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Abstract—Web caches often use a Time-to-live (TTL) limit
to validate data consistency with web servers. We study the
impact of TTL constraints on the hit ratio of basic strategies in
caches of fixed size. We derive analytical results and confirm
their accuracy in comparison to simulations. We propose a
score-based caching method with awareness of the current TTL
per data for improving the hit ratio close to the upper bound.
Index Terms—LRU, LFU, FIFO caching strategies, hit ratio
analysis and simulation, TTL validation of data consistency

1. Caches with TTL Data Validation
Time-to-live caching policies assign a time limit to each

data object for control of valid cache content. A main
purpose of TTL constraints is to validate data consistency
between web servers and caches, where invalid data may
still be retrieved from a cache, but only for a limited time
[1][2]. The German Telemedien law (TMG) § 9 [3] allows
Internet service providers to store data for a limited time in
order to improve efficiency, if they keep them up to date
according to approved industry norms [4]. Data invalidation
concepts with strict synchronization between web servers
and caches have been analysed [5]. According to Zheng et
al. [5], TTL validation is more usual: ”Most web applica-
tions apply validation rather than invalidation to maintain
cache consistency due to the extra overhead on the network
caused by the latter”.

Then web caching strategies have to combine the se-
lection of most relevant cache content for the caching goal
with TTL validation, where shorter TTL values reduce the
sojourn time and the entire amount of valid data in a
TTL cache, as well as the hit ratio [6]. We still agree
to a statement by Shim et al. [7]: “However, the cache
consistency algorithms are not typically well integrated
into cache replacement algorithms. The published work on
the topic usually considers the two algorithms as separate
mechanisms and studies one of the two in isolation.”

The work by [7][8][9] is addressing cache performance
together with consistency control. Berger et al. [9] consider
two TTL timers per object, one for the control of the amount
of data in the cache and a second for data consistency.
Such approaches are generalized towards overall TTL-based
utility concepts [10]. However, far most of the TTL caching
analysis work stream as well as the analysis of fixed size
cache performance does not include data consistency [11].

In fixed size caches, TTL restrictions are added on
top of a usual cache management policy, such as Least

Recently/Frequently Used (LRU/LFU), First-In-First-Out
(FIFO), score-based or machine learning (ML) methods. As
to the authors’ knowledge, the impact of TTLs on the hit
ratio has been studied for pure TTL caches [10][11], but
results for strategies in fixed size caches are missing.

In Section 2, we introduce three main options of TTL
reset policies. Their impact on the hit ratio is analyzed in
Section 3 for independent requests to caches of fixed size
with LFU or static strategies. In Section 4, we extend the
LRU hit ratio approximations by Fagin and Che with regard
to TTLs. Section 5 compares the impact of TTLs on LRU
and LFU. The evaluations are extended to FIFO, Random
and an optimized score-gated strategy, which comes close
to the upper hit ratio bound. Section 6 addresses further
extensions and Section 7 concludes the study.

2. Control Options for TTL Web Caches
Three cases can be distinguished for TTLs under cache

or server control, as illustrated in Fig. 1 [10][11][12]:

• TTL Reset per Cache Miss (RpM)
• TTL Reset per Request (RpR)
• Periodic TTL Resets (PR)

Figure 1: TTL reset options for caches and web servers

RpM and RpR are options under cache control, where resets
per request lead to more frequent renewal of the TTL Tk of
an object Ok than reset per miss. We assume a unique TTL
Tk for all TTL resets for an object, even if the performance
analysis is often extensible to varying TTL reset values
until a next expiry. RpM is a useful cache validation option
without further instructions from a server, whereas RpR
may lead to many random resets until a next TTL expiry.
Web server control often demands for periodical resets,
independent of request and hit/miss events in caches. Then
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the caches can be informed via HTTP [4] about the currently
valid TTL policy of a server. The server-driven PR variant
is most relevant for synchronized cache data validation.

3. Impact of TTL on Static Fixed Size Caches
We assume an independent reference model (IRM),

which is characterized by request probabilities pk to each
object Ok in a fixed object catalogue (k = 1, · · · , N). pk is
valid per request and independent of past requests.

We consider a TTL variant based on the request count,
i.e., we assume that an object Ok is invalidated after Rk

requests to all data objects, such that the limit Rk refers
to requests in the entire data set and can be assumed to be
large. Then Rk = ⌈λTk⌉ (λ: entire request arrival rate) has
similar effect as a TTL limit Tk on each object Ok and can
be implemented and modelled without reference to the time.
For dynamic caching strategies this allows to directly follow
the cache content updates per request via Markov models,
see Section 4. Section 6 extends the results for a mapping
of T into a varying number of requests during time T . For a
fixed reset counter Rk, we obtain the static IRM hit ratios:

hTTL,RpM
Static,IRM =

∑
k:Ok∈C

p2kRk/(pkRk + 1); (1)

hTTL,RpR
Static,IRM =

∑
k:Ok∈C

pk(1− (1− pk)
Rk); (2)

hTTL,PR
Static,IRM =

∑
k:Ok∈C

pk − 1− (1− pk)
Rk+1

Rk + 1
. (3)

Objects Ok in the cache contribute by pk to the hit ratio
of the next request under IRM. For RpM, there are a mean
number of pkRk cache hits in a reset interval Rk followed
by a cache miss, which starts the next interval. Thus, the hit
ratio on Ok is reduced by the factor pkRk/(pkRk +1). For
RpR, each Rk interval without request to Ok causes a cache
miss, which reduces the hit ratio by the factor 1−(1−pk)

Rk .
For periodic reset, there is one cache miss on Ok per

reset interval with at least one request to Ok. Let R∗ denote
the number of all requests, R∗

k the number of requests to
Ok and p∗k = R∗

k/R
∗. We subdivide the request sequence

into nk TTL intervals R∗ = nk(Rk+1), where invalidation
after Rk requests means that an object is valid for Rk + 1
requests, starting from the request at the reset instant. Then
we obtain Eq. (4) for arbitrary request sequences and Eq. (3)
for IRM, where the fraction of intervals without a request
to Ok is denoted as p0k:

hTTL,PR
Static =

∑
k:Ok∈C

R∗
k−nk(1−p0k)

R∗ =
∑

k:Ok∈C

p∗k−
1−p0k
Rk + 1

. (4)

The LFU strategy converges to static caching of the most
popular objects, yielding a maximum hit ratio under IRM re-
quests and unit size data. Score-gated [13], GreedyDual and
corresponding machine learning methods also converge to
static caching and are covered by the results of Eq. (1-4), if
the rank order of objects due to scores becomes stable over
time for IRM. When objects of different size are preferred

via scores for the highest value density, then those strategies
maximize the caching value according to static knapsack
solutions [11] extending LFU as unit data size optimum.

4. Hit Ratio Analysis of LRU with TTL
4.1. LRU hit ratio with TTL and reset per miss
The exact solution of the IRM hit ratio for LRU as derived
by King [14] is tractable only for small caches. Instead,
approximations by Fagin [15] and Che et al. [16] are applied
for usual cache sizes with approved precision [17]. Both
approximations assume a common characteristic time TC

until a data object is handed over from the top LRU position
to the bottom and evicted, if there are no new requests to Ok.
TC equals the time to fill an empty cache of size M , until
M out of N objects have been referenced and represents
the LRU convergence time [11]. Then two causes have to
be considered for a cache miss in the next request:

1. TC is exceeded and the object is evicted, or
2. the TTL Tk of Ok has expired before the next request.

TTLs are again mapped to request count limits Rk=⌈λTk⌉
and RC=⌈λTC⌉. If Rk ≥ RC , we analyse the requests from
a cache miss until the next one as a Markov process with
Rk +1 states, as illustrated in Fig. 2. State 0 marks a cache
miss on Ok. The states 1, . . . , Rk mark the next requests to
the entire data set. States beyond the expiry limit Rk lead to
caches misses and thus back to state 0. Ok is evicted after
a sequence of RC requests without a reference to Ok as the
other cache miss case with transit back to 0.

Figure 2: Markov model for LRU with TTL and RpM

Then the steady state probabilities qn(n = 1, . . . , Rk) that
the object Ok is referenced at state n before the next miss,
i.e., for a cache hit on Ok at state n can be derived. Based on
independent requests, a hit in state n is followed by a next
hit in state n+m with probability (1–pk)

m−1pk. We directly
obtain q1, · · · , qRk

as multiples qn = fnq0 of q0, because
all downward transitions lead to state 0 (q0 = 1/

∑
n fn):

q1 = pkq0; q2 = (1–pk)pkq0 + pkq1 = pkq0; · · ·
qn = (1–pk)

n−1pkq0 + · · ·+ (1–pk)pkqn−2 + pkqn−1

= pkq0 for n ≤ RC ;

qn = (1–pk)
RC−1pkqn−RC

+ · · ·
+ (1–pk)pkqn−2 + pkqn−1 for n ≥ RC . (5)

If Rk < RC , the object Ok always expires before eviction
and we obtain the hit ratio hk = pkRk/(pkRk + 1) for Ok

from Eq. (5) similar to Eq. (1). In general, the IRM hit ratio
of LRU with TTLs Rk and RpM resets is given by:

hk = q1 + · · ·+ qRk
; hTTL,RpM

LRU,IRM =
∑N

k=1
pk hk. (6)



4.2. LRU hit ratio with TTL and reset per request
Based on the LRU approximations [15][16], an object Ok is
again evicted after RC = ⌊λTC⌋ requests to other objects,
or TTL expiry after Rk = ⌊λTk⌋ is the second cache miss
case. Then the probability of a hit on Ok beforehand is
hk = 1− (1− pk)

min(RC ,Rk). We conclude:

hTTL,RpR
LRU,IRM =

∑N

k=1
pk(1− (1− pk)

min(RC ,Rk)). (7)

Eq. (7) is equal to Fagin’s approach [15], if ∀k: Rk ≥ RC .

4.3. LRU hit ratio with TTL and periodic reset
For periodic TTL resets we again have to regard both cases
of TTL expiry after Rk and eviction after RC requests
as cache misses for Ok. Let hk(n) denote the probability
that the next request to Ok is a hit, when n ≤ Rk is the
remaining request count before expiry of Ok. We obtain:

hk(n) = 1− (1− pk)
n if n ≤ RC ;

hk(n) = 1− (1− pk)
RC if n ≥ RC .

In the case of periodic TTL resets, the process of TTL expiry
is decoupled and independent of the request instants. Then
in steady state, the time from a request to Ok until expiry
is equally distributed between 0 and Rk. We conclude:

hk =
∑Rk

n=0

hk(n)

Rk+1
= 1− 1− (1− pk)

Rk+1

pk(Rk + 1)
if Rk≤RC ;

hk =1− 1 + [(Rk+1−RC)pk−1](1−pk)
RC

pk(Rk + 1)
if Rk≥RC .

Note that the formula for Rk ≤ RC is equivalent to Eq. (3).

Finally, we obtain: hTTL,PR
LRU,IRM =

∑N

k=1
pkhk. (8)

5. Performance Evaluation
5.1. Effect of unique TTL on LFU & LRU hit ratios

Figure 3: Impact of TTL on LFU and LRU caches

Figure 3 shows hit ratio results for an example of LRU and
LFU caches with IRM Zipf distributed requests pk = αk−β

with β = 0.8 among N = 10 000 objects for a cache size

M = 500. Zipf distributed requests with similar shape
parameter β have been confirmed manifold for access to web
data, usually with moderate correlation among the requests,
where IRM represents a simplifying assumption not far from
realistic pattern. We assume a unique TTL R = Rk for
resets of all objects. Reset per request leads to more resets,
higher remaining TTL and thus higher hit ratio than reset
per miss, while periodic reset has lowest hit ratios. LFU
yields the maximum IRM hit ratio without TTL, but goes
down below the LRU level for R < RC .

The LRU stack is sorted by recent request times, i.e., due
to the remaining TTL for RpR, when all objects reset to the
same TTL R. Then objects are evicted before TTL expiry, if
the maximum TTL exceeds RC , and LRU is not affected by
TTLs R ≥ RC with RpR. Otherwise, if R < RC , there are
not enough valid objects to fill the LRU cache, i.e., only a
smaller top part of the LRU cache is utilized corresponding
to a reduced sojourn and convergence time R.

For a second evaluation case, we include FIFO, Random,
an optimized score-based method and a hit ratio bound.

5.2. FIFO TTL analysis transfer from LRU results
We can only briefly summarize the FIFO hit ratio analysis
approach with TTL constraints. The results are analogous
to the LRU results, when we refer to the FIFO hit ratio
approximation by Dan and Towsley [18] with characteristic
time TFIFO

C , which corresponds to Fagin’s or Che’s LRU
approximation with characteristic and convergence time TC .
A new object is put on a FIFO stack for each cache miss,
such that the sojourn time of an object until eviction in a
FIFO cache is longer TFIFO

C ≥ TC without new requests,
see the computation scheme in Eq. (5) of [17]. Since the
FIFO cache is modified only per miss, FIFO sorts the objects
due to TTL with RpM, whereas LRU provides sorting due
to TTL with RpR. Based on RC = ⌊λTFIFO

C ⌋, we conclude
that the FIFO hit ratio result with TTL and RpM is provided
by Eq. (7), whereas the FIFO hit ratio with TTL and RpR is
derived according to the Markov chain result of Eq. (5-6),
and Section 4.3 is also valid for FIFO with TTL and PR.

5.3. An optimized score-gated caching strategy
Finally, we adapt a score-gated caching (SGC) policy [13]
to optimize the performance beyond the basic strategies.
The SGC method prefers the top-M most popular objects as
cache content like LFU. Moreover, a clock pointer is used
to check if a top-M object is expired, which steps forward
to a next object in the cache per miss. If the clock points
to an (almost) expired object, it is replaced by the currently
requested object, to provide a chance for new hits. Upon
a request to an evicted top-M object, it is restored to the
cache position given by its popularity rank. In this way, SGC
combines and partly improves the best of the LFU and LRU
performance over the entire TTL range, see Figure 4.

5.4. Upper bound of the IRM hit ratio with TTL
In order to check whether the SGC results are optimal, we
introduce an upper bound on the hit ratio performance for



a cache of size M with TTL limits Rk per object and
RpM (RpR, PR) reset policy. Under IRM request pattern,
the optimum strategy puts the most popular objects into the
cache, which are currently not expired. This principle can
be realized only by partly reloading objects to the cache
without a request, but we can analyse the optimum hit ratio.

Let pV alid
k denote the probability that Ok is not expired.

For TTLs with RpM we obtain pV alid
k = pkRk/(pkRk+1),

see Eq. (1). The phases when an object is valid or expired
are independent for each object. Let p#V alid

k (l) denote the
probability that currently l out of the top-k most popular
objects are valid. We assume the objects to be ordered
due to popularity such that p1 ≥ p2 ≥ · · · ≥ pN . All
valid top-M objects are put into the cache. For k > M ,
Ok is put into the cache, if Ok is valid and less than
M of the top-(k-1) objects are valid, i.e. with probability
pV alid
k ·

∑M−1
l=1 p#V alid

k−1 (l). Finally, we compute p#V alid
k (l)

via a simple iterative scheme:

p#V alid
k (l) = p#V alid

k−1 (l)(1−pV alid
k )+p#V alid

k−1 (l−1)pV alid
k .

5.5. Hit ratio bound and performance of strategies
Figure 4 compares the results for LFU, LRU, FIFO, Ran-
dom, SGC and the bound with a unique initial TTL R after
resets and RpM for data consistency. We again consider an
IRM Zipf distributed request pattern with β = 0.6 for 10 000
objects and a cache of size M = 1000.

Similar to the results in Figure 3, LFU outperforms LRU
for large or no TTL (R > RC), but LRU and FIFO yield
higher hit ratio when the TTL is smaller (R < RC). Random
replacements are outperformed by LRU and FIFO over the
entire range of R. FIFO keeps the hit ratio constant on the
level without TTL for all TTLs R > RC .

FIFO puts a new requested object on top of the cache
for each miss. Consequently, a FIFO cache is sorted due
to the remaining TTL for RpM and excludes only expired
objects, if the TTL is longer than the characteristic time
R > RFIFO

C [17]. The effect is similar to the LRU with
TTL and RpR in Fig. 3, where LRU caches are sorted due to
remaining TTL for RpR. Therefore the FIFO hit ratio partly
can cope with LRU and partly outperforms LFU. However,
for R < RFIFO

C , expired objects in the cache are not put to
the top upon a request, such that the sorting due to remaining
RpM reset times is violated and FIFO becomes suboptimal.

SGC almost achieves the optimum in the TTL range
below RC , whereas a small gap of up to 2% remains for
larger TTLs towards the hit ratio bound.

The results in the Figs. 3-4 were obtained by analysis
as derived or summarized in the previous Sections, except
for SGC and Random. Moreover, we checked them via
simulation of each involved caching strategy, where only
hardly noticable deviations below 1% are encountered for
sufficiently long IRM request sequences. The analysis is
exact for LFU and static caching as well as for the bound.
For LRU and FIFO, the analysis is subject to small approx-
imation errors of the approaches [15][16][18], which are
shown to be limited to <1.3% for LRU and <3% for FIFO

for M ≥ 10 [17] with proven asymptotical exactness for
M → ∞ [19].

Figure 4: Impact of TTLs with RpM on different strategies

6. Extensions
The results are extensible in several ways, which are

mostly left for future study. However, we address a first
simple extension from constant reset interval length of Rk

requests per object Ok to variable reset intervals. Then let
r∗k(n) denote the fraction of reset intervals with n requests.
Let h∗(Rk) denote one of the previous analysis results of
Eq. (1-8) which are derived per reset interval. The corre-
sponding result h∗ for variable Rk is then obtained as a
weighted sum including all reset interval lengths Rk = n,
regarding that the mean number of requests to Ok is pro-
portional to n for IRM pattern:

h∗ =
∑

n
n r∗k(n)h

∗(n)/
∑

n
n r∗k(n). (9)

In Section 3 we mapped a TTL timer T into a request
counter with fixed value Rk = ⌈λTk⌉. Based on Eq. (9) we
can extend the mapping for a varying number of requests,
which may reflect e.g. a Poisson distribution r∗k(n) for the
number of requests in the interval T with mean λT .

Further extensions can be considered
• for the analysis of the random eviction principle,
• for more evaluations with different TTLs per object,
• for caching of data of different size and value,
• for correlated request pattern beyond IRM and,
• for optimized score-based methods for all reset variants.

7. Conclusions
We have analysed the caching performance of basic

strategies with TTL for data consistency and RpR, RpM and
PR reset policies under IRM request pattern. Exact results
are obtained for LFU and static caching. For LRU and
FIFO, asymptotically exact hit ratio approximations retain
their precision with regard to TTLs. LFU outperforms LRU
and FIFO when the TTL exceeds the mean cache filling
time, whereas LRU and partly also FIFO almost achieve the
optimum hit ratio for smaller TTLs. A score-gated method
for preferring cache content with high popularity and high
remaining TTL count performs close to optimum for small
TTLs and outperforms all basic strategies for large TTLs.
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