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Abstract: Ouagadougou and Bobo-Dioulasso remain the two major urban centers in Burkina Faso
with an increasing trend in human footprint. The research aimed at analyzing the Land Use/Land
Cover (LULC) dynamics in the two cities between 2003 and 2021 using intensity analysis, which
decomposes LULC changes into interval, category and transition levels. The satellite data used
for this research were composed of surface reflectance imagery from Landsat 5, Landsat 7 and
Landsat 8 acquired from the Google Earth Engine Data Catalogue. The Random Forest, Support Vector
Machine and Gradient Tree Boost algorithms were employed to run supervised image classifications
for four selected years including 2003, 2009, 2015 and 2021. The results showed that the landscape is
changing in both cities due to rapid urbanization. Ouagadougou experienced more rapid changes
than Bobo-Dioulasso, with a maximum annual change intensity of 3.61% recorded between 2015 and
2021 against 2.22% in Bobo-Dioulasso for the period 2009–2015. The transition of change was mainly
towards built-up areas, which gain targeted bare and agricultural lands in both cities. This situation
has led to a 78.12% increase of built-up surfaces in Ouagadougou, while 42.24% of agricultural land
area was lost. However, in Bobo-Dioulasso, the built class has increased far more by 140.67%, and
the agricultural land areas experienced a gain of 1.38% compared with the 2003 baseline. The study
demonstrates that the human footprint is increasing in both cities making the inhabitants vulnerable
to environmental threats such as flooding and the effect of an Urban Heat Island, which is information
that could serve as guide for sustainable urban land use planning.

Keywords: Land Use/Land Cover; urbanization; intensity analysis; Google Earth Engine

1. Introduction

Urbanization refers to the massive movement of population to urban settings and the
consequent spatial and demographic growths that occur in urban areas [1]. In 2018, the
United Nations estimated that about 4.2 billion people were living in urban areas [2]. By
the year 2050, the world’s total urban population will reach 6.7 billion, while about 0.6 to
1.3 million square kilometers of land will be converted into urban areas [3]. In Africa, the
rate of urbanization is arguably the highest in the world [4] and is projected to reach 55%
of the total population by 2050 [5]. The rapid trend of urbanization in Africa has been
confirmed by several authors [4–7] and is characterized by the increasing number of its
megacities, cities and towns [5]. The urban growth in most of the developing countries, over
the past two decades, has been unprecedented due to the population growth and the global
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technological transformation and political change [8]. Being key economic centers in terms
of production and consumption, the cities in developing countries lack capacities to deliver
relevant goods and services to their citizens. In Burkina Faso for example, the urbanization
process is inconsistent with the local plans and policies, resulting in the formation of slums
where socio-economic facilities such as transportation, water and sanitation, health and
education are lacking [9].

Rapid urbanization is making the planning of sustainable urban development problem-
atic [10], because the demand for land is increasing together with unplanned development.
The consequence of increasing land demand in urban areas is the spatial and temporal
modification of Land Use/Land Cover (LULC) [11] towards built surfaces at the expense
of natural areas. Thus, the urban LULC changes affect the thermal characteristics of the sur-
face [12] and expose cities to climate change from greenhouse gas-induced radiative forcing
and localized effects such as Urban Heat Island (UHI) [13]. Thus, LULC changes contribute
to global climate change [14] and lead to landscape and ecosystem degradation [15]. It
is well known that natural land cover such as vegetated and water body areas release
water vapor into the atmosphere and contribute to urban environmental cooling, while
impervious surfaces (i.e., built-up areas, pavements, and asphalt) modify the drainage
geography, intensify runoff and increase the risk of flooding [16].

In Burkina Faso, the combined effects of the natural growth of population and positive
net migration [17] have placed Ouagadougou and Bobo-Dioulasso in a continuous urban
expansion process [18]. The increase in population generates a high demand on land
for housing and agro-businesses development, creating LULC fragmentation within the
inner city and the development of new built areas at the peripheral zones. This situation,
in addition to the unprecedented land speculation occurring in the area, particularly in
Ouagadougou [19], leads to a spatial urban expansion characterized by the development
of informal housing and consequently an increase of impervious surfaces at the expense
of natural vegetation and water bodies. In Ouagadougou for instance, because of the
increasing trend of informal housing in the urban fringe, some former rural areas have been
swallowed up by urban restructuration processes [20]. The urbanization process causes
the transformation of permeable surfaces into impervious surfaces including concrete and
asphalt, which decrease the soil infiltration capacity and increase runoff and flood flows
as well [21]. So, systematic LULC mapping is necessary to understand and monitor the
changes in the urban landscape to facilitate sustainable urban development planning.

Although few studies have been carried out on urban LULC mapping [22–24], most of
them used individual classification algorithms results to show the landscape changes. The
use of multi-temporal images taking into consideration the variation in spectral reflectance
of the surface material implies the combination of large number of images, which require
more processing time and storage. In addition, the application of a method involving
the use of majority voting of multiple machine learning classifiers results is also storage
demanding. Thankfully in recent years, LULC studies using satellite data are becoming
easy due to the operationalisation of cloud-computing platforms such as Google Earth
Engine (GEE), a geo-computational cloud platform where users can access relevant long-
term big geodata and processing tools for environmental monitoring without any need for
downloading and storing in local systems [25–27]. In the African region, GEE has been
employed to map LULC either for urban growth assessment and monitoring [6], ecosystem
degradation assessment [28] or ecological monitoring [29].

In the study area, not only was a LULC mapping using GEE not found, but also the
application of intensity analysis, which shows insights to the patterns of changes in order
to relate it to the causal processes [30], is yet to be explored. The aim of this study is to
map the spatio-temporal pattern of LULC in Ouagadougou and Bobo-Dioulasso using
multi-temporal satellite images in the GEE environment, characterizing the changes by
means of intensity analysis framework.
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2. Materials and Methods
2.1. Study Area Description

The study was conducted in Ouagadougou and Bobo-Dioulasso, the first two largest
cities of Burkina Faso. Ouagadougou is located in the Centre Region between longitudes
1◦41′31′′ W and 1◦21′05′′ W and between latitudes 12◦12′42′′ N and 12◦30′14′′ N, while
Bobo-Dioulasso is situated in the Hauts-Bassins Region between longitudes 4◦23′40′′ W and
4◦12′19′′ W and between latitudes 11◦06′26′′ N and 11◦17′27′′ N (Figure 1). Ouagadougou
covers an area of 970 km2 while Bobo-Dioulasso’s land mass is 1779 km2. Ouagadougou
lies in the so-called Central peneplain of Burkina Faso, with altitudes varying between
272 and 368 meters above sea level, while the relief in Bobo-Dioulasso ranges between
287 and 558 metres above sea level.
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Figure 1. Location of study area. (a) West Africa inset Burkina Faso; (b) Burkina Faso showing
administrative boundaries of districts inset Ouagadougou and Bobo-Dioulasso in red boxes; (c) Zoom
of Ouagadougou showing elevation, roads, rivers, localities and training/testing samples; (d) Zoom
of Bobo-Dioulasso showing elevation, roads, rivers, localities and training/testing samples.
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In terms of climate, both cities belong to the Sudanian climatic zone. Thus, similar to
the whole of West Africa, the climate is regulated by the movement of the Inter-Tropical
Convergence Zone (ITCZ). During the study period (2003–2021), the average monthly
temperature varied between 25.2 ◦C and 33.3 ◦C in Ouagadougou and between 25.5 ◦C and
31.1 ◦C in Bobo-Dioulasso. The total annual rainfall ranged from 571 to 1003 mm/year
in Ouagadougou, whereas in Bobo-Dioulasso, it ranged from 682 to 1370 mm/year. Oua-
gadougou and Bobo-Dioulasso, being the most developed cities of the country, have
experienced a rapid spatial growth characterized by the expansion of built-up area to the
detriment of natural land cover. The population of Ouagadougou evolved from 172,661 in-
habitants in 1975 to 2,415,266 inhabitants in 2019 [17,31]. The population in Bobo-Dioulasso
increased from 115,063 inhabitants in 1975 to 904,920 inhabitants in 2019 [17,31].

2.2. Satellite Data Acquisition and Pre-Processing

For this research, the GEE platform was used. It is a cloud-based geospatial analysis
platform that provides easy and instant access to satellite data and computing resources
to process them directly, without the need for downloading [26]. The satellite images
for the LULC mapping were collected from Landsat 5 Thematic Mapper (TM), Landsat 7
Enhanced Thematic Mapper plus (ETM+) and Landsat 8 Operational Land Imager (OLI)
sensors, provided by the United States Geological Survey (USGS). All the images used
were surface reflectance data from the Level 2 Collection 2 Tier 1 datasets, which are
second-generation Landsat pre-processed products. Prior to their ingestion into GEE Data
Catalogue, the images were pre-processed to at-surface reflectance level using the Landsat
Ecosystem Disturbance Adaptative Processing System (LEDAPS) algorithm in the case of
Landsat 5 and 7 and the Landsat Surface Reflectance Code (LaSRC) in the case of Landsat 8
OLI [32]. To gather relevant images for the study, a search was made through the Landsat
(5, 7 and 8) images, from 2003 to 2021, that cover Ouagadougou (Path 195, Row 051) and
Bobo-Dioulasso (Path 197, Row 052 and Path 196, Row 052) metropolitan areas. For each
year, the images from October to December were considered for the analyses to reduce the
number of cloudy data and enhance the level of discrimination between the different classes.
Additional pre-processing tasks including scaling and cloud masking were performed on
the images. Regarding the scaling procedure, the scale factor and offset value provided in
the bands description in GEE catalogue were used to reconstitute the surface reflectance
values of the images. A cloud masking, using the Quality Assessment (QA) band, was
also conducted on images with low cloud cover (<10%). Furthermore, the USGS Landsat 7
gap-filling method was employed to correct the spatial discontinuity in the images due to
the Scan Line Corrector (SLC) failure in May 2003 which resulted on about 22% of data lost
in each image scene [33].

2.3. Satellite Images Processing

For the LULC mapping, six atmospherically corrected surface reflectance bands,
namely, Blue, Green, Red, Near-Infrared and Shortwave-Infrared band 1 (SWIR 1) and
Shortwave-Infrared band 2 (SWIR 2), were used. Assuming that the land cover type and
configuration remained the same in both rainy and dry seasons, the median image for
the October–December period for each year was computed from the image collections
obtained for each classification year. In addition to the spectral bands, additional inputs
composed of topographic derivatives (elevation and slope), as well as vegetation and some
land cover specific indices, were computed. The vegetation indices useful to discriminate
vegetation from other LULC classes include the Normalized Difference Vegetation Index
(NDVI) [6] and Enhanced Vegetation Index [34]. Dry Built-up Index (DBI), Dry Bare-soil
Index (DBSI) and Normalized Difference Built-up Index (NDBI) [35], Bare Soil Index (BSI)
and Soil Adjusted Vegetation Index (SAVI) [36] and Normalized Difference Water Index
(NDWI) [11] were the biophysical indices used. SAVI is used to correct NDVI for the
influence of soil brightness in areas with low vegetation cover. BSI is used to show the
difference between agricultural and non-agricultural land thanks to its ability to detect
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bare soil and fallow lands [36]. DBI and DBSI are used in combination with NDBI to help
distinguish between built-up areas and bare lands, rather than using only NDBI due to
its inability to distinguish between the two units in dry climate [35], as in the context of
Burkina Faso. Furthermore, Principal Component Analysis (PCA), a statistical method that
reduces the dimensionality of a large datasets, was performed on the median images to
extract the main uncorrelated bands that contain most of the spectral information [37]. In
sum, the predictors used for the image classification were composed of the median images,
the vegetation and biophysical indices, the topographic elements including elevation and
slope derived from the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model
(DEM) image at a spatial resolution of 30 m and the three Principal Components (PC).
Table 1 gives the description of the different predictors used for the Land Use/Land Cover
classification.

Table 1. Details of the predictors used in the image classification (All predictors are calculated on a
spatial resolution of 30 m. ρx represents the reflection in band x).

Predictor Computation Equation Description

med(Blue) median from October to December Median band of all blue bands in the period
med(Green) median from October to December Median band of all green bands in the period
med(Red) median from October to December Median band of all red bands in the period
med(NIR) median from October to December Median band of all NIR bands in the period

med(SWIR 1) median from October to December Median band of all SWIR1 bands in the period
med(SWIR 2) median from October to December Median band of all SWIR2 bands in the period

Elevation Automatic Elevation level
Slope Automatic Slope classes
PC1 PCA First principal component
PC2 PCA Second principal component
PC3 PCA Third principal component

NDVI ρNIR−ρRED
ρNIR+ρRED

Index to differentiate vegetation class from others

SAVI 1.5× (ρ NIR−ρRED)
(ρNIR+ρRED+0.5)

Index to account for soil noise

NDWI ρGreen−ρNIR
ρGreen+ρNIR

Index to discriminate water class from others

NDBI ρSWIR1−ρNIR
ρSWIR1+ρNIR

Index to distinguish built-up for other classes

DBI ρBLUE−ρTIR
ρBLUE+ρTIR

− NDVI Index to differentiate built-up from bare land

DBSI ρSWIR1−ρGREEN
ρSWIR1+ρGREEN

− NDVI Index to differentiate built-up from bare land

2.4. Land Use/Land Cover Classification Scheme

In total, four years were considered for the LULC analysis with a time step of six years:
2003, 2009, 2015 and 2021. The classification scheme used in this study is composed of five
LULC classes including built-up, bare land, forest, agricultural land and water (Table 2).
Agricultural areas were combined with shrub land to have agricultural land class. This is
because of the fact that agricultural areas look like savannah parks in the case of cultivated
areas or shrubs in the case of fallow lands. This similarity implies a spectral confusion
between the two classes in the region. The class considered as bare land is composed of
areas cleaned for construction or used for public activities such as football and meetings [6]
and untarred roads.

Table 2. Description of LULC classes, adapted from [38,39].

LULC Classes Description

Built-up Area dominated by urban, peri-urban and rural settlements including pavement, tarred roads and
other concrete surfaces

Bare land Surfaces without vegetation, building or water and untarred roads
Forest Area occupied by urban parks and forests

Agricultural land Cultivated lands including seasonal, and permanent crops as well as fallows, shrubland and grassland
Water Rivers, dams and lakes
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2.5. Reference Samples Collection

The reference samples were collected, observing a minimum mapping unit of
30 × 30 metres of homogeneous landscape [34] to match the Landsat satellites images
resolution (30 m). A point was then picked at the center of each homogenous unit. The
collection was made on Google Earth Pro high-resolution images through on-screen digiti-
zation. For the purposes of quantitative analyses and comparison, consistent point samples
were collected throughout the four years. Given that the area is in continuous urbanization
and most of the Land Use/Land Cover classes are being transformed to built-up areas, a
change logic was assumed to collect the samples. Thus, for the built-up class, the earliest
image was used as reference, assuming that in urban areas the conversion from other classes
to built-up is irreversible. Moreover, to ensure that the samples are consistent throughout
the period, the “Show historical imagery” tool in Google Earth Pro (version 7.3.6.9345) was
employed to move forward, year after year, in order to record the pixels that remained
built-up from 2003 to 2021. For the other classes (water, forest, bare-land, and agricultural
land), the latest image was used making sure that the class of each sample is the same
throughout the time series by going back in time and retaining the consistent pixels for
the analysis. In total, 289 and 144 homogeneous and consistent samples were collected in
Ouagadougou and Bobo-Dioulasso, respectively. Ouagadougou has more samples than
Bobo-Dioulasso because more cloud-free historical high-resolution images were found over
this area. However, in Bobo-Dioulasso, only the central area (urban core) was covered by
clear images.

2.6. Land Use/Land Cover Classification

The image classification was performed using machine learning algorithms. Then,
the collected reference datasets were divided into training and testing set to avoid over-
fitting [40]. In general, the best results are obtained with 70–80% of the samples assigned
to training sets and 20–30% of the data for testing sets [40]. For this study, 80% of the
samples were used to train the model, and 20% were used for testing. A pixel-based image
classification method was applied using three different supervised classifiers available in
GEE: Random Forest (RF), Support Vector Machine (SVM) and Gradient Tree Boost (GTB).
RF is an ensemble of classification trees which employs bagging operation to generate
multiple decision trees (ntree) based on a randomly selected subset of training data. Each
tree is then grown to its maximum size based on a bootstrapped sample from the train-
ing dataset without any pruning, and each node is split using the best among a subset
of input variables (mtry) [41]. The classification is performed by using the most voted
class from each tree predictor. SVM is a non-parametric supervised machine learning
algorithm considering that for a nonlinear separable dataset, consisting of points from
two classes, all the points of one class can be separated from those of the other class by
using an infinite number of hyperplanes. The best hyperplane with the largest margin
between the two classes is selected by using a subset of training samples known as support
vectors [42]. RF and SVM have high performance in time-series image classification [43],
achieving good accuracies in several studies conducted in the region [34,44–46]. The GTB
is a gradient-boosting algorithm that uses regression trees as weak classifiers. The weak
learners measure the error observed in each node, split the node and return the values [47].

2.7. Land Use/Land Cover Post-Classification Majority Filtering

In order to improve the final results, the LULC images from the different classifiers
were converted to an image collection, and a vertical majority filtering (using the mode
function) was performed to have a single classified image. To perform the image classifica-
tion in GEE, numbers were assigned to each class (0: water, 1: Built-up, 2: Agricultural land,
3: Forest and 4: Bare land). Thus, the majority filtering process consisted of a spatial overlay
of the outputs of the different classifiers after which, for each pixel, the most frequently
occurring LULC class (the corresponding number) across the collection was selected as
the final pixel label. In other words, the majority voting calculated the most common class
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at each pixel level across the collection of classified images. When there is one majority
vote (e.g., 1, 1, 3), the majority value is returned (the majority pixel value is 1). In case
where there are multiple mode values (not applicable for this study, because it used three
classifiers) or there is no majority vote (e.g., 2, 1, 5), the minimum pixel value is returned
(the minimum value is 1). Naboureh et al. [48] found an improvement in LULC maps when
applying majority voting with random under sampled SVM classifications.

The accuracy of the majority voting was assessed using 1000 random points. The pixel
values of the random points were extracted from the majority vote image and each of the
individual classifier results. The overall accuracy of each majority image was calculated by
dividing the number of majority pixels to the total number of pixels. The accuracy in terms
of one majority vote is presented in Table 3.

Table 3. Majority vote overall accuracy.

Year Ouagadougou Bobo-Dioulasso

2003 0.88 0.84
2009 0.89 0.86
2015 0.82 0.88
2021 0.86 0.93

The final classification results had some “salt and pepper” effects present due to
misclassified pixels. Consequently, a post-classification horizontal majority filter (with a
3 × 3 neighborhoods) was applied to replace the isolated pixels with the most common
neighboring pixel values.

2.8. Land Use/Land Cover Accuracy Assessment

The accuracy of each classified map was assessed directly in GEE, using the error
matrix, which is a two-entry table that compares the classified map to the predictions data
(Table 4).

Table 4. Error matrix design (Adapted from [49]).

C
la

ss
ifi

ed
m

ap

Prediction

1 2 . . . j . . . q Total ti+
1 t11 t12 . . . t1j . . . t1q t1+
2 t21 t22 . . . t2j . . . t2q t2+
...

...
...

...
...

...
...

i ti1 ti2 tij tiq ti+
...

...
...

...
...

...
...

q tq1 tq2 . . . tqq tq+
Total t+j t+1 t+2 . . . t+j . . . t+q

The LULC maps accuracy metrics including overall accuracy (OA) and kappa coef-
ficient (k) were computed based on the error matrix. The overall accuracy is the propor-
tion of all pixel correctly classified in their categories [49]. It is computed according to
Equation (1).

OA =
∑

q
i=1 tii

N
× 100 (1)

The kappa coefficient which is known to be more robust than the overall accuracy
because it takes into account the agreement occurring by chance [50] was also calculated. A
value of k below 0 indicates no agreement between the classified map and the observations;
0–20% means a slight agreement; 21–40% corresponds to a fair agreement; 41–60% is a
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moderate agreement; 61–80% shows a substantial agreement, and 81–100% indicates an
almost perfect agreement [50]. The kappa coefficient is computed following Equation (2).

k =
N∑

q
i=1 tii −∑

q
i=1 (t i+t+j

)
N2 −∑

q
i=1 (t i+t+j

) (2)

where q is the number of LULC classes, tii is the number of pixels of class i correctly
classified in class i. ti+ is the total number of classified pixels in class i, and t+j is the total
number of prediction pixels in class j. N is the total number of prediction pixels.

2.9. Land Use/Land Cover Intensity Analysis

Intensity analysis is a mathematical framework that compares a uniform intensity
to observed intensities of temporal changes among categories [51]. Uniform intensity is
defined as the hypothetical change intensity when the overall change occurred during a
time interval was uniformly distributed, from the beginning to the end of the interval [52].
In this study, the categories refer to the different LULC classes, namely built-up, agricultural
land, forest, bare land and water. Based on the study years, the time intervals include
2003–2009, 2009–2015 and 2015–2021. Intensity analysis takes place at three levels including
interval level, category level and transition level [30]. To perform intensity analysis, in this
study, the equations based on Aldwaik and Pontius [52] were used.

The following mathematical notations were used: Yt corresponds to the year at time
point t; Yt+1 is the year at time point t + 1. J is the number of categories; j is the index for a
category at the latter time point of an interval; i is the index for a category at the initial time
point of an interval; n is the index of the gaining category for the selected transition; Ctij is
the size of transition from category i to category j during interval Yt–Yt+1; Ctin is the size of
annual transition from i to n during interval Yt–Yt+1; Ctnj is the size of transition from n to j
during interval Yt–Yt+1. Ctnn is the size of annual gain of n during interval Yt–Yt+1.

The interval level analyzes the overall change size and the annual change intensity of
the whole area in each time interval. The annual change intensity of the study area during
time interval t (St) is computed through Equation (3). Equation (4) shows how to compute
uniform change intensity during time interval t (Ut). If St < Ut then the change is slow. In
the case St > Ut, then the change is fast.

St =
change during interval t

study area size× interval t duration
× 100 =

∑J
j=1

[(
∑J

i=1 Ctij

)
− Ctij

]
(Yt+1 −Yt)

(
∑J

j=1 ∑J
i=1 Ctij

) × 100 (3)

Ut =
change during all intervals

study area size× study duration
× 100 =

∑T−1
t=1

(
∑J

j=1 ∑J
j=1 Ctij

)
(YT −Y1)

(
∑J

j=1 ∑J
i=1 Ctij

) × 100 (4)

The category level deals with the variation in size and intensity of gross gains and
gross losses across categories during each time period. The loss intensity (Lti) from a
category i is the lost percentage of the start size of that category i during the time interval
t (Equation (5)). The gain intensity (Gtj) to a category j corresponds to the percentage of
the end size of that category j that gained during the time interval t (Equation (6)). The
intensity of a uniform change during time interval t is defined by St (Equation (3)). If
Lti < St or Gtj < St, then the loss from category i or gain to category j during time interval t
is dormant. If Lti > St or Gtj > St, then the loss from category i or gain to category j during
time interval t is active.
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Lti =
loss of category i during interval t

interval t duration× size of category i at start of intervalt
× 100 =

∑J
i=1 Ctij − Ctii

(Yt+1 −Yt)∑
J
i=1 Ctij

× 100 (5)

Gtj =
gain of category j during interval t

interval t duration× size of category j at end of interval t
× 100 =

∑J
i=1 Ctij − Ctjj

(Yt+1 −Yt)∑
J
j=1 Ctij

× 100 (6)

The transition level computes for each category how the size and intensity of a given
category’s transitions vary across the other categories which are available for the transi-
tion [51]. The transition intensity from category i to category n during time-interval t (Rtin),
where i is different from n, is defined by Equation (7). Equation (8) presents the uniform or
hypothetical transition intensity to category n during time interval t (Wtn). In the case Rtin
< Wtn, then the gain or loss of n avoids i during interval t. If Rtin > Wtn, then the gain or
loss of n targets i during time interval t.

Rtin =
transition area from category i to n during interval t
interval t duration× size of category i at start time

× 100 =
Ctin

(Yt+1 −Yt)∑
J
j=1 Ctij

× 100 (7)

Wtn =
gain of category n during interval t× 100

interval t duration× size of non category n at start time
=

∑J
i=1 Ctin − Ctnn × 100

(Yt+1 −Yt)∑
J
j=1

[(
∑J

i=1 Ctij

)
− Ctnj

] (8)

To perform the intensity analysis, the “OpenLand”package [53] in R environment
was used. The LULC results from the four years were used as input data in the “contin-
gencyTable” to generate a cross-tabulated matrix comprising the quantity of changes in
square kilometers from one category to another between two consecutive time points. This
cross-tabulated matrix was utilized as input in the “intensityAnalysis” function to compute
the interval, category and transition levels of changes that occurred between the different
categories, during the three-time intervals. Figure 2 presents the overall methodological
flowchart of the study.
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3. Results
3.1. LULC Classification Accuracy

The classified LULC images accuracies were assessed using the overall accuracy and
the kappa coefficient. The individual classifications overall accuracy varied between 0.8
(RF 2021) and 0.94 (RF 2003) in Ouagadougou, while in Bobo-Dioulasso, it was between
0.66 (RF 2015) and 0.77 (SVM 2003). The majority voting results showed smoothed overall
accuracies and kappa coefficients for all the years in Ouagadougou (Table 5). However,
there is an improvement for both metrics, compared to the results of all the individual
classifiers in 2009. For Bobo-Dioulasso, the majority voting images presented stable (2009
and 2015) to totally improved values (2003 and 2021) compared to the individual classifiers
for the overall accuracy and the kappa coefficient (Table 6).
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Table 5. LULC Accuracy metrics in Ouagadougou.

Year RF GTB SVM Majority RF GTB SVM Majority

Overall Accuracy kappa coefficient

2003 0.94 0.89 0.82 0.87 0.9 0.81 0.69 0.79
2009 0.81 0.8 0.85 0.87 0.68 0.66 0.74 0.79
2015 0.85 0.87 0.85 0.85 0.74 0.77 0.75 0.77
2021 0.8 0.83 0.92 0.82 0.66 0.72 0.87 0.72

Table 6. LULC Accuracy metrics in Bobo-Dioulasso.

Year RF GTB SVM Majority RF GTB SVM Majority

Overall Accuracy kappa coefficient

2003 0.66 0.71 0.77 0.81 0.52 0.6 0.7 0.75
2009 0.74 0.71 0.74 0.74 0.63 0.58 0.64 0.64
2015 0.66 0.74 0.74 0.74 0.52 0.64 0.63 0.64
2021 0.71 0.78 0.71 0.85 0.57 0.69 0.59 0.79

3.2. Land Use/Land Cover Spatial Distribution

The LULC maps in Ouagadougou (Figure 3) show that the dominant classes are
agricultural land and built-up area. There was a continuous expansion of settlement
areas from the inner city towards the peripheral areas at the expense of other land uses
such as agricultural areas. Being the two main land use classes in the area, they have a
negative correlation in terms of spatial growth. While built-up land is expanding in the
area, agricultural land area is decreasing, indicating the intensification of human footprint
throughout the years. Other Land Use/Land Cover classes such as water bodies, forest
and bare land were also present in the maps. In Bobo-Dioulasso, agricultural land, forest
and built areas are the most represented (Figure 4). Like Ouagadougou, settlement areas in
Bobo-Dioulasso kept growing, to the detriment of natural landscape such as forest areas.
The expansion of built-up areas towards the northern side of the city of Bobo-Dioulasso is
due to the development of a new estate, named “Bobo 2010”, by the year 2007 at that part.
The water bodies and bare land areas occupy small surfaces in the maps.
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3.3. LULC Trend

The landscape units have changed in different ways between 2003 and 2021 in Oua-
gadougou and Bobo-Dioulasso (Figure 5). In Ouagadougou, the built-up area occupied
32.75%, 35.95%, 46.86% and 58.34% of the total landscape in 2003, 2009, 2015 and 2021,
respectively. Conversely, the agricultural land areas had a decreasing trend represented by
65.45%, 60.86%, 50.13% and 37.80% of the area in 2003, 2009, 2015 and 2021, respectively.
These figures indicate a linear increase of 78.13% for built-up area against a decrease of
42.25% for agricultural land between 2003 and 2021. The forest areas experienced an in-
crease of 55.56%, while the water bodies increased by 2.84% due to the construction of a
new dame in the northern part of the study area in 2007. Bare land surfaces also increased
consequently and occupied more than 19% of the landscape in 2021.
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In Bobo-Dioulasso, like Ouagadougou, the built-up areas continuously increased
during the study time span. The built-up areas represented 4.10%, 5.19%, 6.36% and 9.86%
of the total area in 2003, 2009, 2015 and 2021, respectively, corresponding to a variation of
+140.7% during the study period. Unlike Ouagadougou, the trend of agricultural lands was
not steady in Bobo-Dioulasso. There was a gradual growth from 79.59% (2003) to 79.85%
(2009) and 84.99% (2015) and a decline to 80.69% (2021). The decrease of agricultural land
in 2021 could be due to the 0.68% increase of forest area after a continuous decline from
15.58% (2003) to 8.51% (2015). The bare land had a global increase, whereas the water
bodies decreased across the study period.

3.4. LULC intensity Analysis
3.4.1. Interval Level

Figure 6 shows the graphical representation of the interval level analysis results, which
compare annual changes intensity of all the area within each time interval. A fast annual
change intensity was recorded in Ouagadougou between 2015 and 2021 (3.61% per year
against 3.09% as uniform intensity), while in Bobo-Dioulasso it was fast between 2009
and 2015 (2.22%, compared to a uniform intensity of 2.17%). During the two other time
periods, 2003–2009 and 2009–2015 for Ouagadougou and 2003–2009 and 2015–2021 for
Bobo-Dioulasso, the annual intensity of change was slow.
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3.4.2. Category Level

The category level analysis plots present the size and annual intensity of change of
each category’s gain relative to the size of the category at the interval’s end time point. It
also shows the size and annual intensity of each category’s loss in relation to the size of the
category at the interval’s initial time point. Figure 7a,b presents the graphical outputs of
category analysis for each time interval in Ouagadougou. The built-up class was the largest
gainer during all the time intervals, followed by bare and agricultural lands. Built-up
gain increased continuously, from 8.6% in 2003–2009 and 13.68% in 2009–2015 to achieving
15.73% of the total landscape in 2015–2021. As for the annual change intensity, the uniform
intensity (St) values indicated an intensification of change from 2003–2009 (2.65%) to
2015–2021 (3.61%). Bare, forest and built-up classes had active changes during the three-
time intervals, with bare having the most active gain (Gtj > St) in 2003–2009 and 2015–2021,
while forest gain was very active in 2009–2015 and 2015–2021. The water class showed
active gain in 2003–2009 and 2009–2015. Concerning agricultural category, the gain intensity
was dormant (Gtj < St) throughout the time. In terms of loss in Ouagadougou, agricultural
land had the largest loss in terms of area during the three-time intervals, followed by
built-up and bare. Agricultural loss increased, going from 9.64% in 2003–2009 and 13.63%
in 2009–2015 to 15.91% in 2015–2021. The active loss rates were recorded by agricultural,
forest, bare and water classes during 2009–2015 and 2015–2021. The built-up class was
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dormant, except in 2003–2009, where it showed a marginal loss in favor of bare land.
Looking at the behavior of each bar regarding the uniform rate, it emerged that less than
half of the bar length for agricultural lands in 2009–2015 and 2015–2021 extend beyond the
uniform rate, showing that the large size of area occupied by agricultural in 2009 and 2015
is the cause of its large loss. In 2003–2009, more than 50% of forest and water bar lengths
exceeds the uniform rate, indicating that active change intensity is the reason explaining
the two categories’ losses sizes. In each time interval, more than half of the bare land goes
beyond the uniform line, demonstrating that active intensity is more important than the
size of bare land at the start time to explain the size of bare land’s loss.
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Figure 7c,d shows the category level analysis plot in terms of size and intensity of
change for Bobo-Dioulasso. The larger gainers, in size, were, respectively, agricultural,
forest and built-up classes during the three periods. The gains in agricultural land increased
from 2003 (6.58%) to 2015 (9.11%) and decreased in 2021 (4.22%) at the expense of forest
area, which nearly doubled its gain compared to 2015 (2.52% to 4.63%). Built-up surface
gains increased regularly during the different time intervals, going from 1.4% in 2003–2009
to 3.78% in 2015–2021. The uniform rate showed a quasi-stationary intensity of change
during the different time intervals. As for the gain intensity, bare land, forest and built-up
areas experienced the most active changes (Gtj > St). Agricultural change was dormant
throughout the time. In terms of loss, agricultural and forest areas were the larger losers.
The intensity of loss for the forest category was active during the three periods. Bare land
also experienced active loss during 2009–2015 and 2015–2021. The large loss in forest and
bare areas could be explained by the very active change intensity because more than 50% of
the bar lengths exceeds the uniform intensity rate. Agricultural land and built-up surfaces
showed a dormant change during the period.

3.4.3. Transition Level

Figure 8 shows the transition level changes for built-up gain and agricultural loss in
Ouagadougou and Bobo-Dioulasso. The transition level analyses focused on built-up and
agricultural categories because they are the dominant classes in the study area throughout
the four time points. The gain and loss intensities are analyzed regarding the deviation of
each category intensity from the uniform intensity. When a category intensity is higher than
the uniform intensity, the transition targets that category, and when a category intensity is
less than the uniform intensity, the transition avoids that category.

In Ouagadougou, the gain of built-up area targeted bare and agricultural lands
(Rtin > Wtn) in all the time intervals (Figure 8a). The other classes were avoided
(Rtin < Wtn). The major transition to built-up category came from bare land, with an
increasing intensity (Rtin) going from 6.81% in 2003–2009 to 9.91% in 2009–2015 and 10.04%
in 2015–2021. That could be explained by the greater transition intensity of bare land
which largely exceeds the uniform line. As for agricultural loss, it targeted forest in all the
time interval, while in 2003–2009, and 2009–2015, water was also converted to agricultural
(Figure 8b). In addition, bare land in 2003–2009 and slightly built-up in 2015–2021 were
gaining from agricultural. The major gainer from agriculture was forest, with a peak
intensity in 2009–2015.

In Bobo-Dioulasso, the built-up class only gained from bare and agricultural lands
(Figure 8c). Indeed, the bare land class was targeted in 2003–2009 and 2009–2015
(Rtin =4.61% and 1.34%, respectively), while in 2015–2021 the agricultural class took over
and started getting targeted (Rtin = 0.74%) by the built-up class. The explanation of such
a situation could be that people used all the bare land areas for building and started ex-
ploiting agricultural lands. It could also be caused by classification errors resulting in a
confusion between bare and agricultural lands.

The loss of agricultural land area occurred in favor of forest, bare land and built-up
lands (Figure 8d). The loss targeted (Rtin > Wtn) bare land and forest. Built-up gain from
the agricultural class was avoided in Bobo-Dioulasso. This could be explained by the fact
that the over-exploited agricultural areas became degraded and appeared as bare land. A
few of these areas are used for building, pavement and road construction.



Land 2023, 12, 1063 16 of 20

Land 2023, 12, x FOR PEER REVIEW 16 of 21 
 

3.4.3. Transition Level 
Figure 8 shows the transition level changes for built-up gain and agricultural loss in 

Ouagadougou and Bobo-Dioulasso. The transition level analyses focused on built-up and 
agricultural categories because they are the dominant classes in the study area throughout 
the four time points. The gain and loss intensities are analyzed regarding the deviation of 
each category intensity from the uniform intensity. When a category intensity is higher 
than the uniform intensity, the transition targets that category, and when a category in-
tensity is less than the uniform intensity, the transition avoids that category. 

 
Figure 8. Transition level changes of Land Use/Land Cover: (a) gain of built-up in Ouagadougou, 
(b) loss of agricultural in Ouagadougou, (c) gain of built-up in Bobo-Dioulasso, (d) loss of agricul-
tural in Bobo-Dioulasso. 

In Ouagadougou, the gain of built-up area targeted bare and agricultural lands (Rtin 
> Wtn) in all the time intervals (Figure 8a). The other classes were avoided (Rtin < Wtn). that 
The major transition to built-up category came from bare land, with an increasing inten-
sity (Rtin) going from 6.81% in 2003–2009 to 9.91% in 2009–2015 and 10.04% in 2015–2021. 
That could be explained by the greater transition intensity of bare land which largely 

Figure 8. Transition level changes of Land Use/Land Cover: (a) gain of built-up in Ouagadougou,
(b) loss of agricultural in Ouagadougou, (c) gain of built-up in Bobo-Dioulasso, (d) loss of agricultural
in Bobo-Dioulasso.

4. Discussion
4.1. LULC Changes in the Study Area

The analysis of LULC patterns showed that the landscape experienced changes to-
wards built-up area increase at the expense of agricultural lands (cultivated lands including
seasonal, permanent crops and fallows, shrubland and grassland) and bare land in Oua-
gadougou and in Bobo-Dioulasso. These dynamics indicate the ongoing urbanization
induced human footprint intensification in the areas. The urbanization process in the area
is characterized by the horizontal expansion of the cities and an increasing population due
to natural growth, rural–urban migration and smaller town to larger city migration. For
example, in 2019, Ouagadougou and Bobo-Dioulasso concentrated 45.1% and 16.9% of the
country’s total urban population, respectively [17], with a net migration rate of 4% per year
in Ouagadougou [19]. This rapid urban population growth could be one the driving factor
of the landscape changes, as rapid population increase causes high demand in land and
consequently leads to LULC changes [54]. The changes of LULC classes in favor of built-up
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areas were also recorded in other urban settings [9,16,55]. Furthermore, the conversion
of agricultural land to roads (a component in built-up class) causes the displacement of
arborists with their trees to resettle along the road-faced walls of some administrations.

4.2. Built-Up Expansion in the Study Area

The city of Ouagadougou is experiencing a rapid settlement expansion, while in
Bobo-Dioulasso, the built-up area increasing is slow. The cities have extended beyond
their administrative boundaries into surrounding districts or villages, particularly in Oua-
gadougou. A similar situation was reported for Kumasi metropolitan city (Ghana), where
urban development was found to have gone beyond its official boundaries [6]. Due to
the adverse impacts of climate change, causing difficulties in finding alternative non-
agricultural livelihood options, the rural population migrates to the cities to look for new
sources of livelihood. Once in the city, not having resources to afford good housing, they
settle in the peripheral slum’s areas, making the city expand horizontally. Since the new
population is coming into the city, the number of inhabitants increased year by year. It
is reported that Ouagadougou welcomes around 100,000 additional people per year [56],
and given the insufficient housing offer policy, most of the newcomers establish their
houses in the peri-urban areas. This situation contributes to the development of informal
neighborhoods around the city. Furthermore, since 2009 there has been a land speculation
process driven by private real estate companies. Indeed, with the authorizations from the
government agencies, they buy land at low-cost prices from farmers in the peripheral areas,
subdivide it into plots and sell to individuals. From 2009 to 2019, a total of 275 land/real
estate development approvals were issued to private companies [19]. This context of
high demand of land for construction linked to population growth leads to an increasing
expansion of built-up areas [57].

The rapid expansion of built-up areas has potential negative implications on urban
agricultural production. This is because areas previously used for urban gardening, the
water pathways and the urban green areas are being converted to concrete buildings. That
conversion process also leads to an increase in impervious surfaces exposing the population
to hazards such as flooding and the Urban Heat Island effect [58]. In addition, the rapid
urban settlement expansion has resulted in limited goods and services provision in the
peripheral areas [59], highlighting the inadequacy between the urban development and
economic growth in most cities in the developing world [8]. The World Bank revealed that
in unplanned areas around cities, the quality of life is deteriorated due to the poor housing
systems, insufficient road network and inadequate water and sanitation supply [60]. This
situation was also reported by the United Nations which stated that rapid urban growth
and its inherent consequences are a common phenomenon for many African cities because
they are expected to record the highest growth rate in the coming 30 years [2].

The LULC dynamics may have some uncertainties due to the low number of samples
and the aggregation of some classes into one (as in the case of seasonal croplands, perma-
nent croplands, fallowlands, shrublands and grasslands which were combined to form the
agricultural land class). In this study, more samples were collected in Ouagadougou than
Bobo-Dioulasso due to the limited availability of clear high-resolution historical images in
Google Earth. This situation may have affected the accuracy of the classification results,
particularly in Bobo-Dioulasso, which showed low overall accuracies across the four years.
In addition, the majority filtering bias is towards the classes labeled with least values (mini-
mum values were returned in cases where there are no majority votes). However, the bias
level is relatively low given the high accuracy values of the majority images (>80% in both
sites) and the fact that the area is dominated by built-up (in Ouagadougou) and agricultural
lands (in Bobo-Dioulasso). The use of more samples could improve the classifications
accuracies and allow the capturing of more detailed LULC classes in the area.
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5. Conclusions

The advent of geospatial cloud-computing platforms such as Google Earth Engine is
revolutionizing the use of remote sensing for LULC studies. This study combined remote
sensing and GIS techniques with intensity analysis approach to assess the LULC dynamics
in Bobo-Dioulasso and Ouagadougou. The changes were analyzed by means of intensity
analysis at three level including interval, category and transition in three-time intervals
namely 2003–2009, 2009–2015 and 2015–2021. The results showed that Ouagadougou
experienced a fast annual change intensity during the period 2015–2021, whereas in Bobo-
Dioulasso, a fast intensity was recorded during the period 2009–2015. The transition of
changes was towards built-up surfaces at the expense of bare and agricultural lands in
the two cities. Concretely, the patterns of LULC transitions caused an increasing trend of
built-up units in both cities, while agricultural land decreased in Ouagadougou and slightly
increased in Bobo-Dioulasso. The built-up area grew by 78.13% and 140.67%, respectively,
in Ouagadougou and Bobo-Dioulasso, while agricultural land lost 42.24% of its area in
Ouagadougou and gained 1.38% area in Bobo-Dioulasso. The increase in built-up areas
at the expense of agricultural indicates a modification of the surface properties, which
could alter the living conditions of urban dwellers. The settlement sprawling towards the
peripheral areas poses the problem of goods and services provision to the population, which
is a common threat to cities in developing countries. The outcomes of this study present
the pattern, size and intensity of urbanization-induced LULC changes and could be used
as guide for sustainable urban land use planning. However, further investigations could be
carried out in the area using more training samples to reduce the level of uncertainties and
map LULC in detail for urbanization modeling in the region.
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