step. This last quantity is equal to

= ∫ℝ2
(∑
𝑅∈

|[𝑄𝑅, 𝑏](𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥

≳ ∫ℝ2
(∑
𝑅∈

|𝑀[𝑄𝑅, 𝑏](𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥

⩾ ∫ℝ2
(∑
𝑅∈

|𝑄𝑅[𝑄𝑅,Θ𝑏](𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥

= ∫ℝ2
(∑
𝑅∈

|𝑄𝑅Θ𝑏(𝑓)(𝑥)|2)𝑝∕2

𝜆(𝑥)d𝑥 ∼ ‖Θ𝑏(𝑓)‖𝑝𝐿𝑝(𝜆).
This shows (5.1).
Now we are only left with checking that

‖Θ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳ ‖𝑏‖bmo (𝜈).
Observe that testing the operator on Haar functions we immediately get

‖Θ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆)‖ℎ𝑅‖𝐿𝑝(𝜇) ⩾ ‖Θ𝑏ℎ𝑅‖𝐿𝑝(𝜆) = ‖(𝑏 − ⟨𝑏⟩𝑅)𝟏𝑅‖𝐿𝑝(𝜆)|𝑅|−1∕2.
We also have that ‖ℎ𝑅‖𝐿𝑝(𝜇) = (𝜇(𝑅))1∕𝑝|𝑅|−1∕2, so that

‖Θ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ⩾ 1

(𝜇(𝑅))1∕𝑝
‖(𝑏 − ⟨𝑏⟩𝑅)𝟏𝑅‖𝐿𝑝(𝜆).

But the supremum of the right-hand side is precisely ‖𝑏‖bmo(𝜇,𝜆,𝑝) ∼ ‖𝑏‖bmo (𝜈). □
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This method can also be adapted to general indexed BMO spaces, and thus to the general mul-
tiparameter little bmo case. We explain how to do it taking as an example the product space
ℝ3 = ℝ × ℝ × ℝ, and the partition  ∶= {𝐼1 ∶= {1, 3}, 𝐼2 ∶= {2}} of {1, 2, 3}. In this case, we con-
sider the set 𝚺1,3 of sign choices 𝜎 = {𝜎(𝐼 × 𝐽)}𝐼×𝐽∈ , and the set 𝚺2 of sign choices 𝜎 = {𝜎(𝐼)}𝐼∈ .
Given 𝜎1,3 ∈ 𝚺1,3 and 𝜎2 ∈ 𝚺2 consider the martingale transform 𝑇1,3𝜎1,3 acting on variables 1 and
3 and the martingale transform 𝑇2𝜎2

acting on variable 2. The previous method can be adapted to
show that

sup
𝜎1,3∈𝚺1,3, 𝜎2∈Σ2

‖[𝑇1,3𝜎1,3 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳ ‖𝑏‖bmo

(𝜈),

while the corresponding upper bound was already proved by Airta (see [1, Theorem 4.12]). To this
end, define the operator Ξ𝑏 by

Ξ𝑏𝑓 =
∑

𝐼,𝐽,𝐾∈
(𝜉𝐼×𝐽×𝐾𝑏)𝑓𝐼×𝐽×𝐾ℎ𝐼×𝐽×𝐾, 𝑓 ∈ 𝐿2(ℝ3),

where

𝜉𝐼×𝐽×𝐾𝑏 = (𝑏 − ⟨𝑏⟩1,3𝐼×𝐾 − ⟨𝑏⟩2𝐽 + ⟨𝑏⟩1,2,3𝐼×𝐽×𝐾)𝟏𝐼×𝐽×𝐾

and where we use ⟨𝑏⟩1,3𝐼×𝐾 to denote the average taken on variables 1 and 3 taken over 𝐼 × 𝐾 (sim-
ilarly for ⟨𝑏⟩2𝐽). Then one can repeat the arguments in Lemma 4.1 to show that

sup
𝜎1,3∈𝚺1,3, 𝜎2∈Σ2

‖[𝑇1,3𝜎1,3 , [𝑇2𝜎2 , 𝑏]]‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ≳ ‖Ξ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆).
The lower bound for the operator norm ofΞ𝑏 follows a similar argument to that ofΛ𝑏, with the dif-
ference that in this case one needs to check the BMOprod, norm in variables 1, 2 and in variables
2, 3. We focus on how to get the bound for variables 1 and 2, as the other case is done in the same
way. Consider an arbitrary open set Ω ⊆ ℝ × ℝ of non-zero finite measure and its characteristic
function 𝟏Ω(𝑥1, 𝑥2) in variables 1 and 2. Fix 𝑥3 and take 𝐾 ∈  such that 𝑥3 ∈ 𝐾. Note that for
𝑥 ∈ ℝ × ℝ × {𝑥3} we trivially have Ξ𝑏(𝑥1,2)(𝟏Ω ⊗ ℎ𝐾) = (Λ𝑏(𝑥1,2)

𝟏Ω) ⊗ ℎ𝐾 . By testing the operator
Ξ𝑏 on 𝟏Ω ⊗ ℎ𝐾 one gets

1|𝐾|1−𝑝∕2 ‖Ξ𝑏(𝟏Ω ⊗ ℎ𝐾)‖𝑝𝐿𝑝(𝜆)
= ∫ℝ×ℝ

1|𝐾| ∫𝐾
||||||
∑
𝐼,𝐽∈

(𝑏 − ⟨𝑏⟩1,3𝐼×𝐾 − ⟨𝑏⟩2𝐽 + ⟨𝑏⟩1,2,3𝐼×𝐽×𝐾)(𝟏Ω)𝐼×𝐽

||||||
𝑝

𝜆(𝑥1, 𝑥2, 𝑥3)d𝑥

⩽ ‖Ξ𝑏‖𝑝𝐿𝑝(𝜇)→𝐿𝑝(𝜆)⟨𝜇(Ω, 𝑥3)⟩3𝐾.
Applying twice Lebesgue Differentiation Theorem and Fatou’s lemma we get

‖Λ𝑏(𝑥1,2)𝟏Ω‖𝑝𝐿𝑝(𝜆(𝑥1,2))
= ∫ℝ×ℝ

||||||
∑
𝐼,𝐽∈

(𝑏(𝑥1,2) − ⟨𝑏(𝑥1,2)⟩1𝐼 − ⟨𝑏(𝑥1,2)⟩2𝐽 + ⟨𝑏(𝑥1,2)⟩1,2𝐼×𝐽)(𝟏Ω)𝐼×𝐽||||||
𝑝

𝜆(𝑥1,2) d𝑥1 d𝑥2

⩽ lim
𝐾→𝑥3

‖Ξ𝑏‖𝑝𝐿𝑝(𝜇)→𝐿𝑝(𝜆)⟨𝜇(Ω, 𝑥3)⟩3𝐾 = ‖Ξ𝑏‖𝑝𝐿𝑝(𝜇)→𝐿𝑝(𝜆)𝜇(Ω, 𝑥3),
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where 𝐾 → 𝑥3 denotes that the limit is taken through a sequence of intervals containing 𝑥3 with
side length tending to 0, and where the last equality holds at almost every 𝑥3. Thus, by the bound
(4.8) for operator Λ𝑏(𝑥1,2) in terms of the dyadic one-weight biparameter product BMO norm, we
get

‖Ξ𝑏‖𝐿𝑝(𝜇)→𝐿𝑝(𝜆) ⩾ ess sup
𝑥3

‖𝑏(𝑥1,2)‖BMOprod, (𝜈(𝑥1,2)).
The case of general commutators and indexed spaces can be worked out in a similar way, con-

sidering the appropriate multiparameter analogues of the operator Ξ𝑏, Lemma 4.1 and Equation
(4.8).

ACKNOWLEDGEMENT
The authors would like to thank Professor Stefanie Petermichl for suggesting the problem of this
paper, and for the valuable feedback and guidance in the process of writing it. First author is sup-
ported by the Alexander von Humboldt Stiftung. Second author is supported by the ERC project
CHRiSHarMa no. DLV-682402.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. E. Airta, Two-weight commutator estimates: general multiparameter framework, Publ. Mat. 64 (2020), no. 2,

681–729.
2. E. Airta, K. Li, H. Martikainen, and E. Vuorinen, Some new weighted estimates on product spaces, Preprint

(accepted/in press), available at arXiv:1910.12546.
3. Ó. Blasco and S. Pott, Carleson’s counterexample and a scale of Lorentz-BMO spaces on the bitorus, Ark. Mat.

43 (2005), no. 2, 289–305.
4. Ó. Blasco and S. Pott, Dyadic BMO on the bidisk, Rev. Mat. Iberoamericana 21 (2005), no. 2, 483–510.
5. S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), no. 1, 103–122.
6. L. Carleson, A Counterexample for Measures Bounded on 𝐻𝑝 spaces for the Bidisk, Mittag-Leffler Report no. 7,

1974.
7. O.N. Capri andC. E. Gutiérrez,Weighted inequalities for a vector-valued strongmaximal function, RockyMoun-

tain J. Math. 18 (1988), no. 3, 565–570.
8. S.-Y. A. Chang, Carleson measure on the Bi-Disc, Ann. of Math. (2) 109 (1979), no. 3, 613–620.
9. R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of

Math. (2) 103 (1976), no. 3, 611–635.
10. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from𝐴∞ weights and applications, J. Funct. Anal. 213

(2004), no. 2, 412–439.
11. L. Dalenc and Y. Ou, Upper bound for multi-parameter iterated commutators, Publ. Mat. 60 (2016), no. 1, 191–

220.
12. L. Dalenc and S. Petermichl, A lower bound criterion for iterated commutators, J. Funct. Anal. 266 (2014), no.

8, 5300–5320.
13. M. Frazier, B. Jawerth and G. Weiss, Littlewood–Paley theory and the study of function spaces, CBMS Regional

Conference Series in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 1991.
14. R. Fefferman, Bounded mean oscillation on the polydisk, Ann. of Math. (2) 110 (1979), no. 2, 395–406.



DYADIC PRODUCT BMO IN THE BLOOM SETTING 935

15. S. H. Ferguson andC. Sadosky,Characterizations of boundedmean oscillation on the polydisk in terms ofHankel
operators and Carleson measures, J. Anal. Math. 81 (2000), 239–267

16. S. H. Ferguson and M. T. Lacey, A characterisation of product BMO by commutators, Acta Math. 189 (2002),
no. 2, 143–160.

17. L. Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, Springer, New York, 2014.
18. I. Holmes, M. T. Lacey, and B. D. Wick, Commutators in the two-weight setting, Math. Ann. 367 (2017), no. 1-2,

51–80.
19. I. Holmes, S. Petermichl, and B. D. Wick,Weighted little bmo and two-weight inequalities for Journé commuta-

tors, Anal. PDE 11 (2018), no. 7, 1693–1740.
20. T. Hytönen, The sharp weighted bound for general Calderón–Zygmund operators, Ann. of Math. (2) 175 (2012),

no. 3, 1473–1506.
21. J. Isralowitz,Matrix weighted Triebel-Lizorkin bounds: a simple stopping time proof, Preprint (submitted), avail-

able at arXiv:1507.06700.
22. J. Isralowitz, S. Pott, and S. Treil, Commutators in the two scalar and matrix weighted setting, Preprint (submit-

ted), available at arXiv:2001.11182.
23. K. Li, H. Martikainen, and E. Vuorinen, Bloom type upper bounds in the product BMO setting, J. Geom. Anal.

30 (2020), no. 3, 3181–3203
24. K. Li, H.Martikainen, and E. Vuorinen, Bloom type inequality for bi-parameter singular integrals: efficient proof

and iterated commutators, International Mathematics Research Notices, rnz072, 2019.
25. H. Martikainen, Representation of bi-parameter singular integrals by dyadic operators, Adv. Math. 229 (2012),

no. 3, 1734–1761.
26. B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia

Math. 54 (1975/76), no. 3, 221–237.
27. F. Nazarov, S. Petermichl, S. Treil, and A. Volberg,Convex body domination and weighted estimates withmatrix

weights, Adv. Math. 318 (2017), 279–306
28. Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162.
29. Y.Ou, S. Petermichl, andE. Strouse,Higher order Journé commutators and characterizations ofmulti-parameter

BMO, Adv. Math. 291 (2016), 24–58.
30. T. Tao, Dyadic product 𝐻1, BMO, and Carleson’s counterexample, Unpublished manuscript, available at https:

//www.math.ucla.edu/∼tao/preprints/Expository/product.dvi.
31. S. Treil, A remark on two weight estimates for positive dyadic operators, Operator-related function theory and

time-frequency analysis, K. Gröchenig, Y. Lyubarskii, and K. Seip (eds.), Abel Symposia, vol. 9, Springer,
Cham, 2015.

https://www.math.ucla.edu/~tao/preprints/Expository/product.dvi
https://www.math.ucla.edu/~tao/preprints/Expository/product.dvi

	Dyadic product BMO in the Bloom setting
	Abstract
	Notation
	1 | INTRODUCTION AND MAIN RESULTS
	2 | BACKGROUND AND NOTATION
	2.1 | Dyadic intervals and dyadic rectangles
	2.2 | Haar systems
	2.2.1 | Haar system on 
	2.2.2 | Haar system on the product space 

	2.3 | weights
	2.3.1 | weights on 
	2.3.2 | Biparameter weights on 
	2.3.3 | Averages of weights

	2.4 | Dyadic square functions and Littlewood-Paley estimates
	2.4.1 | Dyadic square function over collections of dyadic rectangles
	2.4.2 | Incorporating the weight in the square function


	3 | EQUIVALENCES FOR DYADIC BLOOM PRODUCT BMO
	4 | ESTIMATES FOR ITERATED COMMUTATORS OF HAAR MULTIPLIERS
	4.1 | Relating Haar multipliers to a ‘symmetrized’ paraproduct
	4.2 | Bounds for the ‘symmetrized’ paraproduct and conclusion of the proof
	4.3 | General multiparameter result

	5 | BOUNDS FOR GENERAL COMMUTATORS OF HAAR MULTIPLIERS
	ACKNOWLEDGEMENT
	JOURNAL INFORMATION
	REFERENCES


