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Abstract: (1) Background: Interventional endoscopic procedures are growing more popular, requiring
innovative instruments and novel techniques. Three-dimensional printing has demonstrated great
potential for the rapid development of prototypes that can be used for the early assessment of various
concepts. In this work, we present the development of a flexible endoscopic instrument and explore
its potential benefits. (2) Methods: The properties of the instrument, such as its maneuverability,
flexibility, and bending force, were evaluated in a series of bench tests. Additionally, the effectiveness
of the instrument was evaluated in an ex vivo porcine model by medical experts, who graded its
properties and performance. Furthermore, the time necessary to complete various interventional
endoscopic tasks was recorded. (3) Results: The instrument achieved bending angles of ±216◦ while
achieving a bending force of 7.85 (±0.53) Newtons. The time needed to reach the operating region
was 120 s median, while it took 70 s median to insert an object in a cavity. Furthermore, it took
220 s median to insert the instrument and remove an object from the cavity. (4) Conclusions: This
study presents the development of a flexible endoscopic instrument using three-dimensional printing
technology and its evaluation. The instrument demonstrated high bending angles and forces, and
superior properties compared to the current state of the art. Furthermore, it was able to complete
various interventional endoscopic tasks in minimal time, thus potentially leading to the improved
safety and effectiveness of interventional endoscopic procedures in the future.

Keywords: endoscopy; endoscopic intervention; 3D printing; endoscopic instruments; minimally
invasive surgery; rapid prototyping

1. Introduction

Minimally invasive therapeutic technology is currently emerging in all areas of op-
erative medicine due to the benefits it delivers to patients, such as reduced scarring and
recovery time [1–9]. Furthermore, it allows physicians to perform novel procedures that
were not possible otherwise. Interventional therapeutic endoscopy was able to replace
several surgical procedures within the therapeutic spectrum of disease management in the
upper and lower gastrointestinal (GI) tract [4–7]. Consequently, more complex procedures
can be performed by the endoscopists, such as the endoscopic resection of GI tumors,
endoscopic myotomy, plication, and GI wall closure [4–7,9–11].

The constant flow of innovative ideas and novel concepts regarding therapeutic
procedures requires a prompt response from the side of engineers to develop devices
to fulfill these clinical needs. The early testing of such innovative ideas allows for their
selection, and they may have a high potential of becoming successful in future clinical
practice. To achieve this, technologies based on rapid prototyping have emerged in several
segments of medical device development to enhance the efficiency and effectiveness of the
process. Three-dimensional (3D) printing has attracted significant research interest over
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the past decade regarding rapid prototype development to solve different clinical problems
encountered in disease management [12–18].

Our working group is a multidisciplinary team of gastroenterologists, surgeons, and
engineers involved in improvements in flexible endoscopic technology and procedures
by applying the concept of “endoneering” [19,20]. In recent years, several attempts have
been performed to improve endoscopic instruments and procedures, based on input from
clinical experts [17,21–24]. The concept of tight collaboration between medical experts and
engineers is continually expanding due to the rising demand for precisely tailored solutions
to various clinical problems and needs.

Nonetheless, current state-of-the-art endoscopic methods for performing interven-
tional therapeutic procedures have several limitations. Most of the concepts are based on
the use of the endoscope itself as a foundation and expanding its functionality through
attaching various over-tubes or add-on caps to it. Such over-tubes and add-on caps are
restricted by the capabilities of the endoscope used and often require extensive assembly
times. Endoscopic instruments that can be inserted and used independently alongside the
endoscope are usually rare and very costly. This makes them unappealing for daily clinical
use where costs play a significant role [17,25–28]. Furthermore, state-of-the-art instruments
lack the flexibility and the ability to achieve high bending angles at the distal tip, usually not
bending more than 90◦. The lack of such features limits the number of options physicians
have when treating patients with different conditions. Addressing these limitations can
greatly enhance the accuracy and success of complex endoscopic procedures [29,30].

In the present work, we explored viable rapid prototyping solutions for the above-
mentioned limitations of the current state-of-the-art devices. The aim was to design
an affordable instrument based on the combination of flexible endoscopic technology
with laparoscopic elements to allow for a novel approach in interventional endoscopy
using minimally invasive surgical concepts [29–33]. To achieve this, we relied on rapid
prototyping methodologies to develop an affordable prototype instrument tailored for
use in interventional therapeutic endoscopic procedures. Additionally, we evaluated the
performance of the instrument in a series of bench tests and assessments conducted in a
porcine explant model.

2. Materials and Methods
2.1. Instrument Design

The design of the 3D-printed flexible grasping instrument was created in collaboration
with experienced gastroenterologists and surgeons who shared their clinical needs and
current technological limitations. Based on their insights, a set of requirements for a proto-
type of the instrument was established. The instrument should offer physicians additional
capabilities for manipulating objects and tissue in the upper and lower gastrointestinal (GI)
tract, ultimately improving the outcome of various endoscopic procedures.

In order to meet the requirements of medical professionals, the instrument needed
to incorporate features from both laparoscopy and flexible endoscopy. The distal tip of
the instrument had to provide a secure and long-lasting grip while still remaining gentle
enough to handle pathologically important tissue without causing any damage. This is
particularly important in the case of endoscopic procedures, which require precise and
careful handling to avoid injuries and perforation. To achieve this, the instrument had to
be designed with an adequately large grasping area and a gentle rounded distal tip.

In addition to its grasping capabilities, the instrument must also be highly maneuver-
able. The distal tip should have a high range of bending, allowing steering angles greater
than 180◦. This is necessary to ensure that physicians can access and manipulate target
tissue from a variety of angles, as well as to navigate through the twists and turns of the
GI tract. Furthermore, the instrument must also be independent of the endoscope and its
vision, allowing for better traction and control during procedures.

To ensure that the instrument is adaptable to different procedural needs, it must have
an appropriate length, which can be adjusted by using a longer or shorter flexible shaft
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and corresponding wires. This allows the customization of the instrument based on the
different procedure-specific demands, such as operating in the upper or lower GI tract.

Additionally, the instrument should be affordable to produce and intuitive to control
and use. By incorporating all these requirements, the new prototype provides physicians
with a range of features for improving and performing endoscopic procedures in a safe,
effective, and precise manner. Table 1 provides a detailed breakdown of the requirements
for each element of the instrument.

Table 1. The list of requirements for the 3D-pEI and its elements.

Instrument features

Adequate length to reach the dedicated region, at least 40 cm.
A diameter of 5 mm for intraluminal application alongside an endoscope.
Sufficient strength for movement independent from the endoscope.
Safe introduction and maneuvering inside the GI tract, with smooth parts and surfaces.
Biocompatibility of the parts with contact with organs.
Affordable manufacturing through 3D printing and simple assembly.

Grasping forceps

A smooth shape of the features that are in contact with the mucosal surfaces.
A minimum of 10 N grasping force to manipulate the tissue or a sponge.
Minimal length of non-grasping segments. The total length is less than 25 mm.
Jaw opening angle of at least 60◦.
At least 8 mm-long grasping area with a gentle wave-like profile.

Bending section

Planar bending in both directions (left and right).
A high bending angle of at least 180◦ and a compact bending radius.
Adequate bending force for tissue and object manipulation of more than 5N.
Sufficient strength to withstand the loads introduced during maneuvering.

Flexible shaft

A high degree of flexibility for safe introduction into the dedicated region.
Sufficient torsional stiffness to precisely transfer the hand inputs to the distal tip.
Enough stiffness during pushing when transporting objects (no buckling).

Control handle and tendon wires

Convenient for single-hand use.
Star knob mechanism to control the bending of the distal tip, such as on endoscopes.
Push–pull motion for opening the grasping jaws, like on common biopsy forceps.

2.1.1. Grasping Forceps

The distal tip of the instrument is based on a single-action Johan grasper, which
is specifically designed to allow for the gentle manipulation of fragile and histologically
important tissue. Additionally, the grasping forceps are used for effectively placing sponges
and other objects into leak cavities.

To ensure that the instrument can properly grasp objects, a wide opening angle is
necessary. However, achieving this wide opening angle can be challenging in the narrow
space of the GI tract, which can be as narrow as 15–20 mm in the esophageal region. To
balance the need for a wide opening angle with the narrow operational space, an opening
angle of 65◦ was adopted. This angle allows the instrument to grasp objects securely while
still being able to maneuver in the narrow spaces of the GI tract. The grasping forceps of
the instrument have a total length of 22 mm and an outer diameter of 5 mm, making them
compact and easy to use in endoscopic procedures.

To ensure that they are effective at grasping objects, a minimal required grasping force
of 10 N was adopted. This value was determined based on the average force required for
grasping epithelial tissue (3.8 N) and muscle tissue (4.1 N), with maximum values of up
to 9.7 N [34]. Overall, the design of the distal tip of the instrument is balanced to ensure
that it can effectively grasp objects and handle tissue while still being maneuverable in the
narrow spaces of the GI tract.
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2.1.2. Bending Section

To enable the distal tip of the instrument to be steered, a bending section composed
of multiple linked segments was developed. The main goal of the bending section was
to achieve a high bending angle that would enable the effective manipulation of the
instrument and to be directly controlled by a physician. Additionally, the bending radius
of the instrument had to be small to ensure that it could be effectively used in the narrow
space of the GI tract. A bending radius of 6 mm was adopted.

To achieve the desired performance, the bending section was composed of seven
serially assembled 3D-printed segments. Several forms of segmented bending sections
driven by tendon wires have been developed and analyzed by previous works [35–37].
The design of the bending section allows for a maximum bending angle of 216◦ in both
directions, which provides physicians with a high degree of flexibility when manipulating
the instrument during endoscopic procedures. Bending in a single plane was accepted for
the instrument since any additional rotation or translation could be achieved by twisting or
pushing the flexible shaft of the instrument.

Overall, the design of the bending section of the instrument was carefully balanced to
ensure that it could achieve a high bending angle while still being effective in the narrow
passages of the GI tract. By using multiple linked segments, a high degree of flexibility was
achieved, while the small bending radius and the ability to manipulate the instrument in a
single plane ensure effective use during endoscopic procedures (Figure 1).
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2.1.3. Flexible Shaft

The flexible shaft is an essential part of the instrument, which connects the control
handle to the distal tip. Its length is critical to the instrument’s performance as it determines
the reach and accessibility to the target operating region. A highly flexible shaft enables
easy navigation around anatomical landmarks, while sufficient stiffness is necessary for
effective tissue manipulation and object handling. The flexible shaft was developed to
achieve a balance between these two properties.

The shaft’s torsional rigidity should also be strong enough to overcome friction and
allow for the smooth rotation of the distal tip in both directions. Additionally, the flexible
shaft facilitates the uninterrupted transfer of movement from the handle to the distal tip to
ensure efficient instrument control.
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The flexible shaft of the instrument is produced from a flat steel spiral coated with a
layer of biocompatible polyvinyl chloride (PVC). The diameter of the shaft is 5 mm, and
the length can be varied between 30 and 200 cm, depending on the intended use. A set of
wires is routed through the flexible shaft to facilitate the steering of the bending section
and opening of the grasping jaw. This design ensures that the instrument can be easily
maneuvered, and the physician can accurately control the movements of the distal tip, even
in the narrow regions of GI tract.

2.1.4. Control Handle

The control handle of the instrument is a crucial part of the instrument, serving as
the interface between the user and the distal tip. To ensure ease of use and familiarity for
medical professionals, the handle was designed with similarities to regular endoscopy
devices. A star knob concept, similar to that of an endoscope, is used for steering the distal
tip of the instrument, while a push–pull slider was designed for opening and closing the
grasper jaw. An exploded view of the control handle, including its elements, is shown
in Figure 2.
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2.2. Prototype Development

The adoption of 3D printing for prototype production is becoming increasingly popu-
lar due to its numerous advantages such as its low cost and minimum production time,
and the wide range of materials available for 3D printing. The final prototype of the instru-
ment, as depicted in Figure 3, displays the use of 3D printing technology to produce the
distal tip and the control handle parts. The biocompatible BioMed Amber resin (Formlabs,
Somerville, MA, USA) was used with the stereolithography 3D printer to fabricate the parts
of the distal tip and grasper. The high accuracy of stereolithography 3D printers allows
the production of highly optimized parts. Furthermore, the control handle parts were
produced using a selective laser sintering process with Nylon PA 12 on Lisa Pro printer
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(Sinterit, Krakow, Poland), due to the adequate mechanical properties of this material.
Approximately 2 h of labor was required for the complete assembly of the prototype.
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2.3. Workspace of the Distal Tip

As a measure of maneuverability, the workspace of the instrument’s distal tip was
mapped. The workspace is defined as the curve traced by the distal tip during bending,
depicting its positions at different bending angles. To measure the workspace of the instru-
ment, each segment of the distal tip was traced during bending, and points were marked
on a millimeter paper. Based on the marked points for each segment, a set of polygons
were generated, depicting the positioning of the distal tip at various bending angles.

Additionally, a benchmark workspace was modeled and used as the gold standard
for comparison, as it represents the ideal range of motion of the designed distal tip. For
modeling the benchmark workspace, several assumptions were considered. In particular,
it was assumed that the bending is planar and gradual, and that the total length of the
bending section does not change during bending.

2.4. Measurement of the Bending Force

In another bench test, the forces achieved by the instruments’ distal tip were measured
and compared to those achieved by a combination of a gastroscope (Olympus GIF 190,
Olympus Europa SE & Co. KG, Hamburg, Germany) and biopsy forceps (Radial Jaw
4—Standard Capacity, Boston Scientific, Marlborough, MA, USA). The combination of
gastroscope and biopsy forceps is commonly used in endoscopic practice to perform
different operational tasks in the upper GI tract, such as traction and tissue manipulation.
A digital force gauge DFG-500 (PCE Instruments EURL, Soultz-sous-Forets, France) was
used for measurements.

To perform the measurements of bending force, both the instrument and the gastro-
scope combined with biopsy forceps were fixed at the beginning of their bending sections
with a table-clamping tool. The distal tips of both were left unrestrained to allow for full
range of movement. To connect the grasping areas of both tools to the sensing shaft of the
force gauge, a stiff steel wire was used. The wire was positioned perpendicular to the axes
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of the tools and then grasped. At last, the bending sections of the tools were maneuvered to
pull the wire away from the force gauge, while the maximal achieved forces were recorded.

2.5. Performance Assessment in an Upper GI Porcine Model

To assess the instrument’s performance and properties inside the GI tract, an exper-
iment was performed using an ex vivo porcine model, consisting of an esophagus and
stomach. The porcine model was placed on a polystyrene (PS) board with a cutout shaped
to resemble the upper GI tract. The PS board cutout was curved at its beginning to resemble
a mouth and throat, with a cavity with a leak opening 35 cm away from the beginning. To
provide access to the leak cavity on the PS board, a 1 cm hole was made in the esophagus
of the porcine model.

The instrument was inserted through the esophagus and advanced toward the leak
opening. A 10.5 mm gastroscope was inserted alongside the instrument to provide the
vision of the distal tip and operating area (Figure 4).
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A series of tests were performed by a group composed of several physicians and
engineers. A grading scale (0—insufficient, 1—limited, 2—sufficient, 3—good) was used
to assess the performance of the prototype, as the properties of the instrument could not
be accurately quantified inside the organs of the porcine model. Insufficient and limited
properties were regarded as unacceptable for use and would require a significant improve-
ment, while sufficient and good properties were regarded as acceptable for procedures in
interventional endoscopy.

The following properties were assessed and graded:
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• Flexibility—the ability of the instrument to bend around the anatomical landmarks
inside the porcine model.

• Resistance to buckling—the ability to avoid bending (buckling) when pushed through
the organ or when advancing an object to the leak-opening area.

• Friction between instrument and organ surface.
• The maneuverability of the distal tip inside the porcine model.
• Torsional stiffness—the ability of the instrument to transfer the rotational movement

from the handle to the distal tip.

2.6. Time Necessary to Perform Interventional Endoscopic Tasks in the Porcine Model

Additionally, we measured the time needed to perform different interventional tasks,
including insertion, object manipulation, and object retrieval from the operating region.
The same porcine model placed on the PS board was used and the instrument was inserted
alongside the gastroscope. A sponge (1 cm3) was used as the object to be manipulated by
the instrument. The following times were measured:

• The time needed to insert and transport the object to the dedicated region. The sponge
was grasped outside the porcine model and inserted together with the instrument and
gastroscope until reaching the leak-opening region.

• The time required to maneuver and place the object into the cavity space. When the
dedicated region was reached, and leak opening was visible, the instrument would be
bent into the cavity and used to fixate the sponge inside.

• The time needed to grab and retract the object from the organ. The instrument was
inserted into the organ without the sponge and then maneuvered into the cavity.
Once the instrument was positioned, the already-placed sponge was grasped and
completely removed from the organ.

2.7. Data Analysis

The analysis and visualization of recorded data were performed with MS Excel (Mi-
crosoft Corporation, Redmond, Washington, DC, USA) and Python (Python Software
Foundation, Wilmington, NC, USA) using the NumPy, Pandas, and SciPy libraries. The
normally distributed metrics are reported with mean values and their standard deviation
(SD), while non-normally distributed metrics are reported as the median with correspond-
ing interquartile range (IQR). The two-sample T-Test was used for normally distributed
data sets to test if their distributions differed significantly. A p-value of 0.05 was adopted as
the threshold of a significant difference.

2.8. Availability of the Instrument

The files necessary to reproduce the instrument (3D models, bill of materials and
assembly instructions) are freely available to download at: https://www.ukw.de/research/
inexen/code-data-and-3d-models/ (accessed on 2 May 2023).

3. Results
3.1. Workspace of the Distal Tip

The workspace curve of the instrument was mapped 10 times in total. The final curve
was fitted through the mapped points, which is presented in red color in Figure 5. The
instrument achieved the maximal bending angle of 216◦ in both directions, with a 6 mm
bending radius. For absolute angles lower than 120◦, the instrument workspace matched
the benchmark one with deviations smaller than 1 mm. The first noticeable differences
happened at absolute angles higher than 120◦.

The highest deviation between the curves was recorded to be 3.4 mm at 170◦. Further-
more, at the maximum bending angles, the two curves started to match each other again.

https://www.ukw.de/research/inexen/code-data-and-3d-models/
https://www.ukw.de/research/inexen/code-data-and-3d-models/
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3.2. Measurement of the Bending Force

The maximum bending force was measured 30 times using both the instrument and
the gastroscope–forceps combination. The mean bending force achieved by the instrument
was 7.85 N (SD ± 0.53), while the gastroscope–forceps combination achieved a mean force
of 7.68 N (SD ± 0.3). Although it was 3D-printed, the instrument demonstrated comparable
bending force to its commonly used counterpart (p = 0.56).

3.3. Performance Assessment in the Upper GI Porcine Model

The instrument demonstrated the required flexibility, rigidity, maneuverability, and
friction with the mucosal surface during the tests within the esophagus of the porcine model.
A summary of the expert grading of the instrument’s performance is shown in Table 2.

Table 2. The summary of expert grading from the assessment.

Parameter Median Grade Grading Range Short Conclusion

Flexibility 2 2–3 Adequate
Rigidity 2 2–3 Adequate

Torsional stiffness 2 2 Sufficient
Friction 3 2–3 Adequate

Maneuverability 3 3 Very good

3.4. Time Necessary to Perform Interventional Endoscopic Tasks in the Porcine Model

In total, 10 trials were performed with the instrument in the porcine model. The
median time required to insert and transport an object from the organ entrance to the
dedicated region was measured to be 120 (IQR: 90–140) seconds. No major obstructions or
drawbacks were recorded during the experiment regarding the task. Once the object was
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carried to the dedicated region, about 70 (IQR: 60–110) seconds was needed to navigate
through the leak opening in the organ and position the object inside the leak cavity. Finally,
the median time necessary to insert, reach the cavity, grasp, and remove the object was
measured to be 220 (IQR: 180–280) seconds.

4. Discussion

Interventional endoscopic procedures seem to have no limits regarding innovative
procedures. The border between established surgical procedures and feasible endoscopic
procedures is continually shifting [1–11,38]. An important result of this shift was the
increased experience of physicians who perform complex endoscopic procedures. Re-
cent advancements in interventional endoscopy have allowed for planned access to the
abdominal cavity or the mediastinum, reducing fears of handling closure issues of the
gut. Furthermore, clinical experience has shown that full-thickness lesions of the gut do
not necessarily create problems if they undergo sufficient and competent closure. These
developments have expanded the scope of endoscopic interventions, providing physicians
with a wider range of options for the treatment of various conditions [11,29–31,38].

The latter development in interventional endoscopy has led to the need for special
instruments that can solve rare clinical problems [39,40]. Ideally, one would need a sta-
ble grasper for the adequate endoscopic resection and improved maneuverability of the
instrument distal tip for endoscopic dissection [5,9,22,24,39–42]. The commercially based
development of endoscopic instruments can be very time consuming and expensive, if it
ever happens, since the necessity for a specific use-case tailored instrument may not appear
frequently enough to make a business out of it [25,28].

To address this challenge, the concept of creating affordable endoscopic instrument pro-
totypes using 3D printing has emerged. This approach enables the early assessment of the
instrument, highlighting its potential practical benefits before upscaling production. The ini-
tial results have been very promising, with several success stories reported [17,18,22,26,43].

Our work focuses on applying 3D-printing technology to develop a highly flexible
instrument that would overcome current technological limitations in interventional ther-
apeutic endoscopy. To our knowledge, there was no previous work that developed an
instrument that achieves a comparable bending angle. Several previous works reported
instruments that could achieve bending angles from 50 to 90◦ [27,44–47]. In the work
by Culmone et al., an instrument that facilitates the insertion of additional endoscopic
instruments was developed [15]. It has a hollow body that is 8 mm in diameter and is
split into several compartments, creating a number of additional working channels. With
unoccupied working channels, this instrument demonstrated bending angles of up to 160◦.
This is still lower than the bending angle of the instrument presented in our study, with
measured angles of 216◦. Moreover, the most-presented instruments, up until now, have a
rigid shaft that cannot be inserted through the curved GI tract, while our instrument has a
fully flexible shaft that can be expanded to lengths up to 200 cm.

Several works explored the concept of add-on devices on endoscopes, building addi-
tional working channels for the insertion of different resection tools, such as
graspers [25,26,28]. Although they provide additional procedural capabilities, they are still
firmly attached to the endoscope. This limits the number of options that a physician has
during the procedure since the positioning of the endoscope can often be challenging. Our
work presents an instrument that is completely independent from the endoscope, which is
mainly used to provide vision of the operating region. This approach provides physicians
with an additional level of freedom when performing technically complex procedures in
the GI tract.

The measurement of bending force achieved by the distal tip showed a comparable
performance (7.85 N) to the combination of gastroscope and biopsy forceps (7.68 N). For
both cases, the limiting factor to achieving greater forces was that the bending was per-
formed manually. A work by Brecht et al. demonstrates an instrument that achieves a
maximal bending force of 5.6 N, which is still notably lower than in our case [27]. Ad-
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ditionally, instead of bending force, several previous works focused exclusively on rigid
laparoscopic instruments and reported on a similar metric called payload capability. In
their cases, this metric ranged from 0.26 to 10 N [15,47–49]. One noticeable difference is that
payload capacity considers a range of tolerable deflection of the instrument under different
loads that are applied to its tip. In our study, we did not systematically focus on such a
metric. For flexible endoscopy, some deflection of the instrument could be regarded as an
advantage since an instrument that does not deflect under outside forces could potentially
perforate the delicate tissue of the GI tract during the process of insertion.

In the assessment performed in the porcine model, the medical experts involved
graded the instrument’s properties as overall adequate for the intended use. The instru-
ment’s smooth shape minimized friction with the organ surface, and no limitations were
observed during the insertions, due to the instrument’s high degree of flexibility. However,
it was noted that in some instances, more rigidity would be preferred, but without sacrific-
ing flexibility. As rigidity and flexibility are two opposing properties, finding a balance is a
challenging task that we tried to address. The need for improvement was observed mainly
regarding the flexible shaft, as it encountered some degree of torsional deflection during
the tests. This affected the responses of the distal tip to hand inputs when the instrument
was highly bent. The instrument’s maneuverability within the esophagus alongside the
endoscope and bending through the leak opening was unconstrained due to its slender
shape, high bending angle, and small bending radius.

The latter performance of the instrument is supported by the measurements of the
time necessary to perform different interventional tasks. As interventional endoscopic
procedures are complex operations involving a wide range of tasks during their execution,
we separately measured the time necessary to perform tasks that are commonly occurring.
We demonstrated that the median time to insert a sponge in the region of the leak opening
was 120 s, while a median of 70 s is necessary to properly enter and position the same
sponge in the cavity. Additionally, the median time needed to remove an object from the
cavity was measured to be 220 s, which is comparable to the time required for the removal
of foreign objects from the esophageal region and stomach.

As a limitation of the presented instrument, it must be noted that during repetitive
and extensive use of the instrument, some elements of the bending section experienced
failure, which raises the question of the instrument’s durability in extended, repetitive
use. A larger study is necessary to systematically record and analyze such occurrences.
Regardless, due to its inherent affordability and a recently increasing adoption of single-use
devices in endoscopy, this limitation might be readily surpassed [50–52]. Furthermore, it
must be noted that an objective comparison with other works regarding the grading of the
instrument and the time necessary to perform various interventional tasks is lacking, due
to the specificity of the presented instrument and experiments in the porcine model.

5. Conclusions

In this study, we demonstrated that the features necessary for a flexible endoscopic
grasper can be realized in a 3D-printed prototype, providing adequate bending strength,
added steering capabilities, and an endoscope-independent approach to performing com-
plex therapeutic interventions. The presented instrument demonstrated improved maneu-
verability and flexibility of the distal tip compared to state-of-the-art instruments, while
sustaining strength comparable to the combination of a gastroscope and biopsy forceps.
Furthermore, its narrow, smooth body allows for the rapid insertion and manipulation of
objects and tissue inside the GI tract. Such properties keep the time necessary to perform
different interventional tasks minimal. Regardless, further development and assessment of
the instrument are necessary before its scalable adoption in daily clinical practice.
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