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Summary
Among the defense strategies developed in microbes over millions of years, the innate adaptive

CRISPR-Cas immune systems have spread across most of bacteria and archaea. The flexibility, simplicity,

and specificity of CRISPR-Cas systems have laid the foundation for CRISPR-based genetic tools. Yet, the

efficient administration of CRISPR-based tools demands rational designs to maximize the on-target

efficiency and off-target specificity. Specifically, the selection of guide RNAs (gRNAs), which play a

crucial role in the target recognition of CRISPR-Cas systems, is non-trivial. Despite the fact that the

emerging machine learning techniques provide a solution to aid in gRNA design with prediction

algorithms, design rules for many CRISPR-Cas systems are ill-defined, hindering their broader

applications.

CRISPR interference (CRISPRi), an alternative gene silencing technique using a catalytically

dead Cas protein to interfere with transcription, is a leading technique in bacteria for functional

interrogation, pathway manipulation, and genome-wide screens. Although the application is promising, it

also is hindered by under-investigated design rules. Therefore, in this work, I develop a state-of-art

predictive machine learning model for guide silencing efficiency in bacteria leveraging the advantages of

feature engineering, data integration, interpretable AI, and automated machine learning. I first

systematically investigate the influential factors that attribute to the extent of depletion in multiple

CRISPRi genome-wide essentiality screens in Escherichia coli and demonstrate the surprising dominant

contribution of gene-specific effects, such as gene expression level. These observations allowed me to

segregate the confounding gene-specific effects using a mixed-effect random forest (MERF) model to

provide a better estimate of guide efficiency, together with the improvement led by integrating multiple

screens. The MERF model outperformed existing tools in an independent high-throughput saturating

screen. I next interpret the predictive model to extract the design rules for robust gene silencing, such as

the preference for cytosine and disfavoring for guanine and thymine within and around the protospacer

adjacent motif (PAM) sequence. I further incorporated the MERF model in a web-based tool that is freely

accessible at www.ciao.helmholtz-hiri.de.

When comparing the MERF model with existing tools, the performance of the alternative gRNA

design tool optimized for CRISPRi in eukaryotes when applied to bacteria was far from satisfying,

questioning the robustness of prediction algorithms across organisms. In addition, the CRISPR-Cas

systems exhibit diverse mechanisms albeit with some similarities. The captured predictive patterns from

one dataset thereby are at risk of poor generalization when applied across organisms and CRISPR-Cas

techniques. To fill the gap, the machine learning approach I present here for CRISPRi could serve as a

blueprint for the effective development of prediction algorithms for specific organisms or CRISPR-Cas
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systems of interest. The explicit workflow includes three principle steps: 1) accommodating the feature

set for the CRISPR-Cas system or technique; 2) optimizing a machine learning model using automated

machine learning; 3) explaining the model using interpretable AI. To illustrate the applicability of the

workflow and diversity of results when applied across different bacteria and CRISPR-Cas systems, I have

applied this workflow to analyze three distinct CRISPR-Cas genome-wide screens. From the CRISPR

base editor essentiality screen in E. coli, I have determined the PAM preference and sequence context in

the editing window for efficient editing, such as A at the 2nd position of PAM, A/TT/TG downstream of

PAM, and TC at the 4th to 5th position of gRNAs. From the CRISPR-Cas13a screen in E. coli, in addition

to the strong correlation with the guide depletion, the target expression level is the strongest predictor in

the model, supporting it as a main determinant of the activation of Cas13-induced immunity and better

characterizing the CRISPR-Cas13 system. From the CRISPR-Cas12a screen in Klebsiella pneumoniae, I

have extracted the design rules for robust antimicrobial activity across K. pneumoniae strains and

provided a predictive algorithm for gRNA design, facilitating CRISPR-Cas12a as an alternative technique

to tackle antibiotic resistance.

Overall, this thesis presents an accurate prediction algorithm for CRISPRi guide efficiency in

bacteria, providing insights into the determinants of efficient silencing and guide designs. The systematic

exploration has led to a robust machine learning approach for effective model development in other

bacteria and CRISPR-Cas systems. Applying the approach in the analysis of independent CRISPR-Cas

screens not only sheds light on the design rules but also the mechanisms of the CRISPR-Cas systems.

Together, I demonstrate that applied machine learning paves the way to a deeper understanding and a

broader application of CRISPR-Cas systems.
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Zusammenfassung
Unter den Verteidigungsstrategien, welche sich über Millionen von Jahren in Mikroben

entwickelt haben, hat sich das angeborene adaptive CRISPR-Cas Immunsystem in vielen Bakterien und

den meisten Archaeen verbreitet. Flexibilität, Einfachheit und Spezifizität von CRISPR-Cas Systemen

bilden die Grundlage für CRISPR-basierten genetischen Werkzeugen. Dennoch verlangt die effiziente

Anwendung CRISPR-basierter genetischer Werkzeuge ein rationales Design, um die Effektivität zu

maximieren und Spezifizität zu gewährleisten. Speziell die Auswahl an Leit-RNAs, oder auch „guide“

RNAs (gRNAs), welche eine essentielle Rolle in der Ziel-Erkennung des CRISPR-Cas Systems spielen,

ist nicht trivial. Trotz aufkommender Techniken des maschinellen Lernens, die mit Hilfe von

Vorhersage-Algorithmen eine Unterstützung im gRNA-Design darstellen, sind die Design-Regeln für

viele CRISPR-Cas Systeme schlecht definiert und die breite Anwendung dadurch bisher gehindert.

CRISPR Interferenz (CRISPRi), eine Methode der Genrepression, nutzt ein katalytisch inaktives

Cas-Protein, um die Gen-Transkription zu verhindern und ist eine führende Technik für

Gen-Funktionsstudien, der Manipulation von Stoffwechselwegen und genomweiter Screens in Bakterien.

Auch wenn viele der Anwendungen vielversprechend sind, ist die Umsetzung aufgrund der wenig

untersuchten Design-Regeln schwierig. Daher entwickele ich in dieser Arbeit ein hochmodernes auf

maschinellem Lernen basierendes Modell für die Vorhersage der gRNA Genrepressions-Effizienz in

Bakterien, wobei die Merkmalskonstruktion, Datenintegration, interpretierbare künstliche Intelligenz (KI)

und automatisiertes maschinelles Lernen genutzt wurden. Zuerst untersuche ich systematisch die

Einflussfaktoren, welche zum Ausmaß der Depletion in genomweiten CRISPRi-Screens zur

Gen-Essentialität in Escherichia coli beitragen und demonstriere den überraschend dominanten Beitrag

genspezifischer Effekte, wie z. B. dem Genexpressionslevel. Diese Beobachtungen erlaubten mir die

genspezifischen Störvariablen mit einem sogenannten mixed-effect random forest (MERF) Modell zu

segregieren, um eine bessere Einschätzung der gRNA Effizienz zu erreichen und durch die Integration

zusätzlicher Screen-Daten noch weiter zu verbessern. Das MERF Modell übertraf dabei bereits

existierende Werkzeuge in einem unabhängigen Hochdurchsatz Sättigungs-Screen. Als nächstes

interpretiere ich die Modell Vorhersage, um Design-Regeln für eine solide Genrepression zu extrahieren,

wie z. B. eine Präferenz für Cytosin und eine Abneigung gegenüber Guanin und Thymin innerhalb und

der „protospacer adjacent motif“ (PAM) direkt umgebenden Sequenz. Weiterhin integrierte ich das MERF

Modell in einem Web-basierten Werkzeug, welches unter www.ciao.helmholtz-hiri.de frei zugänglich ist.

Ein Vergleich von existierenden Werkzeugen mit dem MERF Modell zeigt, dass alternative, für

CRISPRi in Eukaryoten optimierte, gRNA Design-Werkzeuge schlecht abschneiden, sobald sie in

Bakterien angewandt werden. Dies lässt Zweifel an einer robusten Übertragbarkeit dieser
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Vorhersage-Algorithmen zwischen verschiedenen Organismen. Zusätzlich haben CRISPR-Cas Systeme,

trotz einiger genereller Gemeinsamkeiten, höchst diverse Wirkungsmechanismen. Die Vorhersagemuster

eines Datensets sind daher schlecht generalisierbar, sobald sie auf andere Organismen oder CRISPR-Cas

Techniken angewandt werden. Diese Lücke kann mit dem hier präsentierten Ansatz des maschinellen

Lernens für CRISPRi geschlossen werden und als eine Vorlage für die Entwicklung effektiver

Vorhersage-Algorithmen für spezifische Organismen oder CRISPR-Cas Systeme dienen. Der explizite

Arbeitsablauf beinhaltet drei Hauptschritte: 1) Aufnehmen des Merkmalsets des jeweiligen CRISPR-Cas

Systems bzw. der CRISPR-Cas Technik; 2) Optimierung des maschinellen Lernen Modells durch

automatisiertes maschinelles Lernen; 3) Erklärung des Modells mit interpretierbarer KI. Um die

Anwendbarkeit des Arbeitsablaufs und die Diversität der Ergebnisse, im Zusammenhang mit

unterschiedlichen Organismen und CRISPR-Cas Systemen, zu demonstrieren, habe ich diese

Arbeitsschritte zur Analyse drei unterschiedlicher genomweiter Screens angewandt. Von dem CRISPR

„base editor“ Essentialitäts-Screen in E. coli, konnten die PAM Präferenzen und der Sequenzkontext

innerhalb des Editierungsfensters für eine effiziente Editierung abgeleitet werden. Beispielsweise tragen

ein A an der zweiten PAM Position, ein A/TT/TG an der PAM direkt nachgeschalten Position und ein TC

an der vierten oder fünften gRNA Position zur effizienten Editierung bei. Im CRISPR-Cas13a Screen in

E. coli, stellten wir eine starke Korrelation zwischen dem Genexpressionslevel und der gRNA-Depletion

fest. Zusätzlich ist das Expressionslevel des Ziel-Gens der stärkste Vorhersagefaktor des Modells, was das

Expressionslevel als Hauptdeterminante für die Cas13-induzierte Immunität hervorhebt und die bessere

Charakterisierung von CRISPR-Cas13 Systemen ermöglicht. Aus dem CRISPR-Cas12a Screen in

Klebsiella pneumoniae, habe ich gRNA Design Regeln für die robuste antimikrobielle Aktivität über

unterschiedliche K. pneumoniae Stämme hinweg extrahiert und einen Vorhersage-Algorithmus für das

gRNA Design bereitgestellt. Dies ermöglicht die Nutzung von Cas12a als eine alternative Lösung, um

Antibiotikaresistenzen zu bekämpfen.

Zusammengefasst präsentiert diese Thesis einen akkuraten Vorhersage-Algorithmus für die

CRISPRi gRNA Effizienz in Bakterien und gibt Einblicke in die Determinanten für eine effiziente

Genrepression und optimales gRNA Design. Die systematische Exploration führte zu einem robusten

Ansatz des maschinellen Lernens für effektive Modell Entwicklungen in unterschiedlichen bakteriellen

Spezies und CRISPR-Cas Systemen. Durch die Anwendung dieses Ansatzes auf unabhängige

CRISPR-Cas Screens, konnte ich nicht nur wichtige Design Regeln ableiten, sondern auch die

Mechanismen der jeweiligen CRISPR-Cas Systeme besser erleuchten. Zu guter Letzt demonstriere ich

hier, dass angewandtes maschinelles Lernen den Weg zu einem tieferen Verständnis und einer breiteren

Anwendung von CRISPR-Cas Systemen ebnen kann.
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1. Introduction
The introduction section comprises five subsections. In section 1.1, I describe briefly the function and

mechanism of the CRISPR-Cas system using CRISPR-Cas9 as an example. In section 1.2, I describe the

classification of CRISPR-Cas systems and the mechanisms of Cas12a and Cas13a, given that my work

involves these two systems in addition to Cas9. Section 1.3 includes examples of applications of

CRISPR-based genetic tools, given that my work involves applications related to transcription regulation,

base editing, and gene knockout. In section 1.4, I describe the importance of gRNA design and give

examples of how design rules have been studied. Section 1.5 focuses on the machine learning methods in

each main stage of model development involved in gRNA efficiency studies.

1.1 CRISPR-Cas system is an adaptive immune system in bacteria

Much like humans, bacteria often encounter unwelcome invaders, such as bacteriophages. In

order to protect themselves and the population from these invaders, bacteria have developed various

immune responses, including restriction-modification systems, argonaute (Ago) proteins, abortive

initiation (Abi) systems, and CRISPR-Cas systems.

Despite the focus of my work being on CRISPR-Cas systems, other immune systems equally

provide efficient protection and share some characteristics with CRISPR-Cas systems.

Restriction-modification systems (Raleigh & Brooks, 1998) and Ago proteins (Höck & Meister, 2008;

Niaz, 2018) can specifically recognize the alien sequences, DNA or RNA, and introduce cleavage in the

alien sequences to prevent the reproduction of the invader and clear the infection. Toxin-antitoxin systems

(Van Melderen & De Bast, 2009; Unterholzner et al., 2013), one of the Abi systems, can release toxins

upon bacteriophage infection, which leads to individual cell death to protect the population. Amazingly,

CRISPR-Cas systems possess both non-self sequence recognition specificity and altruistic characteristics.

Apart from these, CRISPR-Cas systems are adaptive immune systems (Heler et al., 2014), which means

the previous infections can be memorized to help the bacteria respond more efficiently to subsequent

infections.

CRISPR, an abbreviation of clustered regularly interspaced short palindromic repeats, is an array

of conserved sequences in bacteria genomes (Ishino et al., 1987). As suggested by its full name, the

CRISPR sequence harbors short palindromic repeats separated by spacers. These spacers, which play a

key role in non-self-recognition, originate from the invading alien sequences, termed protospacers, which

are cleaved and inserted into the CRISPR array by CRISPR-associated (Cas) proteins in the adaptation

step (Amitai & Sorek, 2016). Up-to-date, over 30 CRISPR-Cas systems have been identified (Koonin et
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al., 2017); these are described in detail in section 1.2. Among them, CRISPR-Cas9 system was the first

commonly applied in genome editing given its structural simplicity (only requiring a single Cas protein to

form the effector) and thereby the most well-studied given its popularity in numerous CRISPR-based

tools (Ran, Hsu, Wright, et al., 2013; Charpentier & Marraffini, 2014) (see section 1.3 for a more detailed

description). Using the CRISPR-Cas9 system as an example to briefly describe the mechanism of

CRISPR-mediated immunity (Figure 1.1) (F. Jiang & Doudna, 2017), after the CRISPR array is

transcribed, the repeat sequences in the premature CRISPR RNA (pre-crRNA) are bound by the

trans-activating CRISPR RNA (tracrRNA), creating double-strand RNAs, which are subsequently

processed by RNase III into a mature crRNA-tracrRNA duplex (Brouns et al., 2008; Deltcheva et al.,

2011). Following the binding of Cas9 proteins to the duplex (Gasiunas et al., 2012; F. Jiang et al., 2015),

the Cas9-RNA complex is guided by the spacer sequence to the target DNA, whose sequence is identical

to the spacer sequence. Despite the existence of the spacer sequence in the bacteria genome, the

Cas9-RNA complex additionally recognizes the protospacer adjacent motif (PAM) sequence, which is at

the 3’ end of the target sequence to identify the invader sequence as non-self (Marraffini & Sontheimer,

2010). Upon the successful recognition of the PAM, the Cas9-RNA complex opens up the target

double-strand DNA to form an R-loop structure (F. Jiang et al., 2016), where the spacer sequence base

pairs with the complementary strand of the target sequence. A double-strand break (DSB) in the target

DNA introduced by the Cas9 protein removes the invader and leads to a successful defense (Jinek et al.,

2012). The spacer sequence is often known as a guide RNA (gRNA), or simply a guide, based on its

function in the interference step.

PAM plays a central role in target recognition of CRISPR-mediate immunity. In the absence of a

PAM, the Cas9-RNA complex cannot cleave the target sequence, even if the gRNA sequence is perfectly

complementary to the target. The dependence on a functional PAM avoids self-cleavage at the CRISPR

locus. PAM mutation in viral sequences leads to the escape of CRISPR-mediate immunity (Paez-Espino

et al., 2013). Diverse functional PAMs have been identified amongst Cas9 proteins (Leenay et al., 2016).

For example, the primary PAM sequence of Streptococcus pyogenes Cas9 (SpCas9) is NGG

(N=A/C/T/G) (Ma et al., 2016b; Sternberg et al., 2014), whereas that of Streptococcus thermophilus Cas9

from CRISPR1 locus (Sth1Cas9) is NNAGAAW (W=A/T) (Deveau et al., 2008; Horvath et al., 2008;

Rock et al., 2017). This diversity in PAM sequences enables flexible targeting of invaders. Moreover, Cas

proteins can recognize secondary PAM sequences with lower binding affinity, i.e. NAG for SpCas9. The

candidate PAM sequences that can be recognized by a specific Cas protein can be identified using

methods like PAM-SCANR and PAM-SEARCH (Leenay et al., 2016; Collias et al., 2020). The

wheel-shaped graph, termed PAM wheel, was invented to convey the diversity and efficiency of each

PAM sequence at the same time (Leenay et al., 2016). The probability of adapting and targeting a wider
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range of sequences with secondary PAMs indicates the flexibility of the immune response of CRISPR-Cas

systems.

Apart from PAM, the flexibility of CRISPR-Cas systems lie in the tolerance of mismatches

between gRNA and target sequence at certain positions (Fu et al., 2013; Hsu et al., 2013; Bravo et al.,

2022). The common length of the mature gRNA for Cas9 is 20 nt (Gasiunas et al., 2012). The 8 to 12 nt

PAM-proximal region, defining the specificity, is considered a ‘seed’ region (Semenova et al., 2011;

Wiedenheft et al., 2011). One mismatch in the ‘seed’ region can abort the formation of the R-loop

structure, whereas up to five mismatches or a short insertion and deletion in the PAM-distal region

reduces the efficiency to different extents (Pattanayak et al., 2013). This tolerance promotes off-target

binding and cleavage, which might lead to targeting unseen invaders.

The CRISPR-Cas system, specific-yet-flexible and simple-yet-efficient, stands out as an example

of how dynamic and adaptive bacterial genome can be, which continues to surprise us with more

CRISPR-Cas systems being discovered.

Figure 1.1. The mechanism of CRISPR-mediated immunity using CRISPR-Cas9 system as an example.
Premature CRISPR RNA (pre-crRNA) was transcribed from the CRISPR locus, followed by the binding of
trans-activating CRISPR RNA (tracrRNA, blue) to the repeat sequences in the pre-crRNA. The double-strand RNAs
are subsequently processed by RNase III into a mature crRNA-tracrRNA duplex. Following the binding of Cas9
proteins to the duplex, the Cas9-RNA complex is guided by the spacer sequence to the foreign DNA. Upon the
successful recognition of the protospacer adjacent motif (PAM, orange), gRNA hybridizes to the target DNA and
the Cas9 protein cleaves the foreign DNA.
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1.2 CRISPR-Cas systems show great diversity

The declining cost and surging practice of whole genome sequencing and metagenome

sequencing allowed the discovery of novel CRISPR-Cas systems. Using specialized CRISPR

identification approaches, computation tools such as PILER-CR (Edgar, 2007), CRT (Bland et al., 2007),

CRISPRfinder (Grissa et al., 2007), CRISPRDetect (Biswas et al., 2016), and CRISPRCasfinder (Couvin

et al., 2018), CRISPR-Cas systems have been identified in more than 40% of bacteria and 85% of archaea

(Makarova et al., 2019), complementary to the other immune systems mentioned in section 1.1. Apart

from the well-known CRISPR-Cas9 system, over 30 additional CRISPR-Cas systems have been

identified (Koonin et al., 2017), which are categorized into two main classes (Class 1 and Class 2) and six

subtypes (type I to VI).

Class 1 possesses CRISPR-Cas systems that require multiple Cas proteins to form an effector

module in the interference step, while Class 2 systems require a single Cas protein. The subtype

classification considers additionally whether the target sequence type is DNA or RNA. For example, the

CRISPR-Cas9 system is a Class 2 type II system given that a single Cas protein is required to form an

effector and it targets DNA, and the CRISPR-Cas13 system is a Class 2 type VI system given that a single

Cas protein is required but it targets RNA.

Aside from target sequence type, other components of the mechanism among CRISPR-Cas

systems might differ. These components include the pre-crRNA processing, PAM sequence, and the type

of cleavage introduced by Cas proteins. Differences in pre-crRNA processing might simplify the steps of

expressing and forming a function Cas-RNA complex in biotechnological applications. Diversity in

PAMs enables the expansion of targetable sequences. The type of cleavage influences the efficiency of the

CRISPR-Cas system as a genetic tool. The discrepancies in their mechanisms create opportunities for

novel genetic tools but pose challenges to developing prediction algorithms for each system, which

inspired my work in this thesis. Given that my work involves Cas9, Cas12a, and Cas13a systems, I

describe their mechanisms in more detail here.

Class 2 consists of types II, V, and VI. Type II is represented by Cas9, whose mechanism was

described in section 1.1. A representative of type V is Cas12a, previously known as Cpf1 (Zetsche et al.,

2015). While targeting DNA, the CRISPR-Cas12a system is distinguished from the Cas9 system in

several aspects. The maturation of crRNA is independent of tracrRNA and thus also RNase III.

Additionally, Cas12a systems recognize T-rich PAMs at the 5’ end of the target sequence. For instance,

the PAMs for the two most commonly used Cas12a in genetic tools are KYTV (K = T/G, Y = A/C, V =

A/G/C) for Francisella tularensis Cas12a (FnCas12a) (Tu et al., 2017) and TTTV for Acidaminococcus

sp. Cas12a (AsCas12a) and Lachnospiraceae bacterium Cas12a (LbCas12a) (Zetsche et al., 2015).
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Compared to Cas9 which introduces a blunt-end DSB, Cas12a leaves a sticky-end break, leading to

enhancing efficiency as a genome editing tool.

Another subtype, type VI in Class 2, instead includes the RNA-targeting CRISPR-Cas systems,

which equip the bacteria to target RNA bacteriophages and the transcripts from DNA bacteriophages.

Cas13a from Leptotrichia shahii (LshCas13a) (Abudayyeh et al., 2016) was the first characterized

single-strand RNA-targeting type VI CRISPR-Cas system. Similar to Cas12a, tracrRNA is absent in the

CRISPR-Cas13a system. Surprisingly, Cas13a also cleaves the bystander RNAs upon successful

activation, thus inducing cell dormancy, preventing the dissemination of bacteriophages (Meeske et al.,

2019). The criteria for successful activation of the CRISPR-Cas13a system differs from the other two

subtypes. Besides the base pairing between gRNA and target RNA, Cas13a recognizes a protospacer

flanking site (PFS) instead of PAM at the 3’ end of the target sequence. Unlike Cas9 or Cas12, which rely

on specific PAM sequences, Cas13a binds to the target when PFS is not G (Abudayyeh et al., 2016). The

cleavage can however remain inactive upon binding when mismatches are present between gRNA and

target RNA (Tambe et al., 2018) or when the expression level of the target RNA is below the threshold

(Vialetto et al., 2022). The complex specificity and target expression threshold highlight the delicacy of

CRISPR-Cas systems in the trade-off between efficient immunity and fitness cost.

Given the requirement of only a single Cas protein to form an effector, it is simpler to adapt Class

2 CRISPR-Cas systems for biotechnological applications compared to Class 1. While methods were

developed for the rapid characterization of novel CRISPR-Cas systems (Karvelis et al., 2015; Leenay et

al., 2016; Marshall et al., 2018; Wimmer et al., 2022), the accumulating knowledge of CRISPR-Cas

systems unveiled other mysterious characteristics beyond adaptive immunity, such as naturally occurring

self-targeting spacers, which target the endogenous genes or transcripts (Stern et al., 2010; Wimmer &

Beisel, 2019). The self-targeting spacers hint at their multifunctional role in evolution. Databases, such as

CRISPRCasdb (Pourcel et al. 2020), have been built around the classification and sequences of repeats

and spacers, and allow mining of the spacer sequence dynamics to shed light on the phage-bacteria

interaction (Dion et al., 2021). Moreover, The diversity of CRISPR-Cas systems potentiates the upgrade

of the gene-editing tool kit with optimal protein size, cutting location, sequence recognition specificity,

and numerous targeting mechanisms.

1.3 CRISPR-Cas systems enrich the genetic tool kit

CRISPR-Cas systems gained their fame owing to their versatility as genome editing tools. In the

pre-CRISPR era, homologous recombination, zinc finger nucleases (ZFNs) (Carroll, 2011), and

transcription activator-like effector (TALE) proteins (Sanjana et al., 2012) were among the methods

developed for genome editing (H. Wang et al., 2016). However, these methods show limitations in either
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low efficiency or the necessity of protein redesign for each target, which were sufficiently amended by the

CRISPR-Cas-based tools. CRISPR-Cas systems recognize the target simply with gRNA, which can be

easily and cost-effectively redesigned for a new target compared to protein engineering. The requirement

of tracrRNA for maturation in the CRISPR-Cas9 system can be further simplified by fusing crRNA and

tracrRNA into one RNA sequence (single guide RNA, sgRNA) that still forms a functional hairpin

structure for Cas9 protein binding to assemble a Cas-RNA complex (Jinek et al. 2012). Therefore, the

CRISPR-Cas-based tools only require the expression of Cas proteins and programmed sgRNA, exhibiting

greater simplicity. Given the simplicity of the CRISPR-Cas-based tools and the diversity of CRISPR-Cas

systems, CRISPR-Cas systems have been repurposed for a large range of applications. Although my work

only involves gene knockout, transcriptional regulation, and base editing, examples of other applications

that include epigenetic modifications, genomic loci visualization, and RNA/DNA detection are also

described briefly in the following sections to present a complete picture of the applications. Furthermore,

these techniques have been extended to multiplex targeting and genome-wide screens, which was

challenging for the previous genome editing tools given the time-consuming and expensive protein

redesign for each target. Genome-wide screens are the main source of the data that I adopted for the work

in this thesis.

1.3.1 Gene knockout

The nature of CRISPR-Cas systems is to clear the invaders by cleaving target sequences. Gene

knockout assays were first tested in eukaryotic cells with the most well-characterized CRISPR-Cas9

system (Mali et al., 2013). The first steps of the gene knockout assay are similar to the natural mechanism

described in section 1.1. Following the introduction of the DSB, the DSB is repaired by either

non-homologous end joining (NHEJ) or homology-directed repair (HDR) (Chang et al., 2017). NHEJ and

HDR both have their own advantages and disadvantages, and approaches have been developed to address

the problems of NHEJ and HDR.

NHEJ is efficient but error-prone (Bétermier et al., 2014), resulting in a small insertion, deletion,

and even large chromosomal translocation. The uncertainty in induced mutations could obscure the

knockout outcome. In contrast, HDR shows high fidelity, albeit lower efficiency, the requirement of an

ssDNA donor, and in competition with NHEJ. Attempts have been made to improve the low efficiency of

HDR. For instance, considering that HDR only takes place during the S and G2 phases of the cell cycle,

previous work (Lin et al., 2014) applied a timed delivery to synchronize the cells to improve the

efficiency from 10% to 38%. Further improvement in HDR efficiency can be achieved by using

stimulators of CRISPR-mediated HDR (Nambiar et al., 2019; Rees et al., 2019) and inhibitors of genes

associated with NHEJ (Arnoult et al., 2017; Jayavaradhan et al., 2019; Ray et al., 2020).
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To address the problem of either error-prone NHEJ or low-efficiency HDR, Cas9 nickase (nCas9)

(Ran, Hsu, Lin, et al., 2013; B. Shen et al., 2014) was engineered to produce only single-stranded breaks

(SSB). Therefore, using dual nickases for gene knockout (Ran, Hsu, Lin, et al., 2013) improves repair

efficiency in the on-target position and reduces the unwanted mutations in the off-target positions.

1.3.2 Transcriptional regulation

Transcriptional regulation techniques based on CRISPR-Cas systems have been developed by

engineering catalytically inactive Cas9. The cleavage activity of the CRISPR-Cas systems can be silenced

by mutating their nuclease domains, such as by point mutations (D10A and H840A) in RuvC and HNH

nuclease domains in SpCas9 (Qi et al., 2013). The catalytically inactive Cas9 is also called dead Cas9

(dCas9). Repressing and activating transcription are two primary ways of regulating transcription.

Repressing or activating a gene can reveal its functional importance. The CRISPR-based gene repression

technique is termed CRISPR interference (CRISPRi) whereas the gene activation technique is CRISPR

activation (CRISPRa).

For CRISPRi, gene repression is caused by the inference with either transcription initiation or

elongation. The loss of cleavage activity in dCas9 results in transient binding to the target DNA. The

collision of the RNA polymerase with the bound Cas-RNA complex interferes with transcription initiation

when the binding happens near the polymerase binding site and with the transcription elongation when in

the coding region. The regression can be enhanced by a fusion of an extra repressor to dCas9, such as

Kruppel-associated Box (KRAB) (Gilbert et al., 2013). For CRISPRa, contrary to repressors, an activator

can be fused to activate the transcription. An example of the activator is VP64, four tandem copies of a

16-amino-acid-long transactivation domain (VP16) of the Herpes simplex virus (Maeder et al., 2013;

Perez-Pinera et al., 2013). Both CRISPR interference and activation (CRISPRi/a) have been optimized by

recruiting more proteins or domains, such as co-repressor proteins KRAB-box-associated protein-1

(KAP-1) for KRAB (Friedman et al., 1996), a tripartite activator VP64-p65-Rta (VPR) (Chavez et al.,

2015), and multiple V64 domains using SunTag (Tanenbaum et al., 2014).

Although many studies focus on eukaryotic cells, CRISPRi/a has been reprogrammed for

bacterial expression regulation (Bikard et al., 2013; Peters et al., 2019), which filled the gap in the

application of CRISPR-Cas techniques in bacteria, given that many bacteria lack the necessary repair

pathways (NHEJ or HDR) for the cleavages introduced by Cas proteins, thereby gene knockout using

CRISPR-based techniques exhibits strong cytotoxicity. Applying CRISPRi/a in prokaryotes also paved

the way to optimize synthetic gene circuits or metabolic networks for desired products in bacteria such as

biofuel, pharmaceuticals, and biomaterials (Khalil & Collins, 2010; Jusiak et al., 2016; S. Cho et al.,

2018; Mougiakos et al., 2018; M. Xie & Fussenegger, 2018), besides the functional interrogation.
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Moreover, Mismatch-CRISPRi (Hawkins et al., 2020) leveraged the tolerance of mismatches and the

lower efficiency caused by mismatches to reach a tunable expression regulation that gave insights into the

expression-fitness relationships. The development of CRISPRi/a enables applications in transcriptional

regulation and also prokaryotes.

1.3.3 Base editing

Besides CRISPRi and gene knockout, gene silencing can be achieved by introducing premature

stop codons using CRISPR base editors (Billon et al., 2017; Kuscu et al., 2017). The CRISPR base editor

used in CRISPR-STOP harbors a cytosine deaminase, which edits Cytosine (C) into Uridine (U) and then

Thymine (T) via base excision repair. By editing CGA (Arg), CAG (Gln), and CAA (Gln) codons, stop

codons TGA (opal), TAG (amber), or TAA (ochre) can be created respectively.

The application of CRISPR base editors however extends beyond gene silencing. Owing to its

ability to introduce permanent edits in the genome, CRISPR base editors are a promising technique for

treating genetic diseases and altering phenotypes of interest. Nevertheless, base editors were first

developed to improve the efficiency and specificity of CRISPR-based gene knockout. APOBEC

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) was the earliest cytosine deaminases

fused to dCas9 in the first generation of CRISPR base editors, followed by later optimization with i.e. a

fusion of uracil DNA glycosylase inhibitor (UGI) and replacement of dCas9 with nCas9 to improve

editing efficiency and specificity (Komor et al., 2016; Komor, Zhao, et al., 2017; B. Yang et al., 2019).

Besides cytosine base editors (CBEs), adenine base editors (ABEs), which edit Adenine (A) to Guanine

(G), expand the horizon of this technique (Gaudelli et al., 2017). Including the consequent conversion on

the opposition strand, all four transition mutations (C to T, T to C, A to G, and G to A) can be installed

using CRISPR base editors.

Despite the improvement in efficiency and specificity, CRISPR base editors follow the original

target recognition mechanism and are restrained in what is called the ‘editing window’. While only the

bases in the editing window can be edited, all the candidate bases (C for CBEs and A for ABEs),

including the unwanted ones, stand a chance to be converted. To enlarge the pool of editable bases, Cas

proteins and their variants with different PAMs or more flexible PAMs are adopted (Hu et al., 2018; X. Li

et al., 2018; Nishimasu et al., 2018). Engineered deaminases with narrower editing windows or specific

sequence contexts curtail unwanted editing (Y. B. Kim et al., 2017; Gehrke et al., 2018; X. Wang et al.,

2018; Tan et al., 2019). Further, tools such as REPAIRx (Y. Liu et al., 2020) were developed to edit RNAs

in the combination with Cas13 proteins. Similar to CRISPRi/a the applications of CRISPR base editors

have been mainly investigated in eukaryotes but have been shown to achieve satisfactory performance in
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both gram-negative and -positive bacteria, though only a small quantity of genes were tested (Banno et

al., 2018; Gu et al., 2018; Zheng et al., 2018).

Apart from base editors, other techniques have been developed to introduce permanent edits in

the genome. For example, prime-editing combines prime editing guide RNA (pegRNA), a modified

reverse-transcriptase, and nCas9 (Anzalone et al., 2019; Kantor et al., 2020; Scholefield & Harrison,

2021). Its capability to convey all 12 types of single base substitution instead of only four transition

mutations revolutionizes the base editing technique. Furthermore, transposon-associated CRISRP-Cas

systems potentiated accurate insertion of longer than 10kb sequences (Klompe et al., 2019; Strecker et al.,

2019; Vo et al., 2020).

In summary, CRISPR-based base editing techniques offer an alternative for gene silencing, enable

all 12 types of single base substitution, and allow the insertion of large sequences.

1.3.4 Epigenetic modification

Apart from deaminase, epigenetic modifiers have been fused to dCas proteins to investigate

individual epigenetic marks and regulate gene expression.

Given that DNA methylation can repress gene expression, multiple examples using Cas proteins

and methylation have been explored. These include the fusion of both KRAB and eukaryotic DNA

methyltransferase (DNMT3A) to dCas9 allows efficient gene silencing (Amabile et al., 2016). The effect

of methylation removal on modulating gene expression was also studied using ten-eleven translocation

(TET) dioxygenases (X. S. Liu et al., 2016). In addition to DNA methylation, fusing histone

acetyltransferase P300 can increase gene expression by increasing the acetylation at the Lysine 27

acetylation position (H3K27ac) in the enhancer elements (Hilton et al., 2015). The diversity of epigenetic

modification also gave rise to extensive studies in other modifiers such as histone demethylase (LSD1)

(Kearns et al., 2015), histone deacetylases (HDAC) (Kwon et al., 2017), endogenous chromatin regulators

(Braun et al., 2017), and prokaryotic DNA methyltransferase (MQ3) (Xiong et al., 2017).

The focus of epigenetic modification has been on transcriptional regulation, which seems

redundant to CRISPRi/a. But the effects on gene repression or activation induced by CRISPRi/a are

reversible. In comparison, epigenetic changes are inheritable. Therefore, the effects induced by epigenetic

modification can persist in the daughter cells, broadening the applications of CRISPR-Cas systems.

1.3.5 Genomic loci visualization

CRISPR-Cas systems have been also used in genomic loci visualization. When fusing with

fluorescence such as GFP, dCas9 can label and visualize genomic loci in living cells without cell fixation

and sample heating (B. Chen et al., 2013), overcoming the limitation of fluorescent in-situ hybridization
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(FISH). Simultaneous tracking of multiple loci is possible by co-expressing dCas9 orthologs tagged with

fluorescent proteins with different colors (Ma et al., 2015) or recruiting different fluorescent proteins

attached to RNA binding proteins (RBPs) by gRNA-fused RNA aptamers (Ma et al., 2016a, 2018). To

compete with the background fluorescent signal, dozens of sgRNAs are required to visualize a

non-repetitive locus, whereas one sgRNA achieves comparable signal strength when targeting a repetitive

locus.

1.3.6 RNA/DNA detection

CRISPR-based nucleic acid detection techniques have improved on the previous golden standard

polymerase chain reaction (PCR) with the combination of single-nucleotide specificity, cost efficiency,

and simplicity. In particular, PCR detection requires sophisticated analytical instruments that confine its

comprehensive implementation. Plentiful tools based on Cas9, Cas12, or Cas13 have been established to

detect both DNA and RNA for the diagnosis of infectious diseases (Kaminski et al., 2021; J. Li et al.,

2022).

An example of a Cas9-based method is nucleic acid sequence-based amplification

(NASBA)-CRISPR cleavage (Pardee et al., 2016). Its sensitivity at the femtomolar (10–15 M), much higher

than the common sensitivity of PCR (10-13 M, based on 25 ng per 100 µl reaction and 200 bp template

DNA), level empowered the detection of the Zika virus from plasma samples. NASBA combined RNA

amplification and target-specific PAM sequence to achieve sensitivity and specificity. The truncated DNA

pieces upon successful cleavage by Cas9 miss the trigger sequence to activate the toehold sensor, thus

absent in color change. Another example of a Cas9-based method is LEOPARD (leveraging engineered

tracrRNAs and on-target DNAs for parallel RNA detection) (Jiao et al., 2021). LEOPARD takes

advantage of the reprogrammed tracrRNA (Rptr) to sense target RNA to form a non-canonical crRNA

(ncrRNA). After binding to Campylobacter jejuni Cas9, which is capable of binding ncrRNA, ncrRNA

guides the complex to the target DNA. Successful cleavage of DNA indicates the presence of target RNA

with single nucleotide resolution. Due to the high resolution, the detection of target RNA using

LEOPARD can be multiplexed, which was showcased by detecting several SARS-CoV-2 variants at once.

Cas12- and Cas13-based methods include DETECTR (DNA endonuclease-targeted CRISPR

trans reporter) (J. S. Chen et al., 2018) and SHERLOCK (specific high-sensitivity enzymatic reporter

unlocking) (Gootenberg et al., 2017). In these two methods, recombinase polymerase amplification (RPA)

or reverse transcription RPA (RT-RPA) is first performed to amplify the sample, followed by the

recognition of the target using Cas12 or Cas13 systems. A collateral cleavage is then activated upon the

target recognition, which acts on the bystanding ssDNA or ssRNA for Cas12 and Cas13 respectively. The

cleavage in ssDNA or ssRNA consequently separates the quencher from the fluorophore to obtain the

18



fluorescent signal. These methods reached an attomolar (10–18 M) sensitivity at the detection of the Zika

virus, the flavivirus dengue, and human papillomavirus. SHERLOCK also showed the capability of

bacterial species differentiation, human genotyping, and cancer mutation detection. Version two of

SHERLOCK further implemented multiplexed detection using multiple fluorescent labels and improved

the sensitivity to the zeptomolar (10–21 M) level (Kellner et al., 2019).

Along with novel CRISPR-Cas system mining in metagenome data, the mutagenesis technique

aimed to identify variants with desired properties (Tong et al., 2022), such as higher on-target efficiency

or lower off-target cleavage activity, allowing the expansion of CRISPR-based diagnosis platform.

1.3.7 Multiplex targeting

Multiplexing in CRISPR-Cas methods involves expressing multiple gRNAs or Cas proteins at

once. It is deemed fundamental to serve the purpose in some methods, such as double nCas9 for precise

gene knockout and targeting non-repetitive regions for visualization. In other methods, it facilitates better

performance, such as more complete silencing or, in diagnosis-relevant methods, higher efficiency and

larger sample size. Moreover, multiplexing allows interrogation of multiple genes at once, untangling the

higher-order genetic interaction. Other applications of multiplex CRISPR-Cas methods include

sophisticated gene circuit construction, such as an AND gate controlled by co-expression of two genes

(McCarty et al., 2020).

Numerous gRNAs can be expressed either as individual sgRNAs or as processed gRNAs from a

CRISPR array. For the former one, the most common method is to express each sgRNA under an

individual promotor. For the latter one, one promoter is used to express the CRISPR array carrying

multiple gRNA sequences. The transcribed array is processed by the ribozyme, Csy4 (one type of

CRISPR-associated protein), or RNase when the sgRNAs are flanked with self-cleaving sequences, Csy4

sites, or tRNAs respectively (K. Xie et al., 2015; L. Xu et al., 2017; Ferreira et al., 2018; Zhang et al.,

2019; Yuan & Gao, 2022). To date, more than 20 gRNAs can be multiplexed by processing a single

transcript crRNA array with Cas9, Cas12, and Cas13 under the mechanism of the native CRISPR-Cas

systems (Campa et al., 2019; Liao, Ttofali, et al., 2019; Ellis et al., 2021).

1.3.8 Large-scale and genome-wide screens

Large-scale and genome-wide scale functional screenings benefit from the simplicity of gRNA

design and CRISPR-Cas systems, probing genotype-phenotype to comprehensively understand functional

cellular programs (Schuster et al., 2019; Todor et al., 2021). Understanding the genotype-phenotype

relationship unveils the unknown gene function, the causal genes of diseases, and the potential drug

targets. The genotype-phenotype relationship can also serve as a roadmap for synthetic gene circuits.
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The workflow of a CRISPR genome-wide screen starts with the library design, in which the

requisite number of gRNAs is designed for each target gene, which is typically three to six. gRNA oligos

are synthesized, amplified, and delivered into target cells. Each gRNA becomes a marker of the cell given

that it diminishes with cell death and proliferates with cell reproduction. Therefore, for a screen that

focuses on understanding gene essentiality, the fitness effect of knocking out or knocking down a gene

can be observed through the read count of the gRNAs targeting the corresponding gene compared to the

initial time point. The lower read count of the gRNAs suggests a stronger fitness defect of the target gene,

while the higher read count indicates a weaker effect on cell proliferation. The read counts of gRNAs are

obtained by sequencing the extracted plasmids carrying the gRNAs or the amplified gRNA region

integrated in the genome.

There are two main types of screens: gain-of-function and loss-of-function. The gain-of-function

screen involves mainly CRISPRa, which promotes the overexpression of the target gene. The majority of

CRISPR screens focus on the loss of function. CRISPR-Cas9 is frequently used in the loss-of-function

screens to knock out the target genes in eukaryotes (He et al., 2019; Shalem et al., 2014; Yilmaz et al.,

2018), whereas CRISPRi is more popular in prokaryotes (Rock et al., 2017; Rousset et al., 2018; T. Wang

et al., 2018; Cui et al., 2018; H. H. Lee et al., 2019; McNeil et al., 2021) as mentioned above. The ability

of the base editor to introduce a premature stop codon was also tested on a genome-wide scale as an

alternative for loss-of-function screening (P. Xu et al., 2021; Y. Liu et al., 2022).

Prior to CRISPR screens, Transposon sequencing (Tn-Seq) (van Opijnen et al., 2009) and

Transposon Directed Insertion Sequencing (TraDIS) (Langridge et al., 2009) were two simple-to-use

transposon-based approaches for high-throughput loss-of-function screening. Gene perturbation relies on

the random insertion of the transposon in these approaches. A large library size is therefore required to

reach a genome-wide resolution. Moreover, bottleneck effects mitigate the diversity of their library,

resulting in the tendency to miss small genes (Chao et al., 2016). Transposon-based approaches can

identify essential genes based on missing read alignments at the corresponding genome loci but lack the

flexibility to investigate the gene dosage effect, which occurs when the number of gene products changes

by, for example, regulating gene expression (Cain et al., 2020). In contrast, gRNAs can be designed

carefully to target the small genes and expressed in an inducible and titratable manner with CRISPRi (Qi

et al., 2013; Fontana et al., 2018). The tunable gene expression using titratable CRISPRi further supported

the investigation of gene vulnerability (Bosch et al., 2021), which describes gene essentiality as a

quantitative trait instead of a binary measure. Gene vulnerability provides an alternative explanation for

inconsistent essentiality across strains and paves the way for more robust drug design because genes with

high vulnerability are better targets than strain-specific essential genes. In addition, when multiplexing

targeting extends to a genome-wide scale, it allows systematic analysis of genetic interactions and
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synergistic drug combinations (Han et al., 2017; Shapiro et al., 2017; J. P. Shen et al., 2017; Rauscher et

al., 2018; Chow et al., 2019). Moreover, droplet-based technology bridges CRISPR screening and

single-cell RNA sequencing (scRNA-seq). Single-cell CRISPR (scCRISPR) screenings (Dixit et al.,

2016; Datlinger et al., 2017) allow a single-cell resolution of the transcriptomic response to perturbation.

Due to the growing frequency of CRISPR screens, databases have been built to compare screens from

different studies and laboratories, such as DepMap (https://depmap.org/portal/).

However, complications exist in the design and analysis of genome-wide screens (Hanna &

Doench, 2020). First of all, 3-6 gRNAs per gene are typically required for a robust readout, whose design

is discussed in more detail in the following sections. Secondly, sequence deconvolution, the step of

mapping sequence reads to individual gRNA in the library, is crucial for downstream analysis. After

normalizing the read count of gRNAs, log-fold change is calculated between conditions or time points to

recover the guide-level score. Given that the guide scores might vary, correctly and confidently

converting the guide scores to a gene-level evaluation can be challenging. Algorithms have been

dedicated to this problem (Bodapati et al., 2020), and include statistical testing-based methods (Rousset et

al., 2018; T. Wang et al., 2018), the robust ranking algorithm (W. Li et al., 2014), maximum likelihood

estimation (MLE)-based (W. Li et al., 2015), and Bayesian methods (Allen et al., 2019). A supplementary

set of tools such as GEMINI and Orthrus (Zamanighomi et al., 2019; Ward et al., 2021) addressed the

need for combinatorial screening analysis.

In summary, despite focusing largely on eukaryotic systems, the variety and flexible scales of

CRISPR-Cas tools propelled the development of many other fields such as drug targets for cancers and

infectious diseases. The continuous efforts not only aim to enlarge the tool kit in both eukaryotic and

prokaryotic systems but also optimize the developed methods to improve their efficiency.

1.4 Rational design is crucial for a successful CRISPR-Cas experiment

Despite the power of CRISPR-Cas tools, conducting a successful CRISPR-Cas experiment

requires rational design after selecting a suitable method from the ever-growing CRISPR-Cas tool kit.

gRNA design is the first step in a CRISPR-Cas experimental setup but comes with challenges. In the

design of genome-wide screens, multiple gRNAs are required for each gene, which stems from variability

in gRNA efficiency when targeting the gene of interest. A poor selection of gRNAs is therefore prone to

an unreliable read-out for the downstream analysis. gRNA design considers both on-target efficiency and

off-target specificity, the two important characteristics of the CRISPR-Cas mechanism. CRISPR-Cas

systems were evolved to defend against invading alien sequences. Both the tolerance of mismatches and

the secondary PAM sequences play a significant role in the robust immune response, but this strength

21



turns into a weakness when CRISPR-Cas systems extend to genetic tools. Low on-target efficiency and

unwanted off-target mutations due to the robustness of CRISPR-Cas systems are the primary concerns in

practice. On-target efficiency and off-target specificity are often evaluated separately and respective tools

were developed based on diverse experimental approaches. For clarity, I describe on-target efficiency and

off-target specificity in two individual sections below. Given that a large part of my work involves

on-target efficiency prediction, this section describes the experimental settings to study both on-target

efficiency and off-target specificity and how the guidelines of guide design have been concluded, whereas

section 1.5 focuses on machine learning methods to predict on-target efficiency.

1.4.1 On-target efficiency

Dozens of tools were developed in the past ten years to predict gRNA on-target efficiency (Hanna

& Doench, 2020). Investigations for on-target efficiency often exploited CRISPR large-scale screens to

gain insights into the determinants of on-target efficiency and design rules were derived as guidelines for

gRNA selection. In the screens, given multiple gRNAs are designed for each gene, the differences in the

measured activity in the gRNAs targeting the same gene are the source of analyzing the differences in

on-target efficiency. Unfortunately, the design rules extracted in different studies can be both consistent

and inconsistent, which likely resulted from the differences in the experimental methods for the activity

measurements. As follows, I describe a few examples of the gRNA activity measurements for SpCas9

gene knockout and compare the extracted design rules.

The first example is Rule Set 1 (Doench et al., 2014), which was extracted from one of the

earliest large-scale SpCas9 knockout screens. In this screen, two pools of sgRNAs were designed to target

mouse and human cell surface marker genes respectively. To have a comprehensive landscape of on-target

efficiency, all potential sgRNAs with NGG PAM on both strands of all exons for mouse cell surface

marker genes and coding sequences for human cell surface marker genes were included. Cells carrying

sgRNAs were stained and analyzed using fluorescence-activated cell sorting (FACS) followed by DNA

amplification and sequencing. In this setup, the successful knockout would eliminate the cell surface

marker and the cell would be sorted as unstained. Therefore, the sorted unstained cells were expected to

carry the sgRNAs with high knockout activity, which also indicated high on-target efficiency. The

enrichment of each sgRNA was defined as the fold difference in abundance of the sgRNA between

stained and unstained populations, providing a quantitative measure of gRNA activity, thereby on-target

efficiency. By analyzing the relationship between the target position and activity of sgRNAs, lower

activity was observed near C’ terminus and in both 5’ and 3’ untranslated regions (UTRs). After removing

these sgRNAs targeting low-activity regions, the remaining 1,841 sgRNAs were ranked by the fold

enrichment values for each gene and then divided by the number of sgRNA of the target gene. This
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transformed activity, percent-rank, was better in comparing sgRNA efficiency across genes and used to

analyze the sequence composition. While no significant difference was detected between targeting coding

and non-coding strand, sgRNAs with less than 6 or more than 16 guanine or cytosine bases exhibited

lower activity. Besides the 20 nucleotides in sgRNA sequences and the N position in the PAM, 4

nucleotides upstream of the target sequence and 3 downstream of the PAM sequence were explored based

on the probability of sgRNA with percent-rank activity higher than 0.8. Guanine was found to be favored

at the 20th position of sgRNA, while it is strongly disfavored at the position immediately downstream of

PAM.

The second example is Rule Set 2 (Doench et al., 2016). A total of 2,549 sgRNAs targeting the

coding sequences of eight genes known to contribute to resistance of one type of small molecules

(vemurafenib, selumetinib, or 6-thioguanine) were screened in melanoma cells with the addition of one of

the three small molecules. An effective sgRNA was expected to cause substantial growth defects with the

addition of the small molecules. Plasmids extracted from the harvested surviving cells were sequenced,

providing the log-fold change of sgRNA compared to control cells receiving no small molecule treatment.

Combining the 1,841 sgRNAs from the study of Rule Set 1, targeting position was found to have a limited

effect on the on-target efficiency. Further, a machine learning model was built to predict the normalized

rank of sgRNA in each gene. The addition of the melting temperature of the DNA version of the sgRNAs

was demonstrated to improve the model performance, but the quantitative relationship was not mentioned

in the study. Rule sets 1 and 2 presented general guidelines for gRNA design from two different

experimental read-outs, and the integration of datasets arrived at a better prediction of guide efficiency.

The third example is CRISPRscan (Moreno-Mateos et al., 2015). Both Rule Set 1 and 2 were

extracted from experiments in either mouse or human cell lines, leaving the generalization of the rule sets

in other model organisms unproven. To fill the gap, CRISPRscan exploited a screen of 1,280 sgRNAs

targeting 128 genes in zebrafish embryos. On-target efficiency was measured as the percentage of

indel-containing reads sequenced from the amplified 1,280 target regions. Moreover, the expressed

sgRNAs and Cas9-encoding mRNA were directly injected into the embryos, providing a read-out

independent of the transcription rate of sgRNA or Cas9. In a total of 35 sequence positions, 6 nucleotides

upstream of the target sequence to 6 downstream of the PAM sequence, were examined with the log-odds

score of nucleotide frequency in the top 20% efficient sgRNAs in each gene. Consistent with Rule Set 1,

guanine was favored at the 20th position of sgRNA and disfavored at the position immediately

downstream of PAM, whereas both guanine and cytosine were preferred at the N position of PAM.

However, there were also novel observations: guanine was commonly enriched at positions 1 to 14 of

sgRNAs, whereas thymine and adenine were overall depleted. Of note, all sgRNAs were designed with

GG at the 5’ end of the sgRNA. This design is specific to T7-derived sgRNAs and the higher indel
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efficiency of GG was demonstrated in another large-scale screen in zebrafish zygotes targeting 122 loci

(Gagnon et al., 2014). It was also shown to be partially caused by the in vitro transcription of T7 RNA

polymerase. Aside from Rule Set 2, the Moreno-Mateo score from CRSIPRscan was incorporated in the

majority of popular gRNA design platforms. The three studies described above are decent representatives

of how design rules have been extracted from diverse screens and analytic methods.

The last example is an earlier study (T. Wang et al., 2014). Although the study centered on the

establishment of the CRISPR-Cas9 large-scale screening method and yet attempts were made in

understanding the variation in gRNA efficiency according to the distribution, average, or median value of

measured activity values. In the study, the authors proposed the method for pooled loss-of-function

screens in human cells and established a library with 73,000 gRNAs targeting near the beginning of 7,114

genes. By sequencing the sgRNA after incubation for 12 doublings, the depletion of sgRNAs compared to

the initial time point uncovered the genes essential to cell proliferation. A comprehensive sgRNA set

targeting 83 ribosomal genes, most of which are essential for cell growth, allowed the analysis of

on-target efficiency: the sgRNA activity was lower with very high- or low-GC content and when targeting

the last exon or template strand.

While most tools have been developed in eukaryotic systems for SpCas9, design rules for other

CRISPR-Cas systems are emerging to enhance the utility of other CRISPR-based tools, such as

CRISPRi/a (Gilbert et al., 2014; Konermann et al., 2014; Smith et al., 2016), Staphylococcus aureus

Cas9 (SaCas9) (Najm et al., 2018), Cas12a (H. K. Kim et al., 2018), and base editor (Hwang et al., 2018).

Given that my main project involves the development of a predictive model for CRISPRi and both

CRISPRi and CRISPRa are means to regulate transcription, I describe a few examples of gRNA activity

measurements for CRISPRi/a and the design rules here.

The first example is from Gilbert and collaborators (Gilbert et al., 2014). They investigated the

gRNA activity using the same tiling library in both CRISPRi and CRISPRa screens in human cells. The

comprehensive library, consisting of 54,810 sgRNAs, was designed to target 49 genes that convey

resistance to ricin. The comparison of the sgRNA abundance between ricin treatment and standard

conditions was then used to evaluate the on-target efficiency. While the sgRNA activity anticorrelated

between CRISPRi and CRISPRa screens, the region exhibiting the highest target efficiency differed due

to the machinery of the Cas variants. For CRISPRi, the active target window for dCas9-KRAB extended

from -50 to +300 bp relative to the transcription start site (TSS) and peaked at 50 to 100 bp downstream

from the TSS, wider than the active target window of dCas9. For CRISPRa, the peak shifted to -400 ~ -50

bp relative to the TSS for dCas9-SunTag with VP64, agreeing with the transcription activation machinery

of VP16 domains in VP64.
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The second and third examples are studies using a different repressor or activator for CRISPRi

and CRISPRa, resulting in different active target windows despite similar experimental setups. Smith and

collaborators (Smith et al., 2016) developed an inducible CRISPRi system in yeast using dCa9-Mxi1 and

found that targeting up to 200 bp upstream of the TSS showed the maximal gRNA activity by comparing

the median activity of around 600 gRNAs targeting 25 genes in 50 bp scanning windows with 25 bp

overlapping. Konermann and collaborators (Konermann et al., 2014) instead suggested targeting the -200

to +1 bp window leads to the optimal level of transcription activation with the synergistic activation

mediator (SAM) based on the correlation of the performance of 96 gRNAs targeting 12 genes.

The last example from Radzisheuskaya and collaborators (Radzisheuskaya et al., 2016) suggests

that annotation has an impact on the target window recommendation and the sequence context affects the

guide efficiency. The authors proposed a correct annotation after comparing various annotation methods

and pointed out that a significant difference between functional and non-functional gRNAs was only

observed for Cap Analysis of Gene Expression (CAGE)-predicted TSS, where a 2-fold mRNA depletion

was used as a threshold to define functional gRNAs. The gRNAs targeting from -50 to +150 relative to

CAGE-peak was demonstrated to be significantly more effective than targeting outside of the window,

while the region for maximum efficiency is 0 to +50 bp. Using CAGE to reanalyze the data from the first

example (Gilbert et al., 2014), a much higher proportion of functional gRNAs was identified in −50 to

+250 bp relative to the CAGE-peak. In the first example (Gilbert et al., 2014), the author suggested that

sequence features have little impact on the gRNA activity except for the negative effect of nucleotide

homopolymers and extreme GC content. But in the CAGE-based reanalysis, the predicted efficiency of

functional gRNAs in the recommended target window using Sequence Scan for CRISPR (SSC) (H. Xu et

al., 2015), which incorporates the sequence context of the gRNAs, was significantly higher than that of

the non-functional gRNAs, suggesting the gRNA sequence features still play a role in on-target efficiency

for CRISPRi.

Comparing design rules for SpCas9 and CRISPRi/a, despite the fact that Rule Set 2 concluded no

preference in a specific region in the protein-coding sequences, it is recommended to target near

transcription start sites for both CRISPRi and CRISPRa. Additionally, sequence context is of less

importance in CRISPRi/a. Nevertheless, the optimal targeting windows for CRISPRi/a need to be tailored

according to annotation, the Cas variants, and target organisms.

Given that available data from large-scale screens are accumulating, more comprehensive design

rules have been extracted from published data with alternative analyzing methods. Here I include two

other examples to describe how the publicly available data have been reanalyzed to extract novel design

rules, aside from the reannotation mentioned above (Radzisheuskaya et al., 2016),
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The first example is the reanalysis of the data from Doench et al. (Doench et al., 2014) by

comparing the top and bottom 20% of gene-wise ranked sgRNAs, highlighting the importance of

secondary structure and sequence characteristics for SpCas9 (Wong et al., 2015). The higher accessibility

of the PAM-proximal 3nt in gRNA, lower gRNA self-folding stability, and lower GC content

distinguished the 20% most efficient gRNAs. Homopolymers, especially four consecutive guanines, were

associated with poor activity. Adenine was surprisingly enriched in functional gRNAs despite the GC

content effect, while GG and GGG were depleted. Preference for guanine and dispreference for cysteine

at the 20th position of gRNAs were again detected.

Another example is from Xu and collaborators (H. Xu et al., 2015), who combined large-scale

functional screen data in human and mouse cells from other two studies (Koike-Yusa et al., 2014; T. Wang

et al., 2014) to identify reproducible sequence features across species and experimental designs.In the

study, the authors first identified and classified essential genes into three sets: ribosomal, nonribosomal,

and mouse embryonic stem cells (mESC). Secondly, gRNAs were split into functional and nonfunctional

groups with an individual threshold in each set, followed by calculating the log odds ratio of the

functional group for each sequence feature. Thirdly, gRNAs were randomly permuted to construct a null

distribution, and the 95% confidence interval was used as the threshold to define whether the feature was

reproducible across gene sets in addition to the concordant effects across gene sets. Consistent with

previous studies, guanine was favored at the 3’ end of gRNAs, and thymine was disfavored at the last four

nucleotides of gRNAs. Novel features such as a preference for cytosine at the cleavage site of Cas9 were

identified. In the same study, CRISPRi genome-wide data from Gilbert et al. were reanalyzed to reinforce

the importance of sequence features. gRNAs targeting the 500 most essential genes in the CRISPRi

screen were selected followed by grouping into efficient and inefficient gRNAs according to the activity

scores of non-targeting gRNAs. This reanalysis landed on novel design rules for CRISPRi: purine was

preferred in most positions of gRNAs; sequence preference was dominated by the PAM-proximal end of

gRNAs.

In summary, sequence composition, GC content, targeting position, and secondary structure are

proven to play a role in on-target efficiency although the feature importance varies due to cell lines,

organisms, promoters, and analytic methods. This variation was also observed in the decreased prediction

accuracy of design tools in other data sets (Haeussler et al., 2016). To improve the prediction accuracy of

the on-target efficiency, numerous studies leveraged the power of machine learning models, which I will

describe in more detail in section 1.5.
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1.4.2 Off-target specificity

Quantitative measurement of the tolerance of mismatches, detection of unintended mutations, and

characterizing the functional PAM sequences laid the foundation for scoring the off-target specificity.

Quantitating the tolerance of mismatches depends on the change in sgRNA activity with a variable

number and/or position of deletion, insertion, and mismatches (Hsu et al., 2013; Fu et al., 2013; S. W. Cho

et al., 2014; Gilbert et al., 2014; Wu et al., 2014; Doench et al., 2016; X. Xu et al., 2017). Direct detection

of unintended mutations is performed using in vitro or in vivo genome-wide assays, such as GUIDE-seq

(Tsai et al., 2015), Digenome–seq (Richardson et al., 2016), SITE-seq (Cameron et al., 2017),

CIRCLE–seq (Cameron et al., 2017), DISCOVER-Seq (Wienert et al., 2019), GOTI (Zuo et al., 2019),

EndoV-seq (Liang et al., 2019), and SURRO-seq (Pan et al., 2022). These approaches depicted the

landscapes of off-targets for Cas9, dCas9, and base editors in human cell lines, mouse cell lines, and

plants, and observations were incorporated into scoring tools for off-target specificity. For example, up to

5 mismatches were observed in the off-targets (Fu et al., 2013); one mismatch in the PAM-distal region

was better tolerated than that in the PAM-proximal region and gRNAs with off-targets harboring fewer

than three mismatches should be avoided (Hsu et al., 2013); one mismatch in the 3’ end had a negative

effect on gRNA activity in CRISPRi while combinations of mismatches could abolish the activity (Gilbert

et al. 2014). The identification of functional PAM was described in section 1.1.

Tools for scoring off-target specificity are either alignment-based or scoring-based.

Alignment-based tools rely on the number and the position of the mismatches in the aligned sequences,

such as CasOT (Xiao et al., 2014), CHOPCHOP (Montague et al., 2014), CRISPR-OFFinder (Bae, Park,

et al., 2014), sgRNAcas9 (S. Xie et al., 2014), FlashFry (McKenna & Shendure, 2018) and Crisflash

(Jacquin et al., 2019). Scoring-based tools are based on calculations from experimental data or machine

learning model predictions, including MIT (Hsu et al., 2013), Cutting Frequency Determination (CFD)

(Doench et al., 2016), CCTop (Stemmer et al., 2015), CRISPRoff (Alkan et al., 2018), CRISTA (Abadi et

al., 2017), Elevation (Listgarten et al., 2018), and DeepCRISPR (Chuai et al., 2018). The MIT score and

CFD score were included in most of the gRNA design platforms. While the MIT score was derived from

more than 700 gRNAs, over 27,000 gRNAs were investigated for the CFD score. The CFD score was

validated with GUIDE-Seq and was shown to outperform the MIT score. The comprehensive screen of

the CFD score provided the percent activity values for each mismatch, deletion, or insertion at any

position of 20 nt gRNA, allowing scoring potential off-targets with a single or combination of mutations.

But the aggregation of multiple mutations was simply calculated by multiplying the individual percent

activity values. CRISTA, Elevation, and DeepCRISPR are more recent machine learning-based tools to
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predict gRNA activity with mismatches, and all three exhibited higher accuracy than the MIT score and

CFD score.

The combinatorial effect of the number and location of mutations in potential off-target sites

dominates the guide sequence selection for high specificity. User-friendly tools are available for both

off-target prediction and scoring, greatly simplifying the gRNA design to limit off-targets. In combination

with other experimental settings, described in the following section, minimizing the off-target effects have

been shown possible.

1.4.3 Other considerations in experimental design

Besides selecting the guide sequence carefully, on-target efficiency can be impacted by target

genes, gRNA expression machinery, gRNA length, gRNA stability, and Cas9 loading. For target genes, in

the study of Rule Set 1, targeting the N terminus of one gene exhibited noticeably weaker activity. The

gene-specific low activity and gene-associated off-target effects might both be related to chromatin

accessibility (Wu et al., 2014), given that low chromatin accessibility was shown to decrease the

efficiency (Chari et al. 2015; Smith et al. 2016; Chuai et al. 2018; Labuhn et al. 2018; Kim et al. 2019).

Combining the Assay for Transposase-Accessible Chromatin with high-throughput sequencing

(ATAC-seq) and sgRNA activity, the chromatin accessibility and nucleosome occupancy explained the

asymmetric target window relative to TSS in CRISPRi (Smith et al., 2016). Regarding gRNA expression

machinery, it was shown that the dispreference of thymine towards the 3’ end of sgRNAs resulted from

the recognition of the transcription termination signal by RNA polymerase III (Doench et al., 2014;

Gagnon et al., 2014). The length of gRNA was first modified to increase the targetable positions by

truncating the sgRNAs, but the truncated sgRNAs resulted in comparable or lower on-target efficiency

depending on the target organisms (Gilbert et al., 2014; Moreno-Mateos et al., 2015; Smith et al., 2016).

For gRNA stability, Gagnon and collaborators (Doench et al., 2014; Gagnon et al., 2014) improved the

sgRNA indel efficiency by the direct microinjection of the Cas9-gRNA complex into the zebrafish

zygotes. In line with this, Moreno-Mateos and collaborators (Moreno-Mateos et al., 2015) disentangled

the sgRNA stability from expression level by direct injection of transcribed sgRNA and Cas9 encoding

RNA and demonstrated that the sgRNA stability positively correlated with on-target efficiency, and the

enrichment of guanine in stable sgRNAs suggested that G-quadruplex structure enhanced the sgRNA

stability. Another study also showed the engineered sgRNA with a highly stable hairpin structure

exhibited higher cleavage efficiency (Riesenberg et al., 2022). Although Moreno-Mateos and

collaborators pointed out that loading sgRNA to Cas9 had a limited effect on the on-target efficiency,

Wang and collaborators (T. Wang et al., 2014) found sequence composition near the 3’ end of sgRNA, a
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preference for guanine and a dispreference for uracil, played a determinant role in the affinity of

sgRNA-Cas9 binding and showed that the affinity for Cas9 positively correlated with sgRNA efficiency.

Moreover, other experimental settings can be taken into consideration to limit undesired

off-targets, such as the type of Cas protein, the ratio between the amount of Cas protein and gRNAs, and

the incubation duration. For the selection of Cas protein, using nCas9 to induce SSB instead of DSB

avoids the error-prone NHEJ (Ran, Hsu, Lin, et al., 2013; B. Shen et al., 2014) and can reduce off-target

effects by 1,500 times. Engineered high-fidelity SpCas9 variants, such as SpCas9–HFI, HiFi Cas9, and

Sniper–Cas9, are able to cut down the off-target effects to a negligible level despite some showing lower

activity at certain loci (Kleinstiver et al., 2016; J. K. Lee et al., 2018; Vakulskas et al., 2018). Further, the

duration of the execution can be fine-tuned to minimize the off-target effects using reversible

CRISPR-Cas methods, i.e. CRISPRoff (Carlson-Stevermer et al., 2020), and anti-CRISPR (Acr) proteins

(Marino et al., 2020). CRISPRoff incorporated a light-inducible switch by replacing two positions in the

sgRNA with photocleavable residues. Turning on the switch can degrade the sgRNA to prevent new DSB

formation, thus avoiding further undesired editing after the target is edited. The delivery of Acr protein

AcrIIA4 to inhibit the Cas9 protein after 6 hours maintained the on-target efficiency while significantly

abridging the off-target editing (Shin et al., 2017). Dedicated experimental methods like dual nCas9s

using multiple gRNAs to locate the target position also aid the leaking off-target editing.

Overall, many attempts were made to optimize the recipe for gRNA design in various cell lines,

organisms, and CRISPR-Cas systems, despite the generalization of this recipe being far from perfect.

Given that off-target specificity is more controllable in combination with other experimental

considerations, optimization of on-target efficiency prediction requires more effort to meet the needs of

the expanding applications of CRISPR-Cas tools.

1.5 Machine learning methods in CRISPR-Cas gRNA efficiency prediction

After machine learning was first termed in 1959 (Samuel, 1959), the term “machine learning”

now can be understood as a self-learning machine, a pattern-recognition model, or a model that predicts

unseen data after training on appropriate data. The growing size and complexity of biological data quickly

attracted the involvement of machine learning techniques, as was also the case for CRISPR-Cas gRNA

efficiency prediction (Konstantakos et al., 2022). A fair amount of on-target efficiency prediction tools are

machine learning model-based. These tools not only score the on-target efficiency but also shed light on

the design rules and mechanisms of CRISPR-Cas systems. The majority of the established tools are

designed for CRISPR-Cas9 system in eukaryotes, despite that the dedicated tools for other CRISPR-Cas

systems are emerging, including CRISPRi/a (Calvo-Villamañán et al., 2020; Hawkins et al., 2020; H. Xu
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et al., 2015), SaCas9 (Najm et al., 2018), Cas12a (H. K. Kim et al., 2018; Luo et al., 2019), base editors

(Song et al., 2020; Koblan et al., 2021), and Cas13 (Wessels et al., 2020; Krohannon et al., 2022; Metsky

et al., 2022).

The flood of machine learning-related research raised concerns about how the machine learning

models were trained (Whalen et al., 2021; Greener et al., 2022), given that its performance relies heavily

on training data quality, feature set, model type, model evaluation metrics, and validation methods. As

follows, I discuss these topics in the context of on-target guide efficiency.

1.5.1 Data collection and integration

The training data set plays a determinant role in the machine learning model development,

considering that the model learns from the training data and its competence is consequently restrained by

the data (Jain et al., 2020). Correctly predicting on-target efficiency demands informative data to

understand the cause of variability of gRNAs targeting the same gene. In line with this, a better resolution

of the variation landscape can be obtained by a large number of gRNAs per gene. Therefore, similar to

design rule extraction, large-scale screen data were often exploited for machine learning model

development, both genome-wide and tiling (targeting only a set of genes), given that more than five

gRNAs per gene are commonly included. As described in section 1.4.1, diverse experimental and analytic

methods offer different but equally effective read-out for quantitative gRNA efficiency. The screening

data from, for example, Doench et al. (Doench et al., 2014, 2016), Koike-Yusa et al. (Koike-Yusa et al.,

2014), Wang et al. (T. Wang et al., 2014), Moreno-Mateos et al. (Moreno-Mateos et al., 2015), Hart et al.

(Hart et al., 2015) and Kim et al. (H. K. Kim et al., 2019) were used in one or more models.

However, due to the diversity in experimental setups, models trained on data from one

experimental method exhibited poor generalization in data from another experimental method (Haeussler

et al., 2016). For example, the model trained on U6-derived gRNAs resulted in undesirable accuracy in

T7-derived data. Similarly, the choice of cell lines and organisms has an impact on the model

performance. Therefore, multiple predictive models are often implemented in gRNA design platforms to

suit users’ needs. For instance, one can choose a model according to the cell line, organism, and promoter

in the experimental design. But this does not guarantee a model available to any experimental setup. In

contrast, improving the generalizability of the model can improves its applicability in other, even novel,

experimental setups.

One way to improve the generalizability of the model is data integration. By including data from

different sources, the model is opt to learn the concordance across datasets, alleviating the batch effects

and the influence of methodological variety. For instance, Xu and collaborators (H. Xu et al., 2015)

combined screen data from human and mouse cell lines (Koike-Yusa et al., 2014; T. Wang et al., 2014),
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whereas Doench et al. (Doench et al., 2016), Chuai et al. (Chuai et al., 2018) and Xiang et al. (Xiang et

al., 2021) enlarged the training data from the human cell line with previously published data from another

human cell line. Furthermore, Chari et al. (Chari et al., 2017) combined data from two Cas9 orthologs,

SpCas9 and Sth1Cas9. In these studies, models trained on integrated data showed higher accuracy than

that of individual datasets. Notably, the numeric differences due to experimental setups and batch effects

need to be considered when integrating the datasets. For instance, Chuai et al. (Chari et al., 2017) applied

a weighted sum of mean values of measured efficiency per experiment, gRNA, and all gRNAs to

normalize the on-target efficiency, whereas Xiang et al. calculated the scaling factor using linear

regression on overlapping gRNAs between datasets to rescale one dataset before training. Alternatively,

Doench et al. transformed the quantitative gRNA efficiency to rankings in each target gene, which

bypassed the measurement difference but sacrificed the comparability across genes and numeric

resolution, given that the same ranking difference might indicate different efficiency variations across

genes.

A problem- or CRISPR-Cas system-oriented collection of data is of great importance to

developing a predictive and accurate model for gRNA efficiency, given the sensitivity of model

performance in experimental choices. But the models can achieve better generalization by taking

advantage of data integration.

1.5.2 Feature selection and engineering

There are two main types of models in machine learning, supervised and unsupervised learning

models. Unlike unsupervised learning, which requires no label for the input data, supervised learning

entails labeled examples to supervise the model. The labeled examples are structured as columns with

specific feature names in tabular data. Hence, for supervised models, the construction of a feature set

demands domain knowledge, and the selection of features can drastically change the model performance.

Here, I describe the common features included in CRISPR-Cas gRNA efficiency prediction tools.

Sequence, thermodynamic, genetic, and epigenetic features are the primary features investigated

in the gRNA efficiency prediction tools, considering the mechanism of CRISPR-Cas systems and their

proven relevance to the on-target efficiency. But the exact feature sets vary in the prediction models (G.

Liu et al., 2020), and the definitions or calculations of a specific feature might differ. Given that sequence

context is essential for gRNA design, sequence features are contained –to the best of my knowledge– in

each model without exception. Sequence features include position-dependent and position-independent

features. Position-dependent features record the presence or absence of sequence patterns in specific

positions. Position-independent features count the occurrence of sequence patterns of varied lengths. The

length of 23, 30, or 35 mer for position-dependent features are often considered, where 23 mer includes
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only 20 nt gRNA and 3 nt PAM sequences, 30 mer includes an extra 4 nt upstream of gRNA and 3

downstream of PAM, and 35 mer includes an extra 6 nt upstream and downstream. Although most

frequently only single nucleotides and di-nucleotides are enlisted, up to 4 adjacent nucleotide patterns

were tested (Rahman & Rahman, 2017; Muhammad Rafid et al., 2020). In comparison,

position-independent features are less often incorporated (Doench et al., 2016; Rahman & Rahman, 2017;

Muhammad Rafid et al., 2020), except for the count of guanine and cytosine due to its connection to

thermodynamic features (Doench et al., 2014, 2016; Wilson et al., 2018; D. Wang et al., 2019). Apart

from GC content and GC counts, melting temperature, self-folding energy, and gRNA-target-DNA

binding energy allow the estimation of the accessibility of gRNA and the gRNA-target-DNA binding

stability (Wong et al., 2015; Doench et al., 2016; D. Wang et al., 2019; Xiang et al., 2021). Genetic

features such as target position in protein-coding sequence have been considered in a few tools (Doench

et al., 2016; Wilson et al., 2018), but in the form of amino acid cut position and percentage peptide.

Considering that in-frame mutations might retain the protein function, tools such as

Microhomology-Predictor (Bae, Kweon, et al., 2014) and Vienna Bioactivity CRISPR score (Michlits et

al., 2020) integrated protein function prediction. Despite the fact that chromosome accessibility has been

linked to on-target efficiency, limited tools have attempted to include this information (Kuan et al., 2017),

probably due to the lack of available data.

In addition to the selection of features, feature preprocessing helps to increase the effectiveness of

the learning process and improve model performance, which includes but is not limited to transformation,

imputation, and feature reduction (Kotsiantis et al., 2006). Transformation methods are specific to feature

types, for example, standard scaling for numeric features to remove the mean and one-hot encoding for

categorical features. Without proper encodings, like one-hot encoding, sequence features cannot be used

as input to the training given that only numeric values are accepted in machine learning algorithms.

Imputation involves handling missing data by assigning i.e. average values. Feature reduction aims to

remove less important features using either bottom-up or top-down methods (Abadi et al., 2017; Rahman

& Rahman, 2017). One way to determine the reduced feature set is to train models with various reduced

sets and evaluate the respective performance. Of note, the model used for feature reduction is independent

of the final predictive model. Alternatively, after training a model with the full set, one can reduce the

features based on the model interpretation, i.e. based on the feature importance (Calvo-Villamañán et al.,

2020). Feature reduction also curtails the risk of overfitting, especially when the sample size is relatively

small, thereby improving the generalizability of the model. For instance, Xu and colleagues (H. Xu et al.,

2015) constructed a reduced, reproducible feature set from the full feature set incorporated in the linear

regression models trained with three individual datasets. This reproducible feature set was chosen based
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on the feature concordance across models, which was measured by comparing the coefficients of the

features from each model. Using the reproducible feature set, the model performance was improved.

Together, a careful selection of features prior to the model training deserves more attention. In

particular, patterns in the gRNA efficiency differ across CRISPR-Cas systems. One simple example is

that epigenetic features are less significant when applied in prokaryotic systems. While choosing the right

features for the corresponding data, one should be aware of the necessity of feature preprocessing.

1.5.3 Model type and hyperparameter tuning

Another impactful factor in machine learning model training is model type (training algorithm).

While the model types can be classified as supervised or unsupervised, as mentioned in the previous

section, another way to classify them is as shallow or deep learning models (Chauhan & Singh, 2018).

Shallow models, also known as traditional models, are models that are not neural network-based. Deep

learning models are principally neural networks, which attempt to mimic the neural network in the human

brain. Numerous machine learning algorithms have been applied to the on-target efficiency prediction

problem. While the early-developed models for efficiency predictions are shallow model-based, deep

learning models are increasingly popular in recent years.

Even though diverse algorithms have been shown applicable in on-target efficiency prediction,

the algorithms are fundamentally different, with no consensus having yet been reached. The applied

shallow models include linear regression (Moreno-Mateos et al., 2015), logistic regression (Doench et al.,

2014), least absolute shrinkage and selection operator (LASSO) (Calvo-Villamañán et al., 2020), Elastic

Net (H. Xu et al., 2015), support vector machines (SVM) (Wong et al., 2015; Chari et al., 2015; Rahman

& Rahman, 2017), gradient-boosted decision trees (Doench et al., 2016), and random forest (Wilson et al.,

2018). Linear regression models (Su et al., 2012) essentially attempt to fit a line to the data, thus relying

on the linear relationship between the features and the training target, which is on-target efficiency in this

case. In regression models, weights are assigned to each feature and the prediction is the weighted sum of

feature values. Logistic regression is similar to linear regression but applies a logistic function to

transform the values between 0 and 1 to predict the probability for classification problems. To avoid

overfitting the training data, regularization was introduced to add penalties to the feature weights (Ying,

2019). Two major types of regularization are L1 and L2, penalizing the sum of absolute values of weights

and the sum of the squared values respectively. While LASSO only incorporates L1 regularization, Elastic

Net considers both. Instead of a line, SVM (Noble, 2006) fits a two-dimensional hyperplane, and

gradient-boosted decision trees and random forests build decision trees (Kotsiantis, 2013). While a

hyperplane is similar to lines, decision trees split the nodes and grow the branches with if-then rules. The

end nodes are intuitively called leaves, the same for a tree. Each decision tree is considered one separate
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model, which is at risk of overfitting. Hence, methods like gradient-boosted decision trees and random

forests combine the predictions from numerous decision trees to avoid overfitting and improve accuracy.

Such techniques are termed ensemble methods (Dietterich, 2000). As for deep learning models,

convolutional neural networks (CNNs) (Chuai et al., 2018; H. K. Kim et al., 2019; Xiang et al., 2021) and

recurrent neural networks (RNNs) (D. Wang et al., 2019) have been applied. Both CNNs and RNNs are

popular in genomics problems (Eraslan et al., 2019) because their assumptions can represent patterns and

orders in the nucleic acid sequences respectively.

Although no particular model has been favoured, tree-based models have been shown to

outperform linear regression models (Doench et al., 2016; Muhammad Rafid et al., 2020), given that the

dominant features are sequence features and the linear relation between sequence features and on-target

efficiency is weak, although the opposite has been argued due to the similar performance between

tree-based models and linear regression models (Calvo-Villamañán et al., 2020). In contrast to shallow

models, deep learning algorithms often demand a larger size of samples. The increasing availability of

data in CRISPR-Cas systems explains the growing popularity of deep learning models, although

Muhammad Rafid et al. (Muhammad Rafid et al., 2020) have argued that deep learning models did not

outperform shallow models.

For each machine learning algorithm, hyperparameters are parameters that cannot be inferred

from the training data, thus requiring prior knowledge to assign functional values (L. Yang & Shami,

2020; Bischl et al., 2023). Hyperparameters are crucial to the learning process and faulty hyperparameters

can fail the learning process, leading to disastrous model performance. Different model types bear

different hyperparameters. For example, a LASSO model requires the penalty factor and a deep learning

model requires the number of hidden layers. For a random forest model, typical hyperparameters include

the number of trees, the number of features to consider in splitting branches, the minimum number of

samples in the leaves.

To select a satisfactory set of hyperparameters, grid search, random search, bayesian

optimization, or tree-structured parzen estimators (TPE) can free one from the laborious manual process.

Grid search looks for the exhaustive combinations of values in the search space, while random search

(Bergstra & Bengio, 2012) looks for random combinations till it hits the set number of trials. Bayesian

optimization (Shahriari et al., 2016) leverages the power of bayesian inference and sampling methods and

examines the probability of the model performance given the hyperparameters. Similarly, TPE models

(Bergstra et al., 2011) estimate the probability of hyperparameters given the model performance. Search

space is however required for each method, in which a range or list of values is predefined for each

hyperparameter to be tuned. Dedicated tools for hyperparameter tuning have been developed. One
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example is hyperopt (Bergstra et al., 2013), which uses both random search and TPE methods and is

simple to use.

The decision on the model type and the corresponding hyperparameters is laboriously intensive

but crucial. It is worth exploring the data structure and the feature values before an exhaustive search and

comparison. Considering the difficulty, automated machine-learning techniques were developed to

simplify this process, which will be described in section 1.5.5.

1.5.4 Model performance evaluation and validation

Feature and model selection rely on the resulting model performance (Raschka, 2018). Hence,

how to evaluate the model performance is a critical decision. Ample metrics for either classification or

regression models allow the evaluation from different perspectives, and metrics for classification and

regression models are different.

On-target efficiency prediction has been shaped into both classification and regression problems.

Therefore, I describe metrics for each type of problem here. In the classification problem, gRNAs are

classified as either efficient or inefficient based on the ranking of each target gene. Often top quantile

gRNAs are considered efficient and the bottom 20% or the rest were the opposite (Doench et al., 2014;

Wong et al., 2015; Chari et al., 2017; Rahman & Rahman, 2017), or a cut-off in logFC values was applied

(Chuai et al., 2018; Muhammad Rafid et al., 2020). The classification models, also called classifiers,

output the prediction probability between 0 and 1. If the prediction probability is higher than 0.5, it is

considered as predicted positive, otherwise, it is predicted negative. The accuracy score, the simplest

metric for classifiers, is calculated based on the percentage of correctly predicted classes. Other metrics

that take the class balance into account include the F1 score, ROC-AUC score, and Matthews correlation

coefficient (MCC). The ROC-AUC score (Bradley, 1997) is the most commonly used in on-target

efficiency classifiers. ROC stands for receiver operating characteristic and AUC for the area under the

ROC curve. The ROC curve is constructed on all possible thresholds in the prediction probability to

classify the predicted true or negative. From each threshold, the true positive rate and false positive rate

are calculated and plotted as values on the x- and y-axis respectively. The connected dots from all

thresholds are the ROC curve, and thus the AUC score provides a balanced and robust evaluation of the

classification accuracy in each class. In the regression problem, the continuous numeric efficiency values

were used as the training target. Despite that mean squared error (MSE) and R squared are routinely used

to evaluate the regressors, the Spearman correlation between the true and predicted values is the most

applied, given that the order of the prediction weighs more to advise the selection of gRNAs for each

target gene.
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In addition, the generalizability of the predictive model is worthy of attention, which measures

how accurately the model predicts unseen data, possibly data from remote sources. While data integration

amends the lack of generalizability, cross-validation allows the evaluation of model generalizability by

training and testing on different subsets of the data and is also used in hyperparameter optimization

(Raschka, 2018). The basic form of cross-validation is k-fold cross-validation (Rodriguez et al., 2010), the

procedure of which is as follows: the samples are firstly divided equally into k folds; the model is trained

on k-1 folds and tested on the one held-out fold; the training is repeated k times to train and test on

different folds. Leave-one-out cross-validation is another cross-validation method, in which one sample is

held-out in each iteration for testing.

How the samples are divided into folds also impacts the evaluation. A simple train-test split on all

training samples provides the evaluation of accuracy in the overall landscape of gRNA efficiency

(Moreno-Mateos et al., 2015). In comparison, splitting based on the target gene might be more practical in

the case of gRNA efficiency prediction, given that the gRNAs are designed to target different genes and

the unseen data mean novel genes. Therefore, the leave-one-gene-out method has been adopted to

evaluate the models (Wong et al., 2015; Doench et al., 2016; Rahman & Rahman, 2017), in which gRNAs

targeting one gene were held out as a test set while the remaining were used as the training set in each

iteration. Further, leave-one-sgRNA-out, leave-one-cell-out, and leave-one-dataset-out have been applied

(Doench et al., 2014; H. Xu et al., 2015; Chuai et al., 2018; Muhammad Rafid et al., 2020). However,

these leave-one-out methods are still at risk of high similarity between train and test sets. To tackle this,

Xiang and colleagues (Xiang et al., 2021) split the samples into partitions based on the hamming distance

of the 30 mer extended sequences to keep the samples sharing high similarity in one partition, followed

by cross-validation on these partitions.

In summary, choosing a suitable and practical metric for evaluation steers the model to a better

performance on unseen data, and correctly splitting the data into train and test sets ensures precise

assessment.

1.5.5 Automated machine learning (AutoML) technique

AutoML automates the model development by converting every step from raw data to the final

model into an optimization problem (Waring et al., 2020). It is dedicated to developing a ready-to-use

predictive model while reducing the dependency on knowledge of machine learning. Compared to a

laborious search for an optimal model in combinations of methods in each step (such as feature

preprocessing, model selection, etc.), one can save tremendous time by focusing on the best-performing

models from autoML. Available autoML frameworks (Thornton et al., 2013; Feurer et al., 2015; Olson &

Moore, 2016; Ledell & Poirier, 2020) however only include partial essential steps in the automation, such
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as preprocessing, model selection, and hyperparameter tuning. Among these frameworks, I will focus on

auto-sklearn here, given that it won the first (Feurer et al., 2015) and second (Feurer et al., 2020)

international AutoML challenge.

Auto-sklearn combines algorithm selection and hyperparameter optimization problems with

Bayesian optimization, ensemble construction, and meta-learning. Bayesian optimization is used to select

and optimize the algorithm, similar to solely hyperparameter tuning. Auto-sklearn includes

configurations, which include 14 preprocessors, 15 estimators (classifiers or regressors), and over 150

hyperparameters, in the search space and constructs a probabilistic model to map the configurations to

their performance. For each well-performed configuration, auto-sklearn creates a pipeline and evaluates it

with a predefined metric from the user, such as MSE for regression models. In ensemble construction,

pipelines are added to an ensemble with weight based on the performance of the pipeline. Combining the

predictions from different pipelines in the ensemble can further minimize the prediction errors.

Meta-learning (Vanschoren, 2018) is a means to leverage the knowledge of the existing datasets and their

optimized configurations to speed up the learning process. Considering the limitation in time and

computational resources, meta-learning was implemented in auto-sklearn to prioritize the configurations

from existing datasets that are similar to the training data as a warm-start for Bayesian optimization. The

similarity was calculated based on the distance of 38 meta-features learned from over 100 datasets. The

meta-features include, for example, the number of samples, the number of features, and the distribution of

feature values. Auto-sklearn is built around the most popular machine learning package scikit-learn

(Pedregosa et al., 2011) and offers great flexibility. One can include only certain steps or model types for

optimization within specific execution durations. More than one metric can be recorded, allowing

exploration in suboptimal configurations. Further, the tool continues to be improved, and the second

generation of auto-sklearn with faster speed and better performance on limited computational resources is

already available for classification problems.

AutoML arises as an alternative approach to effectively develop machine learning models with

less labor and likely better performance. However, more attention should be drawn to its implementation

in the analysis of CRISPR-Cas systems considering the need for continuous model optimization for

emerging CRISPR-Cas techniques.

1.5.6 Model interpretability

A machine learning model is more than a predictive tool to accept or refuse candidates.

Interpretation of the model can unlock the machine learning black box and retrieve the predictive features

that contribute to the model prediction (Lipton, 2018; Molnar, 2022). As mentioned in section 1.5.2,

model interpretation advises an optimal feature set for better performance and higher training efficiency.
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Whether to make high stakes decisions based on model interpretation is debatable (Rudin, 2019). It is

clear that the interpretation of gRNA efficiency prediction models is less likely to involve high-stakes

decisions and potentiates a deeper understanding of the CRISPR-Cas mechanisms. Commonly, design

rule extraction, based on model interpretation, is dependent on the performance of the efficiency

prediction tool, given that only a well-performing model is assumed to be built on correctly recognized

patterns in the data. This dependence again underlines the importance of model performance evaluation.

Aside from the dependence on model performance, the interpretability varies across model types.

For linear regression models, such as LASSO and elastic-net models, the higher absolute values of

weights of each feature, also known as coefficients, can indicate the higher importance of features. And

the sign of the coefficients, positive or negative, indicates how the feature impacts the prediction. In a

previous study, the sign of the coefficients was used to determine whether a feature was concordant across

models (H. Xu et al., 2015). But the direct interpretation of coefficients requires mean-centered numeric

features and properly coded categorical features, otherwise, the difference in the scales of feature values

confounds the comparability. For tree-based models, one can measure how many splits across all trees

depend on each feature. The higher count leads to higher Gini importance, suggesting the higher

importance of the feature (Doench et al., 2016). Gini importance is also the most common method to

interpret a tree-based model.

Beyond these model-derived characteristics to explain the feature importance, model-agnostic

methods (Molnar et al., 2022) spare more flexibility, not limited by model types. Model-agnostic methods

can also provide a description of the average behavior of the model, such as the average contribution of a

feature in all predictions, and an explanation of individual prediction, such as how the prediction is

derived for a sample. One example is SHAP (SHapley Additive exPlanations) values (Lundberg & Lee,

2017), which is a game theory-derived optimal Shapley value. In game theory, the contribution of each

player can be measured by their presence or absence in a game. When adopted to interpret a model, the

feature is the player, and when the feature value is known it is present. TreeSHAP (Lundberg et al., 2020)

was developed for tree-based models. Xiang and colleagues (Xiang et al., 2021) built a gradient-boosting

regression model and used SHAP to analyze the feature importance, even though the proposed predictive

tool was a CNN-based model. By treating the pixels in the images as a group, which is similar to a feature

in supervised models, the application of SHAP extends to deep learning models. Wang and colleagues (D.

Wang et al., 2019) incorporated DeepSHAP, a function in the shap package (Lundberg & Lee, 2017)

specific for deep learning models, to interpret the position-specific nucleotide contributions in guide

efficiency prediction and exploited the sum of SHAP values to understand the effects of repetitive

nucleotides. For deep learning models, besides SHAP, saliency maps, also known as pixel attribution,

were applied to highlight the pixels that support a certain image class. By treating four bases as channels
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in pixels, Chuai and colleagues (Chuai et al., 2018) managed to adopt the saliency map for CNN model

interpretation.

Aside from facilitating model optimization, model interpretability enhances our confidence to

make decisions on the model predictions, enabling the use of machine learning techniques to their full

potential.

Together, applying machine learning gradually became the regular practice in predicting on-target

efficiency. Previous models presented the diversity and complexity of the model development, albeit

focusing mostly on the CRISPR-Cas9 system in eukaryotes. The field of machine learning is continuously

growing, and novel methods, such as autoML, lead to a promising future of effective model optimization

for CRISPR-Cas9 and other CRISPR-Cas systems and techniques.

1.6 Aim of study

The past ten years experienced an explosion of CRISPR-related studies. The continuous

discovery of CRISPR-Cas systems inspires the active development of CRISPR-based tools, which

revolutionized research in many fields, such as cancer and infectious disease. The application of

CRISPR-based tools in bacteria started more slowly than in eukaryotic systems but CRISPRi quickly

attracted attention in functional interrogation and synthetic gene circuit design. Efficient transcriptional

regulation through CRISPRi however demands rational gRNA design, for which effective on-target

efficiency prediction tools are of significance, especially considering that thousands of gRNAs are

routinely employed in large-scale screens. Unfortunately, despite dozens of tools available for gRNA

on-target efficiency prediction, the majority have been developed for the CRISPR-Cas9 system in

eukaryotes and their lack of robustness has been reported (Haeussler et al., 2016). To date, only one

LASSO model (Calvo-Villamañán et al., 2020) has been devised for CRISPRi guide design in bacteria

while another model Mismatch-CRISPRi (Hawkins et al., 2020) focused on predicting titratable gene

expression from mismatch-harboring gRNAs instead of selecting efficient gRNAs. Efficiency prediction

tools for other CRISPR-Cas systems in bacteria are also under-investigated. Therefore, more work needs

to address the need for effective guide design in bacteria for CRISPRi and other CRISPR-Cas systems or

techniques.

The work in this thesis can be divided into two parts. In the first part, I describe a machine

learning approach exploiting multiple CRISPRi genome-wide essentiality screens for CRISPRi guide

efficiency prediction in bacteria. The aim is to improve the predictive accuracy of the machine learning

model by leveraging the advantages of autoML, data integration, and model interpretability. As the model

interpretation suggested dominant effects of gene-specific features, I subsequently made further attempts
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to segregate the gene and guide effects to build a more reliable model. In the second part, I describe the

applications of the machine learning approach developed in the first part in the analysis of three distinct

CRISPR-Cas genome-wide screens to probe the robustness and applicability of the approach across

CRISPR-Cas systems and bacteria. The analysis of these screens also aims at understanding the

mechanism of CRISPR-Cas systems, extracting design rules, and improving the CRISPR-based tools.
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2. Methods
All codes necessary to reproduce these results in the thesis are available at:

https://github.com/yanyyyy3/PhD_thesis.

2.1 Methods for Result section 3.1

2.1.1 Training datasets

I collected the data from three previous CRISPRi genome-wide essentiality screens in

Escherichia coli (E. coli) K12 MG1655 (Cui et al., 2018; Rousset et al., 2018; T. Wang et al., 2018). The

sequence, targeted gene, gene position, and fitness effect of each gRNA were retrieved from the

supplementary information of each study. Gene sequences and positions were updated to be consistent

with the latest reference genome version (NCBI: NC_000913.3). I discarded gRNAs from the Wang data

set previously removed as having insufficient read counts (T. Wang et al., 2018) or sequences from the

Rousset and Cui datasets that differed from the reference sequence due to differences in the genome

versions. 8099 gRNAs targeting the coding-strand within the coding regions of essential genes were

extracted in total from all three datasets. I removed genes with less than 5 gRNAs in each dataset to

stabilize estimates of median gRNA activity scores, resulting in 7400 gRNAs in total. This included 1618

gRNAs targeting 171 genes in E75 Rousset/E18 Cui and 4164 targeting 300 genes in Wang.

2.1.2 Feature engineering

A Python script (feature_engineering.py on GitHub) was used to compute 137 sequence,

thermodynamic, genomic, and transcriptomic features (Table S1). 30 mer extended sequence, 4 bp

upstream of gRNA to 3 bp downstream of PAM, were one-hot encoded to 120 (30 × 4) features.

Thermodynamic features including minimum free energy for different interactions (the hybridization of

gRNA and target DNA, the hybridization of the seed region of gRNA and target DNA, the homodimer of

gRNA, and the monomer of gRNA) were computed using the ViennaRNA Package (Lorenz et al., 2011):

RNAduplex (version 2.4.12) for RNA:RNA hybrids; RNAduplex (version 2.1.9h) for DNA:RNA hybrids

(Lorenz et al., 2012); RNAfold (version 2.4.12) for single RNA folding. The seed region was defined as

the 8 nt PAM-proximal region in the gRNA. The CRISPRoff score (deltaGB) was calculated using the

energy function in the CRISPRoff pipeline v1.1.2 (Alkan et al., 2018) with ViennaRNA Package version

2.2.5 (deltaGB_calculation.py on GitHub). Homopolymer was defined as the number of consecutive

nucleotides in gRNA sequences. Genomic features including gene and operon organizations were based

on the reference genome, essential genes as determined in the Keio collection (Baba et al., 2006), and
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transcriptional unit definitions from RegulonDB (Tierrafría et al., 2022). Transcriptomic data including

gene expression levels across growth at ten different ODs were obtained from a previous study (Conway

et al., 2014). Minimal or maximal expression levels were calculated across the range of ODs until the

growth phase when cells were collected in each CRISPRi screen: OD 1.4 for the Wang dataset, and all

ODs for the Rousset and Cui datasets. The codon adaptation index (CAI) for each gene was calculated

using CAIcal (http://genomes.urv.es/CAIcal/) (Puigbò et al., 2008). The resulting feature sets are available

on GitHub.

2.1.3 Cross-validation for machine learning methods

Paired-wise hamming distance of 5602 unique 30 mer sequences was calculated with hamming

function from SciPy (version 1.10.0) (Virtanen et al., 2020). The median hamming distance is 21 while

the minimum is 6.

To evaluate the models for depletion prediction, training and test sets were split guide-wise based

on unique gRNA sequences. 10-fold cross-validation was used to evaluate model performance. 10 test

sets, with the number of samples ranging from 786 to 855 targeting 245 to 258 genes, were kept identical

regardless of training data. The minimum hamming distance between the train and test sets in each

iteration or among test sets was 6. For each iteration, the Spearman correlation between measured

depletion values and predicted values for all test samples was calculated.

To evaluate the models for gene-effect segregation (mix-effect random forest (MERF) and

median subtracting (MS) models), training and test sets were split gene-wise based on gene identifier.

10-fold cross-validation was used to evaluate model performance. 10 test sets, with the number of

samples ranging from 624 to 855 targeting 30 or 31 genes, were kept identical regardless of training data.

The minimum hamming distance between the train and test sets in each iteration or among test sets was 7.

For each iteration, the Spearman correlation between measured depletion values and predicted values for

each held-out gene was calculated. For MERF, the predicted values were from the fixed-effect model.

The gRNAs used in each train-test split are described in Table S2.

2.1.4 Predictive models for depletion prediction

The automated machine learning toolkits auto-sklearn (version 0.15.0) (Feurer et al., 2015) and

H2O (version 3.38.0.4) (Ledell & Poirier, 2020) were used to develop optimized machine learning

regression models. For auto-sklearn, the AutoSklearnRegressor function was used and all possible

estimators were included. The following parameters were used: “time_left_for_this_task” = 3600,

“per_run_time_limit” = 360, “resampling_strategy” = ‘cv’, ensemble_kwargs = {"ensemble_size": 1},

“resampling_strategy_arguments” = {“fold”: 10}, “metric” = autosklearn.metrics.mean_squared_error,
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include = {'feature_preprocessor' : ["no_preprocessing"]}. To optimize hyperparameters for the random

forest model, "regressor":["random_forest"] was added to the dictionary for parameter include. Feature

types for each feature were listed in Table S1. The selected models were saved and used with scikit-learn

(version 0.24.0) for downstream analysis. For H2O, the “StackedEnsemble” algorithm was excluded and

parameters “max_runtime_secs = 0” and “seed = 1” were used. If not otherwise specified, parameters

were left as default.

Simple linear regression, LASSO, elastic net, SVR, random forest, and histogram-based gradient

boosting models were trained using scikit-learn.

2.1.5 Segregation of guide and gene effects with MERF and MS models

MERF models were trained using package merf (version 1.0) (Hajjem et al., 2014).

Hyperparameters for the final fixed-effect random forest model were optimized using hyperopt (version

0.2.5) (Bergstra et al., 2013). Search space included: ‘bootstrap’ either True or False, ‘n_estimators’ from

range 50 to 1000 with a step of 10, ‘max_features’ from range 0 to 1, ‘max_depth’ from range 2 to 30

with a step of 1, ‘min_samples_leaf’ from range 1 to 20 with a step of 1, ‘min_samples_split’ from range

2 to 20 with a step of 1. The objective function was the highest median gene-wise Spearman correlation of

a 5-fold cross-validation split on the target gene (for more details, see MERF_crispri.py on GitHub). 128

guide-specific features were assigned as fixed effects, while 9 gene-specific features were assigned as

random effects. The random effect matrix was standardized with the default StandardScaler function from

scikit-learn. 301 unique gene IDs were used as cluster IDs. To train simplified models excluding

transcriptomic measurements (Figure S1.8E), CAI value, gene length, gene GC content, and dataset were

included for the random-effect model.

For MS models, logFC values were scaled to integrate the datasets, as an adaptation of a

previously applied data fusion method (Xiang et al., 2021). First, the mean of logFCs of E75 Rousset and

E18 Cui were calculated and used as the scaled logFC (Figure S1.4B-D). Then linear regression was

performed between the logFCs in Wang and scaled logFCs in E75 Rousset for 378 overlapping gRNAs.

All of the logFCs from Wang were then scaled by the fitted slope and intercept (Figure S1.4B). The 378

overlapping gRNAs in Wang were excluded in the subsequent training for MS models. Activity scores

were calculated by subtracting the scaled logFC of each gRNA from the median scaled logFC for each

gene across all 3 datasets (Figure S1.4A).

MS models were trained with guide-specific features to predict activity scores for each gRNA

(Figure S1.4A). The hyperparameters of the MS random forest model were the same as for MERF, while

those of the LASSO model were optimized using hyperopt with a search space for alpha ranging from 0

to 0.1 and 100 trials. Deep learning models were trained using pytorch (version 1.8.1) (Paszke et al.,
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2019) and pytorch-lightning (version 1.5.10). For our custom 1D CNN model, sequence features were

processed using 1D convolutional layers and later concatenated with other guide features (Figure S1.5).

Concatenated features were further processed with fully connected layers. Three 1D convolutional layers

were implemented sequentially with input channels 4, 64, and 64, output channels 64, 64, and 32, kernel

size 5, 3, and 1, and stride 2, 2, and 1 respectively. For fully connected layers, output dimensions are 128,

64, 32, and 1 (which is predicted gRNA efficiency). The first three fully connected layers are

accompanied by batch normalization (Ioffe & Szegedy, 2015), ReLU, and dropout (Srivastava et al.,

2014) (p=0.5). I trained the model using AdamW (Loshchilov & Hutter, 2017) optimizer with learning

rate of 0.001 and batch size of 32. For CRISPRon, CGx was implemented with eight non-sequential guide

features (distance features, thermodynamic features, etc.) concatenated to processed sequential features.

To test the effect of incorporating the deltaGB score (Alkan et al. 2018), the four thermodynamic features

were replaced with deltaGB, resulting in concatenating five non-sequential guide features to the processed

sequential features. I trained the model using the Adam optimizer (Kingma & Ba, 2014) with a learning

rate of 0.001 and batch size of 32. I additionally tested a learning rate of 0.0001 and batch size of 500 as

used in the original CRISPRon implementation (Xiang et al. 2021), but saw only minor differences in

performance.

The trained fixed-effect models from MERF were used to predict gRNA efficiency (i.e. in

cross-validation and validation with independent data), while the trained MS models were directly used,

requiring only features associated with the guide sequence.

2.1.6 Model interpretation

Tree-based models, including depletion prediction models, the fixed-effect models from MERF,

and the MS random forest model, were interpreted using TreeExplainer from the python shap package

(version 0.39.0) (Lundberg et al., 2020).

SHAP values were calculated using the ‘shap_values’ function in TreeExplainer with 80% of the

samples for depletion prediction models and all samples for the rest. SHAP value plots were generated

with the ‘summary_plot’ function in shap.

SHAP interaction values were calculated using the ‘shap_interaction_values’ function in

TreeExplainer with 1000 guides. Absolute SHAP interaction values were averaged over 1000 samples.

The rank of interaction was obtained based on the sorted mean absolute SHAP interaction values across

all unique feature pairs. To compare interaction effects to expectations based on single-feature SHAP

values, four feature combinations were considered: both absent (-/-), only the first feature present (+/-),

only the second feature present (-/+), and both present (+/+). For the top 5,000 interacting feature pairs,

the SHAP values for each feature in samples with each combination of features were extracted. For each
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feature pair (F1 and F2), the expected value for +/+ was calculated as the sum of the median F1 SHAP

values for +/- samples with the median of F2 SHAP values for -/+ samples, while the expected value for

-/- was calculated as the sum of the median F1 SHAP values for -/+ samples and the median of F2 SHAP

values for +/- samples.

2.1.7 Strains and growth conditions

All strains, plasmids, and primers are listed in Supplementary Table S15, S16, and S17. E. coli

cells were grown in Lysogeny Broth (LB) (10 g/L NaCl, 5 g/L yeast extract, 10 g/L tryptone) at 37 °C

with shaking at 250 rpm. To maintain plasmids, the antibiotics ampicillin, chloramphenicol, and/or

kanamycin were added at 50 µg/mL, 34 µg/mL, and 50 µg/mL, respectively as necessary. For screening

experiments, E. coli MG1655 was grown in M9 minimal medium (1x M9 salts, 1 mM thiamine

hydrochloride, 0.4% glucose, 0.2% casamino acids, 2 mM MgSO4, 0.1 mM CaCl2) supplemented with

the appropriate antibiotics.

2.1.8 Validation of GFP silencing by flow cytometry

To investigate gene repression efficiency, 19 sgRNAs were selected to target the coding strand of

a degfp reporter gene at different positions in E. coli BL21(DE3) (Table S15). Cells were initially

transformed with three compatible plasmids encoding dCas9, a degfp-targeting sgRNA, and a deGFP

reporter (Table S17). For normalization purposes, a positive control strain harboring a non-targeting

sgRNA and a negative control strain lacking the degfp encoding reporter plasmid was included. Overnight

cultures of cells harboring the above-mentioned plasmids were back-diluted to optical density OD600

~0.01 in LB medium with ampicillin, chloramphenicol and/or kanamycin and incubated with shaking at

250 rpm at 37 °C, until reaching an OD600 of 1. Cultures were then diluted 1:25 in 1x phosphate-buffered

saline (PBS) and analyzed on an Accuri C6 flow cytometer with C6 sampler plate loader (Becton

Dickinson) equipped with CFlow plate sampler, a 488-nm laser, and a 530+/− 15-nm bandpass filter.

Forward scatter (cutoff of 11,500) and side scatter (cutoff of 600) were used to eliminate non-cellular

events. The mean green fluorescence value (measured by the FL1-H channel) across 30,000 events within

a gate set for E. coli was used for further analysis. The log fold repression of each gRNA was calculated

as the ratio between the difference in fluorescence values between the gRNA and negative control, and

the difference between the positive and the negative control, followed by log transformation. The mean

log fold repression across three replicates was compared to predicted values from the machine learning

models (Table S10 and S12).

For experiments with Salmonella Typhimurium, the procedure was similar, but cells were grown

until an OD600 of ~0.8 before analysis on an Accuri C6 flow cytometer. To eliminate non-cellular events,
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the forward scatter (cutoff of 10,000) was used and the mean green fluorescence value (FL1-H) across

30,000 events within a gate set for S. Typhimurium was used for data analysis as described above across

four replicates (Table S10 and S12).

2.1.9 Generation of the sgRNA library

9 genes (purA, purC, purD, purE, purF, purH, purK, purL, and purM) in purine biosynthesis

pathway in E. coli MG1655 (NCBI: NC_000913.3) were selected for the saturating screen in M9 minimal

medium. All possible 20 nt gRNAs with NGG PAM, GC content between 30% to 85%, and without BbsI

restriction enzyme cut site were included in the library, resulting in 750 gRNAs (Table S13). The

minimum and median hamming distance of 30 mer sequences between the 750 gRNAs and the training

data from three essentiality screens were 7 and 21. To include 50 randomized non-targeting gRNAs as the

negative control, sequences were firstly randomly generalized with the same length as the target gRNAs

in the library, followed by aligning to all possible NGG gRNAs in the target genome. Sequences with

more than 11 bp matches were removed. After filtering with 5 consecutive nucleotides and BbsI

restriction sites, 50 of the remaining sequences were included.

For the sgRNA library, plasmid DC512 served as a backbone, following a previously established

protocol (Liao, Slotkowski, et al., 2019). To generate a library with 800 sgRNAs (including 50

non-targeting sgRNAs; Table S13), 800 forward and reverse oligonucleotides each encoding one spacer

and a 4-nt junction, were synthesized as an oPool (1,600 oligos at 10pmol/oligo) by Integrated Device

Technology (IDT). The same 5′ and 3′ assembly junction sequences were used for all spacer pairs leading

to the same integration site within the backbone (5′ TAGT overhang at the 5′ end and a 3′ AAAC

overhang at the 3′ end). Supplementary Table S17 contains the specific oligonucleotides and assembly

junctions used for the library generation. The oligos were phosphorylated and annealed to form dsDNA

with a 5′ and 3′ overhang. The steps of phosphorylation and annealing were combined and conducted in

one pot, by adding 8,000 fmol of the oPool and 1 µl T4 polynucleotide kinase (10 units) to 5 µl 10 × T4

ligation buffer and then, adding water until reaching a final volume of 50 µl. After mixing briefly by

pipetting the mix was incubated at 37°C for 30 minutes in a thermocycler and then incubated at 65°C for

20 minutes in a thermocycler to heat-inactivate the kinase. For the annealing of the forward and reverse

oligo pairs, the following thermocycler steps were added: 95°C for 5 min, 94°C for 15 s, decrease by

1°C, and hold for 30 seconds for 79 cycles. For integrating the dsDNA inserts into DC512, 400 fmol of

the dsDNA, 20 fmol of backbone plasmid, 0.5 µL of T4 ligase (1,000 units), and 1.5 µL of BbsI (15 units)

were added to 2 µL of 10x T4 ligation buffer, then water was added to reach a total volume of 20 µl. A

thermocycler was used to perform 35 cycles of digestion and ligation (37 °C for 2 min, 16 °C for 5 min)

followed by a final digestion step (60 °C for 10 min) and a heat inactivation step (80 °C for 10 min). After
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NdeI digestion (37°C, 1h) of the ligation mix to remove any remaining original backbone plasmids and

subsequent ethanol precipitation, 10 µl of the ligation mix was transformed into electrocompetent E. coli

NEB10 beta (NEB, Ipswich, MA, USA), following the manufacturer’s instructions. After transformation

and recovery in 1 ml SOC for 1 h at 37 °C with shaking at 250 rpm, different dilutions of the recovered

cells were plated on LB agar containing the appropriate antibiotic and incubated for 16 h to check the

number and color of the resulting colonies (ensuring a ~58X coverage). The rest of the recovered culture

was added to 100 mL LB media containing the appropriate antibiotic and incubated at 37 °C with shaking

at 250 rpm to OD600 ≈ 1. Cells were harvested by centrifugation and subjected to plasmid extraction.

Sanger sequencing was used to validate the library plasmid DNA.

2.1.10 Screening experiment

E. coli strain MG1655 was initially transformed with a dCas9 encoding plasmid (2.0 kV, 200

Omega, and 25 μF). The resulting strain SG332 was then transformed with the sgRNA library by

electroporation and recovered in 900 µl SOC for 1.5h at 37 °C with shaking at 250 rpm. Different

dilutions of the recovered cells were plated on LB agar containing the appropriate antibiotics and

incubated for 16 h to check the number of the resulting colonies (~565 colonies). The recovered culture

was back-diluted to OD600 0.01 in LB medium with appropriate antibiotics and incubated at 37 °C with

shaking for 13 hours. Subsequently, 5 mL of the culture was sampled and the library was extracted by

miniprep (Nucleospin Plasmid, Macherey-Nagel) to obtain the initial sgRNA distribution. The calculated

amount of culture to reach OD600 0.01 in 50 ml M9 minimal medium, was sampled and washed twice with

M9 minimal medium to remove traces of the LB medium. The culture was incubated at 37°C with

shaking until it reached OD600 1, allowing ~6 replications. 5 ml of the culture was sampled at OD600 0.2,

OD600 0.6, and at OD600 1, and the library was extracted by miniprep. The experiment was performed in

duplicate starting from two independent transformations of MG1655 with the plasmid library.

2.1.11 Library sequencing

The sequencing library was generated using the KAPA HiFi HotStart Library Amplification Kit

for Illumina® platforms (Roche) and the primers listed in Supplementary Table S17. The first PCR adds

the first index. The second PCR adds the second index and flow cell-binding sequence. The amplicons of

the first and second PCR reactions were purified using solid-phase reversible immobilization beads

(AMPure XP, Beckman Coulter) following the manufacturer’s instructions to remove excess primers and

possible primer dimers. The sequencing library samples, with the required DNA concentrations ranging

from 100 pg - 200 ng in a total volume of 10 µL, were submitted to the HZI NGS sequencing facility
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(Braunschweig, Germany) for paired-end 2 × 50 bp deep sequencing with 800,000 reads per sample on a

NovaSeq 6000 sequencer.

The resulting raw sequencing data have been deposited in GEO under accession ​​GSE196911.

2.1.12 Sequencing data processing

Paired-end reads were merged using BBMerge (version 38.69) (Bushnell et al., 2017) with

parameters “qtrim2=t, ecco, trimq=20, -Xmx1g”. Merged reads with perfect matches were assigned to the

gRNA library using a Python script. After filtering guides for at least 1 count per million in at least 4

samples, read counts of each gRNA were normalized by factors derived from non-targeting guides using

the trimmed mean of m-values method in edgeR (version 3.28.0) (Robinson et al., 2009). An extra

column was added to the design matrix to capture batch effects between the two replicate experiments.

Differential abundance (log fold change, logFC) of gRNAs between time points and the input library was

estimated using edgeR, and a quasi-likelihood F test was used to test for significance after fitting in a

generalized linear model. Spearman correlation between the logFC and the predicted score was calculated

for each of the nine genes in the purine biosynthesis pathway. For positive predictive value calculation,

gRNAs with fold change values within N folds of the maximum fold change value in each gene were

classified as positive, while the best 5 predicted gRNAs were defined as predicted positive. The positive

predictive values were calculated with TP/(TP+FP) for all gRNAs at each time point for each fold (N=1.5

- 5 with a step of 0.5, TP = True positive, FP = False positive).

2.1.13 Score functions from previous studies

Adapted Python scripts (gRNADesigner.py and DeepSpCas9.py on GitHub) from the source

codes of gRNA Designer (Doench et al., 2016) and DeepSpCas9 (Kim et al. 2019) were used to calculate

the predicted scores. The source code of TUSCAN (https://github.com/BauerLab/TUSCAN) (Wilson et

al., 2018) was directly used. For SSC (H. Xu et al., 2015), I used the web-based application at

http://crispr.dfci.harvard.edu/SSC/ with option CRISPR inhibition or activation and 20nt gRNA length.

For the Pasteur model (Calvo-Villamañán et al., 2020), the trained LASSO model was saved from the

adapted Python script (Pasteur_model.py on GitHub) based on the jupyter notebook on their GitLab

(https://gitlab.pasteur.fr/dbikard/ecowg1).
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2.2 Methods for Result section 3.2.1

2.2.1 Base-editing in E. coli with ScBE3

The rAPOBEC1 deaminase was joined to the n-terminus of Streptococcus canis (ScCas9) D10A

by a 16AA linker. This construct, SPC914, was co-transformed by electroporation into E. coli MG1655

alongside a constitutively expressed guide RNA targeted to a codon which could produce a stop codon or

disrupt a start codon. The targets were flanked by the minimal NNG PAM required by ScCas9. These

transformants were plated on LB with glucose and the appropriate antibiotics. Colonies were picked and

inoculated into 2mL of LB media shaking at 37°C and 250 rpm overnight with the appropriate antibiotics.

The next day, cultures were diluted 1:500 into LB supplemented with antibiotics and 1mM IPTG, and

0.2% L-arabinose for induction of the base editor, and cultured for 8h. An aliquot of these cultures was

plated for analysis, and another aliquot was diluted 1:500 for 16h of further induction and culturing before

plating. Base editing frequency was measured by the fraction of colonies having a white or blue color on

X-gal indicator plates, and/or sanger sequencing.

2.2.2 Library design

After taking over this project from Bozena Mika-Gospodorz, I further optimized an in-house

Python script for library design. The reference genome and annotation of E. coli K12 MG1655 (NCBI:

NC_000913.3) were used for gRNA library design. For the essentiality screen, I first located the targeting

codons-start codon ATG, TGG, CAA, CAG, and CGA-in the first half of the coding region and searched

for NNG PAM given the defined activity window from the position 5 to 8 from the 5’ end of 20nt gRNA.

gRNAs (with flanking primer sequences) containing longer than 4 consecutive nucleotides or BsmBI

restriction sites were removed. For genes with more than 15 gRNAs, a maximum of 15 gRNAs per gene

was included. Consequently, excessive gRNAs were filtered step by step based on off-targets and GC

contents until no more than 15 gRNAs per gene were included. In the first 4 steps, gRNAs with off-targets

harboring 0 to 3 mismatches were removed. In the last step, gRNAs with GC content outside of the range

of 30 to 85 were removed. If all gRNAs were removed in one step, the first 15 gRNAs based on the target

position in the coding sequence from the previous step were kept. It resulted in a library with 37,762

gRNAs, including 37,362 targeting guides covering 4,086 genes and 400 randomized non-targeting

guides. Potential off-targets were evaluated using SeqMap (H. Jiang & Wong, 2008)(version 1.0.12).

For randomized non-targeting gRNAs, sequences were firstly randomly generalized with the

same length as the target gRNAs in the library, followed by aligning them to the target genome.

Sequences with more than 11 bp matches were removed. After filtering with 5 consecutive nucleotides

and BsmBI restriction sites, 400 of the remaining sequences were included.
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2.2.3 Guide library cloning and verification

The library of guides was assembled by golden-gate BsmBI assembly. After assembly, the library

was transformed into E. coli to confirm >50-fold library coverage. The library was also transformed by 12

separate electroporation reactions, recovered for 1 hour in 50 mL of LB media, and then supplemented

with ampicillin to select for library transformants. This 50 mL culture was grown until the early stationary

phase, shaking at 37 °C and 250 rpm. The 50 mL cultured was then maxi-prepped.

2.2.4 Guide library screen

The base editor ScBE3 (SPC914) was transformed into E. coli MG1655, followed by

electroporation of 1 µg of library DNA to produce the library with the base editor. To screen for gene

essentiality, induction of base editing and selection of non-essential genes occurred in tandem. All

culturing occurred shaking at 37 °C and 250 rpm, in LB media with antibiotics, 1 mM IPTG, and 0.2%

L-arabinose. The dilution and culturing series were as follows: 1:100 with 4h culturing, 1:100 with 4h

culturing, and 1:500 with 16h culturing. Cultures were sampled and plasmids were isolated for

sequencing.

2.2.5 Library sequencing

Sequencing libraries were prepared by amplifying the guide RNA sequence with primers and

adding the Illumina sequence adaptors. Five forward primers were used, with the terminal end staggered

by one base pair so as to add to the sequencing library complexity. The resulting amplicons were then

further amplified to add Illumina indices for sample identification. Sequencing was performed on an

Illumina NextSeq system, 400M 75bp single-ended reads.

2.2.6 Sequencing data processing

Sequence reads with perfect match were mapped to the gRNA library using an in-house Python

script. gRNAs were first filtered by 1 count per million in minimal 2 samples in the essentiality screen.

Read counts of each gRNA were normalized with non-targeting guides using the trimmed Mean of M

method in edgeR (version 3.28.0). RUVs in RUVSeq (version 1.20.0) (Risso et al., 2014) was used to

capture batch effects between the two replicate experiments. Differential abundance (log2FC) of gRNAs

between time points was calculated using the quasi-likelihood F test after fitting in a generalized linear

model.
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2.2.7 Applying Machine learning

The machine learning model was developed with 556 sequence features and 2813 gRNAs

targeting 307 essential genes using auto-sklearn (version 0.14.6). Sequence features include one-hot

encoded 20 nt gRNA and 3 nt PAM, and dinucleotide features of the 30 mer extended sequences from 4 nt

upstream of gRNA to 3 nt downstream of PAM (23×4+29×16). An essential gene list in the LB Lennox

medium was obtained from EcoCyc (Keseler et al., 2017). The logFC values between the last and initial

time points for ScBE3 were used as training targets. For auto-sklearn, the AutoSklearnRegressor function

was used and all possible estimators were included. The following parameters were used:

“time_left_for_this_task” = 3600, “per_run_time_limit” = 360, “resampling_strategy” = ‘cv’,

ensemble_kwargs = {"ensemble_size": 1}, “resampling_strategy_arguments” = {“fold”: 5}, “metric” =

autosklearn.metrics.r2, include = {'feature_preprocessor' : ["no_preprocessing"]}. Feature types are all

categorical. The selected histogram-based gradient boosting model was saved and used with scikit-learn

(version 0.24.2) for downstream analysis. 10-fold cross-validation was used to evaluate model

performance. The training and test sets were split guide-wise based on unique gRNA sequences. For each

iteration in 10-fold cross-validation, the Spearman correlation between logFC values and predicted values

for all test samples was calculated. The histogram-based gradient boosting model was interpreted using

the ‘shap_values’ function in TreeSHAP (version 0.39.0) and all samples.

2.3 Methods for Result section 3.2.2

2.3.1 Library design and validation

The reference genome and annotation of E. coli K12 MG1655 (NCBI: NC_000913.3) were used

for crRNA library design. First, all potential 32 nt guides were designed for protein-coding genes (limited

to the coding sequence) and rRNAs with non-GU PFS and GC content between 40% and 60%, resulting

in an average of 484 guides per gene. To reduce the size of the library, and considering the unknown

effect of the targeting location within a gene on guide efficiency, each gene was divided into a maximum

of 10 sections with equal length. Within each section, guides were filtered based on the strength of the

local secondary structure, defined as ∆G, in both repeat-crRNA sequence and the mRNA targeting region

(including a region of 2 times the length of gRNA before and after the target). ∆G was calculated as the

energy difference between the unconstrained minimum free energy (MFE) structure and the constrained

MFE structure with no base pairs, estimated using RNAfold from the Vienna RNA Package (version

2.4.12). Sequences (either guide or flanking primer sequences) containing BsmBI restriction sites or

homopolymer stretches of more than four consecutive nucleotides were excluded to facilitate synthesis
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and cloning. The guide with the lowest secondary structure strength in each section was selected, resulting

in a library of 25,997 guides, including 25,470 guides targeting protein-coding genes, 127 guides targeting

rRNAs, and 400 randomized non-targeting guides. For randomized non-targeting gRNAs, sequences were

firstly randomly generalized with the same length as the target gRNAs in the library, followed by aligning

them to the target genome. Sequences with more than 12 bp matches were removed. After filtering with 5

consecutive nucleotides and BsmBI restriction sites, 400 of the remaining sequences were included. A

sequence containing a universal primer binding site and the BsmBI restriction site was added to the

guides to amplify the oligo library and digest it before ligating it into the backbone. The library was

synthesized by Twist Bioscience.

The base backbone pFT50 was slightly modified to insert the direct repeat before the GFP

dropout site to be able to limit the insertion size to the spacer itself. A BsmBI restriction site present in

pFT50 was also eliminated through Q5 mutagenesis.

2.3.2 Guide library cloning and verification

The library was amplified with Kapa Hifi polymerase (Roche Diagnostics, 7958935001) (20 ng

DNA) for 10 cycles following the manufacturer’s instructions (Ta = 64°C; 30 s denaturation, 20 s

annealing, 15 s extension) using primers SPCpr 349/350. 5 µL library (150 nM) and 5 µL of backbone

(50 nM) were mixed in 25 µL of total reaction volume. The mixture was subjected to 50 cycles of BsmBI

digestion (3 min at 42°C) and ligation (T4 ligase - 5 min at 16°C) with final digestion at 55°C for 60 min

to ensure complete removal of the backbone, followed by a 10-minute heat inactivation at 80°C. The

sample was then ethanol precipitated, and 5 µg was transformed into fresh electrocompetent Top10 cells

(90 µL). The transformation was conducted with two separate batches of electrocompetent cells to ensure

enough transformants were obtained. After recovering the two cultures in 500 µL of SOC medium (SOB

medium: 20 g Tryptone, 5 g Yeast Extract, 0.5 g NaCl, 800 mL dH2O, and 10 mL 250 mM KCl adjusted

to pH 7. To SOB medium added 5ml 2M MgCl2, 20 ml of 1 M Glucose) shaking at 37°C for 1 h, the

recovered cultures were back-diluted into 150 mL LB (10 g tryptone, 5 g yeast extract, and 10 g NaCl in

1 L of dH2O) with ampicillin (Amp, 100 μg/mL) and cultured with shaking at 37°C for 12 h. The next

day, plasmid DNA from the culture was isolated using the ZymoPURE II Maxiprep Kit (Zymo Research,

D4203) and further purified by ethanol precipitation.

2.3.3 Guide library screen

Two replicates of E. coli MG1655 cells with or without the nuclease plasmid were inoculated

overnight, then the next day the ABS600 was normalized and the cells back-diluted to ABS600 ≈ 0.1 in fresh

LB with or without chloramphenicol (Cm, 34 μg/mL). Once each culture reached ABS600 ≈ 0.8, cells were

52



made electrocompetent by washing twice with 10% glycerol and finally resuspended in 480 μL 10%

glycerol. For each sample, six separate transformations were conducted each with 1 μg of library DNA

(40 μL/transformation). Transformed cells were then recovered in 500 μL SOC medium for 1 h with

shaking at 37°C. The six reactions were combined to yield 3 mL of culture per condition. Serial dilutions

of this culture were made, and 100 μL of 1:10,000 dilutions were plated for the targeting and no-Cas13a

samples with the appropriate antibiotics (Cm and Amp, or Amp only), yielding a theoretical library

coverage of ~9,500. The remaining culture was diluted 1:100 in LB with Amp and Cm to ABS600 = 0.06

and cultured for 12 h with shaking at 37°C. Finally, the library was isolated with the ZymoPure II Plasmid

Midiprep Kit (Zymo Research, D4200).

2.3.4 Library sequencing

The guides sequences from the purified library DNA were amplified with Kapa Hifi polymerase

using primers oEV-315/316 (NT1), oEV-317/318 (NT2), oEV-319/320 (T1), oEV-321/322 (T2). 10 ng of

DNA were included in a 50-μL PCR reaction for 15 amplification cycles (15 s at 98°C, 30 s at 64°C, and

30 s extension). The amplification products were purified using AMPure beads (Beckman Coulter,

A63881) and further amplified with primers oEV-323/324 (NT1), oEV-325/326 (NT2), oEV-327/328

(T1), oEV-329/330 (T2) to add the appropriate indices and Illumina adaptors. For this reaction, the same

settings were used with the only difference being the amount of input DNA (25 ng) and the number of

cycles (10). The resulting amplification products were purified with AMPure beads and resolved on a gel

to verify the presence of the correct amplicon. The samples were submitted for Sanger sequencing and

Bioanalyzer 2100 analysis (Agilent Technologies) as a quality check. Finally, samples were submitted for

next-generation sequencing at the NextSeq 500 sequencer (Illumina) with a 150 bp paired-ends kit (130

million reads, Illumina, 20024905) to obtain 1,000-fold coverage. To increase the library diversity, 20%

of phiX phage was spiked-in.

To correlate transcript expression levels with guide depletion, we measured transcript levels in E.

coli MG1655 under conditions paralleling the library screen. Briefly, two replicates of cells containing the

plasmid cBAD33 (empty backbone for nuclease plasmid) were cultured overnight and then normalized to

ABS600 = 0.06 in LB with Cm and cultured to ABS600 ≈ 0.5 or ABS600 ≈ 0.8. At those growth points, cells

were pelleted and snap-frozen for RNA extraction with the Direct-zol RNA MiniPrep Plus kit. The

samples were also DNase-treated with TURBO DNase (Thermo Fisher Scientific, AM2239) and quality

verified using a 5200 Fragment Analyzer System (Agilent Technologies). Finally, rRNA was removed

with the Rybo-off rRNA depletion kit (Vazyme Biotech, N407-01), and the samples were prepared with

NEBNext® Ultra™ II Directional RNA Library Prep Kit (New England BioLabs) and sequenced on a

NovaSeq 6000 (Illumina) with 50-bp paired-end reads.
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The resulting NGS data were deposited in NCBI’s Gene Expression Omnibus and are accessible

through GEO Series accession number GSE179913 for the genome-wide screen

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179913) and GSE179914 for transcriptomic

analysis (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179914).

2.3.5 Sequencing data processing

After merging using BBMerge (version 38.69) with parameters ‘‘qtrim2=t, ecco, trimq=20,

-Xmx1g, mix=f’’, paired-end sequence reads with a perfect match were assigned to gRNA sequences.

After filtering guides for at least 1 count per million reads in at least 2 samples, the library sizes were

normalized using the read counts for non-targeting guides with the trimmed mean of M-values method in

edgeR (version 3.28.0). Differential abundance (logFC) of gRNAs between targeting samples and control

samples lacking the Cas13a nuclease was assessed using the edgeR quasi-likelihood F test after fitting a

generalized linear model. The translation initiation rate of each gene was predicted using the RBS

calculator (version 1.0) (Salis, 2011). For RNA seq analysis, sequencing reads were aligned to the E. coli

K12 MG1655 genome (NCBI: NC_000913.3) using STAR (Dobin et al., 2013) (version 2.7.4a) with

parameters ‘‘–alignIntronMax 1 –genomeSAindexNbases 10 –outSAMtype BAM SortedByCoordinate’’

and the count of reads mapping to each gene was obtained using HTSeq (Anders et al., 2015) (version

0.9.1) with parameters ‘‘-i locus_tag -r pos –stranded reverse –nonunique none -t gene’’, followed by

calculating transcripts per million (TPM).

2.3.6 Applying Machine learning

The machine learning regression model was developed with 144 features and the logFC values of

gRNAs from the genome-wide screen as targets using auto-sklearn (version 0.10.0) with all possible

estimators and preprocessors included and parameters ‘ensemble_size’: 1, ‘resampling_strategy’: ‘cv’,

‘resampling_strategy_arguments’: {‘folds’: 5}, ‘per_run_time_limit’: 360, and ‘time_left_for_this_task’:

3600. Features included gene expression level (log2 transformed TPM at ABS600 0.5), gene essentiality,

gene id, gene length, (percent) targeting position in gene, delta G of repeat-crRNA and mRNA targeting

region, and the one-hot-encoded PFS sequence and gRNA sequence. Gene essentiality information in the

LB Lennox medium was obtained from EcoCyc (Keseler et al., 2017). The optimal histogram-based

gradient boosting model was evaluated using 10-fold cross-validation and interpreted using test samples

and the ‘shap_values’ function in TreeSHAP (version 0.36.0). In order to further explore the contribution

of guide features to depletion, a MERF was applied to remove the effects of gene expression level, gene

length, and gene essentiality using a random-effect linear regression model, with guide features used to

predict the residual depletion using a fixed-effect random forest model. The contribution of the guide
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features to predictions of depletion by the fixed-effect random forest was investigated using the

‘shap_values’ function in TreeSHAP and test samples.

2.4 Methods for Result section 3.2.3

2.4.1 Library design and cloning

The library was designed to target a non-redundant collection of complete genomes of Klebsiella

pneumoniae. Guides matching at least 15 bp with the E. coli MG1655 genome were removed. A guide

RNA library containing 11,900 targeting and 100 non-targeting guides was constructed by Golden Gate

cloning and transformed into E. coli MG1655. At least 10,67 clones were recovered, pooled in 10 mL LB

(10 g tryptone, 5 g yeast extract, and 10 g NaCl in 1 L of dH2O), and stored as 1 mL aliquots in DMSO

10% at -80°C. The library was mini-prepped and electroporated into E. coli MFDpir, plated in LB with

kanamycin (Kan, 50 μg/mL) and incubated at 37°C, then pooled in 10 mL LB and stored as 1 mL aliquots

in DMSO 10% at -80°C.

2.4.2 Guide library screen

The plasmid library was delivered by conjugation to two K. pneumoniae receptor strains

(NTUH-K2044 and KPPR1). Briefly, 108 cells were used to inoculate 50 mL of LB with Kan and

diaminopimelic acid (DAP) 0.3 uM, and cultivated at 37°C and 190 rpm until they reached

late-exponential phase (OD600 ≈1), and 1:1 ratio of donor and receptor were mixed. The cells were plated

and collected after 4 hours incubation at 42°C in LB agar with Kan, then pooled in 10 mL LB and stored

as 1 mL aliquots in DMSO 10% at -80°C. To perform the assay, 1mL of cells from -80 °C was inoculated

in 100 mL LB with Kan and grown to an ABS600 of ~ 0.2 at 42°C. Then, 1 nM anhydrotetracycline (aTc)

was added and cells were recovered at time zero, after three hours and 16 hours.

2.4.3 Library sequencing

To measure the relative abundance of guide RNAs in each sample, two nested PCR reactions

were used to generate the sequencing library. The first set amplifies the sgRNA region, adding a variable

region next to the sequencing primer, that prevents the sequencing from starting all at the same position in

all the clusters and at the same time can be used as index. The second PCR adds the index and the flow

cells attachment sequences. Sequencing is then performed with Illumina sequencing primers using a

NextSeq 500 benchtop sequencer.
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2.4.4 Sequencing data processing

After filtering guides for at least 1 count per million reads in at least 2 samples from the count

table of gRNAs, the library sizes were normalized using the read counts for non-targeting guides with the

trimmed mean of M-values method in edgeR (version 3.38.1). Differential abundance (logFC) of gRNAs

between different time points (3h - 0h and overnight - 0h) was assessed using the edgeR quasi-likelihood

F test after fitting a generalized linear model.

2.4.5 Applying Machine learning

The machine learning regression model was developed with 738 features as predictors and the

logFC values between overnight and 0 hours of gRNAs from the genome-wide screens in individual or

both strains as targets using auto-sklearn (version 0.14.6) with all possible estimators included, all feature

preprocessors excluded and parameters 'ensemble_size': 1, 'resampling_strategy': 'cv',

'resampling_strategy_arguments': {'folds': 10}, 'per_run_time_limit': 360, and 'time_left_for_this_task':

3600. Features included dataset, gRNA GC content, three thermodynamic features (delta G of the

hybridization of repeat-gRNA and target DNA, delta G of the homodimer of repeat-gRNA, and delta G of

the monomer of repeat-gRNA), the 732 one-hot-encoded single-nucleotide and dinucleotide features.

Thermodynamic features were computed using the ViennaRNA Package: RNAduplex (version 2.4.14) for

RNA:RNA hybrids; RNAduplex (version 2.1.9h) for DNA:RNA hybrids; RNAfold (version 2.4.14) for

single RNA folding. 732 sequence features included one-hot encoded 4th position in PAM and 26

positions of gRNA, and dinucleotide features from 5nt upstream of PAM to 5nt downstream of gRNA.

When the data from only one screen were used to train, the dataset feature was subsequently removed.

The optimal histogram-based gradient boosting model was evaluated using 10-fold cross-validation based

on unique gRNA sequences and interpreted using TreeSHAP (version 0.39.0) and all samples.
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3. Result
Section 3.1 is the modified version of the manuscript for “Automated interference of CRISPRi

guide efficiency in bacteria from genome-wide essentiality screens” (Yu et al., 2022). The work is a result

of collaboration with Sandra Gawlitt (Helmholtz Institute for RNA-based Infection Research), who

performed the validation experiments, and Lisa Barros de Andrade e Sousa, Erinc Merdivan, and Marie

Piraud (Helmholtz AI), who constructed the deep learning models. Section 3.2 includes the other three

side projects, in which the machine learning approach developed in section 3.1 was applied to analyze

other independent CRISPR-Cas genome-wide screens.

3.1 Automated interference of CRISPRi guide efficiency in bacteria from genome-wide

essentiality screens

3.1.1 Automated machine learning and feature engineering identifies gene-specific effects in

CRISPRi depletion screens

I set out to devise design rules for CRISPRi in bacteria by combining machine learning with large

experimental datasets. Compared to large-scale tiling screens, which have been routinely adopted for

gRNA on-target efficiency prediction in the CRISPR-Cas9 system, genome-wide screens offer higher

gene coverage. Higher gene variation in the training will potentially benefit the generalizability of the

resulting machine learning model. CRISPRi genome-wide screens allow the investigation of the gene

essentiality based on the gRNA depletion log2 fold-changes (logFCs) compared to the initial time point

(Figure 3.1.1A). Silencing essential genes should result in growth defect or cell death thus strong guide

depletion, while the depletion of guides targeting non-essential genes would be modest. But the degree of

silencing relies on the efficiency of gRNAs. Hence, I reasoned that understanding the variation in the

guide depletion of targeting essential genes, defined by the Keio collection (Baba et al., 2006), in

CRISPRi genome-wide screens would hint at the factors attributed to guide efficiency.

I first began my investigation by applying machine learning to predict the guide depletion in a

published E. coli CRISPRi essentiality screen using dCas9 performed in rich media (Rousset et al., 2018),

which included 1,618 guides targeting 171 essential genes. Given the potential and simplicity of

automated machine learning (autoML) techniques, which attempt to automate the often labor-intensive

process of model selection and optimization, I applied the leading autoML tool auto-sklearn (Feurer et al.,

2015) to develop a model to predict the guide depletion. Beyond the exhaustive search of best-performed

configurations with model types and their hyperparameters, auto-sklearn turns model selection itself into

a Bayesian optimization problem, mapping the performance of each configuration to a probabilistic
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model. Auto-sklearn further takes advantage of prior knowledge in over a hundred datasets to prioritize

the configurations for time-efficient searching.

Features are required to describe the training target (guide depletion) to apply auto-sklearn.

Hence, I next asked what features would be required for accurate prediction. In combination with

optimizing models using auto-sklearn, I engineered a series of feature sets of increasing complexity

(Table S1; Method 2.1.2). I started with the one-hot-encoded extended 30 mer sequence including four

bases upstream of the gRNA sequence and three bases following the NGG PAM (Figure S1.1), which

resulted in a poorly performing model with a median Spearman’s ρ of ~0.19 in 10-fold cross-validation

splitted based on unique gRNA sequences (Figure 3.1.1B; Table S2; Table S3; Method 2.1.3). I

therefore iteratively added a set of additional features while monitoring changes in model performance.

As targeting efficiency for CRISPRi has been suggested to depend on the distance to the transcriptional

start site (Qi et al., 2013; Doench et al., 2014; Gilbert et al., 2014; Radzisheuskaya et al., 2016; T. Wang et

al., 2018), the set included absolute and relative distance to the start codon. I also included a suite of

thermodynamic features describing gRNA:target interactions predicted using the ViennaRNA package

(Lorenz et al., 2011): minimum free energy of the gRNA self-folding, hybridization of two identical

gRNAs, and hybridization of the targeted DNA and gRNA (Lorenz et al., 2012). These additional feature

sets resulted in only moderate improvement in Spearman correlation (ρ ~ 0.22) for the predictions (Figure

3.1.1B).

Given that guide depletion mainly reports the fitness defect of the target genes, I constructed eight

gene-specific features describing each target gene that I reasoned may have some explanatory power

(Table S1; Method 2.1.2). I collected publicly available RNA expression data over growth in minimal

media stretching from OD600 0.1 to 180 minutes after the stationary phase (Conway et al., 2014). The

Rousset dataset was collected at OD600 2.2-2.5, so I include data from all time points to compute the

maximal and minimal gene expression level. I collected transcription unit (TU) information from

RegulonDB (Tierrafría et al., 2022) and calculated the distance from the target site to the start of the TU,

the number of downstream genes in each TU, and the presence of downstream essential genes in the TU.

Finally, I also included gene GC content and gene length. Incorporating these additional gene features led

to a major improvement in prediction accuracy, with cross-validation performance jumping to a

Spearman’s ρ of ~0.67 (Figure 3.1.1B).

To understand the contribution of these features to the prediction of gRNA depletion, I used

SHapley Additive exPlanation values (SHAP values) computed with TreeExplainer (Lundberg et al.,

2020) on the best-performing histogram-based gradient boosting model produced by auto-sklearn (Figure

3.1.1C; Table S4). SHAP values are a game-theoretic approach to feature importance that capture the

marginal contribution of a given feature to a prediction. Looking at average absolute SHAP values
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provides a measure of feature importance while plotting individual SHAP values shows how each feature

affects each individual prediction. Of all considered features, maximal RNA expression had the single

largest average effect on depletion, making an average of a ~1.6-fold difference to the predictions.

Unexpectedly, high target gene expression tended to be associated with higher depletion. There was also

evidence for polar effects from CRISPRi, as the number of downstream essential genes was highly

predictive of increased depletion. The most predictive effects that could actually be modified by guide

design were guanine at the 20th position of gRNAs and cytosine at the N position of PAM, followed by

guide distance to the transcriptional start site, but on average these had fairly small effects compared to

features associated with the target gene. In summary, I found that autoML can rapidly produce predictive

models of CRISPRi guide depletion, and the predictions made by these models are dominated by the

effects of gene features that cannot be modified in guide design. These findings outline key features that

need to be accounted for to accurately infer guide efficiency from genome-wide depletion screens.

Figure 3.1.1: Automated machine learning predicts depletion in CRISPRi essentiality screens. (A) An
overview of CRISPRi essentiality screens. gRNAs are designed targeting every gene in the genome and cloned into
an appropriate plasmid for expression. This plasmid collection is then transformed into the target bacteria, and
depletion is measured as the change in guide frequency over growth determined by sequencing relative to a set of
non-targeting gRNAs. The measured depletion (logFC) is then a mixture of the fitness effect of gene knockdown
with the efficiency of silencing itself. (B) Comparison of Spearman correlation between actual and predicted guide
depletion in 10-fold cross-validation (CV) of the best model trained with auto-sklearn with different feature
combinations, using data from (Rousset et al., 2018). (C) The ten most predictive features determined using
TreeExplainer on the optimal histogram-based gradient boosting tree model trained with auto-sklearn and 137 guide
and gene features. Mean absolute SHAP value (left) provides a global measure of feature importance, while the
beeswarm plot (right) shows the effect of each feature on each individual gRNA prediction. CDS: coding sequence.
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3.1.2 Data fusion improves prediction performance

Considering the decent performance with the set of 137 features, I next asked whether the sample

was limiting the accuracy of the predictions. To this end, I collected data from two additional CRISPRi

screens of E. coli in rich media. First, I included data from an additional screen using the same gRNA

library and experimental setup but with dCas9 expressed from a stronger promoter, which I refer to here

as E18 Cui (Cui et al., 2018). Second, I included data from a completely independent screen using a

higher density library containing twice as many guides targeting essential genes (4164; 378 are identical

to gRNAs contained in Cui/Rousset), which I refer to as Wang (T. Wang et al., 2018). I refer to the

original data set as E75 Rousset. It is also worth noting that while the E18 Cui and E75 Rousset libraries

were grown repeatedly to the stationary phase, the Wang screen was collected in the log phase. The level

of depletion in each dataset exhibited qualitative differences, with Wang showing a clearer bimodal

separation between depleted and non-depleted guides (Figure 3.1.2A). There was a reasonable correlation

of depletion between datasets, with E18 Cui and E75 Rousset exhibiting a Spearman’s ρ of ~0.9. The

correlation between Wang and the other two datasets was lower (ρ~0.80-0.82), but this seemed mostly

attributable to a saturation effect in Wang, possibly due to the shorter growth period (Figure S1.2).

To investigate the impact of fusing these datasets on model performance, I trained a series of

models using auto-sklearn with each dataset individually or in combination including a dataset indicator

as a potential predictor. For comparable and generalizable evaluation, I tested them on sets of guides held

out from each dataset as well as a mixed test set (Figure 3.1.2B; Table S5) and applied 10-fold

cross-validation splitted based on unique gRNA sequences (Table S2; Method 2.1.3). Unsurprisingly,

models trained on single datasets tended to perform best on their cognate test set. Similarly, models

trained on E18 Cui and E75 Rousset appeared to generalize better to each other than to the Wang dataset

and vice versa. Combined three training datasets exhibited generalized better across datasets without

degrading performance relative to models trained on individual datasets. Training on only two datasets

followed the same trend, particularly those mixing at least one of the Cui/Rousset sets with Wang (Figure

S1.3A). In some cases, particularly with the Cui dataset, fused training sets actually improved

performance on a test set drawn from a single dataset. In each case, the best-performing model chosen by

auto-sklearn was constantly gradient-boosted decision tree models.

To illustrate that the performance increases I saw when combining datasets were not an artifact of

my autoML workflow, I tested data fusion with both an alternative autoML package, H2O (Ledell &

Poirier, 2020) (Figure S1.3A; Table S5) as well as a suite of individual model types (Figure S1.3; Table

S6). H2O independently selected the histogram-based gradient boosting model as the best-performed

model. Other tested model types responded differently to the fused data, with linear regression-based
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models showing little improvement (e.g. linear regression, LASSO linear regression, elastic net linear

regression; Figure S1.3B-D), while tree-based methods (e.g. random forest regression, histogram-based

gradient boosted trees; Figure S1.3F-G) showed clear improvement. Importantly, none of the tested

models appeared to degrade in performance when trained with fused data. These findings suggest that

both increased generalizability and accuracy can be achieved by integrating multiple data sources for

training tree-based models for CRISPRi depletion.

Figure 3.1.2: Data fusion improves prediction of depletion in genome-wide CRISPRi screens. (A) Distribution
of logFCs of gRNAs targeting essential genes from three CRISPRi genome-wide essentiality screens in E.
coli. (B) Comparison of Spearman correlation from 10-fold CV of the best auto-sklearn trained model on
one dataset or the integrated three datasets.

3.1.3 Segregating guide and gene effects produces a predictive model for CRISPRi guide

efficiency

My exploration of the features that are most predictive of gRNA depletion in competitive screens

highlighted that features describing the targeted gene often made much larger contributions to the

prediction than features describing the guide sequence, strengthening that the guide depletion describes

mainly the gene-to-gene variation. However, this dominant gene-to-gene variation masks the

guide-to-guide variation, thereby obscuring the underlying factors for guide efficiency. I reasoned that

removing gene-specific effects would allow us to extract the contribution of guide efficiency properly.

I took two distinct approaches to separate guide and gene effects. The first was to explicitly

model both effects jointly using Mixed-Effect Random Forest (MERF) (Hajjem et al., 2014). The MERF

model handles data with an underlying cluster structure by defining two separate models: a linear model

that captures random effects associated with the cluster, and a random forest (or other tree-based models)

that captures fixed effects associated with each individual measurement. These models are then jointly

optimized in an iterative process using the expectation-maximization algorithm (Figure 3.1.3). In my

case, random effects correspond to features associated with each gene (e.g. gene GC content, expression
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level) as well as dataset, while fixed effects correspond to features that could be manipulated in gRNA

design (e.g. PAM and guide sequence, thermodynamic properties). I used the gene identifier as a cluster

ID for the random-effect model.

I refer to the second approach as median subtracting (MS), where I subtract the gene-wise median

logFC from each gRNA depletion value to calculate relative “activity scores” following previous work

(Calvo-Villamañán et al., 2020) (Figure S1.4A). The published LASSO model from the same work was

referred to as “Pasteur”. However, this leads to problems integrating multiple datasets, as the range of

depletion values varies across datasets (Figure 3.1.2A). I adapted a previously described approach used

for fusing CRISPR gene deletion datasets (Xiang et al., 2021). First, I averaged the logFCs between E75

Rousset and E18 Cui which share all guides in common. I then calculated a linear scale factor for guides

shared between Wang and the averaged Rousset/Cui data set to make logFCs for the unshared guides in

Wang comparable to logFCs derived from Rousset/Cui (Figure S1.4B-D). For cross-validation, scaling

was performed within each test fold to avoid possible leakage of information between test and training

sets. The scaled activity scores from integrated three datasets are referred to as MS data.

Both the fixed effect model from the MERF and activity scores in the MS method remove

gene-specific effects to estimate guide efficiency, making guide-wise cross-validation difficult as the true

guide efficiency is unknown. As an alternative to guide-wise cross-validation, I implemented a gene-wise

cross-validation scheme. I trained new models using 10-fold cross-validation (Method 2.1.3), this time

holding out all guides targeting a set of held-out genes, evaluating the Spearman correlation between

predictions and measured depletion within each gene under the assumption that rank order should reflect

guide efficiency within a gene.

To assess the MERF model, I first optimized the hyperparameters for the fixed-effect random

forest model using hyperopt, which outperformed the random forest and histogram-based gradient

boosting models optimized to predict depletion using auto-sklearn (Table S7), thereby adopted for the

following evaluations. To evaluate the MS method, I began with the Pasteur model, which is to date the

only model for guide efficiency prediction for CRISPRi in bacteria. Considering the Pasteur model was

trained on the E75 Rousset dataset alone, I trained it on the MS data, which is hereafter referred to as

“Pasteur (retrained)”. Besides, the Pasteur model incorporated a reduced sequence feature set describing

the 6 nt upstream of the di-guanine in the PAM to 16 nt downstream of PAM. Therefore, the discrepancy

between MERF and Pasteur (retrained) would indicate the contribution of both the extended feature set

and the gene-effect segregation methods, while the comparison between models trained on individual or

integrated datasets allows the exploration of the effect of data fusion.

As I had previously observed in my evaluation of depletion predictions (Figure 3.1.2B), data

fusion between multiple CRISPRi screens consistently improved performance in both MERF and Pasteur
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models (Table 1). In aggregate, the MERF model performed better than the LASSO-based models

(median ρ=0.393 (MERF) vs. 0.366 (Pasteur (retrained)) and 0.357 (Pasteur)). When I broke this down

into performance on held-out genes in individual datasets, Pasteur performed the best on the E75 Rousset

data (ρ=0.429 vs. 0.406 (MERF) and 0.394 (Pasteur (retrained))), probably due to the overlapping in my

test sets and its training data. But MERF performed the best in the E18 Cui data from the same lab

(ρ=0.429 vs. 0.400 (Pasteur (retrained)) and 0.411 (Pasteur)). The improvement in the Wang dataset was

more distinguishable (ρ=0.371 (MERF) vs. 0.327 (Pasteur (retrained)) and 0.298 (Pasteur)).

Even though MERF outperformed the retrained Pasteur model, it is not clear whether it is due to

the feature set or the gene-effect segregation method. Therefore, I optimized a LASSO model using

hyperopt with the extended feature set on MS data. The performances were slightly better than Pasteur

(retrained) models (ρ=0.371) and the trend in individual datasets was similar (Table S7), indicating my

extended feature set could provide better estimates for guide efficiency. When I trained a random forest

model on MS data with the same feature set and hyperparameters as MERF, the performance however

degraded (ρ=0.372), despite the high correlation observed between median gene-wise logFC and the

MERF-predicted random effects across the datasets (Figure S1.4E), suggesting MERF could better

segregate the gene effects than MS method.

In sum, I found that MERF trained on multiple datasets and extended feature set outperforms MS

models in predicting guide efficiency for held-out genes and that the MERF approach provides a

straight-forward means of integrating datasets while isolating effects important for guide efficiency.

Figure 3.1.3: Segregation of gene effects using Mixed-Effect Random Forest (MERF). An overview of the
training process of the MERF model. A MERF model segregates the training target into predictions from a
fixed-effect random forest model and a random-effect linear regression model, where fixed effects are associated
with each individual measurement and random effects are associated with the cluster. These two models are then
jointly optimized in an iterative process using the expectation-maximization algorithm. In my case, to predict the
measured depletion (logFC), 9 gene-specific features are enclosed for the random-effect model, while 128
guide-specific features that could be manipulated in gRNA design (e.g. PAM and guide sequence, thermodynamic
properties) are assigned to train the fixed-effect models. The trained fixed-effect random forest model was then used
for gRNA efficiency prediction and the web-based tool CIAO (ciao.helmholtz-hiri.de).
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Table 1: Evaluating predictions of guide efficiency after removing gene effects. Spearman correlations between
predictions and measured logFC for held-out genes. Genes were held out in 10-fold cross-validation, and the
reported median Spearman correlation was calculated across all held-out genes.

3.1.4 Model interpretation with explainable AI illustrates rational design rules for CRISPRi

To understand the features underlying model performance, I again examined SHAP values for my

random forest models using TreeExplainer (Lundberg et al., 2020). I observed similar features with large

impacts on predictions from both MERF and MS random forest models (Figure 3.1.4A; Figure S1.4F;

Table S8). In the MERF model, the strongest average effects were seen for distances from the start codon,

followed by a cytosine at the +1 position following the PAM. In particular, I found that targeting positions

further from the start codon led to reduced guide efficiency, as has been inferred previously (Qi et al.,

2013; T. Wang et al., 2018). Other predictive features involved the nucleotide at position 20 of the guide,

directly adjacent to the PAM sequence (Figure 3.1.4A-B). Guanine and particularly adenine at this

position negatively impacted silencing efficiency, while cytosine and thymine increased efficiency —

almost the exact inverse of previous reports for Cas9 efficiency in eukaryotic genome editing applications

(Doench et al., 2014; Michlits et al., 2020). Within and following the PAM sequence, the SHAP values

were qualitatively similar to previous observations in Cas9 genome editing (Doench et al., 2014;

Moreno-Mateos et al., 2015; H. Xu et al., 2015; Corsi et al., 2022). Cytosine was again favored at the

variable position of the NGG PAM, and a guanine residue immediately following the PAM had a negative

impact on the silencing, though I additionally observed a positive impact of cytosine at this position.

Together, these effects displayed a preference for cytosine and a disfavoring of guanine and thymine

within and around the PAM sequence.

To investigate potential interactions between features, I estimated SHAP interaction values that

quantify situations in which the presence of one feature changes the impact of another so that the

combined SHAP value for both features together is not the simple sum of each feature’s SHAP value. To

provide a visualization of these interactions, I calculated expected effects using the median SHAP value
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for each feature from guides containing only one of the interacting features and compared the expected

sum to the actual SHAP values for guides containing both features (Figure S1.5; Table S9).

The majority of these interactions involved distance features or bases in the vicinity of the PAM.

For instance, the interactions between the favored cytosine and disfavored guanine lead to guides with

either increased (Figure S1.5 I) or reduced efficiency (Figure S1.5 III) compared to expectations based

on single feature SHAP values, whereas multiple cytosines bring an enhanced efficiency (Figure S1.5

II). Similarly, consecutive thymines can lead to a stronger reduction in efficiency (Figure S1.5 IV). The

existence of such interactions between features in the guide sequence may provide one explanation for the

superior performance of tree-based methods over linear regression, as tree regressors are particularly well

suited to capture interaction effects.

​Figure 3.1.4: Important features for CRISPRi guide efficiency illustrate sequence preferences. (A) SHAP
values for the top 10 features from MERF optimized random forest model. Global feature importance is given by the
mean absolute SHAP value (left), while the beeswarm plot (right) illustrates feature importance for each guide
prediction. (B) A summary of the effects of sequence features. Increased SHAP values indicate features that lead to
reduced guide efficacy, while decreased SHAP values indicate increased guide efficacy. The guide sequence is
numbered G1 to G20 and the three positions of the PAM sequence are labeled P1, P2, and P3. Negative and positive
numbers refer to positions preceding the guide sequence and following the PAM, respectively.
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3.1.5 Deep learning approaches do not improve prediction performance

Given the increasing popularity of deep learning approaches in CRISPR guide efficiency

prediction (Chuai et al., 2018; H. K. Kim et al., 2018, 2019; D. Wang et al., 2019; Xiang et al., 2021), I

next asked whether the combination of MS method and deep learning model would improve performance

in predicting gRNA efficiency for CRISPRi in bacteria. I tested two convolutional neural networks

(CNNs), which run a series of kernel filters across the sequence to extract local features. One is a custom

CNN, where the convolutional layers were used to extract sequence features before concatenating them to

the eight non-sequential guide features (Figure S1.6). This concatenated feature set was then fed through

a fully connected 4-layer multilayer perceptron (MLP) for regression using activity scores for guide

efficiency. In addition to a custom CNN architecture, I reimplemented and tested the state-of-the-art deep

learning architecture used for predicting Cas9 gene editing efficiency by CRISPRon (Xiang et al., 2021)

for Cas9 genome editing in eukaryotes, only trained using the CRISPRi MS data and guide feature set.

Both the custom CNN and adapted CRISPRon models exhibited lower Spearman correlations as

compared to my previously trained random forest models when tested on held-out gene sets (Table S7;

CNN ρ=0.326, CRISPRon ρ=0.333, vs. MERF ρ=0.396). These results show that conventional machine

learning approaches can outperform deep learning models, which might be caused by the limitation of

data size in applying more complex models.

3.1.6 A saturating screen of purine biosynthesis genes independently validates performance of

tree-based models and data fusion

The cross-validation within the training datasets demonstrated that MERF trained on multiple

datasets outperformed MS methods in predicting guide efficiency. To further validate the model

performance by producing a truly independent test set, a plasmid-encoded GFP construct was targeted

with 19 gRNAs across a range of predicted guide efficiencies, and the reduction in cell fluorescence by

flow cytometry was approximated as the measured guide efficiency (Figure S1.7A; Table S12). Using

Spearman correlation to measure the ranked order accuracy, I found MERF performed best (ρ=0.64),

while the Pasteur models performed comparatively poorly (ρ=0.33 retrained, 0.26 original). Replicating

this study in Salmonella Typhimurium gave qualitatively similar results, though with lower Spearman

correlations (Figure S1.7B; Table S12). However, when I reanalyzed the data from a Miller assay

(measuring β-Galactosidase activity) previously used to validate the Pasteur model (Calvo-Villamañán et

al., 2020) (Figure S1.7C; Table S12), I found that the Pasteur models performed modestly better (ρ=0.71

original, 0.65 retrained) than the MERF (ρ=0.63). I also tested three tools designed for predicting Cas9
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guide efficiency for genome editing in eukaryotes (H. Xu et al., 2015; Doench et al., 2016; Wilson et al.,

2018; H. K. Kim et al., 2019), and all performed universally poorly on both data sets.

While the exact reasons for the discrepancies in performance between the GFP measurements and

the Miller assay are unclear, one plausible explanation is that these data sets simply have sample sizes too

small to discriminate between prediction methods. To resolve this, I performed a high-throughput screen

targeting nine genes from the purine biosynthesis pathway of E. coli known to be essential in minimal

media, spread across seven independent transcriptional units (Figure 3.1.5A). To avoid any bias in guide

selection, I saturated all potential target sites in each gene, ending with a total of 750 gRNAs, including

between 35 and 223 guides per gene. Duplicate samples were then collected at three time points during

growth in M9 minimal medium, and gRNA depletion was measured with reference to input samples,

normalized using a set of 50 non-targeting guides not complementary to any potential target sequences in

E. coli.

Comparing the experimentally determined depletion values to predictions from my tested models

confirmed the results of my previous cross-validation in the training set (Figure 3.1.5B; Table S14): the

MERF performed best (median ρ~0.57 across all time points vs. 0.53 Pasteur (retrained) and 0.45

Pasteur). While Spearman correlation overviews the ranked orders of the gRNA efficiency, commonly

only three to five guides are chosen for each target gene in practice. Therefore, I calculated positive

predictive values (PPV), which indicate the number of true positives relative to the sum of both true and

false positives. To classify the measured logFC into positive and negative classes, I defined gRNAs
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​Figure 3.1.5: Independent validation of model performance using a saturating screen of purine biosynthesis
genes. High-throughput screening of 750 gRNAs targeting 9 purine biosynthesis genes in E. coli K12 MG1655. (A)
Transcriptional architecture of the targeted genes. All possible gRNAs were designed for each gene. Each blue
vertical line represents a gRNA. Grey boxes represent genes, and black arrows transcriptional start sites. (B)
Spearman correlations between the predicted scores and measured logFC for each gene across collected time points.
(C) Positive predictive values of all gRNAs for each time point. The predicted positives are defined as the top 5
predicted gRNAs in each gene, while the positive class includes gRNAs with fold changes values within N fold of
the fold change value of the strongest depleted gRNA in each gene (N= 1.5 - 5 with a step of 0.5). (D) Measured
logFCs for each guide as a function of distance to the start codon for purC, purD, and purE. The plots for the other 6
genes are in Figure S1.9.

within the N-fold depletion fold change of the most strongly depleted gRNA for each gene as the positive

class and tested a set of thresholds with N ranging from 1.5 to 5. I observed that MERF performed

constantly the best when the top three to five guides are defined as the predicted positive (Figure 3.1.5C;

Figure S1.8A-B), supporting the utility of MERF as a predictive tool for gRNA selection in practice.

Comparing the MERF trained on the three fused data sets to the MERF trained on any single data

set also showed improved performance, similar to the retrained and original Pasteur models (Figure

S1.8C; Table S14). The choice of a tree-based model also made a clear difference in performance, as the

LASSO and deep learning models trained on the MS data showed worse performance (ρ~0.48—0.50)

than either random forest (ρ~0.53) (Figure S1.8D; Table S14). The performance with PPV follows the

same trend.

Beyond validating the performance of my models, my saturating screen of purine biosynthesis

genes also revealed previously unobserved features of CRISPRi depletion screens. First, there were two

genes, purE and purK, on which all methods performed poorly as measured by Spearman correlation.

Upon inspection of the depletion values, it became clear that this was because there was surprisingly little

variation in guide efficiency along these transcripts (Figure 3.1.5D; Figure S1.9A-B). This meant that for

these genes, differences in ranking reflected very small differences in depletion, likely within the error of

the experimental measurements. I examined my initial training set to see if this might be a more

widespread phenomenon, finding a substantial number of genes with low variation in their guide

depletion values (Figure S1.9C). This may be a factor in the overall low average Spearman correlations I

report in the cross-validation.

A second unexpected feature was the overall lack of a clear relationship between guide efficiency

and distance to the transcriptional start site. Of the nine tested genes, only two, purC and purM, showed a

clear linear dependency of depletion on position within the gene sequence. This was particularly

surprising, as distance features were clearly important to the model predictions. I attempted to train a

model excluding distance features, but this substantially degraded performance on predicting depletion in

the high-throughput screen (Figure S1.8E). Whether this is an artifact of the training data, based on
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screens that used small collections of guides biased towards the 5′ ends of genes, or if other guide features

compensate for positional differences in guide efficiency remains unclear. In support of the latter, my

analysis of feature interactions found many of the strongest effects came from interactions between

distance features and sequence features in the vicinity of the PAM (Table S9), suggesting that sequence

features have larger effects on efficacy as the distance from the transcription start site increases.

In sum, the screen of guides targeting purine biosynthesis genes independently validated the

better performance of my MERF model compared to the state-of-the-art, while also highlighting some

unexpected features of CRISPRi.

3.2 Analysis of CRISPR-Cas genome-wide screens

3.2.1 Analysis of CRISPR base editor genome-wide screen in Escherichia coli

The section is part of the results for “Enhanced genome-wide knockout screens in bacteria with

CRISPR base editors”. The work is a result of collaboration with Sandra Gawlitt (Helmholtz Institute for

RNA-based Infection Research) and Scott P Collins (North Carolina State University), who performed all

laboratory experiments and finalized the figures.

CRISPR base editors enable persistent point mutation in the genome, not only minimizing the

errors from double-strand break repairing but also showing promising future treatments for point mutation

diseases. Whereas the first-generation cytosine base editors (CBEs) were fusions of dCas9 and a cytidine

deaminase, the third generation replaced the dCas9 with Cas9 nickase to achieve higher editing efficiency

(Komor et al., 2016). CBEs alter cytidine to thymine, thus consequently altering guanine to adenine on

the opposite strand. By specifically editing CAA, CAG, CGA, and TGG codons, base editors can

introduce premature stop codons thus becoming an alternative gene silencing technique to Cas9 or

CRISPRi (Figure 3.2.1A) (Billon et al., 2017; Kuscu et al., 2017). Despite its proven applicability in

bacteria (Banno et al., 2018), insufficient attention was paid to optimizing the base editing in bacterial

systems and assessing its capability for genome-wide screenings. Further, it remains under-investigated

whether a gene can be disrupted by editing the start codon (ATG). To fill the gap, Sandra and Scott

engineered a Streptococcus canis Cas9 (ScCas9) nickase-derived base editor (ScBE3) that disrupts

transcription efficiently in E. coli. ScBE3 also exhibits flexible PAM recognition (NNG), increasing the

number of targetable genes.

To assess the gene silencing efficiency of ScBE3 by introducing premature stop codon on a

genome-wide scale, a library of 37,362 gRNAs was designed to target ATG (start codon), CAA, CAG,

CGA, or TGG codons for 4086 protein-coding genes in E. coli (Method 2.2.2). gRNAs were selected to
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target the first half of the coding sequences to ensure silencing efficacy. The number of gRNAs per gene

was balanced by removing the excessive guides with potential off-target effects and extreme GC content.

The library further included 400 randomized non-targeting guides lacking complementarity to the target

genome. The sgRNA library was then transformed into E. coli cells together with ScBE3-carrying

plasmid. After culturing for 16 hours, the transformed cells were induced to express ScBE3 to silence the

target genes. Short-read sequencing was finally applied to sgRNA-carrying plasmids collected at 0, 4, 8,

and 24 hours after induction (Figure 3.2.1B). Under this setup, guides targeting essential guides

70



Figure 3.2.1: A genome-wide base-editor screen of essential genes in E. coli reveals hidden target preferences
of ScBE3. (A) Nucleobase context of ScBE3 targets cytosines that can be converted into premature stop codons or
lead to a mutated start codon. (B) Overview of the genome-wide gene essentiality screen in E. coli using ScBE3.
Plasmids carrying sgRNA and ScBE3 were co-transformed in E. coli. Samples were collected at 0, 4, 8, and 24 h
after induction of ScBE3 expression, followed by next-generation sequencing (NGS) of the extracted
sgRNA-carrying plasmids. Guide depletion is determined in comparison to the initial time point (0 h). (C) log2
fold-changes (logFC) of sgRNAs targeting essential, non-essential genes or a non-targeting control for ScBE3
between time points. Boxes and whiskers indicate 50 and 99% intervals, respectively. (D) Depiction of method used
for developing the machine learning algorithm. Screen data between 0 and 24 h after induction were used to
determine the depletion of each of the 37,362 guides. The derived log2 fold-changes of 2,813
essential-gene-targeting guides were used as prediction targets, with 556 sequence features as predictors.
Auto-sklearn was used to train and optimize an assortment of candidate model types. A histogram-based gradient
boosting model was the best-performing model. This model was then interpreted using TreeSHAP to explain the
contribution of each predictor to each prediction. (E) SHAP values for the top 10 features from optimized
histogram-based gradient boosting model. Global feature importance is given by the mean absolute SHAP value
(left), while the beeswarm plot (right) illustrates feature importance for each guide prediction.

would be more strongly depleted compared to guides targeting non-essential genes and the depletion

would be stronger over time. Indeed, the depletion of guides targeting essential genes, defined by Keio

collection (Baba et al., 2006), was enhanced as the induction time was prolonged, with median depletion

of 0.04, 0.42, and 1.19-fold comparing 4, 8, and 24 hours after induction compared to the initial time

point, while the non-essential gene targeting and non-targeting guides were enriched by median 0.22-fold

and 0.07-fold at the 24 hours after induction (Figure 3.2.1C).

Next, I applied auto-sklearn to optimize machine learning models to extract design rules for

effective silencing (Figure 3.2.1D). Similar to the model for the CRISPRi, only guides targeting essential

genes were subjected to the training. Interpretation of the resulting model using SHAP values (Lundberg

et al., 2020) highlighted the predictive sequence features near the PAM region and activity window,

including A at the 2nd position of PAM, A/TT/TG downstream of PAM, and TC at the 4th to 5th position

from the 5' end of gRNA (Figure 3.2.1E).

Here, even though the depletion of guides targeting essential genes was modest compared to the

previous CRISPRi screens (Figure 3.1.2), likely due to low editing in the experimental setup, the machine

learning model was able to extract important features for ScBE3. The preferences in sequence context

revealed by the machine learning model can guide us towards maximization of the efficiency of the

CRISPR base editor in bacteria, thereby facilitating its application in a broader range of functional

interrogations and bacterial species.
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3.2.2 Analysis of CRISPR-Cas13a genome-wide screen in Escherichia coli

This section is part of the results for the publication “A target expression threshold dictates invader

defense and autoimmunity by CRISPR-Cas13” (Vialetto et al., 2022). The work is a result of

collaboration with Elena Vialetto (Helmholtz Institute for RNA-based Infection Research), who performed

all laboratory experiments and finalized the figures.

CRISPR-Cas13a is a class 2 type VI RNA cleaving single-effector system. Upon target

recognition it cleaves non-specifically cellular RNA, inducing cellular dormancy or cell death to inhibit

reproduction and dissemination of the invader as an immune response (Abudayyeh et al., 2016; Meeske et

al., 2019). Instead of PAM, the invader-identification of Cas13a relies on the protospacer flanking site

(PFS). The G PFS base-pairing with the repeat-derived portion of the crRNA aborts the Cas13a activation

(Meeske & Marraffini, 2018). The known mechanism of Cas13-induced immunity, including the

necessity of target RNA and crRNA pairing and non-G PFS, was principally assessed through targeting

transcripts expressed from plasmids or phages or from the genome with an inducible promoter

(Abudayyeh et al., 2016, 2017; Meeske & Marraffini, 2018; Kiga et al., 2020; Meeske et al., 2020). The

impact of targeting native transcripts by Cas13a was however under-investigated despite the fact that

CRISPR-Cas systems infrequently require spacers from the endogenous sequences (Stern et al., 2010).

Even though the Cas13-mediated immune response is known to induce cell death or dormancy, it has been

largely associated with gene silencing instead in eukaryotes (Abudayyeh et al., 2017; Cox et al., 2017). To

gain a deeper understanding of the mechanism of Cas13-induced immunity, Elena set out to investigate

the impact of targeting endogenous transcripts by employing the Leptotrichia shahii Cas13a (LshCas13a)

(Abudayyeh et al., 2016; L. Liu et al., 2017) in E. coli as a simple model and using the reduction in

plasmid transformation as the readout of the Cas13a activation, with a high reduction indicating

successful of Cas13a activation. Surprisingly, the majority of 12 endogenous transcripts from both

essential and non-essential genes failed to induce a measurable reduction in transformation efficiency but

the reduction fold surged to 280-fold to 1000-fold when the targets were expressed at a higher level from

a plasmid. Elena observed a sharp transition between the low and high reduction folds when the target

transcripts were expressed under eight different constitutive promoters exhibiting varying expression

strengths, suggesting the transcript expression level had an impact on Cas13a activation. Considering the

observations were limited to a small number of transcripts, we aim to achieve a global assessment of the

causal effects of expression level and the role of other factors (such as target position and sequence

context) with a genome-wide screen in E. coli.

A library of 25,597 crRNAs targeting 4228 mRNAs and rRNAs in E. coli was designed (Figure

3.2.2A; Methods 2.3.1). The crRNA candidates were selected with non-GU PFS, GC content, and
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secondary structure to increase the binding efficiency and avoid decoupling of activation and one crRNA

targeting each of ten evenly-spaced sections in the gene was maintained to explore the effect of the

targeting locations. The library further included 400 randomized non-targeting guides lacking

complementarity to any endogenous transcripts as the negative control. The crRNA library was then

transformed into E. coli cells with or without LshCas13a. Cell death or dormancy caused by the

successful activation of Cas13a could deplete the crRNAs in the transformed cells. Short-read sequencing

was finally applied to extracted plasmids after culturing to measure the depletion of each guide compared

to the no-LshCash13a control cultured under the same conditions (Figure 3.2.2B). Under this setup,

highly active guides would be heavily depleted within the library, while poorly active guides would be

minimally depleted.

Given the stronger fitness defect of silencing essential genes, I first compared the depletion of

guides targeting essential or non-essential genes using the 0.01 quantile in the logFC values of

non-targeting guides as the threshold to define depletion. 85% of guides targeting essential genes

exhibiting logFC below the threshold were depleted, substantially higher than 43% for guides targeting

non-essential genes. The median depletion was also higher for guides targeting essential (2.9-fold) versus

non-essential (0.3-fold) genes (Figure 3.2.2C). The screen was validated by testing individual highly

depleted guides using the transformation assay (Figure S2.1A). This discrepancy in the extent of crRNA

depletion indicated a gene-dependent effect while targeting non-essential genes led to less frequent

collateral cleavage and dormancy despite following the same crRNA design rules.

In comparison to essential and non-essential genes, guides targeting rRNAs, the highest expressed

RNAs in the cell, were strongly and consistently depleted in the library (Figure 3.2.2C). In line with the

previous result, I investigated how transcript expression levels were associated with guide depletion

across the library. A strong correlation was found between guide depletion and the levels of the targeted

transcript with Spearman coefficients 0.72 and 0.68 in middle and late exponential growth, respectively

(Figure 3.2.2D; Figure S2.1B). The stronger correlation in middle exponential growth might be due to

the dominance of middle exponential growth in the screen. Translational strength predicted with the

ribosome-binding site (RBS) calculator showed minimal correlation (Salis, 2011) (Figure S2.1C),

indicating that protection of the mRNA by translating ribosomes does not account for differences in guide

depletion. The observed correlation applied to both essential and non-essential genes (Figure S2.1D). The

stronger depletion of guides targeting essential genes with similar expression levels to non-essential

genes, further supporting the added growth defect when silencing essential genes (Figure S2.1D-E).

To determine the factors that play a role in the successful induction of cytotoxic autoimmunity, I

applied auto-sklearn to optimize a machine learning model to predict the guide depletion in the screen

(Figure S2.2A). The model interpretation using SHAP values (Lundberg et al., 2020) revealed that
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transcript levels were the strongest predictor of guide depletion. In contrast, the effect of gene essentiality

was modest, which could be a result of the small number of essential genes in E. coli. I also identified

nucleotide preferences within the crRNA guide or the PFS with the predictive value, such as a C in the 1st

or 2nd PFS position or a U in the 19th crRNA guide position (Figure 3.2.2E; Figure S2.2B-D). The

existing Cas13d design tool based on experiments in human cell culture (Wessels et al., 2020) showed

poor accuracy in predicting depletion scores for our bacterial experiments with Cas13a (Figure S2.2E),

indicating the differences in the captured predictive patterns. The results from the machine learning
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Figure 3.2.2: A genome-wide CRISPR-Cas13a screen reveals target expression levels as the main determinant
of cytotoxic self-targeting. (A) Design of crRNA guide library. Guide selection accounted for standard rules
lending to efficient targeting and spanning the entire coding region of each target gene. Other parameters (i.e.,
homopolymers, BsmBI sites) were included to facilitate library synthesis and cloning. The resulting library included
25,470 guides targeting protein-coding genes, 127 guides targeting rRNAs, and 400 randomized guides as negative
controls. (B) Workflow for library screening. As part of the screen, cells with or without a LshCas13a plasmid
(purple) are transformed with the crRNA plasmid library and cultured while selecting all present plasmids. Guide
depletion is determined in comparison to the same workflow with the no-LshCas13a control. (C) Distribution of
depletion scores for different groups of guides within the library. The cutoff for no fitness defect is based on the
range of depletion scores for a set of randomized guides. (D) Correlation between guide depletion score and the
expression levels of the target gene. Expression levels were measured by RNA-seq analysis with E. coli cells
harboring the no-LshCas13a control and subjected to the library workflow to turbidity of ABS600 ≈ 0.5. Values for
transcript levels and guide depletion are the average of duplicate independent experiments and screens, respectively.
ρ: Spearman coefficient. See Figure S2.1B for the correlation for turbidity of ABS600 ≈ 0.8. (E) SHAP values for the
strongest predictors of guide depletion from the library. The left barplot indicates the average absolute contribution
of each feature to the predicted depletion values, while the right beeswarm plot shows the impact of each feature on
each individual prediction.

approach together support the role of the target expression level as the third criterion to activate the

Cas13a-induced immunity and that most self-targeting guides do not activate cytotoxic autoimmunity due

to insufficient target expression. This additional criterion proposes an explanation for the often observed

gene silencing instead of cell death or dormancy by Cas13 in eukaryotes: given the larger cell size and

distribution of transcripts, the expression threshold in eukaryotes is likely to be higher, leading to the

uncoupling between target binding and collateral cleavage. It was further demonstrated in the publication

(Vialetto et al., 2022) that the expression level threshold also allows the Cas13a system to tolerate a lowly

expressed invader such as a plasmid yet display a robust immune response to a highly expressed invader

as an actively replicating lytic phage.

The application of the machine learning approach in this study provides independent support

other than the experimental observation to understand the role of transcription level in the mechanism of

the CRISPR-Cas13 system.

3.2.3 Analysis of CRISPR-Cas12a genome-wide screen in Klebsiella pneumoniae

The section is part of the results for “Target-dependent features dictate Cas12a antimicrobial activity

against multidrug resistant and hypervirulent strains of Klebsiella pneumoniae”. The work is a result of

collaboration with Elena Vialetto (Helmholtz Institute for RNA-based Infection Research), Solange Miele,

and Moran Goren (Pasteur Institute), who performed library design, initial sequencing data processing,

all laboratory experiments, and finalized the figures.
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Klebsiella pneumoniae has been a threat to thousands of lives due to its increasing multi-drug

resistance (MDR) and hypervirulent (HV) genes (Santajit & Indrawattana, 2016). The decreasing efficacy

of antibiotics stresses an alternative antimicrobial strategy to prevent the death of millions (Murray et al.,

2022). To address the pressing need, CRISPR-Cas systems emerged as a promising means to achieve

infection clearance by specifically eliminating pathogens from a microbial community (Uribe et al., 2021;

Rubin et al., 2022). To extend the application of CRISPR-Cas systems as antimicrobials, Elena identified

Acidaminococcus sp. Cas12a (AsCas12a) as one of the best candidates in K. pneumoniae strain ATCC

10031 after comparing the activity of several Cas nucleases. However, the antimicrobial activity of

AsCas12a in different MDR and HV Klebsiella strains was not always consistent. Elena showed that it

was associated with the secondary structure of the gRNAs.
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Figure 3.2.3: A genome-wide AsCas12a screen confirms guide differential depletion across strains and advises
guide design rules for efficient antimicrobial activity. (A) Schematic of library screen setup. Samples were
collected at 0, 3 h, and overnight (ON) after induction. Guide depletion is determined by comparing the abundance
of guides between time points. DAP: diaminopimelic acid. aTc: anhydrotetracycline. (B) Depletion of guides prior to
induction (T0 - MFDpir) and following nuclease induction for 3 hours or overnight (T3h/ON - T0). MFDpir: the E. coli
strain used for guide library preparation. (C) Box plots of guide depletion distribution before and after aTc nuclease
induction for the targeting and NT guides. Boxes and whiskers indicate 50 and 99% intervals, respectively. (D)
Depiction of method used for developing the machine learning algorithm. The derived log2 fold-changes between 0
h and overnight after induction from the screen data were used as prediction targets, with 738 sequence and
thermodynamic features, as well as dataset, as predictors. Auto-sklearn was used to train and optimize an assortment
of candidate model types. A histogram-based gradient boosting model was the best-performing model. This model
was then interpreted using TreeSHAP to explain the contribution of each predictor to each prediction. (E)
Contribution of different features to guide depletion from the library using the mixed dataset for training the
algorithm. The left barplot depicts the absolute weight of each feature to the depletion values, while the right
beeswarm plot shows how each datapoint impacts depletion according to each feature. (F) Correlation between
guide depletion in the kPPR1 and NTUH strains. Blue dots indicate the 103 gRNAs with the differential difference
between strains. (G) Validation of algorithm prediction of six high and low-efficiency guides in KPPR1 and
SB5442. The dashed line represents the limit of detection of the assay.

To improve the consistency of antimicrobial activity across strains, genome-wide screens in two

HV Klebsiella strains (NTUH-2044, KPPR1) were employed to determine across-strain transferable guide

design rules. A library of 12,000 gRNAs including 11,900 guides targeting the coding and non-coding

chromosomal regions in both strains and 100 non-targeting guides was designed, followed by

transforming the cells with a conjugative plasmid encoding the constitutively expressed gRNA library and

inducibly expressed AsCas12a (Figure 3.2.3A). Next-generation sequencing was applied to extracted

gRNA-carrying plasmids after inducing the expression of AsCas12a for three hours and overnight. The

variation in the gRNA abundance compared to the initial time point prior to induction would inform the

gRNA activity. While I observed significant guide depletion after overnight incubation, the depletion was

moderate after a three-hour induction (Figure 3.2.3B-C).

I next applied the machine learning approach to extract rules for guide design using the depletion

scores after overnight induction from both screens (Figure 3.2.3D). The model interpretation using SHAP

values emphasized the detrimental effect of a more stable self-folding and homodimer structure of gRNAs

and the disfavoring of a cytosine before the PAM sequence (Figure 3.2.3E), consistent with the previous

observation of the importance of gRNA folding secondary structure and uncovering a previously

unnoticed PAM preference: guanine at the last position in PAM immediately upstream of the guide or

thymine at the first position of the guide was neither favored for efficient antimicrobial. The data source

was also listed as a strongly predictive feature, strengthening the idea that guide activity can vary between

strains. However, when comparing guide depletion between the two strains, I observed a strong

correlation (Pearson correlation coefficient 0.705) with only 0.9% of the guides having a significant

differential activity (Figure 3.2.3F). This higher consistency across strains compared to the previous
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observation in MDR and HV strains suggests strain-specific responses or that the genome-wide screens

yielded robust antimicrobial activity. Training the models on individual strains also delivered almost

identical predictive factors with comparable prediction performance (Figure S2.3A-C), indicating the

decent generalization of the captured guide design rules. These design rules were further validated using

six independent guides with either high or low activity according to the model prediction. The test was

performed in the KPPR1 strain and in the SB5442 strain which was not used to train the model. For both

strains, the model prediction was accurate with predicted efficient guides exhibiting more than 103-fold

reduction in transformation while the predicted inefficient guides showed an undetectable decrease

(Figure 3.2.3G), strengthening the fundamental role of secondary structure and sequence compositions in

antimicrobial activity and suggesting the good generalizability of the predictive model.

In conclusion, the machine learning approach explicated the rational design rules for AsCas12 in

K. pneumoniae strains and the predictive model could benefit the guide design for the pathogen clearance

in other strains, fueling the application of CRISPR-Cas systems as an alternative strategy to combat the

infectious diseases.
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4. Discussion
In this thesis, I developed a random forest model from three genome-wide essentiality screens in

E. coli to predict guide efficiency for CRISPRi in bacteria after segregating the confounding

gene-relevant effects using mixed-effect models. I extensively explored the effects of feature engineering,

data integration, model selection, and hyperparameter tuning on depletion prediction and demonstrated

the rigorousness of autoML in model development. In light of the dominant gene effects from model

interpretation, I showed that MERF provided a more reliable prediction of guide efficiency and

outperformed existing tools for both Cas9 and CRISPRi in independent validation experiments, including

a large-scale saturating screen of purine biosynthesis genes in minimal media. Further, I applied the

derived machine learning approach to analyze genome-wide screens of CRISPR base editor, Cas13a, and

Cas12a in either E. coli or K. pneumoniae, reinforcing its robustness and adaptiveness while gaining

insights into CRISPR-Cas mechanisms.

I addressed the need for a predictive machine learning model specifically to predict gRNA

efficiency for CRISPRi in bacteria, given the rapid development of the CRISPRi techniques and the

crucial role of gRNA design. Beyond a simple alternative to gene knockout, the CRISPRi techniques

possess the potential for genome-wide screening, multiplexed targeting, and gene expression tuning.

Genome-wide CRISPRi screens enable exhaustive functional interrogation of thousands of genes in one

sitting, avoiding the laborious collection of single knockout mutants (Baba et al., 2006). Similarly,

CRISPRi multiplexed targeting would largely simplify the investigation of genetic interactions (Kuzmin

et al., 2018) and the construction of complex synthetic circuits (Lian et al., 2017; Santos-Moreno et al.,

2020), in comparison to the state-of-art double mutant construction method by mating (Butland et al.,

2008; Typas et al., 2008). A genetic interaction network can additionally reveal synergetic targets for

combinations of antibiotics or antibiotic-antibody to obtain more efficient pathogen clearance and to

avoid antimicrobial resistance (Doern, 2014; X. Xu et al., 2018; Leshchiner et al., 2022), while synthetic

circuits can be devised to optimize production of particular small molecules or proteins, such as biofuel,

pharmaceuticals, and biomaterials (Khalil & Collins, 2010; M. Xie & Fussenegger, 2018). The CRISPR

array technologies allow the co-expression of up to 22 gRNAs in one array and a large-scale screen of

arrays (Liao, Ttofali, et al., 2019; A. C. Reis et al., 2019), enabling comprehensive analysis of even

higher-order genetic interactions. The inducible and titratable CRISPRi systems shed light on the complex

relationship between gene expression and fitness (Hawkins et al., 2020; Bosch et al., 2021). Optimal

gRNA efficiency is however indispensable to realize the full potential of CRISPRi techniques. While

large-scale experiments demand the selection of gRNAs for thousands of genes, my predictive model and
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web-based tool are able to design and select efficient gRNAs from input sequences or specified genes,

providing a straightforward solution to simplify and improve the CRISPRi-based experiments.

Additionally, I successfully applied auto-sklearn to optimize the machine learning model and

demonstrated its robust performance in predicting depletion. Despite the fact that machine learning

models have already been exploited for guide efficiency prediction in CRISPR-Cas systems, the

application of the emerging autoML techniques (Waring et al., 2020) is under-investigated. My

exploration presented in this thesis is a proof-of-concept, showing the great potential for model

improvement using the continuously developing autoML tools. While CRISPRi genome-wide screens

have been performed on a wide range of microbes and under various conditions (Rock et al., 2017;

Rousset et al., 2018; T. Wang et al., 2018; H. H. Lee et al., 2019; Hawkins et al., 2020; McNeil et al.,

2021; Spoto et al., 2022), increasing CRISPR-based tools have been applied to prokaryotes (Vento et al.,

2019; Vigouroux & Bikard, 2020; Z. Liu et al., 2020; Meliawati et al., 2021). In this thesis, I also showed

that the model development workflow leveraging the power of autoML led to meaningful model

interpretations in three distinct genome-wide screens with the base editor, Cas13a, and Cas12a, again

confirming the robustness of auto-sklearn. Surprisingly, histogram-based gradient boosting models were

uniformly selected for all the screens. Tree-based models showed superior performance in some previous

studies (Doench et al., 2016; Muhammad Rafid et al., 2020), probably due to the non-linear relationship

between sequence features and guide efficiency and the fact that tree-based models can better capture the

interactions between features. Indeed, the performance of other model types failed to outperform the

selected histogram-based gradient boosting model (Figure S1.3B-G), suggesting the selection is not a

technical bias from auto-sklearn and tree-based models can better untangle the connections between

gRNA features and efficiency. Another autoML tool, H2O, arrived at the same best-performing model

selection, albeit with worse performance (Figure S1.3A). The simplicity of implementing the autoML

tool and the minimum demand of relevant experience play a central role in the machine learning approach

that I have developed and the subsequent successful application of the approach has proven to have the

potential to accelerate the development of machine learning models and lead to a deeper understanding in

other CRISPR-Cas systems and organisms.

Despite the simplification in model development using autoML, data collection and feature

selection and engineering to refine the models remain challenging and limitations persist in autoML tools.

In this work, I vastly adopted genome-wide screens for model training. While genome-wide screens

guarantee a considerable number of data points and minimal batch effects, simultaneously providing a

complete landscape of gRNAs, the high number of target genes exhibit substantial gene-specific effects. I

found that these gene-specific effects confounded the interpretation of guide efficiency when predicting

depletion scores from CRISPRi essentiality screens (Figure 3.1.1C). My observations in the saturating
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screen for purine biosynthesis genes also indicated that the gene-specific effects lower the prediction

accuracy (Figure 3.1.5B-D; Figure S1.9A-B), leading to an open question of whether the fine-tuned

selection of target genes will improve the performance and the generalization, such as selecting target

genes based on the standard deviation of depletion scores of guides (Figure S1.9C). Moreover, the

minimal number of gRNAs per gene or target genes required for comparable performance needs future

investigation. I included only the gRNAs targeting previously proven essential genes from the CRISPRi

screens for the model training, considering those genes are expected to deplete during the screening thus

enabling measurable variation of gRNA efficiency. Surprisingly, these roughly 10%

essential-gene-targeting gRNAs among all available guides were sufficient for developing a moderately

accurate model for guide efficiency (Figure 3.1.1B). But I demonstrated that data integration of multiple

screens improved the model performance both in direct depletion prediction and in

gene-segregation-based methods (Figure 3.1.2B; Table 1; Figure S1.8C). Therefore, it remains possible

to significantly improve the model accuracy by including more data, such as other screens and gRNAs

targeting non-essential but strongly depleted genes. Besides accuracy, data integration also gives rise to

better generalization (Figure 3.1.2B) probably due to the reduction of batch effects, suggesting training

the model with screens from different conditions and organisms can generate a better-performing model

for the application in understudied bacteria, such as the non-model bacteria and novel pathogenic isolates.

Together with the issue of the gene-specific effects, whether there is a balance or it would be a trade-off

between expanding the sample size and fine-tuning the target gene set leaves ample space for further

model improvement for wider applications.

In addition, I showed that my rich, biologically relevant feature set is important for accurate

prediction of CRISPRi depletion and it can be easily adapted for other CRISPR-Cas systems. I found that

only guide-specific features are insufficient to predict CRISPRi depletion. Starting with sequence

features, I included single nucleotide 30 mer extended gRNA sequences, considering that the 30 mer

covers the potential relevant regions suggested by the previous study (Calvo-Villamañán et al., 2020). The

model interpretation confirmed that only the nucleotide immediately downstream of PAM has a

significant contribution among flanking nucleotides around gRNA and PAM. Despite both single and

di-nucleotide features being commonly enlisted, additionally including di-nucleotides worsened the

performance (Yu et al., 2022), probably due to the excessive number of features compared to the limited

sample size. Inspired by previous findings in relation to the importance of targeting position relative to

transcription start site for CRISPRi (Qi et al., 2013; Gilbert et al., 2014; Smith et al., 2016), I included

absolute and relative distances in CDS. Interestingly, the depletion model did not perform better but

distance features are the most predictive predictors in the fixed-effect model from MERF (Figure 3.1.1C;

Figure 3.1.4A). Despite the gene-specific effects in the screen of purine biosynthesis genes, which
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exhibited a weak correlation between distance to start codon and guide efficiency for a few genes (Figure

3.1.5D; Figure S1.9A), removing distance features degraded the model performance (Figure S1.8E). The

seemingly inconsistent importance of target position might stem from two perspectives: 1) dCas9 can

more effectively stop the transcription by preventing the RNA polymerase (RNAP) from escaping the

promoter when targeting shortly downstream of the start codon but the efficacy drops when dCas9 is

required to stop the actively transcribing RNAP when targeting farther downstream positions; 2) the

function of the truncated protein caused by CRISPRi depends on the location of the protein domains and

it is gene-specific. Compared to sequence and distance features, thermodynamic features are less

predictive in either the depletion (Figure 3.1.1C) or MERF model (Figure 3.1.4A), which is inconsistent

with the previous finding for the Cas9 system (Xiang et al., 2021) where the thermodynamic feature

(△GB) was the most predictive. △GB is calculated using the CRISPRoff pipeline (Alkan et al., 2018),

which considers DNA opening, gRNA self-folding, the hybridization of gRNA and target DNA, and the

PAM sequence. Replacing these four thermodynamic features with △GB however did not improve the

model performance for depletion prediction or the purine screen (Figure S1.10A-D) and △GB is not

among the most predictive features (Figure S1.10E), suggesting that the low importance is independent

of the choice of thermodynamic features. The minor role of the thermodynamic characteristic in CRISPRi

in bacteria compared to Cas9 in eukaryotes might be explained by the more compacted DNA structure in

eukaryotes, where binding to the target DNA becomes a chokepoint for efficient editing by Cas proteins.

One of the most surprising findings, when I investigated the features, is that the gene-specific features

contributed more to the prediction, measured by SHAP values (Figure 3.1.1C), indicating that the

variation in the depletion scores is mostly driven by the target genes. The gene-specific fitness effect that

is indicated by varying continuous values suggests a non-binary character of gene essentiality. Among the

gene features, the expression level is the strongest predictor, supporting the previous findings that gene

essentiality can be varied by transcriptional activity (Bauer et al., 2015; Keren et al., 2016; Hawkins et al.,

2020; Bosch et al., 2021). Including the number of downstream genes in the operon asserts the potential

polar effect in the transcription units (Cui et al., 2018), while the higher contribution of the number of

essential genes proposes a more specific explanation. The rich gene features improved the model

performance for depletion prediction and contributed to segregating the gene-specific effects using

MERF. Considering the lack of operon information and transcriptomic data for other organisms, I also

approximated expression level with the codon adaptive index (CAI) (M. dos Reis et al., 2003) and

removed operon-related information, with promising results (Figure S1.8E).

The importance of biologically relevant predictors in predicting the depletion from CRISPRi

essentiality screens also emphasizes the necessity to adapt the features according to the data type and

source. For example, when developing prediction algorithms for a CRISPR base editor, attention should
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be paid to the editing window which differs across base editors and poses importance in editing

efficiency. For the Cas13a system, given it targets RNAs, thermodynamic features to describe the

secondary structure of the target RNA and the hybridization energy between the gRNA and target RNA

should be considered. Moreover, the definition of seed region, in which one mismatch might abort the

target binding, might be unclear or different in different CRISPR-Cas systems.

Whereas previous guide efficiency models were often trained on direct measurement of guide

efficiency (i.e. indel rate), CRISPRi essentiality screens only provide indirect measurement, which

includes both gene- and guide-specific effects. Therefore, gene-specific features, such as the previously

unreported gene expression, significantly improved the model performance in predicting depletion,

strengthening the importance of the data-oriented feature set. Beyond this, I adopted two distinct methods

to remove gene-specific effects in order to extract guide efficiency from CRISPRi essentiality screens:

modeling gene-specific effects as random effects in a mixed-effect model and using the median logFC

value as a proxy for gene-specific effects. While both methods accomplished the task, the former method

using mixed-effect random forest (MERF) (Hajjem et al., 2014) outperformed the latter one which

subtracts the median gene-wise logFC values from depletion scores as described previously

(Calvo-Villamañán et al., 2020) (Figure 3.1.5B-C; Figure S1.8D; Table 1; Table S7; Table S14), which

might be explained by the more accurate segregation enabled by the rich gene-specific features for the

random-effect model. The superior performance of MERF can be enhanced when more data from various

sources are integrated, considering the potentially larger batch effect. Moreover, it might become more

important to describe the gene-specific effects using biologically relevant features when incorporating

data of, for example, non-essential genes and other strains or organisms.

As I optimized the random forest fixed-effect model for MERF, I noticed the technical difficulty

of implementing auto-sklearn directly. Hence, I tested the auto-sklearn-selected best-performing

histogram-based gradient boosting and random forest models for depletion prediction, in addition to the

optimized random forest model using a hyperparameter tuning tool hyperopt. While the models selected

by auto-sklearn resulted in a decent performance, the hyperopt-optimized model performed the best

(Figure S1.8F; Table S7; Table S14), suggesting the robust performance of auto-sklearn might not

necessarily be optimal. Actually, applying hyperparameter tuning tools like hyperopt requires more

domain knowledge, indicating a trade-off between optimal performance and runtime.

The state-of-art tool for CRISPRi in bacteria, which I refer to as ‘Pasteur’, implemented a

LASSO model and pointed out that a more complex model would not improve the performance

(Calvo-Villamañán et al., 2020), which is inconsistent with the better performance of the median

subtracting (MS) random forest model compared to the MS LASSO model (Figure S1.8D; Table S14).

But the retrained Pasteur on our integrated data performed similarly to the MS random forest model. On
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one hand, given the same feature set in both MS random forest and MS LASSO models, a tree-based

model showed potential for performance improvement. On the other hand, the reduced sequence feature

set used by the Pasteur model might be favored by simple models like LASSO, suggesting the feature set

is crucial to the choice of the model type.

The MS method is however more flexible in the choice of models, whereas MERF relies on

tree-based models. I tested shallow models, such as random forest and LASSO, and two CNN-based deep

learning models using the MS method. Even though I did not see a significant improvement in the MS

deep learning models (Table S7; Figure S1.8D), they possess the potential for improvement when more

data is available. Moreover, transfer learning in combination with deep learning, which applies a

pre-trained model to a related problem to reduce the required sample size and training time, can take

advantage of the tremendous data generated in laboratory strains, such as strains of E. coli, to understand

other bacteria. The transfer learning approach has been found promising, for instance, to translate the

findings in the mouse model to human (Brubaker et al., 2019) and the information from the reference atlas

to new single-cell data (Lotfollahi et al., 2021). Of note, integrating data for the MS method demands a

non-trivial scaling normalization for the depletion scores to avoid batch effects given that the readout

from screens under different conditions exhibits qualitative discrepancy (Figure 3.1.2A). Whether the

integration process can be simplified using more advanced methods, i.e. conditional variational

autoencoder (Simidjievski et al., 2019), requires further investigation.

To evaluate the models, I applied various validation methods and showed MERF outperformed

previous existing tools in both training data and independent data. Cross-validation is common for

machine learning model hyperparameter tuning and evaluation, providing better generalization by using

non-overlapping test sets in each iteration. For MERF, I optimized the hyperparameters using gene-wise

cross-validation. The better performance of MERF in individual datasets besides training data

demonstrated satisfactory generalizability and the practicality of cross-validation. While cross-validation

focuses on the train-test split, Spearman correlation is often applied as the metric to evaluate the

prediction accuracy. But Spearman correlation also suffered from the high sensitivity to the sample size,

as the median Spearman correlation in the training data is below 0.4 where less than 10 gRNAs were

designed for most of the genes (Table 1). In contrast, the median Spearman correlation fluctuates from

0.5 to 0.7 in the independent validation data (Table S14), where as high as 223 guides were designed for

one gene. While evaluating with a few dozen of guides in fluorescent-based and miller assays is less

convincing, the saturating screen of nine purine biosynthesis genes provided a more reliable estimate.

Aside from the Spearman correlation, I further included positive predictive value to evaluate the accuracy

of selecting the efficient guides given that only three to five guides are commonly selected for one gene in
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practice. These two metrics together provided an in-depth evaluation and suggested that caution should be

taken in choosing evaluation metrics.

Beyond the predictive power of the machine learning models, I leveraged the interpretability of

the optimized models to extract rational design rules for various CRISPR-Cas systems. For CRISPRi in

bacteria, I observed highly consistent interpretation across models (Figure 3.1.4A; Figure S1.4F; Figure

S1.10E), indicating the proposed design rules are not model-dependent. To my surprise, despite most of

the highlighted sequence features being concordant with the CRISPR-Cas9 system, the effect of the 20th

position in gRNA is the opposite. The reversed effect might indicate the structural differences between the

target binding and cleavage considering that dCas9 only binds to DNA without introducing DSB.

Strikingly, the interpretation using TreeSHAP captured the specific effects for different CRISPR-Cas

systems. For the CRISPR base editor, the sequence context in the editing window (position 5 to 8 in the

gRNA) has a major effect (Figure 3.2.1E), corresponding to the importance of successful editing to

introduce premature stop codons for gene silencing. Since the NGG PAM of Streptococcus pyogenes Cas9

(SpCas9) limits the number of targetable positions, Streptococcus canis Cas9 with a more flexible NNG

PAM was utilized in the base editor screen. In spite of the proposed PAM flexibility, SHAP values

suggested that there is a distinct preference in the PAM sequence and the downstream sequence. Such a

rapid means to investigate the PAM preferences of Cas proteins with the combination of large-scale

screening and machine learning is valuable for adapting CRISPR-based tools to more microbes, given that

the adaptation of alternative Cas proteins is inevitable (Rock et al., 2017) due to the low efficiency and

toxicity of the widely used SpCas9 in some bacteria (S. Cho et al., 2018).

For Cas13a, the target expression level exhibited the highest contribution, and the effects of this

predictor correspond to the observed strong correlation between the target expression level and depletion

scores (Figure 3.2.2D-E). Despite gene expression level also impacting the depletion score in the

CRISPRi essentiality screen, the effect was only observed in essential genes. Whereas gene essentiality

plays a pivotal role in the extent of depletion in the CRISPRi essentiality screen, gene essentiality has a

much weaker impact in the Cas13a system (Figure 3.2.2E), strengthening the determinant role of

transcriptional level in endogenous targeting by Cas13a. In addition, the model interpretation also pointed

out the PFS sequence preference. Given that the PFS sequence in the Cas13a system plays an equal role

as the PAM sequence in the Cas9 system, the highlighted attributions of both PFS and PAM sequences in

various systems suggest the importance of non-self recognition in guide efficiency. Interestingly, in both

Cas13a and Cas12a systems, thermodynamic features have more significant contributions than that in

CRISPRi (Figure 3.2.2E, Figure 3.2.3E), more concordant with the Cas9 system (Xiang et al., 2021).

The complexity in the secondary structure of the target sequence has a higher contribution in the Cas13a

system, whereas the gRNA self-folding is the strongest predictor in the Cas12a system, which can be
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explained by the fundamental difference in the target sequence type - Cas13a targets RNA while Cas12a

targets DNA. Despite the uniformity of predictive features for Cas12a in different strains of K.

pneumoniae (Figure S2.3A-B), it is unclear whether the guidelines for CRISPR-Cas techniques

generalize well across bacterial species. The degraded prediction accuracy of the CRISPRi model trained

with E. coli data in Salmonella (Figure S1.7B) however hinted at the lack of model generability across

bacteria, but the model was trained on data from the same strain. Nevertheless, the discrepancy in

predictive features for different CRISPR-Cas systems underlines the need for independent design rules.

As CRISPR genome-wide screens are more routinely performed to characterize microbes (Todor et al.,

2021), the interpretation of a predictive algorithm trained on the screen data with the proposed machine

learning approach can provide insights into the CRISPR systems, facilitating the further improvement and

application of the CRISPR-based tools.

Even though I demonstrated that my MERF model outperformed existing tools, there is still room

for improvement. Firstly, expanding the datasets by integrating screens under various conditions or from

different strains can enhance the generalizability of the model, and including gRNAs targeting

non-essential genes that are significantly depleted can enlarge the sample size, potentially improving the

accuracy. Secondly, the feature set can be fine-tuned. While an exhaustive search of an optimal reduced

feature set can be performed to remove correlated or redundant features, features can also be optimized

using other calculation methods or the feature set can be extended to describe other gRNA properties. For

example, one can alternatively incorporate melting temperature as a thermodynamic feature, implement

transcriptional data from the same experimental condition, and include di- or tri-nucleotide features.

Thirdly, the searching space for the hyperparameters of the model can be optimized and other tools for

hyperparameter tuning, such as Optuna (Akiba et al., 2019) and Tune (Liaw et al., 2018), can be tested.

Lastly, multiple models can be trained on a portion of data, followed by selecting one of these models for

prediction based on the similarity between the training and the query data to obtain a better performance

while avoiding overfitting the training data.

In combination with autoML, my exploration of data integration, feature engineering, model

selection, and interpretation provides a blueprint for applying machine learning in the analysis of CRISPR

systems. After demonstrating the robustness of my adaptive machine learning approach in characterizing

various CRISPR systems in a variety of bacteria, I expect the approach can be easily applied to any

bacterium and CRISPR-Cas system of interest. Therefore, my adaptive machine learning approach can

not only address the growing demand for rational guide design with the development of novel

CRISPR-based tools and their increasing practice, but also expand the application of CRISPR-Cas

systems in other bacteria. While much more efforts have been invested in the application of CRISPR in

eukaryotes (Komor, Badran, et al., 2017), the wealth of knowledge in immune responses in humans
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enables host-directed personalized therapies for infectious disease based on immune profiling (Sundaresh

et al., 2021). Advancing the application of CRISPR-Cas systems in prokaryotes can uncover novel drug

targets (Bosch et al., 2021; McNeil et al., 2021; Feng et al., 2022) and inform host-pathogen interactions

(Sidik et al., 2016; Ferrand et al., 2018; Casadevall Arturo & Pirofski Liise-anne, 2000), strengthening

both host- and pathogen-directed treatments (Abreu et al., 2020). Moreover, the availability of

CRISPR-based tools in more bacteria reinforces the strain-specific targeting using CRISPR in a complex

microbial population (Uribe et al., 2021; Rubin et al., 2022; Rottinghaus et al., 2023) as an alternative

therapeutic strategy for infectious diseases. For instance, the machine learning approach can be applied to

develop a predictive algorithm with strong generalizability from CRISPR screens in multiple laboratory

culturable strains. Given that whole genome sequencing is inexpensive, efficient gRNAs can be designed

to eliminate unculturable pathogenic strains that are close to the laboratory strains using the developed

predictive algorithm. While antimicrobial resistance has been a growing threat to millions of lives

(Murray et al., 2022), expanding the application of CRISPR-Cas systems in bacteria paves a path to

advanced therapeutics for bacterial infection.
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Appendix
The description of supplement tables S1 to S17 are as follows, and the file containing the tables is

accessible on GitHub:

https://github.com/yanyyyy3/PhD_thesis/blob/main/CRISPRi/Yu_CRISPRi_supplementary_tables.xlsx

Table S1 Description of the features used in model training

Table S2 Description of train-test splits in the study

Table S3 Model evaluation of feature engineering

Table S4 SHAP values from model predicting the gRNA depletion

Table S5 Model evaluation of data fusion

Table S6 Model evaluation of data fusion with other model types

Table S7 Model evaluation of segregating gene and guide effects

Table S8 SHAP values from segregation models

Table S9 SHAP interaction values from MERF

Table S10 Description of gRNAs targeting deGFP

Table S11 Description of gRNAs in miller assay

Table S12 Model evaluation for targeting deGFP and miller assay

Table S13 Description of gRNAs for screen of purine biosynthesis genes

Table S14 Model evaluation of saturating screen of purine biosynthesis genes

Table S15 List of strains

Table S16 List of plasmids

Table S17 List of oligos for plasmid construction, library generation, and sequencing
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Figure S1.1

Figure S1.1: Illustration of the genomic and sequence features used, see also Table S1.

117



Figure S1.2

Figure S1.2: Comparison of guide depletion across datasets. (A) The logFC of gRNAs in E75 Rousset plotted

against that in Wang for shared gRNAs. (B) The logFC of gRNAs in E18 Cui was plotted against that in Wang for

shared gRNAs. (C) The logFC of gRNAs in E18 Cui was plotted against that in E75 Rousset for overlapping

gRNAs.
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Figure S1.3

Figure S1.3: Spearman correlation of 10-fold cross-validation of models trained with one or mixed datasets.

(A) Auto-sklearn optimized models trained with the indicated combination of datasets and H2O optimized model

trained with integrated three datasets. (B) linear regression, (C) LASSO, (D) Elastic net, (E) support vector

regression (SVR), (F) Random forest (RF) regression, (G) Histogram-based gradient boosting regression (HistGB),

(H) LASSO (same hyperparameters as the MS LASSO model, gene-wise split). (I) Random forest (same

hyperparameters as the MS random forest model, gene-wise split).
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Figure S1.4

Figure S1.4: MS models for segregation of gene and guide effects. (A) The overview of training an MS model.
We subtract the gene-wise median logFC from each gRNA depletion value upon data fusion to obtain the activity
scores of each gRNA. The activity scores were used as training targets and the random forest or LASSO models
were trained with 128 guide-specific features. (B) The logFC values in Wang were scaled based on the linear
regression between the original logFC of Wang and the average logFC of E75 Rousset and E18 Cui for the 378
overlapping gRNAs. The distributions of activity scores (C) with and (D) without scaling are shown. (E) Predicted
scores of the random effect model from MERF (y-axis) compared to the median logFC across gRNAs (x-axis) for
each gene in each dataset. (F) SHAP values for the top ten features in the MS random forest model. Global feature
importance is given by the mean absolute SHAP value (left), while the beeswarm plot (right) illustrates feature
importance for each guide prediction.
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Figure S1.5

​Figure S1.5: An illustration of feature interactions. The schematic on the left illustrates the positions of three

representative interacting positions in the vicinity of the PAM sequence. (I-IV) show SHAP values for features in

guides containing one (+/-) or the other (-/+) feature, or both (+/+). The expected SHAP value (red line) is calculated

as the sum of the median SHAP values observed for each feature when occurring independently. 20 C/G/A: C/G/A

in 20th gRNA position, +1 C: C downstream of PAM, P1 A/C: A/C in the variable position of the NGG PAM.
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​Figure S1.6

​

​Figure S1.6: Deep learning approaches do not improve prediction performance. Architectures of the applied

deep learning models for MS method. Sequence features were processed using 1D convolutional layers and later

concatenated with other guide features. Guide features refer to guide-specific features apart from sequence features.

MLP: multilayer perceptron.
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Figure S1.7

Figure S1.7: Independent validation of model performance. The activity of 19 gRNAs targeting a

plasmid-expressed deGFP gene was measured in (A) E. coli and in (B) Salmonella Typhimurium SL1344 using a

flow cytometry-based assay. The measured activity compared to the control gRNA is plotted against the score

predicted by the MERF model. The inset barplot illustrates Spearman correlations for six methods for predicting

guide efficiency. (C) The activity of 30 gRNAs targeting lacZ was measured with a Miller assay by

Calvo-Villamañán et al., plotted as in A and B.
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Figure S1.8

Figure S1.8: Additional figures related to model validation using a saturating screen of purine biosynthesis

genes. (A, B) Positive predictive values of all gRNAs for each time point. The predicted positives are defined as (A)

the top 3 and (B) the top 4 predicted gRNAs in each gene, while true positives are gRNAs with fold change within

the N fold of the strongest depleted gRNA in each gene (N= 1.5 - 5 with a step of 0.5). (C-F) Performance on the

purine screen of different models. The calculation of Spearman correlation and positive predictive value is the same

as Figure 3.1.5B-C. (C) MERF random forest model trained with individual or integrated three datasets, (D) MS

random forest, LASSO, and deep learning models trained with integrated three datasets, (E) MERF random forest

model trained with or without distance features (Drop distance) and with 4 instead of 9 gene features for the

random-effect model (CAI value, gene length, gene GC content, and dataset), (F) MERF fixed-effect model with

random forest optimized using hyperopt (same in Figure 3.1.5), random forest optimized using auto-sklearn, and

histogram-based gradient boosting model optimized using auto-sklearn. The hyperparameters in the auto-sklearn

models were optimized for depletion prediction.
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Figure S1.9

Figure S1.9: Additional figures related to measured logFC in the saturating screen of purine biosynthesis

genes. (A) Measured logFCs for each guide as a function of distance to the start codon for the other 6 genes not

shown in Figure 3.1.5. (B) The predicted scores from the MERF random forest model were plotted against

experimental logFC at different time points. Guides targeting purE and purK were marked with orange and green

respectively. (C) The distribution of the standard deviation of the logFC for guides targeting each gene in the

training data.
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Figure S1.10

Figure S1.10: The model performance replacing 4 thermodynamic minimum free energy (MFE) features with

△GB. (A) Comparison of Spearman correlation between actual and predicted guide depletion in 10-fold

cross-validation (CV) of the best model trained with Auto-Sklearn with different feature combinations, using data

from (Rousset et al., 2018). + △GB: only sequence, distance, and △GB features. 134 guide + gene (△GB): all

features. (B) Comparison of Spearman correlation from the 10-fold CV of the best auto-sklearn trained model on the

integrated three datasets to predict depletion. The x-axis indicates the test sets. (C) Spearman correlations between

the predicted scores and measured logFC for each gene across collected time points in the saturating screen of purine

biosynthesis genes. (D) Positive predictive values of all gRNAs for each time point in the saturating screen of purine

biosynthesis genes. The predicted positives are defined as the top 5 predicted gRNAs in each gene, while true

positives are gRNAs with logFC within the N fold of the strongest depleted gRNA in each gene (N= 1.5 - 5 with a

step of 0.5). When△GB is not specified, the MERF or MS CRISPRon models were trained with 4 MFE features.

(E) SHAP values for the top 10 features from MERF model with△GB. Global feature importance is given by the

mean absolute SHAP value (left), while the beeswarm plot (right) illustrates feature importance for each guide

prediction.
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Figure S2.1

Figure S2.1: Additional results related to the guide depletion screen. Related to Figure 3.2.2. (A) Selected

highly-depleted guides from the library yield reduced transformation or growth. A randomized crRNA from the

library (NT 0) served as the negative control, while a crRNA targeting the rRNA encoded by rrsE served as a

positive control. Purple data points represent small colonies indicative of reduced growth. Bars represent the mean
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of at least triplicate independent experiments. Statistical significance was calculated by comparing the

transformation fold-reduction to that of NT 0. ***: p < 0.001. **: p < 0.01. *: p < 0.05. ns: not significant or average

below the reference. Tested guides resulted in significant fold-reduction in transformation or small colonies. (B)

Correlation between guide depletion score and the expression levels of the target gene for cells cultured to a

turbidity of ABS600 ≈ 0.8. ρ: Spearman correlation coefficient. Values for transcript levels are the average of

duplicate independent experiments, while values for the depletion score are the average of duplicate independent

screens. (C) Predicted translation rate poorly correlates with guide depletion score in the library screen. Translation

rates were predicted using the RBS calculator. (D) Median depletion scores of guides targeting non-essential genes

are lower compared to essential genes having the same range of transcript expression. The data are derived from the

experiment at OD600 ≈ 0.5. (E) Distribution of expression level for the essential and non-essential genes in different

deciles. Essential genes were evenly distributed into ten deciles while non-essential genes were split based on the

expression values of essential genes of each decile. In the first decile, there is a large number of non-essential genes

and few essential genes which distribute on the higher end of the range. This explains the lower median expression

levels of guide targeting non-essential genes compared to essential genes for that decile.
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Figure S2.2
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Figure S2.2: Machine learning model and feature importance. Related to Figure 3.2.2. (A) Overview of the

machine learning model development protocol used. Screen data was used to determine the depletion of each of

25,161 guides as part of growth in liquid culture. The derived log2 fold-changes were used as prediction targets,

with 144 sequence, gene, thermodynamic, and expression features as predictors. Auto-sklearn was used to train and

optimize an assortment of candidate model types. A histogram-based gradient boosting model was the best

performing model. This model was then interpreted using TreeSHAP to explain the contribution of each predictor to

each prediction. (B) Alternative evaluation of feature importance using cross-validation. The predictive power of

each feature was evaluated by first training a simple histogram-based gradient boosting model with a single feature

or feature set, and then iteratively adding additional features and comparing the Spearman correlation in 10-fold

cross-validation of the model with the expanded feature set to previously trained models. For B, the base feature was

the crRNA sequence. Adding PFS sequence features slightly increases the Spearman correlation, but a large jump in

correlation is observed when adding expression level features. Other features lead to only minor changes in the

Spearman correlation. (C) As in B, but using expression level as the base feature. This again shows that expression

level alone has high predictive utility; features other than the crRNA and PFS sequence features have relatively

minor effects on overall prediction accuracy. (D) SHAP values for the strongest predictors contributing to guide

depletion independently from gene features. Guide features were assigned to a random forest model, while gene

features were assigned to a random effect model using a mixed effect random forest (MERF). Most features are

similar to the model with both guide and gene features, such as the presence of a C in 1st and 2nd PFT position, a U

in 19th crRNA position and low mRNA and crRNA secondary structure. Additionally, there are three new

parameters, one favoring depletion, which is the presence of a U in 11th crRNA position and two worsening guide

activity, an A in 1st PFS position and a C in 17th crRNA position. (E) Correlation between guide scores from

Wessels et al. algorithm and guide depletion scores in this study. The graph above depicts this correlation for all

crRNA guides in the library (top) and crRNA guides targeting tolB (below).
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Figure S2.3

Figure S2.3: Features contributing to guide depletion in the single strains and in the mixed model. Related to

Figure 3.2.3. (A) SHAP values for the ten strongest features determining guide depletion in the KPPR1 and NTUH

strains when using the individual screen data for training the algorithm. The left barplot depicts the absolute weight

of each feature to the depletion values, while the right beeswarm plot shows how each datapoint impacts depletion

according to each feature. (B) Features determining guide depletion in the library screen by using the single strains

or the mixed data to train the algorithm. (C) Comparison of Spearman correlation from 10-fold CV of the best

auto-sklearn trained model on one dataset or the integrated three datasets.
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