
Accelerating Transport Layer Multipath Packet Scheduling for 5G-ATSSS

Fabian Brisch∗, Andreas Kassler†‡, Jonathan Vestin†, Marcus Pieska†

Markus Amend§
Karlstad University, Karlstad, Sweden∗, Deggendorf Institute of Technology, Deggendorf, Germany‡,

Deutsche Telekom, Darmstadt, Germany§

Email: ∗fabian.brisch@hs-osnabrueck.de, †andreas.kassler@kau.se, †jonathan.vestin@kau.se, †marcus.pieska@kau.se
‡andreas.kassler@th-deg.de §markus.amend@telekom.de

Abstract—Utilizing multiple access networks such as 5G, 4G,
and Wi-Fi simultaneously can lead to increased robustness, re-
siliency, and capacity for mobile users. However, transparently
implementing packet distribution over multiple paths within
the core of the network faces multiple challenges including
scalability to a large number of customers, low latency, and
high-capacity packet processing requirements. In this paper,
we offload congestion-aware multipath packet scheduling to
a smartNIC. However, such hardware acceleration faces mul-
tiple challenges due to programming language and platform
limitations. We implement different multipath schedulers in P4
with different complexity in order to cope with dynamically
changing path capacities. Using testbed measurements, we
show that our CMon scheduler, which monitors path congestion
in the data plane and dynamically adjusts scheduling weights
for the different paths based on path state information, can
process more than 3.5 Mpps packets at 25 µs latency.
Index Terms—Multipath Packet Scheduling, P4, MP-DCCP,
5G, ATSSS.

1. Introduction

Mobile users can select a diversity of access technologies
for mobile services, including cellular networks (e.g. 2G,
3G, or 4G) or local area wireless networks (e.g. Wi-Fi). In
many areas, the coverage and capacity of cellular access
need to increase to cope with new services that have more
stringent requirements on throughput and latency, such as
AR/VR streaming or 4K online gaming. While current 5G
cellular networks are being slowly rolled out providing high-
speed cellular access to hot spot areas, the global avail-
able wireless capacity, resiliency, and robustness of wireless
access networks still require significant improvements to
match the requirements of such new services.

A significant challenge is to exploit the multiple wireless
access networks in a flexible way. Current implementations
are limited to utilizing one network interface at the same
time, prioritizing connections by the kind of interface (e.g.
Wi-Fi over cellular). Utilizing multiple network interfaces at
the same time offers various advantages, such as increased
reliability and bandwidth of the overall link and a more
seamless experience during the failure of one of the wireless

Parts of this work has been funded by the Bavarian State Ministry for
Science and Art through the Hightech Agenda (HTA) and by the Knowledge
Foundation of Sweden under project grant 20220072-H-01 (DRIVE).

links [1]. 5G system architecture proposed the Access Traffic
Steering, Switching, and Splitting (ATSSS) architecture —
see 3GPP Rel. 16 [2] that aims to flexibly use and ag-
gregate all locally available wireless access networks. The
ATSSS service is provided by an anchor point inside the
core network, which enables the User Equipment (UE) to
transparently utilize multiple paths over different wireless
access networks even if the remote end-host does not support
a multipath-capable transport protocol.

However, such an anchor point requires a flexible, high-
performance design and implementation in order to enable
low latency packet processing functionality for providing
ATSSS services at scale, as it needs to concurrently pro-
cess millions of packets per second for a large number of
users. Flexible and high-performance packet processing has
recently received attention from emerging programmable
data planes [3], which allow a programmer to specify
how packets are processed using high-level programming
languages such as P4. The forwarding behavior is then
compiled to programmable hardware targets that can also
include end-host stacks [4]. Indeed, offloading packet pro-
cessing functionality to re-programmable hardware such as
switches (e.g., Tofino), FPGAs (e.g., NetFPGA), or Smart-
NICs (e.g., Netronome) enables scalability and flexibility
while leveraging hardware for low-latency and high through-
put packet processing performance. While programmable
switches have been proven to be useful for in-network
computing [5] or 5G user plane functions [6], accelerating
transport layer multipath functionality within programmable
data planes is challenging due to the limitations of both the
P4 programming language and the programmable hardware.
P4 is not a general-purpose programming language and lacks
support for e.g. timers, buffering, floating-point operations,
and loops which are typically required by multipath trans-
port functionality.

In this paper, we design and implement the main func-
tionality of a 5G ATSSS proxy using the MP-DCCP frame-
work [7] in the P4 language. We compile the pipeline and
offload it to a smartNIC, which enables edge deployment
of the proxy main packet processing functionality, includ-
ing packet en- and decapsulation, per UE congestion state
tracking of individual access paths, and multipath packet
scheduling for downlink traffic. In order to react swiftly to
changes in available path capacities, we implement different

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

multi-path packet scheduling algorithms. While simple ap-
proaches such as round-robin do not consider the congestion
state of individual paths, our more complex schedulers
track per-path states, such as round-trip times or transport
layer congestion windows, and use this information to infer
congestion and dynamically adjust scheduling weights in
the data plane itself. Finally, we carry out an extensive
evaluation of our design using different traffic scenarios.
We show that the most complex CMon scheduler can react
swiftly to path capacity changes while being able to process
more than 3.5 Mpps packets at 25 µs latency.

2. Accelerating Multipath Transport Layer
Packet Scheduling in P4 on SmartNIC

2.1. Proxy Baseline Design and Implementation

Our 5G ATSSS proxy reimplements the MP-DCCP
proxy functionality in P4 by creating multiple tunnels be-
tween the UE and the proxy using the MP-DCCP protocol
[7], which is a congestion-controlled version of UDP. The
proxy can be deployed in the packet core network, e.g. co-
located with a User Plane Function (UPF). It combines en-
and decapsulation of IP packets into a MP-DCCP connection
with a packet scheduler, which distributes the IP packets
arriving from the internet into the multipath tunnels over
the different access networks towards the multi-homed UE.
Figure 1 shows a flowchart of the proxy pipeline. Packets
are processed according to their direction (up- or downlink).
Uplink packets are identified by the existence of an MP-
DCCP header. Information about the congestion state of the
individual tunnels/UEs is stored in register arrays. Addresses
and sequence numbers are populated from registers during
encapsulation. Packets must be identified, giving the correct
index for the information about the UE/tunnel. This is done
by a lookup on the source IP address of the incoming
packet. Because different packet schedulers make decisions
on different information, e.g. Round Trip Time (RTT) and
packet loss, several register arrays are used to track relevant
information, depending on which packet scheduler is used.
Such state information is used in the downlink direction to
determine which MP-DCCP sub-flow to encapsulate each
packet into. Finally, MP-DCCP headers are created for the
downlink packets, with all fields except those dependent
on the tunnel selected for the packet being populated. The
scheduling decision picks one of the individual DCCP tun-
nels using the packet scheduling algorithms as described
in Section 2.2. This also entails writing the correct path
sequence numbers and destination address fields into MP-
DCCP headers according to the packet scheduling decision.

For the uplink, when receiving an MP-DCCP packet
from the UE, an ACK packet is created by cloning the
packet to the ingress, truncating it and rewriting headers.
The original packet is decapsulated and forwarded to the
internet. Also, for the uplink packets, when processing
ACKs that come from the UE tunnel endpoint, indicating the
reception of a downlink MP-DCCP packet, RTT information
and congestion states are updated in the register arrays by
the ACK-analysis action per tunnel.

Figure 1: P4 Pipeline Design for Multipath Proxy.

Due to limitations imposed by the P4-framework used,
the proxy does not support packet reordering as this would
require support for buffering, loops and timers, which is not
available in P4. Similarly, floating point and arithmetic oper-
ations that are required by more complex packet scheduling
algorithms are approximated. Furthermore, access to shared
registers was synchronized across packets using mutex locks
implemented through Micro-C in the smartNIC in order to
avoid race conditions. Our implementation extends [8] by
implementing the uplink and several packet schedulers.

2.2. P4-based packet schedulers

The challenges for the packet schedulers are to consider
the congestion state information of individual MP-DCCP
tunnels when deciding over which tunnel endpoint to
forward. This is difficult as the available per-path capacity
may change rapidly, and UEs may even become temporarily
disconnected for some short time (e.g. outage of WiFi
connection). Therefore, the scheduler must adaptively shift
traffic from one path to another considering per tunnel
metrics such as RTT, packet loss, or available bandwidth
estimates. As this might be necessary for 100,000s of
UEs in parallel, there is a trade-off between scheduler
complexity and how well the scheduler reacts to changes
in per path state. A fast reaction is desirable in order to
avoid unnecessary packet loss or queue buildups if more
packets are pushed on a path than the available capacity.
We implemented the following scheduling algorithms in P4:
Weighted Round Robin (WRR): In order to have a

baseline for the evaluation of our more sophisticated
schedulers, the WRR scheduler utilizes the P4 built-in
random number generation to distribute packets with
minimal burstiness over the different tunnels according
to the configured weights. While this scheduler does
not adapt to capacity changes on the given paths, it is
the least complex to implement.

Dynamic Weighted Round Robin (DWRR): The DWRR
algorithm was implemented in P4 in [9]. It utilizes a
modified weighted round-robin algorithm and extends
it with congestion detection features. The distribution
of packets is defined by two independent weights,
allowing a more fine-grained control. The weight
adjustment relies on a congestion avoidance approach,
increasing the weight of a given path until packets get
dropped. This requires an analysis of incoming MP-
DCCP ACKs, maintaining a per-path counter for the

maximum sequence number received and information
if a packet has been dropped. The algorithm will keep
on increasing the weight of a path until it detects
packet loss. At that point, it stops increasing the weight
of the congested path. A notable deficiency of the
described scheduler is the inability of the scheduler to
reduce weights when detecting further congestion [9].

RTTM-based Traffic Distribution (RTTMon): This
scheduler utilizes the reported Round-Trip-Time(RTT)
of MP-DCCP packets (and their associated ACKs) to
adjust the scheduling weights. On each ACK received
from the UE, the proxy calculates the corresponding
tunnel RTT and compares it to a target RTT (e.g.
1.5*minRTT). We also implemented the tracking of
minRTT in a separate register array. As the scheduler
utilizes the same weight implementation as the WRR
approach, any weight change corresponds with the
decrease in the weight of the other path. Congestion
detection is implied by the increase of a given path
latency, e.g. due to queues filling up at the bottleneck
link. However, as the weight adjustment only occurs on
received ACKs, the scheduler cannot detect the outage
of a path which results in no incoming ACKs. The
scheduler therefore continues to utilize the old weights.

Congestion based Traffic Distribution (CMon): This
scheduler considers a more complex set of information
to infer per path state, including the current path
congestion window, minimum RTT, the largest
received ACK as well as timing information about
when the next adjustment of the congestion window
has to happen. If the amount of packets received in
a scheduling timeframe does not match a previously
set target, the congestion window is reduced. The
scheduler allocates packets to the preferred path as
long as there is space in the congestion window. Any
excess traffic gets allocated to the secondary path.

The P4 implementation of the schedulers is depicted in the
control block scheduling decision from Figure 1. While
WRR and DRR are quite simple to implement, RTMon and
CMon require the read and write of several register arrays
in the scheduling information block to obtain the necessary
information to decide which tunnel to send the current
packet over. In addition, they are also more computationally
complex.

3. Evaluation

For our evaluation, we measure the packet processing
complexity of the different schedulers and the achievable
processing rate, when accelerating the pipeline on a
smartNIC. We use TRex as traffic generator, which replays
multiple traffic scenarios against our Device Under Test
(DUT). The DUT hosts the one Netronome Agilo CX
2x40G smartNIC, which we connected over a breakout
box with 3x10G fiber cables to the TRex machine. We
created different traffic profiles by varying packet sizes
(64-1024 bytes) and shares between uplink and downlink
traffic, representing common scenarios in a 5G-environment
[10]. For example, the test scenario 1:0(512B) indicates

100% uplink packets, each one having packets of fixed size
512 bytes, while 0.42:0.52 indicates packets of mixed size
representing a typical internet link packet size distribution
with 42% uplink and 0.52% downlink traffic shares.

Table 1 shows achievable throughput without packet
loss. As can be seen, the packet scheduler complexity has
less impact than traffic distribution. This is explained by
the fact that if there is significantly more uplink traffic
(e.g. 1:0), the pipeline needs to clone many packets to the
ingress and truncate them to create ACKs towards the UE.
This is a very costly operation, almost reducing throughput
by around 35 % compared to when only downlink traffic
is served (0:1). Also, the more ACKs are created the more
overhead is generated, as ACKs are small in size. On the
other hand, it is also clear that the more complex schedulers
come with a performance penalty. This penalty increases
with the number of downlink packets as the computationally
complex scheduling block will be called more often.

TABLE 1: Peak Throughput (mpps)

Test WRR DWRR RTTMon CMon
1:0(512B) 3.0 3.0 2.9 3.0
1:0(1024B) 2.9 2.9 2.8 3.0
0:1(512B) 5.3 5.4 4.5 4.6
0.42:0.57 4.2 4.1 3.7 3.8
0.4:0.6 4.3 4.2 3.8 3.9
0.25:0.75 4.7 4.5 4.1 4.2
0.1:0.9 4.7 4.6 4.2 4.2

Figure 2 shows a violin graph of the packet processing
latency as measured by TRex. This includes the sending of
the packet from TRex over the fiber cable, the reception in
the smartNIC, parsing, ingress and egress processing includ-
ing packet scheduling and sending it back to TRex. Again,
the traffic direction has more impact on packet processing
latency than the scheduler complexity. As can be seen, when
more uplink packets need to be processed, increased packet
cloning and truncating lead to higher processing delay, as
queues in the smartNIC tend to get fuller. This negatively
impacts the packet processing latency. Comparing the
processing latency for a single scenario, it can be seen that
the scheduler complexity plays only a major role when
there is large number of downlink packets to process.

0

50

100

150

200

250

la
te

nc
y

(m
icr

os
ec

)

Figure 2: Processing latency for different schedulers.

References

[1] H. Wu, G. Caso, S. Ferlin, O. Alay, and A. Brunstrom, “Multipath
scheduling for 5g networks: Evaluation and outlook,” IEEE Commu-
nications Magazine, vol. 59, pp. 44–50, 4 2021.

[2] 3GPP, “System architecture for the 5G System (5GS),” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, 07
2021, version 17.0.0.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[4] N. Foster, N. McKeown, J. Rexford, G. Parulkar, L. Peterson,
and O. Sunay, “Using deep programmability to put network
owners in control,” SIGCOMM Comput. Commun. Rev.,
vol. 50, no. 4, p. 82–88, oct 2020. [Online]. Available:
https://doi.org/10.1145/3431832.3431842

[5] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica, “Netcache: Balancing key-value stores with fast
in-network caching,” in Proceedings of the 26th Symposium on

Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 121–136. [Online].
Available: https://doi.org/10.1145/3132747.3132764

[6] S. Singh, C. Rothenberg, J. Langlet, A. Kassler, P. Voros, S. Laki,
and G. Pongracz, “Hybrid p4 programmable pipelines for 5g gnodeb
and user plane functions,” pp. 1–18, 08 2022.

[7] M. Amend, E. Bogenfeld, M. Cvjetkovic, V. Rakocevic, M. Pieska,
A. Kassler, and A. Brunstrom, “A framework for multiaccess support
for unreliable internet traffic using multipath dccp,” in 2019 IEEE
44th Conference on Local Computer Networks (LCN). Osnabrueck,
Germany: IEEE, 2019, pp. 316–323.

[8] R. Alfredsson, A. Kassler, J. Vestin, M. Pieska, and M. Amend,
“Accelerating a Transport Layer based 5G Multi-Access Proxy on
SmartNIC,” in Würzburg Workshop on Next-Generation Communica-
tion Networks (WueWoWas’22), 2022, workingpaper, p. 4.

[9] H. Motohashi, P. L. Nguyen, K. Nguyen, and H. Sekiya, “Implemen-
tation of p4-based schedulers for multipath communication,” IEEE
Access, vol. 10, pp. 76 537–76 546, 2022.

[10] D. Lee, J. Park, C. Hiremath, J. Mangan, and M. Lynch, “Towards
achieving high performance in 5g mobile pakcet core´s user plane
function,” 2018.

