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Cell-specific proteome analyses of human bone
marrow reveal molecular features of age-
dependent functional decline
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Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem

cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-

associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five

other cell populations that constitute the bone marrow niche. For each, the abundance of a

large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from

different ages. As the HPCs become older, pathways in central carbon metabolism exhibit

features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted

towards anabolism. Simultaneously, altered abundance of early regulators of HPC differ-

entiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing

causes alterations in the bone marrow niche too, and diminishes the functionality of the

pathways involved in HPC homing. The data represent a valuable resource for further ana-

lyses, and for validation of knowledge gained from animal models.
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Ageing of stem cells has been considered as the underlying
cause for ageing of tissues and organs, especially in a
biological system that is characterized by a high turnover

such as haematopoiesis1,2. In humans, anaemia, decreased com-
petence of the adaptive immune system, an expansion of myeloid
cells at the expense of lymphopoiesis, and a higher frequency of
haematologic malignancies have been reported to be hallmarks of
ageing3–5.

The age-associated phenotypes are initiated at the very top of
the haematopoietic hierarchy, i.e., in the haematopoietic stem and
progenitor cells (HPCs)2,6. With age, the HPC population
undergo both quantitative (e.g., an increase in number) and
functional changes (e.g., a decreased ability to repopulate the
bone marrow3,4,7,8). Transcriptomic studies have provided a
blueprint of the underlying molecular mechanisms and indicated
that genes associated with cell cycle, myeloid lineage specification,
as well as with myeloid malignancies were up-regulated in old
HPCs, when compared to young ones5,9,10. The aforementioned
knowledge on the various mechanistic aspects of HPC ageing was
mostly, if not exclusively, gained by studies in murine models of
ageing and has yet to be validated in human subjects.

Additionally, changes in the HPC microenvironment—the
bone marrow niche—also influence haematological ageing.
Whereas alterations in adhesion molecules, which are expressed
in the cellular niche, and which are essential for homing and
maintenance of HPCs, have been described, how they vary with
the ageing process has not been defined11–16. In previous studies,
we demonstrated specific transcriptomics and epigenetic altera-
tions characteristic for ageing of human mesenchymal stem/
stromal cells (MSCs)17,18, while other groups indicated that dif-
ferent cellular elements in the marrow such as monocytes and
macrophages could also play major roles19–21. Whereas these
various mechanisms of ageing have been studied in a few, indi-
vidual cell populations constituting the bone marrow, our
understanding of the roles of intrinsic mechanisms, i.e., in the
HPCs, vs. extrinsic ones, such as in the marrow niche, has
remained fragmented.

The overarching goal of this study is therefore to acquire a
systems understanding of the molecular mechanisms involved in
ageing of human HPCs, as well as those in the cell populations
comprising the marrow niche. As cell functions are more directly
characterized by their proteins than their transcript complements,
we performed a comprehensive and quantitative proteomics
analysis of the HPCs and their niche in a large cohort of human
subjects from different age groups. The underlying datasets
should represent not only a valuable resource for mechanistic
analyses and for validation of knowledge gained from animal
models, but also provide an atlas of proteomic signatures of
human ageing processes within the cellular network of the bone
marrow. The systemic data should build a foundation for a better
understanding of age-related diseases such as myelodysplastic
syndromes (MDS) in the future.

Results
Multi-scale proteomics profiling of human bone marrow cells.
Bone marrow samples of high quality and sufficient quantity
from 59 human subjects, 45 male and 14 female, were available
for proteomics analysis (Fig. 1a, b). Their age ranged from 20 to
60 years with a median of 33.2 years, as depicted in Fig. 1b
(Supplementary Table 1). From each bone marrow sample, we
isolated HPCs as defined by CD34+ and five other cell sub-
populations, namely, lymphocytes and precursors (LYMs),
monocytes/macrophages and precursors (MONs), granulocytic
(GRAs), and erythroid (ERPs) precursors, as well as MSCs (Fig.
1a, b, Supplementary Fig. 1). The CD34+ cells are highly enriched

mainly for progenitors, but do contain a significant percentage of
stem cells. These cell populations constitute 94.2% (±2.8%) of all
mononuclear cells in the bone marrow.

To simultaneously assess the molecular alterations associated
with ageing at both spatial (cell population) and temporal
(ageing) resolution, we combined two complementary mass
spectrometry (MS)-based quantification methods. The cell type-
specific changes were measured by a label-free technique adapted
from Schwanhausser et al.22 (see Methods) and the age-associated
ones by isobaric labelling using the tandem mass tag (TMT)23

(Supplementary Fig. 2a,b). The six different cell populations were
analysed separately. Tryptic digests were processed in batches of
five human subjects, each labelled with a different TMT, and were
combined (Fig. 1c) with a TMT-labelled cell population-specific
internal standard to ensure an accurate quantification across all
samples. In total, we were able to identify 12,158 proteins (Fig. 1d,
e; Supplementary Fig. 2b and Supplementary Data 1) (i.e., in all
human subjects and in the six cell populations), which represents
77% of the currently detectable human proteome24 (see
Methods). The number of proteins characterized in each specific
cell population varied from 6340 in ERPs to 9454 in MSCs.

The technical reproducibility for the TMT-based quantifica-
tion, measured in triplicate, was high (averaged Pearson's
correlation coefficient= 0.94; median coefficient of variation=
4.2%; details in Methods). A principal component analysis
showed that age accounted for a small but sizeable fraction of
the overall inter-individual variability (between 3.1 and 21.8%
depending on the cell population). Based on these principal
component analyses, we excluded samples that deviated sig-
nificantly from the majority due to various technical issues
(Supplementary Fig. 2c). After removing those outliers, we were
able to analyse a total of 270 samples, and acquired 7375 protein
abundance profiles across the human cohort (TMT quantifica-
tion), and 6952 across the cell populations (label-free quantifica-
tion). Although we could not capture the least abundant
proteins25, our analyses broadly cover the main functional and
compartmental protein categories (Supplementary Fig. 3).

The quality of the dataset was validated by the inter-individual
variability in each of the different cell populations studied
(biological variability). While protein abundance fluctuated
among the different samples within the same cell population,
proteins within specific pathways or protein complexes that were
expected to be co-expressed showed coherent changes across
donors (Supplementary Fig. 4)26,27. Furthermore, hierarchical
clustering based on all proteins quantified by label-free
quantification yielded a distinct pattern permitting separation
into clusters that recapitulate the known lineage relationship
(Supplementary Fig. 5).

The quality of the dataset was further confirmed by the
abundance profiles of known cell type-specific markers of the
corresponding subpopulations (Fig. 2a and Supplementary Fig. 6),
based on which the respective cell types were isolated (Supple-
mentary Fig. 1). All validation analyses indicated that the
proteomics datasets were reliable and of appropriate quality to
address questions on age-dependent differences across cell
populations.

The proteomic landscape of the human marrow niche. Recent
human proteome atlases are still largely based on transcript
abundances to estimate relative protein levels24,25. They also
usually describe entire organs, and as a consequence the indivi-
dual cell types that constitute the respective organs remain largely
overlooked. Our data represent a comprehensive proteomics
study that delineates the differences between the six major cell
populations constituting the human bone marrow.
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Only a fraction (8.3%; 578 proteins) of the proteome was
expressed in a strictly cell-specific manner. Among these cell-
specific proteins, some might be associated with specific functions
of the respective cell type and serve as markers for isolation. For
example, out of the 17 HPC-specific proteins, some are involved
in the differentiation along the myeloid (dachshund homologue 1
(DACH1)) or lymphoid lineages (DNA nucleotidylexotransferase
(DNTT); B-cell lymphoma/leukaemia, 11A (BCL11A); haemato-
poietic SH2 domain containing protein (HSH2D)), or in the
maintenance of pluripotency (B-Box and SPRY domain contain-
ing protein (BSPRY))28. The restricted expression of these
proteins in the HPC population, and their absence in the more
committed progenitors, suggest a role in early stages of
haematopoiesis.

When compared to HPCs and other haematopoietic progenitor
cells, MSCs have the most distinct proteome with 452 proteins

uniquely expressed (7.7% of the quantified proteome). This
reflects different biology and functional competences (see below),
but also to some extent the fact that these cells had to be
expanded in vitro because of their very low abundance in the
bone marrow. Of these uniquely expressed proteins, 56 (12%)
play a role in the organization of the extracellular matrix (ECM),
and might contribute to MSC-mediated HPC homing29. Many of
the proteins expressed uniquely in MSCs were localized at the cell
surface, e.g., CD51 (ITGAV), CUB and LCCL domain containing
2 (DCBLD2), trophoblast glycoprotein (TPBG), discoidin
(DDR2), the caveolea-associated proteins caveolin 1 (CAV1)
and EH domain containing 2 (EDH2). They represent potential
candidates for the characterization of MSCs as specific markers.
Abundant and specific expression of nestin (NES) was found in
human MSCs in the present study. The presence of nestin-
positive MSCs has been reported to characterize a perivascular
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bone marrow niche, which supports HPC maintenance and
homing in murine models30,31 and in human bone marrow32,33.
Our study has confirmed the existence of nestin-positive MSCs in
adult marrow.

The vast majority (73.3%) of the quantified proteins were
present in more than one cell population and, among those,
18.6% were consistently found in all six subpopulations
(Supplementary Data 2). The abundance of those 950 commonly
expressed proteins constituted up to ~70% of the quantified
proteome (Supplementary Fig. 7). This core proteome was
enriched in proteins with essential, housekeeping functions, but
their abundance differed in the different cell populations.
Especially, many metabolic pathways showed specific stoichio-
metries (Fig. 2c, Supplementary Data 3). Collectively, the relative
stoichiometry of the commonly expressed proteins could be used

to define the six different cell populations (Fig. 2b). This might
reflect their specific metabolic requirements for lineage commit-
ment and adaptation to cell-specific processes and functions27

(see below).
Prominent examples of such core proteins are those involved

in the glycolytic pathway that converts glucose to pyruvate, and
thereby provide both energy in the form of adenosine tripho-
sphate (ATP) as well as carbon substrates for diverse anabolic
processes. Whereas the relative abundance of these enzymes
differed in the various cell populations, the cell-specific
stoichiometry patterns were rigorously maintained across the
different human donors (Supplementary Fig. 8). For example,
when compared to other cell populations within this cellular
network, ERPs were characterized by the most divergent enzyme
stoichiometry (Fig. 2d). All enzymes downstream of the
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glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were less
abundant when compared to all other cell types. This can be
explained by the unique Luebering–Rapoport glycolytic shunt in
erythrocytes that converts the 1,3-bisphosphoglycerate (the
product of GAPDH) to 2,3-bisphosphoglycerate (2,3-BPG). The
latter regulates oxygen release from haemoglobin and its delivery
to tissues34,35. This indicated an early specialization of the
glycolytic pathway for the production of 2,3-BPG in ERPs.

Similarly, we found a cell-specific expression of the different
isozymes of hexokinase, the first rate-limiting enzyme in glucose
metabolism (Fig. 2e). These isozymes control the metabolic fate of
glucose-6 phosphate (G6P)36. While HPCs, LYMs, ERPs, and
MSCs mainly expressed hexokinase 1, which channels G6P to
glycolysis, both MONs and GRAs expressed significant amounts
of hexokinase 3 that directs G6P to anabolic pathways, such as the
pentose phosphate pathway. Consistent with the high level of
hexokinase 3 in MONs and GRAs, enzymes in the oxidative and
non-oxidative branches of the pentose phosphate pathway were
also highly abundant in these subsets (Fig. 2d). This pathway
generates nicotinamide adenine dinucleotide phosphate
(NADPH)—and precursor for the synthesis of nucleotides—that
play important roles in neutrophils, granulocytes, and
macrophages37.

Taken together, the dataset represents an important resource
that not only depicts proteome adaptations to cell type-specific
functions, but also quantifies the respective impact of biological
variations in the different bone marrow subpopulations that
reflect adaptation at the level of cell communities or tissues.

Impact of ageing on proteome landscapes. To quantify the
proteomic alterations associated with human ageing, we per-
formed Spearman's correlation analysis between the abundance of
proteins consistently measured in >15% of all subjects and the
corresponding chronologic ages (see Methods). Ageing was
associated with subtle but significant changes in the abundance of
many proteins (p value ≤ 0.05, Spearman's correlation; Supple-
mentary Data 4). These changes were not confounded by gender
differences, as very similar values were obtained by excluding the
14 female subjects (0.850 < r < 0.906, Pearson's correlation coef-
ficient) (Supplementary Fig. 9a). We have conducted tran-
scriptomic analyses (using RNA-sequencing (RNA-seq)) on
65 samples (after fluorescence-activated cell sorting (FACS)) that
were collected from the same human subjects and on the same
day as the corresponding samples for proteomics analyses (Sup-
plementary Fig. 9b). We observed that genes that were up-
regulated at the protein level (p value < 0.1, Mann–Whitney U-
test) exhibited a significantly higher transcript fold change than
genes that were down-regulated at the protein level (Supple-
mentary Fig. 9b, c; Supplementary Data 5).

The age-associated alterations varied considerably in the
different cell populations. For example, the number of age-
related changes in protein abundance ranged from 175 (5.2%) in
ERPs to 411 (9.1%) in HPCs and to 737 (12.4%) in MSCs
(Supplementary Data 6). In addition, the different age-associated
datasets were only partially overlapping, suggesting that age has
distinct impacts on different cell types. This finding might reflect
the varying half-lifes of the six cell populations studied. HPCs and
MSCs are relatively long-lived, persisting progenitor and stem
cells, while the other cell types (LYMs, GRAs, MONs, and ERPs),
with the exceptions of memory lymphocytes, represent lineage-
committed precursors with higher turnover rates and consider-
ably shorter half-lifes.

To obtain an overview of the biological processes and pathways
affected by ageing in each of the different subpopulations, we
examined the systems alterations by combined analysis of all

proteins involved in specific pathways defined in the Reactome
database (http://www.reactome.org) (Fig. 3a, Supplementary
Fig. 10 and Supplementary Data 7). This analysis revealed
remarkable cell type-specific and age-associated changes in
protein abundances. For example, we detected a significant
increase in glycogen breakdown, synthesis of prostaglandins and
thromboxanes (arachidonic acid metabolism), and metabolism of
nitric oxide in older HPCs (see below). In the other cell
populations, these processes were largely unaffected. In older
MSCs, prominent alterations included differential regulation of
proteins that are associated with cellular response to stress,
replicative senescence, white adipocyte differentiation, and ECM
organization.

Our data captured some of the few established ageing markers
identified by transcriptomic analyses. For example, there was a
reduction in abundance of interferon regulatory factor 8 (IRF8) as
the HPCs become older, a phenomenon reported to be associated
with dysregulated proliferative activity and biased myeloid
differentiation38 (Fig. 3b). The mitochondria play an important
role in ageing39 and we identified increases in mitochondrial
calcium uniporter (MCU), ATP synthase, H+ transporting
mitochondrial F0 complex subunit G (ATP5L), and a significant
decrease in mitochondrial ribosomal protein L48 (MRPL48) upon
ageing. There was also a significant reduction in abundance of
DNA methyltransferase 1 (DNMT1), a protein that is responsible
for maintenance of DNA methylation pattern40 (Fig. 3b). In
human systems, its expression is frequently down-regulated in
most common age-related diseases41 such as acute myeloid
leukaemia) and MDS. In mouse models, Dnmt1 is critical for
HPC maintenance and their ability to self-renew efficiently after
transplantation42.

Ageing affects central carbon metabolism in HPCs. The most
remarkable changes in proteome landscapes of HPCs associated
with ageing were found in enzymes that play a central role in
glycolysis, glycogen catabolism, and fatty acid beta-oxidation
(FAO). These alterations all indicated an enhanced metabolic and
specifically anabolic activity of old HPCs vs. young HPCs (Fig. 4).
In contrast, these changes were not found in the other five cell
populations even though many of these proteins belong to their
core proteome (Supplementary Fig. 11).

We identified a significant age-associated increase in abun-
dance of enzymes catalysing the rate-limiting steps of the upper
part of glycolysis, namely hexokinase 1 (HK1) and phospho-
fructokinase M (PFKM), as well as the glycolytic enzymes
aldolase C (ALDOC) and triosephosphate isomerase 1 (TPI1)
(Fig. 4a–d). Simultaneously, the main enzymes involved in
glycogen catabolism, glycogen phosphorylases brain and liver
form (PYGB, PYGL), and glycogen debranching enzyme (AGL)
were significantly more abundant in older HPCs. Increased
abundance of phosphoglucomutase 1 (PGM1) also indicated an
enhanced propensity to fuel the upper part of the glycolysis with
the catalytic products of glycogen. Compatible with these
changes, we demonstrated an increase in the abundance of
transaldolase 1 (TALDO1), a key enzyme of the non-oxidative
pentose phosphate pathway. There was also an increase in the
abundance of the glycerol-3-phosphate dehydrogenase (GPD2),
and dihydroxacetone kinase (DAK), thus rendering the full
picture of increased activity in the upper part of the central
carbon metabolism in ageing HPCs complete.

Notably, these changes affected only the preparatory phase of
the glycolytic pathway that consumes ATP and converts glucose
to dihydroxyacetone phosphate and D-glyceraldehyde 3-phos-
phate. The second phase—characterized by the production of
ATP, nicotinamide adenine dinucleotide (NADH) and pyruvate
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—as well as the Krebs cycle remained largely unaffected (Fig. 4a).
This is reminiscent of the Warburg effect, where excess of
glycolytic carbon is redirected to pathways that branch out of the
glycolysis/Krebs cycle axes, thus producing cofactors and
intermediates for anabolism (e.g., nucleotides, lipids, amino acids
synthesis)43 and epigenetic processes44. Consistent with this trend
towards anabolism upon ageing, metabolomics analyses of HPCs

(n= 10, age: 21–69-year-old) revealed a tendency for two
metabolites in the pentose phosphate pathway, ribulose 5-
phosphate and ribose 5-phosphate, to accumulate in aged HPCs
(Fig. 4b, Supplementary Data 8). In addition, phosphoglycerate
dehydrogenase (PHGDH), an enzyme which is often over-
expressed in tumours45 and that diverts 3-phospho-D-glycerate
out of the glycolytic pathway to convert it to 3-
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phosphonooxypyruvate for the biosynthesis of serine, increased
in abundance in older HPCs. In cancer cells, a high demand for
serine is known to support nucleotide synthesis, NADPH
production, and the biosynthesis of S-adenosyl methionine
(SAM), a methyl donor for essential biochemical processes43,46.

Likewise, the mitochondrial citric acid transporter SLC25A1
that shuttles citrate to the extra-mitochondrial periphery
increased in abundance with age along with an increased
abundance of soluble aconitase (ACO1) and ATP citrate lyase
(ACLY). Both enzymes use citrate as a substrate outside of the
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mitochondria. Synthesizing acetyl-CoA and oxaloacetate from
citrate and CoA, ACLY is the key regulator between aerobic
glycolysis and amino acid as well as de novo lipid synthesis
involved in proliferation of tumour cells47.

Simultaneously, there was also an age-dependent increase in
abundance of FAO enzymes such as the trifunctional enzyme
subunit beta (HADHB), peroxisomal bifunctional enzyme
(EHHADH), propionyl-CoA carboxylase beta chain (PCCB),
carnitine O-acetyltransferase (CRAT), as well as carnitine
palmitoyl transferase 1 (CPT1A) and the carnitine-acyl-
carnitine transporter SLC25A20 in aged HPCs (Fig. 4c). These
enzymes span the whole fatty acid import machinery from the
conversion of acyl-CoA to acyl-carnitine (CPT1A) in the cytosol,
the transport of acyl-carnitine into mitochondria via SLC25A20
to the reconversion to acyl-CoA by carnitine o-acetyltransferase
(CRAT)48, and include major enzymes of mitochondrial
(HADHB) and peroxisomal (EHHADH) FAO. All these changes
were indicative of increased FAO as the HPCs became older.
Together with glycolytic catabolism, FAO has been reported to be
an important hallmark of HPC maintenance and quiescence49,50.
Overall, these data support the notion that in HPCs, ageing is
associated with a rewiring of central metabolic pathways and the
rerouting of metabolic intermediates for the synthesis of cofactors
important for anabolic and epigenetic processes.

Higher myeloid versus lymphoid differentiation upon ageing.
Haematopoietic stem cells are characterized by their ability to
both self-renew and differentiate into all functional blood cells. As
mentioned above, 17 proteins were specifically found in the HPC
population that are involved in the maintenance of pluripotency,
or in the differentiation along the myeloid or lymphoid lineages.
To characterize the age-associated functional attenuation of
HPCs, we then examined the dynamics of alterations in abun-
dance of these proteins with age (Fig. 5a). DNTT and BCL11A,
two proteins directly linked to lymphoid development and
function, decreased significantly as the HPCs became older. In
contrast, the heterodimeric soluble guanylate cyclase (GUCY1A3
and GUCY1B3), i.e., downstream signalling effectors of nitric
oxide (NO), increased significantly in abundance in older HPCs.
NO/cyclic guanosine monophosphate (cGMP) signalling has
been shown to modulate haematopoiesis and might also indicate
an increased differentiation bias towards the myeloid lineage51

(see below).
We further assessed the age-associated effects on lineage-

relevant proteins by integrating known markers. Lymphoid
marker proteins, such as MME (membrane metallo-endopepti-
dase, also known as CD10), IKZF1 (ikaros family zinc finger 1)
and EBF1 (early b-cell factor-1) decreased with age. Furthermore,
several proteins derived from a gene set characteristic for human
lymphoid development10 diminished in abundance with age as
well. Figure 5b shows the alterations in abundance of HPC
proteins that were reported to be relevant for lymphoid
differentiation.

In sharp contrast, proteins that are associated with myeloid
lineages, i.e., prostaglandin-endoperoxide synthase 1 (PTGS1),
proline-serine-threonine phosphatase interacting protein 2
(PSTPIP2), thromboxane A synthase 1 (TBXAS1) that is
associated with platelet development and function, as well as
the promyelocytic leukaemia protein, all increased significantly in
the older HPCs (Fig. 5c). In summary, we have demonstrated a
significant decrease in abundance of proteins involved in
lymphoid development, while factors associated with myeloid
and platelet differentiation increased in abundance as the HPCs
became older.

In order to examine whether the increased abundance of
enzymes of the preparatory phase of the glycolytic pathway might
be a direct consequence of the lineage skewing of the CD34+ cells
towards myeloid differentiation, we analysed the transcriptomes
of 519 single-cell sorted HPCs originating from young (n= 2)
and old (n= 2) human subjects. Based on the abundance levels of
the messenger RNA (mRNA) markers of lymphoid or myeloid
differentiation, we categorized each individual HPC cell
(Fig. 6a–c). The mRNA levels of age-increased glycolytic enzymes
were higher in myeloid-primed than in lymphoid-primed HPCs,
whereas transcripts for age-unaffected enzymes remained at
similar levels in both subsets (Fig. 7a, b and Supplementary
Fig. 12a,b). The age-dependent increase in glycolytic enzymes was
most prominent in the myeloid-primed subset of HPCs. Thus, the
lineage skewing of the CD34+ cells towards myeloid differentia-
tion upon ageing may account, at least in part, for the increase in
abundance of glycolytic enzymes.

Changes in the bone marrow niche in relationship to HPCs.
The bone marrow represents a specialized environment that
controls HPC maintenance and regulates haematopoietic homo-
eostasis. Our systematic approach has provided a unique
opportunity to simultaneously define the age-dependent changes
in the cellular components constituting the niche. Several essen-
tial factors and adhesion molecules produced by the cellular niche
and responsible for homing and egress of HPCs52–54, e.g., stromal
cell-derived factor-1 (SDF-1/CXCL12), vascular cell adhesion
molecule 1 (VCAM1), and fibronectin (FN1)55, all decreased in
abundance in older MSCs (Fig. 8). Simultaneously, there were
significant changes in abundance of proteins tightly linked to
glycosaminoglycan metabolism (galactosylgalactosylxylosylpro-
tein 3-beta-glucuronosyltransferase 3 (B3GAT3); chondroitin
sulphate N-acetylgalactosaminyltransferase 2 (CSGALNACT2);
biglycan (BGN); alpha-L-iduronidase (IDUA)), and collagen
metabolism (collagens: COL4A2, COL1A1, COL1A2, COL3A1,
COL5A2, COL6A3, COL11A1; prolyl 4-hydroxylase subunit beta
(P4HB)) as MSCs became older. These alterations indicated that
ageing was associated with a reorganization of the ECM, as well as
structural changes in the architecture of the bone marrow niche.

Ageing is probably associated with coordinated, concerted
alterations in this network of cell communities within human
bone marrow. To visualize the coordinated and simultaneous

Fig. 4 Prominent changes upon ageing in the central carbon metabolism. a The glucose metabolism and the tricarboxylic acid (TCA) cycle of HPCs are
depicted, with arrows representing unidirectional reactions and strokes representing bidirectional reactions. The gene names of the respective enzymes are
written in capital letters and the colour codes for changes upon ageing, as described in the legend. A star indicates that the particular protein was not
covered for quantification. Apart from the main glycolytic pathway, glycogen breakdown as well as a part of the pentose phosphate pathway is shown.
bMeasurements of relative amounts of phosphorylated metabolites relevant to the preparatory phase of the glycolytic pathway and the pentose phosphate
pathway. The age of the respective donor (x-axis) is plotted against the relative amount of metabolites (y-axis) after normalizing for the cumulative amount
of the given metabolites detected in each donor. Spearman’s rank correlation coefficient is indicated as rho. c Similar to a, the scheme depicts the effects of
ageing on a specific set of enzymes involved in the mitochondrial beta-oxidation of fatty acids. d Volcano plots of all proteins quantified in the respective
cell populations. The dashed lines indicate p values of 0.1 and 0.05. Proteins represented in a and c are colour coded according to the legend. All other
proteins are coloured grey. a–d The p values (p) are based on Spearman's correlation analyses
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changes that occur across the different subpopulations, we have
designed a correlation matrix for all extracellular protein–ligand
pairs measured in different cell populations56 (Fig. 9). A
correlative analysis of protein expression profiles within this
context might be indicative of a direct or indirect functional
relationship. Based on the STRING database57, we demonstrated
that 28% of these receptor–ligand pairs directly interacted with
one another (p value= 0.0498, Fisher's exact test), while 62%
showed indirect functional relations (p value= 0.047, Fisher's
exact test). For example, complementary to the decrease in
VCAM1 and FN1 described above in MSCs, their corresponding
ligand, α4/β1 integrin (ITGA4/ITGB1), also decreased in HPCs
upon ageing. Interestingly, αL/β2 integrin (ITGAL/ITGB2)
followed a very similar pattern (Fig. 8). These observations
supported the notion that β2-containing integrins on HPCs
showed a synergistic effect with that of α4/β1 integrin, as reported
in the literature58.
Soluble factors secreted by the cellular components of the niche

were also affected as the marrow niche became older. Some of
these changes might account for the functional attenuation of
HPCs described in the literature. For example, transforming
growth factor beta-1 (TGFB1) was elevated in LYMs and ERPs
from older subjects (Fig. 8b). In mouse models, TGFB1 has been
proposed to contribute to lineage skewing by stimulating
myeloid-biased HPCs, while inhibiting lymphoid

development52,59. Furthermore, we have found a significant
decrease in abundance of the NO synthase inhibitor NOSIP in
MSCs. This was associated with a prominent increase in
abundance of dimethylargininase-1 and 02 (DDAH1 and
DDAH2), enzymes that degrade asymmetric dimethylarginine
(ADMA)—an inhibitor of NO synthase—in HPCs (Fig. 8b).
These complementary changes in the HPCs suggested that the
immunomodulatory secondary messenger NO was up-regulated
in the ageing niche, whereas the downstream signalling effectors
of NO, i.e., the heterodimeric soluble guanylate cyclase
(GUCY1A3 and GUCY1B3) and the cGMP-dependent kinase 2
(PRKG2), were significantly elevated in older HPCs (Fig. 8b).
Elevated levels of TGFB1 and NO in the bone marrow niche
might represent initial triggers for the lineage skewing described
above. Overall, these alterations have provided evidence that,
during the ageing process, extrinsic factors in the niche play a
major, complementary role to intrinsic factors in the HPCs.

Discussion
We have presented an atlas of the age-associated alterations in
proteomic landscapes of human HPCs as well as of five other
subpopulations comprising the bone marrow niche. This com-
prehensive and comparative proteomics study of constituent cell
types in a human tissue across the time span of 40 years is unique.
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Overall, our dataset provides a framework which allows for the
interpretation and integration of the fragmented knowledge
derived from various experimental models6.

Among the significant alterations in terms of abundance of
proteins upon ageing, the most prominent changes included an
enhanced metabolic and anabolic activity of older HPCs as
compared to young HPCs. Glucose metabolism has been shown
to influence chromatin structure and transcription43 on the one
hand, and to play a pivotal role in governing stem cell fate in
terms of proliferation, differentiation, or dormancy on the
other49. Our study has provided evidence for a prominent shift in

central carbon metabolism of human HPCs, indicating enhanced
metabolic and anabolic activity in the HPCs during the ageing
process. These changes are reminiscent of a Warburg effect43,44.

Higher proliferation of aged HPCs is associated with a general
loss of function, including a diminished regenerative potential in
serial transplantation assays6. For example, murine models have
provided convincing evidence for a decreased competence of the
adaptive immune system, an expansion of myeloid cells6, and an
increased platelet priming and functional platelet bias60 as the
HPCs age. In humans, Pang et al.9 observed that HPCs increased
in frequency with age, but were less quiescent, and exhibited
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Fig. 6 Classification of single CD34+ cells into myeloid- and lymphoid-primed cells. a The matrices show the correlation (Pearson) of the abundance of the
mRNA markers specific for lymphoid or myeloid differentiation (see also Fig. 5c) in single HPCs. b The distribution of correlation values (Pearson) between
myeloid and lymphoid markers (grey), between myeloid markers only (pink), and between lymphoid markers only (purple) is presented as box plot. The
central line in the box plots indicates the median, the bottom and top edges of the box the IQR, and the box plot whiskers represent 1.5 times the IQR.
Correlation values are taken from all four samples. Significance was assessed using Mann–Whitney U-test (**p value < 0.01). c Cells are classified into
lymphoid- and myeloid-primed cells based on markers. The bar-plot gives an overview on the fraction size of lymphoid-primed (purple), myeloid-primed
(pink), and undefined (grey) cells in a given sample (undefined meaning that cells could not be classified as myeloid or lymphoid). For each fraction and
each sample (S1–S4) the heat maps show the mRNA abundance of lymphoid and myeloid markers. The significance of marker distributions in each fraction
was assessed by Fisher's exact test (p values depicted)
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myeloid-biased differentiation potential. Thus, our data have
provided a complete atlas of dynamic changes in intrinsic and
extrinsic factors upon ageing and hence leverage for our strategy
in profiling all the different compartments of the marrow niche.

The simultaneous investigation of the other five cell popu-
lations in the bone marrow constituting the HPC niche
represents another uniqueness of our present study and
revealed age-associated alterations in the interplay of the
niche components. Several of the key factors responsible for
homing, egress, and differentiation of HPCs (SDF-1/CXCL12,
VCAM1, FN1, integrins α4, αL, β1, and β2) decreased in
abundance, whereas soluble factors responsible for HPC
differentiation61,62 like TGFB1 increased in abundance in the
niche with age. In addition, numerous alterations in older
MSCs supported the notion that ageing is associated with
changes in the ECM and in the architecture of the
bone marrow niche. Overall, these changes might explain
the previously described deficit of homing potential of

aged murine HPCs54 and the reduced rate of homing of
elderly recipients of bone marrow transplantations in murine
models. Our data on dynamic changes in intrinsic and
extrinsic factors upon ageing serve as an atlas that can be
leveraged for profiling all the different compartments of
human bone marrow.

We have captured the proteomics signatures of the ageing
process in a human tissue and are able to present an atlas of
comprehensive, age-related alterations in proteome landscapes of
human HPCs and the cellular niche elements. Our datasets also
represent a valuable resource and basis for development of
treatment strategies targeting metabolic alterations and pharma-
cologic manipulations to enhance HPC regeneration.

Methods
Specimen and donor cohort. Bone marrow samples were harvested from human
subjects through puncture at the posterior iliac crest using a Yamshidi needle, with
aspirations at 5 to 7 different levels of approximately 10 ml at each level18. The
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study has been approved by the Ethics Committee for Human Subjects at the
University of Heidelberg, and written informed consent was obtained from each
individual. We recruited 59 subjects, with the age ranging from 20 to 60 years for
proteomics and transcriptomics studies. Gender and age distribution of the human
subjects is depicted in Fig. 1b and listed in Supplementary Table 1.

For validation experiments (metabolomics and single-cell RNA-seq) 10
additional subjects were recruited for isolation and analysis of CD34+ cells
(Supplementary Table 2). Mononuclear cells derived from umbilical cord blood
were used as internal standards for the proteomics analyses.

Cell isolation and sample generation. The aforementioned bone marrow aspi-
rates were processed by FICOLL density fractionation for isolation of mononuclear
cells (MNCs). After staining with CD34-APC, CD45-FITC, and CD14-PE (all from
BD Biosciences, San Jose, CA), five different cell populations were isolated as
indicated in Fig. 1a and Supplementary Fig. 1 using a FACSAria II flow cytometry
cell sorter (BD Biosciences). After FACS, the cells were analysed for their purity by
resorting an aliquot of the five purified cell populations generated for MS-based
proteomics. The cells were stored as a pellet at −80 °C for later proteomics analysis.
For single-cell RNA-seq of CD34-positive cells, single CD34-positive cells were
sorted directly into 96-well plates containing 4.4 µl of lysis buffer per well. The lysis
buffer contained 0.2% Triton X-100 (Sigma), RNase inhibitor (Takara), oligo-
dT30VN primer (Sigma) according to Picelli et al.63 and 2.2 mM dNTP (Invitro-
gen). The lysed cells were frozen on dry ice cooled ethanol and kept at −80 °C until
further processing.

Isolation followed by culture and sample preparation of human MSCs. MSCs
were isolated using their natural plastic adherence upon culture in vitro64. The
adopted preparation for MSC has been defined by a consensus position paper of
the International Society for Cellular Therapy65. MNCs were seeded in a low foetal
calf serum (FCS) MSC medium at a density of approximately 1 × 106 cells per cm2

in tissue culture flasks coated with 10 ng ml−1 fibronectin (Sigma) before use. The
medium consisted of Dulbecco's modified Eagle's medium with low glucose sup-
plemented with 40% (v/v) MCDB201 (Sigma), 2 mM L–glutamine (Sigma), 100 U
ml−1 penicillin/streptomycin (Lonza), 1% (v/v) insulin transferrin selenium
(Sigma), 1% (v/v) linoleic acid albumin from bovine serum albumin (Sigma), 10
nM dexamethasone (Sigma), 0.1 mM L-ascorbic acid-2-phosphate (Sigma),
homodimer of PDGF subunit B (PDGF-BB) and epidermal growth factor (both 10

ng ml−1; PreproTech, Rocky Hill, NJ, USA), and 2% (v/v) FCS (HyClone). Culture
medium was changed twice per week. After initial colony formation after
10–14 days and with 80% confluence, the cells were trypsinized, counted, and
reseeded at 104 cells per cm2 for further expansion. At passage 2, the cells were
scratched off without the use of digesting agents, washed, and cell material stored at
−80 °C as a pellet for proteomics analysis. In a series of publications, our group has
demonstrated that comparing the MSC preparations from donors of different age
groups and harvested in each case after a standardized number of passages will
yield reproducible results that demonstrated age-specific changes in epigenetic
signatures17,18,64.

Sample preparation for proteomics analyses. The frozen cells were suspended
and lysed with lysis buffer by pipetting them up and down at least 30 times. The
lysis buffer contained protease inhibitors (Sigma P8340), RapiGest SF surfactant
(Waters), and 200 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
(HEPES) and was buffered to a pH of 8 with NaOH. Samples were kept at 90 °C for
5 min with subsequent sonication for 20 min. The cell debris was pelleted and the
supernatant was further used. Disulphide bonds of the proteins were reduced with
dithiothreitol (Biomol) (2 mM) followed by carbamidomethylation of cysteine side
chains using iodoacetamide (Merck) (5 mM). The modified proteins were digested
first with Lys-C in a 1:100 enzyme to protein ratio (Wako Chemicals) for 3 h at 37 °
C with subsequent tryptic digestion in a 1:50 enzyme to protein ratio (trypsin gold,
Promega Corporation) at 37 °C overnight. The protein amount was estimated
based on the known cell number and determination of the average protein amount
per cell for each of the different cell populations.

Preparation of internal standards for proteomics analyses. FACS sorted cells
from umbilical cord blood and human bone marrow were used to create an
internal standard to allow comparison of the individual experiments. For each cell
population an individual internal standard was prepared. The lysis and digestion
procedure for the internal standard was the same as described above in the section
'Sample preparation for proteomics analysis'. The acid cleavable detergent Rapi-
Gest was cleaved after the trypsin digestion with trifluoroacetic acid followed by
centrifugation to remove the precipitated lipophilic part of RapiGest. The
supernatant containing the peptides was desalted, concentrated, and reconstituted.
The individual samples of the same cell population were pooled and aliquoted in
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Fig. 8 Alterations of protein abundance in the haematopoietic stem cell niche with age. a CXCL12, VCAM1, and FN1 in MSCs and the integrins alpha4,
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amounts equal to the samples. The same batch of aliquots was used for the whole
proteomics analysis.

TMT labelling for protein quantification. The peptides of five samples of the
same cell population and one internal standard with an equivalent amount of
sample were modified with TMT (Thermo Fisher Scientific) in order to introduce a
label for quantification. The TMT 6-plex has been chosen as it permits measure-
ments of six samples at once and thus reduces the overall run time per sample on
the mass spectrometer compared to other labelling strategies that offer less than six
channels. After labelling the peptides with TMT, the reaction was quenched with
hydroxylamine and the acid cleavable detergent RapiGest was cleaved with tri-
fluoroacetic acid. The lipophilic part of the RapiGest reagent precipitates and was
pelleted by centrifugation. The supernatant containing the labelled peptides was
desalted on a C18 reversed phase material to remove the buffer, the hydrophilic
part of the RapiGest detergent, and other very hydrophilic components.

A small aliquot of the six differentially TMT-labelled samples was mixed and
the resulting sample was analysed by liquid chromatography-tandem mass
spectrometry (LC-MS/MS). Based on the median protein ratio of each sample over
the internal standard, the mixing of the six samples was adjusted as close as
possible to a 1:1:1:1:1:1 ratio with the leftover samples.

This mixture of five samples and the internal standard was concentrated under
vacuum to remove the majority of organic solvents. Subsequently, the pH was
adjusted to above 10 with 25% ammonia and the volume was adjusted to 50 µl. The
total sample was separated on an Agilent 1260 infinity high-performance liquid
chromatography (HPLC) system equipped with a Waters XBridge C18; 3.5 μm; 1 ×
100 mm reversed phase column at a flow rate of 75 µl min−1. The buffers were 20
mM ammonium formate at pH 10 and 100% acetonitrile. Ninety fractions were
collected and subsequently concentrated under vacuum to remove the majority of
the organic solvent. The fractions were desalted and pooled in one step into 18
pooled fractions. Sixteen of these were pooled by taking one early, one middle, and
one late eluting fraction and two fractions were created by mixing part of the
earliest and latest fractions together. This mixing scheme leads to a higher
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orthogonality of the first and second dimension separation and as a consequence
uses the available time on the mass spectrometer more efficiently.

LC-MS/MS analysis of cellular proteomes. Half of the volume of the 18 pooled
fractions was analysed on a Waters nanoAcquity UPLC system directly connected
to an Orbitrap Velos Pro (Thermo Fisher Scientific). The utilized columns were a
nanoAcquity Symmetry C18, 5 µm, 180 µm × 20 mm trapping column (Waters)
and a nanoAcquity BEH C18, 1.7 µm, 75 µm × 200 mm analytical column
(Waters). The mobile phases A and B consisted of 0.1% formic acid in water and
acetonitrile, respectively. The applied 120 min multi-step gradient ranged from 3 to
85% mobile phase B at a constant flow rate of 300 nl min−1. The eluent was directly
introduced into the mass spectrometer via a Pico-Tip Emitter 360 µm OD × 20 µm
ID; 10 µm tip (New Objective). The applied spray voltage was 2.2 kV and the
capillary temperature was set to 300 °C. We measured in positive ion mode. Full
scan MS spectra were recorded from 350 to 1500 m z−1 in profile mode in the
Orbitrap. The resolution in MS mode was set to 30,000. The 10 most intense parent
ions were subjected to fragmentation by higher-energy collisional dissociation with
the normalized collision energy set to 40. Charge state screening was enabled to
prevent analysis of singly charged ions. The resolution for MS/MS was set to 7500.

Single-cell RNA-sequencing of HPCs. Sequencing libraries from 192 single CD34
+ cells per donor were generated based on the smart-seq2 protocol of Picelli et al.63

and the tagmentation procedure of Hennig et al.66 with slight modifications. Single
CD34-positive cells were FACS sorted directly into 96-well plates containing 4.4 µl
of lysis buffer per well as described above. The lysates were incubated for 3 min at
72 °C and kept on ice while adding reverse transcription (RT) mix. Our RT mix
had a final volume of 6.35 µl to have the final reaction volume of 10 µl and in
contrast to the smart-seq2 protocol a final concentration of 10 mM MgCl2.
Twenty-two cycles were applied for the PCR. The subsequent washing procedure
was optimized. Then, 25 µl nuclease-free water and 30 µl of SPRIselect (Beckman
Coulter) (1:0.6 ratio) were added and no ethanol wash was performed. After
incubation, removal of supernatant, and drying, 13 µl nuclease-free water was
applied for elution and 11 µl was taken for a second purification step. Then, 40 µl
nuclease-free water and 25 µl of SPRIselect (1:0.5 ratio) were added and after
incubation, removal of supernatant, and drying, 13 µl nuclease-free water was
applied for elution. Next, 1.25 µl of the supernatant was used for tagmentation66.
Tn5 was mixed with equal amounts of Tn5ME-A/Tn5MErev and Tn5ME-B/
Tn5MErev and incubated at 23 °C for 30 min. Loaded Tn5 and sample were
incubated for 55 °C for 3 min in 10 mM Tris-HCl pH 7.5, 10 mM MgCl2, and 25%
dimethylformamide. The mixture was cooled to 10 °C and the reaction was stopped
with 0.2% SDS for 5 min at room temperature. KAPA HiFi HotStart ReadyMix was
used for PCR amplification. Then, 1 µl of each of the 192 samples of one donor was
combined and bead purification using 0.8 vol. of SPRIselect was performed
including two ethanol washing steps. The elution volume was 50 µl. Sequencing
was performed on an Illumina NextSeq 500 with 75 bp single-end reads.

RNA-sequencing of total HPC populations. RNA was extracted with trizol
(Invitrogen) using a linear acrylamide carrier. RNA was then treated with DNase I
(Life Technologies) and purified using Agencourt RNAClean XP beads (Beckman
Coulter). RNA quality and concentration were assessed using an RNA 6000
bioanalyzer pico kit (Agilent). Samples with concentrations less than 30 pg µl−1

and/or an RNA integrity number less than 6 were excluded from further analysis. A
complementary DNA (cDNA) library was produced using the Smart-Seq2 proto-
col63. Sequencing was performed on an Illumina HiSeq4000 with 75 bp paired-end
reads with the aim to achieve coverage of 25 million reads per sample.

Sample preparation for metabolomics. The metabolites were extracted from cell
pellets by cold methanol extraction. Cell pellets of HPCs were suspended in 150 µl
−80 °C precooled 80% methanol and kept on dry ice for 20 min. The debris was
spun down at 14,000 × g in 5 min at 4 °C and the supernatant was transferred to a
new tube. The debris was washed with 50 µl −80 °C precooled 80% methanol for 1
min and the debris was spun down again. The supernatant was pooled with the first
supernatant and concentrated in a vacuum centrifuge. This sample is further
referred to as metabolite extract.

Derivatization of phosphorylated sugars. The metabolic extracts and sugar
standards in methanol/water were labelled with 3-amino-9-methylcarbazole
(AMC) prior to analysis. In detail, 50 µl of either a sugar mixture consisting of
glucose-6 phosphate (Roche), mannose 6-phosphate (Sigma), ribose 5-phosphate
(Sigma), ribulose 5-phosphate (Sigma), erythrose 4-phosphate (Sigma), and dihy-
droxyacetone phosphate (Sigma) or the metabolite extracts were mixed with 50 µl
of 25 mM AMC (Enamine, Ukraine), 25 µl 50 mM sodium cyanoborohydride
(Sigma), and 10 µl acetic acid. The reaction was kept at 70 °C for 60 min.

Internal standard preparation for the sugar analysis. The phosphorylated
sugars glucose-6-phosphate (Roche), mannose 6-phosphate (Sigma), ribose 5-
phosphate (Sigma), ribulose 5-phosphate (Sigma), erythrose 4-phosphate (Sigma),
and dihydroxyacetone phosphate (Sigma) in methanol/water were derivatized as

described above for the metabolite extracts except that a deuterated version of
AMC (3-amino-9-methyl-d3-carbazole (AMd3C), Enamine, Ukraine) was used for
derivatization. The derivatized sugars were purified as described below and mixed
to create a solution with a concentration of 80 fmol µl−1 for all sugar phosphates
except ribulose 5-phosphate that was 800 fmol µl−1.

Purification of derivatized phosphorylated sugars. Prior to purification of the
AMC-derivatized metabolites from HPCs, 10 µl of the internal standard was added
to each sample. Prior to addition to the samples, the internal standard was purified
as described in the following: a TiO2 micro-column was packed in a 20 µl
GELoader tip (Eppendorf). A small plug of a C8 filter was put at the constricted
end of the tip to hold back the TiO2 beads. The 5 µm Titansphere TiO2 beads (GL
Science, Japan) were suspended in 0.6% acetic acid in 80% acetonitrile and loaded
into the micro-column. The long tip below the C8 plug was cut away to reduce the
backpressure of the column. The total HPC sample was loaded onto the micro-
column and was washed twice with 30 µl of 0.6% acetic acid in 80% acetonitrile.
Subsequently, the sample was washed with 30 µl water and was eluted first with 30
µl 5% ammonia and second with 3 µl 0.6% acetic acid in 80% acetonitrile. The
elution was collected directly in a low binding glass vial containing 45 µl 10%
trifluoroacetic acid to acidify the eluate. Finally, the sample was concentrated in a
vacuum centrifuge.

LC-MS/MS analysis of phosphorylated sugars of HPCs. The metabolomics
analysis was performed on the same LC-MS/MS equipment as for the proteomics
analysis (a Waters nanoAcquity UPLC system directly connected to an Orbitrap
Velos Pro, see above) to enable the high sensitivity required to analyse the low
metabolite concentrations. The LC gradient and MS method was adopted for
AMC-derivatized sugar phosphates. The mobile phases A and B consisted of 0.1%
formic acid in water and acetonitrile, respectively. The applied 30 min multi-step
gradient increased from 4 to 20% mobile phase B within 3 min followed by an
increase to 30% mobile phase B up to 15 min and subsequent washing at 85% and
column equilibration at 4% mobile phase B. The flow rate was kept constant at 300
nl min−1. We measured in positive ion mode. Full scan MS spectra were recorded
from 275 to 700 m z−1 in profile mode in the Orbitrap. The resolution in MS mode
was set to 30,000. A parent mass list was created that contained the masses of the
AMC- and AMd3C-derivatized sugar phosphates. The most intense ions, if no
parent masses was found, was enabled and 10 parent ions per cycle were subjected
to fragmentation by collision-induced dissociation in the ion trap with the nor-
malized collision energy set to 40. Charge state screening was enabled to prevent
analysis of triply and higher charged ions.

Data analysis of phosphorylated sugars. The raw files were analysed with
Xcalibur 2.2 (Thermo). The ratio between the areas under the peaks of the parent
masses in the extracted ion chromatograms and the internal standard was com-
pared with a calibration curve of AMd3C-derivatized sugar phosphate standards.
The R2 of the calibration curves was greater than 0.998 for all analyses. Based on
standards we analysed during method development we knew that glyceraldehyde 3-
phosphate and dihydroxyacetone phosphate coeluted and could not be dis-
tinguished. We thus reported the sum of the two. The same was true for mannose
6-phosphate and galactose 6-phosphate.

Proteomics data analysis. Supplementary Fig. 13 represents a schematic overview
of the data analysis procedures. Two strategies for quantification were employed.
Quantification based on TMT for accurate determination of changes upon ageing
within the same cell population and a label-free (LF) approach to estimate the
protein abundance across proteins and cell populations.

Data analysis for TMT-based quantification. MS raw files were first processed
with Thermo Proteome Discoverer version 1.4.1.14. The spectra were de-isotoped,
deconvoluted, and the mass range from 126 to 131.3 m z−1 was excluded prior to
database search. The spectra were searched against the Uniprot database including
common contaminations (89,016 sequences) using Mascot version 2.5.1 as search
engine with trypsin cleavage specificity, one missed cleavage allowed, a precursor
mass tolerance of <20 ppm, and a fragment mass tolerance of 0.02 Da. Carbami-
domethylation was set as fixed modification and oxidation on methionine was set
as variable modification. TMT was implemented in the quantification method as
fixed modification. A false discovery rate (FDR) was calculated with Percolator
version 2.04. The unprocessed peptide spectrum matches (PSMs) still including the
TMT reporter ions and fulfilling the FDR of 1% were exported from Proteome
Discoverer and processed by a custom analysis pipeline.

PSMs were filtered to retrieve a high-quality dataset for quantification. Spectra
with a search rank greater than one were discarded. For quantification, additional
quality filters were applied. Only PSMs with an isolation interference of <30%, the
sum of intensities of the TMT channels 127 to 131 (not the internal standard; TMT
channel 126) >30,000 and having no missed cleavages were used for quantification.
Missing quantification values in the channels 127 to 131 were replaced with the
minimum value detected in the corresponding TMT experiment. Given a PSM and
its intensities measured in a donor sample (TMT channels 127 to 131), we first
calculated its ratio to the internal standard (TMT channel 126). Next, we
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normalized each of the ratios by multiplying it with the median ratio determined
between the internal standard and the respective donor channel. Note that the
median ratios used for normalization are determined using the raw intensities of
each channel. Normalized PSM intensity ratios were then used to derive peptide
ratios. For peptides with two or more matching PSMs, we considered the median
ratio of the three PSMs with highest precursor intensity as final peptide ratio.
Peptides were assigned to proteins and proteins were grouped, according to
common gene names. These protein groups named after their corresponding gene
are called proteins for simplicity throughout the whole publication. Final protein
ratios were obtained by taking the median ratio of peptides that are unique for a
protein group. Only proteins with at least two unique peptides were considered for
quantification. Subsequent bioinformatics analysis has been performed on
studentized ratios using the programming language R and Python 2.7.

Summary of the normalization steps of the TMT data. The first normalization
step was done at the PSM level to correct for slight mixing errors/small differences
of input material/under-sampling. For each individual sample (TMT channels
127–131) in each TMT 6-plex experiment, we calculated the median ratio between
the internal standard (TMT channel 126) and each sample (TMT channels
127–131). We normalized each individual ratio from all samples by multiplying it
with the determined median ratio of the corresponding TMT channel. Note that
the median ratios used for normalization are determined using the raw intensities
of each channel.

The second normalization was performed on the protein level to correct for
differences between the TMT experiments. For each protein the standard deviation
and the mean over all TMT experiments of one cell population was used to
studentize the values of each ratio. These studentized ratios were used for
subsequent bioinformatics analysis, except for the slope calculations for Fig. 3a and
Supplementary Fig. 10. For this slope calculation only the mean was used for the
ratio normalization. Further details see in the corresponding section ʻStatistical
analysis of protein expression with age for TMTʼ.

Data analysis for LF quantification. For accurate comparison of the same protein
within a cell population, all samples were also analysed with MaxQuant 1.5.3.1767

to estimate protein abundances. The parameters were: fixed modifications: carba-
midomethyl (C), TMT modifications (K, N-term); variable modifications: oxida-
tion (M) and minimum peptide length was seven. Precursor intensities were
extracted for each peptide in each separate LC-MS analysis and all associated PSMs
were collected. The evidence files were consulted to extract all PSMs with the
corresponding intensity value being the summed up extracted ion current (XIC) of
all isotopic clusters associated with the identified amino acid sequence. Hence, for
each identified peptide in each separate LC-MS analysis, one intensity value was
assigned, and all associated PSMs were collected per LC-MS analysis.

For further analysis, we only took into account PSMs that were common to
both the TMT quantification approach as described above and the MaxQuant
analysis. These spectra were then filtered according to the same criteria as applied
for TMT quantification (high confidence, no missed cleavages, search engine rank
set to 1, summed intensity of channels 127 to 131 set to more than 30,000, isolation
interference set to less than 30%). For each peptide per LC-MS analysis the PSMs
that passed latter criteria were collected, and the median ratio was taken as peptide
ratio for each LC-MS analysis. If more than three PSMs passed the criteria, the
median of the top three most intense spectra was taken.

The total area (MS1 intensity/precursor intensity) of an individual peptide
species represents the sum of the internal standard and the five samples that were
analysed together. The portion of the total area from each sample can be calculated
based on the reporter ion intensities of the six TMT channels. The total area of a
given peptide species was split into individual channels using the TMT ratios per
peptide per LC-MS analysis. After the splitting of the total area intensity into
individual channels, we corrected for potential sampling aberrations by multiplying
the area intensities per channel with the median ratio determined between the
internal standard and the respective donor channel.

Based on these normalized area intensities per channel, we calculated LF scores
for each peptide by dividing through the number of potentially observable unique
tryptic peptides per protein (criteria: peptide length 8–25 amino acids, no missed
cleavage allowed). In order to retrieve the final LF score per protein, we summed up
the LF scores of the corresponding unique peptides per protein. For further data
analysis, we only considered proteins that were covered by at least two unique
tryptic peptides.

Summary of the normalization steps of the LF data. We normalized the LF
protein scores to allow comparison between donors across the different cell
populations. After log-transforming the data, the median of all LF protein scores
was calculated in each TMT-6plex experiment and was subtracted from each LF
protein score in each donor. Summarizing the normalized unlogged values for each
protein in each cell population and dividing by the number of maximum donors
available per cell population gives the LF sum value denoted in the Supplementary
Data 2.

Quality assessment and sample inclusion for proteomics. The reproducibility
was tested by splitting the lysate of one MSC sample into three aliquots prior to
digestion. These aliquots were treated like three individual samples. The TMT
ratios of these three samples towards the internal standard were employed for
calculating Pearson's correlation coefficient. Pearson's correlation coefficient
between the first and second (0.9485), second and third (0.9437), and the first and
third replicate (0.931) was on average 0.941. The median coefficient of variation of
the three ratios per protein was 4.2%.

The median labelling efficiency of all TMT-6plex experiments (each experiment
includes five samples and an internal standard) was 98.5%. In order to calculate the
labelling efficiency, all experiments were searched with the TMT-label set as
variable modification and for each experiment the number of all completely
labelled PSMs was divided by the total number of PSMs identified in one
experiment (Supplementary Fig. 2a).

The total number of all proteins identified in all 270 samples was 12,158.
Exactly 8000 proteins were quantified with TMT of which 7375 were quantified in
more than 15% of the donors in at least one cell population. In all, 7585 proteins
were quantified by LF quantification of which 6952 were quantified in more than
15% of the donors. The number of proteins identified in each experiment was
traced over the whole time of the study and depended on the cell population
(Supplementary Fig. 2b).

A principal component analysis (PCA) was performed on the log2-transformed
data and the first two principal components (PC1 and PC2) were plotted against
each other. Highest density regions (HDR) of 50, 90, 95, and 97% probability were
visualized based on Hyndman68 and samples with >97% probability were defined
as outlier and were discarded. We had 15 outliers of which one was a sample
analysed in duplicate and was an outlier in both measurements. Thus, 14 samples
were discarded and 270 samples (95%) out of the initial 284 samples were used for
the study (Supplementary Fig. 2c).

Statistical analysis of protein expression with age for TMT. For identifying
age-associated proteomic changes within each cell population, we performed
Spearman's correlation analysis to detect proteins whose expression changes with
age. For each protein with a donor coverage above 15% we calculated Spearman's
correlation between the quantified TMT ratios and the respective donor ages to
assess its behaviour with respect to age. Positive correlations indicate an increase of
the abundance of a protein with advanced age, while negative (or anti-) correlations
indicate a decrease of its abundance with age. Proteins with a p value < 0.05
(Spearman's correlation) are considered to be significantly altered upon ageing.

We treated our disproportionate male dataset as sexless and only focussed on
age. We thus checked for a possible effect of the gender disparity in the samples by
re-analysing the proteomic data after removing all female samples. The criteria for
the male-only analysis were identical with the analysis of all samples. The
comparison of the results from the male-only vs. all samples is visualized in
Supplementary Fig. 9a.

Hierarchical clustering of proteins based on LF data. For the hierarchical
clustering in Fig. 2b, we used the scipy-python package (python.org) to compute
the linkage matrix based on correlation metrics and using the so-called complete
clustering69. The same clustering has been applied for Supplementary Fig. 5.

Pathway analysis across cell populations based on LF data. LF abundances for
proteins were leveraged to understand differences between the six cell populations,
and not for age differences as these are more reliably analysed by TMT ratios.
Filtering criteria for protein inclusion were as strict as for TMT quantification,
requiring proteins to be quantified in at least 15% of available donors of a given cell
population.

In order to understand whether pathways differ in their abundance or
stoichiometry across the different cell populations (Fig. 2c), we applied the
following pipeline. We considered proteins quantified in the LF approach (7585
proteins) and mapped those against the Reactome database (http://www.reactome.
org/download-data/, February 2017) after filtering the database for pathway sizes of
5–100 proteins. For each cell population, the abundance of a pathway was
approximated by the median LF abundance of proteins associated with it. The
average of those medians results in the mean abundance of the pathway across the
different cell populations (y-axis of Fig. 2c). To estimate the fraction of proteins in
a pathway that change in their stoichiometry, we proceeded as follows: for all
270 samples, protein abundances were normalized to the median pathway
abundance to avoid any significance stemming from abundance change of the
entire pathway. These normalized values, if at least 15% of donors were quantified
in an individual cell population, were cross-compared between the cell populations
(Wilcoxon test). From the set of p values obtained from those comparisons, the
mean p value is calculated. This procedure is iterated across all proteins associated
with pathways, and all p values are adjusted thereafter using the
Benjamini–Hochberg procedure. To finally obtain the fraction of the pathway that
shows a significant alteration between the cell populations, we considered the
number of proteins per pathway with an adjusted p value of less than 0.05. Note
that this procedure does not take into account cell-type specificity of proteins, and
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does not restrict itself on proteins that are expressed throughout all cell
populations. The Supplementary Data 3 contains details for further exploration.

Analysis of protein co-abundance based on TMT data. Complex annotations
are based on Ori et al.27 who provide a curated list of 279 non-redundant protein
complexes based on CORUM and COMPLEAT protein complex sources. Pathway
annotations were taken from Reactome as for the pathway enrichment analysis
described below (http://www.reactome.org/download-data/, February 2017). Pro-
teins belonging to the same complex were correlated against each other. This was
done by calculating Pearson's correlation coefficient for all possible combinations
of two members of the same complex. The resulting correlation coefficients from
all complexes were plotted in Supplementary Fig. 4. The same procedure was
repeated for pathways, with the exception that protein pairs which are already
present in a complex were not considered for pathways. The distribution of
Pearson's correlation coefficients from complexes was shifted towards the right
relative to the distribution of correlation coefficients calculated from all other
quantified proteins that were not assigned to complexes or pathways.

Analysis of pathway changes during ageing based on TMT data. The Reactome
Database (http://www.reactome.org/download-data/, February 2017) was the basis
for the analysis of pathways. The displayed pathways of Fig. 3a and Supplementary
Fig. 10 were selected based on their size, with the requirement for at least 5 and a
maximum of 150 proteins. More than 30% of these needed to be quantified by
TMT in at least one cell population and out of the quantified more than 20%, but at
least 3 proteins need to be significantly altered upon ageing (p value < 0.05,
Spearman's correlation). Thereby, we obtained 28 pathway hits for HPC, 44 for
LYM, 3 for GRA, 4 for MON, 2 for ERP, and 221 for MSC. In order to avoid
redundancies, we removed pathways whose significantly altered proteins were
completely covered in another pathway. If a pathway, however, contained at least
one unique significantly altered protein, the pathway was kept. In a scenario of
pathways containing exactly the same altered proteins, the largest pathway was
reported. In case of equal pathway size, the pathway with a higher hierarchy level
was taken. Thereby, we obtained 109 pathways in total that were largely non-
overlapping and exhibiting considerable changes upon ageing. In order to decide
whether the proteins of a pathway have a general tendency of increasing or
decreasing upon ageing, we first calculated the slopes of all proteins based on the
linear regression between the donor to internal standard ratio (average normalized
per TMT 6-plex experiment) and the age. For the slope calculation normalization
by studentization of the protein ratios was avoided and average normalization was
applied instead for normalization to avoid artificial high slopes for slightly altered
proteins (see section 'Summary of the normalization steps of the TMT data'). The
slopes of all significantly altered proteins within a pathway were averaged. Path-
ways with an average slope of the altered proteins between −0.001 and 0.001 per
year of life were reported as having no tendency. A slope of 0.001 translates to an
estimated average increase of 4% in protein abundance in a life span from 20 to 60
years (40 years). The results of the 109 pathways were displayed in Supplementary
Fig. 10 and listed in Supplementary Data 7. Figure 3a is a selection of these 109
pathways, which is based on taking the five most up- and down-regulated pathways
per cell population.

Cross-cell population correlation analysis based on TMT data. Extracellular
protein–ligand receptor pairs were downloaded from http://fantom.gsc.riken.jp/5/ 56

and overlapped with our TMT-based dataset. Spearman’s rank correlation coeffi-
cients between ligands and receptors from MSCs and the other cell populations
(MSC to HPC, MSC to LYM, MSC to GRA, MSC to MON, MSC to ERP) were
calculated. Requirements for inclusion of proteins were that the protein was altered
upon ageing (p value < 0.1, Spearman's correlation) in the respective cell population
and that the protein profiles (based on studentized TMT protein ratios) of MSC and
the respective cell population had at least 85% overlapping donor individuals.
Correlation coefficients were visualized in Fig. 9, highlighting correlation results
with p values < 0.1 (Spearman's correlation).

Analysis of the transcriptomics data of HPCs. Reads were trimmed for Nextera,
Smart-seq2 adapter sequences using skewer-v0.1.12570. Trimmed read pairs were
mapped to human genome hg38.ERCC using HISAT2 version 2.0.0-beta71.
Uniquely mapped read pairs were counted using featureCounts72, subread-1.5.073,
using exons annotated in ENSEMBL annotations, release 75. The subsequent
analysis is performed in the programming language R. For the analysis of the raw
counts retrieved from RNA-seq experiments, we used the DESeq2 package (version
1.18.1)74. We applied a minimal pre-filtering to remove rows that have only 0 or 1
read, as suggested in the DESeq2 manual. To assess the quality of the data, PCA
was used after a so-called regularized log transformation (rlog) of the data,
accounting for the library size of each sample. Using HDR plots on the derived
principal components similar as described in the section 'Quality assessment and
sample inclusion for proteomics', outliers were detected for HPC, GRA, MON, and
MSC and removed. For comparison with the corresponding proteomics data, we
defined young as ≤30 years of age, and old as ≥50 years of age (similar to Fig. 8b).
For each fold change (old/young) a p value (Wald test) was calculated and weighted
based on the IHW package75 that takes into account number of reads as a covariate

for the adjustment of p values. From the output table the log2 fold change was
extracted for Supplementary Fig. 9b, which gives an estimate for the effect size (see
Supplementary Data 5).

Single-cell RNA-sequencing data pre-processing. The single-cell data pre-
processing is performed using the programming language R. Raw reads were
processed using the recent version of the Salmon pipeline (v0.9.1)76, with the index
derived from transcriptome data from the hg38 build for mapping purposes (http://
ftp.ensembl.org/pub/release-87/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.
cdna.all.fa.gz). The count matrix generated for individual transcripts across cells in
each sample was then subjected to further processing using the Bioconductor
package tximport77. Thereby, the transcript-specific count tables were converted
into gene-specific count tables across cells. To filter for qualitative cells, we only
retained cells where at least 1000 genes have been found to be expressed at a
minimum of 10 reads each, and where the total read count is at least 150,000. That
filtering step has been adapted from Velten et al.78. Additionally, only genes with at
least 10 reads in at least 5 cells were kept for further processing. The resulting count
tables were analysed using the Bioconductor package simpleSingleCell (version
1.2.0)79. The pipeline was applied with the following steps: (a) additional quality
control on cells and filtering due to library size and possible batch effects, and (b)
normalization of cell-specific biases using computed size factors. For details on
individual samples, the Supplementary Table 3 is to be consulted. The normalized
log expression values were further adjusted to the mean expression in each cell.

Classification of single CD34+ cells. The classification of single CD34+ cells into
myeloid- and lymphoid-primed cells is the basis for the analyses in Fig. 6 and Fig.
7. For clustering of single cells, we used Python version 2.7. We first determined
whether lymphoid and myeloid markers as delineated in Fig. 5 for the proteomics
data were yielding signal in the single-cell RNA-seq dataset. To ensure signal
consistency, we excluded markers that did not correlate with the other lymphoid or
myeloid markers, respectively (p value < 0.01, Pearson's correlation). Thereby,
ITGA6 had to be removed from lymphoid markers (remaining 12 genes), and
IKZF1, ITGAL, PRAM1, and BCL11A from myeloid markers (remaining 8 genes).
The lymphoid and myeloid markers also had a significant correlation with other
known lineage markers, such as TFRC (CD71) and CD19 (data not shown). For
further analysis CD71 and CD19 were also included. To cluster cells into lymphoid/
myeloid lineage, cells were required to have at least half of the respective markers
stably expressed (>0), and none of either CD71 or CD19 (Fig. 6c). That way we
could characterize cells in a more conservative manner as being lymphoid-primed
or myeloid-primed cells; cells that did not fall into either of those categories were
labelled as undefined. When compared to the entire set of cells per donor, we could
see that cells defined as lymphoid- or myeloid-primed were significantly different
in their marker constellation (average p value (lymphoid)= 9.77 × 10–10, average p
value (myeloid)= 1.47 × 10–2, both Fisher's exact test), whereas this was not the
case for the undefined cells (average p value= 7.46 × 10–1, Fisher's exact test).

Lineage- and age-dependent expression of glycolytic enzymes. Genes derived
as age-dependent from the proteomics dataset (Fig. 4) were subsequently analysed
on whether they are affected by lineage, or the age of the donor in the single-cell
RNA-seq dataset. We correlated genes involved in the glycolysis, tricarboxylic acid
(TCA) cycle, and FAO, with lymphoid and myeloid markers, respectively. We
found that age-regulated genes (p value < 0.1, Spearman's correlation, Fig. 4) had a
stronger disparity between lymphoid and myeloid correlation distribution than
genes not found to be age dependent (Fig. 7a) (age dependent: effect size (Cohen)
= 1.59, p value= 7.29 × 10–8 (t-test), age independent: effect size (Cohen)= 0.9, p
value= 3.06 × 10–3 (t-test)). This lineage effect was further examined by calculating
the ratio between expression levels in lymphoid vs. myeloid cells for each protein.
Age-regulated enzymes of the upper glycolytic pathway (p value < 0.05, Spearman's
correlation) were found to be significantly affected by lineage (p value < 0.01,
Mann–Whitney U-test) across samples, as opposed to enzymes that had no age
dependency. Ageing effects on enzyme expression levels were tested in lymphoid
and myeloid cells, respectively, to remove lineage effects. The slope calculated from
the median expression levels across samples indicated that age-up-regulated gly-
colytic enzymes are indeed more prone to becoming higher expressed with age, at
the single-cell level as well (p value= 0.079, analysis of variance test) (Fig. 7b).

Code availability. The code is available as a Supplementary Software file.

Data availability
The mass spectrometry proteomics data have been deposited at the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD007048.
Raw data for both the single-cell RNA-seq and bulk RNA-seq experiments have been
deposited in the Gene Expression Omnibus (GEO), database under accession code
GSE115353. The authors declare that all data supporting the findings of this study are
available within the article and its supplementary information files or from the corre-
sponding author upon reasonable request.
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