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Objective. Alzheimer’s disease (AD) is a growing challengeworldwide,which iswhy the

search for early-onset predictors must be focused as soon as possible. Longitudinal

studies that investigate courses of neuropsychological and other variables screen for such

predictors correlated tomild cognitive impairment (MCI). However, one often neglected

issue in analyses of such studies is measurement invariance (MI), which is often assumed

but not tested for. This study uses the absence of MI (non-MI) and latent factor scores

instead of composite variables to assess properties of cognitive domains, compensation

mechanisms, and their predictability to establish a method for a more comprehensive

understanding of pathological cognitive decline.

Methods. An exploratory factor analysis (EFA) and a set of increasingly restricted

confirmatory factor analyses (CFAs) were conducted to find latent factors, compared

them with the composite approach, and to test for longitudinal (partial-)MI in a

neuropsychiatric test battery, consisting of 14 test variables. A total of 330 elderly (mean

age: 73.78 � 1.52 years at baseline) were analyzed two times (3 years apart).

Results. EFA revealed a four-factor model representing declarative memory, attention,

working memory, and visual–spatial processing. Based on CFA, an accurate model was
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estimated across bothmeasurement timepoints. Partial non-MIwas found for parameters

such as loadings, test- and latent factor intercepts as well as latent factor variances. The

latent factor approach was preferable to the composite approach.

Conclusion. The overall assessment of non-MI latent factors may pose a possible target

for this field of research. Hence, the non-MI of variances indicated variables that are

especially suited for the prediction of pathological cognitive decline, while non-MI of

intercepts indicated general aging-related decline. As a result, the sole assessment of MI

may help distinguish pathological from normative aging processes and additionally may

reveal compensatory neuropsychological mechanisms.

Mild cognitive impairment (MCI) and Alzheimer’s disease (AD)

Due to the constantly aging society, neurodegenerative diseases such as dementia

represent a growing challenge for health care systems worldwide (Abbott, 2011; Bickel,

2001; Prince et al., 2013). Affecting 60–70% of people suffering from dementia, one of the

most usual forms is Alzheimer’s disease (AD; World Health Organization [WHO], 2016).
An early indicator is mild cognitive impairment (MCI), which often progresses into AD

(Arnáiz & Almkvist, 2003). According to Petersen (2000), 10–15% ofMCI patients convert

into AD per year, and up to 15–20% of the general population express MCI symptoma-

tology. Even though there is no cure available to date, early interventions can dampen the

course of the disease (Mayeux, 2010;Winblad et al., 2006), which highlights the necessity

of diagnostics in the early stages. Thus, finding variables with high predictive power for

neuropsychiatric changes is a focus of MCI-related research.

According to the consensus formulated in DSM-V and ICD-10 (American Psychiatric
Association, 2014; World Health Organization [WHO], 2019), diagnostics of MCI and AD

that heavily rely on neuropsychiatric tests as their first symptoms are deficits in cognitive

performance, such as memory loss (Arnáiz & Almkvist, 2003; Jahn, 2013; Nestor, Fryer, &

Hodges, 2006; Riedel & Blokland, 2015). As a result, finding predictors for such

neuropsychological symptoms may elude targets for early interventions. The statistically

and methodologically most efficient way to address this topic is analyzing longitudinal

within-subject course data (Cooper, Sommerlad, Lyketsos, & Livingston, 2015; Hendrix

et al., 2015; Makkar et al., 2020).

Shortcomings of the composite approach

A valid approach to increase robustness and significance of prediction analyses may be to

create composite variables consisting of a sum or average score of potential predictors of

interest. For example, multiple performance scores can be combined by forming a

composite score. However, by simply adding the test scores, it is implicitly assumed that

all scores are equally meaningful for the target construct (e.g., declarative memory).
However, since the target construct is often a latent factor, it should be empirically

verified that this assumption is, indeed, true. To do so, however, a latent factor approach

would be more adequate. This problem is further complicated by the fact that the extent

to which a predictor is relevant to the latent construct can vary across groups and over

time. As a result, both the classical composite and weighted composite approaches that

impose fixed weights on scores within the composite (e.g., 1 × immediate memory

performance + 0.3 × working memory performance = latent memory ability) may fall

short if the actual relationship of the manifest test scores differs from the weights chosen
by the researcher (in the classical approach, each variable is multiplied by a weight of 1).

Factor analyses may provide the most reliable weights for calculating composites. This
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may be particularly the case in longitudinal studies, as weights may change over time,

which may affect the comparability of measurement occasions within the follow-up data.

This effect ("response shift") has been described in other areas of research (e.g., Oort,

2005). However, different weights are not the only parameters that can change over time,
which further complicates analyses and suggests new ways to examine course data in

detail. For instance, if a sample achieved a mean score of 10 on a composite variable

described by researchers as an indicator of memory at both the first and second

measurement occasions, onewould conclude that the sample’smemory performance had

not changed. However, this null finding could be misleading, as this sample’s latent

declarative memory performance may have decreased, even if this did not manifest in the

composite variable due to compensatory mechanisms (e.g., coping strategies, test-

memory effects). Thus, to estimate latent ability changes and to detect effect-concealing
or effect-inflating mechanisms, the intercorrelation matrix of different neuropsychiatric

tests can be used. For example, an altered covariation between memory and attention

scores at the second measurement occasion may indicate that the ability to modulate

attention might cause a decline in memory performance less noticeable. Also, memory

abilitiesmight have a lower covariancewith other latent skills if its scoreswere affected by

retest effects, while other neuropsychiatric domains were not. Hence, merit lies in the

analysis of test score interplays rather than absolute values. The classical method to deal

with such complex matrices between multiple test scores is the (confirmatory) factor
analysis, which extracts latent abilities frommanifest test scores and estimates changes in

the intercorrelation of manifest and latent variables based on these data. In summary, this

approach investigates the equivalence of parameters within a structural equation model

(SEM) across groups/time and can find indicators of possible bias mechanisms that may

distort the results of the composite approach. Measurement invariance (MI; no significant

variation of a parameter across groups/time) of parameters would imply that themanifest

sum score approach would be largely unbiased. The following section gives interpreta-

tions for non-invariance for a subset of central parameters within such analyses.

Longitudinal MI

In most studies investigating MI, SEM comparing increasingly restricted confirmatory

factor models is the method of choice. Due to its ability to integrate latent and observed

variables out of many test variables, this approach is expected to offer an appropriate

statistical method to reveal latent factor structures and to prove construct validity by

factorial invariance measurements of neuropsychiatric test batteries across time, sample
subgroups, and different cognitive levels (Berndt &Williams, 2013; Kline, 2005; Mungas,

Widaman, Reed, & Tomaszewski Farias, 2011; Park & Festini, 2017; Rahmadi et al., 2018;

Rowe, 2010; Schumacker & Lomax, 2004).

Intercepts

One often recognised MI parameter is the estimated intercept of single items/tests and

latentmeans. In the context of regression (which reflects the relationship of a latent factor
to itsmanifest indicators), intercepts reflect the (grand)mean score of a given population.

Non-MI, for example, increase/decrease in intercepts, may, thus, reflect sample-level

increase/decrease of latent traits (latent trait level) or manifest test-performance

(indicator level). In turn, non-MI of intercepts can be interpreted similarly to increases/

decreases in composite scores: It indicates changes of ability (on a latent factor level) or
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test-performance (on the indicator level). Thus, this kind of invariance violationwould not

be a problem in longitudinal MI research, but reflects an anticipated effect.

Variances

Another indicator for performance change is variances, as thesemay (inter alia) increase if

at least two groups of individuals develop in different directions. In contrast, whole-

population changes in one direction would only result in intercept change, but not

variance changes. Therefore, non-MI of variances (on latent and indicator levels) would

not be a problem but could indicate subpopulations within the sample.

From this perspective, an increase in latent factor score variance may highlight that

some participants depict no change in the target construct or even increases while others
suffered from decreases. On the other hand, decreasing variances over time may indicate

retest effects that diminish inter-individual differences in performance capability or the

diminishing influence of variance-inducing third variables, such as trait anxiety (e.g.,

habituation effects), or simply normative aging processes that diminish smaller inter-

individual differences over time.

However, other mechanisms may lead to similar changes in variance. For instance,

increases in variance may also be attributable to increasingly fluctuating cognitive

capabilities following cognitive decline and aging in general. Nonetheless, in the context of
neuropsychological longitudinalMI research, non-invariance of variancesmay indicate that

a certain domain is especially potent to distinguish healthy from abnormal courses or to at

least indicate a certain cognitive domain to show some kind of aging-dependent variability.

Loadings

Another parameter that may show non-MI is the correlation of indicators and latent

factors, which resembles weights within the composite approach. If loadings that
previously were small enough to be neglected in increase to the extent that a new

indicator should be added to the model or shifted from one latent factor to another, then

the factor structure may change in its entirety (Cheung & Rensvold, 2002; Oort, 2005).

In the context of neuropsychiatric measures, the neuronal bases of performance in

psychometric tests may change (e.g., verbal skill deficits may affect memory performance

and lead to a reorganization of the factor structure). However, this effect may also be

observed in normative age-related processes.

Nonetheless, regardless of the etiology of the loading shifts, invariance across
measurement occasions would be a requirement of the classical composite approach as it

implicitly assumes that all included variables contribute equally to the neuropsychiatric

domain. Usually, weighted composite calculations are more beneficial. As weights of all

variables entering a composite should reflect the loading of indicators on the latent

factors, non-MI over timewould imply that weights should also vary over time. Thus, non-

MI is a general issue in this context and may highlight the shortcomings of classical

composite approaches.

Longitudinal MI research based on neuropsychiatric test batteries

In contrast to the vast number of longitudinal research articles implemented on the

prediction and the course of MCI/AD, far fewer of these have focused on latent factor

structures and factorial invariance underlying cognitive domains within neuropsychiatric
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test batteries to ensure generalizability (National Institute of Mental Health, 2011;

Wicherts, 2016). Rather, some studies used the SEM approach to investigate between-

group MI (Avila et al., 2020; Mitchell et al., 2012; Mungas et al., 2011; Sayegh & Knight,

2014; Tuokko et al., 2009). Others investigated latent factors and tested for MI in
neuropsychiatric test batteries without keeping the longitudinal aspect inmind (Ma et al.,

2021).

To our knowledge, only a few longitudinal measurement invariance studies, including

the within-group latent factor approach based on neuropsychiatric test batteries, were

published: For example, in a large multi-center sample of N = 12020 cognitively healthy

participants and participants with diagnosed MCI or dementia were involved (age:

≥55 years;M = 75.6 years); researchers derived a four-factor structure from a neuropsy-

chiatric battery (12 test variables), including the factor memory, attention, executive
function, and language (Hayden et al., 2011, 2014). These factors remained invariant

across the span of 1 year and predicted sample subgroups and cognitive impairment

3 years later. Moreover, Moreira et al. (2018) examined a two-factor model including

memory performance and executive functioning in an elderly sample of 86 participants

from a neuropsychiatric test battery. Defined factors remained invariant for 2 years.

Similar studies concentrated on the two factors, namely, memory and executive

functioning extracted out of large test batteries over periods of up to 8 years (Bertola

et al., 2021; Williams, Chandola, & Pendleton, 2018).

Aims of the current study

As part of the prospective, observational, long-term, follow-up “Vogel Study” of a large

German sample was conducted (M = 73.9 � 1.55 years of age at first out of three visits;

see also Polak et al., 2017; Haberstumpf et al., 2020; Katzorke et al., 2018; Katzorke et al.,

2017; Zeller et al., 2019); this current analysis aims to investigate longitudinal MI in a

sample of (mostly) healthy elderly (at the first measurement occasion) over 3 years.
However, in contrast to between-group MI-testing, we hypothesise and aim for the

absence of MI, especially concerning variances of latent and manifest variables as these

may indicate at least two groups of participants differing in their performance trajectory

over time. Other mechanisms that may also result in increased variance may hint towards

the importance of affected variables as potential targets for future studies. An Increased

variance may result from the cognitive decline within the total sample (instead of within

two distinct groups), which leads to more fluctuation in performance and, thus,

longitudinal heteroscedasticity (Koscik et al., 2016). Nonetheless, non-MI would still
provide for the insight that the affected variable is a valuable candidate for further

investigation as it would have been indicated to be sensitive for cognitive decline or aging

in general (see more on this in section 4). This non-MI may, thus, single out promising

variables for further analyses as they possibly differentiate normal from pathological

cognitive changes. Moreover, general decreases in intercept estimates (in both latent and

manifest variables) are also anticipated, reflecting sample-based average changes in

cognitive abilities on a latent level and changes in average test performance in manifest

test scores. Additionally, MI of factor loadings is investigated to estimate possible
shortcomings of the usual procedure to analyze sum-scores/composites.
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Methods

Sample characterisation
As described earlier in Polak et al. (2017), the Vogel Study was carried out with the

authorization of the local ethics committee (vote no. 23/11) and complied with the

Helsinki Declaration (World Medical Association, 2013). Residents (with or without

origin) of the city of Würzburg born between April 1936 and March 1941 (age: 70–
77 years) were included in the study. All of them were informed about the project. They

gave theirwritten consent to participate in theVogel Study,which started in the year 2011

and has now completed two out of three measurement time points (visit 1 [V1], visit 2

[V2], and visit [V3]). The project intends a total study duration of 10 years with 6 years of
observation per participant.

Participants were excluded if they (1) suffered severe internal, psychiatric, or

neurologic diseasewithin the last 12 months (e.g., brain infarction) or (2) had a severe and

uncorrected impairment of vision or hearing on the first day of data collection. Thus, a

total of N = 604 subjects attended in the baseline examination of the Vogel Study.

At V2, approximately 3 years after V1, n = 97 participants no longer participated in

the study (n = 507). This was, for example, due to death, the fulfillment of study

exclusion criteria, study termination, relocation, or the deregistration of the telephone
connection. For the current data analysis depicted below, participants who did not

perform the neuropsychiatric test battery (n = 125) or exhibited more than five misses

within the neuropsychiatric test battery (n = 44) because of rejection or high-stress

experience at baseline or first follow-up examination were excluded. Even though this

indicates dropouts to be dependent on personality or ability traits (e.g., cognitive abilities

may have been worse in those who diedwithin the next 3 years as existing disorders may

have had impact at V1 already), we assume that the remaining misses within the final

dataset were random.
We then calculated Mahalanobis-distances (cut off: p < .001; n = 4; Tab achnick &

Fidell, 1996), as well as z-scores (cut off: �3.29; n = 4; Tab achnick & Fidell, 1996), for

each neuropsychiatric test to find and subsequently exclude uni- andmulti-variate outliers

pairwise.

Therefore, the remaining sample of this article’s final data set consisted of n = 330

participants (age: 70–77 years with M = 73.78 � 1.52 years at baseline examination;

age: 73–81 years with M = 77.67 � 1.60 years at first follow-up examination; n = 138

females, n = 192 males; see Figure 1). So far, as described above, we still are in
preparation for the second follow-up examination and have no data available yet.

Neuropsychiatric test battery

Besides the examination of various demographic, anamnestic (e.g., lifestyle, medical

history, etc.), affectivity, autonomy, blood, and lifestyle variables to characterise our

sample, we conducted a neuropsychiatric test battery comprising: (1) the Verbal Learning

And Memory Test (VLMT; Helmstaedter, Lendt, & Lux, 2001), (2) the Wechsler Memory
Scale-Revised (WMS-R; Härting et al., 2000), (3) the Regensburger Verbal Fluency Test

(RWT; Aschenbrenner, Tucha, & Lange, 2000), (4) the Rey Complex Figure Test (CFT;

Fimm & Zimmermann, 2001; Meyers & Meyers, 1996), and (5) the battery of Tests for

Attentional Performance (TAP; Fimm & Zimmermann, 2001). For a more detailed

description of the general examination procedure within the Vogel Study, see our

previous method studies (Polak et al., 2017).
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The subsequent test scores were used in further latent factor analyses: VLMT

immediate recall (sum scorewords), VLMT delayed recall (sum score reproducedwords),

VLMT recognition (sum score recognitionword list),WMS-R digit span (sum score),WMS-

R block span (sum score), RWT verbal fluency (sum score), RWT category fluency (sum
score), CFT memory (sum score both reproduction times), CFT visuoconstruction

(drawing score), TAP tonic alertness (median of reaction time [RT]), TAP phasic alertness

(RT-parameter for phasic alertness), TAP divided attention (omission error), TAPGoNoGo

(error number), and TAP incompatibility (F-value of “field of vision x hand” interaction).

Thus, the following latent factor analysis comprised 14 test variables detached from five

neuropsychiatric tests.

Statistical analyses

The data preparation, outlier detection, testing of prerequisite assumptions, and the EFA

were conducted in IBM SPSS Statistics for Windows (version 25; SPSS Inc). Further CFA

analyses were completed in R (lavaan package version 0.6–5; (Rosseel, 2012; R Core

Figure 1. Course of exclusion for data analysis; CNS = central nervous system.
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Team, 2016). Predictivemixedmodelswere also fitted via R (lme4 and lmerTest packages;

Bates, Maechler, Bolker, & Walker, 2014; Kuznetsova, Brockhoff, & Christensen, 2015,

2017).

Acceptable cut-offs for fit indices, for example, the root mean square error of
approximation (RMSEA) and comparative fit index (CFI) were set to <0.05 and >0.95,
respectively. The alpha level to test for significance in χ2-tests was set to <0.05.

Regarding the SEM, standardizing manifest variables may lead to biased estimates in

longitudinal data (Kline, 2005; Schumacker & Lomax, 2004). Also, some tests did not

provide samples that qualified for T-value calculation in all ages of participants who were

included in this study. To get an unbiased estimation of course effects, raw test scores

were used for further latent factor analyses (13 raw scores and 1 F-value for TAP

incompatibility1).
Moreover, as unstandardised test scores exhibited substantial differences in their

respective scales, those tests depicting variances greater than 10 times the magnitude of

the smallest variance found in the dataset were rescaled. This procedure is thought to

diminish chances for Heywood cases and other estimation issues (Kline, 2005;

Schumacker & Lomax, 2004). Finally, reaction time–based variables were transformed

via natural logarithm (TAP tonic and phasic alertness). However, no other transformation

was carried out,which led to non-normality of several test scores. Even though thismay, in

theory, impair reliable estimation, several simulation studies reported only a small non-
normality impact on standard errors (Lei & Lomax, 2005) ormodel fit (Gao,Mokhtarian, &

Johnston, 2008). Furthermore, since the effect of non-normality may vary across different

estimationmethods, robustmaximum likelihood estimationwas used. This function leads

to reliable model estimations consideringmis-specification, non-normality of data, and/or

small sample sizes (Gao, Shi, & Maydeu-Olivares, 2020; Lai, 2018; Yilmaz, 2019).

Exploratory factor analysis (EFA)

To find a fitting latent factor structure, an EFA was carried out, including data of both

measurement occasions. Aparallel analysiswas carried out to define the number of factors

thatwere subsequently extracted after Varimax rotation. TheKaiser–Meyer–Olkin (KMO)

criteriumandBartlett’s test of sphericitywere assessed to ensure suitable prerequisites for

the analysis. Only those tests depicting rotated loadings of four or higher on only one

factor were included in the final model.

Invariance testing

The concluding factor structure, indicated by the EFA, was tested in a multi-group CFA

using full information maximum likelihood estimation in the handling of misses, the

lavaan-default “nlminb” optimizationmethod, and robustmaximum likelihood estimation

(MLR) for the calculation of standard errors. Groups were defined by test sessions, which

were 3 years apart, enabling a longitudinal interpretation of cross-group effects. Each

participant remaining in the dataset was present on both occasions.

As stated before, MI is usually tested via increasingly restrictive CFAs. In this context,
“restriction” refers to the fact that a given parameter is not allowed to vary across groups

1 This test calculates an F-test to evaluate slowing in reaction time due to incompatibility compared to compatible trials in a flanker
task (the higher the percentage rank, the lower the incompatibility effect).
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(measurement occasions): Suppose the fit between a predefined model and the actual

data decreases by imposing such a restriction, in that case, this restriction seems to have

violated the actual data structure in the sense that the datawould be better represented by

allowing varying parameters across groups, indicating non-MI.
Hence, each of the following models adds certain parameters to the previous models’

restrictions. Comparing model fit across these, significant decreases in fit indices would

indicate non-invariance (the restricted parameter varies over time). To test this, χ2

statisticswere calculated. These statistics indicate differences betweenonemodel and the

model before (model 2 vs. 1, model 3 vs. 2, and model 4 vs. 3). Following theoretical

remarks, a total of fourmodels were fit (Cheung&Rensvold, 2002; Dowling, Hermann, La

Rue, & Sager, 2010; Van de Schoot, Lugtig, & Hox, 2012), including the following:

Configural model. In this model, only the factor structure (assignment of tests to latent

factors) implied by the EFAwas restricted for all variables. Otherwise, thismodel is built to

freely estimate as many parameters as possible. However, to ensure the model to be

identifiable, some restrictions need to bemade. In this study, two separate approaches are

discussed to give examples on possible modeling decisions concerning two different-use

cases.

First, to investigate measurement invariance with a focus on manifest-latent- factor-
interaction, the loading of one indicator variable per factor was restricted to 1. Also, the

means/intercepts of the latent factors were restricted to 0 to give the latent factors a

metric. Since means of the latent factors are not allowed to differ from 0, changes within

latent abilities will be propagated to manifest test score intercept differences over time,

enabling the investigation of test properties (i.e., how well they are suited to investigate

latent ability changes). This approach was used at first.

In addition, one may consider the extraction of latent ability scores for further

investigation (e.g., to use it as dependent variables within regression analyses or
ANOVAs). Thus, for this goal, it is more beneficial to allow free latent score estimation at

the second measurement occasion. To do so, in an exemplary use case, the configural

model was later refitted with a restriction of latent variable means to 0 and latent variable

variances to 1 for the first measurement occasion only. Furthermore, loadings of one

manifest indicator variable per factor were restricted to be equal across both measure-

ment occasions, which enabled the model to estimate latent factor means and variance

freely at the second measurement. Thus, in this model, significance of changes over time

can be easily assessed by investigation of latent variable estimates at V2 (intercepts are
significant if they differ significantly from 0, variances are significant if they differ

significantly from 1).

Regardless of these modeling choices, overall (absolute) fit of this kind of model

indicates that themodel structure (association of tests to a certain latent factor) is invariant

over time. If this was violated, latent abilities would not be indicated by the same tests

across time, which would imply severe issues with the composite approach and question

the validity of course data in general.

Metric model. In the next model, investigating (construct-level) metric invariance, all

loadings across groups/time were restricted to equal one another. The means of the

factors themselves were still fixed to 0, while the loading of one indicator per factor was

fixed to 1. In this model, invariance implies that manifest test scores equally indicate the
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given latent constructs over time. Violation of this loading invariancewould imply that the

weights of variables used for composite approaches must be adjusted over time.

Scalar model. The third, scalar model, added a cross-group restriction of manifest

indicator intercepts. By doing so, the measurement model is identifiable without latent

mean fixation. Thus, latent means were estimated freely instead of being fixed to 0. In this

model, non-MI across groups indicate changes in the difficulty of tests (changes in

performance by participants). Furthermore, latent factor intercepts may be analyzed to

find longitudinal decreases/increases in latent abilities. Violation of intercept invariance

would not pose a problem but may indicate anticipated effects of ability/performance

decline.

Variance model. Finally, in addition to these restrictions, variances of latent factors

were held constant across groups/time. Non-invariance in this model may reflect the

presence of at least two groups of participants whose latent abilities evolve into different

directions over time or the presence of othermechanisms that affect the overall variability

ofmeasured abilitywithin thewhole sample. Thus, violation of the invariance assumption

would be in line with anticipated effects as this may highlight variables/parameters that
could possibly be best suited for detection of early MCI-related whole sample or sub-

sample–based changes (e.g., healthy vs. abnormal cognitive courses).

Composite approach

To assess the benefit of latent-factor-score analysis with the more common composite

approach, unweighted composite variables were calculated for comparison. To do so, the

test score of each subject was standardised for each individual test by placing the score
obtained in the context of an age- as well as gender- and education-matched norm sample

(all test scores except the VLMT and CFT). In total, four composites were calculated

before the context of the factor structure defined by the EFA by simply averaging test

scores assigned to a common factor (see Figure 3). The models investigated the same

n = 330 participants.

To then compare the benefit of the latent factor approach over the unweighted

composites, as an example, a mixed effect regression model was fit once with the latent

factor estimate for declarative memory as a dependent variable and once with the
respective composite as such. As a result, the two models can be compared directly by

comparing the estimated effects of predictors (which are the same across bothmodels) for

these two dependent variables.

Results

Exploratory factor analysis

Both the KMO criterium (.688) and Bartlett’s test of sphericity (χ2(91) = 1974.583,

df = 91, p < .001) implicated suitable prerequisites to conduct the analysis. Subse-

quently, a total of five factorswere extracted following the suggestions of both Eigenvalue

and parallel analysis. Estimations of factor properties and a scree plot are shown inTable 1

and Figure 2. Rotated loadings ≥0.4 are displayed in Table 2.
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Cognitive domains were assigned to describe the factors as denominated in Table 3.

However, only four factors of those implicated by the EFA were analyzed further as the

fifth factor comprised only one indicator complicating estimation (Kline, 2005;

Schumacker & Lomax, 2004).

Measurement invariance testing

Four increasingly restricted models were fit and compared to analyze measurement
invariance (see Table 4). Both the RMSEA and CFI indicated acceptable model data

assuming that the assignment of manifest test scores to latent factors stays equal across

time. Hence, the conceptual representation shown in Figure 3 represents the suitable

structure for both measurement occasions. However, Table 4 further summarises that

factor loadings, test intercepts, latent means, and latent variances depict substantial non-

MI over time.

However, as non-MI is not per se a property of the whole model, but rather of certain

parameters, further analyses were carried out to clarify which test- parameters
significantly changed over time and which did not. To assess this, the configural model

Table 1. Estimations of factor properties

Eigenvalue Explained variance Cumulative explained variance

Factor 1 2.463 17.591 17.591

Factor 2 2.007 14.339 31.930

Factor 3 1.827 13.052 44.982

Factor 4 1.705 12.176 57.158

Factor 5 1.091 7.792 64.950

Figure 2. Scree plot showing the five-factor solution of the Exploratory Factor Analysis (EFA).
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Table 2. Factor rotation of the five-factor solution of the exploratory factor analysis (EFA)

Scale

Factor loadings after varimax rotation

1 2 3 4 5

VLMT immediate recall 0.898 – – – –
VLMT delayed recall 0.888 – – – –
VLMT recognition 0.861 – – – –
TAP tonic alertness – 0.997 – – –
TAP phasic alertness – 0.997 – – –
WMS-R digit span – – 0.536 – –
RWT verbal fluency – – 0.833 – –
RWT category fluency – – 0.867 – –
WMS-R block span – – – 0.565 –
CFT memory – – – 0.724 –
CFT visuoconstruction – – – 0.744 –
TAP compatible – – – – 0.888

TAP divided attention – – – – –
TAP GoNoGo – – – – –

EFA coefficients ≥0.40 are exhibited. VLMT = verbal learning and memory test (Helmstaedter et al.,

2001); TAP = battery of tests for attentional performance (Fimm & Zimmermann, 2001); WMS-

R = Wechsler Memory Scale-Revised (Härting et al., 2000); RWT = Regensburger verbal fluency test

(Aschenbrenner et al., 2000); CFT = Rey complex figure test (Meyers & Meyers, 1996).

Table 3. Designation of the four latent factors

Latent

Factors Cognitive Domain Included neuropsychiatric test scores

Factor 1 declarative memory VLMT immediate recall, VLMT delayed recall, VLMT recognition

Factor 2 attention TAP tonic alertness, TAP phasic alertness

Factor 3 working memory RWT verbal fluency, RWT category fluency, WMS-R digit span

Factor 4 visual-spatial processing CFT memory, CFT visuoconstruction, WMS-R block span

VLMT = verbal learning and memory test (Helmstaedter et al., 2001); TAP = battery of tests for

attentional performance (Fimm & Zimmermann, 2001); RWT = Regensburger verbal fluency test

(Aschenbrenner et al., 2000); WMS-R = Wechsler Memory Scale-Revised (Härting et al., 2000);

CFT = Rey complex figure test (Meyers & Meyers, 1996).

Table 4. Confirmatory Factor Analyses (CFAs) for the sample of n = 330 participants. Reported fit-

parameter base on a robust maximum likelihood estimation

CFA model RMSEA CFI AIC BIC χ2 df p

Fixed structure 0.049 .969 22068 22418 135.22 76

+ Fixed loadings 0.051 .963 22073 22392 154.33 83 .007**
+ Fixed intercepts 0.080 .902 22182 22469 277.16 90 <.001
+ Fixed variances 0.097 .849 22281 22550 384.20 94 <.001

RMSEA = root mean square error of approximation; CFI = comparative fit index; AIC = Akaike

information criterion; BIC = Bayesian information criterion.
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yields the best insight as all the more restrictive models showed decreasing fit to the data.

Furthermore, as the configural model allows for the greatest number of freely estimated

parameters, non-invariance in the data that would influence the fit indices of more
restrictive models negatively should be reflected in significantly changing estimates over

time. Table 5 summarises the results by providing estimates across both measurement

occasions. Furthermore, to provide information on the tendency of statistical significance

of descriptive differences, the standard error of a variable’s mean was multiplied by 1.96.

By doing so, a 95% confidence interval (CI) was obtained. If the CI of either value

(measurement occasion 1 or 2) included the estimated mean of the other measurement

occasion, no significant difference was assumed. Please note that this comparison

included two tests for each variable, which were not corrected for. Shading in Table 5,
thus, indicates trends (exploratory findings), but not confirmatory hypothesis testing, as

no specific assumption on non-MI of specific parameters was formulated beforehand.

Nonetheless, results indicate partial non-MI for loadings in VLMT recognition and

immediate recall (declarativememory) andWMS-R block span (visual–spatial processing).
Furthermore, VLMT immediate recall, VLMT recognition, and CFT visuoconstruction

intercepts seem to decrease while CFT memory, tonic alertness, and WMS-R scores

increase. Finally, VLMTdelayed recall, RWTcategory fluency, andWMS-Rdigit span scores

also seem to decrease in their variance over time,while twoof the threeworkingmemory–
related scores RWT verbal fluency and CFT visuoconstruction increase in variance.

Furthermore, in addition to the (manifest) indicator-level analyses of Table 5, latent

factor estimates are summarised in Table 6. While indicator-level estimations of Table 5

were made following the restriction of one indicator variable loading per factor to 1 and

latent means to 0, the results in Table 6 were obtained by restricting the loading of one

indicator per factor to the same value across groupswhile setting the latentmeans to 0 and

the latent factor variance to 1 for the first measurement occasion, allowing for free

estimation of these parameters at the second occasion. By doing this, free estimation of
latent factor parameters could be ensured, which would be necessary for subsequent

longitudinal prediction analyses using these latent factor scores as dependent variables.

Figure 3. Aconceptualmodel for theCFAs depicting estimated parameters.Oval variables depict latent

factors, while rectangles reflect manifest test scores. Triangles represent intercepts.
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To demonstrate this idea, this model was used for parameter extraction as it imposes the

least restrictions while allowing free latent factor estimation.

Before the findings reported above, models fixating more parameters fit the data

significantly worse. Hence, again, this model provides the most unbiased estimates.

Table 6 highlights that the covariance between declarative memory and visual–spatial
processing increases over time. Furthermore, intercepts decrease in declarative memory

aswell as inworkingmemory. Finally, variances increased in both declarativememory and

visual–spatial processing.

Comparison between the latent factor approach and the composite approach

Figure 4 illustrates the course of latent factor means and composites across V1–V2.
Descriptively, both the composite and latent factor approach indicate decreasing

performance/ability scores for declarative memory over time. However, the latent factor

approach indicates greater significance and effect size. Regarding attention, again, both

approaches indicate a similar trend, this time towards increases in scores. Since attention
scores are indexed by reaction time, depicted increases indicate decreases in reaction

speed (thus, worse performance/capability) with a seemingly greater effect estimate in

the composite approach. Inworkingmemory, the composite approach suggests increases

in performance over time, while the latent factor approach shows no particular change.

Finally, concerning visual–spatial processing, a significantly greater decrease in scores is

shown in the latent factor than the composite approach over time (indicating a decrease in

processing capability).

Table 6. Latent factor model parameters for a configural model

Covariances Intercepts Variances

V1 V2 V1 V2 V1 V2

Declarative memory

Attention −0.004 (0.054) 0.089 (0.136) 0 −0.568 (0.218) 1 9.737 (1.196)

Working memory 0.355 (0.052) 0.718 (0.181)

Visual–spatial
processing

0.364 (0.070) 1.716 (0.369)

Attentiona

Working memory −0.244 (0.089) −0.187 (0.093) 0 0.044 (0.128) 1 0.499 (0.271)

Visual–spatial
processing

−0.179 (0.104) −0.169 (0.096)

Visual-spatial processing

Working memory 0.343 (0.094) 0.478 (0.151) 0 −0.734 (0.193) 1 3.283 (0.982)

Working memory – – 0 −0.029 (0.092) 1 0.733 (0.107)

V1 = Visit 1, V2 = Visit 2. Unstandardised estimates and standard errors (SEs; in parentheses) of latent

factor estimates are reported. Light grey cell shadings reveal significant increases of estimates over time

and dark grey cell shadings reveal significant decreases, which indicates non-MI. These results indicate

increases in the co-dependency of declarative memory and visual–spatial processing over time.

Furthermore, it seems that the latent ability of declarative memory as well as visual–spatial processing
decreased on average over time. Finally, the variance of declarative memory, working memory, and

visual–spatial processing increased as well.
aThis factor is estimated by variables expressing reaction times. Thus, higher values indicate worse

performance.
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Example procedures for the prediction of latent ability scores

The current article focuses on the general applicability of the SEMapproach for describing

the course of cognitive abilities and their decline. While the central part of this article is

based on the description of measurement invariance as a potential source of information

Figure 4. Latent factor approach (left column) compared with the composite approach (right column).

V1 = Visit 1 and V2 = Visit 2. Lines indicate mean (M) and error indicators represent 95% confidence

interval (CI).
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for such questions, the estimated latent ability scores of the analysis can also be used

directly to test specific predictor variables for their predictive ability. Two ways of doing

this will be briefly described:

First, the predictor variables themselves can be included in the model. The SEM
approach allows both latent and manifest scores to be predicted by both fixed (e.g.,

genetic vulnerabilities) and variable predictors (e.g., depression scores varying over each

measurement occasion). Thus, for datasetswith at least threemeasurement occasions (for

linear trends; more may be needed for non-linear trajectories; e.g., Byrne & Crombie,

2003; Felt, Depaoli, & Tiemensma, 2017; Grimm & Ram, 2009), a latent growth curve

model could be defined, inwhich the second-order latent factors are assumed that define a

slope across themeasurement occasions aswell as an intercept, influencing the first-order

latent ability factors. At the same time, if one assumes that not all latent abilities (e.g.,
memory vs. visual–spatial processing) show the same slopes over time, a second-order

latent slope and intercept could also be defined for each latent ability factor individually.

These factors (slope and intercept) can, in turn, be predicted by predictor variables,

making it possible to predict the temporal variation of latent factor scoreswith parameters

such as genetic vulnerability factors. At the same time, the manifest variables measured

per time point can also be predicted by influences that also change over time (e.g., BDNF

levels, depression scores). This modeling approach establishes a link between measured

values thatwould, otherwise, bemistakenly treated as between-effects rather thanwithin-
effects (e.g., the manifest test scores of a person in a test at two measurement times).

However, such estimation would require significantly more study participants (Willett &

Sayer, 1994), with the advantages of directly estimating the influence of predictors at the

manifest and latent levels while simultaneously allowing for measurement invariance

estimation.

As a second possibility, the latent factor scores could be read from the model and

included as a dependent variable in a regression analysis or ANOVA. To illustrate this

approach (which is also possible with the current dataset), a mixed model approach was
chosen in which various predictor variables collected in the study were used as

independent variables. In contrast, the extracted latent factor scores were used as

dependent variables.

The dependent latent factors were included with a random intercept for each subject

and time as a fixed effect predictor (levels one and two, model 1). Due to their relevance in

the literature (for an overview, see Xu et al., 2015), and supposedly low multicollinearity

(or redundancy), the covariates age and gender (model 2), Brain-Derived Neurotrophic

Factor (BDNF; quantified in serum by ELISA; model 3), depressiveness (measured by the
Beck Depression Inventory-II [BDI-II]; Beck, Steer, & Brown, 1996; model 4), and vitamin

B12 (quantified by blood plasma; model 5) were included as potential predictors (see

Appendix A for more details). Overall, one set of models was tested for each latent factor.

The model with the highest fit index was subsequently chosen as the best model for the

interpretation of fixed effects. Results revealed plausible predictive effects, mostly

involving gender, age, and their respective interaction with time for all latent factors,

except for attention. For instance, concerning declarative memory, the best model

revealed a significant main effect for age (β = −0.11, t (299) = −2.340, p = .019), time
(β = −0.13, t (299) = −2.898, p = .004), and gender (β = 0.44, t (299) = 4.765,

p < .001), indicating declining scores with higher age and over time in men as compared

to women.

To draw a comparison between the classical composite approach and the latent factor

approach presented here, the samemodelwas again fittedwith an unweighted composite
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approach. Thus, the same predictors and their respective interactions were usedwith the

composite declarative memory as the dependent variable (see section 2.3.3. for details).

This mixed model revealed only one effect for gender (β = 0.22, t (299) = 2.483,

p = .014), which was also less significant as compared to the latent factor approach. As a
result, concerning the declarative memory domain, the same predictor model within the

latent factor approachwas able to findmore significant and greater effects for the given list

of predictors as than the composite approach.

Discussion

The current longitudinal analysis was performed to identify hints towards cognitive

decline in a sample cohort totalingn = 330 individuals. As part of this, longitudinalMI of a

test battery of 14 neuropsychiatric test variables was investigated across 3 years, which

led to the identification of four stable latent factors of cognitive abilities: declarative

memory, attention, working memory, and visual–spatial processing. Furthermore,

predictive analyses using scores of these domains as a dependent variable indicated that

latent ability scores increased significance of regression analyses in comparison to

composite scores.

Longitudinal measurement invariance

To date, there are only few studies available that analyzed longitudinal MI in

neuropsychiatric test batteries and defined latent factor scores as dependent variables

in the prediction of pathological cognitive decline. The SEM approach allows for

concurrent testing of group-/time-related differences in latent and manifest variables.

Table 4 indicates that loadings of indicator variables significantly varyover time, leading to
small but significant changes inmodel fit. Table 5 further clarifies this non-MIwhich stems

from VLMT-, RWT-, and WMS-R–related measures. In the context of the classical

composite approach, this highlights a possible reason for null findings: In the current

study, theWMS-R block span test score becomes less indicative of the latent visual–spatial
processing performance. Thus, if a researcher imposes the same weighting on this test

score at both measurement occasions, the resulting trend over time may be biased.

To put the study results in a simple context, the following section compares

approaches by using loadings of the configural model as weights while using actual mean
standardised test scores (standardised toM = 50, SD = 10) of the n = 330 participants as

variables. For unweighted composites, researchers may usually use the formula shown in

equation (1):

1� 73:95þ 1� 59:76þ 1� 41:74ð Þ � 1� 70:20þ 1� 66:0þ 1� 35:07ð Þ ¼ 4:18

(1)

Here, (1) indicates the implicitly imposed weight of 1 for each variable and other

numbers reflecting the average test score. By subtracting the scores of the second

measurement occasion from the first, the result reflects the mean change of the visual–
spatial processing composite over time. A positive score indicates decreases over time.

However, Table 5 suggests that performances in the three tests are not equally relevant to
the latent ability of visual–spatial processing. Thus, equation (2) modifies the previous

approach by imposing different weights for each variable (according to Table 5):
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1� 73:95þ 1:389� 59:76þ 0:490� 41:74ð Þ
� 1� 70:20þ 1:389� 66:0þ 0:490� 35:07ð Þ ¼ �1:65

(2)

The result indicates an overestimation of the unweighted composite approach in

comparison to the weighted one. The latter implies an overall increase in skill. However,

equation (2)would be appropriate only ifmeasurement invariance for factor loadingswas

given. Since Table 3 indicates otherwise, the formula is once again adapted by varying

weights over time. The resulting equation is given in equation (3):

1� 73:95þ 1:389� 59:76þ 0:490� 41:74ð Þ
� 1� 70:20þ 1:368� 66:0þ 0:217� 35:07ð Þ ¼ 9:31

(3)

Since equation (3) results from the model that fits the data best, we assume that its

result is the most unbiased. Equation (1) would only be unbiased if all test scores were

equally relevant/indicative/correlated to/of the target construct (visual–spatial process-
ing), while equation (2) would only hold if metric invariance was given. This example
illustrates the value of SEM-driven course analyses and possible shortcomings of the most

often used approach as equation (3) produced an effect more than double in size as the

unweighted composite approach did.

The maximal mis-estimation due to non-MI is given by the sum of absolute factor

loading differences between measurement occasions (Schmitt, Golubovich, & Leong,

2011). For instance, in this study, the sum of the factor of visual–spatial processing equals
0.137 (| (0.410–0.487) |+| (0.620–0.540) |.

Furthermore, apart from changes in loadings over time, test intercepts also partially
varied. For instance, theWMS-digit span test intercepts significantly increasedwhileWMS-

block span performance decreased (see Table 5). This result highlights that even though

these two subscales were taken from one test battery, the performance trajectories were

opposed to one another. Interestingly, this fits well with the factorial structure. While

both visual–spatial processing and declarative memory seem to pose as promising

cognitive domains to assess early changes in abilities (indicated by Table 6), working

memory was mostly characterised by invariance over time, which may be why mostly

VLMT measures, along with WMS-block span showed decreasing intercepts in Table 5.

Course of latent factor scores

On a latent factor level, variances of declarative and working memory, as well as visual–
spatial processing, increased over time, indicating the existence of at least onemechanism

that may drive increases in sample-based variance statistics of latent ability scores. One

explanation may lie in the existence of at least two groups that develop in different

directions. At the same time, another possibility is given by the increasing inter-individual
variance in “ability retrieval” in those who suffer from cognitive decline (memory

capacitance may vary more greatly from day-to-day in those who show signs of an MCI

than it does in healthy young adults). Either way, this indicates that declarative memory,

working memory, and visual–spatial processing pose as early indicators for age-related

changes in cognition.

Moreover, in the context of neuropsychiatric test scores, differences in covariances,

including factor loadings and latent factor covariance, may reflect compensatory

mechanisms between initially independent neuronal systems and functions. On that
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note, the connection between visual–spatial processing and declarative memory

increased over time, possibly indicating that at least one subsystem relies on the other

increasingly. Other interpretations may assume a third variable to produce these changes

in covariance matrices. For instance, an uncontrolled third variable may affect both
factors, thereby increasing their correlation over time. One such factor may be early signs

of cognitive decline,whichwould be plausible given that only test intercepts of these two

factors expressed non-MI. However, these interpretations are not yet reliable, basing them

solely on the data of this one study. Further research and discussion are needed.

Nonetheless, since covariance between those two factors that show the greatest changes

in variance and intercepts increased, it would be plausible to assume that the connection

between these constructs increases as a function of age and/or pathology-related

cognitive decline.

Prediction of pathological cognitive decline

Finally, the current study provided a short example on the topic of latent score prediction

based on covariates, psychometric parameters, and biomarkers.

Since the exemplary effects in latent factor score–related analyseswere generallymore

significant than in the composite models, these data highlight the possible benefit from

investing in the more complex but possibly more reliable and valid SEM approach. This is
especially relevant since the composite models produced effects that may not be

plausible, such as increased working memory capability in older individuals.

Conclusions

Methodologically, it may be appropriate to calculate (weighted) composite variables

instead of latent factors. However, it is important to note that composite variables do

not adapt to the data over time. This indicates active neglect of compensation
mechanisms, retest effects, habituation to test settings, the influence of increasingly

severe diseases, and many more factors of influence as these may cause significant

changes in the interdependence ability of neuropsychiatric functioning. For instance,

loss of function in certain brain areas may affect the inter-correlation of neuropsychi-

atric domains by making them dependent on other compensating areas/functions.

Moreover, psychological variables such as trait anxiety may impair performance in the

first measurement occasion to other extents as it does in the second due to habituation

effects.
SEM, on the other hand, estimates such influences indirectly by addressing changes in

the correlation matrix among manifest test scores obtained. As a result, changes in

manifest scores, latent performances, and their correlation can be addressed all at once. In

fact, in this study, we found hints to either compensate mechanism or neurological

change over time as the covariance between visual–spatial processing and declarative

memory increased. Since the variance of both latent factors also increased, while their

intercepts decreased, these results may hint at least two sub-samples within the analyzed

participants that showed different trajectories in their cognitive abilities across measure-
ment occasions or a general decline in capabilities on these domains that results in

increased inter-individual variability of skills (or a mix of both). However, this

interpretation is speculative and needs clarification by identifying predictors for these

latent score changes. The above-mentioned interpretationwould becomevery plausible if

the covariance pattern between both factors would decline to their baseline level after
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controlling for such predictors. Hence, again the SEM approach provides additional ways

to gain more detailed insights into the data as the composite approach does. Moreover, in

the example for one of the latent factors provided above, we were able to show that the

composite approach underestimated the effect of change over time by more than 50%,
which again highlights possible shortcomings of the classical composite approach and

may reveal mechanisms bywhich classical longitudinal analyses may have trouble finding

reliable and significant change.

Ultimately, the exemplary prediction analysis depicted in this study provided further

evidenceof the superiority of the SEMapproachover the composite approach, supporting

the idea that this approach produces more reliable results.

To conclude our findings, this study was able to find four latent factors that are in line

with the previous research. Furthermore, by testing these factors for longitudinal
measurement invariance, this study provides insights into calculating the extent of bias

that may lead to inflation or false null findings in the classical composite approach. In

addition, even thoughmeasurement invariance was not present for most parameters, this

study also discussed how this may be beneficial in understanding both normative and

pathological aging. In summary, the SEM approach adds highly relevant information to the

interpretation of longitudinal neuropsychiatric data.

Limitations

First, the generalisability of the factor structure may be impaired as the results are specific

to the neuropsychiatric test battery used. Also, although supported by the residents’

registration office, participant recruitment was not fully representative for the general

population (Polak et al., 2017). In the case of the Vogel Study, participants had a relatively

higher education level in than the general German population (Statistisches Bundesamt,

2018).

Additionally, one problem of this latent factor model was the factor attention as it
comprised only two manifest indicators, which may have significantly biased results for

this domain (Kline, 2005). This may be one reason why no significant effect was present

regarding this factor. Nonetheless,wedonot anticipate significantmis-estimation of other

factors and their indicators due to this issue.

Also, we want to note that the use of factor scores may propagate estimation errors

within the SEM to the analysis of predictor variables which is an inherent risk to this

approach and may lead to false results.

Due to relatively small sample size concerning the complex methodology, the
precision of model estimation may have suffered. However, larger sample sizes may lead

to smaller error terms and increased significance even for small non-invariance, which

may also pose an issue as this may lead to overly sensitive analyses. As a result, we argue to

estimate the difference of effects due to variability of parameters (by using the formulas

(1), (2) and (3)) to estimate the relevance of effects than to solely rely on significance. By

doing so, greater sample sizes will lead to better estimation without introducing over-

interpretation of significance.

Finally, the dataset included misses. Due to dropouts resulting from the longitudinal
study setting and incomplete datasets, the sample size decreased from N = 604

participants at V1 to n = 330 participants at V2. Reasons for data exclusion may have

correlation to cognitive ability and, thus, imply a selection bias for the remaining n = 330

participants, which indicates that the current study may have excluded such participants

who had particularly bad courses. As a result, generalisability of results presented in this
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methods-focused article may be considerably impaired. Within the remaining data set,

only 0.0048% were missing, implying no substantial influence on the estimation

procedure within the SEM analysis.

Finally, as only n = 330 participants remained in the model, this study relied on the
lower bound of necessary data to address such models as discussed in the current

manuscript, even thoughmore complexmodels such as second-order latent growth curve

models would be superior as theywould be able tomodel thewithin-subject nature of the

datamore properly. Nonetheless, to our understanding, this sample sizewas sufficient for

whole-model comparisons within the current approach.
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Appendix A:

Table A1. Mixed model comparisons of declarative memory

Model AIC BIC χ2 df p (>χ2)

DM1 2629.5 2647.1

DM2 2600.4 2635.5 37.1459 4 1.681E-07***
DM3 2600.9 2644.9 3.4385 2 .1792

DM4 2600.5 2653.2 4.4083 2 .1103

DM5 2604.4 2665.9 0.1603 2 .923

DM = declarative memory; AIC = Akaike information criterion; BIC = Bayesian information criterion.

Table A2. Mixed-model comparisons of attention

Model AIC BIC χ2 df p (>χ2)

AT1 1318.9 1336.5

AT2 1322.9 1358.1 3.9687 4 .41026

AT3 1319.1 1363 7.8371 2 .01987*
AT4 1320.7 1373.4 2.3888 2 .30289

AT5 1322.5 1384 2.2136 2 .33062

AT = attention; AIC = Akaike information criterion; BIC = Bayesian information criterion.
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Table A3. Mixed-model comparisons of working memory

Model AIC BIC χ2 df p (>χ2)

VSP 1 1859.3 1876.8

VSP 2 1851.2 1886.4 16.0394 4 .002967**
VSP 3 1850.8 1894.7 4.4825 2 .106325

VSP 4 1848.6 1901.3 6.1641 2 .045866*
VSP 5 1850.8 1912.3 1.762 2 .414375

WM = working memory; AIC = Akaike information criterion; BIC = Bayesian information criterion.

Table A4. Mixed-model comparisons of visual–spatial processing

Model AIC BIC χ2 df p (>χ2)

WM1 1222.1 1239.7

WM 2 1218.2 1253.4 11.9321 4 .01786*
WM 3 1220.3 1264.3 1.862 2 .39415

WM 4 1220.1 1272.8 4.2453 2 .11972

WM 5 1222.8 1284.3 1.3083 2 .51989

VSP = visual–spatial processing; AIC = Akaike information criterion; BIC = Bayesian information

criterion.

Table A5. Best Mixed-models for the fixed effects of Declarative Memory for the latent factors and

composite approach

DM Estimate SE df t p Beta

(Intercept) −0.165/46.011 0.104/0.982 296/296 −1.582/46.856 .115/<.001*** 0.03/0.02

Gender 0.999/4.896 0.21/1.972 296/296 4.765/2.483 <.001***/.014* 0.44/0.22

Time −0.3/−1.249 0.103/1.194 296/296 −2.898/−1.046 .004**/.296 −0.13/−0.06
Age −0.16/−0.091 0.068/0.642 296/296 −2.34/−0.142 .020*/.887 −0.11/−0.006
Gender:

time

0.518/−1.109 0.208/2.397 296/296 2.49/−0.463 .013*/.644 0.23/−0.05

Time:age −0.071/0.689 0.068/0.78 296/296 −1.054/0.883 .293/.378 −0.05/0.05

DM = declarative memory; SE = standard error.

Values before the slash refer to the latent factor approach and values after the slash to the composite

approach.
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Table A6. Best mixed-models for the fixed effects of Attention for the latent factors and composite

approach

AT Estimate SE df t p Beta

(Intercept) 0.052/46.373 0.032/0.314 295/295 1.621/147.806 .106/<.001*** 0.01/0.009

Gender 0.128/0.72 0.065/0.637 295/295 1.966/1.131 .050/.259 0.18/0.11

Time 0.034/0.46 0.039/0.27 295/295 0.852/1.707 .395/.089 0.05/0.07

Age 0.008/0.266 0.021/0.205 295/295 0.36/1.296 .719/.196 0.02/0.06

BDNF −0.002/−0.003 0.001/0.009 295/295 −2.278/−0.288 .023*/.774 −0.1/−0.01
Gender:time 0.017/0.517 0.08/0.548 295/295 0.214/0.944 .831/.346 0.02/0.08

Time:age 0.026/0.252 0.026/0.176 295/295 1.026/1.43 .306/.154 0.06/0.06

Time:BDNF 0.002/−0.001 0.001/0.008 295/295 1.612/−0.091 .108/.927 0.09/−0.004

AT = attention; SE = standard error; BDNF = Brain-Derived Neurotrophic Factor; BDI-II = Beck

Depression Inventory-II (Beck et al., 1996).

Values before the slash refer to the latent factor approach and values after the slash to the composite

approach.

Table A7. Bestmixed-models for the fixed effects of Visual–Spatial Processing for the latent factors and
composite approach

VSP Estimate SE df t p Beta

(Intercept) −0.383/57.283 0.062/0.931 294/294 −6.195/61.531 <.001***/
<.001***

−0.02/−0.02

Gender −0.272/−5.151 0.127/1.905 294/294 −2.15/−2.704 .032*/.007** −0.21/−0.24
Time −0.527/−1.325 0.049/1.116 294/294 −10.662/−1.188 <.001***/.236 −0.41/−0.06
Age 0.002/1.356 0.04/0.609 294/294 0.052/2.227 .958/.027 0.003/0.1

BDNF 0.002/0.028 0.002/0.027 294/294 1.192/1.06 .234/.290 0.06/0.05

BDI-II −0.022/−0.155 0.011/0.162 294/294 −2.003/−0.955 .046*/.340 −0.1/−0.04
Gender:time −0.302/−3.384 0.101/2.283 294/294 −2.987/−1.482 .003**/.139 −0.24/−0.16
Time:age 0.041/1.715 0.032/0.73 294/294 1.283/2.35 0.20*/.019* 0.05/0.12

Time:BDNF 0.002/0.012 0.001/0.032 294/294 1.469/0.369 .143/.712 0.06/0.02

Time:BDI-II −0.012/−0.048 0.009/0.194 294/294 −1.443/−0.249 .150/.803 −0.06/−0.01

VSP = visual–spatial processing; SE = standard error; BDNF = Brain-Derived N eurotrophic Factor;

BDI-II = Beck Depression Inventory-II (Beck et al., 1996).

Values before the slash refer to the latent factor approach, values after the slash to the composite

approach.
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Table A8. Best mixed-models for the fixed effects of Working Memory for the latent factors and

composite approach

WM Estimate SE df t p Beta

(Intercept) −0.012/64.297 0.046/1.148 296/296 −0.266/56.019 .791/<.001*** 0.02/0.009

Gender 0.233/2.518 0.093/2.305 296/296 2.51/1.092 .013*/.276 0.28/0.11

Time −0.021/4.517 0.023/0.99 296/296 −0.905/4.562 .366/<.001*** −0.02/0.2
Age −0.046/−0.377 0.03/0.75 296/296 −1.507/−0.503 .133/.616 −0.08/−0.02
Gender:time −0.074/−1.208 0.046/1.989 296/296 −1.597/−0.608 .111/.544 −0.09/−0.05
Time:age 0.002/0.361 0.015/0.647 296/296 0.13/0.558 .896/.577 0.004/0.02

WM = working memory; SE = standard error.

Values before the slash refer to the latent factor approach, values after the slash to the composite

approach.
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