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Simple Summary: Positron emission tomography is currently considered the non-invasive reference
standard for determining whether lung cancer also affects thoracic lymph nodes (staging). However,
not all patients can undergo this diagnostic procedure due to high costs, limited availability, and
additional radiation exposure. This study aimed to predict the positron emission tomography result
from traditional contrast-enhanced computed tomography and test new feature extraction strategies.
As input, we compared traditional (hand-crafted) imaging biomarkers (radiomics) with novel features
derived from pre-trained neural networks. This hybrid approach yielded better performance than
using both feature sources alone. In conclusion, both traditional radiomics features and transfer-
learning deep radiomics features provide relevant and complementary information for non-invasive
lymph nodal staging in lung cancer.

Abstract: Objectives: Positron emission tomography (PET) is currently considered the non-invasive
reference standard for lymph node (N-)staging in lung cancer. However, not all patients can undergo
this diagnostic procedure due to high costs, limited availability, and additional radiation exposure.
The purpose of this study was to predict the PET result from traditional contrast-enhanced computed
tomography (CT) and to test different feature extraction strategies. Methods: In this study, 100 lung
cancer patients underwent a contrast-enhanced 18F-fluorodeoxyglucose (FDG) PET/CT scan between
August 2012 and December 2019. We trained machine learning models to predict FDG uptake in
the subsequent PET scan. Model inputs were composed of (i) traditional “hand-crafted” radiomics
features from the segmented lymph nodes, (ii) deep features derived from a pretrained EfficientNet-
CNN, and (iii) a hybrid approach combining (i) and (ii). Results: In total, 2734 lymph nodes
[555 (20.3%) PET-positive] from 100 patients [49% female; mean age 65, SD: 14] with lung cancer
(60% adenocarcinoma, 21% plate epithelial carcinoma, 8% small-cell lung cancer) were included in
this study. The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to
0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded
the best results [AUC 0.871 (0.865–0.878), SBS 35.8 (34.2–37.2)] and had significantly higher model
performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4
and z = 26.6, against (i) and (ii), respectively). Conclusion: Both traditional radiomics features and
transfer-learning deep radiomics features provide relevant and complementary information for
non-invasive N-staging in lung cancer.

Keywords: computed tomography; computational neural networks; lymphatic metastasis; carcinoma;
non-small-cell lung; small-cell lung
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1. Introduction

Lung cancer is the most frequent cause of death in developed countries. The status of
the disease stage (including the presence or absence of loco-regional lymph node metastases)
at the time of diagnosis is highly relevant for treatment choice and the expected outcome [1].

The non-invasive reference standard for nodal (N-) staging in lung cancer is 18F-
fluorodeoxyglucose positron emission tomography/computed tomography (18FDG-PET/
CT) [1–3]. However, high costs, limited availability, and additional radiation exposure
prevent its widespread application among lung cancer patients worldwide. A non-invasive
alternative using only the information from routinely acquired contrast-enhanced CT
(CECT) would thus be highly needed.

Radiomics and machine learning have been successfully applied to CECT to predict
the severity of lesions in various organs [4]. In lung cancer, several studies showed the
potential of this approach for detecting and classifying pulmonary nodules and masses [4–7].
However, until now, the demanding manual segmentation, small sample sizes from single
centers, and limited availability of standardized outcomes prevented general applicability
and translation into clinical practice [4–6,8].

Moreover, there are also technical challenges related to the application of radiomics.
“Traditional” hand-crafted radiomics features are derived from statistical estimators that
humans can interpret and are not optimized for machine consumption. They are highly
correlated and often contain redundant information [9–11]. Despite efforts to standardize
radiomics (e.g., IBSI [12]), the lack of robustness limits the generalizability of the radiomics
approach [9,10].

In contrast to hand-crafted radiomics features, most state-of-the-art methods for image
classification and segmentation in computer vision are based on convolutional neural
networks (CNN). Here, the outputs of the first layers of the neural network are a latent
representation of the respective image features but are intrinsically optimized for machine
consumption in subsequent layers [13,14].

“Deep” features can be extracted from the output of the first layers of a pre-trained
CNN and treated similarly to hand-crafted radiomics in subsequent machine learning
models [13,14]. First studies tested this approach in classifying different disease entities
with promising results and showed good robustness of deep features [13–15]. However, the
complementary value of combining it with traditional radiomics features and its application
to the classification of lymph nodes have not yet been investigated.

This study aimed to build and evaluate a classification model that predicts lymph node
dignity in lung cancer from radiomic tissue characteristics derived from CECT and compare
different feature extraction strategies using FDG-PET/CT as the reference standard. The
primary goal of our study was to use this classification task as an example use case to
demonstrate the impact of different feature extraction strategies on an exemplary machine
learning classification task.

2. Methods
2.1. Study Sample and Design

In this study, 100 patients with histopathologically confirmed lung cancer who were
referred upon suspicion or for the staging of bronchial carcinoma from August 2012 to
December 2019 were included. A flowchart stating the reason for the exclusion of patients
is given in Figure 1. All subjects received an FDG-PET/CT scan simultaneously with
a contrast-enhanced CT scan. All examinations were performed on a 128-slice PET/CT
system (Siemens Biograph mCT Flow 128 Edge, Siemens Healthineers, Erlangen, Germany).
Patients were scanned supine in craniocaudal direction during inspirational breath-hold
after intravenous injection of 120 mL of contrast medium (Accupaque 350, GE Healthcare,
Boston, MA, USA) with an injection rate of 2.5 mL/s and a delay of 60 s. The following
scan parameters were used: collimation 128 × 0.6 mm, rotation time 0.5 s, and pitch 0.6.
All axial images were reconstructed with a slice thickness of 2 mm.
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Figure 1. CONSORT flowchart of the analyzed study population. CT = computed tomography.

Ethical approval was waived due to the study’s retrospective design based on preex-
isting images (Ethics Committee reference number 19-1379/16.08.2019).

2.2. Segmentation and Image Preprocessing

A radiologist (AII; 6 years of experience in thoracic imaging) manually segmented
all thoracic lymph nodes with a short-axis diameter of at least 5 mm from the included



Cancers 2023, 15, 2850 4 of 13

contrast-enhanced CT scans (n = 100). The 3D volume of all axillary, mediastinal, and hilar
lymph nodes was segmented using the semi-automatic 3-dimensional Multi-Modal Tumor
Tracking tool of a commercially available software platform (IntelliSpace Discovery, Version
3.0.5, Philips Healthcare Amsterdam, The Netherlands).

Additionally, lymph nodes with FDG uptake above liver niveau in the FDG-PET/CT
scans were separately labeled (PET-positive lymph nodes).

Unclear findings were discussed with a radiologist with 16 years of experience in
oncological imaging, including FDG-PET/CT imaging (TP).

These 3-dimensional segmentations served as the volume of interest (VOI) for the
radiomic feature extraction. Images were resampled to isometric voxels with 1 mm spacing.
No scaling was applied to the image intensities measured in Hounsfield units. Feature
maps, used to better interpret the results, were calculated using voxel-based extraction with
pyradiomics for hand-crafted features and direct values from the third layer of the CNN for
deep features. For voxel-based feature extraction, the features are calculated for a specified
neighborhood around each individual voxel within the region of interest (ROI), resulting in
feature maps representing the spatial distribution of the features. The configuration file for
the pyradiomics package will be part of the publicly available source code.

2.3. Machine Learning

An L1- and L2-penalized (‘elastic’) logistic regression model was trained to predict
whether a lymph node showed FDG uptake on the subsequent PET/CT scan (i.e., was
PET-positive). As a sensitivity analysis, we applied a random forest, which is in contrast to
the ‘elastic’ logistic regression and is also capable of learning non-linear and interactive
relations between the features and the outcome. In addition, we use a gradient-boosted
tree model (XGBoost) that is documented in the Online Supplements. We applied the
principal component analysis as an unsupervised dimension reduction and decorrelation
method. A linear transformation transforms the input feature vector into a new space
of orthogonal (or decorrelated) eigenvectors. In the first step, the dimensionality is still
maintained. However, by choosing only the first—say, L—eigenvectors by a given criterion,
dimensionality can be reduced. We did not set a fixed number of kept eigenvectors but
chose L so that the reconstruction using the new set of eigenvectors explains 95% of the
variance in the original data. We tested model hyperparameters in parallel using a random
search approach.

We compared different feature extraction methods (cf. Table 1).

Table 1. Radiomics feature sets compared in this study.

(i)

Traditional hand-crafted shape, first-order, and higher-order features were extracted
from the VOI in the respective CECT images using the AutoRadiomics application
(https://github.com/pwoznicki/AutoRadiomics (accessed on 20 May 2023); [16]) as

a wrapper for the pyradiomics package.

(ii)

A transfer-learning approach with a 2D-CNN to extract deep features (i.e., features
considered relevant in an image classification task in a different domain) was

applied. The output of the first k layers of an EfficientNet [17] pre-trained on the
ImageNet database was aggregated and used as tabular deep features for machine
learning classification. In detail, we masked the original image using the respective
segmentation of a lymph node, cropped it to the bounding box of the lymph node
segmentation, and finally rescaled it to match EfficientNet’s input dimensions. We
rescaled the z-axis of the images to 10 pixels (the median z-axis length of all lymph
nodes). We took the output of a forward pass through the first k convolutional layers

of EfficientNet17 and applied an average pooling operation to get a number of
features equal to the filters in the respective layer. The depth k of the final layer was
considered a hyperparameter and optimized along with the other hyperparameters.

(iii) Hybrid radiomics: a combination of transfer-learning CNN features from (ii) with
traditional hand-crafted first-order and shape features from (i).

https://github.com/pwoznicki/AutoRadiomics
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All experiments were carried out on 40 nodes of a high-performance computation
cluster in parallel using SLURM. Per node, 70 CPU cores and 96 GB of RAM were allocated.
We implemented the experiments in Python 3.7.9 with the additional packages scikit-learn
1.0.2, pyradiomics 3.0.1, AutoRadiomics 1.0, and scipy 1.7.3.

The models and the respective hyperparameter configurations were trained and
evaluated in a 10-times-repeated, 20-fold cross-validation. We applied the splits on the
patient level (i.e., either all patient lymph nodes or none were in the respective training
set) and a bootstrap correction on the pooled out-of-bag predictions to account for the
optimistic bias due to the testing of multiple hyperparameters [18].

2.4. Statistical Analysis and Performance Evaluation

Discriminatory performance was visually assessed by the receiver operating charac-
teristics (ROC) and quantitatively assessed by the corresponding area under the receiver
operating characteristics (AUC).

The AUC describes the discrimination performance, which measures whether a PET-
positive lymph node has a higher predicted probability than a PET-negative lymph node.
A value of 1.0 means perfect discrimination. If the model had no discriminative ability
(i.e., toss of a coin) in the investigated population, this would result in an AUC of 0.5. AUC
values below 0.5 occur if the model predicts an informative but wrong ordering.

We calculated the sensitivity and specificity of the models for a cutoff chosen to
maximize the Youden index (sensitivity + specificity).

In addition, we evaluated model calibration and absolute inaccuracy using lowess-
smoothed calibration plots, the mean square error (Brier score), and a scaled R2-like variant
R2 = 1 − BS

BSre f
. Here, BSre f is the Brier score for a naïve model (i.e., a model that always

predicts the average outcome frequency in the training sample).
The scaled Brier score (SBS) gives the fraction by which the mean square error is

reduced compared to an uninformative model (i.e., predicting the same probability of being
PET-positive for every lymph node without considering any specific information). A perfect
SBS equals 100%. An SBS of 0% means that the model provides no information benefit. SBS
below 0 means the prediction error is even higher (e.g., because the model is miscalibrated)
than a naïve calibrated model. To avoid artificially introduced miscalibration, we did not
add weighting to account for imbalanced binary classes.

A two-sided bootstrapped z-test was applied to differences in BS and AUC. We used
quantile-quantile plots and kernel density histograms to check the normality assumption.
p < 0.05 was considered the threshold for statistical significance. Due to the nature of this
exploratory study, we did not correct for multiple testing [19].

We used STATA 15.1 (StataCorp, College Station, TX, USA) to carry out statistics on
the study population.

3. Results
3.1. Study Population

In total, we included 2734 lymph nodes (555, 20.3% PET-positive) from 100 patients
[49% female, median age 65 years (SD 10)] with lung cancer in this study. Baseline charac-
teristics of the study population are given in Table 2.

3.2. Hand-Crafted, Deep, and Hybrid Features

Compared to “traditional” hand-crafted radiomics features, the model discrimination
and overall prediction error of the logit models trained on deep CNN features alone were
slightly worse (p < 0.001, z = 8.8 and p < 0.001, z = 14.1 for AUC and BS, respectively) but
still informative (Table 3, Figure 2).
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Table 2. Characteristics of the study population. Values are given as the mean (standard deviation)
for continuous variables and as the count (relative percentage) for categorical variables.

Total

N = 100
Age (years) 65 (10)
Sex

male 51 (51%)
female 49 (49%)

Smoker
yes 64 (64%)
no 18 (18%)
N/A 18 (18%)

Therapy
neoadjuvant chemotherapy 4 (4%)
adjuvant chemotherapy 16 (16%)
surgery 30 (30%)
definitive radiotherapy 71 (71%)
immunotherapy 4 (4%)

Side of primary tumor
both sides 1 (1%)
right 47 (47%)
left 52 (52%)

Histology of primary tumor
adenocarcinoma 60 (60%)
adeno-squamous carcinoma 1 (1%)
large cell neuroendocrine carcinoma 2 (2%)
unspecific non-small-cell lung cancer 3 (3%)
squamous cell carcinoma 21 (21%)
small-cell lung cancer 8 (8%)
unclear 5 (5%)

Metastasis at initial diagnosis
yes 43 (43%)
no 53 (53%)
N/A 4 (4%)

Outcome (survival 07/2022)
yes 22 (22%)
no 25 (25%)
N/A 51 (51%)

lymph node count per patient 27 (14)
percentage of round lymph nodes 3% (6%)
percentage of calcified lymph nodes 1% (3%)
percentage of inhomogeneous lymph nodes 2% (6%)
percentage of PET-positive lymph nodes 15% (25%)

Legend: N/A = information not available; PET = positron emission tomography.

Combining hand-crafted first-order and shape features with deep features (iii) resulted
in significantly improved overall prediction error (BS; p < 0.001, z = 11.4 and z = 26.6 against
(i) and deep (ii) alone, respectively; Figure 2, Table 3) compared to either approach alone.

The models’ discrimination (AUC) was only improved in comparison to (ii) deep
features alone (p < 0.001, z = 25.2) but not to the (i) hand-crafted radiomics features model
(p = 0.12, z = 1.6, second row of Figure 2, Table 3). A difference in discriminatory capability
was visible in the ROC curve (second row of Figure 2), favoring model (iii) over the other
two models. In addition, the sensitivity and specificity differ across models due to differing
thresholds selected by the Youden-index criterion.
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Table 3. Classification results for “traditional” hand-crafted, deep, and hybrid features.

Metric AUC Brier Score (BS) Scaled BS [%]

Model

Logit: (i) Radiomics data 0.857 (0.828–0.865) 0.112 (0.109–0.115) 30.8 (28.7–32.9) 0.76 (0.711–0.799) 0.803 (0.782–0.823)

Logit: (ii) Deep Radiomics data 0.788 (0.779–0.796) 0.137 (0.133–0.14) 15.7 (14.3–17) 0.784 (0.764–0.806) 0.72 (0.696–0.741)

Logit: (iii) Shape/First-order Features
+ Deep Radiomics 0.868 (0.861–0.875) 0.106 (0.102–0.109) 34.8 (33.2–36.4) 0.825 (0.789–0.861) 0.771 (0.735–0.807)

Random Forest: (i) Radiomics data 0.839 (0.831–0.847) 0.112 (0.109–0.116) 30.6 (28.7–32.4) 0.72 (0.698–0.744) 0.811 (0.788–0.831)

Random Forest: (ii) Deep
Radiomics data 0.801 (0.793–0.809) 0.131 (0.128–0.135) 18.9 (17.5–20.2) 0.774 (0.755–0.792) 0.728 (0.71–0.745)

Random Forest: (iii)
Shape/First-order Features + Deep

Radiomics *
0.871 (0.865–0.878) 0.104 (0.101–0.107) 35.8 (34.2–37.2) 0.794 (0.764–0.824) 0.793 (0.764–0.823)

Legend: AUC = area under the receiver operating characteristic curve; BS = Brier score. * Overall, the best hyper-
parameter configuration was: random_trees = 890, min_sample_leaf = 5, criterion = ‘gini’, max_depth = None,
min_sampl_decrease = 0.0, bootstrapes_split = 2, min_weight_fraction_leaf = 0.0, max_leaf_nodes = None,
min_impurity = True, and CNN-depth = 3.
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Figure 2. Calibration and discrimination for classification of PET positivity for different radiomic
approaches. Results of penalized logistic regression (logit) and random forest are shown. In the
lowess-smoothed calibration plot (first row), the observed outcome frequency is plotted against the
predicted outcome probability. The closer the curve is to the diagonal, the better the calibration. The
receiver operating characteristic (second row) plots the true positive rate against the false positive
rate by varying thresholds (not shown). Discrimination is best for the curve that is closest to the left
upper corner. Legend: PCA = principal component analysis; RF = random forest.
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The calibration of the models (first row of Figure 2) was visually better (closer to the
diagonal) for the models (ii) and (iii) compared to (i).

Figure 3 illustrates the hand-crafted and deep radiomics features for a PET-positive
and a PET-negative lymph node, respectively.
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Figure 3. Visualization of hand-crafted radiomic features and deep features. (A) is an example of a
PET-positive lymph node. (B) is an example of a PET-negative lymph node. Selected hand-crafted
and random selections of feature map outputs of the third layer of the deep CNN are presented,
respectively. Sensitivity analysis: random forest.

The random forest model, capable of learning non-linear and interactive relationships,
resulted in lower or equal Brier scores for all models (Figure 2, Table 3). For example, for
model (iii), the BS was significantly lower (p = 0.005, z = 2.8) for the RF model compared to
the logit model. In contrast, there was no significant difference (p = 0.09, b = 1.7) between
the AUC of the RF and the logit variant of model (iii), while the AUC of model (i) was
significantly (p = 0.009, b = −2.6) higher for the logit variant of model (i). An additional
experiment using XGBoost with similar results is documented in the Online Supplements
(Table S1, Figure S1).

Compared to both approaches alone, combining hand-crafted first-order and shape
features with deep features resulted in significantly improved model discrimination (AUC;
p < 0.001, z = 8.8 and p < 0.001, z = 22.4 against the traditional hand-crafted and deep
features alone, respectively) and overall prediction error (BS; p < 0.001, z = 11.4 and z = 26.6
against the traditional hand-crafted and deep features alone, respectively). Visually, the
ROC curve and the calibration curve (right side of Figure 2) were also best for model (iii).

Among all tested classifiers, the best-performing model was a random forest classifica-
tion for the (iii) hybrid features.
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4. Discussion

To our knowledge, this is the first study that analyzes advanced feature extraction
techniques—namely deep radiomics features extracted from a pre-trained 2D CNN—in the
prediction of dignity in thoracic lymph nodes in lung cancer patients. Overall, discrimina-
tion of PET-positive and PET-negative lymph nodes from radiomic tissue characteristics
was excellent, with AUCs ranging from 0.78 to 0.88 and a reduction in the prediction error
of up to 36%. Interestingly, combining “traditional” hand-crafted first-order and shape
features with deep features derived from a pre-trained CNN resulted in significantly lower
prediction errors than both approaches alone.

This work shows that deep features derived from a pre-trained CNN could be used to
discriminate PET-positive from PET-negative lymph nodes. However, the preprocessing
(scaling and resampling) precludes the use of information on the absolute attenuation
of tissues and the size of lymph nodes. The latter is what a human would use for the
assessment of dignity and is used in many diagnostic criteria [20,21].

Furthermore, the lack of absolute information masks the distinct attenuation charac-
teristic. For example, identifying fatty tissue with characteristic negative Hounsfield units
corresponding to the so-called “positive hilus sign” indicating a benign lymph node [22]
may be impossible using the deep features. Hence, it is not surprising that adding the first-
order features and the shape features containing information about the absolute attenuation
and the size significantly improves model performance.

Similar studies have tried to predict the nodal status of lung cancer and other disease
entities [23–25]. The authors of [23] applied a LASSO [26] model to directly estimate
the N-stage on a per-patient basis using clinical information and features derived from
PET/CT. They evaluated the model discrimination, not the calibration, in a single train/test
split and a small external validation cohort. In contrast, we used information from CECT
only to predict the lymph node dignity for each thoracic lymph node. Furthermore,
our evaluation framework using bootstrap-bias-corrected 10-times-repeated 20-fold cross-
validation accounts for the variance introduced by an arbitrary single train/test split in
small sample sizes [18,27] and measures both calibration and discrimination [27]. Other
authors applied radiomics to primary pulmonary neoplasms and metastases in CECT and
PET/CT [28–33]. Predicted outcomes were composed of the severity of pulmonary lesions,
epidermal growth factor receptor status, or survival outcomes [28–33]. In contrast, we
focus on the per-node dignity of thoracic lymph nodes, where rather little research has been
conducted [23,24]. However, the potential synergies of applying radiomics and machine
learning to the primary tumor and the thoracic lymph nodes remain subject to future
research. In clinical practice, a suspicious lymph node in lung cancer patients requires
a specific workup. Guidelines recommend PET-CT if available [1]. If treatment-relevant
uncertainty remains afterward, a biopsy (transbronchial, transcutaneous, or thoracoscopic)
is recommended [1]. Since there is no generally accepted established threshold, this
decision is usually found in the consensus of an interdisciplinary cancer board. Here,
experts assess the probability of a lymph node being malignant based on image features
and patient characteristics. Similarly, the output of the machine learning models is not a
binary decision. Instead, a probability of PET positivity for each individual lymph node is
provided and may be considered when PET or CT is unavailable and aids further work-up.
However, from our point of view, metabolic FDG-PET/CT seems to be the most specific
imaging technique in non-invasive lung cancer N-staging, but radiomics could improve
conventional DECT interpretation in the case of missing FDG-PET/CT.

In the sensitivity analysis concerning the assumptions on linearity and absence of
interactive effects in the elastic logistic regression, the more flexible random forest had a
significantly lower overall prediction error (BS) compared to the penalized logit model
when using both hand-crafted and deep features as a model input (iii). In contrast, there
was only a non-significant difference in AUCs between the RF and logit models. For
hand-crafted features (i), the AUC for RF was significantly lower than for the logit model.
BS measures discrimination and calibration, while AUC measures only the former [34–36].
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Since discrimination and calibration are both important for clinical decisions, we chose
BS as the primary metric. Optimizing hyperparameters for BS leads to the selection of
hyperparameter configurations that favor calibration for the RF and discrimination for
the logit models [35]. This can also be seen in the calibration plots (first row of Figure 2),
indicated by more deviation from the diagonal for the logit models. Both the results for
the elastic net logistic regression and random forest support the hypothesis that the hybrid
approach (iii) is superior to hand-crafted (i) and deep features (ii) alone.

The “identification” of single imaging biomarkers by feature selection is common
practice in biomedical “omics” analysis [37]. However, as opposed to metabolomics, genetic
or molecular biomarkers, hand-crafted features, and CNN-based features are not potential
treatment targets. In addition, there is no additional cost caused by a higher number of
features. Either manual, AI-assisted, or fully automatic segmentation of the to-be-classified
target structure was conducted, and hence all the features would be available or not.
Therefore, reducing the potential feature space may only be relevant for the subsequent
training of machine learning models for the specified task. The potential benefit may
only be assessed in terms of the models’ performance. Preferably, this process should be
conducted as part of the model training and hyperparameter optimization. In our study,
we used an embedded supervised approach (elastic net [38]) and combined it with an
unsupervised feature reduction method (PCA).

CNNs are usually considered “black boxes” [39]. However, modern model inspection
techniques and the demonstrated way to visualize the deep features extracted from CNNs
(Figure 3) simplify human interpretation [14]. Moreover, reproducibility is considered a
prerequisite for generalizability. Other studies showed superior reproducibility of CNN-
derived deep features compared to hand-crafted radiomic features [13].

We foster the reproducibility of the experiments conducted using only publicly available
open-source packages. The experiments’ Python code will be made publicly available and can
be retrieved from github.com/laqua-stack/BC_CNN_Radiomics. The hand-crafted features
extracted using the pyradiomics package comply with the feature definitions of the Image
Biomarker Standardization Initiative [12]. Furthermore, applying the fixed, pre-trained Efficient-
Net CNN to extract deep features is not specific to the lymph node dataset used in this study
and contributes to generalizability. The approach can easily be applied to other image datasets.

It is also favorable that it does not require extensive computational resources compared
to continued optimization of the CNN weights, such as in an “active” transfer-learning
approach [40]. In contrast, task-specific feature extraction by updating the weights of a
pre-trained CNN on the to-be-classified image dataset (active transfer-learning) has also
shown promising results on different medical classification tasks [5,6,40].

Study Limitations

Several limitations of this study merit consideration:
First, the investigated study population was retrospectively and randomly drawn

from the clinical routine at a single-center comprehensive cancer center. It may reflect
only a particular subpopulation of lung cancer patients. The generalization to different
collections of lung cancer patients (i.e., other stages, other distributions of sub-entities) and
other disease entities may be limited.

Second, as with all observational studies, the ability to conclude causality is limited,
and results should be interpreted as hypothesis-generating.

Third, a suboptimal choice of the models’ respective hyperparameter configuration
may have affected performance. Hence, this, and not solely model inputs, could have
caused performance differences.

Fourth, the choice of the ground truth outcome (FDG-uptake) is generally accepted as
the non-invasive reference standard for detecting lymph node metastases but may exclude
rare or small lymph node metastases or inflammatory benign lymph nodes (e.g., in the case of
tumor-associated pneumonia or chronic nicotine abuse) and does not equal the diagnostic
performance of invasive methods [1,2,22,23]. On the other hand, transbronchial biopsy is also
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limited by too small tissue probes, and histology reports after resection provide the number
of metastatic lymph nodes but not the exact anatomic location for coregistration with the
imaging. However, limiting the study population to those with available histology from
surgical lymph node dissection would have reduced the available study population to those
that were a priori considered operable from the oncological point of view.

Concerning generalizability, we expect that combining traditional hand-crafted and
deep features will also yield complementary information for other medical image classifica-
tion tasks. However, before the deployment of a model in clinical routine, it would also
require external validation, which is beyond the scope of this study.

5. Conclusions

In conclusion, both traditional radiomics features and transfer-learning deep radiomics
features provide relevant and complementary information for classifying lymph nodes in
lung cancer staging. Applying the radiomics approach to CECT could improve the nodal
staging in lung cancer if FDG-PET/CT is unavailable, but metabolic FDG-PET/CT might
even be the best non-invasive imaging technique.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15102850/s1, Figure S1: Calibration and discrimination for
classification of PET-positivity for different radiomics approaches. Results of xgboost are shown. In
the lowess-smoothed calibration plot (first row), the observed outcome frequency is plotted against the
predicted outcome probability. The closer the curve is to the diagonal, the better the calibration. The
receiver-operating-characteristic (second row) plots the true positive rate against the false positive rate
by varying thresholds (not shown). Discrimination is best for the curve that is closest to the left upper
corner. Legend: PCA = principal component analysis; Table S1: Classification results using XGBoost for
“traditional” hand-crafted, deep and hybrid features.
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