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Abstract

Relativistic effects crucially influence the fundamental properties of many quantum materials. In
the accelerated reference frame of an electron, the electric field of the nuclei is transformed into a
magnetic field that couples to the electron spin. The resulting interaction between an electron spin
and its orbital angular momentum, known as spin-orbit coupling (SOC), is hence fundamental to
the physics of many condensed matter phenomena. It is particularly important quantitatively in
low-dimensional quantum systems, where its coexistence with inversion symmetry breaking can
lead to a splitting of spin degeneracy and spin momentum locking. Using the paradigm of Landau
Fermi liquid theory, the physics of SOC can be adequately incorporated in an effective single
particle picture. In a weak coupling approach, electronic correlation effects beyond single particle
propagator renormalization can trigger Fermi surface instabilities such as itinerant magnetism,
electron nematic phases, superconductivity, or other symmetry broken states of matter.

In this thesis, we use a weak coupling-based approach to study the effect of SOC on Fermi sur-
face instabilities and, in particular, superconductivity. This encompasses a weak coupling renor-
malization group formulation of unconventional superconductivity as well as the random phase
approximation. We propose a unified formulation for both of these two-particle Green’s function
approaches based on the notion of a generalized susceptibility.

In the half-Heusler semimetal and superconductor LuPtBi, both SOC and electronic correlation
effects are prominent, and thus indispensable for any concise theoretical description. The metal-
lic and weakly dispersive surface states of this material feature spin momentum locked Fermi
surfaces, which we propose as a possible domain for the onset of unconventional surface super-
conductivity. Using our framework for the analysis of Fermi surface instability and combining
it with ab-initio density functional theory calculations, we analyse the surface band structure of
LuPtBi, and particularly its propensity towards Cooper pair formation. We study how the presence
of strong SOC modifies the classification of two-electron wave functions as well as the screening
of electron-electron interactions. Assuming an electronic mechanism, we identify a chiral super-
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conducting condensate featuring Majorana edge modes to be energetically favoured over a wide
range of model parameters.



Zusammenfassung

Relativistische Effekte bestimmen die Eigenschaften vieler Quantenmaterialien entscheidend. Im
beschleunigten Bezugssystem eines Elektrons transformiert das elektrische Feld des Kerns in ein
magnetisches Feld, welches an den Spin des Elektrons koppelt. Die daraus resultierende Wechsel-
wirkung zwischen dem Spin eines Elektrons und seinem Bahndrehimpuls, bekannt als Spin-Bahn-
Kopplung (engl. spin-orbit coupling SOC), ist für die Physik vieler Phänomene der kondensierten
Materie von grundlegender Bedeutung. Dieser Effekt ist in niedrigdimensionalen Quantensyste-
men, wo seine Koexistenz mit Inversionssymmetriebrechung zu einer Aufspaltung der Spinentar-
tung und Kopplung des Spins an den Impulsfreiheitsgrad führen kann besonders wichtig. Mit dem
Paradigma von Landaus Fermi-Flüssigkeits-Theorie lässt sich die Physik des SOC in einem effek-
tiven Ein-Teilchenbild gut modellieren. Ausgehend von einem schwach gekoppelten Bild können
elektronische Korrelationseffekte, die über diese einfache Theorie hinausgehen, eine Instabilität
der Fermi-Fläche auslösen, die zu Magnetismus, elektronisch-nematischen Phasen, Supraleitung
oder anderen symmetriegebrochenen Materialzuständen führt.

In dieser Dissertation verwenden wir einen auf schwacher Kopplung basierenden Ansatz, um
die Wirkung von SOC auf Instabilitäten der Fermi-Fläche und insbesondere auf Supraleitung zu
untersuchen. Wir betrachten eine störungstheoretische Renormierungsgruppenformulierung für
unkonventionellen Supraleitung die Random-Phase-Approximation (RPA). Auf Grundlage der
verallgemeinerten Suszeptibilität entwickeln wir eine einheitliche Formulierung für diese beiden
Ansätze.

In dem Halb-Heusler-Halbmetall und Supraleiter LuPtBi sind sowohl SOC- als auch elektro-
nische Korrelationseffekte für jede theoretische Beschreibung von großer Bedeutung. Der met-
allische und schwach dispersive Oberflächenzustand dieses Materials weist Fermi-Flächen mit
gekoppeltem Spin und Impuls auf, die wir als mögliche Domäne für den Beginn unkonventioneller
Oberflächensupraleitung vorschlagen. Wir kombinieren ab-initio Dichtefunktionaltheorieberech-
nungen für die Oberflächenbandstruktur von LuPtBi mit der Renormierungsgruppe und der RPA
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für eine Analyse der Fermi-Oberflächeninstabilitäten and der Kristalloberfläche. Wir untersuchen,
wie die Existenz von starkem SOC die Klassifizierung von Zwei-Elektronen-Wellenfunktionen
sowie die Abschirmung von Elektron-Elektronen-Wechselwirkungen modifiziert. Unter der An-
nahme eines elektronischen Mechanismus identifizieren wir ein chirales supraleitendes Konden-
sat mit Majorana-Randmoden, das über einen weiten Bereich von Modellparametern energetisch
begünstigt ist.
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Introduction

Superconductors are fascinating materials of both technological relevance and academic interest.
Already in the year 1911, Kammerlingh Onnes discovered that electrical resistivity of mercury
vanishes when the material is cooled to liquid helium temperatures (T ≈ −270 ◦C). It was quickly
established that this phenomenon is not unique to mercury as a material [1]. This property of
superconductors, namely their perfect conductivity, forms the basis of the most widely spread use
of superconductors today in high-field magnets for particle accelerators and magnetic resonance
imaging machines [2]. From the viewpoint of fundamental research, it is neither the vanishing
resistivity nor the perfect diamagnetism exhibited by the superconducting state of matter that make
it so remarkable. Rather, it is the fundamentally quantum mechanical nature of this macroscopic
phenomenon.

Quantum mechanics is instrumental to our modern understanding of atoms, molecules, and ma-
terials. Nevertheless, we can describe almost all macroscopic systems perfectly by using classical
mechanics and electromagnetism. This is due to the fact that the quantum mechanical wave-
function in most systems is localized to the span of a few atoms [3]. This limits the direct ob-
servation of quantum effects to experiments that are either extremely sensitive to, or explicitly
probe microscopic length scales. Superconductivity is a notable exception to this observation. If
a superconductor is cooled below its critical temperature at which the phase transition to the su-
perconducting state occurs, a macroscopic fraction of the electrons inside the material condense
into a single quantum state that necessitates a description via a single quantum mechanical wave
function [4, 5]. The multiple occupation of a single quantum state requires the formation of bound
states between pairs of electrons, known as Cooper pairs. In 1972 the Nobel prize in physics was
awarded to J. Bardeen, L. N. Cooper, and J. R. Schrieffer for their theory of superconductivity,
commonly known as BCS theory. In their work they derive a unified theory from the microscopic
forces binding the Cooper pairs to the phase coherence of the macroscopic condensate. This
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phase coherence of the emerging state provides a natural explanation for the vanishing resistivity
and perfect diamagnetism of the superconductor.

In conventional BCS superconductors like mercury or niobium the bound states of electrons
form due to an attractive potential between them that results from their coupling to the crystal’s
lattice vibrations (phonons). Due to this, the superconducting transition temperature Tc corre-
lates with the electron phonon coupling in these materials. An effect that can be demonstrated
by comparing the Tc of different isotopes of the same element [6]. Notably, the attractive poten-
tial generated by the phonon modes of materials like the layered copper-oxides is insufficient to
explain their “high-Tc” and a new explanation for the pairing mechanism is needed [7].

Long before the discovery of “high-Tc” superconductivity in the cuprates by J. G. Bednorz
and K. A. Müller in 1986 [8], W. Kohn and J. M. Luttinger realized that the repulsive Coulomb
potential between two electrons may support the formation of Cooper pairs inside a solid state
material [9]. Their result rests on two important insights: (i) Cooper pairs may have finite angular
momentum; (ii) Screening of the long-range Coulomb potential can lead to attractive interaction
channels in a harmonic decomposition of the effective interaction.

Combining these ideas leads to the conclusion that superconductivity can arise from the repul-
sive Coulomb interaction between electrons alone. Cooper pairs with distinguishable angular mo-
mentum result in different superconducting states of matter and, therefore, relate to different order
parameters. This mechanism forms the basis for the current understanding of the pairing mech-
anism in the “high-Tc” superconducting material classes of the cuprates and iron-pnictides [10–
12].

While more generally valid, the theory of Kohn and Luttinger as well as the BCS theory of su-
perconductivity were initially applied to relatively isotropic three dimensional systems (a sensible
assumption for most conventional phonon based superconductors). The mentioned “high-Tc” su-
perconductivity arises in layered materials i.e., materials with a large anisotropy in their chemical
and electronic structure. For the example of “high-Tc” copper-oxide materials, the ratio of the
conductivity in the doped copper-oxide planes is up to three orders of magnitude higher than in
the perpendicular direction [13].

From a theoretical point of view, the dimensionality of a physical system does not only in-
fluence its description via certain models but critically determines the relevance of interactions
between the constituent particles. Some intuition for this can be gained when we consider a
one-dimensional system of electrons interacting via the Coulomb potential induced by their iden-
tical charges. Clearly, the particles in such a system can never switch places, thus emphasizing
the importance of their potential energy U over their kinetic energy T . While the argument is
more involved for higher dimensions, it is still possible to show that electron correlations for sys-
tems of identical particle density are stronger in two spatial dimensions than in three [14]. This
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significance of correlations in low dimensional systems naively suggests that interaction driven
spontaneous symmetry breaking is enhanced in these systems. It is important to note that this
intuition has to be complemented by various arguments and proofs that exclude the possibility of
true long-range ordering i.e., spontaneous symmetry breaking of a continuous symmetry in one
spatial dimension (two spatial dimensions at finite temperatures), often referred to as Mermin-
Wagner-Hohenberg (MWH) theorem [15–17].

For fully three-dimensional layered bulk systems such as the copper-oxide superconductors and
layered iron pnictides, the MWH theorem is clearly irrelevant as they develop long-range magnetic
(breaking the spin-rotation symmetry) or superconducting order (breaking the U(1) gauge symme-
try associated with particle number conservation) depending on the parameters of the system [8,
18, 19]. Nevertheless, the theoretical modelling of these systems often neglects the interaction
and movement of particles between different layers of the system i.e., the dispersion of the system
is assumed to be perfectly two-dimensional [11, 12]. For the case of the copper-oxide supercon-
ductors, it is widely believed that their properties can be sufficiently captured by a single-orbital,
square-lattice tight-binding model with additional onsite interactions between the particles [11].
This model was introduced already in 1963 as a simple model describing the physics of electrons
in narrow bands formed by d or f orbitals by J. Hubbard [20] and became one of the paradigmatic
models of correlated electron physics.

While the Hubbard model has so far eluded an exact solution, its various exactly understood
limiting cases exhibiting a wide range of physical phenomena drive continuous interest [21]. In
its simplest form the model is characterized by two parameters: The first is the ratio U/t of the
hopping amplitude t between nearest-neighbour sites on the lattice and the potential energy penalty
U that is associated with doubly occupied sites. The second parameter 0 < n < 2 counts the
average number of electrons per unit cell. Despite its parametric simplicity, this basic model
seems to provide an adequate description of the copper-oxide materials at various doping levels
(corresponding to different values of n in the model), while being complex enough to necessitate
approximations or parameter fine tuning to obtain physical insights from it [22].

Unfortunately, the copper-oxide materials are best described at intermediate or large values
U/t, where perturbative treatments are not justified [11]. The experimental observation of quasi-
two-dimensional superconductivity, however, has not been limited to this regime. In fact, even
the superconducting state of copper-oxides with larger than optimal hole doping may be properly
described as emerging from of a correlated metal state that is well described by the Hubbard model
in the limit of small U/t [22]. For this situation an exact solution for U/t → 0 is possible [23]. A
reasonable expectation would be that conclusions from such an analysis hold even for the onset of
finite interactions. This is indeed confirmed when employing more involved (but less controlled)
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approximations such as the random phase approximation (RPA) or the functional renormalization
group (fRG) [24, 25].

While most of these approximation techniques are not limited to the simplest Hubbard model
per se, adapting them to extended-Hubbard type models is still challenging on an implementation
level. Including longer range hopping and nearest neighbour repulsion terms, adding orbital de-
grees of freedom, or putting the model of interest on a more complex lattice geometry make it
a versatile tool for the description of various realistic material systems. This approach has been
employed in the past for the investigation of multiple strongly-correlated metals such as the iron-
pnictide superconductors and Sr2RuO4 among others.

Recently, the inclusion of spin-orbit coupling (SOC) into theoretical models has become par-
ticularly relevant for the description of real materials of experimental interest [26, 27]. SOC is
one of two leading order relativistic effects in atomic theory, the other being the spin-spin inter-
action between different electrons. It is most intuitively understood in the accelerated reference
frame of an electron orbiting the atomic nucleus. From this point of view, the electric field of the
moving nucleus gives rise to a magnetic field that couples to the electrons spin via the Zeemann
interaction. Compared to the spin-spin interaction, SOC is significantly more relevant for con-
densed matter systems as the associated energy scale is related to the host atoms atomic number
Z. For a hydrogen like atom with central charge Ze, the SOC interaction scales as ∆ESOC ∼ Z4.
Correcting for the screening charges in heavy atoms, one still obtains an approximate scaling of
∆ESOC ∼ Z2 [28, 29]. While calculating spin-orbit effects on the band structure of real mate-
rials is standard in modern density functional theory implementations like the Vienna ab-initio

simulation package [30], its interplay with electronic correlations in general and unconventional
superconductivity in particular is an ongoing research effort [31–34].

Hubbard models for realistic materials

Here, we want to highlight three instances of generalized Hubbard models that form a signifi-
cant part of the research during my PhD before continuing to the main part of the thesis. The
highlighted problems include the investigation of lattice geometries different from the square lat-
tice, the inclusion of additional orbital degrees of freedom, and the influence of a third spatial
dimension.

Layered Kagome materials AV3Sb5

One of the most natural extensions of the single-band square-lattice Hubbard model is its adap-
tation to different lattice geometries. A prime example of the rich physics resulting from such a
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simple change is the emergence of unconventional charge and spin order as well as spin triplet
f -wave superconductivity in the Kagome Hubbard model [35, 36]. In 2013, this phenomenology
was established in a purely theoretical study of the Kagome Hubbard model, without realistic
material analogues in sight.

The discovery of the layered Kagome metals AV3Sb5 (where A is one of the Alkali metals i.e.,
potassium, rubidium or caesium) in 2019 constituted the starting point for the experimental inves-
tigation of correlated Kagome systems in the metallic regime. Like the high-Tc superconductors
discussed above, these materials display a layered structure in which the vanadium atoms form a
Kagome lattice in each plane shown, in Figure 1 [37]. Additionally, the chemistry of the system
conspires with the crystal field in the vicinity of the vanadium atoms in a way such that the vana-
dium 3d orbitals are part of the relevant low-energy degrees of freedom. Due to the comparably
small volume of these orbitals and resulting confinement of the electrons, one can expect strong
correlation effects in such a system. The resulting tendency for spontaneous symmetry break-
ing due to residual quasiparticle interactions is further enhanced by the large density of states at
and around the Fermi-level in these materials. This feature is facilitated by the systems chemi-
cal potential being tuned close to multiple van Hove singularities in the pristine i.e., non doped
stoichiometry.

Combining the two-dimensional character, metallic nature and relevance of electronic correla-
tions of the vanadium d-orbitals, it is not surprising that the layered Kagome metals have recently
emerged as a prime candidate for exotic Fermi-surface instabilities in general and potentially un-
conventional superconductivity in particular [38–40]. The interest in the material class is further
enhanced by the fact that three compounds were found to be superconducting with critical tem-
peratures of Tc = 0.93 K (KV3Sb5), Tc = 0.92 K (RbV3Sb5), Tc = 2.5 K (CsV3Sb5) [38, 41,
42] and that various unconventional charge density wave (CDW) orders have been experimentally
identified in these materials.

In a recent letter [43], we developed an effective Hubbard type tight-binding model for the anal-
ysis of the superconductivity in AV3Sb5. Our model is able to encompass the necessary complex-
ity of multiple van Hove singularities in the vicinity of the Fermi-surface as well as the Kagome
lattices special sublattice decoration, while still allowing for a thorough analysis of its pairing
instabilities. One of the central insights of our model building was that the two van-Hove sin-
gularities (vHs) in the Kagome lattices band structure feature two distinct sublattice structures.
While the non-trivial sublattice structure of the Kagome tight-binding model and its influence on
the superconducting instabilities of the related Hubbard model have been discussed earlier [44],
this more subtle point was not clarified there.

The energy eigenstates of a nearest-neighbour Honeycomb lattice tight-binding (TB) model are
formed from perfect super positions of the two sublattices i.e., the probability of a given energy
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Figure 1: (a) Top view of the KV3Sb5 crystal structure. The blue atom in the center represents
the alkali metal (potassium (K) in this case), the vanadium (V) atoms in silver form the Kagome
net and the antimony (Sb) atoms organize themselves in an interlacing honeycomb lattice. The
top view hides the fact that not all atoms reside in the same plane. (b) Sketch of the sublattice
structure and orbital model of the Kagome V planes. The sign structure of the dxz and dyz orbitals
(shown from above) is depicted in blue and red. The red, yellow, and orange colouring indicates
the three Kagome sublattices. (c) Band structure of our 2 orbital × 3 sublattice effective model
along the conventional high-symmetry path through momentum space (k-space) and in vicinity
to the Fermi-level. The color coding is used to depict the sublattice support of the energy
eigenstates at each momentum.

eigenstate to be measured on sublattice A is identical to the probability for the other sublattice
B. We call this even sublattice occupation. In contrast, the energy eigenstates of the Kagome
TB model vary between an equal split between all three sublattices and the pure occupation of a
single sublattice degree of freedom. In particular, two different types of van Hove singularities
exist in Kagome systems, which we call sublattice mixing (m-type) and sublattice pure (p-type)
and they relate to the lower and upper van-Hove singularity of the simple three-band Kagome
model, respectively.

In principle, the modelling of an AV3Sb5 band structure around the Fermi-level would require
at least 17 distinct orbital/sublattice degrees of freedom per unit cell. This number is comprised of
the five d-orbitals for each of the three distinct vanadium atoms per unit cell forming the Kagome
structure and the contribution of two antimony pz orbitals. In order to dramatically decrease the
numerical cost associated with our analysis and still preserve the complexity of multiple p- and
m-type van Hove singularities, we decided to constrain our model to the vanadium dxz/yz orbitals.
Figure 1 shows a top view of KV3Sb5s crystal structure as well as the real space sketch of our
tight-binding-model. In panel (c) the band structure in the vicinity of the Fermi-level is presented.
One can clearly identify the p- type (m-type) vHs located just below (above) the Fermi-level at
the M point of the Brillouin zone.
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Using this tight binding model as the basis for an extended Hubbard model with long-range
interactions and analysing it via the random-phase-approximation (RPA) based approach for un-
conventional superconductivity discussed in the methods section of this thesis, we were able to
identify strong competition between various exotic superconducting states. We further highlighted
how the interplay between nearest neighbour repulsion and the sublattice structure resulting from
the different types of van Hove singularities gives rise to the possibility of inter sublattice triplet
f -wave pairing.

Infinite-layer nickel oxides with three-dimensional characteristics

The infinite-layer nickel oxides (nickelates) RNiO2 (R being a placeholder for rare earth atoms
e.g. La, Pr or Nd) and their hole doped versions are another promising class of materials for
the investigation of unconventional superconductivity [45–47]. In these compounds, the unusual
+1 oxidation state of the nickel atoms results in a d9 electronic configuration, analogous to the
copper-oxide superconductors. As a result, the key low-energy degrees of freedom are formed by
the Ni dx2−y2 orbitals hybridizing in the systems NiO2-planes. While this feature is similar to the
copper-oxide planes, the contribution of the interstitial rare earth atoms to the low-energy degrees
of freedom is unique to the nickelate system. The charge transfer gap between the oxygen p and
nickel d-orbitals is also significantly enhanced. In summary, the electronic structure of the infinite-
layer nickelates provides a perfect testing ground for the crucial ingredients of unconventional
superconductivity due to its similarities and differences to the “high-Tc” copper-oxide materials.
The possibility of rare earth atom substitution constitutes an additional tuning parameter in the
system that can be used to test our understanding of the superconducting mechanism at play.

In [47], we studied an extended Hubbard model of selected Ni and Nd orbitals that allowed us
to adequately capture the low-energy electronic degrees of freedom in the infinite-layer nickelate
NdNiO2. Using the RPA in the fluctuation-exchange parametrization we identified its dominant
pairing instability to be in the dx2−y2 channel, making the connection to the copper-oxide supercon-
ductors even stronger. Another key result of our analysis is the presence of an intrinsic hole doping
of the systems Ni d-orbital Fermi-surface that is facilitated by the two small electron-like pockets
formed by Nd d-orbitals. The expected stronger correlation between Ni 3d-orbitals compared to
the Nd 5d-orbitals, combined with symmetry constraints on the coupling between them, restrict
the relevance of these states to this self doping effect, justifying an effective two-dimensional
modelling of the system a posteriori.
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Multi-orbital effects in transition metal oxides

Prior to the discovery of the infinite-layer nickelates discussed in the previous section, nickelate
heterostructures were suggested as a potential avenue for the realization of an electronic struc-
ture resembling the “high-Tc” copper-oxide materials [48]. For the specific case of the LaNiO3 /

LaAlO3 heterostructure discussed there, a quasi-two-dimensional electronic structure comprised
of Ni 3d-orbitals in a tetragonal crystal field was proposed. In contrast to conventional copper-
oxide superconductors, however, the Ni 3d7 configuration and weak crystal-field splitting between
the two eg-orbitals require the consideration of both orbital degrees of freedom. Similarly, the re-
duction of the apical oxygen distance in BaCuO3+δ necessitates the consideration of such an eg

two orbital model for the description of its low-energy degrees of freedom.
Despite the similarities in the low-energy electronic structure between these compounds, exper-

iments reveal BaCuO3+δ as a “high-Tc” superconductor with Tc ≈ 70 K while superconductivity
has not been observed in LaNiO3 / LaAlO3 heterostructures and the Tc of related structures has not
exceeded 3 K. We were able to explain this striking difference in critical temperatures from calcu-
lations on a unifying two-orbital Hubbard-like model. Using a variety of many-body methods we
identified the differences in eg-orbital splitting and band filling between both material platforms
as the critical parameters that drive/ inhibit the superconducting transition temperature.

Two dimensional quantum-material platforms

While superconductivity in the cuprates, nickelates and Kagome metal systems can be under-
stood as quasi-two-dimensional, due to the weak-coupling between parallel layers of strong hy-
bridization, their real material instances are bulk systems with a macroscopic number of layers.
In this sense, they fundamentally differ from truly two-dimensional systems. From a theoretical
standpoint, two-dimensional superconductivity is constrained by the Mermin-Wagner-Hohenberg
(MWH) theorem [15], that prohibits true long-range correlations of the superconducting order pa-
rameter in less than three spatial dimensions. Nevertheless, the system can form quasi-long-range
ordered correlations in the order parameter via the Kosterlitz-Thouless-Berezinskii (KTB) transi-
tion and a zero resistance state with perfect diamagnetism i.e., superconductivity can still appear
without violating the MWH theorem [49, 50].

Experimentally, the pronounced relevance of disorder for the superconducting transition in two-
dimensional systems makes its observation challenging, especially since the system is dominated
by its interfaces / surfaces in the residual spatial dimension in this limit. The crossover regime
between two and three-dimensional superconductors has been studied since the 1970s [51] via
the investigation of superconducting thin films of elemental metals such as lead or bismuth on
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insulating substrates. In these systems, a superconductor-insulator (S-I) transition was observed
as a function of the sheet resistance (correlated with the film thickness) [52]. Other experiments
present evidence for the existence of a KTB transition via analysing the scaling of a thin films
resistance as a function of temperature in the vicinity of the phase transition [53].

Owing to the fact that one of the two critical length scales in a superconductor, the supercon-
ducting coherence length ξ (next to the London penetration depth), is of the order of a few hundred
nano meters for conventional BCS superconductors, the thickness of a two-dimensional supercon-
ductor may exceed the atomic-scale thickness. This is in fact what was observed in the previously
mentioned works [52, 53].

Recent advances in material fabrication further led to the discovery of two-dimensional su-
perconductivity in systems of atomic scale thickness, such as single atomic layers deposited on
insulating substrates, electronic states forming at the interface between different materials and
even specifically engineered systems composed of several atomic-monolayers [54–56]. In con-
trast to the previously discussed systems, the superconducting properties of these systems can’t
be understood as a thin-film limit of three dimensional materials. The main reason here is the
simple lack of three-dimensional extensions of these materials. Phrased from a different point
of view, the unique possibilities for the design of electronic parent states in two-spatial dimen-
sions provide an arena for the emergence superconductivity that exceeds the three dimensional
systems significantly. Most interestingly, the superconductivity in a variety of systems such as
atomic monolayers of FeSe, magic-angle twisted bilayer Graphene (MATBG) or, most recently,
a monolayer of Sn deposited on Si(111) have been suggested to be of unconventional origin [54,
56–61].

The discussed sensitivity of two-dimensional superconductors to disorder as well as difficulties
in consistent sample preparation pose significant experimental challenges in all of these systems.
A possible avenue towards simpler sample manufacturing and preparation is to circumvent the
need for multiple materials and the artificial creation of atomically sharp interfaces by using the
simplest interface available in any material: its surface to the vacuum. The broken translational
symmetry perpendicular to this interface generically allows for additional electronic states con-
fined to the surface [62] that may then (under the right conditions) form dispersive bands parallel
to the surface of a given crystal. While the resulting surface bands may be linked to a non-trivial
topology of the bulk band structure as present in topological insulators or semimetals, such a
structure is no prerequisite for the formation of metallic surface states. They can be easily un-
derstood as an effect of the change in boundary and, therefore, normalizability conditions on the
electronic wavefunction [62]. From a complementary point of view, one may consider the missing
bonding partners at the crystal surface and resulting changes to the local electronic structure as
key ingredients for explaining these additional states. Due to their ubiquitous nature and com-
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paratively simple experimental realization, metallic surface states provide a perfect avenue for the
investigation of two-dimensional superconductivity.

In contrast to the two-dimensional material platforms discussed above, the possibility of un-
conventional surface superconductivity seems to be theoretically unexplored. While experiments
evidencing superconducting states constrained to the surface of the sample are numerous and
cover a wide array of materials [63–68], the interpretation of the results seems to be limited to
conventional s-wave order parameters and phonon-based mechanisms.

In this thesis, we will demonstrate that the enhanced nesting effects in two-spatial dimensions
may conspire with electronic correlations to induce unconventional superconductivity in such a
metallic surface state. A prime material candidate for this endeavour is LuPtBi. This material is
experimentally known to feature a metallic surface state with a significant density of states on top
of a semimetallic bulk. Additionally, the combination of the non-centro-symmetric space-group,
large spin-orbit coupling effects and superconductivity in LuPtBi and it’s close cousin YPtBi have
already triggered enormous interest and several interesting bulk superconducting states have al-
ready been proposed for them [69–71].

Outline

The discussion of the specific case of the potential for unconventional surface superconductivity
in LuPtBi is going to be prefaced with two more general chapters focusing on the methodology
employed for this and the other projects mentioned in this introduction.

The first chapter starts with a definition of the class of generalized Hubbard type models we
want to consider. Subsequently, we develop a formalism for analysing the propensity towards
Fermi-surface instabilities caused by the electronic correlation effects in these models. A par-
ticular focus is given to unconventional superconducting instabilities. The discussed framework
is based on the calculations of generalized linear response susceptibilities and provides a unified
viewpoint on random-phase-approximation (RPA) calculations and the weak-coupling renormal-
ization group (wcRG) approach to unconventional superconductivity. We show how this angle of
approaching the problem can be exploited in order to achieve a numerically efficient and gauge
invariant implementation of the necessary calculations in generic models.

Based on the formalism developed in the first chapter, we benchmark our numerical implemen-
tation in the second chapter. Here we start by reproducing literature results for the Hubbard model
on the square and triangular lattice and continue with exploring the effects of spin-orbit coupling
on the correlated electron physics in these models.
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Chapter three, finally uses the developed formalism to investigate the potential for unconven-
tional surface superconductivity in LuPtBi. Starting from an ab-initio calculation for the elec-
tronic structure of the material, we construct a generalized Hubbard model for the description of
its metallic surface. We continue by dissecting the spin and charge fluctuations of the model and
calculate the effective electron-electron interaction in the Cooper channel of the model. Finally,
we identify the superconducting instability implied by our analysis and close with a discussion of
potential experiments that may provide evidence for surface superconductivity in general, and the
particular superconducting ground state predicted by us in general.

The formalistic and computational toolkit developed during my PhD allows for and led to the
the study of many realistic quantum materials as outlined above. Nevertheless, I decided to focus
the application part of the thesis to the problem of unconventional surface superconductivity as
its study necessitates the inclusion of spin-orbit coupling into the microscopic description on a
methodological level and constitutes a novel arena for unconventional superconducting mecha-
nisms conceptually.





Methodology

In this part, we introduce the theoretical and numerical
framework used to study the quantum many body problems
introduced in the following chapters. The contents of this
part of the thesis are partially included in Reference [72].
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Methodology

The introduction of this thesis highlighted the fact that Fermi-liquids can undergo a supercon-
ducting transition driven by electronic correlation effects [9]. In fact, condensed matter research
over the past decades has led to the discovery of a variety of superconducting materials featuring
a metallic parent state and a pairing mechanism which is likely driven by electronic correlations
rather than electron-phonon coupling [22].

Starting from a Fermi-liquid description of the metallic state, an initial perturbative treatment
of the residual correlation effects is appropriate. This picture was the starting point for an analysis
by Kohn and Luttinger in 1965 [9]. They found that the ubiquitous presence of particle-hole (PH)
fluctuations in a metallic state introduces an additional momentum dependence into the effective
(screened) electron-electron interaction already on perturbative level. This modified interaction
generically supports the emergence of an unconventional superconducting condensate, as the ex-
istence of a single attractive channel with infinitesimal strength can drive the Cooper instability
of a Fermi-liquid. Decades later, their argument was re-established in a more systematic way for
generic lattice models [23, 73], resulting in the application of the theory to numerous toy models
and materials [44, 74–77]. We henceforth label this approach as weak coupling renormalization
group (wcRG) as it relies heavily on a 1-loop perturbative treatment of the electron-electron in-
teraction (for a detailed review see e.g. [73]). Its central motif is to retain analytical control over
the divergence in the particle-particle (PP) channel via the introduction of a cutoff. Subsequently
one can show that the physical results are independent of this calculational device and obtains a
rigorous formulation of unconventional pairing in the limit of vanishing coupling.

A related, but somewhat less rigorous approach to unconventional superconductivity arising
from particle-hole fluctuations is given by the random-phase approximation. Both experimen-
tal and theoretical studies have established such particle-hole fluctuations, mostly in the form of
spin-fluctuations, as a common thread between many unconventional superconductors [22]. For a
material system close to a (magnetic) instability, such fluctuations can, within a leading approx-
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imation, be well described by the random-phase-approximation (RPA). One can then proceed to
analyze the pairing interactions induced by these fluctuations [24, 78, 79]. While a rigorous con-
vergence radius for the RPA has not been established so far, it is clear that the error will usually
increase with the electronic coupling strength, as all vertex corrections and other higher order di-
agrammatic components are neglected. If we start from the hypothesis that the pairing is driven
by particle-hole fluctuations however, their resummation to arbitrary order should yield a valid
description even beyond the limit of perturbative coupling strengths, making the RPA a useful
tool for the qualitative analysis of superconductivity beyond the analytically controlled limit of
the wcRG.

In this chapter, we will start by establish a general class of extended Hubbard models and pro-
ceed to briefly summarize the fermionic coherent state path integral formulation of the quantum
many-body problem, the theoretical basis upon which the wcRG and RPA rest. The emergence of
unconventional superconductivity in these models is first discussed via a generalized formulation
of the wcRG that natively allows for the inclusion of spin-orbit coupling terms, does not necessi-
tate an analytically solvable tight-binding model and enables efficient interaction phase-diagram
scans. Subsequently we discuss how the central building block of this formulation, the general-
ized non-local particle-hole susceptibility ℵ, relates to correlation functions and susceptibilities of
general two-particle operators. We finally present a generalized formulation of the RPA based on
this object before discussing numerical aspects of its efficient computation.

1.1 Generalized Hubbard model

The formalism described here concerns generalized Hubbard type models. The spinful (si) elec-
trons in our models can occupy different orbital and sublattice degrees of freedom denoted by a
fused index wi. The kinetic part of the Hamiltonian generically is of tight-binding type

H0 =
∑︂
r0,r2

∑︂
a0,a2

ta2a0(r2 − r0)c†2c0 , (1.1)

where ai = (wi, si) is a fused spin, orbital and sublattice index, c†i denotes the creation operator
of an electron with indices ai on a lattice site ri and the amplitudes ti j parametrize translation
invariant hopping processes between states c†i |0⟩ and c†j |0⟩.

Using the translation invariance of the model via Fourier transformation we we find

H0 =
∑︂

k

∑︂
a0,a2

(︂∑︂
r

ta2a0(r)e−ikr
)︂
c†a2,kca0,k . (1.2)
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While the matrix ta2a0(r) may not allow for a closed analytical solution for generic systems, we
can always find a numerical eigenmode decomposition

ha2a0(k) =
∑︂

rk

ta2a0(rk)e−ikrk

=
∑︂
αi

va2αi(k)ϵαi(k)v∗a0αi
(k) .

(1.3)

The solution of the eigenvalue problem is parametrized by (possibly degenerate) band energies
ϵαi(k) (eigenvalues) and a complete set of orthonormal eigenvectors vaiαi(k) of the matrix, which
encode the orbital-spin structure of the energy eigenstates. We note that the Fourier transformation
of systems with multiple sites in the unit cell should be done in “proper” gauge as defined in [80]
in order to ensure full periodicity of h(k) across all Brillouin zones (BZ). The proper gauge a
choice of basis which appears as if all orbital positions lie in the center of the unit cell, eliminating
the possibility for terms with fractional real-space lattice vectors in the Hamiltonian. This allows
the definition of all other operations and in particular integrations without explicit specialization
of the BZ in which to evaluate, as they are all equivalent.

An important detail we want to stress here is the fact that the orbital band transformations
vaiαi(k) are only defined up to gauge transformations i.e., eiφαi (k)vaiαi(k) are equally valid solutions
to the eigenvalue problem given by Equation 1.3. Additional care must be taken in the case of
degenerate bands where not only the phase but also the choice of basis in the degenerate subspace
is not specified by the eigenvalue problem. While the second issue is easily circumvented by
analytical separation of the spin degree of freedom in the case of non spin-orbit coupled systems,
the first issue is ubiquitous and particularly relevant for models requiring a numerical solution
of Equation 1.3. This ambiguity in the choice of eigenstates poses difficulties in the analysis of
Hubbard type models due to the resulting gauge-dependence of the bare interaction in band space
as we will elaborate now.

Notwithstanding these arguments, a representation of Equation 1.1 in terms of energy eigen-
states

H0 =
∑︂

k

∑︂
α

ϵα(k)c†α,kcα,k , (1.4)

with
c†α,k =

∑︂
a

vaα(k)c†a,k (1.5)

proves to be an computationally useful device.
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A general translation-invariant two-particle interaction is denoted by a quartic Hamiltonian of
the form

HI =
∑︂
{ri}

∑︂
{ai}

Ua0a1a2a3(r̂1, r̂2, r̂3)c†2c†3c1c0 , (1.6)

where we define r̂i = ri − r0 to compactify notation and emphasize translational invariance. We
further employ {xi} = x0, x1, x2, x3 as a shorthand notation for multiple sums. Using the same
Fourier transform (in proper gauge) as before we find

HI =
∑︂
{ki}

∑︂
{ai}

U{ai}({ki})c
†

a2,k2
c†a3,k3

ca1,k1
ca0,k0

(1.7)

where we introduced the definition

U{ai}({ki}) = δ(k0 + k1 − k2 − k3)∑︂
r̂1,r̂2,r̂3

U{ai}(r̂1, r̂2, r̂3)e+i(k1r̂1−k2r̂2−k3r̂3) . (1.8)

Analogous to the single particle Hamiltonian, a subsequent transformation into band space results
in

U{αi}({ki}) =
∑︂
{ai}

va2α2(k2)va3α3(k3)

v∗a1α1
(k1)v∗a0α0

(k0)U{ai}({ki}) .
(1.9)

Our previous discussion on the gauge freedom in the definition of the eigenvectors vaiαi make it
clear that this expression is manifestly gauge variant. Due to this it may be a useful analytical
device in some cases, but not a computationally advantageous quantity for general models. While
one can trivially avoid this issue by considering the interaction in orbital space only, this is not
commonly done in the wcRG and functional renormalization group (fRG) literature. There, cal-
culations in band space are standard since they enable a restriction of the effective interaction to
the bands crossing the Fermi-level. While performing calculations in orbital space can in princi-
ple be fused with such an approximation, the performance of the established Fermi surface patch
formulation of the fRG is significantly reduced in such a hybrid approach. The reason is that a
restriction of the interaction to the Fermi surface is most useful if the interaction is constrained
to one band at the Fermi surface, resulting in a reduction of the vertex function by a factor of
N4

orb [81, 82]. Nevertheless, our formulation of the wcRG via the generalized susceptibility does
not allow for such a reduction, but in turn allows for gauge invariant calculations of two-particle
scattering amplitudes. Note that fRG calculations in orbital space are possible and have been suc-
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cessfully employed in the analysis of electronic instabilities in the Honeycomb Hubbard model
and the square lattice Hubbard model with added Rashba spin-orbit interactions [34, 80, 83–85].

Before continuing with a discussion of the wcRG and RPA methodology, we want to pro-
vide some additional context to the applicability and relevance of our models to real materials.
Landau’s Fermi-liquid theory tells us that the metallic phase of a material can be described in
terms of non-interacting quasi-particle excitations [86]. This crucially does not mean that that the
Coulomb interaction between the “bare” constituent electrons is neglected. Instead the statement
implies that it is possible to describe the low-energy excitations of a metal as non-interacting.
Throughout this thesis we adopt the point of view that the residual, and therefore weak, interac-
tions between such low-energy quasi-particle excitations drive the system into a spontaneously
symmetry breaking, many-body correlated phase. The generalized Hubbard models discussed
above can be viewed as an intermediate construction between the full electronic structure of a real
material and such a low-energy effective theory. While realistic materials are generically formed
from multiple atoms per unit cell with many valence electrons, the analysis of bond-chemistry and
crystal field effects often results in the insight that only a small subsection of electronic degrees
of freedom are relevant for the low-energy physics at the Fermi-level. Such a simplification can
be used to provide a connection between toy-models and real materials e.g. the one-band square
lattice Hubbard model description of the “high-Tc” cuprates as mentioned in the introduction. As
a next step, one can use results of ab-initio density functional theory (DFT) calculations as the
input for the calculation of maximally localized Wannier functions which can then be used to con-
struct low-energy effective models for realistic materials [87]. This provides a low-energy model
with a constrained number of orbitals as well as the matrix elements ta2a0(r) governing the transi-
tions between them. Interactions can be added to such a model “by hand” as a phenomenological
parameter. Alternatively it is possible to compute them via ab-initio methods in the constrained
random-phase-approximation, where the low-energy sector chosen for the minimal model and the
full DFT results are used as an input (see e.g. [88] and references therein). Since this thesis is
focused on the methodological development of the analysis of unconventional superconductivity
in the resulting models, we constrain ourselves to scenarios where the interaction is treated as a
small phenomenological parameter. In the following Chapter 2 we will apply our methodological
toolbox to toy model Hubbard models on the square and triangular lattice. Chapter 3 investigates
the possibility for unconventional surface superconductivity in LuPtBi on the basis of an ab-initio

electronic structure calculation of its surface state.
Prior to an investigation of these models we will now proceed with a brief summary of the

fermionic coherent state path integrals that will be the basis for both the wcRG and RPA described
subsequently.
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1.2 Path integral formulation for generalized Hubbard

models

Instead of the microscopic dynamics of every single particle of the system, we are interested in
the thermodynamic properties of its collective modes. Such a scenario is conveniently captured
by the partition function

Z = Tr e−βH , (1.10)

where the trace indicates a sum over all possible microscopic states and β = 1/(kBT ) is the inverse
temperature in units of Energy [89] (with the Boltzmann constant kB ≈ 1.381 × 10−23 J K−1 ≈

86.17 µeV K−1).
One common approach to evaluate this partition function for interacting Fermion systems of

the type discussed in the previous chapter is via fermionic path integrals [73, 90, 91]. In the case
of a theory described by Equation 1.1 and Equation 1.6 the conventional procedure is to start with
a set of coherent states

|ψα(k)⟩ = |0⟩ − ψα(k) |α,k⟩ (1.11)

that are based on the solution Equation 1.4 of the non-interacting problem and obey the eigenvalue
equations

cα,k |ψα(k)⟩ = ψα(k) |ψα(k)⟩ . (1.12)

Importantly such states can not be constructed using conventional complex numbers but require
the ψα(k) to be anticommuting Grassmann numbers

ψα(k)ψβ(k′) = −ψβ(k′)ψα(k) → ψ2
α(k) = 0 , (1.13)

in order to uphold the fermionic antisymmetry of the wavefunction. We can therefore write the
coherent states with an exponential function

|ψα(k)⟩ = exp
{︂
−ψα(k)c†α(k)

}︂
|0⟩ . (1.14)

We will refrain from a complete review of the properties of Grassmann numbers, e.g. their
behaviour under integration and differentiation and the resulting coherent states (check [73] for
a nice review in the context of correlated electrons and the renormalization group, the textbook
references [86, 90, 91] including bosonic path integrals or my Master thesis [92] for a more
elaborate summary in similar notation) and simply state one of the most important results: Using
adjoint coherent states

⟨ψ̄α(k)| c†α,k = ⟨ψ̄α(k)| ψ̄α(k) (1.15)
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it is possible to formulate a resolution of unity for the complete Fock space from coherent states

1 =

∫︂ ∏︂
α,k

dψ̄α(k)dψα(k) e−ψ̄α(k)ψα(k) |ψα(k)⟩ ⟨ψ̄α(k)| . (1.16)

Note that the adjoint Grassmann numbers ψ̄α(k) are a new set of independent variables, unrelated
to ψα(k) The product over all integrals α and k is often abbreviated by introducing ψ as a vector
of Grassmann numbers and writing

1 =

∫︂
dψ̄dψ |ψ⟩ ⟨ψ̄|

∏︂
α,k

e−ψ̄α(k)ψα(k) =

∫︂
dψ̄dψ |ψ⟩ ⟨ψ̄| e−

∑︁
α,k ψ̄α(k)ψα(k) . (1.17)

Notice that we have been careful to only commute pairs of Grassmann variables during all oper-
ations. Using this shorthand notation it is possible to calculate the partition function in terms of
coherent states

Z = Tr e−βH =

∫︂
dψ̄dψ e−

∑︁
α,k ψ̄α(k)ψα(k) ⟨−ψ̄| e−βH |ψ⟩ , (1.18)

where the additional minus sign in the bra-type coherent state arises due to the anti-commuting
nature of the Grassmann variables. For a normal ordered operator A(c†α,k, cα,k) the matrix element
⟨−ψ̄| A |ψ⟩ is simply evaluated by replacing all fermionic annihilation and creation operators with
the respective coherent state eigenvalues ψα(k) [ψ̄α(k)]. For the exponential of a normal ordered
operator this is not possible as one can see from a second order Taylor expansion. In the path-
integral approach, this problem is solved by splitting the exponential

e−βH = lim
N→∞

(︂
e−

β
N H

)︂N
= lim

N→∞

(︂
1 −

β

N
H

)︂N

, (1.19)

into N → ∞ parts and performing a first order Taylor expansion in β/N. Adding an additional
resolution of unity

1 =

∫︂
dψ̄idψi |ψ⟩i ⟨ψi¯ | e−

∑︁
α,k ψ̄i,α(k)ψi,α(k) (1.20)

between each of the N factors then removes all operators and matrix elements from the formulation
and we are left with the evaluation of 2N integrals over Grassmann vectors ψi

Z = lim
N→∞

∫︂ N∏︂
i=1

dψ̄idψie−
∑︁
α,k ψ̄α,i(k)ψα,i(k)

(︂
1 −

β

N
H

(︁
ψ̄α,i+1(k), ψα,i(k)

)︁)︂
⟨ψ̄i+1|ψi⟩ . (1.21)

Crucially we had to implement the periodic boundary conditions

ψ̄N+1 = −ψ̄1 and ψN+1 = −ψ1 (1.22)
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for this compact notation to work. Calculation of

⟨ψ̄i+1|ψi⟩ = exp
{︁
ψ̄i+1ψi

}︁
= exp

⎧⎪⎪⎨⎪⎪⎩∑︂
α,k

ψ̄α,i+1(k)ψα,i(k)

⎫⎪⎪⎬⎪⎪⎭ (1.23)

and rewriting the term 1 − β/NH(ψ) back into exponential form yields

Z = lim
N→∞

∫︂ N∏︂
i=1

[︂
dψ̄idψi

]︂
exp

⎧⎪⎪⎨⎪⎪⎩− βN
N∑︂

i=1

∑︂
α,k

(︄
ψ̄α,i(k) − ψ̄α,i+1(k)

β/N
ψα,i(k) + H

(︁
ψ̄α,i+1(k), ψα,i(k)

)︁)︄⎫⎪⎪⎬⎪⎪⎭ .

(1.24)
Before taking the limit N → ∞ in the partition function we consider the continuous set of Grass-
mann numbers

ψα(k, τi) = ψα,i(k)

ψ̄α(k, τi) = ψ̄α,i(k) .
(1.25)

These functions of τ are anti-periodic in β

ψα(k, τ + β) = −ψα(k, τ) (1.26)

in order to fulfill the periodic boundary conditions in Equation 1.22 and may therefore be repre-
sented via a discrete Fourier series

ψα(k, τ) =
∑︂

n

e−iωnτψα(k, ωn)

ψ̄α(k, τ) =
∑︂

n

e+iωnτψ̄α(k, ωn) .
(1.27)

The anti-symmetry is now encoded in the fact that only odd frequencies

ωn = π
2n + 1
β

(1.28)

contribute to the series expansion.
As a final preparation for the “continuous” path integral formulation of the partition function,

we investigate the properties of our Grassmann valued function at an infinitesimally incremented
time τ + δ

ψ̄α(k, τ+δ) =
∑︂

n

e+iωnτe+iωnδψ̄α(k, ωn) =
∑︂

n

e+iωnτ
(︂
1+O(ωnδ)

)︂
ψ̄α(k, ωn) = ψ̄α(k, τ)+

∑︂
n

O(ωnδ) .

(1.29)



C
ha

pt
er

1

1.2 Path integral formulation for generalized Hubbard models | 23

From this result we can deduce that disregarding terms of order δ restricts the validity of our anal-
ysis to frequencies smaller 1/δ. Since infinitely many frequencies may contribute to the partition
function, taking the limit N → ∞ is therefore not sufficient to obtain an exact result for the parti-
tion function if we simply replace ψ̄(τ + β/N) by ψ̄(τ). Fortunately we are only interested in the
correlations functions at low-energy and thus small frequency of our model and the approximation
holds for this case [73].

By replacing
N∑︂

i=1

fi
β

N
→

∫︂ β

0
f (τ)dτ and

fi+1 − fi

β/N
→

∂

∂τ
f (τ) (1.30)

we read of the continuous action

S (ψ, ψ̄) =
∑︂
α,k

∫︂ β

0
H

(︂
ψ̄α(k, τ), ψα(k, τ)

)︂
−

(︃
∂

∂τ
ψ̄α(k, τ)

)︃
ψα(k, τ) dτ (1.31)

from Equation 1.24. The conventional form for the action is obtained via partial integration with
vanishing boundary terms (guaranteed by the anti-symmety of ψ(τ))

S (ψ, ψ̄) =
∑︂
α,k

∫︂ β

0
ψ̄α(k, τ)

∂

∂τ
ψα(k, τ) + H

(︂
ψ̄α(k, τ), ψα(k, τ)

)︂
dτ . (1.32)

Introducing the shorthand notation∫︂ ∞∏︂
i=1

[︂
dψ̄idψi

]︂
=

∫︂
D

(︁
ψ̄(τ), ψ(τ)

)︁
, (1.33)

we find the following expression for the partition function:

Z =

∫︂
D

(︁
ψ̄(τ), ψ(τ)

)︁
exp

{︁
−S (ψ, ψ̄)

}︁
. (1.34)

Example calculations for the free theory

To illustrate the benefits of our previous calculations, we start by calculating some basic properties
of the non-interacting problem and perturbatively add the interactions in a second step. For the
free theory, the action reads

S 0 =
∑︂
α,k

∫︂ β

0
ψ̄α(k, τ)

∂

∂τ
ψα(k, τ) + ψ̄α(k, τ)ϵα(k)ψα(k, τ) dτ . (1.35)
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Using the orthogonality relation of different Fourier components∫︂ β

0
eiωnτe−iωmτ dτ = βδmn (1.36)

we use the Fourier transformation given by Equation 1.29 and find

S 0 = β
∑︂

n

∑︂
α,k

ψ̄α(k, ωn)
(︂
− iωn + ϵα(k)

)︂
ψα(k, ωn) . (1.37)

This transformations Jacobian is unity, therefore we can rewrite the partition function in terms of
a path-integral over fields at different frequencies instead of “time-slices” τ

Z =

∫︂
D

(︁
ψ̄(ωn), ψ(ωn)

)︁
exp

⎧⎪⎪⎨⎪⎪⎩−β∑︂
n

∑︂
α,k

ψ̄α(k, ωn)
(︂
− iωn + ϵα(k)

)︂
ψα(k, ωn)

⎫⎪⎪⎬⎪⎪⎭ . (1.38)

We have decoupled the path integral completely into the problem of independent fermionic oscilla-
tors and obtain a path-integral free representation for the partition function by using the definitions
for Grassmann integration [90, 92]

Z =
∏︂
α,k

∏︂
n

∫︂
dψ̄α(k, ωn)dψα(k, ωn) exp

{︂
−βψ̄α(k, ωn)

(︂
− iωn + ϵα(k)

)︂
ψα(k, ωn)

}︂
=

∏︂
α,k

∏︂
n

β
(︂
− iωn + ϵα(k)

)︂
.

(1.39)

Using this result we can calculate an intermediate result that will prove to be valuable in the
calculation of any thermal expectation values. Consider the expression∫︂

D
(︂
ψ̄(ωn), ψ(ωn)

)︂
ψ̄α1

(k1, ωn1)ψα0(k0, ωn0) exp
{︂
−S 0

(︂
ψ̄(ωn), ψ(ωn)

)︂}︂
=

∫︂
D

(︂
ψ̄(ωn), ψ(ωn)

)︂
ψ̄N1

ψN0 exp
{︂
−S 0

(︂
ψ̄N , ψN

)︂}︂
=

∏︂
N

[︃
− δNN0δN0N1 +

(︁
1 − δNN0

)︁(︁
1 − δNN1

)︁
β
(︂
− iωn + ϵαn(kn)

)︂]︃
=δN0N1(−1) ·

∏︂
N≠N0

β
(︂
− iωn + ϵαn(kn)

)︂
=

−δN0N1

β
(︂
− iωn0 + ϵα0(k0)

)︂ ∏︂
N

β
(︂
− iωn + ϵαn(kn)

)︂
=

δN0N1

β
(︂
iωn0 − ϵα0(k0)

)︂ Z = Z δα0α1δ(k0 − k1)δ(ωn0 − ωn1)

β
(︂
iωn0 − ϵα0(k0)

)︂ .

(1.40)
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Since the result is again proportional to the partition function, one usually uses the shorthand
notation ⟨︂

A(ψ, ψ̄)
⟩︂

0
=

1
Z0

∫︂
D

(︂
ψ̄(ωn), ψ(ωn)

)︂
A(ψ, ψ̄) exp

{︂
−S 0

(︂
ψ̄(ωn), ψ(ωn)

)︂}︂
(1.41)

for “expectation values” of Grassmann valued functions A(ψ, ψ̄). The index ⟨⟩0 denotes averaging
over the bare action S 0. For the previous expression 1.40 we can therefore write

⟨︂
ψ̄α1

(k1, ωn1)ψα0(k0, ωn0)
⟩︂

0
=
δα0α1δ(k0 − k1)δ(ωn0 − ωn1)

β
(︂
iωn0 − ϵα0(k0)

)︂ . (1.42)

This object is called the imaginary time Green’s function in Matsubara frequency representation.
Using this result we can calculate the thermal expectation value of any normal ordered operator.

As an example we consider the mean-particle occupation at momentum k0

n̂(k0) =
∑︂
α0

c†α0,k0
cα0,k0

. (1.43)

The thermal expectation value of this operator is given by [89]⟨︂
n̂(k0)

⟩︂
= Tr n̂(k0)e−βH . (1.44)

We can now employ fermionic coherent states to evaluate the trace, use the path integral discretiza-
tion for the exponential and replace the operators in n̂ by the corresponding Grassmann numbers
at imaginary “time” τ = 0

⟨︂
n̂(k0)

⟩︂
0
=

1
Z

∑︂
α0

∫︂
D

(︁
ψ̄(τ), ψ(τ)

)︁
ψ̄α0

(k0, τ = 0 + δ)ψα0(k0, τ = 0) exp
{︁
−S 0(ψ, ψ̄)

}︁
. (1.45)

Note that we were careful to include the fact that the creation operator c†α0,k0
acting on the left

coherent state is applied to a “time” slice at τ = 0 + δ (slightly “later”) while the annihilation
operator acts on the coherent state at τ = 0 as defined by Equation 1.21. In the next step we insert
the Fourier representation of ψ(τ) and employ Equation 1.42

⟨︂
n̂(k0)

⟩︂
0
=

1
Z

∑︂
α0

∑︂
m0,n0

∫︂
D

(︁
ψ̄(ωn), ψ(ωn)

)︁
eiωm0δψ̄α0

(k0, ωm0)ψα0(k0, ωn0) exp
{︁
−S 0(ψ, ψ̄)

}︁
=

∑︂
α0

∑︂
n0,m0

eiωm0δ
δα0α0δ(k0 − k0)δ(ωn0 − ωm0)

β
(︂
iωn0 − ϵα0(k0)

)︂
=

∑︂
α0

∑︂
n0

eiωn0δ

β
(︂
iωn0 − ϵα0(k0)

)︂ .

(1.46)
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The evaluation of our expectation value has been reduced to a standard Matsubara frequency
summation (for details see e.g. [90] or [93]) with the well known result

1
β

∑︂
n

eiωn0+

iωn − ξ
=

1
eβξ + 1

= nF

(︂
βξ

)︂
(1.47)

and we find ⟨︂
n̂(k0)

⟩︂
0
=

∑︂
α0

nF

(︂
βϵα0(k0)

)︂
(1.48)

for the mean-particle occupation.

Linear response theory for static perturbations

In order to gain insight into the phenomenology of a physical system in (thermal) equilibrium,
theorists and experimentalists alike perturb the equilibrium slightly and monitor the changes to
some of the characteristic observables. Often it is sufficient to model a systems response to such a
perturbation to linear order in order to capture the essential properties of the state at hand.

In the framework developed so far we describe a perturbation to the system by adding a term to
the Hamiltonian

H = H0 + HI + λÂ (1.49)

where the scalar λ controls the strength of the perturbation and the operator Â governs the action
of the perturbation on our system. A general overview over such perturbation operators as well as
common examples are discussed in Section 1.4.1. Here we want to focus on how we can calculate
the response of our system to such a perturbation by considering how it changes the expectation
value of a different operator B̂.

We have seen in the previous section how such an expectation value is calculated using path
integrals. The addition of a new term into the Hamiltonian can be described by an added term in
the action

S A =

∫︂ β

0
A(ψ(τ), ψ̄(τ)) dτ . (1.50)

The expectation value of some operator B̂ in the presence of this additional action is

⟨︂
B
⟩︂
λA
=

1
ZλA

∫︂
D

(︂
ψ̄(τ), ψ(τ)

)︂
B(ψ, ψ̄) exp

{︂
−S

(︂
ψ̄(τ), ψ(τ)

)︂
− λS A

(︂
ψ̄(τ), ψ(τ)

)︂}︂
. (1.51)

We expandZλA to linear order in λ

ZλA ≈

∫︂
D

(︂
ψ̄(τ), ψ(τ)

)︂ (︂
1 − λS A

)︂
exp

{︂
−S

(︂
ψ̄(τ), ψ(τ)

)︂}︂
= Z− λ

⟨︂
S A

⟩︂
0
Z = Z

[︃
1 − λ

⟨︂
S A

⟩︂]︃
(1.52)
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and conclude that ⟨︂
B
⟩︂
λA
=

⟨︂
B
⟩︂
+ λ

⟨︂
B
⟩︂⟨︂

S A

⟩︂
− λ

⟨︂
BS A

⟩︂
+ O(λ2) . (1.53)

This is conventionally re-written into the form

lim
λ→0

∂⟨B⟩λA

∂λ
=

⟨︂
B
⟩︂⟨︂

S A

⟩︂
−

⟨︂
BS A

⟩︂
:= −

⟨︂
BS A

⟩︂
conn

:= χA,B . (1.54)

The subscript “conn” denotes the fact that only the connected Feynman diagrams contribute to the
expression for the susceptibility since one has to subtract the product ⟨B⟩0⟨S A⟩0. We will elaborate
on this notion of connected diagrams in the following section about the Wick theorem. Finally we
note that our expression for the static susceptibility can be written as

χA,B = −

∫︂ β

0

⟨︂
B(ψ(τ = 0), ψ̄(τ = δ))A(ψ(τ′), ψ̄(τ′ + δ))

⟩︂
conn

dτ′ , (1.55)

with the previously discussed regularization δ arising from the path integral formulation. Read-
ers familiar with such expressions may wonder about the absence of an imaginary time-ordering
operator. Since we understand all expectation values to be defined by the path-integral expression
Equation 1.41 which already performs such a time-ordering by construction, no explicit time-
ordering is necessary here.

Wick theorem for the interacting theory

Inspired by the preceding linear response calculation we will now continue with the analysis of
the interaction term HI via a Taylor expansion. This treatment lies at the heart of the Feynman
diagram approach to interacting many-body systems and is not restricted to the application in
perturbation theory as we will see in Section 1.3 and Section 1.4.

Recall that our system is described by a kinetic Hamiltonian (see Equation 1.4 and following)

H0 =
∑︂

k

∑︂
α

ϵα(k)c†α,kcα,k , (1.56)

and an interaction part

HI =
∑︂
{ki}

∑︂
{αi}

U{αi}

(︁
{ki}

)︁
c†α2,k2

c†α3,k3
cα1,k1

cα0,k0
. (1.57)

Both parts are already normal ordered so that we can replace the operators with their correspond-
ing Grassmann fields ψ(τ). The additional derivative arising in the path integral formulation is
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quadratic in the fields and therefore added to the kinetic part and we define two seperate actions

S 0 =
∑︂
α,k

∫︂ β

0
ψ̄α(k, τ)

[︂ ∂
∂τ
+ ϵα(k)

]︂
ψα(k, τ) dτ , (1.58)

and

S I =
∑︂
{ki}

∑︂
{αi}

U{αi}

(︁
{ki}

)︁ ∫︂ β

0
ψ̄α2

(k2, τ)ψ̄α3
(k3, τ)ψα1(k1, τ)ψα0(k0, τ) dτ . (1.59)

We have already solved the non-interacting problem via Fourier transformation. Employing the
same expansion for the interacting part yields

S I =
∑︂
{ki}

∑︂
{αi}

U{αi}

(︁
{ki}

)︁∑︂
{ωni }

βψ̄α2
(k2, ωn2)ψ̄α3

(k3, ωn3)ψα1(k1, ωn1)ψα0(k0, ωn0)δ(ωn2 + ωn3 − ωn1 − ωn0)

= β
∑︂
{ki}

∑︂
{αi}

∑︂
{ωni }

U{αi}

(︁
{ki}, {ωni}

)︁
ψ̄α2

(k2, ωn2)ψ̄α3
(k3, ωn3)ψα1(k1, ωn1)ψα0(k0, ωn0)

= β
∑︂

0,1,2,3

U0,1,2,3ψ̄2ψ̄3ψ1ψ0 .

(1.60)

Here we have absorbed the energy conserving delta function that results from the integration over
τ into the coupling function U and introduced a multi-index i = (αi,ki, ωni) in the last line. Using
this notation the kinetic part of the action (quadratic in fields) reads

S 0 = β
∑︂

0

(︂
− iωn0 + ϵα0(k0)

)︂
ψ̄0ψ0 . (1.61)

Inspired by Equation 1.42 we define the reciprocal Green’s function

G−1
02 = δα0α2δ(k0 − k2)δ(ωn0 − ωn2)

(︂
− iωn0 + ϵα0(k0)

)︂
(1.62)

and write
S 0 = β

∑︂
0,2

G−1
02 ψ̄2ψ0 . (1.63)
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Now we represent the partition function of the interacting system via a Taylor series expansion
of e−S I . This results in a sum of expectation values that are calculated with respect to S 0

Z = Z0
1
Z0

∫︂
D

(︂
ψ̄, ψ

)︂
exp

{︂
−S I

(︂
ψ̄, ψ

)︂}︂
exp

{︂
−S 0

(︂
ψ̄, ψ

)︂}︂
= Z0

1
Z0

∫︂
D

(︂
ψ̄, ψ

)︂ [︃
1 − S I

(︂
ψ̄, ψ

)︂
+

1
2

(︃
S I

(︂
ψ̄, ψ

)︂)︃2

+ O
(︂
(S I)3

)︂]︃
exp

{︂
−S 0

(︂
ψ̄, ψ

)︂}︂
= Z0

[︃⟨︂
1
⟩︂

0
−

⟨︂
S I

⟩︂
0
+

1
2

⟨︂(︁
S I

)︁2
⟩︂

0
+

⟨︂
O
(︂(︁

S I
)︁3
)︂⟩︂

0

]︃
.

(1.64)

The first term in this expansion just givesZ0 as expected. For all following terms we see that we
will have to calculate expectation values of type⟨︂

ψ̄1ψ̄3ψ̄5. . .ψ4ψ2ψ0
⟩︂

0
. (1.65)

We have previously (compare Equation 1.42) seen that

⟨︂
ψ̄2ψ0

⟩︂
0
=

δ02

β
(︂
iωn0 − ϵα0(k0)

)︂ = G02 (1.66)

and it is simple to show by explicit calculation (see e.g. [92]) of the Grassmann integrals that⟨︂
ψ̄2ψ̄3ψ1ψ0

⟩︂
0
=

⟨︂
ψ̄2ψ0

⟩︂
0

⟨︂
ψ̄3ψ1

⟩︂
0
−

⟨︂
ψ̄3ψ0

⟩︂
0

⟨︂
ψ̄2ψ1

⟩︂
0
= G02G13 −G03G12 . (1.67)

In general we see that each field necessitates a conjugate partner with identical quantum numbers
as one expects for particle conserving systems and one finds the general formula to be [94]⟨︂

ψ̄1ψ̄3...ψ̄2n+1ψ2n...ψ2ψ0
⟩︂

0
=

∑︂
all pairings P

(︁
− 1

)︁(nP)
⟨︂
ψ̄P(1)ψP(0)

⟩︂
0

⟨︂
ψ̄P(3)ψP(2)

⟩︂
0
...
⟨︂
ψ̄P(2n+1)ψP(2n)

⟩︂
0

,

(1.68)
known as Wick’s theorem for fermions. Note that we have to sum over all possible pairings P of
the 2n Grassmann fields while nP keeps track of the number of permutations needed to achieve a
given combination, resulting in an antisymmetric expression under particle exchange.

Using these results we can estimate the energy cost of adding an interaction U to our theory by
calculating the expectation value⟨︂

HI

⟩︂
0
=

⟨︂ ∑︂
0,1,2,3

U0,1,2,3c†2c†3c1c0

⟩︂
0
=

∑︂
0,1,2,3

U0,1,2,3
⟨︂
ψ̄2ψ̄3ψ1ψ0

⟩︂
0
=

∑︂
0,1,2,3

U0,1,2,3
(︂
G02G13 −G03G12

)︂
.

(1.69)
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Using the antisymmetry of the interaction matrix elements with respect to particle exchange

+U0,1,2,3 = −U1,0,2,3

= −U0,1,3,2 = +U1,0,3,2
(1.70)

the expression can be simplified to a single term and subsequently evaluated analogous to Equa-
tion 1.48⟨︂

HI

⟩︂
0
= 2

∑︂
0,1,2,3

U0,1,2,3G02G13 = 2
∑︂
0,1

U0,1,0,1
1

β
(︂
ωn0 − ϵα0(k0)

)︂ 1

β
(︂
ωn1 − ϵα1(k1)

)︂
= 2

∑︂
k0,k1

∑︂
α0,α1

Uα0α1α0α1

(︁
k0,k1,k0,k1

)︁
nF

(︁
ϵα0(k0)

)︁
nF

(︁
ϵα1(k1)

)︁
.

(1.71)

While it is clear that analogous calculations can in principle be done to arbitrary order in S I / U,
we note that the number of terms to track grows in a combinatorial fashion and the number of
frequency and momentum integrals is proportional to the number of interactions in each term.

A convenient way to track all of these different contributions is by using Feynman diagrams.
Instead of listing a precise set of rules for the translation between such diagrams and expressions
of the type considered here we will refer the reader to the extensive literature (e.g. [86, 90, 91])
and focus on examples of associated formulas and symbols. Single particle Green’s functions are
replaced by lines with an arrow indicating which Fermion is created (annihilated)

G02 = 0 2 (1.72)

⟨︂
c†2c†3c1c0

⟩︂
0
= −

0

1

2

3

0

1

2

3

(1.73)

while interaction vertices are replaced by black dots to distinguish them from accidental cross-
ings of propagator lines induced by the diagrams topology

U0,1,2,3 =

0

1

2

3

U
(1.74)
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⟨︂
HI

⟩︂
0
= 2

∑︂
0,1,2,3

U0,1,2,3G02G13 = 2
0 2

1 3
. (1.75)

Note that free indices are indicated by open ended Fermion lines, while closed Fermion loops
imply a summation over all internal indices. At interaction vertices and along all Fermion lines
momentum and energy are conserved, greatly reducing the number of required summations.

In contrast, an arbitrary external operator may break these conservation laws. We represent this
by an additional line that we label with the introduced degrees of freedom. For example we may
represent a two fermion operator

Â(q, l) =
∑︂
0,1

A01(q, l)c†1c0 (1.76)

via the diagram

A01(q, l) =

(q, l)

0 1

A , (1.77)

where q is the momentum inserted into the diagram by the operator and l is a placeholder index
for all potential sub-lattice or spin-degrees of freedom. For the time independent observables and
perturbations considered in this thesis, the external line does not carry energy such that energy
conservation holds between the fermion indices 0 and 1.

Having established a framework for the calculation of scattering amplitudes in the interacting
theory via perturbation theory, we proceed by investigating the impact of the interactions on the
ground state of our non-interacting model via the perturbative renormalization group.

1.3 Weak coupling renormalization group (wcRG)

The weak coupling renormalization group (wcRG) approach to unconventional superconductivity
centers on the motiv of perturbative coupling strength. This not only justifies a perturbative expan-
sion of the interaction as presented in the previous section but further enables us to use analytically
established arguments about the systems ground state.
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If we restrict our interest to the scenario U/W → 0 (where U is the largest interaction parameter
in the problem and W the bandwidth of the non-interacting theory), we can truncate any pertur-
bative calculation at second order in perturbation theory and neglect all diagrams of higher order
without loss of accuracy. Techniques that allow for th retention of higher orders in the interaction
will be discussed in Section 1.4.

Further, it is analytically established that a generic (not fine tuned) Fermi-liquid subject to in-
finitesimal repulsive interaction always has a superconducting and a superconducting instability
only. The fact that such an instability exists generically has been first pointed out by Kohn and
Luttinger [9]. It’s existence as well as the absence of particle-hole instabilities in this particu-
lar limit can be understood in the language of the perturbative renormalization group developed
by Shankar and Polchinksi for weakly interacting electron systems [73, 95]. Raghu et al. [23]
used this formulation as the basis for calculations of the Kohn-Luttinger effect in lattice models.
Here we present a generalized formulation of their method applicable to the generic tight-binding
Hamiltonian presented in Equation 1.1. Crucially, our formulation allows for a straightforward
generalization to random-phase approximation calculations as will be explained in Section 1.4.

The wcRG is formulated at temperature T = 0 via the introduction of an artificial cutoff Ω0

into the problem [23]. Ω0 is constrained from below such that the most divergent terms in the
perturbative expansion of the partition function i.e., the Cooper logarithms are still small in the
first step of the RG calculation. This allows us to neglect many-body effects on the renormalization
of the bare interaction and truncate its perturbative expansion at second order. The cutoff is further
restricted from above by the relevant interaction scales for the the magnetic and charge channels
and we can neglect it for the calculation of particle-hole fluctuations [74]. To state this in a more
quantitative way:

If ρ denotes the density of states at the Fermi level, the cutoff Ω0 is restricted to a parameter
range

W ≫ ρU2 ≫ Ω0 ≫
(︂
ϵ(kF) −min

k
ϵ(k)

)︂
exp

[︁
− (ρU)−1]︁ . (1.78)

The first part of this inequality allows us to calculate an effective interaction including the renor-
malization effects of modes with energies larger than Ω0 via second order perturbation theory in
U/W. Due to our lower bound forΩ0 it is also guaranteed that the resulting interaction will still be
small enough for the application of one loop renormalization group equations to the new theory.
Since we define all energies ϵ(k) to be defined relative to the Fermi energy, ϵ(kF) − mink ϵ(k)
simply is the Fermi energy in our system.

In the established path integral formulation of the fermionic many body problem we now start
by dividing the action into fast modes ψ f , ψ̄ f with Matsubara frequency indices ωn f > Ω0 and the
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remaining slow modes ψs, ψ̄s

S = S 0(ψs, ψ̄s) + S 0(ψ f , ψ̄ f ) + S I(ψs, ψ̄s, ψ f , ψ̄ f ) = S 0s + S 0 f + S I . (1.79)

Notice that energy conservation implies a separability of the non-interacting part of the action
S 0, while S I couples slow and fast modes. Since the path integral measure is given by a product
over Grassmann fields at different frequencies we can now rewrite our expression for the partition
function and find [96]

Z =

∫︂
D

(︂
ψ̄s, ψs

)︂
e−S 0s

∫︂
D

(︂
ψ̄ f , ψ f

)︂
e−S I e−S 0 f =

∫︂
D

(︂
ψ̄s, ψs

)︂
e−S ′I e−S 0s , (1.80)

where S ′I constitutes an effective action for a theory that only includes the slow modes. We can
read of how to calculate this effective interaction from Equation 1.80

e−S ′I =

∫︂
D

(︂
ψ̄ f , ψ f

)︂
e−S I e−S 0 f = ⟨e−S I⟩0 fZ0 f (1.81)

and perform an expansion up to second order in S I

S ′I(ψs, ψ̄s) = − log⟨e−S I⟩0 f − logZ0 f

= − log
⟨︃
1 +

∞∑︂
n=1

(−S I)n

n!

⟩︃
0 f
+ const. = −

⟨︃ ∞∑︂
n=1

(−S I)n

n!

⟩︃
0 f
+

1
2

⟨︃ ∞∑︂
n=1

(−S I)n

n!

⟩︃2

0 f
+ O

(︁
S 3

I
)︁
+ const.

= −
⟨︂
− S I

⟩︂
0 f
−

1
2

⟨︂
(S I)2

⟩︂
0 f
+

1
2

⟨︂
− S I

⟩︂2

0 f
+ O

(︁
S 3

I
)︁
+ const.

=
⟨︂
S I

⟩︂
0 f
−

1
2

(︃⟨︂
(S I)2

⟩︂
0 f
−

⟨︂
S I

⟩︂2

0 f

)︃
+ O

(︁
S 3

I
)︁
+ const. .

(1.82)

The first order contributions to the effective action S ′I are given by the bare interaction S I evaluated
between slow modes as well as self-energy corrections which can be neglected in the limit of
infinitesimal coupling strengths [23, 73]. At second order, we are left with the connected diagrams
only, as all disconnected diagrams are canceled by the square of the first order term. Taking all
contributions with four external slow modes into account, we find a diagrammatic expression for
the effective interaction between the low-energy fermions
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Ueff
0,1,2,3 =

0

1

2

3

+ 4

0

1

2

3

l

l̄

+ 8

0

1

2

3

lm − 8

0

1

2

3

ln . (1.83)

We have labeled the internal propagators to be integrated over (fast modes) by l and , l̄,m,n and
note that the momentum and frequency indices of the latter three are restricted by their respective
conservation laws at each vertex. They can therefore be expressed as a function of external legs
and l

l̄ = 0 + 1 − l

m = 2 − 0 + l

n = 3 − 0 + l .

(1.84)

The resulting theory is now composed of modes restricted to a small annulus of size Ω0 around
the Fermi energy ϵ(kF) that interact via the weak renormalized interaction Ueff such that one can
easily apply the standard Fermi-liquid RG procedure by Shankar and Polchinksi to it [73, 95].
Raghu et al. have shown by explicit calculations up to fourth order in perturbation theory that
this two-step procedure removes any dependence of physical observables on the intermediate and
artificial cutoff Ω0 [23]. From their calculations one can also see that the central property govern-
ing the low energy physics is the effective interaction in the Cooper channel Ueff

{αi}
(kF ,qF), while

contributions with deviating momentum structure and self-energy effects can be safely neglected.
From the restrictions we chose forΩ0 it is clear that it is sufficient to restrict ourselves to momenta
kF ,qF from the Fermi surface since these are the only degrees of freedom present in the second
step of the renormalization. We thus adapt our notation to reflect this constraint to the Cooper
channel

Ueff
0,1,2,3 =U{αi},{ωni }

(k0,k1,k2,k3)

U{αi}(kF ,qF) :=U{αi},{ωni=0}(kF ,−kF ,qF ,−qF)
(1.85)

where kF and qF are restricted to lie on the Fermi surface and we are only interested in band
indices αi corresponding to zero energy modes at these momenta. In the following we will see
how this effective interaction between Cooper pairs is calculated numerically.
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1.3.1 Calculation of the effective Cooper pair interaction

From Equation 1.83 we see that the effective Cooper pair interaction at second order in perturba-
tion theory is given by

Ueff
{αi}

(kF ,qF) = Ubare
{αi}

(kF ,qF)

+ U2nd order
{αi}

(kF ,qF) ,
(1.86)

and second order corrections are given by the particle-particle (PP), direct (D) particle-hole (PH)
and crossed particle-hole (cPH) diagrams

U2nd order
{αi}

(kF ,qF) = +4UPP
{αi}

(kF ,qF)

+8UPH
{αi}

(kF ,qF)

−8UcPH
{αi}

(kF ,qF) .

(1.87)

In the band space notation we previously introduced the different contributions are given by the
integrals

UPP
{αi}
=

∑︂
βl,βo

∫︂
Ω0

dl UkF ,−kF ,l,−l
α0α1βlβo

LPP
βlβo

(l) U l,−l,qF ,−qF
βlβoα2α3

(1.88)

UPH
{αi}
=

∑︂
βl,βm

∫︂
dl UkF ,m,qF ,l

α0βmα2βl
LPH
βlβm

(l,m) U l,−kF ,m,−qF
βlα1βmα3

(1.89)

UcPH
{αi}
=

∑︂
βl,βn

∫︂
dl UkF ,n,−qF ,l

α0βnα3βl
LPH
βlβn

(l,n) U l,−kF ,n,qF
βlα1βnα2

(1.90)

where

m = l − kF + qF and

n = l − kF − qF

(1.91)

due to momentum conservation [23, 33, 73].
Using the fact that the bare interaction is constant in imaginary time and restricting our focus

to the zero energy sector of the effective interaction, we can absorb all frequency summations into
LPH and LPP. Standard Matsubara summation techniques can then be used solve the frequency
dependence analytically which reduces the propagator pairs to the well known fractions

LPP
αlαo

(l) =
nF

(︁
− βϵαl(l)

)︁
− nF

(︁
βϵαo(−l)

)︁
ϵαl(l) + ϵαo(−l)

(1.92)
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and
LPH
αlαm

(l,m) =
nF

(︁
βϵαl(l)

)︁
− nF

(︁
βϵαm(m)

)︁
ϵαl(l) − ϵαm(m)

(1.93)

with the Fermi Dirac distribution nF(x)

nF(x) =
1

ex + 1
. (1.94)

Using the property nF(−x) = 1 − nF(x) one can convert the nominators of these fractions to the
computationally disadvantageous but easier to interpret expressions

nF
(︁
− βϵαl(l)

)︁
− nF

(︁
βϵαo(−l)

)︁
=

(︂
nF

(︁
βϵαl(l)

)︁
− 1

)︂(︂
nF

(︁
βϵαo(−l)

)︁
− 1

)︂
− nF

(︁
βϵαl(l)

)︁
nF

(︁
βϵαo(−l)

)︁
nF

(︁
βϵαl(l)

)︁
− nF

(︁
βϵαm(m)

)︁
=

(︂
nF

(︁
βϵαl(l)

)︁
− 1

)︂
nF

(︁
βϵαm(m)

)︁
− nF

(︁
βϵαl(l)

)︁(︂
nF

(︁
βϵαm(m)

)︁
− 1

)︂
,

(1.95)

where each factor of nF(E) [1 − nF(E)] describes the probability of finding an filled [empty] state
at energy E. This way it is clear that we can interpret Equations 1.92 and 1.93 as the summary of
all processes in second order perturbation theory that correspond to the intermediate excitation of
PP and hole-hole like or the two different particle-hole like excitations respectively.

While the wcRG is formulated in the limit of zero temperature i.e., β → ∞, we retain the
temperature dependence as it provides a physical smoothing parameter as well as providing an
even more natural connection to two-particle susceptibilities. Note that the PP diagram in Equa-
tion 1.88 is explicitly regularized by restricting its integration to modes l respecting |ϵβl(±l)| > Ω0

while no such restriction is needed in the particle-hole diagrams due to the careful choice of Ω0.
Nevertheless, the denominator of LPH may vanish for the case of l = m and αl = αm, resulting in

LPH
αlαl

(l, l) = n′F
(︁
βϵαl(l)

)︁ β→∞
−−−−→ δ(ϵαl(l)) (1.96)

which requires special treatment in the numerical evaluation. We can explicitly calculate these
edge cases via a line integral along the FS using∫︂

BZ
dl δ(ϵβl(l)) =

∫︂
dϵβl

1
∇lϵβl

δ(ϵβl(l)) =
∫︂

FSβl

dl
vFβl

(l)
, (1.97)

where vFβl
(l) denotes the Fermi velocity on band βl.

The calculation of the PP diagram in Equation 1.88 would indeed require a careful implemen-
tation of the cutoff. Closer inspection of the formula yields the insight that the vanishing total
momentum of Cooper pairs disallows the emergence of new momentum dependencies kF or qF .
Additionally, the diagram scales with U2 compared to U for the bare interaction. Combining these
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facts one can draw the conclusion that the PP diagram merely rescales the bare interaction and ne-
glect it completely in the limit of vanishing U [23, 74]. While this approach was adopted for the
remainder of this thesis, we would like to point out that the interaction structure of multi-orbital
systems is not momentum dependent, posing a potential loophole for the argument. Furthermore,
the calculation of the PP diagram is restricted to the q = 0 transfer momentum, making the numer-
ical cost of calculating this diagram negligible compared to the particle-hole diagrams. Therefore
a simple sanity check for the presented argument could always be implemented in any numerical
scheme with negligible cost.

As we have seen, the formulation of the diagrams in band space is useful for the analysis of
models with a closed analytical solution for H0 as well as the presented path-integral derivation.
For models where H0 can only be solved by numerical matrix diagonalization, the gauge variance
discussed in Sect. 1.1, requires particular care. Inserting the orbital band transformation matrices
from Equation 1.9 into the expression for the direct particle-hole bubble above we can arrive at
gauge invariant and therefore numerically preferable quantities

UPH
{αi}

(kF ,qF) =
∑︂
βl,βm

∫︂
dl

∑︂
{ai}

∑︂
{bi}

LPH
βlβm

(l,m)

v∗a0α0
(kF)v∗b1βm

(m)UkF ,m,qF ,l
a0b1a2b3

va2α2(qF)vb3βl(l)

v∗b0βl
(l)v∗a1α1

(−kF)U l,−kF ,m,−qF
b0a1b2a3

vb2βm(m)va3α3(−qF)

=
∑︂
{ai}

v∗a0α0
(kF)v∗a1α1

(−kF)va2α2(qF)va3α3(−qF)

∑︂
{bi}

∫︂
dl UkF ,m,qF ,l

a0b1a2b3
U l,−kF ,m,−qF

b0a1b2a3∑︂
βl,βm

v∗b1βm
(m)vb2βm(m)LPH

βlβm
(l,m)v∗b0βl

(l)vb3βl(l) .

(1.98)

For the special case of momentum independent interactions, we are able to pull the interaction
terms in orbital space in front of the l integration and the object to integrate is the generalized
susceptibility known from random phase approximation calculations

χa0a1a2a3(l −m) = χa0a1a2a3(kF − qF) = −
∫︂

dl
∑︂
β,γ

v∗a0β
(l)va2β(l)L

PH
βγ (l,m)v∗a1γ

(m)va3γ(m) . (1.99)

We now generalize this idea to momentum dependent interactions U{ai}({ki}) i.e., non-local inter-
actions. To this end we first introduce the integrand of this generalized susceptibility as

Xa0a1a2a3(l,m) =
∑︂
β,γ

v∗a0β
(l)va2β(l)L

PH
βγ (l,m)v∗a1γ

(m)va3γ(m) . (1.100)
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In the next step we explicitly write our bare interaction in the direct particle-hole channel (D-
channel) representation of the singular-mode and truncated-unity functional renormalization group [97,
98] approaches

U{ai}({ki}) = δ(k0 + k1 − k2 − k3)
∑︂

i, j

U i j
{ai}

(k0 − k2) f ∗i (k0) f j(k3) , (1.101)

where the fi(k) denote a finite set of envelope functions that can be adapted to the specifics of
the input interaction and are commonly known as form factors. In App. A we show that such a
reformulation is generically possible for reasonable translationally invariant interactions involving
a finite number of bonds and that the number of form factors is bounded by the number of sites
involved in the interaction with a reference site.

Inserting Equation 1.101 into our gauge invariant expression for the direct particle-hole diagram
yields

UPH
{αi}

(kF ,qF) =
∑︂
{ai}

v∗a0α0
(kF)v∗a1α1

(−kF)va2α2(qF)va3α3(−qF)∑︂
{bi}

∑︂
{gi}

Ug0g2
a0b1a2b3

(kF − qF)Ug1g3
b0a1b2a3

(kF − qF)∫︂
dl Xb1b0b2b3(l,m) f ∗g0

(kF) fg2(l) f ∗g1
(l) fg3(−qF) .

(1.102)

This motivates us to define

ℵ
gh
b0b1b2b3

(︁
kF ,qF

)︁
=

∫︂
dl f ∗g

(︁
l
)︁
Xb0b1b2b3

(︁
l, l − kF + qF

)︁
fh
(︁
l
)︁

(1.103)

as an even more generalized susceptibility. Here we chose the Hebrew letter ℵ (Aleph) due to its
similarity with the Greek letter χ. Repeating this calculation for the crossed particle-hole channel
reduces to the same integral. In conclusion, the knowledge of ℵ for all points kF and qF on the
discretized Fermi surface is sufficient for the calculation of both the PH and cPH diagrams without
further integration. In particular, this allows for an efficient calculation of phase diagram scans in
all possible values of Ug0g2

0123 for a given single-particle Hamiltonian H0.
As we will see in Section 1.4, the structure of our generalized susceptibility also allows for

a straightforward calculation of all particle-hole like diagrams contributing to the random phase
approximation. In fact our proposed form factor decomposition is formally equivalent to a proce-
dure which has been previously utilized to incorporate long range Coulomb interactions in FLEX
implementations [99]. We further note that it is straightforward to express the momentum depen-
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dence of the bare interaction in the PP channel and thereby facilitate a similar structure for the
remaining diagram.

We have now established a gauge invariant formulation for the numerically expensive momen-
tum integration. The gauge of the effective interaction in band space, however, is not yet fixed.
We tackle this problem by enforcing the calculation of the pair interaction between time reversal
partner states. This is possible for generic models as the time reversal operator T̂ does not affect
the real space, orbital or sublattice degrees of freedom and can always be represented by

T̂ = iσyK , (1.104)

where σy acts in spin space,K represents complex conjugation and the orbital sublattice structure
is trivial. Instead of calculating the effective interaction between Cooper pairs created by operators
c†kαc†

−kβ, we consider an interaction between states created by

c†kαT̂ c†kβT̂
−1
=

∑︂
a,b

vaα(k)v∗bβ(k)c†kaT̂ c†kbT̂
−1

=
∑︂
a,b

vaα(k)v∗bβ(k)c†ka

∑︂
c

D
†

cb(T )c†
−kc

=
∑︂
a,b

Vαβ,ab(k)pairc†kac†
−kb .

(1.105)

Here we have defined the quantity

Vpair
αβ,ab(k) = vaα(k)

∑︂
c

D
†

cb(T )v∗cβ(k) , (1.106)

which has the advantage that it is invariant under gauge transformations of the type

vaα(k)→ eiφ(k)vaα(k) . (1.107)

D
†

cb(T ) represents the unitary part of the time-reversal symmetry operator in orbital-spin-space
and is given by a tensor product of iσy in spin and 1 in orbital-sublattice space. Our construction
eliminates possible gauge differences between states at k and −k arising from numerics by using
the state at k to define the state at −k in a natural way.

Equation 1.107 is sufficient to solve the gauge-problem for the case of non-degenerate bands at
the Fermi surface, as we generically expect inter-band (i.e., finite frequency) Cooper pairing to be
negligible. For degenerate Fermi surfaces that naturally arise in the context of fully spin-rotation
symmetric models or spin-orbit coupled systems that respect inversion symmetry, Cooper pairing
between different band indices α ≠ β at zero energy needs to be taken into account. While we can
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fix the relative gauge between the degenerate states at a given momentum k as well as their time-
reversal partners at −k, the choice of the pseudo-spin basis is not fixed by this procedure leaving
a residual gauge degree of freedom. In order to relate Cooper pair scattering amplitudes between
states at different momenta in a meaningful way (an operation that is necessary for symmetry
operations), a consistent choice for the pseudo-spin basis along the Fermi surface has to be made.
For band degeneracies originating from spin rotational invariance this choice is naturally given
as the spin sector decouples trivially from the theory. In the case of centrosymmetric spin-orbit
coupling, a consistent definition of the pseudo-spin basis may be found by analytic and manual
diagonalization of habk into a block diagonal structure. Spin-orbit coupled three band models
for Sr2RuO4, where rearranging the orbital spin basis properly renders the Hamiltonian block
diagonal [100] are an example of this. Fink [81] has proposed to solve the problem for generic
systems by adiabatically switching on the spin-orbit interaction, implying a smooth and traceable
evolution of the natural spin basis. Another promising approach to the problem could be the
choice of Cooper pair states that are simultaneous eigenstates to Ĥ0, T̂ and the inversion operator
Î. The central problem with this approach is the fact that the specific representation of Î depends
on the single particle basis in a non-generic way. In particular, electrons in orbitals with odd
(even) angular momentum (do not) acquire a minus sign under inversion and maximally localized
Wannier functions may not necessarily respect inversion symmetry on their own. Since we are
interested in the case of strong inversion symmetry breaking, we continue without solving this
issue in all generality.

Combining the gauge invariance of the ℵ object and our choice of Cooper pair states, we sum-
marize the formulas for the particle-hole diagrams contributing to the effective interaction in the
Cooper channel as

UPH
{αi}

(kF ,qF) =
∑︂
{gi}

f ∗g0
(kF) fg3(−qF) .∑︂

{ai}

(︂
Vpair
α0α1,a0a1(kF)

)︂∗
Vpair
α2α3,a2a3(qF)∑︂

{bi}

Ug0g2,(kF−qF )
a0b1a2b3

ℵ
g1g2
b1b0b2b3

(kF ,qF)Ug1g3,(kF−qF )
b0a1b2a3

(1.108)
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and

UcPH
{αi}

(kF ,qF) =
∑︂
{gi}

f ∗g0
(kF) fg3(+qF) .∑︂

{ai}

(︂
Vpair
α0α1,a0a1(kF)

)︂∗
Vpair
α2α3,a2a3(qF)∑︂

{bi}

Ug0g2,(kF+qF )
a0b1a3b3

ℵ
g1g2
b1b0b2b3

(kF ,−qF)Ug1g3,(kF+qF )
b0a1b2a2

.

(1.109)

Let us reiterate the benefits of this formulation:

• ℵ only contains information about the kinetic model chosen and the set of form factors used.

• ℵ is a gauge invariant quantity.

• By using a basis of time reversal partner states for the calculation we fix the U(1) gauge of
the effective interaction completely.

• Knowledge of ℵ allows for detailed scans of the interaction parameter phase diagram with-
out the necessity to calculate momentum space integrals.

• We will see that a form invariant expression can be used to calculate the effective Cooper
pair interaction in the random phase approximation.

In the next section we will see how the obtained effective interaction relates to the dominant
superconducting instability of the model.

1.3.2 Renormalization group analysis of unconventional

superconductivity

In the second step of the wcRG scheme, we perform an analytical 1-loop RG flow from our theory
at cutoff Ω0 to even lower cutoff energies. This can be done by using standard one-loop Fermi-
liquid RG since the action generated by the first step is of the form required for the input of these
approaches:

• All states in the theory are confined to a small annulus of widthΩ0 around the Fermi surface,
allowing a linearization of the dispersion.

• The effective interaction between the states is small, allowing for the a truncation of the RG
equations at one-loop.
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At the tree-level analysis of the RG flow one finds that most interaction parameters are exponen-
tially suppressed due to the phase space restrictions imposed during the the flow [73, 92, 95]. The
remaining parameters are either Fermi-liquid parameters or interactions in the Cooper channel.
The Fermi liquid parameters are marginal in the RG language i.e., do not renormalize under the
flow from Ω0 to low energy (smaller cutoffs) [73, 95] and can be neglected in the wcRG approach.
Cooper channel interactions, however, renormalize significantly and their flow is given by the one
loop RG equations arising from the PP diagram to be

dgik =
∑︂

j

−gi jg jk d
[︁
log(Ω0/Ω)

]︁
. (1.110)

Here, the indices i, j, k run over all degrees of freedom for Cooper pairs on the Fermi surface and
the integration measure is absorbed into the definition of

g(α0α1,kF ),(α2α3,qF ) =
√
ρα0ρα2

√︄
v̄Fα0 v̄Fα2

vFα0(kF)vFα2(qF)√︄
AFα0(kF)AFα2(qF)

AFα0 AFα2

U{αi}(kF ,qF) ,

(1.111)

where AFα(kF) and vFα(kF) denote the Fermi surface area and Fermi velocity associated with
each discretized point kF on the Fermi surface, α only runs over the bands at zero energy for
these points. ρα and AFα meanwhile denote the total density of states and total Fermi surface area
contributed by a specific band α. The mean of the Fermi velocity on a band is defined via an
inverse average

v̄Fα =

(︄ ∑︂
kF∈α

AFα(kF)
AFα

1
vFα(kF)

)︄−1

(1.112)

over all Fermi surface momenta on this band. The flow equation Equation 1.110 can now be
solved via matrix diagonalization of

gi j =
∑︂

n

ϕ∗inλnϕ jn (1.113)

by realizing that all eigenvalues renormalize independently due to the orthonormality of eigenvec-
tors. We find

dλn = −λ
2
n d

[︁
log(Ω0/Ω)

]︁
, (1.114)

and see that all positive eigenvalues (corresponding to repulsive interactions g) renormalize to
zero und this flow equation. Negative eigenvalues, on the other hand, correspond to attractive in-
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teraction channels and grow indefinitely under the RG flow and indicate an instability of the Fermi
surface. The smallest (i.e., most negative) eigenvalue λ0 indicates the strongest superconducting
instability and we will refer to it as the leading eigenvalue in the following. From the definition
of g we can see that it is a dimensionless matrix that scales with Uρ. Since U0 is purely repulsive
we can expect its attractive eigenvalues λ to scale with U2ρ/W, with the bandwidth W arising due
to the PP loop in Equation 1.109. Accordingly it is conventional to calculate λ and Veff = |λ|/ρ

in units of t/U2 or W/U2. A link between |λ| and an estimate for the superconducting transition
temperature that is independent of Ω0 can be given as [23]

Tc ∼ W exp
[︁
− 1/|λ|

]︁
= W exp

[︁
− 1/(ρVeff)

]︁
. (1.115)

The eigenvector ϕ j0 corresponding to λ0 encodes the information about the full structure of the
leading superconducting instability’s gap function on the Fermi surface

∆SC
α0α1

(kF) ∝

√︄
v̄Fα

vFα0(kF)
ϕ0(α0α1,kF) , (1.116)

which we can subsequently analyze in terms of momentum structure, orbital/sublattice content
and singlet / triplet character. The central information extracted in our analysis is the symmetry
character of the gap function.

An equivalent (but slightly less rigorous) approach to the analysis of our low energy theory
below Ω0 is given by a straightforward superconducting mean field theory. We present details of
its derivation in Appendix B and only state the result here. The self consistency equation for the
superconducting the mean field reads

∆SC
α0α1

(kF) =
∫︂
Ω0

dq
∑︂
α2,α3

Ueff
{αi}

(kF ,q)LPP,∆
α2,α3

(q)∆SC
α2α3

(q) . (1.117)

As we have already integrated out all high-energy modes with ωn > Ω0 in the first RG step, the
integral only runs over modes with ϵ(q) < Ω0. Furthermore, the PP loop LPP,∆ has to be evaluated
with respect to the energy spectrum in the (potential) presence of a finite superconducting gap ∆
which acts as a regulator to the bare PP loop at temperatures T < Tc. Close to the superconducting
transition T ≈ Tc, the superconducting gap vanishes and LPP,∆ ≈ LPP i.e., we can calculate the PP
loop using the normal state dispersion. This limit yields the linearized gap equation and for small
values of Ω0 we can write

∆SC
α0α1

(kF) =
1
κ

∑︂
α2,α3

⟨︂
Ueff
{αi}

(kF ,qF)∆SC
α2α3

(qF)
⟩︂

qF
, (1.118)
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where the integral dq has been replaced by a density of states weighted integral over the Fermi
surface and κ is a constant that only depends on the temperature, cutoff and density of states at the
Fermi level [82]. Clearly, Equation 1.113 is a discretized version of the linearized gap equation,
a fact that is expected as the validity of the one-loop RG flow breaks down when U × LPP ∼ 1.
In summary, the shape of the superconducting gap function ∆α2α3(k) can be extracted by diag-
onalization of the effective low-energy interaction between Cooper pairs and the corresponding
eigenvalues of Equation 1.113 are a cutoff independent measure of the superconducting pairing
strength. In order to extract information about the superconducting condensation energy at zero
temperature as well as differentiating between degenerate superconducting instabilities, a self con-
sistent solution of Equation 1.117 is necessary.

The presented formulation of the wcRG enables a generic and numerically efficient implemen-
tation of the wcRG for the complete class of models discussed in Sect. 1.1. The key ingredients
necessary for such an implementation are the discretization of the Fermi surface and an efficient
solver for the integral in Equation 1.103. Our approach to these problems as well as a reduction
of the computational effort via the use of symmetries is discussed in [72].

In the following we will discuss the random phase approximation approach to unconventional
superconductivity and emphasize its connection to the wcRG.
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1.4 Random phase approximation

The random phase approximation (RPA) was first introduced by Bohm and Pines [101–104] in
an attempt to describe an electron gas interacting via the long range Coulomb interaction. The
eponymous random phases between single electron excitations motivated the authors to develop
a theory of collective description of the electronic interactions. Later, Gell-Mann and Brueck-
ner [105] showed that their approach can understood as a summation of the most highly divergent
terms of the perturbative expansion introduced in Equation 1.82. Notably, this formulation of the
RPA not only explains that the bare Coulomb interaction is screened by internal dynamics of the
interacting electron gas, but enables a more quantitative calculation of correlation energy in this
system.

Here we will refrain from a detailed motivation of the RPA or a review of the key results and
only point the reader to literature references such as Ch. 14 of Ref. [93]. Instead we will gener-
alize the RPA evaluation of particle-hole susceptibilities by identifying the most highly divergent
diagrams in an analogous way. In particular we point out the connection between unconventional
particle-hole instabilities, long-range interactions and the generalized susceptibilities introduced
in Section 1.3.

1.4.1 Linear response and generalized susceptibilities

Before engaging in the RPA resummation of diagrams including the interaction, we will consider
two-particle linear response functions of the kinetic model. We start by considering models with-
out a sublattice basis and absent SU(2) symmetry. Here we can introduce perturbing scalar and
vector fields of Zeemann type

HP =
∑︂

r

E(r)
∑︂
σ

c†r,σcr,σ +
∑︂

r

∑︂
i

Bi(r)
∑︂
σ0σ2

c†r,σ0
σi
σ0,σ2

cr,σ2
, (1.119)

and perform a Fourier transformation yielding

HP =
∑︂

r

E(r)
∑︂
σ

∑︂
k0k2

c†k2,σ
ck0,σ

e−ir(k2−k0) +
∑︂

r

∑︂
i

Bi(r)
∑︂
σ0σ2

∑︂
Qk

c†k+Q,σ2
σi
σ0,σ2

ck,σ0
e−irQ

=
∑︂

Q

E(Q)
∑︂
σ,k

c†k+Q,σck,σ +
∑︂

Q

∑︂
i

Bi(Q)
∑︂
σ0σ2

∑︂
k

c†k+Q,σ2
σi
σ0,σ2

ck,σ0
,

(1.120)
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where we defined

E(Q) =
∑︂

r

E(r)e−irQ and

Bi(Q) =
∑︂

r

Bi(r)e−irQ .
(1.121)

σi
σσ′ are the three Pauli matrices and we will later use σ0

σσ′ = δσσ′ as the “0th” Pauli matrix. The
intuition for these simple site dependent potential terms for the accumulated charge and spin is
clear and we can also use these operators as observables due to the hermiticity of the operators
for real potentials E(r) and Bi(r). For their Fourier transforms the hermiticity conditions E(−Q) =
E∗(Q) and Bi(−Q) = B∗i (Q) hold.

Already for this simple single band model a further generalization of the fields suggests it-
self by encompassing modifications to certain inter-site matrix elements. Consider the following
perturbation

HP =
∑︂
r,d

E(r,d)
∑︂
σ

c†r+d/2,σcr−d/2,σ =
∑︂
Q,k

E(Q,k)
∑︂
σ

c†k+Q/2,σck−Q/2,σ , (1.122)

where

E(Q,k) =
∑︂
r,d

E(r,d)e−irQe−idk , (1.123)

which can be analogously extended to the spin sector. This modification to the systems hopping
terms is restricted by the hermiticity conditions

E(Q,k) = E∗(−Q,k) and

Bi(Q,k) = B∗i (−Q,k) .
(1.124)

At this point one may wonder why a separation of the “electric” and “magnetic” fields is nec-
essary if the discussed constraints do not differ. A related question could concern the highlighted
treatment of the spin degree of freedom over the previously fused discussion of spin-sublattice
and orbital degrees of freedom. The answer to both of these questions lies in the spin’s non-trivial
transformation behavior under time-reversal symmetry. Considering the real space expression in
Equation 1.119, it becomes clear that any hermitian term proportional to Ẽ will transform trivially
under time-reversal symmetry while terms proportional to B̃ will acquire a minus sign i.e., break
time-reversal symmetry; expected for a magnetic field. This is not a problem per se since probing
the response of a time-reversal invariant system with a time-reversal symmetry breaking field still
results in a sensible response function. It does however make sense to treat the E and B fields
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separately. The issue becomes more subtle for fields that modify hopping terms as these can be
complex without breaking hermiticity (e.g. spin-orbit coupling terms), leading to a non-trivial
transformation behavior of Ẽ and B̃ under time reversal symmetry. We find that

E(Q,k)→ +E∗(−Q,−k) = + E(Q,−k) and

Bi(Q,k)→ −B∗i (−Q,−k) = −Bi(Q,−k) .
(1.125)

Considering the Q = 0 sector, this corresponds to the well known statement that hermitian and
time reversal symmetry respecting hoppings have to be odd (even) functions of momentum if they
do (not) depend on the spin of the hopping electron.

We summarize E and Bi into a four component field Aη where A0 = E and Ai = Bi (i =
1, 2, 3 = x, y, z) and proceed to generalize to systems with sublattice or orbital degrees of freedom
with label oi. The most general two operator perturbation can then be written as

HP =
∑︂
r,d

∑︂
η,o0,o2

Aη,o0o2(r,d)
∑︂
{σi}

c†r+d/2,σ,o2
ση
σ0,σ2

cr−d/2,σ,o0

=
∑︂
r,d

∑︂
η,m

Aη,m(r,d)
∑︂
{σi},{oi}

c†r+d/2,σ0,o2
Om

o0,o2
ση
σ0,σ2

cr−d/2,σ2,o0

=
∑︂
Q,k

∑︂
η,m

Aη,m(Q,k)
∑︂
{σi},{oi}

c†k+Q/2,σ0,o2
Om

o0,o2
ση
σ0,σ2

ck−Q/2,σ2,o0
.

(1.126)

As for the spin degree of freedom an expansion of Aη,ou in terms of a complete set of hermitian
matrices Om,ou in the form of

Aη,ou =
∑︂

m

AηmOm
ou (1.127)

seems natural as it provides the remaining Aηm with a simple transformation behaviour under
hermiticity and allows for an interpretation in terms of a a field coupling to (local) hermitian
operators. Considering the transformation behaviour under time reversal results in an additional
seperation into real and complex (or alternatively symmetric and anti-symmetric) matrices due
to the trivial transformation behaviour of orbital and sublattice degrees of freedom under this
symmetry. Using Equation 1.124 it is clear that the hermiticity condition generalizes to

Aηm(Q,k) = A∗ηm(−Q,k) . (1.128)

Finally we will reduce the generality of our real space considerations slightly by restricting d

to small distances. We constrain our analysis to product functions A(r,d) =
∑︁

f A f (r)ϕ f (d) as
we are interested in modifications to specific short range hopping integrals. Clearly ϕ̃0(d) = δ(d)



48 | 1 Methodology

results in the less general Equation 1.119 while expressions like

ϕ j(d) = δ(d − x) + δ(d + x) − δ(d − y) − δ(d + y) (1.129)

allow us to probe the systems response to an assymmetry in the nearest neighbour hopping inte-
grals i.e., nematicity. Fourier transformation according to Equation 1.123 results in

Aηm(Q,k) =
∑︂

f

Aηm f (Q)ϕ f (k) (1.130)

where
ϕ f (k) =

∑︂
d

ϕ f (d)e−idk . (1.131)

Putting everything together we define a set of operators

Aη,m, f (Q) =
∑︂

k

∑︂
σ0,σ2

∑︂
o0,o2

ϕ f (k)c†k+Q/2,σ2,o2
Om

o0o2
ση
σ0σ2

ck−Q/2,σ0,o0
, (1.132)

with hermitian adjoint

A†η,m, f (Q) =
∑︂

k

∑︂
σ0,σ2

∑︂
o0,o2

ϕ∗f (k)c†k−Q/2,σ2,o2
Om

o0o2
ση
σ0σ2

ck+Q/2,σ0,o0
. (1.133)

If we define O0
ou = δou and ϕ0(k) = 1, we can write common examples for these operators like the

Fourier transform of the electron density

n(Q) = A0,0,0(Q) (1.134)

and the mean spin direction of our system

S i(Q = 0) = Ai,0,0(0) (1.135)

in precisely this form. An antiferromagnetic pattern on the square lattice Hubbard model would
be result in a finite expectation value of

S i(Q = (π, π)) = Ai,0,0((π, π)) , (1.136)

while
ni(Q = (π, 0)) = A0,0,0((π, 0)) (1.137)



C
ha

pt
er

1

1.4 Random phase approximation | 49

indicates charge stripe order. More exotic particle-hole instabilities have been classified in Ref. [106].
In particular, charge η = 0 and spin η = i bond order states with wave-vector Q will have signa-
tures for non-trivial form factors ϕ f (k ≠ const.).

We also note that PP operator pairs may be classified analogously. Here it is convention to
consider time-reversal partners, which leads to the addition of a matrix iσy into the definition

P†η,m, f (Q) =
∑︂

k

∑︂
σ0,σ0,σ2

∑︂
o0,o2

ϕ∗f (k)c†k+Q/2,σ0,o0
Om

o0o2
ση
σ0σ1

(iσy
σ1σ2

)c†
−k+Q/2,σ2,o2

. (1.138)

Clearly this operator is not self-adjoint. A conventional s-wave superconducting mean-field may
be added into a Hamiltonian via the term

HS C = ∆P†0,0,0(0) + ∆∗P0,0,0(0) , (1.139)

while non-trivial form factor dependencies denote unconventional superconducting condensates
with potentially finite angular momentum and finite momenta Q ≠ 0 correspond to pair density
waves.

Having established a general notation and some first classification of different electron-hole
operators we can now proceed to the calculation of the system’s response functions for these
operators. To this end we will use the set of operators A not only as perturbations but also track
the change of their expectation value in response to the perturbation.

From Section 1.2, we know that

χA,B = −

∫︂ β

0

⟨︂
B(ψ(τ = 0), ψ̄(τ = δ))A(ψ(τ′), ψ̄(τ′ + δ))

⟩︂
conn

dτ′ , (1.140)

for general (time-independent and normal ordered) operators A and B. In order to particularize
this to the class of operators A†η,m, f (Q) introduced above we introduce a shorthand notation

A = A†η,m, f (q) =
∑︂
0,3

A0,3c†3c0

B = Aη′,m′, f ′(q
′) =

∑︂
1,2

B1,2c†2c1

(1.141)
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with multi indices i = (αi,ki) carrying all band space quantum numbers except for a frequency
index. Explicit calculation involving Equation 1.5 yields

A0,3 = δ(k3 + q − k0)
∑︂
σ0,σ3

∑︂
o0,o3

ϕ∗f (k3)Om
o0o3

ση
σ0σ3

va3=(σ3,o3),α3(k3)v∗a0=(σ0,o0),α0
(k0)

B1,2 = δ(k1 + q′ − k2)
∑︂
σ1,σ2

∑︂
o1,o2

ϕ f ′(k1)Om′
o1o2

ση′

σ1σ2
va2=(σ2,o2),α2(k2)v∗a1=(σ1,o1),α1

(k1) .
(1.142)

Note that while both A0,3 and B1,2 are gauge-variant quantities with respect to the choice of eigen-
states, the susceptibility will turn out to be gauge invariant as A and B are gauge invariant and
observable operators.

We now perform a Fourier transformation of the field operators and introduce i = (i, ωni) yield-
ing

χA,B = −
∑︂
{i}

B1,2A0,3

∫︂ β

0

⟨︂
ψ̄2(τ = δ)ψ1(τ = 0)ψ̄3(τ′ + δ)ψ1(τ′)

⟩︂
conn

dτ′

= −
∑︂
{i}

B1,2A0,3

∫︂ β

0
ei(ωn1−ωn2 )τ′ dτ′

⟨︂
ψ̄2ψ1ψ̄3ψ0

⟩︂
conn

eiωn2δeiωn3δ

= −β
∑︂
{i}

B1,2A0,3δωn0ωn3

⟨︂
ψ̄2ψ1ψ̄3ψ0

⟩︂
conn

eiωn2δeiωn3δ .

(1.143)

Note that the complete discussion up to this point does not depend on the specific form of the
action furnishing the expectation value ⟨ψ̄1ψ2ψ̄0ψ3⟩conn, i.e., our result is exact for the interacting
problem. We have to remember that we shall only consider contributions to the expectation value
where A and B are connected i.e., diagrams that can not be reduced to products of expectation
values ⟨A⟩⟨B⟩ = ⟨ψ̄1ψ2⟩⟨ψ̄0ψ3⟩. Explicitly reintroducing the momentum dependency of A and B,
as well as the field variables ψi yields

χA(q),B(q′) ∝ ⟨ψ̄1,lψ2,l+qψ̄0,l′+q′ψ3,l′⟩conn (1.144)

and a perturbative expansion of the interaction up yields is most conveniently done in terms of
Feynman diagrams and presented in the next section.

For the non-interacting theory, however, the susceptibility is given by a single contribution that
can be represented by the Feynman diagram

χ0
AB(q) = q q ,

l + q

l

A B (1.145)
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and evaluated as

χ0
AB(q) = −β

∑︂
{i}

B1,2A0,3δωn0ωn3

⟨︂
ψ̄2ψ0

⟩︂
0
eiωn2δ

⟨︂
ψ1ψ̄3

⟩︂
0
eiωn3δ

= β
∑︂
{i}

B1,2A0,3δωn0ωn3
G02G13eiωn2δeiωn3δ

=
∑︂
{i}

B1,2A0,3β
∑︂
ωn

G0,2(ωn)G1,3(ωn)eiωnδ

=
∑︂
0,1

B1,0A0,1LPH
α0α1

(k0,k1) .

(1.146)

The explicit energy conservation ωn0 = ωn3 conspires with the energy conservation along prop-
agator lines to leave a single frequency summation which is readily evaluated using the residue
theorem and the Fermi-Dirac distribution. We can now insert the expressions for A0,3 and B1,2 and
find

χ0
(︂
A†η,m, f (q), Aη′,m′, f ′(q

′)
)︂
=

=
∑︂
k0,k1

∑︂
α0,α1

δ(k1 + q − k0)δ(k1 + q′ − k0)
∑︂
{σi}

∑︂
{oi}

ϕ∗f (k1)ϕ f ′(k1)Om
o0o3

Om′
o1o2

ση
σ0σ3

ση′

σ1σ2

va3,α1(k1)v∗a0,α0
(k0)va2,α0(k0)v∗a1,α1

(k1)LPH
α0α1

(k0,k1)

=
∑︂
k1

δ(k1 + q′ − k1 − q)
∑︂
{σi}

∑︂
{oi}

ϕ∗f (k1)ϕ f ′(k1)Om
o0o3

Om′
o1o2

ση
σ0σ3

ση′

σ1σ2
Xa0a1a2a3(k0,k1)

=δ(q′ − q)
∑︂
{σi}

∑︂
{oi}

Om
o0o3

Om′
o1o2

ση
σ0σ3

ση′

σ1σ2

∑︂
l

ϕ∗f (l)ϕ f ′(l)Xa0a1a2a3(l + q, l)

=δ(q′ − q)
∑︂
{σi}

∑︂
{oi}

Om
o0o3

Om′
o1o2

ση
σ0σ3

ση′

σ1σ2
ℵ f f ′

a0a1a2a3
(q, 0) .

(1.147)

Here we have made use of previously introduced shorthand notations for the particle-hole bubble
calculation given by Eqs. 1.100 and 1.103. Our result provides further motivation for the definition
of the generalized susceptibility ℵ and shows that the conventional susceptibility is simply given
by its limiting case for on-site particle-hole fluctuations. We can see that translational invariance
decouples particle-hole fluctuations with different momenta q and that this result will hold upon
including any momentum conserving interaction. As the description of particle-hole operators in
terms of Equation 1.132 seems to be useful, we will employ it to the analysis of general interaction
terms in the next section.
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1.4.2 Particle-Hole decomposition of general interactions

While considering a general translation invariant two-particle interaction (compare Equation 1.8)

HI =
∑︂
{ki}

∑︂
{ai}

U{ai}({ki})c
†

a2,k2
c†a3,k3

ca1,k1
ca0,k0

, (1.148)

we have previously (Equation 1.101) seen that it may be useful to parametrize this interaction as

U{ai}({ki}) = δ(k0 + k1 − k2 − k3)
∑︂

i, j

U i j
{ai}

(k0 − k2)ϕ∗i (k0)ϕ j(k3) . (1.149)

A different way to phrase this decomposition is in terms of the general particle-hole operators
introduced in the previous section. Note that we have to pick a slightly less physical gauge choice
for the Fourier transformation here and k is no longer dual to the center of mass independent
relative coordinate d from the previous section. If we start with

Aη,m(Q,k)
∑︂
{σi},{oi}

c†k+Q,σ0,o2
Om

o0,o2
ση
σ0,σ2

ck,σ2,o0
(1.150)

and consider the operator∑︂
Q

∑︂
ηη′,mm′, f f ′

Vηη′,mm′, f f ′(Q)A†η,m, f (Q)Aη′,m′, f ′(Q) =∑︂
Q

∑︂
ηη′,mm′, f f ′

Vηη′,mm′, f f ′(Q)
∑︂
{σi}

∑︂
{oi}

∑︂
k,k′
ϕ∗f (k)ϕ f ′(k′)Om

o0o2
Om′

o1o3
ση
σ0σ2

ση′

σ1σ3

c†k,σ2,o2
c†k′+Q,σ3,o3

ck′,σ1,o1
ck+Q,σ0,o0

(1.151)

and compare term by term with the previous expressions we find that if we let

U i j
{ai}

(k0 − k2) =
∑︂

ηη′,mm′
Vηη′,mm′,i j(k0 − k2)Om

o0o2
Om′

o1o3
ση
σ0σ2

ση′

σ1σ3
, (1.152)

we can write
HI =

∑︂
Q

∑︂
ηη′,mm′, f f ′

Vηη′,mm′, f f ′(Q)A†η,m, f (Q)Aη′,m′, f ′(Q) . (1.153)

It is important to notice that this decomposition of HI into two pairs of fermion operators is not
unique. A decomposition in terms of particle-pair operators P† ∝ c†c† is clearly possible as
well. Another way to phrase the bias introduced here is by considering other options for the
“emphasized” transfer momentum Q = k0 −k2. Taking into account momentum conservation one
realizes that three unique choices for transfer momenta constructed from two-fermionic momenta
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exist:

QD = k0 − k2 = k3 − k1

QP = k0 + k1 = k2 + k3

QC = k0 − k3 = k2 − k1 .

(1.154)

These three are commonly called direct particle-hole (D), particle-particle (P) and crossed particle-
hole (C) channel in the fRG literature [97, 98]. Nevertheless, the decomposition given by Equa-
tion 1.153 is sufficient for the calculation of all diagrams contributing to the PH channel in the
RPA approximation. This crucially depends on the insight that any short ranged two-particle in-
teraction can be exactly expressed in this form via a finite number of form-factor functions ϕi.
Such a statement is only possible for the bare interaction, while a general effective interaction
at an intermediate scale may acquire long-range momentum dependencies in QD,QP AND QP.
Due to this the number of form-factors required for an exact mapping between the three channels
grows during a functional renormalization group flow.

In order to illustrate our construction for the bare interaction we particularize to a model without
sublattice or orbital degrees of freedom and consider the bare Coulomb interaction with a Yukawa-
type regularization α for its long range convergence and an explicit exclusion of the diverging on
site contribution

HI =
∑︂
{ki}

δ(k0 + k1 − k2 − k3)
∑︂
d≠0

e−α|d|

|d|
eid(k0−k2)

∑︂
{σi}

δσ0σ2δσ1σ3c
†

σ2,k2
c†σ3,k3

cσ0,k0
cσ1,k1

. (1.155)

Here the sum over d runs over all possible distances between lattice sites. The lattice discretization
makes an analytic evaluation of the Fourier transform non-trivial. The continuous integral in three
dimensions gives ∫︂

R

dr
e−α|r|

|r|
eirQ =

4π
α2 +Q2 , (1.156)

where the divergence for Q → 0 and α → 0 indicates the long range nature of the interaction.
Inspired by this observation we investigate the lattice interaction in the limit Q → 0 via Taylor
expansion

∑︂
d≠0

e−α|d|

|d|
eidQ ≈

∑︂
d≠0

e−α|d|

|d|
(︂
1 + i|d||Q| cosΘdQ

)︂
=

∑︂
d≠0

e−α|d|

|d|
+ i|Q|

∑︂
d≠0

e−α|d| cosΘdQ

≈
2π
α
+ O

(︁
|Q|

)︁
+ O

(︁
|Q|α

)︁ (1.157)
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and find a similar divergence for the true Coulomb case α → 0. Due to the periodicity similar
divergences appear for all transfer momenta with Qd = 2π of which only a single one is included
in the first Brillouin zone used for integration. We will come back to this divergence in the next
section.

Naively one would simply read of

Vηη′,i j(Q) = δη0δηη′δi0δi j

∑︂
d≠0

e−α|d|

|d|
eidQ , (1.158)

from Equation 1.155 where

ϕi=0(k) = 1

ση=0
σ0σ2
= δσ0σ2

(1.159)

as previously and we omit the index m due to the absent residual degrees of freedom. Unfortu-
nately the situation is complicated due to the presence of the exchange interaction terms i.e., [] the
antisymmetry constraints on V . Clearly we can write

HI = −
∑︂
{ki}

δ(k0 + k1 − k2 − k3)
∑︂
d≠0

e−α|d|

|d|
eid(k1−k2)

∑︂
{σi}

δσ0σ3δσ1σ2c
†

σ2,k2
c†σ3,k3

cσ1,k1
cσ0,k0

, (1.160)

but it is non-trivial to make the connection to Equation 1.153 here. Using momentum conservation
and the completeness relation of the Pauli matrices∑︂

η

ση
σ0σ2

ση
σ1σ3
= 2δσ0σ3δσ1σ2 (1.161)

we find

HI = −
∑︂
{ki}

δ(k0 + k1 − k2 − k3)
∑︂
d≠0

e−α|d|

|d|
eid(k3−k0) 1

2

∑︂
η

∑︂
{σi}

ση
σ0σ2

ση
σ1σ3

c†σ2,k2
c†σ3,k3

cσ1,k1
cσ0,k0

.

(1.162)
In this representation, the matrix elements do not depend on the transfer momentum k0 − k2.
Instead, the momentum dependence has been transferred into the form factors. If we define an
infinite set of form factors

ϕi(k) = eidik , (1.163)
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which arises due to the long range nature of the assumed interaction, we can write

HI = −
∑︂
{ki}

δ(k0 + k1 − k2 − k3)
∑︂
i≠0

e−α|di |

|di|
ϕ∗i (k0)ϕi(k3)

1
2

∑︂
η

∑︂
{σi}

ση
σ0σ2

ση
σ1σ3

c†σ2,k2
c†σ3,k3

cσ1,k1
cσ0,k0

.

(1.164)
From this equation we can would deduce

Vηη′,i j(Q) = −
1
2
δηη′(1 − δi0)δi j

e−α|di |

|di|
. (1.165)

While Equation 1.158 and Equation 1.165 are seemingly at odds with each other, their combina-
tion

Vηη′,i j(Q) = δηη′δi j

(︂
δη0δi0

∑︂
k≠0

e−α|dk |

|dk|
eidkQ −

1
2

(1 − δi0)
e−α|di |

|di|

)︂
(1.166)

results in a manifestly antisymmetric interaction tensor

U{ai}({ki}) = δ(k0 + k1 − k2 − k3)
∑︂

i, j

∑︂
ηη′,mm′

Vηη′,mm′,i j(k0 − k2)Om
o0o2

Om′
o1o3

ση
σ0σ2

ση′

σ1σ3
ϕ∗i (k0)ϕ j(k3)

= −Ua1a0a2a3(k1,k0,k2,k3) .

(1.167)

Since this antisymmetry is not obvious from the result we will also show the result for momentum
independent (onsite) interactions

U{ai}({ki}) = U
(︂
δσ0σ2δσ1σ3 − δσ1σ2δσ0σ3

)︂
δ(k0 + k1 − k2 − k3)

= U
∑︂
ηη′

(︂
δηη′δη0 −

1
2
δηη′

)︂
ση
σ0σ2

ση′

σ1σ3
δ(k0 + k1 − k2 − k3)

Vηη′,i j(Q) = Uδηη′δi jδi0

(︂
δη0 −

1
2

)︂
= U

1
2
δηη′δi jδi0

(︂
δη0 − δη,{x,y,z}

)︂
.

(1.168)

This case does not necessitate the introduction of form factor dependencies due to the locality of
the interaction, while the antisymmetry requirement still results in a non-trivial form for V . We
have used the identify 1 = δη0 + δη{x,y,z} in order to simplify the expression. With the same replace-
ment we can separate our result for the long range interaction into a spin and charge component

Vηη′,i j(Q) =
1
2
δηη′δi j

{︃
δη0

(︂
δi0

∑︂
k≠0

2Ck −
(︁
1 − δi0

)︁
Ci

)︂
− δη{x,y,z}

(︁
1 − δi0

)︁
Ci

}︃
Ci =

e−α|di |

|di|
eidiQ

(1.169)
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1.4.3 Susceptibilities in interacting theories

In Section 1.4.1, we have seen how to calculate the bare susceptibility of our Hubbard type models
for generic two-particle operators. Here we will use the separation of HI in terms of these operators
to motivate the calculation of these susceptibilities for an interacting model in the random-phase
approximation.

Using the notation from above we recall that

χA,B = −β
∑︂
{i}

B1,2A0,3δωn0ωn3

⟨︂
ψ̄2ψ1ψ̄3ψ0

⟩︂
conn

eiωn2δeiωn3δ , (1.170)

and proceed with a perturbative expansion of the expectation value in terms of the interacting part
of the action S I . Some but certainly not all diagrams of up to order (S I)2 are given by

χAB(q) = q q

l + q

l

A B + n1 q q
l + q l′ + q

l′l
A B

+ n2 q q

l + q l + q

l

l′

A B + n3 q q

l + q l + q

l

l′

l + q

l′′

A B

+ n4 q q

l + q l′ + q

l′l

n′′l′′A B + n5 q q

l + q

l

l′′A B

l′ + q

l′

+ n6 q q + ...
l + q

l

l′ + q

l′

l′′ + q

l′′
A B

(1.171)

where we have indicated the different symmetry prefactors via ni. With each added interaction
vertex, the number of loop integrations grows by one. We have denoted each momentum to be
integrated over by l, l′ or l′′ while other momenta like l + q or n′′ are constrained by momentum
conservation.
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The first term in the expansion is the only term occurring in a non-interacting theory and was
already calculated explicitly in Section 1.4.1. Interestingly, the following diagram with prefactor
n1 has a strikingly similar momentum structure and the integrals over multi indices l and l′ are
only coupled by the interaction term. The two diagrams with prefactor n2 and n3 can be repro-
duced from the first diagram with a modified propagator line and are conventionally called self
energy diagrams. While these diagrams are omitted in the susceptibility calculation on RPA level
they can be included in frequency dependent fluctuation exchange (FLEX) calculations, where
the frequency dependent self-energy is included explicitly. In the third line, we see that diagrams
with a more complicated topology can introduce highly linked momentum integrals. For example
n′′ = l′′ + l− l′ in order to enforce momentum conservation at each vertex making it impossible to
factorize integrations over l, l′ and l′′ even for momentum independent interactions. Nevertheless,
these types of diagrams are implicitly included in functional renormalization group (fRG) calcu-
lations via the iterative structure of the functional flow equation. In contrast, the last diagram with
symmetry prefactor n6 can be factorized in equivalent fashion to the diagrams in the first line as
we will now see.

Using results obtained during the calculation of the bare susceptibility and some previously
established shorthand notation we can calculate the first diagram including an interaction term as

χ
part
AB (q) = β

∑︂
{i}

δωn0ωn2
A0,2G04G62U4576G73G15B1,3

=
∑︂
{i}

A0,2δ0,4δ7,3δ6,2δ1,5LPH
α0α2

(k0,k2)Uα0α1α2α3({ki})LPH
α3α1

(k3,k1)B1,3

=
∑︂
{αi}

∑︂
l,l′

Al+q,lLPH
α0α2

(l + q, l)Uα0α1α2α3(l + q, l′, l, l′ + q)LPH
α3α1

(l′ + q, l′)Bl′,l′+q .

(1.172)

Up to this point the calculation is most conveniently performed in band space and similar ex-
pressions are readily obtained for all diagrams in Equation 1.171 due to the static nature of the
bare interaction. The remaining momentum space integrals, however, take an especially simple
structure for this specific diagram. If we insert the D-channel decomposition of the interaction we
find

χ
part
AB (q) =

∑︂
{αi}

∑︂
l,l′

∑︂
gg′

Al+q,lLPH
α0α2

(l + q, l)ϕ∗g(l)Ugg′
α0α1α2α3

(q)ϕ∗g′(l
′)LPH

α3α1
(l′ + q, l′)B1,2 . (1.173)
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and realize that the result decouples in q and into two independent integrals over l and l′. Finally
we transform everything from band space back into orbital space and find

χpart
(︂
A†η,m, f (q), Aη′,m′, f ′(q)

)︂
=

=
∑︂
{σi}

∑︂
{oi}

∑︂
gg′

Om
o0o3

ση
σ0σ3
ℵ f g

a0a7a4a3
(q, 0)Ugg′

a4a5a7a6
(q)ℵg′ f ′

a6a1a2a5
(q, 0)Om′

o1o2
ση′

σ1σ2
. (1.174)

An equivalent calculation can be performed for the last diagram shown in Equation 1.171 and for
the equivalent diagram at all orders in U. These diagrams are the only diagrams considered in
the RPA and we will from now on refer to them as RPA diagrams. Similar structures in the loop
can most likely be employed for some self-energy diagrams, while the diagrams with symmetry
factors n4 and n5 can not be factored into independent integrals and the double momentum space
integrals have to be carried out explicitly.

Clearly the RPA diagrams turn out to be easily calculated due to their simple analytic structure.
We introduce yet another set of multi-indices A0 = ( f0, a0, b0 for notational convenience and
thereby rewrite the “central” part of the previous equation as a matrix product

ℵ
f0 f1
a0a1b1b0

(q)U f1 f2
b1b2a1a2

(q)ℵ f2 f3
a2a3b3b2

(q) = ℵA0A1(q)UA1A2(q)ℵA2A3(q) . (1.175)

EachAi can be viewed as a PH pair and ℵAB can be interpreted as coherent particle-hole propaga-
tion in the system while UAB describes particle-hole scattering at the interaction vertex. All RPA
type diagrams can be written in terms of these matrix products. We therefore consider the infinite
series

ℵRPA
A0A1

(q) = ℵA0A1(q) − ℵA0B1(q)UB1B2(q)ℵB2A1(q)

+ ℵA0B1(q)UB1B2(q)ℵB2B3(q)UB3B4(q)ℵB4A1(q)

− ℵA0B1(q)UB1B2(q)ℵB2B3(q)UB3B4(q)... ,

(1.176)

with all repeated multi-indices denoting implicit summation over them. Note that the alternat-
ing sign originates from the varying definition of the generalized susceptibility Equation 1.103
compared to common RPA convention Equation 1.99 [79]. This can be simplified to a recursive
expression

ℵRPA
A0A1

(q) = ℵA0A1(q) − ℵA0B1(q)UB1B2(q)ℵRPA
B2A1

(q) , (1.177)

which is commonly solved by a resummation of the geometric series

ℵRPA
A0A1

(q) =
ℵB2A1(q)

1 + ℵA0B1(q)UB1B2(q) .
(1.178)
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The fraction implies a matrix inversion of the denominator. Note that inserting the result back into
Equation 1.108 and Equation 1.109 yields the effective interaction in the fluctuation exchange
approximation [47, 72].

In order to motivate the importance of RPA type diagrams over others, we will now attempt
to classify the importance of diagrams in the interacting theory in analogy to a justification of
the RPA given by Bruus and Flensberg in [93]. We start our reasoning from the assumption of
weak enough electron-electron interactions such that U/W < 1. Since ℵ ∝ G01 ∝ W−1, it is
clear that diagrams with a lower number of interaction vertices will contribute less to the overall
susceptibility in Equation 1.171 in this limit. In a next step we try to compare the relevance of
different diagrams in the same order of interaction strength. While this is generically not possible
prior to an actual calculation of the diagrams, we can use the fact that V(Q) diverges for small
transfer momenta Q in the case of the long-range interactions introduced in Section 1.4.2 to craft
an argument. For Q → 0, an RPA diagram of order n will diverge as α−n while any diagram of
non-RPA type will at least involve one interaction V(p ≠ Q), depending on a momentum p that
is integrated out. The singularity at p → 0 is of measure zero in these integrals, and the diagram
will diverge more weakly with at worst αn−1. In conclusion, the long-range singularity of the
Coulomb potential provides one avenue to justify a restriction to the RPA diagrams. Following this
argument, the PH susceptibility of a given system diverges at each order in perturbation theory for
a sufficiently long range interaction. Coincidentally, the geometric series of RPA type diagrams
to all order n, cures this divergence as one can easily from Equation 1.178. This fact can be
understood as a self-screening of the system that is facilitated by PH fluctuations.

For lattice systems, a similar argument for the importance of RPA diagrams could be made by
assuming the existence of a perfect nesting vector Q driving a divergence in the bare susceptibility
ℵ0 at this momentum and at zero temperature. Clearly this situation can be analysed analogously
and the RPA diagrams are easily identified as the most divergent diagrams at each order in U/W.
The RPA is therefore an especially suitable approximation close to a PH instability [107]. Despite
these reasons, the RPA remains a crude approximation for generic Hubbard type Hamiltonians
and is most easily justified by numerical applicability and a posteriori comparison to more sophis-
ticated methods like the fRG.

1.4.4 RPA analysis of unconventional Fermi surface instabilities

We have previously seen in Sect. 1.3, that Hubbard type models become superconducting for low
enough temperatures due to the presence of an effectively attractive interaction channel and the
diverging PP diagram [5]. The two most relevant assumptions in our argument were the absence of
fine-tuning and an infinitesimal coupling strength. This allowed us to perform calculations in one
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loop perturbation theory and to neglect the possibility for growing couplings in the PH channel.
Accordingly, lifting these assumptions necessitates a reconsideration of the possibilities for spon-
taneous symmetry breaking in our models. One possibility for treating PH and PP instabilities on
equal footing is to calculate a one loop renormalization group flow starting from the full band-
width W instead of the small intermediate scale Ω0 introduced previously [73, 108–113]. Such a
calculation can be either done analytically by singling out a small number of physically motivated
coupling functions [76, 114–117] or numerically via a discretization of the vertex function, an
approach known as functional renormalization group (fRG) [82, 118–123].

Here we will pursue an alternative, numerically much less demanding, approach. We have seen
that ℵRPA is associated to our systems linear response functions with respect to an exhaustive set
of PH perturbation operators and from Equation 1.178 it is clear that ℵRPA diverges if

1. the nominator diverges, a scenario that is associated with small temperatures and fine tuned
Fermi surfaces with perfect nesting.

2. the denominator vanishes i.e., the matrix ℵA0B1(q)UB1B2(q) has an eigenvalue λ = −1. This
can be seen as a generalized Stoner criterion for PH instabilities.

A diverging susceptibility indicates an instability of the system with respect to this perturbation
since infinitesimal fluctuations are sufficient to induce a finite response of the system. In this
scenario our perturbative treatment of the interaction certainly breaks down. Fortunately, the
diverging susceptibility of some operator A already provides us with an ansatz for a possible
mean-field expansion of the interaction: ⟨A⟩. In order to obtain the ground state of the system one
can now perform a self consistent calculation in the mean-field approximation. This is similar to
the fRG, where the numerical evaluation of the RG flow may lead to a divergence in the (cutoff
dependent) vertex function. At this point one has to stop the flow due to a breakdown of the one-
loop expansion of the flow-equation and also resorts to a renormalized mean-field analysis that is
motivated by the diverging coupling function.

In contrast to the fRG, however, our RPA analysis up to this point does not include any feedback
between PP and PH fluctuations. While we accept this constraint for the analysis of particle-hole
like instabilities, bare repulsive interactions will not induce a superconducting instability in the PP
channel. We have seen this in our analysis of the wcRG and in particular from the RG equation
in the PP channel for Q = 0 (the Cooper channel) given by Equation 1.110. Repulsive (positive)
couplings in the Cooper channel renormalize to zero and only attractive channels flow to strong
coupling.

As stated in Sect. 1.3, the expansion of the Cooper pair scattering vertex up to second order
in the bare interaction Equation 1.86 is justified by an appropriate choice of the interaction scale
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U and introduction of a cutoff Ω0 in the wcRG. In the RPA, this cutoff may be given by a finite
temperature in the evaluation of ℵ or neglected as one disregards the PP diagram. The requirement
of a small enough interaction scale is fulfilled in the RPA approximation if not only U but also
ℵRPA are sufficiently small to allow for a truncation of the perturbative expansion of Equation 1.86.

Because we are interested only in attractive interactions in the Cooper channel, it is sufficient
to perform calculations for the PH diagrams and neglect the PP diagram as discussed in Sect. 1.3.
The remaining contributions of the one-loop expansion UPH and UcPH give rise to longitudinal and
exchange (transverse) fluctuations [124] respectively and describe the lowest order contributions
to superconducting pairing from PH (spin or charge) fluctuations. In this way, the expansion
given in Equation 1.86 forms the basis of RPA and FLEX calculations [24, 79, 125–128]. The key
difference between wcRG and RPA is the inclusion of higher order diagrams in the evaluation of
the relevant PH fluctuations. The effective Cooper pair interaction

Ueff
{αi}

(︁
kF ,qF

)︁
= UPH

{αi}

(︁
kF ,qF

)︁
− UcPH

{αi}

(︁
kF ,qF

)︁
(1.179)

on RPA level is given by Equation 1.108 and Equation 1.109 (for UPH and UcPH) but inserting ℵRPA

instead of ℵ0. Since our formalism is set up to treat generic Hamiltonians, where the spin-degree
of freedom does not decouple from other dynamical degrees of freedom, these formulas only
vaguely resemble conventional expressions from Refs. [24, 47, 79] and is more closely related to
recent results for the Rashba Hubbard model [32].

Specifically, for models with spin-rotation (SU(2)) symmetry, the bare susceptibility ℵ0 ∝ δηη′

is identical for charge η = 0 and spin-like η = 1, 2, 3 = x, y, z PH excitations. Combined with the
results from Equation 1.168 and Equation 1.169 we see that the interacting susceptibility on RPA
level will separate into a charge component

χRPA
C (Q) ∝ χ

(︂
A†η=0,m, f=0(q), Aη=0,m′, f ′=0(q)

)︂
(1.180)

that differs from the spin component

χRPA
S (Q) ∝ χ

(︂
A†
η={x,y,z},m, f=0(q), A

η={x,y,z},m′, f ′=0(q)
)︂

. (1.181)

The restriction to the constant form factor f = f ′ = 0 is also common for RPA calculations. Addi-
tionally, the SU(2) symmetry facilitates a separation of the Cooper pair scattering amplitudes into
singlet and triplet channel. Using these identifications, our formulas reduce to the conventional
expressions for the RPA and FLEX approximation [129].

In the general case, where we consider non-SU2 symmetric models with multiple orbital /
sublattice degrees of freedom and non-trivial form factors, the distinction between charge and spin
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susceptibility is not sufficient. Fortunately, a more general framework for the analysis of diverging
susceptibility matrices exists in the form of a simple eigenmode decomposition. This allows us
to identify the linear combination of particle-hole operators A with the largest susceptibility and
therefore the leading instability of the system.

Here, a connection with self-consistent mean-field approaches to the solution of the interacting
electron problem is natural. In Appendix B, we provide a self-contained derivation for such an
approach to superconductivity in spin-orbit coupled systems. Note that the final result for the
linearized gap equation

∆i = Ueff
i j LPP

jk ∆k , (1.182)

can be easily converted into a criterion similar to the divergence of the RPA susceptibility

LPP
li ∆i = LPP

li Ueff
i j LPP

jk ∆k

0 = (1l j − LPP
li Ueff

i j )LPP
jk ∆k .

(1.183)

In other words, diverging susceptibilities imply spontaneous symmetry breaking via the emer-
gence of finite expectation values. The eigenmodes of the susceptibility tensor may provide insight
into the structure of this expectation value, priming a self-consistent mean field ansatz.

1.5 Comparison of the RPA with wcRG and fRG

To round out this chapter on methodological approaches to unconventional superconductivity,
we will now focus on similarities and differences between the wcRG and RPA. This comparison
would not be complete without a discussion of the functional renormalization group (fRG) as both
the wcRG and RPA can be understood as different simplifications of it.

Starting from a unified description for a systems action S Λ at high Λ → ∞ and low Λ → 0
energy scales, one can derive an exact renormalization group (RG) flow equation that connects
actions at high scales to ones at lower scales [82, 112, 122, 130]. The microscopic model given
by Eqns. 1.1 and 1.6 defines the initial conditions for this flow equation. Similarly to the RPA
and wcRG the evolution of S Λ to lower energy scales yields a low-energy effective model that
only accounts for modes close to the Fermi level, while the influence of higher energy modes are
absorbed into the renormalized effective interaction terms. A key difference to the wcRG is the
numerical evaluation of the RG flow.

The exact flow equation for the action can be rephrased an infinite set of coupledflow-equations
for two-particle irreducible vertex functions. Then, the flow of each n-particle vertex function
is connected to the n + 1-particle vertex and an exact solution result for S Λ→0 would require the
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tracking of all two-particle irreducible vertex functions. The common solution of this problem
lies in lies in a truncation of the flow equation i.e., one neglects the effect of three-particle and
higher order vertex functions. Further common simplifications that reduce computational cost
are additionally neglecting changes of the one-particle vertex function (self energy corrections)
and fixing the frequency dependence of the two-particle vertex to the static part. All of these
approximations were justified in numerous places in the literature (see [82, 122] and references
therein) and do not affect the methods capability for resolving the interplay between particle-hole
(e.g. antiferromagnetic) and particle-particle (e.g. superconducting) fluctuations. The resulting
integro-differential equation for the effective two-particle vertex has striking similarities to the
perturbative expansion in Equation 1.83. The key difference is that the left hand side is replaced
with a derivative of the scale dependent two-particle vertex UΛ with respect toΛwhile the Greens-
functions on the right hand side are partially replaced by their scale derivatives. The differential
equation for UΛ

{ai}
(k0,k1,k2) is then solved via standard techniques.

Analogous to the calculation of RPA susceptibilities at low temperatures, the vertex elements of
UΛ will generically grow during the flow to an effective theory. At some point, this results in the
breakdown of the truncation conditions and the flow has to be stopped. A subsequent mean-field
decomposition of the effective interaction allows the identification of a clear instability. Similar
to the wcRG and RPA such an analysis goes beyond a simple treatment of the initial model on
mean-field level, as most order parameter fluctuations at energies > Λ are included in the analysis.

More specifically, the fRG constitutes the most rigorous perturbative treatment of such fluc-
tuation effects in the limit of weak coupling when compared to the wcRG and RPA approaches.
Similar to the analytical starting point of the wcRG, the fRG treats all two-particle instability
channels on equal footing. Expanding on the notion of analytical rigour and in a similar spirit
to the RPA, one may however allow for finite interaction scales, allowing approximate nesting
vectors to drive the system under consideration into a magnetically or charge-ordered phase. The
main advantage of the fRG lies in its iterative solution structure, furnishing a generic mixture of
the particle-particle and particle-hole channels. While our RPA and wcRG approaches outlined
above analyze the particle-hole renormalized interactions in the particle-particle (PP) channel,
the fRG tracks the evolution of the full interaction vertex during the whole flow. Consequently,
cross-channel contributions are naturally included in every single step of the differential equation’s
integration.

This advantage of the fRG is simultaneously it’s biggest drawback. The treatment of magnetic,
charge and PP interaction channels in an unbiased way necessitates the storage of the full two-
particle vertex and it’s three independent momentum dependencies. Using a naive momentum
space discretization with nk different momenta and considering a system with na degrees of free-
dom per unit cell [ no. sublattices × no. orbitals (× 2 for spin-orbit coupled systems) ] this function
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scales as n3
k × n4

a. Assuming storage of V{ai}({ki}) in terms of double precision complex floating
point numbers a typical size a 3 band model in two-spatial dimensions without spin-orbit cou-
pling would be nk = 402, na = 3 and the size of V would be ≈ 5.3 TB, making such calculations
prohibitive without further approximations. One such approximation is given by the truncated-
unity (TU) formulation of the fRG [123], which heavily inspired our approach to the treatment of
bare long-range interactions in the wcRG and RPA. It is important to note that the expansion of
the two-particle vertex in terms of formfactors, while exact for finite ranged interactions, poses
an approximation in the fRG approach. During the flow non-local and highly non-local interac-
tions can be generated, a process which is completely analogous to the generation of long-range
Cooper pairing interactions from purley local bare interactions in the wcRG (see Section 1.3).
Accordingly, the number of formfactors used for any TU-fRG calculation significantly exceeds
the one needed for an exact representation of the bare interaction. Therefore, a limitation to model
systems with limited complexity is present for the fRG, even in the TU approximation.

The RPA and wcRG approaches to unconventional superconductivity circumvent this problem
by constraining the calculation to one single channel at a time. This allows for a more efficient
vertex parametrization due to the limited range of the bare interaction and the constraint to the
Q = 0 case for the PP-channel (the Cooper channel). Accordingly, the potential complexity of
the model system is enhanced at the cost of a more biased analysis. This bias is exemplified by
the potential for fRG to resolve finite Q instability in the PP channel. Also the RPA allows for
particle-hole fluctuations as a driver for Cooper pairing, while the feedback of particle-particle
excitations into the magnetic and charge channel is completely neglected. While these omissions
constitute a (physically motivated) approximation for the RPA, they are exact constraints on the
effective interaction in the limit of vanishing bare interactions [23, 92]. In the limit of vanishing
bare interactions U/W → 0 and notwithstanding numerical implementation problems, the wcRG,
fRG and RPA are formally equivalent. Under the assumption that spin and charge fluctuations
of the unrenormalized electronic system drive phase transitions in the Fermi-liquid, the small set
of resummable diagrams included in the RPA poses a sensible restriction and we can expect it to
match results from a more involved fRG calculation [24, 125].

In order to properly compare the three methods, another numerical challenge has to be consid-
ered: the sharpness of the Fermi surface for zero temperature. On one hand, the introduction of
a finite regularization scale Λ in the fRG circumvents the problem at the beginning of the flow.
Furthermore, due to the start with a finite interaction scale, the flow is usually terminated before
Λ becomes to small to allow for efficient loop integrations. In the RPA one can similarly en-
hance the ordering tendencies of the system via the introduction of a finite interaction, justifying
an artificial temperature regularization to simplify the integration of the particle-hole bubble in
Equation 1.103. On the other hand, the vanishing interaction strength constraint of the wcRG
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necessitates an evaluation of this integral at zero temperature in order to achieve a conceptually
consistent result. Due to this, numerical calculations of the wcRG may be significantly more in-
volved when compared to seemingly similar RPA results for the same system. Such a comparison
of the wcRG and RPA via the necessary effort for the loop integration is justified as the necessary
matrix operations for the ladder resummation are dwarfed by the integration.

Finally we would like to comment on the feasibility of detailed phase-diagram mappings in all
three methods. Changes to the single-particle Hamiltonian H0, for example in order to compare of
different doping levels, necessitate a complete recalculation in all three cases. In contrast, modi-
fications of the interaction Hamiltonian parameters HI do not alter Equation 1.103 i.e., the results
of this calculation may be re-used for scans in e.g. the overall interaction strength or different ra-
tios between onsite and nearest-neighbour interactions. Due to this, the computational complexity
of phase-diagram scans in the interaction parameters for wcRG and RPA is significantly reduced
compared to the fRG as its iterative solution structure does not allow for significant re use of
results for different initial conditions.

1.6 Conclusion and Outlook

In the pursuit of an efficient and reliable framework for the analysis of unconventional supercon-
ducting instabilities of correlated metals, we have identified the particle-hole bubble as the central
quantity. We have unified the formulations of the wcRG and the RPA in terms of this object, which
we introduced as the generalized susceptibility χ for local and it’s generalization ℵ for non-local
interactions.

In combination with the numerical performance optimizations we presented in detail in [72],
our work paves the way towards an efficient and reliable numerical toolbox, equipped for the ab-

inito analysis of unconventional superconducting instabilities in real materials. We envision such
a framework to be based on traditional density functional theory calculations, downfolding of the
model to a tight-binding Hamiltonian via Wannierization and the presented analysis of its Fermi
surface instabilities within the wcRG or RPA.

Future methodological improvements of this work may include the relaxation of various approx-
imations. Clearly, a combination of our results with the inclusion of frequency dependent vertex
functions as well as self energy corrections could be a worthwhile pursuit. The resulting frame-
work, commonly known as fluctuation exchange approximation (FLEX) constitutes a conserving
approximation and was established as a useful tool for the analysis of various toy-models[131–
133]. Fusing it with our results could open up the possibility of studying the interplay of non-local
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interactions and self-energy effects in the context of realistic material scenarios. In this context, a
connection with dynamical mean field theory (DMFT) approaches may also be fruitful.



Benchmark calculations

Here we investigate the propensity towards unconventional
surface superconductivity of the square and triangular Hub-
bard modes with and without Rashba spin-orbit coupling.
Some results of this this part of the thesis have been pub-
lished in Reference [72].
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Benchmark calculations

In this chapter we will discuss the paradigmatic Hubbard model on the square and triangular lattice
from a weak coupling perspective. Particularly, we will focus on the superconducting instabilities
of these models and the influence of Rashba spin-orbit coupling on them. The square lattice
model provides a perfect benchmark case, where our methodology can be compared to related
approaches, and is accordingly the first place to establish the capabilities of our framework to
include spin-orbit effects.

The Hubbard model on the triangular lattice features a different lattice geometry while avoiding
the necessity for a sublattice basis, making it an ideal model to highlight the influence of the
model geometry on superconductivity. Additionally the surface of LuPtBi we investigate in the
next chapter features a triangular lattice of bismuth atoms.

2.1 SU(2) symmetric Hubbard models

Before concerning ourselves with the complications arising due spin-orbit coupling effects, we
study models with an intact spin-rotation symmetry. We restrict our analysis to the simplest case
i.e., models with three parameters.

1. The nearest neighbour tunneling amplitude t.

2. A repulsive onsite interaction of strength U.

3. The average number of electrons per unit cell n.

For the lattices with a trivial unit cell considered here, 0 < n < 2 due to the Pauli principle. We
further note, that our methods are limited to a perturbative treatment of these models i.e., U ≪ t

as discussed in the previous chapter.
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The general Hamiltonian describing the models in this section is therefore a particularization of
Eqs. 1.1 and 1.6 that can be written as

H = t
∑︂
σ

∑︂
⟨i, j⟩

c†j,σci,σ − µ
∑︂
σ

∑︂
i

c†i,σci,σ + U
∑︂

i

c†i,↓c
†

i,↑ci,↑ci,↓ . (2.1)

The chemical potential µ is chosen such that the groundstate |0⟩ of H (for U = 0) yields

n =
1
N

∑︂
σ

∑︂
i

⟨0| c†i,σci,σ |0⟩ (2.2)

for a system with N lattice sites. The operators c†i,σ create an electronic state at site i with spin σ.
The spin rotation symmetry of this model is given by the gauge-transformation

c†i,σ →
∑︂
σ′

Uσσ′c
†

i,σ′ , ci,σ →
∑︂
σ′

U∗σσ′ci,σ′ , (2.3)

whereU ∈ SU(2) is generated by the Pauli matrices σ = {σx, σy, σz} such thatU(Θ) = e−iΘσ.
Clearly the model features an additional U(1) gauge-symmetry

c†i,σ → e−iϕc†i,σ , ci,σ → e+iϕci,σ , (2.4)

related to the conservation of particle-number. The implications of these symmetries for emergent
low-energy effective interactions is discussed in detail in Ref. [120].

Therefore, we will be content with a brief discussion of Equation 2.3’s implications for the bare
susceptibilities introduced in Section 1.4.1. For the simple Bravais lattice models we discuss here,
it is sufficient to discuss the local operators

n(Q) =
∑︂

k

∑︂
σ

c†k+Q,σck,σ , (2.5)

S(Q) =
∑︂

k

∑︂
σσ′

c†k+Q,σσσσ′ck,σ′ (2.6)

as well as their non-local generalization

Aη, f (Q) =
∑︂

k

∑︂
σσ′

ϕ f (k)c†k+Q,σσ
η
σσ′ck,σ′ (2.7)

discussed in Section 1.4. Due to the local nature of the presently discussed model class, we will
refrain from discussing susceptibilities of non-local operators, as their RPA contributions vanish.
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To keep notation general we introduce

ϕ0(k) = 1 , (2.8)

a constant formfactor associated with index f = 0.
We recall from Equation 1.147 that

χ0(A†η,0(Q), Aη′,0(Q′)) = δ(Q −Q′)
∑︂
{σi}

ση
σ0σ3

ση′

σ1σ2
ℵ00
σ0σ1σ2σ3

(Q, 0) (2.9)

and note that Equation 2.3 implies

ℵ00
σ0σ1σ2σ3

(Q, 0) ∝ δσ0σ2δσ1σ3 , (2.10)

for the bare susceptibility, as the spin degree of freedom is conserved along each propagator line.
Straightforward calculation∑︂

{σi}

ση
σ0σ3

ση′

σ1σ2
δσ0σ2δσ1σ3 =

∑︂
σ0σ1

ση
σ0σ1

ση′

σ1σ0
= 2δηη

′

(2.11)

yields
χ0(A†η, f (Q), Aη′, f ′(Q)) ∝ δηη′ . (2.12)

As previously (compare Section 1.4.4) discussed, this only holds for the non-interacting suscep-
tibilities and the spin (S) (η = (1, 2, 3)) and charge (C) (η = 0) sectors will split upon including
interaction effects into the susceptibility calculation.

Finally, in order to simplify notation for the results presented here, we introduce the shorthand
notations

χ0,C = χ0,C(Q) = χ0(A†0,0(Q), A0,0(Q)) (2.13)

and
χ0,i j = χ0,i j(Q) = χ0(A†i,0(Q), A j,0(Q)) (2.14)

with i, j ∈ {x, y, z}. In particular for the case of bare susceptibilities and intact spin-rotation sym-
metry we have χ0,C = χ0,ii = χ0 for all i. Note that in some figures we further abbreviate χ0 = χ.
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Figure 2.1: We show the energy dispersion of the nearest neighbour square lattice tight-binding
Hamiltonian in the left panel. The energy-dispersion is measured relative to the Fermi energy
implied by a filling of n = 0.95 electrons per unit cell and the Fermi level is indicated by a
dashed line. The high symmetry path through momentum space is indicated by a dashed line in
the right panel where we also depict the models Fermi surface for n = 0.95. The color coding
of the Fermi surface illustrates the Fermi velocity vF = ∂E/∂k along the Fermi surface and
the ticked color corresponds to its reciprocal average v̄F along the Fermi surface as defined in
Equation 1.112.

2.1.1 Square lattice

The square lattice Hubbard model can be physically motivated in various ways, one of which is
discussed in the introduction of this thesis. Here we will instead focus on the model as a simple
testing ground for the methodological framework introduced in Chapter 1. In particular, the filling
fraction n i.e., the average number of electrons per unit cell, is taken as a completely variable
input. While this is in stark contrast to most realistic experimental situations (with the notable
exception of the recently discovered Moire hetero-structures [56, 60]), it allows us to track the
influence of the system’s Fermi surface shape on the superconducting pairing. In particular, the
model at very low filling fractions maps to the Free electron model with a vanishing influence of
the lattice chosen as a ultraviolet-regulator to the parabolic kinetic energy relation.

In the left panel of Figure 2.1, we show the band structure for the Hamiltonian’s non-interacting
part (U = 0). Notice the particle-hole symmetry of the band structure around the van-Hove filling
at µ = 0 (n = 1), as well as the SU(2) symmetry enforced two-fold degeneracy of the band. Here,
we have chosen a slightly lower filling fraction of n = 0.95 electrons per unit cell, resulting in
the depicted Fermi level and the Fermi surface shown in the adjacent panel. This way, we avoid
the ideal nesting (and corresponding divergence in the T = 0 particle-hole (PH) susceptibility) at
this special point in parameter space. The reciprocal of the Fermi velocity along the Fermi surface
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Figure 2.2: Comparison of the square lattice Hubbard model’s bare particle hole susceptibility
χ0 for varying filling fractions n. In the left panel, we compare our results to the exact result
for the free electron gas for a small filling n = 0.05, where lattice effects are negligible due to
the mean electron separation exceeding the lattice constant significantly. The right panel shows
the continuous evolution of the susceptibility as a function of n. We particularly emphasize the
evolution of the maximum from Γ to X and finally M as n increases.

is proportional to the density of states at this point ρ ∝ 1/vF so that the chosen setting is still
influenced by the band structures van-Hove singularity at the k = X point, where |∇kE| vanishes.

The influence of the square lattice geometry on the electronic structure becomes particularly
important close to half-filling i.e., n = 1. We illustrate this by comparing the PH susceptibility
defined in Equation 1.99 for different fillings in Figure 2.2. Starting from a susceptibility profile
matching the free electron gas for small filling fractions, one can clearly observe the emergence of
additional features when the Fermi momentum approaches the Brillouin zone boundary 2kF ≈ π/a

at n ≈ 0.4.
We use this setting, where we only vary the filling n as the simplest benchmark scenario for

the wcRG and RPA methods. We present the filling dependent phase diagram of this particle hole
symmetric model (for the hole doped side 0 < n < 1 only) in Figure 2.3. Not only do we reproduce
the initial results by Raghu et al. [23] but also find the small region of spin triplet pairing in the E

irreducible representation (Irrep) at n ≈ 0.5 uncovered in [134]. Our quantitative deviation from
the results in [23] by an overall factor has been resolved in private communication with the authors.
Note that the emergence of a significant Vefft/U2 at n ≈ 0.4 coincides with the introduction of
lattice effects in the susceptibility as discussed in the previous paragraph. Following this line of
argument, the B1 / dx2−y2-wave superconducting phase can be associated with the dominating PH
susceptibility in the region around Q = (π, π).
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Figure 2.3: Results for the NN (t′ = 0) Hubbard model on a square lattice. Most of the pre-
sented data has been previously reported in [23, 134, 135]. Wolf et al. [134] identified a small
parameter region where triple superconductivity in the E irreducible representation (Irrep) is
favoured in the wcRG. We reproduce their results by discretizing the Fermi surface with 80
distinct points and solving the critical susceptibility integral using an equally spaced grid of
(800 × 800) points in the Brillouin zone. Nevertheless, the instability scales for fillings n < 0.2
are indistinguishable within the numerical error. The proximity of different phases close to
n = 0.5 filling is highlighted in the inset. A generalization of these results for finite interaction
strength is obtained in the RPA and shown in the right panel. Based on the bare susceptibil-
ity calculations obtained as an intermediate result of the left panel, the RPA resummation with
varying onsite interaction reveals slight changes in the ordering of instabilities. In particular, the
triplet state is suppressed via the enhanced antiferromagnetic spin fluctuations, giving rise to a
double transition into the neighbouring B2 Irrep and finally the extended s-wave solution A1 for
U > t. The inset shows that the E Irrep survives for very small interaction scales, demonstrating
the equivalence of RPA and wcRG for infinitesimal interaction scales. We emphasize that our
findings coincide with the results of Ref. [135] (t′ = 0 line in Fig.3). The grey region around
half filling signals the onset of a spin-density wave (SDW) instability due to a diverging RPA
spin susceptibility as expected from the perfect (π, π) nesting of the FS at n = 1.

Using the generalized susceptibilities obtained from these calculations we perform RPA cal-
culations for the same system at varying interaction scales 0 < U < 3t without any additional
numerical integrations and present our findings in the right panel of Figure 2.3. As expected this
does not affect the symmetry of the order parameter in regions of large separation between the
eigenvalues of g but introduces qualitative changes at n ≈ 0.5. In agreement with the results
from [135] an extended s-wave A1 state is favoured in this transition region between the common
nearest neighbour B1 / dx2−y2-wave state around half filling and the next nearest neighbour B2 /

dxy-wave state for 0.25 < n < 0.45.
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Figure 2.4: We show the energy dispersion of the nearest neighbour triangular lattice tight-
binding Hamiltonian in the left panel. The energy-dispersion is measured relative to the Fermi
energy implied by a filling of n = 1.5 electrons per unit cell and the Fermi level is indicated by
a dashed line. The high symmetry path through momentum space is indicated by a dashed line
in the right panel where we also depict the models Fermi surface for n = 1.5. The color coding
of the Fermi surface illustrates the Fermi velocity vF = ∂E/∂k along the Fermi surface and
the ticked color corresponds to its reciprocal average v̄F along the Fermi surface as defined in
Equation 1.112. In contrast to Figure 2.1, this model does not feature a particle-hole symmetry
for any filling fraction.

2.1.2 Triangular lattice

Similar to the previously discussed square lattice Hubbard model, the model on the triangular
lattice features a single spin-degenerate bands as it is a pure Bravais lattice. The different space
group symmetry of the lattice, therefore manifests itself only in a different point group symmetry:
C6v instead of C4v for the square lattice. In Figure 2.4 one can see the appropriate hexagonal
Brillouin zone (BZ) with the Fermi surface at van-Hove filling (n = 1.5 electrons per unit cell).
From the band structure it also becomes clear that the bandstructure does not feature a particle-
hole symmetry as expected for a non-bipartite lattice. Another interesting consequence of the
hexagonal structure are the different Fermi surface topologies when hole doping or electron doping
away from the van-Hove filling. For fillings n < 1.5 the Fermi surface is fully connected and
shrinks around the Γ point. This finally results in a model that is well approximated by a free
electron model with quadratic band dispersion for very small fillings, analogous to the discussion
for the square lattice model. In contrast, for n > 1.5 the Fermi surface splits into two disconnected
segments, conventionally named pockets. Both pockets center around the corners of the hexagon
i.e., the K points of the Brillouin zone. While the four corners of the BZ are identical modulo
reciprocal lattice translations, this is not the case for the triangular lattice. Here only every second
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Figure 2.5: Comparison of the triangular lattice Hubbard model’s bare particle hole susceptibility
χ0 for filling fractions n ∈ {1.3, 1.5, 1.7}. In the left panel, we compare the three scenarios along
a high symmetry path through the Brillouin zone. We emphasize the strong increase of χ0(0)
and χ0(M) for n = 1.5, i.e., as the Fermi level coincides with the van-Hove singularity at M.
The right panel shows the the bare susceptibility for this scenario in the complete first Brillouin
zone. The results were obtained while employing a regularization temperature of T = t/600.

corner when traversing the hexagonal BZ can be identified with each other, resulting in two distinct
K points related only via the C6v point group symmetry but not via reciprocal lattice translations.
Similarly, three distinct M points exist in any hexagonal lattice systems.

As we have seen previously, a systems particle-hole fluctuations near van-Hove filling are dom-
inated by nesting vectors i.e., non-trivial displacements between two Fermi surface copies that
allow for good match between them. Visual inspection of the Fermi surface in Figure 2.4 quickly
results in the insight, that every vector along the high symmetry line between Γ and M induces a
strong nesting, maximising for Q = M. The resulting bare susceptibility is depicted in Figure 2.5,
where this feature can be seen clearly. We supplement the data for the van Hove filling by the
results for ≈ 13% hole and electron doping. One can clearly see that (i) particle-hole fluctuations
are more strongly suppressed for electron doping compared to the hole doping case and (ii) the
particle hole susceptibility for the electron doped scenario is largest for small momentum trans-
fers. Both of these effects are nicely explained by the two smaller Fermi surface pockets in the
electron doped case.

These differences influence the dominating superconducting instability strongly as shown in
Fig. 8 of Ref. [23]. We refrain from plotting our own data for the complete scan in filling as the
most interesting region around the van-Hove singularity is already contained as a special case in
Figure 2.10 which we discuss below.
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Figure 2.6: We show the energy dispersion of the nearest neighbour square lattice tight-binding
Hamiltonian with Rashba spin-orbit coupling αR = 0.4t in the left panel. The energy-dispersion
is measured relative to the Fermi energy implied by a filling of n = 0.95 electrons per unit cell
and the Fermi level is indicated by a dashed line. The right panel shows the four pocket Fermi
surface resulting from the singly degenerate bands.

2.2 Rashba spin-orbit coupling

Having established the effect of lattice geometry on particle-hole fluctuations and the subsequent
impact on superconducting pairing, we will now proceed to discuss the influence of spin-orbit
coupling on static particle-hole fluctuations.

Spin-orbit coupling is a relativistic effect that is rooted in the Zeeman coupling µBσB between
the spin σ of an electron and the effective magnetic field B experienced by this electron in its
rest frame. In this reference frame, an effective magnetic field B ∼ E × p/mc2 arises, whenever
the electron moves in an electric field E, inducing a finite Zeeman splitting σ(E × p)µB/mc2 for
vanishing external magnetic fields [27]. The required electric field is naturally present in the
vicinity of heavy atomic nuclei, where its radial symmetry induces the well known Lσ term,
coupling the electrons spin to its orbital angular momentum [136]. While this term can not induce
an energy splitting in time-reversal preserving and inversion symmetric systems, it will still lead
to an orbital admixture and energy shifts as exemplified in the unconventional superconductor
Sr2RuO4 [137]. Nevertheless all bands in such a system are doubly degenerate.

A spin dependent energy splitting becomes possible in time-reversal invariant systems due to
the presence of inversion symmetry breaking induced by the crystal structure, interfaces between
different materials or simply at a crystals surface [138, 139]. This effect is known as Rashba spin-
orbit coupling in the literature and leads to a variety of experimentally observed effects and is
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Figure 2.7: Phase diagram for a wcRG analysis of the unconventional superconducting instabil-
ities induced by a local Hubbard repulsion on a nearest-neighbour square lattice tight-binding
model with Rashba spin-orbit coupling αR as a function of filling n. The right panel shows
effective pairing strength described by Equation 1.115 and the grey dashed lines indicate the
position of the van-Hove singularities as a function of αR. In the left panel we can see that the
symmetries of the superconducting order parameter do not change in the region around half
filling. The slight particle-hole asymmetry for small and large filling fractions is an indication
of numerical inaccuracies in this regime.

especially relevant in the context of spintronics [27]. In the following we will focus on the Rashba
spin-orbit effect at interfaces.

Naively, one could assume that the electric field gradient at a crystal surface or epitaxial inter-
face is the sole driver for the observed spin-splitting via the analogous effect discussed previously.
The experimentally observed strength of spin-splitting is however underestimated by several or-
ders of magnitude by this [140–142]. Ref. [141] resolves this discrepancy via a tight-binding
model (in particular for an Au (111) surface including all sp3 orbitals) and find that the spin-
splitting is well described by a term of form αRσ(z × p). The coupling strength αR is dominated
by processes in perturbation theory that involve nearest neighbour hopping and matrix elements
of the intra-orbital spin-orbit interaction, enhancing the effect for materials involving heavy ele-
ments.

Due to the single orbital nature and model character of our Hubbard models, we introduce
Rashba spin-orbit coupling phenomenologically via an added term in the tight-binding Hamilto-
nian

HSOC = αR

∑︂
⟨i, j⟩

∑︂
σσ′

c†j,σg(ri − r j)σσσ′ci,σ′ . (2.15)
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As one can anticipate from our previous discussion

g(r) = i t(|r|) r × z (2.16)

for a 2d system in the xy plane, where t(|r|) parametrises the non-spin-orbit hopping element
between sites separated by r. An exemplary bandstructure and corresponding Fermi surface is
shown in Figure 2.6.

Previous studies of unconventional superconducting instabilities in this system have relied on
an analytical solution of this tight-binding Hamiltonian in order to circumvent the gauge problem
posed by numerical matrix diagonalization [32, 33]. Since the Rashba term is not centrosym-
metric, it lifts the spin degeneracy between the bands at all points in the Brillouin zone with the
exception of time reversal invariant momenta and thereby making our gauge fixing procedure dis-
cussed in Chapter 1 unique. We validate our approach by successfully reproducing their results
without relying on analytical eigenstates. Our resulting phase diagram is shown representatively
in Figure 2.7. One can clearly see the splitting of the superconducting dome at αR = 0.0 and
n = 1 into two separate domes following the new van Hove singularities established by the two
spin-orbit separated Fermi surface sheets and observe an overall suppression of the superconduct-
ing pair strength Ve f f with larger values of αR. This result is expected due to the reduction of the
systems nesting. In addition to this phase diagram, we provided extensive phase diagram scans
in αR and filling n for finite next nearest neighbour hybridizations in [72], further validating our
implementation.

Due to the small effective pairing strength for small Fermi surfaces in the small and large n

limit, which further decreases as the spin-orbit interaction is increased, the gap between leading
and sub-leading instabilities drops beneath the numerical resolution of the applied scheme, which
is a problem also present in other works (e.g. Ref. [33, 134]). Our results are therefore only strictly
reliable in phase space regions of sizeable pairing strength, providing a natural explantation for
the slight particle-hole asymmetry in Figure 2.7.

A superficial look at the presented phase diagram for the Rashba Hubbard model an a square
lattice could lead to the conclusion that the influence of the spin-orbit coupling is a purely quan-
titative effect that is well explained by the splitting of the van-Hove singularity. This is not true
as the broken inversion symmetry qualitatively changes the symmetry considerations for potential
Cooper pairing states [31, 143, 144]. Similarly, the spin-orbit coupling invalidates our considera-
tions for the symmetry between bare charge and spin fluctuations that resulted in Equation 2.12.
It is true, however, that the implied changes are subtle on the square lattice. Due to this, we will
now proceed with our discussion of these effects on the triangular lattice.
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Figure 2.8: We show the energy dispersion of the nearest neighbour triangular lattice tight-
binding Hamiltonian with Rashba spin-orbit coupling αR = 0.5t in the left panel. The energy-
dispersion is measured relative to the Fermi energy implied by a filling of n = 1.5 electrons per
unit cell and the Fermi level is indicated by a dashed line. The right panel shows the six pocket
Fermi surface resulting from the singly degenerate bands.

Triangular lattice

Let us start the discussion with a quick summary of the kinetic Hamiltonian on the triangular
lattice. Analogous to the square lattice situation, the two previously spin degenerate bands split
at all momenta that are not time-reversal invariant (TRI) (here the Kramers theorem protects the
spin degeneracy for all time-reversal symmetric systems). The van-Hove singularity splits into
asymmetrically due to the absent particle-hole symmetry and the hexagonal Brillouin zone leads
to up to six distinct pockets as one can see in Figure 2.8, corresponding to the six distinct TRI
momenta. We overlay the dependence of the new van-Hove fillings on the Rashba parameter αR

as grey lines over the phase diagrams in Figure 2.10.
Since the discussion of particle-hole fluctuations and unconventional superconductivity on the

surface of a crystal are a central topic of this thesis, we refer the reader to the following Chapter 3
for a detailed discussion of Cooper pairing in these models and only summarize the main points
here.

Since Equation 2.2 breaks spin-rotation symmetry, the spin of an electron moving on the lattice
is not conserved in the presence of spin-orbit interactions. Accordingly, χ{σi} is less constrained
in this scenario. One can show that χ0,0i = χ0,i0)∗ = 0 with i ∈ {x, y, z} vanishes for time-reversal
invariant systems, i.e., the total spin of a local particle-hole excitation c†iσciσ′ is conserved even in
the presence of SOC. In contrast, the direction of such an excitations spin is not conserved and in
general all χ0,i j are finite and only constrained by hermiticity. Figure 2.9 shows the resulting diag-
onal elements of the particle-hole susceptibility along the high symmetry path through the BZ for
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Figure 2.9: Bare particle hole susceptibilities χxx, χyy, χzz and χC on the triangular lattice for
n = 1.5 and αR = 0.5. In the left panel, we compare the different diagonal spin contributions
along scenarios along the high symmetry path through the Brillouin zone shown in Figure 2.8.
We emphasize the strong increase of χyy at the kx = 0 M point. The right panel shows the
the charge susceptibility for this scenario in the complete first Brillouin zone. The results were
obtained while employing a regularization temperature of T = t/600. Plots of the off diago-
nal components of the spin-susceptibility and complete Brillouin zone have been delegated to
Appendix C. Readers are encouraged to check out the beautiful pictures :-).

exemplary fixed model parameters. One can clearly observe the influence of the spin-momentum
locking for the large SOC case and the distinction between in plane xy and out of plane z spin
alignments. While the off diagonal elements are finite, their absolute value is small compared
to the diagonal components and we have decided to move additional plots into Appendix C for
conciseness.

In addition to this modification of the particle-hole susceptibities, superconducting pairing in
Rashba spin-orbit coupled systems is significantly modified by the spin-split Fermi surface. This
effect is particularly strong in our calculations due to the static approximation for the pairing inter-
action. It implies the strict fixation of Cooper pair excitations to the Fermi surface that, when com-
bined with the zero momentum condition k0 = −k1 constrains the potential pair wavefunctions to
be of intra-band type ∆λλ′ ∝ δλλ′ . For the present case this fixes the complete spin-structure of a
Cooper pair excitation with given relative momentum k. A combination of time-reversal symmetry
and fermionic antisymmetry then implies a constraint to even pairing functions ∆λλ(−k) = ∆λλ(k).
For the case of the triangular lattice with point group C6v, this means that only the three even (A1,
A2, E2) of the six irreps constitute energetically favourable pairing wavefunctions in the limit of
string SOC αR ≫ ∆. Clearly this condition is fullfilled for arbitrarily small values of αR in the
wcRG limit, where U and correspondingly ∆ is extremely small compared to all energy scales.
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Figure 2.10: Phase diagram for a wcRG analysis of the unconventional superconducting instabili-
ties induced by a local Hubbard repulsion on a nearest-neighbour triangular lattice tight-binding
model with Rashba spin-orbit coupling αR as a function of filling n. The right panel shows effec-
tive pairing strength described by Equation 1.115 and the grey dashed lines indicate the position
of the van-Hove singularities as a function of αR. The perceived enhancement of Ve f f at e.g.
αR = 0.1, αR = 0.5 and n = 1.48 is attributed to the almost perfect coincidence with the van
Hove filling at this parameter. In the left panel we can see the constraint to even irreducible
representations that is imposed by spin split Fermi surfaces in the limit of weak coupling.

Finally we present the phase diagram of unconventional superconductivity obtained from our
wcRG calculation in the vicinity of the van-Hove singularity in Figure 2.10. The previously
discussed point is clearly visible as the odd representations E1 and B1 are only supported for
αR = 0 and the degenerate E2 representation which was limited to the exact vHS at αR = 0
dominates the phase diagram for finite SOC. Interestingly, a new phase transforming under the A1

irrep emerges along the lower vHS.



Unconventional surface

superconductivity

Here we investigate the possibility of unconventional surface
superconductivity. A particular focus is given to the half-
Heusler compound LuPtBi, whose unusual surface state is a
prime candidate for correlation induced Cooper pairing. The
presented results are in preparation for publication [145].
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Unconventional surface

superconductivity

The analysis of many established unconventional superconductors has been predominantly fo-
cused on the bulk limit of quasi-two-dimensional (quasi-2D) such as the cuprates, ruthenates or
certain families of iron-based superconductors [12, 137, 146–149]. This fact may be understood
in terms of the generically reduced nesting features of three-dimensional (3D) Fermiologies com-
pared to the quasi-2D case in these layered systems. In addition, a variety of superconducting sys-
tems with atomic scale thickness have been identified in recent years, some of which we already
sketched in the introduction to this thesis. Noteworthy is, for instance, the case of twisted bi-
layer graphene (TWBLG) (and related systems), where the twisting angle between the graphene’s
layers affects the flatness of bands close to the Fermi level [56, 60]. Other examples include the
deposition of adatoms on the surface of various insulating and semimetallic substrates such as
Sn on Si(111) [54] or superconductivity (SC) between insulating oxide materials like the LaAlO3

/ SrTiO3 or KTaO3 based interfaces [55, 58, 150–152]. The true 2D nature of these systems
allows for potentially topological superconducting condensates that can feature chiral Majorana
fermions, the building blocks for topologically protected quantum computation [153–158]. Com-
pared to SC at an interface, however, surface SC has significant advantages, as it may be prone
to easier manipulation and investigation compared to interfaces hidden between two bulk materi-
als. In particular, many widely applied experimental probes such as photoemission spectroscopy
(ARPES) or scanning tunneling microscopy (STM) could be used to investigate surface SC.

While the 2D nature of SC between insulating oxides and on top of insulating or semiconducting
substrates is experimentally well established, the distinction between surface and bulk SC in bulk
(semi)metals is challenging. For phonon driven bulk superconductors, the distinction between
surface and bulk SC deriving from a single material superconductor is especially hard, because
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the SC 3D bulk transition sets all decisive energy scales due to its dominant density of states in
generic settings.

Evidence of surface SC has been reported in a variety of 3D topological insulators as well as 3D
Dirac semimetals [63–68]. While the superconducting transition temperature Tc in these systems
reaches up to ≈ 9 K, the comparatively small density of states (DOS) of linearly dispersing Dirac
fermions inhibits even higher Tc’s. In contrast, non-topologically protected (Shockley or Tamm)
surface states may be characterized by small bandwidths and nearly-flat dispersions, indeed pro-
viding a promising avenue to increase Tc via the enhanced DOS.

In this chapter we will start by summarizing the literature on surface superconductivity and
contrast it with our proposition for unconventional surface SC. We continue with a summary of
symmetry considerations for superconducting pairing in the absence of inversion symmetry as it
is relevant for a crystals surface. Subsequently, we discuss the crystal structure and electronic
properties of the half-Heusler material LuPtBi in the context of its bulk SC and metallic surface
state. Finally, we present an almost ab-initio Fermi surface instability analysis of this surface state
and identify a condensate of Cooper pairs which spontaneously breaks time-reversal symmetry as
the leading instability.

3.1 Surface superconductivity

In the introduction of this thesis we have discussed experimental investigations of two dimen-
sional (2D) superconductivity in various systems. This section particularizes the discussion to the
explicit case of surface superconductivity i.e., 2D superconductors arising at the surface of a bulk
material with critical transition temperature T surface

c exceeding any bulk SC transition temperature
T bul

c < T surface
c .

To the best of our knowledge, such a scenario was first discussed by Saint-James and de
Gennes [159] in the context of conventional bulk superconductors in the presence of decreasing
magnetic fields. The diamagnetic properties of superconductors implies that they expel magnetic
fields H from their bulk. Clearly, the presence of such an external field raises the total system
energy and for large enough values of H > Hc

1, the superconducting state is no longer energeti-
cally favourable compared to a normal state that allows for a penetration of the field through the
material [5]. Saint-James and de Gennes studied the Ginzburg Landau theory of a bulk supercon-
ductor in the presence of a plane boundary and magnetic fields parallel to this surface. They found
that upon lowering the field from values H > Hc, superconductivity nucleates at the surface and

1For the sake of conciseness we do not discuss the difference between superconductors of the first and second
kind here, and refer the reader to [5] for a general discussion and [159] for the implied differences for surface
superconductivity.
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not at the bulk. The critical field at which this nucleation occurs was named Hc3 and found to be
larger than the bulk value Hc < Hc3 for ideal superconductors. For superconductors of the second
kind (type II superconductors), they established that the presence of such a magnetic field will
lead to a superconducting layer near the surface of the sample i.e., surface superconductivity. The
theoretical prediction was quickly verified experimentally [160, 161] and their theory expanded to
finite temperatures [162], more complicated surface geometries [163–165] and multi-band super-
conductors [166]. Measurements of this effect in the heavy-Fermion superconductor UPt3 [167]
lead to extensions of the theory to unconventional order parameters [168]. Finally, the influence
of spin-orbit coupling on this type of surface superconductivity was also discussed [169]. In their
study, the authors predict an enhancement of particle-particle condensation with finite center of
mass momentum (FFLO2 states) due to the interplay of in-plane magnetic field and spin-orbit cou-
pling. Going forward, we will label all of these scenarios of surface superconductivity discussed
in this paragraph as field induced. They do not depend on a specific electronic structure at the
surface and are therefore not related to the scenario considered in this thesis.

A completely different approach to the idea of surface superconductivity is concerned with
possibility of a modified electronic structure at a material’s surface and accordingly does not
require the presence of a magnetic field. Theoretically, zero-field surface superconductivity (in
the following titled surface superconductivity) has been predominantly studied in the context of
topological surface states. The literature includes superconductivity in flatband surface states
at the surface of nodal fermionic systems [170, 171], phonon induced superconductivity in the
metallic surface states of three-dimensional topological insulators [172, 173] and the influence
of bulk superconductivity on topological surface states [174] to name a few. While experimental
evidence for surface superconducting islands in the topological insulator Sb2Te3 has been reported
in [63], conclusive evidence for a coherent superconducting condensate in the topological surface
state is outstanding. The arena of 3D semimetals seems to be more promising, as a variety of
groups have reported in evidence for surface superconductivity in a wide array of materials [64–
68].

Our proposal for unconventional surface superconductivity, however, neither relies on magnetic
fields nor non-trivial topology. Instead, we propose that an enhanced density of states at some
crystal surfaces may conspire with the increased correlation effects in two spatial dimensions [14]
and pronounced nesting features in the surface band structure to yield an unconventional mech-
anism for surface superconductivity. The first point was previously proposed by Weitzel and
Micklitz [175], who claimed that their observation of superconductivity in rhombohedral bismuth
clusters could be explained by the strongly increased density of states at the cluster surfaces,

2Fulde Ferrell Larkin Ovchinnikov
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leading to surface superconductivity. We are, however, not aware of any proposals for surface
superconductivity driven by electronic correlation effects inside the surface state itself.

Topologically trivial surface states are a widespread phenomenon in semiconducting materi-
als and even metals as reported by numerous photoemission as well as scanning tunnelling mi-
croscopy studies [140, 176, 177]. Typically, the resulting surface bandstructure are well separated
from the bulk, making these systems prototypical two-dimensional (2D) material platforms. As
we discussed in Section 2.2, the broken inversion symmetry at the surface can conspire with the
strong spin-orbit coupling (SOC) of heavy elements to yield spin-split Fermi surfaces. Finally,
the relevance of correlation effects for such surface states has not only been predicted theoreti-
cally [178] but observed in experiment [179]. A related system class to these intrinsic surface
band structures forming naturally on top of certain bulk materials, 2D band structures with strong
SOC and correlation effects can be engineered by depositing a single layer of atoms on top of a
clean substrate. This approach is even more flexible and both correlation effects and topologi-
cal properties have been observed in this large class of systems [180–182]. In both cases, missing
bond partners at a crystal termination are responsible for the formation of these surface band struc-
tures. Typically, electrons hopping through out-of-plane atomic orbitals (i.e., perpendicular to the
new surface) form π−bonds and experience the vacuum region’s strong potential barrier. These
conditions naturally lead to band dispersions flatter than for their in-plane-hopping counterparts.
The resulting increase in the associated density-of-states forms a genuine proxy for stabilizing
collective phenomena.

Having established the surface of bulk materials as an interesting platform for the realization
of unconventional superconductivity, we will now proceed by studying the constraints on pairing
imposed by the absent inversion symmetry at a surface. Particular focus is given to the relevance
of spin-orbit coupling in this context.

3.2 Relativistic corrections to superconducting pairing

As we discussed before in the introduction of this thesis and in Section 2.2, the dominant relativis-
tic correction in condensed matter systems stems from the effective magnetic field experienced
by electrons in the vicinity of the strong potential gradient near atomic nuclei. The coupling
between this effective field and the electrons intrinsic spin results in the well known spin-orbit
interaction [183]. In the absence of inversion symmetry, this effect has dramatic qualitative con-
sequences as it lifts the spin degeneracy of the electronic band structure and ties the electron’s
spin degree of freedom to it’s lattice momentum. This effect was discovered by Rashba [139] and
Dresselhaus [138] and was discussed by us in Section 2.2.
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In the following section we will first discuss the general implications of time reversal symmetry
on the electronic structure of Rashba spin-orbit coupled systems. We will then use the result to
discuss the implications of spin-orbit coupling on superconducting pairing.

Time reversal symmetry in a spin-orbit coupled system without

inversion symmetry

In a system of spin one half without orbital or sublattice degrees of freedom, we can write a
generic Hamiltonian as

H =
∑︂

k⃗

ψ†kkk(ϵ(kkk) + ggg(kkk)σσσ)ψkkk =
∑︂

kkk

ψ†kkkh(kkk)ψkkk , (3.1)

with the combined creation operator

ψ†kkk = (c†kkk,↑ ; c†kkk,↓) ,

for up (down) spin electrons c†kkk↑ (c†kkk↓) at momenta kkk.
We define the helicity operator

Λkkk =
ggg(kkk)σσσ
|ggg(kkk)|

(3.2)

squaring to the identity which trivially commutes with h(kkk). Due to this we can label the eigen-
states at each momentum kkk according to their eigenvalue λ = ±1 corresponding to this operator Λ.
The given Hamiltonian is already diagonal in momentum so we define eigenstates of the problem
defined by their eigenvalue equations

PPP̂ |ppp; λ⟩ = ppp |ppp; λ⟩ ,

Λppp |ppp; λ⟩ = λ |ppp; λ⟩ .
(3.3)

We can now diagonalize our Hamiltonian by introducing new operators creating these states

Ψ
†

kkkλ = (c†kkk,λ=+ ; c†kkk,λ=−) = ψ
†

kkkσ(Uλσ)† .

Ψkkkλ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ckkk,+

ckkk,−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Uλσ(kkk)ψkkkσ ,
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where we define operators c†kkkλ that create electrons with momentum kkk and helicity λ on the vacuum

|kkk; λ⟩ = c†kkkλ |0⟩ .

We pick Uλσ(kkk) such that
U(kkk)λσh(kkk)σσ′U∗(kkk)σ′λ′ = Eλ(kkk)δλλ′ .

In the new basis Equation 3.1 reads

H =
∑︂

k⃗

∑︂
λ

Eλ(kkk)c†kkk,λckkk,λ

and one possible solution for Uλσ(kkk) is given by

U(kkk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
|ggg(kkk)|+gz(kkk)

n+
gx(kkk)−igy(kkk)

n+

|ggg(kkk)|−gz(kkk)
n−

−gx(kkk)+igy(kkk)
n−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.4)

with normalization factors
n± =

√︂
2|ggg(kkk)|

(︁
|ggg(kkk)| ± gz(kkk)

)︁
.

Clearly this unitary transformation also diagonalizes Λ

U(kkk)Λ(kkk)U†(kkk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and results in energy eigenvalues
Eλ = ϵ(kkk) + λ|ggg(kkk)| . (3.5)

Note that generically, operators in the helicity basis B can be obtained from operators in the
spin basis A via

B(kkk)λλ′ = U(kkk)λσA(kkk)σσ′U(kkk)∗σ′λ′ , (3.6)

resulting in the fact that operators constant in momentum acquire a momentum dependence from
the unitary transformation.

Having found the energy eigenvalues of our Hamiltonian we continue with analysing the sym-
metry properties of our solution. In order to investigate the transformation behaviour of (time-
independent) operators and states under time-reversal symmetry it is easiest and most transparent
to start from the transformation behaviour of spin up and spin down states. In real space this
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transformation behaviour is given by

Tc j↑T−1 = c j↓

Tc j↓T−1 = −c j↑ ,

and the time reversal operation for our system can be represented in the spin basis as

Tc jσT−1 =
∑︂
σ′

i(σy)σσ′c jσ′ .

While it is up to a choice of convention how the minus sign for this transformation is picked, we
can’t choose all signs to be positive since T 2 = −1 has to hold for spin 1/2 particles. The time
reversal operator in spin space can is conventionally written as

T = iσyK = UTRK , (3.7)

where the complex conjugation K is necessary in order for T to be anti-unitary and UTR is the
unitary part of T . If the matrix UTR is not real, it is important to notice that

T−1 = (UTRK)−1 = KU−1
TR = (U−1

TR)∗K = (UTR)TK .

Introducing a Fourier transformation to connect real space and momentum space we can com-
pute the transformation behaviour of the creation and annihilation operators from the real space
behaviour and find

ckkkσ =
∑︂

xxx

eikkkxxxcxxxσ

Tckkk↑T−1 =
∑︂

xxx

e−ikkkxxxTcxxx↑T−1 =
∑︂

xxx

ei(−kkk)xxxcxxx↓ = c−kkk↓

Tckkk↓T−1 =
∑︂

xxx

e−ikkkxxxTcxxx↓T−1 =
∑︂

xxx

ei(−kkk)xxx(︁ − cxxx↑
)︁
= −c−kkk↑ .

This can be summarized into
TψkkkT−1 = iσyψ−kkk . (3.8)
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We can now compute the transformation behaviour of the Hamiltonian under the time reversal
operator

T HT−1 =
∑︂

kkk

Tψ†kkkh(kkk)ψkkkT−1 =
∑︂

kkk

Tψ†kkkT−1Th(kkk)T−1TψkkkT−1

=
∑︂

kkk

ψ†
−kkk(−iσy)Th(kkk)T−1(iσy)ψ−kkk =

∑︂
−kkk

ψ†kkk(−iσy)Th(−kkk)T−1(iσy)ψkkk .

Since h(k) is not an operator on the Hilbert space but simply a matrix shorthand for prefactors
of linear combinations of Hilbert space operators, time reversal simply acts on it as complex
conjugation, Th(k)T−1 = h∗(k). We find

T HT−1 =
∑︂

kkk

ψ†kkkσyh∗(−kkk)σyψkkk .

We can generalize this statement for operators of the form Okkk = ψ†kkkOkkkψkkk and general unitary
symmetry operations S represented in the space of creation and annihilation operators by US

SψkkkS
−1 = USψRS (kkk)

SOkkkS
−1 = ψ†RS (kkk)U

†

S OkkkUSψRS (kkk) = ψ
†

kkk′U
†

S OR−1
S (kkk′)USψkkk′ = ψ

†

kkk′O
′
kkk′ψkkk′ = O

′
kkk′

with O′kkk = U†S OR−1
S (kkk)US .

(3.9)

For the Hamiltonian in Equation 3.1 this result can be used to compute constraints on g(kkk) and
ϵ(kkk)

T HT−1 =
∑︂

kkk

ψ†kkkσy
(︁
ϵ∗(−kkk) + ggg∗(−kkk)σσσ∗

)︁
σyψkkk

=
∑︂

kkk

ψ†kkk
(︁
ϵ(−kkk) − ggg(−kkk)σσσ

)︁
σ2

yψkkk

=
∑︂

kkk

ψ†kkk
(︁
ϵ(−kkk) − ggg(−kkk)σσσ

)︁
ψkkk

!
=

∑︂
kkk

ψ†kkk
(︁
ϵ(kkk) + ggg(kkk)σσσ

)︁
ψkkk = H .

Here we used the fact that ϵ and g have to be real in order for H to be hermitian as well as the fact
that while σy is the only Pauli matrix with imaginary components resulting in σ∗y = −σy it is also
the only Pauli matrix commuting with σy. σx and σz on the other hand acquire a minus sign from
the anti commutation relation with σy. In summary

ϵ(−kkk) − ggg(−kkk)σσσ !
= ϵ(kkk) + ggg(kkk)σσσ . (3.10)
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From Equation 3.10 we find that for H to be time reversal symmetric, ggg(kkk) has to be an odd
function of kkk i.e. −ggg(−kkk) = ggg(kkk). Due to this we interpret Λ as a helicity operator. It further holds
that

TΛkkkT−1 = −Λkkk = Λ−kkk , (3.11)

and therefore

ΛkkkT |kkk; λ⟩ = −Λ−kkkT |kkk; λ⟩ = −TΛkkkT−1T |kkk; λ⟩ = −TΛkkk |kkk; λ⟩ = −Tλ |kkk; λ⟩ = −λT |kkk; λ⟩

ΛkkkT |kkk; λ⟩ = −λT |kkk; λ⟩

i.e. the time-reversal operator seems to connect states with different helicity. This of course is not
correct since we also have to account for time-reversal changing the momentum of our state. If
we act with the helicity operator at the “correct” momentum −kkk on a state T |kkk; λ⟩ it holds that

Λ−kkkT |kkk; λ⟩ = λT |kkk; λ⟩ . (3.12)

Using this information we can now define states at −kkk via their time-reversal partners at kkk

T |kkk; λ⟩ = eiαλ(kkk) |−kkk; λ⟩ , (3.13)

capturing the correct transformation behaviour for both momentum and helicity eigenvalues.
We can check that this is true and fix the phase by calculating ⟨−kkk, λ |T |kkk, λ′⟩ in the spin basis

to be
⟨−kkk, λ |T |kkk, λ′⟩ = λ

gx(kkk) − igy(kkk)√︁
gx(kkk)2 + gy(kkk)2

δλλ′δkkkkkk′K = eiαλ(kkk)δλλ′δkkkkkk′K ,

eiαλ(kkk) = λ
gx(kkk) − igy(kkk)√︁
gx(kkk)2 + gy(kkk)2

. (3.14)

Notice that we did not compute the “time-reversal operator in the helicity representation” as it
would be defined by Equation 3.6. This is not possible for the time reversal operator as a suitable
representation for T has to fulfil Equation 3.11 i.e., it is not diagonal in momentum space and
connects states at different momenta. To see that Equation 3.14 is consistent with T 2 = −1 we
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compute

⟨k, λ|T 2|k, λ⟩ =
∑︂
k′,λ′
⟨k, λ|T |−k′, λ′⟩⟨−k′, λ′|T |k, λ⟩ =

∑︂
k′,λ′

eiαλ(−kkk)δλλ′δkkkkkk′Keiα(kkk)K

= eiα(−kkk)(︁eiα(kkk))︁∗K2 = (λ)2 gx(−kkk) − igy(−kkk)√︁
gx(−kkk)2 + gy(−kkk)2

gx(kkk) + igy(kkk)√︁
gx(kkk)2 + gy(kkk)2

= −
(gx(kkk) − igy(kkk))(gx(kkk) + igy(kkk))

gx(kkk)2 + gy(kkk)2

= −1 .

Using Equation 3.13 and T 2 = −1 we can also compute a generic constraint on the phase eiαλ(kkk)

generated by the time reversal operation

− |kkk, λ⟩ = T 2 |kkk, λ⟩ = Teiαλ(kkk) |−kkk, λ⟩ = eiαλ(−kkk)e−iαλ(kkk) |kkk, λ⟩

yielding
−eiαλ(kkk) = eiαλ(−kkk) . (3.15)

Superconducting pairing in the absence of inversion symmetry

Having studied the single particle solution of the tight-binding Hamiltonian Equation 3.1, we
proceed with investigating the symmetry properties of two-electron wave-functions, in particular
of Cooper pairs. In a weak coupling theory we can constrain ourselves to Cooper pairs where the
single electron states are time reversal partners since we assume the superconducting pairing to be
much smaller than the band-splitting energy gap. The pair wave functions can thus be written in
terms of two creation operators on the same band

Ψpair(kkk; λ) = c†kkkλTc†kkkλT
−1 = eiαλ(kkk)c†kkkλc

†

−kkkλ . (3.16)

By introducing an additional term

HSC =
1
2

∑︂
λ,kkk

∆λ(kkk)Ψpair(kkk; λ) + h.c. (3.17)

into Equation 3.1, we add superconducting pairing on the mean field level to the Hamiltonian.
The chosen form restricts our description to intra band pairing i.e., Cooper pairs that consist of
electrons with different helicities are excluded.
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To compute the energy spectrum of such a mean field Hamiltonian, it is convenient to formulate
the problem in terms of Nambu spinors

C†kkk =
(︂
c†kkk,+ , c†kkk,− , c

−kkk,+ , c
−kkk,−

)︂
and its hermitian conjugate Ckkk . The Bogoliubov-de Gennes Hamiltonian Hamiltonian for a single
orbital superconductor with broken inversion symmetry restricted to intra band (=intra helicity)
pairing can then be written in matrix form as

H = H0 + HSC =
1
2

∑︂
kkk

C†kkk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E+(kkk) 0 ∆+(kkk) 0

0 E−(kkk) 0 ∆−(kkk)

∆∗+(kkk) 0 −E+(−kkk) 0

0 ∆∗−(kkk) 0 −E−(−kkk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ckkk +K .

The spectrum of this Hamiltonian is given by the absolute value of the gap function |∆λ(kkk)|2 =
∆∗λ(kkk)∆λ(kkk) and the spectrum of the normal Hamiltonian Eλ(kkk) to be

Eλ(kkk) = ±
√︂

E2
λ(kkk) + |∆λ(kkk)|2 . (3.18)

One clearly sees the separation of the two helicity degrees of freedom, which can be treated in
analogy to multi band superconductivity in our weak coupling approximation.

Implications of time reversal symmetry

In the absence of inversion symmetry, time reversal symmetry is an almost mandatory requirement
for the formation of superconductivity. As we discussed in Chapter 1, the divergence of the parti-
cle particle susceptibility, or the related absence of phase space restrictions on the particle-particle
scattering with total momentum Q ensures the existence of a superconducting Fermi surface in-
stability. A necessary precondition for this is the existence of a zero energy pairing partner state
c†(−k) for Fermi surface excitation at k. In the absence of inversion symmetry, time reversal is
the only remaining symmetry enforcing the existence of such a state.
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Here, we start by computing the transformation of Cooper pair states under time reversal in spin
space

TΨpair(kkk; sgt)T−1 = T (c†kkk↑c
†

−kkk↓ − c†kkk↓c
†

−kkk↑)T
−1 = (−c†

−kkk↓c
†

kkk↑ + c†
−kkk↑c

†

kkk↓) = (c†
−kkk↑c

†

kkk↓ − c†
−kkk↓c

†

kkk↑)

= Ψpair(−kkk; sgt)

TΨpair(kkk; tpt,m = 0)T−1 = T (c†kkk↑c
†

−kkk↓ + c†kkk↓c
†

−kkk↑)T
−1 = (−c†

−kkk↓c
†

kkk↑ − c†
−kkk↑c

†

kkk↓) = (−c†
−kkk↑c

†

kkk↓ − c†
−kkk↓c

†

kkk↑)

= −Ψpair(−kkk; tpt,m = 0)

TΨpair(kkk; tpt,m = ±1)T−1 = Tc†kkkσc†
−kkkσT−1 = c†

−kkkσ′c
†

kkkσ′ = −c†kkkσ′c
†

−kkkσ′

= −Ψpair(−kkk; tpt,m = ∓1) ,

(3.19)

and perform the analogous calculation in helicity space

TΨpair(kkk; λ, λ′)T−1 = Teiαλ′ (kkk)c†kkkλc
†

−kkkλ′T
−1 = e−iαλ′ (kkk)eiαλ(kkk)c†

−kkkλe
iαλ′ (−kkk)c†kkkλ′

= −eiαλ(kkk)c†
−kkkλc

†

kkkλ′ = eiαλ(−kkk)c†
−kkkλc

†

kkkλ′

= eiαλ(−kkk)e−iαλ′ (−kkk)Ψpair(−kkk; λ, λ′)

TΨpair(kkk; λ, λ)T−1 = Ψpair(−kkk; λ, λ)

TΨpair(kkk; λ, λ′ ≠ λ)T−1 = −Ψpair(−kkk; λ, λ′) .

(3.20)

Notice that these calculations are independent of any specific form of the phase eiαλ(−kkk) but can be
derived by the general properties of T and in particular Equation 3.15 only. Only the last statement
about unequal helicity pairing makes explicit use of Equation 3.14.

We use this information to calculate properties of the intra helicity superconducting gap function
by demanding that the Hamiltonian HSC be time-reversal invariant

T HSCT−1 !
= HSC∑︂

λ,kkk

∆∗λ(kkk)Ψpair(−kkk; λ) + h.c. =
∑︂
λ,kkk

∆λ(kkk)Ψpair(kkk; λ) + h.c.∑︂
λ,kkk

∆∗λ(−kkk)Ψpair(kkk; λ) + h.c. =
∑︂
λ,kkk

∆λ(kkk)Ψpair(kkk; λ) + h.c.

∆∗λ(−kkk) = ∆λ(kkk) .

(3.21)

The restriction to pairing of electrons on the same band, which as we emphasize again is a very
sensible assumption for the case of large spin-orbit coupling, constrains the gap function ∆ to
even functions of k. This clearly goes beyond constraints imposed by the point group of the
crystal which, even in the absence of inversion symmetry, allows for k even and odd pairing.
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Equation 3.21 does not hold for superconductors that break time reversal symmetry sponta-
neously as it is merely a statement on the Fermi surface instability level. It is sensible to require
the pairing interaction responsible for the Cooper pair formation

HI =
∑︂

kkk,qqq,λ,λ′
Vλλ′(kkk,qqq)Ψ†pair(qqq; λ′)Ψpair(kkk; λ) (3.22)

to be time reversal invariant. This restricts the mean-field Hamiltonian to terms given in Equa-
tion 3.21. An explicit determination of this restriction is most easily done by assuming a mean-
field expansion of HI in terms of real and even basis functions

di(k) = d∗i (k) = di(−k) (3.23)

yielding
Vλλ′(k,q) =

∑︂
i j

Vi j,λλ′di(k)d j(q) . (3.24)

Using Equation 3.20 we find that the matrix elements of a time reversal invariant interaction have
to be real Vi j,λλ′ = V∗i j,λλ′ . The restriction to even functions is a direct result of the fermionic anti-
symmetry and our constraint to intra-band pairing and does not constitute a further approximation.

Spontaneous time-reversal symmetry breaking is still possible for superconducting instabilities
transforming as a degenerate irreducible representation (Irrep) of the point group. In this case,
the gap function may acquire a non-trivial phase factor between the different components of the
Irrep, leading to a finite imaginary part violating ∆∗λ(−kkk) = ∆λ(kkk) for the even basis functions
∆(−kkk) = ∆(kkk).

The helical degree of freedom manifests itself in the possibility to have different pairing am-
plitudes for the different helicities, like it would be possible in a multiband superconductor. The
helical degree of freedom is closely connected to the spin of the Cooper pairs, allowing us to
calculate the spin-singlet / triplet nature of the condensate from this information [31]

∆σσ′(kkk) =
∆λ=+(kkk) + ∆λ=−(kkk)

2

[︂
iσy

]︂
σσ′
+
∆λ=+(kkk) − ∆λ=−(kkk)

2
ggg(kkk)

[︂
σσσiσy

]︂
σσ′

. (3.25)

The limit of strong spin-orbit coupling and or small pairing amplitudes, is by definition fulfilled in
the weak coupling renormalization group approach for any finite SOC. It is then natural to expect
a vanishing superconducting gap function ∆λ(kkk) whenever |Eλ(k)| ≫ 0. Under these conditions
Equation 3.25 predicts an precisely equal mixing between the spin-singlet and spin-triplet nature
of the pairing wavefunction in the limit of strong spin-orbit coupling and inversion symmetry
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breaking. This statement is slightly weakened in the vicinity of band-crossings, which may either
occur accidentally or in case of Fermi surfaces in proximity of time reversal invariant momenta.

In contrast, the presence of inversion symmetry not only implies a restoration of the band de-
generacy and therefore simultaneous formation of gaps for helicities. The spin degenerate system
also naturally allows for inter-helicity pairing. Most importantly, however, inversion symmetry
implies that the parity of a Cooper pair remains a good quantum number. This allows a strict sep-
aration between the (pseudo) spin singlet and triplet pairing wave functions as scattering between
them is forbidden by symmetry [31, 81].

While such scattering elements are symmetry allowed in the case of inversion symmetry break-
ing and strongly spin-orbit coupled systems, they are not necessarily large. In contrast to the
energy considerations that lead to a mixed singlet and triplet pair amplitude, the seeding fluctu-
ations leading to this result may be of pure type. Once could then state that the opposite parity
pairing is induced by the low energy projection. In the next section, we will now discuss some
general facts about the half-Heusler material LuPtBi before applying the presented analysis to it’s
surface state.

3.3 LuPtBi - a prime candidate for unconventional

superconductivity

Named after Friedrich Heusler [184], the so called Heusler compounds are a diverse class of
materials with roughly 500 members [26]. In particular, ternary half Heusler compounds of XYZ
composition (X,Y denote transition metal or rare-earth metals and Z a main group element) have
recently received considerable interest due to their relevance for spintronic applications. Their
strong tendency towards covalent bonding allows for the prediction of semiconducting properties
in these compounds from a valence electron counting argument alone. In general, XYZ materials
can be considered as YZ zinc-blende lattices (analogous to III-V semiconductors) that are filled
with an additional X atom as displayed in Figure 3.1. Here we have indicated the zinc-blende
lattice with bonds between the Y (grey) and Z atoms (yellow). Systems with 18 valence electrons
like LuPtBi can be considered as a “sum” of positively charged X atoms (Lu3+) and negatively
charged zinc-blende structures [(PtBi)3−] [185]. Accordingly, these systems can be expected to
have semiconducting or at least semimetallic properties with remarkable electronic tunability [26].

Here, we study the half-Heusler compound LuPtBi which crystallizes in the non-symmorphic
space group (SG) F-43m (# 216) [69, 186]. At temperatures T > Tc, this material a semimetal
and features a quadratic band touching point near the Fermi energy [187, 188]. More generally,
bulk LnPtBi (Ln=La, Y,Lu) is a prime candidate for unconventional topological superconductivity
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Figure 3.1: Crystal structure of the half-Heusler compound LnPtBi which crystallizes in the
non-symmorphic space group F-43m (# 216). Yellow (grey) sites correspond to Bi (Pt) atoms
forming a zinc-blende structure, while the green sites indicate the Ln site which is occupied by
Lu and Y for LuPtBi and YPtBi respectively. Note that the arrows indicate the conventional
crystal axes for half-Heusler structures and are distinct from those in Figure 3.2 (b).

with reported Tc’s of ≈ 1 K [69, 189, 190]. While relativistic effects due to spin-orbit coupling are
expected to be highly relevant in all of these compounds due to the presence of heavy elements
Pt and Bi (with atomic numbers Z = 78, 83 respectively), LuPtBi is special in the sense that Lu
(Z = 71) is the heaviest Lanthanide option for this half-Heusler system.

Several interesting bulk superconducting states for LnPtBi have already been proposed [70,
71, 187, 191–193] and even experimentally established for LuPdBi [194]. A common thread
between all these proposals is the fusion of spin-orbit coupling induced j = 3/2 Fermion physics
near the Fermi level and bulk inversion symmetry breaking due to the non-symmorphic crystal
structure. This symmetry breaking generically leads to mixing between singlet and triplet pairing
states as we discussed for surfaces in the previous section. The existence of fermionic quasi-
particles with higher angular momentum (at least near the k = 0, Γ point) can be understood
from a combination of a p-orbital derived degeneracy and the two-fold spin-degeneracy at time-
reversal invariant momenta. Strong spin-orbit coupling can then yield an effective j = 3/2 angular
momentum excitation spectrum close to Γ: (l = 1) ⊗ (s = 1/2) = ( j = 1/2) ⊕ ( j = 3/2). For or
LnPtBi, the resulting four-fold degenerate state is in close proximity to the Fermi level, as one can
see from band structure calculations [187].
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The proximity of the Fermi level to this quadratic band touching point, combined with the ab-
sence of other bands at the Fermi level, explains the semimetallic properties of LnPtBi. Semimet-
als feature a small density of states, which is detrimental to high superconducting transition tem-
peratures Tc as we have seen in Equation 1.115. This observation provoked Meinert [195] to ask
the question whether the electron phonon coupling in LnPtBi is strong enough to explain the ob-
served Tc ≈ 1 K. While this transition temperature is small in absolute terms, making electron
phonon coupling a likely candidate, it is large in relation to the observed small density of states.
Based on ab-initio electron-phonon calculations for YPtBi, Meinert ruled out a phonon based
mechanism and arrived at the strong statement that “it is safe to conclude that an unconventional
mechanism is responsible for the superconductivity in YPtBi” [195]. Due to the strong structural
similarities in the LnPtBi material class, it is most likely that these results hold for LuPtBi as well.

An at first glance completely unrelated, but nevertheless intriguing, experimental fact about
YPtBi and LuPtBi is the existence of a (topologically trivial) metallic surface state. This flat
metallic state emerges at the Bi terminated (111) crystal surface depicted in Figure 3.2 and has re-
cently been observed by angle resolved photoemission spectroscopy (ARPES). It is well captured
by conventional ab-initio electronic structure calculations [196]. Intuitively we can understand the
existence with the absence of Pt atoms as covalent bond partners for the Bi atoms at the surface
termination, leading to dangling bonds which then form the observed flat and surface localized
bands.

Combining all this evidence with reports indicating that a small fraction of its electronic density
of states undergoes a superconducting transition at Tc ≈ 6 K [197], we identify LuPtBi as a highly
interesting instance of unconventional surface superconductivity. We suggest that the particularly
flat surface bands for LuPtBi’s Bi(111) termination could trigger a first superconducting transition
T surface

c , prior to the bulk superconducting transition at some lower T bulk
c . A detailed analysis of the

surface band structure and its symmetry properties is necessary, before continuing the analysis of
unconventional superconductivity in this surface state.

Metallic surface state of LuPtBi

The Bi(111) surface termination (compare Figure 3.2) of LuPtBi features flat metallic surface
states with strong spin-orbit coupling. Combined with the inversion symmetry breaking caused
by the interface, a significant spin splitting of the surface bands, induced by Rashba spin-orbit
coupling, can be expected.

In order to gain quantitative insight into this band structure, we employed density functional the-
ory (DFT) based calculations from first principles for a slab of material. A non-primitive setting
for the unit cell with broken translational symmetry in the eeez = aaa3 direction was chosen, yield-
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Figure 3.2: (a) Schematic representation of surface superconductivity. (b) Bulk crystal structure
of LuPtBi. One can clearly see the half Heusler crystal structure along the (111) crystal direction
chosen as the c-axis. (c) Sketch of the surface crystal structure constituted by a triangular lattice
of Bi atoms, whose inversion symmetric C6v point group symmetry is broken down to C3v by
the presence of Lu and Pt atoms in the layers below.

ing the two dimensional space group P3m1 (SG # 156 = plane group # 14). More precisely, the
chosen hexagonal supercell consists of six unit cells and 22.5 Å of vacuum. The numerical calcu-
lation was performed by my collaborator Domenico di Sante [145], using a projector-augmented
plane-wave method [30] for the DFT as it is implemented in the Vienna ab-initio simulation pack-
age (VASP) [198]. Employing the generalized gradient approximation (GGA) as parametrized
by the Perdew, Burke and Ernzerhof (the PBE-GGA functional) for the exchange-correlation po-
tential [199], the Kohn-Sham wave functions were expanded into plane waves up to an energy
cutoff of 300 eV [200]. The Brillouin zone was sampled on a dense 16 × 16 × 1 regular mesh and
relativistic effects were included self-consistently. Figure 3.3 shows the resulting bands as grey
lines along the high symmetry path of the surface Brillouin zone.

Our ab-initio calculation confirms the existence of metallic surface states. We find that the
least dispersive low-energy bands emerge from dangling bonds of the Bi pz orbitals at the crystals
surface, as expected from a simple covalent bonding picture. Due to its dominant contribution
to the density of states at the Fermi level as well as its highly non-trivial Fermi surface topology,
we restrict our analysis to this band. The small Fermi surface pocket centred around Γ seen in
experiment [196] is dominated by strongly dispersing Bi px and py orbitals. While it is well
captured by our DFT calculation, we neglect its contribution to the surface low-energy model due
to its small density of states at the Fermi level and nearly circular shape. The influence of non-
trivial Fermi surface topology, as well as the comparative irrelevance of small circular pockets
in the Brillouin center for unconventional superconductivity, becomes clear from our benchmark
results presented in Chapter 2, where the pairing strength vanishes for small fillings.
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Figure 3.3: (a) The Bi(111) terminated surface band structure of LuPtBi as obtained by DFT as
thin grey lines. The overlaid dots indicate the surface localization in the compuational supercell
and continuous black lines represent a fit to the calculation obtained by using maximally local-
ized Wannier functions on the Bi surface. Bands without any points overlaid are localized on
the opposite surface with a different termination. (b) The resulting Fermi surface from the Wan-
nier model presented in panel (a) features two helicity sheets highlighted in different colours.
The conventional high symmetry points were introduced in Figure 2.4.

We use the framework of maximally localized Wannier functions as it is implemented in the
VASP2WANNIER90 interface [201, 202] in order to obtain a best fit tight binding model for
these bands, using a single Bi pz orbital on the 1a Wyckoff position of the P3m1 space group as
the starting point. Figure 3.3 shows the resulting band structure overlaid as a black line and in
comparison to the ab-initio data. The resulting tight-binding Hamiltonian can be written as

Ĥ0 =
∑︂

kkk

ψ†kkk(ϵ(kkk) + ggg(kkk)σσσ)ψkkk =
∑︂

kkk

ψ†kkk h(kkk)ψkkk , (3.26)

with the combined creation operator

ψ†kkk = (c†kkk,↑ , c†kkk,↓) , (3.27)

for up (down) spin electrons c†kkk↑ (c†kkk↓) at momenta kkk. The parameters for the functions ϵ(kkk) and
ggg(kkk) based on these calculations are published in [145]. The strong spin-orbit coupling of Bi,
modelled by ggg(kkk) in Equation 3.26 results in a significant splitting of the bands due to the broken
inversion symmetry on the crystals surface. Kramers theorem protects a two-fold degeneracy of
the band at the time-reversal invariant momenta Γ and M and a linear dispersion is realized in
the vicinity of the latter. As before, we label the systems energy eigenstates with their helicity
eigenvalue λ = ±1, where the helicity operator Λkkk is defined as the normalized spin-orbit coupling
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term in the Hamiltonian. The colour of the Fermi surface pockets depicted in Figure 3.3 labels the
helicity eigenvalue of different points on the Fermi surface, simultaneously indicating the opposite
chirality of the spin texture of the corresponding pockets.

From a symmetry perspective, the Γ-point of the surfaces P3m1 SG is invariant under the C3v

point group (PG). While the the Bi atoms at the surface form a triangular lattice and one could
accordingly expect a C6v PG, the C2 rotation symmetry of the surface is spoilt. This becomes
clear upon considering Figure 3.2 (a) and realizing that, while the system is invariant under a
mirror operation along the aaa1 + aaa2 direction, it exchanges the positions of Lu and Pt under the
aaa2 − aaa1 mirror, resulting in a breaking of the C6v symmetry of the triangular Bi lattice.

These symmetry considerations are not only crucial for the analysis of finite angular momen-
tum Cooper pairing presented in the next section, but also allow for an additional term in the
tight-binding Hamiltonian Equation 3.26. Most obvious is the absence of a second symmetry
(beyond time reversal symmetry) that maps k → −k at the K point. For C6v symmetric systems,
the combination of C2 rotation and time reversal enforces a Kramers degeneracy at the K point,
even in the presence of spin-orbit coupling and spoilt inversion symmetry. Kane and Mele [203]
pointed out, that spin-orbit coupling allows for an additional term (which preserves all symme-
tries in Graphene as the two sublattices interchange under C2), that goes beyond Rashba spin-orbit
coupling. In a triangular lattice, such a term is only present for models with the reduced C3v PG
symmetry.

Based on this symmetry analysis we now construct a symmetry respecting tight-binding model
with ten parameters. Seven of these parameters describe a seventh nearest neighbour tight-binding
model on a triangular lattice, while the remaining three describe relativistic effects. We employ
two parameters for the nearest and second nearest neighbour Rashba spin-orbit coupling and the fi-
nal parameter describes a Kane Mele term on the nearest neighbour bonds. Using this parametriza-
tion we write

ϵ(kkk) = 2
7∑︂

n=1

tn

∑︂
d∈{dn}

cos(kd) , (3.28)

where tn are the hopping amplitude parameters and the dn run over all (translation symmetry and
C2 rotation inequivalent) real space distance vectors separating nth nearest neighbours. Letting
a3 = a2 − a1, we have

{d1} = {a1, a2, a3} (3.29)

for nearest neighbours,
{d2} = {a1 + a2, a2 + a3, a3 − a1} (3.30)
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t1 t2 t3 t4 t5 t6 t7

52.024 −21.341 −0.596 21.519 9.557 0.088 4.32

αR1 αKM αR2

23.887 11.283 −17.104

Table 3.1: Best fit tight-binding hopping matrix elements for a simple ten parameter model, ap-
proximating the Wannier model data presented in Figure 3.3. All values are given in meV.

for next nearest neighbours and so on. For the relativistic effects, we write

ggg(kkk) = αR1gggR1(kkk) + αR2gggR2(kkk) + αKMgggKM(kkk) . (3.31)

The Rashba spin-orbit coupling terms are given by

gggR1(kkk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−
√

3 sin(ka2) −
√

3 sin(ka3)

2 sin(ka1) + sin(ka2) − sin(ka3)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3.32)

and

gggR2(kkk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−
√

3 sin[k(a1 + a2)] − 2
√

3 sin[k(a2 + a3)] −
√

3 sin[k(a3 − a1)]

3 sin[k(a1 + a2)] − 3 sin[k(a3 − a2)]

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.33)

Finally, the Kane Mele term gggKM(kkk) ∥ ez is given by

(︁
gggKM(kkk)

)︁
z = −2

(︁
sin(ka1) − sin(ka2) + sin(ka3)

)︁
. (3.34)

Using this parametrization and the wannierized DFT data as a starting point, we performed a
Monte Carlo parameter search, optimizing for an overlap between the energy eigenstates of H with
special focus close to the Fermi level. The best fit model parameters are presented in Table 3.1.
All following calculations were performed directly on the full Wannier model obtained from DFT
as well as this minimal model, resulting in virtually identical results.



C
ha

pt
er

3

3.4 Chiral surface superconductivity in LuPtBi | 105

Having discussed the arena for the formation of unconventional surface superconductivity in
LuPtBi, we now turn to the investigation of the obtained model via the wcRG and RPA methods
as presented in Chapter 1.

3.4 Chiral surface superconductivity in LuPtBi

As a first step towards the analysis of electronic correlation effects in our model, this section starts
with an analysis of the relevant particle-hole fluctuations in the non-interacting system. In a second
step we will then discuss how these fluctuations modify the effective interaction in the Cooper
channel within the RPA and wcRG discussed in Chapter 1. We find a chiral superconducting
condensate featuring Majorana edge modes to be energetically favoured.

Particle-hole fluctuations in the LuPtBi surface state

Due to the absence of multiple orbital or sublattice degrees of freedom the most general (static
and onsite) particle-hole excitations in the LuPtBi surface state are represented by the operator

S η(qqq) =
∑︂

kkk

∑︂
σ0,σ2

c†kkk+qqq,σ2
ση
σ2σ0

ckkk,σ0
. (3.35)

Following Section 1.4.1, we calculate the static susceptibility matrix in the non-interacting limit
as

χηµ(qqq, ω = 0) = ⟨S η(qqq)S µ(−qqq)⟩0 . (3.36)

In contrast to systems without spin-orbit coupling, this matrix is neither diagonal nor proportional
to the identity matrix. In a system where the spin and momentum degrees of freedom are cou-
pled, it is intuitive that the magnetic response of the spin system depends on the alignment of the
external magnetic field with respect to the crystal. In Figure 3.4, once can clearly see this effect.

For magnetic fields without any real space modulation, the susceptibility at Q = 0 shows that
the systems response differs between electric fields, in plane and out of plane magnetic fields,
reflecting the inversion symmetry breaking along the ez direction. Finite transfer momenta Q
correspond to periodically modulated external fields in real space with the appropriate reciprocal
length scale. The additional symmetry breaking of such an external field further splits the in
plane response function. A second qualitative difference between finite Q response functions for
systems with finite spin-orbit coupling and ones with SU(2) symmetry is the general finite value
of off-diagonal response functions χxy, χxz and χyz. Since the associated energy scale for these is
an order of magnitude smaller then their diagonal counterpart, we only present the obtained data
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Figure 3.4: Bare particle hole susceptibilities χxx, χyy, χzz and χC of the LuPtBi surface state
model for n = 0.62. In the left panel, we compare the different diagonal spin contributions along
scenarios along the high symmetry path through the Brillouin zone. We emphasize the location
of the maximum of χyy and χC close to the M point, especially in comparison to Figure 2.9. The
right panel shows the C(6v) symmetric charge susceptibility for the surface state in the complete
first Brillouin zone.

in Appendix C. We note that the residual time-reversal symmetry of our model forbids mixing
between the onsite charge and spin fluctuations i.e., χ0u = 0 for all u ∈ {x, y, z}.

Using these results, we can now employ a generalized Stoner criterion to obtain the ener-
getically favoured particle-hole instability on RPA level as discussed in Section 1.4.4. Assum-
ing a purely onsite Hubbard interaction U, we find that the RPA susceptibility diverges for all
U > 0.37 eV, approximately one third of the bandwidth W. Since the susceptibility first diverges
at an incommensurate transfer momentum, the associated ordering vector Q is six (6) fold degen-
erate. One ordering vector associated with the smallest value of U that still results in a diverging
magnetic susceptibility has an ordering vector Q1 = [(1 + δ)b1 + (1 − δ)b2]/2 with (δ ≈ 0.016).
Accordingly, the magnetic instability is approximately associated with a commensurate ordering
vector at the Brillouin zones three M points. In real space, this corresponds to nearest neighbour
stripe antiferromagnetic order on the triangular lattice formed by the Bi atoms. The geometric
frustration of the triangular lattice renders a true antiferromagnetic state impossible and three de-
generate types of stripe magnetism are energeti[t]cally equivalent for triangular lattice Hubbard
models close to the van Hove singularity (also compare Figure 2.5).

The imperfect nesting of the Fermi surface for this realistic material model induces a slight
incommensurability which we parametrize by δ. In Figure 3.6 one can see the consequence of
this in real space for one, arbitrarily chosen ordering vector Q1 = (1.02, 0.55)π/a (with triangular
lattice constant a). The close up view in the right panel reveals the approximate nearest neighbour
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Figure 3.5: Bare particle hole susceptibilities χxx, χyy, χzz of the LuPtBi surface state model for
n = 0.62 in the whole BZ as a function of transfer momentum Q. We note the absence of C3

rotation symmetry for in plane magnetic fields with finite transfer momentum.

stripe antiferromagnet, while the large scale overview on the left demonstrates the additional real
space modulation of this magnetic order.

This is most clearly understood by first writing the transfer momentum as a sum of commensu-
rate and incommensurate part

Q1 = Qc +Qi

Qc =
b1 + b2

2

Qi = δ
b1 − b2

2
,

(3.37)

in terms of the reciprocal lattice vectors b1 and b2. It is now natural to define real space vectors
Rc and Ri such that RcQc = π and RiQi = π i.e., vectors that define half period cycles of the
orderings periodicity pattern. While these equations do not have a unique solution,

Rc =
a1 + a2

2

Ri =
1
δ

a1 − a2

2

(3.38)

are a natural choice as they are the shortest vectors with this property. All other solutions corre-
spond to rotated and elongated real space vectors that result in an identical oscillation pattern. The
black arrow in the left (right) panel of Figure 3.6 corresponds to Ri (Rc) respectively.

So far, the discussion would have been very similar for an incommensurate spin density wave
order of a SU(2) symmetric model. In the case of spin-orbit coupling, the matrix structure of
χuu′(Q1) is non-trivial. The eigenvector Mu of the matrix, with largest eigenvalue is associated
with the instability, while the other two eigenvectors are energetically disadvantageous for the
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Figure 3.6: Example of a spin density wave instability of the LuPtBi surface state on RPA level
as obtained from a general Stoner criterion. The spin spiral with Q1 = [(1 + δ)b1 + (1 −
δ)b2]/2 is well approximated by a nearest neighbour stripe antiferromagnet as one can see in
the right panel close up. The large scale overview shows the close up region as well as the
long range incommensurate oscillation with real space period Ri. Due to SOC, the spin degree
of freedom is frozen to the real space magnetic pattern. The arrow on each lattice point was
chosen proportional to the semi-classical in plane magnetization of the order parameter while
the out of plane component in positive (negative) z direction is encoded by the red (blue) colour
coding.

system. This allows us to predict an “easy”-axis for the present AFM state and plot the complete
semi-classical spin spiral

⟨S u(r)⟩ = |Mu| cos(Qr + φ) , (3.39)

with Mu = |Mu|eiφ. We note that the necessity for a real expectation value constrains the ordering
to simultaneously occur at Q1 and −Q1 and that the gauge degree of freedom in the choice of the
eigenvector Mu is tied to the spontaneous translation symmetry breaking of the spin spiral. Since
this work focuses on Fermi surface instabilities and superconductivity, we did not investigate the
ground state magnetic solution further. Such an analysis would require the consideration of multi-
Q magnetism in order to determine the precise point group symmetry breaking associated with
the instability [204].
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C3v A1 A2 E

1 +1 +1 +2

C3 +1 +1 −1

mv +1 −1 0

C2

⟨ϕ⟩ A1 Eg E′g A2 Eu E′u

1 +1 +1 +1 +1 +1 +1

C3 +1 −1
2 −1

2 +1 −1
2 −1

2

mv +1 +1 −1 −1 −1 +1

C2 +1 +1 +1 −1 −1 −1
Table 3.2: C3v character table (left) and symmetry characters (right) of real space representations

for the nearest neighbour form factors shown in Figure 3.7. The operation C2 is not part of the
C3v point group (PG), therefore the corresponding line of the transposed character table is left
empty. Nevertheless, we constructed real space representations with a defined transformation
behaviour under this operation Eg and Eu. Note that these representations may generically mix
under the C3v PG.

Cooper pair symmery in a C3v symmetric system with spin-orbit

coupling

As a last preparation for the evaluation of the effective Cooper pair interaction mediated by the
previously discussed particle-hole fluctuations, we will discuss constraints on the pairing wave
function that can be deduced from locality of Cooper pair states and point group symmetry con-
straints alone.

In order for the superconducting mean field Hamiltonian in Equation 3.17 to be invariant under
all point group symmetries of the free theory, the superconducting order parameter ∆ has to trans-
form according to irreducible representations of the crystallographic point group [82]. For the C3v

point group of the LuPtBi surface state we find three distinct possibilities for the representation of
the gap function A1, A2 and E in the corresponding group theory tables [205]. While A1 and A2

are scalar representations, E is a two-fold degenerate representation. The C3v character table as
well as an overview of the symmetry operator expectation values for the presented basis functions
is given in Table 3.2

Here, we present all form factor functions Φ(k) transforming as irreducible representations of
C3v up to nearest neighbour Cooper pairing. In addition to the onsite A1 case, this requires us to
give six (6) orthogonal basis functions, i.e., we need to give more than one set of functions for one
of the representations (NA1 + NA2 + NE = 1 + 1 + 2 = 4). It turns out that it is possible to construct
two additional basis functions in the E representation that are not trivially obtained via the routine
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Figure 3.7: We present the real space structure of possible pairing wave functions as obtained
from Table 3.2. Circles with black border are weighted twice, black circles indicate zero and
blue (red) circles indicate a minus (plus) sign of the corresponding representation. Starting
at the rightmost circle and in counter clockwise ordering, the states can be denoted as A1 =

(+1,+1,+1,+1,+1,+1), A2 = (+1,−1,+1,−1,+1,−1), Eg = (+2,−1,−1,+2,−1,−1), E′g =
(0,−1,+1, 0,−1,+1), Eu = (+2,+1,−1,−2,−1,+1) and E′u = (0,+1,+1, 0,−1,−1).

given by in the appendix of [82]:

ΦA1 = 1 ,

√︃
2
3

(︄
cos(kx) + 2 cos(kx/2) cos

(︂√
3ky/2

)︂)︄
ΦA2 =

√︃
2
3

(︄
sin(kx) − 2 sin(kx/2) cos

(︂√
3ky/2

)︂)︄
ΦEg =

2
√

3

(︄
cos(kx) − cos(kx/2) cos

(︂√
3ky/2

)︂)︄
ΦE′g = cos

(︂
kx/2 +

√
3ky/2

)︂
− cos

(︂
kx/2 −

√
3ky/2

)︂
ΦEu =

2
√

3

(︄
sin(kx) + sin(kx/2) cos

(︂√
3ky/2

)︂)︄
ΦE′u = sin

(︂
kx/2 +

√
3ky/2

)︂
− sin

(︂
kx/2 −

√
3ky/2

)︂
.

(3.40)

These form factors have been chosen to be real and orthonormal with respect to the scalar
product

⟨Φ1|Φ2⟩ =
1

ABZ

∫︂
BZ
Φ∗1(kkk)Φ2(kkk) dkkk (3.41)

and their corresponding real space configurations are displayed in Figure 3.7.
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Figure 3.8: We present the evaluation of the analytically obtained gap functions from Figure 3.7
in momentum space, evaluated on the LuPtBi Fermi surface. The point size along the Fermi
surface was chosen proportional to the order parameter (normalized over the complete BZ)
value at that point. The color coding denotes the same information and additionally provides
the sign of the (real) order parameter at each point. One can clearly see the different line nodes
of the order parameters with finite angular momentum, while the A1 line node is a circle inside
the hexagonal center Fermi surface and therefore not visible.

In order to make a connection to the LuPtBi surface state, we present the resulting pairing wave
function on the Fermi surface of our tight-binding model in Figure 3.8. We present the even
pairing functions corresponding to the energetically favoured intra helicity pairing in the first line
and note in passing that all considered gap functions are not affected by the bare on site Hubbard
interaction.

Effective Cooper pair interaction

Following Section 3.2 we now introduce a basis of Cooper pair states for our model. Since a
parametrization in terms of singlet and triplet states is not possible due to the lack of inversion
symmetry, we consider pairs of electrons connected by the time-reversal operator T̂ = iσyK ,
neglect inter-band pairing amplitudes due to αR ≫ ∆ and define

Ψ
†

pair(kkk; λ) = c†kkkλTc†kkkλT
−1 =

∑︂
σ,σ′

ψλ,σσ′(kkk)c†kkkσc†
−kkkσ′ , (3.42)
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with
ψλ,σσ′(kkk) =

∑︂
σ′′

uλ,σ(kkk)u∗λ,σ′′(kkk)(iσy)σ′′σ′ . (3.43)

We emphasize again that our setup allows us to circumvent any issues arising from the global
gauge freedom of uλ,σ(kkk) at different momenta that would arise from naively choosing c†kkkλc

†

−kkkλ as
the basis for the pairing wave function.

Using this parametrization as a starting point we calculate the system’s propensity towards
different superconducting instabilities. To this end we implement a perturbative interaction term
into our model Hamiltonian

Ĥ = Ĥ0 + U0

∑︂
kkk

c†kkk,↑c
†

kkk,↓ckkk,↓ckkk,↑ , (3.44)

and calculate how it is screened by particle-hole excitations. In contrast to systems with SU(2)
symmetry, the bare particle-hole (PH) susceptibility of our model can’t be reduced to a single
momentum dependent number as discussed before. For the analysis of superconductivity it is
more convenient to consider the generalized particle-hole susceptibility without a conversion into
the spin and charge operator basis

χ0
{σi}

(kkk, τ) =
∑︂

lll

⟨Tτc
†

lll+qqq,σ2
(τ)clll,σ1

(τ)c†lll,σ3
(0)clll+qqq,σ0

(0)⟩ (3.45)

where we used the imaginary time-ordering operator Tτ. We calculate it’s Fourier transform in
the static limit using standard Matsubara summation techniques for the frequency integral and
a discretized mesh containing Ni = 12002 points for the momentum space summation (compare
Section 1.4). We have confirmed the convergence of our results at zero temperature by comparison
with integration meshes containing Ni = 2000 points per direction and refrained from using any
regularization for the susceptibility integral.

We have previously seen that a bare interaction U0 of Uc = 0.37 eV is sufficient to drive the
system into an incommensurate magnetic phase on the RPA level. For U0 below this critical
value, the spin and charge fluctuations induce a superconducting phase transition [24, 79, 206].
We calculate the Cooper pair scattering amplitudes in the previously described basis

Γλλ′(kkk,qqq) =
∑︂
{σi}

ψ
pair
λ′,σ2σ3

(qqq)Γ{σi}(kkk,qqq)ψpair
λ,σ0σ1

(kkk) , (3.46)
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in the fluctuation exchange formulation generalized for spin-orbit coupled systems

Γ{σi}(kkk,qqq) = Γ(1)
{σi}
+ Γ

(2)
{σi}

(kkk,qqq) ,

Γ
(1)
{σi}
= U0(δσ0σ2δσ1σ3 − δσ0σ3δσ1σ2) and

Γ
(2)
{σi}
=

∑︂
{σ̃i}

Γ
(1)
σ0σ̃2σ2σ̃1

χRPA
{σ̃i}

(kkk − qqq)Γ(1)
σ̃3σ1σ̃0σ3

−
∑︂
{σ̃i}

Γ
(1)
σ0σ̃2σ3σ̃1

χRPA
{σ̃i}

(kkk + qqq)Γ(1)
σ̃3σ1σ̃0σ2

+
∑︂
{σ̃i}

Γ
(1)
σ0σ1σ̃0σ̃1

χPP
{σ̃i}

(QQQ = 000)Γ(1)
σ̃2σ̃3σ2σ3

.

(3.47)

that we introduced in Chapter 1. The generalized RPA susceptibilities χRPA
{σi}

(QQQ) are calculated via
the usual Dyson series resummation of all RPA diagrams and the momenta kkk and qqq are chosen
from Np = 360 unique Fermi surface points.

The resulting Cooper pair scattering amplitude serves as an input for the linearised supercon-
ducting gap equation

Ve f f∆λ(kkk) =
∑︂

qqq

Γλλ′(kkk,qqq)∆λ′(qqq) , (3.48)

whose solutions indicate the leading superconducting gap functions ∆ which can be analysed in
terms of irreducible representations of the model’s point group. The most negative Ve f f indicates
the maximum paring strength. Despite the selective RPA resummation of diagrams, we would
like to stress that this approach recovers the solution of the asymptotically exact weak coupling
renormalization group in the limit of U0 → 0 [23].

For our model of the LuPtBi surface states, no qualitative changes Figure 3.9 are observed over
the whole range 0 < U0 < Uc and the leading eigenvalue is two-fold degenerate over the complete
range of doping analysed. We emphasize this aspect since the changes in the filling of a surface
state may be sensitive to adsorbates or other influences that are not present for bulk states. As
expected from the performed symmetry analysis, we find a superconducting gap function trans-
forming under the E irreducible representation of C3v as shown in Figure 3.9. This is confirmed
by the fact that the corresponding gap functions transform accordingly. Furthermore, the numer-
ically obtained gap functions are almost perfectly fitted by linear combinations of ΦEg and ΦE′g ,
highlighting the nearest-neighbour character of the superconducting pairing.

The absence of inversion symmetry on the LuPtBi surface allows for mixing of spin-singlet and
spin-triplet Cooper pairs, which we analyse by comparing the fitted harmonics for the different
helicity Fermi surfaces. From the almost identical fitting parameters for both helicities we infer
the Cooper pair wavefunction to be well approximated by pure spin-singlet pairs. This result is
again stable across a wide range of filling fractions.
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Figure 3.9: Panel (a) shows the superconducting pairing strength Veff in the RPA as a function of
the particle occupation n in the surface band. While this calculation was done for an intermedi-
ate value of U0 = 0.3 eV, all qualitative features of this figure are preserved upon lowering U0 to
the analytically controlled limit U0 → 0. The filling of n = 0.62 corresponds to the DFT result
and our result is rather insensitive to the variation of filling. The right panel (b) depicts the gap
function ∆(k) = |∆(k)|eiφ(k) of the leading superconducting instability along the Fermi surface.
The point size is chosen proportional to the absolute value of the gap size |∆| while the colour
represents the phase φ(k) of the complex condensate. One can clearly see the approximately
uniform magnitude of the chiral d + id pairing as well as the phase winding of 4π.

We want to highlight the notion of two very distinct types of singlet-triplet mixing in inversion
symmetry breaking unconventional superconductors. As discussed before, the superconducting
state will mix singlet and triplet excitations due to the well defined spin polarization for each
Fermi surface momentum in a spin-split system. In the limit of strong spin-orbit interaction this
almost inevitably leads to a half and half admixture of singlet and triplet pairing as we discussed
at the end of Section 3.2 and was recently observed in a truncated unity functional renormalization
group (TU-fRG) study of the square lattice Rashba Hubbard model [34]. This has to be contrasted
with the scattering of singlet and triplet Cooper pairs via the effective pairing interaction [31].
In the limit where the spin splitting energy significantly exceeds the superconducting gap size,
one should actually distinguish three separate Cooper pair scattering amplitudes: singlet to singlet
scattering, triplet to triplet scattering and the mixing singlet to triplet scattering. For Γλλ′(kkk,qqq) this
corresponds to the three independent scattering sectors Γ++, Γ−− and Γ+− which can be related to
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Figure 3.10: Excitation spectrum of the resulting Bogoliubov-de-Gennes Hamiltonian on a ribbon
with periodic (open) boundary conditions along the aaa2 (aaa1) directions. We show the localization
at the left and right boundaries of the ribbon respectively in order to demonstrate their different
spectra due to the C3v point group of the surface state.

Γsgt, Γtpt and Γmix via [31]

Γsgt =
Γ++ + Γ−− + Γ+− + Γ−+

4

Γtpt =
Γ++ + Γ−− − Γ+− − Γ−+

4

Γmix =
Γ++ − Γ−−

4
.

(3.49)

Many choices exist for obtaining scalar objects from the two variable functions Γλλ′(kkk,qqq). For
example, one can project onto the leading eigenvector, an arbitrary form factor or simply integrate
all couplings.

From such an analysis, the pairing fluctuations in the surface state of LuPtBi are found to be
of dominant singlet-singlet type. Nevertheless the large spin-splitting of the Fermi surface will
induce triplet Cooper pairs via “proximity effect”.

In order to distinguish among all possible linear combinations αΦEg + βΦE′g (with identical
pairing potential) we compute the free-energy F of the resulting superconducting state according
to the procedure we outline in Appendix B. We find that F is optimized for the chiral and time-
reversal symmetry breaking linear combinations ΦEg ± iΦE′g shown in Figure 3.9. The physical
intuition for this result lies in the formation of a full excitation gap across the Fermi surface and
therefore a maximum gain in condensation energy [76, 207]. The superconducting condensate
formed by the ΦEg ± iΦE′g combination is characterized by a topological Chern number C = ±2.
One experimentally signature of this topological invariant would be the universal thermal and spin
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Hall conductivity due to two low-energy edge modes [208–210], as we show in Figure 3.10. Using
our ten parameter tight binding model we have confirmed the existence of this asymmetry in the
absence of numerical disorder originating from the numerical minimization of the Wannier orbital
spread. Additionally we have verified the necessity of spin-orbit coupling for the splitting between
both boundary modes.

As we have discussed in the introduction of this thesis, the role of quantum fluctuations is en-
hanced in two dimensional systems. The time-reversal superconducting state is associated with
discrete Z2 (time reversal symmetry) and continuous U(1) (gauge symmetry resulting in particle
conservation) symmetry. Despite the Mermin-Wagner-Hohenberg (MWH) theorem one expects
the formation of a U(1) symmetry breaking superconducting phase of matter with algebraically
decaying correlation functions for two dimensional surface superconductors via a Kosterlitz-
Thouless-Berezinskii (KTB) transition at a finite transition temperature Tc. On the mean field
level, time reversal symmetry breaking sets in at exactly the same temperature. The quantum fluc-
tuations neglected in the mean-field treatment are however sensitive to the distinction between the
breaking of continuous and discrete symmetries and tend to split the transition [145, 211–214].
This effect is particularly relevant for systems with low carrier concentration like the LuPtBi sur-
face state and results in a vestigial time reversal symmetry breaking above Tc.

Conclusion

Starting from an overview of literature about surface superconductivity we have highlighted strongly
spin-orbit coupled surface bands as a novel and potentially diverse domain for superconducting
instabilities driven by electronic correlation effects. In particular, we have formulated a theory on
how LuPtBi might be reconciled as an instance of an unconventional chiral topological surface
superconductor. Our proposition lends itself to several tangible experimental tests: First, any ther-
modynamic measurement sensitive to distinguish sub-extensive surface contributions from bulk
contributions should be able to discriminate between a leading surface transition and a subsequent
bulk transition. Second, we would expect a finite Kerr signal not only below Tc, but also above
Tc due to low-dimensional order parameter fluctuations and resulting vestigial time-reversal sym-
metry breaking. Finally we suggest to the possible resolution of the topological edge modes or
vortex spectra as a smoking gun signature of the theoretically predicted state. While it is likely that
our theory will not universally apply to all half-Heuslers for all surface terminations, it might be
promising to reconcile instances of hitherto observed SC in currently known half-Heuslers from
the viewpoint of unconventional surface SC engineering.



Conclusion

At the start of the thesis we set out to develop a generic and computationally efficient way of
analysing superconducting Fermi surface instabilities of real materials which we presented in
Chapter 1. Following a brief overview of obtained benchmark results in the Chapter 2 we iden-
tified the metallic surface states of LuPtBi as a prime candidate for the observation of surface
superconductivity driven by electronic correlation effects in Chapter 3 We summarize our results
in the following.

Our framework for the analysis of unconventional superconductivity in realistic materials is
based on a three step program. In the first step we analyse the electronic band structure of a ma-
terial by performing standard ab-initio density functional theory calculations. After a qualitative
analysis of the results we proceed with the building of a tight-binding model capable of describing
the low-energy degrees of freedom i.e., the bands around the materials Fermi level. This can be
done either via the use of maximally localized Wannier orbitals or through fitting of an analyt-
ical tight-binding model that is based on the symmetries of the material and Wyckoff positions
of the relevant orbital degrees of freedom to the band structure. Already from this intermediate
result, one can analyse the models bare particle-hole susceptibility to get a first impression of the
relevant nesting vectors of the Fermi surface, dominating spin- and charge fluctuations as well as
the importance of matrix element effects arising from the interference of energy eigenstates with
different orbital character.

In a second step, a basis for all possible Cooper pair states, i.e., two-electron states with vanish-
ing total momentum is set up via the use of a discretized Fermi surface. In Chapter 1 we outline
a detailed algorithm for this task that is useable in the presence of spin-orbit coupling. The es-
tablished tight-binding model can now be dressed with interactions terms, yielding an extended
Hubbard type model.

Finally we complete the program by calculating the effective interactions between all classified
Cooper pair states and identifying the most strongly bound pairing states. We propose a unified
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formulation to analyse this effective interaction in the Cooper channel of these models using the
weak coupling renormalization group (wcRG) method as well as the random phase approxima-
tion (RPA). The key insight of our formulation is the fact that both methods centrally rely on
the generalized bare particle-hole susceptibility as the only computationally expensive ingredi-
ent, thus placing them in the same class of computational complexity. Our formulation is almost
completely gauge-invariant and therefore allows for the analysis of arbitrary spin-orbit coupled
systems. Further we introduce an efficient and conceptually simple way to treat non-local inter-
action terms in both approaches and show how the numerical effort can be managed via the use
of hermiticity, Fermionic antisymmetry and spatial symmetries. Using these ingredients the third
step can be performed efficiently and phase diagram scans in different interaction parameters do
not require the recalculation of any integrals.

Using all of these methodological advances we were able to analyse possible superconduct-
ing instabilities of the metallic surface state of the bulk semimetal LuPtBi. The combination of
bismuth’s strong spin-orbit coupling and the broken inversion symmetry at the crystal surface re-
quire the use of our gauge invariant formulation of the RPA. We identified completely gapped,
time-reversal symmetry breaking chiral d-wave superconductivity to be the dominant supercon-
ducting instability in the system independent of interaction strength or model details.
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Decomposition of long range interactions

We show that a generic translationally invariant two particle interaction

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)∑︂
r̂1,r̂2,r̂3

U{ai}(r̂1, r̂2, r̂3)e+i(k1r̂1−k2r̂2−k3r̂3) , (A.1)

involving a finite number of bonds can be rewritten in the D-channel representation

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)∑︂
i, j

U i j
{ai}

(k0 − k2) f ∗i (k0) f j(k3) , (A.2)

with a finite set of form factor functions fi(k).
This is accomplished by first rewriting the exponent in Equation A.1 by using momentum con-

servation for k1

k1r̂1 − k2r̂2 − k3r̂3

= (k3 + k2 − k0)r̂1 + (k0 − k2)r̂2 − k0r̂2 − k3r̂3

= (k0 − k2)(r̂2 − r̂1) − k0r̂2 − k3(r̂3 − r̂1) ,

(A.3)

and introducing form factors
fi(k) = eikr̂i . (A.4)

By shifting the summations via the use of translational invariance and defining

r̂i = r̂2 − r̂1 ,

r̂g = r̂2 ,

r̂h = r̂1 − r̂3 and

(A.5)
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we can then simply rewrite Equation A.1

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)∑︂
r̂i,r̂g,r̂h

U{ai}(r̂g − r̂i, r̂g, r̂g − r̂i − r̂h)

e+i(k0−k2)r̂ie−ik0r̂ge+ik3r̂h

= δ(k0 + k1 − k2 + k3)∑︂
r̂g,r̂h

f ∗g (k0) fh(k3)∑︂
r̂i

U{ai}(r̂g − r̂i, r̂g, r̂g − r̂i − r̂h)

e+i(k0−k2)r̂i

= δ(k0 + k1 − k2 + k3)∑︂
r̂g,r̂h

f ∗g (k0) fh(k3)Ugh
{ai}

(k0 − k2) .

(A.6)

The remaining interaction tensor can be identified as

Ugh
{ai}

(k0 − k2)

=
∑︂

r̂i

U{ai}(r̂g − r̂i, r̂g, r̂g − r̂i − r̂h) e+i(k0−k2)r̂i

=
∑︂

r̂ j

U{ai}(r̂ j, r̂g, r̂ j − r̂h) e−i(k0−k2)(r̂ j−r̂g) .

(A.7)

Note that the summations over rg and rh involve a very limited number of terms for short range
interactions and that the complete derivation does not necessitate any approximations.
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Mean field theory for spin-split Fermi

surfaces

Starting from a quartic Hamiltonian with a superconducting interaction

H =
∑︂
k,λ

ϵλ(k)c†kλckλ +
1
2

∑︂
k,q,λ,λ′

Vλλ′(k,q)c†qλ′T̂ c†qλ′T̂
−1

T̂ ckλT̂
−1

ckλ (B.1)

it is sensible to introduce pair creation operators

Ψ
†

pair(k, λ) = c†qλT̂ c†qλT̂
−1

. (B.2)

We perform a standard mean field decomposition of the interaction term followed by the neglec-
tion of order parameter fluctuations yielding

2HI =
∑︂

k,q,λ,λ′
Vλλ′(k,q)Ψ†pair(q, λ

′)Ψpair(k, λ)

=
∑︂

k,q,λ,λ′
Vλλ′(k,q)

(︂⟨︁
Ψ
†

pair(q, λ
′)
⟩︁
Ψpair(k, λ) + Ψ†pair(q, λ

′)
⟨︁
Ψpair(k, λ)

⟩︁
−

⟨︁
Ψ
†

pair(q, λ
′)
⟩︁⟨︁
Ψpair(k, λ)

⟩︁
+
(︁
Ψ
†

pair(q, λ
′) −

⟨︁
Ψ
†

pair(q, λ
′)
⟩︁)︁(︁
Ψpair(k, λ) −

⟨︁
Ψpair(k, λ)

⟩︁)︁)︂
≈

∑︂
k,q,λ,λ′

Vλλ′(k,q)
(︂⟨︁
Ψ
†

pair(q, λ
′)
⟩︁
Ψpair(k, λ) + Ψ†pair(q, λ

′)
⟨︁
Ψpair(k, λ)

⟩︁
−

⟨︁
Ψ
†

pair(q, λ
′)
⟩︁⟨︁
Ψpair(k, λ)

⟩︁)︂

(B.3)
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From here we proceed by introducing a spectral decomposition of Vλλ′(k,q) using a set of real
orthonormal functions di(k) even in k

Vλλ′(k,q) =
∑︂

i j

Vi j,λλ′di(k)d j(q) (B.4)

and introducing variational parameters

∆i,λ =
∑︂

jλ′
Vi j,λλ′

∑︂
q

d j(q)
⟨︁
Ψpair(q, λ

′)
⟩︁

. (B.5)

Clearly this equates to the conventional choice

∆λ(k) =
∑︂

i

∆i,λdi(k) =
∑︂
qλ′

Vλλ′(k,q)
⟨︁
Ψpair(q, λ

′)
⟩︁

. (B.6)

with the benefit of reducing the problem from a variational problem of a function to set of param-
eters. We now consider the quadratic Hamiltonian

H =
∑︂
k,λ

ϵλ(k)c†kλckλ +
1
2

∑︂
i,k,λ

di(k)
(︂
∆∗i,λΨpair(k, λ) + ∆i,λΨ

†

pair(k, λ) − ∆i,λ
⟨︁
Ψ
†

pair(k, λ)
⟩︁)︂

. (B.7)

Introducing Nambu spinors

Ψkλ = (ck,λ, T̂ c†k,λ)
T = (ck,λ, eiαλ(kkk)c†

−k,λ)
T (B.8)

we rewrite this

H =
1
2

∑︂
k,λ

Ψ
†

kλh
λ
BdG(k)Ψkλ +

1
2

∑︂
kλ

ϵλ(k) −
1
2

∑︂
i,k,λ

di(k)∆i,λ
⟨︁
Ψ
†

pair(k, λ)
⟩︁

, (B.9)

where we introduced matrices

hλBdG(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ϵλ(k)
∑︁

i di(k)∆i,λ∑︁
i di(k)∆∗i,λ −ϵλ(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (B.10)

Not that this structure neglects the possibility of inter band / inter helicity pairing. The hermitian
2x2 matrices with a symmetric spectrum due to the emergent particle hole symmetry are diago-
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nalizable using

hλBdG(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝u
∗
0,λ(k) u∗1,λ(k)

v∗0,λ(k) v∗1,λ(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Eλ(k) 0

0 −Eλ(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝u0,λ(k) v0,λ(k)

u1,λ(k) v1,λ(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (B.11)

with eigenvalues

Eλ(k) =

√︄
ϵ2
λ(k) +

⃓⃓⃓⃓∑︂
i

di(k)∆i,λ

⃓⃓⃓⃓2
(B.12)

and orthonormal eigenvectors

u0,λ(k) =
1

√
Nλ(k)

(︂
Eλ(k) + ϵλ(k)

)︂
v0,λ(k) =

1
√

Nλ(k)

∑︂
i

di(k)∆∗i,λ

Nλ(k) =
(︂
Eλ(k) + ϵλ(k)

)︂2
+

⃓⃓⃓⃓∑︂
i

di(k)∆i,λ

⃓⃓⃓⃓2
u1,λ(k) = −v∗0,λ(k)

v1,λ(k) = u∗0,λ(k)

(B.13)

it is natural to introduce quasi particle operators

α†kλ = u0,λ(k)ckλ + v0,λ(k)eiαλ(kkk)c†
−kλ and

γ†kλ = u1,λ(k)ckλ + v1,λ(k)eiαλ(kkk)c†
−kλ .

(B.14)

Note that naturally

αkλ = u∗0,λ(k)c†kλ + v∗0,λ(k)e−iαλ(kkk)c
−kλ

= −u1,λ(k)e−iαλ(kkk)c
−kλ + v1,λ(k)c†kλ

= u1,λ(k)e−iαλ(−kkk)c
−kλ + v1,λ(k)c†kλ

= e−iαλ(−kkk)
(︂
u1,λ(−k)c

−kλ + e+iαλ(−kkk)v1,λ(−k)c†kλ
)︂

= e−iαλ(−kkk)γ†
−kλ .

(B.15)

This allows us to connect the operators γ and α

γ†kλ = −e+iαλ(−kkk)α
−kλ

γkλ = −e−iαλ(−kkk)α†
−kλ ,

(B.16)
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and to further simplify

1
2

∑︂
k,λ

Ψ
†

kλh
λ
BdG(k)Ψkλ =

1
2

∑︂
k,λ

(︃
α†kλ γ†kλ

)︃ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Eλ(k) 0

0 −Eλ(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝αkλ

γkλ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
2

∑︂
k,λ

Eλ(k)
(︂
α†kλαkλ − γ

†

kλγkλ

)︂
=

1
2

∑︂
k,λ

Eλ(k)
(︂
α†kλαkλ − α−kλα

†

−kλ

)︂
=

1
2

∑︂
k,λ

Eλ(k)
(︂
α†kλαkλ + α

†

−kλα−kλ − 1
)︂
=

∑︂
k,λ

Eλ(k)α†kλαkλ −
1
2

∑︂
k,λ

Eλ(k) .

(B.17)

In summary we can write the Hamiltonian as

H =
∑︂
k,λ

Eλ(k)α†kλαkλ −
1
2

∑︂
k,λ

Eλ(k) +
1
2

∑︂
kλ

ϵλ(k) −
1
2

∑︂
i,k,λ

di(k)∆i,λ
⟨︁
Ψ
†

pair(k, λ)
⟩︁

. (B.18)

The free energy of this system is now given by

ΩT = −T
∑︂
k,λ

log
(︂
1 + exp

(︁
− βEλ(k)

)︁)︂
−

1
2

∑︂
k,λ

Eλ(k) +
1
2

∑︂
kλ

ϵλ(k) −
1
2

∑︂
i,k,λ

di(k)∆i,λ
⟨︁
Ψ
†

pair(k, λ)
⟩︁

.

(B.19)
For a system in thermodynamic equilibrium the value of the order parameter is defined by the
minimum of the Free energy

0 =
∂ΩT

∂
⟨︁
Ψ
†

pair(k, λ)
⟩︁ (B.20)

To recast this into a more useful form we calculate some intermediate results:

∂

∂
⟨︁
Ψ
†

pair(k, λ)
⟩︁∆i,λ′′ =

∂

∂
⟨︁
Ψ
†

pair(k, λ)
⟩︁ ∑︂

jλ′
Vi j,λ′′λ′

∑︂
q

d j(q)
⟨︁
Ψpair(q, λ

′)
⟩︁
= 0 (B.21)

∂

∂
⟨︁
Ψ
†

pair(k, λ)
⟩︁∆∗i,λ′′ = ∂

∂
⟨︁
Ψ
†

pair(k, λ)
⟩︁ ∑︂

jλ′
Vi j,λ′′λ′

∑︂
q

d j(q)
⟨︁
Ψ
†

pair(q, λ
′)
⟩︁
=

∑︂
j

Vi j,λ′′λd j(k) (B.22)

∂

∂
⟨︁
Ψ
†

pair(k, λ)
⟩︁Eλ′(q) =

1
2Eλ′(q)

∂

∂
⟨︁
Ψ
†

pair(k, λ)
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d2
i (q)∆i,λ′∆

∗
i,λ′

)︂
=

1
2Eλ′(q)

(︂∑︂
i

d2
i (q)∆i,λ′

∑︂
j

Vi j,λ′λd j(k)
)︂

.
(B.23)
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We apply everything to ΩT and find

0 =
∂

∂
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Ψ
†

pair(k, λ)
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(B.24)

∑︂
j

d j(k)∆i,λ =
∑︂
qλ′

(︃
f
(︂
βEλ′(q)

)︂
−

1
2

)︃ 1
2Eλ′(q)

(︂∑︂
i

d2
i (q)∆i,λ′

∑︂
j

Vi j,λ′λd j(k)
)︂

(B.25)

∆ j,λ =
∑︂
qλ′

(︃
f
(︂
βEλ′(q)

)︂
−

1
2

)︃ 1
2Eλ′(q)

∑︂
i

d2
i (q)∆i,λ′Vi j,λ′λ (B.26)

∆i,λ =
∑︂
λ′ j

V∗i j,λλ′

∑︂
q

d2
j (q)

2Eλ′(q)

(︃
f
(︂
βEλ′(q)

)︂
−

1
2

)︃
∆ j,λ′ . (B.27)

Finally we define the integral

Λi,λ
(︁
∆
)︁
=

∑︂
q

d2
i (q)

2Eλ(q)

(︃
f
(︂
βEλ(q)

)︂
−

1
2

)︃
(B.28)

and rewrite the non-linear gap equation as

∆i,λ =
∑︂
λ′ j

V∗i j,λλ′Λ j,λ′
(︁
∆
)︁
∆ j,λ′ (B.29)

and remember that we reduced everything to the positive energy solution

Eλ(k) =

√︄
ϵ2
λ(k) +

⃓⃓⃓⃓∑︂
i

di(k)∆i,λ

⃓⃓⃓⃓2
. (B.30)

Note that the RHS of the non-linear gap equation is, in contrast to its linear approximated
version, not hermitian. Also the dependence of Λ on ∆ makes a solution via the eigenvalue
problem alone impossible. Our strategy for solution therefore contains multiple steps

• Use singular value decomposition of the matrix VΛ to identify its singular values.

• Use the right hand side eigenvactors as guesses for the shape of the gap function.
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• Calculate a critical interaction parameter α such that αVΛ has a singular eigenvalue of
exactly 1 for a given gap and temperature.

• The function α(T,∆) − 1 is monotonous in both temperature and gap size. We search for its
roots via the divide and conquer method.

• These roots are solutions to the non linear gap equation.

From here we can calculate the Free energy F of the system at a given temperature by inserting
into

ΩT = −T
∑︂
k,λ

log
(︂
1 + exp

(︁
− βEλ(k)

)︁)︂
−

1
2

∑︂
k,λ

Eλ(k) +
1
2

∑︂
kλ

ϵλ(k) −
1
2

∑︂
i,k,λ

di(k)∆i,λ
⟨︁
Ψ
†

pair(k, λ)
⟩︁

,

(B.31)
where we calculate ⟨︁

Ψ
†

pair(k, λ)
⟩︁
=

[︃∑︂
i

di(k)
∑︂

jλ′
V−1

i j,λλ′∆ j,λ′

]︃∗
. (B.32)

For superconducting instabilities with a gap function transforming like a two fold degenerate
irreducible representation, we may label two orthogonal solutions by i = 0, 1. We then minimize
ΩT by solving Equation B.29 for ∆0,λ at each temperature and subsequenty varying the complex
superposition of possible gap functions with identical amplitude and helicity distribution

∆i,λ =
(︁

cos(θ)δi0 + sin(θ)eiφδi1
)︁
∆0,λ (B.33)

to find the minima of ΩT in terms of φ and θ. For T = 0.67Tc we find that θ = π/4 and φ = π/2
to minimize the free energy for both the rashba Hubbard and LuPtBi models. We present the
amplitude of the gap function as a function of temperature as well as the gap function at T/Tc =

2/3 for both models.
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Figure C.1: Bare particle hole susceptibilities on the triangular lattice for n = 1.5 and αR = 0.5.
In the left panel, we compare the different diagonal spin contributions χxx, χyy, χzz and χC along
the high symmetry path through the Brillouin zone shown in Figure 2.8. The right panel shows
the real and imaginary part of the three independent off diagonal spin contributions χyx, χzy, χzx

along the same high symmetry path.

Figure C.2: Bare particle hole susceptibilities on the triangular lattice for n = 1.5 and αR = 0.5.
We present the different diagonal spin contributions χxx, χyy, χzz in the complete Brillouin zone.
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Figure C.3: Bare particle hole susceptibilities on the triangular lattice for n = 1.5 and αR = 0.5.
We present the real and imaginary part of the three independent off diagonal spin contributions
χyx, χzy, χzx in the complete Brillouin zone.

Figure C.4: Bare particle hole susceptibilities of the LuPtBis surface state model for n = 0.62. In
the left panel, we compare the different diagonal spin contributions χxx, χyy, χzz and χC along
the high symmetry path through the Brillouin zone shown in Figure 2.8. The right panel shows
the real and imaginary part of the three independent off diagonal spin contributions χyx, χzy, χzx

along the same high symmetry path.
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Figure C.5: Bare particle hole susceptibilities of the LuPtBis surface state model for n = 0.62.
We present the real and imaginary part of the three independent off diagonal spin contributions
χyx, χzy, χzx in the complete Brillouin zone.
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