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Abstract
Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel-
ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification.
Thereby AI performance equals or exceeds human performance. Those achievements impacted
many domains, including medical applications.
One particular field of medical applications is gastroenterology. In gastroenterology, machine

learning algorithms are used to assist examiners during interventions. One of the most critical
concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of
the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies
is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to
screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can
vary in severity.
This thesis supports gastroenterologists in their examinations with automated detection and clas-

sification systems for polyps. The main contribution is a real-time polyp detection system. This
system is ready to be installed in any gastroenterology practice worldwide using open-source soft-
ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical
trial in four different centers in Germany.
The thesis presents two additional key contributions: One is a polyp detection system with ex-

tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas.
Therefore, the polyp detection system with extended vision uses an endoscope assisted by two
additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi-
sual signal. While the detection system handles the additional two camera inputs, the endoscopist
focuses on the main camera as usual.
The second one are two polyp classification models, one for the classification based on shape

(Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE)
classification). Both classifications help the endoscopist with the treatment of and the decisions
about the detected polyp.
The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp

detection system tested on a highly demanding video data set shows an F1 score of 90.25 % while
working in real-time. The results exceed all real-time systems in the literature. Furthermore, the
first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma
Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection
system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification
model achieved an F1 score of 89.35 % which is state-of-the-art. The NICE classification model
achieved an F1 score of 81.13 %.
Furthermore, a large data set for polyp detection and classification was created during this thesis.

Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT)
was developed. The system simplifies the annotation process for gastroenterologists. Thereby the
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gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts
are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the
frames, non-experts correct and finish the annotation. This annotation process is fast and ensures
high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor
of 20 compared to an open-source state-of-art annotation tool.
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Zusammenfassung
Deep Learning ermöglicht enorme Fortschritte bei vielen Aufgaben im Bereich der Computer Vi-
sion. Künstliche Intelligenz (KI) liefert ständig neue Spitzenergebnisse im Bereich der Erkennung
und Klassifizierung. Dabei erreicht oder übertrifft die Leistung von KI teilweise die menschliche
Leistung. Diese Errungenschaften wirken sich auf viele Bereiche aus, darunter auch auf medizinis-
che Anwendungen.
Ein besonderer Bereich der medizinischen Anwendungen ist die Gastroenterologie. In der Gas-

troenterologie werden Algorithmen des maschinellen Lernens eingesetzt, um den Untersucher bei
medizinischen Eingriffen zu unterstützen. Eines der größten Probleme für Gastroenterologen
ist die Entwicklung von Darmkrebs, die weltweit eine der häufigsten krebsbedingten Todesur-
sachen ist. Die Erkennung von Polypen bei Darmspiegelungen ist das wichtigste Verfahren zur
Vorbeugung von Darmkrebs. Dabei untersucht der Gastroenterologe den Dickdarm im Rahmen
einer Koloskopie, um z.B. Polypen zu finden. Polypen sind Schleimhautwucherungen, die unter-
schiedlich stark ausgeprägt sein können.
Diese Arbeit unterstützt Gastroenterologen bei ihren Untersuchungen mit automatischen Erken-

nungssystemen undKlassifizierungssystemen für Polypen. DerHauptbeitrag ist ein Echtzeitpolypen-
erkennungssystem. Dieses System kann in jeder gastroenterologischen Praxis weltweit mit Open-
Source-Software installiert werden. Das System erzielt Erkennungsergebnisse auf dem neusten
Stand der Technik und wird derzeit in einer klinischen Studie in vier verschiedenen Praxen in
Deutschland evaluiert.
In dieser Arbeit werden zwei weitere wichtige Beiträge vorgestellt: Zum einen ein Polypenerken-

nungssystem mit erweiterter Sicht, das in einem Tierversuch getestet wurde. Polypen verstecken
sich oft hinter Falten oder in nicht untersuchten Bereichen. Daher verwendet das Polypenerken-
nungssystem mit erweiterter Sicht ein Endoskop, das von zwei zusätzlichen Kameras unterstützt
wird, um hinter diese Falten zu sehen. Wenn ein Polyp entdeckt wird, erhält der Endoskopiker ein
visuelles Signal. Während das Erkennungssystem die beiden zusätzlichen Kameraeingaben verar-
beitet, konzentriert sich der Endoskopiker wie gewohnt auf die Hauptkamera.
Das zweite sind zwei Polypenklassifizierungsmodelle, eines für die Klassifizierung anhand der

Form (Paris) und das andere anhand der Oberfläche und Textur (NICE-Klassifizierung). Beide
Klassifizierungen helfen dem Endoskopiker bei der Behandlung und Entscheidung über den erkan-
nten Polypen.
Die Schlüsselalgorithmen der Dissertation erreichen eine Leistung, die dem neuesten Stand der

Technik entspricht. Herausragend ist, dass das auf einem anspruchsvollen Videodatensatz getestete
Polypenerkennungssystem einen F1-Wert von 90,25 % aufweist, während es in Echtzeit arbeitet.
Die Ergebnisse übertreffen alle Echtzeitsysteme für Polypenerkennung in der Literatur. Darüber
hinaus deuten die ersten vorläufigen Ergebnisse einer klinischen Studie des Polypenerkennungssys-
tems auf eine hohe Adenomdetektionsrate ADR hin. In dieser Studie wurden alle Polypen durch
das Polypenerkennungssystem erkannt, und das System erreichte einen hohe Nutzerfreundlichkeit
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von 96,3 (maximal 100). Bei der automatischen Klassifikation von Polypen basierend auf der Paris
Klassifikations erreichte das in dieser Arbeit entwickelte System einen F1-Wert von 89,35 %, was
dem neuesten Stand der Technik entspricht. Das NICE-Klassifikationsmodell erreichte eine F1-
Wert von 81,13 %.
Darüber hinaus wurde im Rahmen dieser Arbeit ein großer Datensatz zur Polypenerkennung

und -klassifizierung erstellt. Dafür wurde ein schnelles und robustes Annotationssystem namens
FastCAT entwickelt. Das System vereinfacht den Annotationsprozess für Gastroenterologen. Die
Gastroenterologen annotieren dabei nur die wichtigsten Teile des endoskopischen Videos. An-
schließendwerden dieseVideoteile von einer Polypenerkennungs-KI vorverarbeitet, um den Prozess
zu beschleunigen. Nachdem die KI die Bilder vorbeschriftet hat, korrigieren und vervollständigen
Nicht-Experten die Annotationen. Dieser Annotationsprozess ist schnell und gewährleistet eine
hohe Qualität. FastCAT reduziert die Gesamtarbeitsbelastung des Gastroenterologen im Durch-
schnitt um den Faktor 20 im Vergleich zu einem Open-Source-Annotationstool auf dem neuesten
Stand der Technik.

iv



Acknowledgements
I am very thankful for all the people who supported me while writing this thesis. Without these
people, this thesis would not have been possible. First, I would like to thank my supervisor, Frank
Puppe. He was always there to support and help me with difficult decisions and feedback.
Furthermore, I acknowledge Alexander Hann and Alexander Meining for their help and encour-

agement to venture into gastroenterology. They broadened my horizon and gave me insight into
the daily clinic routine that I would not have gotten otherwise.
I want to thank all my colleagues at the chair of computer science VI and in the group InExEn.

Special thanks to Michael Banck, Amar Hekalo, Joel Troya, Thomas Lux, Boban Sudarevic and
Daniel Fitting.
I appreciate my mother, Christiana, my father, Stefan, and my siblings, Julian and Katharina, for

their constant support during all my efforts in the last years. I want to thank my close friends Jona
Bödeker and Tobias Friedetzki for their mental support during the demanding phases of this work.
Finally, I want to thank my girlfriend, Johanna Odenwald, for her continued help, encouragement
and allegiance throughout the development of this thesis.

Würzburg, February 2023

v





Contents

Abstract i

Abstract iii

Acknowledgements v

Contents vii

List of Abbreviations xi

1 Introduction 1
1.1 Overview of creating machine learning based medical assistance systems . . . . 2
1.2 Challenges of AI assistance systems for medical applications in gastroenterology . 4
1.3 Research questions and contributions . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Overview of the data used for this thesis 11

3 Related work with regard to the publications 15
3.1 Semi-automated polyp annotation . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1.1 Machine learning annotation tools . . . . . . . . . . . . . . . 16
3.1.1.2 Medical annotation tools for machine learning . . . . . . . . . 17

3.1.2 Contribution and conclusion . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Polyp detection in still images . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1.1 Automated detection with handcrafted features . . . . . . . . 19
3.2.1.2 Automated detection involving machine learning . . . . . . . 19

3.2.2 Contribution and conclusion . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Polyp detection in videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1.1 3D convolutions . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1.2 3D ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1.3 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1.4 Structural similarity . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1.5 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1.6 Object tracking . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



CONTENTS

3.3.2 Contribution and conclusion . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Polyp detection with extended vision . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Contribution and conclusion . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Automated polyp classification . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Contribution and conclusion . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Conclusion 33

A Lead author publications 35
A.1 Fast machine learning annotation in the medical domain: a semi‐automated video

annotation tool for gastroenterologists . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Semi-Automated Machine Learning Video Annotation for Gastroenterologists . . 59
A.3 Endoscopic Detection And Segmentation Of Gastroenterological Diseases With

Deep Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 61
A.4 Bigger Networks are not Always Better: Deep Convolutional Neural Networks for

Automated Polyp Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.5 A Real-Time Polyp Detection System with Clinical Application in Colonoscopy

Using Deep Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 70
A.6 Deep Learning using temporal information for automatic polyp detection in videos 108
A.7 A User Interface for Automatic Polyp Detection Based on Deep Learning with

Extended Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.8 Automated classification of polyps using deep learning architectures and few-shot

learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B Co-author publications 167
B.1 Deep learning for detection and segmentation of artefact and disease instances in

gastrointestinal endoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.2 Pilot study of a new freely available computer-aided polyp detection system in

clinical practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.3 New concept for colonoscopy including side optics and artificial intelligence . . . 198
B.4 A video based benchmark data set (ENDOTEST) to evaluate computer-aided

polyp detection systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.5 Development and evaluation of a deep learning model to improve the usability of

polyp detection systems during interventions . . . . . . . . . . . . . . . . . . . 210
B.6 Frame-by-FrameAnalysis of a Commercially AvailableArtificial Intelligence Polyp

Detection System in Full-Length Colonoscopies . . . . . . . . . . . . . . . . . 218

C Declaration of own Contributions 227

viii



CONTENTS

Bibliography 231

ix





List of Abbreviations
ADR Adenoma Detection Rate
AI Artificial Intelligence
BE Barret’s Esophagus
CNN Convolutional Neural Network
COCO Common Objects in Context
CRC Colorectal Cancer
CRISP-DM Cross Industry Standard Process for Data Mining
CSS Cascading Style Sheets
CVAT Computer Vision Annotation Tool
DICOM Digital Imaging and Communications in Medicine
EAD Endoscopy Artifact Detection
EndoCV Endoscopy Computer Vision Challenge
FastCAT Fast Colonoscopy Annotation Tool
Fuse Full-spectrum endoscopy
FPS Frames Per Second
GAN Generative Adversarial Network
GPU Graphics Processing Unit
HGD High-Grade Dysplasia
HTML HyperText Markup Language
IOU Intersection over Union
ISBI IEEE International Symposium on Biomedical Imaging
IZKF Interdisziplinäres Zentrum für Klinische Forschung
JSON JavaScript Object Notation
KI Künstliche Intelligenz
MICCAI Medical Image Computing and Computer Assisted Interventions
MIUA Medical Image Understanding and Analysis
MRI Magnetic Resonance Imaging
NBI Narrow Band Imaging

xi



List of Abbreviations

NICE NBI International Colorectal Endoscopic
REPP Robust and Efficient Post-Processing
ResNet Residual Neural Network
ROI Region of Interest
SSD Single Shot Detection
SSIM Structural Similarity
SVM Support Vector Machine
TER Third Eye Retroscope
VIA VGG Image Annotator
VoTT Visual Object Tagging Tool
WCE Wireless Capsule Endoscopy
XML Extensible Markup Language
YOLO You Only Look Once

xii



1 Introduction

Over the last decade, the field of computer vision increased with the continued development of
object classification and detection systems [15, 91, 92]. Especially great advances in the field of
AI created new opportunities in many domains [19, 73, 82]. One particular domain is the medical
domain of gastroenterology. In this domain, visual computer assistance systems are used to advance
the detection and diagnosis of pathologies further [7, 24].
In gastroenterology, the development of CRC is one of the most critical concerns. CRC is

one of the main causes of cancer-related deaths worldwide [14, 74]. Detecting polyps in screen-
ing colonoscopies is one of the most important procedures to prevent CRC. A gastroenterologist
screens the colon for different pathologies, e.g., polyps. Polyps are mucosal growths that can vary
in severity. They develop due to increased cell division on an organ’s mucosa, often due to in-
flammation. Colonoscopies for polyp detection can be assisted by machine learning algorithms
analyzing the incoming stream of images from the endoscope. These detection systems increase
gastroenterologists’ performance and enhance the quality of the colonoscopy [34, 36].
Three projects at the University of Würzburg in cooperation with the gastrology department of

the university clinic Würzburg are concerned with the detection, documentation, and diagnosis of
polyps during colonoscopies. The first project aims to develop a machine learning system for AI
polyp detection and applies and tests it in a clinical trial in different centers in Germany [59]. This
AI for polyp detection is one of the main contributions of this thesis. The first preliminary results
of the clinical trial are already published [70] and show an increase in ADR and high usability.
The second project is funded by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF)

and involves adding additional cameras to create a further advanced AI based automated polyp
detection system. This system was developed and tested in an animal trial [58].
The EndoAssist project is the third project, which develops a tool for faster documentation of

gastroenterological processes. The EndoAssist AI system interprets endoscopic images and videos
by combining deep learning techniques and medical domain knowledge. The result is used as a
second opinion system for the gastroenterologists during the examination. Additionally, it can be
directly transferred into routine documentation. These documentation processes also involve the
classification of polyps.
The main focus of the thesis is the development of medical assistance systems and in particular

automated polyp detection and classification systems to assist gastroenterologists during colono-
scopies. Therefore, the next chapter is an overview of the creation process of general machine
learning-based assistance systems. Afterward, challenges of AI-assisted medical systems in gas-
troenterology are presented. This involves technical as well as ethical concerns. Lastly, the research
questions are introduced and the contributions of the work are presented.
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1 Introduction

1.1 Overview of creating machine learning based medical
assistance systems

This chapter presents eight steps for creating a machine learning-based medical assistance system.
The steps are based on a well-known framework in data mining called the Cross Industry Standard
Process for Data Mining (CRISP-DM) model [121]. Some steps are changed, renamed, or added,
but the essential structure is kept. An overview is shown in figure 1.1. All machine learning-
based assistance systems developed during this thesis follow this workflow. Here, only supervised
machine learning-based medical assistance systems are considered, as all of the developed systems
in this thesis are based on supervised learning. Data quality is one of the most critical aspects of
any machine learning system. All of the model’s predictions are based on the input data. Therefore,
data quality must be consistently maintained. Additionally, the acquisition of new medical data is
protected by law. Thus, data anonymization methods with Generative Adversarial Network (GAN)
have to be used to anonymize the data while still maintaining high-quality data [100].
In the following, the steps are briefly explained:

• Medical understanding: First, the medical problems have to be clearly defined with the
medical staff, in our case, gastroenterologists. Next, the objectives and requirements are dis-
cussed. Then a clear outline of how to detect the object with the available machine learning
methods is established.

• Data understanding: As machine learning methods are always based on data, getting suit-
able data for the selected machine learning problem is essential. The selected medical prob-
lem and solution may have to be adjusted based on the amount and accessibility of suitable
data. Therefore, medical understanding and data understanding are interconnected.

• Data preparation: After the data and the medical background is understood properly,
the data needs to be prepared. Data preparation for medical assistance systems consists of
cleaning the data, formatting the data, rescaling the image data and augmenting the data.
The data preparation precedes the closely related data annotation.

• Data annotation: Medical experts must create high-quality annotations to achieve a reliable
machine learning system. However, medical experts have very limited time for annotation.
Thus, medical experts can be assisted by active learning pipelines to reduce the experts’ time
per annotation. The data annotation step lays the ground truth for the machine learning
problem, which is then subdivided into training, validation, and test data.

• Modeling: In this step, different machine learning architectures are developed to solve the
medical problem. In the second step, the hyperparameters of the models are optimized to
achieve better performance. The modeling step is interconnected with data annotation and
preparation. Data annotation can be assisted by a first model pre-labeling or pre-selecting
data to improve the annotation process [56]. Additionally, further preprocessing steps must
be added or removed from the data preparation step if the models are not performing as
intended.

2



1.1 Overview of creating machine learning based medical assistance systems

Medical
Understanding

Data
Understanding

Data
Preparation

Data
Annotation

Modelling

Evaluation

Clinical 
Application

Data

Figure 1.1: The figure depicts the essential steps for creating a machine learning-based medical
assistance system. Data is the most critical component in supervised machine learning-based as-
sistance systems. So it is placed in the figure’s center. Adopted from Wirth et al. [121]
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1 Introduction

• Evaluation: In this phase, the models are evaluated. The best-performing model is selected
via data splits for testing and validation. In addition, the model is evaluated using benchmark
data sets to compare the results to other models in the research domain. Afterward, the
model is evaluated during medical examinations by medical experts. The feedback from the
medical experts is used for further optimization of the model.

• Clinical application: Before applying the model broadly, there has to be an ethical com-
mittee approving the system and procedure for general use. Afterward, the machine learning
system can be used in clinical practice e.g., a university clinic using AI assistance. The main
purpose of the application step is to adapt the system to the different conditions, which
are unique for every clinical practice. Thereby the desired outcome of the system can be
achieved and the chosen objectives can be obtained.

1.2 Challenges of AI assistance systems for medical
applications in gastroenterology

AI assistance systems for medical applications in gastroenterology encounter two major challenges.
The first challenge is to adapt the polyp detection system for real-time support of gastroenterol-
ogists. The second challenge is the acquisition of large high-quality data sets. Especially, video
artifacts in data sets are a constant problem in computer vision. Filtering the incoming image
stream to remove video artifacts is mostly not feasible for real-time applications.
In regards to the clinical setting, the acceptance of the AI system from the examiner and the

patient is another challenge. Lastly, ethical concerns about the usage of AI systems in the medical
domain must be considered.

Real-time application Real-time performance is a crucial requirement for AI assistance sys-
tems in gastroenterology, as the detection of polyps during endoscopic examinations must be timely
to provide effective treatment. To be considered real-time capable, a model must be able to process
images at a speed of approximately 25 Frames Per Second (FPS). The incoming stream of most
endoscopes during colonoscopies is typically in the range of 25-30 FPS, although some newer sys-
tems can process images at higher rates of 50-60 FPS. However, using high-performance hardware
to achieve faster processing speeds can also increase the cost of the system, which may not be feasi-
ble for many gastroenterologists and clinics. Therefore, it is important to design assistance systems
that are robust, efficient, and affordable, while still meeting real-time performance requirements.
To meet those criteria, the assistance system’s entire workflow must be adjusted and optimized
from the incoming image to the detection display on the examiner’s screen.
One potential approach to optimizing the performance of AI assistance systems in gastroen-

terology is to focus on reducing the computational complexity of the algorithms used. This could
involve techniques such as simplifying the model’s architecture, reducing the number of param-
eters or layers, or using more efficient data structures or optimization techniques. Another ap-
proach is to leverage specialized hardware or acceleration technologies, such as Graphics Process-
ing Unit (GPU)s, to speed up the processing of images and reduce the overall latency of the system.
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1.2 Challenges of AI assistance systems for medical applications in gastroenterology

It may also be possible to optimize the data preprocessing and postprocessing steps or to reduce
the number of images that need to be processed by applying filtering or sampling techniques.

Training and testing data sets The biggest problem for creating supervisedmachine learning-
based assistance systems is the low availability of usable open-source data sets. This applies not
only to the amount of data available but also to the class imbalance in polyp data sets. There is a sig-
nificant difference between the number of healthy tissue frames and frames with polyps [43, 46].
Polyps that rarely occur, like the Paris type IIc polyp, are also underrepresented in all video and
image training data sets. This lack of data is a common problem in the medical field.
Nevertheless, there are different techniques to deal with this problem. The first one is transfer

learning. Transfer learning uses a model that has already been pre-trained on a similar data set
and is then re-trained with e.g. a polyp data set [46]. A second approach is data augmentation.
Data augmentation for images transforms the original image data with the help of various methods.
Examples of such transformations for polyp detection image data are rotating, mirroring, blurring,
and color adjusting [124]. Additionally, there are approaches for creating additional training ma-
terial artificially. E.g., Thomaz et al. [20] train a Convolutional Neural Network (CNN) to insert
polyps into images of healthy mucosa to increase the available training data.
Another challenge in the data is the effect of video artifacts on the detection performance of the

models. Light reflections and blurring often occur in endoscopic videos. In 2019 the Endoscopy
Artifact Detection (EAD) challenge was conducted to confront this problem. During the EAD chal-
lenge different algorithms for the detection and filtering of blurry or unusable images are presented.
Additionally, the EAD offers artifact-specific methods to restore unusable frames. Soberanis-
Mukul et al. [104], show the effect of blurring, light reflections and artifacts on the detection
rate of automated polyp detection systems. The authors create a multi-class model to detect dif-
ferent artifact types. They pair their artifact detection algorithm with a polyp detection system to
make it more reliable.

Acceptance of the examiner and patient Adopting computer-aided technologies in med-
ical practice can be challenging due to several factors. One issue is the reluctance of healthcare
professionals to incorporate new AI assistance systems into their established routines. Additionally,
some healthcare providers may view AI technology as competition rather than assistance and fear
being replaced by it. There is also a general skepticism about technology among some individuals,
including healthcare providers and patients, which can hinder the adoption of AI-based systems
even when they have been shown to be effective in scientific studies and clinical trials. Patients
may also be hesitant to rely on AI for diagnoses due to a preference for human interaction and
trust in a healthcare provider as an individual rather than a machine. However, AI-based diagnos-
tic systems have the potential to provide accurate and efficient diagnoses and may be used as a
complementary tool to support clinical decision-making [48, 116].
To further increase the adoption of AI-based technologies in medical practice, it may be help-

ful to address the challenges and concerns mentioned above. For example, efforts should educate
healthcare professionals about the capabilities and limitations of AI systems and to demonstrate the
benefits of incorporating them into clinical practice. It may also be helpful to establish protocols
and guidelines for the use of AI in medical settings, including measures to ensure the transparency,
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1 Introduction

accountability, and ethical use of these systems. Additionally, efforts should improve communi-
cation and collaboration between AI researchers and medical professionals and to involve medical
experts in the development and testing of AI systems to ensure that they are tailored to the needs
of clinical practice [41, 94]. Finally, it may be necessary to address the broader social and cultural
factors that contribute to skepticism about AI and other technological advances and to engage in
dialogue and outreach with stakeholders to build trust and understanding about the role of these
technologies in healthcare.

Ethical concerns of medical AI application There are several ethical concerns that arise
when using AI assistance systems in the medical field. One such concern is the potential for vari-
ability in the predictions made by these systems, which could lead to incorrect diagnoses with
potentially serious consequences for patients. In order to mitigate these risks, it is necessary to
incorporate human oversight and control in the use of AI in medical settings. This helps to ensure
that the benefits of these systems outweigh the potential risks and that they are used in a fair, trans-
parent, and accountable manner. It is also essential to carefully consider the ethical implications
of using AI in medical settings and to establish appropriate protocols and safeguards to ensure that
these systems are used in a responsible and ethical manner [49, 97, 114].
In addition to the issues of accuracy and reliability, the ethical considerations surrounding the

use of AI in medicine also include issues of fairness and inclusivity. It is important to ensure
that AI systems do not perpetuate or exacerbate existing biases or inequalities and that they are
accessible and fair to all patients regardless of their background or circumstances. To achieve this,
it is important to carefully evaluate and address potential sources of bias in the data and algorithms
used to develop AI systems and to ensure that these systems are designed and implemented in a way
that is transparent and accountable. In addition, it is necessary to establish protocols and guidelines
for the use of AI in medical settings, including measures to ensure that these systems are used in
a responsible and ethical manner. These measures should include provisions for human oversight
and control, as well as mechanisms for monitoring and evaluating the performance and impact of
these systems on patient care [41, 94].

1.3 Research questions and contributions
In recent years, machine learning has shown great promise in assisting physicians with interpreting
and analyzing medical images, including those obtained during colonoscopic examinations. To
further investigate the advancements and transformation in this domain, this thesis is guided by the
following research question:

Guiding research question:

Can machine learning assist physicians in endoscopic examinations with the treatment
of colon cancer?

The literature presents several machine learning assistance systems for gastroenterologists. Never-
theless, most of these systems are not implemented for clinical application. To answer the guiding
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research question, the thesis involves four main contributions. The most important contribution is
the automated polyp detection system. This detection system is designed to detect polys in real-time
with clinical application and thereby assist gastroenterologists during the examination. Developing
this detection system involves different algorithms and steps to create a final real-time polyp de-
tection system. This AI is applied for the automated detection polyps in four different centers in
Germany. The second contribution is the data set and the annotation tool to create the data set for
training the polyp detection and classification systems. The third contribution is an extension of the
polyp detection system with additional micro cameras to create an extended vision for polyp de-
tection. The last contribution is the development of two polyp classification systems. The guiding
research question (RQ) has been divided into the following four sub-research questions:

RQ1: Can automated polyp detection assist gastroenterologists in their daily clinical practice?

Scientific publications provide numerous methods for automated polyp detection systems
(see sections 3.2 and 3.3). These detection systems use different techniques like 3D archi-
tectures, optical flow, structural similarity, post-processing, and object tracking. However,
the majority of these systems have not been implemented for clinical application. Therefore,
the main contribution of this thesis is the first open-source real-time polyp detection system
for clinical application. This contribution allowed for several publications (see sections A.5,
[59]; A.3, [53]; B.1, [3]; A.4, [52]; A.6, [57]). Several approaches to image and video detec-
tion algorithms were developed and examined while developing a sufficient polyp detection
system.
These publications involve creating detection systems for challenges like the Endoscopy
Computer Vision Challenge (EndoCV) 2020 challenge [3]. EndoCV is an international chal-
lenge about the use of AI algorithms for endoscopic imaging. Mostly detection, classification
and segmentation architectures are tested. The created detection system is the winner of the
EndoCV 2020 detection challenge (see sections A.3, [53]; B.1, [3]). These efforts led to the
final publication [59] in which the real-time detection system is illustrated.
The system can be used directly in the clinical setting and works in real-time. It includes a
novel post-processing step that further increases detection accuracy. In addition, the system’s
performance exceeds state-of-the-art results on the public CVCVideoClinicDB [29] data set.
The developed polyp detection system is now being tested in a clinical trial. Preliminary
results of this trial indicate a high ADR of 41.5 % and high system usability (see Sections
B.2, [70]). The results consider 41 colonoscopies. The automated polyp detection system
detected 66 of 66 polyps and 29 of 29 adenomas. Additionally, all examiners were ques-
tioned about the system’s usability. The system’s usability is very high, with a score of 96.3
(max 100).

RQ2: How does a semi-automated annotation tool impact the workload of gastroenterologists and
the quality of annotated data in endoscopic imaging for polyp detection?

The literature addressing semi-automated annotation tools (see section 3.1) underscores the
necessity for developing specialized medical annotation tools, given the significant expense
associated with medical annotations and the unique demands posed by medical formats.
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Therefore, a fast and accurate annotation tool for endoscopic videos has been developed (see
sections A.1, [56]; A.2 [54]). This tool reduces the workload of the domain expert by a
factor of 20 while retaining very high annotation quality. Advanced pre-selection and AI
assistance are implemented to reduce the workload.

RQ3: How does the integration of additional cameras with AI technology enhance the detection of
polyps and improve the examination process compared to traditional methods?

The literature (see section 3.4) presents various approaches to increase the view of the endo-
scopist. These approaches comprise the Third Eye Retroscope (TER), and the Full-spectrum
endoscopy (Fuse). This use of additional cameras in colonoscopies increases the examiner’s
view and allows him to explore intricate areas further and find polyps otherwise missed.
However, multiple views are very complex to analyze at once. The publication presents a
new approach with additional cameras and AI assistance (see section A.7 [58]). The views
of the additional cameras are managed by the AI and do not interfere with the endoscopist.
Still, the endoscopist gets an alert if the AI detects a polyp.

RQ4: Can deep learning methods achieve high accuracy on the classification of polyps in gastroen-
terology and does few-shot learning improve the efficiency of the classification process?

The scientific literature of automated polyp classification (see section 3.5) details a vari-
ety of techniques that employ distinct CNN architectures and classification systems, includ-
ing Kudo’s pit-pattern classification, the Paris classification, and the NICE classification.
Nonetheless, the assessment of these methods relied on privately acquired datasets, which
hinders the possibility of replicating and benchmarking the findings. Therefore, two novel
automated classification systems assisting gastroenterologists in classifying polyps based on
the NICE and Paris classification are presented (see section A.8 [55]) and evaluated on a
public benchmark data set. The paper shows a two-step process for the Paris classification:
first, detecting the polyp on the image, then cropping the detected area, and then classifying
the polyp based on the cropped area with a transformer network.
For theNICE classificationmodel a deepmetric learning-based approach has been developed
for classifying polyps. The algorithm creates an embedding space for classifying polyps and
utilizes few-shot learning to address the limited availability of annotated images. Overall,
the Paris classification model achieves state-of-the-art results on a publicly available data set
and the NICE classification model shows the viability of the few-shot learning paradigm for
polyp classification in data-scarce environments.

1.4 Nomenclature
Throughout this thesis, a consistent terminology is used:

• Adenoma: Adenomas are a specific form of intestinal polyps that develop from normal
tissue structure. Adenomas tend to change at the cellular level and can turn into cancer.

• Adenoma Detection Rate (ADR): The ADR is calculated by dividing the number of
screening colonoscopies with adenomas by the total number of screening colonoscopies with
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and without adenomas of a gastroenterologist. Highly experienced gastroenterologists can
reach an average ADR of over 40 % [75].

• Colon: The colon is an organ located at the end of the digestive tract and outweighs the
small intestine in thickness. In addition, the colon has some special anatomical features that
distinguish it from other parts of the intestine and make it susceptible to certain diseases.

• Endoscope: An endoscope is an optical instrument equipped with an electric light source
andmirrors for the examination of body cavities (here the colon) and for the targeted removal
of tissue samples.

• Narrow Band Imaging (NBI): Narrow band imaging, or NBI , is a variation of endoscopy
that uses blue and green light to enhance surface imaging of the mucosa.

• NBI-International-Colorectal-Endoscopic NICE: The NICE classification is a classifi-
cation for grading colon polyps based on the aspect of polyps in NBI.

• Mucosa: Intestinal mucosa is the innermost of the four layers of the intestinal wall. It lines
the open lumen of the intestine. Mucosa refers to healthy tissue.

• Paris classification: The Paris classification is a classification of polyps based on shape. It
forms an important basis for targeted indication and underpins the importance of morpho-
logical correlation for integrative diagnosis of polyps.

• Polyp: In the context of this thesis a polyp is referred to as an intestinal polyp as all of our
experiments are done on colonoscopy data. Intestinal polyps are mucosal protrusions that
protrude from the intestinal mucosa into the interior of the intestine - the intestinal lumen.
They develop because more cells than normal grow in one or more places in the mucosa.
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2 Overview of the data used for this
thesis

Creating high-quality data is one of the essential aspects of machine learning systems. This is also
valid for colonoscopic images for polyp detection and classification. The performance of supervised
machine learning systems is mainly based on their training data. Nevertheless, the creation of high-
quality data is a cumbersome process. For polyp detection and classification, the annotation has to
be done by domain experts, and this makes the process even more expensive.
The data used in the thesis consists of open-source and manually created data sets. Those data

sets are merged into a comprehensive data corpus for polyp detection and classification. The overall
data set incorporates 506,338 annotated images. The annotations done on the images are bounding
box annotations, the size measurement of the polyp, the Paris classification, and the NICE classi-
fication. In the following, an overview of the data is given. This overview shows all of the open
source data, the data created by the University Clinic of Würzburg and is also presented in our
publication A.5:

• CVC-ColonDB [8] 2012: The CVC-ColonDB consists of 300 individual polyp images that
were extracted from 15 colonoscopy procedures. Each image represents a random sample
of 20 frames per sequence and has a size of 48×288 pixels. These images are available upon
request from the CVC-Colon repository1.

• ETIS-Larib [103] 2014: This data set includes 44 different polyps from 34 videos with
196 polyp images. It was created for the Medical Image Computing and Computer Assisted
Interventions (MICCAI) 2015 Endoscopic Vision Challenge and used in the challenge. All
annotations are done with segmentation masks. Therefore the bounding box coordinates had
to be calculated from the segmentation masks. The size of the images is 348×288 pixels.
The data is available on request from the CVC-Colon repository1.

• CVC-VideoClinicDB [11] 2017: The GIANA sub-challenge, which was part of theMICCAI
2017 Endoscopic Vision Challenge, published the CVC-VideoClinicDB [4] data set. The
data set consists of 18 videos with polyps and 18 videos without polyps. It includes a total
of 11,954 frames with polyps and 18,733 frames without polyps, and the images have a size
of 574×500 pixels. The ground truth masks for the polyps in this data set were created
by approximating the shape of the polyps with ellipses, which were then converted into
bounding box coordinates. The data is available in the CVC-Colon repository 1.

1http://www.cvc.uab.es/CVC-Colon/index.php/databases/
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• CVC-Segementation-HD [117] 2017: TheCVC-Segementation-HDdata was created through
the GIANA Polyp Segmentation sub-challenge at theMICCAI 2017 Endoscopic Vision Chal-
lenge. The data set includes 56 high-resolution images with a size of 1920×1080 pixels, each
of which has a corresponding binary mask that was converted into bounding box coordinates.
The data is available in the CVC-Colon repository2.

• CVC-EndoSceneStill [115] 2017: TheCVC-EndoSceneStill [117] consists ofCVC-ColonDB
[10] and CVC-ClinicDB [12, 26] with 912 polyp images and 44 videos of 36 patients. Each
image received a border, mirror, lumen, and segmentation mask for both data sets. The mask
in the data set marks the black border around each image, the mirror mask indicates reflec-
tions of endoscope light, and the lumen mask marks the intestinal lumen, or the space within
the intestine. The segmentation mask includes polyp markers that identify visible polyps
in an image. The CVC-ColonDB [10, 117] data set contains 300 selected images from 13
polyp video sequences with a size of 574×500 pixels. The CVC-Clinic-DB [12, 26, 117]
contains 612 images from 31 polyp video sequences with a size of 348×288 pixels. The
data is available on request from the CVC-Colon repository.

• Kvasir-SEG [44] 2020: The Kvasir-SEG data set includes 1000 polyp images, 1071 masks,
and bounding boxes. The dimensions of the images range from 332×487 to 1920×1072
pixels. All images are verified by gastroenterologists from Vestre Viken Health Trust in Nor-
way. The images include general information, which is displayed on the left side. The data
is available in the Kvasir-SEG repository3.

• Endoscopy Disease Detection Challenge 2020 (EDD2020) [2]: The EDD2020 data set is a
collection of images, with associated masks and bounding boxes, that was released as part
of the Endoscopy Disease Detection Challenge in 2020. It consists of five different classes
and includes both masks and bounding boxes for each image and instance of a polyp. All
of the images featuring polyps are stored in JSON format. The data consists of 127 images
with a size of 720×576 pixels. The data is available on request in the ENDOCV repository4.

• SUN Colonoscopy Video Database [79] 2021: The SUN Colonoscopy Video Database was
created by the Mori Laboratory at Nagoya University’s Graduate School of Informatics. It
consists of 49,136 frames of fully annotated polyps from 100 different polyps, each with its
own Paris classification. These images were collected at Showa University Northern Yoko-
hama and annotated by expert endoscopists at Showa University. Also, 109,554 non-polyp
frames are included. The size of the images is 1240×1080 pixels. The data is available in
the SUN Colonoscopy Video repository5.

2http://www.cvc.uab.es/CVC-Colon/index.php/databases/
3https://datasets.simula.no/kvasir-seg/
4https://endocv2022.grand-challenge.org/Data/
5http://sundatabase.org/
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• EndoData [59] 2022: The EndoData data set was created with the University and the Univer-
sity Clinic of Würzburg. The team creating the data involved advanced gastroenterologists
and medical assistants. The data set contains 346,165 images with 361 polyp sequences and
312 non-polyp sequences. The essential first 1-3 seconds of polyp appearance are used for
the polyp sequence, which is critical for detecting polyps in real clinical scenarios. The data
combines images from six centers involving three different endoscope manufacturers. The
annotations are bounding boxes, the size measurement of the polyp, the Paris classification,
and the NICE classification.
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3 Related work with regard to the
publications

In this section, the methods and results of the relevant publications (see Table 3.1) are briefly
summarised and complemented by an overview of the related work. As most of the papers al-
ready incorporate a related work chapter, the sections below reflect and extend the context of those
chapters.
The contributions show the results and creation process of endoscopic assistance AI models.

Those models assist endoscopists during their screening colonoscopy routines. The first two con-
tributions show the tool and the framework for the data annotation workflow. This tool is used to
create the annotated data for the classification and detection systems. Afterward, machine learning-
based detection systems for the detection of polyps in images and videos are shown. The next
contribution is a polyp detection system using extended vision in an animal trial. Last, there is an
overview of two polyp classification approaches.

Table 3.1: Overview of the lead author publications of this thesis.
Category Section Page Publication
Polyp annotation A.2, A.1 59, 35 [54, 56, 71]
Polyp detection in images A.3, A.4 61, 67 [52, 53]
Polyp detection in videos A.5, A.6 70, 108 [57, 59]
Polyp detection with extended vision A.7 114 [58]
Polyp classification A.8 132 [55]

3.1 Semi-automated polyp annotation
3.1.1 Related work
The created labeling tool FastCAT can be classified into two categories: general annotation tools
andmedical annotation tools. It is a general annotation tool as it can be used to do general annotation
of videos in any domain. Furthermore, the paper compares the tool to a general annotation tool
called Computer Vision Annotation Tool (CVAT). CVAT is sophisticated and well-known for fast
and accurate annotation in different domains.
Furthermore, FastCAT is viewed in the field of medical annotation tools. Medical annotation

tools are customized for a particular medical annotation task and mostly have special requirements
that only apply to specific categories of data, e.g., Magnetic Resonance Imaging (MRI) scans.
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The tool is especially fast when using gastroenterologists’ video data. To allocate the annotation
tool in the literature, the following overview shows a brief history of general annotation tools and
annotation tools specialized in the medical field.

3.1.1.1 Machine learning annotation tools

The first methods to collect large data sets of labeled images were developed in the 1990s [13].
E.g., “The Open Mind Initiative”, a web-based framework, was published in 1999. The aim was
to collect data annotated by web users that intelligent models could use [107].
Through the years, several ways have been developed to obtain annotated data. E.g., the online

game ESP was created to generate labeled images. In this game, two randomly selected players
are given the same image and, without communicating, must guess the other player’s thoughts to
find a common term for the image as fast as possible. [1, 13]. As a result, several million player-
annotated images have been collected. The first and foremost classic annotation tool called Labelme
was developed in 2007 and is still one of the most popular open-source online annotation tools for
creating computer vision data sets. Labelme enables the labeling of objects in images using specific
shapes, as well as other features [96].
Since 2012 the rise of deep learning in computer vision has been followed by a rise in the creation

of annotation tools. Thus, one of the most popular annotation tools, LabelImg, was released in
2015. LabelImg is an image annotation tool based on Python, which uses bounding boxes for
image annotation. The annotations are stored in Extensible Markup Language (XML) files and
saved in either PASCAL VOC or You Only Look Once (YOLO) format.
Also, in 2015, the annotation platform Playment was published. Playment creates training data

sets for computer vision by labeling images and videos using different 2D or 3D boxes, polygons,
points, or semantic segmentation. In addition, Playment provides automatic labeling for support.
Two years later, the paid labeling tool Rectlabel was released, but only available on macOS. Rect-
label used the classic annotation options like bounding boxes and automatic labeling of images. It
also uses the PASCAL VOC XML format and can export the annotations to various formats (e.g.,
YOLO or Common Objects in Context (COCO) JavaScript Object Notation (JSON)).
Following Rectlabel, Labelbox was introduced. Labelbox is a commercial training data platform

for machine learning. Additionally, it provides an annotation tool for images, videos, texts, or audio
and the management of labeled data.
More recent approaches are the following three annotation tools. Released in 2016, the VGG Im-

age Annotator (VIA) [23] is a tool that runs in a web browser. It can be run without any installations
and utilizes JavaScript, Cascading Style Sheets (CSS) and HyperText Markup Language (HTML).
There are numerous annotation shapes available, including points, polylines, lines, rectangles, el-
lipses, and polygons.
In 2019 Microsoft released an open-source tool for the annotation of images and videos called

Visual Object Tagging Tool (VoTT) [77]. The tool can be used in any web browser as it is written
in TypeScript and leverages the React framework for its implementation. It is also possible to run
VoTT locally on a personal computer as a native application.
Developed by Intel, the tool CVAT [99] is an open-source application for annotating videos and

images. It was released in 2019. A user management system enables the ability to collaborate
with screen-annotated data. It has a connection through a remote source-mounted file system to
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upload images to the server. CVAT is one of the most promising open-source annotation tools as
the system is user-friendly and intuitive.

3.1.1.2 Medical annotation tools for machine learning

With the considerable increase in interest and progress in AI, machine learning models are entering
various fields, including medicine. In the medical field, machine learning models can assist profes-
sionals in their daily routines [88, 102, 119]. Like all machine learning models, the models used in
the medical field need labeled data for training. As a result, the need for labeled medical images
and videos is a major issue for medical professionals. Standard annotation tools such as those al-
ready described above can be used. However, since medical annotations are always very expensive,
special tools have been developed to support specific medical requirements. One specific medical
requirement is annotating layered images, e.g., computed tomography and MRI. Other require-
ments are ultra-high-resolution images primarily used in pathology images, high data protection
regulations, the processing of 3D images, or video stream data. The standard format for storing and
transmitting medical images is the Digital Imaging and Communications in Medicine (DICOM)
format.
A well-known example from 2004 is the “ITK-Snap”, an annotation tool for navigation and seg-

menting three-dimensional medical image data [126]. Another prevalent open-source tool widely
used in the medical domain is the 3D slicer [25]. 3D slicer is a desktop software for solving ad-
vanced image processing tasks in the field of medical applications. It visualizes special medical
formats like DICOM in the application and allows editing of the images with the 3D slicer soft-
ware. Furthermore, the 3D slicer uses AI via a AI-assisted segmentation extension in the 3D slicer
application. Thereby, 3D slicer allows automatic segmentation and editing, e.g., CT scans of brains.
Another well-known annotation tool was published in 2015 and is called TrainingData [30, 31].

TrainingData is a traditional annotation tool for labeling AI (computer vision) training images and
videos. The annotation tool provides many features, including a labeling support system using AI
models. TrainingData also supports the DICOM format.
In 2016 the Radiology Informatics Laboratory Contour (RIL-Contour) was published [86]. RIL-

Contour is an annotation tool for medical images that uses deep learning models to label images.
Nowadays, the range of medical segmentation tools has become very broad, as they are usually

specialized for many different areas of medicine. For example, ePAD is an open-source platform
for segmenting 2D and 3D image data, focusing on radiological images [95].
Another tool is Endometriosis Annotation Tool [63]. A group of developers and gynecologists

developed this web-based annotation tool for endoscopy videos. In addition to the traditional fea-
tures, such as video controls, screenshots, or manual labeling of the images, the option of selecting
between different endometriosis types is also offered. The Endometriosis Annotation Tool focuses
on specific annotations for surgery.

3.1.2 Contribution and conclusion
The literature on semi-automated annotation tools highlights the need for specialized medical an-
notation tools due to the high cost of medical annotations and the specific requirements of medical
images and videos. Considering the related work FastCAT extends the related work by offering
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an alternative semi-automated annotation tool that can be utilized for machine learning annota-
tion tasks in a general sense and for specialized gastroenterological applications. FastCAT is the
main output of two publications about the optimization of annotation processes in the field of
medical video annotation for detection and classification models of this thesis. The paper “Semi-
Automated Machine Learning Video Annotation for Gastroenterologists” published in the pro-
ceedings of Medical Informatics Europe in 2021 (see Section A.2, [54]) shows the preliminary
results for a semi-automated workflow for fast and accurate annotation of polyps in images and
videos.
The second publication “Fast machine learning annotation in the medical domain: a semi-

automated video annotation tool for gastroenterologists” (see Section A.1, [56]) was published
in the journal BioMedical Engineering OnLine in 2021. It consists of a data annotation workflow
and framework to create fast and accurate annotations of polyps. The semi-automated annotation
process is thereby specially designed to increase the annotation speed for the annotating gastroen-
terologist. Thereby, it extends the paper “Semi-Automated Machine Learning Video Annotation
for Gastroenterologists” by enhancing the annotation tool and further evaluating the annotation
workflow.
Gastroenterological data sets are mostly comprised of endoscopic videos, which are tiresome

to annotate. Therefore, a framework was implemented in those papers to support the domain
experts during this time-consuming process. This framework allows the expert to perform key
annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps, instead
of annotating every frame in the video sequence.
Afterward, relevant frames will be selected and passed on to an AI model. The AI model uses

the annotations to detect and mark the desired object on all following and preceding frames with
an annotation. Afterward, a non-expert can adjust and modify the AI predictions and export the
results. The annotation speed can be further optimized using a state-of-the-art semi-automated
AI model. A prospective study with ten participants showed that semi-automated annotation using
the framework doubles the annotation speed of non-expert annotators compared to a traditional
annotation approach. The software and framework are open-source1. Furthermore, the annotation
tool FastCAT allowed the creation of a data set including over 500,000 annotated training images
for polyp detection. Those results were crucial for training the polyp detection and classification
models shown in this thesis. The following sections will use the created data with our annotation
tool to train the automated polyp detection and classification models.

3.2 Polyp detection in still images
3.2.1 Related work

The detection of polyps has a long history of different techniques to identify polyps automatically.
The approaches can be separated into two categories. First, the detection models before the rise
of machine learning, which use handcrafted features. Machines or gastroenterologists manually
created those handcrafted features [39, 47, 60] and then used them as input for a classifier for
1https://github.com/fastcatai/fastcat
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polyp detection. Second, the machine learning detection approaches. Today most object detection
tasks in images and videos are done using machine learning models.
Mainly those machine learning models involve a CNN or convolutional steps in their feature

creation process. The following two sections illustrate the detection with handcrafted features and
the polyp detection using machine learning models in still images. Subsection 3.3 shows the most
recent approaches using detection models on video data.

3.2.1.1 Automated detection with handcrafted features

In the late 1990s, the first approaches to computer-assisted detection of polyps were already ex-
plored. For example, Krishnan et al. suggested using curvature analysis to identify polyps by their
shape [60]. In 2003, Karkanis et al. used the wavelet transform to identify polyps by color and tex-
ture [47]. Afterward, Hwang et al. compared polyp features based on curvature, intensity, curve
direction, and distance from the edge to distinguish the elliptical shapes of polyps from non-polyp
regions [39].
Bernal et al. [9] proposed a different method in which images of polyps were converted to

greyscale so that the elevations of the polyps could be detected. Subsequently, they highlighted the
outlines of the polyp, which they termed valleys. Based on the intensity of the valleys, polyps could
be extracted and localized [9]. In addition, with the help of expert knowledge, rules for recognizing
polyps based on certain characteristics such as size, shape, and color were implemented. Newer
examples of similar approaches can be found in [40] and [89], both of which use a Support Vector
Machine (SVM).
In 2019, real-time detection of polyps with handcrafted features was tested in a clinical setting

[50]. The authors used a weighted mix of color, structure, textures, and motion information to
identify areas of the image where a polyp might be located. The detection rate was 73 %. Nev-
ertheless, the rise of CNN-based methods in the field of image processing has replaced all these
techniques, as CNN methods have been proven to produce better features for automated detection
tasks.

3.2.1.2 Automated detection involving machine learning

During the last decade, computer-aided polyp detection has been shaped in particular by various
deep-learning methods. An overview of the essential models on still image data sets is available
in table 3.2. In particular, research interest has developed in the object recognition capabilities of
CNNs.
For example, in 2015, Zhu et al. introduced a seven-layer CNN as a feature extractor with a SVM

as a classifier to detect anomalies in endoscopy images [133]. The method was trained on custom
data. Other approaches used an existing CNN architecture for polyp localization, called AlexNet
[61][111][125]. AlexNet was developed for general image classification and not specifically for
medical data. Tajbakhsh et al. [111] suggest not fully training the AlexNet, i.e., starting from
random weights but using the already pre-trained weights for polyp detection. To improve the
performance of the AlexNet, Yuan et al. [125] first extracted an image section via edge-finding
algorithms and used those sections as input to the AlexNet [61]. This resulted in a high recall of
91.76 %, which exceeded other state-of-the-art approaches.
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Furthermore, it is shown that transfer learning is a practical approach in the presence of limited
data, as is generally the case in the medical field.
In 2018, Mo et al. [80] were the first to use an unmodified Faster R-CNN [92] architecture for

polyp detection. This model was trained on the CVC-ClinicDB data. Unlike previous approaches,
the Faster R-CNN can detect polyps that are mostly obscured or close to the camera. The model
is robust to exposure changes or bubbles, but it misses smaller polyps.
Shin et al. [101] were the first to apply the Inception-Residual Neural Network (ResNet) [108]

architecture unmodified for polyp detection. This model was trained on the ASU-Mayo-Video-DB
and included two post-processing methods, false positive learning and offline learning, to further
improve the performance. Rather than a patch extraction step, this model can use an entire frame
for training. However, as with Mo et al., the model has many false positives triggered by polyp-like
shapes.
In 2018, Zheng et al. [132] introduced the unmodified YOLO architecture [90] for polyp detec-

tion. The advantage of this architecture is that only a single processing step is required, i.e., there
is no previous step to extract an Region of Interest (ROI). As a result, the model is faster than the
two-step approaches but does not reach real-time capability (16 FPS). The CNN features of white
light and narrow-band images differ greatly and should therefore be considered separately. The
model was trained on the CVC-CLinicDB, CVC-ColonDB, and custom data.
In 2019, Liu et al. [65] compared different backend models as feature extractors for the Single

Shot Detection (SSD) architecture [66]. The considered backend models were ResNet50 [35],
VGG16 [129], and InceptionV3 [109], with InceptionV3 scoring the best balanced result. The
advantages of the models are their robustness in terms of size and shape, as well as their speed,
which is real-time capable at 30 FPS. All considered models were trained on the CVC-ClinicDB,
CVC-ColonDB, and ETIS-Larib data. In the future, other improved backend models could further
boost the models’ performance during polyp detection.
Also in 2019, Zhang et al. [130] applied the SSD-GPNet for polyp detection. The SSD-GPNet

is based on the SSD architecture [66] but incorporates information normally lost by the standard
pooling layers into the result through various customized pooling methods. Since it is based on
the SSD architecture, the model is fast and real-time capable at 50 FPS. Additionally, it has a
good recall, particularly for small polyps. Zhang et al. presented another deep learning method
for polyp detection and localization [131]. They proposed a special single-shot multibox detector-
based CNN model, which reuses displaced information through max-pooling layers to achieve
higher accuracy. The model works in real-time at 50 FPS while maintaining a F1-score of 84.24
%. The model was trained on custom data. Bagheri et al. suggested converting input images into
three color channels first and then passing them to the neural network. This allows the network to
learn correlated information using the preprocessed information to locate and segment polyps [6].
A similar approach by Sornapudi et al. used region-based CNNs to localize polyps in colonoscopy
images and Wireless Capsule Endoscopy (WCE) images. During localization, images were seg-
mented and detected based on polyp-like pixels [106].
In addition to CNN’s, research also includes other deep learning methods for polyp detection. In

2017, a special sparse autoencodermethod called stacked sparse autoencoder was used byYuan and
Meng [123] to detect polyps in WCE images. A sparse autoencoder is an artificial neural network
with image manifold constraint, commonly used for unsupervised learning [81]. The described
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Table 3.2: This table shows the polyp detection models on still image data sets for polyp detection.
Author Year Method Test data set F1-

score
Speed

Yuan et al. [123] 2017 SSAEIM Custom Dataset N/A N/A
Mo et al.[80] 2018 Faster R-CNN CVC-ClinicDB 91.7% 17 FPS
Zheng et al. [132] 2018 YOLO ETIS-Larib 75.7% N/A
Shin et al. [101] 2018 Faster R-CNN ASU-Mayo 83.3% 25.2 FPS
Zhang et al. [131] 2019 SSD ETIS-Larib 84.24% 50 FPS
Zhang et al. [127] 2019 SSD ETIS-Larib 79.2% 29.8 FPS
Liu et al.[65] 2019 SSD CVC-ClinicDB 78.9% 30 FPS
Wang et al.[118] 2019 CenterNet CVC-ClinicDB 97.88% 52 FPS
Liu et al.[67] 2020 ADGAN Custom 72.96% N/A
Yuan et al.[124] 2020 DenseNet Custom 81.83% N/A
Own contrib. A.3 2020 Ensemble EDD2020 data 86.34% 30 FPS

sparse autoencoder achieved 98 % accuracy in polyp detection [123]. The system was trained and
tested on the ASU-Mayo-Video-DB.
In 2019, Wang et al. [118] were the first to use the AFP-Net architecture for polyp detection.

Unlike an SSD model, the anchor free AFP-Net model does not require predefined anchor boxes.
Through a context enhancementmodule (CEM), a cosine ground-truth projection, and a customized
loss function, the speed was increased to real-time capable 52.6 FPS. The model was trained on
the CVC-ClinicVideoDB.
In 2020, Liu et al. [67] introduced an anomaly detection generative adversarial network (ADGAN)

for polyp detection. The ADGAN architecture is based on the WGAN [5]. ADGAN was trained
to reconstruct healthy images without polyps. If the model receives an image with a polyp as input,
the model cannot reconstruct it. This causes a noticeably large difference between the input and
output, which can be easily detected. The problem of connecting the input to the GAN’s latency
space was solved by implementing a second GAN. In addition, a new loss function was added to
improve performance further. The model was trained on custom data. Also in 2020, Yuan et al.
[124] established the DenseNet-UDCS architecture for frame classification of WCE images. For
this task, the loss function of the DenseNets is adapted, while the overall architecture stays the
same [38]. As part of the adaptation, weights are added to compensate for the large imbalance in
class size (without or with polyps). Further, the loss function is modified to be class sensitive, i.e.,
within a class, similar features are learned, while the difference to the features of the other class
is maximized. These changes improve the model’s performance and can easily transfer to other
applications.

3.2.2 Contribution and conclusion
The related work section of polyp detection on still images overviews various deep learning mod-
els over the last decade. Several approaches have utilized pre-existing CNN architectures, such
as AlexNet and YOLO, while others have introduced specialized CNN architectures, like AFP-
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Net and DenseNet-UDCS. Our contributions are alternative polyp detection methods using en-
semble techniques and domain knowledge. The article “Endoscopic Detection And Segmentation
Of Gastroenterological Diseases With Deep Convolutional Neural Networks” (see A.3, [53]) was
published in the workshop proceedings of the EndoCV at the IEEE International Symposium on
Biomedical Imaging (ISBI) conference. It deals with detecting diseases, especially polyps, in still
images taken from a colonoscopy. The paper resulted from the EndoCV challenge, in which we
could achieve the first place by presenting the best detection model.
Previous research on endoscopic computer vision has focused primarily on detecting a single

disease, such as polyps. The EndoCV challenge extends this classification task by providing data
for different diseases in different organs. The EndoCV has two sub-tasks: Multi-class disease de-
tection which includes the localization of bounding boxes and class labels for five disease classes:
polyp, Barret’s Esophagus (BE), suspicious, High-Grade Dysplasia (HGD) and cancer. The sec-
ond task is region segmentation which includes drawing boundary delineation of detected diseases
automatically.
The paper addresses those tasks using deep CNNs. The performance of two general state-of-

the-art object detection approaches is evaluated for multi-class disease detection. The first is SSD,
and the second is a two-step region proposal-based CNN. The architecture was an ensemble of
a YOLOv3 object detector [90] and Faster R-CNN [92] combined with a post-processing step
involving domain knowledge. It achieved an F1 score of 86.34 % on the polyp detection task.
A state-of-the-art Cascade Mask R-CNN is used for the region segmentation task. Different

backbones of the Cascade Mask R-CNN are evaluated to determine the most efficient one. Data
augmentation is used tominimize generalization errors. As the last step, post-processing for specific
classes is used to refine the model further. The model achieved a dice score of 69.07 %. The dice
score is comparable to the F1-score but is suited for the segmentation task.
The second publication “Bigger Networks are not Always Better: Deep Convolutional Neural

Networks for Automated Polyp Segmentation” (see A.4, [52]) was published in the CEUR pro-
ceedings of the Medico automatic polyp segmentation challenge. The challenge focuses on the
segmentation and detection of polyps in still images.
A deep CNNwas well suited for segmentation and detecting polyps in still images. To determine

the best-suited architecture, state-of-the-art backbones and two different heads were tested and
compared. The final model achieved a dice score of 83.10 % on the challenge’s test set. Further-
more, it was demonstrated that growing network size always increases computational complexity,
but more extensive networks do not guarantee increased performance.

3.3 Polyp detection in videos
3.3.1 Related work
Older publications were evaluated on image benchmark data sets, like CVC-ClinicDB [8] discussed
in section 3.2. Nowadays, better and more realistic video data sets like the CVC-VideoClinicDB
[11] are available and should be used for a state-of-the-art comparison of models. All frames are
extracted and annotated in those video data sets with bounding boxes surrounding the polyp. Table
3.3 gives an overview of essential models on video data sets. The approach of Misawa et al. [79]
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uses the YOLOv3 architecture evaluated on the SUN-Colonsoly dataset and achieves an F1-score
of 87.05 % with a speed of 30 FPS. The methods of Tajbakhsh et al.[111], Yuan et al.[125], Shin
et al.[101] and Yuan et al.[124] are already illustrated in the previous section and are additionally
evaluated on video data by processing every frame of the video with an image detection algorithm.
Therefore those approaches do not include temporal information. The literature shows different
ideas for including temporal information in the automated polyp detection task. In the following
section, different approaches for this task are discussed in detail.

3.3.1.1 3D convolutions

One approach to include temporal information in polyp detection is the expansion from 2D to 3D
CNNs. The literature offers many approaches using 3D CNNs for the task of action recognition
[18, 45]. In a 2D CNN, the activity of each neuron is calculated via a discrete convolution. A
comparatively small convolution matrix (filter kernel) is moved gradually over the input. A neu-
ron’s input in the convolutional layer is calculated as the inner product of the filter kernel with the
currently underlying image section. A 3D CNN works similarly but uses a 3D kernel and a 3D in-
put. Thereby moving the filter in three directions (x, y, z). In our application, the third dimension
is the time dimension.
Some of the 3D CNN approaches are also considered for automated polyp detection in videos.

The approach of Misawa et al. [78] uses a 3D-CNN for automated polyp detection. They report
a sensitivity of the AI system of 86 % and a false positive rate of 26 %. Training and evaluation
are done on a custom private data set. 3D CNNs are highly computationally demanding, so they
currently have no real-time capability.

3.3.1.2 3D ResNet

3D CNNs have been widely adopted for action recognition tasks, with various approaches devel-
oped to extend classic 2D CNN architectures such as ResNet to work with 3D data [18, 32]. For
example, Itoh et al. [42] used a 3D ResNet architecture to create an automated polyp detection
system for videos. The 3D ResNet was trained using a class-balanced loss function with weighted
cross-entropy. Additionally, they created a GAN to subsample underrepresented cases. This ap-
proach achieved an accuracy of 80 %. However, the large size of the network and the limited
amount of data available can lead to overfitting, and the 3D ResNet architecture is not suitable for
real-time applications due to its computational demands.

3.3.1.3 Optical flow

Optical flow is the impression of motion conveyed by shifting patterns in successive images of a
sequence of images. Therefore optical flow can represent the motion of objects to extract short-
term temporal information, and this temporal information can then track and detect an object in
video streams.
Zhang et al. [127] used optical flow for real-time detection of polyps. They trained a SSD

detector for object detection in their paper. As the structure of the SSD is computationally less
expensive than other architecture, it allows real-time detection. The SSD is paired with an optical
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flow feature generator through a fusion module. The optical flow can easily be computed, allowing
the general architecture to achieve real-time capability. Using this architecture, Zhang et al. scored
an accuracy of 84.24 % on their custom private data set with a speed of 50 FPS.

3.3.1.4 Structural similarity

Structural Similarity (SSIM) measures or estimates image quality based on an uncompressed or
noise-free source image as a reference. SSIM is, e.g., used for measuring the perceived quality of
digital television and cinema images.
Xu et al. [122] used SSIM for their real-time polyp detection approach. They are modeling

SSIM of consecutive frames using three dimensions: luminance, contrast, and structure. Thereby,
consecutive frames with a high correlation in luminance, contrast and structure are considered
similar. For the collection of similar frames, Xu et al. remove bounding boxes that only appear in
one or two similar frames and do not intersect with previous bounding boxes of similar frames.
They trained aYOLOv3 object detector to detect polyps. Afterward, they combined theYOLOv3

outputs and the SSIM through an inter-frame similarity correlation unit to make final decisions
about the polyp detection. Themodel is trained on custom data and tested on theCVC-VideoClinicDB
data set with an F1 score of 75.86 %.

3.3.1.5 Post-processing

Post-processing is a common step in real-time applications to enhance detection results without
losing significant application speed. In the paper of Qadir et al. [87], the authors utilize two
2D localization networks SSD [66] and a Faster-R-CNN [92]. Afterward, a false positive reduc-
tion unit further processes the network’s output. The false positive reduction unit considers an
incoming frame’s seven preceding and following frames to detect and correct outliers. This outlier
removal step results in fewer false positives. As future frames are used for the calculation, the
post-processing slightly delays the real-time application pipeline.
Another promising method by Qadir et al. [87] is a model consisting of a two-step process. The

first step generates several ROIs, similar to classical detection architectures. Afterward, the ROIs
are compared based on the ROIs previous frames and classified as true or false positive frames.
The authors assume that consecutive frames in a video are similar to each other. They trained their
model on the private ASU-Mayo-Video DB [110] data set and added additional data.

3.3.1.6 Object tracking

Like the post-processing approaches, object tracking is used after detecting a neural network to
filter the detection outputs in real-time. Nogueira-Rodríguez et al. [83] used YOLOv3, a 2D
convolutional neural network (CNN) object detector, for polyp detection. YOLOv3 was trained
on a custom data set of 28,576 images containing 941 polyps. The output of YOLOv3 was then
combined with a post-processing step based on an object tracking algorithm to reduce false-positive
predictions. The object tracker used the Intersection over Union (IOU) of predicted bounding boxes
in preceding frames to filter new predictions, considering only consistent bounding boxes in similar
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Table 3.3: Overview of polyp detection models on video data sets.
Author Year Method Test data set F1-score Speed
Tajbakhsh et al.[111] 2016 AlexNet Custom N/A N/A
Yuan et al.[125] 2017 AlexNet ASU-Mayo-

Video-DB
N/A N/A

Shin et al.[101] 2018 Inception
ResNet

ASU-Mayo-
Video-DB

86.9% 2.5
FPS

Itoh et al.[42] 2019 3D-ResNet Custom N/A N/A
Misawa et al.[78] 2019 3D-CNN Custom N/A N/A
Zhang et al.[127] 2019 SSD-GPNet CVC-

VideoClinicDB
69.8% 40 FPS

Yuan et al.[124] 2020 DenseNet Custom 81.83% N/A
Qadir et al.[87] 2020 Faster R-CNN CVC-

VideoClinicDB
84.44% 15 FPS

SSD CVC-
VideoClinicDB

71.82% 33 FPS

Xu et al.[122] 2021 CNN + SSIM CVC-
VideoClinicDB

75.86% N/A

Misawa et al. [79] 2021 YOLOv3 SUN-
Colonoscopy

87.05% 30 FPS

Rodríguez et al. [83] 2022 YOLOv3 + Ob-
ject tracking

Custom 88.10% N/A

Own contrib. A.5 2023 YOLOv5 + RT-
REPP

CVC-
VideoClinicDB

90.24% 43 FPS

positions with an IOU exceeding a selected threshold. With this approach, the authors achieved an
F1-score of 0.88 on a custom test data set.

3.3.2 Contribution and conclusion
Researchers in the field of automated polyp detection in videos use multiple approaches to incorpo-
rate the time dimension as detection input, like 3D architecture, optical flow, structural similarity,
post-processing and object tracking. Our contribution proposes an alternative system for polyp
detection that can operate in real-time and also considers the temporal dimension by incorporating
post-processing.
The article “A Real-Time Polyp Detection System with Clinical Application in Colonoscopy

Using Deep Convolutional Neural Networks” published in the MDPI journal of imaging in January
2023 (see Section A.5, [59]), presents a fully automated polyp detection device to assist physicians
during colonoscopy in real-time.
This work discusses several techniques for training a CNN on polyp detection, which includes

preprocessing, data augmentation and hyperparameter optimization. A post-processing step based
on video detection was developed to work with a stream of images in real-time. This approach
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incorporates the endoscope’s incoming stream context while maintaining real-time performance.
Moreover, the presented polyp detection system is integrated into a physical prototype ready for
clinical applications. The polyp detection systemwas evaluated on the CVC-VideoClinicDB bench-
mark with an F1-score of 90.24 %, considered state-of-the-art. Addtionally, a new performance
metric called “first detection time” is introduced. The first detection time measures the time be-
tween the appearance of a polyp and the first detection by the system. Furthermore, it is shown
that the trade-off of a higher number of FPS in return for a better recall is more important for
clinical application. Therefore, the first detection time is a more accurate metric to measure model
performance in clinical applications.
Another paper of this section focuses on the detection of polyps in videos without considering

the real-time requirement for clinical application and is called “Deep Learning using temporal
information for automatic polyp detection in videos” (see Section A.6, [57]). It was published in
the workshop proceedings of the Endoscopic Computer Vision Challenge 2.0 (EndoCV 2.0) 2022
at the ISBI conference.
The field of endoscopic computer vision has mainly focused on polyp detection in single images

but not in videos or streams of images. This was the reason for starting EndoCV 2.0. The goal of
EndoCV 2.0 is to use streams of image sequences to detect polyps accurately. One approach to
solving this challenge presented in this work is based onGong et al. [27]. The architecture leverages
the power of deep CNNs combined with temporal information to improve existing solutions for
polyp detection.
The presented detection system combines matching ROI features across multiple frames with

temporal attention to predict the polyp detection for the consecutive frame. For evaluation, the
shown approach is compared to two traditional image detection models on a validation set based
on training data provided by the challenge. The first tested model is a SSD called YOLOv3, and the
second model is a two-step region proposal-based CNN called Faster R-CNN. Data augmentation
was done to minimize the generalization error, and additional open-source training data was added.

3.3.3 Future work
Currently, real-time detection is only possible with limited neural network size. Nevertheless, the
advances in GPU development, also illustrated in Moore’s law [98], suggests that the capacity for
computational power will increase exponentially in the coming years. Therefore, different archi-
tectures with higher computational power, like 3D convolutions or big transformer architectures,
will soon find application in real-time medical assistance systems. Hence, the structure of 3D con-
volutions can be used further to attain more information about the incoming stream of images.
E.g., extensions of the ideas of Carreira et al. [18] may be used to exploit the advantages of 3D ar-
chitecture further. In this paper, 3D convolutional networks are applied to small videos to classify
the action performed in the video. Through the 3D networks, Carreira et al. allow the network to
incorporate all of the temporal information of the video to create the classification.
One potential approach for improving the performance of the polyp detection system in the future

is to utilize large transformer architectures, which have shown strong results in object detection tasks
(not real-time) [22, 68]. This approach could be particularly promising if it is feasible to train and
integrate a transformer network into the existing polyp detection system. Combining the benefits of
the transformer architecture’s high detection accuracy with the box correction capabilities of Robust
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and Efficient Post-Processing (REPP) may create a more powerful and effective polyp detection
system. However, it should be noted that this approach would likely require a significant amount
of computational power and is currently not feasible for real-time applications.
Another approach for future work is to design a detection framework classifying different patholo-

gies. The most reasonable in the field of medical assistance systems in colonoscopy is the detection
of diverticulosis, as it is the second most diagnosed disease by gastroenterologists. Nevertheless,
there are no open-source data resources for diverticulosis. To acquire a sufficient amount of train-
ing data would require a lot of work. The annotations system presented in this thesis is especially
useful to annotate this data set as diverticulosis has the same annotation and preparation require-
ments as polyps.

3.4 Polyp detection with extended vision
3.4.1 Related work
As there is mostly no similar literature to our contribution, the contribution is placed between
automated polyp detection systems and approaches to increase the vision of the gastroenterologist
in endoscopy. For a comprehensive overview of the field of automated polyp detection read sections
3.2 and 3.3. Several publications in the literature extend the vision of the gastroenterologist [21,
28, 113]. The first one emerged in 2008 by Triada et al. [113]. The authors referred to the back
view as a “Third Eye retrograde auxiliary imaging system” in the study. The authors consider the
system safe, technically feasible, and clinically promising. They showed that the system achieves an
11.8 % increase in diagnostic yield. Afterward, similar approaches use mostly the same technology
[64, 72, 120]. Primarily this procedure is referred to as TER [21, 28, 64, 72, 113, 120].
Then, more cameras are added to the endoscope resulting in a method called Fuse [28, 84, 105].

Fuse involves adding cameras on both sides of the endoscope and creating a 360-degree view around
the endoscope. Gralnek et al. showed the feasibility of Fuse in colonoscopies [28]. Furthermore,
Song et al. and Nulsen et al. showed an increase in ADR using Fuse [84, 105]. However, all of
these approaches to full-spectrum colonoscopy involve the creation of additional views on additional
monitors for the examiner. Installing suchmonitorsmay be cumbersome or even unfeasible because
of space restrictions. Additionally, showing the examiner two additional screens and the main
monitor may overwhelm the examiner and result in additional missed polyps [33].

3.4.2 Contribution and conclusion
The related work section discusses various approaches to increase the view of the endoscopist.
These approaches include TER, and Fuse. Nevertheless, these methods may be cumbersome or
overwhelming for the examiner. Therefore our contribution introduces a system, which keeps the
classic view of the endoscope for the gastroenterologist but adds two additional cameras to the
endoscope that are just viewed by an AI trained for polyp detection.
“A User Interface for Automatic Polyp Detection Based on Deep Learning with Extended Vi-

sion” (see Section A.7, [58]) is an article published in the conference proceedings of the Medical
Image Understanding and Analysis (MIUA) in Cambridge (England) 2022. The publication shows
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a new animal-tested automated polyp detection approach using two additional cameras. The two
additional cameras use the automated detection of polyps to extend the examiner’s view.
In the colon, polyps may hide behind folds or uninvestigated areas. Those polyps have a higher

chance of being missed by the gastroenterologist. Therefore, as described above, researchers sug-
gest expanding the examiner’s view by adding additional cameras to the endoscopes [21, 28, 113].
Nevertheless, these additional views may be overwhelming. The paper, therefore, suggests keeping
the classic view of the endoscope for the gastroenterologist but adding additional two views to the
endoscope that are just viewed by an AI. If a polyp is found, the examiner can focus on his classic
routine but is alarmed by the AI. This prototype is tested in an animal trial using gene-targeted
pigs. The results indicated that the AI system could find additional polyps missed on the main en-
doscope cameras. Nevertheless, the system has limitations. Light conditions significantly impact
the detection results, and false detections might occur if the side cameras of the endoscope are too
close to the mucosa. The polyp detection system may also falsely detect light reflections, bubbles,
or feces.

3.4.3 Future work
Currently, the polyp detection system with extended vision was only applied in animal trials. As
the results suggest high usability of the approach, the next step would be to rebuild the endoscope
for usage in a human. This involves a long testing period to achieve ethical and medical approvals.
The system must be more narrow and tested sufficiently to receive approval for the clinical trial in
humans.
Also, the additional cameras used in the system currently require many cables, which could be

inconvenient for both the endoscopist and the patient. To address this issue, it would be evident
to implement wireless communication between the cameras and the polyp detection system. This
could potentially improve the usability and convenience of the system for both the endoscopist and
the patient.
Another potential area for further development is the design and user experience of the system.

By considering the needs and preferences of endoscopists and patients, it may be possible to create
a system that is more intuitive and easy to use, which could improve the adoption and acceptance
of the system in the medical community. Finally, it may also be beneficial to explore the potential
for integrating the polyp detection system with other medical technologies or software platforms,
in order to create a more comprehensive and seamless experience for endoscopists and patients.

3.5 Automated polyp classification
3.5.1 Related work
In the literature, the automated classification of polyps started in 2016. An overview of all of the
methods is shown in table 3.4.
In the paper of Ribeiro et al. [93], a CNN is used to classify polyps into healthy and abnormal

classes utilizing Kudo’s pit-pattern classification. Pit-pattern classification uses the surface struc-
ture [62] to classify polyps. The classification system achieves an accuracy of 90.96 %. Another
approach using the pit-pattern classification is the paper of Tanwar et al. [112]. This paper uses
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Table 3.4: Overview of the related work for the polyp classification task.
Author Year Method Data Classification Accuracy

Ribeiro et al. [93] 2016 custom CNN private healthy
abnormal 90.96 %

Zhang et al. [128] 2016 CaffeNet private and
[76]

hyperplastic
adenoma 85.9 %

Bryne et al. [17] 2017 InceptionNet private hyperplastic
adenoma 94 %

Komeda et al. [51] 2017 custom CNN private adenoma
non-adenoma 75.1 %

Lui et al. [69] 2019 custom CNN private curable
non-curable 85.5 %

Bour et al. [16] 2019 ResNet-50 private
not dangerous
dangerous
cancer

87.1 %

Tanwar et al. [112] 2020 VGG-16 private
Benign

Malignant
Nonmalignant

84 %

Ozawa et al. [85] 2020 SSD private hyperplastic
adenoma 83 %

Hsu et al. [37] 2021 custom CNN private hyperplastic
neoplastic

72.2 %
82.8 % (NBI)

Own contrib. A.8 2022 Transformer SUN-
Colonoscopy Paris 89.35 %

Own contrib. A.8 2022 Few shot learning private NICE 81.13 %
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three classes: nonmalignant, malignant, and benign. The authors trained their model on a private
data set and yielded an accuracy of 84 %.
Another approach using a CNN for polyp classification is presented by Zhang et al. [128]. The

author uses the NICE classification in this paper. The polyps were additionally classified by color
and structure as polyp type one or two. Then they are categorized as hyperplastic or adenoma
tumors. Zhang et al. pre-trained the neural network on non-medical data. The accuracy of their
classification system is 86 %.
Bryne et al. [17] show another approach for the NICE classification. Bryne et al. used only NBI

video frames for training and validation of the system. The system is based on a real-time capable
CNN model. The accuracy of the system is 94 %, validated on 125 polyps. Another approach
with classification utilizing CNN architectures is Komeda et al. [51]. They classify polyps into
two categories (adenoma and non-adenoma) using a CNN. They used 10-fold cross-validation and
scored an accuracy of 75.1 %.
Lui et al. categorized polyps into curable and noncurable lesions using NBI and white-lighted

images [69]. Their classification system classified polyps with an accuracy of 85.5 %. The model
performed better on NBI images. Using the Paris classification, Bour et al. classified polyps “Not
Dangerous”, “Dangerous” and “Cancer”. The authors used several well-known CNN architectures.
Their system classified polyps with an accuracy of 87.1 % [16] with ResNet50.
Ozawa et al. [85] used a CNN based on a single-shot detector to classify and detect polyps. The

model was trained and validated with a private data set, achieving a true-positive rate of 92 %. The
system’s accuracy was 83 %. Last, Hsu et al. [37] used gray-scaled images to classify polyps. They
used a custom-designed classification network embedded, and the network incorporates a detection
and classification step. They classified polyps as neoplastic or hyperplastic polyps. The accuracy
was 82.8 % for NBI images and 72.2 % for white light images.

3.5.2 Contribution and conclusion
The literature shows different approaches to automated polyp classification using various CNN
architectures and classification systems such as Kudo’s pit-pattern classification, the Paris clas-
sification and the NICE classification. However, these methods have been assessed using only
privately collected datasets, which poses a challenge to reproducing and comparing the obtained
results. Our contribution is the first evaluation of the Paris classification on an open-source data set
with state-of-the-art results. The article “Automated classification of polyps using deep learning
architectures and few-shot learning” (see A.8, [55]), which is currently under minor revision from
the Journal BMC Medical Imaging, presents two novel approaches to polyp classification. The
first approach automatically characterizes polyps based on shape (Paris classification). The second
approach characterizes polyps based on texture and surface patterns (NICE classification).
Gastroenterologists classify polyps using different classification systems. Further treatment is

based on the classification of those polyps. The classification of polyps is not easy and misclas-
sifying polyps may lead to additional difficulties with further treatments. Therefore in this paper,
we presented two novel automated polyp classification systems. One system for Paris and one for
NICE classification.
The Paris classification model involves a two steps process. First, the polyp is detected and

cropped through a polyp detection system, and the cropped image is input for a transformer network
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in the second step. By achieving state-of-the-art results, the Paris classification system yields an
accuracy of 89.35 % on a public benchmark data set. The NICE classification system utilizes a
model based on deep metric learning. Thereby an embedding space for polyps is created. This
embedding space allows the classification using a small amount of data. The NICE classification
system produces a competitive accuracy of 81.13 %. Thereby the approach demonstrates the utility
of few-shot learning for polyp classification with a low amount of data. The study shows different
ablations of both systems and further elaborates on the explainability of the Paris classification
system.

3.5.3 Future work
In order to evaluate the effectiveness of the polyp classification system, it is beneficial to conduct a
clinical trial in which the system is applied in a test environment involving gastroenterologists with
varying levels of expertise. By measuring the accuracy of the polyp classification both with and
without the use of the AI assistant system, it is possible to determine the value of the system in
improving diagnostic accuracy.
Additionally, as the classification system is refined and improved, it has the potential to in-

crease the speed of documentation and free up time for gastroenterologists to perform other tasks.
Thereby, the integration of the system into an automated documentation system could further
streamline gastroenterological examinations.
Another approach to foster research in automated NICE and Paris classification is to collect

and release additional annotated data sets for the research community. By providing open-source
benchmark data sets, similar to those that already exist in the polyp detection field, researchers
would have access to a larger pool of data to use in evaluating and comparing different archi-
tectures and models. This would facilitate more comprehensive and fair evaluations of different
approaches and could accelerate the development of new and improved polyp classification sys-
tems. Additionally, the release of open-source data sets might foster collaboration and facilitate
the sharing of knowledge and resources among researchers in the field.

31





4 Conclusion
The use of deep learning in computer vision has led to significant progress in various tasks, including
medical imaging applications in gastroenterology. This thesis aims to show how automated polyp
detection and classification systems can assist gastroenterologists in their endoscopic examinations
of colon cancer. Thereby, the objective is guided by the following research question introduced in
chapter 1:

Can machine learning assist physicians in endoscopic examinations with the treatment of colon
cancer?

Yes, as the literature, the developed polyp detection and classification systems of this thesis and
the results of the publications (A.5, B.2) suggest machine learning does assist physicians with the
treatment of colon cancer. To answer this question in detail, the guiding research question was
divided into four sub-questions (RQ1 - RQ4):

RQ1 Can automated polyp detection assist gastroenterologists in their daily clinical practice?

Yes, an automated polyp detection system assisting gastroenterologists in real-time is developed
and presented. The system can be downloaded1 and applied in a clinical setting (A.5). Two publi-
cations laid the groundwork for the final system (see A.3, A.4) and another is an extension of the
system (A.6). The presented system consists of a fast and accurate object detector paired with a
novel post-processing technique. It achieves state-of-the-art performance on the open-source CVC
VideoClinicDB data set [29] with an F1 score of 90.25 %.
Preliminary clinical trial results show an increased ADR when using the automated polyp detec-

tion system (see B.2). Furthermore, the system shows a high usability score of 96.3 (max. 100).

RQ2 How does a semi-automated annotation tool impact the workload of gastroenterologists and
the quality of annotated data in endoscopic imaging for polyp detection?

An essential component for any machine learning system is high quality data (see Section A.1
and A.2). Therefore, an annotation tool specialized in gastroenterological annotations is created.
This system increases the annotation speed of a domain expert annotator by a factor of 20. This
is done with a specialized data filtering method and semi-automated AI-assisted annotation. The
annotation tool is used to create a polyp detection and classification data set with over 500.000
annotated images.

1https://fex.ukw.de/public/download-shares/XllQRkZUhWVZcJqSrMIndkSfq07afWBV
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4 Conclusion

RQ3 How does the integration of additional cameras with AI technology enhance the detection of
polyps and improve the examination process compared to traditional methods?

Extending the endoscopist with additional cameras to achieve a full-spectrum colonoscopy helps
the endoscopist find additional polyps. Assisting this full-spectrum colonoscopy with AI enables
easier control and more focus for the endoscopist. An AI assistant endoscope prototype with ex-
tended vision is tested with gene-targeted pigs (see Section A.7). In the animal trial, 13 additional
polyps were just found through the system’s assistance. Additionally, the system achieves a F1
score of 72.13 % on the side camera data.

RQ4 Can deep learning methods achieve high accuracy on the classification of polyps in gastroen-
terology and does few-shot learning improve the efficiency of the classification process?

Yes, this thesis also presented two novel algorithms for the automatic classification of polyps
(see Section A.8): First, a system for classifying polyps based on shape (Paris classification) is
presented. A two-step process is required for the classification. This involves a polyp detection step
that uses this thesis’s main polyp detection architecture. Next, the image is cropped and afterward
fed into a transformer network. The transformer is then classifying the cropped image. The Paris
classification model exceeds state-of-the-art results on a publicly available data set.
Second, a polyp classification system based on texture and surface (NICE). The NICE classifi-

cation system uses deep metric and few-shot learning to classify polyps. The model achieves an F1
score of 81.13 % on a publicly available data set.
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Fast machine learning annotation 
in the medical domain: a semi-automated video 
annotation tool for gastroenterologists
Adrian Krenzer1*  , Kevin Makowski1, Amar Hekalo1, Daniel Fitting2, Joel Troya2, Wolfram G. Zoller3, 
Alexander Hann2 and Frank Puppe1 

Abstract 
Background: Machine learning, especially deep learning, is becoming more and 
more relevant in research and development in the medical domain. For all the super-
vised deep learning applications, data is the most critical factor in securing successful 
implementation and sustaining the progress of the machine learning model. Especially 
gastroenterological data, which often involves endoscopic videos, are cumbersome to 
annotate. Domain experts are needed to interpret and annotate the videos. To sup-
port those domain experts, we generated a framework. With this framework, instead of 
annotating every frame in the video sequence, experts are just performing key annota-
tions at the beginning and the end of sequences with pathologies, e.g., visible polyps. 
Subsequently, non-expert annotators supported by machine learning add the missing 
annotations for the frames in-between.

Methods: In our framework, an expert reviews the video and annotates a few video 
frames to verify the object’s annotations for the non-expert. In a second step, a non-
expert has visual confirmation of the given object and can annotate all following and 
preceding frames with AI assistance. After the expert has finished, relevant frames 
will be selected and passed on to an AI model. This information allows the AI model 
to detect and mark the desired object on all following and preceding frames with an 
annotation. Therefore, the non-expert can adjust and modify the AI predictions and 
export the results, which can then be used to train the AI model.

Results: Using this framework, we were able to reduce workload of domain experts 
on average by a factor of 20 on our data. This is primarily due to the structure of the 
framework, which is designed to minimize the workload of the domain expert. Pair-
ing this framework with a state-of-the-art semi-automated AI model enhances the 
annotation speed further. Through a prospective study with 10 participants, we show 
that semi-automated annotation using our tool doubles the annotation speed of non-
expert annotators compared to a well-known state-of-the-art annotation tool.

Conclusion: In summary, we introduce a framework for fast expert annotation for 
gastroenterologists, which reduces the workload of the domain expert consider-
ably while maintaining a very high annotation quality. The framework incorporates 
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a semi-automated annotation system utilizing trained object detection models. The 
software and framework are open-source.

Keywords: Machine learning, Deep learning, Annotation, Endoscopy, 
Gastroenterology, Automation, Object detection

Background
Machine learning especially deep learning is becoming more and more relevant in 
research and development in the medical domain [1, 2]. For all of the supervised deep 
learning applications, data is the most critical factor in securing successful implemen-
tation and sustaining progress. Numerous studies have shown that access to data and 
data quality are crucial to enable successful machine learning of medical diagnosis, pro-
viding real assistance to physicians [3–7]. Exceptionally high-quality annotated data can 
improve deep learning detection results to great extent [8–10]. E.g., Webb et al. show 
that higher data quality improves detection results more than using larger amounts of 
lower quality data [11]. "is is especially important to keep in mind while operating in 
the medical domain, as mistakes may have fatal consequences.

Nevertheless, acquiring such data is very costly particularly if domain experts are 
involved. On the one hand domain, experts have minimal time resources for data anno-
tation, while on the other hand, data annotation is a highly time-consuming process. "e 
best way to tackle this problem is by reducing the annotation time spend by the actual 
domain expert as much as possible while using non-experts to finish the process. "ere-
fore, in this paper, we designed a framework that utilizes a two-step process involving 
a small expert annotation part and a large non-expert annotation part. "is shifts most 
of the workload from the expert to a non-expert while still maintaining proficient high-
quality data. Both of the tasks are combined with AI to enhance the annotation process 
efficiency further. To handle the entirety of this annotation process, we introduce the 
software Fast Colonoscopy Annotation Tool (FastCat). "is tool assists in the annotation 
process in endoscopic videos but can easily be extended to any other medical domain. In 
the domain of endoscopic imaging, the main issue of clinical experts is to find and char-
acterize pathologies, e.g., polyps in a screening colonoscopy. "ereby, the endoscopist 
examines the large intestine (colon) with a long flexible tube that is inserted into the 
rectum. A small camera is mounted at the end of the tube, enabling the physician to look 
inside the colon. "e images from this camera can be captured and annotated to enable 
automatic real-time detection and characterization of pathologies [12, 13]. "is process 
and other applications all need annotated data to enable high-quality results.

"e main contributions of our paper are: 

(1)  We introduce a framework for fast expert annotation, which reduces the workload of 
the domain expert while maintaining very high annotation quality.

(2)  We publish an open-source software for annotation in the gastroenterological 
domain and beyond, including two views, one for expert annotation and one for 
non-expert annotation.1

1 https:// github. com/ fastc atai/ fastc at.
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(3)  We incorporate a semi-automated annotation process in the software, which 
reduces the annotation time of the annotators and further enhances the annota-
tion process’s quality. 

To overview existing work and properly allocate our paper in the literature, we 
describe a brief history reaching from general annotation tools for images and videos to 
annotation specialized for medical use.

A brief history of annotation tools
As early as the 1990s, the first methods were conceived to collect large datasets of 
labeled images [14]. E.g., “"e Open Mind Initiative”, a web-based framework, was 
developed in 1999. Its goal was to collect annotated data by web users to be utilized by 
intelligent algorithms [15]. Over the years, various ways to obtain annotated data have 
been developed. E.g., an online game called ESP was developed to generate labeled 
images. Here, two random online players are given the same image and, without com-
munication, must guess the thoughts of the other player about the image and provide 
a common term for the target image as quickly as possible [14, 16]. As a result, several 
million images have been collected. "e first and foremost classic annotation tool called 
labelme was developed in 2007 and is still one of the most popular open-source online 
annotation tools to create datasets for computer vision. Labelme provides the ability to 
label objects in an image by specific shapes, as well as other features [17]. From 2012 to 
today, with the rise of deep learning in computer vision, the number of annotation tools 
expanded rapidly. One of the most known and contributing annotation tools is Labe-
lImg, published in 2015. LabelImg is an image annotation tool based on Python which 
utilizes bounding boxes to annotate images. "e annotations are stored in XML files that 
are saved in either PASCAL VOC or YOLO format. Additionally, in 2015 Playment was 
introduced. Playment is an annotation platform to create training datasets for computer 
vision. It offers labeling for images and videos using different 2D or 3D boxes, polygons, 
points, or semantic segmentation. Besides, automatic labeling is provided for support. 
In 2017, Rectlabel entered the field. RectLabel is a paid labeling tool that is only available 
on macOS. It allows the usual annotation options like bounding boxes as well as auto-
matic labeling of images. It also supports the PASCAL VOC XML format and exports 
the annotations to different formats (e.g., YOLO or COCO JSON). Next, Labelbox, a 
commercial training data platform for machine learning, was introduced. Among other 
things, it offers an annotation tool for images, videos, texts, or audios and data manage-
ment of the labeled data.

Nowadays, a variety of image and video annotation tools can be found. Some have 
basic functionalities, and others are designed for particular tasks. We picked five freely 
available state-of-the-art annotation tools and compared them more in-depth. In 
Table 1, we shortly describe these tools and compare them.

Computer Vision Annotation Tool (CVAT)
CVAT [18] was developed by Intel and is a free and open-source annotation tool for 
images and videos. It is based on a client-server model, where images and videos are 
organized as tasks and can be split up between users to enable a collaborative working 
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process. Files can be inserted onto the server through a remote source, mounted file sys-
tem, or uploading from the local computer. Before a video can be annotated, it must 
be partitioned into its frames, which then can be annotated. Several annotation formats 
are supported, including the most common formats such as VOC, COCO, YOLO and 
TFRecord. Available annotation shapes and types are labeling, bounding boxes, poly-
gons, polylines, dots, and cuboids. CVAT also includes features for a faster annotation 
process in videos. "e disadvantages of this tool are that it currently only supports the 
Google Chrome browser, and due to the Chrome Sandbox, performance issues could 
appear.

LabelImg
LabelImg [19] is an image annotation tool that is written in Python and uses the Qt 
framework as a graphical user interface. It can load a bulk of images but only supports 
bounding box annotations and saves it as a XML file in VOC or YOLO format. "e func-
tionalities are minimal but sufficient for manual annotation of images. Furthermore, it 
does not contain any automatic or semi-automatic features which could speed up the 
process.

labelme
"e annotation tool labelme [20] is written in Python, uses Qt as its graphical interface 
and only supports image annotation. It is advertised that videos could be annotated 
with this tool, but no video annotation function was found and the user must manually 
extract all frames from the video beforehand. Also, there are no automatic or semi-auto-
matic features available and uses basic shapes like polygons, rectangles, circles, points, 
lines and polylines to annotate images.

Visual Object Tagging Tool (VoTT)
Microsoft’s tool VoTT [21] is open-source and can be used for images and videos. Since 
it is written in TypeScript and uses the React framework as a user interface, it is possible 
to use it as a web application that can run in any web browser. Alternatively, it can also 
run locally as a native application with access to the local file system. Images and videos 
are introduced to the program via a connected entity. "is can be a path on the local 
file system, a Bing image search query via an API key, or secure access to an Azure Blob 

Table 1 Comparison between video and image annotation tools

Tool CVAT LabelImg labelme VoTT VIA

Image • • • • •

Video • - - • •

Usability Easy Easy Medium Medium Hard

Formats VOC • • • • -

COCO • - • - •

YOLO • • - - -

TFRecord • - - • -

Others - - • • •
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Storage resource. Available annotation shapes are rectangles and polygons that can be 
tagged. "ese can then be exported for the Azure Custom Vision Service and Microsoft 
Cognitive Toolkit (CNTK).

VGG Image Annotator (VIA)
VIA [22, 23] is a tool that runs in a web browser without further installation and is only 
build from HTML, JavaScript, and CSS. It can import and export annotations from 
COCO and a VIA-specific CSV and JSON. "e available annotation shapes are poly-
gons, rectangles, ellipses, lines, polylines, and points. Video annotation features the 
annotation of temporal segments to mark, e.g., a particular activity within the video. 
Defined segments of the track can also annotate an audio file. VIA does not contain any 
automatic functionalities within the tool itself; these are relatively independent steps. 
"ese steps can be broken down to: Model predicts on frames, save predictions so that 
they can be imported into VIA, and lastly, check and update annotations if necessary.

Medical annotation tools
With the considerable increase in interest and progress in machine learning in our soci-
ety the need for machine learning models shifts in different domains including medicine. 
"us, artificial intelligence can be used to assist medical professionals in their daily rou-
tines [24–26]. As a result, the need for labeled medical images and videos is also a major 
issue for medical professionals. While it is possible to use common annotation tools 
such as those already described above, some annotation tools have already been adapted 
to medical conditions. A well-known example from 2004 is “ITK-Snap”, a software for 
navigating and segmenting three-dimensional medical image data [27].

Another example is an open-source tool widely used in the medical domain called 3D 
slicer [28]. 3D slicer is a desktop software to solve advanced image computing challenges 
in the domain of medical applications. "ereby, it is possible to visualize special medical 
formats like DICOM (Digital Imaging and Communications in Medicine) in the tool and 
edit it with the 3D slicer software. Additionally, 3D Slicer incorporates Artificial Intel-
ligence (AI) via AI-assisted segmentation extension in the 3D slicer software (DeepInfer, 
TOMAAT, SlicerCIP, Nvidia Clara). "ereby, automatic segmentations can be created 
and edited for, e.g., CT scans of brains.

“ePAD” is an open-source platform for segmentation of 2D and 3D radiological images 
[29]. "e range of medical segmentation tools has become very broad nowadays, as they 
are usually specialized for many different areas of medicine.

Another annotation tool published in 2015 is TrainingData [30, 31]. TrainingData is 
a typical annotation tool for labeling AI (computer vision) training images and videos. 
"is product offers good features, including labeling support through built-in AI mod-
els. TrainingData also supports DICOM, a widespread format in the medical domain.

In 2016 Radiology Informatics Laboratory Contour (RIL-Contour) was published [32]. 
RIL-Contour is an annotation tool for medical image datasets. Deep Learning algo-
rithms support it to label images for Deep Learning research.

"e tool most similar to ours is Endometriosis Annotation Tool [33]. "e software, 
developed by a group of developers and gynecologists, is a web-based annotation 
tool for endoscopy videos. In addition to the classic functions such as video controls, 
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screenshots, or manual labeling of the images, the option of selecting between different 
endometriosis types is also offered here.

Nevertheless, most of these medical annotation tools are not suitable for our compari-
son as they only work with images or are too specialized. "e most suitable would be 
Endometriosis Annotation Tool, but the application is focused on specific annotations 
for surgery and those do not allow the creation of bounding box annotations which are 
crucial for our gastroenterological annotations. "erefore, we choose a common, well-
known state-of-the-art tool CVAT, for our comparison.

Results
"is section presents the results of our introduced tool FastCAT and compares it to the 
well-known state-of-the-art annotation tool CVAT. We start by introducing our data 
acquisition and experimental setup. We show our results of the non-expert annotators, 
which suggests that our tool outperforms the state-of-the-art tool CVAT. We further 
show how the semi-automated AI annotation affects the annotation speed. Finally, we 
show our results of the expert annotator, which underline the time advantage using our 
tool.

Data acquisition and experimental setup
For our evaluation, we used two data sets: "e GIANA data set and our data set cre-
ated at a German clinic called “University Hospital Würzburg”2. "e GIANA dataset is 
openly accessible3 [34]. It is the first polyp dataset published, which includes videos. For-
mer open-source datasets like CVC clinic database [35] or ETIS-LaribPolypDB [36] only 
provide single images. "e GIANA dataset consists of 18 annotated polyp sequences. 
It is a standard dataset that has been used before for model benchmarking in different 
publications [37–39]. "erefore, we can reliably use it for evaluating the quality of our 
results. On average, the data set has 714 frames per video. According to their references, 
all annotations are done by expert gastroenterologists. We randomly selected two videos 
from the 18 available ones in GIANA for our evaluation, which turned out to be videos 
number 8 and 16.

Our data set is composed of an additional 8 videos. "ese videos include full colo-
noscopies and therefore have to be filtered first. For the filtering process, we used the 
method introduced in this paper. Furthermore, we contacted an expert gastroenterolo-
gist from the University Hospital Würzburg for the expert annotation. Since the expert 
annotation time of gastroenterologists is very costly and difficult to obtain, we could 
only manage to receive the work of two experts. In a second process, the expert anno-
tators select the part of the video, including polyps, as explained in section Methods. 
However, since this annotation process is not yet completed, we can only evaluate the 
improvement in annotation speed and not the annotation quality with our dataset.

For the prospective study, all participants receive ten videos for polyp annotation. 
"e videos are randomly selected and then given to the participants. For our pre-
liminary evaluation, ten non-expert annotators are instructed to use our annotation 

2 https:// www. ukw. de/ en.
3 https:// endov issub 2017- giana. grand- chall enge. org.
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tool and the state-of-the-art annotation tool CVAT. Finally, all non-expert annota-
tors receive our software FastCAT and a java tool for measuring the time. "e expert 
annotator starts with annotation, as explained in “Methods”. He annotates Paris clas-
sification [40], the size of the polyp, and its location. Additionally, the expert anno-
tates the start and end frame of the polyp and one box for the non-expert annotators. 
Afterwards, the AI calculates predictions on these frames. "e results of the AI are 
given to the non-expert annotators, who then only correct the predicted boxes. 
"e non-expert annotators in this experiment are students from computer science, 

Table 2 Comparison of FastCAT and CVAT by video. This table shows our comparison of the well-
known CVAT annotation tool to our new annotation tool FastCAT in terms of annotation speed. 
Videos 1 and 2 are open source and annotated. Videos 3–10 are from the University Hospital 
Würzburg

Speed (SPF) Total time (min) Video information

CVAT FastCat CVAT FastCat Frames Polyps Framesize

Video 1 3.79 1.75 23.43 10.82 371 1 384x288

Video 2 4.39 2.49 32.85 18.63 449 1 384x288

Video 3 2.82 1.42 60.11 30.27 1279 1 898x720

Video 4 4.09 2.00 56.85 27.80 834 1 898x720

Video 5 4.57 2.39 53.24 27.84 699 2 898x720

Video 6 1.66 0.61 18.01 6.62 651 1 898x720

Video 7 1.70 0.64 11.22 4.22 396 1 898x720

Video 8 1.55 0.76 34.13 16.73 1321 2 898x720

Video 9 1.87 0.88 34.91 16.43 1120 1 898x720

Video 10 2.74 0.92 77.68 26.08 1701 4 898x720

Mean 2.92 1.39 40.24 18.54 882 1.5 795x633

Table 3 Comparison of FastCAT and CVAT by user. This table shows our comparison of the well-
known CVAT annotation tool to our new annotation tool FastCAT in terms of quality of annotation 
and annotation speed. The quality metric is the F1-score. We count a TP if the drawn box matches 
the ground truth box more than 70 %

Quality (%) Speed (SPF) Total time (min) Medical 
Experience

CVAT FastCat CVAT FastCat CVAT FastCat

User 1 99.30 99.50 7.33 3.71 48.78 25.30 Low

User 2 98.85 98.90 3.47 1.88 23.38 13.70 Low

User 3 97.97 98.51 4.59 1.53 31.28 11.17 Low

User 4 98.93 99.75 5.12 2.57 33.96 16.53 Middle

User 5 98.53 98.83 5.41 2.49 37.00 18.10 Middle

User 6 98.52 99.23 4.04 3.24 27.90 24.95 Low

User 7 99.45 99.30 5.20 2.70 35.01 21.28 Middle

User 8 99.35 99.08 5.25 2.86 33.90 19.57 Low

User 9 99.12 98.54 4.12 2.25 27.12 14.99 Low

User 10 98.93 99.48 5.63 2.76 37.53 19.89 Low

Mean 98.98 99.03 5.79 2.93 33.59 18.55 Low



Page 8 of 23Krenzer et al. BioMedical Engineering OnLine           (2022) 21:33 

medical assistance, and medical secretary. All non-expert annotators are instructed 
to annotate the polyp frames as fast and as accurately as they can.

Results of the non-expert annotators
We evaluated the tool with 10 different gastroenterological videos containing full colo-
noscopies. "e results are shown in Table 2 and in Table 3. As mentioned previously, 
we only evaluate the quality of the annotation in two videos from the openly accessi-
ble GIANA dataset. "e accuracy of the annotations is thereby calculated by compar-
ing the ground truth box of the already annotated open-source GIANA dataset with our 
newly created annotations. "e quality evaluation is done via the F1-score. "e F1-score 
describes the harmonic mean of precision and recall as show in following equations:

We count an annotation as true positive (TP) if the boxes of our annotators and the 
boxes from the GIANA dataset have an overlap of at least 70%. Our experiments showed 
high variability between individual experts. We, therefore, concluded that a higher over-
lap is not attainable. Hence, to ensure reasonable accuracy, we choose an overlap of 70% 
which has been used in previous studies [41–43]. To determine annotation speed, we 
first measure the speed of the non-expert annotators in seconds per frame (SPF). On 
average, our annotators take 2.93 s for annotating one image while maintaining a slight 
advantage in annotation quality. Overall, our semi-automated tool’s annotation speed is 
almost 2x faster than the CVAT annotation tool, with 5.79 s per image. In addition, we 
evaluate the average time non-expert annotators spend annotating an entire video. "e 
average video takes 18.55 min to annotate. In comparison, using the CVAT tool takes 
40.24 min on average per video. Due to some faulty prediction results of the AI, the 
annotators sometimes delete boxes and draw new boxes as some polyps may be hard to 
find for the AI. "is leads to higher annotation time in the case where polyps are mis-
predicted. Nevertheless, our tool is self-learning, and increasing amounts of high-qual-
ity annotations improve the prediction quality of the AI. "is, in turn, speeds up the 
annotation process further. We elaborate on this in detail in the following subsection. To 
include more information concerning the video data, we include the number of frames 
per video, the number of polyps per video, and each video’s frame size. "e videos pro-
vided by our clinic (Videos 3-10) have a higher resolution and a higher frame rate than 
videos gathered from different institutes. Overall the quality evaluation results show that 
almost similar annotation results to those of gastroenterology experts are achieved. For 
speed, our tool outperforms the CVAT tool in any video. In two videos, our tool is more 
than twice as fast as the CVAT tool.

Precision =
TP

TP+ FP
Recall =

TP

TP+ FN

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP+ FP+ FN
.
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Learning process of the non-expert annotators
Figure 1 shows the learning process of the non-expert annotators, in blue using our 
tool and in orange using CVAT. The figure shows that the annotation of the first 
videos takes longer than annotating the subsequent ones since the non-expert anno-
tator has to get to know the software and needs to adjust the software to his pref-
erences. Therefore, annotation speed using both tools improves by further usage, 
and both tools feature a similar learning curve. However, this learning process 
slows down after the annotation of about 4 to 5 videos. After this amount of videos, 
annotators are well accustomed to the software and can competently use most fea-
tures. In addition, Fig. 1 shows that this learning process is faster using our tool in 
comparison to the CVAT tool. This may be due to the information provided before 
use, the calculation we built directly into the software, and our user-friendly envi-
ronment. Besides all, the CVAT software also shows excellent progress in learning 

Fig. 1 Learning process of the non-expert annotators. The figure shows the speed of the annotator in 
seconds per frame (SPF) over the annotation experience measured by the total number of annotated videos 
by that point for both our tool and CVAT

Fig. 2 Effect of AI performance on annotation speed. Plotted are the speed of the annotators in seconds 
per frame over the AI performance given by its F1-score on a video-by-video basis, where the AI used for 
prediction is the same for each video. Every point is computed as the average over all annotators



Page 10 of 23Krenzer et al. BioMedical Engineering OnLine           (2022) 21:33 

worth mentioning. We can even see annotators who use any of the two tools more 
frequently further improve their annotation speed up to 9 videos. However, after 8 
to 9 videos, the annotation speed decreases. This may be due to two repetitions of 
the same process that may bore the non-expert annotator and, therefore, decrease 
annotation speed. Our data show that this effect is more prominent for CVAT than 
for our tool.

Impact of polyp pre-annotations
To further analyze the improvements in our framework, we investigate the impact of 
polyp detection on the annotation speed. We compare the final annotated videos with 
the predictions done during the investigated videos. For ten videos, we calculated the 
F1-score based on the analysis above. A higher F1-score implicates more detected 
polyps with less false positive detection. "en, we rank the videos according to their 
F1-score and display the annotation speed in seconds per frame (SPF), shown in Fig. 2. 
Overall, a high F1-score leads to a faster annotation speed. Nevertheless, as seen in Fig. 2 
if the F1-score is low, the annotation speed at times is faster without any predictions, 
e.g., from 0.2 to 0.4. Furthermore, low F1-scores show a higher standard deviation in the 
labeling speed. "is means that with a higher F1-score, the variance of the non-expert 
annotators’ labeling speed decreases and therefore the overall performance is increased. 
Furthermore, we emphasize that continuing the annotation process and retraining the 
system detection results will increase, and therefore, the annotation speed will increase.

Results of the expert annotators
"is subsection demonstrates the value of the tool for domain expert annotation. As 
domain experts are very costly, we only had two experts available for our study. "ere-
fore, our evaluation between domain experts could not be done quantitatively. Nev-
ertheless, we can qualitatively compare the amount of time the domain experts took 
to annotate our collected colonoscopies. "is is shown in Table  4. On average, our 

Table 4 Comparison of CVAT and FastCAT. The tables show the reduction of annotation time of 
the domain experts. Tgca stands for the time gained compared to annotation with CVAT and is the 
reduction of workload in %. Video 1 and video 2 are not used for this analysis as the open-source 
data do not provide full colonoscopies, but just polyp sequences and therefore it is not possible to 
perform an appropriate comparison

Total time (min) Tgca (%) Video information

FastCat CVAT Length (min) Freezes Polyps

Video 3 0.50 60.11 99.15 15.76 2 1

Video 4 0.67 56.85 98.82 17.70 6 1

Video 5 1.09 53.24 97.95 23.12 4 2

Video 6 0.77 18.01 95.72 6.30 2 1

Video 7 0.70 11.22 93.79 13.05 5 1

Video 8 1.78 34.13 94.76 27.67 13 2

Video 9 1.50 34.91 95.70 20.53 4 1

Video 10 2.92 77.68 96.24 24.36 15 4

Mean 1.24 43.26 96.52 18.56 6.38 1.62
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gastroenterologists spend 1.24 min on a colonoscopy. Our final results show that we 
achieved qualitatively similar results to the GIANA dataset annotation. "e expert 
annotators only take 0.5 to 1 minutes per video using our method, while taking at least 
10-80 minutes per video using the CVAT software. "erefore, we can reduce the amount 
of time a domain expert has to spend on annotation by 96.79 % or by a factor of 20 on 
our data. "is reduction is primarily due to expert and non-expert annotation structure, 
which reduces the expert’s effort tremendously.

Discussion with limitations
By implementing a novel workflow consisting of both algorithmic and manual anno-
tation steps, we developed a tool that significantly reduces the workload of expert 
annotators and improves overall annotation speed compared to existing tools. In this 
section, we highlight and discuss the impacts of our study, show the limitation of our 
presented work and propose new approaches to advance our study further.

Key features and "ndings
Our results show that by pre-selecting relevant frames using a combination of our 
freeze-frame detection algorithm and further, low-demand expert annotations and 
by using AI predictions for bounding box suggestions, we significantly increase the 
annotation speed while maintaining and even increasing annotation accuracy (see 
Tables 2 and 3). It is important to note that this improvement is not due to more anno-
tation experience with one tool over the other since the annotators used the tools in 
an alternating fashion with random video order. Figure 1 further stresses this fact by 
showing a similar learning curve for both tools, with our tool being shifted down to 
shorter annotation times. In both cases, the annotation experience (i.e., adjustment to 
the tool) increases up to around seven videos or 10,000 annotated frames. "e anno-
tation speed first saturates and then increases again, possibly due to a human exhaus-
tion effect of doing the same task for an extended duration [44].

Additionally, we inspected the effect of the prediction performance on the annota-
tion speed. As shown in Fig. 2, there is a clear trend towards faster annotation time 
with better AI performance. "e annotator works faster if the suggested bounding 
boxes are already in the correct location or only need to be adjusted slightly by drag 
and drop. If the predictions are wrong, the annotator needs to move the boxes further, 
perhaps readjust the size more, or even delete boxes or create new ones. However, 
the AI improvement saturates at an F1-score of around 0.8, where better AI perfor-
mance does not equate to faster annotation speed. Additionally, the range of error is 
much more significant for the worse performing videos, so this point warrants further 
inspection in future studies. Nevertheless, it is apparent here that an AI only needs to 
be good enough instead of perfect to improve annotation speed significantly.

Finally, the results in Table 3 suggest that medical experience does not affect either 
the annotation speed or performance. "e frame detection algorithm combined with 
the expert frame annotations and our AI’s pre-detection provides enough feasibility 
for the non-experts to adjust the suggested annotations fast and accurately regardless 
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of experience. However, it should be noted that the range of speeds across our non-
expert annotators is more stable for middle experience annotators than low experi-
ence ones.

All in all, our tool significantly improves the annotation workflow, specifically in the 
domain of gastroenterology, where specialized tools are scarce. "e annotation speed 
is more than doubled while keeping the same accuracy as other state-of-the-art tools 
and keeping the cost for expert annotators low.

Limitations of the study
In this subsection, we will shortly discuss the limitations of our analysis and provide 
an outlook for future studies.

First of all, we did not consider the difficulty of the video when analyzing annotation 
time. Some videos contain more and harder to detect polyps and thus provide a big-
ger challenge for both the AI and the annotator. "e effect of video difficulty directly 
correlates to the AI performance in Fig. 2, where the standard error for low-F1 videos 
is much higher compared to the better ones. Some annotators can efficiently deal with 
false predictions, while others have more difficulties with those. Additionally, the total 
annotation time was measured from beginning to end for a video. While the applet we 
provided for the annotators includes a pause button, minor deviations, like checking 
their phone, are not removed from our total time measured. "ese statistical deviations 
could be removed by dividing the videos into difficulty categories and analyzing each 
category separately. We need more data or more annotators, where small statistical out-
liers should be averaged out.

Additionally, with only three medical assistants and seven non-experts, we need fur-
ther tests to see if medical experience significantly affects annotation time and quality. 
As discussed above, Table  3 suggests that medium experience annotators work more 
consistently, whereas low experience ones can be both faster and slower than the medi-
cal assistants. "ese findings can be examined further in future studies with more anno-
tators from various backgrounds, especially those with high medical experience.

Finally, we only indirectly measured the effect of bounding box pre-detection, where 
our non-expert annotators had no pre-detection for CVAT and suggestions with our 
tool. "us, the improvement in annotation speed could also be due to our tool sim-
ply being easier to use and having a better user interface (UI) than CVAT. For future 
analysis, we intend to have the non-expert annotators annotate videos twice, once with 
bounding box suggestions and once without. However, both times they will use our tool. 
"is way, we will be able to analyze the effect of the pre-detection directly.

Limitations of the tool and future improvements
While our freeze-frame detection algorithm is specific to the domain of gastroenterol-
ogy, the specific method for detecting relevant frames can be exchanged for a function 
more suited to the annotators’ domain. Additionally, while we only utilized the tool for 
polyp detection, it can be easily extended to feature more than one pathology, like diver-
ticulum or inflammation. Since frame-wide annotations are separate from bounding 
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boxes, this can also be used for standard image classification tasks and pathologies that 
are hard to confine to a bounding box area.

Additionally, within the medical domain, we plan to implement a feature for automati-
cally detecting gastroenterological tools. When the acting doctor detects a suspicious 
polyp or other, they often remove them during the examination. "e tools will then be 
visible on screen and are an indicator of pathology. Hence, the tool detection can be used 
as an algorithm to detect relevant frames within the videos."e pre-detection algorithm 
itself is also not limited to our deep learning AI trained on polyps but can be exchanged 
easily for a AI more suited to the user’s task.

"e algorithm used for tracking objects across several frames is currently limited by 
the implemented standard object trackers above. "ese trackers are standard tools that 
often lose the object and have much room for improvement. While we provide an option 
for resetting the trackers, we intend to implement state-of-the-art video detection algo-
rithms in the future to fully utilize this feature [45, 46].

Conclusion
In this paper, we introduce a framework for fast expert annotation, which reduces the 
working amount of the domain experts by a factor of 20 on our data while retaining 
very high annotation quality. We publish open-source software for annotation in the 
gastroenterological domain and beyond. "is includes two views, one for expert annota-
tion and one for non-expert annotation. We incorporate a semi-automated annotation 
process in the software, which reduces time spent on annotation and further enhances 
the annotation quality. Our results suggest that our tool enhances the medical especially 
endoscopic image and video annotation, tremendously. We not only reduce the time 
spend on annotation by the domain expert, but also the overall effort.

Methods
In this section, we explain our framework and software for fast semi-automated AI video 
annotation. "e whole framework is illustrated in Fig. 3. "e annotation process is split 
between at least two people. At first, an expert reviews the video and annotates a few 
video frames to verify the object’s annotations for the non-expert. In a second step, a 

Fig. 3 Annotation framework for fast domain expert labeling supported by an automated AI prelabeling
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non-expert has visual confirmation of the given object and can annotate all following 
and preceding frames with AI assistance. To annotate individual frames, all frames of 
the video must be extracted. Relevant scenes can be selected by saving individual frames. 
"is prevents the expert from reviewing the entire video every single time. After the 
expert has finished, relevant frames will be selected and passed on to an AI model. "is 
information allows the AI model to detect and mark the desired object on all follow-
ing and preceding frames with an annotation. "erefore, the non-expert can adjust and 
modify the AI predictions and export the results, which can then be used to train the AI 
model.

Input
To annotate individual video frames, the program must have access to all frames of the 
video. If annotated frames already exist, the program can recognize this; otherwise, 
it will extract all frames from the video and save them into a separate folder. Relevant 
frames can be annotated manually or inferred automatically. To mark the frames manu-
ally, frame numbers or timestamps are entered in the program. In the context of our 
polyp detection task, we created a script that detects when the recording freezes and 
marks these frames as relevant. A video freeze is caused by photos taken of suspicious 
tissue or polyps that are taken during the examination. "e endoscope is stabilized 
mechanically if the examiner is pushing a button to take the photo. "erefore, these 
parts of the video are most relevant for the expert. "is reduces the expert’s workload 
since he does not have to review the entire video, but can quickly jump to the relevant 
parts of the video. "e extraction is done by using the OpenCV framework.

Detect relevant frames
We denote all frames that assist the expert in finding critical parts of the video as freeze 
frames. Such frames can be detected automatically or entered manually by a frame num-
ber or timestamp. During a colonoscopic or gastroscopic examination, when the acting 
doctor detects a polyp (or similar), they freeze the video feed for a second and capture 
a photo of the polyp. Hence, for our task (annotation in gastroenterology), we auto-
matically detect all positions in which a video shows the same frames for a short time, 
i.e., where the video is frozen for a few frames. Overall, within our implementation, we 
call such a position a “freeze frame”. "e detailed explanation for detecting those freeze 
frames is shown in Algorithm 1.

In order to discover those freezes automatically, we extract all frames from the video 
using OpenCV [47]. OpenCV is one of the most famous computer science libraries for 
image processing. Afterwards, we compare each frame to its next frame. "is is done 
by computing the difference in pixel values of both frames, converting it into the HSV 
color space, and calculating an average norm by using the saturation and value dimen-
sion of the HSV color model. A low average norm means that both frames are almost 
identical; hence a freeze could have happened. We save a batch of ten comparisons for 
a higher certainty and take an average of the ten last comparisons (similar to a moving 
average). If the average value falls below a certain threshold, we define the current frame 
as the start of a freeze. "e end of a freezing phase is determined if the average value 
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exceeds another defined threshold. "is algorithm has high robustness and consistency 
as it rarely misses a freeze or creates a false detection.

Expert view
We refer to this part of the program Video Review, as the expert reviews the video to find 
polyps. For the expert to perform their task, they require the examination video, all indi-
vidual video frames, and a set of relevant frame numbers, e.g., freeze frames. "e video 
allows the expert to review the performed examination and get an overview of the pre-
sented situation to diagnose polyps correctly. All extracted video frames are necessary to 
be able to access and annotate individual frames. Lastly, a set of relevant frame numbers 
is given to the expert to jump to relevant video parts quickly. "is led to a solution that 
provides the expert with two different viewpoints: (1) video player and (2) frame viewer. 
To enable fast and smooth transition between both viewpoints, it is possible to switch at 
any point in time from the current video time stamp t to the corresponding video frame f 
and vice versa. "is is done by a simple calculation based on the frames per second (FPS) 
of the video and the current timestamp in milliseconds: f =

t[ms]·FPS[1/s]
1000 .

It is possible to look at individual video frames within the frame viewer, assign classes 
to these frames, and annotate polyps within those frames. "e class assignment is done 
through freeze frames, where each frame to which a class is assigned will be associated 
with a previously selected freeze frame. "e second task, frame annotation, is independ-
ent of a class assignment and annotates the polyps within a frame with a bounding box 
that encloses the polyp. "is primarily serves as an indication for non-experts to get vis-
ual information about the polyp that can be seen in the following/subsequent frames.

We use classes to mark frames if there is a polyp in the picture; we use these classes 
to mark relevant frames for the following annotation process by a non-expert. Two dif-
ferent approaches can be used to assign classes to frames. A range of frames is defined 
in the first approach by assigning start and end classes to two different frames. Conse-
quentially, all frames in-between belong to the same class. "e tool is also capable of 
assigning classes to each frame individually. "e changes within video frames are small; 
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therefore, many consecutive frames must be annotated with the same class. To make this 
process less time-consuming, the program allows the expert to go through a sequence of 
frames quickly and smoothly while classifying them by keeping a key pressed on the key-
board. However, mostly the assignment of start and end classes is faster and preferred.

Because all frames are mostly stored on an HDD/SSD, the loading latency is a per-
formance bottleneck. We implemented a pre-loading queue that loads and stores the 
upcoming frames into the RAM to achieve fast loading times. "is allows to display 
and assign frames with low latency. To prevent the queue from emptying rapidly, which 
causes high loading latency, we need to control the queue access times between two 
frames. "erefore, we use a capacity-dependent polynomial function to calculate a paus-
ing time between frames: ms = 50 · (1 − capacity)2.75 . A full queue shortens the waiting 
time to 0 ms, while an empty queue leads to a 50-ms waiting time. "is method com-
bines fluent viewing and class assigning while providing enough time in the background 
to load new frames continuously.

Since the basic information about the presence of a polyp on an image is not suffi-
cient for non-experts, and we want to ensure high-quality annotations, the expert has 
to annotate samples of all discovered polyps. "is will provide visual information of the 
polyp to non-experts, allowing them to identify these polyps in all following and preced-
ing frames correctly. Scenes in which polyps are difficult to identify due to perspective 
changes and other impairments should also be exemplary annotated by experts to pro-
vide as much information as possible to non-experts.

As we can see in Fig. 4 on the left side, the program lists all detected freeze frames. "e 
list below shows all frames that belong to the selected freeze-frame and were annotated 
with specific classes, e.g., polyp type. Independent from the hierarchical structure above, 

Fig. 4 Video Review UI. The figure shows the list of freeze frames, the corresponding child frames, and 
annotations within the image on the right side. In the bottom part of the view, the user can insert comments, 
open reports, delete classes, and see all individual classes. The diseased tissue is delineated via bounding 
boxes
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we display all annotations that belong to the current frame in a list and on top of the 
image. In the lower part of the view, navigation controls skip a certain amount of frames 
or jump directly to a specific frame. "e annotator can also leave a note to each frame if 
necessary or delete certain classes from the frame.

Semi-automated polyp prelabeling
"e prediction of polyps is made by an object detection model that was trained to detect 
polyps. "e model we used is called EfficientDet [48]. EfficientDet is an object detec-
tion network that builds upon EfficientNet [49] and uses it as its backbone network. A 
feature extraction network is added on top of the backbone, which was named bidirec-
tional feature pyramid network (BiFPN), and extracts the features of multiple layers. It 
is based on the idea of FPN and PANet [50] and combines multiple features of different 
sizes. "is is called feature fusion and can be done by resizing or upsampling all fea-
ture resolutions to the same size and is combined by summing up. While previous meth-
ods did not consider the influence of a feature, BiFPN uses a weighted feature fusion 
that decides which features have the most influence. "ese features are then used for 
class and bounding box prediction. We adapted this network and trained it for polyp 
detection. "e task of polyp detection is a combination of localizing and classifying an 
identified polyp. With this method, we aim for a fast AI-assisted annotation process for 
non-experts. Since every team has a different application, we distinguish between offline 
and online polyp prediction.

With an offline polyp prediction approach, we eliminate the need for high-end hard-
ware for each user who uses AI assistance for fast annotation. "e prediction is made 
by an external machine that is capable of running an AI model. With this approach, the 
extracted relevant frames are passed to this machine, generating a tool-specific JSON file 
that is then passed to the non-expert for further inspection.

As online polyp prediction, we define the performance of polyp detection locally on 
the machine of the annotator. "erefore, the machine on which our tool is executed 
must have the necessary hardware and software installed to run the detection AI. As 
there are different frameworks and deep learning networks, we need a unified interface 
to address all these different requirements. We decided to use Docker4 for this task. 
Docker uses isolated environments called containers. "ese containers only carry the 
necessary libraries and frameworks to execute a program. By creating special containers 
for each model, we can run a prediction independent of our tool and its environment. 
Containers are built from templates called images, which can be published and shared 
between users. "erefore, it is possible to create a repository of different models and 
prediction objectives. Because a container shuts down after every prediction, it must 
reload the model for the next prediction. To counteract this, we run a web server inside 
the container and communicate to the model via HTTP. "is ensures that a model does 
not have to reload after every prediction and provides a universal and model-independ-
ent communication interface. With this setup, the user can trigger a single prediction or 
run a series of predictions in the background.

4 https:// docker. com.
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As we have already stated, we use HTTP for our communication. "is gives room for 
a hybrid solution, allowing predictions on an external server while retaining the user’s 
control. "is combines the advantages of the external and local approaches, where the 
user is not required to have expensive hardware, nor is it necessary to have a separate, 
time-consuming prediction step. "e docker container is now running during the anno-
tation process and AI is running in the container while using the program. "erefore, 
the diseased tissue delineating bounding box is directly drawn as an annotation on the 
image. "is annotation can then be corrected or redrawn in the process.

Non-expert annotation
With the help of AI, it is possible to annotate a large number of frames quickly and easily. 
"e AI is predicting the annotations directly to the image. However, this method does 
not ensure the correctness of the predicted annotations. For this reason, these annota-
tions must be checked and modified if necessary. Non-experts can check these predic-
tions or create new annotations with the help of verified example annotations from the 
expert and the indication in which frame a polyp is visible. Besides, the AI-assisted sup-
port of our tool provides annotation duplication across several frames and object track-
ing functionality which speeds up the annotation process. Figure 5 illustrates the UI of 
the non-experts view.

As mentioned in section Semi-automated polyp prelabeling our tool supports the 
integration of AI detection. It can trigger a single prediction or make predictions on the 
following frames in the background. "is enables the user to immediately annotate the 
remaining frames without waiting for the external prediction process to finish.

Fig. 5 Image annotation UI. The figure shows a list of all available frames on the left with labeling 
functionality for a specific annotation and the whole image. The image to be annotated is displayed on the 
right. The diseased tissue is delineated via bounding boxes
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Another helpful feature is the duplication of annotations. Sometimes, only subtle 
movements occur in polyp examination videos, causing a series of frames to only show 
minuscule changes. "is feature allows the non-expert to use the bounding boxes of the 
previous frame and only make minor adjustments while navigating through the frames. 
Re-positioning an existing bounding box requires less time than creating an entirely new 
box with a click and drag motion.

Our last feature uses object tracking to track polyps throughout consecutive frames. 
"is avoids the manual creation of bounding boxes for each video frame, especially in 
sequences where an object’s visual and spatial transition between two frames is non-dis-
ruptive. For this task, we used trackers available in the OpenCV framework. Within the 
intestine, special conditions are usually present. First, the nature of colonoscopies leads 
to unsteady camera movement. Second, the color of polyps is often similar to the sur-
rounding intestinal wall, which can make them hard to recognize. "is can compromise 
the performance of the tracker and deteriorate polyp tracking. Given the fact that the 
annotation process requires a user to operate the tool and, therefore, the tracker does 
not need to track polyps fully automatically, we added two options to reset the tracker. 
"is is described in more detail in the next section.

Object trackers
As described in section Non-expert annotation our tool has object tracking functional-
ity. It assists in tracking an object across multiple frames. For our tool, we implement six 
of the available trackers in the OpenCV framework [47]. In the following, we give a short 
description of the available trackers:

• Boosting. It is using an online version of AdaBoost to train the classifier. !erefore, 
the tracking is viewed as a binary classification problem, and negative samples of the 
same size are extracted from the surrounding background. It can update features of 
the classifier during tracking to adjust to appearance changes [51].

• MIL. Multiple Instance Learning uses a similar approach as Boosting and extracts 
positive samples from the immediate neighborhood of the object. !e set of samples 
is put into a bag. A bag is positive when it contains at least one positive example, and 
the learning algorithm has to the inference which is the correct sample within a posi-
tive bag [52].

• KCF. Kernelized Correlation Filter uses the same basic idea as MIL, but instead 
of sampling a handful of random samples, it trains a classifier with all samples. It 
exploits the mathematical properties of circulant matrices to make tracking faster 
and better [53].

• CSRT CSRT uses discriminative correlation filters (CDF) with channel and spatial 
reliability concepts. !e correlation filter finds similarities between the two frames. 
!e spatial reliability map restricts the filter to suitable parts of the image. Scores 
estimate the channel reliability to weight features [54]. In addition, it is worth men-
tioning that rapid movements are not handled well by trackers that use CDF [55].

• Median flow. Median flow tracks points of the object forward and backward in time. 
!ereby, two trajectories are measured, and an error between both trajectories is 
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estimated. By filtering out high error points, the algorithm tracks the object with all 
remaining points [56], It is best applicable for smooth and predictable movements 
[57].

• MOSSE. Minimum Output Sum of Squared Error is an adaptive correlation filter 
robust to light variation, scale, post, and deformations. It applies a correlation filter 
to detect the object in new frames. It works only with grayscale images, and colored 
images will be converted internally [58].

• TLD. TLD decomposes a long-term tracking task into tracking, learning, and detec-
tion. !e tracker is responsible for tracking the object across the frames. !e detector 
finds the object within a frame and corrects the tracker if necessary, and the learning 
part of the algorithm estimates the error of the detector and adjusts it accordingly 
[59].

An object tracker is designed to follow an object over a sequence of frames by locating 
its position in every frame. Each tracker uses different strategies and methods to per-
form its task. "erefore, trackers have to be switched and tested when tracking differ-
ent pathologies. It can collect information such as orientation, area, or the shape of an 
object. However, also many potential distractions can occur during tracking that can 
make it hard to track the object. Distraction causes are, e.g., noisy images, unpredict-
able motion, changes in illumination, or complex shapes. As a result, the performance of 
different trackers can vary between different domains and datasets. For this reason, our 
tool allows the user to choose the best tracker for their task and dataset. Because track-
ers are primarily designed to track objects across many frames automatically, the tracker 
may generate less accurate bounding boxes over time or entirely lose track of the object. 
Since the tracking conditions for polyp detection are complex and our tool uses a semi-
automated solution, we implemented two additional options for the annotation task.

By default, the tracker is initialized by placing a bounding box around an object that 
should be tracked. Consequently, the tracker will find the object on one consecutive 
frame and place a bounding box around it. We found that the tracker loses track of the 
initialized polyp with a high number of consecutive frames. "erefore, we implemented 
options to reinitialize the tracker automatically. "e first option reinitializes the tracker 
after every frame, giving the tracker the latest visual information of the polyp. "e sec-
ond option only initializes the tracker if the user changed the bounding box size. Both 
options ensure that the tracker has the latest visual information of the polyp since the 
user corrects misaligned bounding boxes.

Output and conversion
We use JSON as our standard data format. "e JSON prepared by the expert stores 
detected freeze frames with all corresponding frames that contain at least one class. 
Additionally, annotated frames are stored in the same file but independently from the 
class assignments. "e resulting JSON from the expert annotation process serves as an 
intermediate output for further annotations. All annotations that are done automatically 
are annotated so they can be distinguished from the annotations done manually.

"e non-expert produces the final output with all video annotations. "is file con-
tains a list of all frames with at least one annotation. "e tool produces a JSON with a 
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structure designated to fit our needs. However, since different models require different 
data formats, we created a python script that converts our format into a delimiter-sepa-
rated values (DSV) file format. Via a configuration file, the user can adjust the DSV file 
to its need, e.g., convert it into YOLO format. It is also possible to convert the DSV file 
back to our format. "is enables seamless integration of different formats. In the future, 
further predefined formats can be added.
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Semi-Automated Machine Learning Video 

Annotation for Gastroenterologists 

Adrian KRENZERa,1, Kevin MAKOWSKIa, Amar HEKALOa and Frank PUPPEa 
a Julius-Maximilian University of Würzburg, Germany 

Abstract. A semi-automatic tool for fast and accurate annotation of endoscopic 

videos utilizing trained object detection models is presented. A novel workflow is 
implemented and the preliminary results suggest that the annotation process is 

nearly twice as fast with our novel tool compared to the current state of the art. 

Keywords. machine learning, deep learning, video annotation tool, endoscopy 

1. Introduction 

Recently machine learning started to play an important role in the domain of medical 

analysis, classification and disease prevention [1]. Most supervised machine learning 

algorithms need lots of high-quality data. The annotation process to acquire this data is 

very costly and labor-intensive, especially if domain experts are involved. Therefore, a 

tool for an efficient annotation process is presented, which reuses routinely made 

pathologic snapshots from an endoscopy. It requires an expert just to mark the beginning 

and end of the pathology in the video based on the snapshot, automatically detects 

bounding boxes of the pathologies (in our case polyps) within all the frames of the 

marked video sequences and offers a non-expert annotator comfortable fine-tuning of 

the bounding boxes if necessary. Figure 1 summarizes the workflow of our tool. 

2. Methods 

First, the user inputs a video file to our annotation tool. All the frames of the video are 

extracted and stored as images in the referencing folder. Then, special frames are selected 

by an automated domain-specific process these frames are then marked by an expert. 

Figure 1. Workflow of our proposed annotation process. 
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Table 1. Comparison of the well-known CVAT annotation tool to our new annotation tool for faster annotation 
for gastroenterologists. Videos 1 and 2 are open source and annotated. Video 3 is from a German clinic. For 

video 3 no quality evaluation is performed since there are no ground truth annotations available. The quality 

metric is the mean average precision (mAP70) when the drawn box matches the ground truth box to 70 %.

 

The model is trained to predict polyp bounding boxes on the marked frames. This model 

can always be retrained with the newly annotated data. As the detection gets better, the 

time for annotation should decrease. Therefore, the annotation time will be reduced with 

annotation progress. For the detection of the polyps state of the art object detector 

YOLOv4 [2] is used. The detector is trained on openly available datasets for polyp 

detection. In the final step, a non-expert corrects the model's predictions. He gets all the 

model's predictions and one or more annotated boxes from the expert. Those annotations 

are still of high quality as the expert annotations assure the presence of a pathology and 

the non-experts only adjust the predicted bounding boxes.   

3. Preliminary Evaluation 

For our preliminary evaluation, two test subjects are instructed to use our annotation tool 

and the state of the art annotation tool CVAT [3]. The test subjects in this experiment are 

undergraduates from the field of computer science therefore just the non-expert part of 

our tool is evaluated. Both students are instructed to annotate the polyp frames as fast 

and as accurately as they can. The results are shown in Table 1. The quality evaluation 

results show that almost similar annotation results to those of gastroenterology experts 

are achieved. For speed, our tool outperforms the CVAT tool in any video. In two videos 

our tool is more than twice as fast as the CVAT tool. A total of three videos were 

annotated. We plan a full evaluation to further investigate the speed of the expert 

annotators. 

4. Conclusion 

All in all, a novel tool for machine learning video annotation in endoscopic recordings is 

presented. The method's annotation speed exceeds the classic computer science tool 

CVAT [3] while maintaining high-quality results. 
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ENDOSCOPIC DETECTION AND SEGMENTATION OF GASTROENTEROLOGICAL
DISEASES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
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ABSTRACT

Previous endoscopic computer vision research focused mostly
on the detection of a singular disease like, e.g. polyps. The
endoscopic disease detection challenge (EDD2020) extends
this classification task by providing data for different diseases
in various organs. The EDD2020 includes two sub-tasks1:
(1) Multi-class disease detection: localization of bounding
boxes and class labels for the five disease classes: Polyp,
Barret’s Esophagus (BE), suspicious, High Grade Dyspla-
sia (HGD) and cancer; (2) Region segmentation: boundary
delineation of detected diseases. In this paper, we describe
our approach by leveraging deep convolutional neural net-
works (CNNs). We highlight the comparison of two general
state-of-the-art object detection approaches. The first one is
Single Shot Detection (SSD), and the second one are two-
step region proposal based CNNs. We, therefore, compare
two different models: YOLOv3 (SSD) and Faster R-CNN
with ResNet-101 backbone. For the second task, we lever-
age the state-of-the-art Cascade Mask R-CNN with various
backbones and compare the results. In order to minimize
generalization error, we apply data augmentation; finally, we
use knowledge from the endoscopic domain to further refine
our models during post-processing and compare the resulting
performances.

1. INTRODUCTION

Endoscopic vision is a procedure which covers many differ-
ent areas and organs of the human body, such as the bladder,
the stomach or the colon, allowing gastroenterologists to po-
tentially discover a wide array of diseases and abscesses, like
polyps, cancer and Barrett’s esophagus. Naturally, in order
to assure detection of all diseases and to improve the work-
flow, application of real-time detection using Deep Learning
is becoming more prevalent. There have been previous publi-
cations with good results on real-time detection of endoscopic
polyps using Single Shot Detector [1] based CNNs [2] as well
as an anchor free approach called AFP-Net [3]. Existing work

1https://edd2020.grand-challenge.org
Copyright c�2020 for this paper by its authors. Use permitted under

Creative Commons License Attribution 4.0 International (CC BY 4.0).

usually focuses on one disease class, like polyp or cancer
detection, mostly due to lack of annotated data. The Endo-
scopic Disease Detection Challenge 2020 [4] partially solves
this issue by providing endoscopic images of three different
organs, namely colon, esophagus and stomach, with five dis-
ease classes. Additionally they provide corresponding bound-
ing boxes for object detection as well as polygonal masks for
image segmentation. In this paper we apply and train state-
of-the-art Deep Learning models for both tasks using various
architectures and comparing their performance.

2. DATASETS AND DATA ANALYSIS

In order to choose and prepare the right deep CNN for the
task, we start by analyzing the given training data in detail.
The EDD2020 challenge [4] provides a training data set for
multi-class disease detection, which contains 386 endoscopic
images labeled with 684 bounding boxes and 502 segmen-
tation masks. While analyzing the data, we recognize class
imbalance. Therefore we counted the occurrences for each
class throughout the dataset based on the bounding boxes.
The dataset has more than 200 images with polyps and BE
but less than 100 samples for the three remaining classes re-
spectively. So, it might be challenging to learn the correct
assessment of the classes HGD, suspicious and cancer. This
unbalanced sample distribution is one difficulty of the dataset
and is therefore considered while choosing our model and it’s
hyperparameters. The second difficulty we recognize is the
variation in box sizes. We therefore calculated the area of
all the boxes. Most of the boxes have nearly the same mean
area while the variation of the areas differs enormously, es-
pecially for the polyp class, where the standard deviation is
significantly larger than within other classes.

Finally, for the segmentation task, for every image there
are given masks specifying which regions are of interest
which is done separately for each class. While most of the
images belong to a unique class, some of them have several
masks with overlapping regions, which is especially apparent
for the “suspicious” class. The latter is often only part of a
region of an already existing class. Hence this is a multi-
class multi-label segmentation task with independent classes.
We randomly split the dataset into 90% training and 10%
validation set, where the best model is chosen by minimum
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Fig. 1: This figure illustrates our final pipeline for the detection and segmentation task. At step (a) the predictions for polyps
and HGD of the YOLOv3 algorithm and the predictions of BE, suspicious, and cancer of the Faster R-CNN are applied for the
final result. At step (b) the box output of the detection architecture is utilized to filter the segmentation masks.

validation loss during training.
Additional data: In order to improve generalization, we

extend the training dataset by including images from openly
accessible databases. We include two datasets from a previ-
ous endoscopic vision challenge [5], namely the ETIS-Larib
Polyp database [6], which consists of 196 polyp images, and
the CVC-ClinicDB [7], which consists of 612 polyp images,
as well as the dataset from the Gastrointestinal Image Analy-
sis (GIANA) challenge [8], with 412 polyp images. All three
datasets have corresponding segmentation masks. We add
corresponding bounding boxes using the segmented masks
ourselves. In addition we include the Kvasir-SEG dataset
[9], which consists of 1000 polyp images with both segmen-
tation masks and bounding boxes. Finally, we extract im-
ages annotated with esophagitis from the Kvasir2 dataset [10].
Esophagitis and Barret’s esophagus occur at the same po-
sition in the esophagus, and some symptoms of esophagi-
tis are very similar to Barret’s esophagus symptoms. There-
fore we add images with esophagitis symptoms which looked
close to Barret’s esophagus and test if those improve our re-
sults. We receive a light improvement in BE results and there-
fore include 103 additional images for a total of 2323 addi-
tional training images. Nevertheless, Barret’s esophagus and
esophagitis are different diseases and have to be distinguished
in further research if more classes are included in the classifi-
cation task.

3. METHODS

In this section, we illustrate our approaches for the two sub-
tasks. All our models are trained on a Tesla P100 Nvidia
GPU. After exploring the data, we decided to choose CNNs
for the challenge as they have proven to be very stable in clas-
sic multi-class detection tasks like the COCO challenge [11].

In the domain of object detection, we consider two main con-
cepts that have proven successful in multi-class object detec-
tion. First, a two-step method of region proposals and sub-
sequent classification of the proposed regions like Faster R-
CNN. Second single-shot detection (SSD), which is mostly
applicable in real-time. We compare the results of the SSD
model and Faster R-CNN. To improve our results further, we
combine those two algorithms in our final architecture. For
the second task, since both bounding boxes and segmentation
masks are available, we choose the Cascade Mask R-CNN.
Incorporating both types of annotations achieves the best re-
sults. For both of these tasks we add a post-processing with
gastroenterological knowledge. Figure 1 depicts our final ar-
chitecture for the detection and segmentation task. For train-
ing the Faster R-CNN we leverage the open source Detec-
tron2 framework [12].

By including additional 2220 polyp images, we signifi-
cantly increase the class imbalance of the training data. Class
balance is crucial for training and inference of neural net-
works. To tackle this problem, we use class weights in the
algorithms. Therefore the loss of an underrepresented class
multiplies by a weight that balances the outcome of the total
loss function. By adding those weights, we observe an en-
hancement in polyp detection while not losing the detection
score in the other classes [13].

3.1. Task 1 multi-class bounding box detection:

As mentioned above, we want to compare two common object
detection approaches, namely SSD and what we call a classic
region proposal approach. Compared to classical approaches,
SSD enables real-time detection. In practice, real-time de-
tection is critical. Often, the gastroenterological diseases re-
ceive treatment directly (e.g., ablation of a polyp). Therefore



a low inference time has to be considered to apply the mod-
els in real practice. On the contrary, larger architectures may
perform better in tasks suited for procedures like detecting
the stadium of the disease, which mostly has no real-time re-
strictions. Nevertheless, a larger architecture may perform
well on our challenge task, too. Therefore, we leverage one
model from each of these sub positions. The model for SSD
we utilize is called the YOLOv3 algorithm [14], which is the
third version of the well-known YOLO architecture [15] and
has added residual blocks that allow training deeper networks
while preventing the vanishing gradient problem. We use the
YOLOv3 algorithm with initial weights pre-trained on the
COCO dataset [11]. In the next step, we unfreeze the last
two layers of the network and train them utilizing the adam
optimizer [16]. We train for 50 epochs. In addition, we un-
freeze the whole network and train until it stops through early
stopping, resulting in an additional 33 epochs.

As a classic larger architecture, we use a Faster R-CNN
[17] with a 104 depth Retinanet backbone. We use a batch
size of 2 because of the computational expense of this large
network. We initialize the network with weights pre-trained
on the COCO dataset. We choose a learning rate of 0.00025
for the training.

Post-processing: The YOLOv3 architecture is more suc-
cessful in classifying polyps and HGD whereas classic archi-
tecture is better in detecting BE, suspicious and cancer. We
therefore assemble both networks to improve our detection
results. Hence, the YOLOv3 predicts HGD and polyps while
the Faster R-CNN algorithm predicts BE, suspicious and can-
cer. Both algorithms can predict all labels, but we only use
the predictions of the specified classes from each algorithm
respectively. To further improve our results we use gastroen-
terological knowledge and knowledge of the data set struc-
ture. As the probability is low that BE and polyp are predicted
in the same image we implement a simple rule: If both polyps
and BE are detected, we only produce boxes for the class with
higher probability, i.e., if the probability for polyps is higher
than for BE, no bounding boxes are predicted for BE.

3.2. Task 2 region segmentation:

For the image segmentation task, we train two similar archi-
tectures with various backbones, namely Mask R-CNN [18]
and its successor, Cascade Mask R-CNN [19]. Both architec-
tures are primarily two-stage object detection models based
on Faster R-CNN, i.e. a region proposal network first pro-
poses candidate bounding boxes (Regions of Interest, RoI)
before the final prediction. Here, they add another branch
used to predict segmentation masks, where the proposed RoIs
are used to enhance the segmentation mask predictions in
contrast to using fully convolutional networks only. Cascade
Mask R-CNN is an extended framework using a cascade-like
structure and is essentially an ensemble of several Mask R-
CNNs with weight sharing on the backbones.

Fig. 2: In order to train Mask and Cascade Mask R-CNN
for semantic segmentation, some bounding boxes had to be
adjusted. We transform the boxes from including several in-
stances (left) to be only one instance (right).

We choose these types of models for two reasons: First,
since we have both bounding boxes and segmentation masks
available as training data, we can utilize the Mask R-CNN ap-
proach, where RoI influences the segmentation, to the fullest.
Second, since these networks are set to perform instance seg-
mentation, each class is predicted independently from each
other, which is a prefect fit for our multi-class multi-label
problem. As this is a semantic task, we treat this as an in-
stance segmentation with only one instance per occurrence
per class. As such, we had to adjust some of the ground truth
bounding boxes in our data, as shown in Fig. 2.

For Mask R-CNN we use the ResNeXt-101-32x8d [20]
and for Cascade Mask R-CNN the ResNeXt-151-32x8d [20]
models as backbones, both of which are CNN classifyers pre-
trained on the ImageNet-1k dataset [21]. Additionally, both
full architectures are pre-trained on the COCO dataset [11],
hence we utilize transfer learning due to the small size of our
training dataset.

The networks are trained using the Detectron2 framework
[12] which provides a wide range of pre-trained object de-
tection and segmentation models. As a pre-processing step,
we convert our data to the COCO dataset format. Image pre-
processing, i.e. padding, resizing, rescaling the pixel values
etc., is then performed automatically within the framework.
The total loss is the sum of classification, box-regression and
mask loss L = Lcls + Lbox + Lmask [18], where Lmask is
the binary cross-entropy for independent segmentation of all
masks. The models are trained using stochastic gradient de-
scent with a learning rate of 0.00025 and a batch size of 2.
They are trained for up to 10000 iterations with checkpoints
every 500 iterations. We then choose the checkpoint with the
lowest validation loss as our final model. We also apply data
augmentation in the form of random horizontal and vertical
flipping as well as random resizing with retained aspect ratio
in order to minimize the generalization error.

Post-processing: To further improve our results we use
knowledge from gastroenterology and knowledge from the
data set structure. As mentioned above, the probability that
BE and polyps are present in the same image is very low. We
apply the following procedure on the polyp/BE predictions:



• We utilize the predictions from object detection and
only predict masks, where there are bounding boxes
present from Yolov3 and Faster R-CNN.

• As an additional criterion, pixels within bounding
boxes of probability < 0.2 are labeled with 0, i.e.
no disease present.

• If both polyps and BE are detected, we only produce
masks for the class with higher probability, as with the
detection model.

4. RESULTS

In this section, we describe our results of the two subtasks. In
both settings, we highlight the performance of the algorithms
for every single disease. Therefore, we create a validation
set. The validation set consists of 40 images randomly chosen
from the provided data (no additional data is included). We
test the detection as well as the segmentation on the created
validation set.

4.1. Task 1

Table 1 shows our results on our created validation set for
the detection task where YOLOv3 is the described SSD al-
gorithm, Faster R-CNN is the FASTER R-CNN algorithm
with ResNet-101 backbone and ensemble with pp (post-
processing) is the ensemble of those two added with the
hardcoded rule. We display the mean average precision with
a minimum IoU of 0.5 (mAP) [11]. We highlight the per-
formance of the algorithms split on the five diseases. All of
the algorithms have an excellent performance in detecting
polyps; this is mostly due to our additional polyp training
data (see chapter 2). BE is better detected by the Faster R-
CNN algorithm, which is why we used this algorithm for
detecting BE in the ensembled version. Notably, suspicious
is one of the harder classes to correctly classify as YOLOv3
is only showing a detection performance of 10 % mAP. As
depicted in Table 1, cancer is detected quite well by all of
the algorithms. All things considered, the ensemble with
post-processing is the best algorithm in this task. The post-
processing and combination of YOLOv3 and Faster R-CNN
(Ensemble with pp) enhances the performance compared to
the single YOLOv3 method by 7.95%. Figure 3 shows a
detection result of the YOLOv3 algorithm and a segmenta-
tion result of the Cascade Mask R-CNN. Our detection score
on the EDD2020 challenge [4] test set using the ensemble
architecture produces a score of 0.3360± 0.0852.

4.2. Task 2

As in task 1, we evaluated our models on our validation set as
a subset of the provided data on both Dice coefficient as well
as intersection over union (IoU). Table 2 summarizes these

Fig. 3: Exemplary results for both detection with YOLOv3
(upper) and segmentation with Cascade Mask R-CNN (lower)

Table 1: Detection results on the validation data (mAP).
MAP is the mean average precision over the five classes.
Ensemblepp denotes the ensemble of YOLOv3 and Faster R-
CNN with additional post-processing. All values are in %.

YOLOv3 Faster R-CNN Ensemblepp
Polyp 84.19 73.50 84.46

BE 38.25 50.40 50.88
Suspic. 10.00 33.70 33.70
HGD 39.98 28.31 39.98

Cancer 49.99 53.20 53.20
mAP 44.49 37.29 52.44

results. While Mask R-CNN outperforms Cascade Mask R-
CNN in both polyp and BE classes, Cascade Mask-RCNN
provides better results overall, especially on the other three
classes, which are comparatively underrepresented in our
training data. Applying the post processing steps described
in section 3 further improves the results of Cascade Mask R-
CNN, but interestingly worsens the micro (µ) averaged score,



Table 2: Segmentation results on the validation data. R-
CNNM , R-CNNCM and R-CNNCMpp denote Mask R-CNN,
Cascade Mask R-CNN and Cascade Mask R-CNN with post
processing respectively. We also computed the micro aver-
aged scores, denoted by µ mean, in contrast to mean, which
is averaged over class scores. All values are in %.

R-CNNM R-CNNCM R-CNNCMpp

Dice IoU Dice IoU Dice IoU
Polyp 69.41 67.03 61.57 60.08 69.07 67.58
BE 46.41 43.84 44.48 41.06 46.56 43.08
Suspic. 27.64 25.94 40.03 38.83 52.53 51.33
HGD 41.83 38.28 63.59 60.25 68.25 65.75
Cancer 53.77 52.14 55.86 54.96 57.24 57.00
mean 47.81 45.45 53.11 51.04 58.73 56.95
µ mean 36.57 27.05 47.66 38.44 45.36 37.17

which we discuss below. Our segmentation score on the
EDD2020 challenge [4] test set using Cascade Mask R-CNN
is then 0.6526± 0.3418.

5. DISCUSSION & CONCLUSION

All of our models in both tasks perform best on the polyp class
and worst on the suspicious category. Since data on polyps
is abundant in our training set, it is clear why the networks
show good results in this area. The suspicious class, however,
shows a similar amount of samples as HGD and cancer, yet,
with the exception of Cascade Mask R-CNN, all models per-
form significantly worse on this class. This is most likely due
to the unclear nature of this class as it often denotes regions
belonging to different types of diseases, i.e. in some images
it denotes possible cancer, whereas in others it signifies pos-
sible BE. Additionally, performing gastroenterologists often
have differing opinions on what areas can be considered as
suspicious, which adds further noise to our data. The perfor-
mance of Cascade Mask R-CNN on suspicious and the other
less represented classes can be attributed to its ensemble-like
structure. The discrepancy of the micro-averaged scores can
be explained as such: Our post processing severely reduces
the amount of false positives, but also adds some false neg-
atives. This improves the class-based score, since classes on
one image with empty masks receive perfect scores this way.
With micro-averaging, however, since precision and recall are
the same, we essentially look at the per pixel accuracy of the
entire mask, ultimately worsening this score.

Our model outperforms the best network from [2], namely
SSD with a InceptionV3 backbone, which was partially
trained using the same polyp databases and showed a pre-
cision of 73.6% on the MICCAI 2015 evaluation dataset,
compared to our 84.19% with YOLOv3. AFP-net performs
better than our model [3] with a precision of 88.89% on
the ETIS-Larib dataset and 99.36% on the CVC-Clinic-train

dataset. However, for both cases, direct comparison is diffi-
cult since both different training and different evaluation data
are used. Additionally, we perform multi-class prediction,
which can be a more difficult task to perform than binary
prediction.

We applied state-of-the-art Deep Learning architectures
for the detection and semantic segmentation of five differ-
ent gastroenterological diseases. For detection, we evaluated
three architectures, the YOLOv3 and the Faster R-CNN, and
our combination of those algorithms. Furthermore, our en-
semble includes domain knowledge-based post-processing,
which further enhances our results in the challenge. For
segmentation, we evaluate three models: Cascade Mask R-
CNN, its predecessor Mask R-CNN, and the Cascade Mask
R-CNN combined with post-processing. In the region seg-
mentation task, the Cascade Mask R-CNN with additional
post-processing reliably performs as good or better than the
other networks. For future work we intend to improve our re-
sults by adding more training data, applying additional forms
of data augmentation and further hyperparameter tuning. All
in all, we present state-of-the-art results in the EDD challenge
with our detection and segmentation applications.
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ABSTRACT
This paper presents our team’s (AI-JMU) approach to the Medico
automated polyp segmentation challenge. We consider deep convo-
lutional neural networks to be well suited for this task. To determine
the best architecture we test and compare state of the art backbones
and two di�erent heads. Finally, we achieve a Jaccard index of
73.74% on the challenge’s test set. We further demonstrate that big-
ger networks do not always perform better. However, the growing
network size always increases the computational complexity.

1 INTRODUCTION
Worldwide colorectal cancer (CRC) represents the third most com-
monly diagnosed cancer [6, 17]. According to Herszenyi and Tulas-
say [10] CRC attributes to 9% of all cancer incidence globally and
is the fourth cause of cancer death worldwide [6, 17]. In order to
detect potentially cancerous tissues early, physicians conduct a so-
called colonoscopy. During this procedure, the physician searches
for polyps inside the colon in order to remove them. Polyps are
abnormally growing tissues that usually look like small, �at bumps
or tiny fungal stems. Due to the aberrant cell growth, they can
eventually become malignant or cancerous. Nevertheless, even the
best physicians have a risk of overlooking a polyp. Missed polyps
are not removed and can therefore have fatal consequences. Auto-
mated detecting and segmenting polyps is the task of the medico
challenge [12]. This challenge is special because it is not allowed to
include training data other than the 1000 provided polyp images of
Jha et al. [13]. In this paper, we present our challenge results and
explain how we select the networks for our �nal predictions.

2 RELATEDWORK
In the domain of object segmentation with deep learning, there
are two general state of the art approaches: Fully convolutional
networks [7, 16, 21] and encoder-decoder architectures [1, 5, 24].
Some state of the art polyp segmentation methods include encoder-
decoder architectures. However due to the high computational
complexity of those models, polyp segmentation research focuses
mostly on fully convolutional architectures to enable real-time
segmentation systems [11, 28]. We consider our approaches to
belong to the �eld of fully convolutional networks. The chosen
models are based on our previous study [14], which we advance
for this challenge by: Focusing exclusively on polyp segmentation,
testing a new state of the art backbone in polyp segmentation [27]
and comparing di�erent architectures comprehensively.
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3 APPROACH
This section focuses on our approaches for the Medico automated
polyp segmentation tasks. We train all our models using a Tesla Tur-
ing RTX 8000 Nvidia GPU. For this challenge, Deep CNNs are best
suited as they provide very stable outcomes in multi-class segmen-
tation tasks like the COCO challenge [15]. Since both bounding
boxes and segmentation masks are available in the dataset, we
choose networks that can handle both inputs. Therefore we select
the Mask R-CNN [8] and the Cascade Mask R-CNN [3]. We build
both architectures based on two-stage object detection models us-
ing Faster R-CNN [19]. Therefore a region proposal network �rst
suggests candidate bounding boxes (Regions of Interest, RoI) before
making the �nal prediction. In this case, an additional branch is
added designed to predict segmentationmasks, where the suggested
RoIs enhance the segmentation mask predictions. A Cascade Mask
R-CNN uses an extended framework which is de�ned by a cascade-
like composition utilizing several Mask R-CNNs with shared weight
on the backbones. We train both the Cascade Mask R-CNN and
Mask R-CNN with the open-source Detectron2 framework [23].

We select these types of models because of two rationales: First,
the availability of both bounding boxes and segmentation masks for
training purposes allows us to maximize the Mask R-CNN perfor-
mance, because RoI and segmentation are closely related. Second,
because the mask of polyps included in the KVASIR-SEG dataset
[13] often vary signi�cantly in size and shape we desire a network
that is una�ected by those variations and determines a pixel-wise
mask of the polyp. Because we use semantic segmentation, we
deal with this as an instance segmentation de�ned by a single in-
stance per incident per class. Therefore, we alter the ground truth
bounding boxes in our data to include only one instance instead of
multiple instances.

We test the Cascade Mask R-CNN and Mask R-CNN with ResNet
[9] as well as the new ResNeSt [27] backbone. The latter adds a
split attention block to the ResNet backbone and recon�gures the
ResNet structure. This block and structure enable the network to
share attention across feature-map groups. This might o�er some
bene�ts to the polyp segmentation task. Additionally, we vary the
depth of both backbones, with depths of 50 and 101 for ResNet
as well as 50, 101, and 200 for ResNeSt. The backbones we use
consist of CNN classi�ers pre-trained using the ImageNet-1k dataset
[20]. The whole architecture is pre-trained on the COCO dataset
[15]. Consequentially we use transfer learning to compensate for
the small size of the training dataset. We train networks with the
Detectron2 framework [23] and a fork of the Detectron2 framework
published by Zhang et al. [27]. Both provide a wide range of pre-
trained object detection and segmentation models. Prior to the
actual processing, we convert our data to the COCO dataset format.
Afterward, the required image preprocessing steps, i.e. padding,
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Table 1: Segmentation results on the validation data. R50
and R101 denote ResNet50 and ResNet100. Rt50, Rt101 and
Rt200 denote ResNeSt50, ResNeSt101 and ResNeSt200. Cas-
cade R-CNN denotes Cascade Mask R-CNN. All values ex-
cluding FPS are in %.

Mask R-CNN Cascade R-CNN
IoU Dice Acc FPS IoU Dice Acc FPS

R50 71.0 78.9 90.9 13 73.2 81.4 93.8 9.8
R101 72.3 80.0 91.8 11.8 74.1 82.1 94.3 8.7
Rt50 72.8 78.7 90.4 10.9 75.2 81.9 94.2 8.2
Rt101 73.9 80.8 93.2 9.0 75.9 83.1 95.7 7.1
Rt200 - - - - 73.3 81.6 93.4 2.9

resizing, rescaling the pixel values, etc., are automatically performed
within the framework.

We de�ne the total loss as the sumof classi�cation, box-regression
and mask loss ! = !cls + !box + !mask [8], where !mask is the bi-
nary cross-entropy for autonomous segmentation of all masks. The
training of all models includes a stochastic gradient descent us-
ing a learning rate of 0.00025 and a batch size of 16. Every model
trains for up to 80000 iterations, maintaining checkpoints every
300 iterations. Afterward, we adopt the checkpoint with the low-
est validation loss for the �nal outcome. Additionally, we utilize
random horizontal �ipping, vertical �ipping, and random resizing
as data augmentation while retaining aspect ratio to diminish the
generalization error.

4 RESULTS AND ANALYSIS
We evaluate the models on our validation dataset which is a subset
of the Kvasir-SEG data [13]. For the evaluation we consider quality
and speed. For quality we compute the dice coe�cient, intersection
over union (IoU), and accuracy (Acc). For speed we specify frames
per second (FPS). All our validations are carried out using an Nvidia
V100 GPU within the cloud solution of Google Colab [2]. Table 1
depicts our results. While Cascade Mask R-CNN outperforms Mask
R-CNN in every quality metric, Mask R-CNN is faster with compu-
tation. However, the architecture’s speed shows a clear pattern: the
Mask R-CNN using the smallest backbone (lowest computational
complexity) is the fastest, and Cascade Mask R-CNN (highest com-
putational complexity) with the largest backbone is the slowest.
Comparing the ResNet and RestNeSt backbone: Using the ResNeSt
backbone results in higher scores in all metrics. Nevertheless, the
RestNeSt backbone increases the computational complexity and
therefore decreases FPS. Concerning the depth of the network:
Changing the depth from 50 to 101 increases the quality of the
results. This implies that a deeper backbone may always result in
better quality. However, our results show that a larger backbone not
always causes better quality, but always diminishes the speed due
to higher computational complexity, in our case dropping FPS down
to 2.9 for ResNeSt200. We evaluate ResNeSt200 backbone only with
the Cascade Mask R-CNN because there are no pre-trained weights
available for the Mask R-CNN version.

Overall, Cascade Mask R-CNNwith a ReStNest101 backbone pro-
vides the best quality results. Therefore, we consider this backbone

a) Best performing

b) Worst performing

Figure 1: Qualitative results of the Cascade Mask R-CNN
with ResNeSt101 backbone. Binary images are ground truth
and rgb imageswith are predictions. Di�erent colors are just
highlighting the predictions.

for the quality task of the Medico challenge. For the e�cacy task of
the challenge we choose the Cascade Mask R-CNNwith ReStNest50
backbone. It is faster and less taxing on memory than ReStNest101
while still maintaining high-quality results. Our challenge scores
for the quality task are an IoU of 0.737. For the e�cacy task our
results are an IoU of 0.721 while computing with 3.36 FPS on an
Nvidia GTX 1080. To qualitatively demonstrate a set of our results,
we depict the four best and worst classi�ed images of our validation
set in �gure 1. The algorithm performs best on big, unconcealed
polyps. Nevertheless, small polyps like shown in the �rst three
images of �gure 11 are harder to segment. In addition, concealing
the polyp with a tool like in the last image of �gure 11 prevents the
algorithm from detecting the polyp.

5 CONCLUSION AND OUTLOOK
In summary, our results suggest that using a deeper neural network,
extending it with another backbone, or adding a computationally
more expensive architecture like Cascade Mask R-CNN leads to
higher quality segmentations. Nevertheless, the increasing network
size is not always bene�cial. Moreover, we demonstrate that the
ReStNeSt101 backbone combined with the Cascade Mask R-CNN
structure is the best segmentation algorithm among our examples.

Further research could extend our architectures and compare
them with other state of the art segmentation models like the
DeepLabv3+ [18], HRNet [22], MRFM [26]. Those three architec-
tures and the proposed architecture are currently the best perform-
ing architectures on object segmentation benchmarks [18, 22, 26,
27]. Especially promising is the speed and quality trade o� using
HarDNet [4] and BiSeNet [25] for further evaluations.
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Abstract: Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best
method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches
for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist.
Automated detection of polyps helps to assist the gastroenterologist during a colonoscopy. There
are already publications examining the problem of polyp detection in the literature. Nevertheless,
most of these systems are only used in the research context and are not implemented for clinical
application. Therefore, we introduce the first fully open-source automated polyp-detection system
scoring best on current benchmark data and implementing it ready for clinical application. To create
the polyp-detection system (ENDOMIND-Advanced), we combined our own collected data from
different hospitals and practices in Germany with open-source datasets to create a dataset with over
500,000 annotated images. ENDOMIND-Advanced leverages a post-processing technique based on
video detection to work in real-time with a stream of images. It is integrated into a prototype ready
for application in clinical interventions. We achieve better performance compared to the best system
in the literature and score a F1-score of 90.24% on the open-source CVC-VideoClinicDB benchmark.

Keywords: machine learning; deep learning; endoscopy; gastroenterology; automation; object
detection; video object detection; real-time

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths world-
wide [1]. One of the best methods to avoid CRC is to perform a colonoscopy to detect the
potential disease as early as possible. A colonoscopy examines the large intestine (colon)
with a long flexible tube inserted into the rectum. A small camera is mounted at the end
of the tube, enabling the physician to look inside the colon [2]. During this procedure,
the colonoscopist searches for polyps and examines them closely. Polyps are protrusions
of the mucosal surface of various shapes and sizes that can be benign or malignant and,
thus, can develop into CRC. Polyps grow on the colon lining, which often does not cause
symptoms. The two main types are non-neoplastic and neoplastic polyps. Non-neoplastic
polyps usually do not become cancerous and polyps of type neoplastic might become
cancerous [2]. Even if many polyps are not cancerous, some become colon cancer. Ideally,
the colonoscopist detects every polyp during a colonoscopy and decides, on closer inspec-
tion, whether it needs to be removed. Nevertheless, there is still a potential risk of polyps
being missed. It has been shown that up to 27% of diminutive polyps are overlooked
by physicians [3,4], which happens due to lack of experience or fatigue. It has also been
shown that even a general error rate of 20–24% leads to a high risk of patients dying from
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CRC [5,6]. Two studies have shown that the missing rate is related to the size of the polyp.
Kim et al., showed that polyps of size ≤5 mm, 5–10 mm and ≥10 mm had a missing rate of
35.4%, 18.8%, and 4.9%, respectively [7]. Ahn et al., demonstrated missing rates of 22.9%,
7.2%, and 5.8% for sizes of ≤5 mm, 5–10 mm, and ≥10 mm, respectively [8]. Both studies
also found that the missing rate was higher when the patient had more than one polyp.
Additionally, a systematic review calculated a similar value and received missing rates
of 2%, 13%, and 26% for polyp sizes of ≥10 mm, 5–10 mm, and 1–5 mm, respectively [6].
This indicates that smaller polyps have a higher risk of being missed by the colonoscopist.
Missed polyps can have fatal consequences for the patient. Thus, the colonoscopist must
detect and remove all potential cancerous polyps to minimize the risk of CRC [8].

To avoid missing polyps, computer science research methods have been developed to
assist physicians during the colonoscopy. The use of computers to detect polyps is called
computer-aided detection (CAD). The research field already has publications examining the
problem of polyp detection. Nevertheless, most of these systems are only used in research
context and are not developed to be ready for clinical application. There are commercial
systems ready for clinical application; however, they are very expensive [9–12]. Therefore,
we introduce the first fully open-source system scoring best on current benchmark data
and implementing it for clinical-ready applications.

The main contributions of our paper are:

(1) We introduce the first fully open-source (https:// fex.ukw.de/public/download-shares/d8NVHA
2noCiv7hXf fGPDEaRf jG4vf0Tg, accessed on 18 December 2022), clinically ready, real-time
polyp-detection system.

(2) We show that the system outperforms current systems on benchmark data with real-time per-
formance.

(3) We introduce a novel post-processing method working in real-time based on REPP [13] and
use a new metric for polyp detection, which has value for clinical usage.

Additionally, the polyp-detection system was publicly funded and developed by
computer engineers and endoscopists in the same workgroup to ensure high-quality polyp
detection. Figure 1 shows the results of the polyp-detection system. To overview existing
work and properly allocate our paper in the literature, we describe a brief history from
general polyp detection with handcrafted features to state-of-the-art polyp detection with
deep learning techniques.

Figure 1. Detection examples. This figure illustrated some detection examples of the polyp-detection
system on our own data (EndoData).

1.1. A Brief History of Computer-Aided Polyp Detection

The field of CAD is divided into two subfields, CADe and CADx. CADe deals with the
detection and localization of polyps and CADx deals with the characterization of polyps.
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This paper will focus exclusively on the CADe area. This section only considers methods
that localize polyps by specifying a rectangular section of the screen, a bounding box.

1.1.1. Computer-Aided Detection with Handcrafted Features

The first approaches for computer-aided detection of polyps were explored as early as
the late 1990s. For example, Krishnan et al., proposed using curvature analysis to detect
polyps by shape [14]. Another method was presented in 2003 by Karkanis et al. They used
wavelet transform to detect polyps based on their color and texture [15]. Hwang et al.,
used a new technique to distinguish the elliptical shape features of polyp regions from
non-polyp regions. They compared the features based on curvature, intensity, curve
direction, and distance from the edge [16]. Bernal et al. (2012) proposed another method
by converting images of polyps to grayscale so that the elevations of the polyps could be
seen. Subsequently, the authors illuminated the outlines of the polyps, which they termed
valleys. Based on the intensity of the valleys, the polyps were extracted and localized [17].

Furthermore, expert knowledge was used to handcraft rules for detecting polyps
based on specific properties, such as size, shape, and color. Newer examples can be found
in [18,19], both of which use support vector machines (SVMs). Additionally, real-time
detection with handcrafted features was tested in clinical applications [20]. The authors
used a weighted combination of color, structure, textures, and motion information to detect
image areas where a polyp is possibly located. The detection rate was 73%. Nevertheless,
the rise of convolutional neural network (CNN)-based methods in image processing has
superseded all of these techniques, as CNN methods have proven to show better results.

1.1.2. Methods Involving CNNs

Computer-aided polyp recognition was particularly shaped by various deep learning
methods from the beginning of the last decade. We listed an overview of the essential
models on still image datasets in Table 1. Specifically, a great deal of research interest has
developed in the object recognition capabilities of CNNs. For example, in 2015, authors
Zhu et al., presented a seven-layer CNN as a feature extractor with a SVM as a classifier
to detect anomalies in endoscopy images [21]. The system was trained on custom data.
The earlier approaches considered using an existing CNN architecture to localize polyps,
the AlexNet [22–24]. This was developed for general image classification, i.e., not specifi-
cally for the medical field. The paper by Tajbakhsh et al. [23] states that the AlexNet [22] for
polyp detection is better not trained thoroughly, i.e., starting from random weights, but the
already pre-trained weights should be used. It is shown that transfer learning is a practical
approach in the presence of limited data, as generally given in the medical field.

Table 1. Overview of polyp detection models on still image datasets. The table includes the following
abbreviation: DenseNet-UDCS: densely connected neural network with unbalanced discriminant
and category sensitive constraints; ADGAN: attribute-decomposed generative adversarial networks;
CenterNet: center network; SSD: single shot detector; YOLO: you only look once; R-CNN: region-
based convolutional neural network.

Author Year Method Test Dataset F1-Score Speed

Yuan et al. [25] 2020 DenseNet-UDCS Custom 81.83% N/A
Liu et al. [26] 2020 ADGAN Custom 72.96% N/A
Wang et al. [27] 2019 CenterNet CVC-ClinicDB 97.88% 52 FPS
Liu et al. [28] 2019 SSD CVC-ClinicDB 78.9% 30 FPS
Zhang et al. [29] 2019 SSD ETIS-Larib 69.8 24 FPS
Zheng et al. [30] 2018 YOLO ETIS-Larib 75.7% 16 FPS
Mo et al. [31] 2018 Faster R-CNN CVC-ClinicDB 91.7% 17 FPS

Yuan et al. [24] first extract an attractive image section via edge-finding algorithms
as a preliminary step and use it as input to the AlexNet [22]. This resulted in a high
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recall of 91.76% compared to the state-of-the-art at that time. Mo et al. [31] are the first
to use the unmodified faster region-based convolutional neural network (Faster R-CNN) [32]
architecture for polyp detection. This allows the detection of polyps that are mostly
obscured or very close to the camera, unlike previous models. The model is trained on
the CVC-ClinicDB data. The model is robust to illumination changes or circular bubbles,
but it misses some smaller polyps and sometimes becomes too guided by an oval shape,
increasing the number of false positives (FP). The authors also wanted to focus on these
problems in the future. Shin et al. [33] were the first to use the inception-residual neural
network (ResNet) [34] architecture unmodified for polyp detection. The model is trained
on the ASU-Mayo-Video-DB. They also added two post-processing methods, false positive
learning and offline learning, to further improve the model’s performance. The advantage
of the model was that the entire frame could be used for training rather than a previous
patch extraction step. As with Mo et al., one problem with the model is the high number
of FP triggered by polyp-like structures. The authors plan to focus on improving the
speed in the future, which was only 2.5 frames per second (FPS). Zheng et al. [30] use
the unmodified you only look once (YOLO) architecture [35]. Again, the advantages are
that there is only one processing step, so there is no preliminary step to extract an regions
of interest (RoI). As a result, the model was faster than the two-step methods but only
achieved 16 FPS. Further, the authors note that the CNN features of white light and narrow-
band images differed greatly, thus, they should be considered separately. The model is
trained on the CVC-CLinicDB, CVC-ColonDB, and custom data. Liu et al. [28] implemented
and compared different back-end models as feature extractors for the single shot detection
architecture (SSD) [36]. These were ResNet50 [37], Visual Geometry Group-16 (VGG-16) [38],
and InceptionV3 [39], with InceptionV3 showing the best balanced result. The advantages
of the models are robustness to size and shape, as well as speed, which is real-time capable
at 30 FPS. The models are trained on the CVC-CLinicDB, CVC-ColonDB, and ETIS-Larib
data. In the future, other back-end models could result in a further boost in performance.

Zhang et al. [40] used the SSD-GPNet, which is based on the SSD architecture [36],
but tries to incorporate information that is normally lost by the standard pooling layers
into the result through various customized pooling methods. Since it is based on the
SSD architecture, this method is also fast and achieves real-time capability at 50 FPS; it
also achieves good recall, especially for small polyps. In the future, the authors want
to test their approaches for other diseases and find more ways to use as much image
information as possible without increasing the complexity of the models. Furthermore,
Zhang et al., presented another deep learning method for polyp detection and localization.
They presented a special single-shot multi-box detector-based CNN model that reused
displaced information through max-pooling layers to achieve higher accuracy. At 50 FPS,
the method provided real-time polyp detection while achieving a mean average precision
of up to 90.4% [40]. The model is trained on custom data. Authors Bagheri et al., staged
a different idea in which they first converted the input images into three color channels
and then passed them to the neural network. This allows the network to learn correlated
information using the preprocessed information about the color channels to locate and
segment polyps [41]. With the same goal, Sornapudi et al., in their paper, used region-based
CNNs to localize polyps in colonoscopy images and in wireless capsule endoscopy (WCE)
images. During localization, images were segmented and detected based on polyp-like
pixels [42].

In addition to CNNs, research is also being conducted on other deep learning methods
for polyp detection. For example, a special sparse autoencoder method called stacked
sparse autoencoder with image manifold constraint was used by Yuan and Meng [43]
to detect polyps in WCE images. A sparse autoencoder is an artificial neural network
commonly used for unsupervised learning methods [44]. The sparse autoencoder achieved
98% accuracy in polyp detection [43]. The system is trained and tested on the ASU-Mayo-
Video-DB. Wang et al. [27] used the AFP-Net. Unlike an SSD model, an AFP-Net model
does not require predefined anchor boxes, it is anchor free. It was the first application



J. Imaging 2023, 9, 26 5 of 38

of such an architecture for polyp detection. Through context enhancement module (CEM),
a cosine ground-truth projection and a customized loss function, the speed was increased
and 52.6 FPS was achieved, which is real-time capability. In the future, the authors still
want to improve the detection of hard-to-detect small and flat polyps. The model is
trained on the CVC-ClinicVideoDB. Liu et al. [26] used an anomaly detection generative
adversarial network (ADGAN), which is based on the Wasserstein GAN [45]. ADGAN aims
to learn only based on healthy images without polyps to reconstruct them. If this model
receives an image with a polyp as input, the model cannot reconstruct it, so at this point
in the output, there is a noticeably large difference from the input, which is easy to check.
The problem of connecting the input to the latency space of the GAN was solved by a
second GAN. In addition, a new loss function was added to improve performance even
further. The model is trained on custom data.

The advantage of this approach is that no costly annotated datasets are needed and
significantly larger amounts of data of normal intestinal mucosa are available. For the
future, the authors want to ensure that frames with biological disturbances, such as stool
residue or water, are also processed well since these are often sorted out beforehand from
many datasets. Yuan et al. [25] use the DenseNet-UDCS architecture for frame classification,
not localization, of WCE images. The DenseNets [46] structure is kept unchanged, but the
loss function is adapted. On the one hand, weighting is introduced to compensate for the
significant imbalance in the size of the classes (with or without polyps). On the other hand,
the loss function is adapted to be class sensitive. It forces that similar features are learned for
the same class and the features of the other class have as significant differences as possible.
These adaptations improve performance and can be easily applied to other applications
and models. In the future, the researchers still want to find a way to compensate for
different illuminations by pre-processing and testing attention-based methods. Another
method is to use transformers in combination with CNNs. Zhang et al., used in parallel
the ability to view global information of the whole image through the attention layers of
the transformers and the detection of the CNNs to efficiently segment polyps. In addition,
a new fusion technique called BiFusion was used to fuse the features obtained by the
transformers and the CNNs. The resulting method called TransFuse stood out mainly
because of its segmentation time of 98.7 FPS [47]. The model is trained on custom data.

Furthermore, Jha et al. [48] proposed a segmentation, detection, and classification
model. The model achieves a mean average precision (mAP) of 81.66 while being very fast,
with 180 FPS on an NVIDIA Volta 100 GPU. The results are evaluated on the Kvasir-SEG
dataset. Another approach is combining different networks in an ensemble to increase the
polyp-detection performance further. While ensemble techniques significantly increase de-
tection systems’ performance, the downside is that those systems mostly have high latency.
For example, if an ensemble combined five different neural networks, the computational
complexity would be increased at least five times. Therefore, ensemble techniques are not
implemented for real-time detection. The paper of [49] shows a polyp-detection system
using an ensemble. The authors combined three different models by using majority voting
to increase the performance of the polyp-detection system.

Additionally, Livovsky et al. [50] trained a large-scale AI called detection of elusive
polyps (DEEP2). They used 3611 h of colonoscopy videos for training and 1393 h for
testing. They trained and evaluated their AI on a custom dataset. As neural network
architecture they used RetinaNet. Livovsky et al., achieved a recall of 88.5% with polyps
visible longer than 5 s. Moreover, they showed recall and specificity results for different
lengths of polyps visibility.

1.1.3. 3D and Temporal Methods

While older publications are evaluated on still-image benchmarks, such as the CVC-
ClinicDB, the new state-of-the-art is evaluated on the more challenging and more realistic
video dataset, such as CVC- VideoClinicDB. For example, Wang et al. [27] have a high
score of 97.88% on the CVC-ClinicDB dataset. Nevertheless, this dataset only involves
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612 still images. We reconstructed the algorithm of Wang et al. [27] but could not reproduce
the results on the video datasets. For these video datasets, all frames are extracted and
polyps in these frames are annotated with corresponding bounding boxes. We listed
an overview of the essential models on video datasets in Table 2. Another approach is
to use temporal information within the video. In the methods mentioned above, only
single frames are considered. Thus, information that is given by the sequence of the
frames is lost. In Itoh et al. [51], temporal information is included through a 3D-ResNet.
In addition, a weighted loss function and selection of so-called hard negative frames address
the problem of training-data class imbalance. These lead to an improvement of 2% F1-
score. However, one problem is that the model has a higher probability of being overfitted
than its 2D counterpart because it has more parameters and is not applicable in real-time.
Zhang et al. [29] combine the output of a conventional SSD model [36] via a Fusion module
with a generated optical flow. This is similar to a heat map showing motion over short
periods and is easy to compute. This approach is much less complex and, therefore,
faster than other temporal systems that use 3D methods; still, it is not applicable for real-
time polyp detection. Misawa et al. [52] use a 3D-CNN to include temporal information.
This allows many different types of polyps to be well detected. The model is trained on
custom data.

Table 2. Overview of polyp detection models on video datasets.

Author Year Method Test dataset F1-Score Speed

Nogueira et al. [53] 2022 YOLOv3 Custom 88.10% 30 FPS
Xu et al. [54] 2021 CNN + SSIM CVC-VideoClinicDB 75.86% N/A
Livovsky et al. [50] 2021 RetinaNet Custom N/A 30 FPS
Misawa et al. [11] 2021 YOLOv3 SUN-Colonoscopy 87.05% 30 FPS
Qadir et al. [55] 2020 Faster R-CNN CVC-VideoClinicDB 84.44% 15 FPS

SSD CVC-VideoClinicDB 71.82% 33 FPS
Yuan et al. [25] 2020 DenseNet-UDCS Custom 81.83% N/A
Zhang et al. [40] 2019 SSD-GPNet Custom 84.24% 50 FPS
Misawa et al. [52] 2019 3D-CNN Custom N/A N/A
Itoh et al. [51] 2019 3D-ResNet Custom N/A N/A
Shin et al. [33] 2018 Inception ResNet ASU-Mayo-Video-DB 86.9% 2.5 FPS
Yuan et al. [24] 2017 AlexNet ASU-Mayo-Video-DB N/A N/A
Tajbakhsh et al. [23] 2016 AlexNet Custom N/A N/A

Additionally, Qadir et al. [55] use a conventional localization model, such as SSD [36],
or Faster R-CNN [32], and further process the output of these through a False Positive
Reduction Unit. This looks at the position of the generated bounding boxes over the
seven preceding and following frames and tries to find and possibly correct outliers.
Because future frames are used, there is a small delay, but the actual calculation of the
False Positive Reduction Unit is fast. A different and promising method was provided by
Qadir et al., in a two-step process. They used a CNN in the first step, which generated
several RoIs for classification. Then, these proposed RoIs were compared based on the
subsequent frames and their RoIs and classified into true positive (TP) and false positive
(FP). This method assumes that the frame in a video should be similar to the next frame. It
intends to reduce the percentage of false predictions [55]. Because CNNs are sensitive to
noise in the data, they may produce a high count of FPs. Another approach is therefore
using a two-stage method that first suggests multiple RoIs. Then, the current proposed
RoIs are categorized as TPs and FPs by considering the RoIs of the following frames [55].
With this method, they are reducing the number of FPs and reaching state-of-the-art results.
The model is trained on the ASU-Mayo-Video-DB and custom data.

Furthermore, Misawa et al., developed a real-time polyp-detection system based on
YOLOv3. The system has a speed of 30 FPS and achieves a F1-score of 97.05% on their
open-source dataset (SUN-Colonoscopy) [11]. Moreover, Xu et al. [54] designed a 2D CNN
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detector including spatiotemporal information involving a structural similarity (SSIM) to
advance polyp detection further while maintaining real-time speed. The model is trained
on custom data. In 2022 Nogueira et al., published a real-time polyp-detection system
using the YOLOv3 model with an object-tracking algorithm. The system scores a F1-score
of 88.10% on their custom dataset.

2. Materials and Methods

This section explains the software and hardware for our polyp-detection system. We
call our polyp-detection system ENDOMIND-Advanced. An early, preliminary version of
our detection system was experimentally tested and called ENDOMIND [56]. Nevertheless,
ENDOMIND used an early version of YOLOv5 that did not involve our preprocessing,
hyperparameter, optimization, and post-processing, and was trained with a smaller dataset.
First, we introduce our datasets for training and testing the AI. Afterward, we illustrate
typical challenges in the field of automatic polyp detection. We continue by showing our
data preprocessing and data augmentation. We then show the full polyp-detection system
and explain its components. The full polyp-detection system involves the CNN-based
YOLOv5 model and our implemented post-processing solution real-time REPP (RT-REPP),
which uses an algorithm called Robust and Efficient Post-Processing (REPP) [13]. We close
this section by elaborating on the clinical application of our system.

2.1. Datasets

Obtaining qualitative data on an appropriate scale is often one of the biggest problems
for applying deep learning methods. This is no different for colonoscopy videos/images
for polyp detection. The difficulties in the acquisition are due to data protection issues
on the one hand and the expensive and time-consuming but necessary annotation of the
data by experienced medical experts. Therefore, for developing our model, we use our
own data and all the publicly available data we could find on the internet and in the
literature. For training our model, we combined the available online sources and our own
data to forge a dataset of 506,338 images. Figure 2 shows an overview of the data material.
The details about creating our own dataset will follow below. All data consist of images
and bounding box coordinates of boxes referring to the image. For a listing of publicly
available datasets we used for training, we show the following overview:

• ETIS-Larib [57] 2014: It contains 196 polyp images from 34 different videos and shows
44 different polyps. ETIS-LaribPolypDB [57] is from the MICCAI 2015 Endoscopic Vision
Challenge and was used as the testing dataset in the challenge. Here, we include this
dataset in our training dataset. It has 196 polyp images with the corresponding mask
for boxes. For our training, we extracted the bounding boxes from the segmentation
masks. The size of the images is 348 × 288 pixels. This dataset contains no healthy
mucosa images. This dataset contains no healthy mucosa images. The data are
available on request in the CVC-Colon repository (http://www.cvc.uab.es/CVC-Col
on/index.php/databases/, accessed on 18 December 2022).

• CVC-VideoClinicDB [58] 2017: The CVC-VideoClinicDB [59] dataset was provided in
the context of the GIANA sub-challenge that was part of the MICCAI 2017 Endoscopic
Vision Challenge. This dataset contains 18,733 frames from 18 videos without ground
truth and 11,954 frames from 18 videos with ground truth. We exclusively used
these frames for final evaluation. It has to be noted that the ground truth masks
that label a polyp are approximated by using ellipses. Furthermore, we filtered out
all images with no polyps (empty mask) and only used frames with at least one
polyp for training. The size of the images is 574 × 500 pixels. This dataset is only
used for testing in this paper. The data are available upon request in the CVC-Colon
repository (http://www.cvc.uab.es/CVC-Colon/index.php/databases/, accessed on
18 December 2022).

• CVC-EndoSceneStill [60] 2017: It combines CVC-ColonDB and CVC-ClinicDB and
contains 912 polyp images from 44 videos of 36 patients. CVC-EndoSceneStill [60]
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is a dataset that combines CVC-ColonDB [17] (CVC-300) and CVC-Clinic-DB [58,61]
(CVC-612). Both datasets gave each image a border, specular, lumen, and segmentation
mask. The border mask marks the black border around each image, the specular mask
indicates the reflections that come from the endoscope light, and the lumen mask labels
the intestinal lumen, which is the space within an intestine. The segmentation mask
contains polyp markings that tag visible polyps within a picture. Because we needed
the bounding box from a polyp, we only used the segmentation masks and extracted
a bounding box by calculating a box that fits around a single blob. The dataset
CVC-ColonDB [17,60] contains 300 selected images from 13 polyp video sequences
with a resolution of 574 × 500 and CVC-Clinic-DB [58,60,61] holds 612 images from
31 polyp video sequences with a size of 348 × 288 pixels. This dataset contains
no healthy mucosa images. The data are available on request in the CVC-Colon
repository (http://www.cvc.uab.es/CVC-Colon/index.php/databases/, accessed on
18 December 2022).

• Kvasir-SEG [62] 2020: The dataset contains 1000 polyp images with corresponding
1071 masks and bounding boxes. Dimensions range from 332× 487 to 1920 × 1072 pixels.
Gastroenterologists verified the images from Vestre Viken Health Trust in Norway.
Most images have general information displayed on the left side and some have a
black box in the lower left corner, which covers information from the endoscope
position marking probe created by ScopeGuide (Olympus). This dataset contains
no healthy mucosa images. The data are available in the Kvasir-SEG repository
(https://datasets.simula.no/kvasir-seg/, accessed on 18 December 2022).

• SUN Colonoscopy Video Database [11] 2021: The database was developed by Mori
Laboratory, Graduate School of Informatics, Nagoya University. It contains 49,136 fully
annotated polyp frames taken from 100 different polyps. These images were collected
at the Showa University Northern Yokohama and annotated by expert endoscopists
at Showa University. Additionally, 109,554 non-polyp frames are included. The size
of the images is 1240 × 1080 pixels. The data are available in the SUN Colonoscopy
Video repository (http://sundatabase.org/, accessed on 18 December 2022).

• CVC-Segementation-HD [60] 2017: This dataset was made available within the GIANA
Polyp Segmentation sub-challenge that was part of the MICCAI 2017 Endoscopic Vision
Challenge. It contains 56 high-resolution images with a size of 1920 × 1080 pixels. This
dataset contains no healthy mucosa images. There is a binary mask from which we
have extracted the bounding boxes for each image. The data are available on request
in the CVC-Colon repository (http://www.cvc.uab.es/CVC-Colon/index.php/datab
ases/, accessed on 18 December 2022).

• Endoscopy Disease Detection Challenge 2020 (EDD2020) [63]: The EDD2020 challenge
released a dataset containing five different classes with masks and bounding boxes for
each image and polyp instance. We extracted all images labeled as a polyp and stored
the relevant bounding boxes into a custom JSON file for our task. These data contain
127 images, and the size of the images is 720 × 576 pixels. This dataset contains no
healthy mucosa images. The data are available on request in the ENDOCV repository
(https://endocv2022.grand-challenge.org/Data/, accessed on 18 December 2022).

Own Data Creation

Previously, we designed a framework that utilizes a two-step process involving a small
expert annotation part and a large non-expert annotation part [64]. This shifts most of the
workload from the expert to a non-expert while still maintaining proficient high-quality
data. Both tasks are combined with artificial intelligence (AI) to enhance the annotation
process efficiency further. Therefore, we used the software Fast Colonoscopy Annotation
Tool (FastCat) to handle the entirety of this annotation process. This tool assists in the
annotation process in endoscopic videos. The design of this tool lets us label coloscopic
videos 20 times faster than traditional labeling. The annotation process is split between at
least two people. At first, an expert reviews the video and annotates a few video frames to



J. Imaging 2023, 9, 26 9 of 38

verify the object’s annotations. In the second step, a non-expert has visual confirmation of
the given object and can annotate all following and preceding images with AI assistance.
To annotate individual frames, all frames of the video must be extracted. Relevant scenes
can be pre-selected by an automated system, and this prevents the expert from reviewing
the entire video every single time. After the expert has finished, relevant frames will be
selected and passed on to an AI model. This allows the AI model to detect and mark
the desired object on all following and preceding frames with an annotation. The non-
expert can adjust and modify the AI predictions and export the results, which can then be
used to train the AI model. Furthermore, the expert annotates the Paris classification [65],
the size of the polyp, its location, the start and end frame of the polyp, and one box for the
non-expert annotators.

Datasets Overview

Own collected data

Collected from 6 different German 
private practices and clinics including 
different processors (Storz, Pentax, 

Olympus).

346,165 images 

Final combined data set

506,338 images

Open source data

ETIS-Larib
CVC-ColonDB
CVC-ClinicDB
CVC-EndoSceneStill

160,173 images

CVC-Segementation
SUN Colonoscopy

Kvasir-SEG
EDD2020

Figure 2. Training datasets overview. This figure illustrates all the data we combined and gathered
for training the polyp-detection system. Open-source data are combined with our data collected
from different German private practices to create one dataset with 506,338 images. Storz, Pentax,
and Olympus are different endoscope manufacturing companies, and we collected the data using
their endoscope processors. The different open source datasets have the following number of images:
ETIS-Larib: 196, CVC-Segmentation: 56, SUN Colonoscopy: 157,882, Kvasir-SEG: 1000, EDD2020:
127, CVC-EndoSceneStill: consist of CVC-ColonDB: 300 and CVC-ClinicDB: 612. Overall this sums
up to 160,173 open-source images.

We built a team of advanced gastroenterologists and medical assistants. We created a
dataset of 506,338 images, including the open-source images listed above. Figure 2 shows
an overview of the different datasets. Our dataset consists of 361 polyp sequences and
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312 non-polyp sequences. The polyp sequence was selected in high quality as we were
generally only annotating the first 1–3 s of the polyp’s appearance, which is critical for
detecting polyps in a real clinical scenario. We combined training material from six centers
involving three different endoscope manufacturers, named Karl Storz GmbH und Co. KG
(Storz), Ricoh Company Ltd. (Pentax), and Olympus K.K. (Olympus). Overall, 91% of
the images are from Olympus, 5% are from Pentax, and 4% are from Storz processors.
We create a dataset of 24 polyp sequences involving 12,161 images and 24 non-polyp
sequences involving 10,695 images for the test data (EndoData). Therefore, the test data
consist of an additional 22,856 images. We assured the independency of the test data as
EndoData is created from a different clinic with different polyps and patients compared to
the training data.

2.2. Current Challenges

There are still some challenges left. The most important of these can be divided into
two categories: on the one hand, the hurdles to achieving the actual goal, real-time support
of physicians, and on the other hand, problems arising from the acquisition or use of the
datasets. The volume and quality of the data is a constant problem factor, and although
there are various ways to deal with these problems, they still need to be solved.

2.2.1. Training and Testing Datasets

The biggest problem faced by most papers, e.g., [66] or [67], is the low availability
of usable datasets. This refers not only to the number and size of datasets but also to the
usually significant imbalance between the two classes healthy frames and frames with polyps.
The need for more availability of pathological data is a common problem for medical deep
learning applications. However, there are also various attempts to deal with it.

One widely used approach by Kang et al. [66] is transfer learning, which uses a model
that has already been pre-trained on a non-medical dataset and is re-trained with a polyp
dataset. The advantage is that sufficiently large non-medical datasets are readily available.
With these, general problem-independent skills, such as edge detection, can already be
learned well and only need to be fine-tuned to the specialized application.

Another method that almost all papers use is data augmentation of the training data.
This involves slightly modifying the existing training data using various methods, thus
increasing the available data and the system’s robustness to the applied transformations.
Examples of such transformations are rotation, mirroring, blur, and color adjustments [25].

An interesting approach by Guo et al. [68] is that the test data are also augmented
at test time. More precisely, they are rotated and then passed to the model. To arrive at
the result for the original image, all generated masks are rotated back accordingly and
averaged. This makes the system more robust against rotation and leads to better accuracy.

Other ideas can be found in Thomaz et al. [69], where a CNN inserts polyps into
healthy images to increase the available training data. In Qadir et al. [70], a framework is
created to annotate data that can generate the rest of the segmentation masks with only a
few ground truth masks.

2.2.2. Video Artifacts

A problem that still needs to be considered is the influence of video artifacts, such
as reflections or blurring, on the detection rate of the methods. Attempts have been
made to detect these and use artifact-specific methods to restore the frames; for example,
the Endoscopy artifact detection (EAD 2019) challenge [71] was also conducted for this purpose.

The article by Soberanis-Mukul et al. [72] examines in detail the impact of artifacts
on polyp detection rates. This allowed us to determine the artifact types with the most
significant influence. With these, a multi-class model was developed to recognize the
different artifact types and the polyps. Since the artifacts were known, regions affected
by artifacts could be avoided being wrongly classified as polyps and polyps containing
artifacts could be better classified.
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2.2.3. Real-Time Application

To support a physician in a real-world scenario, models should be real-time capable,
meaning they should achieve a processing speed of about 25 FPS, as colonoscopy videos
usually run at 25–30 FPS, and newer systems may run with up to 50–60 FPS. Of course,
some speed-up can be achieved by using appropriate hardware. However, concerning
real-world use, speed measurement should be performed on hardware reasonable for a
physician or hospital.

2.3. Data Preprocessing

To ensure high processing speed while maintaining high detection accuracy, we rescale
the images to a size of 640 × 640 pixels. This rescaling allows the detection system to be
efficient and high performing, maintaining a speed of 20 ms on an NVIDIA RTX 3080 GPU.
In the clinical application subsection, we further explain the use of different GPUs and
the GPU requirements for a system capable of real-time processing. We empirically tested
different image sizes and found the best trade-off between speed and accuracy at a scale
of 640 × 640 pixels. Additionally, we transfer the image and model to a half-precision
binary floating-point (FP16). Typically, most machine learning models are in precision
binary floating-point (FP32). With FP16, the model calculates faster but maintains high-
performing results. We found no decrease in performance of the system by decreasing the
network to FP16. The next step is image normalization. All image pixels are normalized
in the following way: the min–max normalization function linearly scales each feature
to the interval between 0 and 1. Rescaling to intervals 0 and 1 is completed by shifting
the values of each feature so that the minimum value is 0. Then, a division by the new
maximum value is performed (which gives the difference between the original maximum
and minimum values).

The values are transformed element-wise using the following formula:

Xsc =
X− Xmin

Xmax − Xmin

where X denotes the old pixel value, Xsc (X scaled) the new pixel value, Xmin the minimum
pixel value of the image, Xmax the maximum pixel value of the image. After normalization,
we apply data augmentation. In deep learning, augmenting image data means modifying
the original image data by using various processes. We are applying the augmentation
displayed in Figure 3. The most basic augmentation we apply is flip augmentation. This
is well suited for polyps as the endoscope can easily rotate during colonoscopy. Here,
the image is flipped horizontally, vertically, or both. We applied a probability of 0.3 for up
and down flips and a vertical flipping probability of 0.5. We additionally apply rescaling to
the image with a probability of 0.638. Rescaling creates polyps in different sizes, adding
additional data to our dataset. The translation moves the image along the horizontal axis.
Furthermore, we applied a low probability of 0.1 to rotate the image with a randomly
created degree. For example, 20-degree rotation clockwise. As the last augmentation, we
apply mosaic data augmentation. Mosaic data augmentation mixes up to four images into
one image. In this implementation images can not overlap. Thereby, the image is rescaled,
causing the images to appear in a different context. Mosaic data augmentation is applied
with a probability of 0.944. These data augmentations are only applied to the training
data. All of the hyperparameters for these augmentations are chosen by the parameter
optimization of the genetic algorithm which is further illustrated in the hyperparameter
optimization subsection below. All of the augmentations are combined to create new
training images.
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Original
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Vertical flip
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Figure 3. Data augmentation for polyp detection. This figure shows the isolated augmentation we
perform to create new training samples. All of these are executed together with a certain probability
in our implementation.

2.4. Polyp-Detection System

As illustrated in Figure 4, the polyp-detection system starts with an input of a polyp
image sequence. A polyp image sequence consists of a stream of single images extracted
from a grabber of the endoscope in real-time. t states the currently processed frame. t− 1
denotes the frame before t, t− 2 the frame before t− 1, etc. The parameter ws denotes
our new window size, which we introduce to apply real-time robust and efficient post-
processing (RT-REPP). The polyp image sequence is now passed to the polyp-detection
system. The polyp-detection system consists of two parts: the CNN detection architec-
ture, here YOLOv5, and the post-processing, here real-time REPP (RT-REPP). The trained
YOLOv5 model is now predicting boxes and passing those boxes to RT-REPP. RT-REPP
consists of three main steps: first, boxes are linked across time steps, i.e., frames. This step
is linking boxes according to the linking score. Details on the linking score are displayed in
a subsection below. Second, unmatched boxes or boxes which do not meet specific linking
and prediction thresholds are discarded through the system. Third, the boxes are adjusted
using the predicted boxes from past detections. Finally, the filtered detections are calculated
and displayed on the screen.

2.5. YOLOv5

In an end-to-end differentiable network, the YOLOv5 (https://github.com/ultralytics
/yolov5, accessed on 18 December 2022) model was the first object detector to connect the
technique of predicting bounding boxes with class labels. The YOLOv5 network consists
of three main pieces. The neck is a construction of multiple layers that mix and combine
image features to pass the prediction forward. The head takes the features from the neck
and tries to predict boxes and classes. They use a CNN that aggregates and forms image
features at different granularities for the backbone. To create the bounding boxes, YOLOv5
predicts them as deviations from several anchor box dimensions. In Figure 5, we illustrate
the YOLOv5 architecture. The objective function of YOLOv5 is defined by minimizing the
sum of three losses box-loss, cls-loss, and obj-loss. The box-loss measures how accurately
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the predicted BBs are drawn around the polyp. The cls-loss measures the correctness of
the classification of each predicted bounding box. In our case, it is just one class (polyp).
The objectiveness loss (obj-loss) penalizes the model for detecting the wrong bounding box.

Polyp detection system

YOLOv5 – CNN

Real-Time-REPP
Step 1: link Boxes across time

Step 3: adjust new boxesStep 2: delete unlinked boxes

…

Polyp image sequence

…

t-ws-1 t-ws t-2 t-1 t

t-2 t-1 t

t-2 t-1 tt-2 t-1 t

X

Filtered detections

…

t-ws-1 t-ws t-2 t-1 t

Figure 4. Overview of the polyp-detection system. This figure shows all the steps of the whole
polyp-detection system. The start is an input of a polyp sequence ending with the last frame from the
endoscope (t). From this sequence, ws frames are extracted and given to CNN architecture. Then
detections are performed with YOLOv5, and the predicted boxes are post-processed by RT-REPP.
Afterward, final filtered detections are calculated.
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Figure 5. Detailed overview of the YOLOv5 architecture. This overview shows the whole architecture
of YOLOv5. The starting point is the backbone CSPDarknet, the main feature extractor (the image is
input for the BottleNeckCSP). These extracted features are then given to the PANet neck structure
at three stages. Finally, in the head, three outputs are computed. These three outputs are specially
designed for small, medium, and large objects and already contain the bounding box predictions.
This figure is adapted from Xu et al. [73].

2.5.1. CSP as a Backbone

The cross stage partial network (CSPNet) model is based on DenseNet, which was
created to connect layers in CNNs to build the backbone for the YOLOv5 model [74].
YOLOv5 created CSPDarknet by incorporating a CSPNet into Darknet. The most significant
change of CSPDarknet is that the DenseNet has been reworked to divide the base layer’s
feature map by cloning it and sending one copy via the dense block, while sending the
other directly to the next stage. Therefore, the CSPDarknet solves the problem of vanishing
gradients in large-scale backbones. This is accomplished by splitting the base layer’s
feature map into two sections and combining them using a suggested cross-stage hierarchy.
The fundamental idea is to separate the gradient flow to propagate over several network
pathways. It was demonstrated by varying concatenation and transition phases that
the propagated gradient information could have a considerable correlation difference.
In addition, CSPNet may significantly minimize the amount of processing required and
enhance inference speed and accuracy. CSPDarknet uses two BottleNeckCSPs and one
spatial pyramid pooling (SPP) shown in Figure 5. SPP is a pooling layer that removes the
network’s fixed size limitation, allowing a CNN to operate with changing input sizes. It
aggregates the features and provides fixed-length outputs that are then sent to the next
layer or classifier. This works by pooling the results of each spatial bin (like max-pooling).
The SSP produces kM-dimensional vectors, with M being the number of bins and k being
the number of filters in the last convolutional layer. Therefore, the output is a fixed-
dimensional vector. We chose CSP as a backbone for our models using VGG-16 or ResNet50
yields worse results on our validation data than the CSP backbone. Nevertheless, VGG-16
or ResNet50 could also be used as a backbone for this network, as those are valid options
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for polyp-feature extraction also shown in Tajbakhsh et al. [75] and Sharma et al. [76]. Still,
we had the best results using the CSP backbone.

2.5.2. PANet as a Neck

The YOLOv5 architecture uses a path aggregation network (PANet) as its neck to
improve the information flow [77]. Figure 6 illustrates the PANet and its connections to the
architecture in more detail. PANet uses a novel feature pyramid network (FPN) topology
with an improved bottom–up approach to improving low-level feature propagation. In the
present architecture, the path starts with the output of the SPP from the backbone, which
is passed to a CSP. This output is sent into a convolutional layer and is then upsampled.
The result is then concatenated with the output from the second CSP in the backbone
through a lateral connection and passed through the same combination again, which is
then concatenated with the output from the first CSP of the backbone. Simultaneously,
adaptive feature pooling is employed to restore broken information paths between each
proposal and all feature levels. It is a fundamental component aggregating features from
all feature levels for each proposal, preventing outcomes from being allocated randomly.
Furthermore, PANet uses fully-connected fusion. These augments mask prediction with
small fully-connected layers, which have complementary features to the fully-connected
network (FCN) initially utilized by Mask R-CNN, to capture multiple perspectives on
each proposal. Information diversity increases and higher-quality masks are generated by
combining predictions from these two perspectives. Both object detection and instance
segmentation share the first two components, resulting in a much-improved performance
for both tasks.

p3

p4

p5

box regression
objectness
classificationFPN

PANet

box regression
objectness
classification

box regression
objectness
classification

Figure 6. Overview of the PANet of YOLOv5. This overview shows a more detailed view of the
PANet structure in YOLOv5. The starting point is a polyp input image. The FPN feature pyramid
architecture is illustrated in interaction with the PANet. Finally, three outputs are given. These three
outputs are specially designed for small (p5), medium (p4), and large (p3) objects.

The following steps are used for the adaptive feature pooling. First, the authors map
each suggestion to distinct feature levels. Next, a function is utilized to pool feature grids
from each level, following Mask R-CNN. The feature grids from different levels are fused
using a fusion operation (element-wise max or sum). To integrate features into the network,
pooled feature grids are passed through one parameter layer individually in the following
sub-networks, followed by the fusion operation. For example, the box branch in FPN
contains two fully-connected levels. Between the first and second convolutional layers,
the two levels fuse together. For further prediction, such as classification, box regression,
and mask prediction, the fused feature grid is utilized as the feature grid of each proposal.

The primary route is a tiny FCN with four convolutional layers in a row and one
deconvolutional layer. Each convolutional layer has 256 × 3 × 3 filters, whereas the
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deconvolutional layer upsamples by two. Like Mask R-CNN, it predicts a binary pixel-wise
mask for each class individually to decouple segmentation and classification. A short path
from layer conv3 to a fully-connected layer is also created. The network is used with half-
precision, cutting the computational cost by halving. A fully-connected layer is employed
to forecast a class-agnostic foreground/background mask. It is efficient and allows the
fully-connected layer’s parameters to be trained with more data, resulting in improved
generality. They employ a mask size of 28× 28 such that the fully-connected layer generates
a 784 × 1 × 1 vector. The mask predicted by the FCN is reshaped to the same spatial size as
this vector. The final mask prediction is obtained by combining the masks of each class from
the FCN with the foreground/background prediction from YOLOv5. Compressing the
concealed spatial feature map into a short feature vector, which loses spatial information,
is avoided using just one YOLOv5 layer for final prediction instead of several. Finally,
the last YOLOv5 layer creates three different feature maps to provide multi-scale prediction,
allowing the model to handle small, medium, and large objects.

Hyperparameter Optimization

We use a genetic algorithm to find optimal hyperparameters [78]. The genetic algo-
rithm starts by using YOLOv5 default set of hyperparameters, training the entire YOLOv5
model until 15 epochs, then calculating the F1-score. After that, the hyperparameters are
mutated and training is restarted. If the calculated F1-score is higher than the scores in the
past, the best score and its hyperparameters are saved. After iterating over 10,000 genetic
optimizations, we found our final parameters and retrained the algorithm for 54 epochs
with the corresponding hyperparameters. At this point, the algorithm is stopped through
early stopping.

Model Selection

We tested different architectures to select the best polyp detection model. We used a
5-fold cross-validation on our training data to determine the final model. We used 80% of
the data for training and 20% of the data for validation. The cross-validation results are
shown in Table 3. The best results are achieved in precision, recall, F1, and mAP using
the YOLOv5 model. Still, the model keeps real-time capability while having an average
number of parameters compared to the other models.

Table 3. Results of the 5-fold cross-validation for selecting the final model deep learning model.
Values displayed in bold font indicate the highest or most optimal results. The abbreviation “adv.” is
an acronym for the term “advanced”.

Precision Recall F1 mAP Speed Parameter

Faster R-CNN [32] 81.79 85.58 83.64 79.43 15 91 M
YOLOv3 [35] 80.45 82.46 81.44 81.92 41 65 M
YOLOv4 [79] 83.04 83.68 82.36 83.54 47 81 M
YOLOv5 (adv.) 88.02 89.38 88.70 86.44 43 79 M
SSD [36] 75.52 76.19 75.85 78.69 30 64 M

2.6. Robust and Efficient Post-Processing (REPP) and Real-Time REPP (RT-REPP)

Image object detectors process each frame of a video individually. Each frame of an
incoming stream of frames is viewed independently of the previous and subsequent frames.
As a result, information is lost and the performance of such detectors can significantly
differ between images and videos. Moreover, video data confronts the object detector
with unique challenges, such as blur, occlusion, or rare object poses. To improve the
results of the object detector for video data, the post-processing method REPP [13] relates
detections to other detections among consecutive frames. Thus, the temporal dimension
of a video is included. REPP links detections across consecutive frames by evaluating
their similarities and refining their classification and location. This helps to suppress and
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minimize FP detections. The algorithm can be divided into three modules: (1) object
detection, (2) detection linking, and (3) detection refinement. Figure 7 shows an overview
of the REPP modules.

Figure 7. The REPP modules used for video object detection post-processing. The object detector
predicts a polyp for a sequence of frames and links all bounding boxes across frames with the help
of the defined similarity. Lastly, detections are refined to minimize FPs. This figure is adapted from
Sabater et al. [13].

2.6.1. Object Detection

Object detection works on any object detector that provides bounding boxes and a
class confidence score. For each frame t, the detector delivers a set of object detections. Each
detection oi

t is described by a bounding box (bb), semantic information and the appearance
of the patch (small piece of an image). The bounding box is defined as bbi

t = {x, y, w, h},
where x and y is the upper left corner, w the width, and h the height of the bounding box.
Semantic information, such as the vector of class confidences, is defined as cci

t ∈ RC with C
for the number of classes and a L2-normalized embedding appi

t ∈ R256 which represents
the appearance of a patch.



J. Imaging 2023, 9, 26 18 of 38

2.6.2. Detections Linking

Linking detections along the video are created by a set of tubelets and continue as
long as corresponding objects are found in the following frames. A similarity function is
used to link two detections between two consecutive frames.

floc = {IoU, dcenters} (1)

fgeo = {ratiow, ratioh} (2)

fapp = dapp (3)

fsem = f a
sem · f b

sem (4)

where floc is the location which is specified through the Intersection over Union (IoU) and
the relative euclidean distance between two bounding box center points (dcenter). The IoU
indicates the overlap between two boxes. The larger the overlap, the more likely it is that
both boxes mark the same object.

In addition, the distance between the two center points is used. fgeo is the geometry
of the bounding boxes, which is defined as the ratio of width (ratiow) and height (ratioh)
between the two bounding boxes. This score is high if both boxes have a similar size.
fapp is the appearance similarity in which the Euclidean distance between the appearance
embeddings (dapp) are calculated. A more similar appearance results in a higher score.
Lastly, fsem is the dot product of the class confidence vectors cci

t. The greater the confidence
vectors of both detections, the more likely it is that both boxes mark a polyp. Using these
features, a link score (LS) is calculated between two detections.

LS(oi
t, oj

t+1) = fsemX( floc, fgeo, fapp) (5)

Thereby, X is a function for logistic regression trained so that it can differentiate if
two detections belong to the same object instance. In the following, the linking process is
algorithmically explained.

Algorithm 1 shows a general description to obtain pairs of frames. The algorithm uses
a list of predictions, processes each frame, calculates the distance between objects in both
frames, and saves the value in a distance matrix. The objects with the lowest distance are
then considered a pair, and a list of pairs is returned.

Algorithm 1 Get a list of pairs of frames that are linked across frames

1: function GETPAIRS(predictions)
2: for index ← 0 to count of frames do
3: predsFrame1← predictions[index] . Get frame predictions from current index
4: predsFrame2← predictions[index + 1] . Predictions of next frame
5: framePairs← empty list
6: if length(predsFrame1) 6= 0 and length(predsFrame2) 6= 0 then
7: distances← 2D-Array with 0 for each cell
8: for i← 0 to length(predsFrame1) do
9: for j← 0 to length(predsFrame2) do

10: distances[i][j]← LOGREG(predsFrame1[i], predsFrame2[j])
11: end for
12: end for
13: framePairs← SOLVEDISTANCES(distances)
14: end if
15: pairs.append(framePairs)
16: end for
17: return pairs
18: end function
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Next, tubelets are created (Algorithm 2) from a list of linked pairs. Tubelets link all
bounding boxes that identify the same object across a series of frames.

Algorithm 2 Tubelets creation from list of linked pairs

1: function GETTUBELETS(predictions, pairs)
2: tubelet← empty list
3: for each frame do
4: for each pair in following frames do
5: if frame has no pair then
6: start new tubelet
7: end if
8: if frame has pairs then
9: append box from pair to tubelet

10: end if
11: end for
12: end for
13: return tubelets
14: end function

2.6.3. Object Refinement

The use of tubelets improves the classification and location. The first step of tubelet
creation is recalculating the detection classification scores. Therefore, all class confidence
vectors are averaged and assigned to each detection within the tubelet (see Algorithm 3).
This helps correct mislabeled detections and disambiguate those with low confidence.

Algorithm 3 Rescore tubelets

1: function RESCORETUBELETS(tubelets)
2: for each t ∈ tubelets do
3: savg = 1

|t| ·∑p∈t sp . Average score s of predictions p of tubelets
4: ∀p ∈ t : sp = savg . Assign average to all prediction scores
5: end for
6: return tubelets
7: end function

The next step is to improve the detection positions. Each coordinate of a linked object
is treated as a noisy time series. Smoothing is used to alleviate the noise with the help of
a one-dimensional Gaussian filter convolution along with each time series. The smoothed
series are then used as the set of coordinates of the object in the tubelet (Algorithm 4, line 7).

Algorithm 4 REPP

1: function REPP(objectDetectionPredictions) . Gets all predictions from detection
network

2: videoPredictions← FILTERPREDICTIONS(objectDetectionPredictions)
3: pairs← GETPAIRS(videoPredictions)
4: tubelets← GETTUBELETS(videoPredictions, pairs)
5: tubelets← RESCORETUBELETS(tubelets)
6: if recoordinate == True then . Tubelets reccordination is optional
7: tubelets← RECOORDINATETUBELETS(tubelets)
8: end if
9: predictions← TUBELETSTOPREDICTIONS(tubelets) . Convert to specific format

10: return predictions
11: end function

The final REPP algorithm (Algorithm 4) is a combination of all aforementioned algo-
rithms executed in order. First, filter detection predictions (line 2), then obtain all pairs
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(line 3) and afterward compute the tublets out of the pairs (line 4). Then rescore detections
within tubelets (line 5) and recoordinate them for improved prediction results (line 7).
Lastly, filter all predictions that do not reach a certain threshold and convert them to a
specific prediction result format, such as the COCO format (line 9).

Since REPP is a post-processing method that only works on finished videos, REPP
includes past and future frames. We modified the code for real-time application to only
include past frames, calling the algorithm RT-REPP. To compare REPP and RT-REPP in our
real-time application, we included a buffer of pre-defined length to run the original REPP.
The size of the buffer is adjustable to fit the available resources. The greater the length,
the longer it takes to execute REPP. Before REPP is executed, the buffer must be completed,
which causes a size-dependent delay at the beginning of each video. To overcome this
delay, REPP is run from the start frame and executed for every new frame until the buffer
is completed. The completed buffer is passed, and the oldest frame is deleted as a new
frame is inserted. Since the delay times for our application are relatively short, we accept
this short delay. See Algorithm 5 to understand the basic workflow of RT-REPP. We
define a window size ws, which determines the window length. A buffer size ws of 300
is sufficient for a real-time stream of 25 FPS. A ws of more than 300 does not improve the
accuracy significantly.

Algorithm 5 RT-REPP

1: function RT-REPP(framePrediction)
2: if buffer is full then
3: delete oldest frame
4: end if
5: add prediction to buffer
6: run REPP on buffer
7: end function

To implement RT-REPP in our real-time system, we combined C++ and python. We
used the lightweight header-only library pybind11, which allows us to use C++ types and
methods in python and vice versa. To our knowledge, REPP and RT-REPP have not been
used before in the domain of polyp detection. In Figure 8, the workflow of real-time REPP
is illustrated.

Figure 8. Real-time REPP. It obtains a stream of video frames, where each frame is forwarded into
a detection network. The result of the current frame is stored into the buffer (green) and REPP is
executed afterward. The improved result are then displayed.

We tested different linking-score thresholds and window sizes to choose the hyper-
parameters of RT-REPP. The boxes scoring below the linking-score threshold are removed
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from the final detection results. As described early, we set the window size to 300. We
tested different linking-score thresholds. Our results determined a score of 0.2 to be the
most effective.

2.7. Clinical Application

To develop a system for clinical trials, it is mandatory to understand the current
settings of examination rooms. Endoscopic and other medical equipment are complex
devices with intricate setups. Therefore, this is only a brief overview of these highly
sophisticated components.

Figure 9 shows an example of medical devices used during endoscopic interventions.
Figure 9a presents an endoscope composed of a flexible tube, controlled and operated by
physicians during examination through several control buttons and physical force. A fish-
eye camera is on the tip of this tube, combined with a light source to capture an RGB video
stream. The endoscopy tower contains the entire endoscopic equipment and, most impor-
tantly, the camera’s light source and an endoscopy processor (Figure 9b). The endoscopic
processor captures the camera stream and processes it into a regular video signal. This
signal can be displayed on a monitor, as shown in Figure 9c. These components provide
physicians with real-time visual feedback during endoscopic interventions. Based on the
given setting, we developed a prototype for clinical application. Instead of directly con-
necting the endoscopy processor to the monitor, our system stands between the processor
and monitor, processing all frames before forwarding them to the monitor.

Figure 9. This figure illustrates the setting for the examination room.

Table 4 shows the main hardware components of our system, which allows for real-
time image processing. However, these are just as important as a suitable software. In order
to provide physicians with the best possible user experience, all incoming frames must be
displayed as fast as possible to minimize latency. To this end, image capturing, displaying,
and processing are running in separate threads. The first thread uses the Blackmagic
SDK to capture frames, which depends on the frame rate. For instance, Olympus CV-190
provides 50 FPS, receiving a frame every 20 ms. Therefore, it is essential to distribute
the additional workload on other threads. If only one thread is used, incoming frames
are buffered, resulting in an overall delay across all related threads. Considering this,
thread one only captures and transforms incoming data to an OpenCV matrix, passing it to
subscribing pipelines.

One receiver is the AI pipeline, shown in Figure 10. In this thread, all incoming frames
are cloned (Figure 10a) to ensure that all operations on those image matrices do not interfere
with other processes. The clone shown in (Figure 10b) is preprocessed. Here, the frame
matrices are transformed to fit the AI network. First of all, the black borders of the images
are cropped. In Figure 10a to Figure 10b this is illustrated. The resulting 640 × 640 matrix is
transformed from BGR to RGB and uploaded to GPU memory. Here, the matrix is processed
through YOLOv5 (Figure 10c). Based on the input, it results in relative coordinates, classes,
and scores for every detection. The last step is a transformation resulting in a vector
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of quadruples, containing xy-coordinates, width, and height of bounding boxes to suit
the original matrix (Figure 10d). Under consideration of thresholds, detections with low
confidence are removed, while the remaining detections are transformed and forwarded to
the display pipeline.

Table 4. Prototype components.

Component Type Info

CPU AMD Ryzen 7 3800X 8 Cores, 3.9 GHz
GPU MSI GeForce RTX 3080 Ti 12 GB GDDR6X
RAM G.Skill RipJaws V DDR4-3200 2 × 8 GB
Disk Samsung SSD 970 EVO Plus 500 GB
Mainboard B550 Vision D -
Frame Grabber DeckLink Mini Recorder 4 K -

Figure 10. The AI pipeline. This figure depicts the AI pipeline used to apply the created polyp-
detection system in a clinical environment.

The independent display pipeline thread is designed to display captured frame matri-
ces as fast as possible. Like the AI pipeline, matrices are cloned at the beginning, shown
in Figure 11. Consequently, no processing is applied on the original matrices; therefore,
other pipelines remain unaffected. Then, based on the most recent detections of the AI,
new boxes are drawn and old ones removed. The boxes remain on the screen until a new
cycle of the AI pipeline has finished. Additionally, a few extra UI elements, such as a timer,
indicating that the AI is running before frames are forwarded and displayed. This design,
as mentioned earlier, decouples the AI and display pipeline. Hence, a slower AI does not
directly result in higher display latency. Nevertheless, the performance of the AI pipeline
remains an essential factor. Faster executions lead to more inferences and, therefore, more
precise boxes, given that the displayed frame is closer to the AI pipeline frame.

Figure 11. The display pipeline. This figure depicts the display pipeline used to display the final
detection results to the gastroenterologist.

The prototype was tested on two different GPUs to show the performance differences
during clinical application. The prototype components are listed in Table 4. A second
computer streamed a colonoscopy video instead of an endoscopy processor, just like an
endoscopy processor does. Meanwhile, the prototype captured the signal, as mentioned
earlier. This ensures identical, reproducible conditions and guarantees occurring polyps
during the experiment. The prototype is not able to distinguish this method from a
live endoscopy. The streamed examination video is presented in 1920 pixels and 50 fps,
equivalent to streams of Olympus CV-190. Our test used the MSI GeForce RTX 3080 Ti,
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an up-to-date high-end GPU released on 3 June 2021. The NVIDIA Geforce GTX 1050 Ti,
a low-budget GPU two generations ago, was used for a second test run. This GPU was
released on 27 May 2016. All other hardware components and software parts were constant
throughout testing.

In the setting of Table 5 5000 frames are considered. Out of those 5000 frames, the RTX
3080 Ti executed the AI pipeline 2996 times. At the same time, the GTX 1050 Ti made
313 executions. This is based on the AI’s average execution time (AI pipeline average
execution time) 19.5 ms and 306.7 ms, respectively. During the usage of RTX 3080 Ti, there
was a 15-fold performance gain. The AI pipeline was applied on every 1.7th frame on this
GPU, while only every 16th frame was evaluated through the inferior GPU. Considering
those results and a synchronized display pipeline, it takes two frames until bounding boxes
are displayed. Furthermore, those two boxes remain displayed for two more frames until
they are updated again, resulting in a total display time of four frames (80 ms) for the RTX
3080 Ti. In comparison, the GTX 1050 Ti accumulates 32 frames (640 ms), while 16 frames
(320 ms) are needed to generate the first bounding box. This does not illustrate the worst or
the best-case scenario.

Table 5. A 5000 frames system test. This table shows the speed of the detection system of two GPUs.
Considering an image input with a speed of 50 FPS.

GPU AI Exe. Count AI Avg. Exe. Time AI Evaluation Rate

RTX 3080 Ti 2996 19.5 ms 29.4 FPS
GTX 1050 Ti 313 306.7 ms 3.1 FPS

An example was created to show the delay in the appearance of a bounding box.
Figure 12a shows a frame forwarded to the AI pipeline. Since the RTX 3080 Ti needs
an average of 1.7 frames, bounding boxes appear in frame two. This is illustrated in
Figure 12b. While the camera moves, frame two is slightly shifted to the bottom, but the
polyp is still mainly boxed. The GTX 1050 Ti takes an average of 16 frames, shown in
Figure 12c. The polyp is mainly outside the bounding box. A box might appear based on
the speed at which the endoscope is moved, even if a polyp is no longer displayed. This
is highly unlikely for the RTX 3080 Ti, which in the best case, shows a bounding box on
the consecutive frame. This delay must be considered when using slower GPUs but can be
neglected if the endoscope’s withdrawal motion is made slowly.

Figure 12. Detection shift through latency.

The test shown in Table 5 has been performed on an actual prototype. Therefore,
the software has not been altered. In addition, a video was recorded simultaneously,
and this is done for quality assurance and to retrieve additional test data. The recording
pipeline is independent, but the GPU is used for H.264 video encoding, which causes an
additional load and can affect the performance of the AI pipeline. In general, our prototype
is not designed for a specific GPU, all NVIDIA GPUs with CUDA compatibility over the
last five years can be used, but it will affect the user experience. In an actual examination,
prototypes have been used with a MSI GeForce RTX 2080 SUPER Ventus XS OC with no
significant change in user experience.
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3. Results

For the evaluation, we use two datasets. The CVC-VideoClinicDB dataset is the
first benchmark dataset for polyp detection in videos [59]. The previous benchmark
datasets, e.g., ETIS-Larib and CVC-ColonDB, only allow a comparison based on still images.
The CVC-VideoClinicDB dataset has the ability to evaluate models on video data, which is a
more realistic scenario, as real polyp detection outputs from endoscopies are not images but
a stream of images provided in real-time. As our architecture explained in methods only
applies to videos or a stream of images, we chose the CVC-VideoClinicDB dataset as our
main evaluation dataset. The second dataset is our own test dataset called EndoData. In the
CVC-VideoClinicDB dataset, the polyp sequence begins with the polyp already in view
in the first frame. Since our dataset contains the entire footage, the polyps appear further
into the image sequence. Therefore, the EndoData dataset emulates the clinical practice
more closely, which makes the evaluation even more realistic in the application. We can
additionally calculate a metric measuring the time taken to detect a polyp. We published
the code for the application and evaluation of our system on our webpage (https://fex.
ukw.de/public/download-shares/d8NVHA2noCiv7hXffGPDEaRfjG4vf0Tg, accessed on
18 December 2022).

The F1-score evaluates the model’s quality. The F1-score describes the harmonic mean
of precision and recall as shown in following equations:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

We count an annotation as TP if the boxes of our prediction and the boxes from the
CVC-VideoClinicDB dataset ground truth overlap at least 50%. Additionally, we choose
the mAP, which is a standard metric in object detection [80]. The mAP is calculated by the
integral of the area under the precision-recall curve. All predicted boxes are first ranked by
their confidence value given by the polyp-detection system. Then we compute precision
and recall for different thresholds of these confidence values. When reducing the confidence
threshold, recall increases and precision decreases. This results in a precision–recall curve.
Finally, the area under the precision–recall curve is measured. This measurement is called
the mAP. Furthermore, our approach introduces new parameters to the polyp-detection
system. One of the parameters is the width of the detection window ws.

We created the following evaluation on our dataset (EndoData). Our evaluation
considers two baseline models: the YOLOv5 (base) model and the Faster R-CNN baseline.
The YOLOv5 (base) model is the basic YOLOv5 model trained on the EndoData dataset
without any hyperparameter optimization, data augmentation, post-processing, or other
changes for polyp detection. The second baseline model is a Faster R-CNN with a ResNet-
101 backbone. This involves training a Faster RCNN with default parameters using the
Detectron2 framework [81].

Furthermore, we show three different stages of our polyp-detection system. First,
YOLOv5 advanced (adv.), which is training the YOLOv5 model but with all our in section
methods explained features and optimization to specialize it for the polyp detection task.
Second, REPP is a trained YOLOv5 (adv.) model, including the REPP post-processing.
This is not applicable in real-time, as the REPP algorithm only works on recorded videos.
Afterward, we introduce the RT-REPP. The RT-REPP is our version of REPP, which works
in real-time. Our polyp-detection system ENDOMIND-Advanced is in the following
evaluation, referred to as RT-REPP. All models are trained on our training data using four
Quadro RTX 8000 NVIDIA graphics cards, and the test application is made on an NVIDIA
GeForce RTX 3080. The results of these models are shown in detail in Tables 6–12.
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Table 6. Evaluation CVC-VideoClinicDB dataset. This table compares six different polyp detection
approaches on the benchmarking data CVC-VideoClinicDB. The first two models are baseline models,
and the third is the best model of the current literature. The last three models are different stages of
our polyp-detection system. Precision, Recall, F1, and mAP are given in %, and the speed is given
in FPS. Values displayed in bold font indicate the highest or most optimal results. The abbreviation
“adv.” is an acronym for the term “advanced”.

Precision Recall F1 mAP Speed RT Capable

YOLOv5 (base) 92.15 69.98 79.55 73.21 44 yes
Faster R-CNN 93.84 74.79 83.24 79.78 15 no
Qadir et al. [55] 87.51 81.58 84.44 - 15 no
YOLOv5 (adv.) 98.53 76.44 86.09 77.99 44 yes
REPP 99.71 87.05 92.95 86.98 42 no
RT-REPP 99.06 82.86 90.24 83.15 43 yes

Table 7. Detailed detection approaches on the benchmarking data CVC-VideoClinicDB. The first two
models are baseline models, and the last three are different stages of our polyp-detection system. F1,
and mAP are given in %. The abbreviation “adv.” is an acronym for the term “advanced”.

Video YOLOv5 (Base) F-RCNN YOLOv5 (Adv.) REPP RT-REPP

mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

1 78.22 87.41 92.56 88.14 85.17 91.47 94.56 97.44 89.38 94.18
2 87.35 91.87 89.48 89.19 94.62 96.91 97.48 98.48 96.48 97.96
3 75.58 80.09 81.48 77.71 80.18 84.42 86.48 87.64 82.65 85.01
4 90.04 92.16 93.35 90.39 98.00 98.99 98.35 99.50 98.29 98.99
5 76.29 82.53 78.01 85.85 78.40 87.64 83.01 90.71 78.88 88.27
6 86.23 88.59 87.05 89.42 90.07 94.83 92.05 95.43 88.41 92.83
7 60.75 67.15 69.56 78.38 66.23 76.15 74.56 85.71 71.95 82.35
8 53.93 69.52 77.22 82.65 59.16 73.66 82.22 90.11 82.22 90.11
9 74.27 77.29 84.10 87.21 76.50 87.01 89.10 94.18 85.15 91.89

10 75.28 77.36 86.33 86.00 78.22 87.25 91.33 95.29 86.61 92.61
11 90.17 92.19 94.19 94.92 95.41 97.44 99.19 99.50 98.65 99.50
12 30.81 46.22 42.51 60.09 36.78 54.01 47.51 64.86 39.85 57.14
13 84.48 89.48 84.68 87.06 89.37 94.29 89.68 93.83 90.00 94.74
14 74.35 80.49 82.20 86.42 79.09 87.88 87.20 93.05 82.20 90.11
15 48.88 62.62 52.51 66.56 52.18 69.04 57.51 73.15 55.65 71.79
16 89.45 92.97 93.63 90.32 94.54 97.44 98.63 99.50 98.36 98.99
17 52.25 64.61 56.29 68.15 57.77 72.59 61.29 75.78 49.80 65.75

Mean 73.21 79.55 79.78 83.24 77.99 86.09 86.98 92.95 83.15 90.24

3.1. CVC-VideoClinicDB Data Evaluation

To compare our polyp-detection system to the published research, we use the publicly
available CVC-VideoClinicDB dataset. To our knowledge, the best-performing algorithm
on the dataset was published by Qadir et al. [55]. Therefore, Qadir et al. [55] is included
in the evaluation in Table 6. In Table 6, different baseline and advanced stage models are
compared. All values are calculated according to the CVC-VideoClinicDB challenge norm.
The CVC-VideoClinicDB challenge norm defines the same calculations used for calculation
in the GIANA challenge 2017 [60]. Therefore, the means are calculated by summing all the
results for every image and dividing the sum by all images in the dataset (micro mean).
We use this micro mean structure throughout this paper. All presented means are micro
averages over all images. We excluded video 18 from the CVC-VideoClinicDB dataset,
because 77 of 381 images are labeled incorrectly.

For the F1-score, REPP has the highest F1 score. However, REPP is not applicable in
real-time as it is calculated by combining past, present, and future predicted boxes. There-
fore, REPP can only be used on recorded videos. We like to include it in the comparison
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to show the enhancements using the full algorithm. RT-REPP achieves the second-best
F1-score and functions in real-time. Using RT-REPP vs. YOLOv5 (adv.) improves the results
by a F1-score of 4.15%. The baseline models Faster R-CNN and YOLOv5 (base) achieve
lower F1-scores.

Overall our results show that using our hyperparameter, data augmentation, and
training setup increases the F1 and mAP by 6.05% and 4.78%. By leveraging our implemen-
tation, RT-REPP results improve further by 4.15% and 3.14%. REPP and RT-REPP cause a
minimal speed reduction, resulting in roughly a 1 FPS speed reduction for RT-REPP and a 2
FPS reduction in REPP. Therefore, those algorithms can easily be added to neural networks
without losing much processing time.

For the detailed evaluation, we computed the mAP and F1-score for each of the
17 videos of the CVC-VideoClinicDB dataset. REPP-RT detects most videos with a F1-score
of over 90%. Only videos 3, 5, 7, 12, 15, 17 have a score lower than 90%. These videos also
have inferior test results. Negative examples are video 12, with a score of 57.14%; video 17,
with a score of 65.72%; and video 15, with a score of 71.79%. We analyze those videos in
more detail in the discussion section. The YOLOv5 baseline model also has inferior results
with a value of 46.22% and a detection value lower than 50%. Comparing our approach
to Jha et al. [48], we achieve better results on the CVC-VideoClinicDB data. However,
the Jha et al., model is also capable of polyp segmentation and the system’s speed is faster
(180 FPS).

3.2. EndoData Evaluation

Our own validation set (EndoData) allows us to detect polyps more precisely and
accurately. Table 8 shows an overview of the videos in the dataset and Figure 13 shows ex-
amples of the dataset. The EndoData dataset records sequences as the polyp appears in the
scene. Therefore, polyps are marked precisely with their first appearance. In comparison,
the polyp sequence of the CVC-VideoClinicDB dataset might not start when the polyp is
already detected. Those early seconds are crucial as the gastroenterologist has to identify
and not miss the polyp during this time. If the polyp is not detected in the early sequence,
it increases the risk of missing it. As we like to focus on this early detection, we introduce a
second metric that can just be evaluated with a dataset like ours. This metric marks the
seconds from first seeing the polyp to first detecting the polyp. We call it first detection
time (FDT). Additionally, we compute the FPs and the false positive rate (FPR) per video
(Tables 10 and 11).

Table 8. Details of the EndoData. This table shows the details of our own evaluation data (EndoData).
Width and height state the size of the used frames.

Video 1 2 3 4 5 6 7 8 9 10

Frames 14,947 18,026 1960 1923 9277 14,362 347 4627 6639 766
Polyps 2 5 1 1 2 5 1 2 4 1
Width 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920
Height 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080
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Table 9. Evaluation of EndoData. This table compares five different polyp detection approaches
on our EndoData dataset. The first two models are baseline models. The last three models are
different stages of our polyp-detection system. F1, and mAP are given in %. Values displayed in
bold font indicate the highest or most optimal results. The abbreviation “adv.” is an acronym for the
term “advanced”.

Precision Recall F1 mAP Speed RT Capable

YOLOv5 (base) 78.39 80.54 79.45 77.09 44 yes
Faster R-CNN 81.85 86.20 83.97 81.74 15 no
YOLOv5 (adv.) 86.21 86.43 86.32 82.28 44 yes
REPP 90.63 89.32 89.97 87.24 42 no
RT-REPP 88.11 87.83 87.97 84.29 43 yes

Table 10. Time to first detect on our own dataset (EndoData). This table compares five different polyp
detection approaches on EndoData with our new metric time to first detection (FDT). The first two
models are baseline models, and the last three are different stages of our polyp-detection system.
FDT is measured in seconds. FP denotes the number of FPs in the video. Values displayed in bold
font indicate the highest or most optimal results. The abbreviation “adv.” is an acronym for the
term “advanced”.

Video YOLOv5 (Base) F-RCNN YOLOv5 (Adv.) REPP RT-REPP

FDT FP FDT FP FDT FP FDT FP FDT FP

1 0.07 201 0.00 159 0.00 155 0.00 109 0.00 150
2 0.68 13 0.62 11 0.51 4 0.51 8 0.51 5
3 0.10 21 0.00 17 0.00 30 0.00 12 0.00 13
4 0.00 234 0.00 198 0.00 145 0.00 135 0.00 123
5 1.33 663 1.07 572 0.93 425 0.93 379 0.93 352
6 0.13 35 0.07 31 0.03 127 0.03 22 0.03 68
7 5.00 50 3.40 33 2.60 51 2.67 22 2.63 28
8 0.20 99 0.08 83 0.05 152 0.05 58 0.05 50
9 0.68 41 0.32 35 0.32 83 0.32 25 0.32 115

10 0.03 22 0.00 19 0.00 15 0.00 13 0.00 9

Mean 0.82 137.9 0.56 118.7 0.44 113.5 0.45 78.3 0.44 91.3

Table 11. False positive rate (FPR) on our own dataset (EndoData). This table extentends Table 10 by
providing the FPR for five different polyp detection approaches on EndoData. The first two models
are baseline models, and the last three are different stages of our polyp-detection system. Values
displayed in bold font indicate the highest or most optimal results. The abbreviation “adv.” is an
acronym for the term “advanced”. The FPR is given in %.

Video YOLOv5 (Base) F-RCNN YOLOv5 (Adv.) REPP RT-REPP

1 88.15 90.39 90.60 93.20 90.88
2 99.28 99.39 99.78 99.56 99.72
3 90.32 92.02 86.73 94.23 93.78
4 45.11 49.27 57.01 58.75 60.99
5 58.32 61.86 68.58 71.00 72.49
6 97.62 97.89 91.88 98.49 95.48
7 40.97 51.26 40.49 61.20 55.34
8 82.37 84.79 75.27 88.86 90.25
9 94.18 94.99 88.89 96.37 85.24
10 77.69 80.13 83.62 85.49 89.49

Mean 77.40 80.20 78.29 84.72 83.37
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Table 12. Detailed evaluation of EndoData. This table shows a comparison of five different polyp-
detection approaches on the our EndoData dataset. The first two models are baseline models, and the
last three models are different stages of our polyp-detection system. F1 and mAP are given in %,
and the speed is given in FPS. The abbreviation “adv.” is an acronym for the term “advanced”.

Video YOLOv5 (Base) F-RCNN YOLOv5 (Adv.) REPP RT-REPP

mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

1 72.77 72.69 84.23 82.26 79.25 82.23 89.84 89.43 82.98 84.26
2 86.30 86.71 86.04 90.51 89.06 94.18 92.83 95.91 90.01 94.74
3 85.65 85.71 93.10 92.88 91.20 91.50 99.10 97.99 98.51 97.00
4 70.57 73.88 82.88 78.17 76.96 79.99 85.43 85.36 83.67 83.99
5 39.45 54.84 44.23 56.79 45.84 58.98 49.60 63.98 49.28 62.40
6 90.22 90.94 94.02 92.11 96.13 96.00 98.38 97.48 96.75 97.50
7 15.12 34.89 29.13 47.81 21.66 43.40 31.72 53.33 28.41 46.39
8 91.14 86.35 96.32 92.71 96.66 94.43 99.46 98.48 98.67 97.00
9 77.49 80.87 78.48 84.72 82.61 87.44 85.11 89.29 81.61 86.59

10 88.73 87.08 88.28 89.10 91.95 94.43 95.82 96.50 92.28 94.91

Mean 77.09 79.45 81.74 83.97 82.28 86.32 87.24 89.97 84.29 87.97

Figure 13. Example images of the Endodata dataset for evaluation.

The evaluation for FDT is shown in Table 10. For the YOLOv5 (base), only video 4
does not receive a delay in detection. Nevertheless, all polyps are detected at least once
with every algorithm. The FDT of YOLOv5 (base) is inferior in all videos to the other
models. The Faster R-CNN algorithm does recognize the polyp in the first frame in videos
1, 3, 4, and 10 for YOLOv5 (adv.), REPP, and RT-REPP. The FDT for these three models does
not differ except for video 7. This difference is due to REPP and RT-REPP removing the
detection in the post-processing process. Those three approaches also detect the polyps in
the first frame for videos 1, 3, 4, and 10, like Faster R-CNN. For 9 out of the 10 videos, FDT is
under 1 s; therefore, the polyp should be sufficiently detected to show the gastroenterologist
its position. Nevertheless, in video 7 there is a FDT of 2.6 s. Such a late detection of a polyp
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may miss the polyp for the gastroenterologist. However, REPP and RT-REPP are reducing
the number of FPs from an average of 113.5 to 78.3 and 91.3.

We evaluate the models on our dataset with the same metrics as the CVC-VideoClinicDB
dataset. On the EndoData dataset, the results are equivalent to the predictions of the CVC-
VideoClinicDB data. The mAP is, on average, consistently lower than the F1-score. Addi-
tionally, REPP is again the best scoring model. Again most values are over 90% F1 value for
RT-REPP. The dataset appears to be more challenging than the CVC-VideoClinicDB dataset
as there are just five videos with F1-scores over 90%.

Furthermore, we like to compare our results to the results of Livovsky et al. [50].
Livovsky et al., have only evaluated their approach on a closed custom dataset; therefore,
we are unable to provide a qualitative comparison on the CVC-VideoClinicDB bench-
mark. Nevertheless, we qualitatively compare their results with our results on EndoData.
Livovsky et al., achieved a recall of 88.5 % with polyps visible longer than 5 s on their
custom test data. Our approach achieves a recall of 89.32 % on our custom dataset. As the
two test datasets are different it is not possible to quantitatively show which system is
better, nevertheless, both systems achieve similar recall values on their test sets.

3.3. Explaining the Model with Heatmaps

This paragraph presents a methodology to generate visual explanations for deriving
insight into our polyp-detection systems decisions using the Grad-CAM algorithm [82].
We follow the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [83]. Never-
theless, we changed the Grad-CAM algorithm to fit an object/polyp detection task instead
of classification. The Grad-CAM algorithm receives the image of the model’s prediction,
the result, and the last two layers of the CNN YOLOv5. YOLOv5 outputs the detections
for the three scales p3 (large), p4 (medium), and p5 (small). Each detection output with
a shape of [bsz; na; h; w; (5 + nc)], where bsz is the batch size, na is the number of anchor
boxes per grid cell, h is the height of the feature map, w is the width of the feature map,
four box coordinates + objectness = 5, and nc is the number of classes. Next, the three scales
are concatenated and reshaped, resulting in an output of shape [bsz; na × h× w; (5 + nc)]
followed by data augmentation. The augmentation identifies the scales from which the
detections originate.

After that, the methodology employs a customized version of the non-max suppression
algorithm (NMS) to reduce the number of detections to the most probable ones. For this
purpose, the algorithm multiplies objectness probability po and class probability vector
pc and takes its maximum, p∗d = max(pd) = max(po ∗ pc), which it subsequently uses
as one decision criterion for reducing detections. This procedure ultimately results in
significantly fewer and more confident detections. Furthermore, it associates each detection
with a unique detection probability p∗d, objectness probability po, and class probability

p(i)c , i = 1 . . . nc. The presented methodology carries these values along and inserts them in
the Grad-CAM algorithm for yc.

The next step encompasses the execution of the Grad-CAM algorithm for each of
the probabilities mentioned above. Here, the proposed methodology calculates for each
probability the gradients ∂yc

∂Ak for three feature map activations, namely for p3, p4, and p5.
Afterward, the presented approach transforms the emitted localization maps into

heatmaps, which are significantly smaller than the original size of the input image. The
proposed method upscales to the original image size by interpolation and then super-
imposes the heatmaps onto the original image. The resulting image shows highlighted
image regions that contain pixels that positively influence the value of yc. The method
also draws a corresponding bounding box for each detection, its score, and the originating
scale onto the superimposed image to increase the informational content. The final result is
|#scores| × |#dets| × |#scales| superimposed images for each input image.

YOLOv5 was implemented in the python programming language with the PyTorch
deep learning library. For this reason, this work also uses python and PyTorch to implement
the Grad-CAM algorithm for YOLOv5 and necessary extensions. The most important
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feature of the PyTorch deep learning library is the concept of so-called hooks, which enable
the extraction of the gradients obtained via backpropagation. Itoh et al. [84] showed that
the classic Grad-CAM application may result in noisy heatmaps when using a YOLOv3
algorithm. We achieved less noisy heatmaps by recreating the Grad-CAM algorithm as
described above. These heatmaps are similar to the results of Itoh et al., when using their
application [84].

The first column of Figure 14 shows the five original frames on which the model
should detect a single polyp. The second, third, and fourth columns in Figure 14 depict
the resulting heatmaps of the approach when assigning pc to yc for backpropagation of the
respective gradients.

GRAD-CAM

1Polypendetektion 07.12.21

Small Medium LargeOriginal

Small Medium LargeOriginal

Small Medium LargeOriginal

Small Medium LargeOriginal

Small Medium LargeOriginal

Figure 14. Heatmaps for polyp detection. This figure illustrates the detections of the model using the
Grad-CAM algorithm. Thereby, the pixels most relevant for the detection are marked in warm colors
such as red, and pixels less relevant for the detection in cold colors such as blue. The CNN has three
detection outputs for small, medium, and large objects.

Figure 14 with a small and 14 medium polyp depicts the following behavior: the
model focuses on the crucial image regions to classify and localize the present polyp while
traversing from the output scale from small to medium. As expected, the model increases
the pixel intensity important for the localization from p3 to p4. Furthermore, we notice
that the highlighted red regions in Figure 14 encompass the center point of the respective
bounding box. This shows that the model’s focus in case of high polyp-detection confidence
activates the necessary areas of the image.

Nevertheless, Figure 14 for large polyps displays the opposite behavior where the
detected polyps are not highlighted in the heatmaps. The detected polyps are not large
enough to activate the neurons for this part of the YOLOv5 architecture.
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The above observations conclude that the model is functioning as expected. This
shows the necessity of the proposed method to confirm or rebuke the assumption of the
analyzed model’s function and expected behavior.

4. Discussion

The system’s limitations and clinical use are discussed in the following subsections.
We especially focus on false polyp detections and discuss those system failures using frames
of our CVC-VideoClinicDB and EndoData datasets. Additionally, we debate the clinical
application of the system.

4.1. Limitations

We initiate the discussion of our limitations with a failure analysis of our model. First,
we refer to Tables 7 and 12, and specifically to videos with significantly worse performance
than the rest, i.e., videos 8, 12, 15, and 17 of the CVC-VideoClinicDB dataset and video 7 of
EndoData. The videos differ in polyp detection difficulty; some videos only contain typical
polyps with a straight angle and good lighting, while other videos have bad contrast,
slanted angles and atypical polyps. Hence, multiple reasons can be attributed to the
decreased performance on these videos:

Contrast and lighting are one of the main causes for missing or misidentifying a polyp.
Figure 15 shows three frames taken from video 12 of the CVC-VideoClinicDB dataset.
The image on the left shows a correct polyp detection and represents the exception. Most
other frames either misidentify the size of the polyp, as seen in the middle image or do not
detect the polyp at all, as seen in the right image. In this case, it is most likely an issue of
contrast, as the polyp is oversaturated. As this applies to most video frames, the F1-score is
negatively impacted.

Figure 15. Examples of errors in video 12 of the CVC-VideoClinicDB dataset. The left image shows
a correct polyp detection, the middle image misidentifies the size of the polyp and the right image
shows no detection due to oversaturation.

Some polyps have uncommon shapes, an atypical surface texture, or a rare color and
are underrepresented in the dataset. A notable example of such a polyp can be seen in
video 15 of the CVC-VideoClinicDB dataset with some frames shown in Figure 16. Due
to its peculiar appearance, this polyp is missed in most frames, especially in those frames
containing another polyp, as seen in the right image. However, this is partly caused by the
CVC-VideoClinicDB ground truth. The ground truth masks cover only one polyp at a time,
even if both are visible in a frame. Rare polyps are a challenge for every supervised model,
and this issue can only be improved by collecting more data.

As mentioned above, even typical polyps can be difficult to detect when obstructed
by parts of the colon or due to bad lighting and angles. Figure 17 depicts these issues.
Furthermore, small polyp size and color that is very similar to the surrounding colon lead
to a general miss-rate of around 10% of the polyps frames.
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Figure 16. Examples of errors in video 15 of the CVC-VideoClinicDB dataset. The left image shows a
missed polyp and the middle image a proper detection. On the right image, another polyp in the
same frame is detected, while the other is missed.

Figure 17. Examples of errors in video 17 of the CVC-VideoClinicDB dataset. The left image shows
the detection of a flat polyp. The middle image shows the same polyp being missed because it is
blocked by the colon wall. The right image shows a (short) re-detection.

FPs account for a large number of errors and, in turn, diminish the model’s evaluation
scores. Often, areas of the colon look similar to polyps due to lighting and contrast, leading
to false bounding boxes and decreasing the mAP and F1-scores. The user can control
the number of FPs by adjusting the probability threshold for discarding bounding boxes.
A large threshold will reduce the number of FPs and increase the amount of missed polyps
and vice versa. Therefore, our model tolerates more FPs and minimizes the amount of
missed polyps in clinical practice. We discuss this point further in the following subsection.

Furthermore, our evaluation shows a significant advantage in using REPP and RT-
REPP to reduce the number of FPs. In many cases, the FPs increase when using REPP
or RT-REPP, e.g., in video 9 or 1 in Table 10. This happens if a false detection is highly
significant. For example, the YOLOv5 architecture predicts a box on a bubble, which does
not move and stays inside the frame. In this case, the detection score is high and REPP
and RT-REPP include the FP. Nevertheless, REPP and RT-REPP reduce small FPs in several
frames. In contrast, the YOLOv5 and Faster R-CNN architecture still include these small
FPs. Therefore, in exceptional cases, FP can be increased. Nevertheless, longer-lasting FPs
are less distracting than FPs with a short duration which might mislead the endoscopist
and therefore increase the withdrawal time of the colonoscopy.

Finally, the usability of our system in a clinical setting depends on the financial cost.
The system must operate in real-time during the examination, which a delay-prone server-
based solution can not sustain. Therefore, every colonoscopy room needs its own system
setup with one or more GPUs. Real-time detection needs both fast processing speed and
enough VRAM for the video stream, especially while using RT-REPP. The current GPU with
the best performance-to-cost ratio for these requirements is the NVIDIA Geforce RTX 3080,
which cost around USD 800 in December 2021. Depending on the size of the clinic, the cost
to equip the colonoscopy rooms will easily reach several thousand dollars. However, new
GPUs are constantly developed, making current GPUs less expensive.

4.2. Clinical Use

A big advantage of our system is that it is already fully implemented as a complete
package instead of having several conceptual parts. As described before, the system fits
right between the video stream from an endoscopy camera, processes the input and dis-
plays the image on the clinical monitor. The direct video stream can still be displayed
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without our processing on a second monitor. Due to our multi-threaded implementation,
the processed image is displayed essentially latency-free, which is a must in the clinical set-
ting. Additionally, due to this implementation, in the future slower, more computationally
heavy models can be used without having the disadvantage of higher latency. The system is
also applicable to the most commonly used endoscopy processors, expecting a resolution of
1920 × 1080 pixels. Hence, the system can be set up easily in any common clinical setting.

As mentioned above, FPs are a topic of discussion for evaluation metrics in the context
of clinical practice. An ideal model would only produce TPs, however a real trained model
can not. In a clinical setting, false negatives are more dangerous to the patient than FPs.
A FP box displayed by the model can be checked by the examiner and determined to be
false, whereas a missed polyp may turn out to be fatal for the patient. As such, while
common metrics essentially weight FPs and false negatives the same, clinical practice
requires an increased weighting on false negatives in order to properly assess the models
performance. We optimised the threshold value for the detection of polyps to rather show
more FPs than missing a polyp. Nevertheless, the RT-REPP architecture is still achieving
high precision values while also selecting a lower threshold. Therefore, our model does
produce FPs rather than false negatives. Still, the amount of FPs is limited and does
not disrupt the clinical workflow excessively. Nevertheless, the system has yet not been
tested in a clinical trial. Therefore, we are planning to execute a clinical trial with the
polyp-detection system.

Our code is open source and, as such, any information engineer can compile and
install all necessary components by themselves. However, not every clinic has the necessary
resources for this task. While remote support is possible in some cases, as of now, our
dedicated software engineer needs to visit each clinic personally to solve more serious
problems and to install software updates. We are working on a solution to make updates
more dynamic and installable for any clinical environment.

5. Conclusions

In this study, we have implemented and tested a fully assembled real-time polyp-
detection system that can be used directly in clinical applications. For this cause, we
have developed and tested an object detection system, the core of our application, which
consists of YOLOv5, an object detection CNN, and our novel post-processing step RT-REPP,
a modified version REPP [13] for real-time detection. The system was tested on a public
benchmark (CVC-VideoClinicDB) and our own newly collected and annotated dataset
(EndoData) and surpassed state-of-the-art detectors with an F1-score of 90.25% one the
CVC-VideoClinicDB data while still maintaining real-time speed.

Furthermore, we introduced a new performance metric “first detection time”, which
measures the time between the first appearance of a polyp and the time of the first detection
by the system. We discussed why the trade-off of a higher number of FPs in return for a
better recall is more important for clinical application and, hence, why this metric is closer
to measuring model performance in clinical application.

We have explained and discussed how our full system is assembled and implemented.
The direct advantages are the flexibility derived from open-source installation and the out-
of-the-box application placed between the endoscopy video stream and the clinic monitor
for an almost latency-free bounding box detection display. While logistic disadvantages
remain, such as the need for on-site visits for maintenance, we are working on finding
solutions for these issues.
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polyp detection in videos
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Abstract
Previous research in the �eld of endoscopic computer vision has mainly focused on the detection of polyps using single images,
but not videos or streams of images. The Endoscopic computer vision challenges 2.0 (EndoCV 2.0) is designed speci�cally to
use streams of image sequences for the detection of polyps. In this paper, we describe our approach based on Gong et al. [1]
by leveraging deep convolutional neural networks (CNNs) combined with temporal information to improve upon existing
solutions for polyp detection. We demonstrate a detection system that combines similar ROI features across multiple frames
with temporal attention to predict the �nal polyp detections for an emerging frame. For evaluation, we compare our approach
to two classical image detection algorithms on a validation set based on training data provided by the challenge. The �rst one
is a Single Shot Detector (SSD) called "YOLOv3", and the second one is a two-step region proposal-based CNN called "Faster
R-CNN". To minimize the generalization error, we apply data augmentation and add additional open-source data for our
training.
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Machine learning, Deep learning, Endoscopy, Automation, Video object detection, Attention

1. Introduction
The second leading cause of cancer-related deaths world-
wide is Colorectal cancer (CRC) [2]. An excellent method
to prevent CRC is to detect pre-cancerous lesions (col-
orectal polyps) of the disease as early as possible, using a
colonoscopy. During a colonoscopy, a long �exible tube
that is inserted through the rectum into the colon. The
end of the tube has a small camera, allowing the physi-
cian to examine the colon thoroughly 1. Computer sci-
ence researchers are developing new methods to support
physicians with this procedure. Polyp detection using
computers is called computer-aided detection (CAD). This
process of polyp detection has already been subject to
numerous publications.
However, these published solutions mostly focus on

detection on still images [3]. Therefore, most of the pub-
lished algorithms do not consider temporal dependencies
and do compare themselves on benchmarks which do not
consider temporal connections. To predict the �nal polyp
detections for an emerging frame, our approach based
on Gong et al. [1] utilizes temporal dependencies by
combining similar ROI features across successive frames
with temporal attention. Nevertheless, there are already
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some approaches in the literature addressing temporal
dependency in polyp detection: In Itoh et al. [4], tempo-
ral information is included through a 3D-ResNet. The 3D
ResNet is thereby combining present and future frames
for the detection of a new frame.
Furthermore, Qadir et al. [5] work with a traditional

localization model, such as SSD [6] or Faster R-CNN [7],
and post-process the output with an FP Reduction Unit.
This approach considers the area of the generated bound-
ing boxes over the 7 preceding and following frames
and identi�es and adjusts the outliers. The use of future
frames causes a small delay, however, the actual calcula-
tion of the FP Reduction Unit is fast. A second promising
method by Qadir et al. uses a two-step process which
aims to decrease the proportion of false predictions. Fur-
thermore, the CNN that �ags several regions of interest
(ROIs) for classi�cation. The marked ROIs are then com-
pared with subsequent frames and their corresponding
ROIs and classi�ed into true positives and false positives.
The underlying assumption here is that each frame in a
video is similar to its adjacent frames [5].

Xu et al. [8] designed a 2D CNN detector, which takes
the spatiotemporal information into account and uses
an ISTM network to improve its polyp detection e�-
ciency while maintaining real-time speed. The model
was trained on custom data. In addition, there is another
approach which includes the temporal dependencies via
post-processing. This approach uses fast image detection
algorithms like YOLO and, afterwards, combines these
predictions with an e�cient real-time post-processing
technic. This post-processing technique includes the
predictions of polyps detected in past frames for future
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Figure 1: Overview of the polyp detection approach. t denotes the current frame for the detection. t - 1 denotes the frame
before frame t and t+1 the frame a�er frame t. The ROIs are aligned through temporal attention for di�erent frames. This
figure is adopted from Gong et al. [1]

.

detections [9]. Taking these ideas forward, we imple-
mented a polyp-detection model using the "ROI-Align
Module" of Gong et al. [1] This allows the neural net-
work to attend to information in previous frames and
to combine ROI features from di�erent frames for new
predictions.

2. Data
To train the model, we used two public available datasets
in addition to the challenge dataset:

• Kvasir-SEG [10]: 1000 polyp frames are included
in the data collection, along with 1071 masks and
bounding boxes. The sizes range from 332⇥487
pixels to 1920⇥1072 pixels. Gastroenterologists
at Norway’s Vestre Viken Health Trust con�rmed
the annotations. The majority of the frames show
basic information on the left side, while others
have a black box in the lower-left corner that con-
tains data from ScopeGuide’s endoscope position
marking probe (Olympus). The data is available
in the Kvasir-SEG repository2.

• SUN Colonoscopy Video Database [11]: This
dataset comprises 49,136 polyp frames from
100 distinct polyps, all of which are thoroughly
documented. These frames were taken at Showa
University Northern Yokohama and annotated
by Showa University’s specialist endoscopists.
There are also 109,554 non-polyp frames present.
The frames have a resolution of 1240⇥1080 pixels.

2https://datasets.simula.no/kvasir-seg/

The data is available in the SUN Colonoscopy
Video repository3.

• PolypGen2.0 (Polyp Generalization) [12, 13, 14]:
This dataset is one of the two sets from the chal-
lenge and an extended version of the datasets
from the 2020 and 2021 challenges. Both sub-
challenges provide multi-center and diverse pop-
ulation datasets with tasks for both detection and
segmentation, but the emphasis is on evaluating
algorithm generalizability. The goal was to incor-
porate additional sequence/video data as well as
multimodal data from various sites. PolyGen2.0
consists of 46 sequences with a total of 3290 im-
ages. All frames have a resolution of 1920⇥1080
pixels.

We split the PolyGen2.0 dataset into training and val-
idation. For this purpose, 20 random sequences were
assigned to validation (1366 images) and the rest to train-
ing (1924 images). The resulting validation set was used
for all training steps.

3. Methods
In this section, we illustrate our approaches for the En-
doCV2022 challenge, depicted in �gure 1. All our models
are trained on a NVIDIA QUADRO RTX 8000. After
exploring the data, we decided to choose an algorithm
which includes temporal information for the challenge,
since the test data provided includes entire videos rather

3http://sundatabase.org/
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Figure 2: This figure illustrates temporal ROI align design and
how its similarity map aggregation and temporal attention
are used to compute the temporal ROI feature. This figure is
adopted from Gong et al. [1]

than just images. The model is based on Gong et al. [1]
and will be explained in the following.
Most state-of-the-art single-frame object detectors use
the paradigm of region-based detection. When these de-
tectors are used directly for video object detection (VID),
object appearances in videos such as motion blur, video
defocus, and object occlusions can degrade detection ac-
curacy. These are frequent problems in endoscopy videos,
which make the detection of polyps more di�cult. There-
fore, the main challenge is to design a method that can
utilize the temporal redundancy of the information ef-
�ciently for the same object instance in a sequence of
images or videos. To extract ROI features, most region-
based detectors use ROI Align. However, ROI Align only
uses the current frame feature map to extract features
for current frame proposals, resulting in ROI features
that lack the temporal information of the same object
instance in the video. Using feature maps of other frames
to perform ROI Align for the current frame proposals is
a straightforward and clear technique for using temporal
information. However, since the exact placement of the
current frame proposals in other frame feature maps is
unknown, the basic solution is ine�ective.
Temporal ROI Align, on the other hand, de�nes a target
frame as a frame in which the �nal prediction is made
in real-time. In �gure 2 the temporal ROI algin process
is illustrated. Temporal ROI algin also allows the target
frame to have multiple support frames, which are used to
re�ne the features of the target frame. To achieve this re-
�nement, the proposed operator selects the most compa-
rable ROI features from the feature maps of the available
support frames. The temporally redundant information
of the same object instance in a video is contained in the
extracted most comparable ROI characteristics. The main
target now is to e�ectively capture diverse ROI features.
Average is ine�cient, because a polyp may seem blurry
in some frames and clear in others. It is self-evident that

Figure 3: This figure shows a sequence of detections results
with our algorithm on the test dataset provided by the chal-
lenge. Time is in this sequence running from the le� side
image to the right side while the polyp is moving to the le�.

the ROI characteristics of clear object instances should
take precedence over the features of blurry instances in
aggregate. To aggregate the ROI characteristics and the
most comparable ROI features, multi-temporal attention
blocks are used to perform the temporal feature aggrega-
tion. A major advantage of Temporal ROI Align is that it
can extract the object features from support frames even
when a polyp is partially occluded in the target frame.
Therefore, the visible parts are dominant and features at
these locations can still get enhanced.
For our approach, the nerual network is trained for

10 epochs on our full dataset and then �netuned for 3
epochs on the challenge dataset. We choose the stochastic
gradient descent (SGD) optimizer with a learning rate
of 0.01, momentum of 0.9, and a weight decay of 0.0001.
Additionally, we use a linear training warm-up schedule
for 1 epoch. To enhance the generalization capabilities of
our model, we use the following augmentation-schema:
We applied a probability of 0.3 for upward and downward
�ips and a vertical �ipping probability of 0.5. In addition,
we rescaled the image with a probability of 0.64. We
also use a translation along the horizontal axis with a
probability of 0.5.

4. Results
In this section, we describe our results of the EndoCV2022
challenge. We highlight the performance of our approach
and compare it to two classic benchmarking algorithms.
One is an SSD algorithm called YOLOv3 [15] and the
other is the ROI Proposal algorithm called Faster RCNN
[16]. We trained both algorithms on the same data. For
the validation, we create a validation set. The validation
set consists of 20 sequences randomly chosen from the
provided data (no additional data is included). We test
the detection-created validation set. To enable the com-
parison of our results with the other participants of the
challenge we do also declare our �nal scores: Score(mAP)
13.12 % and score(mAP50) 27.05 % are our �nal detection
scores on the second round of the challenge evaluation.
Table 1 shows our results on our created validation

set for the detection task where YOLOv3 is a benchmark



SSD algorithm, Faster R-CNN is the FASTER R-CNN algo-
rithm with ResNet-101 backbone. For the evaluation, we
report the F1-score. The F1-score describes the harmonic
mean of precision and recall as shown in the following
equations:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 =
2 ⇤ Precision ⇤ Recall
Precision+ Recall

=
2 ⇤ TP

2 ⇤ TP + FP + FN

We count an annotation as true positive (TP) if the boxes
of our prediction and the boxes from the ground truth
overlap at least 50%. Additionally, we display the mean
average precision (mAP) and the mAP50 with a minimum
IoU of 0.5 [17]. The mAP is calculated by the integral of
the area under the precision-recall curve. Thereby, all
predicted boxen are �rst ranked by their con�dence value
given by the polyp detection system. Then we computed
precision and recall for di�erent thresholds of these con-
�dence values. When reducing the con�dence threshold
recall increases and precision decreases. This results in
a precision-recall curve. Finally, for this precision-recall
curve, the area under the curve is measured. This results
in the mAP.

Table 1 shows that our approach is outperforming clas-
sical benchmarks on our validation data; this is mostly
due to our temporal dependencies included in the algo-
rithm which are not included in the Faster-RCNN ap-
proach. Notably, SSD algorithms like YOLOv3 are still 20
FPS faster than our approach in detecting single images.
Nevertheless, our approach yield a huge recall increase
of 9.5 % compared to the fast YOLOv3. We do especially
emphasize this as recall is one of the most important
metrics in real clinical use. As it is more important to
�nd a missing polyp than to have additional false positiv
detections. Figure 3 shows a sequence of detections re-
sults with our algorithm on the test dataset provided by
the challenge. Furthermore, �gure 4 shows a qualitative
comparison of the three detection algorithms. We can see
that all algorithms are detecting the polyp. Nevertheless,
Yolov3 and Faster-RCNN are distracted by light re�ec-
tions and therefore also draw wrong detections. Through
temporal ROI align, our approach can incorporate the
detections from previous frames and therefore does not
get distracted by the light re�ections.

5. Discussion
In this section, we like to discuss two main points: First,
the limitations of our approach, and second how to use
our approach in clinical useful settings. The �rst limita-
tion is the current speed of our system. With an inference
performance of 24 FPS, the algorithm is not capable of

YOLOv3 Faster-RCNN Our approach

Figure 4: This figure shows a qualitative comparison of the
three detection algorithms.

Table 1
Evaluation results of our validation split. We compare our
approach based on Gong et al. [1] to two di�erent polyp
detection baselines on the same validation split from the chal-
lenge. Precision, Recall, F1, and mAP are given in %, and the
speed is given in FPS.

YOLOv3 Faster-RCNN Our approach
mAP 13.8 14.2 18.8
mAP50 27.5 28.9 32.8
Precision 32.2 34.5 32.4
Recall 30.1 32.4 39.6
F1 31.1 33.4 35.6
Speed 44 15 24

detecting every image with an endoscopy processor pro-
cessing at 30 FPS. This can be mitigated by pruning and
quantization-aware retraining. This on the other hand
reduces the accuracy of the algorithm. Additionally, in
the literature, a lot of benchmarking scores on still polyp
images are already exceeding 80 % F1 score [18, 19]. Nev-
ertheless, those are not directly comparable with our
evaluation as they are using di�erent data sets and do
not include sequences of images.
The second and most drastic issue is that the system

in its current form only works with video data and not
a real-time stream of videos due to the dependencies in
the algorithm, including preceding and future frames in
the prediction. This issue may be solved by changing the
algorithm to only use the preceding frames. In its current
form, the algorithm can be used to evaluate endoscopies
after they are completed or to detect polyps with wireless
capsule endoscopy (WCE).

6. Conclusion
Overall, we demonstrate our approach to the Endoscopic
computer vision challenges 2.0. We show a detection
system that combines similar ROI Features across frames
with temporal attention to create the �nal for polyp de-
tections for a new emerging frame. The system thereby
uses present, past, and future features on the temporal
axis to create new polyp localizations. We show that the
system exceeds classical benchmarks algorithms based



on individual frames on our validation data from the
challenge.
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97080 Würzburg, Germany
3 Katharinenhospital, Heidelberg, Kriegsbergstrasse 60, 70174 Stuttgart, Germany

4 Lehrstuhl für Biotechnologie der Nutztiere, School of Life Sciences,
Technische Universität München, Munich, Germany

Abstract. Colorectal cancer (CRC) is a leading cause of cancer-related
deaths worldwide. To prevent CRC, the best method is screening
colonoscopy. During this procedure, the examiner searches for colon
polyps. Colon polyps are mucosal protrusions that protrude from the
intestinal mucosa into the intestinal lumen. During the colonoscopy, all
those polyps have to be found by the examiner. However, as the colon is
folding and winding, polyps may hide behind folds or in uninvestigated
areas and be missed by the examiner. Therefore, some publications sug-
gest expanding the view of the examiner with multiple cameras. Nev-
ertheless, expanding the examiner’s view with multiple cameras leads
to overwhelming and cumbersome interventions. Therefore, we suggest
maintaining the examiner’s classical endoscope view but extending the
endoscope with side cameras. Those side camera views are only shown to
an Artificial Intelligence (AI) trained for polyp detection. This AI system
detects polyps on the side cameras and alarms the examiner if a polyp
is found. Therefore, the examiner can easily move the main endoscope
view on the AI detected area without being overwhelmed with too many
camera images. In this study, we build a prototype of the endoscope
with extended vision and test the automatic polyp detection system on
gene-targeted pigs. Results show that our system outperforms current
benchmarks and that the AI is able to find additional polyps that were
not visualized with the main endoscope camera.
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1 Introduction

Colorectal cancer is one of the most common types of cancer globally. In most
cases, the cause is unknown. Only three to five percent of all cases can be traced
back to known genetic mutations that can be inherited and trigger colon cancer.
Nevertheless, colorectal cancer almost always develops from growths that form
in the mucosa of the colon, so-called intestinal polyps [8].

One of the most effective methods to prevent CRC is to detect the potential
disease as early as possible using a colonoscopy. A colonoscopy inspects the large
intestine (colon) with a long flexible tube inserted via the rectum. The tube car-
ries a small camera to allow the physician to look inside the colon. The physician
searches for polyps and analyses them carefully. Polyps are protrusions of the
mucosal surface of various shapes and sizes that can be benign or malignant.
Malignant polyps are at risk to turn into colorectal cancer. Polyps appear on
the lining of the colon and rarely cause any symptoms. The two main types
of polyps are non-neoplastic and neoplastic polyps. Non-neoplastic polyps are
usually harmless, while polyps of type neoplastic can turn cancerous [6].

Therefore, even if many polyps are not cancerous, they always risk turning
into colon cancer. In theory, the colonoscopist identifies all polyps of the patient
during a colonoscopy and decides if it needs to be removed. However, there is
always a potential risk of a polyp being missed during the colonoscopy. Previous
studies showed that up to 27% of diminutive polyps are overlooked by physi-
cians, which may be caused by the physician’s lack of experience or fatigue and
untypical appearance or bad visibility of the polyps [12,24]. Furthermore, a gen-
eral error rate of 20%-24% during exams leads to a high risk for patients to die
from CRC [18,25].

In conclusion, smaller polyps have a higher risk of being missed by the exam-
iner than bigger polyps. Missed polyps are not removed and stay inside the
colon, where they can have fatal consequences for the patient. Therefore, the
colonoscopist must find and afterward remove all potential cancerous polyps to
minimize the risk of colorectal cancer for the patient [1].

Additionally, there are challenges that increase the chance of polyps being
missed. One of the fundamental challenges are folds in the colon. These folds
can hide polyps from the examiner and increase the risk of developing CRC.
In the literature are already different approaches to tackle the issue of hidden
polyps by increasing the camera view of the examiner [10,28]. However, these
approaches do always incorporate the additional views and monitors and there-
fore have the potential risk to overwhelm the examiner [11]. Accordingly, these
procedures have not yet been implemented in practice. We propose an interface
for automatic polyp detection, which includes an extended view. This extended
view includes two additional side cameras to the endoscope. We run an artifi-
cial intelligence polyp detection system on these side-view cameras, which then
alarms the examiner about missing a polyp. Therefore instead of the examiner
being overwhelmed with different views, we let the AI handle the additional
views, and the examiner can entirely focus on the classic view of the endoscope.
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The main contributions of our paper are:

1) We create an interface for automatic polyp detection with extends the vision
of the endoscopists and shows seamless integration for the classic automatic
polyp detection task.

2) We show that our system outperforms state of the art architectures on our
dataset and present that additional polyps are found by the AI through adding
extended vision to the system.

3) We create a prototype of an endoscope with side cameras and applied and
test it during an animal trial with gene-targeted pigs.

The interface with extended vision is publicly funded and developed by com-
puter scienctists, engineers and endoscopists.

2 Data

One of the biggest problems in implementing deep learning methods is getting
adequate qualitative data. Accordingly, getting high-quality colonoscopy video
or image data is challenging for automated polyp detection. The challenge of
data acquisition is caused by data protection issues and the expensive and time-
consuming data annotation by experienced medical experts. We, therefore, used
different technics to challenge these issues illustrated below. Further, we split our
data into human and animal data to evaluate our system with extended vision.
We could only apply our system to animal data as we did not have consent to use
the system on humans. Nevertheless, all human data we got is used to pretrain
our system for the polyp detection task.

2.1 Animal Data

Formerly, we published a framework that consists of two steps, a small expert
annotation part and a large non-expert annotation part [16]. This moves most
of the workload from the expert to a non-expert while ensuring high-quality
data. Both annotation steps are supplemented with AI assistance to enhance the
annotation efficiency further. We used the software Fast Colonoscopy Annotation
Tool (FastCat) to process the entire annotation process. This tool supports the
annotation process in endoscopic videos by enabling us to label these videos 20
times faster than traditional labeling techniques. The annotation process is split
between at least two people. In the first step, an expert analyses the video and
annotates a small set of video frames to verify the object’s annotations.

In the second step, a non-expert has visual confirmation of the given object
and annotates all following and preceding frames with AI assistance. To anno-
tate individual frames, all video frames must be extracted first. Then, relevant
frames can be pre-selected by an automated system, and this averts the expert
from examining the entire video every single time. After the expert annotation,
relevant frames are selected and can be passed on to an AI model. Then, the
AI model detects and marks the desired object on all following and preceding
frames with an annotation.
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Afterward, the non-expert can adjust the AI annotations and further export
the results used to train the AI model further. Additionally, the expert annotates
the Paris classification [17], the size of the polyp and its location, as well as the
start and end frame of the detected polyp, and one box for the non-expert
annotators. Overall, as we were filming with extended vision, this data involved
three camera angles. First is the classic endoscope view, the standard camera of
the endoscope filming in front. It is an entire HD endoscope with a resolution
of 1920× 1080 px. Then we attached two side cameras to the endoscope. These
side cameras capture other videos with a quality 320× 320 px. The endoscope
with extended vision is then inserted into four different pigs to create a dataset
of 6185 side camera images. Those images are annotated by a medical expert, as
illustrated in the previous paragraph. We pretrained our model on the human
data illustrated below and then fine-tuned it on our collected animal data.

2.2 Human Data

We use our own data and all publicly available data for the development of
our model. We merged the data from online resources and our own data to
forge a data set of 506,338 images. The details about the creation of this train-
ing data set will are the same as presented in animal data. The data set is
made of images and bounding box coordinates of boxes referring to the image.
Here we list all the publicly available data we incorporated into the training:
CVC-ColonDB [4] 2012, ETIS-Larib [27] 2014:, CVC-VideoClinicDB [3] 2017
CVC-EndoSceneStill [29] 2017, Kvasir-SEG [15] 2020, SUN Colonoscopy Video
Database [21] 2020, CVC-Segementation-HD [30] 2017 and Endoscopy Disease
Detection Challenge 2020 (EDD2020) [2]. Overall we built a team of advanced
gastroenterologists, computer scientists, engineers and medical assistance staff.
Together we produced a data set of 506,338 human images, including the open-
source images listed above. Our data set includes 361 polyp sequences and 312
non-polyp sequences. This data set is then used for the pretraining of our model.

3 Methods

This section explains the software and hardware used in this work. Figure 1
illustrates the structure of our system. The illustration is split into three phases:
video capture of endoscopic images with and without extended vision, AI detec-
tion system, and User interface. First, the endoscope coupled with two additional
micro cameras captures the frames of the surface of the colon. Those frames
are afterward input to the Artificial intelligence. This AI processes the frames
in real-time and draws bounding boxes on the detected polyps. The detection
results of the main camera are then shown to the endoscopist. The AI inspects
only the extended views (side cameras) to avoid disturbing the endoscopist with
the classical examination. If the AI detects a polyp in the extended views, the
examiner is alarmed via an arrow on the screen on which camera (left camera
or right camera) the polyp is detected. Afterward, the examiner can inspect
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Fig. 1. Overview of the AI system with extended vision. This figure shows all the
steps of the whole detection system. The start is an endoscope equipped with two
additional micro cameras. The images taken from these cameras are then input into
the AI system. If the AI detects a polyp in the extended views, the examiner is alarmed
via an arrow on the screen. Afterward, the examiner can inspect the missed polyp with
the main camera view. The examiner does never see the side camera views, just the
arrows pointing him in the direction of the polyp.

the missed polyp with the main camera view. To further express the novelty of
our approach using the YOLOR algorithm [31]. We like to highlight the com-
bination of YOLOR and the side cameras. The architecture of YOLOR enables
high detection accuracy while maintaining good detection speed, especially with
low-resolution images. Therefore we consider it the best for detection of the side
cameras, which operate in real-time with low resolution.

3.1 Video Processing System

As illustrated in Fig. 2, three types of optical camera signals were captured by
our system in real-time: the endoscope image and the two lateral micro cameras.
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Fig. 2. Overview of the developed video processing system.

An endoscope can be described as a long, thin, illuminated flexible tube with a
camera on the tip. They use fiber optics, which allow for the effective transmis-
sion of light to illuminate the inner mucosa of the gastrointestinal tract. A charge-
coupled device (CCD) image sensor captures the image and transmits it using fine
electrical wires to the video processor. The video processor outputs the image to
display it on the screen, mainly using a serial digital interface (SDI) with Bayonet
Neil-Concelman (BNC) connectors and/or digital visual interface (DVI). Image
resolution has increased as technology has advanced. At themoment, most devices
in the clinic can provide between 25–60 high-definition (HD) images per second,
depending on the manufacturer and model. However, the first models with 4K res-
olution already appear on the market. In our case, the Olympus 180 CV endoscope
processor was connected via SDI to a Blackmagic - DeckLink Mini Recorder 4K
[20] on a 1080i signal.

The two micro cameras used for this study were the Osiris M from Optasen-
sor GmbH. These micro cameras provide a resolution of 320× 320 pixels and have
the best focus point at 15mm. Their field of view is 90 degrees. Each microcamera
was connected to an image processing system (Osiris M IPS, Optasensor GmbH.),
providing a single output image of concatenated micro camera images. The final
HDMI image output format is 8 Bit RGB 1080p. Therefore, only one grabber
was needed for the micro cameras. To capture this signal, an Epiphan DVI2USB
3.0 grabber [13] was used. Both sources, the endoscope and the micro cameras,
were processed by FFmpeg [7]. The micro cameras stream was captured within
the V4L2 API. Since Blackmagic is not implementing V4L2, we compiled FFm-
peg with the Decklink SDK to enable access to the device through FFmpeg. Pro-
cessed by FFmpeg to BGR byte arrays, the data was converted to OpenCV [14]
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matrices for further steps. Since the data of the micro cameras are fused, splitting
up and cropping is required to handle the two independent micro cameras indi-
vidually. This results in a smaller BGR matrix for each camera and frame. The
mainmatrix of the endoscope was forwarded as fast as possible to the main display
pipeline. Since this is displayed to the monitor observed by the physician, keeping
the delay is a priority for the best user experience. Each frame is forwarded to a
second and third display pipeline for the micro cameras and simultaneously to the
AI pipelines. The matrices are first cropped, scaled, and padded to the required
320 × 320 resolution to suit the convolutional neural network (CNN). Afterward,
the color channels are swapped from BGR to RGB, before the data is normalized,
uploaded to theGPUmemory and injected into the CNN. Everymicrocamera uses
its own copy of the CNN for inference. The outcome is a list of scored bounding
boxes. If this list is not empty, an arrow is drawn on the main monitor, pointing to
the direction of the camera in which the polyp has been detected. The boxes them-
selves are filtered by the confidence threshold. However, the boxes still contain rel-
ative coordinates based on the modified matrix. Therefore, coordinates are trans-
formed to reverse the smaller matrix’s crop-, scale, and pad operations. The result-
ing boxes are added to the secondary displays to highlight the detected polyp. Since
the boxes result from the AI pipelines, they are 1–3 frames delayed. This means
bounding boxes are always drawn on a more recent frame. However, by a framer-
ate of 50 frames per second, the delay is only 20ms per frame. Since during the
withdrawal, the camera moves slowly, the boxes are still accurate. The arrows and
boxes are displayed until the next cycle of the AI pipeline has finished and passed
to the display pipeline. In addition, at the same time, all streams are recorded as
h264 encoded video files, together with all the polyp detections triggered by the
two micro cameras. This asynchronously recording process opens the possibility
for a retrospective system evaluation.

3.2 Endoscope Assembly

To assemble the micro cameras on the endoscope, an add-on-cap was 3D printed.
This add-on-cap was inserted and fixed 5mm from the tip of the endoscope. The
cap dimensions were 27.3mm long, the maximum radius was 10.5mm, and the
thickness was 5.5mm. The material used was nylon PA12, and a selective laser
sintering printer (Lisa Pro, Sinterit sp. Z o.o.) was used to produce it. The cap
contained two openings to allow the integration of the micro cameras into the
normal endoscope’s axis. The micro cameras included four mini light-emitting
diodes (OSRAM Opto Semiconductors GmbH) arranged around it that allowed
the illumination of the mucosa. The total dimensions of the micro camera with
the diodes was 3.8×3.8×2 mm3 (height×width×depth). The design of the add-
on-cap incorporated cut-out areas to allow the micro cameras to have a full field
of view. To secure the micro cameras on the add-on-cap, silicone epoxy was used.
Additionally, a 2 m length cable has to be connected to use the micro cameras.
A tube-like plastic foil was used to protect the cable of the micro cameras.
This allowed the flexible endoscope could maintain its normal mobility. Figure 3
shows the 3D printed cap that was assembled to the endoscope. As illustrated,
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the micro cameras are fixed to each of the sides, thus extending the field of
view of mucosa inspected. The position of the add-on-cap does not disturb the
mobility of the endoscope because the bending section starts further back. The
design does not alter any of the functions that endoscopists normally perform:
the instrument channel remains free for therapeutic interventions as well as the
illumination, and the suction and water irrigation channels.

Fig. 3. Left: 3D printed cap used to assemble the micro cameras into the endoscope.
Right: Assemble of the cap over the endoscope.

3.3 Polyp Detection System Using AI

Preprocessing and Data Augmentation. To ensure a fast processing speed
while keeping up high detection accuracy, we rescale the images to 640× 640
pixels. The change in image size allows the detection system to perform with
high quality and a speed of 20ms on an NVIDIA RTX 3080 GPU. In the clinical
application subsection, we further define the use of different GPUs and the GPU
requirements for a system able to process in real-time. Furthermore, we move
the image and model to a half-precision binary floating-point (FP16). However,
most machine learning models are in a precision binary floating-point (FP32).
With FP16 the model calculates faster but also delivers high quality results.
Afterwards, we normalize the image pixels in the following way: The min-max
normalization function linearly scales each feature to the interval between 0 and
1. We rescale to the interval 0 and 1 by shifting the values of each feature with
the minimum value being 0. Then, a division by the new maximum value is done
to see the difference between the original maximum and minimum value.

The values in the column are transformed using the following formula:

Xsc =
X − Xmin

Xmax − Xmin

After normalization, the data augmentation follows. In the context of deep
learning, augmenting image data means using various processes to modify the
original image data. We use the following augmentations: Vertical flip, horizon-
tal flip, rotation, scaling mosaic. The most basic augmentation done is the flip
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augmentation. This is well suited for polyp images as the endoscope is often
rotated during colonoscopy. Here, the image is flipped horizontally, vertically, or
both. We use a probability of 0.3 for up and down flips and a vertical flipping
probability of 0.5. In addition, we rescale the images with a probability of 0.638.
Rescaling creates polyps in different sizes and therefore adds additional data to
our data set. The translation moves the image along the horizontal axis. Fur-
thermore, we apply a low probability of 0.1 to rotate the image with a random
degree, e.g. 20-degree rotation clockwise. As the last augmentation step, we use
mosaic data augmentation. Mosaic data augmentation merges four images into
one image. Thereby, the image is rescaled, causing the images to appear in a
different context. We use mosaic data augmentation with a probability of 0.944.
These data augmentations are only applied to the training data.

Fig. 4. Overview of the polyp detection system. Adopted from Wang et al. [31].

AI Architecture. For the AI architecture, we used a fast object detector sys-
tem called YOLOR [31]. An overview of the network’s architecture is illustrated
in Fig. 4. Humans can look at the same piece of data from different perspectives.
A trained CNN model, on the other hand, can generally only accomplish one
goal. In general, the characteristics that may be recovered from a trained CNN
are not well suited to other problems. The fundamental source of the aforemen-
tioned issue is that we extract features from neurons and do not employ implicit
information, which is rich in CNN. YOLOR distinguishes between two different
types of knowledge, implicit and explicit knowledge. The information directly
corresponds to observation is referred to as explicit knowledge in the study. The
authors of YOLOR call implicit knowledge that is implicit in the model but has
nothing to do with observation. The implicit knowledge is represented as the
deeper layers of the network and thereby contains more detail. This implicit and
explicit information are especially useful in the case of real-time polyp detec-
tion as the structure of the network reduces the overall computational complex-
ity and thereby allows the calculation to remain fast and accurate. This is an
ideal scenario for real-time detection systems. To combine implicit and explicit
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information and enable the learned model to contain a generic representation,
from which sub representations suited for particular tasks may be created, they
propose a unified network, which is explained below.

What is unique about the unified network is that it can be effectively trained
with implicit knowledge. To achieve this, explicit and implicit knowledge was
combined to model the error term. The multi-purpose network training process
can then be guided by it. This results in the following formula:

y = fθ(x) + ε + gφ(εex(x), εim(z))
minimize ε + gφφ(εex(x), εim(z))

(1)

where εex and εim are operations modeling the explicit error and implicit error
from observation x and latent code z. gφ here is a task-specific process for com-
bining or selecting information from explicit and implicit knowledge. There are a
few approaches for incorporating explicit knowledge into fθ, now we can rewrite
(1) into (2).

y = fθ(x) # gφ(z) (2)

where # is the approach used to combine fθ and gφ. In the paper, manifold space
reduction and kernel space alignment are used.

Manifold space reduction uses the inner product of the projection vector and
implicit representation, which is a constant tensor Z = {z1, z2, ..., zk}, to reach
a reduction of the dimensionality of manifold space.

Kernel space alignment deals with the frequent misalignment problem in
multi-task and multi-head networks. We may add and multiply output features
and implicit representations to address this issue, allowing Kernel space to be
translated, rotated, and scaled to match each neural network’s output kernel
space.

If we expand the error term derivation procedure to several tasks, we get the
following equation:

F (x, θ, Z,φ, Y,ψ) = 0 (3)

where Z = {z1, z2, ..., zT } denotes a collection of implicit latent codes for T
separate jobs, and phi denotes the parameters that may be utilized to build
implicit representation from Z. The final output parameters are calculated using
ψ from various combinations of explicit and implicit representation.

We may use the following formula to get a prediction for all z ∈ Z for various
tasks.

dψ(fθ(x), gφ(z), y) = 0 (4)

We begin with a common unified representation fθ(x), then go on to task-
specific implicit representation gφ(z), and eventually accomplish various tasks
with task-specific discriminator dψ.

We assume that it starts with no past implicit knowledge to train the model.
It will not influence explicit representation fθ(x). When the combining operator
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# is an addition or concatenation, the first implicit prior is z ∼ N(0,σ), and when
the combining operator # is multiplication, z ∼ N(1,σ). σ is an extremely tiny
number that is nearly zero. Both z and x are taught using the backpropagation
method during the training procedure.

The inference is relatively simple because implicit information has no bearing
on observation x. Any implicit model g, no matter how complicated, may be
reduced to a collection of constant tensors before the inference phase begins.
That means that it has no negligible impact on the algorithm’s computational
complexity.

The resulting network thus achieves a better or comparable AP than state-
of-the-art methods in object detection. In addition, the network can be used
in real-time, to be more precise in 39 FPS, which makes it very attractive for
polyp detection in endoscopy. Further, implicit representations can be added to
the output layer for prediction refinement. This leads in object detection to the
fact that although one does not provide any prior knowledge for the implicit
representation, the proposed learning mechanism can automatically learn the
patterns (x, y), (w, h), (obj), and (classes) of each anchor.

Training Details. For the training of the AI, we first have a pretraining process.
This involves the training of the AI on the human data set of over 500.000
images. In this process, we run the AI for 110 epochs on the human dataset with
a learning rate of 0.001. We implemented a learning rate schedule that slowly
increases the learning rate. We use a batch size of 64 images and train on four
NVIDIA Quadro RTX 8000 GPUs with 48 GB RAM each. The model is trained
using stochastic gradient descent. Afterward, the AI is finetuned on the animal
data. We use the pretrained checkpoint of the human data trained YOLOR
as initialization. As the dataset involves smaller amounts of images with lower
quality the AI is only trained for 40 epochs with a batch size of 128. In this case,
only two of the NVIDIA Quadro RTX 8000 GPUs are used for training. We also
implemented a learning rate schedule and slowly increased the learning rate in
the initialization. Nevertheless, the learning rate increase was faster than with
the human data and the learning rate is set to 0.0001. The model is also trained
using stochastic gradient descent.

3.4 Animal Model

An animal model was used to test our concept and obtain all the data. Four
gene-targeted pigs (sus scrofa domesticus) with the “truncating 1311” mutation
in the adenomatous polyposis coli (APC) were endoscopically examined with
our system [9]. This mutation is orthologous to the hotspot APC1309 mutation
which causes human familial adenomatous polyposis with aberrant crypt foci
and low- and high-grade dysplastic adenomas in the large intestine. As shown
in previous studies, the APC1311/+ pigs are a suitable model for experimental
endoscopy [26,32]. All animal experiments were approved by the Government
of Upper Bavaria (permit number ROB-55.2-2532.Vet 02-18-33) and performed
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according to the German Animal Welfare Act and European Union Normative
for Care and Use of Experimental Animals.

4 Results

This section describes our results on our own created test dataset. For our eval-
uation, we compare our approach to two classic benchmarking algorithms and a
newer approach called YOLOv4 [5]. The benchmarking algorithms are an SSD
algorithm called YOLOv3 [22], and the ROI Proposal algorithm called Faster
RCNN [23]. We train all algorithms on the same data listed in the data chapter.
For the test data, we create a test set. The test set consists of three videos filmed
in the colon of three different pigs. As in this example, we like to evaluate the
detection of the extended view, our evaluation is only done on the side cameras
of the endoscope. The three videos consist of 800 frames having a frame size of
320× 320 px.

Table 1. Evaluation on the test data set. This table shows our comparison of four
different polyp detection approaches on our benchmarking data. The YOLOv3 and
Faster-RCNN are baseline models, the third as a model for comparison called YOLOv4
and the last is our polyp detection system. Precision, Recall, F1, and mAP are given
in %, and the speed is given in FPS.

Precision Recall mAP F1 Speed RT capable

YOLOv3 50.21 54.57 60.52 51.98 44 Yes

YOLOv4 52.02 56.76 62.49 53.99 47 Yes

Faster-RCNN 57.22 62.38 67.52 59.33 15 No

Ours 61.87 66.80 72.13 63.93 39 Yes

Table 2. Detailed evaluation on the test data set. This table shows our comparison
of three different polyp detection approaches on our benchmarking data. The first two
models are baseline models, and the third is our polyp detection system. Precision (P),
Recall (R), F1, and mAP are given in %.

Video YOLOv4 F-RCNN Ours

P R mAP F1 P R mAP F1 P R mAP F1

1 54.24 52.30 65.35 53.31 61.94 57.88 69.68 59.84 68.60 65.40 74.60 66.96

2 50.75 50.13 51.47 50.42 55.44 56.63 55.11 56.03 59.10 59.40 61.70 59.25

3 51.06 67.85 70.65 58.25 54.27 72.63 77.78 62.12 57.90 75.60 80.10 65.58

Mean 52.02 56.76 62.49 53.99 57.22 62.38 67.52 59.33 61.87 66.80 72.13 63.93

Table 1 presents the results on our test set for the detection task with
YOLOv4, a fast detection algorithm, and Faster R-CNN, a FASTER R-CNN
algorithm with a ResNet-101 backbone. For the evaluation, we provide the
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F1-score. The F1-score consists of the harmonic mean of precision and the recall,
as described in the following equations:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN

We consider an annotation as true positive (TP) when the predicted boxes and
the ground truth boxes overlap at least 50%. In addition, we disclose the mean
average precision (mAP) and the mAP50 with a minimum IoU of 0.5 [19]. We cal-
culate the mAP using the integral of the area under the precision-recall curve.
Thereby, all predicted boxes are first ranked by their confidence value given
by the polyp detection system. Afterward, we compute precision and recall
with different thresholds of the confidence values. When the confidence thresh-
old is reduced, the recall increases while the precision decreases, resulting in a
precision-recall curve. Finally, we measure the area under the curve precision-
recall to receive the mAP value.

Table 2 presents a more detailed view of our results, showing the performance
for every test video. Table 1 shows that our approach is outperforming classical
benchmarks on our test data. Our approach increases the detection results by 4.6
% points compared to the F-RCNN algorithm. This is due to the architecture of
the YOLOR algorithm, which allows fast but still accurate detections. Notably,
the algorithm YOLOv4 is still 8 FPS faster than our approach to detect single
images. Nevertheless, our approach yielded a huge recall increase of 12.23 %
points compared to the fast YOLOv3 and 10.04 % compared to YOLOv4. A
recall increase is beneficial for clinical practice as examiners care more about
finding a missed polyp than getting distracted by a false positive detection.
Figure 5 show a sequence of detection results with our algorithm on the test
dataset provided.

Found Polyps Through Extended Vision: To test our extended vision user
interface, we tried to test if polyps were missed by the classic front view endo-
scope but found them through a side camera of the extended view. Therefore
we compared the detected polyps of our test set with the annotations of our
polyps on the main view camera endoscopy. We then checked how many polyps
were found through the extended view. We did this by comparing the polyp
detections in the classic front view of the endoscope with the detections of the
side camera. If there was no detection in the main camera before a true positive
detection in the side camera appeared, we counted the polyp as being missed by
the classic detection system but detected by our system with extended vision.
Overall, the main view detected 84 different polyps in the test data. 13 polyps
in the extended view were not seen in the classic endoscope view.
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Fig. 5. Detection results. This figure shows some of the true positiv detection results
of the side cameras used for extended vision. After the detection the examiner can
visualize the polyp with the front camera.

5 Discussion

This chapter shows the limitations of our interface. We mainly show a failure
analysis of our system, as well as showing potential risks and challenges that
have to be addressed in future work. As our tests and data are based on animal
trials, we also discuss the system’s clinical application in human interventions.

5.1 Limitations

Fig. 6. Examples of errors in video 17 of the CVC-VideoClinicDB data set. The left
image shows a clean detection of a rather flat polyp. The middle image shows a miss
of the same polyp due to being blocked by a colon wall, while the right shows a (short)
re-detection.

We initiate the discussion of our limitations with failure analysis of our model.
First, we refer to Tables 1 and 2, specifically to video 2 which has significantly
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worse performance compared to the rest. Therefore the examples we choose for
the failure analysis are exclusively from video 2. Nevertheless, they differ as some
polyps are harder to detect than others. Different lighting in a camera place of
the endoscope especially influences the side cameras’ detection results (extended
view). In addition, bad contrast, diagonal angles, and unusual shapes do enhance
the detection difficulty. Hence, multiple reasons can be attributed to the worse
performance in some situations.

Fig. 7. Examples of errors in video 17 of the CVC-VideoClinicDB data set. The left
image shows a clean detection of a rather flat polyp. The middle image shows a miss
of the same polyp due to being blocked by a colon wall, while the right shows a (short)
re-detection.

E.g., contrast and lighting are one of the main causes of missing or misiden-
tifying a polyp. This is especially true with our extended vision, as the examiner
does not see the side cameras. The view of the side cameras is impacted higher
by bad lighting conditions. Figure 6 shows some of these bad lighting condition.
The right polyps can not be detected because there is no light to make the
polyp appear clear on the camera. In the image in the middle, the lighting is
reflected very bright. This may be due to the camera being too close too the
mucosa. Sometimes those lighting conditions cause FP detection, as seen in the
last image on the left side.

Additionally, many FPs created by our system are due to feces and bub-
bles. Feces are high in contrast, and some polyps are too. Therefore, the neural
network is making FP detections, as seen in the left picture of Fig. 7. The FP
detection is set on the lower part of the screen; nevertheless, the top of the screen
shows a polyp covered by feces and, therefore, is hard to detect. The algorithm is
blinded by the lower feces and can not detect the polyp. Another problem is bub-
bles. Often, the endoscopist has to clean the bowel with water. While doing so,
there are constantly emerging bubbles. The detection system sometimes detects
these bubbles as their shape may be similar to the shape of polyps.

For clinical use, expanding the examiner’s view results in more detected
polyps. Therefore, such a system could help the examiner during an actual inter-
vention. Nevertheless, we could only show new detections in animal examples.
Our user interface can help the examiner without having to change classical
procedures. Nevertheless, first the endoscope with extended vision has to be
developed to apply to humans and tested there in future work.
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6 Conclusion

We present a prototype that maintains the examiner’s classical endoscope view
but extends the endoscope with side cameras and AI polyp detection. This AI
system detects polyps on the side cameras and alarms the examiner if a polyp
is found. The prototype is created by adding two micro cameras to the sides
of a classic endoscope. The AI system is trained on human data and fine-tuned
with animal data. Then we test the prototype with gene-targeted pigs. The
AI outperforms current benchmarks and finds polyps by adding the extended
vision to the system. Nevertheless, there are limitations to the system. First,
the position and light condition of the side cameras have a high impact on the
detection results. If light conditions are bad or cameras are too close to the
mucosa, the system cannot detect polyps. Second, the system sometimes detects
bubbles, feces, or light reflections as polyps. Third, the system is not ready for
clinical interventions in humans. Further development and medical product tests
have to be done to allow the system to be applied to the human body.
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Abstract

Background: Colorectal cancer is a leading cause of cancer-related deaths
worldwide. The best method to prevent CRC is a colonoscopy. However, not all
colon polyps have the risk of becoming cancerous. Therefore, polyps are classified
using different classification systems. After the classification, further treatment
and procedures are based on the classification of the polyp. Nevertheless,
classification is not easy. Therefore, we suggest two novel automated
classifications system assisting gastroenterologists in classifying polyps based on
the NICE and Paris classification.

Methods: We build two classification systems. One is classifying polyps based on
their shape (Paris). The other classifies polyps based on their texture and surface
patterns (NICE). A two-step process for the Paris classification is introduced:
First, detecting and cropping the polyp on the image, and secondly, classifying
the polyp based on the cropped area with a transformer network. For the NICE
classification, we design a few-shot learning algorithm based on the Deep Metric
Learning approach. The algorithm creates an embedding space for polyps, which
allows classification from a few examples to account for the data scarcity of NICE
annotated images in our database.

Results: For the Paris classification, we achieve an accuracy of 89.35 %,
surpassing all papers in the literature and establishing a new state-of-the-art and
baseline accuracy for other publications on a public data set. For the NICE
classification, we achieve a competitive accuracy of 81.13 % and demonstrate
thereby the viability of the few-shot learning paradigm in polyp classification in
data-scarce environments. Additionally, we show different ablations of the
algorithms. Finally, we further elaborate on the explainability of the system by
showing heat maps of the neural network explaining neural activations.

Conclusion: Overall we introduce two polyp classification systems to assist
gastroenterologists. We achieve state-of-the-art performance in the Paris
classification and demonstrate the viability of the few-shot learning paradigm in
the NICE classification, addressing the prevalent data scarcity issues faced in
medical machine learning.

Keywords: Machine learning; Deep learning; Endoscopy; Gastroenterology;
Automation; Image Classification; Transformer; Deep metric learning; Few-shot
learning

Background
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths world-

wide [1]. This cancer develops from lesions inside the colon called polyps. However,
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not all colon polyps have the risk of becoming cancerous. Therefore, polyps are clas-

sified using different classification systems. After the classification, further treatment

and procedures are based on the classification of the polyp. Since young physicians

often do not have the necessary experience to make the correct decision reliably,

computer-assisted procedures are being developed that can assist with the classifi-

cation.

In the field of automated gastroenterological assistance systems, a significant area

of research involves the detection of polyps using deep learning. Polyps are mucosal

growths in various body parts, such as the intestine or stomach. In some cases,

unusual skin changes can become dangerous and even cancerous. Deep Learning

object recognition methods such as CNNs detect and classify polyps automatically

during examinations to assist endoscopists [2–4]. This may be beneficial for the

future, to detect polyps more accurately by automated methods and to simplify or

confirm the prognosis for the proper polyp treatment.

The polyp classification is essential as it helps the endoscopist decide on further

treatment methods. For classification, different approaches are used to categorize

polyps, such as schemes based on the shape (PARIS) [5] or based on the surface

structure (NICE) [6]. The classification of polyps can give first insights into their

dangerousness and the appropriate treatment options [5]. Furthermore, van Doorn

et al. demonstrated a moderate interobserver agreement among Western interna-

tional experts for the Paris classification system. Automated classification systems

could help increase experts’ interobserver agreement on the Paris classification [7].

We consider the Paris and the NICE classification for our automated classification

algorithms as they are the most commonly used classification in Europe. Further-

more, the Paris classification is recommended for documentation in the ESGE Eu-

ropean Society of Gastrointestinal Endoscopy guidelines and it is also recommended

to use advanced endoscopic imaging like NBI [8].

This paper shows therefore two automated classification networks. The first is

classifying the polyp based on white light using the Paris classification scheme [5].

A two-step process is introduced: first, detecting and cropping the polyp on the im-

age, and secondly classifying the polyp based on the cropped area with a transformer

network. Figure 1 shows some example results of the Paris polyp classification sys-

tem.

The second is the NICE classification, which is based on Narrow band imaging

(NBI). NBI is a variation of endoscopy that uses blue and green light to enhance

the visibility of surface patterns and texture of the mucosa. The presented NICE

classification system is designed as a Deep Metric Learning based approach of few-

shot learning to account for the data scarcity of NICE annotated images in our

database.

In the following, the main contributions of the paper are shown:

1) We introduce a Paris classification system with state-of-art performance on

clinical data.

2) We created a data set of polyp classification data to train and further enhance

the models.
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Figure 1 Automated Paris classification examples. This figure illustrated some classification
examples of the polyp classification system on our data (EndoData) [9]. The percentage values
show the confidence of the classification system.

3) We present and validate a new approach for the automated NICE classification

in data scarce scenarios leveraging few-shot learning.

Additionally, both polyp classification systems were publicly funded and devel-

oped by computer scientists and endoscopists in the same workgroup to ensure the

high quality of the polyp classifications. In the next subsection a summary of the

medical classification methods of polyps will be given. Furthermore, to overview

existing work and properly allocate our paper to the literature, we describe a brief

history from general polyp detection to state-of-the-art polyp classification with

deep learning techniques.

Medical backgroud

Polyps are small, fungal, or flat mucosal growths in various body regions, such

as the intestines, stomach, uterus, or nose. The different-looking skin lesions most

commonly occur in the stomach or intestines and affect in particular older peo-

ple. They often appear after inflammation, leading to higher cell division in the

mucosa. Additionally, polyps can become malignant or even cancerous due to un-

usual cell growth. Polyps can be divided into three types: hyperplastic, neoplastic,

and inflammatory. While the hyperplastic and inflammatory types have no or lower

risk of degeneration, the neoplastic polyps represent the most dangerous type of

polyp. These can increase the risk of cancer, especially as they grow. In order to

prevent a severe progression due to polyps, repeated examination by an endoscopist

through endoscopy is necessary. In this process, hollow organs such as the intestine

are examined with an endoscope, a flexible tube equipped with a camera, and light.
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Paris classification In order to categorize polyps and to select appropriate treat-

ment strategies, polyps are classified considering various aspects. One of the most

widely used classifications is the Paris classification. Based on a Japanese classifi-

cation scheme, the Paris classification characterizes the potentially high-risk polyps

according to their shape [5]. Figure 2 visualizes the shapes of different polyps:

PolypoidPolypoid

Non-Polypoid

Ip - Pedunculated Is - SessilIsp - Semi-pedunculated

IIa – Slightly elevated IIb - Flat IIc – Slightly depressed III – Excavated

Figure 2 Subdivision of polyps according to Paris classification. Adopted from [5].

Type I polyps are referred to as elevated or polypoid. A distinction is made between

the following polyp types:

• Ip Pedunculated

• Isp Semipedunculated

• Is Sessile

Type II polyps are described as flat. In addition, the following distinctions are

made:

• IIa Slightly elevated

• IIb Completely flat

• IIc Depressed

Furthermore, lastly, type III describes the excavated form. Unlike type I, type II

and III are not considered polypoid. A prognosis can be obtained through the Paris

classification to conclude the type of polyp, and future treatment [5]. The Paris

classification is sometimes given in the literature with a preceding 0 before the

type. As the preceding is irrelevant to our approach, the leading zero is omitted for

clarity.

NICE classification The NICE classification is an established diagnosis scheme

classifying polyps into three categories, which specify the most likely pathology

ranging from benign hyperplastic to cancerous polyps deeply invading the mucosa

underneath the polyp.
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The scheme hereby utilizes the Narrow-Band-Imaging technology (NBI) to render

the surface texture visible and to characterize the different polyp classes according to

features such as the vessel patterns discernible on the polyp surface [10]. An overview

of the different NICE classes[1], their characteristics and most likely pathology can

be seen in table 1.

The NICE classification has been well established as an informative feature for the

classification of polyps ([11], [12]) and the clinical performance of the scheme, as

well as the classification performance of human experts using the scheme, have been

subject to numerous studies ([10], [12]). In the treatment assessment guideline of the

European Society of Gastrointestinal Endoscopy, the degree of submucosal invasion

is a decisive criterion for the requirement of surgical removal of neoplastic polyps

[13].

Table 1 Overview of the NICE categories. Adopted from Endoscopy-Campus GmbH[1].

Typ 1 Typ 2 Typ 3

Color
Same or

lighter than background
Browner

than background
Brown to

dark

Vessels
None or isolated

lacy vessels
Brown vessels around

white structures
disrupted or

missing vessels

Surface
Dark or white spots
or homogeneous

Oval, tubular or
branched white strucutres

amorphous or
absent patterns

Likely pathology hyperplastic Adenoma
Deep submucosal
invasive cancer

Examples

A brief history of automated polyp classification

This section gives a brief overview of the current state of the art in automated polyp

detection and classification research with respect to deep learning methods. Here,

there are mainly two ways deep learning methods can be used to assist gasteroen-

terlogists with the assessment of polyps. On the one hand, for detecting polyps

in polyp images or videos to find them as early as possible. On the other hand,

classifying polyps to categorize them and do a proper treatment and analysis. Clas-

sifying polyps is based on various superficial features such as shape or structure.

In this context, the detection and classification of polyps can be challenging due to

numerous aspects.

Since this decade, deep learning has been the leading technology in developing

computer-aided polyp detection. Most methods do use Convolutional Neural Net-

works (CNNs) for the detection of polyps. E.g Zhu et al. show a seven-CNN paired

with a support vector machine (SVM) to detect anomalies in endoscopy images

Zhu.2015. Another paper is the paper by Zhang et al., which presents a CNN for

[1]https://www.endoscopy-campus.com/en/classifications/polyp-classification-

nice/
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polyp detection and localization. They use a single-shot multibox detector that

reused shifted information through max-pooling layers to achieve higher accuracy.

They achieved a real-time detection speed of 50 frames per second (FPS) and an

average accuracy of 90.4 [14]. Another idea from Bagheri et al. used sophisticated

preprocessing involving the colors of the images to correlate the information to lo-

cate and segment polyps. In this way, their polyp detection achieved 97.7 % accuracy

on the CVC-ColonDB dataset [15]. Another approach from Qadir et al. utilizes a

two-step method. In the first step, they used a CNN that generated multiple regions

of interest (RoIs) that are then used for classification. These proposed RoIs were

compared with subsequent frames and their RoIs. The rationale of this method is

that the frame in a video should be similar to the next frame, and this is to reduce

the percentage of false predictions.

Sornapudi et al. also utilized region-based CNNs to localize polyps in colonoscopy

images but in wireless capsule endoscopy (WCE) images. Therefore, the detection

is not done in real-time. During localization, images were segmented and detected

based on polyp-like pixels Sornapudi.2019. Currently, also transformer architec-

tures are relevant for polyp detection. For example, a particular sparse autoencoder

method called stacked sparse autoencoder with image manifold constraint has been

used by Yuan and Meng [16] to detect polyps in WCE images. A sparse autoencoder

is an artificial neural network commonly used for unsupervised learning methods

[17]. Their approach achieved an accuracy of 98 % in polyp detection [16]. Another

approach used transformers in combination with CNNs. Zhang et al. used the abil-

ity to view global information of the whole image through the attention layers of

transformers and the detailed local detection of CNNs to segment polyps efficiently.

They used a new fusion technique called BiFusion to connect the features obtained

from the transformers and the CNNs. The method ran in real-time with 98.7 FPS

[18].

Not only the localization of polyps represents a goal of computer-specific polyp re-

search, but also the classification according to specific characteristics. For example,

Ribeiro et al. used the feature extraction capability of CNNs to classify polyps into

”healthy” (average) and ”abnormal” (adenoma) classes using Kudo’s pit-pattern

classification. Pit-pattern classification is a variant of categorizing types of polyps

based on their surface structure [19]. The authors achieved an accuracy of 90.96 %

by their classification using the CNN [20].

Using pit-pattern classification, a deep learning model was presented in the paper

[21] to classify polyps into ,,Benign,” ,,Malignant,” and ,,Nonmalignant. Here, the

model was trained with a private data set and achieved reliability of 84 %. Another

popular polyp classification method using a CNN is used in [22]. Here, the authors

used the Narrow-Band Imaging International Colorectal Endoscopic Classification

(NICE for short) [6], similar to pit-pattern classification using surface features. Here,

however, the polyps were additionally categorized by color or vascular structure and

classified as polyp type 1 or 2. Thus, a preliminary prognosis can be determined

whether the polyp is a hyperplastic or an adenoma tumor. For classification, the

authors used a CNN with an SVM. The CNN was pre-trained on a non-medical

data set to compensate for the lack of polyp data. They achieved an accuracy of

nearly 86 % [22] with their proposed model.
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Bryne et al. also used the NICE classification to characterize polyps. They clas-

sified them as hyperplastic or adenoma polyps. The authors created a CNN model

for real-time application, which was trained and validated using only narrow-band

imaging (NBI) video frames. In doing so, they achieved an accurate prediction of 94

% [23] on a sample of 125 testing polyps. Furthermore, Komeda et al. presented a

specific CNN model to classify polyps into ”adenoma” and ”non-adenoma” polyps

based on NBI and white-lighted images [24]. In the paper by Lui et al., another au-

tomatic classification model is presented to characterize polyps into endoscopically

curable lesions and noncurable lesions based on the NBI and white-lighted images.

The division into curable and noncurable is based on the types of polyps, such as

hyperplastic or tubular. Lui et al. achieved an overall accuracy of 85.5 % with their

model, with higher performance on NBI images [4]. In addition, Ozawa et al. used a

CNN based on a single-shot multibox detector to detect and classify polyps. They

trained and validated the model with a non-public data set and achieved a true-

positive rate of 92 % during detection and characterized the detected polyps with

an accuracy of 83 % [3]. In 2021, Hsu et al. considered the classification of polyp

pathology using gray scale images and a customly designed classification network

embedded into a detection and classification pipeline. They achieved an accuracy

in the decision between neoplastic or hyperplastic polyps of 82.8% using NBI and

72.2% using white light [25]. An overview over the methods discussed here is pre-

sented in table 2.

Regarding the NICE classification, our work can be considered as a polyp classi-

fication system categorizing the polyps into the classes hyperplastic and adenoma

according the pathological interpretation of the NICE classes I and II. The same

methodology has already been applied in the mentioned works in [22] and [23], and

we consider therefore the literature outlined in this section as the peer group of

our work. But in contrast to most of the previous works, which learn a blackbox

pathology classification system, we aim to factorize the pathological assessment by

embedding the classifications into the previously introduced well-established classi-

fication schemes Paris and NICE, in order to make the pathology assessments more

explainable. Instead of the prediction of the pathology directly, we therefore make

the prediction of the NICE and Paris class of a polyp to the subject of our study.

To the best of our knowledge, just one similar approach concerning the Paris clas-

sification has been published [2]. Bour et al. trained several well-known CNN ar-

chitectures to classify polyps based on shape. The polyp images were divided into

”Not Dangerous”, ”Dangerous” and ”Cancer” concerning the Paris classification.

They labeled the Paris classes Is, Ip, Isp, IIa and IIb as ”Not Dangerous”, class

IIc as ”Dangerous” and class III as ”Cancer”. Their algorithms are trained on 785

images. They achieved an accuracy of 87.1 % with ResNet50 as backbone [2].
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Table 2 Related methods occupied with the pathological assessment of colorectal polyps.

Author Year Method Data Classification Accuracy

Ribeiro et al. [20] 2016 custom CNN private
healthy
abnormal

90.96 %

Zhang et al. [22] 2016 CaffeNet
private and

[26]
hyperplastic
adenoma

85.9 %

Bryne et al. [23] 2017 InceptionNet private
hyperplastic
adenoma

94 %

Komeda et al. [24] 2017 custom CNN private
adenoma

non-adenoma
75.1 %

Lui et al. [4] 2019 custom CNN private
curable

non-curable
85.5 %

Bour et al. [2] 2019 ResNet-50 private
not dangerous
dangerous
cancer

87.1 %

Tanwar et al. [21] 2020 VGG-16 private
Benign

Malignant
Nonmalignant

84 %

Ozawa et al. [3] 2020 SSD private
hyperplastic
adenoma

83 %

Hsu et al. [25] 2021 custom CNN private
hyperplastic
neoplastic

72.2 % (Weight light)
82.8 % (NBI light)

Data and methods
The following chapter describes the methodology of this paper. The section starts

with outlining the data sets used for the training process. Furthermore, the chapter

involves one section for the methodology of the Paris classification and one section

for the NICE classification. For the Paris classifcation, we use a two-step process

involving first the detection of the polyp and the cropping of the image to the region

of the detected polyp. In a second step, the cropped polyp is provided to a trans-

former architecture to classify it. For the NICE classification, we deploy a metric

learning CNN pre-trained on a texture transfer learning and a self-supervision data

set, which is subsequently fine-tuned on the extracted and cropped polyp images.

Data sets

The current chapter will outline the data sets involved in the training of the NICE

and Paris classification systems, which were compiled from different sources.

Due to the data sets containing only a subset of the required annotation types (NICE

or Paris), the sources for the two classification tasks only partially overlapped.

Paris

For the training and evaluation of the Paris classification system, we used two

data sets. The first is an open-source data set called SUN (Showa University and

Nagoya University) colonoscopy video data set. The Sun Colonoscopy Video data

set consists of approximately 160,000 images, of which approximately 50,000 images

contain polyps. Other open source polyp data sets do mostly not attain the Paris

classification type. The polyp images contain 100 different polyps annotated by ex-

perienced endoscopists from the Showa University. The distribution of the images

among the polyp types can be found in the table 3 [27]. Because only polyp images

are needed for this work, polypless images were sorted out. Since the images in the

data set are single video frames, images that were too small or blurred with un-

recognizable content were removed manually to train the networks on recognizable

images.
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Table 3 Distribution of the images in the SUN Colonoscopy Video data set [27].

Type of polyp Number of polyps by type Number of images by polyp type

Is 49 cases 23.154 images
Ip 8 cases 4.162 images
Isp 9 cases 4.684 images
IIa 34 cases 17.136 images

The second data set is EndoData this was created by us at the University clinic of

Würzbug [9]. In the next section the proccess of the data creation will be outlined

briefly.

Own data creation Previously we created a framework for faster endoscopic anno-

tation. It involves a two-step process. First, a small expert annotation part and then

a large non-expert annotation part [28]. Thereby shifting most of the workload away

from the expert to the non-expert while retaining high data quality. We combined

both tasks using AI to increase the annotation speed further. To speed up is up to

20 times compared to a traditional annotation tool. Thereby the process is divided

between at least two people. First, an expert watches the video and labels some

video frames to verify the object labeling. In the second step, a non-expert receives

a visual confirmation of the given object and can label all following and preceding

frames with AI support. In order to label individual frames, all of the frames have

to be extracted from the video. Our system is then pre-selecting relevant frames

automatically.

Thereby experts can focus on those keyframes. After the expert completes his

annotations, the AI model gives the relevant frames. The AI is then detecting the

polyps in the image and pre-labeling those. The non-expert can adjust and modify

the AI predictions and use them for training the AI model.

In addition, the expert annotates the Paris and, if possible, the NICE classification

[5], the size of the polyp and its position, as well as the start and end image of the

polyp and a box for the non-expert annotators. Afterward, Endodata [9] is filtered

and the relevant Paris and NICE classification parts are extracted to create the

final data set used in this paper.

We assembled a team of experienced gastroenterologists and medical assistants

to create this data set. The EndoData data set contains 79,625 images with Paris

classification involving 364 polyp sequences. The polyp sequences were selected

in high quality because we usually annotated only the first 1-3 seconds of polyp

appearance, which is critical for polyp detection in a real clinical scenario. We only

used the NBI light images and videos from the Olympus processor for the NICE

classification.

NICE

As the SUN database does not contain NICE class annotations and little data with

a direct NICE annotation is publicly available, only a very limited data set of NICE

annotated colorectal polyps was available for this study, comprising the images of

not more than 61 different polyps. The data set contained polyp images of two dif-

ferent sources, namely the examples provided for the different NICE classes curated
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on the Endoscopy Campus [2] and images extracted from the closed source endo-

scopic data set of the University of Würzburg, which were annotated by an expert

gastroenterologist. As the data from the Endoscopy Campus provides only a single

image per polyp and the usable frames of a specific polyp in the closed source data

were nearly identical, the data set has been constructed to contain only a single

image for each polyp.

Due to a lack of data, the third category of the NICE classification scheme has

been dropped and the study focuses on the prediction of the first two classes, cor-

responding in the canonical interpretation to the two classes of hyperplastic and

adenomatous polyps. Similar restrictions have already been made in other studies,

such as in [2], discussed in the related work of this study. The data set comprises

overall 27 images of class NICE II polyps and 34 images of class NICE I.

Due to the data set containing only a single image per polyp, the splits of the data

set were disjoint concerning the contained polyp specimens and did not introduce

any immediate or latent correlations between training and testing data.

As preprocessing measures, the images were cropped to the polyp region and down-

or upsampled to a common shape of 224 × 224. The images have not been made

subject to further preprocessing methods.

Paris classification

The first classification method will focus on the Paris classification using white light

endoscopy. The following subsection will illustrate the automated NICE classifica-

tion.

Reason for leaving out classes of the Paris classification As explained earlier

polyps are divided into polypoid and non-polypoid in the Paris classification. Type

I polyps are polypoid, and type II and III polyps are non-polypoid. Due to the

composition of available data, only Is, IIa, Ip, and Isp forms were considered and

used to classify polyps. Here, Is denotes the sessile type, IIa the flat raised polyps,

Ip a pedunculated form, and Isp the semi-pedunculated polyps [5]. We do not have

any data examples for the Paris categories IIb, IIc, and III in our data and the open

source SUN data set. This may be due to the acquisition of most of the data from

screening coloscopies where Paris types IIb, IIc and III are very rare. Therefore we

had to remove those categories in our classification model. By classifying polyps

into different types, it is also possible to make statements about the probability of

a polyp being cancerous. In one study, it was shown that certain types in the Paris

classification can lead to an increase in submucosal invasion. This correlates with a

greater risk of developing lymph node metastases from polyp disease in the stom-

ach, which may lead to a poorer prognosis. This revealed that polypoid type I (57

%) and types IIc (37 %) and III (40 %) had a higher risk of submucosal invasion. In

comparison, forms IIa and IIb (29% and 20%) showed a lower probability of [5, 29].

Since the images in the data set are single video frames, images that were too

small or blurred with unrecognizable content were removed manually to train the

networks on recognizable images. Finally, the obtained images were prepared for

the models and examined with respect to resolution.

[2]https://www.endoscopy-campus.com/en/classifications/polyp-classification-

nice/
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Input Image Cropped Polyp

Paris classification output

Polyp detection system

Figure 3 Structure of the polyp classification system. Adopted from [30]. Polyp images are from
our data (EndoData) [9].

Figure 3 outlines the structure of our polyp classification system. At the left

site, you can see the photo taken from the endoscope processor, which was done

after finding the polyp. This image is the input image to our system, and the

next step is the polyp detection system. For the polyp detection system, we used

ENDOMIND-Adcanced [9], which is a polyp detection system. The system was

developed by us using a post-processing technique based on video detection to work

in real-time with a stream of images. This allows leveraging the incoming stream

context of the endoscope while maintaining real-time performance. The system,

therefore, can predict a bounding box surrounding the polyp. In the next step, the

image is cropped at the box corners. The background, which is unnecessary for

the classification, is cropped so that the polyp is better processed by the following
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classification step. In the classification step, the resulting polyp image is inserted

into the Vision transformer (ViT) [30].

The use of transformers in computer vision is a relatively new field but is a signif-

icant competitor to CNNs. The paper Vision Transformer (ViT) introduces the use

of transformers in the image processing domain without using a CNN. The Vision

Transformer is based on a classical transformer for NLP, which has been adapted for

the computer vision task. The input image is brought into fixed-size image sections,

also called patches, as visualized in Figure 3. Then, the image patches are passed to

the transformer as a sequence, like a sentence sequence. The image sections are con-

verted into computable vectors for the transformer using the patch embedding layer.

Furthermore, the positions of the image sections are marked by Positional Embed-

ding, as in a classical Transformer. In addition, a learnable classification token is

added. The prepared sequence is then passed to one or more standard Transformer

encoders. Unlike the classical transformer, the ViT model does not have a decoder,

but a MLP head linked to the previous layers for classification [30, 31]. For pretrain-

ing the vision transformer, a large data set is used. For fine-tuning, the pre-trained

classification part, the MLP Head, is then removed and replaced by a feed-forward

layer specified for the desired task and adapted [30].

The developers of ViT provide three different transformer models for image clas-

sification: ViT-Base (12 encoder layers), ViT-Large (24 encoder layers), and ViT-

Huge (32 encoder layers), which are available in the following variants: ViT-B/16,

Vit-B/32, Vit-L/16, ViT-L/32 and Vit-H/14, the latter not being provided. The

trailing number represents the number of image sections during processing. The

models were pre-trained with the ImageNet-21k data set [30].

For our classification model, we used the ViT-L-16 model. In the end, the trans-

former outputs a number between 0 and 3, corresponding the Paris classification.

Benchmark models We used two CNN benchmark models to contest our Paris

classification system:

The first is Big Transfer (BiT). It uses the principle of transfer learning, in which

a convolutional neural network is pre-trained on a huge data set. The pre-trained

network is then selected and re-adapted to the relevant problem, also known as

finetuning. The tranfer learning principle is used to compensate for deficiencies in

training and testing examples in a data set for training a CNN. Transfer learning

can be particularly relevant in the medical classification domain, as many medical

data sets contain only a small number of data [32].

The second is Efficient Net. Convolutional Neural Networks have dominated the

field of computer vision for years due to their good performance. However, CNNs

are dependent on the resources available to build and scale the neural networks.

Due to limited resources, scaling a neural network is one of the core problems that

Google (Research) is trying to solve with its CNN models called EfficientNet [33].

Scaling a Convolutional Neural Network refers to adjusting certain dimensions that

can lead to higher accuracy. Common model scaling is performed on the depth, the

width of a CNN, or the resolution of an input image. Here, the depth of a model

refers to the number of layers in a Convolutional Neural Network. Width is the

number of channels in a layer, while resolution refers to image ratios such as height

and width [33].
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NICE classification

The data situation faced in the NICE classification outlined in the preceding sections

is frequently encountered in artificial intelligence, but is a particularly ubiquitous

problem in the medical domain of machine learning: Few data sets are made publicly

available, but retained as private resources, the amount of data is limited, especially

for rare conditions and cases, and the expertise requiring annotations are costly and

time-consuming to acquire. This core issue of artificial intelligence has been subject

to inquiry in recent years and the prolific branches of zero-shot and few-shot learning

have emerged as potential remedies for the data scarcity issues in many machine

learning domains [34]. The former refers to algorithms attempting classifications

without having been trained on an example of the target classification task, while

the latter refers to strategies in which the availability of a few training examples is

leveraged for the fine-tuning of zero-shot classification systems.

few-shot learning (FSL) is an active and promising research branch aiming to cross

the chasm between the learning behavior of current machine learning systems and

that of humans, who achieve high generalization capabilities from a few examples.

Given the data situation faced in the NICE classification of this study, we will

explore the performance of FSL approaches in the context of polyp classification.

The following section will provide a brief outline of the relevant background of FSL.

Few-shot learning

The FSL literature comprises a large stock of different strategies and philosophies

to approach the data scarcity issue. The approaches range from the intensive ap-

plication of data augmentation methods expanding the data set in order to enforce

desired invariances in the classification model, transfer learning strategies and even

complex meta-learning algorithms, which are trained to provide parameterizations

for a model given a few, or even only single example of the target task [35].

A popular and well-established approach in the transfer learning branch of FSL

is embedding learning [36], in which an embedding model f : Rm → Rn, where

n << m, is trained, such that task-specific notions of similarity between inputs,

manifest as trivially quantifiable similarities between their latent representations

generated by the model f . In the desired structure of the latent space, the sam-

ples of classes do not form a complex manifold but form clusters, allowing distance

metrics, such as the euclidean or the cosine distance, to quantify the similarity and

class affiliations of samples. A latent space exhibiting such structural properties

might then allow the construction of simple class discrimination hypotheses, which

are within reach with little data available for the target task. Frequent choices for

hypothesis are as simple as a k-nearest neighbour classification ([37], [34]).

The embedding model f can be learned through transfer learning from a task-

unrelated but extensive data set and might subsequently be fine-tuned to the target

task data depending on the specific amount of data available.

There are many strategies for training the embedding model f , such as the Matching

Networks [37] or the Prototype Networks [38]. In this study, we selected concepts

of Deep Metric Learning to enforce the desired structure on the latent embedding

space.
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Deep Metric Learning

The field of Deep Metric Learning is occupied with the training of encoder models,

which enforce the previously discussed properties of the latent space in order to

provide a semantic metric in conjunction with a specified distance measure [39].

In the field of metric learning, the approach of Siamese networks is an established

training paradigm for the encoder. The concept of Siamese networks has first been

considered in the field of signature verification [40], but has since then been ported

to CNNs and numerous applications including few-shot scenarios [41].

Conceptually, a siamese network comprises a neural network and a weight-sharing

clone, which are subsequently trained on pairs of data points, which might constitute

a positive pair, demonstrating semantic similarity or a negative pair demonstrating

semantic dissimilarity. The neural network and its clone are then trained to produce

embeddings with small in the former, respectively high distance in the latter case

w.r.t. a selected distance metric.

Hoffer et al., however, realized that the standard approach of the siamese neural

network produces sub-optimal results, if the metric is subsequently to be used for

classification tasks, as the minimization and maximization of distances between

positive and negative pairs does not necessarily lead to the intra-class distances

being smaller than inter-class distances [42]. Hoffer et al. proposed to extend the

siamese network to a triplet neural network, which comprises three weight-sharing

clones of a neural network and is trained on triplets of data points consisting of an

anchor instance x, a positive x+ and a negative instance x− exemplifying semantic

similarity and dissimilarity to the anchor instance respectively [42].

The training of the network f is then designed to enforce a class-consistent dis-

tance metric ∥f(x), f(x+)∥D < ∥f(x), f(x−)∥D for a metric D and for all triplets

(x, x+, x−).

A variety of losses for the triplet network has been proposed for specific scenarios

(such as in [43], [44]), but they are generally based on variations of the contrastive

loss for siamese networks. For this study, an adaption of the contrastive triplet loss

given in [45] is deployed:

Ltriplet(x, x
−, x+) = ∥f(x), f(x+)∥D +max(0,m− ∥f(x), f(x−)∥D) (1)

where m is a margin parameter, which limits the total decrease in loss value achiev-

able by high distances between the negative pair of the triplet and thus prevents

network degeneration tendencies. The concept is illustrated in figure 4.

Considered approaches and methodology

With the background regarding few-shot and deep metric learning outlined, this

section will discuss the methods in more detail and provide technical aspects re-

garding the selected hyperparameters used.

Specifically, we will deploy the triplet neural network concept with the loss given

in equation 1, with a margin of m = 20 and with the metric being the l2-norm.

For the encoder itself, a member of the ResNet-family, ResNet-18, has been selected

as the feature extraction backbone, as no performance gains were achievable using
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Figure 4 Illustration of the network architecture of a triplet network. According to equation 1, the
distance between the vectors of the negative pair is increased to the selected margin

the larger conspecifics such as ResNet-50. The downstream classification layer of

the ResNet-18 has been truncated and substituted with a single feedforward en-

coding layer embedding the average pooled feature map of the backbone into a

64-dimensional latent space.

The encoder has been pre-trained on a transfer learning data set and has been

fine-tuned with the available polyp data. Importantly, the fine-tuning did not oper-

ate on the classification performance directly, but improved the consistency of the

learned metric w.r.t. to the NICE data set using again the triplet loss of equation 1.

For the fine-tuning the triplets were formed according to the NICE class affiliation.

The fine-tuning scenario is depicted in figure 4.

During the fine-tuning, the training data set, comprising 75% of the available la-

beled polyp image, has been expanded using a data augmentation process.

As augmentations, random flips along all image axes, as well as random modifi-

cations of image hue, contrast, brightness and saturation, have been implemented.

The fine-tuning and model selection were subject to an early stopping strategy fa-

cilitated by 25% of the train set held back for validation purposes. A single training

epoch consisted here of 100 randomly generated triplets.

The embeddings have finally been tested in conjunction with different classification

strategies, namely nearest-neighbour (referred to as 1-nn), the smallest average dis-

tance (referred to as centroid), or the Support Vector Machine (SVM) [46] equipped

with the radial-basis-function kernel. For the 1-nn and centroid approach, the em-
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bedded images of the training set served as the latent space population for the test

data classification. In the case of the SVM, the embeddings of the training data

were used to fit the Support Vector Machine.

In this study, we are particularly interested in the effects of the pretraining and

the considered transfer learning data set. We will therefore consider the usage of an

out-of-domain, labeled data set and a within-domain, self-supervision-based data

set for the pretraining.

Supervised pretraining The challenge of transfer learning is to select a transfer

learning data set where the learned notions of semantic similarity are to a large

degree aligned with the similarity notions of the target domain, especially if the

potential transfer learning data sets exhibit significant domain gaps to the target

data regime (such as endoscopic videos).

As the NICE classification scheme is largely based on surface patterns and the tex-

tures of polyps [6], we opted in this study for the texture classification data set

Describable Texture Data set [3] (DTD for short) [47].

The DTD data set provides a texture database containing 5640 images belonging

to 47 different classes of human-distinguishable textures.

As the encoder model is trained with the loss given in equation 1, the construction

of triplets is a mandatory preprocess. While the literature has discussed the use-

fulness of the mining of informative triplets both for the efficiency of training and

quality of the discrimination capability (for instance [48]), for the study at hand, the

triplets have been randomly mined with positive pairs originating from the same

texture classes and negative image pairs from different. Since the DTD data set

is a multilabel data set, with some training instances displaying characteristics of

different textures simultaneously, the triplet mining selected the negative instances

x− as completely class-disjoint with the anchor instance x.

As a measure to reduce the domain gap between the DTD data set and the polyp

images and to provide the encoder with an organic invariance towards highlight cor-

ruptions, a preprocessing step has been implemented by grafting random specular

highlights extracted from the SUN data set with the detection algorithm of Arnold

et al. [49] onto the DTD images. The effect of this preprocessing step will later be

discussed in an ablation experiment.

Self-supervised pretraining An alternative approach for pretraining neural net-

works is the strategy of self-supervised learning. The advantage of self-supervised

learning algorithms is their defining independence of labeled ground truth data re-

sulting from their eponymous capability to produce their supervision signal.

A further advantage of the self-supervised approaches is the possibility of tapping

into available domain-related data sets. While these data sets lack the relevant

ground truth annotation, they might still allow for a pretraining of networks ex-

hibiting smaller domain gaps concerning the target tasks.

Especially in the medical domain, the independence of labeled training data of

self-supervised approaches can therefore enable the leveraging of as much of the

[3]https://www.robots.ox.ac.uk/~vgg/data/dtd/
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available medical data as possible, which is often idiosyncratic (endoscopic images,

X-ray scans, etc.).

At a high level, the self-supervised approaches can be divided into generative and

discriminative approaches [50], with the former category comprising strategies such

as AutoEncoders [51] and the latter comprising again contrastive approaches [50].

The fundamental insight and rationale of using contrastive approaches in self-

supervision is that the representations of images and heavily augmented versions

of them should be close in the latent space. In contrast, the distance to entirely

unrelated images should be more significant. Hence, the self-supervision is again

formulated as a triplet metric learning application and the network is enticed to

embed the images into representations, which encode features, which are for one

invariant towards all applied augmentation methods and for another discriminative

towards other images. The concept of the self-supervised training of the encoder is

illustrated in figure 5.

This latter discriminative approach has been used as a self-supervised pretraining

strategy for the study. The already introduced SUN data set has been used as a

source of endoscopic images. For the training, only images containing polyps have

been used, which were cropped to the polyp regions and scaled to a common shape

of 224× 224. Only a fraction of the images in the SUN data set have been deployed

for training. The roughly 50000 polyp images have been condensed into a set of

approximately 2500 images, which were extracted using an ORB-feature matching

based temporal downsampling of the video sequences proposed in [52]. Utilizing

the feature matching, the videos were decomposed into a sequence of scenes, out of

which the sharpest frames were automatically selected.

As augmentation steps, random flips along all image axes, histogram altering mod-

ifications of image hue, contrast, saturation and brightness, and a random gaussian

noise have been applied to the images. To further avoid encoding the prevalent

specular highlights in the images as a kind of fingerprint, random specular high-

lights have been grafted onto the images, which have been again extracted from

endoscopic images with the specular highlight detection algorithm of Arnold et al.

[49].

Results
In this section, we present the results of our two polyp classification systems. We

will consider the two subsystems for the Paris and NICE classification separately,

starting with the latter classification problem.

Nice classification

The evaluation of the NICE classification system will consider the classification per-

formances of both the full system, comprising the pre-trained encoder network and

the subsequent fine-tuning, as well as the stand-alone pre-trained encoder without

subsequent fine-tuning.

Beyond that, a range of classification algorithms applied to the embedded polyp

images will be considered.

Finally, some design choices will be revisited through ablation experiments.

The experimental design, which has been outlined in the preceding section, will
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Figure 5 Illustration of the network architecture of a self-supervised triplet network. According to
equation 1, the distance between the vectors of the negative pair is increased to the selected
margin. The positive pair is built from an image and an augmented view of it.

here be briefly recapitulated concisely: Roughly 75% of the data has been used for

the fitting of the classification algorithm and optionally for the fine-tuning of the

encoder network. The test data comprised a class-balanced set of roughly 25% of

the polyp data. Due to the nature of the data set containing only one image per

polyp specimen, the train and test set did not overlap concerning the contained

polyp specimens.

As the data split is not negligible in the case of small data sets, we report the aver-

age performance of the system across 100 random train/test data splits and the 90%

confidence intervals. We expected the confidence intervals to be rather large, as the

small data set was unlikely to support a completely split-robust decision boundary.

The same train/test splits were used for all experiments. Note at this point, that

due to the nonlinearity of the also reported F1-score, the average F1-score is not

necessarily equal to the F1-score of the average precision and average recall.

Classification without fine-tuning

This section considers the classification results without a fine-tuning step of the

encoder model. The not fine-tuned models were considered to elucidate, how or

if at all the differences in the pretraining strategy would manifest in the direct

classification performance. The results are given in table 4.

While the Support Vector Machine is the most complex discriminator considered, it
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displays better performance by a large margin compared to the nearest neighbour

and average distance classifier, which indicates, that the two NICE classes are not

completely separated in the latent space. Another point of view on this circumstance

can be gained in table 5, where the inter- and intra-class variances are reported for

the embeddings of the differently pre-trained encoders. Table 5 shows, that the

not fine-tuned DTD encoder fails at producing a compact cluster for the NICE

II class. The encoder trained on the SUN images using self-supervision produces

more consistent embeddings for the polyp images, which is also reflected in its

better performance in the classification in table 4. We attribute this difference in

performance to the domain gap between the polyp images and the images in the

DTD data set.

Table 4 Classification evaluation results not fine-tuned versions of the model pre-trained on the DTD
data set and an endoscopic data set using self-supervison. The table shows the average scores for 100
random training/test splits with 90% confidence intervals.

Model Classification Acc Pre Rec F1
DTD 1-nn 68.13 (± 14.21) 69.48 (± 12.25) 68.13 (± 14.21) 0.688 (± 0.152)

centroid 67.69 (± 10.81) 72.55 (± 11.37) 67.69 (± 10.88) 0.700 (± 0.126)
SVM 68.64 (± 11.83) 71.93 (± 10.13) 68.64 (± 11.83) 0.701 (± 0.137)

self-sv. 1-nn 65.34 (± 10.50) 65.91 (± 11.43) 65.34 (± 10.50) 0.657 (± 0.129)
centroid 65.38 (± 15.32) 67.72 (± 14.71) 65.38 (± 15.32) 0.665 (± 0.159)
SVM 72.55 (± 13.82) 73.95 (± 12.61) 72.55 (± 13.82) 0.733 (± 0.147)

Table 5 Intra- and interclass variances of the non fine-tuned polyp image embeddings of the models
trained on the DTD data set and endoscopic data set with self-supervision. The interclass variance is
normalized to 1.

Model intra NICE I intra NICE II inter
DTD 0.62 1.27 1.0

self-supervision 0.88 0.85 1.0

Classification with fine-tuning

This section considers the performance of the two encoder systems with a fine-tuning

step. To that end, the train data of the polyp images have been used to produce

triplets with negative and positive triplet components selected according to their

NICE class affiliation. Besides, a set of augmentations has been applied to the triplet

images, encompassing random flipping along all image axes and heavy histogram

modifying operations acting upon hue, contrast, brightness and saturation of the

images. The training used early stopping facilitated by a held-out validation part

of the train set. The results are reported in table 6. Fine-tuning increased the top

performance for both pretraining strategies, especially for the model trained on the

DTD data set, which exhibits the overall top performance. We attribute this strong

increase in performance of the DTD trained model to closing the domain gap be-

tween the DTD and polyp images. The results of the DTD trained encoder vis-à-vis

the fine-tuned self-supervision system indicate however, that the pretraining on the

texture data set bestowed the model with a superior and better generalizing feature

extraction capability, which constituted a better initialization for the refinement of

the representations.

The SVM classification performed well for both pretraining strategies in relative

terms, with the smallest average distance producing even slightly better results on

the DTD pre-trained model.
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Table 6 Classification evaluation results in fine-tuned model versions pre-trained on the DTD data
set and an endoscopic data set using self-supervision. The table shows the average scores for 100
random training/test splits with 90% confidence interval.

Model Classification Acc Pre Rec F1
DTD 1-nn 75.31 (± 9.41) 75.94 (± 8.63) 75.31 (± 9.41) 0.757 (± 0.098)

centroid 81.39 (± 8.53) 82.05 (± 8.61) 81.39 (± 8.53) 0.817 (± 0.084)
SVM 81.34 (± 8.74) 81.52 (± 8.39) 81.34 (± 8.74) 0.810 (± 0.086)

self-sv. 1-nn 71.59 (± 8.74) 75.09 (± 8.13) 71.59 (± 8.74) 0.733 (± 0.095)
centroid 68.88 (± 8.45) 70.30 (± 8.82) 68.88 (± 8.45) 0.696 (± 0.097)
SVM 75.04 (± 8.59) 75.24 (± 8.38) 75.04 (± 8.59) 0.751 (± 0.083)

In summary of the results of the preceding two experiments and following the

methodology of [23], who base their pathology assessment of polyps on the classes

I and II of NICE, we conclude, that the here presented FSL model displays perfor-

mances comparable to the results reported in the literature reviewed in the related

work section of this study, despite the very limited amount of data available and the

partially suboptimal acquisition of the images (without the NBI mode activated).

Moreover, we conclude that in the case of sufficient fine-tuning data being avail-

able, it is advantageous to conduct the pretraining on transfer learning data sets,

in which the alignment of the presumed feature extraction capabilities learned from

the data set, and the required capabilities for the target task is easier to foresee, as

it has been the case with the texture DTD data set. While a smaller domain gap

proved advantageous in our experiments (refer back to table 4), when fine-tuning

was not conducted, the self-supervision primed the encoder model in a way that

allowed only for a minor refinement of the embeddings, which could be converted

only into a small gain in performance, before the overfitting to the training data set

in. Furthermore, the fine-tuning consolidated the confidence intervals significantly

across the considered data splits.

Ablation considerations

This section will discuss the effect and influence of a few design choices made

throughout the description of the NICE classification model. The average results of

the 100 considered random train/test splits are reported.

First, we consider the influence of the data augmentation applied on the training

data during fine-tuning. The results are presented in table 7. While the augmenta-

tion yields for both pretraining strategies the best models concerning the F1-score,

the performance difference is only small. The main incentive for introducing the

training augmentation in the first place was to ensure that the classification was

not based on spurious correlations in the small data set. But as the not augmented

runs did not produce better results, even slightly worse, it is concluded that this

worry was not justified, to begin with.

Table 7 Effect of augmentation during fine-tuning for differently pre-trained embedding models. The
classification was performed using a Support Vector Machine. The table shows the average scores for
100 random training/test splits with 90% confidence interval.

Model Augm. Acc Pre Rec F1
DTD N 80.73 (± 8.48) 82.05 (± 8.74) 80.73 (± 8.48) 0.805 (± 0.082)

Y 81.34 (± 8.74) 81.52 (± 8.39) 81.34 (± 8.74) 0.810 (± 0.086)
self-sv. N 74.03 (± 8.97) 76.13 (± 8.49) 74.03 (± 8.97) 0.750 (± 0.081)

Y 75.04 (± 8.59) 75.24 (± 8.38) 75.04 (± 8.59) 0.751 (± 0.083)
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Finally, we consider the effect of the augmentation strategy of grafting random

specular highlights on the images of the DTD data set during the pretraining of

the encoder. In this experiment, we analyze whether accounting for the invariance

towards these image corruptions can be fully substituted through fine-tuning and

how it affects the not fine-tuned models. To that end, we considered an encoder

trained on the DTD data set without the highlight augmentation grafting vis-à-vis

the previous encoder in both the fine-tuning and no fine-tuning setting. The results

are reported in table 8. As the results indicate, the effects of the highlight-grafting

operation depend heavily on the subsequent fine-tuning. While the augmentation

increases the performance in all cases, the fine-tuning can catch up with the invari-

ance towards the specular highlights. However, the non-finetuned model without

the augmented pretraining suffers to a larger extent from interferences of the image

corruptions.

Table 8 Effect on the specular highlight grafting augmentation during pretraining of the encoder with
the DTD data set. The average performance on 100 random train/test splits is reported

Model finetuning highlight grafting Acc Pre Rec F1
DTD Y N 80.44 80.51 80.44 0.803

Y Y 81.34 81.52 81.34 0.810
N N 65.81 63.86 65.81 0.647
N Y 68.61 71.92 68.61 0.701

Error analysis

A

B

C

D

Figure 6 t-SNE embeddings [53] into 2D of the polyp images using the DTD trained encoder.
The highlighted data points will be subject of a discussion.
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A B

C D

Figure 7 Samples of misclassified polyps of our system. The images A and C belong to the class
NICE II. The images B and D appertain to class NICE I.

This section will conclude the NICE classification with a short error analysis of

the developed classification system.

The overall quality of the learned embedding can be seen in figure 6, which displays

the t-SNE projections [53] into 2D of the embeddings generated by the DTD pre-

trained encoder model. The projections reveal that the different NICE classes form

two distinct clusters in the latent space, which possess however an overlapping zone,

which reflects the classification performances given in table 6.

We will now consider two kinds of problematic embeddings to gain further insights

into the performance. Firstly, we consider two data points embedded well into the

clusters of the wrong NICE class. The data points are denoted with A and B in

figure 6 and in figure 7, where they are depicted in the upper row. As shown in

figure 7, the image A is heavily blurred, such that its surface appears feature less.

Note, that image A has also not been taken with the NBI-light activated. With

the surface patterns not discernible, the homogeneous polyp has been embedded

into the NICE I cluster of the latent space. Similarly, polyp B’s surface exhibits

discernible tubular structures, which have likely been picked up by the encoder and
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led to an embedding into the NICE II cluster of the latent space.

Secondly, we will consider two polyps that populate the overlapping zone of the two

latent clusters. The polyps concerned are denoted C and D in both figure 6 and

7. Both polyps display a pronounced surface texture and rich patterns. While in

both cases, the features of their correct NICE class dominate the patterns (tubular

in case of polyp C and spotted in D), both polyps display at close inspection also

structures of the respective other NICE class.

We conclude from the presented error analysis that the NICE classification system

facilitated by the polyp encoding neural network presented in this paper succeeds at

generating semantically viable representations of polyps and embedding the polyps

into a well-structured latent space apt for downstream usage in classification.

Paris classification

For the Paris classification we compare two additional state-of-the-art algorithms to

our approach for a fair comparison. For the comparison, we are using BiT-R152x4,

and EfficientNet-B7. BiT-R152x4 and EfficientNet-B7 are both CNN architectures.

Our model (ViT-L-16) with different learning rates, data augmentation methods,

and dropout rates. This will help decide which hyperparameters and settings are

needed for each model to train the best possible polyp classifiers.

Experimental Design

For the evaluation of the Paris classification the images were divided into training,

validation, and testing data sets based on the number of different polyps, with

approximately 70 % of the polyp images from the SUN Colonoscopy Video data

set being used for training, 15 % for validation, and 15 % for testing. The sun data

set was thereby split in cases so that there is no polyp training data in which the

same case would also be in the test data. The final test data consist of the 15% of

polyps in the SUN data set split in cases and 15% of our own data set also split in

individual cases.

Transfer learning models were used for training, pre-trained on existing data sets

and refined for the polyp classification task. BiT-R152x4 and ViT-L-16 are used

with the weights pre-trained on ImageNet-21k. ViT-L-16 was also finetuned on the

ILSVRC-2012 data set [30, 32, 33]. In addition, EfficientNet has the special case that

training can proceed in two phases. First, all weights in the network are frozen and

only the last layers are adjusted. The second phase is optional and offers training

in the deeper layers. For this work, both methods were used and the best results

were presented.

Finding the correct hyperparameters for the models is essential for the accuracy

of the models. Therefore, different parameters and settings were trained and tested

for each model. The related results are presented in the ablation study subsection.

For this purpose, this paper tested and selected different learning and dropout

rates. Furthermore, different data augmentation methods were additionally tested

to boost the performance of the models.

In addition to the different dropout rates and data augmentation, the early stop-

ping method was used to avoid overfitting and long training times. For Big Transfer,

training was stopped after seven epochs without improvement, while for Efficient-

Net, training was stopped after 20 epochs without improvement. For our model, the

training was stopped after 11 epochs.
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Evaluation

The evaluation is done via the F1-score and the accuracy. The F1-score describes

the harmonic mean of precision and recall. The F1-score, the accuracy, the recall

and precision are shown in following equations:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

We count an annotation as true positive (TP) if the classification of our prediction

and GT do have the same label. If a polyp is predicted in a wrong class but the

polyp is another class we count it as a false positive (FP). We calculate the TP, FP,

true negatives (TN), false negatives (FN) for every class and calculate the scores

according to the equations above.

For the testing BiT-R152x4 from Big Transfer, our model using ViT-L-16 from

Vision Transformer, and B7 from EfficientNet were tested. The results are illustrated

in the table below:

Table 9 Test results of each model on two different test data sets, the SUN Colonoscopy Video data
set and our own data set (EndoData) [9]. All values are given in %.

Model Data set Acc Pre Rec F1
BiT-R152x4 SUN 80.45 69.57 77.25 73.21

EndoData 76.31 76.24 72.28 74.20
EfficientNet-B7 SUN 84.25 72.82 80.27 76.36

EndoData 73.94 72.11 71.01 71.46
Ours SUN 89.35 84.76 79.10 81.28

EndoData 87.42 80.09 78.83 79.45

Table 9 shows that our approach using a transformer architecture outperforms the

two other CNN approaches in nearly all metrics. Especially on the harder-to-classify

EndoData [9]. The improvement from BiT-R152x4 to our model shows an accuracy

of 76.31% to 87.42 %. A significant approvement considering our approach com-

pared to the CNN approach. Nevertheless, the EfficientNet-B7 algorithm achieves a

minimal improvement considering the recall on the SUN data set with an increase

from 79.10 % to 80.27 % compared to our approach. As shown in table 2, comparing

these algorithms to the published literature in the domain is challenging because

the algorithms are evaluated on different data sets and using different classes. Nev-

ertheless, Bour et al., which is the best approach using three classes, achieved an

accuracy of 87.1 % [2] on their test data set. With our model, we are surpassing this

accuracy by 2.04 %. Nevertheless, in the paper of Bour et al. [2], 785 different polyps

are used for training and validation, and the authors did not specify the amount

and composition of the test data. Therefore, it is hard to make a fair comparison

between the algorithms.

To further elaborate on the results of our model we computed the accuracy, pre-

cision, recall and F1-score for every Paris class individually. The results are shown
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in table 10. For the accuracy the results indicate that classes Is and Ip are best

classified by the model.

Table 10 In this figure, the test results of our model on the SUN Colonoscopy Video data set are
shown for each Paris class individually. All values are given in %.

Paris class Acc Pre Rec F1
Is 92.97 91.87 93.27 92.56
Ip 94.30 90.66 55.64 68.96
Isp 85.94 68.84 42.41 52.49
IIa 84.43 78.90 76.27 77.56

Mean 89.35 84.76 79.10 81.28

Ablation study

In this section, we present the results of the BiT-R152x4, EfficientNet-B7, and our

model with different learning rates, data augmentation methods, and dropout rates.

This will help decide which hyperparameters and settings are needed for each model

to train the best possible polyp classifiers.

Learning rate To find a suitable learning rate for each model, the models were

trained and tested with different learning rates. All models have, if applicable, a

dropout rate of 0.5. For the data augmentation, our model and BiT-R152x4 were

set to random flipping, while the EfficientNet-B7 results were computed with the

combination of random flip, random rotation and random contrast. Table 11 shows

the results for each model considering different learning rates. In addition, the time

of one training epoch per minute and the required number (#) of epochs until

reaching the best accuracy on the validation data set are given.

Table 11 Results on the validation data set considering different learning rates.

Model Learning rate Val-acc Training speed
0.01 0.001 0.0001 0.00016 Min/Epoch #Epochs

BiT-R152x4 ✓ 0.7890 ≈ 30 4
✓ 0.8213 ≈ 30 8

✓ 0.8140 ≈ 30 10
✓ 0.8156 ≈ 30 10

EfficientNet-B7 ✓ 0.7903 ≈ 5.7 6
✓ 0.8212 ≈ 5.7 10

✓ 0.7924 ≈ 5.7 30
✓ 0.7969 ≈ 5.7 28

Ours ✓ 0.4668 ≈ 3 19
✓ 0.5938 ≈ 3 23

✓ 0.8242 ≈ 3 10
✓ 0.8950 ≈ 3 8

Thereby, the results provide the first indications that for the CNN models BiT-

R152x4 and EfficientNet-B7, the best results are obtained with the learning rate

of 10−3. Our model achieved better results with a lower learning rate. In addition,

this required less time for one training epoch since the computational effort is lower

for the Vision Transformer compared to the CNN models [30]. Another interest-

ing aspect of the results in table 11 is that for the CNN methods, the number of

epochs increases when decreasing the learning rate, but for our transformer model,

considering the first two learning rates of 0.01 and 0.001, the number of epochs

is decreasing. This is contradictory and could be attributed to the fact that it is

hard to learn for the transformer model with these learning rates and therefore,

the training goes longer than it should. For the subsequent analysis to investigate
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data augmentation and dropout, the learning rate that provided the best validation

accuracy in table 11 was used for each model.

Data augmentation In the second step of this analysis, various data augmentation

methods were explored to adjust the models to best fit the polyp classification. Data

augmentation helps combat overfitting and can create critical diversity in a data

set. The increased diversity in the training data set improved the performance. The

data augmentation methods used for this training are random flipping (random

flip) or rotating the images (random rotation), and changing the contrast (ran-

dom contrast). Table 12 presents the obtained training results considering different

augmentation techniques.

Table 12 Results on the validation data set considering different data augmentation methods.

Model Data augmentation Acc
random flip random rotation random contrast

0.8155
✓ 0.8213

BiT-R152x4 ✓ ✓ 0.4543
✓ ✓ 0.7968
✓ ✓ ✓ 0.4469

0.7551
✓ 0.7903

EfficientNet-B7 ✓ ✓ 0.7936
✓ ✓ 0.8091
✓ ✓ ✓ 0.8212

0.7930
✓ 0.8950

Ours ✓ ✓ 0.8210
✓ ✓ 0.8242
✓ ✓ ✓ 0.6016

The table shows that all models benefit from data augmentation. Training runs

without data augmentation gave much worse results. This indicates that data aug-

mentation is important for polyp classification. Especially the random horizontal

and vertical flipping of the images seems to have a great effect for polyp classifica-

tion. For the subsequent analysis to investigate dropout, the data augmentation that

provided the best validation accuracy in table 12 was used for each model. Random

flipping and changing the contrast had different effects on the models. EfficientNet

provided improved performance to 82.12 %. The other options in combination with

flipping caused deterioration of the results for our model and BiT-R152x4. Nev-

ertheless, their results achieved increased validation accuracy by random flipping

alone. 89.50 % for our model and 82.13 % for BiT-R152x4.

Dropout Dropout is a regularization technique to avoid overfitting on the data

set. As a further step, this section experiments with different dropout rates to make

the models less susceptible to overfitting and thus achieve better values on the

validation data set. With one exception for BiT-R152x4, dropout rates of 0.4, 0.5,

and 0.6 were tested on the remaining models. The authors of BiT-R152x4 did not

use dropout to avoid overfitting, but attempted to train stable models using the

learning rate schedule method [32]. In the learning rate schedule method, no fixed

learning rate is set for training, but varying learning rates are used. For example,

at the beginning of the training, a large learning rate is used to move the gradient
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faster towards the minimum. Then the learning rate is decreased during training so

that at the end the gradient does not skip the minimum. This results in reaching

the minimum faster and the model gains higher accuracy.

Table 13 Results on the validation data set considering different dropout rates. BiT-R152x4 did not
use dropout and is therefore not included in this table.

Model Dropout rate Val-acc
0.4 0.5 0.6

✓ 0.8094
EfficientNet-B7 ✓ 0.8212

✓ 0.7908
✓ 0.8593

Ours ✓ 0.8950
✓ 0.8513

The results in the 13 table show that the models produce solid results at all

dropout rates, but show the best results at a dropout of 0.5 on the validation data

set.

Few-shot learning As a last ablation, we want to briefly revisit the overall selection

of the classification model and compare the performances of the Vision Transformer

with the model underlying the few-shot learning system presented in the NICE clas-

sification section of this paper.

We deployed the outlined self-supervision approach, as the texture dataset DTD is

inadequate for pretraining of a shape-centric classification task. As an augmentation

engine facilitating the self-supervised pretraining, we deployed the style-transfer al-

gorithm of [54], which provides a model capable of applying the style of arbitrary

images to the content of another image. We selected the style-transfer as an aug-

mentation step, as it allows the suppressing of most of the texture and style-related

information of the original image and retains the structure and shape information

as the main source of discriminative features. For the training, we selected pencil

drawing styles, which we found to introduce almost no artificial texture to the im-

ages and highlight the structure and shape of the polyps in a very pronounced way.

An overview of the deployed triplet generation is given in figure 8. The pretraining

was again followed by a fine-tuning phase during which the triplets were constructed

according to Paris class affiliation.

The configurations and parameters of the model and training remained identical

to the setting described in the NICE classification sections of this paper.

Especially, the ResNet-18 has been retained as a feature extraction backbone and

the SVM was used for the subsequent classification of the embeddings generated by

the encoder.

The SUN data and the identical split of the 100 cases used in the preceding ex-

periments involving the transformer were used to train and evaluate the model.

Similarly to the pretraining of the self-supervised NICE classification system, we

used a fully automated key frame selection pipeline to condense the training data

down to 1081 images.

The system results are given in table 14. As can be seen in the table, the system

achieves high precision in the Paris class IIa and the minority classes Ip and Isp.

However, the downside of the high precision is a weak recall, especially in the classes
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Style-transfer Style-transfer Style-transfer

Random flips

positive
pair

negative
pair

Triplet

Figure 8 Triplet generation during the self-supervised pretraining for the Paris classification. The
same style was used for the images of the negative pair, while different styles were used for the
images of the positive pair.

Ip and Isp, where all misclassified images were confused with the class Is or with

Is and Ip in case of class Isp. The high precisions in the pedunculated classes allow

the model to determine the presence of a pedunculation (Ip or Isp) with a 96.56%

precision. The low recall however is also reflected in the precision of the class Is

under which many images showing protrusions are subsumed.

The proposed transformer displayed therefore the overall best results in the dis-

cussed task, albeit the metric-based system displays performances comparable to

those of the other considered models, such as the EfficientNet, despite of the again

considered scenario of little available data. Nevertheless, the approach using a state-

of-the-art vision model above shows superior results considering the Paris classifi-

cation.

Table 14 Results of the few-shot model in the SUN Colonoscopy Video data for each Paris class
individually. All values are given in %.

Paris class Acc Pre Rec F1
Is 74.85 66.39 95.42 78.26
Ip 95.43 88.66 39.81 54.92
Isp 90.76 92.08 19.47 32.05
IIa 87.93 92.44 70.68 80.04

Mean 82.97 79.75 75.69 73.19

Discussion
In this chapter, we discuss the limitations and the explainability of the system. We

primarily focus on wrong detections of the polyp classification system and discuss

those system failures on the data sets. Additionally, we create heat maps showing

the networks neural activation to gain deeper insight into the reasons for the clas-

sification results of the network. In this paper, two pre-trained CNN models as well

as a pre-trained special transformer were used for the Paris classification. Espe-

cially the use of different data augmentation methods strongly improved the results
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of the models. Specifically, random image flipping seems to play an essential role

in polyp characterization and should be looked at more closely in future research.

This could be due to the reason that the Vision Transformer can understand and

learn information about the whole image in the first layers of the model through the

Attention layers. This presumably allows the model to better recognize the polyp

features. CNNs, in turn, try to classify based on the locally recognized features [30],

which profit from different augmentations.

Limitations

First, assessing the test results, the distribution of images on the test data sets was

unbalanced. Looking at the two test data sets, it is noticeable that the images with

polyp types Is and IIa are particularly strongly represented, while the other classes

are less represented. This may weaken the significance of the test results. However,

the proportion of classes Ip and Isp in the training and validation data set is also

low, and this may cause the models to classify these two classes moderately. This

is due to the lack of labeled data sets for the polyp domain, which leads to the

following limitation.

The lack of data is a significant problem, specifically in computational medical

research, as a large amount of training data is required to build and train stable

and accurate deep learning models. However, the number of annotated data sets,

specially labeled polyp data sets for Paris classification, are severely limited. In

addition, the existing polyp data sets still contain few polyp images for a deep

learning task. For, e.g., the SUN Colonoscopy video data set [27], the data set

consists of just 100 different polyps, of which nearly 70 are different polyps for

training. This number tends to be too small to train a stable classifier. Therefore the

diversity of polyps is missing. Moreover, the individual polyp cases of the data set

consist of image frames of colonoscopy videos. This leads to the next problem, which

may further impact the trained object recognition models. First, a colonoscopy

video is many image sequences of one polyp. If we exclude the possible blur and

distortion in the frames, the sequences consist of barely or slightly distinguishable

images of polyps that are used to train the network. On the other hand, the videos

are occasionally based on distant images of polyps, which were cropped and used

again in this work based on the annotations. Thus, the data set used contains mostly

small images, making them difficult to recognize, as shown by image section (a) in

Figure 9.

An additional obstacle in training the classifiers relates to the Paris classification.

Since the SUN Colonoscopy Video data set contains polyp images for classes Ip,

Isp, Is, and IIa, the object recognition models were examined to classify these four

types. Here, it was noticeable that class Isp, the mixed form of Is and Ip, is difficult

to identify for the classification models. Here, tests have shown that the mixed form

is usually classified as one of the two primary forms due to the high similarity, as

shown in an image section (b) in Figure 9. Another reason for the confusion is the

angle at which the image is acquired. Because a polyp is imaged from multiple sides

during a colonoscopy, images of polyps are produced that cannot lead to a definite

conclusion about the shape. For example, an image above of a pedunculated polyp

(Ip) does not provide any information about the shape because, most likely, no

pedicle can be seen. This problem mainly affects the classes Ip and Isp.
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Isp Is

b)

Ip IIa

a)

Figure 9 Model detection problems due to (a) difficult to detect polyps due to poor resolution
and due to (b) the high similarity of the mixed form Isp class to Is. Images are taken from the
SUN data set [27].

Lastly, extending the classification to all Paris classes would be very important.

Since classes are missing and there is no ”other” class, inherent errors are made

when a polyp has a non-modeled class. To create a system with all classes, it would

be necessary to construct bigger data sets in which those uncommon classes are

highly represented.

Heat maps for the Paris classification

In this section, we demonstrate the use of GradCAM to see what areas are essential

for the network to classify a polyp. For this, we used GradCAM with Eigen smooth,

a method to remove much noise in the heatmap. We picked three examples for

each class to demonstrate the results (see figure 10). This paragraph presents a

methodology to generate visual explanations for deriving insight into our polyp

classification systems decisions using the Grad-CAM algorithm [55]. We follow the

Checklist for Artificial Intelligence in Medical Imaging (CLAIM) [56].

Analyzing figure 10, throughout the examples, the network mostly looks at the

polyp’s surface and not the background. Furthermore, there are gaps in the heat

maps at areas of light reflections, which shows that the network can filter unneces-

sary information. Especially, for example, Isp with images c1) and c2) shows the AI

ignores the background and the light reflections and only considers the structure of

the polyp for the classification. In the Ip class, in image a1), we can see a red mark

on the polyp. Even that mark is excluded and is not considered by the network, see

image a2).

Conclusion
In this paper, we show two novel automated classifications system assisting gas-

troenterologists in classifying polyps based on the NICE and Paris classification.

We introduce a two-step process for the Paris classification: first, detecting and

cropping the polyp on the image, and subsequently classifying the polyp with a

transformer network. For the NICE classification, we designed a few-shot learning

algorithm based on the Deep Metric Learning approach. The algorithm creates an

embedding space for polyps, which allows classification from a few examples to ac-

count for the data scarcity of NICE annotated images in our database. Overall,



Krenzer et al. Page 31 of 34

a1)

b1)

c1)

a2)

b2)

c2)

a1)

b1)

c1)

a2)

a2)a2)

b2)

c2)

a1)

b1)

c1)

b2)

c2)

a1)

b1)

c1)

b2)

c2)

IIa

Ip

Is

Isp

Figure 10 Heat maps for polyp classification. This figure illustrates the classifications of the
model using the GRAD-CAM algorithm [55]. Thereby, pixels most relevant for the classification
are marked in warm colors like red, and pixels less relevant for the neural network in cold colors
like blue. Images are taken from the SUN data set [27].

our Paris classification system shows state-of-the-art results on a publicly available

data set with an accuracy of 89.35 %, surpassing all papers in the literature. For

the NICE classification, we achieve a competitive accuracy of 81.34 % demonstrat-

ing thereby the viability of the FSL approach in data-scarce environments in the

endoscopic domain.
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50. Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E., Doersch, C., Pires, B.A., Guo,

Z.D., Azar, M.G., Piot, B., Kavukcuoglu, K., Munos, R., Valko, M.: Bootstrap your own latent. a new

approach to self-supervised learning. Advances in Neural Information Processing Systems 33 (2020)

51. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE 37 (1991)
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a b s t r a c t 

The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent 

problems in developing reliable computer aided detection and diagnosis endoscopy systems and sug- 

gest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and 

treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 

1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying 

subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of deep 

learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of in- 

terest. EndoCV2020 challenges are designed to address research questions in these remits. In this paper, 
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we present a summary of methods developed by the top 17 teams and provide an objective compar- 

ison of state-of-the-art methods and methods designed by the participants for two sub-challenges: i) 

artefact detection and segmentation (EAD2020), and ii) disease detection and segmentation (EDD2020). 

Multi-center, multi-organ, multi-class, and multi-modal clinical endoscopy datasets were compiled for 

both EAD2020 and EDD2020 sub-challenges. The out-of-sample generalization ability of detection algo- 

rithms was also evaluated. Whilst most teams focused on accuracy improvements, only a few methods 

hold credibility for clinical usability. The best performing teams provided solutions to tackle class im- 

balance, and variabilities in size, origin, modality and occurrences by exploring data augmentation, data 

fusion, and optimal class thresholding techniques. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Endoscopy is a widely used imaging technique for both diagno- 

sis and treatment of patients with complications in hollow organs 

such as esophagus, stomach, colon, bladder, kidney and nasophar- 

ynx. During the endoscopic procedure, an endoscope, a long thin 

tube with a light source and a camera at its tip, is inserted into the 

organ cavity. The imaging procedure is usually displayed on a mon- 

itor on-the-fly and is often recorded for post analysis. Each organ 

imposes very specific constraints to the use of endoscopes, but the 

most common obstructions in all endoscopic surveillance consists 

of artefacts caused by motion, specularities, low contrast, bubbles, 

debris, bodily fluid and blood. These artefacts hinder the visual in- 

terpretation of clinical endoscopists ( Ali et al., 2020c ). Missed de- 

tection rates of precancerous and cancerous lesions are another 

limitation. Gastrointestinal (GI) cancer (especially colorectal can- 

cer) has high mortality rates and 5-year relative survival rates for 

stage IIB is around 65% ( Rawla et al., 2019 ). In general, the missed 

detection rates in endoscopic surveillance is considerably high, at 

over 15% ( Lee et al., 2017 ). Therefore, the requirement for tech- 

nology that can be effectively used in clinical settings during en- 

doscopy imaging is necessary. 

While a dedicated endoscopic procedure is followed for each 

specific organ, often these procedures are very similar, in particu- 

lar for the GI tract organs like the esophagus, stomach, small in- 

testine, colon and rectum. Notably, some precancerous abnormali- 

ties such as inflammation or dysplasia and even cancer lesions in 

these GI organs naturally look very similar. Often automated meth- 

ods are only trained for a specific abnormality, organ and imaging 

modality ( Zhang et al., 2019 ), whereas multiple different types of 

abnormalities can be present in different or gans and several imag- 

ing protocols are used during endoscopy. Also, methods that are 

built for colonoscopy cannot be used during a gastroscopy (in the 

esophagus, stomach and small intestine), despite the nature and 

occurrence of many abnormalities being similar in these organs. 

Artefacts are prevalent in all endoscopy surveillance and are usu- 

ally confused with lesions, which can lead to unreliable outcomes. 

A pathway to develop and reliably deploy methods in clinical 

settings is by benchmarking methods on a curated multi-center, 

multi-modal, multi-organ and multi-disease dataset and through a 

thorough evaluation of built methods using standard imaging met- 

rics and metrics that can test their clinical applicability, for ex- 

ample ranking based on accuracy, robustness and computational 

efficiency ( Ali et al., 2020c ). Most publicly available datasets are 

specific to a particular organ, modality or a single abnormality 

class, e.g., polyp detection and segmentation challenges ( Bernal 

et al., 2017; Jorge and Aymeric, 2017 ). While dedicated organ spe- 

cific challenges help to identify one particular disease type, they 

do not resemble the clinical workflow where the endoscopists are 

interested in biopsy and treatment of such abnormalities when 

of potential threat. For polyp class, it is required to identify dif- 

ferent stages of polyp such as benign, dysplastic or cancer. Re- 

cently, it was shown that polyps and artefacts can be confused 

mostly due to specularity ( Soberanis-Mukul et al., 2020 ). Artefacts 

are the fundamental and inevitable issue in endoscopy that of- 

ten add confusion in detecting tissue abnormalities in these or- 

gans. It is therefore vital to accelerate research in identifying these 

classes and restore frames where possible ( Ali et al., 2021 ) or re- 

duce the false detections by adding uncertainties for such confu- 

sions ( Soberanis-Mukul et al., 2020 ). Other ways to address arte- 

fact problems in the endoscopy data is by using synthetically gen- 

erated frames ( Mahmood et al., 2018; Formosa et al., 2020; In- 

cetan et al., 2020 ). Mahmood et al. (2018) used self-regularized 

transformer network that allowed to transform the real images 

into synthetic-like images with preserved clinically-relevant fea- 

tures. This allowed the authors to estimate depth in colonoscopy 

data robustly without being affected by adverse artefact problems. 

Incetan et al. (2020) demonstrated the use of a virtual active cap- 

sule environment that can simulate wide range of normal and ab- 

normal tissue conditions such as inflated, dry and wet; organ types 

and endoscopy camera designs in capsule endoscopy. This allowed 

to optimize the analysis software for varied real conditions. 

The Endoscopy Computer Vision Challenge (EndoCV2020) 1 is 

another crowd-sourcing initiative to address fundamental prob- 

lems in clinical endoscopy and consists of: 1) Endoscopy arte- 

fact detection and segmentation (EAD2020), and 2) Endoscopy dis- 

ease detection and segmentation (EDD2020). EndoCV2020 releases 

diverse datasets that include multi-center, multi-modal, multi- 

organ, multi-disease/abnormality, and multi-class artefacts. Among 

the two sub-challenges, EAD2020 is an extended sub-challenge of 

EAD2019 ( Ali et al., 2019 ), however, unlike EAD2019 it includes 

both frame and sequence data with an addition of nearly 500 

frames and a total of 41,832 annotations for detection task and 

10,739 for segmentation task. 

In this paper, we summarise and analyze the results of the top 

17 (out of 43) teams participating in the EndoCV2020 challenge. 

Additionally, we benchmark these methods with the current state- 

of-the-art detection and segmentation methods. Each method is 

also evaluated for its efficacy to detect and segment multi-class in- 

stances. In addition to the standard computer vision metrics used 

to evaluate methods during the challenge, we perform a holistic 

analysis of individual methods to measure their clinical applicabil- 

ity. 

2. Related work 

With the advancements in deep learning for computer vision, 

object detection and segmentation algorithms have shown rapid 

1 https://endocv.grand-challenge.org . 
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development in recent years. This is due to the hidden feature rep- 

resentations provided by Convolutional Neutral Networks (CNNs) 

that show significant improvement over hand-crafted features. 

CNN-based methods quickly gained the attention of the Medical 

Imaging community and are now widely used for automating the 

diagnosis and treatment for a range of imaging modalities, e.g. 

radiographs, CT, MRI, and endoscopy imaging. Below we present 

an overview of the recent deep learning-based object detection 

and segmentation techniques and discuss the related work in the 

context to medical image analysis with a particular focus on en- 

doscopy imaging applications. 

2.1. Detection and localization 

Object detection and localization refers to determining the in- 

stances of an object (from a list of predefined object categories) 

that exist in an image. Object detection approaches can be broadly 

divided into three categories: single-stage, multi-stage and anchor- 

free detectors. A brief survey of these is presented below. Single- 

stage detectors Single-stage networks perform a single pass on the 

data and incorporate anchor boxes to tackle multiple object detec- 

tion on the same image grid such as in YOLO-v2 ( Redmon et al., 

2016 ). Similarly, Liu et al. (2016) proposed the Single Shot MultiBox 

Detector (SSD) with additional layers to allow detection of multi- 

ple scales and aspect ratios. RetinaNet was introduced by Lin et al. 

(2017b) where the authors introduced focal loss that puts the fo- 

cus on the sparse hard examples enabling a boost in performance 

and speed. 

The domain of Gastroenterology has started to benefit 

from the success of single-stage object detectors. Wang et al. 

( Wang et al., 2018 ) proposed a model that is based on SegNet 

( Badrinarayanan et al., 2017 ) architecture to detect polyps dur- 

ing colonoscopy. Urban et al. (2018) used YOLO to detect polyps 

from colonoscopy images in real-time. Horie et al. (2019) used 

SSD to detect superficial and advanced esophagal cancer. RetinaNet 

was the most popular detector in the first EAD challenge held in 

2019. RetinaNet detector with focal loss was used by some top 

performing teams ( Kayser et al., 2019; Oksuz et al., 2019 ) Multi- 

stage detectors use a region proposal network to find regions of 

interest for objects and then a classifier to refine the search to 

get the final predictions. A two-stage architecture R-CNN using 

the classical region proposal method was proposed by Girshick 

et al. (2014) whose speed was improved later by integrating an 

end-to-end trainable region proposal network (RPN), widely known 

as Faster R-CNN ( Ren et al., 2015 ). Due to the high precision of 

the Faster R-CNN, its architecture has become the base for many 

successful models in the object detection and segmentation do- 

mains, such as Cascade R-CNN ( Cai and Vasconcelos, 2018 ) and 

Mask R-CNN ( He et al., 2017 ). Although these two-stage networks 

have shown successful results on public datasets such as Pascal 

VOC ( Everingham et al., 2012 ) and COCO ( Lin et al., 2014 ), they are 

slow compared to the single-stage object detectors due to their re- 

gion proposal mechanism. 

In the field of Gastroenterology, Yamada et al. (2019) used 

Faster R-CNN with VGG16 as the backbone to detect challenging le- 

sions which are generally missed by colonoscopy procedures. Their 

reported prediction speed was not suitable for real-time examina- 

tion. Shin et al. (2018) detected Polyps using the Fast R-CNN archi- 

tecture with a region proposal network and an inception ResNet 

backbone. The two-stage detectors tend to yield better results than 

their single-stage contemporaries and have performed better at 

medical image analysis challenges. In the EAD2019 challenge, the 

top performing team ( Suhui Yang, 2019 ) used a Cascade R-CNN 

with a feature pyramid network (FPN) module and a ResNet back- 

bone. Similarly, Pengyi and Xiaoqiong ( 2019 ) who used Mask aided 

R-CNN with an ensemble of different ResNet backbones finished 

second. 

Anchor-free detectors A newly emerging detector type are the 

anchor-free detectors. Single and multi-stage detectors rely on the 

presence of anchors. Anchor free architectures claim to detect ob- 

jects while skipping the process of anchor definition. They rely 

on different geometrical characteristics like the center or corner 

points of objects ( Law and Deng, 2018; Duan et al., 2019 ). Duan 

et al. (2019) utilized the upper left and lower right corner to 

mark an object. The authors used classical backbones to gener- 

ate a heatmap from the feature map showing potential spots of 

the object corners. A corner pooling technique was then used to 

create the classic bounding box of object detection. Zhou et al. 

(2019) used a similar approach but instead they used a single point 

as the center of the bounding box. 

Because of real-time dependencies in medical applications 

like the detection of polyps which have to be removed directly 

( Wang et al., 2019 ), anchor-free detectors are receiving more atten- 

tion. Wang et al. (2019) designed an anchor-free automatic polyp 

detector which achieved the state-of-the-art results while main- 

taining real-time applicability. Liu et al. (2020) showed an anchor- 

free detector with state-of-the-art performance while maintaining 

real-time performance. 

2.2. Semantic segmentation 

Semantic segmentation involves pixel-level partitioning of an 

image into multiple segments where each segment represents a 

pre-defined object or scene category. Based on the success of deep 

learning approaches on medical imaging data for segmentation, we 

can divide these approaches broadly into the following groups: 

Models based on fully convolutional networks Fully Convolutional 

Network (FCN) architectures include only convolutional layers that 

enable them to take any arbitrary size input image to output a seg- 

mentation mask of the same size. These models are mostly based 

on the architecture developed by Long et al. (2015) for semantic 

image segmentation. 

Sun et al. (2017) proposed a multi-channel FCN (MC-FCN) to 

segment liver tumors from multi-phase contrast-enhanced CT im- 

ages. Kaul et al. (2019) proposed FocusNet for skin cancer and 

lung lesion segmentation. A benchmark study for polyp segmen- 

tation using FCNs was conducted by Gao et al. (2017) . Similarly, 

Brandao et al. (2017) used FCN architecture with VGG backbone for 

a polyp segmentation task. The same group explored integration of 

depth information to improve segmentation accuracy in their FCN- 

based model ( Brandao et al., 2018 ). 

Models based on encoder-decoder architecture U- 

Net ( Ronneberger et al., 2015 ), an encoder-decoder architecture, 

has become widely popular in medical image analysis commu- 

nity. U-Net based models have shown tremendous success, from 

cell segmentation ( Falk et al., 2019 ) to liver tumor segmenta- 

tion ( Chlebus et al., 2017 ) and beyond ( Sevastopolsky, 2017; 

Norman et al., 2018 ). 

In endoscopy imaging, U-Net-based models were used for in- 

strument segmentation on GI endoscopy data ( Jha et al., 2020 ). 

Khan and Choo (2019) developed a model based on U-Net archi- 

tecture for endoscopy artefact segmentation. Bano et al. (2020) di- 

rectly used U-Net architecture for segmenting placental vessels 

from Fetoscopy imaging. Motion induced segmentation exploiting 

U-Net in the framework was used to segment kidney stones in 

the Uteroscopy data ( Gupta et al., 2020 ). Models based on pyramid- 

based architecture In both detection and segmentation tasks, a cru- 

cial part is being able to identify objects and features of varying 

scales and sizes. One approach to this problem is to incorporate 

convolutional feature maps of varying resolutions during classifica- 

tion, which yields information about different scales of the image, 
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making it easier to detect both small and big objects. Such archi- 

tectures are referred to as pyramid networks . PSPNet ( Zhao et al., 

2017 ) is one of such design that incorporates global context infor- 

mation for the task of scene parsing using a pyramid pooling mod- 

ule. A similar pyramid-based approach can be found in the task of 

object detection with Feature Pyramid Network (FPN) ( Lin et al., 

2017a ). FPN extracts feature maps on a per-resolution-basis from 

the two bottom-up and top-down pathways of a pretrained archi- 

tecture. The output maps can then be upsampled and concatenated 

to output a segmentation map ( Seferbekov et al., 2018 ). 

Guo et al. (2019) used PSPNet as part of an ensemble model 

including a U-Net and SegNet architecture for the task of au- 

tomated polyp segmentation in colonoscopy images. Jia et al. 

(2020) trained a two-stage polyp detector named PLPNet which 

utilizes FPN for multiscale feature representation using both CVC- 

ColonDB ( Bernal et al., 2012 ) and CVC-ClinicDB ( Bernal et al., 2015 ). 

Their experimental results show that PLPNet outperforms other 

architectures in most regions on CVC-612 dataset ( Bernal et al., 

2015 ) and performs similarly on the ETIS dataset ( Silva et al., 

2014 ). Zhang and Xie (2019) utilized an FPN combined with a 

Cascade R-CNN for artefact detection in endoscopic images. Models 

based on dilated convolution architecture One of the challenges in 

the construction of semantic segmentation networks is to effec- 

tively control the size of the receptive field, providing adequate 

contextual information for pixel-level decisions while, at the same 

time, maintaining high spatial resolution and computational effi- 

ciency. The dilated or atrous convolution was proposed to address 

these challenges ( Yu and Koltun, 2015 ). Chen at al. (2018) proposed 

a family of very effective semantic segmentation architectures, 

collectively named DeepLab (also an encoder-decoder network), 

all using the dilated convolution. DeepLabv3+ uses atrous ker- 

nels within the spatial pyramid pooling (ASPP) module and 

depth-wise separable convolution to improve the computational 

efficiency. 

Guo et al. (2020a) proposed a fully convolutional network 

based on atrous kernels to segment polyps in endoscopy im- 

ages, with their network winning the GIANA 2017 challenge 

( Jorge and Aymeric, 2017 ). Nguyen et al. (2020a) augmented 

DeepLabv3+ architecture, showing its favourable performance 

when compared with other state-of-the-art methods on the CVC- 

ClinicDB Bernal et al. (2015) and ETIS-Larib ( Silva et al., 2014 ) 

datasets. Ali et at. (2020a) used DeepLabv3+ with ResNet50 back- 

bone to segment Barrett’s area from esophageal endoscopy data. 

Yang and Cheng (2019) developed a model based on DeepLabv3+ 

for multi-class artefact segmentation used with different backbone 

architectures. 

2.3. Endoscopy computer vision challenges 

Biomedical challenges allow to set-up a benchmark for different 

computer vision methods. Several sub-challenge categories for the 

development of automated methods for wide-range of problems in 

endoscopy including surgical instrument segmentation ( Ross et al., 

2020 ), robotic scene segmentation ( Allan et al., 2020 ), and com- 

puter aided detection and segmentation for polyps ( Bernal et al., 

2017; 2018 ) and Barrett’s cancer detection 

2 have been initiated 

under MICCAI EndoVis challenge 3 . Endoscopy artefact detection 

(EAD2019) is another challenge which was first initiated in 2019 

and launched in conjunction with IEEE International Symposium 

on Biomedical Imaging (ISBI) 2019 ( Ali et al., 2020c ). 

2 https://endovissub- barrett.grand- challenge.org . 
3 https://endovis.grand-challenge.org . 

3. The endocv challenge: Dataset, evaluation and submission 

In this section, we present the dataset compiled for the En- 

doCV2020 challenge, the protocol used to obtain the ground truth 

for this data, evaluation metrics that were defined to assess partic- 

ipants methods and a brief summary on the challenge setup and 

ranking procedure. 

3.1. Dataset and challenge tasks 

The EndoCV2020 challenge consists of two sub-challenges criti- 

cal in clinical endoscopy. The EAD2020 4 sub-challenge comprises 

of diverse endoscopy video frames collected from seven institu- 

tions worldwide, including three different modalities and five dif- 

ferent human organs (see Fig. 2 ). Endoscopy video frames were 

annotated for detection and localization of eight different arte- 

fact class occurrences identified by clinical experts in the chal- 

lenge team. These include specularity, saturation, misc. artefacts, 

blur, contrast, bubbles, instrument and blood. A total of 280 pa- 

tient videos from multiple organs and institutions have been used 

for curating this dataset. Over 45,478 annotations were performed 

for this challenge on both single frame and sequence video data. 

Example annotations are shown in Fig. 1 . Training data for the de- 

tection task consisted of total 2531 frames with 31,069 bounding 

boxes while 643 frames with 7511 binary masks were released for 

the segmentation task (except for blur, blood and contrast). The se- 

quence data were sampled by manually observing the amount of 

changes in artefact categories in the selected sequence. Sequences 

were required to change from large areas of artefacts to small or 

no artefact frames and vice versa mimicking natural occurrence in 

endoscopic procedures. Sequence data for training included 5 se- 

quences (232 frames) for detection and 2 sequences (70 frames) 

for semantic segmentation tasks sampled from 3 videos of 3 dif- 

ferent patients. For the test set, two sequence (80 frames) for de- 

tection task were used from 2 independent patient videos. As ob- 

served in Fig. 2 , due to the nature of occurrence of various arte- 

fact classes, the proportion of annotations for each class is differ- 

ent ( Fig. 3 ). However, the proportion of training and test samples 

per-class were matched in the test data (also see Table 1 ). 

Separately, EDD2020 5 is a new disease detection and seg- 

mentation sub-challenge that consists of five disease cate- 

gories ( Ali et al., 2020b ). The provided training set consisted of 

total 385 video frames comprising of 137 different patients used 

in this study with a total of 817 individual annotations. The an- 

notations included non-dysplastic Barrett’s esophagus (NDBE), sus- 

picious, high-grade dysplasia (HGD), cancer, and polyp categories 

(also see Fig. 1 ). These disease classes were from three differ- 

ent endoscopic modalities (white light, narrow-band imaging, and 

chromoendoscopy) acquired from four different clinical centers, in- 

vestigating four different GI organs. By including varied range of 

endoscopy data acquired from multiple organs like GI tract and 

liver in EAD sub-challenge and both upper and lower GI tract data 

for EDD sub-challenge, EndoCV2020 challenge aimed at developing 

more general methods that can potentially be applied in different 

endoscopy routine procedures independent to organ type. To our 

knowledge, this is the first comprehensive dataset for the multi- 

class detection and segmentation tasks. More details on the dataset 

are provided in Fig. 2 . The detailed breakdown of training set and 

test set for each specific task is provided in Table 1 . 

EndoCV2020 posed three specific challenge tasks (see Fig. 4 ) 

that included: 1) detection and localization task, 2) semantic seg- 

mentation task and 3) out-of-sample generalization task. For de- 

tection and generalization tasks, participants were provided with 

4 https://ead2020.grand-challenge.org . 
5 https://edd2020.grand-challenge.org . 
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Fig. 1. EndoCV2020 train data samples. (a) Endoscopy artefact detection and segmentation sub-challenge (EAD2020) samples. Both single frame samples (top) and sequence 

frames (bottom) were released. While detection annotations involve 8 classes, segmentation classes were limited to 5 distinct class instances, mostly large indefinable shapes 

that include specularity, saturation, imaging artefact, bubbles and instrument. It can be observed that for sequence data most artefact instances follow upto few sequential 

frames so it is desirable to achieve such training datasets. 4th sample in the single frame data for segmentation shows that even though bounding boxes for detection are 

provided for all specular regions, some segmentation labels were missing. This shows the presence of annotator variability in the data. (b) Endoscopy disease detection and 

segmentation training samples for sub-challenge EDD2020. First four samples belong to esophageal endoscopy while the last two frames were acquired during colonoscopy. 

It can be observed that disease classes in esophagus confuse often, mostly the patient choice here is Barrett’s where clearly suspected and high-grade dysplasia appear 

jointly. Similarly, for colonoscopy data protruded polyps can easily be confused with the surrounding ridge-like openings and specular areas. 

Table 1 

Breakdown of data: Number of samples and annotations released for EndoCV2020 challenge. 

EndoCV Tasks # of classes # of frames # of annotations 

Train Test Train Test 

EAD2020 Detection task 8 single: 2299 seq.: 232 single: 237 seq.: 80 31,069 7750 

Segmentation 

task 

5 643 162 7511 3228 

Generalization 

task 

8 na 99 na 3013 

EDD2020 Detection task 5 386 43 749 68 

Segmentation 

task 

5 386 43 749 68 

5 
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Ambroise Paré Hospital, Paris, France

University Hospital Vaudois, Switzerland

Centro Riferimento Oncol., IRCCS, Italy

ICL Cancer Institute, Nancy, France

Botkin Clinical City Hospital, Moscow, Russia

Istituto Oncologico Veneto, Padova, Italy

John Radcliffe Hospital, Oxford, UK

Train data Train and test data
EAD2020 EDD2020

Test data
Out-of-sample
test data

Institutes (Outer circle)

386 + 48
frames

White light (WL)

Narrow band imaging (NBI)

Chromo endoscopy

Modality (Middle circle)
Oesophagus

Stomach

Colon

Small intestine

Other

Organ (Inner circle)

Mean box width and heightTrain data Test data

specularity saturation artifact blur contrast bubbles instrument blood

Mean box width and height

Mean box width and height

BE suspicious HGD cancer polyp

Train data Test data

b. EAD2020 train and test sample with per class width and height for detection dataset

c. EDD2020 train and test sample with per class width and height for detection dataset

a. EndoCV2020 multi-center data cohort: Train and test data for each sub-challenge

Fig. 2. Endoscopy computer vision EndoCV2020 challenge dataset details. (a) Multi-center, multi-modality and multi-organ dataset for EAD and EDD sub-challenges. For 

EAD2020, 2532 frames with 8 class bounding boxes for the detection task out-of which 573 included ground truth masks for segmentation task were provided. Participants 

were assessed on 317 frames for detection and 162 frames for segmentation tasks. An additional 99 frames were used to test out-of-sample generalization task for EAD 

sub-challenge. While EDD2020 consisted of 384 train samples and 43 test samples for 5 disease classes. (b-c) The distribution of 8 artefact classes of EAD and 5 disease 

classes of EDD w.r.t. their size compared to their height and width of image is provided. Each class size variability is also shown on right as blobs with mean at center and 

radius as standard deviation. 
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Fig. 3. EndoCV2020 train and test per-class sample proportion: Train and test annotations for sub-challenge on artefact (A,B) and disease (C) detection and segmentation for 

each class label. 

Fig. 4. EndoCV2020 challenge task descriptions for each sub-challenge. The three tasks of the EndoCV2020 challenge includes: (a) The “detection” task aimed at the coarse 

localization and classification. Given an input image (left) a detection model (middle) outputs the artefact/disease class and coordinates of the containing bounding box. 

(b) The “segmentation” task is aimed at precise delineation of artefact/disease object boundaries. The model predicts binary output images denoting the presence (‘1’) or 

absence (‘0’) of each class. (c) The “out-of-sample generalization” task is aimed at assessing the ability of a model trained on different dataset to generalize on an unseen 

dataset usually coming from a different center. 
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Table 2 

Data collection information for each center: Data acquisition system and patient consenting information. 

Centers System info. Ethical approval Patient consenting type 

John Radcliffe Hospital, Oxford, UK Olympus GIF-H260Z, REC Ref: 16/YH/0247 Universal consent 

EVIS Lucera CV260 

Ambroise Paré Hospital, Paris, France Olympus Exera 195 N 

◦ IDRCB: 2019-A01602-55 Endospectral study 

Istituto Oncologico Veneto, Padova, Italy Olympus endoscope H190 NA Generic patients consent 

Centro Riferimento Oncologico, IRCCS, Italy Olympus VG-165, CV180, H185 NA Generic patients consent 

ICL, Cancer Institute, Nancy, France Karl Storz 27005BA NA Generic patients consent 

University Hospital Vaudois, Switzerland NA (flexible cystoscopy) NA Generic patients consent 

Botkin Clinical City Hospital, Moscow, Russia BioSpec NA Generic patients consent 

both frame label annotations for single and sequence images for 

the EAD2020 challenge while only single frames were released 

for EDD2020. The generalization task was only evaluated for the 

EAD2020 and only consisted of test data from an unseen institu- 

tion that was not present in any training set. It is to be noted that 

test samples for all other tasks were taken from different patients 

as well even though they were collected from the same centers 

as that in the training set. EAD2020 attracted nearly 700 partic- 

ipants with 29 teams on the leaderboard and EDD2020 recorded 

nearly 550 participants with 14 teams on the leaderboard. Partic- 

ipation was permitted in either one or both sub-challenges. Both 

challenge datasets are publicly available for research and educa- 

tion. EAD2020 challenge data is available at Mendeley Data ( https: 

//doi.org/10.17632/c7fjbxcgj9.3 ) and EDD2020 dataset is available 

at IEEE dataPort ( https://doi.org/10.21227/f8xg-wb80 ). 

3.1.1. Ethical and privacy aspects of the data 

Data for EAD2020 were collected from 7 different centers while 

for EDD2020 were from 4 centers. Each center was responsible for 

handling the ethical, legal and privacy of the relevant data sent 

to the challenge organizers. The data collection from each center 

included either two or all essential steps described below: 

1. Patient consenting procedure at the home institution (required) 

2. Review of the data collection plan by a local medical ethics 

committee or an institutional review board 

3. Anonymization of the video or image frames (including de- 

mographic information) prior to sending to the organizers (re- 

quired) 

Table 2 illustrates the ethical and legal processes fulfilled by 

each center along with the endoscopy equipment used for the data 

collected for this challenge. 

3.1.2. Annotation protocol 

A team of two clinical experts and one post-doctoral researcher 

determined the class labels for the artefact detection challenge 

while for the disease detection challenge we consulted with four 

senior Gastroenterologists (over 20 years experience) regarding the 

class labels in the GI tract endoscopy. For each sub-challenge se- 

nior Gastroenterologists sampled the video frames from a small 

sub-set of video data collected from various institutions and multi- 

patient data cohort (see Fig. 2 ). These frames were then taken as 

reference to produce bounding box annotations for the remaining 

train-test dataset by four experienced postdoctoral fellows. Finally, 

further validation by three clinical endoscopists independently was 

carried out to assure the reference standard. The ground-truth la- 

bels were randomly sampled (1 per 20 frames) during this process. 

However, after the completion of this phase the entire annotation 

was discussed and reviewed together with the team of senior Gas- 

troenterologists. Priority was given to indecisive frame annotations 

to have a collective opinion from experts. Following general anno- 

tation strategies were used by clinical experts and researchers: 

• For the same region, multiple boxes (for detection/ 

generalization) or pixel-wise delineation (for semantic seg- 

mentation) were performed if the region belonged to more 

than 1 class 
• The minimal box sizes were used to describe the class re- 

gion and similarly possible small annotation areas for seman- 

tic segmentation were merged instead of having multiple small 

boxes/regions 
• Each class type was determined to be distinctive and general 

across all datasets 

For EAD dataset, defined class categories used included below 

descriptions ( Ali et al., 2021 ). Related samples are presented in 

Fig. 1 (a). 

1. blur → fast camera motion 

2. bubbles → a thin film of liquid with air that distorts tissue ap- 

pearance 

3. specularity → mirror-like reflection 

4. saturation → overexposed bright pixel areas 

5. contrast → low contrast areas from underexposure 

6. misc. artefact → chromatic aberration, debris etc. 

7. instrument → biopsy or any other instrument 

8. blood → flow of red colored liquid due to biopsy or surgery 

For EDD dataset, both upper-GI (gastroscopy) and lower-GI 

(colonoscopy) data were used with below defined class categories 

(please refer to the samples in Fig. 1 (b)): 

1. NDBE or BE → non-dysplastic Barrett’s esophagus determined 

by a squamo-columnar junction above the gastric fold in the 

esophagus ( Eluri and Shaheen, 2017 ) 

2. HDG → high-grade dysplasia or early adenocarcinoma deter- 

mined by irregular mucosal appearance ( Wang et al., 2012 ) 

3. suspected → aka low-grade dysplasia, an early sign of pathol- 

ogy ( Eluri and Shaheen, 2017 ) 

4. cancer → abnormal growth ( Boland et al., 2005 ) 

5. polyp → abnormal protrusion of the mucosa ( Williams et al., 

2013 ) 

For the annotations of disease classes, pathology reports were 

also used to validate the class category for non-dysplastic Barrett’s 

esophagus (BE), high-grade dysplasia (HGD), suspected (dysplasia 

or low-grade dysplasia), and cancer categories. That is, expert an- 

notations (three senior gastroenterologists) were taken and sup- 

ported with the pathology report for most disease categories in- 

cluding some indecisive cases. However, for the polyp class, both 

the protruded and flat polyps were marked by two experienced 

post-doctoral researchers and checked by a senior lower-GI special- 

ist (no further categorization based on pathology report was done 

except for cancer cases). 

3.2. Evaluation metrics 

The challenge problems fall into three distinct categories. For 

each there already exist well-defined evaluation metrics used by 

the wider imaging community which we use for evaluation here. 
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Codes related to all evaluation metrics used in this challenge are 

also available online 6 . 

3.2.1. Spatial localization and classification task 

Metrics used for multi-class disease detection: 

• IoU - intersection over union: This metric measures the overlap 

between two bounding boxes A and B, where A is segmented 

region and B is annotated GT. It is evaluated as the ratio be- 

tween the overlapped area A ∩ B over the total area A ∪ B occu- 

pied by the two boxes: 

IoU = 

A ∩ B 

A ∪ B 

(1) 

where ∩ , ∪ denote the intersection and union respectively. In 

terms of numbers of true positives (TP), false positives (FP) and 

false negatives (FN), IoU (aka Jaccard JC) can be defined as: 

IoU/JC = 

T P 

T P + F P + F N 

(2) 

• mAP - mean average precision: mAP of detected class instances 

is evaluated based on precision (p) defined as p = 

T P 
T P+ F P and re- 

call (r) as r = 

T P 
T P+ F N . This metric measures the ability of an ob- 

ject detector to accurately retrieve all instances of the ground 

truth bounding boxes. Average precision (AP) is computed as 

the Area Under Curve (AUC) of the precision-recall curve of de- 

tection sampled at all unique recall values (r 1 , r 2 , . . . ) whenever 

the maximum precision value drops: 

AP = 

∑ 

n 

{
( r n +1 − r n ) p interp (r n +1 ) 

}
, (3) 

with p interp (r n +1 ) = max 
˜ r ≥r n +1 

p( ̃ r ) . Here, p(r n ) denotes the precision 

value at a given recall value. This definition ensures monotoni- 

cally decreasing precision. The mAP is the mean of AP over all 

N classes given as 

mAP = 

1 

N 

N ∑ 

i =0 

AP i (4) 

This definition was popularised in the PASCAL VOC chal- 

lenge ( Everingham et al., 2012 ). The final mAP (mAP d ) was 

computed as an average mAPs for IoU from 0.25 to 0.75 with 

a step-size of 0.05 which means an average over 11 IoU levels 

is used for 5 categories in the competition (mAP @[ . 25 : . 05 : 

. 75] ). 

Participants were finally ranked on a final mean score ( score d ) , 

a weighted score of mAP and IoU represented as: 

score d = 0 . 6 × mAP d + 0 . 4 × IoU d (5) 

Standard deviation between the computed mAPs ( ±σscore d 
) are 

taken into account when the participants have the same score d . 

Scores on both single frame data and sequence data were first sep- 

arately computed and then averaged to get the final score d of the 

detection task. 

3.2.2. Segmentation task 

Metrics widely used for multi-class semantic segmentation of 

disease classes have been used for scoring semantic segmentation. 

The final semantic score score s comprises of an average score of F 1 - 

score (Dice Coefficient, DSC), F 2 -score, precision (PPV), recall (Rec) 

and accuracy (Acc). 

Precision, recall, F β -scores: 

These measures evaluate the fraction of correctly predicted 

instances. Given a number of true instances # GT (ground-truth 

6 https://github.com/sharibox/EndoCV2020 . 

bounding boxes or pixels in image segmentation) and number of 

predicted instances # Pred by a method, precision is the fraction of 

predicted instances that were correctly found, P P V = 

# TP 
# Pred . 

where 

# TP denotes number of true positives and recall is the fraction 

of ground-truth instances that were correctly predicted, Rec = 

# TP 
# GT . 

Ideally, the best methods should have jointly high precision and 

recall. F β-scores gives a single score to capture this desirability 

through a weighted ( β) harmonic means of precision and recall, 

F β = (1 + β2 ) · P P V ·Rec 
(β2 ·P P V )+ Rec 

. 

Participants are ranked based on the value of their semantic 

performance score given by: 

score s = 0 . 25 × (p + r + F 1 + F 2 ) (6) 

Standard deviation between each of the subscores are computed 

and averaged to obtain the final ±σscore s which is used during eval- 

uation for participants with same final semantics score. We have 

also used provided accuracy of each semantic method in this pa- 

per for scientific completeness. Accuracy (Acc) can be defined as 

Acc = 

T P+ T N 
T P+ T N+ F P+ F N . 

3.2.3. Out-of-sample generalization task 

Out-of-sample generalization of disease detection is defined as 

the ability of an algorithm to achieve similar performance when 

applied to a completely different institution data. To assess this, 

participants were challenged to apply their trained models on 

video frames that were neither included in the training nor in the 

test data of the other tasks. Assuming that participants applied the 

same trained weights, the out-of-sample generalization ability was 

estimated as the mean deviation between the mAP score of the de- 

tection and out-of-sample generalization test datasets of each class 

i for deviation greater than a tolerance of { 0 . 1 × mAP i 
d 
} . 

dev g = 

1 

N 

∑ 

i 

dev g 
i 

(7) 

dev g 
i = 

{
0 , for | mAP d 

i − mAP g 
i | / mAP d 

i ≤ 0 . 1 

| mAP d 
i − mAP g 

i | , for | mAP d 
i − mAP g 

i | / mAP d 
i 
> 0 . 1 

(8) 

The best algorithm should have high mAP g and low dev g (→ 0 ). 

Participants were finally ranked using a weighted ranking score 

for out-of-sample generalization as R gen = 1 / 3 · Rank( dev g ) + 2 / 3 ·
Rank( mAP g ) where Rank( mAP g ) is the rank of a participant when 

sorted by mAP g in ascending order. 

3.3. Challenge setup, and ranking procedure 

The challenge proposal was submitted to the IEEE ISBI challenge 

organisers and was peer-reviewed by two reviewers. Upon the ac- 

ceptance, the challenge website 7 was launched on 1st November 

2019. Training datasets for each sub-challenge (EAD and EDD) were 

first provided (via AWS amazon S3 for EAD data and IEEE data 

portal for EDD data 8 ). The test data was released nearly 20 days 

before the leaderboard closing through a docker container set-up. 

A docker based online leaderboard was established separately for 

EAD2020 9 and EDD2020 10 where each participating team was al- 

lowed to submit a maximum of 2 submissions per day on the final 

test data. A wiki-page 11 was set-up for the submission guidelines 

7 https://endocv.grand-challenge.org . 
8 https://ieee-dataport.org/competitions/endoscopy-disease-detection-and- 

segmentation-edd2020 . 
9 https://ead2020.grand-challenge.org/evaluation/leaderboard/ . 

10 https://edd2020.grand-challenge.org/evaluation/leaderboard/ . 
11 https://github.com/sharibox/EndoCV2020/wiki . 
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and a code repository with evaluation metrics used in the chal- 

lenge was also provided 

12 . 

For the ranking of different task categories, we used the metrics 

described in Section 3.2 . The participants were able to see only 

the final score in the leaderboard and all other sub-scores were 

hidden for the final test data. This was done to avoid any class 

specific refinement on the released test set. Notably, the detection 

task was bounded by two IoU thresholds (mAP @ IoU thresholds 

[ . 25 : . 05 : . 75] ) and the overall IoU scores itself. For the detection 

task, participants were ranked on a final weighted score of mAP 

and IoU (see Eq. (5) ), while for the segmentation task, participants 

were ranked based on a final weighted average of DSC or F1-score, 

F2-score, precision and recall (see Eq. (6) ). For the generalization 

task, both the mAP score gap dev g and mAP on generalization data 

mAP g were taken into account. 

4. Method summary of the participants 

In this Section, we present summary of top participating teams 

for both EAD2020 and EDD2020 sub-challenges. Each of these 

teams has participated in either detection task or segmentation 

task or both. 

4.1. EAD2020 Participating teams 

• Team polatgorkem ( Polat et al., 2020 ) The team used an 

ensemble of three object detectors: Faster R-CNN (ResNet50 

with FPN), Cascade R-CNN (ResNet50 with FPN), RetinaNet 

(ResNet101 with FPN). Class-agnostic NMS operation, where the 

model predictions were passed through the NMS procedure to- 

gether for all classes, was applied to the output of each indi- 

vidual model. During ensemble, only the bounding boxes for 

which majority of the models agree were kept. False-positive 

elimination was applied as a post-processing step to eliminate 

same-type predicted boxes located close to each other. For each 

class, an IoU threshold was determined. 
• Team CVML ( Guo et al., 2020b ) CVML team’s model was in- 

spired by DeepLabV3+. The team experimented with several 

changes including the backbone, the global pooling, the dilated 

kernels and the convolution kernels with dilation rates. More- 

over, the squeeze-and-excitation module is added behind the 

balanced ASPP module to introduce attention gating at the out- 

put of the original encoder to better utilize the information 

available in the computed feature maps. In addition, the orig- 

inal multi-class classifier is replaced with 5 binary classifiers to 

enable segmentation of the overlapping objects. At test time, 

they used some post-processing techniques such as rotation, 

holes filling and removal of objects from the image boundary. 
• Team mouradai_ox ( Gridach and Voiculescu, 2020 ) The team 

proposed a novel neural network called OxEndoNet to tackle 

the segmentation challenge. The network uses the pyramid di- 

lated module (PDM) consisting of multiple dilated convolutions 

stacked in parallel. For each input image, pre-trained ResNet50 

(on ImageNet) was used as the backbone to extract the feature 

map followed by multiple PDM layers to form an end-to-end 

trainable network. In the final architecture, they used four PDM 

layers; each layer used four parallel dilated convolutions with 

a filter size of 3 × 3 and dilation rates of 1, 2, 3, and 4. They 

fed the final PDM layer to a convolution layer followed by a bi- 

linear interpolation to up-scale the feature map to the original 

image size. 
• Team mimykgcp ( Y et al., 2020 ) The team re-trained the 

ResNeXt101 backbone with the cardinality parameter set to 64. 

12 https://github.com/sharibox/EndoCV2020 . 

To enable detection of artefacts at different scales, an FPN was 

integrated into the object detectors. Data-Augmentation tech- 

niques based on RandAugment ( Cubuk et al., 2019 ) were in- 

corporated to improve the generalization capability. For the 

segmentation task, a U-Net with an ImageNet pre-trained 

ResNext50 backbone was used. 
• Team DuyHUYNH ( Huynh and Boutry, 2020 ) For segmenta- 

tion, the team exploited a model based on U-Net++ using pre- 

trained EfficientNet on ImageNet as the backbone. The model 

was trained to minimize F2-loss using the Adam optimizer. At 

the test-time the team used five transformations: horizontal, 

vertical flipping, and three rotations. For detection, the team 

used the bounding boxes deduced from the results of their seg- 

mentation model on the EDD dataset, while for EAD, they used 

YOLOv3 pre-trained on COCO. 
• Team mathew666 ( Hu and Guo, 2020 ) The team used Cascade 

RCNN architecture with the ResNeXt backbone in a FPN based 

feature extraction paradigm. Data augmentation with probabil- 

ity of 0.5 for horizontal flip was applied. The team also utilised 

multi-scale detection to tackle with variable sized object detec- 

tion. 
• Team arnavchavan04 ( Jadhav et al., 2020 ) For the object detec- 

tion task, the team used an ensemble of three models: Faster 

R-CNN (ResNext101 + FPN), RetinaNet (ResNet101 + FPN) and 

Faster R-CNN (ResNext101 + DC5). For the segmentation task, 

an ensemble of multiple depth EfficientNet models with FPN 

trained on multiple optimization plateaus (DSC, BCE, IoU) was 

designed. Data augmentation techniques like horizontal and 

vertical flip, cutout (random holes), random contrast, gamma, 

brightness, rotation along with CutMix ( Yun et al., 2019 ) strat- 

egy for the segmentation task were incorporated to improve 

generalization capability. 
• Team anand_subu ( Subramanian and Srivatsan, 2020 ) The team 

used RetinaNet with ResNet101 backbone. For the segmen- 

tation task, the team used an ensemble network with U- 

Net with a ResNet50 backbone and DeepLabV3. However, the 

team reported U-Net with ResNet101 as their best architec- 

ture of choice. All the backbones were pre-trained on the Im- 

ageNet. Real-time augmentation techniques like rotation, shear, 

random-image-flip, image contrast, brightness, saturation, and 

hue variations were incorporated while training to improve the 

generalization capability of the network. 
• Team higersky ( Chen et al., 2020 ) The team implemented Hy- 

per Task Cascade and Cascade R-CNN with ResNeXt101 back- 

bone as a feature extractor and FPN module for multi-scale 

feature representation for the object detection task. They ap- 

plied Soft-NMS ( Bodla et al., 2017 ) to avoid mistakenly dis- 

carded bounding-boxes. For the semantic segmentation task, 

the team incorporated DeepLabV3+ with ResNet101 backbone 

and trained with BCE and DICE losses. The backbones for both 

tasks were pre-trained on ImageNet. 
• Team MXY ( Yu and Guo, 2020 ) The team used a Cascade R- 

CNN with an ImageNet pre-trained ResNet101 backbone and 

a FPN module. Post-detection, soft-NMS was added to remove 

false predictions. The dataset was augmented by random re- 

sizing technique to improve the final output scores. The team 

used more weight for the losses of specularity, artefact, and 

bubbles classes to overcome classification difficulties between 

those classes. 
• Team StarStarG The team used Cascade-RCNN as network ar- 

chitecture and adopted COCO2017 pre-trained ResNeXt as back- 

bone with FPN and multi-stage RCNN framework. The authors 

also integrated Deformable Convolutional Networks in back- 

bone to improve the model performance. 
• Tesam xiaohong1 ( Gao and Braden, 2020 ) The team built their 

detection and segmentation method upon Yolact-based instance 
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Table 3 

Endoscopy artefact detection and segmentation (EAD2020) method summary for top 13 teams (out-of 33 valid submissions). 

Team EAD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code 

Detection GPU Test time 

polatgorkem 

(METU_DLCV) 

Faster RCNN + 

CascadeRCNN + 

Retinanet 

Resize Normalise Ensemble Accuracy + ResNet50, 

ResNet101 

Yes (R, F) a COCO RTX 2080 0.76 GorkemP/EAD 

qzheng5 (CVML) Faster RCNN Resize Normalise Context Accuracy + ResNet101 Yes (R, T, LD) a COCO GTX1060 0.20 CVML/EAD2020 

xiaohong1 YOLACT + 

NMS-within-class 

None Context Accuracy + , speed+ ResNet101 None ImageNet Tesla K80 0.14 yolact 

mathew666 Faster RCNN + 

NMS 

None Context Accuracy + ResNet101 Yes NA RTX 2080 NA NA 

VinBDI EfficientDet D0 Resize (512x512) Multiscale scalable Speed + EfficientNet B0 Yes (S, Sc, R, N, 

MU) a 
COCO RTX 2080TI NA endocv2020-seg 

higersky Cascade R-CNN None Cascading Accuracy + ResNeXt101 Yes NA GTX1080 Ti NA NA 

StarStarG Cascade R-CNN Resize Normalise Cascading Accuracy + ResNeXt101 Yes (F, S) a NA RTX 2080 NA NA 

anand_subu RetinaNet Resize Normalise Context Accuracy + , speed+ ResNet101 Yes (R, Sh, F, C, B, 

St, H) a 
ImageNet GTX1050Ti 0.36 anand- 

subu/EAD2020 

arnavchavan04 RetinaNet + 

FasterRCNN (FPN + 

DC5) 

Resize (512x512) Ensemble Accuracy + ResNet50; 

ResNeXt101 

Yes (F, C, R) a ImageNet Tesla T4 NA 

ubamba98/EAD2020 

MXY Cascase RCNN + 

FPN 

Resize Normalise Cascading Accuracy + ResNet101 Yes (F) a ImageNet RTX 2080 Ti 0.80 Carboxy/EAD2020 

mimykgcp Faster RCNN + + 

RetinaNet 

Resize Normalise Ensemble Accuracy + , speed+ ResNeXt101 Yes (RA) a COCO GTX 1080Ti 0.58 NA 

DuyHUYNH (LRDE) YOLOv3 Normalise Multiscale Accuracy + , 

speed++ 

Darknet53 Yes (RA) a COCO GTX1080 Ti 0.07 

dhuynh/endocv2020 

Segmentation 

qzheng5 (CVML) DeepLabv3 + Resize (513x513) 

Normalise 

Encoder-decoder, 

mutiscale 

Accuracy + SE-ResNeXt50 (R, T, LD + TTA) a ImageNet GTX1080Ti 0.50; 5 ( + TTA) CVML/EAD2020 

mouradai_ox Pyramid dilated 

module 

Resize (512x512) 

Normalise 

Multiscale Accuracy + , speed+ ResNet50 Yes (T, R, LD) a ImageNet Colab 0.37 NA 

arnavchavan04 FPN + EfficientNet Resize (512x512) Ensemble Accuracy + EfficientNet Yes (F, C, R) a ImageNet Tesla T4 NA 

ubamba98/EAD2020 

VinBDI U-Net + BiFPN Resize (512x512) Ensemble, 

Endcoder-decoder 

Accuracy + , speed+ EfficientNet B4; 

ResNet50 

Yes (S, Sc, R, F) a COCO ImageNet RTX 2080TI NA endocv2020-seg 

higersky DeepLabv3 + None Encoder-decoder, 

mutiscale 

Accuracy + ResNet101 Yes (F;S;Sc;Bl) a ImageNet GTX1080 Ti NA NA 

anand_subu U-Net Resize (512x512) Encoder-decoder Accuracy + ResNet50 Yes (S, F, R, N, Cr, 

Bl, H, St, C, Sp) a 
ImageNet GTX1050Ti 0.17 anand- 

subu/EAD2020 

DuyHUYNH (LRDE) U-Net + Normalise Encoder-decoder Accuracy + , speed+ EfficientNet B1 Yes (R, S, F, Sc, LD, 

TTA) a 
ImageNet GTX1080 Ti 0.97 

dhuynh/endocv2020 

mimykgcp U-Net Resize Normalise Encoder-decoder Accuracy + , speed+ ResNeXt50 Yes (RA) a ImageNet RTX 2070 0.25 NA 

a B: brightness, C: contrast, F: Flip, H: hue, LD: Local deformation, N: noise, R: Rotation, RA: RandAugment, S: Shift, Sc: scaling Sh: shear, St: saturation, Mu: mixup, T: Translation, TTA: test-time augmentation 
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Table 4 

Endoscopy disease detection and segmentation (EDD2020) method summary for top 7 teams (out-of 14 submission). 

Team EDD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code 

Detection GPU Test time 

Adrian YOLOv3 + Faster 

R-CNN 

Resize Ensemble Accuracy + , speed+ Darnet53 

ResNet101 

Yes (F, D) a COCO public polyp 

dataset 

Tesla P100 0.41 Adrian398/EDD 

shahadate Mask R-CNN Resize Normalise Multiscale Accuracy, speed + ResNet101 Yes (Sc, R, F, Cr, S, 

N) a 
COCO RTX2060 NA EDD-Mask-rcnn 

VinBDI EfficientDet D0 Resize (512x512) Ensemble Speed + EfficientNet B0 Yes (S, Sc, R, N, 

MU) a 
COCO RTX 2080TI NA endocv2020-seg 

YH_Choi CenterNet NA Context Accuracy + ResNet50 Yes(Du, R, F, C, B) a PASCAL VOC2012 RTX 2080 2 NA 

DuyHUYNH (LRDE) U-Net + Normalise Encoder-decoder Speed EfficientNet B1 Yes (R, S, F, Sc, LD, 

TTA) a 
ImageNet GTX1080 Ti 1.53 

dhuynh/endocv2020 

mimykgcp 

(vishnusai) 

Faster RCNN + 

RetinaNet 

Resize (256x256) 

normalise 

Ensemble Accuracy + , speed+ ResNeXt101 Yes (RA) a COCO GTX1080Ti 0.58 NA 

Segmentation 

Adrian YOLOv3 + Faster 

R-CNN + Cascade 

RCNN 

Resize Ensemble Accuracy + Darnet53 

ResNet101 

Yes (F, D) a COCO public polyp 

dataset 

Tesla P100 

Adrian398/EDD2020 

shahadate MaskRCNN Resize Normalise Multiscale Accuracy, speed + ResNet101 Yes (Sc, R, F, Cr, S, 

N) a 
COCO RTX2060 EDD-Mask-rcnn 

VinBDI U-Net + BiFPN Resized (512x512) Ensemble 

Endcoder- 

decoder 

Accuracy + , speed+ EfficientNet B4 

ResNet50 

Yes (S, Sc, R, F) a COCO ImageNet RTX 2080 Ti NA endocv2020-seg 

YH_Choi U-Net NA Encoder-decoder Accuracy + ResNet50 Yes(Du, R, F, C, B) a PASCAL VOC2012 RTX 2080 7 NA 

DuyHUYNH (LRDE) U-Net + Normalise Encoder-decoder Accuracy + , speed+ EfficientNet B1 Yes (R, S, F, Sc, LD, 

TTA) a 
ImageNet GTX1080 Ti 1.53 endocv2020 

drvelmuruganb SUMNet NA Encoder-decoder Accuracy + , 

speed++ 

VGG11 Yes(R, A, Sc, P, and 

Cr) a 
ImageNet GTX1080 Ti 0.16 

drvelmuruganb/EDD2020 

mimykgcp U-Net Resize Normalise Encoder-decoder Accuracy + ResNeXt50 Yes (RA) a ImageNet RTX2070 1.25 NA 

a A: affine, B: brightness, C: contrast, Cr: cropping, D: distortion, Du: duplication, F: flip, H: hue, LD: local deformation, Mu: mixup, N: noise, P: perspective transformation, R: rotation, RA: RandAugment library, S: shift, Sc: 

scaling, Sh: shear, St: saturation, T: translation, TTA: test-time augmentation 
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segmentation system. Yolact ( Bolya et al., 2019 ) adds a segmen- 

tation component to the RetinaNet to ensure the tasks of de- 

tection, classification and delineation which are performed si- 

multaneously. The network uses ResNet101 as an imageNet pre- 

trained backbone. 

4.2. EDD2020 Participating teams 

• Team Adrian ( Krenzer et al., 2020 ) The team compared two dif- 

ferent models: YOLOv3 with darknet-53 backbone and Faster 

R-CNN with ResNet-101 backbone. For post-processing, both 

algorithms in the final architecture were combined. For the 

second task, the team leveraged the state-of-the-art Cascade 

Mask R-CNN with ResNeXt-151 as a backbone. The team trained 

YOLOv3 using categorical cross-entropy for classification and 

default localization loss, while for Cascade Mask-RCNN, they 

used binary cross entropy for classification and mask, and L1 

smooth for boundary box regression. 
• Team Shahadate ( Rezvy et al., 2020 ) The team implemented a 

modified benchmark Mask R-CNN infrastructure model on the 

EDD2020 dataset. They used COCO trained weights and biases 

with the ResNet101 backbone as an initial feature extractor. 

The network head of the backbone model was replaced with 

new untrained layers that consisted of a fully-connected classi- 

fier with five classes and an additional background class. Non- 

maximum suppression was used to reduce overlapped detec- 

tion. Finally, the team merged multiple bounding boxes for the 

same class label as one bounding box to match with the mask 

annotation. 
• Team VinBDI ( Nguyen et al., 2020b ) For the object detection 

task, the team designed an ensemble of six EfficientDet models 

(with BiFPN modules) trained on six different EfficientNet back- 

bones. A total of eleven augmentation techniques were incorpo- 

rated to increase the output prediction scores of the model. For 

the segmentation task, an ensemble of U-Net and EfficientNet- 

B4 and BiFPN with the ResNet50 backbone was devised. The 

same team also participated in the EAD2020 sub-challenge. 
• Team YH_Choi ( Choi et al., 2020 ) The team implemented 

a CenterNet-based model with the PASCAL VOC pretrained 

ResNet50 backbone for the object detection task. A similar 

backbone with U-Net was devised for the segmentation task. 

The dataset was randomly duplicated to tackle class-imbalance. 

To improve generalization performance, each image was aug- 

mented 86 times by randomly choosing augmentation tech- 

niques from the pool of rotation, flipping, contrast enhance- 

ment and brightness adjustment. 
• Team drvelmuruganb ( Balasubramanian et al., 2020 ) For the 

segmentation of disease classes the team used an encoder- 

decoder based SUMNet architecture with the ImageNet pre- 

trained VGG11 backbone. The authors also applied several aug- 

mentation strategies including variable brightness and HSV val- 

ues, multiple crops and geometric transformations such as rota- 

tion, affine, scaling and projective were also applied to improve 

the accuracy. 

5. Results 

For the EAD2020 sub-challenge, we present the results of 12 

participating teams for multi-class artefact detection task and 8 

teams for segmentation task. Similarly, for EDD2020 sub-challenge, 

we have included top 6 teams for detection and 7 teams for 

segmentation of multi-class diseases. In this section we present 

the quantitative and qualitative results for each team based on 

the evaluation metrics discussed in Section 3.2 . For the EAD2020 

sub-challenge, 3 different test dataset were released: 1) single- 

frame data for detection and segmentation, 2) sequence dataset for 

detection only and 3) out-of-sample data for generalization task 

only. For the detection task, the average of the aggregated sum of 

the detection scores for the single frame data and the sequence 

data were considered for final scoring. While, for the EDD2020 

challenge only single frame detection and segmentation data were 

released. Below we present the result for each sub-challenges 

separately. 

5.1. Quantitative results 

5.1.1. EAD2020 Sub-challenge 

In this section, the results of the participant teams in the 

EAD2020 challenge to detect and segment artefacts are presented. 

Detection task for EAD2020 

Table 5 and Table 6 present the mAP values computed at dif- 

ferent IoU thresholds (i.e., 25%, 50%, and 75%), overall mAP, over- 

all IoU, and the final score for the detection of the artefacts from 

single frame and sequence data, respectively. Additionally, we also 

provide results of baseline methods that include YOLOv3 and Reti- 

naNet with darknet53 and ResNet101 backbones, respectively. In 

Table 5 (i.e., single frame detection), it can be observed that the 

team polatgorkem that implemented ensemble technique with Cas- 

caded RCNN, Faster-RCNN and RetinaNet surpassed the other teams 

by achieving the highest final score on the leaderboard (score d , 

Eq. 5 ) of 25.123 ± 7.124 with the best overall mIoU of 36.579 pro- 

viding a high overlap ratio between the generated bounding box 

with ground truth per frame. The method proposed by the team 

arnavchavan04 comes in the second place with score d of 24.079 ±
9.342 with 9% more mAP than the winning team but large sac- 

rifice in the mean IoU. Similarly, for sequence data in Table 6 , 

team polatgorkem maintained the first position with a final score of 

25.529 ± 10.326. While the second scorer team VinBDI suggested 

a method that obtained a better balanced between mAP and mIoU 

scores. 

Furthermore, Table 7 shows the overall ranking for the teams 

in terms of Score (R score d 
), mAP (R mAP ), and generalizability perfor- 

mance (R g ) in addition to, mAP d , mAP seq , score d , mAP g and dev g . 

The baseline RetinaNet recorded the least deviation but also the 

least mAPs. On considering the mAP g and dev g together for the fi- 

nal ranking of the generalization task, teams VinBDI and StarStarG 

secured the first place. On observing at the class-wise performance 

in Fig. 5 (a) (i.e., single frame), it can be seen that there was a high 

detection score (score d ) and AP for larger artefact instances such 

as saturation and contrast. Similarly, most of the teams had a high 

IoU with the ground truth when detecting the instrument class. 

On the other hand, the detection and localization of smaller arte- 

fact instances such as bubble and saturation showed the degraded 

performances by all the participating teams and by the baseline 

methods. 

Segmentation task for EAD2020 

Table 8 presents the JC, DSC, F2, PPV, recall, and accuracy ob- 

tained by each team and baseline methods. As shown, the method 

proposed by team arnavchavan04 and team VinBDI had the best 

performance in terms of JC ( > 62%), DSC ( > 67%), F2 ( > 67%) 

and PPV ( > 80%) proving the ability to segment less false posi- 

tive regions. However, the method suggested by team qzheng5 and 

team DuyHUYNH segmented more true positive regions compared 

to other teams obtaining top recall values of 0.8352 and 0.828. 

The baseline methods showed a low performance in terms of fi- 

nal score compared to the methods proposed by the participants. 

Furthermore, Fig. 6 (a) shows class-wise scores for DSC, PPV and 

Recall. Similar to detection, segmenting larger instances like the 

saturation and the instrument obtained the high scores. Specular- 

ity, bubble and the artefact classes were among least performing 

classes for many teams and baseline methods. 
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Table 5 

EAD2020 results for the detection task on the single frame dataset. mAP at IoU thresholds 25%, 50% and 75% are pro- 

vided along with overall mAP and overall IoU computations. Overall scores are computed at 11 IoU thresholds and averaged. 

Weighted detection score score d is computed between overall mAP and IoU scores only. Three best scores for each metric 

criteria are in bold. 

Team names mAP 25 mAP 50 mAP 75 overall mAP d overall mIoU d mAP δ score d ± δ

polatgorkem 26.886 17.883 5.608 17.486 36.579 7.124 25.123 ± 7.124 

qzheng5 33.134 20.084 5.570 19.720 27.185 8.820 22.706 ± 8.820 

xiahong1 30.627 19.384 4.935 18.512 26.388 8.428 21.663 ± 8.428 

mathew666 20.360 19.440 7.783 18.091 32.692 5.617 23.931 ±5.617 

VinBDI 38.429 25.426 7.053 24.069 12.644 10.291 19.499 ± 10.291 

higersky 36.920 25.770 9.452 24.771 17.298 8.707 21.781 ± 8.707 

StarStarG 41.800 29.984 10.733 28.380 16.250 10.042 23.528 ± 10.042 

anand_subu 29.755 19.893 5.271 18.886 24.029 7.619 20.943 ± 7.619 

arnavchavan04 38.752 27.247 9.858 26.021 21.165 9.342 24.079 ±9.342 

MXY 25.373 18.967 7.171 17.82 28.056 5.754 21.914 ± 5.754 

mimykgcp 39.897 26.296 6.839 25.082 10.209 10.765 19.133 ± 10.765 

DuyHUYNH 20.512 12.234 2.978 11.894 27.063 5.671 17.962 ± 5.671 

baselines 

YOLOv3 22.798 13.736 2.804 13.249 24.883 6.525 17.903 ± 6.525 

RetinaNet$ResNet101) 15.270 8.927 2.061 8.754 23.202 4.275 14.533 ± 4.275 

Table 6 

EAD2020 results for the sequence dataset. mAP at IoU thresholds 25%, 50% and 75% are provided along with overall mAP and 

overall IoU computations. Overall scores are averaged with 11 IoU thresholds. Weighted detection score score d is computed 

between overall mAP and IoU scores only. Three best scores for each metric criteria are in bold. 

Team names mAP 25 mAP 50 mAP 75 overall mAP seq overall mIoU seq mAP δ score d ± δ

polatgorkem 38.464 24.803 4.138 23.137 29.117 10.326 25.529 ± 10.326 

qzheng5 48.210 25.717 3.997 25.665 20.949 14.222 23.779 ± 14.222 

xiahong1 46.087 25.813 2.684 25.136 18.398 15.128 22.441 ± 15.128 

mathew666 31.599 21.878 3.053 19.623 20.858 9.718 20.117 ± 9.718 

VinBDI 45.295 26.723 4.396 25.285 23.426 13.972 24.542 ± 13.972 

higersky 47.716 29.841 4.473 28.334 12.865 14.579 22.147 ± 14.579 

StarStarG 46.965 30.202 5.432 28.107 8.371 13.367 20.213 ± 13.367 

anand_subu 38.352 25.535 3.843 23.014 20.703 10.859 22.089 ± 10.859 

arnavchavan04 34.511 21.524 4.886 20.700 11.827 9.839 17.151 ± 9.839 

MXY 31.391 19.838 3.620 18.601 21.504 8.688 19.762 ± 8.688 

mimykgcp 44.972 26.780 4.400 25.937 6.892 13.697 18.319 ± 13.697 

DuyHUYNH 28.632 15.524 0.815 15.468 16.968 9.381 16.068 ± 9.381 

baselines 

YOLOv3 32.199 18.473 1.137 17.176 16.351 10.596 16.846 ± 10.596 

RetinaNet$ResNet101) 17.646 6.447 0.767 8.079 10.000 5.151 9.252 ± 5.151 

Table 7 

EAD2020 team ranking based on different metric criteria for detection and generalization task. Overall mAPs (mAP d and 

mAP seq ) computed on single frame and sequence data are averaged. Final score d is then computed as the weighted value 

between the final IoU d and the averaged mAP. Rankings for each metric are also provided based on ascending order of the 

scores except for deviation score for out-of-sample data. Three best scores for each metric criteria are in bold. 

Team Names mAP d mAP seq final IoU final score d mAP g dev g R score d R mAP R gen 

polatgorkem 17.486 23.137 32.848 25.326 21.008 9.359 1 9 6 

qzheng5 19.720 24.174 23.751 22.668 23.749 8.522 2 6 5 

xiahong1 18.512 25.136 22.393 22.051 24.579 8.169 3 7 3 

mathew666 18.091 19.651 26.783 22.035 16.714 5.674 4 10 4 

VinBDI 24.069 25.282 18.033 22.018 24.140 5.607 5 4 1 

higersky 24.771 28.252 15.061 21.931 24.850 7.686 6 2 2 

StarStarG 28.380 28.107 12.311 21.870 25.340 7.537 7 1 1 

anand_subu 18.886 23.004 22.359 21.510 20.203 7.896 8 8 5 

arnavchavan04 26.021 20.700 16.496 20.614 21.138 6.968 10 5 3 

MXY 17.820 18.597 24.779 20.836 17.294 6.077 9 11 4 

mimykgcp 25.082 25.843 8.536 18.691 23.929 7.999 11 3 4 

DuyHUYNH 11.894 15.468 22.016 17.015 11.304 4.807 13 13 4 

baselines 

YOLOv3 13.249 17.176 20.617 17.374 15.456 4.397 12 12 3 

RetinaNet (ResNet101) 8.754 8.079 16.601 11.690 7.763 1.985 14 14 3 

5.1.2. EDD2020 Sub-challenge 

In this section, we report the performance of the participating 

teams in the EDD2020 challenge for the detection and segmenta- 

tion. 

Detection task for EDD2020 

In Table 9 , the team adrian achieved the highest score among 

other participants and the baseline methods with a final score d 

of 33.602 ± 8.523 with the highest overall mAP (37.594) and the 

second highest overall mIoU (27.614). The best localization score 

was obtained by the team sahadate but with nearly 5% lower mAP 

than the top scorer team. Furthermore, the baseline method Reti- 

naNet with the ResNet101 backbone performed better than most 

of the participating teams. From Table 10 , it is evident that most 

teams and baselines failed to detect suspicious class instance while 
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a. Detection: Single frame only b. Detection: Single frame vs sequence

c. Detection: Seen vs out-of-sample data

single frame sequence frames out-of-sample dataspecularity saturation artifact blur contrast bubbles instrument blood

Fig. 5. Detection and out-of-sample generalization tasks for EAD2020 sub-challenge. a) Error bars and swarm plots for the intersection over union (IoU, top), average 

precision (AP, middle) and challenge detection score (mAP d , bottom) for each team is presented on 237 single frame test data. b-c) Comparison of mAP d w.r.t. mAP seq (mAP 

on sequence test data with 80 frames) and mAP g (mAP on out-of-sample data 99 frames) are provided. a-c) On the right, results from baseline detection methods: YOLOv3 

and RetinaNet (with ResNet101 backbone) are also presented. Teams are arranged by decreasing overall detection ranking R score d (see Table 7 ). 

Table 8 

Evaluation of the artefact segmentation task. Top three best scores for each metric criteria are in bold. 

Team Names JC DSC F2 PPV Rec Acc Score s R score s 

qzheng5 0.477 0.532 0.561 0.556 0.835 0.973 0.621 8 

VinBDI 0.628 0.673 0.670 0.837 0.738 0.978 0.730 2 

higersky 0.529 0.579 0.587 0.675 0.758 0.975 0.650 5 

anand_subu 0.304 0.354 0.361 0.430 0.747 0.975 0.473 14 

arnavchavan04 0.622 0.673 0.683 0.800 0.767 0.977 0.731 1 

DuyHUYNH 0.502 0.557 0.583 0.593 0.829 0.974 0.640 6 

mimykgcp 0.531 0.576 0.579 0.723 0.726 0.977 0.651 4 

mouradai_ox 0.581 0.632 0.647 0.711 0.800 0.974 0.697 3 

baselines 

FCN8 0.500 0.548 0.550 0.670 0.708 0.976 0.619 9 

UNet-ResNet34 0.310 0.364 0.373 0.419 0.766 0.974 0.481 13 

PSPNet 0.497 0.541 0.534 0.698 0.680 0.975 0.613 10 

DeepLabv3 (ResNet50) 0.448 0.495 0.492 0.599 0.704 0.974 0.572 12 

DeepLabv3 + (ResNet50) 0.485 0.533 0.535 0.646 0.726 0.976 0.610 11 

DeepLabv3 + (ResNet101) 0.501 0.547 0.546 0.683 0.718 0.973 0.624 7 

Table 9 

EDD2020 results for the detection task on the single frame dataset. mAP at IoU thresholds 25%, 50% and 75% are pro- 

vided along with overall mAP and overall IoU computations. Overall scores are computed at 11 IoU thresholds and averaged. 

Weighted detection score score d is computed between overall mAP and IoU scores only. Three best scores for each metric 

criteria are in bold. 

Team names mAP 25 mAP 50 mAP 75 overall mAP d overall mIoU d mAP δ score d ± δ

adrian 48.402 33.562 27.098 37.594 27.614 8.523 33.602 ± 8.523 

sahadate 37.612 23.284 15.837 26.834 32.420 8.325 29.068 ± 8.325 

VinBDI 43.202 26.981 17.001 30.219 17.773 9.478 25.241 ± 9.478 

YHChoi 23.183 11.082 8.800 15.783 24.623 6.216 19.319 ± 6.216 

DuyHUYNH 23.959 9.587 5.659 12.479 13.829 6.284 13.019 ± 6.284 

mimykgcp 34.884 20.982 4.463 20.742 2.270 9.359 13.353 ± 9.359 

drvelmuruganb 31.018 18.421 11.768 21.790 7.322 7.424 16.002 ± 7.424 

baselines 

YOLOv3 34.305 21.227 14.650 22.980 24.351 6.456 23.528 ± 6.456 

RetinaNet (ResNet50) 26.833 14.441 9.907 17.552 25.580 6.464 20.763 ± 6.464 

RetinaNet (ResNet101) 42.579 27.000 11.194 27.974 26.434 11.949 27.358 ±11.949 
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Fig. 6. Semantic segmentation for EAD and EDD sub-challenges: Error bars with overlayed swarm plots for dice similarity coefficient (DSC), positive predictive value (PPV) 

or precision and recall are presented for each team and baseline methods for the EAD2020 (a) and EDD2020 (b) challenges. 6 different baseline methods are also provided 

for comparison. 

Table 10 

Per class evaluation results for the detection task of the EDD2020 sub-challenge. 

Teams EDD2020 NDBE suspicious HGD cancer polyp δ

adrian 28.911 1.776 32.727 64.286 60.269 22.841 

sahadate 46.193 1.099 22.727 10.000 54.152 20.414 

VinBDI 48.489 3.497 25.852 10.000 63.260 22.660 

YHChoi 26.900 0.000 22.727 0.000 29.289 13.057 

DuyHUYNH 20.281 1.499 11.364 0.000 29.254 11.134 

mimykgcp 50.089 4.592 23.064 5.852 20.112 16.429 

drvelmuruganb 34.775 0.000 22.727 0.000 51.446 19.993 

baselines 

YOLOv3 (darknet53) 38.839 0.000 6.970 16.667 52.426 19.712 

RetinaNet (ResNet50) 23.636 0.000 18.182 0.000 45.943 17.086 

RetinaNet (ResNet101) 29.483 0.000 22.727 31.818 55.840 17.909 

Table 11 

Evaluation of the disease segmentation methods proposed by the participating teams and the baseline methods. 

Top three evaluation criteria are highlighted in bold. 

Team Names JC DSC F2 PPV Rec Acc Score s R score s 

adrian 0.820 0.836 0.842 0.921 0.894 0.955 0.873 1 

sahadate 0.797 0.816 0.819 0.906 0.883 0.955 0.856 2 

VinBDI 0.788 0.805 0.812 0.859 0.912 0.952 0.847 3 

DuyHUYNH 0.6843 0.7058 0.718 0.762 0.905 0.931 0.773 9 

drvelmuruganb 0.7166 0.7349 0.734 0.819 0.857 0.959 0.786 6 

mimykgcp 0.7561 0.7721 0.770 0.893 0.845 0.957 0.820 4 

YHChoi 0.314 0.340 0.356 0.385 0.896 0.892 0.494 13 

baselines 

FCN8 0.687 0.705 0.709 0.811 0.850 0.953 0.769 10 

UNet-ResNet34 0.617 0.637 0.638 0.732 0.868 0.958 0.719 11 

pspnet 0.698 0.721 0.723 0.797 0.876 0.959 0.779 8 

DeepLabv3 (RetinaNet50) 0.704 0.724 0.724 0.810 0.878 0.962 0.784 7 

DeepLabv3 + (RetinaNet50) 0.725 0.744 0.749 0.818 0.882 0.960 0.798 5 

DeepLabv3 + (RetinaNet1010 0.608 0.627 0.629 0.698 0.880 0.962 0.709 12 

most teams performed comparatively better on polyp and NDBE 

classes. Only the winning team adrian and RetinaNet (ResNet101) 

provided a descent score for cancer class with most teams record- 

ing mAP below 10. For HGD class category, top performing teams 

were adrian and VinBDI with mAP over 25. 

Segmentation task for EDD2020 

From Table 11 , it can be observed that the three teams (Adrian, 

sahadate and nhanthanhnguyen94 ) achieved a DSC over 0.80. More- 

over, they maintained the high performance for other metrics as 

well that include JC ( > 0.78), F2 ( > 0.81), and PPV ( > 0.85) securing 

first, second and third ranks, respectively. Teams VinBDI and Duy- 

HUYNH were able to segment more true positive regions reaching 

the top recall values. Fig. 6 (b) represents per-class metric values. 

It can be observed that unlike detection task, most teams reported 

high performance for cancer class. Also, most teams showed higher 

DSC, PPV and recall for BE class instance as well ( > 0 . 8 for top 
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Fig. 7. EAD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top ranked team results. b) Worse performing samples for the 

same teams in (a). Results with baseline methods are also included together with ground truth sample. 

three teams). However, similar to the detection task, most team 

and baseline methods reported least values for the suspicious class. 

5.2. Qualitative results 

Detection task 

Fig. 7 shows the best (panel a) and the worse (panel b) per- 

forming frames from single frame dataset for EAD2020. It can be 

observed that specularity and artefacts are detected and well lo- 

calized by top teams (see Fig. 7 a). Similarly, in the bottom exam- 

ple, saturation is also detected by all the participants. Even though, 

blur is not present for this sample, most methods also detected 

it. While for the worse performing frame (see Fig. 7 b), instru- 

ment class is confused with contrast or artefact on the top sample, 

while in the bottom sample instrument is detected by some teams 

but often either detected only partially or overlapped by different 

classes such as saturation or artefact. 

For out-of-sample generalization task, it can be seen in Fig. 8 

(a) that besides YOLOv3 baseline method, all the baselines and 

teams detected saturation class. While some teams ( mathew666, 

VinBDI, higersky ) detected multiple bounding boxes for the same 

class, they also detected blur class for this frame. While for worse 

performing frame (see Fig. 8 (b)), instrument class (at the center 

of the image) is well localized only by the team xiahong1 while 

most teams either partially detected the instrument (e.g., team 

qzheng5 ) or could not detect the instrument class at all (e.g., team 

polatgorkem ). In both cases, the three teams VinBDI, higersky and 

StarStarG produced multiple overlapping and different size bound- 

ing boxes. 

Qualitative results for the EDD2020 challenge is shown in Fig. 9 . 

The best performing samples in Fig. 9 (a) shows polyp class (at 

the top); non-dysplastic Barrett’s esophagus (NDBE) and suspicious 

classes on the bottom. It can be observed that polyp class is de- 

tected and well localized by all the teams and baseline methods. 

However, for bottom row NDBE is detected by most of the meth- 

ods while confusion is observed across the suspicious class with 

high-grade dysplasia (HGD) class. Team mimykgcp produced nu- 

merous bounding boxes failing to optimally localize adherent dis- 

ease classes. For the worse performing frames ( Fig. 9 (b)), cancer 

class (top) in the ground truth is confused with the polyp class 

instance for most of the teams and the baseline methods. While, 

for the NDBE class in the bottom of Fig. 9 (b), teams were either 

not able to detect the NDBE class (except team adrian , team YH- 

Choi and YOLOv3) at all or partially detected the NDBE areas (e.g., 

teams VinBDI and drvvelmuruganb ). Again, for the presented case, 

team mimykgep detected numerous bounding boxes. 

Segmentation task 

Endoscopic artefact segmentation samples representing best 

and worse performing teams is provided in Fig. 10 . For the sam- 

ple with only the instrument class (see Fig. 10 a, top panel) it 

can be observed that almost all the baseline and teams were able 

to predict precise delineation of the instrument class. Similarly, in 

the bottom panel of Fig. 10 (a), specularity, saturation and artefact 

classes were segmented well by most of the teams and baseline 

methods. Even though, a single instrument class is present in the 

sample image in Fig. 10 (b), none of the methods were able to seg- 

ment the instrument. Also, for the bottom panel in the Fig. 10 (b), 

specularity areas were segmented well by the teams mouradaiox 

and mimykgcp . However, saturation area was under segmented by 

most of the teams and baseline methods. Fig. 11 (a) represents the 

polyp class (at the top); NDBE and suspicious classes (at the bot- 

tom). It can be observed that polyp is segmented well by all the 

baselines and most teams (except team drvelmuruganb who mis- 

classified the pixels to suspicious class). While, most teams and 

baselines were able to precisely delineate NDBE class for the frame 

in the bottom panel but missed suspicious area. In the worse per- 

forming sample (see Fig. 11 (b)), most teams were able to segment 

NDBE area but large HGD area was missed by all the teams. Also, 

some teams confused HGD area with suspicious class. For the bot- 
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Fig. 8. EAD2020 best and worse performing samples for the generalization task. a) Best performing samples for 7 top ranked team results. b) Worse performing samples for 

the same teams in (a). Results with baseline methods are also included together with ground truth sample. 

Fig. 9. EDD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top ranked team results. b) Worse performing samples for the 

same teams in (a). Results with baseline methods are also included together with ground truth sample. 

tom panel in Fig. 11 (b), instead of suspicious class present in the 

ground truth, almost all the teams detected this as polyp or cancer. 

However, the region delineation was close to the ground truth for 

most teams. 

6. Discussion 

Deep learning methods are rapidly being translated for the use 

of computer aided detection (CADe) and diagnosis (CADx) of dis- 

eases in complex clinical settings including endoscopy. However, 

the amount of data variability particularly in endoscopy is signif- 

icantly higher than in natural scenes which possess a significant 

challenge in the process. It is therefore vital to determine an ef- 

fective translational pathway in endoscopy. Majority of challenges 

in endoscopy are due to its complex surveillance that lead to se- 

vere artefacts that may confuse with disease. Similarly, a system 

designed for a particular organ may not generalize to be used in 

the other. 

Most deep learning methods that were used in the EndoCV2020 

challenge can be categorised into multiscale, symbiotic, ensemble, 

encoder-decoder and cascading nature, or a combination of these 

(see Table 3 and Table 4 ). Fig. 12 presents the overview of the 

used methods for the detection (a) and segmentation (b) challenge 

tasks based on the architecture usage. It can be observed that the 

majority of detection methods used two-stage Faster-RCNN with 

4/7 teams combining it with one-stage RetinaNet or YOLOv3 or a 

combination of all. Cascade R-CNN which is built upon Faster R- 

CNN cascaded architecture was exploited by 4 teams. Similarly, U- 

Net-based architectures were utilised by most teams for semantic 
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Fig. 10. EAD2020 best and worse performing samples. a) Best performing samples for 5 top ranked team results. b) Worse performing samples for the same teams in (a). 

Results with baseline methods are also included together with ground truth sample (top). Single class samples are chosen at the top and multi-class samples are at the 

bottom in each category. 

Fig. 11. EDD2020 best and worse performing samples. a) Best performing samples for 5 top team results. b) Worse performing samples for the same teams in (a). Results 

with baseline methods are also included together with ground truth sample (top). 
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Fig. 12. EndoCV2020 method categories in blob-representation. Model occurrences are presented for detection (a) and segmentation (b) tasks for both EAD2020 and EDD2020 

sub-challenges. The number of occurrences is provided inside each blob. 

segmentation task with 4 teams exploring pyramid module-based 

architectures and 2 teams used Deeplabv3+ architecture. Faster 

RCNN-based model was also explored with additional thresholding 

(e.g., team adrian ) or per pixel prediction heads (e.g., team saha- 

date ). Even though similar techniques were used in EAD2019 chal- 

lenge ( Ali et al., 2020c ), a direct comparison is not possible. This 

is due to the inclusion of more data for EAD2020 in both train 

and test sets. Also, EAD2020 includes sequence data which was not 

provided in EAD2019 challenge. 

For the detection task, the top performing teams on the chal- 

lenge metric in both EAD (team polatgorkem ) and EDD (team 

adrian ) were those using ensemble networks, i.e., maneuvering 

outputs from multiple architectures. However, these networks sac- 

rifice the speed of detection which can be observed from the 

computational time which were significantly higher than teams 

that used a single architecture (see Table 7 and Table 9 ). Other 

teams that used such an approach included team arnavchavan04 

and mimykgcp who combined Faster R-CNN with RetinaNet but 

both teams were respectively on 10th and 11th ranking. Just using 

Faster R-CNN alone with ResNet101 backbone, teams qzhang5 and 

mathew666 were able to detect both small and large size bound- 

ing boxes with sub-optimal accuracy that put them at 2nd and 4th 

positions, respectively. Similarly, team sahadate claimed 2nd posi- 

tion on EDD detection task using Mask R-CNN which is based on 

the Faster R-CNN architecture. For EAD2019 challenge ( Ali et al., 

2020c ), team yangsuhui also used an ensemble network with Cas- 

cade RCNN and FPN approach for the detection task similar to the 

EAD2020 top scorer team polatgorkem . 

An intelligent choice for improved speed and accuracy using 

a scalable network was presented by the teams xiahong1 (used 

YOLACT) and VinBDI (used EfficientDet D0) which were placed 3rd 

and 5th, respectively, on the final detection score of the EAD2020. 

On the sequence data, team VinBDI was the 2nd best method 

demonstrating the reliability of the used EfficientNet and FPN ar- 

chitectures. However, for almost all team methods the standard de- 

viation was higher than for single frame data. No team exploited 

the sequence data provided for training. Team VinBDI was also 

ranked 3rd on the EDD detection task. Teams higerssky, StarStarG 

and MXY that used cascaded R-CNN were ranked respectively on 

6th, 7th and 9th positions. Additionally, the team StarStarG was 

ranked 1st and team higersky was ranked 2nd on the overall mAP. 

However, it is to be noted that taking only mAP scores into ac- 

count for detection could lead to over detection of the bounding 

boxes that increases the chance of finding a particular class but at 

the same time weakens the localization capability of the algorithm 

(see Fig. 7 ). Similar observations were found for the EDD dataset 

where the team mimykgcp obtained an overall mAP of 20.742 but 

only 2.270 for the overall IoU (see Table 9 ). As a result, over de- 

tection of the bounding boxes can be seen in Fig. 9 . In order to 

deal with the over detection of the bounding boxes, YOLACT archi- 

tecture used by xiahong1 suppressed the duplicate detections using 

already-removed detections in parallel ( fast NMS ). Similarly, teams 

such as polatgorkem from the EAD and adrian from the EDD were 

able to eliminate the duplicate detections using ensemble network 

and a class agnostic NMS. 

Hypothesis I: In the presence of multiple class objects, object detec- 

tion methods may fail to precisely regress the bounding boxes. Meth- 

ods need better penalization on the bounding box regression or a tech- 

nique to perform effective non-maximal suppression. 

The choice of networks from each team depended on their am- 

bition of either obtaining very high accuracy without focusing on 

speed or a trade-off between the speed and the accuracy or fo- 

cusing on both and thinking out-of the box to use more recent 

developed methods which beats faster networks (such as YOLOv3) 

that included EfficientDet D0 architecture used by the team VinBDI 

(see Table 3 ). Due to the efficiency of the EfficientDet D0 network 

that used biFPN and efficientNet backbone, team VinBDI achieved 

second least deviation in mAP (i.e., dev g = 5 . 607 ) with compet- 

itive mAP g ( = 24 . 140 ) and won the generalization task together 

with the team StarStarG who had slightly higher mAP g ( = 25 . 340 ) 

but larger mAP deviation between detection and generalization 

datasets. Most methods for the detection task on both the EAD and 

EDD dataset performed better than the baseline one-stage methods 

(YOLOv3 and RetinaNet). However, it was found that even though 

team polatgorkem won the detection task, the method failed on 

generalization data where the team was ranked only last. The main 

reason behind this could be because the generalization gap mAP g 
was estimated between two mAP’s (mAP d and mAP g ) and not IoU. 

Also, the final ranking was done taking into account the rank of 

dev g and mAP g only. It can be observed in Fig. 8 that the bound- 

ing box localization of team polatgorkem is precise in (a) while it 

misses instrument area at the center in (b). However, the winning 

teams VinBDI and StarStarG both over detect the boxes. The gener- 

alization ability of the methods were not explored for EDD dataset. 

Hypothesis II: Metrics are critical but using a single metric does 

not always gives the right answer. Weighted metrics are desired in 

object detection task to establish a good trade-off between detection 

and precise localization. 
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A major problem in the detection of EDD dataset was class con- 

fusion mostly for suspicious, HGD and cancer classes. This could be 

because of smaller number of samples for each of these classes 

compared to NDBE and polyp (see Fig. 3 ). While most methods 

were able to detect and localize NDBE and polyp class in gen- 

eral (3/7 teams with an overall mAP > 45 and 4/7 teams with 

> 50 ), all teams failed in suspicious class (overall mAP < 5 . 0 ) and 

most teams for cancer class (overall mAP < 15 . 0 ) (see Table 10 ). 

Fig. 9 shows that polyp is detected and localized very well by most 

teams (a, top). Similarly, NDBE is localized by most methods, how- 

ever, in this case suspicious class is confused mostly with the HGD. 

Also, in Fig. 9 (b, top), it can be observed that the cancer class in- 

stance is confused with mostly polyp class. 

Hypothesis III: Detection bounding boxes confuse with classes that 

have similar morphology and smaller number of samples failing to 

learn the contextual features. To improve detection, such samples need 

to be identified and more data demonstrating such attributes need to 

be injected (both positive and negative samples). 

Similar to the detection task, teams that used ensemble tech- 

niques were among the best performing teams for the segmenta- 

tion task. Teams arnavchavan04 and VinBDI secured first ( score s = 

0 . 731 ) and second ( score s = 0 . 730 ) positions, respectively, on the 

EAD2020 segmentation task (see Table 8 ) and the team adrian 

won the EDD2020 segmentation task challenge with score s of 0.873 

(see Table 11 ). The team arnavchavan04 used multiple augmenta- 

tion techniques including cutmix and a feature pyramid network 

with a combination of EfficientNet backbones from B3 to B5. Simi- 

larly, team VinBDI ensembled a U-Net architecture with Efficient- 

Net B4 and BiFPN network with ResNet50 backbone. Compared 

to EAD2019 where the winning team yangsuhui used DeepLabV3+ 

model with two different backbones, both of the top scorer teams 

of 2020 revealed the strength of recent EfficientNet and FPN-based 

segmentation approaches. 

In the EDD2020 segmentation task, the team adrian combined 

predictions from three object detection architectures where the 

YOLOv3 and Faster R-CNN class predictions were used to correct 

the instance segmentation masks from Cascade R-CNN. A direct 

instance segmentation approach used by the team sahadate se- 

cured second position ( score s = 0.856) on the same while ensem- 

ble network of the team VinBDI secured the third position ( score s 
= 0.847). Direct usage of a single existing state-of-the-art methods 

utilising different augmentation techniques (e.g., DuyHUYNH ) or 

different backbones (e.g., mimykgcp, qzheng5 ) resulted in improved 

results compared to the original baseline methods, however, much 

lower than the top performing methods (see Table 8 and Table 11 ). 

Hypothesis IV: The choice of combinatorial networks that well syn- 

thesises width, depth and resolution to capture optimal receptive field, 

and a domain agnostic knowledge transfer mechanism are critical to 

tackle heterogeneous (multi-center and variable size) multi-class ob- 

ject segmentation task. 

From Fig. 6 it can be observed that the top three performing 

teams of the EAD2020 segmentation task ( arnavchavan04, VinBDI, 

mouradai _ ox ) has high DSC value (0.538, 0.548 and 0.492 respec- 

tively) compared to most methods for the specularity class in- 

stance. It is to be noted that the specularities are often confused 

with either artefact or bubbles which makes them hard to differ- 

entiate. For the instrument, saturation and bubbles class instances 

(see Fig. 10 a.), most methods obtained high performance com- 

pared to other classes (e.g., the top three teams obtained 0.853, 

0.844, 0.848 for the instrument; 0.722, 0.758, 0.703 for the satu- 

ration; and 0.738, 0.693, 0.693 for the bubbles class instance, re- 

spectively), artefact (DSC < 0 . 520 ) was among the worst class for 

most teams and for the baseline methods. This is mostly due to the 

variable size of artefacts; and the bubbles class instance is predom- 

inantly confused with either artefact or the specularity class (see 

Fig. 10 b.). Additionally, due to small sized and sparsely scattered 

specularity or bubble regions in some cases (for e.g., 4th image 

from left in Fig. 3 (a)), the annotator variability for these samples 

can have affected method performances for these classes. While 

checking for such biases is beyond the conducted study, we re- 

fer to the work by Rolnick et al. (2017) . The authors suggested 

that in general deep learning models are capable of generalizing 

from training data where the correct labels are outnumbered by 

the incorrect ones. However, the authors also acknowledged that 

a decrease in performance is inevitable and necessary steps such 

as using larger batch size and downscaling learning rate can help 

mitigate these issues. 

Unlike the EAD2020, the EDD2020 segmentation task com- 

prised of larger shaped regions and only a few classes confused 

(see 1 b.). Most methods scored comparably high DSC values with 

over 75% for most of the disease classes except for suspicious class 

by most of the team. However, Fig. 11 (b) (top) shows that while 

majority of teams were able to segment NDBE class area, the teams 

either missed the HGD area or miss classified HGD as suspicious 

class instance. It is to be noted that there is a very subtle dif- 

ference between the HGD and the suspicious region even for the 

expert endoscopists. Similar observation can be found for the seg- 

mentation of protruded structures ( Fig. 11 (b), bottom) where most 

methods confused the class with the polyp class and the top two 

teams ( adrian, sahadate ) classified it as cancer class. Looking up 

into our expert consensus notes we found that these samples had 

hard to reach agreement cases (i.e., suspicious and HGD classes; 

and cancer and polyp region). 

Hypothesis V: Instead of hard scoring of predicted mask classes 

that penalizes the method performance heavily in presence of 

marginal visual difference between classes and variability due to ex- 

isting expert consensus in the dataset, probability maps can be used 

to mitigate such problem. Additionally, teams should be encouraged 

to report results for different batch size and learning rates for obtain- 

ing better insight regarding performance especially when datasets are 

prone to have some incorrect labels. 

7. Conclusion 

We provided a comprehensive analysis of the deep learning 

methods built to tackle two distinct challenges in the gastroin- 

testinal endoscopy: a) artefact detection and segmentation and b) 

disease detection and segmentation. It has been possible by the 

crowd-sourcing initiative of the EndoCV2020 challenges. We have 

laid out the summary of the methods developed by the top 17 

participating teams and compared their methods with the state- 

of-the-art detection and segmentation methods. Additionally, we 

dissected-different paradigms used by the teams and present a de- 

tailed analysis and discussion of the outcomes. We also suggested 

pathways to improve the methods for building reliable and clini- 

cally transferable methods. In future, we aim towards more holistic 

comparison of the built methods for clinical deployability by test- 

ing for hardware and software reliability in clinical setting. 
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Abstract
Purpose Computer-aided polyp detection (CADe) systems for colonoscopy are already presented to increase adenoma 
detection rate (ADR) in randomized clinical trials. Those commercially available closed systems often do not allow for data 
collection and algorithm optimization, for example regarding the usage of different endoscopy processors. Here, we present 
the first clinical experiences of a, for research purposes publicly available, CADe system.
Methods We developed an end-to-end data acquisition and polyp detection system named EndoMind. Examiners of four 
centers utilizing four different endoscopy processors used EndoMind during their clinical routine. Detected polyps, ADR, 
time to first detection of a polyp (TFD), and system usability were evaluated (NCT05006092).
Results During 41 colonoscopies, EndoMind detected 29 of 29 adenomas in 66 of 66 polyps resulting in an ADR of 41.5%. 
Median TFD was 130 ms (95%-CI, 80–200 ms) while maintaining a median false positive rate of 2.2% (95%-CI, 1.7–2.8%). 
The four participating centers rated the system using the System Usability Scale with a median of 96.3 (95%-CI, 70–100).
Conclusion EndoMind’s ability to acquire data, detect polyps in real-time, and high usability score indicate substantial  
practical value for research and clinical practice. Still, clinical benefit, measured by ADR, has to be determined in a prospec-
tive randomized controlled trial.

Keywords Colonoscopy · Polyp · Artificial intelligence · Deep learning · CADe

Introduction

Screening colonoscopies are highly effective at reducing 
the incidence of colorectal cancer (CRC). Previous stud-
ies revealed a decrease of 68% regarding CRC-related 
mortality by performing screening colonoscopies as most 
of these carcinomas develop over years following the 

adenoma-carcinoma sequence [1]. Adenoma detection rate 
(ADR) evolved to one of the most important colonoscopy 
quality parameters correlated to interval carcinoma rate [1]. 
As the research of artificial intelligence (AI) progressed, 
clinical applications were tested for viability [2]. A meta-
analysis by Hassan et al. analyzed the current randomized 
studies regarding deep learning–based polyp detection in 
colonoscopy (CADe) [3]. They concluded that AI-assisted 
polyp detection increases the ADR, especially for small 
(< 5 mm), flat adenomas. Anyhow, only one of the five ana-
lyzed studies was performed in Europe [4] while the others 
are limited to an Asian study population [5–8]. Furthermore, 
three of the studies included mostly symptomatic patients 
[5–7]. Regarding generalizability, only one of the CADe sys-
tems [4] was evaluated with multiple processor types and 
only one study was multicentric [4]. Therefore, the authors 
concluded that more data for non-Asian populations is nec-
essary. Furthermore, examiners focus on the center of the 
endoscopic image and CADe systems improve detection in 
the image’s periphery [9]. Lastly, to our knowledge there is 
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no data regarding usability and acceptance of CADe systems 
in clinical practice.

In this study, we present the pilot phase results of our 
real-time CADe polyp detection system EndoMind and its 
framework applied in clinical practice. The proposed frame-
work is an end-to-end solution capable of data acquisition 
for the training of neural networks as well as clinical applica-
tion of the AI. The AI was developed utilizing multicentric 
data acquired by the EndoMind framework itself using dif-
ferent endoscopy processor types. Therefore, it is capable of 
fast development, evaluation, and real-time application of 
AI-based video analysis. Lastly, we analyzed the physicians’ 
feedback to evaluate the potential hardships of migrating 
this powerful tool for polyp detection to clinical application.

Methods

Development of EndoMind hardware and software

EndoMind hardware utilizes regular off-the-shelf compo-
nents including a high-performance computer and a video 
grabber card that provide compatibility with a multitude 
of available endoscopy processors. The components were 
determined based on optimal requirements for a real-time 
AI application system while maintaining affordable pricing 
to make this freely available system easy to implement for 
clinicians in the future. Supplementary Table 1 lists the 
hardware composition resulting in a total price of about 
2,880 €.

The CADe system, including software and hardware, 
was developed to perform data acquisition of the video sig-
nal and the exact location of the AI predictions as well as 
real-time polyp detection simultaneously. The software is 
able to handle a wide range of endoscopy processor video 
signals, including analog to ultra-high definition stand-
ards. The video signal is processed to single images called 
frames independently of the input source. Those are then 
forwarded to three processing pipelines (Display, AI, and 
Recording) in parallel to fit the requirements for real-time 
application (Supplementary Fig. 1). This parallelization 
minimizes video delay as only the predictions are visual-
ized on a later frame. Furthermore, the AI predicts only 
every second to third frame and extrapolates the results to 
the remaining frames. The AI is based on a convolutional 
neural network that was trained with 506,338 manually 
annotated images from endoscopic examinations with and 
without visible polyps. The software’s detailed structure is 
explained in Supplementary Material. EndoMind software 

including a detailed installation handbook is freely available 
for research purposes (https:// www. ukw. de/ resea rch/ inexen/ 
ai- appli ed- in- real- time/).

Participants

We retrospectively reviewed colonoscopy reports and cor-
responding videos of our randomized controlled trial’s pilot 
phase data. Here, examiners with at least 10 years of expe-
rience in performing colonoscopies were asked to evalu-
ate EndoMind before starting the randomized study phase 
(NCT05006092). Only complete video recordings were 
included. The evaluated video recordings originate from 
four different endoscopy processors (Olympus CV-170 and 
CV-190 (Olympus Europa SE & Co. KG, Hamburg, Ger-
many), Pentax i7000 (Pentax Europe GmbH, Hamburg, 
Germany), and Storz TC301 (Karl Storz SE & Co. KG, Tut-
tlingen, Germany)). Centers included three outpatient gastro-
enterological practices and one community-based hospital.

Data annotation

A physician (TJL) annotated each video from start to end 
and a board-certified gastroenterologist (AH) verified anno-
tations. Sequences including polyps were labeled as such. 
Polyp size, morphology, pathological report if available, 
location and Boston bowel preparation scale (BBPS) were 
retrospectively identified. Polyps were categorized as proxi-
mal if located between caecum and the left flexure, other-
wise as distal. Withdrawal time was determined as the time 
difference of the last anatomic landmark inspection (ileoce-
cal valve, appendix, or ileum) and last image inside of the 
body [10]. Time spent on endoscopic interventions was 
manually annotated and subtracted from withdrawal time 
as well as all other evaluations. Each CADe prediction was 
labeled as true or false positive.

Survey

Examiners of the four centers were asked to participate in 
an online survey about the EndoMind usage (Supplementary 
Table 2). The survey consisted of the System Usability Scale 
(SUS) resulting in a total score of 0 to 100 points. Additional 
questions about the EndoMind performance were rated using 
a Likert scale from 1 (strongly disagree) to 5 (strongly agree) 
or percentage estimates.
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Statistical analysis

Statistical analysis was performed using Python 3.10. Sen-
sitivity was defined as the number of polyps detected in at 
least one frame divided by the number of all visible polyps. 
Time to first detection (TFD) was determined for each polyp 
as the visible time between polyp appearance and the first 
frame with correct CADe detection. For histology-based 
analyses, polyps without available histology due to not per-
formed resection were excluded. Data was tested for normal 
distribution using SciPy’s normal test. For data with normal 
distribution, mean and standard deviation were calculated. 
For non-normal distributed data, median and its two-sided 
95% confidence intervals (CI) were calculated using boot-
strapping (n = 1000).

Ethical considerations

The study was approved by the local ethical committee respon-
sible for each study center (Ethik-Kommission Landesär-
ztekammer Baden-Württemberg (F-2021–047), Ethik-
Kommission Landesärztekammer Hessen (2021–2531), and 
Ethik-Kommission der Landesärztekammer Rheinland-Pfalz 
(2021–15,955)). All procedures were in accordance with 
the Helsinki Declaration of 1964 and later versions. Signed 
informed consent from each patient was obtained prior to 
participation.

Results

Patient characteristics

Using EndoMind (Fig. 1), 41 examinations were recorded 
during the pilot phase of the study in four centers. Patient 
characteristics are presented in Table 1. Most examina-
tions were performed for colorectal cancer screening or 
surveillance (63.4%). BBPS was rated as six or higher in 
95.1% of the examinations. Characteristics of the partici-
pating examiners are presented in Supplementary Table 3.

CADe performance

In total, 66 polyps were identified in 41 colonoscopies.  
Figure 2 depicts representative images of EndoMind detec-
tions. Polyp characteristics and detection metrics are sum-
marized in Table 2. Of the 37 histologically evaluated pol-
yps, 29 were diagnosed as adenomatous resulting in an ADR 
of 41.5%. EndoMind detected 29 of 29 adenomas and 66 
of 66 polyps. Overall, median TFD was as fast as 130 ms 
(95%-CI, 80–200 ms).

Manual annotation of all 1,544,063 individual images of 
which 74,422 (4.82%) contained a visible polyp, revealed 

an overall CADe accuracy of 95.3%. Median false posi-
tive detection rate per examination was 2.2% (95%-CI, 
1.7–2.8%).

Fig. 1  EndoMind mounted on an endoscopic tower in one of the par-
ticipating centers. Presentation of a polyp image on a small screen 
(lower left corner) and proper detection with a bounding box (upper 
right corner) by EndoMind (asterisk)

Table 1  Patient characteristics

CI confidence interval, BBPS Boston bowel preparation scale

Characteristic Value

Age in years, median (95% CI) 62.0 (57.0–67.0)
Gender
  Male, n (%) 17 (41.5)
   Female, n (%) 24 (58.5)

Indication
  Screening or surveillance, n (%) 26 (63.4)
  Symptomatic, n (%) 15 (36.6)

BBPS, median (95% CI) 7.0 (7.0–8.0)
BBPS ≥ 6, n (%) 39 (95.1)
BBPS < 6, n (%) 2 (4.9)
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Usability survey

Examiners participating in the pilot phase rated the usability 
of EndoMind with a median SUS score of 96.3 (95%-CI, 
70–100). The physicians subjectively stated that 89% (95%-
CI, 79–94%) of the polyps were detected by our system. 
Of those polyps 46% (95%-CI, 21–61%) were subjectively 
detected by EndoMind before the examiner. Anyhow, users 
partially criticized false detections as distracting (median 3, 
95%-CI, 2–3) and as a possible reason for a prolonged with-
drawal time (median 2.5, 95%-CI, 2.0–5.0). Lastly, inter-
ventionists agreed that the EndoMind system would benefit 
patient care (median 4.5, 95%-CI, 3.0–5.0) and therefore 
would like to use it in their clinical routine (median 4.5, 
95%-CI, 4.0–5.0).

Discussion

In this work, we present the freely available CADe system 
EndoMind. It incorporates recording of endoscopy videos 
with AI predictions. Additionally, it is capable of real-time 
polyp detection on a variety of endoscopy processors. We 
could demonstrate successful installation and use of our 
system in four non-research-focused centers. While previ-
ous studies included mostly symptomatic patients of Asiatic 
origin in a hospital setting [5–7, 11], 63.4% of the colonos-
copies included in our pilot phase study were performed 
as screening or surveillance examinations. Furthermore, we 
could preliminarily validate high sensitivity (100% of polyps 
detected) and fast detection (median TFD 130 ms). While 
this preliminary data may not be directly compared to other 
studies, the ADR in our pilot phase study was 41.5%. A total 
of 29 out of 37 (78.4%) histologically evaluated polyps were 
diagnosed as adenoma which indicates high quality of the 
performed colonoscopies. Assessing the characteristics of 
the detected adenomas, we found a similar size distribu-
tion compared to previously published studies [4–7]. Other 
CAD systems report a false positive (FP) rate of 0.9 to 8% 
[12–14]. Assessment of false detections by EndoMind is 
located in the lower range with 2.2%. Qualitative screening 
of coherent false positive detections revealed mainly stool-
covered areas, air bubbles, or pseudo-polyps generated by 
artifacts due to suction of the mucosa as the most common 
sources. As especially right-sided polyps are initially often 
covered by mucus, some of those FP detections may not 
be eliminated without severely affecting detection of these 
polyps in the early phase when they appear. Nevertheless, as 
a recent in depth analysis by Spadaccini et al. demonstrated, 
examiners can quickly disregard these FPs [15].

Our usability-focused survey involved only highly experi-
enced examiners, mostly from outpatient treatment centers. 
We designed EndoMind to assist in screening colonoscopies; 
therefore, this group resembles the future target group. The 
participating physicians found EndoMind to be easy to use 

Fig. 2  Representative selection of EndoMind detections. EndoMind correctly marks a well visible (left) and a stool covered (middle) polyp with 
a blue bounding box. A common cause for false positive detections represented by stool on the bowel wall is displayed in the right image

Table 2  Polyp characteristics and CADe performance

TFD  time to first polyp detection,  CI  confidence interval,  n.a.  not 
available

Category n (%) TFD in ms, 
median  
(95%-CI)

All polyps 66 (100) 130 (80–200)
Size
   < 5 mm 41 (62.1) 160 (80–260)
  5–10 mm 19 (28.8) 120 (60–340)

   > 10 mm 6 (9.1) 80 (40–4,380)
Histology (n = 37)
  Non-adenomatous 7 200 (60–2,280)
  Tubular adenoma 24 160 (80–520)
  Tubulovillous adenoma 3 180 (60–200)
  Sessile serrated lesion 2 160 (100–220)
  Carcinoma 1 40 (n.a.)

Location
  Proximal 30 (45.5) 160 (80–350)
  Distal 36 (54.6) 120 (60–210)

1352 International Journal of Colorectal Disease (2022) 37:1349–1354



1 3

and maintain with a median SUS of 96.3 which exceeds the 
average of 69 [16]. Furthermore, they agreed that their clini-
cal routine would benefit from the regular usage of Endo-
Mind. However, the examiners also stated that false positive 
detections might increase their withdrawal time. Addition-
ally, even correctly detected polyps might disturb the work-
flow if the physician has already identified it. Therefore, fea-
tures to easily and even automatically deactivate the system 
should be implemented in future. While manual deactivation 
may be achieved by a foot switch or voice command, auto-
matic deactivation based on the examination state seems also 
promising. For this, the most practical approaches include 
activation of the CADe system only after identification of the 
caecum and deactivation if an instrument is detected in the 
field of view. This would restrict the CADe detections to the 
withdrawal time and prevent disturbing activations during 
resections and biopsies.

Additionally, we evaluated the physician’s impressions of 
how many polyps were missed (11%), as well as how many 
polyps were detected by the system before the examiner (46%). 
The discrepancy between our determined sensitivity and the 
survey result may result from a different definition of detection: 
while frequently used metrics accept a polyp as detected if it 
is recognized at all, examiners might define a polyp, which is 
only detected after it is centered and focused on the image, as 
missed. As a more realistic measure, we therefore evaluated 
the TFD. Here, 89.4% of the polyps were detected in less than 
a second, which closely correlates with the examiners’ impres-
sion of the percentage of CADe-identified polyps.

While our results imply high clinical value of our freely 
available CADe system, absence of a control group in this 
early stage as well as the small sample size demands veri-
fication by a larger, randomized, controlled study. The 
aim of this study was therefore not to present how our 
system improves the ADR, but instead to demonstrate the 
application of this new CADe system in a clinical scenario 
involving multiple processor types and an evaluation of its 
performance on a frame-by-frame basis.

As our system is easy to use, and preliminary results 
indicate high practical value, we are confident that patient 
care would profit if systems like EndoMind are utilized in 
the daily routine. Furthermore, the implemented recording 
capabilities reduce the effort for continuously improving 
the system. By usage of rapid training iterations, our sys-
tem enables for user- or patient group–specific AI fine-
tuning as it is known from other applications like text to 
speech applications which improve their performance with 
increasing time of use. We hope that the EndoMind plat-
form might contribute to improving endoscopy by continu-
ously incorporating new AI features.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00384- 022- 04178-8.
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GRAPHICAL ABSTRACT

Background and Aims: Adenoma detection rate is the crucial parameter for colorectal cancer screening.
Increasing the field of view with additional side optics has been reported to detect flat adenomas hidden behind
folds. Furthermore, artificial intelligence (AI) has also recently been introduced to detect more adenomas. We
therefore aimed to combine both technologies in a new prototypic colonoscopy concept.

Methods: A 3-dimensional–printed cap including 2 microcameras was attached to a conventional endoscope. The
prototype was applied in 8 gene-targeted pigs with mutations in the adenomatous polyposis coli gene. The first 4
animals were used to train an AI system based on the images generated by microcameras. Thereafter, the con-
ceptual prototype for detecting adenomas was tested in a further series of 4 pigs.

Results: Using our prototype, we detected, with side optics, adenomas that might have been missed convention-
ally. Furthermore, the newly developed AI could detect, mark, and present adenomas visualized with side optics
outside of the conventional field of view.

Conclusions: Combining AI with side optics might help detect adenomas that otherwise might have been missed.

(footnotes appear on last page of article)

Most colonoscopies are performed for the detection
and removal of early neoplasms or adenomas. Several
studies have demonstrated that the adenoma detection
rate is the critical parameter for reducing the incidence
of colorectal cancer.1,2

So far, several approaches have been mentioned to in-
crease the adenoma detection rate by increasing the endo-
scopic viewing angle, thereby covering a larger area of the
colon’s surface.3,4 However, these approaches are
problematic in that the examiner needs to deal with
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more image information.5 In addition, images may be
distorted.6 Accordingly, these procedures have not yet
been implemented in practice.

Another completely new approach to polyp detection is
digital image analysis using artificial intelligence (AI). How-
ever, the image presented to any AI corresponds precisely
to the image of the examiner and therefore is more of a
confirmation of what is visible. Lesions out of the standard
field of view have not yet been recognized. Both approaches
separately (full-spectrum endoscopy and computer-aided
detection devices) have been proven to increase the ade-
noma detection rate.4,7 Therefore, it is interesting to try to
merge both concepts in a single innovation.

In contrast to endoscopy, solutions to these shortcom-
ings of image information and current AI systems have
been offered in the automotive sector. Here, a yellow or
red symbol is projected into the side mirror for the driver
while driving to draw attention to vehicles passing ("blind
spot assistant" or "lane change assistant"). Theoretically,
this assistance function can be transferred entirely to colo-
noscopy in that the examiner focuses on the conventional
image "forward" as always, whereas an AI analyzes other
image sources "looking back." If the AI detects an adenoma
outside of the standard forward field of view, a correspond-
ing warning signal may be presented to the endoscopist.

We reported on the potential benefit of a 3-
dimensional–printed, side optic–enhanced cap including
2 microcameras as a feasible add-on to improve adenoma
detection rates. More flat lesions were detected using an
ex vivo colonoscopy simulator, especially in problematic
areas of the colon, such as the flexures.8 Here we
present the further development and early preclinical
evaluation of this device, including AI as an assistant
system for detecting adenomatous polyps outside the
conventional endoscopic image.

METHODS

Pig model
Gene-targeted pigs with the truncating 1311 mutation in

the adenomatous polyposis coli (APC) gene were endo-
scopically examined with our system.9 The APC1311

mutation is orthologous to the hotspot APC1309 mutation
responsible for human familial adenomatous polyposis
and causing aberrant crypt foci and low- and high-grade
dysplastic adenomas in the large intestine, similar to the
precancerous lesions that patients with familial adenoma-
tous polyposis develop. The APC1311/þ pigs are a suitable
model for experimental endoscopy, as shown in previous
studies.10,11 All animal experiments were approved by the
Government of Upper Bavaria (permit number ROB-55.2-
2532.Vet_02-18-33) and performed according to the
German Animal Welfare Act and European Union Norma-
tive for Care and Use of Experimental Animals.

Cap and micro-optics
Two red-green-blue microcamera modules (OsirisM; Op-

tasensorGmbH,Nürnberg, Germany) were integrated into a
3-dimensional–printed cap. Each microcamera had 4 mini
light-emitting diodes (OSRAM Opto Semiconductors
GmbH, München, Germany) arranged around it. The total
dimensions were 3.8 � 3.8 � 2 mm3 (height � width �
depth). The resolution of the obtained image signal was
320 � 320 pixels, the best focus point was 15 mm, and the
field of view was 90 degrees.

The 3-dimensional–printed cap was designed to be
fixed 5 mm from the tip of a gastroscope (GIF-H180;
Olympus, Tokyo, Japan). The material used was nylon
PA12, and a selective laser sintering printer (Lisa Pro, Sin-
terit sp. Z o.o., Kraków, Poland) was used to produce it.
The cap contained 2 openings to allow the microcameras
to be integrated into the normal endoscope’s axis. There-
fore, their orientation allowed a new view not achieved
with the regular endoscope camera (Fig. 1A). The cap
also incorporated cut-out areas to allow a complete field
of view. Microcameras and mini light-emitting diodes
were secured on the cap with silicone epoxy. A tube-like
plastic foil was used to protect the 2-m length cable of
the cameras (Fig. 1B).

Figure 2B shows the setup used to perform
colonoscopies. The pigs’ colons were flushed by rectal
water irrigation before the endoscope and side optics
were introduced.

User interface
A custom-designed computer grabbed 3 different image

signals: the image source from the endoscope and the 2
image sources from the microcameras. The developed
deep learning network analyzed these 2 last image sources,
and each output was displayed on a second screen. When-
ever the algorithm detected a presumptuous adenoma, a
green square was drawn over the correspondent image,
highlighting the region of interest. At the same time, an ar-
row was drawn in the conventional endoscope image and
displayed on the main screen. The location of the arrow
could be right or left, depending on which camera trig-
gered the detection (Fig. 3). The endoscopist remained
focused on the conventional endoscopic image until an
arrow caught his attention. Then, the cause of the
detection was visualized on the second monitor
containing the microcameras images.

To avoid a significant number of false detections, an
averaging filter was implemented. It analyzed several im-
ages together to predict an outcome, making the system
more stable.

The 3 image signals were recorded and stored. More-
over, a record file containing the detections of each micro-
camera was created. The record file included the
timestamp and location on the screen of the detection
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so they could always be correlated with the primary endo-
scope image source for postprocessing or analysis.

Artificial intelligence
For the detection of the polyps, deep learning was used.

Deep learning attempts to imitate the workings of the hu-
man brain in data processing and pattern detection. There-
fore, deep learning refers to a machine learning method
that uses artificial neural networks with numerous interme-
diate layers between the input and output layers, thereby
forming an extensive internal structure. For the detection
of polyps, pattern recognition of the neural network is a
critical factor. Therefore, techniques of general object
detection are used. In particular, convolutional neural net-
works are the best in detecting patterns and objects in

images.12,13 To implement AI in our case, the output
from each of the microcameras was preprocessed
(cropping, color transformation, image resize, and
normalization) and then analyzed by the AI.

The architecture of the AI used was based on YOLOv5,14

a neural network design that is state of the art and has its
primary focus on being fast and accurate. Therefore, the
YOLOv5 architecture allows real-time processing of more
than 30 frames per second while keeping a high detection
rate. Because we did not have many images of animal co-
lon polyps to train the AI, several techniques had to be
used to prevent overfitting. First, we trained with different
image augmentations to enhance and generalize the
training data. In deep learning, augmenting image data
means using various processes to modify the original

Figure 2. Diagram of the setup. AI, Artificial intelligence.

Figure 1. Three-dimensional–printed cap to place the microcameras. A, Three-dimensional design with main dimensions. B, Image of the final assembly
in a gastroscope.
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image data. For data augmentation, we used techniques
including flipping, rotating, translation, scaling, and mosaic
augmentation. Second, we used early stopping during
training. Early stopping is a regularization technique in iter-
ative machine learning methods where the training is
stopped as soon as a significant deterioration of the gener-
alization performance is detected. The training algorithm
then returns the model parameters with the best general-
ization performance up to that point. Third, we used a
dropout value of 30%. When the network is trained, 30%
of neurons in each layer of the network are turned off
("dropout") and not considered for the upcoming compu-
tational step. During training, units and their input and
output connections are randomly removed from the
network. Therefore, the units should be individually
different from each other so their characteristics are
considered for the prediction.

RESULTS

In a first animal trial including 4 pigs, 60,329 frames
were obtained with the microcameras during colonoscopy.
Among these frames, 8132 were annotated with a bound-
ing box whenever a polyp appeared in the image. Because
the number of pigs to train the AI was low, the risk of over-
fitting was high. Therefore, these annotations were used to
fine-tune a pretrained model. The basic architecture of the
pretrained AI model consisted of 223,566 images from hu-
man colonoscopy: 122,323 images contained polyps and
101,243 normal mucosa.

During the second animal trial, another 4 gene-targeted
pigs with mutations in the APC gene were endoscopically
examined. Polyps were aimed to be detected during
retrieval of the endoscope. The shaft of the endoscope
was torqued with small movements in a clockwise and
counterclockwise direction to fully visualize the mucosa
with side optics. This generated 32,831 frames from each
image source.

Eighteen minutes of examinations were recorded. A sig-
nificant number of frames were not useful because of
direct contact of the microcamera with the mucosa

(27.06%) or stool remnants (34.40%). In a minute of a
video containing 1704 useful frames, the system recog-
nized 4 of 5 polyps and raised 1 false-positive alarm.

Usually, stool remnants trigger a noteworthy number of
false-positive detections. However, in our case, they ac-
counted for less than 1% of the examination.

DISCUSSION

We present early preclinical data to further test a new
prototypic concept for polyp detection in the colon of
gene-targeted pigs. To the best of our knowledge, for
the first time we were able to combine the concept of
side-viewing or wide-angle endoscopy with AI. Thereby, a
new system was developed with assistant functions outside
the conventional field of view. Hence, the endoscopist may
focus and concentrate on the standard endoscopic image
but receive an optical signal as soon as the AI detects a
polyp outside the standard field of view. Thereby, AI helps
to omit previous shortcomings of wide-angle endoscopes5

(ie, to focus on 3 monitors simultaneously).
In addition, our approach is simple, and although we do

not have preliminary economic data, we assume that costs
could be reduced compared with existing wide-angle colo-
noscopes because standard endoscopes can be used.
Although the microcameras used have a limited field of
view and lower resolution compared with a standard endo-
scopic image, if the AI is adequately trained with those im-
ages, detection of polyps is possible as has been shown.

Potential shortcomings of our study could be the pig
model. APC pigs did not receive a standard lavage for
bowel preparation. Although manual cleansing was per-
formed, stool remnants embedded in the microcameras
was a major factor in the failure to detect more polyps.
In addition, rotating movements were necessary to visu-
alize a greater surface of the colon mucosa because of
the limited field of view of the microcameras. Finally,
only a few animals were examined.

Nevertheless, the prototypic concepts have been
proven valuable with potential perspectives to be inte-
grated into clinical practice once it has been approved

Figure 3. Image of a correct detection. Left, Left-sided camera showing normal mucosa. Center, Standard endoscopic view image. The arrowhead alerts
the endoscopist that the right camera has detected an adenoma. Right, Right-sided microcamera highlighting the region where the adenoma appears.
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as a medical device. The next steps will be to further inte-
grate the microcameras, better train the AI for the detec-
tion of polyps using side-viewing optics, and, ultimately,
to potentially integrate other imaging modalities, such as
optical-coherence tomography or near-infrared imag-
ing,10,15 for AI-guided scanning of the colon mucosa
outside the conventional endoscopic field of view. Future
studies must be performed to extensively evaluate the
performance of the device and testing if it can lead to
the detection of additional polyps. Overall, we believe
our new concept for colonoscopy combining AI with
side optics might help detect adenomas that otherwise
could be missed without significantly disturbing the con-
ventional colonoscopic workflow.
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ABSTRACT
Background and aims: Computer-aided polyp detection (CADe) may become a standard for polyp
detection during colonoscopy. Several systems are already commercially available. We report on a
video-based benchmark technique for the first preclinical assessment of such systems before compara-
tive randomized trials are to be undertaken. Additionally, we compare a commercially available CADe
system with our newly developed one.
Methods: ENDOTEST consisted in the combination of two datasets. The validation dataset contained
48 video-snippets with 22,856 manually annotated images of which 53.2% contained polyps. The per-
formance dataset contained 10 full-length screening colonoscopies with 230,898 manually annotated
images of which 15.8% contained a polyp. Assessment parameters were accuracy for polyp detection
and time delay to first polyp detection after polyp appearance (FDT). Two CADe systems were
assessed: a commercial CADe system (GI-Genius, Medtronic), and a self-developed new system
(ENDOMIND). The latter being a convolutional neuronal network trained on 194,983 manually labeled
images extracted from colonoscopy videos recorded in mainly six different gastroenterologic practices.
Results: On the ENDOTEST, both CADe systems detected all polyps in at least one image. The per-
frame sensitivity and specificity in full colonoscopies was 48.1% and 93.7%, respectively for GI-Genius;
and 54% and 92.7%, respectively for ENDOMIND. Median FDT of ENDOMIND with 217ms (Inter-
Quartile Range(IQR)8–1533) was significantly faster than GI-Genius with 1050ms (IQR
358–2767, p¼ 0.003).
Conclusions: Our benchmark ENDOTEST may be helpful for preclinical testing of new CADe devices.
There seems to be a correlation between a shorter FDT with a higher sensitivity and a lower specificity
for polyp detection.
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Introduction

Improvement of surveillance colonoscopy for the prevention
of colorectal cancer (CRC) has always been a field of inten-
sive research in gastrointestinal endoscopy. By detection and
subsequent resection of adenomatous polyps, patients are
preserved from cancer development. Thus, the adenoma
detection rate (ADR) was established as a validated marker
of colonoscopy quality [1]. An increase in ADR results in a
decrease in interval carcinoma [2]. Still, the miss rate of neo-
plastic lesions is unacceptably high with great variability
among individual endoscopists [3, 4]. The implementation of
artificial intelligence systems for CADe resulted in increased
ADRs in multiple prospective mostly single-center random-
ized trials [5]. Although surveillance colonoscopy is usually

an outpatient procedure, training data of those systems
mainly rely on colonoscopy videos recorded in in-hospital
settings [6–8]. Several commercial CADe systems have
already entered the market [9–11]. GI Genius (Medtronic plc.,
Dublin, Ireland) was one of the first commercial CADe sys-
tems in Europe. The multicenter randomized study by Repici
et. al reported an increase in ADR of 14.4 percentage points
regarding colonoscopies performed without the CADe sys-
tem [10]. However, direct comparison of different CADe sys-
tems using the same benchmark data has to our knowledge
never been done. Therefore, in this study we have generated
ENDOTEST, a dataset that allows the comparison of different
polyp detection systems. ENDOTEST includes polyp and non-
polyp video sequences, in the same way as has previously
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been done in other studies [12–14], but it also includes full-
length frame-by-frame polyp annotated colonoscopies.

There is a wide variety of databases for colonoscopy
fully annotated regarding the presence of polyps.
CVC-VideoClinicDB was provided in the context of the GIANA
sub-challenge that was part of the MICCAI 2017 Endoscopic
Vision Challenge. This data set contains 18,733 frames from
18 videos without ground truth and 11,954 frames with
ground truth [15]. SUN Colonoscopy Video Database was
developed by Mori Laboratory and it contains 49,135 fully
annotated polyp frames from 100 different polyps. It also
contains 109,554 non-polyp frames [13]. The biggest and
more diverse one is LDPolypVideo dataset which contains
160 colonoscopy video sequences and 40,266 frames with
polyp annotations [14]. However, to our knowledge, there is
no publicly available dataset containing full-length colonos-
copies frame-by-frame annotated regarding the presence of
a polyp.

In addition, in this work we also introduce ENDOMIND, a
publicly funded investigator-initiated project of artificial intel-
ligence applications for polyp detection in screening colonos-
copy. ENDOMIND was developed by computer engineers as
well as endoscopists in the same work group.

The aim of this study is to describe the validation, and
performance comparison between the newly developed
CADe system ENDOMIND trained with multicentric out-
patient colonoscopy videos and the commercially available
CADe system GI Genius using a defined benchmark data set
ENDOTEST that contains screening colposcopies.

Methods

Training data set of ENDOMIND

Videos from routine colonoscopies were recorded in six gas-
troenterologic practices in Germany. The endoscopic process-
ors were Olympus CV-170 and CV-190 (Olympus Europa SE &
Co. KG, Hamburg, Germany), Pentax i7000 (Pentax Europe
GmbH, Hamburg, Germany), and Storz TC301 (Karl Storz SE &
Co. KG, Tuttlingen, Germany). The recording included retro-
spectively and prospectively collected endoscopic videos
ranging from January 2018 to May 2021. Over 500 colonos-
copy videos were screened for polyps. Subsequently, 219
video sequences comprising of 500 to 2000 images display-
ing one polyp were extracted. Additional sequences of the
same video with the same length showing normal mucosa,
residual stool, bubbles, or water irrigation images were
labeled accordingly and added to the training data.

Polyps were manually classified according to the esti-
mated size (<5mm, 5–10mm, >10mm) and Paris classifica-
tion [16]. A representative subset of polyps was chosen for
box annotation, which included a frame-by-frame annotation
of the visible polyp. This was performed by an experienced
endoscopist using a custom-made annotation tool as previ-
ously described [17]. Annotation of the 219 sequences with
and without a visible polyp resulted in 194,983 labeled
images out of which 52.4% contained a polyp. Those images
were used as training set for the development of ENDOMIND
(Figure 1).

ENDOMIND training

For polyp detection an artificial intelligence (AI) was trained
using an on 1,183 publicly available polyp images [18–20] pre-
trained deep learning algorithm (Supplementary material). It
refers to a machine learning method that uses artificial neural
networks with numerous intermediate layers, forming an
extensive internal structure between the input and output
layers. We used the YOLOv5 architecture [21]. Different techni-
ques were used to further enhance YOLOv5. Firstly, we used
early stopping during training. Early stopping is a form of
regularization to prevent overfitting in iterative machine learn-
ing methods. Overfitting increases specificity on the training
dataset but does not allow generalization into the real-world
scenario. Secondly, we use a dropout value of 30%. When the
network is trained, 30% of neurons in each layer of the net-
work are turned off (“dropout”) and not considered for the
upcoming computational step. This technique also prevents
overfitting of the model. Thirdly, we trained with different
image augmentations. In deep learning, augmenting image
data means using various processes to modify the original
image data. For data augmentation, we used techniques
including flipping, rotating, translation, scaling, and mosaic
augmentation [22]. ENDOMIND can be downloaded for
research purposes using this link: https://www.ukw.de/
research/inexen/ai-for-polyp-detection/

Video based benchmark data set (ENDOTEST)

ENDOTEST was composed of two subsets of video based
images (or frames): the validation and the performance data-
set. Both were developed from retrospective recordings of
colonoscopies from two centers (University Hospital Ulm and
W€urzburg) that differ from the data used for ENDOMIND
training. Both centers used the Olympus CV-190 endoscopy
processor. In one center, the recordings were performed
using a video frame grabber (SDI2USB 3.0, Epiphan Systems
Inc.) and stored with the same input resolution and minimal
compression. Later, the video recordings were processed by
GI Genius using an image converter (HA5, AJA Video
Systems Inc.). In the second center, both signals (raw and GI
Genius processed signal) were simultaneously recorded in
real-time.

The validation dataset consists of a balanced dataset of
24 polyp and corresponding non-polyp sequences

Figure 1. Composition of the training data set for the development
of ENDOMIND.
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comprising a total of 22,856 images that were manually
annotated by marking of a bounding box over polyps
(Figure 2). In the validation dataset, we considered the bal-
ance of 1:1 to be appropriate as many publicly available
datasets do compare themselves on e.g. only polyp images
and therefore have a ratio of 1:0 [12,13]. However, in general,
equally balanced polyp and non-polyp video sequences do
not resemble reality where visible polyps make up a minority
of the total examination length. Therefore, additional 10 full
colonoscopy videos were manually annotated by an experi-
enced board certified gastroenterologist defining if the frame
contained a polyp or not. Criteria for the selection of the vid-
eos included screening as the indication for the colonoscopy,
the existence of minimum one adenomatous polyp, and a
good bowel preparation with a BBPS score of 6 or higher.
Annotation resulted in 230,898 images for the performance
dataset. 15.8% of these images contained polyps. Those 24
polyps are characterized in Table 1. The performance dataset
provides a more realistic scenario.

Validation of ENDOMIND and GI Genius

The manually annotated boxes using the raw colonoscopy
video signal were defined as ground truth. For evaluation of
the GI Genius system, the 24 polyp and corresponding non-
polyp sequences were processed by the GI Genius device in

real-time. The video output of GI Genius was recorded to be
annotated in a second step. The resulting bounding box con-
taining frames were reviewed by an experienced endosco-
pist. A frame was considered as true positive (TP) in case of
overlap by the CADe bounding box and the annotated box.
The absence of a CADe bounding box in a polyp-containing
frame counted as a false negative (FN). A false positive
detection (FP) was defined as a CADe bounding box that
was not in contact with the manually annotated box.

In contrast, ENDOMIND algorithm was directly applied to
every single frame of the raw colonoscopy videos for polyp
detection. Both CADe systems were analyzed for accuracy,
per-frame specificity, per-frame sensitivity, precision and
F1-score.

Performance of ENDOMIND in comparison with
GI Genius

For performance evaluation, the full-length colonoscopies
were processed by the GI Genius device creating videos with
bounding boxes. All frames with visible bounding boxes
(CADe detections) were automatically identified by a custom-
made application.

ENDOMIND for polyp detection was applied on the raw
colonoscopy video signal using the performance data set.
For performance analysis, a video frame was defined as TP if
a CADe bounding box appeared in a frame that had been
manually annotated to contain a polyp. Polyp-containing
frames without a CADe bounding box were considered as
FN. FP frames were considered if the CADe system drew a
bounding box on video frame without a visible polyp.

A direct comparison of both CADe systems was per-
formed regarding the standard metrics accuracy ¼ (TPþ TN)/
(TPþ TNþ FPþ FN), per-frame specificity¼ TN/(TNþ FP), per-
frame sensitivity (recall)¼TP/(TPþ FN), precision¼ TP/
(TPþ FP) and F1-score ¼ 2#precision#recall/(precisionþ
recall) calculated from the TP, FP, FN und TN values.
Furthermore, videos were analyzed for the median first
detection time. FDT was defined for each polyp as the time
in between the first appearance of the polyp in a video and
the first marking with a bounding box by the CADe system.

Figure 2. ENDOTEST components including the validation and performance data set for the head-to-head comparison of the GI Genius and ENDOMIND.

Table 1. Characteristics of the 24 polyps included in the
10 videos of the performance data set.

Characteristic n (%)

Paris classification
0-Ip 1 (4.2)
0-Is 4 (16.7)
0-IIa 19 (79.2)

Size
0–4mm 11 (45.8)
5–10mm 8 (33.3)
10–20mm 5 (20.8)

Location
Right Colon 16 (66.7)
Left Colon 5 (20.8)
Rectum 3 (12.5)

Histology
Tubular adenoma 9 (37.5)
Sessile serrated lesion 12 (50)
Non-adenomatous lesion 3 (12.5)
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Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics
28. Wilcoxon Signed Ranks test was performed to test for
significant differences between the paired groups. A p-value
of <.05 indicated statistical significance.

Ethical considerations

The study including retrospective and prospective collection
of examination videos and reports was approved by the
responsible institutional review board (Ethical committee
Stuttgart, 21 January 2021, F-2020-158). The study was regis-
tered at the German Clinical Trial Register (26 March 2021,
DRKS-ID: DRKS00024150). Signed informed consent from
each patient for data recording was obtained for the pro-
spective data collection.

Results

Both systems detected all polyps in both data sets in at least
one image. A summary of the comparison of both systems
for both data sets included in ENDOTEST with five standard
metrics is shown in Table 2. ENDOMIND had a significantly
higher per-frame sensitivity (recall) but lower per-frame spe-
cificity and precision in both data sets compared to GI
Genius. This is represented by a mostly continuous detection
of polyps by ENDOMIND in every frame whereas GI Genius
often stops detecting the same polyp intermittently. This
results in a flickering bounding box. See Supplementary
video as an example. In aggregated metrics combining both
false positives and false negatives ENDOMIND had a lead of
85.7% accuracy and 86.6% F1-score compared to GI Genius
(79% accuracy and 76% F1-score) in the balanced validation
data set, while GI Genius was partially better in the unbal-
anced performance data set with 89.1% accuracy and 45.8%
F1-Score compared to ENDOMIND (85% accuracy and 45.8%
F1-Score). The rate of false positive detections in the full
length colonoscopies was 6% in case of ENDOMIND and 2%
in case of GI Genius.

An important factor beside the recognition of a neoplastic
lesion is how fast an algorithm detects a polyp and alerts or
orientates the examiner through the bounding box to exam-
ine a region more closely. We evaluated this period as FDT
in performance data set. ENDOMIND had a significantly faster
median FDT of 217 milliseconds (ms; with an Inter-Quartile
Range (IQR) between 8 and 1533ms) compared with

1050ms (IQR 358, 2767ms) of GI Genius (p¼ .003).
ENDOMIND detected 79.2% of the polyps faster than GI
Genius (Figure 3).

Discussion

In this work we introduce ENDOTEST, a novel video-based
benchmark dataset that includes polyp sequences and full-
length screening colonoscopies with minimum one aden-
omatous polyp. In addition, we have compared our recently
developed CADe system, ENDOMIND, with a commercially
available CADe system. ENDOMIND has been developed as
part of a publicly funded investigator-initiated project.
Besides the usage of data obtained from routine colonoscop-
ies in an outpatient setting in gastroenterological practices,
we aimed to evaluate the CADe system using a head-to-
head comparison with the commercially available CADe sys-
tem GI Genius with the software version present on March
2020. To our knowledge, there is no previous study compar-
ing different CADe.

As a basis for our deep learning algorithm, we chose
YOLOv5 [21]. YOLOv5 offers two significant advantages: First,
it is an end-to-end neural network and thereby fast and easy
to use in a real-time system. Thus, it enables the system to
run during the clinical routine. Second, YOLOv5 is one of the
AI models with a very high detection rate while not overfit-
ting detection box accuracy. Finding the polyp is considered
more important than drawing the bounding box 100% pre-
cisely around the edges of the polyp. YOLOv5 is an algo-
rithm maximizing those aspects.

Beside the new algorithm used for ENDOMIND, we
focused on optimal training data. We decided not to include
single images of polyps generated for the endoscopic report
since those images often present a cleaned polyp viewed
from an optimal angle. This does not reflect the look of a
polyp at its first appearance. Thus, AI might not learn how to
recognize polyps at this early stage of visualization. Our
training data consists exclusively of videos. Accordingly, the
performed annotation of polyps included the earliest time
point of polyp appearance. Additionally, the endoscopies
were performed in gastroenterological practices. This is in
contrast to many other CADe systems where training
data mainly relies on colonoscopy videos recorded in an in-
hospital setting [6,8,23]. The vast majority of the screening
colonoscopies are performed in gastroenterological practices.
Therefore, usage of data coming from this source as training
data for the development of polyp detection systems might
be better suited for the intended purpose.

Validation data sets used for different CADe systems vary
largely [6,23,24]. The proportion of polyp and non-polyp
images is mainly composed in a balanced manner. However,
differences regarding polyp morphology and size in between
those validation data sets prevent direct benchmarking. Still,
the performance of ENDOMIND on validation dataset of
polyp sequences is comparable to other published CADe sys-
tems with a per-frame sensitivity of 82%–86% and specificity
of 86%–89%: on publicly available datasets. Indeed, using
just still images of polyps results in a marked higher

Table 2. Comparison of ENDOMIND with GI Genius regarding accuracy, preci-
sion, specificity, sensitivity and F1-score using the validation data set with bal-
anced polyp and non-polyp images and the performance data set with more
non-polyp images in the video sequences.

Validation Data Set Performance Data Set

EndoMind GI Genius EndoMind GI Genius

Accuracy 85.7% 79% 85% 89.1%
Precision 86.2% 98% 48.6% 65.3%
Per-frame specificity 84.1% 98% 92.7% 93.7%
Per-frame sensitivity¼ Recall 87.1% 62% 54% 48.1%
F1-score 86.6% 76% 45.8% 45.8%
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sensitivity and specificity [25]. Due to the fact that validation
data sets of commercially available CADe systems are not
publicly available, we applied the already CE-approved CADe
system GI Genius to our data set. The direct comparison
showed a marked higher per-frame sensitivity of ENDOMIND
with inferiority in regard to per-frame specificity and preci-
sion and a higher accuracy score. As for many screening
tools CADe developers prioritize sensitivity [23,26]. Therefore,
polyp images are overrepresented in publicly available valid-
ation data sets, and results derived from those datasets are
difficult to be extrapolated to performance in real-life use. To
overcome this issue, ENDOTEST additionally included full-
length screening colonoscopies that directly resemble situa-
tions in daily work of an endoscopist. In both evaluation
data sets, ENDOMIND has a much higher per-frame sensitiv-
ity (recall), while GI Genius showed superior per-frame speci-
ficity. If the data set contains many polyps frames like in the
validation data set, this results in better aggregate values
like accuracy and F1-score for ENDOMIND, and if the data set
contains more images without polyps like in the perform-
ance data set, GI Genius has better aggregate values. Since
ENDOMIND has been trained with a data set where roughly
half of the images contained polyp, this behavior could have
been expected. Additionally, our data set ENDOTEST provides
high-quality compared to other open-source databases like
SUN Colonoscopy Video Database, LDPolypVideo-Benchmark,
CVC-ClinicVideoDB [12–14]. Those datasets include sequences
of polyps and non full-length colonoscopies. These polyp
sequences are usually recorded after polyp identification

with subsequent cleaning of the polyp and therefore do not
provide a realistic scenario of the intervention. As ENDOTEST
includes full-length colonoscopies we provide a more realis-
tic approach and therefore consider our data to be of higher
quality. Furthermore, the first crucial frames of polyp appear-
ance are included, which allows to measure the FDT.
ENDOTEST is therefore divided in two subsets: the classic
evaluation using video sequences, and the full-length colo-
noscopies that represent a more realistic scenario.

The main reason behind optimizing sensitivity (recall) over
specificity and precision was, that the system should alert
physicians to polyps they might miss during a colonoscopy.
Such polyps are visible for a short time period only – much
shorter than in the videos used in the performance evalu-
ation, where the polyps were detected by the physicians and
therefore were in view for an extended period of time. If it
takes longer to detect a polyp, the polyp might go out of
view and remain undetected. Therefore, the FDT is a key
indicator for the benefit of a CADe. Here, ENDOMIND
detected 79.2% of the polyps faster than GI Genius. This is a
direct consequence of the higher sensitivity (recall) of
ENDOMIND and comes at the cost of more false alarms, as
the lower precision of ENDOMIND shows. However, we
regard a type II error of missing a polyp as more severe than
a type I error of a false alarm. Nasohisa et al described that
twofold withdrawal velocity dramatically decreases sensitivity
per lesion of the CADe system CAD EYE (Fujifilm Europe
GmbH, D€usseldorf, Germany) [27]. Indeed withdrawal time
shows variability among endoscopists [28] with impact on

Figure 3. Time delay from the first appearance of a polyp to the detection by ENDOMIND and GI Genius is shown for each of the 24 polyps in the performance
data set ordered by the detection time of GI Genius. If there is no bar, the polyp was detected in the earliest possible image within the video.
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ADR. Thus, a faster detection of a polyp visible only for a
fraction of a second might help to urge the examiner to
revisit the polyp location. The lower sensitivity of GI Genius
results in non-consistent recognition of polyps with short
interruptions that are visible as a flickering signal
(Supplementary video).

A field for future improvement of ENDOMIND is the com-
paratively low precision corresponding to the lower specifi-
city and the higher FP rate compared to GI Genius. Pfeifer
et al showed a similar rate of FP in the commercially avail-
able CADe system Discovery AI (Pentax Europe GmbH,
Hamburg, Germany) [9]. A high rate of FP detections might
have the potential to induce distrust of the endoscopist to
the CADe system. The examiner might thereby inspect
bounding boxes less thoroughly. Still, compared to the GI
Genius validation study published by Hassan C et al. the cur-
rent GI Genius FP rate in our dataset is higher [24]. This once
more illustrates the effect of different evaluation data sets. A
uniform evaluation dataset used to measure performances of
different CADe systems is therefore needed.

Our future focus is on adding video sequences of normal
mucosa to the training data in order to overcome the high
rate of FP detections. Additionally, applying a threshold that
suppresses short detections flagged by the CADe with only
low precision might help. Alternatively, a different deep
learning network architecture can be chosen like in a recent
published study with only minimal false positive detections
[29]. Another future interesting point would be the compari-
son of the results here obtained with other publicly available
datasets in order to assess the quality of ENDOTEST.

A limitation of our study might be the differing CADe
analysis of the data sets. The FDT of the CADe GI Genius
might have been influenced by the delay due to the input
and output of the video signal into the device whereas
ENDOMIND predictions were done on a high-performance
computer on every video frame without the delay described
above. We estimate the delay of ENDOMIND during real-time
endoscopy to be further increased by 25ms. Liu P et al
reported a delay of 20ms of their CADe system [26] which is
at the same level as the 50ms a CAD system reported by
Byrne et al [30]. Additional evaluation with a complete com-
puter set up of the CADe system directly attached to the
endoscopy processor is therefore needed in the next step to
overcome the mentioned limitations. Additionally, although
not observed, the minimal compression of the videos during
the recording of the colonoscopies could affect the CADe
system since the signal does not originate directly from the
endoscopy processor.

Conclusion

In this work, we have used the generated ENDOTEST data-
base to compare two computer-aided polyp detection
systems. ENDOTEST contains full-length screening colonos-
copies, frame-by-frame annotated regarding the presence of
a polyp. Therefore, it resembles a more realistic scenario
than previous existing databases, and allows the calculation
of the crucial parameter FDT. In addition, the developed

CADe system prototype ENDOMIND, has shown promising
performance and sensitivity in this preliminary evaluation
when compared with a commercially available CADe system.
However, further training data is needed to increase the pre-
cision to avoid false alarms. In general, there is a lack of
common definitions of quality measures of annotation and
validation. Benchmark data sets for validation of CAD sys-
tems could overcome these limitations. Even more import-
ant, we currently lack realistic data sets for evaluation
containing undetected polyps being presented only for a
short period of time, since their detections is the main pur-
pose of the systems.
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Abstract

Background: The efficiency of artificial intelligence as computer‐aided detection

(CADe) systems for colorectal polyps has been demonstrated in several randomized

trials. However, CADe systems generate many distracting detections, especially

during interventions such as polypectomies. Those distracting CADe detections are

often induced by the introduction of snares or biopsy forceps as the systems have

not been trained for such situations. In addition, there are a significant number of

non‐false but not relevant detections, since the polyp has already been previously

detected. All these detections have the potential to disturb the examiner's work.

Objectives: Development and evaluation of a convolutional neuronal network that

recognizes instruments in the endoscopic image, suppresses distracting CADe de-

tections, and reliably detects endoscopic interventions.

Methods: A total of 580 different examination videos from 9 different centers using

4 different processor types were screened for instruments and represented the

training dataset (519,856 images in total, 144,217 contained a visible instrument).

The test dataset included 10 full‐colonoscopy videos that were analyzed for the

recognition of visible instruments and detections by a commercially available CADe

system (GI Genius, Medtronic).

Results: The test dataset contained 153,623 images, 8.84% of those presented

visible instruments (12 interventions, 19 instruments used). The convolutional

neuronal network reached an overall accuracy in the detection of visible in-

struments of 98.59%. Sensitivity and specificity were 98.55% and 98.92%, respec-

tively. A mean of 462.8 frames containing distracting CADe detections per

colonoscopy were avoided using the convolutional neuronal network. This

accounted for 95.6% of all distracting CADe detections.

Conclusions: Detection of endoscopic instruments in colonoscopy using artificial

intelligence technology is reliable and achieves high sensitivity and specificity.
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Accordingly, the new convolutional neuronal network could be used to reduce

distracting CADe detections during endoscopic procedures. Thus, our study dem-

onstrates the great potential of artificial intelligence technology beyond mucosal

assessment.

K E YWORD S

CADe, colonoscopy, deep learning, instrument, intervention

INTRODUCTION

Artificial intelligence (AI) for colonic polyp detection is the most

important application of this new technology in gastrointestinal

endoscopy to date. Efficiency and functionality of these computer‐
aided detection (CADe) systems have been demonstrated in several

randomized trials.1–6 However, CADe systems also show many false

positive (FP) detections.7,8 These false markings can affect the ex-

aminer's concentration. If a false detection occurs in addition to a

relevant finding, the examiner's attention may be distracted, leading

to missed findings in the worst case.9

Daily use of CADe systems shows that endoscopic interventions

(especially biopsies and polypectomies) lead to many false activations

of CADe systems. In this case, false positive activations occur due to

the inserted instruments (forceps, needle, snare), but also due to

intervention on the mucosa itself (injection, resection, clipping). In

addition, there are a significant number of non‐false but not relevant
detections, since the polyp has already been previously detected. To

enable the investigators to put their full concentration on the

intervention, no distracting AI signals regarding polyp detection

should be visible during the procedure.

Therefore, the aim of the current study was to develop and

evaluate an AI system that reliably detects introduced instruments in

order to disable the CADe system during an intervention and avoid

distracting detections.

METHODS

Training dataset

Data from nine different center in Germany, two university hospitals,

one community‐based hospital and six gastroenterology practices,

were collected retrospectively from March 2019 to August 2021. A

total of 519,856 images were selected from 580 randomly selected

different colonoscopy videos for building the training dataset. Of all

images in the training dataset, 144,217 (27.7%) contained a visible

instrument (Figure 1). The types of instruments used for training the

model included graspers, hot and cold snares, injection needles and

clips. No minimum or maximum number of images per instrument in a

colonoscopy was predefined for training the model. Images of good

and poor quality (e.g., blurry images) were chosen for model training

in order to represent a real‐life scenario. The colonoscopies were

performed using different processors including CV‐190 and CV‐170

(Olympus Europa SE & Co. KG, Hamburg, Germany), Image1 S (Karl

Storz SE & Co. KG, Tuttlingen, Germany) and EPK‐i7000 (Pentax

Europe GmbH, Hamburg, Germany) and were recorded using a

standard computer with a video grabber (DeckLink Mini Recorder,

Blackmagic Design Pty Ltd., Melbourne, Australia) and a custom

recording software. Representative images of the four different

processor types are displayed in Supplementary Figure 1.

To reduce almost identical images in the dataset, images from

the same colonoscopy were filtered to exclude neighboring images.

For training the convolutional neuronal network (CNN), the dataset

was split into a train (90%) and a validation (10%) dataset. To prevent

bias, all images of one colonoscopy were either included in the train

or the validation dataset.

Preprocessing and CNN training

Initially, a region of interest for each used processor type was defined

and images were cropped accordingly. Afterward, images were zero

padded and resized to a dimension of 512� 512 pixels to yield uniform

images. For train data, the image augmentation pipeline (Supplemen-

tary Code Section 1) was applied. All images underwent the standard

procedure of image normalization (Supplementary Code Section 2), so

that each color and brightness value are standardized. Resulting

Key summary

Summarize the established knowledge on this subject

� Multiple computer‐aided diagnosis (CADe) systems for

polyp detection are currently introduced into clinical

practice.

� CADe results in multiple distracting detections, espe-

cially during therapeutic interventions when instruments

are visible.

What are the significant and/or new findings of this study?

� Development and evaluation of a deep learning model to

recognize visible instruments that are used for thera-

peutic intervention in gastrointestinal endoscopy.

� Our model automatically prevents distracting CADe de-

tections during therapeutic interventions.
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constant values for this were calculated on all train data images and

were always used to normalize each input image. CNN training is

described in detail in SupplementaryMaterial. The current instrument

detection software is freely available to download for research pur-

poses (https://github.com/Maddonix/instrument_detection).

Model testing

The CNN for detecting visible instruments was tested in the with-

drawal phase of a set of 10 full‐length colonoscopy videos by

analyzing its performance in each single image of the videos. To

stabilize the prediction results, a running mean function was applied.

This was performed to avoid erroneous suppressions of AI detections

caused by our CNN. Here, we assigned the current video image the

majority label of itself as well as the previous 14 video images, rep-

resenting a threshold of 467 ms. This same dataset was used to test

the change in performance of a CADe system (GI Genius, Medtronic

Inc., Ireland, Version March 2020) in the reduction of distracting

activations with the developed instrument detection system.

Ethics approval

Patients provided written informed consent prior to video recording.

The ethics committee of the University hospital Würzburg approved

retrospective analysis of the data used in this study.

Statistical analysis

Two evaluations were statistically analyzed: the capabilities of the

instrument detection system and the reduction of CADe distracting

activations. Per‐frame sensitivity and specificity, accuracy, and

Receiver Operating Characteristic (ROC) were calculated for both

evaluations. Sensitivity has been defined as the ratio between the

number of frames with a visible instrument that were correctly

detected (TP) and the total number of frames with a visible in-

strument (TP+FN). Specificity was defined as the ratio between the

number of frames without a visible instrument that were correctly

assessed (TN) and the sum of the total number of frames with a

false detection and the TN frames (FP+TN). Accuracy was defined

as the ratio between the number of correct system assessments (TP

+TN) and the total number of frames. Metrics where weighted

average to compensate for the imbalance of images with/out a

visible instrument. For the calculation of the weighted average

metrics the parameter “average” in every used function of the

sklearn.metrics module from scikit‐learn 1.0.2 package was set to

“weighted”. All calculations were performed using Python Software

(version 3.6).

RESULTS

Characteristics of the patient cohort

The test dataset comprised 10 full‐length colonoscopy videos from

10 different patients. Men and women were equally represented,

the mean age was 57.1 (interquartile range; 46–65) and the mean

Boston Bowel Preparation Scale was 6.9 (range; 6–9) (Supplemen-

tary Table 1). The total duration of the withdrawal phase, with the

duration of interventions included, was 1 h and 25 min, corre-

sponding to 153,623 single video frames. During this time, in-

struments were visible for a total of 7 min and 12 s on the screen

These 10 videos included a total of 12 different interventions,

where 19 different endoscopic through the scope instruments were

used: 4 cold snares, 11 graspers, 1 hot snare, 2 needles and 1 clip

(Table 1).

Performance of the instrument detection system

The CNN overall accuracy achieved in the detection of visible in-

struments in the test dataset was 98.59%. Sensitivity and specificity

were 98.55% and 98.92%, respectively. The grasper was the instru-

ment that was best detected by the system, with a sensitivity of

99.08% and a specificity of 99.36%, whereas the snare, with a

sensitivity of 98.21% and a specificity of 98.51%, was the most

difficult instrument to detect, probably because often only the wire

was visible. Representative images of a grasper, a snare and a false

positive detection of the CNN with the corresponding heat map that

depicts the image areas that are recognized as an instrument are
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F I GUR E 1 Characteristics of the training dataset containing
images with and without visible instruments captured using the
four different endoscopy processor types
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presented in Figure 2. The ROC curve illustrating the diagnostic

ability of our instrument detection system is depicted in Figure 3. No

marked differences in performance were observed relating to BBPS

value, that ranged from 6 to 9 (Supplementary Table 1).

Reduction of CADe distracting activations

A total of 25,441 activations were triggered by the CADe system in

the test dataset. These activations included detected polyps and

false positive detections. 4839 activations (19.02%) occurred when

an instrument was visible and were regarded as distracting CADe

activations. Especially significant was the amount of distracting

activation caused by snares or needles. Our system was able to

avoid 4628 of these activations, representing a sensitivity value of

95.64%. Regarding the number of CADe activations that were

falsely avoided, the value in frames amounts to 357. Out of those,

292 contained polyps that were previously detected. This implies

that the system has a specificity of 98.62% in terms of performance

in preventing distracting CADe activations. The overall accuracy

was of 99.17%.

The metrics of the developed instrument detection system per

intervention and its performance in preventing distracting CADe

activations are presented in Table 1 and exemplarily illustrated in

Figure 4. In addition, Figure 5 and Video S1 present a graphical

example of how the AI system works.

DISCUSSION

Since the introduction of commercially available AI‐systems for

colorectal polyp detection, the use of these promising systems in

daily practice is increasing. The great potential of AI‐systems is

currently in the field of diagnostics, as CADe systems support the

examiner in real time and with high sensitivity.6,10,11 Since CADe

systems have been trained with diagnostic polyp images, they ach-

ieve high sensitivity for native polyps in the colon.12 However,

changes to the mucosa in the course of an intervention (e.g., injec-

tion) lead to false positive detections, as the systems have not been

trained for such situations. The instruments used during the inter-

vention also lead to many false positive detections that may disturb

the investigator's concentration. In addition, there are many non‐
false but irrelevant detections because the polyp causing the inter-

vention has been previously detected. To enable the investigators to

put their full concentration on the intervention, no distracting AI

signals should be visible during the intervention. This could be ach-

ieved by suppressing the CADe signal during the intervention, since

polyp detection is not necessary during the intervention.

Currently, the endoscopist can only manually turn off the CADe

system and turn it back on after the procedure. Some systems

require a button to be pressed on the processor, as not all systems

can be controlled via a button on the endoscope. However, it is

possible that the endoscopist forgets to turn the system back on after

the procedures. Therefore, automatically stopping and starting the

TAB L E 1 Characteristics and performance of the instrument detection system in the test dataset

Intervention

Type of

instrument

Number of

visible
instrument

frames

Sensitivity

(%)

Specificity

(%)

Disturbing

CADe
activations

(frames)

Disturbing CADe
activations

avoided (frames)

False‐avoided
CADe
activations

(frames)

Total

number of
CADe

activations

Video 1 Polypectomy Snare 728 98.60 99.51 377 330 13 3352

Polypectomy Snare 1262

Video 2 Polypectomy Grasper 142 99.77 99.76 6 6 0 396

Video 3 Polypectomy Grasper 269 99.21 99.68 137 102 5 1252

Video 4 Polypectomy Grasper 174 98.87 98.43 8 8 2 302

Video 5 Polypectomy Needle 407 99.22 99.64 1232 1184 54 7834

Snare 931

Video 6 Polypectomy Grasper 1136 99.31 99.67 161 150 6 531

Video 7 Polypectomy Snare 2760 98.01 98.35 741 736 50 1577

Video 8 Polypectomy Needle 2493 96.90 96.58 1923 1906 204 7737

Hot snare 1048

Clip 292

Video 9 Polypectomy Snare 255 99.33 99.62 101 84 21 1361

Video 10 Random

biopsies

5x Grasper 751 98.14 98.98 153 122 2 1099

Polypectomy Grasper 871

Abbreviation: CADe, Computer‐aided detection system.
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CADe system would increase the comfort for the endoscopist and

prevent the CADe system from being accidentally switched off

permanently.

Our novel AI system detects inserted instruments with high

sensitivity and specificity. Therefore, the system can capture the time

frame of an endoscopic intervention with high accuracy. This would

enable the suppression of the CADe signal for the duration of the

intervention to focus the investigator's concentration on the inter-

vention. The suppression relates not only to false positive detections

but instead to all CADe detections during an intervention that do not

add value to the endoscopic image.

The requirements for such a tool detection system are very high,

as suppression of the CADe signal outside of an intervention (false

positive instrument detection) may increase the risk of missing other

visible polyps. Our study shows that our new AI system achieves a

very high specificity, which is sufficient for this purpose. To obtain

this high specificity, our system was trained with a large number of

images from multiple centers using different endoscopy processors.

The number of training images we used is comparable to the number

used in development of other CADe systems.13,14 In addition, the

optimized algorithm presents only a short delay of 467 ms, that al-

lows for the real‐time use in combination with a CADe system.

Since the sensitivity of our AI system is in a high range, the in-

struments introduced were missed in only a few frames during an

intervention. This applies in particular to the insertion and removal of

an instrument where only a small portion of it is visible at the edge of

the endoscopic view. Once the instrument is in the normal working

position, it is quickly and reliably detected by the AI system. Thus, the

crucial part of the intervention is captured by our instrument

detection system. However, a problem with instrument detection

arises when an instrument is pressed so firmly into the mucosa that it

is barely visible. In this situation, the instrument recognition works

accordingly worse. Nevertheless, our video analysis showed that the

new AI system significantly reduced the number of false‐positive
CADe detections during an endoscopic intervention. While many

publications on AI systems only use short, specially selected video

sequences in the evaluation phase, our system was tested on full‐
length colonoscopy, which brings the results much closer to the

real examination situation.15

Interestingly, the commercially available CADe system seems to

generate more detections when a snare is used in comparison to a

grasper. There might be different explanations for this phenomenon.
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F I GUR E 3 Receiver Operating Characteristic Curve of the instrument detection CNN visualizes specificity. While adjusting classification

thresholds, the TP rate reaches 96.58% while maintaining a FP rate of 1% resulting in an area under the curve of 0.9971. CNN, convolutional
neuronal network; FP, false positive; TP, true positive
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F I GUR E 2 Grasper (upper row), snare (middle row), and a false

positive detection (lower row) of the instrument detecting CNN
with the corresponding gradient‐weighted class activation mapping
(Grad‐CAM). Grad‐CAM images on the right side visualize areas

responsible for the CNN prediction as an instrument
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The first one is that the snare produces folds around the polyp by

pressing the wire against the mucosa. Those folds are then falsely

interpreted as polyps by the commercially available CADe system.

Another explanation is that the total time that snares are visible in

our dataset is longer than that of graspers. The longer visibility re-

sults in more CADe detections. Lastly, the not openly available

training dataset of the commercially available CADe system might

contain images of graspers and snares in an unbalanced manner.

The implementation of our freely available instrument detection

AI system in an existing CADe system could be done by controlling

the input signal of the examination monitor. Here, the instrument

detection AI would analyze the raw endoscopy processor output
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F I GUR E 4 Schematic overview of the images with (red) and without (blue) visible instruments in a coloscopy video. The first row
represents the manual annotations of whether the corresponding image contains a visible instrument. The second row represents the

predictions output by our CNN. The third row represents the distracting CADe activations successfully prevented (green) or unsuccessfully
prevented (yellow) by using the developed instrument detection CNN. The inset shows 160 frames (one dot per frame) which correlate to
5.33 s in the video. CADe, Computer‐aided detection system; CNN, convolutional neuronal network

F I GUR E 5 Single images of a polypectomy involving a needle for submucosal injection (upper row) and a snare (lower row) using the
computer‐aided polyp detection system (CADe) (left) and the additional CADe preventing instrument detection system (right). Video S1:

Head‐to‐head comparison of a colonoscopy video sequence with (right) and without (left) the use of the instrument detection convolutional
neuronal network
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signal in parallel with the CADe system. During withdrawal with no

visible instrument, the CADe signal would be displayed to the

examiner. Thus, allowing the examiner to fully benefit from the high

polyp detection rate of a commercially available CADe system. When

an instrument is detected by the new AI, an automatic switch would

display the raw processor signal instead. Alternatively, the AI system

for instrument recognition can also be integrated as a filter directly

into an existing or newly developed CADe system. By integrating our

system in a single CADe system, the process would be more

comfortable.

To the best of our knowledge, an AI system for instrument

detection using deep learning methods has not been developed in

gastrointestinal endoscopy. Therefore, we present the first AI system

in the field that enables recognition of endoscopic interventions by

instrument detection. In addition to the mentioned application, the

system could also be useful for automated recording of intervention

times or withdrawal time. This could potentially help in obtaining

objective data to assess the quality of colonoscopies.16

However, our study has several limitations. The new AI system

was evaluated using previously recorded videos. Therefore, the

mentioned implementation of the AI system in daily practice must be

tested in future prospective studies to evaluate clinical benefit.

Another possibility would be to investigate (e.g. by eye‐tracking)
whether the examiner's attention could be better focused on the

intervention by reducing distracting CADe signals.17 Other limita-

tions include that, to facilitate the generation of a large‐annotated
training dataset in a short period of time, no predefined protocol

was used for video selection. A quantitative identification of the

causes of false positive detections of our CNN need to be evaluated

in future studies.

CADe systems already achieved a remarkable benefit in ran-

domized controlled trials. Future developments of those systems

include improving usability by adding customizable features. The

commercially available system that was used in our study for

example, presents a well‐studied CADe function.5 Other systems

incorporate computer‐aided diagnosis (CADx) that is only turned on

when virtual chromoendoscopy is activated by the examiner.18 In the

case of the ENDO‐AID CADe system by Olympus the examiner has

the possibility to choose how many CADe detection boxes should be

maximally displayed on the screen. The examiner can even choose

from two different CADe modes that presumably present different

sensitivities.19 In other words, in general, these devices are incor-

porating customizable modules that increase the usability and,

therefore, the value of the device. Our work aligns in this direction by

contributing to the prevention of distracting CADe activations during

interventions.

In conclusion, our study shows that instrument detection using

AI technology is reliable and achieves high sensitivity and specificity.

Therefore, the new AI system could be helpful to reduce distracting

CADe detections during endoscopic procedures. Although the clinical

benefit of the new AI system needs further evaluation, our study

demonstrates the great potential of AI technology beyond mucosal

assessment.
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Abstract
Introduction: Computer-aided detection (CADe) helps in-
crease colonoscopic polyp detection. However, little is 
known about other performance metrics like the number 
and duration of false-positive (FP) activations or how stable 
the detection of a polyp is. Methods: 111 colonoscopy vid-
eos with total 1,793,371 frames were analyzed on a frame-
by-frame basis using a commercially available CADe system 
(GI-Genius, Medtronic Inc.). Primary endpoint was the num-
ber and duration of FP activations per colonoscopy. Addi-
tionally, we analyzed other CADe performance parameters, 
including per-polyp sensitivity, per-frame sensitivity, and 
first detection time of a polyp. We additionally investigated 
whether a threshold for withholding CADe activations can 
be set to suppress short FP activations and how this thresh-
old alters the CADe performance parameters. Results: A 
mean of 101 ± 88 FPs per colonoscopy were found. Most of 
the FPs consisted of less than three frames with a maximal 

66-ms duration. The CADe system detected all 118 polyps 
and achieved a mean per-frame sensitivity of 46.6 ± 26.6%, 
with the lowest value for flat polyps (37.6 ± 24.8%). With-
holding CADe detections up to 6 frames length would re-
duce the number of FPs by 87.97% (p < 0.001) without a 
significant impact on CADe performance metrics. Conclu-
sions: The CADe system works reliable but generates many 
FPs as a side effect. Since most FPs are very short, withhold-
ing short-term CADe activations could substantially reduce 
the number of FPs without impact on other performance 
metrics. Clinical practice would benefit from the implemen-
tation of customizable CADe thresholds.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Artificial intelligence (AI) is presumably a powerful 
tool in colorectal cancer prevention using colonoscopy, 
as several randomized controlled trials (RCTs) have 
shown that computer-aided detection (CADe) increases 

Markus Brand and Joel Troya contributed equally to this work.

This article is licensed under the Creative Commons Attribution 4.0 
International License (CC BY) (http://www.karger.com/Services/
OpenAccessLicense). Usage, derivative works and distribution are 
permitted provided that proper credit is given to the author and the 
original publisher.



Brand/Troya/Krenzer/De Maria/
Mehlhase/Götze/Walter/Meining/Hann

Digestion2
DOI: 10.1159/000525345

adenoma detection rate (ADR) and decreases the miss 
rate of neoplastic lesions [1–6].

However, there are still many unanswered questions 
regarding CADe systems. For example, many false-posi-
tive (FP) activations of up to 8% of all frames occur during 
examination with CADe systems [7]. The number and 
duration of FP activations play an important role regard-
ing the examiners comfort in using those systems, as these 
activations can affect the examiners attention leading to 
misinterpretation of normal mucosa [8]. Therefore, an 
international consensus conference has identified the 
analysis of FP activations as an important research focus 
[9]. Current studies on this topic include only small num-
bers of cases with about 40 colonoscopy examinations 
and mainly investigate the cause and the clinical impact 
of FP activations [10, 11]. However, specific data on the 
duration and pattern of FP activations are not available, 
although such information is necessary to better under-
stand the operation of CADe systems in order to improve 
them. An example for improvement might be the reduc-
tion of FPs through customizable activation thresholds. 
In addition, previous RCTs only provide data on per-pol-
yp sensitivity (PPS), i.e., whether a polyp was detected 
resulting in a yes or no answer. How stable the detection 
signal is over time, termed per-frame sensitivity, was not 
assessed as no frame-by-frame analysis of real full-length 
videos has been performed so far.

Therefore, the objective of this study was to analyze the 
FP pattern of a commercial CADe system. This was done 
using a frame-by-frame analysis of full-length real-life 
videos to determine the effects of different CADe activa-
tion thresholds on FPs. Additionally, in a patient-based 
analysis, we examined performance parameters such as 
PPS or the mean number of polyps per colonoscopy 
(PPC).

Materials and Methods

Study Design
Videos from 244 routine colonoscopies performed in two ter-

tiary centers (University Hospital Ulm and Würzburg) were retro-
spectively analyzed. Recording took place between March 2019 
and April 2020. Those colonoscopies (raw signals) were recorded 
using the high-definition video signal of the endoscopy processor 
(Olympus CV-190). For the performance analysis of a commer-
cially available CADe system (GI Genius, Medtronic Inc., Ireland, 
software version of March 2020), this raw video signal was intro-
duced into the AI system, and the output signal (with visible CADe 
detections) was recorded. Accordingly, a video pair consisting of 
raw signal and CADe signal was assembled for video analysis of 
each colonoscopy.

Colonoscopies
Colonoscopies were performed using the colonoscopes CF-

HQ190AL and CF H180AI/AL (Olympus Co., Tokyo, Japan). All 
patients were prepared for the colonoscopy using a standard 
split-dose regimen with 2L polyethylene glycol with ascorbic acid 
(Moviprep, Norgine Pharma; Harefield, England). Endoscopies 
were performed using nurse-assisted propofol sedation [12]. Pol-
yps were removed upon detection by cold or hot snare technique 
if no contraindication for resection was present. The examiners 
were classified due to their experience in colonoscopy between 
junior and senior with 2,000 performed colonoscopies as a 
threshold.

Video Analysis
All videos were screened by a board-certified gastroenterolo-

gist and experienced endoscopist (MB) with over 4,000 performed 
colonoscopies. Examinations performed for screening reasons or 
post polypectomy surveillance were included in the analysis. For 
further analysis, the following exclusion criteria were defined: in-
flammatory bowel disease, active gastrointestinal bleeding, poor 
bowel preparation defined by a Boston Bowel Preparation Scale 
(BBPS) lower than 5, incomplete colonoscopies, advanced neopla-
sia, altered gut anatomy, endoscopy only performed for an extend-
ed resection and polyposis syndrome. Included colonoscopies 
were analyzed in a deep frame-by-frame manner using a custom-
made annotation tool as previously described [13].

Analysis of Non-CADe Signal (Raw Videos)
The start and the end of withdrawal and polypectomies were 

annotated. Each polyp was counted for the analysis. Additionally, 
polyps were characterized using the Paris classification and size 
(<5 mm, 5–10 mm, 11–20 mm, >20 mm). In a frame-by-frame 
analysis, each frame with a partially or completely visible polyp was 
annotated as a polyp frame. Frames with even small parts of a pol-
yp visible were regarded as a polyp-containing frame. Polyp an-
notation stopped at the beginning of the resection (first frame with 
a visible instrument in the image).

Analysis of CADe Signal (AI Videos)
All frames with visible bounding boxes resembling CADe de-

tections were automatically identified by a custom-made applica-
tion. Subsequently, each bounding box was classified by an expe-
rienced endoscopist (MB) as a true-positive (TP) or FP detection. 
It was considered TP if the bounding box had contact with the 
visible polyp, irrespective of how much area of the lesion was cov-
ered. Small hyperplastic polyps of the rectosigmoid were excluded 
from the analysis. The absence of a bounding box in a frame with 
a visible polyp was regarded a false negative. The absence of a box 
in a frame without a polyp was considered a true negative. A FP 
detection was defined as a detected area that was not in contact 
with a polyp. In case of a FP detection in a frame with a visible 
polyp, the term distraction was used.

Endpoints
The primary endpoint of the study was the number of FP ac-

tivations per colonoscopy and the duration of FP activations. For 
the secondary endpoints, we analyzed further CADe perfor-
mance parameters, including mean number of PPC of the CADe 
System, PPS, per-frame sensitivity, and first detection time (FDT) 
of a polyp.
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In addition, we investigated whether a threshold for withhold-
ing short CADe activations can be set to suppress FP activations 
and how this threshold alters CADe performance parameters such 
as PPC, PPS, or per-frame sensitivity.

Data Analysis and Statistics
FP activations were counted in their number, with each con-

tiguous sequence of FP frames counted as one activation. In addi-
tion, the duration of FP activations was measured in frames. Each 
frame had a duration of 33 ms. The mean number of PPC was cal-
culated by dividing the number of detected polyps by the number 
of performed colonoscopies. PPS was defined as the number of 
polyps detected by the CADe system in at least one frame divided 
by the number of polyps annotated in the raw video data. The per-
frame sensitivity, previously published as temporal coherence, was 
calculated by dividing the number of TP frames by the total num-
ber of frames where the polyp was visible in the raw signal (TP + 
false negative), as previously described by Zhou et al. [14]. Addi-
tionally, the per-lesion sensitivity, defined as the number of polyps 
in which more than half of each polyp’s frame were detected by the 
CADe, divided by the total number of polyps, was analyzed as pre-
viously described by Misawa et al. [15]. FDT of a polyp was defined 
as the time interval between the first appearance of a polyp in the 
raw video and the first frame containing a TP-CADe activation. If 
the polyp was not permanently visible during this time span, 
frames without a visible polyp were excluded. By this method, FDT 
included only frames with a visible polyp. The mean withdrawal 
time was determined using the recorded videos and defined as the 
time frame between the coecum and anal canal, excluding time 
spent for performing biopsies or snare resection [16].

Statistical analysis was performed using Python version 3.8. 
The χ2 and Fisher’s exact tests were used to test for significant dif-
ferences between categorical variables. Student’s t test and Mann-
Whitney U test were applied for continuous variables depending 
on their distribution pattern. A p value of <0.05 indicated statistical 
significance.

Results

Baseline Characteristics
From 244 routine colonoscopies, 133 colonoscopies 

met the exclusion criteria. Thus, a total of 111 pairs of 
colonoscopy videos including the raw video signal and 
the CADe signal were analyzed (Fig. 1) in a deep frame-

133 met exclusion criteria:
IBD: 56

Bleeding: 5
Poor bowel preparation: 15

Incomplete: 19
Stenosis: 4

Defective videos: 22
SSP-syndrome: 1

ESD clip: 1
Hemicolectomy: 3

Full-thickness resection in
rectum: 1

Lymphoma in colon: 1
Tumor ascendens: 1

Xanthomatosis: 1
Kaposi sarcoma: 1
Tumor in sigma: 1

EMR with clip in ileum: 1

244 routine colonoscopies recorded

111 were analysed

53 colonoscopies with
at least one polyp

118 polyps

58 colonoscopies
without any polyp

Table 1. Patient and polyps characteristics

Characteristic Value

Sex
Male, n (%) 50 (45.05)
Female, n (%) 61 (54.95)

Age, mean (range) 60.46 (19–89)
BBPS, mean (range) 7.50 (6–9)
Withdrawal time, mean, minutes (IQR) 8.98 (5.33–22.04)
Polyps, n 118
Polyps per patient, mean (range) 1.06 (0–6)
Paris classification, n (%)

0-Ip 6 (5.08)
0-Is 42 (35.59)
0-IIa 70 (59.32)

Size, n (%)
1–5 mm 65 (55.08)
6–10 mm 30 (25.42)
11–20 mm 23 (19.49)

Location, n (%)
Right colon 66 (55.93)
Left colon 35 (29.66)
Rectum 17 (14.41)

BBPS, Boston Bowel Preparation Scale; IQR, interquartile range.

Fig. 1. Flowchart of study design. EMR, en-
doscopic mucosal resection; ESD, endo-
scopic submucosal dissection; IBD, inflam-
matory bowel disease; SSP sessile serrated 
polyposis.
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by-frame manner. Most of the examinations (65.8%) 
were done by experienced investigators with over 2,000 
performed colonoscopies. The mean BBPS score was 7.5, 
with the lowest value being 6. The mean withdrawal time 
was 8:58 min. A total of 118 polyps were identified and 
annotated in the 111 videos. Most of the polyps were di-
minutive with 1–5 mm in size (55.08%) with flat or sessile 
shape (Paris 0-Is/IIa; 35.59%/59.32%). Baseline charac-
teristics of the colonoscopies and detailed characteriza-
tion of the polyps are shown in Table 1. In total, the 111 

examinations analyzed contained 1,793,371 frames, in-
cluding 173,959 frames (9.7%) with polyps and 1,619,412 
frames (90.3%) without polyps. Three polyps were detect-
ed by the CADe but not perceived by the endoscopist.

Primary Endpoint
Rate of FP Detections and Distracting Detections
A total of 11,188 FP activations were detected in the 

111 coloscopies (101 ± 88 FPs per colonoscopy). The 
mean duration of a FP activation was 135 ms. In relation 
to the withdrawal time, the FPs account for a mean of 
2.48% resembling 13.61 s. Most of the FP detections con-
sisted of one to two frames, corresponding to a period of 
max. 66 ms (Fig.  2). Only a minority of detections ac-
counted for continuous detections consisting of 10 frames 
or more, resembling more than 330 ms. In the subgroup 
of colonoscopies with at least one polyp, we examined the 
frames with a FP CADe detection in an image with a vis-
ible polyp, termed distracting detection. Here we found 
that 1.6 ± 2.1% of the frames with polyps contain this dis-
traction.

Secondary Endpoints
PPC and PPS
The CADe system detected all 118 polyps that were 

visible in the videos, resulting in a PPS of 100%. The mean 
number of PPC was 1.06.

Per-Frame Sensitivity and Per-Lesion Sensitivity
The mean per-frame sensitivity of the CADe system 

for all 118 polyps was 47.73 ± 26.5% (Table 2). The mean 
per-lesion sensitivity of the CADe system was 47.46%. In 
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Characteristic Value

Per-frame sensitivity, mean% ± SD (n) 47.73±26.50 (118)
Polyps with less than 50% per-frame sensitivity, n (%) 56 (47.46)
Paris classification

0-Ip, mean% ± SD (n) 74.86±21.78 (6)
0-Is, mean% ± SD (n) 60.10±22.31 (42)
0-IIa, mean% ± SD (n) 37.99±24.65 (70)

Size
1–5 mm, mean% ± SD (n) 49.10±25.96 (65)
6–10 mm, mean% ± SD (n) 50.91±27.74 (30)
11–20 mm, mean% ± SD (n) 39.72±25.98 (23)

Location
Right colon, mean% ± SD (n) 43.56±25.04 (66)
Left colon, mean% ± SD (n) 53.43±26.00 (35)
Rectum, mean% ± SD (n) 52.21±31.44 (17)

SD, standard deviation.

Table 2. Per-frame sensitivity as a measure 
of time percentage in which polyps were 
correctly detected by the CADe system

Fig. 2. Histogram displaying the different length of FP CADe acti-
vation durations measured in consecutive frames. The bars to left 
of the dotted red line represent more than 90% of all activations. 
CADe, computer-aided detection.
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a subgroup analysis, we found that the per-frame sensitiv-
ity was significantly lower in flat polyps (Paris 0-IIa) com-
pared to 0-Ip or 0-Is configuration (37.99 ± 24.65% vs. 
74.86 ± 21.78%, p < 0.001 or 37.99 ± 24.65% vs. 60.10 ± 
22.31%, p < 0.001). While polyp size did not influence the 
per-frame sensitivity, polyp localization in the right-sided 
colon segments was associated with lower mean per-
frame sensitivity, compared to the left-sided colon seg-
ments (43.56 ± 25.04% vs. 53.43 ± 26.00, p = 0.017).

FDT of a Polyp
FDT was available for each of the 118 polyps. The 

mean FDT was 1,692 ± 2,052 ms with a wide range from 
33.3 to 12,033 ms. In a subgroup analysis, we found the 
highest FDT in the polyp size group 11–20 mm with mean 
2,179 ± 3,174 ms (Table 3). However, this was not sig-
nificant when compared to size groups 1–5 mm and 6–10 
mm. In contrast, we found a significantly higher FDT in 
Paris 0-IIa polyps in comparison to 0-Ip or 0-Is polyps 
(2,068 ± 2,413 ms vs. 522 ± 216 ms or 1,233 ± 1,247 ms,  
p = 0.023 and p = 0.046).

Impact of Different CADe Activation Thresholds on 
FPs and CADe Performance Parameters
To estimate the effect of withholding CADe activa-

tions of a defined frame length on the FPs and the CADe 
performance, a subgroup analysis was performed using 
only activations of a defined frame length or longer. Fig-
ure 3 shows graphically how withholding short activa-
tions of 1–10 frames significantly reduces the rate of FPs 
while having little effect on the per-frame sensitivity of 

the CADe system. For example, withholding activations 
up to a length of 10 frames representing 330 ms reduced 
FP activations by 92.79% (p < 0.001), while the per-frame 
sensitivity decreased by only 6.07% (p = 0.07). In addi-
tion, we examined whether withholding short activations 
influenced PPC or PPS. Up to a threshold of 3 frames (100 
ms), no polyps were missed. In contrast, a threshold of 10 
frames representing 330 ms resulted in 7 missed polyps. 
In this case, all missed polyps were of flat shape (Paris 
0-IIa) and had previously low per-frame sensitivity values 
of <28%. PPC was not significantly affected by withhold-
ing CADe activations up to a threshold of 10 frames (p = 
0.71), whereas initial significant changes in PPS occurred 
at a threshold of 7 frames (p = 0.02). Detailed information 

Table 3. Time to first detection of a visible polyp by the CADe 
system

Characteristic Mean, ms ± SD (n)

Time to first detection 1,692.66±2,052.73 (118)
Paris classification

0-Ip 522.22±216.71 (6)
0-Is 1,233.33±1,246.96 (42)
0-IIa 2,068.57±2,413.86 (70)

Size
1–5 mm 1,621.03±1,792.53 (65)
6–10 mm 1,474.44±1,420.34 (30)
11–20 mm 2,179.71±3,174.02 (23)

SD, standard deviation; ms, milliseconds; CADe, computer-aided 
detection.
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Fig. 3. Effect of elimination of short-lasting 
CADe activations on per-frame sensitivity 
(per frame sensitivity, blue line) and FP ac-
tivations (red line). As shown, the progres-
sive elimination of activations with in-
creasing duration has a higher impact on 
reducing FP activations than on per-frame 
sensitivity reduction. CADe, computer-
aided detection; FP, false positive.
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on the impact of different thresholds on PPC, PPS, and 
per-frame sensitivity are shown in Table 4. In addition, 
online supplementary Video 1 (for all online suppl. mate-
rial, see www.karger.com/doi/10.1159/000525345) shows 
an example of how a threshold of 6 frames (no significant 
changes in PPC, PPS, or per-frame sensitivity) affects FP 
activations in the endoscopic view.

Discussion

The development of an AI system for polyp detection 
using deep learning techniques applied on a larger data-
set was first described by Wang et al. [17]. Subsequently, 
several commercially available CADe systems have been 
developed for colonoscopy. In prospective RCTs, CADe 
systems showed a significantly higher ADR compared to 
expert colonoscopists [1–4, 7, 18–21]. Moreover, a re-
cently published meta-analysis found a significant in-
crease of ADR [6]. While prospective studies have exten-
sively evaluated the ADR of various CADe systems, little 
is known about the detailed performance of CADe sys-
tems, e.g., FP rate, FP duration, or per-frame sensitivity, 
especially in a real-life scenario. Only a few studies about 
CADe systems include a single-frame analysis. However, 
these studies used single polyp frames, short video se-
quences, or videos consisting of less than 160,000 frames 
[14, 15, 17]. Thus, we present the largest frame-by-frame 
dataset, to our knowledge, with 111 full-length videos 

consisting of over 170,000 polyp frames and a total of over 
1,700,000 frames. Additionally, to the best of our knowl-
edge, our study is the first evaluating CADe performance 
in a frame-by-frame analysis in real-life videos.

The PPS of 100% highlights the effectiveness of CADe 
systems in clinical practice; however, the number of FP 
activations is not negligible and is higher than the previ-
ously published values [10, 11]. While previous studies 
analyzed the cause and clinical relevance of FPs, the use 
of frame-by-frame analysis allowed us to determine the 
exact duration and distribution pattern of FPs. As shown, 
most FPs were shorter than 330 ms, hence they are per-
ceived by the endoscopist only as a brief flashing of the 
bounding box. However, it is not yet clear whether the 
short activations do or do not affect the normal mucosa 
visualization pattern of endoscopists. Some retrospective 
studies suggest that FP activations result in the negligible 
increase of the total withdrawal time, as most of them are 
immediately discarded by the endoscopists [10, 11]. Oth-
er studies using for example eye-tracking glasses suggest 
that CADe and FPs activations might have an impact on 
the visualization pattern of the endoscopists [8, 22]. 
Therefore, further studies using eye tracking technology 
during endoscopic examinations in a prospective manner 
should be performed in order to analyze the influence of 
short FP activations on the examiner and the withdrawal 
time. Nevertheless, many short FPs may impair the en-
doscopist’s concentration in the long run; certainly, they 
reduce the comfort of the CADe application.

Table 4. Information on the impact of different CADe detection thresholds on the mean number of PPC, PPS, and 
per-frame sensitivity

Threshold, 
frames

FP reduction
% (p value)

PPC, value 
(p value)

PPS, value 
(p value)

Per-frame sensitivity, 
mean ± SD (p value)

None 0% 1.06 1 47.73±26.50
1 34.25 (<0.001) 1.06 (1.00) 1 (1.00) 47.29±26.54 (0.82)
2 54.78 (<0.001) 1.05 (0.99) 0.99 (1.00) 46.76±26.63 (0.70)
3 67.96 (<0.001) 1.04 (0.91) 0.97 (0.25) 46.10±26.72 (0.59)
4 76.16 (<0.001) 1.03 (0.83) 0.96 (0.13) 45.43±26.76 (0.45)
5 81.46 (<0.001) 1.02 (0.83) 0.96 (0.13) 44.61±26.97 (0.34)
6 85.54 (<0.001) 1.02 (0.83) 0.96 (0.07) 43.86±27.06 (0.24)
7 87.92 (<0.001) 1 (0.75) 0.94 (0.02) 43.29±27.21 (0.19)
8 89.97 (<0.001) 1 (0.75) 0.94 (0.02) 42.73±27.23 (0.14)
9 91.42 (<0.001) 1 (0.75) 0.94 (0.02) 42.25±27.2 (0.10)
10 92.79 (<0.001) 0.99 (0.71) 0.93 (0.01) 41.63±27.4 (0.07)

The threshold value indicates that activations of the value or shorter have been eliminated. SD, standard devia-
tion; PPS, per-polyp sensitivity; PPC, polyps per colonoscopy. p values represent comparisons to the CADe signal 
without a threshold.
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An option to reduce the FP rate, especially for short 
FP, could be withholding of short CADe activations. As 
shown, withholding short detections up to 10 frames 
length reduced the number of FP by up to 92.79% without 
having a significant effect on per-frame sensitivity. How-
ever, above a threshold of 3 frames representing 100 ms, 
this is at the expense of a few missed polyps, especially 
those with a flat shape. Another effect to consider should 
be the impact that the withholding of short CADe activa-
tions could have on FDT. Unfortunately, there are no 
studies that demonstrate the effect of different FDTs on 
the detection of polyps. However, considering the big ef-
fect in the reduction of FP activations and since there was 
no significant change in PPC or PPS up to a threshold of 
6 frames (200 ms), an appropriate threshold for optimiza-
tion of the CADe system could be in this range.

Besides PPC, PPS, and FP rate, per-frame sensitivity is 
another important performance parameter of CADe sys-
tems, particularly since the temporal stability of polyp de-
tection indicates how well CADe detection works for dif-
ferent polyp types. The per-frame sensitivity determined 
in our study is lower than in previous publications [14, 
15, 17]. However, in previous studies, only several single 
images of polyps or selected video sequences were used to 
evaluate the self-developed systems. For example, the 
study by Misawa et al. [15] analyzed video clips with a to-
tal of 152,560 frames. In our study, full-length real-life 
videos containing 1,793,371 frames were used, so the con-
ditions for CADe detection may have been more chal-
lenging, yet more realistic. Another important reason is 
that small hyperplastic polyps in the rectosigmoid were 
excluded in our study due to clinical irrelevance, whereas 
these polyps, which can often be reliably identified, were 
included in the evaluation in previous studies.

Since flat polyps (Paris 0-IIa) and sessile serrated ad-
enomas have higher miss rates, the effect of CADe sys-
tems on polyp detection could be substantial if these le-
sions were reliably detected [23]. However, our data show 
that in clinical practice, per-frame sensitivity and FDT 
tend to be worse in these polyps. These findings are con-
sistent with previous data, reporting lower per-frame sen-
sitivity for laterally spreading tumors and sessile serrated 
adenoma, showing that there is an urgent need for im-
provement in this point [14].

There are several limitations to our study. Since this is 
a retrospective analysis of previously stored videos, histo-
logic differentiation of colonic polyps was not possible. In 
order to increase the relevance of the detected polyps, we 
excluded hyperplastic polyps in the rectosigmoid. Due to 
the exclusion of examinations with a BBPS score of <6 

points, the mean BBPS score is 7.5 points, which is rela-
tively high [24]. However, recently published papers on 
CADe performance metrics describe similarly high BBPS 
values [10, 11]. To shorten the time-consuming deep 
frame analysis, we have dispensed with a detailed analysis 
of the FPs with respect to their cause. However, Hassan et 
al. [10] performed such an analysis using the same CADe 
system – they found bubbles, stool, and colonic folds to 
be the main reasons for FP activation. We also did not 
manually annotate each polyp-containing frame with 
bounding boxes. Thus, subsequent analysis of, for exam-
ple, intersection over the union of the CADe boxes with 
ground truth was not performed.

Conclusion

This commercially available CADe system is a power-
ful tool to facilitate polyp detection even under daily clin-
ical conditions, but at the expense of many FP activations. 
Through a frame-by-frame video analysis, we were able 
to show that many of these FPs are of very short duration. 
Withholding short-term CADe detections could substan-
tially reduce the number of FP activations, but at higher 
thresholds at the expense of a few missed polyps. This ap-
plies in particular to flat polyps, which generally have 
poorer per-frame sensitivity values. Since we could not 
detect any significant change in the mean number of PPC 
and PPS up to a threshold of 6 frames, an appropriate 
threshold for optimization of the CADe system could be 
in this range. Nevertheless, further detailed analysis of 
CADe systems is needed to better understand the strengths 
and weaknesses of this promising technology and to fur-
ther optimize the systems. A customizable CADe detec-
tion threshold that can be adjusted to the needs of the 
examiner would be useful in clinical practice.
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