
On Data Plane Multipath Scheduling for
Connected Mobility Applications

Martin Herrmann Amr Rizk
University of Duisburg-Essen

first.last@uni-due.de

Abstract—Cooperative, connected, and automated mobility
(CCAM) systems depend on reliable communication to provide
their service and more crucially to ensure the safety of users.
One way to ensure the reliability of a data transmission is
to use multiple transmission technologies in combination with
redundant flows. In this paper, we describe a system requiring
multipath communication in the context of CCAM. To this end,
we introduce a data plane-based scheduler that uses replication
and integration modules to provide redundant and transparent
multipath communication. We provide an analytical model for
the full replication module of the system and give an overview
of how and where the data-plane scheduler components can be
realized.

I. INTRODUCTION AND SYSTEM DESCRIPTION

Cooperative, connected, and automated mobility (CCAM)
comprises mainly the automated and cooperative road usage of
connected vehicles, which is expected to significantly benefit
traffic efficiency and safety [1]. The interaction between the
connected vehicles is handled by cooperative intelligent trans-
port systems (C-ITS), that provide the necessary services such
as hazard notifications and cooperative maneuver coordination
to road users. The backbone of a large-scale system such as
C-ITS is a stable and reliable communication.

Multiple technologies such as 5G or ITS-G5 are able to
provide communication with various grades of reliability.
These technologies can be combined and used in parallel to
create redundant and thereby more reliable end-to-end commu-
nication. Figure 1 provides an overview of the combined usage
of multiple transmission technologies in the context of CCAM.
The figure shows a scenario where an OBU (ON-board unit)
on a vehicle runs the communication functionality for a
vehicle-side of a CCAM function, e.g. maneuver coordination.
The application on the vehicle is communicating with its
counterpart on the Edge (MEC) server. To this end, it is using
multiple communication technologies simultaneously, e.g. 5G
and mmWave Adhoc WiFi in the 60 GHz band. Evidently, both
the OBU and the MEC server require a scheduling function
that maps data packets incoming from the application to the
respective network interfaces. This mapping can be either
forwarding a packet to an appropriate interface or cloning that
packet to a subset of available and appropriate interfaces. The
counterpart to the scheduler on the sending side, i.e. the uplink
direction, is a scheduler entity on the receiver side (MEC)
that either forwards the incoming packets or removes packet
clones.

Fig. 1: Reliable end-to-end CCAM communication using a
multiple transmission technologies.

As these technologies have different dynamic characteristics
the multipath scheduler needs to ensure the right choice of
packet-to-technology mapping. This may for example be based
on the available communication paths and their status. In addi-
tion to the challenge of specifying and optimizing this adaptive
multipath scheduler, the question arises of where to implement
it. This scheduler could, for example, be implemented in the
application layer as Multipath QUIC [2], [3] for flexibility,
the kernel space as Multipath TCP [4], [5] for performance. In
this work, we opt to show how such a multipath scheduler can
be transparently integrated on a lower layer for performance
reasons using tc [6]. We note that the approach we show here
using tc can also be ported to XDP [7].

In the following, we first provide a simplified model of the
operation of the multipath scheduler as a basis for subsequent
optimization. This model is followed by a description of the
corresponding data plane implementation.

II. MODEL

In this section, we describe an analytical model for the
multipath scheduling system described in Sect. I for the case
of full replication, i.e., every packet arriving at the multipath
scheduler is replicated on all paths, and at the receiver the
first packet clone is forwarded while the other packet clones
are dropped. The following model is a slight variation of
the more general replication model from [8]. If the flow is
not replicated but rather divided on the different paths an
appropriate queueing model is given in [9].

As depicted in Fig. 2, we consider packet arrivals according
to a Poisson process with rate λ, where Ti denotes the

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

Fig. 2: Queueing model for the (replicating) multipath sched-
uler: Packets arrive as a Poisson process and are replicated
to all available paths that are each modeled as a queue. For
each packet the response time is given through the minimum
response time over all of its clones.

exponentially distributed inter-arrival time between the ith and
i + 1st packet. The service time of a packet i on path j
is given as Xi,j which are assumed to be iid exponentially
distributed. The scheduler clones every incoming packet to
both paths while the receiver forwards every fresh packet to the
application and discards its clones upon arrival. The steady-
state response time r is known to be distributed as [8]

r
D
= max

n≥0

{
n+1∑
i=1

min
j≤2

{Xi,j} −
n∑

i=1

Ti−1

}
(1)

where D
= denotes equal in distribution.

Theorem 1 (special case of [8]). Given a full replication
multipath scheduler with Poisson arrivals with interarrival
times Ti and iid packet service times on every available path
Xi,j , of a packet i on path j. The tail of the response time
distribution given in (1) is bounded by

P [r ≥ σ] ≤ E
[
eθminj X1,j

]
eθσ (2)

with

θ := sup
{
θ ≥ 0|E

[
eθminj X1,j

]
E
[
e−θT1

]
= 1

}
(3)

The theorem above is a straightforward adaptation of a more
general statement in [8] where the proof can be found.
Example: Given Poisson arrivals with interarrival times Ti ∼
exp(λ) and iid exponentially distributed packet service times
on two available paths Xi,j with identical parameters µ > λ
for stability. Given this replicating multipath scheduler, the
packet response time from (1) is, hence, bounded by

P [r ≥ σ] ≤ 2µ

λ
e−(2µ−λ)σ (4)

Interestingly, note that the prefactor above in (4) is larger than
one.

We note that the model above is a pure replication model.
In principle, it can be extended using more complex char-
acterizations of the traffic (such as martingale envelopes) as
well as similar characterizations for the service processes to
encompass more realistic traffic and scheduling scenarios.

III. DATA PLANE MULTIPATH SCHEDULER REALIZATION

This section provides an overview of the multipath schedul-
ing on the data plane for the considered CCAM scenarios.
To this end, we use a combination of scheduling programs

Fig. 3: Simplified model of the considered multipath schedul-
ing system on the data plane of the respective hosts. OBU
and MEC stand for on board unit and Multi Access Edge
Computing server.

written in C that are loaded as TC egress and TC ingress
filters after passing a bpf (Berkeley packet filter) verifier.
These schedulers map incoming packets to available interfaces
according to predefined rules. Additionally, these scheduler
programs have access to bpf maps, i.e. memory on the
respective systems, to save and manipulate a scheduler / packet
state.

Figure 3 provides a description of the considered multipath
scheduling system on the data plane of the respective hosts. It
shows an application that writes data into a virtual interface
connected through a scheduler-given TC egress and TC ingress
filters to the available interfaces. This scheduler program can
be loaded and changed beforehand (or possibly at runtime)
as TC filters. The data packet is written or cloned as per
the scheduler program on the appropriate interfaces. On the
receiver side, the scheduling program is accordingly loaded to
execute a complementary task. Given that the sender scheduler
program clones data packets (full replication) on the different
paths, the receiver scheduler program removes the clones from
the data stream. If the sender scheduler is not cloning packets,
the receiver scheduler may be set to only forward incoming
packets. The receiving scheduler can well be used to obtain
monitoring information and also provide packet-level feedback
to the sender side.

In the following, we describe the multipath scheduling on
the data plane as a pure transparent data packet replication.
In future work, we will describe the differentiated use of this
multipath scheduler beyond replication. The replication system
is implemented to utilize two available disjoint paths. The
system consists of a sender scheduler that is called replicator,
and a receiving counterpart that is denoted integrator.

The first link is used as a shared link between the traffic
flows A1 and A2. While the second link is used exclusively
by traffic flow A2. The buffer of the shared link uses FIFO
scheduling to process the incoming packets. The shared link
provides a better connection (i.e. lower average delay, higher
average bandwidth) than the second link. To emulate the
different characteristics of the two links we use tc and qdisc
[6].

To redundantly send packets of flow A2 over both link 1

and 2, all packets of flow A2 must be replicated to both link
interfaces. Correspondingly, on the other side duplicate packets
of flow A2 must be handled by dropping them to accommodate
applications that are unable to handle these duplicate packets.
This replication and dropping or integration can be handled
by packet filters.

The replication of flow A2 to both links is implemented by
first identifying and then cloning and redirecting the packets
of flow A2 to the interface of one link and redirecting the
packet to the interface of the other link. To this end we use the
bpf helper function bpf clone redirect. The replication filter
is then compiled and loaded onto the ingress of the scheduler
network interface.

The integration of duplicated packets of traffic flow A2 is
done by first identifying the packets belonging to traffic flow
A2 and then comparing the identification information of the
packets with the information stored in the bpf map. If the in-
formation is not already contained in the map, the information
is added to the map and the packet is forwarded. Otherwise,
the packet is identified as a duplicate and is dropped. Here,
we use the bpf map type BPF MAP TYPE LRU HASH. The
integration filter then is compiled and loaded onto the egress
of the scheduler network interface.

IV. RELATED WORK ON MULTIPATH COMMUNICATION

Multipath schedulers mapping packets to paths exit in the
context of multipath protocols, such as MPTCP [4], [5], [10]
and MPQUIC [2], [3]. A logical MPQUIC connection is
divided into multiple streams. Each of these streams acts
as its own connection with no head-of-line (HOL) blocking
between streams. In contrast to MPQUIC, MPTCP multiplexes
application data streams on a single connection with possi-
ble HOL. The difference between these protocols and our
approach is that redundancy is not baked into MPTCP or
MPQUIC, and is usually regarded as breaking the transport
layer protocol premise. In addition, our approach conducts
multipathing on the data plane, while MPQUIC or MPTCP
implement multipathing on the user space or in the kernel.
This difference allows our scheduler to be faster, while also
being more restricted, than a user space implementation would
be1. Running on the data plane enables our approach to be
transparent and allows arbitrary protocols to operate on top.

Multipathing on the data plane exists in data centers where
this functionality is set in switches such as the ToR (Top
of the Rack) switch. Classically, ECMP multipathing hashes
flow headers to consistently map flows to paths. Using the
domain-specific language p4 together with p4 programmable
switches such as the Tofino switch [11] flows can be steered
in granular fashion to use multiple available paths at the same
time [12]. The difference to this work is that we set our
multipath schedulers into the end-hosts, which is especially
suited in the context of 5G hosts as in CCAM scenarios.

1The restriction here is actually similar to the restrictions found in some
MPTCP frameworks such as in [4]

V. CONCLUSIONS

In this paper, we presented a multipath scheduling system
description that uses multiple transmission technologies in
the context of CCAM. Communication reliability is achieved
using a combination of replication and integration of packets
which allows the system to provide transparent redundant
communication between hosts. We reviewed an analytical
model for a full replication multipath scheduler and provided a
close-form expression given iid exponentially distributed inter-
packet arrival times and service times. We describe how and
where such a multipath scheduler can be realized on the data
plane, using tc and bpf code. Finally, we briefly discuss
other already established methods of multipath communication
and how our approach compares to them.

This paper primarily described a preliminary approach to
creating a programmable and adaptive multipath transmis-
sion system to provide reliable communication for connected
mobility applications. Based on this work, we intend to
extend and compare our approach and the analytical model to
measurements and to other multipath communication methods
such as MPQUIC.

REFERENCES

[1] W. H. Schulz, H. Wieker, and B. Arnegger, “Cooperative, connected
and automated mobility: Overcoming the loss of strategic competences
by new co-operation models for automotive and telecommunication
industries,” Future Telco: Successful Positioning of Network Operators
in the Digital Age, pp. 219–229, 2019.

[2] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
“Multipath quic: A deployable multipath transport protocol,” in IEEE
International Conference on Communications (ICC), 2018, pp. 1–7.

[3] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and
evaluation,” in Proceedings of the 13th international conference on
emerging networking experiments and technologies, 2017, pp. 160–166.

[4] A. Frömmgen, A. Rizk, T. Erbshäußer, M. Weller, B. Kolde-
hofe, A. Buchmann, and R. Steinmetz, “A programming model for
application-defined multipath TCP scheduling,” in Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference, 2017, pp. 134–146.

[5] S. Barré, C. Paasch, and O. Bonaventure, “Multipath tcp: from theory
to practice,” in 10th International IFIP TC 6 Networking Conference,
2011, pp. 444–457.

[6] tc - Linux Administration and Privileged Commands Manual.
[7] M. A. Vieira, M. S. Castanho, R. D. Pacı́fico, E. R. Santos, E. P. C.

Júnior, and L. F. Vieira, “Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp. 1–36, 2020.

[8] F. Ciucu, F. Poloczek, L. Y. Chen, and M. Chan, “Practical analysis of
replication-based systems,” in IEEE Conference on Computer Commu-
nications, INFOCOM, 2021, pp. 1–10.

[9] A. Rizk, F. Poloczek, and F. Ciucu, “Stochastic bounds in fork-join
queueing systems under full and partial mapping,” Queueing Syst.
Theory Appl., vol. 83, no. 3-4, pp. 261–291, 2016.

[10] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in NSDI, vol. 11, 2011.

[11] A. Agrawal and C. Kim, “Intel Tofino2 - a 12.9 Tbps p4-programmable
ethernet switch,” in IEEE Hot Chips 32 Symposium (HCS), 2020, pp.
1–32.

[12] C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “MP-HULA:
Multipath Transport Aware Load Balancing Using Programmable Data
Planes,” in Proceedings of the 2018 Morning Workshop on In-Network
Computing - NetCompute, 2018, p. 7–13.

